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Abstract 

In the absence of ligand, certain growth factor receptors can be activated via G protein-coupled 

receptor (GPCR) activation in a process termed transactivation. Serotonin (5-HT) receptors can 

transactivate the receptor tyrosine kinase (RTK) platelet-derived growth factor (PDGF) β receptors in 

smooth muscle cells, but it is not known if similar pathways occur in neuronal cells. Here, it is shown 

that 5-HT can transiently increase the phosphorylation of PDGFβ receptors in a time- and 

concentration-dependent manner in SH-SY5Y neuroblastoma cells. This transactivation pathway was 

pertussis-toxin sensitive, and was dependent on phospholipase C activity, intracellular calcium 

signaling and subsequent protein kinase C activation. Exogenous application of non-lethal 

concentrations of H2O2 induced the phosphorylation of PDGFβ receptors in a concentration-

dependent fashion, similar to that observed with 5-HT. Further investigation revealed reactive oxygen 

species (ROS) production as a necessary component in the transactivation pathway, as scavenging 

ROS eliminated PDGFβ receptor phosphorylation. NADPH oxidase was determined to be the likely 

source of ROS given that the NADPH oxidase inhibitors diphenyleneiodonium chloride and apocynin 

abrogated PDGFβ receptor transactivation. The role of Src tyrosine kinase was also investigated, and 

its location in this signaling cascade was found to be downstream of calcium signaling, but upstream 

of NADPH oxidase activity. In addition, the activation of ERK1/2 in this system was elucidated to be 

independent of PDGFβ receptor transactivation. Interestingly, 5-HT also transactivated TrkB 

receptors, another RTK whose function is implicated in clinical depression. Expectedly, the enzymes 

in this mechanism were consistent with those revealed in 5-HT-to-PDGFβ receptor signaling. This 

cross-talk between 5-HT and RTKs such as TrkB and PDGFβ receptors identifies a potentially 

important signaling link between the serotonergic system and neurotrophic factor signaling in neurons 

that could have implications in mental health disorders including depression. 

Furthermore, although transactivation pathways are commonly initiated by a GPCR, recent reports 

have demonstrated that selective serotonin reuptake inhibitors (SSRIs) were able to block 5-HT-

induced transactivation of PDGFβ receptors, suggesting that in addition to GPCRs, monoamine 

transporters may also be involved in RTK transactivation. SH-SY5Y cells pretreated with the SSRI 

fluoxetine blocked 5-HT-induced transactivation of the PDGFβ receptors, but not PDGF-induced 

PDGFβ receptor activation. Upon further examination, it was discovered that during the pretreatment 

period, fluoxetine itself was transiently transactivating the PDGFβ receptor via 5-HT2 receptors. By 

the end of the pretreatment period, the effects of fluoxetine on PDGFβ receptor phosphorylation had 
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returned to baseline, and a subsequent transactivating stimulus (5-HT) failed to “re-transactivate” the 

PDGFβ receptor. Additional investigations demonstrated that 5-HT pretreatment can block 

dopamine-induced PDGFβ receptor transactivation, but not PDGF-induced PDGFβ receptor 

activation. This is the first demonstration of the heterologous desensitization of an RTK via a 

transactivation pathway, and this phenomenon is specific for transactivation pathways because in all 

cases the PDGFβ receptor ligand PDGF-BB was able to directly stimulate receptor activity in spite of 

GPCR agonist pretreatment. Heterologous desensitization in transactivation signaling reveals a 

previously unknown short-term “blackout” period wherein no further transactivation signaling can 

occur to potentially exploit the mitogenic effects of RTK activation.  
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Chapter 1 

Introduction 

Of all the systems in the human body, the nervous system is by far the most complex. The notion that 

roughly one billion neurons forming trillions of synaptic connections define the personality of an 

individual is remarkable. And yet, although we can macroscopically map out various regions of the 

nervous system and assign to them specific roles, the functional aspects of this system inevitably 

come down to the signaling capabilities of each individual cell. Similar to other organ systems, 

signaling molecules and their receptors drive the cellular function of both neurons and glial cells in 

the nervous system. In this chapter, G protein-coupled receptors, receptor tyrosine kinases, their 

respective ligands, and various intracellular effectors are discussed in general and in the context of a 

particular phenomenon termed transactivation. These elements also partake in the biochemical 

pathophysiology of mental disorders such as depression, and this is contemplated here and throughout 

this thesis. 

 

1.1  G protein-coupled receptors 

1.1.1  G protein-coupled receptor activation 

G protein-coupled receptors (GPCRs) are metabotropic, signal-transducing proteins with 

characteristic seven transmembrane domains [1]. They make up a large, diverse family of receptors 

that respond to a vast array of stimuli including hormones, neurotransmitters, lipids, and sensory 

stimuli [2, 3]. In the absence of agonist, the energy required to break intramolecular bonds between 

transmembrane domains in the inactive state in part determines the level of basal activity [4]: those 

receptors with strong intramolecular bonds in the inactive state have low basal activity [5]. Agonist 

binding to the GPCR that is able to achieve the required activation energy induces a conformational 

change from an inactive to active state [4]. This exposes the G protein-binding domain in the cytosol 

to heterotrimeric G proteins, the proteins responsible for initiating signal transduction [1]. 

Heterotrimeric G proteins are composed of an α, β and γ subunit that are assembled when inactive. 

There are 16 known α subunits, with the three most studied being Gαi which negatively regulates 

adenylate cyclase activity, while Gαs stimulates adenylate cyclase activity, and Gαq activates 

phospholipase C [6]. The cytosolic portions of GPCRs contain guanine exchange factor domains, 
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which catalyze a replacement of GDP with GTP on the α subunit, thus activating it [6]. The α subunit 

separates from the βγ complex and interacts with the appropriate effector [6]. To terminate G protein 

signaling, the α subunit is deactivated by its intrinsic GTPase activity, or more rapidly by other 

GTPase-activating proteins (GAPs), which hydrolyze GTP to GDP. This results in the α subunit 

rejoining the βγ complex [6]. Interestingly, the βγ complex can also participate in its own signaling 

pathways, separate from α subunit activity [7].  

 

1.1.2 G protein-coupled receptor deactivation 

Signaling from GPCRs can be terminated by receptor phosphorylation at specific serine and threonine 

residues, thus impeding G protein association with the receptor and the initiation of further signal 

transduction [6]. GPCR amino acid segments that match a consensus sequence are subject to 

phosphorylation by activated PKA and PKC, which are non-selective in phosphorylating active or 

inactive GPCRs [8]. G protein-coupled receptor kinases (GRKs), on the other hand, are also 

serine/threonine kinases that specifically target activated GPCRs [9]. The resulting phosphorylated 

residues on GPCRs serve as docking points for β-arrestin molecules, which are necessary for full 

receptor deactivation [8]. Moreover, β-arrestin C-termini have affinity for clathrin triskelia which 

associate with the receptor complex [5]. The association of clathrin with β-arrestin-GPCR complexes 

leads to formation of a coated pit and internalization of the membrane containing the GPCR [6], and 

prevents further agonist binding to the GPCR. Internalized vesicles containing the GPCR can then be 

recycled back to the membrane, or targeted for destruction in lysosomes [5]. The affinity of β-

arrestins to the receptor in endosomes seems to dictate the recycle versus degradation fate of 

internalized GPCRs [5]. 

 

1.2 Serotonin signaling 

1.2.1 Serotonin in the CNS 

Derived from the amino acid tryptophan [10], serotonin (5-HT) is a crucial neurotransmitter that has 

been associated with sleep/wake cycles [11], cognition [12], and memory [13]. The major source of 

5-HT in the CNS is derived from serotonergic neurons in the raphe nuclei located in the brainstem, 

and project to several important areas including neocortex, cerebellum, striatum, amygdala, 
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hippocampus, motor systems, and spinal cord [14-16]. 5-HT synthesis begins with the amino acid 

tryptophan being hydroxylated to 5-hydroxytryptophan by the enzyme tryptophan hydroxylase [17]. 

5-hydroxytryptophan is then decarboxylated to 5-hydroxytryptamine (i.e. 5-HT) by L-aromatic amino 

acid decarboxylase [17]. Synthesized 5-HT is packaged into vesicles by the vesicular monoamine 

transporter and awaits a signal for release into the synaptic cleft [18].  

When an action potential reaches a presynaptic terminal, voltage-gated calcium channels in this 

structure respond by opening to allow an influx of calcium, which initiates neurotransmitter vesicle 

fusion with the membrane [19]. These synaptic vesicles dock at the membrane and are primed by 

formation of a SNARE complex consisting of SNAP-25 and syntaxin proteins on the plasma 

membrane, and synaptobrevin proteins on the vesicle [19]. Once this complex is stabilized by 

complexin, calcium influx from the depolarization binds synaptotagmin proteins on the vesicle, which 

catalyze a pore opening and neurotransmitter release [19].  

Upon release, 5-HT diffuses across the synaptic cleft where it binds to receptors on the post-

synaptic cell [19]. The type of 5-HT receptors found on the post-synaptic cell will dictate the 

particular cellular effect that will be elicited. This could be a change in membrane potential via 

ionotropic receptor activity or initiation of a signal transduction pathway [18]. Released 5-HT may 

also bind to receptors on the pre-synaptic cell, and this will be discussed in subsequent sections. 

 

1.2.2 Serotonin reuptake 

5-HT does not remain in the synaptic cleft indefinitely; the majority is removed from the synapse by 

the serotonin transporter (5-HTT). The 5-HTT pumps 5-HT back into the presynaptic cell where it is 

either repackaged into vesicles or degraded by monoamine oxidase A via oxidation to 5-

hydroxyindoleacetic acid [12]. 

The serotonin transporter is a roughly 630-amino acid monoamine transporter responsible for 

clearing 5-HT from the synaptic space [20, 21]. It contains twelve transmembrane domains with both 

termini within the cytosol [21, 22]. Newly synthesized 5-HTT protein is processed in the endoplasmic 

reticulum and Golgi with a series of glycosylation steps necessary for full protein function [22]. 5-HT 

reuptake is dependent on Na
+
 and Cl

-
 ions [22]. One model for 5-HTT mechanics suggests that Na

+
 

binds along with 5-HT to the transporter, which subsequently undergoes a conformational change that 

releases Na
+
 and 5-HT into the cytoplasm [23]. Upon binding K

+
, the transporter is returned to its 
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outward-facing conformation. Cl
-
 is also present and seems to be a necessary co-factor for these 

actions [23].  

Intriguingly, there was interest in an allelic variation in a promoter region of the 5-HTT gene. 

Investigations were conducted into correlations in affective disorders with the “short” allele, which 

was posited to be associated with an increase in depression episodes and a decrease in 5-HTT mRNA 

expression as compared to the “long” allele. Some studies support this correlation while others do not 

[24-26]. Nevertheless, the role of 5-HT in CNS pathology is of particular interest given its potential 

role in depression, schizophrenia, anxiety and drug addiction, and the fact that there are several 

examples of very successful drugs that target the 5-HT system to alleviate these pathological effects 

[12, 27]. As such, the study of 5-HT and its function is an ongoing area of intense active research. 

 

1.2.3 Serotonin receptors 

5-HT receptors include both ionotropic and metabotropic subtypes. 5-HT3 receptors are non-selective 

ion channels, permeable to sodium, potassium, and calcium [12], and the remainder are G protein-

coupled receptors (GPCRs). The Gαs-coupled 5-HT receptors include 5-HT4, 5-HT6 and 5-HT7, while 

5-HT1 and 5-HT5 subtypes are linked to Gαi/o [12, 28]. Finally, the Gαq-coupled 5-HT2 receptors 

complete the repertoire [12, 28]. In the following sections, the 5-HT1A and 5-HT2 receptors are 

discussed, as they are implicated in the transactivation pathway elucidated here. 

 

1.2.3.1 5-HT1A receptors 

5-HT1A receptors are abundantly found throughout the CNS including in the hippocampus, cortex, 

raphe nuclei, thalamus, and hypothalamus, although there are few to none located in the cerebellum 

and basal nuclei [12, 28, 29]. One pool of these receptors is situated postsynaptically in various limbic 

areas where they evoke hyperpolarizations via links with G protein-coupled potassium channels [12, 

28, 30]. 5-HT1A receptors also mediate norepinephrine and acetylcholine release from respective 

neurons [12]. Another pool of 5-HT1A receptors, located especially in the raphe nuclei, is found on 

dendrites and cell bodies of serotonergic neurons and these receptors act as autoreceptors [12, 28]. 

This pool also inhibits neuron firing through activation of potassium channels and inhibition of 

voltage-dependent calcium channels [12, 28].  
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5-HT1A knockout mice exhibit a variety of phenotypes such as increased responses to stress [30, 

31], anti-depressant-like behavior [32], increased anxiety [32, 33], including a fear of new or stressful 

environments [33]. These mice also show some cognitive abnormalities in learning and memory, 

although some of these reports have since come under scrutiny [34].  

 

1.2.3.2 5-HT2 receptors 

5-HT2 receptors are Gαq-coupled receptors and are subdivided into three isoforms. 5-HT2A receptors 

exist as somatodendritic heteroreceptors located in cortex, pons, limbic areas and basal nuclei [12, 28, 

35, 36]. When active, they cause a depolarization of the plasma membrane and contract vascular 

smooth muscle [28, 37]. These receptors also affect memory and sleep patterns [12, 38], and 

antagonists aid in treating negative symptoms of schizophrenia [12]. In 5-HT2A receptor knock-out 

experiments, mice demonstrate decreased nociception, and abnormal sleep patterns [39, 40]. 5-HT2A 

receptors may also modulate neural and behavioral responses of addictive substances [41, 42] and 

psychoses from hallucinogens such as LSD and psilocybin [28]. Also found in the CNS, 5-HT2B 

receptors are expressed in the cerebellum, hypothalamus, and amygdala [12, 28]. They also serve as 

heteroreceptors [12] and regulate motor behavior, anxiolysis, hyperphagia, and pain perception [28, 

43]. 5-HT2B receptors are often overexpressed in pulmonary hypertension [28, 44]. Finally, like 5-

HT2A receptors, 5-HT2C receptors are similarly found in cortex, hippocampus, amygdala, striatum, 

and substantia nigra, but also prominently in choroid plexus [12, 28]. Neuron depolarizations result 

from activation of these receptors, as well as inhibition of dopamine and norepinephrine release [12, 

45]. 5-HT2C receptor knock-out mice are obese, have convulsions as well as cognitive impairment 

[28, 46].  

 

1.3 Platelet-derived growth factor receptor signaling 

1.3.1 Platelet-derived growth factors 

Platelet-derived growth factors (PDGFs) are potent mitogens that act on a variety of cell types 

including smooth muscle, vascular endothelial cells, fibroblasts and neurons [47]. They are 

characterized into four subtypes (A, B, C, and D) [48], with PDGF-A and PDGF-B being the most 

extensively studied. Of the four PDGF ligands, only PDGF-B and possibly PDGF-D can bind to the β 
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receptor, while the α receptor binds all but PDGF-D [48, 49]. PDGFs are typically found as 

homodimers, bridged via disulfide bonds in an antiparallel arrangement; however, heterodimers such 

as PDGF-AB also exist [47, 49]. PDGFs usually act in a paracrine fashion by binding PDGF 

receptors in local populations of cells, although they have been shown to act as autocrine factors in 

cancerous tissue [48].  

PDGF ligands are divided into two subfamilies based on protein structure and post-translational 

processing of the propeptide: PDGF-A and PDGF-B compose the first subfamily whose propeptide 

N-terminal sequences are cleaved prior to excretion [48, 50]. These ligands also contain a C-terminal 

basic retention sequence that readily binds extracellular matrix, restricting the activity of these ligands 

to the immediate surroundings unless the retention sequences are subsequently cleaved off thus 

making the ligands are much more soluble [48]. The second subfamily is composed of PDGF-C and 

PDGF-D, which lack a basic retention sequence and are processed extracellularly [48]. They contain 

an N-terminal CUB domain that may act similar to retention sequences by binding extracellular 

matrix, but these sequences must be cleaved off for the protein to be active [48, 50].  

 

1.3.2 Platelet-derived growth factor receptors  

Platelet-derived growth factor (PDGF) receptors belong to the class III receptor tyrosine kinases 

(RTKs). They have been shown to be important in embryonic development of neurons and glial cells, 

as well as having roles in mature central nervous and vascular system function [49, 50]. These 

transmembrane receptors are divided into two main receptor types: PDGFα and PDGFβ at 

approximately 170 and 180 kDa respectively [50]. Post-translational glycosylation accounts for 40-50 

kDa of this weight; however, receptors have been found to be functional without this modification 

[51, 52]. Both PDGF receptor types (α and β) are found in the central nervous system [48]. Five 

extracellular immunoglobulin (Ig)-like domains that are associated with ligand binding as well as an 

intracellular tyrosine kinase domain are required for activation of the receptor (Figure 1.1) [48, 50]. 

Binding of the ligand dimer to a receptor causes the recruitment of another receptor to form a receptor 

dimer, and all three receptor combinations are possible (αα, αβ, and ββ) [49, 50]. Ligand binding 

appears to be occurring at receptor Ig-like domains 1-3, and domain 4 is important at stabilizing 

receptor-receptor interaction [47]. With the formation of the receptor dimer, the kinase catalytic 

domains come within close proximity and become phosphorylated at Y849 and Y857 of the α and β 

receptors, respectively [49, 50]. This phosphorylation increases the activity of the kinase domains and 
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leads to trans-autophosphorylation of several other tyrosine residues on the cytoplasmic tail [49, 50]. 

These residues become docking sites for signaling enzymes and adaptor proteins, which 

predominately initiate proliferative signaling cascades (see Table 1 and the reviews by Heldin et al. 

[47, 49]). The proteins that bind phosphorylated PDGF receptors contain a SH2-binding domain – a 

domain that has affinity for phosphorylated tyrosine residues [53].  

 

 

Figure 1.1. PDGFβ receptor structure. 
PDGFβ receptors possess five extracellular 

immunoglobulin (Ig)-like domains that mediate 

ligand binding and receptor dimerization. 

Intracellular kinase domains are flanked by 

several tyrosine residues that, when 

phosphorylated, participate in signal 

transduction. Adapted from Heldin et al., 1998 

[47]. 

 

1.3.3 Downstream PDGF receptor signaling 

Phosphatidylinositide 3-kinases (PI3K) belong to three classes of enzymes, of which class I is 

relevant here. Members of this class are heterodimers composed of a p85 regulatory subunit and a 

p110 catalytic subunit [54]. The regulatory subunit is unique to this class, and notably has SH2 and 

p110-binding domains [54]. The catalytic subunit has a p85 and Ras-binding domains, as well as the 

catalytic domain [55]. In its basal state, PI3K is inactivated by is regulatory subunit [54]. However, 

when bound to phosphotyrosine (such as on phosphorylated RTKs) via SH2 domains, the p85 

suppression is relieved and the enzyme is activated [55]. PI3K can also be activated by Ras and 

GPCRs [55]. When active, PI3K phosphorylates phosphatidylinositol 4,5-bisphosphate (PIP2) to 

phosphatidylinositol 3,4,5-trisphosphate (PIP3), which initiates signaling pathways (notably Akt) that 
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lead to cell cycle progression, growth, survival (inhibiting apoptosis), and motility [48, 54]. PI3K 

binds Y731/742 and Y740/751 of PDGFα and PDGFβ receptor, respectively [49]. 

Phospholipase C (PLC) is a calcium-dependent cytoplasmic protein (Figure 1.2) whose isoforms 

can be activated by both GPCRs (including via Gαq and Gβγ subunits) and receptor tyrosine kinases 

[56, 57]. Translocation to the plasma membrane is a necessary step in activation, where it carries out 

the conversion of phosphatidylinositol 4,5-bisphosphate (PIP2) to diacylglycerol (DAG) and inositol 

1,4,5-trisphosphate (IP3) [56, 57]. Y988/1018 and Y1021/1009 of the α and β receptors bind and 

activate PLCγ, and via increased cytosolic calcium and DAG, lead to activation of protein kinase C 

[49].  

 

 

Figure 1.2. Phospholipase C structure. 
At the N-terminal end, pleckstrin homology (PH) domains allow binding to phosphoinositides within the 

plasma membrane. EF motifs are helix-loop-helix structures that bind calcium, and are part of the 

catalytic core of the enzyme along with X, Y, and C2. Two SH2 and one SH3 domains are found in 

between the X and Y domains of PLCγ. These are unique to this isoform and SH2 domains allow for 

binding to phosphotyrosine and activation of PLCγ, while SH3 domains can bind dynamin and actin. 

PDZ domains assist in forming protein complexes and anchoring proteins to the cytoskeleton. Adapted 

from Vines, 2012 [56]. 
 

 

Other proteins that bind PDGF receptor and become activated include the non-receptor tyrosine 

kinase Src kinase, which binds Y572 and Y579, and SHP-2 binds Y720/754 and Y1009/763 [49]. 

SHP-2 is a phosphatase responsible for regulating PDGF receptor activity by dephosphorylating (thus 

inactivating) the receptor [49]. Other factors that bind PDGF receptors include: Grb2/Sos and GAP 

(GTPase-activating protein), which activate and deactivate (respectively) the G protein Ras; the 

transcription factor Stat5; and many other adaptor proteins (see Table 1) [49].  
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Table 1: PDGF receptor-associated signaling molecules 

Signaling molecule PDGFα receptor 

phosphorylation site 
PDGFβ receptor 

phosphorylation site 

PI3K Y731 

Y742 

Y740 

Y751 

PLCγ Y988 

Y1018 

Y1021 

Y1009 

c-Src Y572 Y579 

SHP-2 Y720 

Y754 

Y1009 

Y763 

Grb2 Unknown Y716 

Y775 

Grb7 Unknown Y716 

Y775 

GAP None Y771 

Shc Unknown Y579 

Y740 

Y751 

Y771 

Stat5 Unknown Y579 

Y581 

Y775 

Nck Unknown Y751 

PDGF receptor kinase 

domain activation site 

Y849 Y857 

Table of signaling molecules that bind phosphorylated PDGF receptors with associated phosphorylation site. Adapted 

from Heldin and Westermark, 1999 [49]. 

 

1.3.3.1 Protein kinase C 

Although protein kinase C (PKC) is not directly activated by PDGF receptors, it does play a role in 

downstream signaling and is one of the important cellular enzymes in signal transduction. It is a 

single polypeptide and exists as several different isoforms: PKCα, PKCβ and PKCγ comprise the 

conventional (cPKC) isoforms (Figure 1.3), and require calcium ions, which target the enzyme to the 

plasma membrane where they bind phosphatidylserine and DAG, thus activating the enzyme [58, 59]. 

Novel isoforms (nPKCs) consist of PKCδ, PKCϵ, PKCη, and PKCθ and do not require calcium, while 
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atypical isoforms (aPKCs) PKCζ and PKCλ do not require DAG or calcium [58]. A pseudosubstrate 

domain keeps the enzyme inactive when calcium and/or DAG are absent by blocking the active site 

[58, 59].  

PKC has three main domains: an N-terminal regulatory region, a hinge region and a C-terminal 

catalytic region [58, 59]. The regulatory region contains binding domains for calcium (for cPKCs), 

diacylglycerol (for cPKCs and nPKCs), phorbol esters and phosphatidylserine [58]. The catalytic 

region houses the ATP and substrate binding sites, where it phosphorylates substrates at 

serine/threonine residues [59]. 

PKC function is also regulated by phosphorylation at three sites. Upon completion of protein 

synthesis, PKC is phosphorylated at a site on its activation loop to prevent degradation [58]. A second 

phosphorylation occurs in a C-terminal turn motif which creates a stable conformation necessary for 

enzyme function [58]. A third phosphorylation occurs at a site in the C-terminal hydrophobic region 

in cPKC and nPKC isoforms but its function remains to be fully explored [58]. The enzyme is then 

subject to regulation by the isoform-specific cofactors and the pseudosubstrate domain [58, 59]. 

Active PKCs mediate a wide variety of signal transduction pathways, binding several enzymes 

including Raf1, STAT, HSP25, and PLD [58]. 

 

Figure 1.3. Conventional protein kinase C 
The pseudosubstrate (PS) domain contains the consensus sequence for the kinase domain, but lacks 

the target serine/threonine, thus regulating its activity. C1 domains bind DAG or phorbol esters, 

while C2 domains bind calcium in cPKCs. The hinge region allows bending of the protein to permit 

the PS to bind the kinase domain. Adapted from Zeng et al., 2012 [58]. 

 

1.3.3.2 Receptor deactivation 

PDGF ligand stimulation of PDGF receptors also has the outcome of internalizing the receptor. 

PDGF receptors are found concentrated in caveolae, and ligand-activated receptors are rapidly 

removed from the plasma membrane via clathrin-dependent internalization [47]. The fate of PDGF 

receptors will be either to be separated from the ligand and recycled back to the cell surface, or to be 

degraded upon fusion of its endosome with a lysosome [48, 49]. As is the case for many other 

proteins, ubiquitination of activated PDGF receptors leads to increased rate of degradation in 
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proteasomes, and consequently, mutated ubiquitination sites result in longer receptor half-lives [47, 

49]. In addition, the level of kinase activity of the receptor and the phosphorylation status of Y579 

have also been implicated in the rate of internalization [47].  

 

1.3.3.3 Inhibition of PDGF receptor function 

Preventing downstream signaling from PDGF receptors can be attained by several means. 

Pharmaceutical inhibition of PDGF receptors is achieved by blocking the ATP-binding site, thus 

preventing kinase activity. Many tyrphostins can perform this function, but these drugs often have 

other targets besides PDGF receptors [60]. Specific inhibition of receptor function can be achieved by 

using antibodies targeting the extracellular domain, thus preventing ligand binding. In spite of this, it 

is probable that this would not prevent PDGF receptor transactivation (discussed below), as 

extracellular domains are not involved in this pathway [61]. Targeting the ligands themselves with 

antibodies would also eliminate receptor activation through sequestration and preventing their binding 

to the receptor [47]. 

 

1.3.3.4 PDGF receptors in development and normal function 

Activation of PDGF receptors can lead to cell growth by activating the MAP kinase pathway 

through Ras activation [47]. On a tissue level, effects of PDGF signaling in development include 

proliferation and development of lung smooth muscle, proliferation and differentiation of 

mesenchymal cells in intestinal villus formation, hair follicle formation, and testis formation [48]. In 

the CNS, oligodendrocyte precursors respond to PDGF by proliferating and producing myelin [48]. 

Absence of PDGF signaling can result in insufficient or no myelination of some nerve fibers [48]. 

PDGF receptors have been shown to be associated with focal adhesions via Na
+
/H

+
 exchanger 

regulatory factors (NHERFs), which bind directly with PDGF receptors [48]. These factors link 

PDGF receptors to focal adhesion kinases, the actin cytoskeleton, and integrins [48]. PDGF signaling 

also affects actin organization and disassembly of stress fibers [50], which are necessary for cell 

migration [48].  

Moreover, PDGF signaling can increase wound repair. Although expression of PDGF receptors is 

low in smooth muscle and fibroblasts, inflammation induces their upregulation [50]. Subsequently, 



 

 12 

PDGF signaling increases the rate of new epithelium and vascular regeneration, leading to faster 

wound healing [50].  

PDGF receptors and ligands are crucial in maintaining cell proliferation in embryonic 

development: mice with either receptor type or PDGF-A or PDGF-B knocked out results in 

embryonic or perinatal death [49]. Kidney function is critically undermined as mesangium fails to 

develop, leading to essentially non-functional glomeroli in both PDGF-B and PDGFβ receptor knock-

out mice [62, 63]. Deficiencies in the cardiovascular system in general are also seen, with heart and 

vasculature defects leading to bleeding due to lack of pericytes around the endothelium of small 

vessels [49, 64]. In addition, lung function is compromised in PDGF-A knock-out mice, with 

defective alveolar development, leading to symptoms of emphysema, and death occurring within a 

month after birth [65].  

 

1.3.3.5 PDGF receptors in disease 

PDGF activity has been implicated in the formation of atherosclerosis. An injury in a blood vessel 

increases inflammation and aggregation of platelets at the site [48]. PDGFs released from platelets or 

activated immune cells cause smooth muscle migration and proliferation from the tunica media to the 

intima, the endothelial, lumen-facing layer of blood vessels. This contributes to plaque growth into 

the lumen [48, 50], and restricts blood flow through the site. In addition, overactivity of PDGF 

signaling has been linked to various cases of fibroses including liver, heart, kidney, and dermis [48]. 

For instance, in lung fibrosis, inflammation results from irritants in alveoli [48]. PDGF receptor 

expression increases from the effects of inflammation and activated immune cells release PDGF [48]. 

Proliferation of myofibroblasts and accumulation of extracellular matrix result [50], leading to scar 

formation and eventual decrease in oxygen diffusion efficiency [66]. In addition, overactivity of 

PDGF signaling leads to tumor formation and progression. In malignant gliomas, an autocrine loop 

develops as cells express both PDGF ligands and receptors [50, 67]. How these genetic changes arise 

remains to be elucidated, but in many cases, gene mutations or amplification of receptors or ligands 

are found [48].  
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1.3.4 Transactivation 

In addition to ligand-induced activation of PDGF receptors, another mechanism of activation has 

recently emerged. GPCR signaling has been shown to mediate PDGF ligand-independent PDGF 

receptor activation in a process known as transactivation (Figure 1.4) [61, 68]. In fact, several GPCR 

ligands can transactivate PDGF receptors in numerous systems including angiotensin II [69, 70], 

endothelin [71], dopamine [68], sphingosine-1-phosphate [72], lysophosphatidic acid [73, 74], and 

leukotrienes [75]. PDGF receptor transactivation pathways most likely involve exclusively 

intracellular signaling cascades, but other RTK transactivation pathways involve extracellular release 

of factors that act on the RTK [76, 77]. 5-HT itself transactivates the PDGFβ receptor in pulmonary 

artery smooth muscle cells and in LMTK
-
 mouse fibroblast cells [78, 79]. However, the mechanistic 

pathway(s) that lead to PDGF receptor transactivation by 5-HT remain largely uncharacterized and 

it is not known if 5-HT induces transactivation of PDGF receptors in neurons. 

 

 

Figure 1.4. 5-HT-induced transactivation of PDGF receptors.  
Certain GPCRs such as 5-HT receptors mediate an intracellular signaling cascade that results in 

PDGF receptor phosphorylation. This ligand-independent transactivation pathway has not been 

characterized in neurons, but is believed to involve many enzymes described in other pathways. One 

of the objectives of this study is to identify some of these enzymes involved. 
 

1.3.4.1 EGFR transactivation 

The model of epidermal growth factor (EGF) receptor transactivation follows a slightly different 

mechanism compared to transactivation seen with other RTKs: GPCR activation leads to an 

intracellular signaling pathway that activates membrane-bound metalloproteases [80]. These cleave 
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membrane-bound heparin-binding EGF-like and release it extracellularly, which binds the 

extracellular ligand-binding domains of the EGF receptor thus activating it [80]. Although not a 

wholly intracellular mechanism, this so-called “triple-membrane-passing signaling” [80] (Figure 1.5) 

is considered transactivation by virtue of the fact that the process is initiated by a GPCR.  

 

 

Figure 1.5. Triple-membrane-passing signaling. 
Activation of a GPCR from an extracellular ligand results in signaling via intracellular mediators 

that in turn, activate metalloproteases. These cleave extracellular pro-heparin-binding epidermal 

growth factor (HB-EGF) which then diffuses away to interact with epidermal growth factor receptor 

(EGFR). Phosphorylation of EGFR results in further intracellular growth factor signaling. Adapted 

from Wetzker and Bohmer, 2003 [80]. 
 

1.4 TrkB receptor signaling 

1.4.1 Neurotrophins 

Neurotrophic factors are proteins that promote survival and maintenance of neurons [81]. These 

members are composed of neurotrophins, ciliary neurotrophic factor, and glial cell line-derived 

neurotrophic factors [82-84]. Within the family of neurotrophins, there are four main proteins: nerve 

growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3) and 

neurotrophin-4 (NT-4), although other neurotrophins do exist in non-mammalian species [82, 85]. It 

should be mentioned that neurotrophin-5 was discovered in human but it was later determined that it 

was the species homolog of Xenopus neurotrophin-4 [82, 86]. 
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Neurotrophins are translated as propeptides that must be cleaved by proteases for full activity at 

neurotrophic receptors [82]. However, there is evidence that proneurotrophins may bind the p75 

neurotrophin receptor and induce apoptosis [87]. Active neurotrophins exist as non-covalently-bound 

homodimers, except for BDNF, which dimerizes with a monomer of NT-3 or NT-4 [82, 88]. Neuron 

development is enhanced by neurotrophins, and the age and location of the neuron can determine to 

which neurotrophin it responds. For example, NT-3 is responsible for survival effects in sympathetic 

neuroblasts and newly differentiated neurons, whereas mature neurons depend on NGF  [82]. 

 

1.4.2 TrkB receptors 

Most neurotrophin signaling is initiated by binding and activating one of three Trk neurotrophic 

receptors (A to C), which belong to the family of receptor tyrosine kinases [81, 82]. Due to the 

differences in amino acid sequence in the extracellular ligand-binding Ig-like domains, each receptor 

subtype has different affinities for different neurotrophins [81]. TrkB receptors can be activated by 

the ligands BDNF, NT-3, or NT-4 [89], while TrkA receptors have higher affinity for NGF, and TrkC 

receptors bind NT-3 [81]. Like the PDGFβ receptor, TrkB receptors dimerize upon ligand binding, 

followed by kinase domain activation and trans-autophosphorylation of tyrosine residues outside of 

the kinase domain (Figure 1.6) [81, 90]. TrkB receptor phospho-Y515 binds Shc, which then binds 

Grb2/Sos and leads to activation of the Ras-MAPK pathway [90]. Ras activity promotes neuronal 

survival and differentiation [82]. Grb2 also mediates the formation of a complex involving Grb-

associated binder-1 protein, and insulin receptor substrate 1 and 2 [90]. This complex mediates the 

activation of PI3K and subsequently Akt, leading to cell survival effects [90]; unlike with PDGF 

receptor, PI3K does not directly bind to phosphorylated TrkB receptors [90]. On the other hand, TrkB 

receptor phospho-Y816 binds and activates PLCγ, which increases cytosolic calcium concentrations 

and DAG, and subsequently activates PKC isoforms [90].  

TrkB receptors can be trafficked to and from the membrane based on which signaling molecules 

are present. Synaptic activity that increases intracellular calcium concentrations via NMDA or 

calcium channels lead to CaMKII activation and induces fusion of intracellular TrkB receptor-

containing vesicles with the plasma membrane, even in absence of BDNF [91]. Binding of ligand to 

TrkB receptors leads to endocytosis, and this can be enhanced by increases in calcium concentrations 

from synaptic activity as well [91]. Internalized TrkB is still active and can participate in downstream 

signaling since the phosphorylated C-terminal tails are still in the cytoplasm [91]. 
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Human TrkB receptor signaling is dependent upon three alternatively spliced isoforms: the full-

length TK+, and 2 truncated (TK-) forms, T1 and T-Shc. While T1 and T-Shc lack the intracellular 

kinase domain and therefore do not participate in the downstream proliferative signaling pathways 

typical of RTKs, they can modulate the activity of the full length TrkB receptor [90, 91].  

Previously, Trk receptors were reported to be transactivated by adenosine A2A receptors and many 

of the proteins involved in that pathway are similar to those required for 5-HT-induced transactivation 

of the PDGFβ receptor [92-94]. However, it is unknown if any other GPCRs can trigger 

transactivation of TrkB receptors. 

 

 

Figure 1.6. TrkB receptor 

structure. 
TrkB receptors bind several 

neurotrophins at the two extracellular 

Ig-like domains. For TK+ receptors, 

an intracellular kinase domain 

phosphorylates other intracellular 

tyrosine residues that initiate cell 

signaling. TK- receptors lack the 

intracellular kinase domain and 

phosphotyrosines; thus, they do not 

themselves participate in cell 

signaling, but they can modulate the 

activity of TK+ receptors by 

dimerizing with them. See text for 

details. Adapted from Skaper, 2008 

and Minichiello, 2009 [82, 90]. 

 

1.5 Depression 

1.5.1 Manifestations and anatomy 

Clinical depression is a historied mental disease that will affect one in six individuals in their lifetime 

according to some statistics [95]. Diagnoses date back as far as to Hippocrates in 400 BC, who 

described the disease as melancholia [96]. The main points of diagnosis are listed below in Table 2. 
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Note that diagnoses are subjective; there is some overlap of symptoms with related disorders such as 

bipolar disorder and anxiety disorders [97].  

Table 2. Depression manifestations 

Depressed mood 

Anhedonia 

Irritability 

Difficulty concentrating 

Abnormal appetite 

Abnormal sleep patterns 

Low energy 

Low self-esteem 

Suicidal thoughts 

Criteria for clinical depression diagnosis. Based on symptoms listed 

in the Diagnostic and Statistical Manual of Mental Disorders IV. 

Several symptoms should persist for at least 2 weeks [96-98]. 

 

Risk factors for depression include prior episodes, family history, medical co-morbidity, stress, and 

substance abuse [98]. Despite these criteria, there is no solid genetic link to depression [97]: there is 

no single “smoking gun” gene, and if a genetic link is definitively found, there will most likely be 

several genes responsible. The limbic system is one brain region implicated in depression, which may 

be where antidepressant drugs are acting [99]. Brain scans also point to increased activity in 

prefrontal cortex and amygdala in depressed individuals and in healthy volunteers in a state of 

induced sadness [100, 101]. Post-mortem analyses have discovered a decrease in gray matter volume 

and cell number in the prefrontal cortex, limbic, and basal nuclei (including nucleus accumbens, 

caudate, and hippocampus) in many but not all cases of depression [100, 102].  

The study of depression, and indeed mental diseases in general, has the unfortunate inconvenience 

of a lack of an ideal animal model. We can study the effects of drugs on animal brains, and animals 

can be genetically or psychologically modified to manifest neurological disorders [96], but these 

modifications themselves may be confounding. Cognitive tests are difficult to administer to a model 

that has no vocal or linguistic capacity with which to describe a feeling. Thus, a combination of 

animal and human studies is necessary for the clearest understanding of mental disorders.  
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1.5.2 Treatments for depression 

Being a highly prevalent disorder, much effort has been put into the development of pharmaceuticals 

that alleviate the symptoms of depression. In spite of this, 20-40% of patients do not respond to a 

given antidepressant [103] . Currently used drugs mainly target the monoamine system, and are 

summarized in Table 3.  

 

Table 3. Commonly prescribed antidepressants 

Drug class 

Generic (Trade) names 

 

Mechanism of action 

TCA 

Amitriptyline (Elavil) 

Clomipramine (Anafranil) 

Desipramine (Norpramin) 

Doxepin (Sinequan) 

Imipramine (Tofranil) 

Nortriptyline (Aventyl) 

Trimipramine (Surmontil, Rhotrimine) 

 

MAOI 

Phenelzine (Nardil) 

Selegiline (Eldepryl) 

Tranylcypromine (Parnate) 

 

SSRI 

Citalopram (Celexa) 

Fluoxetine (Prozac) 

Fluvoxamine (Luvox) 

Paroxetine (Paxil) 

Sertraline (Zoloft) 

 

SNRI 

Duloxetine (Cymbalta) 

Venlafaxine (Effexor) 

 

Inhibitors of serotonin and/or norepinephrine 

and/or dopamine transporters  

May also affect neurotransmitter receptor function 

 

 

 

 

 

 

Inhibitors of monoamine oxidase 

 

 

 

 

Inhibitors of serotonin transporters 

 

 

 

 

 

 

Inhibitors of serotonin and norepinephrine 

transporters 

 

Selected pharmaceuticals with antidepressant action available in Ontario, Canada, per the Ontario Drug Benefit Formulary, 

Edition 41. Mechanisms of action are listed for each drug class [99, 104]. 
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Tricyclic antidepressants (TCAs) were among the first drug classes available to treat depression 

[99]. In general, these drugs prevent the reuptake of 5-HT and/or norepinephrine (NE) into the cell by 

blocking the 5-HTT and NE transporter (NET) [18, 104], thus allowing these monoamines to remain 

in the synaptic space for longer periods of time. Unfortunately, these drugs often target other 

receptors such as alpha adrenergic, muscarinic cholinergic, and histamine receptors [18, 104], leading 

to undesirable or intolerable side effects. Although drugs in this class do alleviate symptoms of 

depression and continue to be prescribed, they have been replaced as first-line treatments in favor of 

those with fewer side effects [104].  

Monoamine oxidase inhibitors prevent the mitochondria-bound monoamine oxidase from 

metabolizing 5-HT and NE, keeping the cellular pools of these monoamines from being depleted 

[105]. However, there is a risk of developing a tyramine-induced hypertensive emergency through 

concurrent consumption of high tyrosine-containing foods. Monoamine oxidase inhibitors prevent 

metabolism of tyramine, a catecholamine-releasing agent. This can result in an increase of 

catecholamines into systemic circulation, overactivity of adrenergic receptors, and critical increases in 

systemic blood pressure [106]. Therefore, these drugs are usually not first-line options for depression, 

and with decreased use, hypertensive emergencies are now less common [106]. 

The selective serotonin reuptake inhibitors (SSRIs) have become the first-line choice for the 

treatment of depression, based on safety and efficacy [104, 107]. These drugs selectively target the 5-

HTT, with significantly less affinity for NET, acetylcholine or histamine receptors [104]. As such, 

they have fewer side effects and are generally tolerated by a greater number of people [18, 104, 108]. 

Along the same lines are the dual serotonin-norephinephrine reuptake inhibitors (SNRIs). These 

provide the therapeutic benefits of TCAs without the adverse side effects, and are alternatives to SSRI 

use [104]. One meta-analysis even suggests that some SNRIs are more efficacious than certain SSRIs 

[108]. 

 

1.5.3 Hypotheses of depression etiology 

1.5.3.1 Monoamine hypothesis 

The monoamine hypothesis of depression posits that a deficiency in monoamine signaling in the CNS 

can result in depression, and that resolving this deficiency ameliorates symptoms of the disease [97, 

109, 110]. Drugs that work to increase monoamine signaling should therefore alleviate depression 
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symptoms, and this hypothesis was devised from the observed antidepressant effects of iproniazid, a 

MAOI, and imipramine, a TCA, in the 1950s [18, 97, 111]. Further, reserpine depletes a neuron’s 

available monoamine stores by blocking the vesicular monoamine transporter, thus preventing 

monoamine packaging and release into the synapse, and the effects of this drug include an induction 

of depressive symptoms [112]. However, the main criticism of this hypothesis is that the effects of the 

antidepressant do not appear for several weeks after starting the drug regimen, when one would 

expect the effects to occur within hours or days at the most [18, 113]. Clearly, the mechanism is more 

complex than once thought, and a modification to the initial hypothesis was required: the 

antidepressant-induced acute increase in monoamine signaling is simply the first step in a lengthy 

process at the synapse [114]. A current theory suggests that the increased monoamines (particularly 5-

HT) in the synapse caused by reuptake inhibition bind to pre-synaptic autoreceptors, whose normal 

function is to decrease further 5-HT release into the synapse through negative feedback (Figure 1.7) 

[18, 114]. Somatodentritic 5-HT1A autoreceptors and terminal 5-HT1B/1D autoreceptor activity in the 

raphe nuclei have been implicated in depression by causing hyperpolarization of the neuron to inhibit 

its firing [18, 114]. 5-HTT blockade by long-term SSRI therapy leads to a slow desensitization of 

these 5-HT autoreceptors [115, 116] by increasing synaptic 5-HT concentrations, which progressively 

bind more of these receptors over time (thus accounting for the lag time between starting treatment 

and observable effects), a result that is blocked by 5-HT1 antagonists [114, 116]. Less inhibition of 5-

HT neuron firing, along with decreased 5-HT uptake through 5-HTT blockade, increases 5-HT 

signaling capacity in the synapse, thus improving symptoms of depression.  
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Figure 1.7. Monoamine hypothesis signaling. 
A depolarized presynaptic neuron will release its neurotransmitter into the synaptic space. 5-HT 

binding to autoreceptors inhibits further neurotransmitter release. Selective serotonin reuptake 

inhibitors (SSRIs) act on 5-HT transporters (5-HTT) to decrease 5-HT reuptake. This has the effect 

of increasing synaptic 5-HT concentrations, which leads to desensitization of the 5-HT 

autoreceptors through increased 5-HT binding. With less inhibitory 5-HT autoreceptors and in 

combination with 5-HTT inhibition, synaptic 5-HT levels are maximized. Adapted from Elhwuegi, 

2004 [18]. 
 

 

1.5.3.2 Neuroendocrine factors 

The hypothalamus-pituitary-adrenal (HPA) axis (Figure 1.8) is a well-known mechanism of stress 

response, and may be compromised in depressed individuals [96]. The amygdala and hippocampus 

positively and negatively (respectively) regulate paraventricular nucleus (PVN) activity in the 

hypothalamus [96]. The PVN is an integration center for stress-related information, and secretes 

corticotropin-releasing hormone (CRH) when stimulated [96]. CRH targets the anterior pituitary, 

which releases adrenocorticotropic hormone (ACTH) [96]. ACTH stimulates the adrenal cortex to 

release cortisol, a glucocorticoid whose increase in blood concentration correlates with increased 

stress [117]. Acute increases in cortisol levels negatively regulate the HPA axis, and may increase 

activity of the hippocampus [96], thus providing a negative feedback. On the other hand, chronic 
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stress increases blood cortisol levels over a longer time period, and this constant hypercortisolemia 

may be neurodegenerative in the hippocampus with consequences such as loss of dendritic branches 

and spines (thus less synapses), and reduced neurogenesis [96, 99]. This leads to decreased 

hippocampal inhibition of the PVN, and continued activity of this axis, which maintains high cortisol 

levels in blood [96, 99]. Justifiably, there is active research in understanding the role of the HPA axis 

in depression. Current evidence suggests an increase in CRH-releasing neuroendocrine cells in the 

PVN occurs in depression, while antidepressants and electroconvulsive therapy work to reduce CRH 

concentration [104, 118]. However, not all depressed patients show abnormal HPA axis physiology 

[96], suggesting this may not be the only causative factor of depression. 

 

 

Figure 1.8. HPA axis. 
Stress initiates signaling in the HPA axis. 

The main structures include the 

amygdala, hippocampus, the 

paraventricular nucleus (PVN) of the 

hypothalamus, and the anterior pituitary. 

Hormones include corticotropin-releasing 

hormone (CRH), adrenocorticotropic 

hormone (ACTH) and glucocorticoids. 

See text for details. Adapted from Nestler 

et al., 2002 [96]. 

 

1.5.3.3 Neurotrophic factor hypothesis 

Another more recent hypothesis considers a role for neurotrophic factors in depression. This 

hypothesis states that a decrease in neurotrophic factor signaling, particularly in the hippocampus, 

underlies depression pathophysiology [96, 97, 119]. BDNF is the most suspected factor involved, as it 

is expressed in limbic regions and regulates brain plasticity [97]. Evidence that supports this idea 

suggests that acute or chronic stress induces a reduction in hippocampal BDNF signaling, and long-

term antidepressant use increases BDNF expression [96, 120-123]. Decreased BDNF expression has 
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been implicated in changes to neuronal dendrites including decreased dendritic branches and 

complexity [124]. Moreover, direct injection of BDNF into the hippocampus produces antidepressive 

results in rodents [122]. One issue with the neurotrophic hypothesis is the depressive effects of BDNF 

seen in the VTA and nucleus accumbens [125], so there are likely other factors involved. In addition, 

not all antidepressants positively modulate BDNF levels: some antidepressants lead to increased 

BDNF expression, while others show no effect [120]. 

 

1.5.3.4 Neurogenesis 

Despite erroneous lay claims to the contrary, neurogenesis is seen continually in the adult brain in at 

least two main locations: the subgranular zone of the hippocampus and the subventricular zone lining 

the lateral ventricles [113, 126]. Neurogenesis is thought to slow or stop in depression, and is 

postulated as an effect of overactive endocrine function as described in section 1.5.3.2. This could 

lead to atrophy and decreased gray matter volume as seen in some depressed patients [100, 127]. 

Conversely, certain antidepressant therapies seem to result in induction or restart of neurogenesis in 

the hippocampus [127-130]. This induction of new neuron production is posited to be caused by 

antidepressant-induced increases in BDNF signaling and has been linked to the neurotrophic factor 

hypothesis [97]; however, a mechanism has yet to be established. 

 

1.5.3.5 Other depression research 

There is also research investigating the role of DNA itself in depression. Methylated cytosine 

typically indicates inactive/repressed DNA, and methylated DNA on glucocorticoid receptor 

promoters decreases receptor expression and correlates with increased anxiety [97]. In addition, 

histone acetylation is an indicator of transcriptional activity, and may also be an antidepressant target 

[97]. This is corroborated by evidence suggesting that histone deacetylase inhibitors produce 

antidepressant effects [131, 132] and antidepressant activity increases histone acetylation at BDNF 

promoters by downregulating deacetylases [113, 131]. Alternatively, electroconvulsive therapy in 

rodents also increases histone acetylation at BDNF promoters, and correlates with an increase in 

BDNF expression [133]. Electroconvulsive therapy involves placing electrodes on the scalp and 

running current to induce a general seizure [104]. Although historically connoted to be barbaric, 

safety and efficacy have since improved with more strategic electrode placement, and response rates 
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vary between 50-90% [104, 134, 135]. But there is still a risk of confusion, memory, and 

cardiovascular complications [136-138]. In contrast, deep brain stimulation involving electrodes 

implanted in the brain have shown to provide instant decrease in depressive symptoms, especially 

when stimulating the nucleus accumbens – a region important for reward, and the anhedonic (i.e. lack 

of capacity to feel pleasure) effects of depression [139]. This method does not involve inducing 

seizures, and provides potentially encouraging evidence of therapeutic value to depressed patients 

who have had prior failures with pharmacological, psychological, and electroconvulsive therapies 

[139]. 

 

1.6 Objectives 

This project was divided into two objectives that sought to investigate the role, if any, of 5-HT in 

PDGFβ receptor transactivation in neurons. Transactivation is a relatively recent discovery in signal 

transduction as a means of cross-talk between GPCRs and RTKs, but the mechanistic details have yet 

to be fully elucidated. 

The first objective was to determine whether 5-HT elicits PDGF receptor phosphorylation in 

neurons in the short term (i.e. within minutes), and if so, to determine the molecular mechanism (i.e. 

enzymes involved) of this phenomenon. There are many examples of transactivation in other cell 

types using other GPCR agonists, but the mechanism involved is somewhat vague and fragmented. 

Here, an attempt to discover insights into this mechanism in a systematic and thorough manner from 

GPCR to PDGF receptor in neurons is executed. Many GPCR agonists such as 5-HT can lead to cell 

proliferation; therefore, these 5-HT-mediated cellular growth effects may be attributable to growth 

factor receptor transactivation. 

For the second objective, a piece of evidence was investigated that showed fluoxetine disrupting 5-

HT-mediated PDGF receptor phosphorylation in smooth muscle. This might have greater 

implications if it could be shown to be true in neurons, where clearly 5-HT and fluoxetine play an 

important role in normal and abnormal brain function. If fluoxetine, a widely prescribed 

antidepressant, does negatively affect 5-HT signaling in neurons, this could have an important impact 

in our understanding of the mechanism of action of fluoxetine and of disease states such as depression 

or other affective disorders. 
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Chapter 2 

Materials and methods 

2.1 Reagents and Antibodies 

PDGF-BB, fluoxetine (N-methyl-3-[(4-trifluoromethyl)phenoxy]-3-phenylpropylamine 

hydrochloride), dopamine (3,4-dihydroxyphenethylamine hydrochloride), DCFH-DA (2’,7’-

dichlorodihydrofluorescin diacetate), and EGTA (ethylene glycol-bis(2-aminoethylether)-N,N,N',N'-

tetraacetic acid) were purchased from Sigma (St. Louis, MO). Serotonin (5-HT; 5-hydroxytryptamine 

hydrochloride), N-acetyl-L-cysteine, diphenyleneiodonium chloride, Go 6983 (3-[1-[3-

(dimethylamino)propyl]-5-methoxy-1H-indol-3-yl]-4-(1H-indol-3-yl)-1H-pyrrole-2,5-dione), 

pertussis toxin, WAY 100135 ((S)-N-tert-butyl-3-(4-(2-methoxyphenyl)-piperazin-1-yl)-2-

phenylpropanamide dihydrochloride), citalopram (1-[3-(dimethylamino)propyl]-1-(4-fluorophenyl)-

1,3-dihydro-5-isobenzofurancarbonitrile hydrobromide), and LY 272015 1-[(3,4-

dimethoxyphenyl)methy]-2,3,4,9-tetrahydro-6-methyl-1H-pyrido[3,4-b]indole hydrochloride, 

U73122 (1-[6-[[(17β)-3-methoxyestra-1,3,5(10)-trien-17-yl]amino]hexyl]-1H-pyrrole-2,5-dione), PP2 

(3-(4-chlorophenyl) 1-(1,1-dimethylethyl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine), PP3 (1-phenyl-

1H-pyrazolo[3,4-d]pyrimidin-4-amine), AG 1296 (6,7-dimethoxy-2-phenylquinoxaline), and 8-

hydroxy-DPAT (8-hydroxy-2-dipropylaminotetralin hydrobromide) were purchased from Cedarlane 

(Burlington, ON). 5-CT (5-carboxamidotryptamine maleate), LP 12 (4-(2-diphenyl)-N-(1,2,3,4-

tetrahydronaphthalen-1-yl)-1-piperazinehexanamide hydrochloride), apocynin (4'-hydroxy-3'-

methoxyacetophenone), clorgyline (N-[3-(2,4-dichlorophenoxy)propyl]-N-methyl-prop-2-yn-1-

amine), and BAPTA-AM (1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid 

tetrakis(acetoxymethyl ester)) were purchased from Santa Cruz (Santa Cruz, CA). Imatinib (STI-571; 

4-[(4-methyl-1-piperazinyl)methyl]-N-[4-methyl-3-[[4-(3-pyridinyl)-2-pyrimidinyl]amino]phenyl]-

methanesulfonate-benzamide) was purchased from Novartis (Basel, Switzerland). Antibodies against 

PDGF-BB, β-actin, TrkB, 5-HT1A receptor, 5-HTT, PDGFβ receptor and PDGFβ receptor 

phosphorylation sites Y1021, Y1009, Y751 were also purchased from Santa Cruz. Antibodies against 

Src, phospho-Src Y418, phospho-TrkB Y816, ERK1/2 and phospho-ERK1/2 were purchased from 

Cedarlane. 
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2.2 SH-SY5Y neuroblastoma cell line 

Complete growth media consisted of DMEM and Ham’s F12 in a 1:1 ratio (Fisher #SH20361), 10% 

fetal bovine serum (Sigma), 100 U/ml penicillin, and 100 µg/ml streptomycin. Cells were maintained 

at a temperature of 37°C in a humidified atmosphere of 95% air and 5% CO2, and media were 

changed every 3-5 days. Cells were trypsinized with 0.25% trypsin/0.1% EDTA, and passages 1-12 

were used. Prior to drug treatments and experimentation, cells were plated without antibiotics and 

serum starved for 24 h. 

 

2.3 RGC-5 retinal ganglion cell line 

Cultures were grown in complete growth media consisting of low-glucose DMEM (Fisher 

#SH30021), 10% horse serum (Sigma), and penicillin/streptomycin. Cultures were maintained in a 

humidified atmosphere of 95% air and 5% CO2 at a temperature of 37°C, and media was changed 

every 3-4 days. For experimentation, cells were plated without antibiotics, and prior to drug 

treatments, serum concentration was lowered to 2% for 24 h. 

 

2.4 Primary mouse cortical neuron cultures 

CD-1 (Harlan, Indianapolis, IN) time-pregnant mice were sacrificed using cervical dislocation. E17 to 

E19 mouse embryos were removed from pregnant CD-1 mice and transferred to chilled dissection 

media (33 mM glucose, 58 mM sucrose, 30 mM HEPES, 5.4 mM KCl, 0.44 mM KH2PO4, 137 mM 

NaCl, 0.34 mM Na2HPO4, 4.2 mM NaHCO3, 0.03 mM phenol red, pH 7.4, 320-335 mOsm/kg). 

Embryos were removed from uterine sacs and placed in fresh dissection media. Embryos were then 

decapitated and brains were removed from the skulls and placed in fresh dissection media. The cortex 

was removed, separated, washed, and trypsinized with 0.25% trypsin/0.1% EDTA for 20 min at 37°C. 

After trypsinization, cells were washed with warm dissection media and suspended in warm plating 

media [DMEM/F12 (Fisher #SH30023), supplemented with 10% fetal bovine serum, 10% horse 

serum, penicillin/streptomycin]. Cells were triturated and strained with a 100 µm-mesh nylon strainer. 

Cells were then plated on poly-D-lysine-coated culture dished and grown at 37°C in a humidified 

atmosphere of 95% air and 5% CO2. Cells were plated with plating media for the first 2-4 h until 

attached and then with feeding media consisting of Neurobasal medium and B-27 supplement (Life 
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Technologies, Burlington, ON) without serum. Media were changed twice per week. Drug treatments 

were performed 7-10 days after plating the cells to allow cells to mature. The overgrowth of non-

neuronal cells was inhibited by means of a mitotic inhibitor (81 µM 5-fluoro-2’-deoxyuridine and 200 

µM uridine), which was added for 24 h once cells reached confluency. All animal experiments were 

performed in agreement with the guidelines of the policies on the Use of Animals at the University of 

Waterloo. 

 

2.5 Conditioned media evaluation 

Following drug treatments but prior to cell lysis, conditioned cell culture media was collected, 

Complete Mini Protease Inhibitor Cocktail (Roche, Laval, QC) was added, and samples were kept on 

ice. Samples were centrifuged at 1000 x g for 30 s at 4°C to remove any large debris. Samples were 

then concentrated by centrifugation in Amicon Ultra-4, 10 kDa filter devices (Millipore, Billerica, 

MA) at 3000 x g for 30 min at 4°C. The concentrate was then added to loading buffer for western 

blotting, and membranes were probed for PDGF-BB. 

 

2.6 Western blotting 

Following drug treatments, cells were washed with ice-cold PBS, and then lysed with chilled lysis 

buffer [20 mM Tris-HCl at pH 7.5; 150 mM NaCl; 1 mM EDTA; 1 mM EGTA; 30 mM sodium 

pyrophosphate; 1 mM β-glycerophosphate; 1 mM sodium orthovanadate; 1% NP-40/IGEPAL CA-

630 (Sigma); supplemented with Halt Protease and Phosphatase Inhibitor (Thermo) prior to use]. 

Cells were scraped, homogenized, and centrifuged at 13,000 x g for 20 min at 4°C to remove 

insoluble debris and the supernatant was collected. Total protein was measured using a BCA protein 

assay (Thermo). Samples were heated in 3x loading buffer (240 mM Tris-HCl at pH 6.8, 6% w/v 

SDS, 30% v/v glycerol, 0.02% w/v bromophenol blue, 50 mM DTT, and 5% v/v β-mercaptoethanol) 

for 15 min at 75°C and 20-40 µg total protein was loaded into polyacrylamide gel wells. Proteins 

were separated by SDS-PAGE using electrophoresis buffer (25 mM Tris base, 190 mM glycine, 3.5 

mM sodium dodecyl sulfate), followed by transfer of proteins to a membrane by electroblotting with 

transfer buffer (25 mM Tris base, 190 mM glycine, 20% v/v methanol). Membranes were then 

blocked with 5% non-fat milk in Tris-buffered saline (20 mM Tris base, 150 mM NaCl, pH 7.6) plus 

0.1% Tween (TBS-T) for 1 h at room temperature or overnight at 4°C, followed by incubation with 
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primary antibody added to blocking buffer for 1 h at room temperature or overnight at 4°C. 

Membranes were washed three times with TBS-T, and then incubated with secondary antibody 

conjugated to horse radish peroxidase (HRP) in blocking buffer for 1 h at room temperature. 

Membranes were washed three additional times with TBS-T. Western chemiluminescent substrate 

(Luminata Crescendo - Millipore) was used to visualize proteins on a Kodak 4000MM Pro Imaging 

Station. Densitometric analyses of images were performed using Kodak Molecular Imaging software. 

After imaging, membranes were stripped and re-probed with other appropriate antibodies. Molecular 

weights of analyzed proteins are as follows: PDGFβ receptor, 180 kDa; ERK1/2, 42/44 kDa; Src 

kinase, 60 kDa; PDGF-B (monomer), 14 kDa; TrkB, 145 kDa; β-actin, 43 kDa. 

 

2.7 Immunoprecipitation 

Cell lysates were collected in non-denaturing lysis buffer containing NP-40/IGEPAL CA-630 and 

centrifuged at 13,000 x g for 20 min at 4°C to remove insoluble debris and the supernatant was 

collected. Total protein was measured using a BCA protein assay (Thermo). Samples were 

normalized to equal protein concentrations and volumes, and were pre-cleared by adding irrelevant 

(IgG control) antibody and agarose beads for 1-2 h at 4°C with agitation to minimize non-specific 

binding to beads or IgG. Samples were centrifuged at 1000 x g and 4°C for 1 min. The supernatant 

was collected for the actual immunoprecipitation experiment. The pre-cleared pellet was washed and 

centrifuged three times with lysis buffer and run as a bead/IgG control by western blotting. 

Supernatants were then incubated overnight with anti-PDGFβ receptor antibodies at 4°C with 

agitation. Agarose beads coated with protein A/G were then added for 2 h at 4°C with agitation to 

bind protein-antibody complexes. Samples were centrifuged at 1000 x g and 4°C for 1 min to collect 

the immunoprecipitate and washed 3 times with lysis buffer followed by centrifugation. Supernatants 

were discarded while loading buffer was added to the pellets, which were then subjected to western 

blotting as described above. Membranes were probed for PDGFβ receptors and 5-HT1A receptors (50 

kDa) or 5-HTT (90 kDa). 

 

2.8 DCFH assay 

Reactive oxygen species (ROS) production was quantified by measuring the conversion of non-

fluorescent 2’,7’-dichlorodihydrofluorescin diacetate (DCFH-DA) to fluorescent 
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dichlorodihydrofluorescein (DCF) when exposed to ROS. RGC-5 cells were treated with 0.2 mM 

DCFH-DA for 60 min to allow accumulation and deacetylation in cells. Cells were then washed with 

warm PBS and warm, fresh media was added. Drugs were added for stated time intervals, and 

resulting fluorescence was quantified using a SpectraMax M5 multimode microplate reader 

(Molecular Devices) with fluorescent excitation and emission wavelengths set at 480 nm and 530 nm, 

respectively. Fluorescent images were taken with a Kodak 4000MM Pro Imaging Station (Carestream 

Health, Inc.) with excitation and emission wavelengths set at 470 nm and 530 nm, respectively. 

 

2.9 PDGF-BB ELISA 

The ELISA was performed using the Amplex ELISA Development Kit (Life Technologies), and the 

protocol was adapted slightly from the manufacturer’s instructions. A 10 µg/ml rabbit anti-PDGF-BB 

antibody solution in 0.1 M sodium bicarbonate was added to wells of a 96-well plate and incubated 

overnight at 4°C. Wells were washed three times with phosphate-buffered saline (PBS) plus Tween 

20, and a 1% w/v bovine serum albumin (BSA) solution in PBS was added to the wells overnight at 

4°C to block unbound plastic. Wells were washed another three times with PBS plus Tween. 

Conditioned media or purified PDGF-BB protein diluted in PBS with 0.1% BSA (positive control) or 

0.1% w/v BSA in PBS (negative control) was added to the wells for 1 h at room temperature. Wells 

were washed three times with PBS plus Tween and 50 ng/ml mouse anti-PDGF-BB antibody diluted 

in 0.1% w/v BSA in PBS was added to wells for 30 min at room temperature. Wells were washed 

three times with PBS plus Tween and 50 ng/ml goat anti-mouse IgG antibody conjugated to horse 

radish peroxidase was added to wells for 30 min at room temperature. Wells were washed three times 

with PBS plus Tween and Amplex UltraRed reagent was added for 30-60 min at room temperature 

and protected from light. Reactions were stopped by adding Amplex UltraRed Stop Solution, and the 

plate was read with using a SpectraMax M5 multimode microplate reader (Molecular Devices) with 

fluorescent excitation and emission wavelengths set at 530 nm and 590 nm, respectively. 

 

2.10 MTT cell viability assay 

SH-SY5Y cells were seeded at equal concentrations and grown to 90% confluency. Cells were then 

serum starved overnight prior to drug treatments. After drug treatments, media was changed to serum-
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free, phenol red-free DMEM/F12 and cultures were returned to the cell culture incubator for 24-48 h 

to allow mitochondrial enzyme deactivation in dead cells. PBS supplemented with 12 mM MTT 

reagent (thiazolyl blue tetrazolium bromide: 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-

tetrazolium bromide) was added to cell culture media in 96-well plates in an amount equal to 10% of 

the initial cell culture media volume. Plates were returned to the cell culture incubator for 2-4 h for 

the reaction to occur. Live cells produce insoluble, purple formazan crystals via mitochondrial 

enzyme action, which can be observed by light microscopy inside cells, while dead cells do not. Cells 

were then lysed and crystals dissolved in solubilization buffer (0.1 M HCl, 10% Triton X-100 in 

propan-2-ol) on a gyratory plate shaker. Plates were read at 570 nm absorbance and background 

absorbance at 690 nm was subtracted from these values. For experiments involving hydrogen 

peroxide, H2O2 concentration was verified by titration with potassium permanganate/sulfuric acid. 

 

 

2.11 Data analysis and statistics 

Data statistics were evaluated with GraphPad Prism software using Student’s t-test for comparing two 

data sets, or analysis of variance (ANOVA) with Tukey’s post hoc test for comparing three or more 

data sets, all with statistical significance set at p<0.05. For graphs, * = p<0.05 compared to vehicle-

treated cells, and # = p<0.05 compared to agonist alone-treated cells. Data consisted of 3-12 

independent experiments. 
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Chapter 3 

Mechanism of 5-HT-mediated neuronal PDGFβ receptor 

transactivation 

 

3.1 Results 

In this section, the focus is on elucidating the potential enzymes responsible for PDGFβ receptor 

transactivation in neuronal cultures. Firstly, transactivated PDGFβ receptor responses were compared 

with that of direct PDGF ligand-mediated signaling. This is followed by an attempt at a logical 

discovery process of the mechanism by which PDGFβ receptor transactivation arises. Finally, an 

exploration of the transactivation of another receptor tyrosine kinase, TrkB receptor, and its possible 

role in physiology are examined. A proposed mechanism is presented on page 86 to which the reader 

can refer. 

 

3.1.1 5-HT transiently increases PDGFβ receptor phosphorylation in SH-SY5Y cells 

and primary neuron cultures 

Direct activation of PDGFβ receptors by PDGF-BB ligand results in a robust phosphorylation of the 

receptor at multiple tyrosine residues [49]. In SH-SY5Y cells, PDGF-BB application caused a rapid 

and sustained phosphorylation of PDGFβ receptors at tyrosine 1021 (Y1021) over a 20-min time 

course (Figure 3.1). Application of 5-HT (0.1 μM) to SH-SY5Y cells also caused an initial rapid 

increase in PDGFβ receptor phosphorylation at Y1021 that peaked at 5 min but returned to near 

baseline by 15 min (Figure 3.2). 5-HT application also resulted in phosphorylation of Y1009 and 

Y751, which followed a similar trend to Y1021 (Figure 3.3 and Figure 3.4). Primary mouse cortical 

neuron cultures also responded to 5-HT with a transient increase in phosphorylation at Y1021 (Figure 

3.5). Interestingly, increasing concentrations of 5-HT increased PDGFβ receptor phosphorylation at 

Y1021 in a concentration-dependent manner until 0.1 μM, after which higher concentrations failed to 

increase phosphorylation (Figure 3.6). In contrast, PDGF-BB robustly increased receptor 

phosphorylation at Y1021 in a concentration-dependent manner (Figure 3.7).  
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Figure 3.1. PDGF-BB induces sustained PDGFβ receptor phosphorylation in the short term. 
SH-SY5Y cells were treated with 0.1 ng/ml PDGF-BB for 0, 2, 5, 10, 15, or 20 min. Proteins were separated 

and resolved by SDS-PAGE, transferred to a membrane and probed for PDGFRβ and phospho-PDGFRβ 

Y1021. Data were normalized to total PDGFR protein expression and are expressed as the fold change in 

pY1021 immunoreactivity compared to vehicle-treated cells (* = p<0.05 compared to vehicle-treated cells;          

n = 7). 
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Figure 3.2. 5-HT induces transient PDGFβ receptor phosphorylation at Y1021. 
SH-SY5Y cells were treated with 0.1 μM 5-HT for 0, 1, 2, 5, 10, or 15 min. Proteins were separated and 

resolved by SDS-PAGE, transferred to a membrane and probed for PDGFRβ and phospho-PDGFRβ Y1021. 

Data were normalized to total PDGFR protein expression and are expressed as the fold change in pY1021 

immunoreactivity compared to vehicle-treated cells (* = p<0.05 compared to vehicle-treated cells; n = 4).  
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Figure 3.3. 5-HT induces transient PDGFβ receptor phosphorylation at Y1009. 
SH-SY5Y cells were treated with 0.1 μM 5-HT for 0, 1, 2, 5, 10, or 15 min. Proteins were separated and 

resolved by SDS-PAGE, transferred to a membrane and probed for PDGFRβ and phospho-PDGFRβ Y1009. 

Data were normalized to total PDGFR protein expression and are expressed as the fold change in pY1009 

immunoreactivity compared to vehicle-treated cells (* = p<0.05 compared to vehicle-treated cells; n = 4). 
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Figure 3.4. 5-HT induces transient PDGFβ receptor phosphorylation at Y751. 
SH-SY5Y cells were treated with 0.1 μM 5-HT for 0, 1, 2, 5, 10, or 15 min. Proteins were separated and 

resolved by SDS-PAGE, transferred to a membrane and probed for PDGFRβ and phospho-PDGFRβ Y751. 

Data were normalized to total PDGFR protein expression and are expressed as the fold change in pY751 

immunoreactivity compared to vehicle-treated cells (* = p<0.05 compared to vehicle-treated cells; n = 4). 
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Figure 3.5. 5-HT induces transient PDGFβ receptor phosphorylation at Y1021 in primary 

neuron cultures. 
7 DIV mouse cortical cultures were treated with 1 μM 5-HT for 0, 1, 2, 5, 10, or 15 min. Proteins were 

separated and resolved by SDS-PAGE, transferred to a membrane and probed for PDGFRβ and phospho-

PDGFRβ Y1021. Data were normalized to total PDGFR protein expression and are expressed as the fold 

change in pY1021 immunoreactivity compared to vehicle-treated cells (* = p<0.05 compared to vehicle-treated 

cells; n = 3).  
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Figure 3.6. 5-HT induces a concentration-dependent response in PDGFβ receptor 

phosphorylation. 
SH-SY5Y cells were treated with vehicle (VEH) or 0.001 μM to 10 μM 5-HT for 5 min. Following drug 

treatments, cells were lysed and lysates were evaluated by Western blot as described in the methods. 

Membranes were probed for PDGFRβ and phospho-PDGFRβ Y1021. Data were normalized to total PDGFR 

protein expression and are expressed as the fold change in pY1021 immunoreactivity compared to vehicle-

treated cells (* = p<0.05 compared to vehicle-treated cells; n = 5).  
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Figure 3.7. PDGF-BB induces concentration-dependent increase in PDGFβ receptor 

phosphorylation. 
SH-SY5Y cells were treated with vehicle (VEH) or 0.01 to 10 ng/mL PDGF-BB for 5 min. Following drug 

treatments, cells were lysed and lysates were evaluated by Western blot as described in the methods. 

Membranes were probed for PDGFRβ and phospho-PDGFRβ Y1021. Data were normalized to total PDGFR 

protein expression and are expressed as the fold change in pY1021 immunoreactivity compared to vehicle-

treated cells (* = p<0.05 compared to vehicle-treated cells; n = 5).   

5-HT (µM)       VEH     0.001      0.01        0.1        1            10 

PDGF-BB          VEH         0.01         0.1           1            10  
     (ng/ml)    
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Figure 3.8. 5-HT-induced PDGFβ receptor phosphorylation is not affected by anti-PDGF-BB 

antibodies. 
SH-SY5Y cells were incubated with 10 μg/ml anti-PDGF-BB antibody prior to 5 min treatment with 0.1 μM   

5-HT. Following drug treatments, cells were lysed and lysates were evaluated by Western blot as described in 

the methods. Membranes were probed for PDGFRβ and phospho-PDGFRβ Y1021. Data were normalized to 

total PDGFR protein expression and are expressed as the fold change in pY1021 immunoreactivity compared 

to vehicle-treated cells (* = p<0.05 compared to vehicle-treated cells; n = 5). 

 

 

 

 

 

 

 
 

Figure 3.9. 5-HT-induced PDGFβ receptor phosphorylation is not due to PDGF-BB release. 
Conditioned cell culture media from SH-SY5Y cells was collected after 5 min vehicle (V) or 0.1 μM 5-HT 

treatments and concentrated to 60x with Amicon protein concentrators (Millipore). Anti-PDGF-BB antibodies 

failed to detect any PDGF-B (monomer) protein at 14 kDa in either cell lysate or conditioned media but did 

detect 50 ng of PDGF-BB as a positive control (n = 3). 
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3.1.2 5-HT-induced PDGFβ receptor transactivation is not dependent on PDGF-BB 

ligand 

Although transactivation of the PDGFβ receptor is thought to involve only intracellular signaling, a 

possible explanation for the effect of 5-HT on PDGFβ receptor phosphorylation may involve the 

release of PDGF ligands into the extracellular environment, which would then bind and activate 

PDGFβ receptors. To determine if PDGF-BB ligand was released as a result of 5-HT application, 

anti-PDGF-BB antibodies were added during the 5-HT application to sequester any released ligand 

and prevent it from activating its receptor. As a control, it was confirmed that PDGF-BB antibodies 

blocked PDGF-BB-induced phosphorylation at Y1021 (data not shown). However, PDGF-BB 

antibodies failed to block PDGF receptor phosphorylation after 5-HT application (Figure 3.8). In 

addition, conditioned media was collected and analyzed for PDGF-BB content. No PDGF-BB was 

detected in either vehicle or 5-HT-treated cells, suggesting that no PDGF-BB was released from cells 

upon 5-HT application (Figure 3.9). Conditioned media was also analyzed for PDGF-BB content by 

ELISA; however, no PDGF-BB protein was detected (data not shown). Moreover, antibodies failed to 

detect PDGF-BB protein from cell lysates (Figure 3.9). These data suggest that PDGF-BB ligand is 

not being produced by SH-SY5Y cells, nor is any released when cells are treated with short-term 

application of 5-HT, nor is there any in the culture media itself. Thus, transactivation of the PDGFβ 

receptor is through a mechanism that is independent of PDGF-BB. 
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Figure 3.10. 5-CT induces a concentration-dependent response in PDGFβ receptor 

phosphorylation. 
SH-SY5Y cells were treated with vehicle (VEH) or 0.001 μM to 10 μM 5-CT for 5 min. Following drug 

treatments, cells were lysed and lysates were evaluated by Western blot as described in the methods. 

Membranes were probed for PDGFRβ and phospho-PDGFRβ Y1021. Data were normalized to total PDGFR 

protein expression and are expressed as the fold change in pY1021 immunoreactivity compared to vehicle-

treated cells (* = p<0.05 compared to vehicle-treated cells; n = 5).  
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Figure 3.11. 5-CT induces transient PDGFβ receptor phosphorylation at Y1021.  
SH-SY5Y cells were treated with 10 nM 5-CT for 0, 1, 2, 5, 10, or 15 min. Fold-phosphorylation data for 

immunoreactivity with antibodies directed against tyrosine 1021. Proteins were separated and resolved by SDS-

PAGE, transferred to a membrane and probed for PDGFRβ and phospho-PDGFRβ Y1021. Data were 

normalized to total PDGFR protein expression and are expressed as the fold change in pY1021 

immunoreactivity compared to vehicle-treated cells (* = p<0.05 compared to vehicle-treated cells; n = 4).   

5-CT (µM)       VEH     0.001      0.01      0.1          1          10 

         Time (min)        0           1          2            5         10          15 
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3.1.3 PDGFβ receptor transactivation is dependent on pertussis toxin-sensitive 5-HT 

receptors 

To elucidate which 5-HT receptors were involved in the transactivation of PDGFβ receptors, cells 

were treated with the 5-HT analog, 5-carboxamidotryptamine (5-CT), which only activates the Gαi-

coupled 5-HT1 and 5-HT5, and the Gαs-coupled 5-HT7 receptor subtypes [140]. Acute 5-CT treatment 

maximally increased PDGFβ receptor phosphorylation at Y1021 at a concentration of 10 nM (Figure 

3.10), a 10-fold lower concentration than was required to induce phosphorylation with 5-HT. Similar 

to 5-HT, maximal phosphorylation was observed with a 5-min incubation at this concentration 

(Figure 3.11).  

It was recently reported that long-term (2 to 24 h) 5-HT7 receptor activation increased PDGF 

receptor expression in SH-SY5Y cells as well as in primary mouse hippocampal and cortical neurons 

[140]. Since SH-SY5Y cells express 5-HT7 receptors [140], it was questioned whether the effects of 

5-CT could be mediated by Gαs-coupled 5-HT7 receptors; therefore, cells were treated with the 5-HT7 

receptor-specific agonist LP 12. Acute LP 12 application was unable to increase PDGF receptor 

phosphorylation at Y1021 at any concentration tested (Figure 3.12). To confirm whether 5-CT was 

acting via Gαi-coupled receptors to induce PDGF receptor phosphorylation in SH-SY5Y cells, 

cultures were pretreated with increasing concentrations of pertussis toxin (Ptx). Ptx acts by adding 

ADP-ribosyl groups to susceptible G proteins (Gαi and Gαo), thus inactivating them [141]. According 

to previous studies, Ptx blocked ERK1/2 activation induced by dopamine receptor-mediated 

transactivation of PDGFβ receptors in Chinese hamster ovary cells [68], and it was confirmed that 

overnight Ptx pretreatment was able to block dopamine-induced ERK1/2 phosphorylation (Figure 

3.13) as well as PDGFβ receptor phosphorylation (Figure 3.14) in SH-SY5Y cells. Ptx pretreatment 

also prevented 5-HT- and 5-CT-induced PDGFβ receptor transactivation in a concentration-

dependent manner (Figure 3.15 and Figure 3.16, respectively). The inability of the 5-HT7 receptor 

agonists to transactivate the PDGFβ receptor, coupled with the ability of Ptx to block transactivation, 

suggests that 5-CT (and 5-HT) transactivated the PDGFβ receptor via the Gαi-coupled 5-HT1 or 5-

HT5 receptors. 
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Figure 3.12. LP 12 does not induce a response in PDGFβ receptor phosphorylation.  
SH-SY5Y cells were treated with vehicle (VEH) or 1 nM to 10 μM of the 5-HT7 agonist LP 12 for 5 min. 

Following drug treatments, cells were lysed and lysates were evaluated by Western blot as described in the 

methods. Membranes were probed for PDGFRβ and phospho-PDGFRβ Y1021. Data were normalized to total 

PDGFR protein expression and are expressed as the fold change in pY1021 immunoreactivity compared to 

vehicle-treated cells. Representative blots for phospho-PDGFR 1021 (pY1021) and PDGFR are shown (n = 

6).  
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Figure 3.13. Pertussis toxin completely inhibits dopamine-induced ERK1/2 phosphorylation. 
SH-SY5Y cells were incubated overnight with 0.001 to 1 μg/mL pertussis toxin (Ptx) followed by 2 min 

treatment with 100 nM dopamine (DA). Following drug treatments, cells were lysed and lysates were evaluated 

by Western blot as described in the methods. Data were normalized to total ERK1/2 protein expression and are 

expressed as the fold change in combined phospho-ERK1/2 immunoreactivity compared to vehicle-treated 

cells. Representative blots for phospho-ERK1/2 (pERK) and ERK1/2 are shown (* = p<0.05 compared to 

vehicle-treated cells; # = p<0.05 compared with DA-treated cells; n = 5). 
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Figure 3.14. Pertussis toxin inhibits dopamine-induced PDGFβ receptor phosphorylation in a 

concentration-dependent manner. 
SH-SY5Y cells were incubated overnight with 0.001 to 1 μg/mL pertussis toxin (Ptx) followed by 2 min 

treatment with 100 nM dopamine (DA). Following drug treatments, cells were lysed and lysates were evaluated 

by Western blot as described in the methods. Data were normalized to total PDGFR protein expression and are 

expressed as the fold change in phospho-1021 immunoreactivity compared to vehicle-treated cells. 

Representative blots for phospho-PDGFR 1021 (pY1021) and PDGFR are shown (* = p<0.05 compared to 

vehicle-treated cells; # = p<0.05 compared with DA-treated cells; n = 4).  

pERK 

ERK 

Ptx (µg/ml)            -          -  0.001      0.01      0.1        1 
100 nM DA            -          +      + +          +           + 

Ptx (µg/ml)           -       -        0.001      0.01        0.1      1 
100 nM DA           -       + +            +            +            + 
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Figure 3.15. Pertussis toxin inhibits 5-HT-induced PDGFβ receptor phosphorylation in a 

concentration-dependent manner.  
SH-SY5Y cells were incubated overnight with 0.001 to 1 μg/mL pertussis toxin (Ptx) followed by 5 min 

treatment with 100 nM 5-HT. Following drug treatments, cells were lysed and lysates were evaluated by 

Western blot as described in the methods. Data were normalized to total PDGFR protein expression and are 

expressed as the fold change in phospho-1021 immunoreactivity compared to vehicle-treated cells. 

Representative blots for phospho-PDGFR 1021 (pY1021) and PDGFR are shown (* = p<0.05 compared to 

vehicle-treated cells; # = p<0.05 compared with 5-HT-treated cells; n = 5). 
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Figure 3.16. Pertussis toxin inhibits 5-CT-induced PDGFβ receptor phosphorylation in a 

concentration-dependent manner. 
SH-SY5Y cells were incubated overnight with 0.001 to 1 μg/mL pertussis toxin (Ptx) followed by 5 min 

treatment with 10 nM 5-CT. Following drug treatments, cells were lysed and lysates were evaluated by Western 

blot as described in the methods. Data were normalized to total PDGFR protein expression and are expressed 

as the fold change in phospho-1021 immunoreactivity compared to vehicle-treated cells. Representative blots 

for phospho-PDGFR 1021 (pY1021) and PDGFR are shown (* = p<0.05 compared to vehicle-treated cells;  

# = p<0.05 compared with 5-CT-treated cells; n = 3).  

  Ptx (µg/ml)            -          -  0.001      0.01      0.1        1 
100 nM 5-HT           -          +     +           +           +           + 

  Ptx (µg/ml)           -        -        0.001     0.01       0.1         1 
 10 nM 5-CT           -        +  +           +           +           + 
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3.1.4 Involvement of 5-HT1A receptors in PDGFβ receptor transactivation 

Since SH-SY5Y cells express 5-HT1A receptors [142], the 5-HT1A receptor antagonist, WAY 100135, 

was applied prior to 5-HT application to determine whether 5-HT was transactivating PDGFβ 

receptors via 5-HT1A receptors. WAY 100135 was indeed able to attenuate 5-HT-induced PDGFβ 

receptor transactivation at Y1021 at a concentration of 100 nM (Figure 3.17). However, at 

concentrations below (10 nM) and above (1 μM) the 100 nM concentration, a significant block was 

not observed (Figure 3.17). WAY 100135 also completely blocked 5-CT-induced PDGFβ receptor 

transactivation (Figure 3.18). To confirm the involvement of 5-HT1A receptors in this transactivation 

pathway, the 5-HT1A-selective agonist 8-hydroxy-DPAT (DPAT) was applied to SH-SY5Y cells. 

Similar to 5-HT, DPAT increased PDGFβ receptor phosphorylation in a concentration-dependent 

manner with a peak effect observed at 10 nM and a significant increase observed at 1 nM (Figure 

3.19), just above the reported Kd value of 0.5 nM for 5-HT1A receptors [143, 144]. At concentrations 

above 10 nM DPAT did not significantly increase receptor phosphorylation, comparable to the trends 

observed with 5-HT (see Figure 3.6).  

Previous studies have identified physical protein-protein interactions between receptors involved in 

other cross-talk pathways, and these interactions may mediate signal transduction. In smooth muscle 

cells, 5-HT induces a complex formation between PDGFβ receptor and the 5-HT transporter [78], and 

sphingosine-1-phosphate type 1 receptors are constitutively complexed with PDGFβ receptors in both 

smooth muscle cells and mouse embryonic fibroblasts [145, 146]. This led to a query into whether 

PDGFβ receptors physically interact with 5-HT1A receptors, the target of DPAT; thus, PDGFβ 

receptors were immunoprecipitated from SH-SY5Y cell lysates under non-denaturing conditions. 

Although 5-HT1A receptor expression was observed in the lysate control, no 5-HT1A immunoreactivity 

was observed in the immunoprecipitate in either vehicle-treated or 5-HT-treated conditions (Figure 

3.20) suggesting these two receptors do not physically interact as part of this transactivation pathway. 
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Figure 3.17. 5-HT1A inhibition prevents PDGFβ receptor phosphorylation by 5-HT.  
SH-SY5Y cells were treated for 5 min with vehicle, 100 nM 5-HT, with or without 0.01, 0.1, or 1 μM WAY 

100135 (WAY). Following drug treatments, cells were lysed and lysates were evaluated by Western blot as 

described in the methods. Data were normalized to total PDGFR protein expression and are expressed as the 

fold change in phospho-1021 immunoreactivity compared to vehicle-treated cells. Representative blots for 

phospho-PDGFR 1021 (pY1021) and PDGFR are shown (* = p<0.05 compared to vehicle-treated cells;             

# = p<0.05 compared with 5-HT-treated cells; n = 9). 

 

 

 

 

 

F
o

ld
 c

h
a
n

g
e
 i
n

Y
1
0
2
1
 p

h
o

s
p

h
o

ry
la

ti
o

n

- - +

0.5

1.0

1.5

2.0

   -       +   +

1 µM WAY

10 nM 5-CT

*

#

 
 

 

Figure 3.18. 5-HT1A inhibition prevents PDGFβ receptor phosphorylation by 5-CT. 
SH-SY5Y cells were treated for 5 min with vehicle, 10 nM 5-CT, with or without 1 μM WAY 100135. 

Following drug treatments, cells were lysed and lysates were evaluated by Western blot as described in the 

methods. Data were normalized to total PDGFR protein expression and are expressed as the fold change in 

phospho-1021 immunoreactivity compared to vehicle-treated cells. Representative blots for phospho-PDGFR 

1021 (pY1021) and PDGFR are shown (* = p<0.05 compared to vehicle-treated cells; # = p<0.05 compared 

with 5-CT-treated cells; n = 5). 

  

     WAY (µM)          -            -             0.01          0.1             1 
 100 nM 5-HT          -            +          +        +              +       

     1 µM WAY             -  -     + 
   10 nM 5-CT             -                    +     +  
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Figure 3.19. DPAT induces a concentration-dependent response in PDGFβ receptor 

phosphorylation.  
SH-SY5Y cells were treated with vehicle (VEH) or 0.001 μM to 10 μM of the 5-HT1A agonist DPAT for 5 min. 

Following drug treatments, cells were lysed and lysates were evaluated by Western blot as described in the 

methods. Membranes were probed for PDGFRβ and phospho-PDGFRβ Y1021. Data were normalized to total 

PDGFR protein expression and are expressed as the fold change in pY1021 immunoreactivity compared to 

vehicle-treated cells (* = p<0.05 compared to vehicle-treated cells; n = 7).  

 

 

 

 

 

 

 
 

 

Figure 3.20. PDGFβ and 5-HT1A receptors do not associate.  
SH-SY5Y cells were treated with either vehicle (VEH) or 100 nM 5-HT for 5 min. Following drug treatments, 

cell lysates were collected and subjected to immunoprecipitation under non-denaturing conditions. PDGFβ 

receptor was pulled down, and both immunoprecipitates and lysates were subjected to Western blot and probed 

for PDGFβ and 5-HT1A receptors. Representative blots are shown (n = 3).  

DPAT (µM)       VEH       0.001      0.01         0.1          1           10 
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Figure 3.21. PDGFβ receptor transactivation is blocked by membrane-permeable calcium 

chelation.  
SH-SY5Y cells were treated with vehicle, 100 nM 5-HT for 5 min, with or without a 10 min pretreatment of 

0.1, 1, or 10 μM BAPTA-AM. Following drug treatments, cells were lysed and lysates were evaluated by 

Western blot as described in the methods. Data were normalized to total PDGFR protein expression and are 

expressed as the fold change in phospho-1021 immunoreactivity compared to vehicle-treated cells. 

Representative blots for phospho-PDGFR 1021 (pY1021) and PDGFR are shown (* = p<0.05 compared to 

vehicle-treated cells; # = p<0.05 compared with 5-HT-treated cells; n = 4). 
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Figure 3.22. PDGFβ receptor transactivation is not blocked by extracellular calcium chelation. 
SH-SY5Y cells were treated with vehicle, 100 nM 5-HT for 5 min, with or without a 10 min pretreatment of 10 

or 100 μM EGTA. Following drug treatments, cells were lysed and lysates were evaluated by Western blot as 

described in the methods. Data were normalized to total PDGFR protein expression and are expressed as the 

fold change in phospho-1021 immunoreactivity compared to vehicle-treated cells. Representative blots for 

phospho-PDGFR 1021 (pY1021) and PDGFR are shown (* = p<0.05 compared to vehicle-treated cells;        

n = 5). 

  

BAPTA-AM (µM)   -  -             0.1             1             10 
       100 nM 5-HT   -  +             +                +             +       
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3.1.5 5-HT signaling to PDGFβ receptors is calcium-dependent 

Calcium signaling was shown to play an important role in PDGF receptor transactivation induced by 

sphingosine-1-phosphate [72]. To determine if intracellular calcium signaling was required for 

PDGFβ receptor transactivation by 5-HT in neurons, the cell-permeable calcium chelator BAPTA-

AM was used to sequester intracellular calcium. Upon 5-HT application, cells pretreated with 10 μM 

BAPTA-AM showed a significant decrease in PDGFβ receptor phosphorylation at Y1021 (Figure 

3.21). BAPTA-AM, which preferentially chelates calcium over magnesium [147], passes into the 

cytoplasm where it is cleaved to non-permeable BAPTA by cytoplasmic esterases and becomes 

locked inside the cell [148]. Thus, BAPTA-AM is effectively an intracellular calcium chelator. 

However, 5-HT-induced PDGFβ receptor phosphorylation was unaffected by 10 or even 100 μM 

EGTA, a non-permeable (therefore extracellular) calcium chelator (Figure 3.22) that also has higher 

affinity for calcium over magnesium [147]. Given the role of calcium signaling in 5-HT-induced 

PDGF receptor transactivation, a potential mechanism for calcium release was sought. Activation of 

phospholipase C (PLC) leads to intracellular calcium release via phosphatidylinositol 4,5-

bisphosphate (PIP2) cleavage and subsequent inositol 1,4,5-trisphosphate (IP3)-induced opening of 

calcium channels on the endoplasmic reticulum [149, 150]. PDGFβ receptor phosphorylation at 

Y1021 by 5-HT was blocked by the PLC inhibitor U73122 at a concentration of 1 μM (Figure 3.23). 

Taken together, these results indicate that 5-HT-induced PDGF receptor transactivation involves 

PLC-dependent intracellular calcium release. 
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Figure 3.23. PDGFβ receptor transactivation is inhibited by PLC inhibition.  
SH-SY5Y cells were treated with vehicle, or 100 nM 5-HT for 5 min, with or without pretreatment with 0.1 or  

1 μM U73122. Following drug treatments, cells were lysed and lysates were evaluated by Western blot as 

described in the methods. Data were normalized to total PDGFR protein expression and are expressed as the 

fold change in phospho-1021 immunoreactivity compared to vehicle-treated cells. Representative blots for 

phospho-PDGFR 1021 (pY1021) and PDGFR are shown (* = p<0.05 compared to vehicle-treated cells;            

# = p<0.05 compared with 5-HT-treated cells; n = 6).  

       U73122 (µM)      -      -                 0.1       1 
       100 nM 5-HT      -      +                 +       +  
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Figure 3.24. H2O2 increases PDGFβ receptor phosphorylation in SH-SY5Y cells.  
SH-SY5Y cells were treated with vehicle (VEH) or 0.01 to 100 µM H2O2 for 5 min. Following drug treatments, 

cell lysates were evaluated by Western blot analysis as described in Materials and methods. Data were 

normalized to total PDGFR protein expression and are expressed as the fold change in phospho-1021 

immunoreactivity compared to vehicle-treated cells. Representative blots for phospho-PDGFR 1021 (pY1021) 

and PDGFR are shown (* = p<0.05 compared to vehicle-treated cells; n = 5). 
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Figure 3.25. H2O2 increases PDGFβ receptor phosphorylation in primary cultured neurons.  
Primary cultured cortical neurons were treated with vehicle (VEH) or 0.1 µM H2O2 for 5 min. Following drug 

treatments, cell lysates were evaluated by Western blot analysis as described in Materials and methods. Data 

were normalized to total PDGFR protein expression and are expressed as the fold change in phospho-1021 

immunoreactivity compared to vehicle-treated cells. Representative blots for phospho-PDGFR 1021 (pY1021) 

and PDGFR are shown (* = p<0.05 compared to vehicle-treated cells; n = 4). 
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3.1.6 H2O2 increases PDGFβ receptor phosphorylation in SH-SY5Y cells and primary 

neuron cultures 

Based on transactivation pathways described in other systems [78, 151], it was postulated that 

reactive oxygen species (ROS) are also involved in the 5-HT-induced transactivation of RTKs 

described here. A dose-response analysis of H2O2 application to SH-SY5Y cells for 5 min had peak 

Y1021 phosphorylation of PDGFβ receptor at a concentration of 0.1 µM (Figure 3.24). This 

concentration was also sufficient to cause transactivation in primary mouse cortical neuron cultures 

(Figure 3.25). To verify the involvement of ROS in 5-HT-induced transactivation of PDGFβ receptor, 

cells were pretreated with the ROS scavenger, N-acetyl-L-cysteine, followed by 100 nM 5-HT for 5 

min (Figure 3.26). N-acetyl-L-cysteine (1000 µM) abrogated PDGFβ receptor phosphorylation, 

suggesting that ROS are involved in this 5-HT-mediated transactivation pathway. But because H2O2 

can cause cell damage and death at high concentrations, it was necessary to verify that the low 

concentrations of H2O2 used here were not adversely affecting cell viability. By using the MTT cell 

viability assay, cultures were determined to be unaffected by H2O2 at 0.1, 1, and 10 µM, even after 

overnight treatment (Figure 3.27). Only at 100 µM or higher was cell viability significantly 

decreased. 

As an aside, direct evidence of ROS production in 5-HT-mediated transactivation of PDGFβ 

receptor was also sought. A DCFH assay was employed to directly measure intracellular ROS 

production in RGC-5 cells, which also show 5-HT-induced PDGFβ receptor transactivation (data not 

shown). The assay was attempted with SH-SY5Y cells; however, this cell line was not tolerant to the 

assay reagents. Using a dose-response analysis of 5-min H2O2-mediated fluorescence, the assay was 

able to detect ROS-induced fluorescence at a concentration of 0.1 mM H2O2 or higher (Figure 3.28A). 

However, with 5-min 5-HT application, no change in fluorescence was seen (Figure 3.28B). This was 

not entirely unexpected, since 0.1 µM H2O2 (i.e. 1000-fold less than minimum sensitivity) showed 

optimal PDGFβ receptor transactivation (see Figure 3.24) with the same fold-increase in 

phosphorylation over vehicle as transactivation mediated by 5-HT (see Figure 3.6). Thus, this assay 

was not sensitive enough to measure intracellular ROS production in the high nanomolar range that is 

predicted with transactivation events. 
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Figure 3.26. PDGFβ receptor transactivation is sensitive to ROS scavenging.  
SH-SY5Y cell cultures were pretreated with vehicle or 10, 100, or 1000 µM of the ROS scavenger N-acetyl-L-

cysteine (NAC) for 45 min followed by treatment with vehicle or 100 nM 5-HT for 5 min. Following drug 

treatments, cells were lysed and lysates were evaluated by Western blot as described in the methods. Data were 

normalized to total PDGFR protein expression and are expressed as the fold change in phospho-1021 

immunoreactivity compared to vehicle-treated cells. Representative blots for phospho-PDGFR 1021 (pY1021) 

and PDGFR are shown (* = p<0.05 compared to vehicle-treated cells; # = p<0.05 compared with 5-HT-treated 

cells; n = 6). 
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Figure 3.27. H2O2 concentrations that induce transactivation do not affect cell viability. 
Cells were treated with H2O2 at various concentrations either for 30 min (A) or overnight (B). Media was 

changed and cultures were returned to the incubator for 24 h prior to adding MTT reagents. Cell viability was 

assessed by absorbance of the resulting solution at 570 nm (* = p<0.05 compared to vehicle-treated cells;          

n = 4).  

  

pY1021 

PDGFR 

            NAC (µM)   -  -              10             100          1000 
       100 nM 5-HT   -  +              +                +               +       



 

 51 

A 

 
 

H2O2 (mM)        -               10              1              0.1            0.01             - 
 DCFH-DA        +               +               +               +                +                - 
 

 

 

 
B 

R
e
la

ti
v
e
 f

lu
o

re
s
c
e
n

c
e

- - 100 10 1

0

1

2

3

4

5

5-HT (nM)

1 mM H2O2 -   +      -              -              -

  
 

 

Figure 3.28. DCFH assay measures ROS production.  
(A) RGC-5 cells were treated with 0.2 mM DCFH-DA for 60 min. Cells were washed with PBS and treated 

with varying concentrations of H2O2 for 5 min. An increase in fluorescence was detected in 0.1 to 10 mM wells. 

(B) RGC-5 cells were treated with 0.2 mM DCFH-DA for 60 min. Cells were washed with PBS and treated 

with vehicle, H2O2 or 5-HT for 5 min. Resulting DCF production was measured by fluorescent plate reader and 

represents a fold-change in fluorescence vs. vehicle-treated cells. Representative images were taken by 

fluorescent imaging (n = 5). 
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Figure 3.29. PDGFβ receptor transactivation is sensitive to diphenyleneiodonium chloride.  
SH-SY5Y cell cultures were pretreated with vehicle or 0.1, 1 or 10 µM of the NADPH oxidase inhibitor 

diphenyleneiodonium chloride (DPI) for 45 min followed by treatment with vehicle or 100 nM 5-HT for 5 min. 

Following drug treatments, cell lysates were evaluated by immunoblot analysis as described in Materials and 

methods. Data were normalized to total PDGFR protein expression and are expressed as the fold change in 

phospho-1021 immunoreactivity compared to vehicle-treated cells. Representative blots for phospho-PDGFR 

1021 (pY1021) and PDGFR are shown (* = p<0.05 compared to vehicle-treated cells; # = p<0.05 compared 

with 5-HT-treated cells; n = 5). 

 

 

 

 

 

F
o

ld
 c

h
a
n

g
e
 i
n

Y
1
0
2
1
 p

h
o

s
p

h
o

ry
la

ti
o

n

- - 1 10 100

0.0

0.5

1.0

1.5

2.0

2.5

-   +      +  +     +

Apocynin (µM)

100 nM 5-HT

*

#

 
 

 

Figure 3.30. PDGFβ receptor transactivation is sensitive to apocynin.  
SH-SY5Y cell cultures were pretreated with vehicle or 1, 10 or 100 µM of the NADPH oxidase inhibitor 

apocynin for 45 min followed by treatment with vehicle or 100 nM 5-HT for 5 min. Following drug treatments, 

cell lysates were evaluated by immunoblot analysis as described in Materials and methods. Data were 

normalized to total PDGFR protein expression and are expressed as the fold change in phospho-1021 

immunoreactivity compared to vehicle-treated cells. Representative blots for phospho-PDGFR 1021 (pY1021) 

and PDGFR are shown (* = p<0.05 compared to vehicle-treated cells; # = p<0.05 compared with 5-HT-treated 

cells; n = 4).  

              DPI (µM)   -  -              0.1             1              10 
       100 nM 5-HT   -  +              +               +               +       

    Apocynin (µM)      -    - 1              10            100 
       100 nM 5-HT      -    +              +              +               + 
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3.1.7 5-HT-induced PDGFβ receptor transactivation involves NADPH oxidase and 

protein kinase C 

To investigate a potential source of ROS, NADPH oxidase was considered since it was implicated in 

other transactivation systems [71, 152, 153]. Treatment with the NADPH oxidase inhibitors 

diphenyleneiodonium chloride (1 µM) and apocynin (100 µM) in SH-SY5Y cells blocked PDGFβ 

receptor transactivation by 5-HT (Figure 3.29 and Figure 3.30). Diphenyleneiodonium chloride may 

be chemically modifying certain subunits [154] while apocynin prevents assembly of the oxidase 

[155], suggesting that the complete, functional oxidase is necessary for PDGFβ receptor 

transactivation. NADPH oxidase components were previously shown to be activated by protein 

kinase C (PKC) [156], either directly or via Rap1A and Rac1/2 [157, 158]. Thus, PKC involvement in 

this transactivation pathway was examined not only for its ability to activate NADPH oxidase 

components, but also for its potential as a downstream effector of PLC activity (see Figure 3.23). It is 

well known that the PLC products diacylglycerol and calcium are necessary for activation of calcium-

dependent PKC isoforms [159]. When cells were pretreated with the PKC inhibitor Go 6983 (0.1 

µM), 5-HT failed to transactivate the PDGFβ receptor (Figure 3.31). Overall, these findings suggest 

that 5-HT treatment results in the activation of PKC via PLC and calcium release, which leads to 

activation and assembly of NADPH oxidase components, resulting in the production of ROS and 

ultimately phosphorylation of PDGFβ receptor.  

In addition to NADPH oxidase, monoamine oxidase A (MAO-A) was also considered as a 

potential source of ROS. Upon being transported back into the presynaptic neuron, 5-HT can be 

degraded by one of two MAO enzymes. The MAO-A isoform preferentially targets 5-HT, which is 

metabolized to 5-hydroxyindoleacetic acid with ROS as a by-product [160]. Pretreatment with the 

MAO-A inhibitor clorgyline also inhibited 5-HT-induced PDGFβ receptor phosphorylation (Figure 

3.32). However, since many systems involving GPCR agonists transactivating RTKs do not involve 

MAO as does 5-HT, this may be a unique factor in 5-HT-mediated transactivation pathways. Thus, 

this experimental direction was abandoned in favor of NADPH oxidase, which is predicted to be an 

effector of a wider range of transactivating agonists compared to MAO.  
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Figure 3.31. PDGFβ receptor transactivation is sensitive to PKC inhibition.  
SH-SY5Y cell cultures were pretreated with vehicle or 0.1 µM of the PKC inhibitor Go 6983 for 45 min 

followed by treatment with vehicle or 100 nM 5-HT for 5 min. Following drug treatments, cell lysates were 

evaluated by immunoblot analysis as described in Materials and methods. Data were normalized to total 

PDGFR protein expression and are expressed as the fold change in phospho-1021 immunoreactivity compared 

to vehicle-treated cells. Representative blots for phospho-PDGFR 1021 (pY1021) and PDGFR are shown      

(* = p<0.05 compared to vehicle-treated cells; # = p<0.05 compared with 5-HT-treated cells; n = 3). 
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Figure 3.32. PDGFβ receptor transactivation is blocked by clorgyline.  
SH-SY5Y cells were treated with vehicle, 100 nM 5-HT for 5 min, with or without a 45 min pretreatment of 

0.01, 0.1, or 1 μM clorgyline. Following drug treatments, cells were lysed and lysates were evaluated by 

Western blot as described in the methods. Data were normalized to total PDGFR protein expression and are 

expressed as the fold change in phospho-1021 immunoreactivity compared to vehicle-treated cells. 

Representative blots for phospho-PDGFR 1021 (pY1021) and PDGFR are shown (* = p<0.05 compared to 

vehicle-treated cells; # = p<0.05 compared with 5-HT-treated cells; n = 3).  
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3.1.8 5-HT-induced PDGFβ receptor transactivation involves Src-family kinases 

Src kinases are known effectors of PDGF receptors [47, 49] as well as GPCRs [161, 162]; however, 

their role in GPCR-mediated transactivation pathways is still not fully understood. In SH-SY5Y cells, 

5-HT application led to activation of Src family kinases as measured by an increase in 

phosphorylation at Y418 (Figure 3.33), the tyrosine residue associated with kinase activation [163]. 

The outcome of 5-HT application on Y529, a site attributed to Src deactivation, was also investigated; 

however, 5-HT did not have any effect on the phosphorylation status of this residue (data not shown). 

To investigate whether Src family kinases are required for PDGFβ receptor transactivation, cells were 

incubated with the Src family kinase inhibitor PP2. PP2 (1 μM) attenuated PDGFβ receptor 

transactivation by 5-HT (Figure 3.34) and 5-CT (Figure 3.35). As controls for PP2, the inactive 

analog PP3 was tested and did not have any effect on 5-HT-induced PDGF receptor transactivation 

(Figure 3.36), and PP2 was also able to block 5-HT-induced Src phosphorylation at Y418 (Figure 

3.37). In addition to blocking PDGFβ receptor phosphorylation, 1 μM of the PLC inhibitor U73122 

(Figure 3.38), and 10 μM of the intracellular calcium chelator BAPTA-AM (Figure 3.39), but not the 

extracellular calcium chelator EGTA (Figure 3.40), attenuated Src phosphorylation at Y418, placing 

Src activation downstream of calcium signaling in this transactivation pathway. To determine the 

effect of ROS and NADPH oxidase inhibition on Src phosphorylation, the ROS scavenger N-acetyl-

L-cysteine and the NADPH oxidase inhibitor apocynin were employed. Neither of these drugs had 

any effect on Src phosphorylation at Y418 at the concentrations that affected PDGFβ receptor 

transactivation (Figure 3.41, Figure 3.42), suggesting that Src activity occurs upstream of NAPDH 

oxidase activation and ROS production (see Figure 3.70). 

 

3.1.9 Effects of PDGF receptor kinase inhibition 

The PDGFβ receptor kinase inhibitor AG 1296 blocked PDGF-BB-induced PDGFβ receptor 

activation (Figure 3.43), as did the dual PDGFβ receptor/Abl kinase inhibitor imatinib (data not 

shown). These drugs also abrogated 5-HT-induced PDGF receptor phosphorylation at Y1021 

(Figure 3.44 and Figure 3.45). However, AG 1296 did not prevent Src phosphorylation at Y418 

(Figure 3.46), further suggesting that Src activity is a required upstream component for 5-HT-induced 

PDGFβ receptor transactivation rather than activated by PDGFβ receptor itself in this instance.  
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Figure 3.33. 5-HT induces transient Src phosphorylation at Y418.  
SH-SY5Y cells were treated with 100 nM 5-HT for 0, 1, 2, 5, 10, or 15 min. Proteins were separated and 

resolved by SDS-PAGE, transferred to a membrane and probed for p60 Src and phospho-Src Y418. Data were 

normalized to total p60 Src protein expression and are expressed as the fold change in pY418 immunoreactivity 

compared to vehicle-treated cells (* = p<0.05 compared to vehicle-treated cells; n = 3).  
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Figure 3.34. 5-HT-induced PDGFβ receptor transactivation is blocked by Src inhibition.  
SH-SY5Y cells were treated with vehicle, 100 nM 5-HT for 5 min, with or without pretreatment with 1 μM 

PP2. Following drug treatments, cells were lysed and lysates were evaluated by Western blot as described in the 

methods. Data were normalized to total PDGFR protein expression and are expressed as the fold change in 

phospho-1021 immunoreactivity compared to vehicle-treated cells. Representative blots for phospho-PDGFR 

1021 (pY1021) and PDGFR are shown (* = p<0.05 compared to vehicle-treated cells; # = p<0.05 compared 

with 5-HT-treated cells; n = 4). 
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Figure 3.35. 5-CT-induced PDGFβ receptor transactivation is blocked by Src inhibition.  
SH-SY5Y cells were treated with vehicle, 10 nM 5-CT for 5 min, with or without pretreatment with 1 μM PP2. 

Following drug treatments, cells were lysed and lysates were evaluated by Western blot as described in the 

methods. Data were normalized to total PDGFR protein expression and are expressed as the fold change in 

phospho-1021 immunoreactivity compared to vehicle-treated cells. Representative blots for phospho-PDGFR 

1021 (pY1021) and PDGFR are shown (* = p<0.05 compared to vehicle-treated cells; # = p<0.05 compared 

with 5-CT-treated cells; n = 7). 
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Figure 3.36. 5-HT-induced PDGFβ receptor transactivation is unaffected by the PP2 inactive 

analog, PP3.  
As a control for PP2, SH-SY5Y cells were treated with vehicle, 100 nM 5-HT for 5 min, with or without 

pretreatment with 1 μM PP3. Following drug treatments, cells were lysed and lysates were evaluated by 

Western blot as described in the methods. Data were normalized to total PDGFR protein expression and are 

expressed as the fold change in phospho-1021 immunoreactivity compared to vehicle-treated cells. 

Representative blots for phospho-PDGFR 1021 (pY1021) and PDGFR are shown (* = p<0.05 compared to 

vehicle-treated cells; # = p<0.05 compared with 5-HT-treated cells; n = 3).  
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Figure 3.37. PP2 blocks 5-HT-induced Src activation.  
SH-SY5Y cells were treated with vehicle, 100 nM 5-HT for 5 min, with or without pretreatment with 1 μM 

PP2. Following drug treatments, cells were lysed and lysates were evaluated by Western blot as described in the 

methods. Data were normalized to total p60 Src protein expression and are expressed as the fold change in 

phospho-Y418 immunoreactivity compared to vehicle-treated cells. Representative blots for phospho-Y418 

(pY418) and p60 Src are shown (* = p<0.05 compared to vehicle-treated cells; # = p<0.05 compared with         

5-HT-treated cells; n = 6). 
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Figure 3.38. The PLC inhibitor U73122 attenuates 5-HT-induced Src activation.  
SH-SY5Y cells were treated with vehicle, 100 nM 5-HT for 5 min, with or without pretreatment with 1 μM 

U73122. Following drug treatments, cells were lysed and lysates were evaluated by Western blot as described in 

the methods. Data were normalized to total p60 Src protein expression and are expressed as the fold change in 

phospho-Y418 immunoreactivity compared to vehicle-treated cells. Representative blots for phospho-Y418 

(pY418) and p60 Src are shown (* = p<0.05 compared to vehicle-treated cells; # = p<0.05 compared with         

5-HT-treated cells; n = 3). 
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Figure 3.39. 5-HT-induced Src activation is sensitive to BAPTA-AM.  
SH-SY5Y cells were treated with vehicle, 100 nM 5-HT for 5 min, with or without 10 min pretreatment with 

0.1 to 10 μM BAPTA-AM. Following drug treatments, cells were lysed and lysates were evaluated by Western 

blot as described in the methods. Data were normalized to total p60 Src protein expression and are expressed as 

the fold change in phospho-Y418 immunoreactivity compared to vehicle-treated cells. Representative blots for 

phospho-Y418 (pY418) and p60 Src are shown (* = p<0.05 compared to vehicle-treated cells; # = p<0.05 

compared with 5-HT-treated cells; n = 5). 
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Figure 3.40. EGTA does not block 5-HT-induced Src activation.  
SH-SY5Y cells were treated with vehicle, 100 nM 5-HT for 5 min, with or without a 10 min pretreatment of 

100 μM EGTA. Following drug treatments, cells were lysed and lysates were evaluated by Western blot as 

described in the methods. Data were normalized to total p60 Src protein expression and are expressed as the 

fold change in phospho-Y418 immunoreactivity compared to vehicle-treated cells. Representative blots for 

phospho-Y418 (pY418) and p60 Src are shown (* = p<0.05 compared to vehicle-treated cells; n = 4). 
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Figure 3.41. N-acetyl-L-cysteine does not block 5-HT-induced Src activation.  
SH-SY5Y cells were treated with vehicle, 100 nM 5-HT for 5 min, with or without a 45 min pretreatment of 

100 or 1000 μM N-acetyl-L-cysteine (NAC). Following drug treatments, cells were lysed and lysates were 

evaluated by Western blot as described in the methods. Data were normalized to total p60 Src protein 

expression and are expressed as the fold change in phospho-Y418 immunoreactivity compared to vehicle-

treated cells. Representative blots for phospho-Y418 (pY418) and p60 Src are shown (* = p<0.05 compared to 

vehicle-treated cells; n = 3). 
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Figure 3.42. Apocynin does not block 5-HT-induced Src activation.  
SH-SY5Y cells were treated with vehicle, 100 nM 5-HT for 5 min, with or without a 45 min pretreatment of 1, 

10 or 100 μM apocynin, an NADPH oxidase inhibitor. Following drug treatments, cells were lysed and lysates 

were evaluated by Western blot as described in the methods. Data were normalized to total p60 Src protein 

expression and are expressed as the fold change in phospho-Y418 immunoreactivity compared to vehicle-

treated cells. Representative blots for phospho-Y418 (pY418) and p60 Src are shown (* = p<0.05 compared to 

vehicle-treated cells; n = 3). 
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Figure 3.43. PDGFβ receptor activation by PDGF-BB is sensitive to AG 1296.  
SH-SY5Y cells were treated for 5 min with vehicle, 0.1 ng/ml PDGF-BB, with or without 1 or 10 μM AG 1296. 

Following drug treatments, cells were lysed and lysates were evaluated by Western blot as described in the 

methods. Data were normalized to total PDGFR protein expression and are expressed as the fold change in 

phospho-1021 immunoreactivity compared to vehicle-treated cells. Representative blots for phospho-PDGFR 

1021 (pY1021) and PDGFR are shown (* = p<0.05 compared to vehicle-treated cells; # = p<0.05 compared 

with PDGF-BB-treated cells; n = 4). 
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Figure 3.44. PDGFβ receptor transactivation is sensitive to AG 1296.  
SH-SY5Y cells were treated for 5 min with vehicle, 100 nM 5-HT, with or without 1 or 10 μM AG 1296. 

Following drug treatments, cells were lysed and lysates were evaluated by Western blot as described in the 

methods. Data were normalized to total PDGFR protein expression and are expressed as the fold change in 

phospho-1021 immunoreactivity compared to vehicle-treated cells. Representative blots for phospho-PDGFR 

1021 (pY1021) and PDGFR are shown (* = p<0.05 compared to vehicle-treated cells; # = p<0.05 compared 

with 5-HT-treated cells; n = 3). 
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Figure 3.45. PDGFβ receptor transactivation is sensitive to imatinib.  
SH-SY5Y cells were treated for 5 min with vehicle, 100 nM 5-HT, with or without 1 or 10 μM imatinib. 

Following drug treatments, cells were lysed and lysates were evaluated by Western blot as described in the 

methods. Data were normalized to total PDGFR protein expression and are expressed as the fold change in 

phospho-1021 immunoreactivity compared to vehicle-treated cells. Representative blots for phospho-PDGFR 

1021 (pY1021) and PDGFR are shown (* = p<0.05 compared to vehicle-treated cells; # = p<0.05 compared 

with 5-HT-treated cells; n = 4). 
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Figure 3.46. 5-HT-induced Src activation is unaffected by PDGF receptor inhibition.  
SH-SY5Y cells were treated with vehicle, 100 nM 5-HT for 5 min, with or without pretreatment with 1 or       

10 μM AG 1296. Following drug treatments, cells were lysed and lysates were evaluated by Western blot as 

described in the methods. Data were normalized to total p60 Src protein expression and are expressed as the 

fold change in phospho-Y418 immunoreactivity compared to vehicle-treated cells. Representative blots for 

phospho-Y418 (pY418) and p60 Src are shown (* = p<0.05 compared to vehicle-treated cells; n = 4). 
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3.1.10 5-HT-induced ERK1/2 phosphorylation is not PDGFβ receptor-dependent 

ERK1/2 are kinases that promote survival and proliferation [68], and can be acutely activated by both 

5-HT and PDGF receptor signaling pathways [47, 68]. Originally used as a positive control for 5-HT 

activity, an analysis of ERK1/2 phosphorylation within the transactivation pathway yielded surprising 

results. Oak et al. [68] demonstrated that D2-class dopamine receptor-induced ERK1/2 

phosphorylation required transactivated PDGFβ receptors [68]. However, this differs from the results 

of the present study. In SH-SY5Y cells, while Ptx was only fully blocked 5-HT induced PDGFβ 

receptor phosphorylation at concentrations greater than 0.1 g/mL (see Figure 3.15), Ptx blocked 5-

HT-induced ERK1/2 phosphorylation at a 100-fold lower concentration (0.001 g/mL, Figure 3.47). 

Furthermore, none of 5-CT (Figure 3.48), the 5-HT7 agonist LP 12 (Figure 3.49) or the 5-HT1A 

receptor agonist DPAT (data not shown) increased ERK1/2 phosphorylation at any concentration 

tested despite being able to transactivate the PDGFβ receptor. These results suggest that a 5-HT 

receptor activated by 5-HT, but not 5-CT, LP 12, or DPAT (i.e. 5-HT receptor subtypes 2-4, or 6), 

was responsible for ERK1/2 phosphorylation and that there are distinct pathways initiated by 5-HT 

treatment which lead to PDGFβ receptor and ERK1/2 phosphorylation. Interestingly, in addition to 

blocking ERK1/2 activation by dopamine and 5-HT (see Figure 3.13 and Figure 3.47), Ptx also 

partially inhibited PDGF-BB-induced ERK1/2 activation (Figure 3.50).  

Downstream of 5-HT receptors, 5-HT-induced ERK1/2 activation was blocked by the PLC 

inhibitor U73122 (Figure 3.51) and the membrane-permeable calcium chelator BAPTA-AM (Figure 

3.52), but not the extracellular chelator EGTA (Figure 3.53). The PKC inhibitor Go 6983 and the Src 

kinase inhibitor PP2 also attenuated 5-HT-induced ERK1/2 phosphorylation (Figure 3.54 and Figure 

3.55). Since these inhibitors blocked ERK1/2 phosphorylation, its activation must occur downstream 

of calcium signaling, PLC, PKC, and Src activation. 
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Figure 3.47. Pertussis toxin inhibits 5-HT-induced ERK1/2 phosphorylation.  
SH-SY5Y cells were incubated overnight with 0.001 to 1 μg/mL pertussis toxin (Ptx) followed by 5 min 

treatment with 100 nM 5-HT. Following drug treatments, cells were lysed and lysates were evaluated by 

Western blot as described in the methods. Data were normalized to total ERK1/2 protein expression and are 

expressed as the fold change in combined phospho-ERK1/2 immunoreactivity compared to vehicle-treated 

cells. Representative blots for phospho-ERK1/2 (pERK) and ERK1/2 are shown (* = p<0.05 compared to 

vehicle-treated cells; # = p<0.05 compared with 5-HT-treated cells; n = 5). 
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Figure 3.48. 5-CT does not induce ERK1/2 phosphorylation.  
SH-SY5Y cells were treated with 10 nM 5-CT for 0, 1, 2, 5, 10, or 15 min. Following drug treatments, cells 

were lysed and lysates were evaluated by Western blot as described in the methods. Data were normalized to 

total ERK1/2 protein expression and are expressed as the fold change in combined phospho-ERK1/2 

immunoreactivity compared to vehicle-treated cells. Representative blots for phospho-ERK1/2 (pERK) and 

ERK1/2 are shown (n = 6).   
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Figure 3.49. LP 12 does not induce ERK1/2 phosphorylation.  
SH-SY5Y cells were treated with 0, 0.001, 0.01, 0.1, 1, 10 µM LP 12 for 5 min. Following drug treatments, 

cells were lysed and lysates were evaluated by Western blot as described in the methods. Data were normalized 

to total ERK1/2 protein expression and are expressed as the fold change in combined phospho-ERK1/2 

immunoreactivity compared to vehicle-treated cells. Representative blots for phospho-ERK1/2 (pERK) and 

ERK1/2 are shown (n = 6).   
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Figure 3.50. Pertussis toxin inhibits PDGF-BB-induced ERK1/2 phosphorylation.  
SH-SY5Y cells were incubated overnight with 0.001 to 1 μg/mL pertussis toxin (Ptx) followed by 5 min 

treatment with 0.1 ng/ml PDGF-BB. Following drug treatments, cells were lysed and lysates were evaluated by 

Western blot as described in the methods. Data were normalized to total ERK1/2 protein expression and are 

expressed as the fold change in combined phospho-ERK1/2 immunoreactivity compared to vehicle-treated 

cells. Representative blots for phospho-ERK1/2 (pERK) and ERK1/2 are shown (* = p<0.05 compared to 

vehicle-treated cells; # = p<0.05 compared with PDGF-BB-treated cells; n = 4). 
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Figure 3.51. ERK1/2 phosphorylation is abrogated by PLC inhibition.  
SH-SY5Y cells were treated with vehicle, 100 nM 5-HT for 5 min, with or without pretreatment with 0.1 or 1 

μM U73122. Following drug treatments, cells were lysed and lysates were evaluated by Western blot as 

described in the methods. Data were normalized to total ERK1/2 protein expression and are expressed as the 

fold change in phospho-ERK1/2 immunoreactivity compared to vehicle-treated cells. Representative blots for 

phospho-ERK1/2 (pERK) and ERK1/2 are shown (* = p<0.05 compared to vehicle-treated cells; # = p<0.05 

compared with 5-HT-treated cells; n = 7). 
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Figure 3.52. BAPTA-AM blocks 5-HT-induced ERK1/2 activation.  
SH-SY5Y cells were treated with vehicle, 100 nM 5-HT for 5 min, with or without a 10 min pretreatment of 

0.1, 1, or 10 μM BAPTA-AM. Following drug treatments, cells were lysed and lysates were evaluated by 

Western blot as described in the methods. Data were normalized to total ERK1/2 protein expression and are 

expressed as the fold change in phospho-ERK1/2 immunoreactivity compared to vehicle-treated cells. 

Representative blots for phospho-ERK1/2 (pERK) and ERK1/2 are shown (* = p<0.05 compared to vehicle-

treated cells; # = p<0.05 compared with 5-HT-treated cells; n = 4). 
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Figure 3.53. EGTA does not block 5-HT-induced ERK1/2 activation.  
SH-SY5Y cells were treated with vehicle, 100 nM 5-HT for 5 min, with or without a 10 min pretreatment of 10 

or 100 μM EGTA. Following drug treatments, cells were lysed and lysates were evaluated by Western blot as 

described in the methods. Data were normalized to total ERK1/2 protein expression and are expressed as the 

fold change in phospho-ERK1/2 immunoreactivity compared to vehicle-treated cells. Representative blots for 

phospho-ERK1/2 (pERK) and ERK1/2 are shown (* = p<0.05 compared to vehicle-treated cells; n = 5). 
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Figure 3.54. 5-HT-induced ERK1/2 phosphorylation is sensitive to PKC inhibition.  
SH-SY5Y cells were pretreated with vehicle or 0.1 µM of the PKC inhibitor Go 6983 for 45 min followed by 

treatment with vehicle or 100 nM 5-HT for 5 min. Following drug treatments, cell lysates were evaluated by 

Western blot analysis as described in Materials and methods. Data were normalized to total ERK1/2 protein 

expression and are expressed as the fold change in phospho-ERK immunoreactivity compared to vehicle-treated 

cells. Representative blots for phospho-ERK1/2 (pERK) and total ERK1/2 are shown (* = p<0.05 compared to 

vehicle-treated cells; # = p<0.05 compared with 5-HT-treated cells; n = 4). 
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Figure 3.55. ERK1/2 phosphorylation is abrogated by Src inhibition.  
SH-SY5Y cells were treated with vehicle, 100 nM 5-HT for 5 min, with or without pretreatment with 1 μM 

PP2. Following drug treatments, cells were lysed and lysates were evaluated by Western blot as described in the 

methods. Data were normalized to total ERK1/2 protein expression and are expressed as the fold change in 

phospho-ERK1/2 immunoreactivity compared to vehicle-treated cells. Representative blots for phospho-

ERK1/2 (pERK) and ERK1/2 are shown (* = p<0.05 compared to vehicle-treated cells; # = p<0.05 compared 

with 5-HT-treated cells; n = 3).  

  0.1 µM Go 6983 - - + 
       100 nM 5-HT - + + 

          1 µM PP2 - -  + 
     100 nM 5-HT - + +       
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Given the results described above, it was subsequently determined whether 5-HT-induced ERK1/2 

phosphorylation involved ROS and NADPH oxidase in a manner similar to PDGFβ receptor 

transactivation. However, when SH-SY5Y cells were treated with H2O2, no significant increase in 

ERK1/2 phosphorylation was observed (Figure 3.56), suggesting a divergence point in ERK1/2 and 

PDGFβ receptor signaling prior to ROS production. H2O2 treatment also failed to induce ERK1/2 

phosphorylation in primary cortical neurons (data not shown). Furthermore, in contrast to its ability to 

block 5-HT-induced PDGFβ receptor phosphorylation, pretreatment with N-acetyl-L-cysteine had no 

effect on 5-HT-induced ERK1/2 phosphorylation (Figure 3.57). However, the NADPH oxidase 

inhibitors diphenyleneiodonium chloride and apocynin both blocked 5-HT-induced ERK1/2 

phosphorylation (Figure 3.58 and Figure 3.59). This suggests that the divergence point in signaling 

pathways for 5-HT-induced ERK1/2 and PDGFβ receptor phosphorylation occurs after PKC and at 

the point of NADPH oxidase, prior to ROS production.  

Further corroborating this evidence is the inability of the PDGF receptor kinase inhibitor AG 1296 

or the PDGF receptor/Abl kinase inhibitor imatinib to block 5-HT-induced ERK1/2 activation (Figure 

3.60 and Figure 3.61), indicating that the modulation of ERK1/2 activity by 5-HT is not PDGF 

receptor-dependent in this system.  
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Figure 3.56. H2O2 does not induce ERK1/2 phosphorylation in SH-SY5Y cells.  
SH-SY5Y cells were treated with 0.01 to 100 µM H2O2 for 5 min. Following drug treatments, cell lysates were 

evaluated by Western blot analysis as described in Materials and methods. Data were normalized to total 

ERK1/2 protein expression and are expressed as the fold change in phospho-ERK immunoreactivity compared 

to vehicle-treated cells. Representative blots for phospho-ERK1/2 (pERK) and total ERK1/2 are shown. 

Representative blots for phospho-ERK1/2 (pERK) and ERK1/2 are shown (n = 5). 
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Figure 3.57. Scavenging ROS has no effect on 5-HT-induced ERK1/2 phosphorylation.  
SH-SY5Y cells were pretreated with vehicle or 10, 100 or 1000 µM of the ROS scavenger N-acetyl-L-cysteine 

(NAC) for 45 min followed by treatment with vehicle or 100 nM 5-HT for 5 min. Following drug treatments, 

cell lysates were evaluated by Western blot analysis as described in Materials and methods. Data were 

normalized to total ERK1/2 protein expression and are expressed as the fold change in phospho-ERK 

immunoreactivity compared to vehicle-treated cells. Representative blots for phospho-ERK1/2 (pERK) and 

total ERK1/2 are shown (* = p<0.05 compared to vehicle-treated cells; n = 5).  
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Figure 3.58. Diphenyleneiodonium chloride inhibits 5-HT-induced ERK1/2 phosphorylation.  
SH-SY5Y cells were pretreated with vehicle or 0.1, 1 or 10 µM of the NADPH oxidase inhibitor 

diphenyleneiodonium chloride (DPI) for 45 min followed by treatment with vehicle or 100 nM 5-HT for 5 min. 

Following drug treatments, cell lysates were evaluated by Western blot analysis as described in Materials and 

methods. Data were normalized to total ERK1/2 protein expression and are expressed as the fold change in 

phospho-ERK immunoreactivity compared to vehicle-treated cells. Representative blots for phospho-ERK1/2 

(pERK) and total ERK1/2 are shown (* = p<0.05 compared to vehicle-treated cells; # = p<0.05 compared with 

5-HT-treated cells; n = 4). 
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Figure 3.59. Apocynin inhibits 5-HT-induced ERK1/2 phosphorylation.  
SH-SY5Y cells were pretreated with vehicle or 1, 10, or 100 µM of the NADPH oxidase inhibitor apocynin for 

45 min followed by treatment with vehicle or 100 nM 5-HT for 5 min. Following drug treatments, cell lysates 

were evaluated by Western blot analysis as described in Materials and methods. Data were normalized to total 

ERK1/2 protein expression and are expressed as the fold change in phospho-ERK immunoreactivity compared 

to vehicle-treated cells. Representative blots for phospho-ERK1/2 (pERK) and total ERK1/2 are shown                

(* = p<0.05 compared to vehicle-treated cells; # = p<0.05 compared with 5-HT-treated cells; n = 7).  
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        100 nM 5-HT     - +             +            +            + 
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Figure 3.60. 5-HT-mediated ERK1/2 phosphorylation is unaffected by AG 1296.  
SH-SY5Y cells were treated with vehicle, 100 nM 5-HT for 5 min, with or without pretreatment with 1 or       

10 μM AG 1296. Following drug treatments, cells were lysed and lysates were evaluated by Western blot as 

described in the methods. Data were normalized to total ERK1/2 protein expression and are expressed as the 

fold change in phospho-ERK1/2 immunoreactivity compared to vehicle-treated cells. Representative blots for 

phospho-ERK1/2 (pERK) and ERK1/2 are shown (* = p<0.05 compared to vehicle-treated cells; n = 5). 
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Figure 3.61. 5-HT-mediated ERK1/2 phosphorylation is unaffected by imatinib.  
SH-SY5Y cells were treated with vehicle, 100 nM 5-HT for 5 min, with or without pretreatment with10 μM 

imatinib. Following drug treatments, cells were lysed and lysates were evaluated by Western blot as described 

in the methods. Data were normalized to total ERK1/2 protein expression and are expressed as the fold change 

in phospho-ERK1/2 immunoreactivity compared to vehicle-treated cells. Representative blots for phospho-

ERK1/2 (pERK) and ERK1/2 are shown (* = p<0.05 compared to vehicle-treated cells; n = 6).  
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     AG 1296 (µM)    -    -                 1               10 
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3.1.11 5-HT can transactivate TrkB receptors via ROS 

In addition to PDGF receptors, activation of 5-HT receptors was found to trigger transactivation of 

fibroblast growth factor and epidermal growth factor receptors [79, 164, 165]. However, it was 

unknown if 5-HT could transactivate TrkB receptors in neurons (or in any cell type), and whether the 

enzymes implicated in PDGF receptor transactivation are also involved in TrkB receptor 

transactivation. Indeed, like PDGFβ receptor, 5-HT induced a transient phosphorylation of TrkB as 

measured by the PLCγ binding site Y816 with a maximum phosphorylation occurring at 5 min 

(Figure 3.62). In addition, TrkB showed a similar H2O2 dose-response curve with a maximum 

transactivating concentration of 0.1 µM after 5 min (Figure 3.63), the same conditions used to assess 

PDGFβ receptor phosphorylation. Not surprisingly, the ROS scavenger N-acetyl-L-cysteine blocked 

5-HT-induced TrkB transactivation (Figure 3.64). NADPH oxidase was implicated as the source of 

ROS once more, given that the NADPH oxidase inhibitor diphenyleneiodonium chloride abrogated 5-

HT-induced TrkB receptor phosphorylation at 1 and 10 µM (Figure 3.65). Further, like the 5-HT-

PDGFβ receptor transactivation pathway (see Figure 3.15), 0.1 µg/ml pertussis toxin blocked 5-HT-

induced TrkB phosphorylation (Figure 3.66), suggesting that a Gαi-coupled 5-HT receptor was also 

responsible for initiating these pathways. Finally, although the PDGF receptor kinase inhibitor AG 

1296 blocked PDGF receptor transactivation by 5-HT, it did not block TrkB transactivation (Figure 

3.67), suggesting that TrkB transactivation was not dependent on prior PDGF receptor activity. 
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Figure 3.62. 5-HT can transactivate TrkB receptors in SH-SY5Y cells. 
SH-SY5Y cells were treated with 0.1 µM 5-HT for 0, 1, 2, 5, 10, 15 min. Following drug treatments, cell 

lysates were evaluated by Western blot analysis as described in Materials and methods. Data were normalized 

to total TrkB protein expression and are expressed as the fold change in TrkB phospho-816 immunoreactivity 

compared to vehicle-treated cells. Representative blots for phospho-TrkB Y816 (pY816) and TrkB are shown    

(* = p<0.05 compared to vehicle-treated cells; n = 5). 
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Figure 3.63. H2O2 can transactivate TrkB receptors.  
SH-SY5Y cells were treated with vehicle (VEH) or 0.01 to 10 µM H2O2 for 5 min. Following drug treatments, 

cell lysates were evaluated by Western blot analysis as described in Materials and methods. Data were 

normalized to total TrkB protein expression and are expressed as the fold change in TrkB phospho-816 

immunoreactivity compared to vehicle-treated cells. Representative blots for phospho-TrkB Y816 (pY816) and 

TrkB are shown (* = p<0.05 compared to vehicle-treated cells; n = 6). 
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Figure 3.64. ROS mediate 5-HT-induced TrkB phosphorylation.  
SH-SY5Y cells were pretreated with vehicle or 1000 µM of the ROS scavenger N-acetyl-L-cysteine (NAC) for 

45 min followed by treatment with vehicle or 100 nM 5-HT for 5 min. Following drug treatments, cell lysates 

were evaluated by Western blot analysis as described in Materials and methods. Data were normalized to total 

TrkB protein expression and are expressed as the fold change in TrkB phospho-816 immunoreactivity compared 

to vehicle-treated cells. Representative blots for phospho-TrkB Y816 (pY816) and TrkB are shown (* = p<0.05 

compared to vehicle-treated cells; # = p<0.05 compared with 5-HT-treated cells; n = 5). 
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Figure 3.65. NADPH oxidase is implicated in 5-HT-induced TrkB transactivation. 
SH-SY5Y cells were pretreated with vehicle or 0.1, 1, or 10 µM of the NADPH oxidase inhibitor 

diphenyleneiodonium chloride (DPI) for 45 min followed by treatment with vehicle or 100 nM 5-HT for 5 min. 

Following drug treatments, cell lysates were evaluated by Western blot analysis as described in Materials and 

methods. Data were normalized to total TrkB protein expression and are expressed as the fold change in TrkB 

phospho-816 immunoreactivity compared to vehicle-treated cells. Representative blots for phospho-TrkB Y816 

(pY816) and TrkB are shown (* = p<0.05 compared to vehicle-treated cells; # = p<0.05 compared with 5-HT-

treated cells; n = 4).  
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Figure 3.66. 5-HT-induced TrkB phosphorylation is sensitive to pertussis toxin.  
SH-SY5Y cells pretreated were incubated overnight with 0.001 to 0.1 µg/mL pertussis toxin (Ptx) followed by 

5 min treatment with 0.1 µM 5-HT. Following drug treatments, cell lysates were evaluated by Western blot 

analysis as described in Materials and methods. Data were normalized to total TrkB protein expression and are 

expressed as the fold change in TrkB phospho-816 immunoreactivity compared to vehicle-treated cells. 

Representative blots for phospho-TrkB Y816 (pY816) and TrkB are shown (* = p<0.05 compared to vehicle-

treated cells; # = p<0.05 compared with 5-HT-treated cells; n = 6). 
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Figure 3.67. 5-HT-induced TrkB phosphorylation is insensitive to the PDGF receptor inhibitor 

AG 1296.  
SH-SY5Y cells pretreated were incubated for 45 min with 0, 1 or 10 µM AG 1296 followed by 5 min treatment 

with 100 nM 5-HT. Following drug treatments, cell lysates were evaluated by Western blot analysis as 

described in Materials and methods. Data were normalized to total TrkB protein expression and are expressed 

as the fold change in TrkB phospho-816 immunoreactivity compared to vehicle-treated cells. Representative 

blots for phospho-TrkB Y816 (pY816) and TrkB are shown (* = p<0.05 compared to vehicle-treated cells;         

n = 5).  
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3.2 Discussion 

The abovementioned data demonstrate that 5-HT is capable of transactivating PDGFβ receptors via 

an intracellular signaling pathway involving several enzymes, and this mechanism is not dependent 

on PDGF-BB. To our knowledge, this is the first study showing transactivation of PDGFβ receptors 

by 5-HT and 5-HT receptor agonists in neuronal cells, and 5-HT-mediated TrkB transactivation in 

any cell type.  

 

3.2.1 Direct activation vs. transactivation of PDGFβ receptor 

The relative level of 5-HT-induced transactivation of PDGFβ receptors as reflected by changes in 

phosphorylation differed in several ways compared to direct PDGFβ receptor activation with PDGF-

BB ligand. Transactivation of PDGFβ receptors by 5-HT was transient; PDGFβ receptor 

phosphorylation returned to baseline faster than direct ligand activation, which showed prolonged 

phosphorylation for longer periods (past 20 min as shown here). In addition, phosphorylation via 

transactivation was not nearly as robust as compared to direct activation by PDGF-BB ligand. 

Whereas transactivation increases phosphorylation by 1.5-2 fold, PDGF-BB can increase 

phosphorylation by 100 fold, likely to the point of receptor/tyrosine phosphorylation saturation (see 

Figure 3.6 and Figure 3.7). Whether that is physiologically realistic remains to be determined, as a 

significant amount of PDGF ligand is needed for that level of phosphorylation. It may be more 

reasonable to suggest that lower concentrations of PDGF-BB such as 0.1 ng/ml are more practical and 

if so, would result in comparable phosphorylation levels achieved by PDGF-BB-mediated activation 

and transactivation. Signaling by prolonged direct activation of PDGF receptor ends via 

internalization and degradation of the receptor [49], whereas transactivated PDGF receptor is not 

internalized and is presumably rapidly dephosphorylated by the phosphatase SHP-2 [47]. On the other 

hand, this difference in phosphorylation intensity may be directly related to the physiological 

responses discussed in later Section 5.2: transactivation of PDGFβ receptor leads to cellular 

proliferation and in some cases hyperplasia [166, 167], while PDGF-mediated receptor activation can 

induce further proliferation to the point of fibrosis and tumor formation [48, 50]. 
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3.2.2 Receptors and G proteins initiating transactivation 

The ability of pertussis toxin (Ptx) to attenuate 5-HT-induced transactivation of PDGF receptors 

suggests that 5-HT is activating Gαi-coupled GPCR(s). This is consistent with several other studies 

implicating Gαi-linked receptors in the transactivation of PDGF receptors, including D2-class 

dopamine receptors [68], lysophosphatidic acid receptors [73], and sphingosine-1-phosphate receptors 

[72]. 

Despite this pathway’s sensitivity to Ptx, it is intriguing that the PLC inhibitor U73122 and 

intracellular calcium chelation also blocked 5-HT-induced transactivation of the PDGFβ receptor, as 

these are signal transduction pathways normally associated with downstream effects of Gαq-coupled 

receptors [168]. Transactivation through Gαq-coupled receptors was observed in mouse fibroblasts 

through the 5-HT2B receptor [79], and was implicated in rat myocytes through the angiotension II 

receptor type 1 [70]. However, there is precedent for Gαi-coupled GPCRs being able to activate PLC 

[169], possibly via Gβγ subunits [149]. In fact, all five Gβ isoforms can activate at least one PLCβ 

isoform and increase IP3 concentrations when complexed with certain (but not all of the twelve) Gγ 

isoforms [170-172]. Ptx also preferentially inhibits Gαi when it is associated with Gβγ [173]; thus, 

Gβγ is likely permanently bound to Gα and unable to participate in signaling as well. Therefore, it 

may indeed be Gβγ subunits that are responsible for PLC activation in transactivation pathways 

initiated by Gαi-coupled receptors. 

Notwithstanding these data, the apparent lack of Gαs-mediated transactivation examples here and in 

literature cannot be disregarded. This study showed that the Gαs-coupled 5-HT7 receptor agonist 

LP12 was unable to induce PDGFβ receptor transactivation over a range of concentrations, leading to 

the conclusion that 5-HT7 receptors do not participate in transactivation signaling. Most other 

instances of RTK transactivation also indicate that Gαi or Gαq-coupled GPCRs initiate transactivation 

signaling pathways [70, 72, 174]. Thus, it may be the combination of Gα (either Gαi or Gαq, and not 

Gαs) and its associated Gβγ isoforms that ultimately determines whether PLC is activated and 

subsequent transactivation occurs. 

Further, with respect to PLC signaling, protein kinase C (PKC) activation was shown to be 

involved in this transactivation pathway given the sensitivity to the PKC inhibitor Go 6983. The data 

suggest that transactivation of PDGFβ receptor is dependent on calcium ions and PLC activity, which 

forms diacylglycerol. Thus, it is likely that conventional PKC isoforms (i.e. PKCα, PKCβ, and/or 

PKCγ) are involved in transactivation signaling. 
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3.2.3 Src kinase in transactivation 

c-Src is a member of the Src family of non-receptor tyrosine kinases, and was associated with cell 

proliferation, differentiation and motility [175]. It is activated by several mechanisms including 

GPCRs: increased c-Src activity was observed or implicated upon 5-HT [61, 79], dopamine [68], 

sphingosine-1-phosphate [72], and β-adrenergic [174] receptor activation. Other Src family tyrosine 

kinases are activated by 5-HT as well, including c-Yes and Fyn, but inhibition of these kinases did not 

affect previous examples of PDGF receptor transactivation [79]. 

It is clear that c-Src is involved in PDGF receptor transactivation; however, its placement in the 

signaling cascade has been widely debated in literature. Some studies including the present study 

situate c-Src before ROS production [152] due to the ability of PP2 to inhibit ERK1/2 

phosphorylation and the ROS scavenger N-acetyl-L-cysteine being unable to inhibit Src 

phosphorylation, while some studies set it after ROS production [71]. An interesting idea from 

Catarzi et al. suggests that perhaps c-Src is playing a dual role [152]: acute GPCR activation leads to 

c-Src activation, followed by ROS production [152]. ROS production then sustains c-Src activity 

[152], which then may act as an effector of ROS signaling. It is also interesting to note that c-Src 

binds to PDGF-activated PDGF receptor and signals downstream from it [49], further illustrating the 

versatile role of c-Src in cellular signaling. 

 

3.2.4 ROS is a signaling mediator in RTK transactivation in this system 

There are similarities in the pathways reported for both 5-HT- and ROS-induced transactivation of 

TrkB and PDGFβ receptor. In both 5-HT- and ROS-mediated signaling pathways, the 

phosphorylation of these RTKs follows a similar dose response, and achieves a similar maximum fold 

change (1.5-2 fold) compared to baseline. These data, along with the ability of the ROS scavenger N-

acetyl-L-cysteine to abrogate transactivation, suggest that ROS is a component of 5-HT-initiated 

transactivation pathways in neurons. This also adds to the growing list of ROS-dependent GPCR-to-

RTK transactivation mechanisms including those initiated by angiotensin II, endothelin, and 

sphingosine-1-phosphate [69, 71, 72], and likely implicates ROS as a component common to 

transactivation pathways in general. 
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However, one segment of the transactivation pathway that remains to be fully elucidated is the 

mechanism of ROS signaling to RTKs. Low levels of ROS have been shown to be a second 

messenger capable of participating in intracellular signaling pathways [176]. The consensus within 

the available literature suggests that ROS have the ability to oxidize catalytic cysteine residues in 

tyrosine phosphatase enzymes, such as the RTK phosphatase SHP-2, and the result of this oxidization 

is phosphatase inactivation [76, 177]. These phosphatases possess a microenvironment that lowers the 

pKa of the catalytic cysteine residue from the usual value of 8.5 to less than 5.5, sufficient for the thiol 

group to exist as a thiolate ion at physiological pH and become sensitive to H2O2-induced oxidation 

[176]. This phosphatase inactivation is readily reversible and short-lived [76], which may explain 

why, if phosphatase inactivation is involved in RTK transactivation, PDGF receptor phosphorylation 

by transactivation is transient instead of sustained (as seen by PDGF ligand-induced 

phosphorylation). Besides PDGFβ receptor, SHP-2 is known to associate with epidermal growth 

factor receptor and insulin receptor [178, 179], and it (or other phosphatases) may represent the 

general mechanism of dephosphorylating transactivated RTKs. Therefore, activation and inactivation 

of these phosphatases may function as a “molecular switch” in cell signaling [180], temporarily 

shifting the balance of phosphorylation-dephosphorylation of RTKs in favor of kinase activity. 

Since H2O2 was implicated in the transactivation pathway of several RTKs, including PDGFβ and 

TrkB receptors here, it is conceivable that the physiological relevance of ROS in transactivation may 

ultimately consist of ROS-mediated phosphorylation of multiple RTKs via phosphatase inactivation, 

rather than ROS being involved in one specific GPCR-to-RTK pathway. If so, and given the apparent 

generalness of the proposed mechanism of ROS-induced phosphotyrosine phosphatase inhibition, the 

sum of multiple small increases to RTK activation would lead to a greater increase in overall cellular 

RTK activity. The identification of ROS in transactivation pathways may also indicate an endogenous 

protective mechanism whereby an initial, mild cell stress and production of ROS protects the cell 

against subsequent, severe insults (and higher, toxic levels of ROS) by first activating the mitogenic 

effects of multiple RTKs. 

 

3.2.5 The role of NADPH oxidase in transactivation 

While the signaling steps downstream of ROS remain to be categorically confirmed, here it is 

suggested that the upstream component responsible for ROS generation in transactivation pathways is 

NADPH oxidase. The NADPH oxidase enzyme is a large, multi-subunit complex (Figure 3.68) that 
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produces superoxide from oxygen and a donated electron from NADPH [157]. Superoxide dismutases 

then quickly convert superoxide to H2O2 [181]. Although often associated with respiratory burst in 

phagocytes [181], NADPH oxidase is active in non-phagocytic cells, with some subunits replaced 

with corresponding non-phagocytic homologs [157]. Among these subunits within this complex is 

Rac1, a member of the Rho GTPases family, which can be activated by both RTKs and GPCRs, and 

is required for oxidase activity [182, 183]. Two studies have shown that PKC can activate Rac1 [158, 

184] possibly leading to assembly of the oxidase, while other studies demonstrated that PKC activates 

NADPH oxidase components directly: gp91
phox

/NOX2 (to enhance its association with other NADPH 

oxidase subunits [185]) and p47
phox

 (required for NADPH oxidase activity [186]). In addition, 

activated c-Src was shown to increase phosphorylation of the NoxA1 activator protein and to increase 

NOX1 upregulation, another oxidase subunit, leading to increased NOX1-dependent ROS production 

[187, 188]. Two different NADPH oxidase inhibitors (diphenyleneiodonium chloride and apocynin) 

using two different mechanisms [154, 189] were able to abrogate PDGFβ receptor transactivation by 

5-HT. Whether ROS formation by NADPH oxidase activity occurs intracellularly or extracellularly is 

still unclear in non-phagocytic cells; however, some studies show NADPH oxidase assembles and 

functions in the cytoplasm, possibly in a vesicle or endoplasmic reticulum [190, 191], which would 

result in intracellular ROS accumulation [192-194]. 

 

 

Figure 3.68. The NADPH oxidase 

complex.  
The NADPH oxidase complex is composed 

of several subunits including the core p22
phox

 

and gp91
phox

. Complete assembly is required 

for oxidase activity, which converts 

molecular oxygen to superoxide via donated 

electrons from NADPH. Where NADPH 

oxidase assembles in non-phagocytes 

remains to be definitively determined. 

Adapted from Dusting et al., 2005 [192]. 

 

 

3.2.6 Kinase inhibition abrogates PDGFβ receptor transactivation 

Figure 3.44 and Figure 3.45 show that inhibition of PDGF receptor kinase function eliminates 

receptor transactivation. Both AG 1296 and imatinib function by blocking the ATP binding domain 
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of the receptor [60, 195]. This is itself a significant result, and suggests that the kinase activity of 

PDGFβ receptor is responsible for receptor phosphorylation in response to a transactivating stimulus. 

Had there been no abrogation of 5-HT-induced PDGFβ receptor phosphorylation when these 

inhibitors were added, it would be reasonable to conclude that a kinase not targeted by these drugs is 

responsible for the increase in PDGFβ receptor phosphorylation mediated by 5-HT. Interestingly, one 

study examined the need for PDGF receptor dimerization in transactivation and found that 

dimerization was not needed for dopamine-mediated PDGF receptor transactivation [196]. If this is 

also true in the present study, then taken together, these data suggest that the increase in 

phosphorylation seen in transactivation may simply be an increase in basal phosphorylation mediated 

by the receptor’s own kinase activity in response to a decrease in net phosphatase activity. However, 

it would be prudent to remain open to the possibility that a yet-unidentified tyrosine kinase that is also 

a target of these two inhibitors may be responsible for the increase in phosphorylation given that these 

inhibitors, although relatively specific, do target proteins other than PDGF receptors such as c-kit 

[197].  

 

3.2.7 The role of ERK1/2 in PDGF receptor transactivation in neuronal cultures 

Although the PDGF receptor kinase inhibitors AG 1296 and imatinib were able to block 5-HT-

induced PDGF receptor phosphorylation, they did not block ERK1/2 activation. This led to the 

initial working hypothesis: since RTKs also signal to ERK1/2, transactivation through ROS 

production activates multiple RTKs, and these RTKs collectively contribute to activating ERK1/2. 

Thus, blocking only one RTK (i.e. PDGFβ receptor with AG 1296 or imatinib) would have a 

negligible effect on overall ERK1/2 activation by RTKs. This would be in line with several findings 

stating that ERK1/2 phosphorylation was not inhibited by PDGF receptor antagonists when exposed 

to endothelin in myometrial cells, or when exposed to S1P in smooth muscle or fibroblasts [72, 162, 

198].  

On the other hand, Oak et al. [68] found that dopamine-induced ERK1/2 activation required 

transactivated PDGF receptors [68]. Likewise, endothelin-induced ERK1/2 activation was 

dependent on PDGF receptor activity, as well as on epidermal growth factor (EGF) receptor 

activation [71]. Therefore, ERK1/2 dependence on PDGF receptor activation may rely partially on the 

GPCR agonist and partially on the cell types involved – possibly due to a different repertoire of 
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expressed receptors that mediate these pathways. Further, this study shows that DPAT and 5-CT 

acting via the Gαi-coupled 5-HT1 (and possibly 5-HT5) receptors are able to transactivate PDGFβ 

receptors, yet these drugs do not activate ERK1/2. In light of these data, a hypothesis modification 

was required, leading to an investigation into the role of ERK1/2 in transactivation events. 5-HT-

induced activation of ERK1/2 in SH-SY5Y cells clearly must occur through the activation of 

additional 5-HT receptor subtypes such as 5-HT2 receptors [199, 200], and be independent of (or on a 

parallel pathway to) PDGFβ receptor transactivation in this system.  

Further, H2O2-induced increases in ERK1/2 phosphorylation were not detected in this study, an 

observation that contradicts previous work showing that exogenously applied H2O2 results in ERK1/2 

phosphorylation [201-203]. However, those studies used H2O2 concentrations between 0.1 and 2 mM 

– at least 100-fold higher than the concentrations used here. Lower concentrations may not be 

sufficient to induce ERK1/2 phosphorylation, possibly because a threshold concentration of ROS 

needs to accumulate. This is corroborated by the ROS scavenger N-acetyl-L-cysteine being able to 

block TrkB and PDGFβ receptor phosphorylation, but not ERK1/2 phosphorylation induced by 5-HT. 

Conversely, the NADPH oxidase inhibitors apocynin and diphenyleneiodonium chloride were able to 

inhibit ERK1/2 activation. These drugs may prevent the assembly of the oxidase or chemically 

modify the subunits [154, 189], suggesting that the complete, functional oxidase is necessary for 

PDGFβ receptor transactivation. Since the NADPH oxidase subunit Rac1 was shown to activate 

MEK and subsequent ERK1/2 activation [158, 204], it is conceivable that these drugs may be 

inhibiting the activity of subunits such as Rac1 and this prevents both NADPH oxidase function and 

the separate function (possibly independent of the oxidase) of phosphorylating and activating 

ERK1/2. 

Thus, this study concludes that PDGF receptor transactivation by 5-HT is not a necessary 

component of ERK1/2 activation in this system. Furthermore, given the lack of ERK1/2 activation by 

5-HT receptor agonists that elicit transactivation, ERK1/2 activation may be operating on a parallel 

mechanistic pathway, with NADPH oxidase components being the last common factor. The 

differences seen in this and other studies may be the result of different systems used, including cell 

types, overexpression of certain proteins, and different overall experimental procedures. 

 



 

 84 

3.2.8 The role of TrkB receptors and a possible link to depression 

This study has shown for the first time that 5-HT can transactivate TrkB receptors in neuronal 

cultures. Based on the sensitivity to N-acetyl-L-cysteine, this mechanism may also be sensitive to 

ROS as alluded to previously with PDGFβ receptor transactivation. The notion that 5-HT receptors 

cross-talk with neurotrophin receptors such as TrkB is of significance as it may provide evidence 

bridging the two main hypotheses of depression pathology. The monoamine and the neurotrophic 

hypotheses both state decreased signaling in their respective pathways results in the manifestation of 

clinical depression [109, 119]. 5-HT activating both serotonergic and neurotrophic signaling 

pathways would provide a valuable link between these hypotheses: antidepressant-mediated increases 

in 5-HT neurotransmission normalize deficient signaling pathways by not only activating classical 

serotonergic signaling transduction but also simultaneously activating neurotrophic signaling via 

transactivation of TrkB receptors, thus helping to alleviate symptoms in the depressed brain. 

Another interesting aspect of neurotrophin signaling in general is the apparent dichotomy of 

responses. In addition to Trk receptors, neurotrophins also bind the low-affinity neurotrophin receptor 

(p75) [205]. p75 receptors bind ligand at four extracellular cysteine-rich motifs, and possess both a 

transmembrane domain and intracellular death domains [82]. Although neurotrophin binding to Trk 

receptors generally leads to proliferative effects and binding p75 was shown to result in cell survival 

when associated with Trk receptors, p75 activity is more commonly associated with cell death when 

segregated from Trk receptors [205-207]. Since certain neurotrophins bind both populations of Trk 

and p75 receptors [81], there is a risk that exposure to neurotrophins may lead to cell death in the 

presence of p75. However, with transactivation, the extracellular binding by neurotrophins is 

bypassed, and only RTKs (including Trk receptors) are transactivated (Figure 3.69). There is no 

evidence as of yet that p75 receptors, a member of tumor necrosis factor receptor family, can be 

transactivated via GPCR signaling given their lack of a RTK kinase-like domain [81, 208]. Thus, with 

transactivation, the proliferative effects of TrkB receptors, and not the apoptotic effects of p75 

receptors, would dominate. 
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Figure 3.69. TrkB versus p75 receptors. 
Both TrkB and p75 receptors bind neurotrophins. 

But whereas the TrkB receptor possesses an 

intracellular kinase domain that is postulated to 

phosphorylate the RTK in transactivation 

pathways, the p75 receptor does not. This 

receptor has an intracellular death domain similar 

to TNF family receptors that is not known to 

participate in transactivation signaling. Adapted 

from Hempstead, 2002 [209]. 

 

3.2.9 Proposed mechanism 

Thus, we show that 5-HT can indeed transactivate not only PDGFβ receptors but TrkB receptors as 

well, and transactivation is dependent on both concentration and exposure time. A diagram of the 

proposed signaling pathway is presented in Figure 3.70. Transactivation is initiated at Gαi- or Gαq-

coupled GPCRs such as 5-HT1A or 5-HT2 (a topic of Chapter 4). The signal is dispatched to PLC via 

the Gα and/or Gβγ subunits [149], which results in intracellular calcium release and activation of 

PKC. NADPH oxidase subunits assemble to produce ROS, perhaps through PKC or Src-dependent 

activation of certain NADPH oxidase subunits. Through NADPH oxidase production of ROS or 

exogenously applied H2O2, phosphotyrosine phosphatases become temporarily oxidized and 

inactivated, and are unable to dephosphorylate RTKs including PDGFβ and TrkB receptors leading to 

an increase in RTK phosphorylation.  
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Figure 3.70. Proposed mechanism for transactivation. 
A proposed pathway for 5-HT receptor-induced TrkB and PDGF receptor transactivation, based on the ability 

of pharmacological inhibitors to block activation of the enzymes listed. See text for details. Fluoxetine also 

binds to 5-HT2 receptors, and will become an important topic in Chapter 4. 
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Chapter 4 

Fluoxetine-induced transactivation of the platelet-derived growth 

factor type β receptor reveals a novel heterologous desensitization 

process 

4.1 Results 

In this section, the effects of selective serotonin reuptake inhibitors, particularly fluoxetine, on PDGF 

receptor transactivation were investigated. Interestingly, it was discovered that not only did fluoxetine 

inhibit 5-HT-induced PDGF receptor transactivation, but it also transactivated the receptor by itself. 

These results suggest that transactivation events were subject to a desensitization mechanism, distinct 

from either the GPCR or the PDGF receptor, and are investigated further. 

 

4.1.1 Selective serotonin reuptake inhibitors can acutely block 5-HT-induced PDGFβ 

receptor transactivation in neuronal cells 

It was previously reported that SSRIs can block PDGFβ receptor transactivation in smooth muscle 

cell cultures [78]. This was a fascinating finding, and we questioned whether this was also the case in 

neurons, where both 5-HT and SSRIs play a significant role in human brain function, dysfunction 

and/or antidepressant drug therapy. In SH-SY5Y cells, pretreatment with fluoxetine did indeed block 

5-HT-induced PDGFβ receptor transactivation (Figure 4.1), and similarly abrogated 5-HT-induced 

ERK1/2 phosphorylation as well (Figure 4.2). 

As this was an intriguing result, we queried whether the effects of other PDGFβ receptor-activating 

compounds could be blocked by fluoxetine. Fluoxetine also attenuated 5-CT-induced PDGFβ 

transactivation (Figure 4.3) but not PDGF-BB ligand-induced receptor activation (Figure 4.4), 

suggesting that this attenuation was transactivation-specific and did not affect the ability of PDGFβ 

receptor to be activated directly. To determine if other SSRIs can also block PDGFβ receptor 

transactivation, citalopram was applied prior to 5-HT treatment and we found that similar to 

fluoxetine, citalopram blocked 5-HT-induced PDGFβ receptor phosphorylation (Figure 4.5), but not 

PDGF-BB-induced PDGFβ receptor phosphorylation (Figure 4.6).  
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Figure 4.1. Fluoxetine can block 5-HT-induced PDGFβ receptor transactivation.  
SH-SY5Y cells were pretreated with 0.01 to 10 μM fluoxetine (FL) for 45 min followed by 5 min treatment 

with 100 nM 5-HT. Following drug treatments, cells were lysed and lysates were evaluated by Western blot as 

described in the methods. Data were normalized to total PDGF receptor protein expression and are expressed 

as the fold change in phospho-1021 immunoreactivity compared to vehicle-treated cells. Representative blots 

for phospho-PDGFR 1021 (pY1021) and PDGFR are shown (* = p<0.05 compared to vehicle-treated cells;    

# = p<0.05 compared with 5-HT-treated cells; n = 6). 
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Figure 4.2. Fluoxetine can block 5-HT-induced ERK1/2 phosphorylation.  
SH-SY5Y cells were pretreated with 0.01 to 10 μM fluoxetine (FL) for 45 min followed by 5 min treatment 

with 100 nM 5-HT. Following drug treatments, cells were lysed and lysates were evaluated by Western blot as 

described in the methods. Data were normalized to total ERK1/2 protein expression and are expressed as the 

fold change in phospho-ERK1/2 immunoreactivity compared to vehicle-treated cells. Representative blots for 

phospho-ERK1/2 (pERK) and ERK1/2 are shown (* = p<0.05 compared to vehicle-treated cells; # = p<0.05 

compared with 5-HT-treated cells; n = 4).  
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Figure 4.3. Fluoxetine can block 5-CT-induced PDGFβ receptor transactivation.  
SH-SY5Y cells were pretreated with 10 μM fluoxetine (FL) for 45 min followed by 5 min treatment with 10 nM 

5-CT. Following drug treatments, cells were lysed and lysates were evaluated by Western blot as described in 

the methods. Data were normalized to total PDGF receptor protein expression and are expressed as the fold 

change in phospho-1021 immunoreactivity compared to vehicle-treated cells. Representative blots for phospho-

PDGFR 1021 (pY1021) and PDGFR are shown (* = p<0.05 compared to vehicle-treated cells; # = p<0.05 

compared with 5-CT-treated cells; n = 8). 
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Figure 4.4. Fluoxetine does not affect PDGF-BB-induced PDGFβ receptor activation.  
SH-SY5Y cells were pretreated with 10 μM fluoxetine (FL) for 45 min followed by 5 min treatment with         

10 ng/ml PDGF-BB. Following drug treatments, cells were lysed and lysates were evaluated by Western blot as 

described in the methods. Data were normalized to total PDGF receptor protein expression and are expressed 

as the fold change in phospho-1021 immunoreactivity compared to vehicle-treated cells. Representative blots 

for phospho-PDGFR 1021 (pY1021) and PDGFR are shown (* = p<0.05 compared to vehicle-treated cells;    

n = 6). 
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Figure 4.5. Citalopram can block 5-HT-induced PDGFβ receptor transactivation.  
SH-SY5Y cells were pretreated with 0.01 to 10 μM citalopram (CIT) for 45 min followed by 5 min treatment 

with 100 nM 5-HT. Following drug treatments, cells were lysed and lysates were evaluated by Western blot as 

described in the methods. Data were normalized to total PDGF receptor protein expression and are expressed 

as the fold change in phospho-1021 immunoreactivity compared to vehicle-treated cells. Representative blots 

for phospho-PDGFR 1021 (pY1021) and PDGFR are shown (* = p<0.05 compared to vehicle-treated cells;   

# = p<0.05 compared with 5-HT-treated cells; n = 7). 
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Figure 4.6. Citalopram does not affect PDGF-BB-induced PDGFβ receptor activation.  
SH-SY5Y cells were pretreated with 10 μM citalopram (CIT) for 45 min followed by 5 min treatment with               

1 ng/ml PDGF-BB. Following drug treatments, cells were lysed and lysates were evaluated by Western blot as 

described in the methods. Data were normalized to total PDGF receptor protein expression and are expressed 

as the fold change in phospho-1021 immunoreactivity compared to vehicle-treated cells. Representative blots 

for phospho-PDGFR 1021 (pY1021) and PDGFR are shown (* = p<0.05 compared to vehicle-treated cells;   

n = 4). 
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Given the effect of the 5-HT transporter (5-HTT) inhibitors fluoxetine and citalopram described 

above, the 5-HTT was postulated to be involved in this pathway. Fluoxetine binding to the 5-HTT 

may induce a novel conformational change to the transporter [210]; thus, if 5-HTT and PDGFβ 

receptors are in direct contact, perhaps a conformational change in 5-HTT relays a mechanically-

mediated conformational change in PDGFβ receptors that inhibits transactivation. To investigate this 

possibility, PDGFβ receptors were immunopreciptated from SH-SY5Y cells under non-denaturing 

conditions and probed for the presence of 5-HTT that may have also been pulled down. However, 

while 5-HTT protein was observed in cell lysates, it did not co-immunoprecipitate with PDGFβ 

receptor (Figure 4.7). Two contaminating bands were detected flanking the position of 5-HTT; but 

since these bands were also observed in the precleared lanes (containing protein A/G agarose beads, 

IgG control antibody and vehicle-treated sample), they were dismissed as non-specific binding and 

inherent to the experimental system.  

 

4.1.2 Long-term SSRI application does not affect 5-HT-induced PDGFβ receptor 

transactivation 

Given the importance of SSRIs in their ability to modify 5-HT signaling in the brain, the effects of a 

more therapeutically relevant long-term SSRI exposure period was examined in 5-HT signaling to 

PDGFβ receptor. SSRIs such as fluoxetine are stable in solution and have long in vivo half-lives [211, 

212]. Overnight exposure of fluoxetine or citalopram failed to affect 5-HT-induced PDGFβ receptor 

phosphorylation (Figure 4.8 and Figure 4.9), suggesting that the attenuation by SSRIs observed 

previously was a short-term effect. 
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Figure 4.7. PDGFβ and 5-HTT do not associate.  
SH-SY5Y cells were treated with either vehicle (VEH) or 100 nM 5-HT for 5 min. Following drug treatments, 

cell lysates were collected and subjected to immunoprecipitation under non-denaturing conditions. PDGFβ 

receptor was pulled down, and both immunoprecipitates and lysates were probed for PDGFβ receptors (180 

kDa) and 5-HTT (90 kDa). Representative blots are shown. # indicates contaminating bands described in text. 

The control lane contains the pellet derived from centrifugation of vehicle-treated sample, IgG control (non-

specific) antibody and protein A/G-coated agarose beads, showing that PDGFβ receptors or 5-HTT does not 

non-specifically bind to beads or antibody (n = 3).   
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Figure 4.8. Overnight fluoxetine does not affect 5-HT-induced PDGFβ receptor transactivation.  
SH-SY5Y cells were pretreated overnight with 1 μM fluoxetine (FL) followed by 5 min treatment with 100 nM 

5-HT. Following drug treatments, cells were lysed and lysates were evaluated by Western blot as described in 

the methods. Data were normalized to total PDGF receptor protein expression and are expressed as the fold 

change in phospho-1021 immunoreactivity compared to vehicle-treated cells. Representative blots for phospho-

PDGFR 1021 (pY1021) and PDGFR are shown (* = p<0.05 compared to vehicle-treated cells; n = 7). 
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Figure 4.9. Overnight citalopram does not affect 5-HT-induced PDGFβ receptor 

transactivation.  
SH-SY5Y cells were pretreated overnight with 1 μM citalopram (CIT) followed by 5 min treatment with              

100 nM 5-HT. Following drug treatments, cells were lysed and lysates were evaluated by Western blot as 

described in the methods. Data were normalized to total PDGF receptor protein expression and are expressed 

as the fold change in phospho-1021 immunoreactivity compared to vehicle-treated cells. Representative blots 

for phospho-PDGFR 1021 (pY1021) and PDGFR are shown (* = p<0.05 compared to vehicle-treated cells;    

n = 8).  
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Figure 4.10. Fluoxetine itself can transactivate PDGFβ receptor in SH-SY5Y cells.  
SH-SY5Y cells were treated with 10 µM fluoxetine for 0, 2, 5, 10, 15 or 20 min. Following drug treatments, 

cells were lysed and lysates were evaluated by Western blot as described in the methods. Data were normalized 

to total PDGF receptor protein expression and are expressed as the fold change in phospho-1021 

immunoreactivity compared to vehicle-treated cells. Representative blots for phospho-PDGFR 1021 (pY1021) 

and PDGFR are shown (* = p<0.05 compared to vehicle-treated cells; n = 4). 
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Figure 4.11. Fluoxetine itself can transactivate PDGFβ receptor in primary neurons.  
Primary cultured cortical neurons (7-8 DIV) were treated with 10 µM fluoxetine for 0, 1, 2, 5, 10, 15 min. 

Following drug treatments, cells were lysed and lysates were evaluated by Western blot as described in the 

methods. Data were normalized to total PDGF receptor protein expression and are expressed as the fold 

change in phospho-1021 immunoreactivity compared to vehicle-treated cells. Representative blots for phospho-

PDGFR 1021 (pY1021) and PDGFR are shown (* = p<0.05 compared to vehicle-treated cells; n = 6). 
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4.1.3 Fluoxetine transactivates the PDGFβ receptor through 5-HT2 receptors 

The results in Figure 4.1 demonstrate that 45-min fluoxetine pretreatment blocked 5-HT-induced 

PDGFβ receptor transactivation and suggested that the 5-HTT was required for 5-HT-induced 

transactivation of the PDGFβ receptor. However, given the stability of fluoxetine in aqueous solution 

[212], fluoxetine should have been able to block 5-HT-induced PDGFβ receptor transactivation after 

24 h pretreatment (Figure 4.8). Second, fluoxetine prevented PDGFβ receptor transactivation by 5-CT 

(Figure 4.3) but, unlike 5-HT, whether there is an interaction between 5-CT and 5-HTT is not clear 

[213]. Third, the Ki of fluoxetine for the 5-HTT is on the order of 1 nM [214]; however, a significant 

inhibition of transactivation was not observed until the concentration of fluoxetine was 1-10 μM, a 

1,000 to 10,000-fold increase over the reported Ki. To determine if perhaps this attenuation 

phenomenon is related to the relatively high concentration of fluoxetine, the phosphorylation state of 

the PDGFβ receptor was monitored during the fluoxetine pretreatment period. Surprisingly, it was 

found that fluoxetine itself transactivated the PDGFβ receptor with maximal phosphorylation at 5 

min, followed by a decrease to baseline levels in both SH-SY5Y cells (Figure 4.10) and primary 

cortical neuron cultures (Figure 4.11). Additionally, a modest but significant increase in ERK1/2 

(Figure 4.12) and Src Y418 (Figure 4.13) phosphorylation was noted with fluoxetine application in 

SH-SY5Y cells, paralleling the PDGFβ receptor phosphorylation time course (Figure 4.10). A 

fluoxetine dose-response curve in SH-SY5Y cells revealed a significant increase in PDGFβ receptor 

phosphorylation at both 1 μM and 10 μM (Figure 4.14). Taken together, these data suggest that 

although fluoxetine is a well-known inhibitor of 5-HTT in the nanomolar concentration range, at 

higher concentrations fluoxetine may itself be initiating transactivation pathways. To investigate 

whether other SSRIs can induce PDGFβ receptor phosphorylation in the same manner as fluoxetine, 

citalopram was added over a 20-min time course (Figure 4.15). Likewise, citalopram was able to 

acutely cause transactivation with a maximum receptor phosphorylation occurring after 5 min.  

Previous reports suggest that at higher concentrations, SSRIs activate 5-HT2 receptors to induce 

ERK1/2 activation [215-217]. Since SH-SY5Y cells express 5-HT2 receptors [218-220], we sought to 

determine whether fluoxetine-induced PDGFβ receptor transactivation requires these receptors. Cells 

were pretreated with the 5-HT2 receptor antagonist LY 272015, which binds 5-HT2B receptors with a 

Ki on the order of 0.1 nM and 5-HT2A and 5-HT2C receptors with a Ki on the order of 10 nM [221]. A 

significant abrogation of PDGFβ receptor phosphorylation was not observed at lower concentrations, 

but there was an inhibition at 5 μM LY 272015 (Figure 4.16). This would suggest that this 

transactivation pathway is being initiated at either 5-HT2A or 5-HT2C receptors.  
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Figure 4.12. Fluoxetine treatment increases ERK1/2 phosphorylation.  
SH-SY5Y cells were treated with 10 µM fluoxetine for 0, 2, 5, 10, 15 or 20 min. Following drug treatments, 

cells were lysed and lysates were evaluated by Western blot as described in the methods. Data were normalized 

to total ERK1/2 protein expression and are expressed as the fold change in phospho-ERK1/2 immunoreactivity 

compared to vehicle-treated cells. Representative blots for phospho-ERK1/2 (pERK) and ERK1/2 are shown    

(* = p<0.05 compared to vehicle-treated cells; n = 5). 
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Figure 4.13. Fluoxetine treatment increases Src phosphorylation.  

SH-SY5Y cells were treated with 10 µM fluoxetine for 0, 2, 5, 10, 15 or 20 min. Following drug 

treatments, cells were lysed and lysates were evaluated by Western blot as described in the methods. 

Data were normalized to total p60 Src protein expression and are expressed as the fold change in 

phospho-Y418 immunoreactivity compared to vehicle-treated cells. Representative blots for phospho-

Y418 (pY418) and p60 Src are shown (* = p<0.05 compared to vehicle-treated cells; n = 4). 
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Figure 4.14. Fluoxetine-induced PDGFβ receptor transactivation is concentration-dependent.  
SH-SY5Y cells were treated with 0.01, 0.1, 1, 10, or 20 µM fluoxetine for 5 min. Following drug treatments, 

cells were lysed and lysates were evaluated by Western blot as described in the methods. Data were normalized 

to total PDGF receptor protein expression and are expressed as the fold change in phospho-1021 

immunoreactivity compared to vehicle-treated cells. Representative blots for phospho-PDGFR 1021 (pY1021) 

and PDGFR are shown (* = p<0.05 compared to vehicle-treated cells; n = 7). 
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Figure 4.15. Citalopram also transactivates PDGFβ receptors.  
SH-SY5Y cells were treated with 10 µM citalopram for 0, 2, 5, 10, 15 or 20 min. Following drug treatments, 

cells were lysed and lysates were evaluated by Western blot as described in the methods. Data were normalized 

to total PDGF receptor protein expression and are expressed as the fold change in phospho-1021 

immunoreactivity compared to vehicle-treated cells. Representative blots for phospho-PDGFR 1021 (pY1021) 

and PDGFR are shown (* = p<0.05 compared to vehicle-treated cells; n = 4). 
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Figure 4.16. Fluoxetine-induced transactivation is initiated at 5-HT2 receptors.  
SH-SY5Y cells were pretreated with 0, 0.01, 0.1, 0.5 or 5 μM LY 272015 (LY) followed by treatment with 

vehicle or 1 μM fluoxetine (FL) for 5 min. Following drug treatments, cells were lysed and lysates were 

evaluated by Western blot as described in the methods. Data were normalized to total PDGFR protein 

expression and are expressed as the fold change in phospho-1021 immunoreactivity compared to vehicle-treated 

cells. Representative blots for phospho-PDGFR 1021 (pY1021) and PDGFR are shown (* = p<0.05 

compared to vehicle-treated cells; # = p<0.05 compared with FL-treated cells; n = 7). 
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Figure 4.17. Reverse result: 5-HT attenuates fluoxetine-induced PDGFβ receptor 

transactivation. 
SH-SY5Y cells were incubated with 100 nM 5-HT for 45 min followed by 5 min treatment with 1 μM 

fluoxetine (FL). Following drug treatments, cells were lysed and lysates were evaluated by Western blot as 

described in the methods. Data were normalized to total PDGFR protein expression and are expressed as the 

fold change in phospho-1021 immunoreactivity compared to vehicle-treated cells. Representative blots for 

phospho-PDGFR 1021 (pY1021) and PDGFR are shown (* = p<0.05 compared to vehicle-treated cells;          

# = p<0.05 compared with FL-treated cells; n = 4).  
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4.1.4 Transactivation of PDGFβ receptor is subject to heterologous desensitization 

To this point, it has been shown that both 5-HT and fluoxetine can independently transactivate 

PDGFβ receptors via 5-HT receptor activation. This study also demonstrated that 45-min fluoxetine 

pretreatment blocked the effects of 5-HT-induced PDGFβ receptor transactivation (see Figure 4.1). 

To determine if the reverse is true, cells were pretreated with 5-HT for 45 min, followed by 5-min 

fluoxetine application. Indeed, 5-HT was able to diminish fluoxetine-induced PDGFβ receptor 

transactivation (Figure 4.17). The ability of one transactivating stimulus to block a transactivation 

event from another transactivating stimulus may indicate that transactivation pathways are vulnerable 

to desensitization.  

The aforementioned drugs have thus far targeted 5-HT receptors. This study and others have shown 

that dopamine was also able to transactivate PDGFβ receptors (see Figure 3.14 and [68]). To 

determine if the desensitization of transactivation could be observed with two distinct GPCR systems, 

cells were pretreated with 5-HT for 45 min (well past the point where PDGFβ receptor 

phosphorylation returns to baseline, see Figure 3.2), followed by dopamine application for 2 min. If 

transactivation inhibition was occurring at the same receptors as the first stimulus (in this case 5-HT 

receptors), activating dopamine receptors should still cause transactivation. Interestingly, 45-min 

pretreatment with 5-HT blocked dopamine-induced transactivation (Figure 4.18), suggesting that 

transactivation desensitization did not occur at the initiating receptor, and that this may be an example 

of heterologous desensitization. In order to determine if desensitization is continuous or expires after 

a certain time, we pretreated cell cultures with 5-HT for 1, 2, or 3 h followed by dopamine treatment 

(Figure 4.19). Interestingly, dopamine-induced transactivation occurred after 3 h in spite of 5-HT 

pretreatment, but not at earlier time points. Cell cultures treated with 5-HT alone for 1, 2, and 3 h did 

not show any change in receptor phosphorylation (Figure 4.20). Therefore, although a sustained 

transactivating stimulus inhibited further PDGFβ receptor transactivation after 45 min, exposure of 

the initial drug for more than 3 h did not prevent receptor phosphorylation (Figure 4.22), indicating 

that desensitization lasts no more than 3 h after applying the initial transactivating stimulus. 

To ascertain if this regulation occurred at the PDGFβ receptor itself, cells were pretreated with 5-

HT, followed by 5-min PDGF-BB – a ligand that directly activates PDGFβ receptor. A concentration 

of 0.1 ng/ml PDGF-BB was selected to have a comparable level of PDGFβ receptor phosphorylation 

as observed with GPCR-induced transactivation. However, 5-HT was unable to inhibit PDGF-BB-

induced receptor activation (Figure 4.21), suggesting that desensitization did not occur at PDGFβ 

receptors, but rather occurred at a point within the GPCR-PDGFβ receptor transactivation pathway. 
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Figure 4.18. PDGFβ receptor transactivation is subject to heterologous desensitization.  
SH-SY5Y cells were treated with 100 nM dopamine (DA) for 2 min (bar 4) or with 100 nM 5-HT for 45 min 

followed by 2 min dopamine treatment (bar 5). As controls relative phosphorylation with vehicle-treated cells 

(bar 1), with 5 min 5-HT treatment (bar 2) and with 45 min 5-HT treatment (bar 3) are shown. Data were 

normalized to total PDGFR protein expression and are expressed as the fold change in phospho-1021 

immunoreactivity compared to vehicle-treated cells. Representative blots for phospho-PDGFR 1021 (pY1021) 

and PDGFR are shown (* = p<0.05 compared to vehicle-treated cells; # = p<0.05 compared with 5-HT-treated 

cells;  = p<0.05 compared with DA-treated cells; n = 8). 
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Figure 4.19. PDGFβ receptor desensitization is limited to 3 h.  
SH-SY5Y cells were treated with vehicle (bar 1) or 100 nM for 5 min (bar 2). Additional cells were pretreated 

with 100 nM 5-HT for 0, 1, 2, or 3 h followed by 100 nM dopamine (DA) for 2 min (bar 3-6). Data were 

normalized to total PDGFR protein expression and are expressed as the fold change in phospho-1021 

immunoreactivity compared to vehicle-treated cells. Representative blots for phospho-PDGFR 1021 (pY1021) 

and PDGFR are shown (* = p<0.05 compared to vehicle-treated cells; n = 6).  
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Figure 4.20. Long-term 5-HT treatment does not affect PDGFβ receptor phosphorylation.  
As a control for Figure 4.19, SH-SY5Y cells were treated with 100 nM 5-HT for 0, 1, 2, or 3 h. Data were 

normalized to total PDGFR protein expression and are expressed as the fold change in phospho-1021 

immunoreactivity compared to vehicle-treated cells. Representative blots for phospho-PDGFR 1021 (pY1021) 

and PDGFR are shown (n = 6). 
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Figure 4.21. PDGFβ receptor activation by PDGF-BB is unaffected by 5-HT pretreatment.  
SH-SY5Y cells were treated with 0.1 ng/ml PDGF-BB for 5 min (bar 4) or with 100 nM 5-HT for 45 min 

followed by 5 min 0.1 ng/ml PDGF-BB (bar 5). As controls, relative phosphorylation with vehicle-treated cells 

(bar 1), with 5 min 5-HT treatment (bar 2) and with 45 min 5-HT treatment (bar 3) are shown. Data were 

normalized to total PDGFR protein expression and are expressed as the fold change in phospho-1021 

immunoreactivity compared to vehicle-treated cells. Representative blots for phospho-PDGFR 1021 (pY1021) 

and PDGFR are shown (* = p<0.05 compared to vehicle-treated cells; # = p<0.05 compared with 5-HT-treated 

cells; n = 5).  
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Figure 4.22. Heterologous desensitization in transactivation. 
Given two independent drugs that are capable of independently inducing transactivation of PDGFβ receptor, the 

initial stimulus (Drug 1) acutely causes transactivation with peak phosphorylation taking place after 5 min. 

Heterologous desensitization occurs after 45 min of the initial drug application where transactivation by a 

second drug (Drug 2) is occluded. After 3 h of sustained exposure to the first drug (Drug 1), transactivation is 

again able to occur by the second drug (Drug 2).  
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4.2 Discussion 

In this section, the notion of 5-HT receptor-induced transactivation was built upon by revealing a 

temporally dependent attenuation of GPCR-mediated transactivation of PDGFβ receptors. It was 

demonstrated that fluoxetine induced an increase in PDGFβ receptor phosphorylation, likely via 

activation of 5-HT2 receptors. To our knowledge, this is the first example of a selective serotonin 

reuptake inhibitor (SSRI) causing PDGFβ receptor transactivation. Interestingly, this experimental 

protocol also allowed for the identification of a novel transactivation signaling phenomenon: 

heterologous desensitization. Transactivation of the PDGFβ receptor by one stimulus was able to 

prevent a subsequent transactivation signal by another stimulus within a 3 h window. 

 

4.2.1 The 5-HTT hypothesis 

The initial hypothesis upon analyzing the abrogation of 5-HT-induced PDGFβ receptor 

transactivation by fluoxetine (Figure 4.1) was that perhaps the main target of fluoxetine, the serotonin 

transporter (5-HTT), was involved. Previously, it was demonstrated that the 5-HTT was 

phosphorylated by PKC at serine/threonine residues, and increasing phosphorylation correlated with a 

decrease in function [222]. Also, tyrosine phosphorylation was observed on the 5-HTT, and this 

phosphorylation was necessary for maintaining membrane expression levels and function [223]. The 

C-terminal region of the 5-HTT also appears important for transport function [21]. However, other 

than these trafficking and functional roles, it remains to be determined whether the 5-HTT can initiate 

or directly participate in signal transduction cascades, either through altering its phosphorylation 

states or by another means. Despite the lack of evidence and the possible high impact of discovering a 

signaling role for the 5-HTT, the relatively high concentrations of SSRIs required to achieve the 

abrogation of transactivation (compared to the Ki for 5-HTT) seemed suspicious and warranted 

further study. Thus, this experimental direction was favored for exploration over the former and 

yielded satisfactory, if not complex, results. 

On a side note, other avenues for disputing 5-HTT involvement were explored. An attempt to 

knock-down 5-HTT protein using siRNA was attempted; however, inconsistent results were obtained 

(data not shown). Various times and concentrations of siRNA incubation were attempted, indicating a 

long half-life of existing 5-HTT protein. The more likely reason was the inability to find the 

appropriate conditions for optimal transfection of SH-SY5Y cells despite using two different 
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transfection reagents. However, with overwhelming evidence supporting the fluoxetine-to-5-HT2 

receptor hypothesis as described below, it felt reasonable to conclude that the 5-HTT was not 

involved in fluoxetine-mediated 5-HT-induced transactivation abrogation. Therefore, this avenue of 

investigation was suspended. 

 

4.2.2 Involvement of 5-HT2 receptors 

With the high concentrations of fluoxetine needed to abrogate 5-HT-mediated PDGFβ receptor 

transactivation, further investigation into the action of fluoxetine was warranted. The Ki of fluoxetine 

for the 5-HTT is 1 nM [214], so a concentration of 10 nM should presumably lead to the vast majority 

of 5-HTT being bound by fluoxetine. If the 5-HTT was involved, an abrogation in 5-HT-mediated 

transactivation (or at least a partial one) would be expected to be seen at this concentration. However, 

this was not the case: fluoxetine was only capable of blocking transactivation at 1-10 µM. Further, 

when acutely treated with these high concentrations of fluoxetine, this drug was independently able to 

transactivate PDGFβ receptors, and this signaling was sensitive to the 5-HT2 antagonist LY 272015. 

Activation of 5-HT2 receptor isoforms have been shown to activate ERK1/2 [199, 200, 224], and 

since ERK1/2 was also activated by fluoxetine application, this drug was likely an agonist for one or 

more isoforms of 5-HT2 receptors as previously described [165, 215]. This notion of fluoxetine 

binding 5-HT receptors is a recently discovered drug effect compared to 5-HTT binding, with studies 

outlining an affinity of fluoxetine for 5-HT2A, 5-HT2B, and 5-HT2C receptors [165, 214, 216, 225]. 

Nevertheless, this is the first example of a selective serotonin reuptake inhibitor (SSRI) causing 

PDGFβ receptor transactivation.  

 

4.2.3 Heterologous desensitization in transactivation 

One definition of heterologous desensitization is “activation of one GPCR inhibits signaling from 

another heterologous GPCR” [226], and was represented by the “refractory period” where 

transactivation was blocked in the presence of a previously applied agonist. Four pieces of evidence 

are given to describe this: short-term fluoxetine pretreatment was able to abrogate 5-HT-induced 

PDGFβ receptor phosphorylation, short-term 5-HT pretreatment was able to block fluoxetine-induced 

PDGFβ receptor phosphorylation, short-term 5-HT pretreatment could inhibit dopamine-mediated 

PDGFβ receptor phosphorylation, and all three of these drugs induce PDGFβ phosphorylation when 
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applied alone. Given that sustained SSRI application prevented 5-HT-induced PDGFβ receptor 

transactivation at 45 min but not after 3 h or overnight treatment, the time required for the 

transactivation refractory period to expire is between 45 min and 3 h (Figure 4.22). In all probability, 

this period would involve a yet-unidentified regulatory enzyme that is preventing further 

transactivation events, and is common to the transactivation pathways described here (that is, 5-HT-, 

dopamine- and fluoxetine-mediated pathways). Although fluoxetine and 5-HT may be signaling 

through the same set of receptors, this refractory period is considered to be heterologous 

desensitization based on the data showing that dopamine signaling to PDGFβ receptors, which does 

not occur through 5-HT receptors, is also attenuated by 5-HT. The expiration of this refractory period 

may involve the cell eventually becoming desensitized to the first transactivating stimulus by 

phosphorylating and/or internalizing the activated GPCRs [8], thus removing the input of the external 

stimulus and allowing the signaling enzymes to “reset”.  

The regulation of transactivation which leads to the inability of a second transactivation event 

during the refractory period by a second stimulus is not occurring at the initiating GPCRs, nor is it 

occurring at the PDGFβ receptor. Rather, it must be taking place at an enzyme in the transactivation 

pathway that has been previously described in this system. ERK1/2 activation was described as 

branching off the transactivation pathway prior to reactive oxygen species (ROS) production. Given 

the ability of ERK1/2 to be inhibited by fluoxetine pretreatment (see Figure 4.2), the regulatory 

enzyme likely occurs upstream of ROS production as well (see Figure 3.70). One potential candidate 

for transactivation regulation is PKC. This enzyme has been shown to phosphorylate GPCRs at 

various intracellular serine and threonine residues, which correlates with decreased receptor activity 

[6]. This is notable for the reason that PKC indiscriminately targets active and inactive GPCRs [6]. 

For example, 5-HT-induced PKC activation may aide in phosphorylating and desensitizing activated 

5-HT receptors, but also inactive dopamine (and possibly other) receptors, as seen in Figure 4.18. In 

contrast, G protein-coupled receptor kinase (GRK)-induced desensitization requires an active GPCR 

to initiate phosphorylation [8], and this is a main mechanism of homologous desensitization. While 

GRK-mediated phosphorylation promotes arrestin binding and induces a conformational change in 

the GPCR to encourage internalization [227], this may not be the case for PKC-induced 

phosphorylation of GPCRs. If so, PKC-mediated desensitization that occludes transactivation would 

result in a greater number of GPCRs remaining on the membrane. These would be more readily 

available for consequent signal transduction upon eventual dephosphorylation and reactivation of 

GPCRs after the expiration of the desensitization period.  
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In vivo, a typical neuron is regularly exposed to neurotransmitters that initiate signaling events, so 

would there be a desensitizing refractory period as well? Perhaps, but unlike this study, 

neurotransmitter signaling usually has a mechanism in place for rapidly voiding the synaptic space of 

neurotransmitter within milliseconds [228] to end the signal: be it a transporter for reuptake as is the 

case for 5-HT, dopamine, norepinephrine and glutamate, or a hydrolyzing enzyme to deactivate the 

neurotransmitter as is the case for acetylcholine. Thus, the exposure time of receptors to such a short 

stimulus is likely insufficient to cause desensitization. However, a potential problem arises when the 

system is overloaded in the medium term such that transporters or inhibiting enzymes cannot keep up. 

For example, glutamate receptor overactivity was shown to cause excitotoxicity, while PDGFβ 

receptor activation is neuroprotective and can mitigate the effects of various insults [229-234]. In vivo 

studies in rats show PDGF receptor activation attenuates hypoxia-mediated apoptosis in brainstem 

[230], and is also protective against glutamate- and NMDA-induced excitotoxicity in neurons [233-

235]. Glutamate also transactivates PDGF receptor (Appendix Figure I), so if a glutamate-induced 

refractory period occurs in the short to medium term, additional transactivating stimuli may be unable 

to activate the protective effects of PDGFβ receptor, which may contribute to increased cell damage 

in this period. 
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Chapter 5 

General discussion, perspectives, and outlooks 

The cross-talk between 5-HT receptors and PDGF and TrkB receptors adds to an increasing body of 

knowledge that GPCR and growth factor signaling are not as discrete as once thought. As the concept 

of RTK transactivation is a relatively recent discovery, many pieces to this puzzle still remain under-

investigated, and molecular mechanisms of their proliferative and detrimental effects are just now 

coming to light. The notion that ROS mediates phosphatase inhibition as a means of increasing RTK 

phosphorylation may suggest that transactivation is a more global pathway responsible for mitogenic 

or protective effects against cytotoxic insults, and that this phenomenon is likely not restricted to 5-

HT and RTK pathways elucidated here. Given the involvement of Gαi and Gαq-linked GPCR 

activation, studies involving these G protein subtypes may inevitably result in the discovery of further 

instances of transactivation of RTKs. 

In this chapter, potential outcomes of PDGF receptor signaling, and the future directions that this 

research could take are considered. In particular, we discuss the notion that although PDGFβ 

receptors are important mediators of various mitogenic signaling pathways and prolonged, direct 

activation of PDGFβ receptor has been shown to lead to hyperplasia and cancerous growth [49], 

short-term transactivation could serve as a “back door” to activating the receptor at a sub-hyperplastic 

level to provide protective and mitogenic effects.  

 

5.1 Other links to depression 

One current theory of antidepressant action involves downregulation of 5-HT1 autoreceptors. In this 

model, 5-HTT inhibition increases levels of synaptic 5-HT which increasingly binds autoreceptors 

found on the presynaptic neuron, which results in their desensitization and downregulation over time 

[116]. Normally, these activated inhibitory autoreceptors prevent further 5-HT release from the 

presynaptic neuron, but with autoreceptor downregulation, this inhibition is lost and the net effect is a 

greater amount of 5-HT released presynaptically [18].  

On this note, antidepressants such as fluoxetine that bind 5-HT receptors may have a similar 

mechanism involving 5-HT2 heteroreceptors. Initially, fluoxetine may be acting as an agonist at these 

receptors to cause a signaling cascade (possibly including transactivation). With a Kd on the order of 
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0.1-1 µM for 5-HT2 receptors [214, 236, 237] in combination with its long in vivo half-life of 24-72 h 

[236], chronic fluoxetine exposure may be building up to sufficient concentrations such that 

desensitization and downregulation of 5-HT2 receptors occurs over time. This is in line with current 

research that suggests that 5-HT2 receptor activation increases instances of depression in rodents, 

whereas 5-HT2 receptor inhibition has antidepressant effects [238-240]. These depressive effects may 

be the result of excitatory 5-HT2 receptors present on GABAergic interneurons, which when active, 

leads to GABA release and binding to GABA receptors on nearby serotonergic neurons, thus 

preventing their firing [241]. This would result in less 5-HT signaling and consequently, increases in 

depressive behavior [241]. Theoretically, this mechanism could be halted with fluoxetine-mediated 5-

HT2 receptor desensitization which may lead to an improvement in the symptoms of depression. 

Thus, it would be of interest to determine the effect of fluoxetine on 5-HT2 receptor expression in 

depressed and non-depressed in vivo models. 

There are also reports of fluoxetine binding 5-HT1A receptors with a Kd on the order of 10 µM 

[214, 236, 237]. Therefore, it is possible that fluoxetine treatment may result in 5-HT1A autoreceptor 

inhibition by the fluoxetine itself. While 5-HT may bind to 5-HT1A autoreceptors, 5-HT reuptake 

(even if repressed by SSRIs) is not 100% inhibited and would still clear 5-HT from the synapse, albeit 

more slowly. With fluoxetine treatment in which a rapid reuptake or clearance mechanism 

presumably does not exist, in vivo concentrations may gradually build up to adequate concentrations 

(similar to the proposed mechanism in the above paragraph) such that binding and possible 

desensitization of 5-HT1A autoreceptors become significant. This would further increase 5-HT neuron 

firing and, in combination with 5-HTT inhibition, increase synaptic 5-HT levels. Although these 

micromolar concentrations of fluoxetine seem high, some studies suggest, taking into consideration 

the long half-life, that these concentrations are still therapeutically relevant [217]. Nuclear magnetic 

resonance imaging of the human brain have estimated fluoxetine/norfluoxetine concentrations to be 

as high as 10.7 µg/mL (31 µM) during chronic fluoxetine treatment [216] – more than sufficient to 

activate the 5-HT receptors described here. 
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5.2 Physiological responses of PDGF receptor transactivation: Short-term 

protection but detrimental over the long term? 

Physiological cell responses to transactivation are still not well understood; however, there seems to 

be a general trend demonstrating a survival or proliferative cellular response dependent on PDGF 

receptor transactivation, which is beneficial in the short term but detrimental in the long term. The 

available data is limited, although some examples are discussed here. Acute exposure to insults such 

as cigarette smoke extract or hypoxic conditions induces PDGF receptor transactivation and 

subsequent activation of cell survival signaling pathways to limit the extent of inflammation- or 

apoptosis-induced injuries [229-232]. However, pharmaceutical or genetic inhibition of PDGF 

receptor activity decreases the proliferative/survival effects of this pathway [230, 231]. The exact 

details of the initiating factor in these transactivation pathways are still unclear, but one study has 

suggested the involvement of Gαi proteins [242].  

On the other hand, long-term PDGF receptor transactivation is linked to disease states. Prolonged 

angiotensin II and endothelin exposure through GPCRs induces PDGF receptor-dependent cellular 

responses such as cell migration and proliferation of smooth muscle that contribute to vascular 

remodeling processes in hypertension [166, 167]. Similarly, long-term exposure to cigarette smoke 

extract causing PDGF receptor transactivation was linked to COX-2 upregulation in tracheal smooth 

muscle [243], which may be responsible for lung inflammation and damage seen in smokers. Mice 

exposed to chronic hypoxia (months) also show a continued increase in PDGF receptor 

phosphorylation, and development of thicker vascular smooth muscle similar to that reported in 

pulmonary hypertension [244]. Finally, oxidized forms of the cholesterol-carrying low-density 

lipoproteins (oxLDLs) have resulted in PDGF receptor transactivation in a ROS-dependent manner 

[245], which may be responsible for migration of smooth muscle cells into the endothelial layer, the 

destruction of ECM proteins, and causing plaques to rupture and form thrombi as seen in 

atherogenesis [246, 247]. Thus, while short-term PDGFβ receptor transactivation appears to initiate 

cell survival and proliferative pathways, long-term implications of this signaling leads to an 

overabundance of cell growth that can have implications in these disease etiologies. In the CNS, long-

term exposure to transactivating stimuli may have different outcomes in neurons. The majority of 

neurons exists in a terminally differentiated state and will not re-enter the cell cycle, therefore neuron 

survival, rather than proliferation, may be the only relevant outcome. 
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5.2.1 Neuroprotection 

Prior studies have shown that PDGF-BB binding to its receptor leads to rapid internalization and 

degradation of both receptor and ligand [49], whereas 5-HT receptor activation does not appear to 

result in PDGF receptor internalization, and in some cases, leads to increased receptor expression. 

This was demonstrated in our previous work which showed that long-term 5-HT and 5-CT 

application to primary cultured neurons did not down-regulate, but rather up-regulated PDGFβ 

receptors [140], whereas PDGF-BB application led to decreased cell surface expression of these 

receptors [49]. Additionally, we have unpublished observations suggesting that long-term 5-HT 

receptor activation also modestly increases TrkB receptor expression. Since growth factor receptor 

activity is typically proliferative in nature, one consequence of this PDGF receptor up-regulation is 

increased neuroprotection against NMDA-induced excitotoxicity as seen in primary hippocampal 

neuron cultures [233]. We believe that the cross-talk between PDGF and NMDA receptors is 

dependent upon the PDGFβ receptor phosphorylation site Y1021 and subsequent PLCγ activity. This 

cross-talk may also act via transactivated PDGFβ receptors, which is the rationale for choosing 

Y1021 as the primary phosphorylation site in this study. Correspondingly, we have preliminary 

evidence of short-term transactivating agonist application eliciting protection against H2O2-induced 

cell death (Figure 5.1).  

Given the difference in potency between growth factors and agonists that evoke transactivation 

pathways, one might question why these latter agonists would even be considered to be applicable. As 

therapeutic agents, growth factors and neurotrophic factors are not permeable to the blood-brain 

barrier (BBB) due to their size, nor would they survive in the gastrointestinal tract if given as an oral 

preparation. However, many of these small molecules that activate GPCRs (or their precursors) are 

BBB-permeable, and can be formulated for oral ingestion. Examples include the 5-HT precursor 5-

hydroxytryptophan and the dopamine precursor levodopa [248], which are converted to the active 

molecule within the CNS. The use of GPCR agonists may ultimately result in short-term 

transactivation pathways and long-term increases in PDGF receptor expression. Using GPCR agonists 

such as 5-HT to initiate short-term transactivation not only avoids the impermeability problems but 

also the dangers of hyperplasia and cancer-like conditions associated with exogenous application of 

growth factors such as PDGF [49]. Although the details of GPCR-induced PDGFβ receptor up-

regulation remains to be elucidated (and is currently being investigated by other laboratory members), 
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this up-regulation of expression and activity through transactivation could serve as a mechanism for 

sensitizing or priming the cell for relieving present or preventing future neuronal insults. 
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Figure 5.1. 5-HT and citalopram partially protect SH-SY5Y cells from H2O2-induced 

cell death, but AG 1296 has no effect. 
Cells were treated with citalopram (CIT) or fluoxetine (FL) or DPAT or 5-HT for 5 min followed by 

the addition of 100 µM H2O2 for 30 min. Cells treated with 5-HT were additionally pretreated with 

vehicle or the PDGF receptor kinase inhibitor AG 1296 (AG) for 30 min prior to the addition of 5-HT. 

Media was changed and cultures were returned to the incubator for 48 h prior to adding MTT reagents. 

Cell viability was assessed by absorbance of the resulting solution at 570 nm. Although DPAT was 

trending toward modest protective effects, the result was not statistically significant. AG 1296 

application did not prevent 5-HT-induced neuroprotection against H2O2, which may be expected if 

multiple RTKs are activated via transactivation. (* = p<0.05 compared to vehicle-treated cells;              

# = p<0.05 with respect to H2O2 (alone)-treated cells.) 

 

 

5.2.2 Conclusions 

While both short-term and long-term transactivation events lead to cell proliferation, excess 

proliferation including hyperplasia is observed in long-term studies, evocative of PDGF ligand-

induced cancerous growths. Could these transactivation pathways then be thought of as “diet” or 

“lite” RTK activation? Perhaps transactivation signaling and subsequent short-term desensitization 

has the mechanistic responsibility to filter competing signals from GPCRs, where only one of a group 
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of successive GPCR input signals is allowed to continue to produce an output, thus streamlining the 

ultimate cellular response. 

In addition to GPCRs, these examples show that PDGF receptors can be activated by oxidative 

reactions. These examples deviate from the classical definition of transactivation, as the involvement 

of an activated GPCR is only speculative at this point. It is conceivable that oxidative reactions 

producing ROS may bypass GPCRs altogether and enter the transactivation pathway at the point of 

ROS production (see Figure 3.70 on page 86). This may indicate that transactivation pathways are a 

subset of proliferative oxidative pathways (or vice versa) that all share a common mechanism, 

including ROS production, and lead to growth factor receptor activation through phosphatase 

inhibition. These examples also provide evidence for a transactivation-like signaling model, given the 

involvement of specific enzymes in our proposed mechanism such as Src, NADPH oxidase, ROS, and 

PKC [231, 243-246]. Although not all of the enzymes that were elucidated in the present study were 

investigated in these examples, it would not be surprising to discover that additional enzymes may be 

involved, given the proposed universality of transactivation pathways in general. 

 

5.3 Future Directions 

5.3.1 G protein-coupled receptor kinases and PDGFβ receptor phosphorylation 

Up to this point, phosphorylation of the PDGF receptor at various tyrosine residues has involved 

activation of the receptor. Besides phosphorylating GPCRs, G protein-coupled receptor kinases 

(GRKs) are also capable of phosphorylating the PDGF receptor on serine residues [249]. 

Experimental evidence shows that PDGF-induced PDGF receptor phosphorylation on tyrosine 

residues leads to tyrosine phosphorylation in GRK proteins, which enhances the ability of GRK to 

phosphorylate the PDGF receptor, but not β2-adrenergic receptors [249-251]. This also implies GRK 

is a substrate for activated PDGF receptors [252], or that it is phosphorylated by an effector of PDGF 

receptor such as c-Src [253]. Serine phosphorylation of PDGF receptors also correlates to a decrease 

in tyrosine phosphorylation, possibly by the phosphatase SHP-2, and this in combination with the 

increased serine phosphorylation leads to a deactivated or desensitized receptor [249, 251]. Both 

GRK2 and GRK5 induced serine phosphorylation on PDGFβ receptors, as described by Freedman 

and colleagues [249-252, 254]. A suspected PDGFβ receptor phosphorylation site in mouse is S1104, 

which is also part of a domain that binds NHERF, a protein that facilitates PDGF receptor 
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dimerization [254, 255]. A S1104A PDGFβ receptor mutant has reduced NHERF binding and is 

unable to be desensitized, even with GRK2 overexpression [254], further implicating serine 

phosphorylation as a desensitizing mechanism.  

Regulation of RTK activation is typically understood to involve internalization of the receptor-

ligand complex. This is followed by either recycling or proteolytic degradation of the receptor [49]. 

However, now GRKs may also have a role in this process. Nevertheless, the above experiments were 

performed with PDGF as the activator of PDGFβ receptor. It is unknown if GPCR agonists can also 

elicit this deactivation effect via a transactivation pathway, nor is it known if NHERF would play a 

role, especially since PDGF receptor dimerization in transactivation pathways is not required [196]. 

However, if GPCRs can induce GRK-mediated regulation of transactivated PDGF receptor, this could 

indicate a much stronger interrelationship between GPCRs and PDGF receptor (and possibly other 

RTKs) than originally thought. If true, a potential feedback loop emerges: GPCR activation leads to 

PDGF receptor/RTK transactivation, which in turn enhances GRK activity. Activated GRKs are then 

available to regulate PDGF receptor/RTK signaling through serine phosphorylation (see Figure 5.2).  

 

 
Figure 5.2. Possible feedback mechanism for PDGFβ receptor 

desensitization.  
5-HT activates 5-HT receptors, which in turn initiate tyrosine phosphorylation (red 

P) of PDGFβ receptors. Active 5-HT receptors are also capable of activating GRKs, 

which desensitize GPCRs through serine phosphorylation (blue P). GRKs activated 

by GPCRs may also have the ability to translocate to and phosphorylate PDGFβ 

receptors on serine residues to terminate transactivation. 
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5.3.2 Drug targets: Wanted vs. unwanted 

This project highlights the inherent weakness in pharmaceutical-based approaches: a given 

pharmaceutical never binds only the intended target. There is usually at least one other molecular 

target with which a pharmaceutical can interact in a concentration-dependent fashion. This is very 

evident in the present study with fluoxetine given its ability to block 5-HT-induced PDGFβ receptor 

activation. Fluoxetine is designed for and used as a 5-HT transporter inhibitor, and one might 

conclude based on this evidence that the 5-HTT is involved, were it not for the data suggesting 

fluoxetine is acting as a 5-HT2 receptor agonist in this situation. As a control for Figure 4.1, which 

demonstrated the ability of fluoxetine to block 5-HT-induced PDGFβ receptor phosphorylation, 

fluoxetine was added to cell cultures in absence of 5-HT for the pretreatment time interval of 45 min. 

Fluoxetine-treated cells did not show a change in PDGFβ receptor phosphorylation compared to 

vehicle-treated cells after 45 min (data not shown), because it was well past the point of PDGFβ 

receptor phosphorylation returning to baseline. The experimental approach examining the effect of 

short-term fluoxetine treatment was serendipitous and led to an entirely new direction for this project. 

In another experiment, the 5-HT1A antagonist WAY 100135 partially blocked 5-HT-induced PDGF 

receptor activation at 100 nM (Figure 3.17), a concentration at which an inhibition would be expected 

to occur given the IC50 of WAY 100135 to be 15 nM for 5-HT1A receptors [256, 257]. Interestingly, 

there was not a significant reduction in PDGF receptor activation when 1000 nM WAY 100135 was 

used yet there was at 100 nM. Although unreported with WAY 100135, a structurally and 

functionally similar compound and 5-HT1A antagonist, WAY 100635, was later discovered to be a 

strong dopamine D4 agonist [258] as well. It is therefore possible that WAY 100135 may also activate 

other receptors such as the Gαi-linked D4 receptors at higher concentrations, which would increase 

phosphorylation of PDGF receptor through a transactivation pathway. If true, then this is an identical 

situation to fluoxetine-mediated transactivation inhibition: WAY 100135 may be transactivating 

PDGFβ receptor within 5 min but PDGFβ receptor phosphorylation would drop back down to 

baseline levels within 15 min, as shown with both 5-HT and fluoxetine-mediated transactivation. 

Subsequent 5-HT application after 45 min would occur in the WAY-induced desensitized period, 

resulting in no observed PDGFβ receptor phosphorylation. A dose-response and timed-response 

analysis of WAY 100135 would be of interest to determine if it can transactivate PDGFβ receptor 

acutely. A positive result may lead to a reevaluation of the involvement of 5-HT1A receptors in this 

phenomenon. 
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5.3.3 Other considerations 

In addition to the transactivation data elucidated in Chapter 3, there are other mechanistic questions 

that could be posed. For instance, with concentrations of 5-HT above 100 nM (i.e. 1 µM or 10 µM) in 

the 5-min dose response experiment (Figure 3.2, page 32), statistically significant increases in PDGFβ 

receptor phosphorylation were not detected. Was this because transactivation already had taken place 

and phosphorylation had returned to baseline? For example, a 1 µM 5-HT time course experiment 

similar to Figure 3.2 may reveal that maximum phosphorylation takes place earlier than 5 min, and 

along the same lines, a 5-HT concentration of 10 nM may take longer than 5 min to reach maximum 

phosphorylation (see Figure 5.3). This could determine whether transactivation is ultimately 

dependent on receptor affinity of the GPCR agonist, or whether a certain agonist concentration 

threshold is required to initiate transactivation.  

We focused primarily on the PDGFβ receptor phosphorylation site Y1021 because it is implicated 

in another mechanistic pathway that is being investigated in our laboratory. Y1021 is the docking site 

of PLCγ, which we believe is involved in PDGFβ receptor signaling to NMDA receptors. However, 

there are several other PDGFβ phosphorylation sites whose activity could differ from Y1021 and 

should be investigated. These phosphorylation site profiles may also differ with respect to PDGF 

ligand-induced receptor phosphorylation, and this avenue of research is currently being investigated 

by other laboratory members.  

In section 4.1.4, the notion of heterologous desensitization in transactivation was discussed. 

Clearly, this line of investigation should be expanded to clarify when desensitization begins and ends, 

although we do have preliminary evidence that indicates desensitization is limited to no more than     

3 h. The mechanism and enzymes involved in the actual desensitization process should also be 

investigated. Additionally, although we staggered the application of agonists (e.g. we pretreated cells 

with fluoxetine, with 5-HT applied later), this was only because we thought that fluoxetine was acting 

solely as a 5-HT transporter antagonist, and required sufficient time for binding before agonist 

application. In the future, it would be of interest to add agonists simultaneously to determine if 

heterologous receptor activation can additively or synergistically affect transactivation, or whether 

phosphorylation levels are limited to a 1.5-2-fold increase. 
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It was observed in electrophysiology that PDGF-BB application acutely decreased NMDA-evoked 

peak currents in isolated hippocampal neurons [234], whereas 5-CT application increased NMDA-

evoked peak currents [259]. Does this latter result depend on PDGF receptor activity, and if so, do 

other agents that cause transactivation also modulate NMDA-evoked currents in a PDGF receptor-

dependent manner? This could potentially lead to greater evidence supporting a signaling triad 

between 5-HT receptors (or possibly GPCRs in general), PDGF receptors, and NMDA receptors. In 

addition, we had observed that direct activation of PDGFβ receptors by PDGF-BB enhanced long-

term depression in hippocampal neurons as measured by a decrease in excitatory post-synaptic 

potential amplitude [234]. If activation of PDGF receptors via transactivation can elicit similar results 

then this may further our understanding of the cellular relevance of transactivation. 

 

 

Figure 5.3. Fold change in phosphorylation of PDGFβ receptor with respect 

to 5-HT concentration and exposure time. 
Data from the concentration (Figure 3.6) and exposure time (Figure 3.2) to 5-HT are 

plotted on the same graph, with a phosphorylation maximum and intercept at 0.1 µM, 5 

min. One future experiment could determine whether maximum receptor 

phosphorylation seen in transactivation at a given concentration or exposure time is 

limited to the maxima created by these two curves. That is, if a different concentration 

were used in a time course experiment, would the maximum phosphorylation occur at the 

intercept with the red curve (i.e. at 5 min), or would a different time point yield the 

maximum phosphorylation? Likewise, if a different exposure time were used in the dose-

response experiment, would the maximum phosphorylation occur at the intercept with 

the green curve (i.e. at 0.1 µM), or would a different concentration yield the maximum 

phosphorylation? 
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5.4 Final remarks 

The notion of transactivation of RTKs has traditionally been attributed to their activation via GPCRs. 

Given the recent influx of new data showing PDGF receptor activation by signaling pathways and 

receptors other than GPCRs (particularly ROS), it would be reasonable to suggest that the definition 

of transactivation may eventually evolve to include these alternate means of “ligand-independent 

RTK activation”. Certainly, the transactivation of PDGF receptors has shown important mitogenic 

effects that result in cell survival, proliferation, and disease states in various cell types and may in fact 

account, at least partly, for these effects and other growth factor-like outcomes.  

With the physiological relevance of transactivation still requiring thorough investigation, there are 

clearly many more questions to be answered. At the very least, these data may indicate that PDGF 

receptor transactivation is playing a vital role in cell survival in the short term (minutes to hours) by 

inducing a tolerance to toxic insults, likely via inhibition of apoptosis. Long-term (days to weeks) 

studies, however, suggest that prolonged growth factor transactivation can lead to abnormal cell 

proliferation and vascular remodeling as observed in pulmonary hypertension and atherosclerosis. In 

fact, short-term use of transactivation-inducing agonists may be beneficial in a prophylactic or acute 

treatment of brain injuries such as hypoxia, oxidative stress, excitotoxicity, and other 

neurodegenerative diseases. Interestingly, the administration of the dopamine precursor levodopa is 

widely used as treatment to Parkinson’s disease, a disorder that results from loss of dopaminergic 

neurons in the substantia nigra and manifests various motor deficiencies. Levodopa, which is 

decarboxylated to dopamine in the CNS, may not only be replacing a critical neurotransmitter but 

may also be neuroprotective to neurons expressing dopamine receptors via RTK transactivation 

pathways. An experiment investigating RTK phosphorylation responses to short and chronic 

levodopa exposure in vivo, as well as cognitive outcomes of levodopa versus levodopa plus RTK 

antagonist-treated conditions would test this hypothesis could provide valuable insight. 

Thus, this study contributes to the already-intricate realm of cellular signal transduction; through 

our quest of knowledge and discovery, we continue to map out this complex web, teasing out one 

strand at a time. 
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Appendix A 

Supplementary Data 

This appendix contains additional data that may be of interest to the reader. These did not make the 

final cut and was left on the metaphorical editing room floor. Being one of the first graduate students 

in the laboratory and starting from scratch necessitated that I have multiple horses in the race in case 

some experimental directions flopped. These are, however, interesting scientific data that could easily 

spawn other research projects.  

 

Glutamate induces PDGFβ receptor transactivation 

SH-SY5Y cells express metabotropic glutamate receptors [260]. Given that both dopamine [68] 

and 5-HT were able to activate PDGF receptors through Gαi receptors, we applied glutamate to SH-

SY5Y cells and observed a significant increase in Y1021 of PDGF receptor at 100 nM (Appendix 

Figure I). Metabotropic glutamate receptors are linked primarily to Gαi and some Gαq [261], and thus 

this Gαi-initiated pathway further corroborates the idea that transactivation events are initiated by 

Gαi-coupled GPCRs. This idea should clearly be expanded as glutamate and the time course involved 

potentially relates to the mechanism of glutamate-induced excitotoxicity, a common pathology that 

leads to neuron death. 
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Appendix Figure I. Glutamate is able to transactivate PDGFβ receptors. 
SH-SY5Y cells were treated for 5 min with 0 to 10 µM glutamate. Following drug treatments, cell lysates were 

evaluated by Western blot analysis as described in Materials and methods. Data were normalized to total 

PDGFRβ protein expression and are expressed as the fold change in phospho-1021 immunoreactivity compared 

to vehicle-treated cells. Representative blots for phospho-PDGFR 1021 (pY1021) and PDGFR are shown          

(* = p<0.05 compared to vehicle-treated cells; n = 6).  
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Dimethyl sulfoxide affects basal phosphorylation of multiple proteins 

One of the more surprising and interesting results arose from control experiments involving dimethyl 

sulfoxide (DMSO). Some pharmaceuticals are not water-soluble and require solubilization in DMSO. 

Since DMSO is able to pass through the plasma membrane [262, 263], it may affect signal 

transduction. In order to determine the effect of DMSO on SH-SY5Y cells, we applied a1% DMSO 

solution to cells for 0-30 min and measured the fold-change in baseline phosphorylation of ERK1/2 

and PDGFβ receptor Y1021 (Appendix Figure II and Appendix Figure III). We also performed a 

dose-response analysis of DMSO with 0-5% solutions for 40 min and measured the effect on 

ERK1/2, PDGFβ receptor Y1021 and Src Y418 (Appendix Figure IV, Appendix Figure V, and 

Appendix Figure VI). Surprisingly, cells treated with DMSO concentrations of 1% or higher resulted 

in ERK1/2 phosphorylation being reduced by at least 50% below baseline. Phosphorylation of Src 

Y418 also showed a decrease in phosphorylation above 1%. PDGFβ receptor Y1021 phosphorylation 

results were not statistically significant after 5 min, but did show an increase after 20 min at a 1% 

concentration. Therefore, concentrations of our drug stocks were limited to less than 1% DMSO. 
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Appendix Figure II. DMSO treatment significantly affects basal ERK 1/2 phosphorylation. 
SH-SY5Y cells were treated with 1% (v/v) DMSO for 0, 5, 10, 15, 20, or 30 min. Following drug treatments, 

cell lysates were evaluated by Western blot analysis as described in Materials and methods. Data were 

normalized to total ERK1/2 protein expression and are expressed as the fold change in phospho-ERK 

immunoreactivity compared to vehicle-treated cells. Representative blots for phospho-ERK1/2 (pERK) and 

total ERK1/2 are shown (* = p<0.05 compared to vehicle-treated cells; n = 4). 
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Appendix Figure III. DMSO treatment significantly affects basal PDGFβ receptor 

phosphorylation.  
SH-SY5Y cells were treated with 1% (v/v) DMSO for 0, 5, 10, 15, 20, or 30 min. Following drug treatments, 

cell lysates were evaluated by Western blot analysis as described in Materials and methods. Data were 

normalized to total PDGFRβ protein expression and are expressed as the fold change in phospho-1021 

immunoreactivity compared to vehicle-treated cells. Representative blots for phospho-PDGFR 1021 (pY1021) 

and PDGFR are shown (* = p<0.05 compared to vehicle-treated cells; n = 4). 
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Appendix Figure IV. Basal ERK1/2 phosphorylation is affected by DMSO treatment in a 

concentration-dependent manner.  
SH-SY5Y cells were treated with 0, 0.01, 0.1, 1, 2, or 5% (v/v) DMSO for 40 min. Following drug treatments, 

cell lysates were evaluated by Western blot analysis as described in Materials and methods. Data were 

normalized to total ERK1/2 protein expression and are expressed as the fold change in phospho-ERK 

immunoreactivity compared to vehicle-treated cells. Representative blots for phospho-ERK1/2 (pERK) and 

total ERK1/2 are shown (* = p<0.05 compared to vehicle-treated cells; n = 5).  
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Appendix Figure V. 5-min DMSO treatment does not affect basal PDGFβ receptor 

phosphorylation.  
SH-SY5Y cells were treated with 0, 0.01, 0.1, 1, 2, or 5% (v/v) DMSO for 40 min. Following drug treatments, 

cell lysates were evaluated by Western blot analysis as described in Materials and methods. Data were 

normalized to total PDGFRβ protein expression and are expressed as the fold change in phospho-1021 

immunoreactivity compared to vehicle-treated cells. Representative blots for phospho-PDGFR 1021 (pY1021) 

and PDGFR are shown (n = 3). 
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Appendix Figure VI. DMSO treatment affects basal Src phosphorylation.  
SH-SY5Y cells were treated with 0, 0.01, 0.1, 1, 2, or 5% (v/v) DMSO for 40 min. Following drug treatments, 

cell lysates were evaluated by Western blot analysis as described in Materials and methods. Data were 

normalized to total p60 Src protein expression and are expressed as the fold change in phospho-418 

immunoreactivity compared to vehicle-treated cells. Representative blots for phospho-Src Y418 (pY418) and 

p60 Src are shown (* = p<0.05 compared to vehicle-treated cells; n = 5). 
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GBR 12935 also transactivates PDGFβ receptor  

In addition to the 5-HTT inhibitors fluoxetine and citalopram, we also examined the effect of a 

dopamine/norepinephrine transporter inhibitor, GBR 12935. These experiments were not continued in 

order to more fully examine the effect of fluoxetine, as this drug is currently on the market and may 

have had a higher impact should any “interesting” results have emerged. For example, a newly 

discovered indication for a drug already on the market would require less work/cost as phase I clinical 

trial safety data has already been done. GBR 12935 is not approved for human administration as of 

yet. Like fluoxetine and citalopram, GBR 12935 blocked acute 5-HT-induced PDGFβ 

phosphorylation at Y1021 and ERK1/2 at micromolar concentrations (Appendix Figure VII and 

Appendix Figure VIII). Also, this led to the determination that GBR 12935 transactivated the PDGFβ 

receptor by itself, possibly through an unknown GPCR (Appendix Figure IX). Furthermore it was 

more potent than either fluoxetine or citalopram, requiring only 0.1 µM instead of 1 or 10 µM on a 5-

min dose-response curve. Similarly, a 10 µM GBR 12935 time course showed maximum 

phosphorylation after only 2 min at 10 µM (Appendix Figure X), compared with 5 min for fluoxetine 

or citalopram. 
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Appendix Figure VII. GBR 12935 can block 5-HT-induced PDGFβ receptor transactivation.  
SH-SY5Y cells were pretreated with 0.01 to 10 μM GBR 12935 (GBR) for 45 min followed by 5 min treatment 

with 100 nM 5-HT. Following drug treatments, cells were lysed and lysates were evaluated by Western blot as 

described in the methods. Data were normalized to total PDGF receptor protein expression and are expressed 

as the fold change in phospho-1021 immunoreactivity compared to vehicle-treated cells. Representative blots 

for phospho-PDGFR 1021 (pY1021) and PDGFR are shown (* = p<0.05 compared to vehicle-treated cells; # 

= p<0.05 compared to 5-HT-treated cells; n = 5). 
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Appendix Figure VIII. GBR 12935 can block 5-HT-induced ERK1/2 phosphorylation.  
SH-SY5Y cells were pretreated with 0.01 to 10 μM GBR 12935 (GBR) for 45 min followed by 5 min treatment 

with 100 nM 5-HT. Following drug treatments, cells were lysed and lysates were evaluated by Western blot as 

described in the methods. Data were normalized to total ERK1/2 protein expression and are expressed as the 

fold change in phospho-ERK1/2 immunoreactivity compared to vehicle-treated cells. Representative blots for 

phospho-ERK1/2 (pERK) and ERK1/2 are shown (* = p<0.05 compared to vehicle-treated cells; # = p<0.05 

compared to 5-HT-treated cells; n = 8). 
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Appendix Figure IX. GBR 12935-induced PDGFβ receptor transactivation is concentration-

dependent.  
SH-SY5Y cells were treated with 0, 0.01, 0.1, 1, 10 µM GBR 12935 for 5 min. Following drug treatments, cells 

were lysed and lysates were evaluated by Western blot as described in the methods. Data were normalized to 

total PDGF receptor protein expression and are expressed as the fold change in phospho-1021 

immunoreactivity compared to vehicle-treated cells. Representative blots for phospho-PDGFR 1021 (pY1021) 

and PDGFR are shown (* = p<0.05 compared to vehicle-treated cells; n = 5). 
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Appendix Figure X. GBR 12935 itself can transactivate PDGFβ receptor.  
SH-SY5Y cells were treated with 10 µM GBR 12935 for 0, 2, 5, 10, 15 or 20 min. Following drug treatments, 

cells were lysed and lysates were evaluated by Western blot as described in the methods. Data were normalized 

to total PDGF receptor protein expression and are expressed as the fold change in phospho-1021 

immunoreactivity compared to vehicle-treated cells. Representative blots for phospho-PDGFR 1021 (pY1021) 

and PDGFR are shown (* = p<0.05 compared to vehicle-treated cells; n = 6).  
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Differentiated SH-SY5Y cells 

It has been postulated that SH-SY5Y cells can be differentiated into a more neuron-like form 

through the use of retinoic acid [264]. An attempt to replicate this phenomenon was performed. SH-

SY5Y cells were grown to 70% confluency in complete growth media (DMEM/F12, supplemented 

with 10% FBS). At this point, serum concentration was reduced to 1% and cells were treated with 10 

µM retinoic acid or vehicle for 6 days. Media were changed every two days (at 1% FBS) to replenish 

the retinoic acid. On the seventh day, cells were serum-starved overnight (with no retinoic acid 

present) prior to further drug treatments. While vehicle-treated cells had approximately doubled in 

cell number (as determined by microscopic inspection and total protein assay, data not shown), 

retinoic acid-treated cell numbers remained relatively constant from the point of retinoic acid 

application and reduced serum conditions. These cells also displayed slightly more outgrowth of 

neurite-like processes. There were also changes in the expression of two relevant proteins: retinoic 

acid-treated cells showed an approximately 3-fold decrease in p180 PDGFβ receptor expression 

(Appendix Figure XI), while expression of p145 TrkB had increased by approximately 60-fold 

(Appendix Figure XII) as determined by western blotting.  

After serum starvation, both retinoic acid- and vehicle-treated cells were subsequently subjected to 

100 µM 5-HT or vehicle for 5 min. Despite these changes in PDGFβ and TrkB receptor expression, 

western blot analyses showed that 5-HT was still capable of transactivating both receptor types with a 

similar increase in phosphorylation at site Y1021 (Appendix Figure XIII) and Y816 (Appendix Figure 

XIV), respectively. This would seem to indicate that transactivation is not dependent on total receptor 

expression or on the level of differentiation of the cell, and may be a universal process. 

In hindsight, differentiated SH-SY5Y may have been a better platform to use for the transfection 

experiments, since they do not divide. Knockdown of 5-HTT protein likely failed due to cells 

growing too rapidly, and thus the knockdown effect was occluded. The other possibility is that the 5-

HTT protein has a long half-life. 
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Appendix Figure XI. Differentiated SH-SY5Y cells show a decrease in PDGFβ receptor 

expression. 
SH-SY5Y cells were treated with 10 µM retinoic acid (RA) for 6 days. Following drug treatments, cells were 

lysed and lysates were evaluated by Western blot as described in the methods. Data were normalized to β-actin 

protein expression and are expressed as the fold change in PDGFβ receptor immunoreactivity compared to 

vehicle-treated cells. Representative blots for PDGFR and β-actin are shown (* = p<0.05 compared to vehicle-

treated cells; n = 8). 
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Appendix Figure XII. Differentiated SH-SY5Y cells show an increase in TrkB receptor 

expression. 
SH-SY5Y cells were treated with 10 µM retinoic acid (RA) for 6 days. Following drug treatments, cells were 

lysed and lysates were evaluated by Western blot as described in the methods. Data were normalized to β-actin 

protein expression and are expressed as the fold change in TrkB receptor immunoreactivity compared to 

vehicle-treated cells. Representative blots for TrkB and β-actin are shown (* = p<0.05 compared to vehicle-

treated cells; n = 6). 

  

TrkB 

β-actin 

PDGFR 

β-actin 

         Retinoic acid              -                   -                   +                   +  

         Retinoic acid              -                   -                +                  +  



 

 129 

F
o

ld
 c

h
a
n

g
e
 i
n

Y
1
0
2
1
 p

h
o

s
p

h
o

ry
la

ti
o

n

VEH 5-HT

0.0

0.5

1.0

1.5

2.0 *

 
 

 

Appendix Figure XIII. 5-HT transactivates PDGFβ receptors in differentiated SH-SY5Y cells. 
SH-SY5Y cells were treated with 10 µM retinoic acid for 6 days. Cells were then subjected to 100 µM 5-HT or 

vehicle for 5 min. Following drug treatments, cells were lysed and lysates were evaluated by Western blot as 

described in the methods. Data were normalized to total PDGFβ receptor protein expression and are expressed 

as the fold change in phospho-Y1021 PDGFβ receptor immunoreactivity compared to vehicle-treated cells. 

Representative blots for pY1021 and PDGFRβ are shown (* = p<0.05 compared to vehicle-treated cells; n = 5). 
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Appendix Figure XIV. 5-HT transactivates TrkB receptors in differentiated SH-SY5Y cells. 
SH-SY5Y cells were treated with 10 µM retinoic acid for 6 days. Cells were then subjected to 100 µM 5-HT or 

vehicle for 5 min. Following drug treatments, cells were lysed and lysates were evaluated by Western blot as 

described in the methods. Data were normalized to total TrkB receptor protein expression and are expressed as 

the fold change in phospho-Y816 TrkB receptor immunoreactivity compared to vehicle-treated cells. 

Representative blots for pY816 and TrkB are shown (* = p<0.05 compared to vehicle-treated cells; n = 7). 
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Appendix B 
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tyrosine kinases by dopamine receptors. (Book chapter.) Manuscript in preparation. 
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Z, Beazely 
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to Molecular and Cellular Neuroscience. 
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PRESENTATIONS 
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Poster, Association of Faculties of Pharmacy: Canadian Pharmacy Education and Research 
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derived growth factor receptor type beta in neuronal cells.” 
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Kruk JS, Beazely MA. “Serotonin transactivates platelet-derived growth factor receptor type beta in 
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