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Abstract

Secure communication is critical to many applications. To this end, various security

goals can be achieved using elliptic/hyperelliptic curve and pairing based cryptography.

Polynomial multiplication is used in the underlying operations of these protocols. There-

fore, as part of this thesis different recursive algorithms are studied; these algorithms

include Karatsuba, Toom, and Bernstein. In this thesis, we investigate algorithms and

implementation techniques to improve the performance of the cryptographic protocols.

Common factors present in explicit formulæ in elliptic curves operations are utilized such

that two multiplications are replaced by a single multiplication in a higher field. Moreover,

we utilize the idea based on common factor used in elliptic curves and generate new explicit

formulæ for hyperelliptic curves and pairing. In the case of hyperelliptic curves, the com-

mon factor method is applied to the fastest known even characteristic hyperelliptic curve

operations, i.e. divisor addition and divisor doubling. Similarly, in pairing we observe the

presence of common factors inside the Miller loop of Eta pairing and the theoretical results

show significant improvement when applying the idea based on common factor method.

This has a great advantage for applications that require higher speed.
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Chapter 1

Introduction

This chapter briefly introduces the work of this thesis for which the main aim is to improve

and efficiently implement certain algorithms for cryptographic systems. These include el-

liptic, hyperelliptic curves and pairing based cryptography. In addition, algorithms related

to polynomial multiplication and other finite field operations are presented because they

are considered basic blocks of group operations over elliptic curves.

Section 1.1 of this chapter gives a brief overview of the basic communication model

and public key cryptography; it illustrates the use of cryptographic protocols for commu-

nication. In Section 1.2, we show an introduction to private key cryptography and public

key cryptography and also we explain how the elliptic curve cryptographic schemes are

examples of public key cryptography. A short description of the motivation to conduct

this study and the objectives are then highlighted. The final section presents the proposal

organization.

1.1 Communication Model

Assume that we have two communicating parties Alice (A) and Bob (B), who want to

communicate securely using an insecure communication channel where Eve (E), who is a

malicious adversary, is trying to listen to the channel. Cryptography is about designing

mathematical and algorithmic techniques so that Alice and Bob can communicate securely

1



and Eve cannot learn the original message, impersonate either parties, or modify the

message. Figure 1.1 shows these parties in what is called basic communication model.

Figure 1.1: Basic communication model.

Basically, there are five major security goals of secure communication, namely, con-

fidentiality, data integrity, data origin authentication, entity authentication, and non-

repudiation. Confidentiality is when unauthorized users cannot read the message, i.e.,

when A sends a message to B, E cannot understand its content. Data integrity means

that the system should provide capability to make sure that the message has not been

modified. For example, if E modifies the message sent from A, B can detect this. Data

origin authentication is the ability to confirm the data source. When the message claimed

to be from A is received by B, the latter should be able to verify that it is really sent from

A. Entity authentication is to confirm the identity of an entity. For example, B should

be able to trust that the identity of the other communicating party is A. Non-repudiation

means that previous actions or commitments cannot be denied by an entity. If A sent a

message to B, then B can convince a neutral third party that it is indeed from A, and A

cannot deny that.

2



1.2 Symmetric Key Cryptography vs. Asymmetric

Key Cryptography

There are two types of cryptographic systems: symmetric key cryptography and assymmet-

ric key cryptography. In symmetric key cryptography, shown in Figure 1.2a, both parties

agree on a secret and authentic keying material (channel). They can use symmetric key

encryption, like data encryption standard (DES) or advanced encryption standard (AES),

to provide confidentiality. The communicating parties can also use a message authentical

code, such as (HMAC), to provide data integrity and data origin authentication.

The symmetric key algorithms are known to be efficient. However, there are two major

disadvantages of symmetric key cryptography. The first one is the key distribution problem.

Since both parties have to agree on a key and the distribution must be done in a secret

and authentic way, the existence of a secure channel is assumed. The second problem is

the key management problem. If we have a network of N nodes, in this case each node

must maintain N − 1 secret keys.

Diffie and Hellman [1] introduced the assymetric key cryptography system in order to

solve the key distribution problem without the need of a secure channel. This type is

shown in Figure 1.2b. Each party selects a set of keying material (e, d) where e is public

key and d is private key, and it is computationally infeasible to know the private key given

the public key.

Asymmetric key cryptography depends on the intractability of a number-theoretic prob-

lem. RSA asymmetric key encryption and signature schemes [2] are based on the integer

factorization problem. Elgamal asymmetric key encryption and signature schemes [3] are

based on the discrete logarithm problem. Finally, elliptic curve cryptographic schemes are

based on the elliptic curve discrete logarithm problem.

1.3 Motivation

Many cryptographic applications are based on elliptic and hyperelliptic curve cryptogra-

phy. Examples include ciphering, deciphering, signing, and verifying a message. Digital

signature can be done in a way opposite to encryption and decryption, in RSA for ex-

ample. The private key d can be used to sign the message S = sign(M,d); then the

3



(a) Symmetric key cryptography.

(b) Public key cryptography.

Figure 1.2: Symmetric key vs. public key cryptography.

other party can use the public key e of the sender to verify the signature of the message

d = verify(S, e,M).

Pairing based cryptography has many cryptographic applications, like the three party

key agreement protocol, identity-based cryptography, and short signatures [4]. The two

party key agreement protocol is based on the Diffie-Hellman algorithm, which is a one

round protocol because of the independence of each message [1]. Figure 1.3 shows how to

conduct the three-party two-way key agreement protocol in two-round. The secret key is

abcP and it is intractable given P, aP, bP, cP, abP, bcP, and caP . Pairing can be used to

conduct the three party key agreement protocol in one round as shown in Figure 1.4.

Hyperelliptic curves have applications in asymmetric key cryptography, design of error

correcting codes, and integer factorization algorithms [5]. An elliptic curve is a special case

of a hyperelliptic curve. Compared to elliptic curves, hyperelliptic curves have remained

4



less explored, especially for efficient implementation. Therefore, studying how to improve

the algorithms in hyperelliptic curves is of our interest.

In conclusion, improving the basic algorithms in these cryptographic fields and effi-

ciently implementing them are critical to the applications that use them. Since we are

considering software implementation, looking into methods to improve performance is very

helpful.

Figure 1.3: Three-party two-round key agreement protocol.

Figure 1.4: Three-party one-round key agreement protocol.

1.4 Objectives

Elliptic curve cryptography has a shorter key length than RSA for the same security level.

Point addition and point doubling are the major operations of elliptic curve cryptogra-

phy. In [6], a method has been proposed to improve algorithms of point addition and

point doubling. Both algorithms use polynomial multiplication as a major operation. In

5



[7], several polynomial multiplication algorithms have been investigated. Pairing and hy-

perelliptic curve based cryptography has not received as much attention as elliptic curve

cryptography.

In this study, we will extend the idea presented in [6] and use it in pairing computa-

tions and hyperelliptic curves operations to improve their performance. We will investigate

different techniques to improve polynomial multiplication and scalar multiplication in hy-

perelliptic curves.

1.5 Organization

In Chapter 2, the mathematical background needed to understand the proposal is pre-

sented. This chapter introduces abstract algebra, finite field arithmetic, elliptic curve

cryptography, pairing based cryptography, and hyperelliptic curves cryptography. Then,

Chapter 3 presents some mathematical analyses of the methods to improve point addition

and point doubling algorithms. Chapters 4 and 5 explain in detail the software implemen-

tation and the timing results respectively. In Chapter 6, improving the performance of

pairing and hyperelliptic curves is investigated. Finally, a summary of our present work

and possible directions of future research are presented in Chapter 7.
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Chapter 2

Mathematical Background

In this chapter we introduce the mathematical foundation needed to understand the rest of

the proposal. Specifically, elliptic curve cryptography (ECC) is taken into consideration.

Refer to [8] for more detailed explanation about ECC.

This chapter is organized as follows. First, we give a brief introduction to some abstract

algebra concepts. We then present finite field arithmetic and review some operations like

addition, multiplication, squaring, reduction, and inversion. After that, we focus on elliptic

curve cryptography and look at its definition, point representation and its operations like

point addition, point doubling and scalar multiplication. Next, we give brief introduction

to pairing based cryptography. Finally, we give a brief overview of hyperelliptic curves.

2.1 Abstract Algebra

In this section, we look at concepts from abstract algebra necessary to understand ECC.

Specifically, we review groups and fields.

2.1.1 Groups

An abelian group (G, ∗) is a set G with a binary operation ∗ : G × G → G satisfying the

following properties
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• (Associativity) a ∗ (b ∗ c) = (a ∗ b) ∗ c for all a, b, c ∈ G.

• (Existence of an identity) e ∈ G and a ∗ e = e ∗ a = a for all a ∈ G.

• (Existence of inverses) for each a ∈ G, there exists b ∈ G, a ∗ b = b ∗ a = e.

• (Commutatively) a ∗ b = b ∗ a for all a, b ∈ G.

The group might be either an additive group and in this case the negative of a is

denoted as −a or a multiplicative group and the inverse of a is denoted as a−1. The group

is finite if G is a finite set, the number of elements is called the order of G.

Let p be a prime and let e denote the set of integers modulo p, then (Fp,+) is a

finite additive group of order p and its additive identity element is 0. Let F∗p denote the

nonzero set of elements in Fp, then (F∗p, ·) is a finite multiplicative group of order p − 1

with multiplicative identity of 1. If G is a finite multiplicative group of order n and g ∈ G,

the smallest positive integer t such that gt = 1 is called the order of g; such a t always

exists and it divides n. The set 〈g〉 = gi : 0 ≤ i ≤ t− 1 of all powers of g is a cyclic

subgroup of G generated by g. In the case additive groups, it is similar but tg = 0 and

〈g〉 = ig : 0 ≤ i ≤ t− 1. If G has an element g of order n, then G is said to be cyclic group

and g is the generator of G.

2.1.2 Fields

Fields are abstractions of similar other number systems like rational (Q), real (R), or com-

plex (C) number systems and their basic properties. They are composed of a set F with

two operations: addition (+) and multiplication (·) such that the following properties are

satisfied:

• (F,+) is an abelian group with an additive identity (0).

• (F\0, ·) is an abelian group with a multiplicative identity (1).

• The distributive law holds: (a+ b) · c = a · c+ b · c for all a, b, c ∈ F.
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The field is said to be finite if F is finite. So, the triple (Fp,+, ·) is a finite field

denoted as Fp. Subtraction can be defined in terms of addition. Assuming a, b ∈ F, then

a− b = a+ (−b), where −b is the negative of b such that b+ (−b) = 0. Similarly, division

can be defined in terms of multiplication, so a/b = a · b−1 where b−1 is the inverse of b such

that b · b−1 = 1.

Let p be a prime number. If addition and multiplication are performed over integers

modulo p, then it is a finite field of order p denoted by Fp. Reduction modulo p for

any integer a can be done by taking a mod p and the result is the remainder r where

0 ≤ r ≤ p− 1 obtained upon dividing a by p.

If the order is of the form 2m, then the field is binary. Polynomials can be used to

represent the field where coefficients are in the field F2 and the degree is at most m− 1.

F2m = am−1z
m−1 + am−2z

m−2 + . . .+ a2z
2 + a1z + a0 : ai ∈ {0, 1}

Addition of two field elements is done by addition modulo 2 of the corresponding

coefficients. Field multiplication is done by polynomial multiplication modulo an irreducible

polynomial of degree m. The latter cannot be represented as a product of other binary

polynomials each of degree less than m.

When the order is pm, where p is a prime and m ≥ 2, the following equation generalizes

the polynomial basis representation to the field Fpm .

Fpm = am−1z
m−1 + am−2z

m−2 + . . .+ a2z
2 + a1z + a0 : ai ∈ Fp

We call k to be a subfield of a field K if k is a field with the operators of K and if k

is a subset of K. Also, K is considered an extension field of k. A finite field Fpm has one

subfield for every divisor l of m; its elements are the elements a ∈ Fpm such that ap
l

= a.

Arithmetic operations can be done to each type. These includes addition, multiplication,

squaring, reduction and inversion. We will look at these operations in the binary field since

it is the focus of the proposal.

2.2 Binary Field Arithmetic

This section focuses on the binary field algorithms and their implementation. These

algorithms include addition, multiplication, squaring, reduction and inversion. Before
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describing the algorithms, we need to look at the representation of the field in soft-

ware. Since the field is binary, each bit in the computer system can represent a poly-

nomial coefficient. Assume that the computer is W -bit architecture, and W is a mul-

tiple of 8. Assume also that we have a field F2m , and consider an element in this field

a(z) = am−1z
m−1 + . . . + a2z

2 + a1z + a0. To represent this element we need just the

vector a = (am−1, . . . , a2, a1, a0); this vector has a length of m bits. Then, we can store

a in software in an array of t W -bit words, where t = dm�W e, in the following way:

A = (A[t− 1], . . . , A[2], A[1], A[0]). A field element representation is shown in Figure 2.1.

The leftmost s bits of A[t− 1] are unused bits, where s = Wt−m. The right most bit of

A[0] is a0.

Figure 2.1: Representation of a ∈ F2m .

Before going into details, we need to look at the notations used in the algorithms.

Assume that we have two W -bit words, U and V ; then the notations used to denote the

operations are the following:

U ⊕ V : bitwise exclusive-or.

U&V : bitwise AND.

U � i : left shift of U by i positions.

U � i : right shift of U by i positions.

2.2.1 Addition

Since adding elements in binary fields is done modulo 2, then a bitwise XOR can simply

be used to add two polynomials. Algorithm 2.1 shows how we can add two polynomials in

software.
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Algorithm 2.1 Addition in F2m .

1: procedure PolynomialAdd(a(z), b(z)) . c(z) = a(z) + b(z).

2: for i from 0 to t− 1 do

3: c[i]← A[i]⊕B[i]

4: end for

5: return (c).

6: end procedure

2.2.2 Multiplication

Multiplication can be done in two steps. The first one is to multiply the inputs as polyno-

mials and the second one is to reduce the results modulo f(z). In this section we describe

the multiplication operation. Algorithm 2.2 shows how to multiply two polynomials by

the use of the right-to-left comb method. Note that the notation C{j} is used to represent

the truncation of the upper words starting from word j; so if C = (C[n], . . . , c[2], c[1], c[0])

then C{j} = (C[n], . . . , C[j + 1], C[j]). The inner loop deals with the words and the outer

loop deals with the bit position. In each iteration of the outer loop, i.e. bit position, the

value of B is shifted left by 1 position (multiplied by z).

2.2.3 Squaring

If we have a polynomial a(z) = am−1z
m−1 + ...+ a2z

2 + a1z + a0 then

a(z)2 = am−1z
2m−2 + ...+ a2z

4 + a1z
2 + a0

So squaring the polynomial results in a polynomial of double the size of the original poly-

nomial. The coefficients is one when the power of z is even or 0. Hence, the coefficients

where the power is odd are zeros. Therefore, we can compute the square of a polynomial

by inserting zeros between every two binary digits as shown in Figure 2.2.

In order to make the squaring faster, one can use a lookup table that converts an 8-bit

polynomial into the corresponding 16-bit polynomial which represents the square of the

input. Algorithm 2.3 shows the polynomial squaring algorithm.
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Algorithm 2.2 Right-to-left comb method for polynomial multiplication.

1: procedure PolynomialMultiply(a(z), b(z)) . c(z) = a(z) · b(z)

2: C ← 0.

3: for k from 0 to W − 1 do

4: for j from 0 to t− 1 do

5: if the kth bit of A[j] is 1 then

6: add B to C{j}
7: end if

8: end for

9: if k 6= (W − 1) then

10: B ← B · z.

11: end if

12: end for

13: return (c).

14: end procedure

Algorithm 2.3 Polynomial Squaring with w = 32.

1: procedure PolynomialSquaring(a(z)) . c(z) = a(z)2

2: Precomputation. For each byte d = (d7, . . . , d1, d0), compute the 16-bit quantity

T (d) = (0, d7, . . . , 0, d1, 0, d0).

3: for i from 0 to t− 1 do

4: Let A[i] = (u3, u2, u1, u0) where each uj is a byte . assuming W is 32 bits.

5: C[2i]← (T (u1), T (u0)), C[2i+ 1]← (T (u3), T (u2)) . look up table of 64

entries.

6: end for

7: return (c)

8: end procedure
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Figure 2.2: Squaring a binary polynomial a(z) = am−1z
m−1 + ...+ a2z

2 + a1z + a0.

2.2.4 Reduction

After performing polynomial multiplication or squaring, the resultant polynomial is one of

degree at most 2m− 2. Therefore, a reduction is needed such that the result is an element

in the field of degree at most m− 1. The reduction polynomial f(z) is of degree m.

We can write f(z) = zm + r(z) where r(z) is a binary polynomial of degree at most

m− 1. In order to reduce c(z) of degree 2m− 2, the following observation is used:

c(z) = c2m−2z
2m−2 + · · ·+ cmz

m + cm−1z
m−1 + · · ·+ c1z + c0

≡ (c2m−2z
m−2 + . . .+ cm)r(z) + cm−1zm−1 + . . .+ c1z + c0

This is because r(z) ≡ zm where we equate the reduction polynomial to 0. Then zm can

be taken as a common factor and replaced by r(z). Algorithm 2.4 shows how to perform

modular reduction one bit at a time.

Faster reduction can be achieved if NIST reduction polynomials are used. These are

either trinomial or pentanomial. So in order to reduce the bits with order greater than

m− 1, they need to be added (XORed) a number of times to the polynomial with proper

shifts. Assume we need to reduce the NIST polynomial modulo f(z) = z233 + z74 + 1;

so m = 233. Also assume that W = 32; hence t = 8. The word C[10] represents the

polynomial c351z
351 + . . . + c321z

321 + c320z
320. It can be written in terms of lower degrees

as follows:
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Algorithm 2.4 Modular reduction (one bit at a time).

1: procedure ModulareReduction(c(z), f(z)) . c(z) is a binary polynomial of

degree at most 2m− 2

2: . f(z) = zm + r(z)

3: Precomputation. Compute uk(z) = zkr(z), 0 ≤ k ≤ W − 1.

4: for i from 2m− 2 downto m do

5: if ci = 1 then

6: Let j ← b(i−m)/W c and k ← (i−m)−Wj.

7: C{j} ← C{j}+ uk(z).

8: end if

9: end for

10: return (C[t− 1], . . . , C[1], C[0]).

11: end procedure

z320 ≡ z161 + z87 mod f(z)

z321 ≡ z162 + z88 mod f(z)
...

z351 ≡ z192 + z118 mod f(z)

The above congruences has two columns in the right hand side. In order to reduce

C[10], one can add (XOR) it two times with its rightmost bit added to bits 161 and 87.

Figure 2.3 shows how this can be performed.

Figure 2.3: Reducing the 32-bit word C[10] modulo f(z) = z233 + z74 + 1.
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This can work for all reduction polynomials recommended by NIST in [9]:

f(z) = z163 + z7 + z3 + 1

f(z) = z233 + z74 + 1

f(z) = z283 + z12 + z7 + z5 + 1

f(z) = z409 + z87 + 1

f(z) = z571 + z10 + 1.

2.2.5 Inversion

Inversion can be done based on the Euclidean algorithm for polynomials. Assuming that

a is a binary polynomial, the inverse of an element a ∈ F2m is g ∈ F2m such that ag ≡ 1

mod f . Assume that b is also a binary polynomial, then gcd(a, b) = gcd(b − ca, a) for all

binary polynomials c. Assume that f is an irreducible reduction polynomial of degree m

and a is a binary polynomial of degree m − 1, therefore gcd(a, f) = 1. If we can write a

polynomial ag+ fh = 1 where g and h are binary polynomials. Then ag = 1 and g = a−1.

Algorithm 2.5 shows the inversion algorithm.

Algorithm 2.5 Extended Euclidean algorithm based inversion in F2m .

1: procedure PolynomialInverse(a) . a is nonzero polynomial of degree at most

m− 1.

2: u← a, v ← f .

3: g1 ← 1, g2 ← 0.

4: while u 6= 1 do

5: j ← deg(u)− deg(v).

6: if j < 0 then

7: u↔ v, g1 ↔ g2, j ← −j.
8: end if

9: u← u+ zjv.

10: g1 ← g1 + zjg2.

11: end while

12: return g1.

13: end procedure
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2.3 Elliptic Curve Cryptography

Koblitz [10] and Miller [11] independently proposed the use of elliptic curves over finite

fields to design cryptographic schemes. This section covers the basics of ECC which in-

clude its definition, point representation, and its basic algorithms for point doubling, point

addition and point multiplication. We finally look at the use of NAF representation and

look at the window based NAF point multiplication.

2.3.1 Definition

An elliptic curve E over a field K is defined by an equation called Weierstrass equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

The coefficients of E must be in the field a1, a2, a3, a4, a6 ∈ K and the discriminant of E

must be nonzero ∆ 6= 0. Discriminant ∆ is defined as ∆ = −d22d8−8d4
3−27d6

2+9d2d4d6,

where d2 = a1
2 + 4a2, d4 = 2a4 + a1a3, d6 = a3

2 + 4a6, and d8 = a1
2a6 + 4a2a6 − a1a32a4 +

a2a3
2 − a42. If L is an extension field of K, then the set of L-rational points on E is:

E(L) = {(x, y) ∈ L× L : y2 + a1xy + a3y − x3 − a2x2 − a4x− a6 = 0} ∪ {∞}

where ∞ is the point at infinity.

2.3.2 ECC vs. RSA

Table 2.1 shows the key size of Elliptic curve and RSA cryptosystems for equivalent security

levels. Generally, ECC requires shorter key sizes. As the security level goes higher the

difference of key size between ECC and RSA becomes more significant. This shows the

importance of using elliptic curve cryptography, especially for mobile applications and

embedded systems.

2.3.3 Group law

The chord-and-tangent rule for point addition and point doubling in E(K) is shown in

Figure 2.4. The set of points in E(K) with (∞) forms an abelian group. The addition rule
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Table 2.1: Key sizes for ECC and RSA for equivalent security levels.

Security Level 80 112 128 192 256

ECC 160 224 256 384 512

RSA 1024 2048 3072 8192 15360

of two distinct points P = (x1, y1) and Q = (x2, y2) on the curve can be done by drawing

a line from P to V and this line will intersects the curve at a third point. The reflection

of this point about the x-axis is the result R as shown in Figure 2.4a. In the case of point

doubling a tangent is drawn at P and then a reflection of the intersection point is the result

R as shown in Figure 6.2.

(a) Addition: P +Q = R. (b) Doubling: 2P = R

Figure 2.4: Addition and doubling of elliptic curve points

The Weierstrass equation can be simplified for non-supersingular curve E/F2m : y2 +

xy = x3 + ax2 + b. The following are the group laws:

• Identity. P +∞ =∞+ P = P for all P ∈ E(Fm2 ).

• Negatives. If P = (x, y) ∈ E(Fm2 ), then −P = (x, x+ y) ∈ F2m and P − P =∞.

• Point addition. Let P = (x1, y1) ∈ E(F2m) and Q = (x2, y2) ∈ E(F2m), Then

P +Q = (x3, y3), where x3 = λ2 +λ+ x1 + x2 + a and y3 = λ(x1 + x3) + x3 + y1 with

λ = (y1 + y2)/(x1 + x2).
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• Point doubling. Let P = (x1, y1) ∈ E(F2m), where P 6= −P . Then 2P = (x3, y3),

where x3 = λ2+λ+x1+x2+a and x3 = λ2+λ+a = x1
2+ b

x12
and y3 = x1

2+λx3+x3
where λ = x1 + y1/x1.

2.3.4 Point representation

The coordinates (x, y) considered in 2.3.3 are affine coordinates. In the same section point

addition and point doubling are shown using affine coordinates. Field inversion and mul-

tiple field multiplication are needed for point addition or doubling when affine coordinates

are used. Inversion free algorithms can be implemented with the use of Projective Coordi-

nates [8]. Projective coordinates consists of more than two terms in their coordinates e.g.,

(x, y, z). Equivalence relation of two projective coordinates is defined as follows:

(X1, Y1, Z1) ∼ (X2, Y2, Z2) if X1 = λcX2, Z1 = λdY2, Z1 = λZ2 for some λ ∈ K∗. The

projective points where Z = 0 is called the line at infinity. The one-to-one correspondence

between affine and projective coordinates can be achieved by having Z = 1 and in fact

it is the point (X/Zc, Y/Zd, 1). If c = 1 and d = 1 then this is called standard projective

coordinates and the point at infinity is (0 : 1 : 0).

2.3.5 Point operations

The curve y2 = x3 + ax + b becomes Y 2Z = X3 + aX2Z + bZ3 when using projective

coordinates. Let P = (XP , YP , ZP ) and Q = (XQ, YQ, ZQ) are the points to add, and

R = (XR, YR, ZR) is the resultant point. Point addition and point doubling algorithms of

projective coordinates in this curve are presented in [12]. Algorithm 2.6 shows that point

addition algorithm in standard projective coordinates.

Algorithm 2.7 shows how can point doubling algorithm be done. Note that in both -

point doubling and point addition - algorithms use addition which is essentially an XOR

(⊕) in addition to multiplication and squaring where the binary field multiplication and

squaring algorithms explained earlier are used.
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Algorithm 2.6 Point Addition in standard projective coordinates.

1: procedure PointAdd(P,Q)

2: if P =∞ then

3: return Q.

4: end if

5: if Q =∞ then

6: return P .

7: end if

8: S1 ← YP · ZQ.

9: S2 ← XP · ZQ.

10: A← S1 + ZP · YQ.

11: B ← S2 + ZP ·XQ.

12: S3 ← A+B.

13: C ← B2.

14: D ← ZP · ZQ.

15: E ← B · C.

16: F ← (A · S3 + b · C) ·D + E.

17: XR ← B · F .

18: YR ← C · (A · S2 +BS1) + S3F .

19: ZR ← E ·D.

20: return R.

21: end procedure
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Algorithm 2.7 Point doubling in standard projective coordinate.

1: procedure PointDouble(P )

2: if Q =∞ then

3: return Q.

4: end if

5: A← XP
2.

6: B ← A+ YP · ZP .

7: C ← XP · ZP .

8: BC ← B + C.

9: D ← C2.

10: E ← B ·BC + b ·D.

11: XR ← C · E.

12: YR ← BC · E + A2 · C.

13: ZR ← C ·D.

14: return R.

15: end procedure

2.3.6 Point multiplication

Consider the problem Q = kP where P is a point and k is an integer. The result Q is

another point on the elliptic curve K over the field F2m , this is called point multiplication or

scalar multiplication. The problem to find k given P and Q is called elliptic curve discrete

logarithm problem which is believed to be intractable, in general. Algorithm 2.8 shows the

scalar multiplication algorithm. It is basically double and add algorithm. The algorithms

described above for point doubling and point addition can be used.

NAF representation and window method

If we can rewrite k such that ki ∈ {0,±1} and no two consecurtvie digits ki are not zero,

then the result is called non-adjacent form (NAF). Therefore, when building the point

multiplication algorithm and using NAF representation, we subtract the value of P from

the result in case the value of ki is −1. The idea could be extended to a width-w NAF. In

this case, ki is an odd integer such that |ki| < 2w−1 and no two consecutive nonzero digits.

In this case, we add or subtract multiple of the point according to the value of ki digit.
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Algorithm 2.8 Right-to-left binary method for point multiplication.

1: procedure PointMultiply(k, P ) . k = (kt−1, . . . , k1, k0)2, P ∈ E(F2m).

2: Q←∞.

3: for i from 0 to t− 1 do

4: if ki = 1 then

5: Q← Q+ P .

6: end if

7: P ← 2P .

8: end for

9: return Q.

10: end procedure

Sliding window method uses the same NAF representation but it traces multiple digits to

form an odd positive or negative number and then add or subtract multiple of the point.

To subtract a point you add its negative so if we have P = (x, y). Then, −P = (x, x+ y).

Algorithm 2.9 shows how we can get the NAF representation of an integer. Algorithm 2.10

shows the sliding window point multiplication algorithm.

2.4 Pairing

In this section, pairing used in cryptography is briefly reviewed. First, a definition of

bilinear pairing is given. Then, Tate pairing is discussed. Finally, it is shown how bilinear

pairings can be satisfied from the Tate pairing. Refer to [4] for more information.

2.4.1 Bilinear pairing

Let G1 = 〈P 〉 be an additively-written group of order n with∞ as identity. Also let GT be

a multiplicatively-written group of order n and identity 1. A bilinear pairing on (G1, GT )

is a map ê : G1 ×G1 → GT that satisfy these conditions:

• (bilinearity) For all R, S, T ∈ G1, ê(R + S, T ) = ê(R, T )ê(S, T ) and ê(R, S + T ) =

ê(R, S)ê(R, T ).
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Algorithm 2.9 Computing the NAF of a positive integer.

1: procedure GetNAF(k) . k is a positive Integer.

2: i← 0.

3: while k ≥ 1 do

4: if k is odd then

5: ki ← 2− (k mod (4)).

6: k ← k − ki.
7: else

8: k ← 0.

9: i← i+ 1.

10: end if

11: end while

12: return (ki−1, ki−2, . . . , k1, k0).

13: end procedure

• (non-degeneracy) ê(P, P ) 6= 1.

• (computability) ê can be computed efficiently.

2.4.2 Tate pairing

Let E[n] be the set of all points P ∈ E(K) where K is the closure of K and K = Fq. Let

µn denote order-n subgroup of Fq
∗. Then, the Tate pairing is a map e : E[n] × E[n] →

µn which can be defined in the following way: Let P,Q ∈ E[n] and fP is a function

such that div(fP ) = n(P ) − n(∞) where div is the divisor. Let R ∈ E[n] such that

R /∈ {∞, P,−Q,P − Q} and DQ = (Q + R) − (R) and let DQ = (Q + R) − (R). Then,

e(P,Q) = fP (DQ)(q
k−1)/n = (fP (Q+R)

fP (R)
)(q

k−1)/n.

2.5 Hyperelliptic Curves

Hyperelliptic curves (HEC) are a generalization of elliptic curves. If the genus of a Hyper-

elliptic curve g = 1 then the curve is an elliptic curve. For every genus g ≥ 1, there is a

hyperelliptic curve. In this section, a short introduction to hyperelliptic curve is provided.
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Algorithm 2.10 Point multiplication using sliding window method.

1: procedure SlidingWindowPointMultiply(P, kNaf)

2: Compute Pi = iP for i ∈ {1, 3, . . . , 2(2w − (−1)w)/3− 1}
3: Q←∞, i← l − 1.

4: while i ≥ 0 do

5: if ki = 0 then

6: t← 1, u← 0.

7: else

8: find the largest t ≤ w such that u← (ki, . . . , ki−t+1) is odd.

9: end if

10: Q← 2tQ.

11: if u > 0 then

12: Q← Q+ Pu.

13: else if u < 0 then

14: Q← Q− P−u.
15: end if

16: i← i− t.
17: end while

18: return (Q).

19: end procedure
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Menezes, Wu and Zuccherato report gives an excellent introduction to hyperelliptic curves

[5].

A hyperelliptic curve C of genus g over the field K satisfy the following equation

C : v2 + h(u)v = f(u) in K[u, v],

where h(u) ∈ k[u] is a polynomial of degree at most g and f(u) ∈ K[u] is a monic

polynomial of degree 2g + 1. Assuming that K is the algebraic closure of K, then there is

no solution (u, v) ∈ K × K that satisfies the equation v2 + h(u)v = f(u) and its partial

derivative equation (with respect to v and u): 2v + h(u) = 0 and h′(u)v − f ′(u) = 0. If a

solution exists, then this is called a singular point.

Assume that L is an extension field of K. Then, the set of L-rational points on C,

denoted C(L), is the set of all points P = (x, y) ∈ L × L that satisfy the hyperelliptic

curve equation in addition to the point at infinity ∞. The opposite of P is the point

P̃ = (x,−y − h(x)). The point is special if P = P̃ .

An example of hyperelliptic curve of genus g = 2 and h(u) = 0 is C1 : v2 = u5 + u4 +

4u3 + 3u+ 3. Another example where g = 2, h(u) = u and f(u) = u5 + 5u4 + 6u2 + u+ 3

is C2 : v2 + uv = u5 + 5u4 + 6u2 + u+ 3 over the finite field Z7 then the Z7-rational points

are C(Z7) = {∞, (1, 1), (1, 5), (2, 2), (2, 3), (5, 3), (5, 6), (6, 4)}.
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Chapter 3

Improved Polynomial Multiplication

and Point Addition/Doubling

Algorithms

In this chapter, we present a survey of the major cryptographic algorithms related to our

work. The first section surveys several polynomial multiplication algorithms. The second

section highlights the improved point addition and point doubling algorithms in binary

elliptic curves.

3.1 Polynomial Multiplication Algorithms

In this section, we first introduce the Karatsuba Algorithm, more specifically, the 2-way

split (K2W) algorithm. After that a number of 3-way algorithms are investigated. Most

of the material of this section is based on the work in [7] [13]. Next, we look at a general

methodology to design a 3-way split algorithm. Then, the Karatsuba 3-way split (K3W)

formulæ are presented. After that, we show an improvement on the Karatsuba 3-way

(IK3W) formulæ. Then, Bernstein’s 3-way split (B3W) formulæ are highlighted. Finally,

the field extension based 3-way split formulæ (FE3W) are presented.
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3.1.1 Karatsuba (K2W) multiplication

The idea of Karatsuba polynomial multiplication is to split the polynomial in two half-

size polynomials and recursively call the algorithm in order to reduce the complexity

of multiplication [14]. Assume that we have the following two polynomials, A(X) =∑m−1
i=0 AiX

i and B(X) =
∑m−1

i=0 BiX
i. The polynomials can be rewritten in the fol-

lowing way: A(X) = A1X + A0 and B(z) = B1X + B0 (after substituting Y = Xm/2

and then replacing Y with X). The following auxiliary variables are needed: D0, D1,

and D0,1, where D0 = A0 · B0, D1 = A1 · B1, and D0,1 = (A0 + A1) · (B0 + B1). Then

we can compute the polynomial C(X) = A(X)B(X) by the following reconstruction:

C(z) = D1X
2 + (D0,1 −D0 −D1)X +D0.

3.1.2 Sketching 3-way split multiplication algorithm

Formulas that consist of multi-evaluation and interpolation (Toom-Cook like [15] [16]) can

be used to design 3-way split algorithms. Assume that A(X) and B(X) are polynomials of

degree n−1 inR[X] whereR is a ring and n is a power of 3. We can split these polynomials

into three parts: A = A0+A1X
n/3+A2X

2n/3 and B = B0+B1X
n/3+B2X

2n/3. The degrees

of Ai and Bi are both n/3 − 1. By substituting Xn/3 by Y , we can rewrite A and B as:

A = A0 + A1Y + A2Y
2 and B = B0 +B1Y +B2Y

2. Since A and B are both polynomials

of degree 2 in terms of Y , then their product C is of degree 4 and it has five terms.

Therefore, polynomial C can be determined when we compute its value at five points. Let

the points be α1, . . . , α4 ∈ R and α5 =∞; then the multi-evaluation can be done term by

term for A(αi) and B(αi) and the product can be computed as C(αi) at the five points.

Then, interpolation can be used to compute C(Y ) by employing the Lagrange polynomial

Li(Y ) =
∏4

j=1,j 6=i
Y−αi

αi−αj
for i = 1, . . . , 4 and L∞ =

∏4
i=1(Y −αi). Finally, to compute C(Y ),

the following formula can be used: C(Y ) =
∑4

i=1C(αi)Li(Y ) + C(∞)L∞(Y ). To get the

result in terms of X, Y is substituted by Xn/3.

3.1.3 The Karatsuba 3-way split (K3W) formulæ

Assume the same A(X) and B(X) of degree n− 1 considered in the previous section but

the field in this case is F2[X]. However, in this field, there are only two points, 0 and 1, to
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be used in multi-evaluation. The Winograd method [17] suggested the replacement of the

two missing points by multiplication modulo Y 2 +Y + 1. So the multi-evaluation is as the

following:


C(0) = A(0)B(0) = A0B0,

C(1) = A(1)B(1) = (A0 + A1 + A2)(B0 +B1 +B2),

C(Y ) = (A0 + A2 + (A1 + A2)Y )(B0 +B2 + (B1 +B2)Y ) mod (Y 2 + Y + 1),

C(∞) = A(∞)B(∞) = A2B2.

To perform the multiplication modulo Y 2+Y +1, Winograd used the Karatsuba formula

which needs 3 multiplications (A0+A1)(B0+B1), (A1+A2)(B1+B2), and (A0+A2)(B0+B2).

The Chinese remainder theorem can be used for the reconstruction. The following are the

formulæ used for the recursive products.



P0 = A0B0

P1 = A1B1

P2 = A2B2

P3 = (A0 + A1)(B0 +B1)

P4 = (A1 + A2)(B1 +B2)

P5 = (A0 + A2)(B0 +B2)

The following formulæ can be used for reconstruction.

R0 = P0 + P1

R1 = P3 +R0

R2 = P0 + P1 + P2 + P5

R3 = P1 + P2 + P4

C = P0 +R0X
n/3 +R1X

2n/3 +R2X
3n/3 + P2X

4n/3

3.1.4 Improved Karatsuba 3-way (IK3W) formulæ

The reconstruction process can be re-arranged to save some computations to the 3-way

algorithm presented in the previous section. Assume we have the same A and B polyno-

mials used in the previous section which are split in three parts. The product formulæ can
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be used in a similar fashion to the 3-way formulæ. The following expression is used in the

previous section for the reconstruction:

C = P0 + (P0 +P1 +P3)X
n/3 + (P0 +P1 +P2 +P5)X

2n/3 + (P1 +P2 +P4)X
3n/3 +P2X

4n/3

The above expression can be rewritten in the following way:

C = (P0 +Xn/3P1 +X2n/3P2)(1 +Xn/3 +X2n/3) + P3X
n/3 + P5X

2n/3 + P4X
3n/3

We can define R0 = P0 +Xn/3P1 +X2n/3P2 and R1 = R0(1 +Xn/3 +X2n/3). Then we

have C in terms of Pi and Ri as C = R1 + P3X
n/3 + P5X

2n/3 + P4X
3n/3. Therefore the

product formulæ are shown below:



P0 = A0B0

P1 = A1B1

P2 = A2B2

P3 = (A0 + A1)(B0 +B1)

P4 = (A1 + A2)(B1 +B2)

P5 = (A0 + A2)(B0 +B2)

The reconstruction formulæ are as follows:
R0 = P0 +Xn/3P1 +X2n/3

R1 = R0(1 +Xn/3 +X2n/3)

C = R1 + P3X
n/3 + P5X

2n/3 + P4X
3n/3

3.1.5 Bernstein’s (B3W) formulæ

Multi-evaluation and interpolation are also used in the Bernstein algorithm [18] by evalu-

ating the polynomials at 0, 1, X,X + 1, and∞. So the pairwise product of the evaluations

of A(Y ) and B(Y ) are as follows:

P0 = A0B0

P1 = (A0 + A1 + A2)(B0 +B1 +B2)

P2 = (A0 + A1X + A2X
2)(B0 +B1X +B2X

2)

P3 = ((A0 + A1 + A2) + (A1X + A2X
2))× ((B0 +B1 +B2) + (B1X +B2X

2))

P4 = A2B2
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The following expressions are proposed by Bernstein for reconstruction:
U = P0 + (P0 + P1)X

V = P2 + (P2 + P3)(X
n/3 +X)

C = U + P4(X
4n/3 +Xn/3) + (U+V+P4(X4+X))(X2n/3+Xn/3)

X2+X

The explicit computation of Bernstein is composed of three parts: multi-evaluation,

product and reconstruction. The multi-evaluation formulæ are:
M1 = A0 + A1 + A2, M

′
1 = B0 +B1 +B2

M2 = A1X + A2X
2, M

′
2 = B1X +B2X

2

M3 = A0 +M2, M
′
3 = B0 +M

′
2

M4 = M1 +M2, M
′
4 = M

′
1 +M

′
2

The product formulæ are shown below:



P0 = A0B0

P1 = M1M
′
1

P2 = M3M
′
3

P3 = M4M
′
4

P4 = A2B2

The reconstruction formulæ are as follows:

S = P2 + P3

U = P0 + (P0 + P1)X
n/3

V = P2 + S(Xn/3 +X)

W = U + V + P4(X
4 +X)

W
′

= W/(X2 +X)

W
′′

= W ′(X2n/3 +Xn/3)

C = U + P4(X
4n/3 +Xn/3) +W

′′

3.1.6 Field extension based 3-way (FE3W) formulæ

In the previous section, we have seen that Bernstein makes the evaluation at X and X + 1

as the two extra points other than 0 and 1 values available in F2 in addition to ∞ point.
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In [7], as an alternative method, field extension F4 = F2[α]/(α2 + α+ 1) has been used. In

this case, the polynomial can be evaluated at 0, 1, α, α + 1, and ∞. As a result, we have

the following recursive multiplication:

P0 = A0B0 in F2[X]

P1 = (A0 + A1 + A2)(B0 +B1 +B2) in F2[X]

P2 = (A0 + A2 + α(A1 + A2))(B0 +B2 + α(B1 +B2)) in F4[X]

P3 = (A0 + A1 + α(A1 + A2))(B0 +B1 + α(B1 +B2)) in F4[X]

P4 = A2B2 in F2[X]

The Lagrange interpolation can be used to compute the reconstruction C = A× B as

shown below:

C = (P0 +Xn/3P4)(1 +Xn) + (P1 + (1 + α)(P2 + P3))(X
n/3 +X2n/3 +Xn)

The following are the formulæ for the multi-evaluation, which is similar in both cases

in F2 and in F4. 

M1 = A0 + A1, M
′
1 = B0 +B1

M2 = A1 + A2, M
′
2 = B1 +B2

M3 = αM2, M
′
3 = αM

′
2

M4 = M1, M
′
4 = M

′
1 +M

′
3

M5 = M4 +M2, M
′
5 = M

′
4 +R

′
2

M6 = M1 + A2, M
′
6 = M

′
1 +B2

The following are the product formulæ



P0 = A0B0

P1 = M6M
′
6

P2 = M5M
′
5

P3 = M4M
′
4

P4 = A2B2

The following are the reconstruction formulæ in F4:
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U1 = P2 + P3

U2 = αU1

U3 = (1 + α)U1

U4 = P1 + U3

U5 = U4(X
n/3 +X2n/3 +X3n/3)

U6 = P0 +Xn/3P4

U7 = U6(1 +Xn)

C = U7 + U5 +XnU2 + P2X
2n/3 + P3X

n/3

If a = a0 +a1α and b = b0 +b1α, then we can denote [a+b]const = a0 +b0. The following

formulæ show the reconstruction in F2:

U1 = P2 + P3

U2 = [αU1]const
U3 = [(1 + α)U1]const
U4 = [P1 + U3]const
U5 = [U4(X

n/3 +X2n/3 +X3n/3)]const
U6 = [P0 +Xn/3P4]const
U7 = [U6(1 +Xn)]const
C = [U7 + U5 +XnU2 + P2X

2n/3 + P3X
n/3]const

3.1.7 Reducing two multiplications to one F4[X] multiplication

The field extension 3-way split algorithm presented in the previous section can be used to

replace two F2 multiplications AB and AC such that A,B,C ∈ F2[X] by one F4 multipli-

cation. We can write P = A(B + αC) = P0 + αP1, this results in P0 = AB and P1 = AC.

This shows some potential advantage since it is faster to use a single multiplication in F4[X]

than two multiplications in F2[X]. The use of a single multiplication in F4[X] works here as

simultaneous finite field operations which include the products AB and AC in F2[X]. This

kind of computation exists in elliptic curve point addition and point doubling algorithms.
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3.2 ECC Algorithms

As mentioned in Chapter 2 the Weierstrass form of elliptic curve over F2 is y2 + xy =

x3 + a2x
2 + a6 where a2, a6 ∈ F2n and a6 6= 0. A point (x, y) on an elliptic curve can be

expressed as (X, Y, Z) where x = X/Z and y = Y/Z. The projective representation of the

curve is Y 2Z + XY Z = X3 + a2X
2Z + a6Z

3. This equation of the curve is used in the

following discussion.

3.2.1 Point addition

If we want to add two points P = (X1, Y1, Z1) and Q = (X2, Y2, Z2), then their addition is

R = P +Q = (X3, Y3, Z3). The following are the formulæ for point addition [12]. We will

call this point addition conventional point addition algorithm in the rest of the proposal.
S1 = Y1Z2, S2 = X1Z2, A = S1 + Z1Y2,

B = S2 + Z1X2, S3 = A+B, C = B2

D = Z1Z2, E = BC, F = (AS3 + a2C)D + E

X3 = BF, Y3 = C(AS2 +BS1) + S3F, Z3 = ED

In the previous set of formulæ, we have Z2 as common for the products S1 = Y1Z2 and

S2 = X1Z2. Moreover, Z1 is common for the products Z1Y2 and Z1X2. A common operand

A is for AS3 and AS2. (AS3 +a2C)D and ED have D in common. The common term F is

there for FB and FS3. The following formula can be used as new point addition formulæ

[6]. We will call these forumulas CANH point addition (after the last names of the authors

of [6]: Cenk, M., Alrefai, A. S., Negre, C. and Hasan, M. A.)

T1 = Z2(Y1 + αX1), T2 = T1,0, T3 = T1,1,

T4 = Z1(Y2 + αX2), T5 = T4,0, T6 = T4,1,

T7 = T2 + T5, T8 = T3 + T6, T9 = T7 + T8, T10 = T 2
8 ,

T11 = Z1Z2, T12 = T8T10, T13 = T7(T9 + αT3),

T14 = T13,0, T15 = T13,1, T16 = T14 + a2T10,

T17 = T11(T16 + αT12), T18 = T17,0, T19 = Z3 = T17,1,

T20 = T18 + T12, T21 = T20(T8 + αT9), T22 = T21,0,

T23 = T21,1, X3 = T22, Y3 = T10(T15 + T8T2) + T23.
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3.2.2 Point doubling

The best known formulæ for point doubling as presented in [12] are shown below. We call

these formulæ conventional point doulbling:.

{
A = X2

1 , B = A+ Y1Z1, C = X1Z1, D = B + C, E = C2,

F = BD + a2E, X3 = CF, Y3 = DF + A2C, Z3 = CE.

The products Y1Z1 and X1Z1 have Z1 in common. CF and DF have F in common.

Moreover, A2C and CE have C as a common operand. The following are the formulæ

after applying the modifications [6]. These formulæ are called in this proposal CANH

point doubling after the names of the authors in [6].


T1 = X2

1 , T2 = Z1(Y1 + αX1), T3 = T2,0, T4 = T2,1, T5 = T1 + T3, T6 = T4 + T5,

T7 = T 2
4 , T8 = T5T6 + a2T7, T9 = T8(T4 + αT6), T10 = T9,0, T11 = T9,1,

T12 = T 2
1 , T13 = T4(T12 + αT7), T14 = T13,0, T15 = T13,1,

X3 = T10, Y3 = T11 + T14, Z3 = T15.

3.3 Related Work

In [19], different finite fields for elliptic curve cryptosystems are compared. They found that

the use of optimized extension fields (OEFs) produces greater performance. An efficient

algorithm for multiplication in F2m is described in [20]. The authors proposed a comb

method with the use of a window as an improvement over the shift and add method.

An excellent survey of the techniques used to multiply elements in different rings is

presented in [21]. This covers Karatsuba and Toom multiplications and different tricks

for performing multiplication. Their paper focuses both on multiplying large integers and

finding the product of polynomial over a commutative ring. In [22], a proposed method to

improve splitting of input is described. This method improves the theoretical XOR gate

delay of the Karatsuba multiplier. In [23], the toeplitz matrix-vector products and coor-

dinate transformation techniques are utilized to achieve a subquadratic space complexity

parallel multiplier.
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Bernstein proposed an optimization of Karatsuba forumula for binary polynomial mul-

tiplication in [18] by rearranging the reconstruction part in two recursions of the formula.

A generalization of this approach is propsed by Negre in [24], who extended his work in

[25] to three-way split formula. His work improves over the best known space complexity

of [7] while having the same time complexity as the best known approach in [22].

The work in [26] studies the optimization effects of optimizing software implementa-

tion on small binary field arithmetic. Their implementation smooths the performance of

binary fields to better resemble theoretical results. They noted that their results might

require the development of new explicit formulæ for arithmetic on elliptic and hyperelliptic

curves. The use of the vector instruction set in the software implementation of binary field

arithmetic is described in [27]. Their representation uses extensively the parallel lookup

instruction introduced in desktop platforms which expedite the implementation of crypto-

graphic algorithms. For large finite fields GF(2n), the work of Luo J. et al. studies efficient

software implementation techniques as well as present new optimization methodology [28].

The reader might refer to [29] for superb article that survey different techniques for imple-

menting finite field arithmetic in software. The work of A. Reyhani-Masoleh in [30] present

efficient algorithms for field multiplication in normal basis.

The work of Lopez and Dahab in [31] proposes an optimized version of the work in [32]

for doing fast scalar multiplication without precomputation. Higuchi and Takagi proposed

in [33] a fast addition algorithm using projective coordinates. Their algorithm improves

over the Lopez and Dahab algorithm proposed in [34] by the use of the same coordinate

system.

A study of software implementation of NIST recommended elliptic curves is presented

in [35]. Their results show that projective coordinates are better than affine coordinates

due to the use of costly inversion. The use of Koblitz curves is better than random curves

in their implementation. The work of Bernstein and Lange [36] studies how to optimize

single-scalar multiplication in elliptic curves. This includes how many points are needed for

precomputation in sliding window computation of scalar multiplication and other issues.

The use of instruction set extension to speed up arithmetic over binary fields is dis-

cussed in [37] and [38]. For an excellent survey for fast hardware implementation of elliptic

curve cryptography, the interested reader might refer to [39]. In [40] the authors described

the design of a crypto-processor for ECC. Their design present high performance imple-

mentation that utilizes low area. The work in [41] presents the use of the parallelism in
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residue number system to build a fast point multiplier in elliptic curve cryptography.

Wollinger et al. [42] focused on embedded processors in their study of elliptic curve

cryptography and hyperelliptic curve cryptography and how it is affected by different ar-

chitectures, processor types and resources. They improved the HECC algorithms.

3.4 Summary

The use of fast polynomial multiplication algorithms helps improve elliptic curve operations

that depend on them. In this chapter, polynomial multiplication formulæ as well as elliptic

curves point addition and point doubling formulæ have been investigated. Recursive mul-

tiplication algorithms depend on splitting the polynomials and dealing with the resulting

smaller size polynomials. The FE3W algorithm can replace two multiplications in the same

field that have a common factor. This idea has been used to improve point addition and

doubling algorithms in elliptic curves, and the formulæ for the improved algorithms have

been shown.
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Chapter 4

Software Implementation

In this chapter, we introduce some algorithms used to develop the elliptic curve point

multiplication to generate the results. More specifically, we discuss the implementation of

2-way and 3-way split algorithms for polynomial multiplication. These include the K2W

[14], K3W [14], IK3W [7], B3W [18] and FE3W [7]. Also we discuss the implementation

of the algorithms related to elliptic curve like point doubling, point addition and point

multiplication [6].

4.1 Preliminaries

In this section we provide an introduction to software implementation and the development

environment used. Then, we will talk about Big Integer structure that is used in our im-

plementation. After that, the overall view of the program is presented. The description of

polynomial multiplication algorithms are presented next. This is followed by the structure

of the reduction algorithms and then the structure of elliptic curve algorithms. At the end,

other classes implemented are introduced.

4.1.1 Development environment

C] is used as the programming language which is an improvement of C++ programming

language but includes object oriented features like classes and methods. C] is part of .Net
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framework. Visual studio is used as a development environment.

4.1.2 BigInteger

BigInteger structure is part of .Net 4.0 frameworks [43]. This structure accepts integers

of any size. One can use it to perform all the basic operations used in integer. That

includes normal operations like addition, subtraction, multiplication, and division and bit-

wise operations like ORing, ANDing, and eXclusive ORing (XOR). The internal structure

of BigInteger is an array of 32-bit integers. With the availability of this structure, one

needs not to worry about the internal management of bits in this array and how the basic

operation is handled. This makes the implementation of the algorithms a little bit easier.

4.1.3 High level view

Figure 4.1 shows the overall structure of the implementation. The main program is a

class that is used to test the methods and to measure the timing results. Polynomial

multiplication package or the set of classes contains the methods used to perform different

types of polynomial multiplication algorithm. Reduction package contains algorithms to

perform a general reduction algorithm or fast reduction algorithms for specific NIST fields.

Elliptic Curve package contains classes to define elliptic curve points and the methods of

point addition, point doubling and point multiplication.

4.1.4 Structure of polynomial multiplication

We implemented five polynomial multiplication algorithms. These are shown in Figure 4.2.

They are mainly the K2W, K3W, IK3W, B3W and FE3W. Each algorithm is implemented

in a class that extends polynomial multiplication interface. Later in this chapter, we will

describe these algorithms in details.

4.1.5 Structure of reduction

Since our test results focus on NIST recommended curves, we have implemented faster

reduction algorithms for these curves. Figure 4.3 shows the structure of the reduction
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Figure 4.1: General structure of the implementation.

package. A method for general reduction and other reduction methods that work on

elliptic curves: B163, B233, B283, B409 and B571.

4.1.6 Structure of elliptic curve arithmetic

To construct an elliptic curve, a class is built to represent the points. Each point has three

coordinates X, Y, and Z. Figure 4.4 shows the elliptic curve package. ECPoint class has

a method to determine whether the point is infinity (∞). The Elliptic curve class has the

point addition and point doubling methods in addition to point multiplication methods.

4.1.7 Other classes

Some other classes are also built to complete the program. For example, one class is built

to perform the inversion of an element in a field. This is used to convert the point from

projective to affine coordinates in order to test the correctness of our implementation. Also

configuration class is built to generate the table of results of polynomial multiplication of

small numbers.
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Figure 4.2: Structure of polynomial multiplication package.

4.2 Polynomial Multiplication

In this section, detail of implementation of the polynomial multiplication algorithms is

presented. These algorithms include the K2W, K3W, IK3W , B3W and FE3W algorithms.

4.2.1 Polynomial multiplication algorithms

Algorithms of polynomial multiplication considered here are recursive in nature, i.e. a

method inside an algorithm may call the method itself. These algorithms are based on

the idea of splitting, similar to the Karatsuba algorithm reviewed in section 3.1.1. In that

section the polynomial is divided into two subpolynomials. However, 3-way split methods

divide the polynomial into three smaller polynomials.

In general there are five parts of polynomial multiplication algorithm as shown in Figure

4.5. The first one is stop-check in which if the polynomial size is less than a certain threshold

then the check returns the result from a precomputed look up table. The second one is

splitting in which the polynomial is split in two or three smaller polynomials. The third

step is multi-evaluation which makes some operations on the polynomials and generate

temporary variables to be used in the forth step which is product recursive calls. Multi-

evaluation is actually a step to evaluate a number of points on the curve of product of the
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Figure 4.3: Structure of reduction package.

two polynomials. Product recursive calls usually call the same method again, but it uses as

an input the sub-polynomials or the results of multi-evaluation step. The last step, which

is called reconstruction, is the calculation conducted on the results of the recursive calls

to get the resulting polynomial. Reconstruction is originally an interpolation step of the

product results of the points in the curve. Multi-evaluation and reconstruction are known

as Toom-Cook like formulas [7].

4.2.2 Look-up table

Polynomial multiplication over F2 is not a normal multiplication of two integers. It is

actually a carry-less multiplication. The polynomials we are trying to multiply are of large

degree, for example NIST fields go up to 570. Hence the degree of the product is up to

1140. Normal integer structure does not fit to represent polynomials. As a result, we use

BigInteger structure, we described earlier in section 4.1.2, to represent them. Assume that

we have two small polynomials we are trying to multiple A = x2 + x+ 1 and B = x2 + x.

The binary representations of these two polynomials are (111)2 and (110)2 respectively.

These numbers are 7 and 6 in decimal and their radix-ten multiplication is 42. However,

their polynomial multiplication is (x2 + x + 1) · (x2 + x) = x4 + x3 + x2 + x3 + x2 + x =

x4 + x = (10010)2 = (18)10. This example of carry-less multiplication is shown in Figure
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Figure 4.4: Elliptic curve package.

4.6 and it is different than conventional multiplication since the addition is done mod 2 or

XOR (⊕).

One can construct a look-up table (LUT ) using a two dimensional array, where the

rows of the array represent the first input and the columns represent the second input.

The content of the cell in the array is the polynomial multiplication result. Table 4.1 is a

polynomial multiplication look up table of input size up to 3 bits. One can get the result

from the table by inserting the two input as index. For example, to multiply polynomials,

whose decimal representation is 7 and 6, we index the table at row (R = 7) and column

(C = 6) and the result (R = 18), we can write it as LUT (7, 6) = 18.

Table 4.1: Look up table for multiplication up to 3-bit input size.

R\C 0 1 2 3 4 5 6 7

0 0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6 7

2 0 2 4 6 8 10 12 14

3 0 3 6 5 12 15 10 9

4 0 4 8 12 16 20 24 28

5 0 5 10 15 20 17 30 27

6 0 6 12 10 24 30 20 18

7 0 7 14 9 28 27 18 21
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Figure 4.5: Polynomial multiplication algorithm structure.

4.2.3 Splitting

Since splitting is done in every algorithm, it is worth discussing it in a separate section.

Algorithm 4.1 shows how a polynomial can be split in two subpolynomials using shift and

XOR operations. Similarly, Algorithm 4.2 shows how to split the polynomial in three

subpolynomials.
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Figure 4.6: Carry-less multiplication.

Algorithm 4.1 Splitting into two subpolynomials.

procedure SplitTwo(A, n) . A is the polynomial to be split, n is subpolynomial

length

A1 ← A� n.

A0 ← A⊕ (A1 � n).

return (A1, A0).

end procedure

4.2.4 The K2W algorithm

In [44], Karatsuba suggested a method of performing multiplication of large integers. We

assume the number of coefficients to be a power of 2. So the two polynomials that we

intend to multiply are split into two halves. These halves can be used as if they were

coefficients. Algorithm 4.3 shows the Karatsuba multiplication. Since the field is binary,

XOR (⊕) is used instead of addition and subtraction. Algorithm 4.3 shows the way it is

implemented. Note that the use of SplitTwo is done in the same way as in Algorithm 4.1.

Algorithm 4.2 Splitting into three subpolynomials.

procedure ThreeWaySplit(A, n) . A is two input polynomials, n is subpolynomial

length

A2 ← A� (n� 1). . n� 1 is equal to 2 · n
A1 ← (A� n)⊕ (A2 � n).

A0 ← A⊕ (A2 � (n� 1))⊕ (A1 � n)

return (A2, A1, A0).

end procedure
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One can easily distinguish the degree of polynomial multiplication. The way we measure

the size is by taking the logarithm of the BigInteger input.

Algorithm 4.3 The K2W polynomial multiplication.

1: procedure K2W(A,B) . Z = A ·B
2: n← max(deg(A), deg(B)) + 1.

3: if N ≤ s then . s is the size (maximum number of bits) of lookup table input

4: return LUT (A,B).

5: end if

6: n← dn/2e.
7: (A1, A0)← SplitTwo(A).

8: (B1, B0)← SplitTwo(B).

9: D0 ← K2W (A0, B0). . recursive productive calls

10: D1 ← K2W (A1, B1).

11: D0,1 ← K2W (A0 ⊕ A1, B0 ⊕B1).

12: Z ← D0 ⊕ ((D0,1 ⊕D0 ⊕D1)� n)⊕ (D1 � (n� 1)). . reconstruction

13: return Z.

14: end procedure

4.2.5 Lookup table of larger size

In Section 4.2.2, we have introduced our 3-bit look up table. However, larger look up tables

are needed to make the algorithm faster. In order to have a look up table of an input size

larger than 3 bits, we develop a method to generate a look up table which takes the number

of bits of the inputs to the multiplication as an input. We use the base look up table and

the Karatsuba algorithm presented in Section 4.2.4 to generate a larger one. Algorithm

4.4 shows the implementation of generating a larger look up table. After generating the

new table Table, LUT is updated to have the new larger table.

4.2.6 The K3W algorithm

An extension of the K2W algorithm is the K3W algorithm. This is shown in Algorithm

4.5. In order to generate the splitting formula for the K3W algorithm, assume we have
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Algorithm 4.4 Algorithm for generating a look up table.

1: procedure GenerateLookupTable(size) . size is the number of bits to the

inputs of polynomial multiplication

2: side← 2size.

3: for a from 0 to side− 1 do

4: for b from 0 to side− 1 do

5: Table[a, b]← Karatsuba(a, b).

6: end for

7: end for

8: LUT ← Table.

9: end procedure

two polynomials A(X) and B(X) of degree n− 1 in F2[X]. We can split these polynomials

into three parts; assuming Y = Xn/3−1, then A(Y ) = A0 + A1Y + A2Y
2 and B(Y ) =

B0 + B1Y + B2Y
2. Then, we evaluate the polynomials at 0, 1 and ∞. However two other

points are needed in the evaluation step to be able to generate the product. The evaluation

Y modulo Y 2 +Y + 1 as suggested in [45] serves the purpose. The product calls are shown

from Line 9 till Line 14 in Algorithm 4.5. This is followed by the reconstruction step.

4.2.7 The IK3W algorithm

In [7], a re-arrangement of the reconstruction process is proposed to save some computation.

Algorithm 4.6 shows this improvement. The algorithm is similar to the previous one with

the difference in the reconstruction step which starts at Line 15.

4.2.8 The B3W algorithm

Bernstein suggested a recursive algorithm for polynomial multiplication [18]. The idea is to

do the evaluation at 0, 1, X,X + 1 and ∞. Algorithm 4.7 shows the Bernstein polynomial

multiplication algorithm. The multi-evaluation starts at Line 9 and ends at Line 16. The

reconstruction step includes division by R4 = R3

X2+X
. This can be done by first dividing R3

by X and then dividing the result by X+1. The first one is a right shift shown at Line 26.

The division by X + 1 can be done by noticing that R
′
4[i] = R

′
4[i+ 1] +R4[i+ 2] where i is
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Algorithm 4.5 K3W polynomial multiplication algorithm.

1: procedure K3W(A,B) . Z = A ·B
2: n← max(deg(a), deg(b)).

3: if N ≤ s then . s is the size (maximum number of bits) of lookup table input

4: return LUT (A,B).

5: end if

6: n← dn/3e
7: (A2, A1, A0)← SplitThree(A).

8: (B2, B1, B0)← SplitThree(B).

9: P0 ← K3W (A0, B0). . recursive product calls

10: P1 ← K3W (A1, B1).

11: P2 ← K3W (A2, B2).

12: P3 ← K3W (A0 ⊕ A1, B0 ⊕B1).

13: P4 ← K3W (A1 ⊕ A2, B1 ⊕B2).

14: P5 ← K3W (A0 ⊕ A2, B0 ⊕B2).

15: R0 ← P0 ⊕ P1. . reconstruction

16: R1 ← P3 ⊕R0.

17: R2 ← P1 ⊕ P0 ⊕ P2 ⊕ P5.

18: R3 ← P4 ⊕ P1 ⊕ P2.

19: Z ← P0 ⊕ (R1 � n)⊕ (R2 � (n� 1))⊕ (R3 � (3 · n))⊕ (P2 � (n� 2))

20: return Z.

21: end procedure
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Algorithm 4.6 The IK3W polynomial multiplication.

1: procedure IK3W(A,B) . Z = A ·B
2: n← max(deg(a), deg(b)).

3: if N ≤ s then . s is the size (maximum number of bits) of lookup table input

4: return LUT (A,B).

5: end if

6: n← dn/3e
7: (A2, A1, A0)← SplitThree(A).

8: (B2, B1, B0)← SplitThree(B).

9: P0 ← IK3W (A0, B0). . recursive product calls

10: P1 ← IK3W (A1, B1).

11: P2 ← IK3W (A2, B2).

12: P3 ← IK3W (A0 ⊕ A1, B0 ⊕B1).

13: P4 ← IK3W (A1 ⊕ A2, B1 ⊕B2).

14: P5 ← IK3W (A0 ⊕ A2, B0 ⊕B2).

15: R0 ← P0 ⊕ (P1 � n)⊕ (P2 � (n� 1)). . reconstruction

16: R1 ← R0 ⊕ (R0 � n)⊕ (R0 � (n� 1)).

17: Z ← R1 ⊕ (P3 � n)⊕ (P5 � (n� 1))⊕ (P4 � (3 · n)).

18: return Z.

19: end procedure
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the bit index number. By assuming R4 of degree n, then R4 starts from R4[n− 2] = R3[n].

These are done in the while loop at Line 28. The division makes the B3W algorithm

slower compared to other algorithms.

4.2.9 The FE3W algorithm

Algorithms 4.8 and 4.9 show the FE3W polynomial multiplication algorithm. The idea is

similar to the Bernstein multievaluation, but instead of evaluating at X and X + 1, the

field is extended to F4 and the polynomials are evaluated at 0, 1, α, α + 1 and ∞. Two

of the product calls in Algorithm 4.8 invoke Algorithm 4.9 which is similar to the first

algorithm. However, it takes the input in F4 format so the first two inputs are the first

polynomial and the other two inputs constitute the second polynomial. Each polynomial

is represented by two inputs: one is the non-α part and the other is the α-part.

In Algorithm 4.9, the way to access the look-up table is done by three accesses to the

table. Assume that we have a0 + a1α and b0 + b1α, then their product is a0b0 + a0b1α +

a1b0α+a1b1α
2. But α2 = α+1, hence the result can be rewritten as (a0b0 +a1b1)+(a0b1 +

a1b0 + a1b1)α. However, this needs four accesses to the look-up table. In order to reduce

the number of accesses, we utilize the fact that (a0 + a1)(b0 + b1) + a0b0 is equal to the α

part. This reduces the number of look-up table accesses to three. This starts at Line 4

and ends at Line 7 in Algorithm 4.9.

4.3 Reduction Algorithms

In section 2.2.4, we have introduced reduction and discussed fast reduction algorithms. In

this section, we show our implementation of reduction algorithms. Algorithms 4.10 show

the reduction algorithm where the polynomial has maximum size m = 163 module the

NIST recommended field f(z) = z163 + z7 + z6 + z3 + 1. For other NIST recommended

fields refer to algorithms A.1, A.2, A.3, and A.4 in Appendix A. These algorithms take

advantage of the knowledge of the field and the small number of non-zeros in the field

defining polynomials (trinomial or pentanomial).
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Algorithm 4.7 B3W polynomial multiplication algorithm.

1: procedure B3W(A,B) . Z = A ·B
2: n← max(deg(A), deg(B)).

3: if N ≤ s then . s is the size (maximum number of bits) of lookup table input

4: return LUT (A,B).

5: end if

6: n← dn/3e.
7: (A2, A1, A0)← SplitThree(A).

8: (B2, B1, B0)← SplitThree(B).

9: M1 ← A0 ⊕ A1. . multi-evaluation

10: M
′
1 ← B0 ⊕B1.

11: M2 ← A1 ⊕ A2.

12: M
′
2 ← B1 ⊕B2.

13: M3 ← A0 ⊕M2.

14: M
′
3 ← B0 ⊕M

′
2.

15: M4 ←M1 ⊕M2.

16: M
′
4 ←M

′
1 ⊕M

′
2.

17: P0 ← B3W (A0, B0). . recursive product calls

18: P1 ← B3W (M1,M
′
1).

19: P2 ← B3W (M3,M
′
3).

20: P3 ← B3W (M4,M
′
4).

21: P4 ← B3W (A2, B2).

22: R0 ← P2 ⊕ P3. . reconstruction

23: R1 ← P0 ⊕ ((P0 ⊕ P1)� n).

24: R2 ← P2 ⊕ ((R0 � n)⊕ (R0 � 1)).

25: R3 ← R1 ⊕R2 ⊕ ((P4 � 4)⊕ (P4 � 1)).

26: R4 ← R3 � 2. . Start division R4 ← R3

X2+X

27: R
′
4 ← R4

28: while R
′
4 6= 0 do

29: R
′
4 ← R

′
4 � 1.

30: R4 ← R4 ⊕R
′
4.

31: end while . End division

32: R5 ← (R4 � (n� 1))⊕ (R4 � n).

33: Z ← R1 ⊕ (P4 � (n� 2))⊕ (P4 � n)⊕R5.

34: return Z.

35: end procedure
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Algorithm 4.8 The FE3W polynomial multiplication algorithm.

1: procedure FE3W(A,B) . Z = A ·B
2: n← max(deg(A), deg(B)).

3: if N ≤ s then . s is the size (maximum number of bits) of lookup table input

4: return LUT (A,B).

5: end if

6: n← dn/3e.
7: (A2, A1, A0)← SplitThree(A).

8: (B2, B1, B0)← SplitThree(B).

9: M1 ← A0 ⊕ A1, M
′
1 ← B0 ⊕B1. . multi-evaluation

10: M2 ← A1 ⊕ A2, M
′
2 ← B1 ⊕B2.

11: M3α ←M2, M
′
3α ←M

′
2.

12: M4 ←M1, M4α ←M3α.

13: M
′
4 ←M

′
1, M

′
4α ←M

′
3α.

14: M5 ←M4 ⊕M2, M5α ←M4α.

15: M
′
5 ←M

′
4 ⊕M

′
2, M

′
5α ←M

′
4α.

16: M6 ←M1 ⊕ A2, M
′
6 ←M

′
1 ⊕B2.

17: P0 ← FE3W (A0, B0). . recursive product calls

18: P1 ← FE3W (M6,M
′
6).

19: P2 ← FE3WF4(M5,M5α,M
′
5,M

′
5α).

20: P3 ← FE3WF4(M4,M4α,M
′
4,M

′
4α).

21: P4 ← FE3W (A2, B2).

22: R0 ← P2[0]⊕ P3[0]. . reconstruction

23: R0α ← P2[1]⊕ P3[1]

24: R1 ← R0α.

25: R2 ← R0 ⊕R0α.

26: R3 ← P1 ⊕R2.

27: R4 ← (R3 � n)⊕ (R3 � (n� 1))⊕ (R3 � (3 · n))

28: R5 ← P0 ⊕ (P4 � n).

29: R6 ← R5 ⊕ (R5 � (3 · n)).

30: Z ← R6 ⊕R4 ⊕ (R1 � (3 · n))⊕ (P2[0]� (n� 1))⊕ (P3[0]� n).

31: return Z.

32: end procedure
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Algorithm 4.9 FE3W in F22 polynomial multiplication algorithm.

1: procedure FE3WF4(A,Aα, B,Bα) . Z = A ·B
2: n← max(deg(A), deg(B)).

3: nα ← max(deg(Aα), deg(Bα)).

4: if n ≤ s then . s is the size (maximum number of bits) of lookup table input.

5: C ← LUT (A,B), D ← LUT (Aα, Bα).

6: Z[0]← C ⊕D, Z[1]← LUT (A⊕ Aα, B ⊕Bα)⊕ C.

7: return Z. .

8: end if

9: n← dn/3e.
10: (A2, A1, A0)← SplitThree(A), (A2α, A1α, A0α)← SplitThree(Aα).

11: (B2, B1, B0)← SplitThree(B), (B2α, B1α, B0α)← SplitThree(Bα).

12: M1 ← A0 ⊕ A1, M1α ← A0α ⊕ A1α,M
′
1 ← B0 ⊕B1, M

′
2α ← B0αB1α.

13: M2 ← A1 ⊕ A2, M2α ← A1α ⊕ A2α, M
′
2 ← B1 ⊕B2, M

′
2α ← B1α ⊕B2α.

14: M3 ←M2α, M3α ←M2 ⊕M2α, M
′
3α ←M

′
2, M

′
3α ←M

′
2.

15: M4 ←M1 ⊕M3, M4α ←M3α⊕.

16: M4 ←M1 ⊕M3, M4α ⊕M1α ⊕M3α,M
′
4 ←M

′
1 ⊕M

′
3, M

′
4α ←M

′
3α ⊕M

′
.

17: M5 ←M4 ⊕M2, M5α ←M4α ⊕M2α, M
′
5 ←M

′
4 ⊕M

′
2, M

′
5α ←M

′
4α ⊕M

′
2α.

18: M6 ←M1 ⊕ A2, M6α ←M1α ⊕ A2α , M
′
6 ←M

′
1 ⊕B2, M

′
6α ←M

′
1α ⊕B2α

19: P0 ← FE3WF4(A0, A0α, B0, B0α). . recursive product calls

20: P1 ← FE3WF4(M6,M6α,M
′
6),M

′
6α).

21: P2 ← FE3WF4(M5,Mα5 ,M
′
5,M

′
α5

).

22: P3 ← FE3WF4(M4,Mα4 ,M
′
4,M

′
α4

).

23: P4 ← FE3WF4(A2, A2α, B2, B2α).

24: R0 ← P2[0]⊕ P3[0]. . reconstruction

25: Rα0 ← P2[1]⊕ P3[1].

26: R1 ← Rα0 , .

27: R2 ← R0 ⊕Rα0 .

28: R3 ← P1 ⊕R2.

29: R4 ← (R3 � n)⊕ (R3 � (n� 1))⊕ (R3 � (3 · n)).

30: R5 ← P0 ⊕ (P4 � n).

31: R6 ← R5 ⊕ (R5 � (3 · n)).

32: Z ← R6 ⊕R4 ⊕ (R1 � (3 · n))⊕ (P2[0]� (n� 1))⊕ (P3[0]� n).

33: return Z.

34: end procedure
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Algorithm 4.10 Reduction modulo f(z) = z163 + z7 + z6 + z3 + 1.

1: procedure Reduce163(x) . x is a polynomial of size maximum 2m− 2 where

m = 163.

2: ones← 2163 − 1.

3: temp← x� 163.

4: result← x & ones

5: result← result⊕ (temp� 7)⊕ (temp� 6)⊕ (temp� 3)⊕ temp.
6: temp← result� 163.

7: result← result⊕ (temp� 7)⊕ (temp� 6)⊕ (temp� 3)⊕ temp.
8: result← result & ones.

9: return result.

10: end procedure

4.4 Elliptic Curve Algorithms

An elliptic curve point multiplication uses point doubling and point addition algorithms.

As a result, improvements in these algorithms lead to higher speed in point multiplication

algorithm [6]. In section 2.3.5, we have introduced point addition and point doubling

algorithms. However, in [6] an improvement has been proposed. In this section, these

proposed point addition and point doubling algorithms are presented.

4.4.1 Point addition

Algorithm 4.11 shows the CANH point addition algorithm. This method calls a modi-

fication of the method FieldExtensionF4 such that it takes the first input in F2 and the

other in F4. We refer this method in the code as Multiply2,4. This is also useful when

there is simultaneous occurrence of field multiplication like AB and AC. The result of

both multiplications can be achieved by a single call to the Multiply2,4 method. Any other

multiplication is just denoted by ” · ”, which can be any of the polynomial multiplica-

tion methods explained earlier. A call of an appropriate reduction algorithm has to be

understood after any call of polynomial multiplication or square methods.
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Algorithm 4.11 CANH point addition algorithm.

1: procedure CANHPointAdd(P,Q) . P and Q are two points on a curve

2: if P =∞ then

3: return Q.

4: end if

5: if Q =∞ then

6: return P .

7: end if

8: T1 ←Multiply2,4(ZQ, YP , XP ).

9: T2 ← T1[0], T3 ← T1[1].

10: T4 ←Multiply2,4(ZP , YQ, XQ).

11: T5 ← T4[0], T6 ← T4[1].

12: T7 ← T2 ⊕ T5.
13: T8 ← T3 ⊕ T6.
14: T9 ← T7 ⊕ T8.
15: T10 ← T8

2. . Calling Square method

16: T11 ← ZP · ZQ.

17: T12 ← T8 · T10.
18: T13 ←Multiply2,4(T7, T9, T3).

19: T14 ← T13[0].

20: T15 ← T13[1].

21: T16 ← T14 ⊕ (a2, T10). . a2 is the value in the Weierstrass equation.

22: T17 ←Multiply2,4(T20, T8, T9).

23: T18 ← T17[0].

24: T19 ← T17[1].

25: ZR ← T19.

26: T20 ← T18 ⊕ T12.
27: T21 ←Multiply2,4(T20, T8, T9).

28: T22 ← T21[0].

29: T23 ← T21[1].

30: XR ← T22.

31: YR ← (T10 · (T15 ⊕ (T8 · T2)))⊕ T23.
32: return R.

33: end procedure
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4.4.2 Point doubling

Algorithm 4.12 shows the CANH point doubling algorithm. Similar techniques to point

addition algorithm are used in this point doubling algorithm to achieve a higher speed.

Algorithm 4.12 CANH point doubling algorithm.

1: procedure CANHPointDouble(P ) . P is a point on a curve

2: if P =∞ then

3: return P .

4: end if

5: T1 ← Xp
2. . Calling Square method

6: T2 ←Multiply2,4(Zp).

7: T3 ← T2[0].

8: T4 ← T2[1].

9: T5 ← T1 ⊕ T3.
10: T6 ← T4 ⊕ T5.
11: T7 ← T4

2.

12: T8 ← (T5 · T6)⊕ (a2 · T7).
13: T9 ←Multiply2,4(T8, T4, T6).

14: T10 ← T9[0].

15: T11 ← T9[1].

16: T12 ← T1
2.

17: T13 ←Multiply2,4(T4, T12, T7).

18: T14 ← T13[0].

19: T15 ← T13[1].

20: XR ← T10.

21: YR ← T11 ⊕ T14.
22: ZR ← T15.

23: return R.

24: end procedure
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4.5 Summary

Implementation oriented view of algorithms of our interest have been given in this chap-

ter. This view helps us look at the points that need further improvement for subsequent

implementation versions. Each algorithm has been implemented in a class and each set of

related algorithms has their interface. Examples include polynomial multiplication algo-

rithms and reduction algorithms. The K2W, K3W, IK3W, B3W and FE3W algorithms

have been considered under the set of polynomial multiplication algorithms. We have

shown the implementation details of using the field extension method Multiply2,4. The

following chapter has the results of our implementation.
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Chapter 5

Timing Results

In this chapter, we discuss the timing results of multiplication of polynomial of different

sizes. Then, we discuss the timing results of point multiplication algorithms.

5.1 Machine Information

Our software ran on Intel Core i7 with 2.8 GHz and 8.00 GB memory (RAM). The operating

system is Windows 7 Professional. As mentioned earlier, the programming language used

is C# with .Net framework 4.0, and the development environment is Visual Studio 2010.

5.2 Polynomial Multiplication Timing

In this section, timing results for polynomial multiplication are presented.

5.2.1 Experiment setup

The goal is to determine how long it will take for a specific polynomial multiplication

algorithm to multiply two polynomials of different sizes. The length n, which is d+1 where

d is the degree, ranges from 8 bits to 1200 bits at an increment of 8. Each multiplication

is run 150 times and their timings are averaged. The experiment is run for the K2W,
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K3W, IK3W, B3W, and FE3W algorithms. Also these algorithms are run with different

padding methods: power and multiple. In the power padding, the length of the input is

incremented such that it is a power of 2 in the case of K2W, and a power of 3 in the case

of other polynomial multiplication methods. In the multiple padding, a number of zeros

is padded to the input such that its new length is multiple of 3; this needs to be done in

every iteration to be able to divide the polynomial into three equal sub-polynomials.

5.2.2 Timing results

Figure 5.1 shows the number of clock cycles it takes for each multiplication algorithm with

different sizes of polynomials in the case of multiple padding.

Figure 5.1: The number of clock cycles required for each polynomial multiplication algo-

rithm at different input sizes in the case of multiple padding.

From Figure 5.1, we notice that there are points where there is a noticeable increase

in the time or jump needed to complete the multiplication compared to previous sizes.

In the case of the K2W algorithm, the sizes are close to 128, 256, 512, and 1024, which

are all actually a power of two. The reason is that, at these points, an additional round
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of recursive multiplication call is needed. Similarly, other algorithms have jumps at sizes

81, 243, and 729, because they are power of 3 and are used in 3-way split algorithms. The

K2W algorithm seems to perform best except in the range from 512 to 729 where the IK3W

is the best. The B3W algorithm takes longer than other algorithms almost in all cases in

our experiments. The jumps are not very clear in the case of the B3W algorithm because

two of the recursive calls are longer than the length divided by 3. The B3W algorithm

takes longer in general because of the division it requires. We note that the jumps can

be turned into gradual increases by carefully optimizing computations involved in each

recursion. In this work, we have not tried such optimizations for ease of implementation.

Figure 5.2 shows the number of clock cycles needed for multiplication of two polynomials

of different sizes where the power padding method is used.

Figure 5.2: The number of clock cycles spent for each polynomial multiplication algorithm

at different input sizes in the case of power padding.

It is clear from Figure 5.2 that the jumps are sharper in the case of power padding than

in the multiple padding because of the way power and multiple are different. Locations of

the jumps are similar to the case of multiple at powers of 2 and 3.

Since the code give us the correct result and it strongly match the algorithm, this gives
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us strong indication of the correctness of the timing results. The staircase look of the figure

is due to the nature of split location and the recursive implementation used in polynomial

multiplication. The figure also covers a very large range of the field size, a huge jump at

the end.

In the K2W algorithm, it is observed that power padding jumps occur before multiple

padding jumps. In most of the sizes, the number of clock cycles (ticks) is close in both

cases. In IK3W algorithm, until about 700 bits, multiple and power are almost the same.

Power achieves better results after about 715 bits. In the B3W algorithm, Multiple padding

performs much better than the power padding. Two recursive calls of the B3W algorithm

have some extra bits in addition to the previous size divided by three making the jump

higher in the case of power. The jumps in multiple are not very clear, but one can notice

a slow increase.

5.3 Polynomial Multiplication for NIST Field Sizes

The point multiplication algorithm in elliptic curve cryptography must be in a field. Here

we consider the five binary fields corresponding to NIST recommended curves B163, B233,

B283, B409, and B571 [9]. In this section, we show the result of polynomial multiplication

for these fields. The proposed point multiplication uses the Multiply2,4 method, that is a

modification of the 3-way field extension method that takes one input in F2 and the other

in F4. Therefore, this polynomial multiplication method is also implemented and tested.

5.3.1 Experiment setup

The input size is chosen to be equal to the field and the number of times each multiplication

is performed is 150 so that we can determine its average. The polynomial multiplication

algorithms tested are the K2W, the K3W, the IK3W, the FE3W, the Multiply2,4, which

is a modification of FE3W, and the B3W algorithms.

5.3.2 Timing results

Figure 5.3 shows the number of clock cycles for polynomial multiplication algorithms in

the case of multiple padding. It can be observed that the larger the field, the more number
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of clock cycles needed. Moreover, the K2W algorithm performs the best, followed by the

IK3W, then the K3W algorithm, after that the FE3W algorithm, and then the Multiply2,4,

and finally the B3W algorithm. In the fields F2163 and F2233 , the IK3W algorithm performs

better than the K2W.

Figure 5.3: Polynomial multiplication clock cycles at NIST fields.

5.4 Point Multiplication Results

In this section, the timing results of point multiplication are shown. The focus is to see how

the CANH algorithms improves over the conventional algorithms in point multiplication.

The CANH algorithms is the one that makes use of Multiply2,4 or FE3W-F2F4 algorithm.

5.4.1 Experiment setup

Three types of polynomial multiplication algorithms are used. These are the K2W [14],

the IK3W [7], and the B3W [18]. Also we use several point multiplication algorithms: the
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Table 5.1: The legend table to be used in the tables of results of point multiplication

algorithm.

Legend Meaning

Polynomial Multiplication A K2W Algorithm [14]

B IK3W Algorithm [7]

C B3W Algorithm [18]

Point Multiplication I double-and-add algorithm (Page 96 of [8])

II Binary NAF algorithm (Page 99 of [8])

III Window NAF algorithm (Page 100 of [8])

Point addition/ doubling Conventional Reported in [12]

CANH The work by Cenk M. et al. [6]

Padding Method M Multiple padding

P Power padding

general double-and-add algorithm (Page 96 of [8]), the binary NAF algorithm (Page 99

of [8]), and the window NAF algorithm (Page 100 of [8]). Both the conventional [12] and

the CANH [6] point addition and point doubling algorithms that are invoked by the point

multiplication algorithm are used. We also use two types of padding methods: power and

multiple. Table 5.1 shows the legends of these algorithms used in the result tables that

follow. Each point multiplication algorithm is run 100 times for every possible case and

then their average is computed.

5.4.2 Timing results

In Table 5.2, the timing results of point multiplication is shown for B163. In each case,

there is an improvement when using the CANH algorithm: The greatest improvement

is when using the B3W algorithm, the least improvement result from using the IK3W

algorithm. When using the power padding in case of the B3W algorithm, we can see that

the improvement of the CANH method is quite significant, because of the longer time the

B3W algorithm needs to perform polynomial multiplication in the case of power padding.

Tables 5.3, 5.4, 5.5, and 5.6 show the results of point multiplication algorithms in

the cases of the fields B233, B283, B409, and B571 accordingly. The use of the CANH

algorithm improves the overall performance in most cases. When using the K2W algorithm
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and the field is not B233, there is a reduction of the speed because of the efficiency of the

K2W algorithm in these cases. The greatest improvement is generally found when using

the B3W algorithm.

In these tables, the bold font is used when we have the fastest configuration combina-

tions. In the case of B163, the minimum number of ticks is 3645008, which occurs when

using the CANH point addition/doubling algorithms, the IK3W polynomial multiplication

method, Window NAF point multiplication and multiple padding. Similar configuration

for the minimum number of ticks required in the case of B233 but the power padding

method is used. In the other cases, i.e. B283, B409, and B571, the best configuration is

to use the K2W polynomial multiplication algorithm, Window NAF point multiplication,

and conventional point addition/doubling algorithms.

5.5 Summary

We have a number of experiments in order to get our timing results. We have seen how

different polynomial algorithms work under different sizes and different configurations.

The K2W, K3W, IK3W, B3W, and FE3W algorithms have been considered. We have run

several experiments for point multiplication to see the effect of using the CANH algorithm

and see what configuration gives the best results. We have found that the use of the

CANH point addition/doubling with the IK3W algorithms work the best in the cases of

B163 and B233. However, in other cases, the K2W algorithm with the conventional point

addition/doubling algorithms gives the minimum number of clock cycles. We have also

found that the use of the CANH algorithms gives us better results than the conventional

algorithms, except for the K2W algorithm for B283, B409 and B571.
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Table 5.2: Point multiplication clock cycles in the case of B163.

Poly. Mult. Point Mult Padding
Clock cycles

Improvement %Conventional CANH

A

I
M 5421410 4827576 10.95

P 5381407 4785173 11.08

II
M 4569161 4030330 11.79

P 4679167 4212340 9.98

III
M 4049031 3941025 2.67

P 4212840 4093934 2.82

B

I
M 4966284 4695868 5.45

P 5115592 4773573 6.69

II
M 4238042 3939225 7.05

P 4449254 4082233 8.25

III
M 3740613 3645008 2.56

P 3968727 3903223 1.65

C

I
M 9544345 5754029 39.71

P 27213956 10193883 62.54

II
M 8079862 4829476 40.23

P 22838306 8761101 61.64

III
M 7224513 6512172 9.86

P 20269759 16894066 16.65
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Table 5.3: Point multiplication clock cycles in the case of B233.

Poly. Mult. Point Mult Padding
Clock cycles

Improvement %Conventional CANH

A

I
M 8067661 7285916 9.69

P 8154766 7331719 10.09

II
M 6845391 6148751 10.18

P 6947997 6363763 8.41

III
M 6004543 5853834 2.51

P 6172353 5934839 3.85

B

I
M 7694440 7160609 6.94

P 7551031 7019201 7.04

II
M 6556475 6070547 7.41

P 6422567 6016144 6.33

III
M 5749328 5640322 1.9

P 5744828 5633122 1.94

C

I
M 37935669 14594034 61.53

P 42462028 16006315 62.3

II
M 32267545 13665581 57.65

P 35800247 13105349 63.39

III
M 30864865 24677311 20.05

P 31870722 26231500 17.69
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Table 5.4: Point multiplication clock cycles in the case of B283.

Poly. Mult. Point Mult Padding
Clock cycles

Improvement %Conventional CANH

A

I
M 10881222 30535046 -180.62

P 25665667 33903939 -32.1

II
M 9355335 26849535 -187

P 21625936 29359079 -35.76

III
M 8373878 12218498 -45.91

P 18937283 20858993 -10.15

B

I
M 49123109 41300262 15.92

P 43775203 39204142 10.44

II
M 41800490 35018402 16.22

P 37235629 32846278 11.79

III
M 36094264 34593378 4.16

P 32238743 31256387 3.05

C

I
M 67240145 45650311 32.11

P 237361776 90522477 61.86

II
M 57641296 38369894 33.43

P 206409505 76017947 63.17

III
M 50600694 46111737 8.87

P 180311613 148273180 17.77
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Table 5.5: Point multiplication clock cycles in the case of B409.

Poly. Mult. Point Mult Padding
Clock cycles

Improvement %Conventional CANH

A

I
M 42828349 53475558 -24.86

P 40238401 50129267 -24.58

II
M 36159768 45116980 -24.77

P 34329963 42545533 -23.93

III
M 31501001 33538918 -6.47

P 29895409 32053533 -7.22

B

I
M 73310193 61310006 16.37

P 70965659 60355652 14.95

II
M 62334065 51856466 16.81

P 59840922 49699942 16.95

III
M 53819278 50199171 6.73

P 52191385 50034261 4.13

C

I
M 113696803 68033891 40.16

P 352578366 130656273 62.94

II
M 96625126 57558692 40.43

P 297647624 107657457 63.83

III
M 86156327 77154112 10.45

P 262148494 221850089 15.37
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Table 5.6: Point multiplication clock cycles in the case of B571.

Poly. Mult. Point Mult Padding
Clock cycles

Improvement %Conventional CANH

A

I
M 62667584 76953201 -22.8

P 158105943 107627655 31.93

II
M 52940027 65044520 -22.86

P 134841912 90844195 32.63

III
M 45986630 48924698 -6.39

P 123196646 108932830 11.58

B

I
M 107382341 89085095 17.04

P 109359555 91792750 16.06

II
M 90293664 74386454 17.62

P 92784406 79228031 14.61

III
M 78284477 75024891 4.16

P 83380069 79483946 4.67

C

I
M 347784092 148922117 57.18

P 559202784 203432235 63.62

II
M 294669654 122611913 58.39

P 477184193 175774853 63.16

III
M 258508485 221163849 14.45

P 416272509 337970130 18.81
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Chapter 6

CANH Method on Pairing and

Hyperelliptic Curves

In this chapter, we use the CANH trick in order to improve the performance of the pairing

computation algorithm and the major operations of hyperelliptic, i.e. divisor addition

and doubling algorithms. Hence, this chapter has essentially two parts: the first part

concentrates on pairing and the second one focuses on hyperelliptic curves.

In the pairing part covered in Section 6.2, we propose a new methodology to speed

up the Eta pairing computation. To improve elliptic curve point addition and doubling

algorithms, [6] makes use of the presence of a common factor between multiplications. We

notice the existence of multiplications having common factor, inside the Miller loop of the

Eta pairing algorithm as in [46]. In this work, we present explicit formulæ for the Miller

loop computation that take advantage of the common factors. We also analyze the cost of

the proposed formulæ and compare it with that of the traditional formulae.

In the hyperelliptic curve part covered in Section 6.3, since CANH trick [6] utilizes the

presence of common factors in polynomial multiplications to reduce the time needed for

doing polynomial multiplications, we apply this trick over the explicit formulæ of the group

operations of hyperelliptic curves of genus 2. To our knowledge, the work of Wollinger

and Kovtun [47] presents the fastest explicit formulæ over even characteristic genus 2

hyperelliptic curves. We utilize the presence of common factors in the formulæ to apply

the CANH trick to it. The outcome of the research shows an improvement when field size

is higher than a certain threshold. The improvement increases for higher field sizes.
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Before going to the details, the notations used and their corresponding complexity is

given in Section 6.1. At the end of this chapter, a summary of our findings is presented in

Section 6.4.

6.1 Notations

In Section 3.1.4 we discussed the 3-way split algorithm proposed in [7]. This polynomial

multiplication is denoted as M2, where the number of additions is 5.27nlog3(6)−6.67n+1.4

and the number of multiplications is nlog3(6); therefore, the total arithmetic complexity is

6.27nlog3(6)−6.67n+1.4. A 3-way split polynomial multiplications with five multiplications

based on field extension is described [7] and presented in Section 3.1.6. The number of

additions of this method is 27.75nlog3(5) − 9.67n log3(n) − 28.5n + 0.75 and the number

of multiplications is 3nlog3(5) − 2n . The total arithmetic complexity is: 30.75nlog3(5) −
9.67n log3(n) − 30.5n + 0.75. In Section 3.1.7 we discussed the reduction of two F2[X]

multiplication to one F4[X] multiplication [6]. For this a field extension based multiplication

algorithm is used where one input in F2[X] and the other is in F4[X]; it is denoted as M2,4.

In this case, the number of additions is 26.75nlog3(5) − 2.33n log3(n) − 32n + 10.5 and the

number of multiplications is 4nlog3(5) − 2n, therefore the total arithmetic complexity is:

30.75nlog3(5) − 2.33n log3(n)− 34n+ 10.5.

Table 6.1 summarizes the notations used in this chapter to denote a certain operation

cost and the total arithmetic complexity that certain operation costs. The first one is

the cost of adding two polynomials of degree n − 1; it is denoted by Add, and therefore

the arithmetic cost is n. The second one is the cost of squaring, since (
∑n−1

i=0 aix
i)
2

=∑n−1
i=0 aix

2i so it is computation free. Since we need to perform reduction after that we

choose to include the cost of reduction cost of squaring. In [48] it is proven that the

reduction (R2) be done in (r − 1)(n− 1) bit additions where r is the Hamming weight of

the irreducible polynomial. Since in practice there is always a pentanomial of degree n, the

reduction can be done at 4(n− 1) bit additions. Reduction in F4, denoted as R4, requires

double the cost i.e. 8(n−1) bit operations. The last one is the cost of square root denoted

by sqrt and is used only in pairing; this cost choice is explained in Section 6.2.3.
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Table 6.1: Summary of operations and their complexity costs.

Operation description Symbol Cost

Addition in F2[X] Add n

Squaring in F2[X] S 4n− 4

Reduction in F2[X] R2 4n−4 (pentanomial), 2n−2 (trinomial)

Reduction in F4[X] R4 8n−8 (pentanomial), 4n−4 (trinomial)

Multiplication in F2[X] based on

three way split [7]
M2 6.27nlog3(6) − 6.67n+ 1.4

Multiplication one input in F2[X]

and the other in F4[X] [6]
M2,4 30.75nlog3(5)−2.33n log3(n)−34n+10.5

Square root in F2[X] sqrt (n− 1)/2

6.2 Applying CANH on Pairing

Bilinear pairing has numorous applications; examples include one round three-party key

agreement protocol, identity based encryption, and aggregate signatures. For an excellent

introduction to pairing based cryptography the reader can refer to [4]. Many types of

pairing exist but the basic types, upon which other types depend, are Weil and Tate

pairings. Eta pairing, a variation of Tate pairing, can be written in terms of Tate pairing.

For a well-written dictionary of different types of pairing from mathematical point of view,

the reader should refer to [49].

In [46], a high speed hardware implementation of Eta pairing is proposed. Toepliz

matrix vector product methodology is also given in [46] to increase the speed further. In

[6] an idea to utilize field extension polynomial multiplication to speed up elliptic curve

algorithms is investigated. They combine multiplications that have a common factor into

a multiplication of a higher field to speed up the point doubling and point addition algo-

rithms. As a result, they could have faster point multiplication, which is the core operation

of any cryptographic protocol based on elliptic curve cryptography. We observe a common

factor pattern within the most expensive operation in Miller’s loop, which is the main loop

in a pairing algorithm, such as Eta pairing. We develop explicit formulæ for the previous

and proposed Miller’s loop. We analyze the results and compute the theoretical cost.

In Section 6.2.1 the Eta pairing algorithm is described with emphasis on Miller’s loop
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and on one special multiplication inside it. In Section 6.2.2, our methodology of improving

Miller’s loop and consequently Eta pairing is presented. Then, Section 6.2.3 compares the

of arithmetic cost of both the previous and the proposed algorithms.

6.2.1 Eta pairing algorithm

Consider a supersingular curve E defined by Y 2 + Y = X3 + X over the field F21223 . The

number of points on the curve, i.e., #E(F21223) = 5r where r = (21223 + 2512 + 1)/5 [50].

The embedding degree of the curve E is k = 4; therefore, the extension field F24·1223 is used.

This field is constructed using two degree-2 extensions: F22·1223 = F21223 [α]/(α2 + α + 1)

and F24·1223 = F22·1223 [β]/(β2 + β + α).

Consider a point P ∈ E(F21223) of order r and consider the subgroup µr of F∗24·1223 which

has an order of r. The Eta (ηT ) pairing is defined

ηT : 〈P 〉 × 〈P 〉 → µr

as ηT (P1, P2) = e(P1, ψ(P2)), such that e is the Tate pairing and ψ(x, y) = (x + α2, y +

xα+β). Barreto et al. proposed Algorithm 6.1 for the computation of the ηT pairing [50].

Algorithm 6.1 ηT pairing [50]

Input: P1 = (x1, y1) and P2 = (x2, y2) ∈ E(F21223)[r].
Output: ηT (P1, P2).

T ← x1 + 1

f ← T · (x1 + x2 + 1) + y1 + y2 + (T + x2)α + β

for i = 1 to 612 do

T ← x1, x1 ←
√
x1, y1 ←

√
y1

g ← T · (x1 + x2) + y1 + y2 + x1 + 1 + (T + x2)α + β

f ← f · g
x2 ← x22, y2 ← y22

end forreturn (f 2(2·1223−1)(21223−2612+1))

The computations that will take almost all the time are inside the for loop which is

a re-expression of the Miller loop of the Tate pairing. We refer to it in this work as the

Miller loop for simplicity. In the next section more analysis of this loop is provided.
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Miller’s loop

Inside the for loop, there are two square root computations in the first step. There is

one multiplication in F21223 (T · (x1 + x2 + 1)) in the second step and it also includes five

additions in order to compute g. The third step is a special multiplication f · g in F24·1223
to update f . Finally, there are two squaring computations in the last step. The f.g special

multiplication is expressed in terms of additions and multiplications in F21223 . The next

section elaborates further.

The f.g multiplication

Due to the special form of g = g0 + g1α + β, the F24·1223 multiplication is reduced to two

F22·1223 multiplications plus a number of additions [46]. We write f = f0+f1α+f2β+f3αβ,

then f · g is expressed:

fg = (f0 + f1α)(g0 + g1α) + (f2 + f3α)(g0 + g1α)β + (f0 + f1α + f2β + f3αβ)β

= ((f0 + f1α)(g0 + g1α) + f3 + (f2 + f3)α) + ((f2 + f3α)(g0 + g1α) + f0 + f2
+(f1 + f3)α)β

Basically, there are two multiplications in F22·1223 : (f0+f1α)(g0+g1α) and (f2+f3α)(g0+

g1α) in addition to adding the results to f3 + (f1 + f3)α and f0 + f2 + (f1 + f3)α. We need

to look at the cost of multiplication in F22·1223 .

Using the Karatsuba formula, one multiplication is reduced in F22·1223 to three multipli-

cations and four additions in F21223 by considering the elements of F22·1223 = F21223 [α]/(α2 +

α + 1) of degree one polynomials. If we have two elements in F22·1223 : U = U0 + U1α and

V = V0 +V1α, then we write the three products as P0 = U0V0, P1 = (U0 +U1)(V0 +V1) and

P2 = U1V1. To get the final result C = U×V , we combine these products in reconstruction

step as shown:

C = P0 + (P1 + P0 + P2)α + P2α
2

= P0 + P2 + (P1 + P0)α mod (α2 + α + 1)

Therefore, f · g requires 6 multiplications and 15 additions in F21223 .
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6.2.2 Improving Miller’s loop

In order to derive explicit formulæ of the two F22·1223 needed to compute the f · g over

F24·1223 inside the Miller loop, the Karatsuba scheme is applied [46]:

(f0 + f1α)(g0 + g1α) = f0g0 + ((f0 + f1)(g0 + g1) + f0g0 + f1g1)α + f1g1α
2

(f2 + f3α)(g0 + g1α) = f2g0 + ((f2 + f3)(g0 + g1) + f2g0 + f3g1)α + f3g1α
2

The six needed multiplications are

t1 = f0g0, t2 = f2g0,

t3 = (f0 + f1)(g0 + g1), t4 = (f2 + f3)(g0 + g1),

t5 = f1g1, t6 = f3g1.

The following formulæ summarize the Miller loop explicit formulæ after reducing the

F24·1223 multiplication:

T = x1, x1 =
√
x1, y1 =

√
y1,

g0 = T · (x1 + x2) + y1 + y2 + x1 + 1, g1 = T + x2,

t1 = f0g0, t2 = f2g0, g01 = g0 + g1,

t3 = (f0 + f1)g01, t4 = (f2 + f3)g01,

t5 = f1g1, t6 = f3g1,

w0 = t1 + t5 + f3, w1 = t3 + t1 + f2 + f3,

w2 = t2 + t6 + f0 + f2, w3 = t4 + t2 + f1 + f3,

f0 = w0, f1 = w1, f2 = w2, f3 = w3,

x2 = x22, y2 = y22.

Note that since f can be expressed as f0 + f1α + f2β + f3αβ, only fi where 0 ≤ i ≤ 3

are present in the explicit formulæ. Since g = g0 + g1α + β, then g2 = 1 and g3 = 0, and

they do not need to be explicitly present in the formulæ. We can easily see that the Miller

loop inside the ηT pairing requires 2 sqrt +7M2 + 7R2 + 2S + 20 Add.

In the six multiplications to compute ti values where 1 ≤ i ≤ 6, g0 is common for t1
and t2 multiplications, (g0 + g1) is common for t3 and t4, and t5 and t6 have the term g1 in

common. We use a single multiplication in F4 to replace two multiplications in F2 [6]. The
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field extension based three way split multiplication is described in [7]. As noted earlier, we

have F4 = F2[δ]/(δ2 + δ + 1). We express these multiplications in the following way:

M1 = g0(f0 + f2δ), M2 = M1,0, M3 = M1,1

M4 = (g0 + g1)(f0 + f1 + (f2 + f3)δ), M5 = M4,0, M6 = M4,1

M7 = g1(f1 + f3δ), M8 = M7,0, M9 = M7,1

Note that the multiplication results Mi where i ∈ {1, 4, 7} are in F4[X] while the other

values of the multiplications are in F2[X]. These values are set to Mi,t where t ∈ {0, 1},
the 0 in t corresponds to the non-δ part, the 1 in t indexes the δ part. We then write the

explicit formulæ after the modification of the Miller loop in ηT pairing as follows:

T = x1, x1 =
√
x1, y1 =

√
y1,

g0 = T · (x1 + x2) + y1 + y2 + x1 + 1, g1 = T + x2,

M1 = g0(f0 + f2δ),

M2 = M1,0, M3 = M1,1

M4 = (g0 + g1)(f0 + f1 + (f2 + f3)δ),

M5 = M4,0, M6 = M4,1

M7 = g1(f1 + f3δ),

M8 = M7,0, M9 = M7,1

w0 = M2 +M8 + f3, w1 = M5 +M2 + f2 + f3,

w2 = M3 +M9 + f0 + f2, w3 = M6 +M3 + f1 + f3,

f0 = w0, f1 = w1, f2 = w2, f3 = w3,

x2 = x22, y2 = y22.

As in the above formulæ, the six multiplications in F2[X] are replaced by three multi-

plications in F4[X]. We can notice that the total cost of Miller’s loop after the modification

is 2 sqrt +1M2 + 1R2 + 3M2,4 + 3R4 + 2S + 20 Add.

6.2.3 Cost comparison

We consider the cost of the square root to be equal to (n − 1)/2. In [46], a methodology

is suggested to perform square root in F21223 , so if we have an element A =
∑1223

i=0 aix
i in
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F21223 , then we can write

√
A =

√√√√ 611∑
i=0

a2ix2i +

√√√√ 610∑
i=0

a2i+1x2i+1 =

(
611∑
i=0

a2ix
i

)
+
√
x

(
610∑
i=0

a2i+1x
i

)
.

However, x = x256+x1224 mod (1+x255+x1223), so
√
x = x128+x612 mod (1+x255+x1223).

Hence,
√
A =

∑127
i=0 a2ix

i +
∑611

i=128(a2i + a2i−256+1)x
i +
∑126

i=0(a2i+1 + a2(i+612−128)+1)x
i+612 +∑610

i=127 a2i+1x
i+612. The number of XOR gates needed (or additions) is 611 which is n−1

2

knowing that n = 1223.

The total arithmetic cost of a single round of Miller’s loop using the previous technique

is 43.89nlog3(6) − 3.69n − 41.2. After utilizing the field extension multiplication, the total

arithmetic cost is 6.27nlog3(6) + 92.25nlog3(5) − 6.99n log(n) − 65.67n − 18.1. Table 6.2

summarizes the cost of Miller’s loop in terms of both basic operations and arithmetic cost.

Table 6.2: The cost of one round of the Miller loop in ηT pairing using the previous and

the proposed techniques

Miller loop method No. of basic operations Arithmetic cost

previous 2 sqrt +7M2 + 7R2 + 2S +

20 Add

43.89nlog3(6) − 3.69n− 41.2

proposed 2 sqrt +1M2 + 1R2 +

3M2,4 + 3R4 + 2S + 20 Add

6.27nlog3(6) + 92.25nlog3(5) −
6.99n log3(n)−65.67n−18.1

By substituting n = 1223 as in the algorithm, the total arithmetic cost for the previous

formulæ is 4756918 and that of the proposed formulæ is 3620404. Therefore, we observe

an improvement of 23.9% by applying the common factor technique. Almost all the cost

of the ηT pairing algorithm is a direct result of Miller’s loop. Improving Miller’s loop in

Algorithm 6.1 will likely to significantly increase the speed of this algorithm because it has

611 iterations.

6.2.4 Software implementation and results

In order to verify the theoretical results, we implemented the pairing algorithm in soft-

ware. We used C] as programing language with visual studio as development framework.
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The personal laptop used is Intel(R) core(TM) i7-3632QM and has speed of 2.2 GH. The

operating system is Windows 8 home edition. Algorithm 6.1 has been implemented which

contains both the Miller loop and the final exponentiation. Refer to [46] for details of

the algorithms involved under the final exponentiation. The CANH based version of the

pairing has also been implemented.

The experiment ran 50 times for each of the different pairing algorithms enabling us to

compute the average. The typical pairing algorithm takes 344835765 clock cycles. After

applying the CANH trick, the algorithm takes 250789374 clock cycles. Therefore, applying

CANH trick into pairing results in an improvement of 27.27%.

6.3 Applying CANH on Hyperelliptic Curves

The CANH trick works over binary fields and uses a 3-way split polynomial multiplication

algorithm [6]. Similar to elliptic curves, hyperelliptic curves have group operations, which

are addition and doubling. However, here the operations are applied to the divisor over

the Jacobian of hyperelliptic curves. In [47], the fastest explicit formulæ for hyperelliptic

curves over even characteristic genus 2 hyperelliptic curves using projective coordinates are

presented. In this paper, we apply the CANH trick over the explicit formulæ given in [47].

Cantor, in his breakthrough paper in 1987, introduced an algorithm to make computa-

tions in the Jacobian of hyperelliptic curve for doing group laws operations such as addition

[51]. His work focuses on odd characteristics, but Koblitz in his paper in 1988 extended his

work to even characteristics and introduced a complete hyperelliptic cryptosystem [52]. A

number of references provide excellent background about hyperelliptic curves; for example

see [5] and [53].

Harley [54] has significantly optimized Cantor’s algorithm. In [55], there are efficient

explicit formulæ for group operations for hyperelliptic curves over genus 2. In [56], Lange

introduces new explicit formulæ that are inversion free by using projective coordinates.

Lange’s work in [57] improves Harley’s work and also provides explicit formulæ for compu-

tations over genus 2. The work of Wollingor and Kovtun [47] improves the explicit formulæ

of hyperelliptic curves of both even and odd characteristics.

The work of Costello and Lauter [58] has better explicit formulæ than [47] but only in

odd characteristics. The work of Avanzi et al. improves the explicit formulæ in genus 3
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and genus 4. The work of Gaudry [59] proposes a very fast algorithm for genus 2 arithmetic

but in the Kummer surface using theta functions.

In this section we will show the use the CANH trick [6] in hyperelliptic curves. It is

based on using field extension 3-way split polynomial multiplication algorithm to replace

two multiplications in F2 by one in F4. The complexity of the field extension multiplication

is less than two multiplications. The field extension multiplication is explained in [7]. This

work considers only binary fields so it is now applied to even characteristic hyperelliptic

curves. The work of Wollinger and Kovtun [47] provides the fastest explicit formulæ on

even characteristic over genus two hyperelliptic curves; therefore, we apply the CANH trick

on their formulæ.

Section 6.3.1 shows the previous and proposed addition formulæ of divisors. The for-

mulæ of doubling before and after applying CANH trick are shown in Section 6.3.2. In

Section 6.3.3, complexity comparison and the improvement of using this trick are high-

lighted.

6.3.1 Addition

The following are the explicit formulæ given in [47] for addition over mixed coordinates for

even characteristics. In the mixed coordinates system, one input is in projective coordinates

and the other is in affine coordinates; that is, it has the Z value equal to one. Using mixed

coordinate saves more operations than projective coordinates. In affine coordinates, an

inversion is needed which is usually a costly operation. We observe that this set of addition

formulæ has a cost of 37 M2, 37 R2, 5 S, and 27 Add.

Ũ11 = Z2 · U11, y1 = Ũ11 + U21, y2 = U20 + U10 · Z2, y3 = y1 · U11 + y2,

r = y2 · y3 + y21 · U10, inv1 = y1, inv0 = y3, w0 = V10 · Z2 + V20,

w1 = V11 · Z2 + V21, w2 = inv0 ·w0, w3 = inv1 ·w1, s0 = w2 + U10 · w3,

s1 = (inv0 + inv1) · (w0 + w1) + w2 + w3 · U11, R = r · Z2, s2 = s0 · Z2,

s3 = s1 · Z2, R̃ = R · s3, w0 = s1 · s0, w1 = s1 · s3 w2 = s0 · s3, w3 = w1 · U21,

w4 = R · s1, l0 = w0 · U20, l2 = w3 + w2, l1 = (w1 + w0) · (U21 + U20) + l0 + w3,

Ũ ′0 = s22 + s21 · y1U11 + y2 · w1 + R̃ +R · r · y1, Ũ ′1 = w1 · y1 +R2, U ′0 = Ũ ′0 · R̃,
U ′1 = Ũ ′1 · R̃, Z ′ = s23 · R̃, V ′1 = Ũ ′1 · (l2 + Ũ ′1) + s23 · (Ũ ′0 + w4 · V21 + l1),

V ′0 = Ũ ′0 · (l2 + Ũ ′1) + s23 · (l0 + w4 · V20).

78



Table 6.3: Summary of common factors in divisor addition.

Multiplications
Common

Multiplications
Common

Factor Factor

Z2 · U11, V10 · Z2 Z2 U10 · Z2, V11 · Z2 Z2

y1 · U11, inv1 ·w1 y1
a y2 · y3, inv0 ·w0 y3

b

y21 · U10, U10 · w3, U10 r · Z2, r · y1 r

s0 · Z2, s1 · Z2 Z2 s1 · s0, s0 · s3 s0
R · s3, R · ry1 R w1 · U21, y2 · w1 w1

R · r · y1, w1y1 y1 Ũ ′0 · R̃, Ũ ′1 · R̃ R̃

Ũ ′1 · (l2 + Ũ ′1), Ũ ′0 · (l2 + Ũ ′1) l2 + Ũ ′1 w4 · V21, w4 · V20 w4

s23 · (Ũ ′0 + w4 · V21 +

l1), s23 · (l0 + w4 · V20)
s23

asince inv1 = y1
bsince inv0 = y3

We find 15 pairs of multiplications which have common factors between them. Table

6.3 summarizes the common factors in the addition formulæ. Note that we utilize inv1 and

inv0 as common factors with y1 and y3 respectively, because they hold the same values and

they are not changed before the use of common factor.

The following formulæ are the resultant divisor addition formulæ after applying the

CANH trick. Using the 15 common factors, 30 multiplications in F2 are replaced by 15

multiplications where one input is in F2 and the other is in F4 (M2,4). The output of this

multiplication is in F4; that is why a reduction in F4 is needed. In summary, the total cost

is 15 M2,4, 15 R4, 7 M2, 7 R2, 15 S, and 27 Add.
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M1 = Z2(U11 + V10δ), Ũ11 = M1,0, y1 = Ũ11 + U21, w0 = M1,1 + V20,

inv1 = y1, M2 = Z2(U10 + V11δ), y2 = U20 +M2,0, w1 = M2,1 + V21,

M3 = y1(U11 + w1δ), y3 = M3,0 + y2, inv0 = y3, w3 = M3,1,

M4 = y3(y2 + w0δ), w2 = M4,1, M5 = U10(y
2
1 + w3δ), r = M4,0 +M5,0,

s0 = w2 +M5,0, s1 = (inv0 + inv1) · (w0 + w1) + w2 + w3 · U11, M6 = r(Z2 + y1δ),

R = M6,0, M7 = Z2(s0 + s1δ), s2 = M7,0, s3 = M7,1, M8 = s0(s1 + s3δ),

w0 = M8,0, w2 = M8,1, M9 = s3(R + s1δ), R̃ = M9,0, w1 = M9,1,

M10 = w1(U21 + y2δ), w3 = M10,0, l0 = w0 · U20, l2 = w3 + w2,

l1 = (w1 + w0) · (U21 + U20) + l0 + w3, M11 = R(s1 +M6,1δ),

Ũ ′0 = s22 + s21 · y1U11 +M10,1 + R̃ +M11,1, Ũ ′1 = w1 · y1 +R2, M12 = R̃(Ũ ′0 + Ũ ′1δ),

U ′0 = M12,0, U ′1 = M12,1, Z ′ = s23 · R̃, M13 = (l2 + Ũ ′1)(Ũ
′
1 + Ũ ′0δ),

M14 = w4(V21 + V20δ), M15 = s23((Ũ
′
0 +M14,0 + l1) + (l0 +M14,1)δ),

V ′1 = M13,0 +M14,0, V ′0 = M13,1 +M14,1,

6.3.2 Doubling

The following set of formulæ shows the the doubling formulæ as presented in [47]. There

are 29 M2, 29 R2, 7 S, and 20 Add.

Z2 = Z2, w0 = V 2
1 , w1 = U2

1 , , w2 = Z · U1, R = U0 · Z2
2 , inv1 = Z,

inv0 = w2, k1 = w1, k0 = U1 · w1 + Z · (Z · V1 + w0), w0 = k0 · inv0,

w1 = k1 · Z, s0 = w0 + Z · U0 · w1, s3 = (inv0 +Z)(k0 + k1) + w0 + w1 · (1 + U1),

R̃ = R · s1, w0 = s1 · s3, w1 = s0 · s3, w3 = w1 · Z, w4 = R · s3, l0 = U0 · w1,

l2 = U1 · w0, l1 = (w1 + w2) · (U1 + U0) + l0 + l2, Ũ ′0 = s20 + R̃, Ũ ′1 = R2,

U ′0 = Ũ ′0 · R̃, U ′1 = Ũ ′1 · R̃, Z ′ = s21 · R̃,
V ′0 = Ũ ′0 · (l2 + Ũ ′1 + w3) + s21 · (l0 + w4 · V0),
V ′1 = Ũ ′1 · (l2 + Ũ ′1 + w3) + s21 · (Ũ ′0 + R̃ + w4 · V1 + l1),

Table 6.4 shows the common factors of the doubling formulæ such that each pair is com-

bined in a single multiplication of a higher field. We observe that 11 pairs of multiplications

have common factors.
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Table 6.4: Summary of common factors in divisor doubling.

Multiplications
Common

Multiplications
Common

Factor Factor

Z · U1, U1 · w1 U1 k1 · Z, Z · V1 Z

Z · w1, Z · (Z · V1 + w0) Z Z · U0 · w1, U0 · Z2
2 , U0

s3 · Z, s0 · s3 s3 R · s1, s1 · s3 s1
w1 · Z, U0 · w1 w1 Ũ ′0 ·R, Ũ ′1 ·R R

Ũ ′0(l2 + Ũ1 +w3), Ũ1 ·
(l2 + Ũ ′1 + w3)

(l2 + Ũ ′1 + w3)
s21(l0 + w4 · V0), s21 ·
(V ′0 + R̃ + w4 · V1 + l1)

s21

w4 · V0, w4 · V1 w4

The following set of formulæ shows the proposed doubling formulæ after applying the

CANH trick. This formulæ set costs 11 M2,4, 11 R4, 7 M2, 7 R2, 7 S, and 20 Add.

Z2 = Z2, w0 = V 2
1 , w1 = U2

1 , M1 = U1(Z + w1δ), w2 = M1,0, inv1 = Z,

inv0 = w2, k1 = w1, M2 = Z(k1 + V1δ), w1 = M2,0,

M3 = Z(w1 + (M2,1 + w0)δ), k0 = M1,1 +M3,1, w0 = k0 · inv0

M4 = U0(M3,0 + Z2
2δ), R = M4,1, s3 = (inv0 +Z) · (k0 + k1) + w0 + w1 · (1 + U1)

s0 = w0 +M4,1, M5 = s3(Z + s0δ), s1 = M5,0, w1 = M5,1,

M6 = s1(R + s3δ), R̃ = M6,0, w0 = M6,1, M7 = w1(Z + U0δ), w3 = M7,1,

w4 = R · s3, l0 = M7,1, l2 = U1 · w0, l1 = (w1 + w2) · (U1 + U0) + l0 + l2,

Ũ ′0 = s20 + R̃, Ũ ′1 = R2, M8 = R̃(Ũ ′0 + Ũ ′1δ), U ′0 = M8,0, U ′1 = M8,1,

Z ′ = s21 · R̃, M9 = (l2 + Ũ ′1 + w3)(Ũ
′
0 + Ũ ′1δ), M10 = w4(V0 + V1δ),

M11 = s21((l0 +M10,0) + (Ũ ′0 + R̃ +M10,1 + l1)δ), V ′0 = M9,0 +M11,0,

V ′1 = M9,1 +M11,1.

6.3.3 Complexity comparison

Table 6.5 summarizes the total cost of both previous and proposed formulæ for addition

and doubling. The total arithmetic complexities of addition and doubling before and after

applying the CANH trick are shown in Table 6.6.
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Table 6.5: Cost comparison of previous and proposed formulæ.

Formulæ Previous Proposed

Addition 37M2+37R2+5S+27 Add
15M2,4 + 15R4 + 7M2 +

7R2 + 5S + 27 Add

Doubling 29M2+29R2+7S+20 Add
11M2,4 + 11R4 + 7M2 +

7R2 + 7S + 20 Add

Table 6.6: Complexity cost comparison of previous and proposed formulæ.

Formulæ Previous Proposed

Addition
231.99nlog3(6) − 51.79n −
116.2

43.89nlog3(6) +

461.25nlog3(5) −
34.95n log3(n) − 360.69n +

0.7

Doubling
181.83nlog3(6) − 29.43n −
103.4

43.89nlog3(6) +

338.25nlog3(5) −
25.63n log3(n) − 256.69n −
19.2
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In order to get an idea of how much the new algorithm improves the previous one,

figures showing the cost complexity versus the field size (n) are presented. Figure 6.1

shows the addition complexity comparison, and Figure 6.2 shows the complexities in the

case of doubling. In both cases, we see that there is an improvement that starts at around

120 bits. Below 108 bits, the proposed scheme will result in a degradation of the overall

performance. However, the improvement can go up to 80% at a very large field size.

Figure 6.3, which shows the amount of improvement up to field size of 570 bits, indi-

cates how much improvement can be achieved for this range. In the case of addition, the

improvement is a little bit more than that of doubling.

In order to relate Figure 6.3 to the equations in Table 6.6, it is observed that both

the previous and the proposed methodologies belong to the same asymptotic complexities,

i.e. O(nlog3(6)). The proposed methodology has a lower coefficient with respect to the

term nlog3(6), but it has an additional term nlog3(5) with a comparatively larger coefficient.

The dominant term is nlog3(6) and, therefore, the limit of improvement is 81% in the case

of addition, and 76% in the case of doubling. However, until this limit is reached, the

improvement will initially have the burden of the high coefficient of nlog3(5) term.

Figure 6.1: Addition complexity comparison.

83



Figure 6.2: doubling complexity comparison.

Figure 6.3: Improvement percentage of double and add operations.
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Table 6.7: The improvement using CANH technique in hyperelliptic curves in certain field

sizes.

field
Addition im-

provement

Doubling im-

provement

163 3.391 3.65

233 6.87 6.86

283 8.75 8.61

409 12.28 11.88

571 15.41 14.79

1032 20.78 19.78

The improvement for specific field sizes are summarized in Table 6.7. These field sizes

are the NIST recommended fields in addition to 1032 bits value. The improvement goes

from around 3% at 163 to around 20% when the the field size is 1032.

Hyperelliptic curves usually work with a comparatively small key size. In this case, the

improvement is not as significant as it is if we go for higher sizes. For example, if the field

size is 100-bits, then there would be a degradation by around 1.3% using this technique.

In the case of working in hyperelliptic pairing, the extension field size is required to

be high, for example, for 80 bits security level, the extension field size is required to be

1024; while for 256 bit security level, the extension field size is 15360 [60]. For these

sizes of curves, the group law operations using the CANH technique achieve very good

improvement.

6.4 Summary

In this chapter, we have discussed the use of field extension based 3-way split polynomial

multiplication to improve the speed of ηT pairing. Our theoretical analysis shows that an

improvement of 23.9% can be achieved using this method. Miller’s loop consumes almost all

the time in ηT pairing computation. Inside this loop, a multiplication in F24·1223 is present.

After reducing this multiplication we notice the presence of three pairs of a common factor

multiplication. We use a multiplication in F4[X] to replace two in F2[X]. Explicit formulæ
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and cost analysis are presented in this chapter.

In addition, in this chapter we have shown how to apply the CANH trick over hyperel-

liptic curves. The results show good improvement over most of the field sizes. The higher

the size the more the improvement to certain threshold.
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Chapter 7

Summary and Future Work

7.1 Summary

Polynomial multiplication is crucial in cryptography, especially for those systems that are

based on elliptic and hyper-elliptic curves. Several polynomial multiplication algorithms

have been studied in this proposal, namely, the K2W, K3W, IK3W, B3W and FE3W al-

gorithms. We have also showed two types of point addition and point doubling algorithms:

the conventional and the CANH ones. The CANH algorithms depend on the use of the

field extension polynomial multiplication algorithm and it replaces two polynomial multi-

plications in a lower field when there is a common operand between them. Utilizing CANH

trick in pairing and hyperelliptic curves proves to be useful. We found an improvement of

23.9% when using this method with ηT pairing computation. In the case of hyperelliptic

curves the use of CANH trick improves after certain threshold of field size, and perform

better for larger field size.

7.2 Future Work

In this section, we discuss three ideas for future work. These are CANH improvement and

extension, different uses of the common factor trick, and software and hardware realization.

87



CANH improvement and extension

CANH improves over the 3-way split algorithm, but it might not improve in other split

based algorithms. Therefore, the CANH trick shall only be used when it improves over the

split algorithm when it is needed in the polynomial multiplication. Making use of the field

extension has previously been considered only in 3-way split algorithms. As a result, one

direction of the future research is to look into other split based algorithms and see where

they can be improved.

Different use of common factor trick

In hyperelliptic curve addition, there is an occurrence of more than two terms that have

common factors. For example, if we have four multiplications like AB, AC, AD, and AE,

where A is a common factor. It will be interesting to investigate whether n multiplications

with one common input can be efficiently performed as a single multiplication where one

input is in F2 and the other in F2n .

Software/Hardware realization

Several libraries support different cryptography applications. Polymul [61] and zn poly [62],

for example, support efficient multiplication algorithms. Other libraries support number

theoretic and integer arithmetic applications like FLINT [63], GMP [64], NTL [65], GNU

PG [66]. Libraries support higher level algorithms for certain applications or protocols like

elliptic curve cryptography or other communication features like crypto++ [67], Cryptlib

[68], Libgcrypt [69], MIRACL [70], LiDIA [71], OpenSSL [72], and PARI-GP [73]. In [74],

one can find an excellent comparison between different software libraries used for public key

cryptography. It would be interesting to implement and optimize in software and hardware

the newer algorithms studied in this thesis and make a thorough comparison.
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Appendix A

Reduction Algorithms

Algorithm A.1 Reduction modulo f(z) = z233 + z74 + 1.

1: procedure Reduce233(x) . x is a polynomial of size maximum 2m− 2 where

m = 233.

2: ones← 2233 − 1.

3: temp← x� 233.

4: result← x & ones

5: result← result⊕ (temp� 74)⊕ temp.
6: temp← result� 233.

7: result← result⊕ (temp� 74)⊕ temp.
8: result← result & ones.

9: return result.

10: end procedure
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Algorithm A.2 Reduction modulo f(z) = z283 + z12 + z5 + 1.

1: procedure Reduce283(x) . x is a polynomial of size maximum 2m− 2 where

m = 283.

2: ones← 2283 − 1.

3: temp← x� 283.

4: result← x & ones

5: result← result⊕ (temp� 12)⊕ (temp� 7)⊕ (temp� 5)⊕ temp.
6: temp← result� 283.

7: result← result⊕ (temp� 12)⊕ (temp� 7)⊕ (temp� 5)⊕ temp.
8: result← result & ones.

9: return result.

10: end procedure

Algorithm A.3 Reduction modulo f(z) = z409 + z87 + 1.

1: procedure Reduce409(x) . x is a polynomial of size maximum 2m− 2 where

m = 409.

2: ones← 2409 − 1.

3: temp← x� 409.

4: result← x & ones

5: result← result⊕ (temp� 87)⊕ temp.
6: temp← result� 409.

7: result← result⊕ (temp� 87)⊕ temp.
8: result← result & ones.

9: return result.

10: end procedure

92



Algorithm A.4 Reduction modulo f(z) = z512 + z10 + z5 + z2 + 1.

1: procedure Reduce512(x) . x is a polynomial of size maximum 2m− 2 where

m = 512.

2: ones← 2512 − 1.

3: temp← x� 512.

4: result← x & ones

5: result← result⊕ (temp� 12)⊕ (temp� 7)⊕ (temp� 5)⊕ temp.
6: temp← result� 512.

7: result← result⊕ (temp� 12)⊕ (temp� 7)⊕ (temp� 5)⊕ temp.
8: result← result & ones.

9: return result.

10: end procedure
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[20] J. López and R. Dahab, “High-speed software multiplication in f2m,” in Progress in

CryptologyINDOCRYPT 2000. Springer, 2000, pp. 203–212.

[21] D. J. Bernstein, “Multidigit multiplication for mathematicians,” URL: http://cr. yp.

to/papers. html, 2001.

[22] H. Fan, J. Sun, M. Gu, and K.-Y. Lam, “Overlap-free karatsuba-ofman polynomial

multiplication algorithms,” Information Security, IET, vol. 4, no. 1, pp. 8–14, 2010.

[23] H. Fan and M. A. Hasan, “A new approach to subquadratic space complexity parallel

multipliers for extended binary fields,” Computers, IEEE Transactions on, vol. 56,

no. 2, pp. 224–233, 2007.

[24] C. Negre, “Efficient binary polynomial multiplication based on optimized karatsuba

reconstruction,” 2012.

[25] ——, “Improved three-way split approach for binary polynomial multiplication based

on optimized reconstruction,” 2013.

[26] R. Avanzi and N. Thériault, “Effects of optimizations for software implementations

of small binary field arithmetic,” in Arithmetic of Finite Fields. Springer, 2007, pp.

69–84.

[27] D. F. Aranha, J. Lopez, and D. Hankerson, “Efficient software implementation of bi-

nary field arithmetic using vector instruction sets,” Progress in Cryptology - Latincrypt

2010, vol. 6212, pp. 144–161, 2010.

[28] J. Luo, K. D. Bowers, A. Oprea, and L. Xu, “Efficient software implementations

of large finite fields gf (2 n) for secure storage applications,” ACM Transactions on

Storage (TOS), vol. 8, no. 1, p. 2, 2012.

[29] J. Guajardo, S. Kumar, C. Paar, and J. Pelzl, “Efficient software- implementation

of finite fields with applications to cryptography,” Acta Applicandae Mathematica,

vol. 93, no. 1, pp. 3–32.

[30] A. Reyhani-Masoleh, “Efficient algorithms and architectures for field multiplication

using gaussian normal bases,” Computers, IEEE Transactions on, vol. 55, no. 1, pp.

34–47, 2006.

97
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