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Abstract

Sustaining energy requirement for wireless devices is the main barrier in building au-
tonomous communication systems and service-free networks. Specifically, in large-scale
networks where normally wired energy infrastructures are unavailable, regular battery
maintenance for each individual node is inefficient or unfeasible.

To resolve this problem, current and future state of the art technologies are focused
on development of perpetual energy resources by harvesting free energy in the environ-
ment such as kinetic, thermal, solar, or wind energies. However, the integration of energy
harvesting architectures with communication systems requires innovating adaptive trans-
mission power policies.

In this thesis, we investigate the structure of efficient transmission power policies for a
multiple access communication system with energy harvesting nodes where the utility func-
tion is taken to be the long-term average sum-throughput. We assume a causal structure
for energy arrivals and study the problem in the continuous time regime. For this setting,
we first characterize a storage dam model that captures the dynamics of a battery with
energy harvesting and variable transmission power. Using this model, we next establish
an upper bound on the throughput problem as a function of battery capacity.

We also formulate a non-linear optimization problem to determine optimal achievable
power policies for transmitters. Applying the calculus of variation technique, we derive
Euler-Lagrange equations as necessary conditions for optimum power policies in terms of a
system of coupled partial integro-differential equations (PIDEs). Based on a Gauss-Seidel
algorithm, we then devise an iterative algorithm to solve these equations.

Finally, we propose a fixed-point algorithm for the symmetric multiple access setting
in which the statistical descriptions of energy harvesters are identical. To support our
iterative algorithms, comprehensive numerical results are also obtained.
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Chapter 1

Introduction

1.1 Background

1 The fast growing utilization of sensor devices in measurement and automation has created
a new challenge, i.e., the problem of sensor maintenance. The sensor maintenance is crucial
to prevent faulty measurements, and can be extremely difficult and expensive depending
on the scale of sensor networks. Furthermore, a significant fraction of sensor maintenance
issues are due to the battery exhaustion. Therefore, an improvement in either sensor energy
consumption or battery performance returns a huge cost saving for industrial consumers.

To reduce the sensor energy consumption, various energy management strategies are
proposed in the literature (for a brief survey see [5] and [39]). The main goal of those
strategies is to decrease the radio activity, the number of data acquisitions, and to co-
ordinate the sleep/wake-up times of sensor device. Table 1.1 shows the current output
of the battery for different sensor tasks including data transmission, data reception, and
processing.

While energy management strategies are helpful, they have limited payoff since they
merely prolong the lifespan of the sensor. Furthermore, technological advancements in
battery performance has been slow in comparison to advancements in silicon industries. For
instance, in the period between 1990 and 2005, battery energy density has only increased
by three-fold while disk storage density has increased over 1200 times [27]. Due to those
problems, current state of the art technologies are focused on developing perpetual energy
resources by harvesting free energy in the environment.

1The results of this thesis is published in IEEE Transactions on Information Theory.
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Table 1.1: Power consumption of commercial sensor nodes [19].

Crossbow MICAz Intel IMote2 Jennic JN5139
Radio Standard IEEE802.15.4/ZigBee IEEE802.15.4 IEEE802.15.4/ZigBee
Typical Range 100 m (outdoor), 30 m (indoor) 30 m 1 km

Data Rate (kbps) 250 kbps 250 kbps 250 kbps
Sleep Mode (deep sleep) 15 µA 390 µA 2.8 µA (1.6 µA)

Processor Only 8 mA active mode 31-53 mA* 2.7+0.325 mA/MHz
RX 19.7 mA 44 mA 34 mA
TX 17.4 mA (+0dbm) 44 mA 34 mA (+3 dBm)

Supply Voltage (minimum) 2.7 V 3.2 V 2.7 V
Average 2.8 mW 12 mW 3 mW

∗Consumption depends on clock speed selected between 13-104MHz.

1.2 Energy Harvesting (EH) Systems

1.2.1 Overview of EH Techniques

Energy harvesting is a process in which ambient energy is converted to an electrical signal.
The main renewable energy sources that are currently utilized for energy harvesting in
sensor devices are listed below:

• Solar : Solar energy can be converted to electricity by means of photo-voltaic effect.
Photo-voltaic effect was first discovered by French physicist Edmund Bequerel in
1839, and was explained later by Albert Einstein in 1905. In a photo-voltaic process,
electrons bounded to an atom’s nucleus are ejected from the atom by the absorption of
energetic photons. Those electrons are in turn able to produce current in an electric
circuit. The maximum kinetic energy Kmax of ejected electrons are calculated by
Einstein relation

Kmax = h(f − f0), (1.1)

where h = 4.13× 10−15(eV.s) is Plank’s constant, f is the frequency (Hz) of emitted
light, and f0 is the minimum frequency required to excite the electrons. The function
ψ = hf0 is called the work function and is experimentally determined for different
materials.

For a solar cell, the high work function of the cell material means that most of the
daylight photons can not be absorbed and thus get wasted. In contrast, when the
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work function is too small, the generated voltage across the circuit becomes small as
ejected electrons have a small kinetic energy. The optimal value for the work function
is computed to be 1.4 eV (∼ 850 nm) with respect to the sunlight (see Fig. 1.1) [25].
For a crystalline silicon, the work function is 1.1 eV (∼ 1100 nm) which is close to
the optimal value. As a result, most of solar cells are built from silicon materials.

Figure 1.1: Solar spectrum (250 nm-2500 nm). The ψ = hf has the corresponding range of values
between 4.959 eV to 0.496 eV. (image courtesy of Wikipedia [1]).

It is worthwhile to mention that the first photo-voltaic module was built by Bell
laboratories in 1954 and was exploited by NASA for space programs in 1960s [2].

• Thermal : In this approach, the temperature gradient results in the diffusion of elec-
trons from a hot metal junction to a cold one. This phenomena is called the Seebeck
effect in honor of German physicist Thomas Johann Seebeck who first discovered it in
1821 while investigating the thermal effect on galvanic arrangements. In particular,
the voltage gradient ∇V is related to the temperature gradient ∇T as follows

∇V = S∇T, (1.2)

where S (V/K) is the Seebeck coefficient.

• Vibration: The underlying physical phenomenon behind this method is the piezo-
electric effect. Piezoelectricity was discovered in 1880 by Pierre Curie and Jacques
Curie. In this process, an external stress deforms each molecule in the structure of a
piezoelectric material, creating a dipole. The accumulation of these dipoles produces
a net charge on the polarization surface of the piezoelectric material. Moreover, the
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piezoelectricity is reversible in the sense that if an electric field is applied to a piezo-
electric material, it results in mechanical stress. The piezoelectric effect occurs in
mono-crystalline materials as well as in poly-crystalline ferroelectric ceramics. The
mathematical modeling of the piezoelectric effect can be provided by combining

– The materials electrical behavior: D = εE

– Hook’s law: S = sT

where

D: electric displacement (C/m2)

E: electric field strength (N/C)

ε: permittivity (C2/N.m2)

S: strain (1/m)

T : stress (N/m2)

s: compliance (m/N)

In particular, we have the following tensor equations

D = [εT ]E + [d]T (Direct piezoelectric effect)
S = [sE]T + [dt]E, (Reverse piezoelectric effect)

where [d] is the matrix of piezoelectric effect with dij,k = ∂Sij/∂Ek, and [dt] is the
matrix of reverse piezoelectric effect.

• Radiation: The idea of harvesting energy from ambient radio waves originates from
Heinrich Hertz who successfully demonstrated the presence of electromagnetic waves
by building an apparatus that produced and detected VHF/UHF radio waves. A
simple arrangement for harvesting ambient radiation is shown in Fig. 1.2.

The accessible power density PD(W/m2) to a radio energy harvesting module at a
distance R from the transmitter is given by [45]

PD = GTPT/4πR
2, (1.3)

where PT (W) is the average transmission power, and GT is the antenna gain of
the transmitter. In particular, GT determines the figure-of-merit of an antenna to
convert the input power to radio waves [45], i.e.,

GT :=
Maximum radiation intensity of actual antenna

Radiation intensity of isotropic antenna with the same power input
. (1.4)
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Figure 1.2: Schematic of a simple radio energy harvesting module for sensor devices.

1.2.2 Efficiency

The energy conversion efficiency η (dimensionless) of an energy harvesting process is defined
as the ratio of the power output of the transducer Pout to the power input Pin, i.e.,

η =
Pout

Pin
. (1.5)

The efficiency η of a transducer largely depends on the nature of exogenous energy re-
source. In the case of solar panels, the η efficiency under standard test conditions (temper-
ature: 25◦, irradiance: 1000 W/m2, air mass: 1.5d) has a range between 6% for amorphous
silicon-based solar cells up to 44.7% with multiple dies assembled into a hybrid package2.
Fig. 1.3 shows the evolution of the solar cell efficiency since 1976. A thermodynamic limit
of Photovoltaic energy conversion is derived in [12]. Specifically, a hypothetical solar panel
with an infinite stack of p-n junctions and with smoothly varying bandgap is studied. It
was shown that the maximum efficiency of this structure (which yields an upper bound on
η) under constant emission-temperature operation is described by

ηmax =

(
1− Tc

T0

)[
1−

(
T0

Ts

)4
]
, (1.6)

where Tc is the solar cell’s temperature, Ts is the sun’s temperature, and T0 is the emission
temperature of individual cells (see [12, Eq. (10)]). For temperatures of Ts = 6000 (K)
and Tc = 300 (K), the maximum efficiency is computed to be 85.4%.

2This efficiency was obtained by the Fraunhofer Institute for Solar Energy Systems (ISE) on September
2013 [3].
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Similarly, the maximum achievable efficiency for a thermoelectric generator is

ηmax =
TH − TC
TH

√
1 + Z(Tavg)− 1√

1 + Z(Tavg) + TH
TC

, (1.7)

where TH is the temperature of the hot junction, TC is the temperature of cold junction,
Tavg = (TH +TC)/2, and Z(Tavg) is the dimensionless figure-of-merit associated with ability
of a material to produce thermoelectric power. In particular, Z(Tavg) is formulated as below

Z(Tavg) =
σS2Tavg

κ
, (1.8)

where S (V/K) is the Seebeck coefficient, σ(1/Ωm) is electrical conductivity, and κ(W/(Km))
is thermal conductivity. Although there is no bound on Z(T ), the maximum reported value
for Z(T ) is ∼ 3.5 that was achieved at T = 575 (K) [23].

Figure 1.3: The evolution of efficiency of solar cells since 1976 (credit: US department of energy
[4]).
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The formulation of piezoelectric energy conversion efficiency is studied in [13]. Using
a mass+spring+damper+piezo model, it was shown that the maximum efficiency in the
steady state vibration regime is

ηmax =

k2e
ζm

2πΩ + k2e
ζm

, (1.9)

where the parameters are defined as

ζm := α/2
√
KM, (1.10)

ke := Θ2/KCp, (1.11)
Ω := ω/ωsc, (1.12)

with M : the mass, K: the stiffness of spring, α: the damper’s constant, Θ : the effective
piezoelectric coefficienct, Cp: the piezoelectric capacitance, ω: the angular frequency of
steady-state vibrations, ωsc: the natural angular frequency under short-circuit. For typical
values ke = 0.16 and ζm = 0.03, the maximum value of (1.9) was calculated to be 46% at
Ω = 1.

Table 1.2 shows a comparison between power performance of different energy harvesting
techniques for wireless sensor networks.

Table 1.2: Power performance of energy harvesting methods [21].

Energy Source Performance
Battery 2880 J/cm3

Light (indoor) 10-100 µW/cm2

Thermoelectric 40-60 µW/cm2

Piezoelectric 100-330 µW/cm3

Electromagnetic radiation 0.2-1 mW/cm2

1.3 Power Adaptation to EH Resources

The formulation of power policies in energy harvesting systems depends on many factors,
including energy arrival model, battery capacity, quality of service, etc. Nevertheless, the
are four main frameworks to adapt in the design of transmission powers:
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1. offline or online

2. continuous time or discrete time

3. with the channel state information (CSI) or without the CSI.

4. Infinite time horizon or finite time horizon.

The first division is based on knowledge of the renewable energy resource at the transmitter.
In particular, depending on causal or non-causal knowledge of future energy arrivals, power
policies fall within two major categories: offline or deterministic (for non-causal), and online
or stochastic (for causal).

The transmission power can also change either continuously or discretely. This depends
on the coherence time of communication channel as well as the dynamic of renewable energy
resources. Specifically, when the channel fading gain or the energy arrival rate fluctuates
fast, a continuous transmission power must be adapted.

Furthermore, in the case that the CSI is available at the transmitter (through feedback),
the power policy can be designed to dynamically allocate power to different channel states.
This particularly allows the transmitter to conserve energy in bad channel states and
reliably transmits with more power in good channel states.

Lastly, the time window for communication can be infinite or finite depending on dif-
ferent applications. The main focus of this thesis is on infinite time horizon regime. The
case of finite time horizon is also addressed briefly in Appendix D.

1.4 Related Works

1.4.1 Energy Management

Energy management schemes can be classified into two main categories: 1) minimizing the
radio activity 2) minimizing the number of data acquisitions by sensor.

Among the works that consider to minimize the radio activity are [17], [40], [36]. In
[17], the problem of multi-hop communication in sensor networks associated with switching
nodes on and off is considered. Two solutions are studied based on adaptive duty-cycling
as well as wake-up on demand method. Along the same lines, a greedy algorithm to control
the topology of a sensor network by tuning the transmission power of each node is studied
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in [40]. In [36], a wake-on-wireless strategy is proposed that increases the battery lifetime
by reducing the idle power (the power consumed in standby mode).

To reduce the number of data acquisitions, a multi-scale architecture is studied in [37].
In this architecture, low-fidelity sensors first perform the measurement on the entire sensing
field. Then a mobile robotic node carries high-fidelity sensors to particular spots of the
field to obtain more accurate samples. In [6], adaptive sampling is proposed to dynamically
estimate the optimal sampling frequency of a physical quantity to be monitored over time.
In [14], a probabilistic model is derived based on a initial samples and statistical modeling
techniques. This model was utilized to find certain structures (such as spatial or temporal
correlation) in the sensed field. By using those structures, it was shown that the number
of required samples can be reduced significantly.

1.4.2 Energy Harvesting

In the offline regime and in terms of throughput maximization, optimal power allocation
for different communication topologies has been well studied. For instance, [44] studies the
multiple access channel (MAC), [42] studies the broadcast channel, and the interference
channel is studied in [41]. In addition, the issue of maximizing throughput in a fading
channel has been treated in [31]. There, a directional water-filling algorithm is proposed.
In [15], a continuous time energy harvesting system with constant energy leakage rate
due to battery imperfections is considered. Another interesting problem has been studied
in [43] where an offline energy harvesting problem subject to minimizing the transmission
completion time is analyzed. Specifically, a continuous-time policy to minimize the delivery
time of data packets is formulated. Among more recent results in the offline setting is [22]
where energy cooperation in a two-hop communication system is considered.

As an overview of prior works in the online regime, we refer the reader to [31], [33],
[35], and [32]. In [31] an algorithm in the offline problem of throughput maximization
by a deadline was heuristically applied to the online counterpart. The authors have also
considered a dynamic programming solution for online policies. Nevertheless, the curse
of dimensionality in the backward induction renders the computational cost of this ap-
proach very expensive. In [33], the capacity of the additive white Gaussian noise channel
(AWGN) under discrete-time energy arrivals and infinite battery capacity is characterized.
Additionally, two achievable schemes based on save-and-transmit and best-effort-transmit
are studied there. In [35], queuing aspects of the online energy harvesting problem with
infinite battery and buffer capacity have been considered. The authors have also suggested
a greedy policy that in the low signal to noise ratio (SNR) regime is throughput optimal
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and attains minimum delay. A more relevant study related to the work presented here is
[38]. Therein, Srivastava and Koksal have investigated an optimization problem where the
objective is to maximize a utility function subject to causality and battery constraints.
More interestingly, they addressed a trade-off between achieving the optimum utility and
keeping the discharge rate low.

1.5 Contributions

We consider the online setting with continuous time policies in which the energy release
rates are regulated dynamically based on the remaining charge of the battery at each mo-
ment. This distinctive architecture naturally appeals for a different mathematical frame-
work in terms of modelling and analysis. Particularly, the main tool here for modelling
the interaction between battery, energy arrivals, and energy consumption is a stochastic
process known as a compound Poisson dam model. This model was pioneered by Moran in
1954 [30] and studied further by Gaver-Miller [18] and Harrison-Resnick [24]. In connection
with this model, we derive an upper bound on the total sum-throughput of an online energy
harvesting system. Also in terms of achievability, we construct an optimization problem
to maximize the sum-throughput subject to an ergodicity constraint. This maximization
problem turns out to be non-linear and analytically cumbersome. Relying on a calculus
of variations approach, we subsequently find a system of simultaneous PIDEs as necessary
conditions for an optimal power policy. We then propose a Gauss-Seidel method (see [10])
to solve these equations efficiently. In the symmetric case, when the statistical descrip-
tion of all the energy harvesters are identical, we obtain an alternative algorithm using a
fixed point iteration method. Moreover, in the case of the point-to-point channel setting,
the necessary condition further reduces to a non-linear, autonomous ordinary differential
equation (ODE) that can be solved directly, using conventional numerical methods [29].

1.6 Thesis Organization

The remainder of this thesis is organized as follows. In Chapter 2, we review some back-
ground, definitions, and notation. Furthermore, we state necessary and sufficient conditions
for ergodicity of the storage process. In Chapter 3, we derive an upper bound as well as the
achievability results for both finite and infinite storage cases, including two algorithms for
the achievability part. These algorithms are then used to compute the numerical results.
Finally, a summary of the thesis and some future outlooks are presented in Chapter 4.
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Chapter 2

Online Power Policies for EH
Communication over Multiple-Access
Channel

2.1 Preliminaries

2.1.1 Communication model

We consider M multiple access transmission nodes that wish to transmit their data over
a shared communication channel. Furthermore, each transmission node is equipped with
an energy harvesting module and a battery to capture and store arriving energy packets.
Throughout the paper, we denote the instantaneous transmission power at time t from
the kth node (k = 1, 2, · · · ,M) by Pk(t). Also, to quantify the corresponding transmission
rate of the nodes, we consider Shannon’s rate function, r(x) = 1

2
log2

(
1 + (x/N0)

)
, where

N0 denotes the noise power spectral density. In particular, Shannon’s rate function carries
the following properties and, unless stated otherwise, only these properties will be used in
Section IV:

• [Positivity] r(x) > 0 for all x > 0 and r(0) = 0.

• [Differentiability] r(x) is three times continuously differentiable on x ≥ 0.

• [Monotone increasing] r′(x) > 0 for all x ≥ 0.

• [Concavity] r′′(x) < 0 for all x ≥ 0.
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Letting Rk denote the long-term average rate of the kth user, we then have the rate-
region described by

∑
k∈S

Rk ≤ lim
T→∞

1

T

∫ T

0

r

(∑
k∈S

Pk(s)

)
ds, (2.1)

where the inequality holds for all subsets S ⊆ {1, 2, · · · ,M}, and the resulting region is
a polytope called polymatroid. In this study, we restrict ourselves to the dominant face
of this polymatroid (called permutahedron) that represents the total sum-throughput (or
sum-rate) of the channel. Then, the sum-throughput is

M∑
k=1

Rk = lim
T→∞

1

T

∫ T

0

r

(
M∑
k=1

Pk(s)

)
ds. (2.2)

2.1.2 Energy harvesting and storage model

In our energy harvesting model, we allow the transmission nodes to use different techniques
for harnessing exogenous energy. For example, while one node may collect solar energy,
another node can use a thermoelectric generator. This mechanism is especially impor-
tant for sensor networks where distributed terminals may measure miscellaneous targets
that also feed sensors with energy (e.g. see [19]). Mathematically, we assume that for each
individual node k ∈ {1, 2, · · · ,M}, energy is replenished into the corresponding battery ac-
cording to specific energy arrivals E0

k , E
1
k , · · · , where the superscript denotes the order of ar-

rivals. Furthermore, the energy arrivals for node k are independent, identically distributed
(i.i.d) according to P{Ek ≤ x} = Bk(x) which occur at random arrival times denoted by
T 0
k , T

1
k , · · · . The interarrival times ∆T nk = T n+1

k − T nk are also assumed to be i.i.d and
exponentially distributed. Therefore, the attributed point process, Nk(t) =

∑
n∈N 1{Tn

k <t},
is a homogeneous Poisson point process with intensity denoted by λk. Consequently, the
total energy flow E In

k (0, t] into node k and up to time t is a compound Poisson process,

E In
k (0, t] ,

N(t)∑
i=0

Ei
k. (2.3)

To characterize the storage model, we also need to specify the output process at each
transmitter. To do so, let Xk(t) denote the energy stored in the k-th battery as a function
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of time. Then, the total energy expenditure until time t is

E Out
k (t) ,

∫ t

0

Pk(s) ds, (2.4)

=

∫ t

0

pk(Xk(s)) ds, (2.5)

where pk(·) represents the transmission power policy of the k-th transmitter, modulated
by the available energy in the battery. Now, the storage equation in terms of the energy
arrivals in (2.3) and the drift process in (2.5) is

Xk(t) = Xk(0) + E In
k (0, t]−

∫ t

0

pk(Xk(s)) ds, (2.6)

where xk(0) is the initial (possibly random) battery reserve at time t = 0, and here the
battery is assumed to have infinite capacity (Xk(t) ∈ [0,∞)). In the case that the k-
th battery has a finite storage capacity, say Lk, then Xk ∈ [0, Lk], and we can similarly
characterize the following dynamics,

Xk(t) = Xk(0) + E In
k (0, t]−

∫ t

0

pk(Xk(s)) ds− Zk(t), (2.7)

where Zk(t) is R+ valued process that is null at zero (Zk(0) = 0), non-decreasing, contin-
uous almost everywhere, and such that

∫
R+(Lk −Xk(s)) dZk(s) = 0. This process, known

as reflection process [34], ensures that for any energy arrival, the storage process remains
inside the boundary, i.e., Xk(t) ∈ [0, Lk].

It is also interesting to note that the application of the structures in (2.6) and (2.7) are
not limited to the current problem. In fact, this formulation has wide applicability in other
fields of studies. Examples include workload modulated queues [11], water reservoir dam
analysis [8], food contaminants exposure in bioscience [9], etc. In this thesis, the ergodicity
results of [8] will be used and are summarized in section III.

2.1.3 Notation

In the rest of the paper and for conciseness, we adopt several shorthand notations. In
particular, [M ] stands for {1, 2, · · · ,M}. For M > 1, we define the rectangular domain A
as

A , [0, L1]× [0, L2]× · · · × [0, LM ].
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Related to this, we also define the M dimensional integral by

L1∫
0

L2∫
0

· · ·
LM∫
0

(·) dx1dx2 · · · dxM ,

which is represented by
∫
A(·) dx. For all subsets S ⊆ [M ], we use A(S) to denote the

projection of A onto the coordinates indexed by S, i.e.,

A({1, 3}) = [0, L1]× [0, L3].

Then,
∫
A(S)

(·) dx denotes integration over a subset of R|S|. Aj is also a shorthand for

Aj , [0, L1] · · · [0, Lj−1]× [0, Lj+1] · · · [0, LM ].

Finally, to avoid confusion between energy arrivals and the expectation operator, we use
E[·] for the latter.

2.2 Ergodic Theory of Storage Process

We here summarize necessary and sufficient conditions for ergodicity of the storage process
in (2.6). Before stating the definitions regarding ergodic behaviour, we first put some mild
constraints on the transmission policies. Particularly, for all k = 1, 2, · · · ,M ,

1. ∀Lk > 0 : 0 < xk ≤ Lk ⇒ pk(xk) > 0 and pk(0) = 0,

2. ∀Lk > 0, sup
0<xk≤Lk

pk(xk) <∞.

The first condition indicates that as long as there is energy in the battery, transmission
continues (otherwise, the battery would have a minimum energy reserve that can not be
consumed). The second condition does not permit the energy in the battery to be consumed
instantly. Regarding these constraints, we say a policy is admissible iff it fulfills these two
conditions.

Definition 1 The hitting time, τ(x), is defined as the first time that the energy level in
the battery reaches the value of x. More specifically,

τ(x) = inf{t ≥ 0 : X(t) = x}.
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Definition 2 [8, pp. 290] The storage process is said to be transient, if and only if for all
initial energy levels x(0) in the battery, we have P(Xt →∞) = 1. Alternatively, the storage
process is said to be recurrent if and only if P[τ(x) < ∞|x(0)] = 1, ∀x > 0, x(0) ≥ 0.
In the case of a recurrent storage process, it is said to be positive recurrent if it further
satisfies E[τ(x)|x(0) = x] < ∞ for one x > 0 and therefore for all x > 0 (irreducibility).
Similarly, the recurrent storage process is null recurrent if E[τ(x)|x(0) = x] = ∞ for one
x > 0 and therefore for all x > 0.

One motivation for surveying ergodic conditions is to rule out policies that result in
transient and null recurrent battery behaviours. For example in the transient case X(t)→
∞ a.s. which is unrealistic. Also, in the null recurrent case limt→∞ P{X(t) ≤ u|x(0) =
x} = 0,∀x, u ≥ 0 which implies an unbounded energy reserve in the battery.

Theorem 1 (Assmussen [8, Thm. 3.6]) The storage process {Xk(t)}t≥0 is positive recur-
rent if and only if there exist a probability measure πk that is absolutely continuous on
(0,∞) and which may possess an atom at zero, π0

k = πk({0}), i.e.,

πk(xk) = π0
k +

∫ xk

0+
fk(vk) dvk, (2.8)

and such that

fk(xk) =
λk

pk(xk)

{
π0
k(1−Bk(xk)) +

∫ xk

0+
(1−Bk(xk − vk))fk(vk) dvk

}
. (2.9)

Furthermore, πk is the unique stationary distribution of the process Xk(t). �

Remark 1 The elegant proof of Assmussen for the converse part of Theorem 1 is based on
an embedded Markov chain {Xk(n)} at marked arrival times. In particular, for recurrent
embedded chains, it is shown that any storage interval (x0

k, x
1
k), 0 < x0

k < x1
k is recurrent

in the sense of Harris. An alternative proof of the converse part of Theorem 1 adopts
the additional condition

∫ xk
0

(1/pk(u)) du < ∞,∀xk > 0. Due to this extra condition, the
required time to reach the zero state in the absence of new arrivals from any energy level
in the battery must be finite. For this constraint, it can also be shown that xk = 0 is a
regenerative recurrent point for the process and therefore, due to the additional constraint,
the probability measure has a strict atom π0

k > 0 at zero.

Remark 2 As discussed in [8, pp. 297], in the finite energy case (Lk < ∞), the storage
process is always positive recurrent and the probability measure is likewise governed by (2.8)
and (2.9).
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Figure 2.1: The balance between positive jumps from subspace [0, x] and the drift component of
the process.

Remark 3 We note that the atom of the probability measure πk(xk) corresponds to an
absorbing state of the process Xk(t) in the sense that upon Xk(t) entering state xk = 0,
the process remains there until an energy arrival occurs (at which point the process transits
to another state). Based on this and the first constraint on admissible power policies (in
particular pk(Lk) > 0), there is no atom at xk = Lk in the finite case since it has a
strictly negative drift in (2.7) that shifts the process to the inner region of the state-space
instantaneously, i.e., xk < Lk. Therefore, the battery never idles with xk = Lk (reflecting
boundary).

An interpretation for the forward equation in (2.9) can be provided in terms of level
crossing theory. Particularly,

fk(xk)pk(xk) = λk

{
π0
k

(
1−Bk(xk)

)
+

∫ xk

0+

(
1−Bk(xk − vk)

)
fk(vk) dvk

}
, (2.10)

reflects the equilibrium condition between the rate of down crossing at level xk (the l.h.s
of (2.10)) and up crossing at level xk (the r.h.s of (2.10)) (see Fig. 2.1) We can also
view (2.9) as a Volterra integral equation of the second kind with the kernel function
K (xk, vk) = 1−Bk(xk − vk), and it can thus be solved numerically (see [26]).

Here, we consider the energy arrivals {Ei
k}∞i=0, k = 1, 2, · · · ,M , to be exponentially

distributed with parameter ζk. Thereby, we have

K (xk, vk) = exp(−ζk(xk − vk)),

that simplifies (2.9) to

fk(xk) =
λk exp(−ζkxk)

pk(xk)
Gk(xk), (2.11)
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where

Gk(xk) ,

(
π0 +

∫ xk

0+
exp(ζkvk)f(vk) dvk

)
. (2.12)

Remark 4 The storage models in (2.6) and (2.7) are memoryless, in the sense that at
each time instant t, the power policy pk only depends on the available charge Xk(t) in the
battery and not the entire sample path {Xk(s); s ≤ t}. As an extension, we can also define
a storage model with memory as follows

Xk(t) = Xk(0) + E In
k (0, t]−

∫ t

0

pk(Xk(u);u ≤ s) ds. (2.13)

However, when the arrival process is Poisson, it can be shown that Xk(t) is a sufficient
statistic for an optimal power policy (see Appendix A). In this regard, knowledge of the
entire path {Xk(s); s ≤ t} as an argument of pk(·) is excessive.

17



Chapter 3

Bounds on Total Average Throughput
and Achievable Schemes

3.1 Introduction

Our objective now is to derive and develop an upper bound on the average throughput as
well as achievable policies with good performance. In connection with our system model,
we will analyze a MAC with 1) finite, and 2) infinite storage batteries.

In particular, in the finite storage case, a good power policy must manage overflow
in the battery as regular overflow causes energy waste and potentially decreases the sum
throughput. To reduce overflow, the power policy must result in a large transmission power
when the battery charge is large as otherwise overflow is likely to occur upon a new arrival.
Nevertheless, transmitting with too large a transmission power when the battery happens
to have large charge is also undesirable due to the concavity of the rate function. In other
words, there is a tension between overflow and the rate at which the large battery charge
is consumed to reduce overflow likelihood.

To further clarify the latter point, consider an energy harvesting system with a single
node (M = 1) in which energy E is replenished into a battery exactly every T units of
time. In addition, assume that the transmitter sends data by using a constant transmission
power P = E/(αT ), α > 0. Two cases can now be examined:

i) α > 1: In this case, the transmitter fails to consume the entire battery charge before
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the next arrival, and thus overflow occurs regularly. We then have

T × r
(
E

αT

)
≤ T × r

(
E

T

)
. (3.1)

ii) α < 1: In this case, the transmitter depletes its available battery charge within
αT < T of each arrival. From the concavity of the rate function, we have the following
inequality

αT × r
(
E

αT

)
≤ T × r

(
E

T

)
. (3.2)

Here, the tension between (i) and (ii) is resolved by the optimal choice of α = 1, i.e.,
P = E/T .

3.2 An Upper Bound

3.2.1 Finite Storage Battery

In this case Lk < ∞, ∀k ∈ [M ]. Then from (2.2) and due to ergodicity of the storage
processes {Xk(t)t≥0}Mk=1 in the finite battery case (ref. Remark 3), we have almost surely

M∑
k=1

Rk
a.s.
= E

[
r

(
M∑
k=1

pk(Xk)

)]
, (3.3)

where the expectation is with respect to the stationary distribution in Theorem 1. In
addition, from the concavity property of the rate function and Jensen’s inequality,

E

[
r

(
M∑
k=1

pk(Xk)

)]
≤ r

(
M∑
k=1

E[pk(Xk)]

)
. (3.4)

19



It thus remains to bound the mean transmission power E[pk(xk)]. This can be accomplished
by integrating by parts as follows

E[pk(Xk)] = π0
kpk(0) +

∫ Lk

0+
pk(xk)fk(xk) dxk (3.5)

(a)
=

∫ Lk

0+
pk(xk)fk(xk) dxk (3.6)

(b)
= λk

∫ Lk

0+
exp(−ζkxk)Gk(xk) dxk (3.7)

= −λk
ζk

exp(−ζkxk)Gk(xk)
∣∣∣Lk

0+
+
λk
ζk

∫ Lk

0+
exp(−ζkxk)G′k(xk) dxk, (3.8)

where (a) comes from the first constraint on the admissible power policies and (b) follows
from (2.11). Now from (2.12),

G′k(xk) = fk(xk) exp(ζkxk). (3.9)

Also we note that Gk(0
+) = π0

k and

e−ζkLkGk(Lk) = e−ζkLk
(
π0
k +

∫ Lk

0+
eζkxkfk(xk) dxk

)
(3.10)

(c)

≥ e−ζkLk
(
π0
k +

∫ Lk

0+
fk(xk) dxk

)
(3.11)

= e−ζkLk , (3.12)

where inequality (c) is due to the fact that exp(ζkxk) ≥ 1 for all positive xk since ζk > 0.
Substituting (3.12) and (3.9) in (3.8) thus leaves us

E[pk(Xk)] =
λk
ζk

(
Gk(0

+)− eζkLkGk(Lk)
)

+
λk
ζk

∫ Lk

0+
fk(xk) dxk, (3.13)

≤ λk
ζk

(
π0
k − e−ζkLk +

∫ Lk

0+
fk(xk) dxk

)
(3.14)

=
λk
ζk

(1− exp(−ζkLk)), (3.15)

In the last step, we now use (3.15) and the non-decreasing property of the rate function to
characterize an upper bound for all Lk <∞ as follows

M∑
k=1

Rk ≤ r
( M∑
k=1

λk
ζk

(1− e−ζkLk)
)
, Rupper. (3.16)

20



3.2.2 Infinite Storage Battery

We now take Lk =∞. In this case, similar to (3.7) we can directly compute,

E[pk(xk)] = λk

∫ ∞
0+

e−ζkxkGk(xk) dxk (3.17)

= λk

∫ ∞
0+

e−ζkxk
(
π0
k +

∫ xk

0+
eζkvkfk(vk)dvk

)
dxk (3.18)

=
λk
ζk
π0
k + λk

∫ ∞
0+

∫ xk

0+
eζk(vk−xk)fk(vk) dvkdxk (3.19)

(a)
=
λk
ζk
π0
k + λk

∫ ∞
0+

∫ ∞
vk

eζk(vk−xk)fk(vk) dxkdvk (3.20)

=
λk
ζk
π0
k +

λk
ζk

∫ ∞
0+

fk(vk) dvk (3.21)

=
λk
ζk
, (3.22)

where in (a), we changed the order of integration due to the Fubini’s theorem. Thus, for
positive recurrent policies and when all Lk =∞, we have the following upper bound

M∑
k=1

Rk ≤ r
( M∑
k=1

λk
ζk

)
. (3.23)

Remark 5 In contrast with the inequality (3.16) which only holds for positive recurrent
transmission power policies, (3.23) is valid for transient and null recurrent power policies
as well.

In particular, in the infinite battery case, limT→∞
1

T

∫ T
0
pk
(
Xk(t)

)
dt ≤ λk/ζk regardless

of the type of power policy, and thus (3.23) follows by concavity of the rate function.
Nevertheless, the strict equality in (3.22) will be used to study transmission power policies
that result in ergodic behavior for the infinite battery capacity case in subsection 3.3.
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3.3 Achievable allocation scheme

To derive transmission power policies with good performance, we start with the ergodicity
assumption and the definition of expectation, i.e.,

M∑
k=1

Rk = lim
T→∞

1

T

∫ T

0

r
( M∑
k=1

Pk(s)
)
ds (3.24)

a.s.
=

∫
A
r
( M∑
k=1

pk(xk)
) M∏
k=1

πk(dxk) (3.25)

, R
(
{pk(xk)}Mk=1

)
, (3.26)

where

πk(dxk) = [π0
kδ(xk) + fk(xk)]dxk, (3.27)

and δ(xk) denotes the Dirac delta function. We now aim to find achievable policies through
the following optimization problem

sup
{π0

k,fk(xk)}Mk=1

∫
A
r
( M∑
k=1

pk(xk)
) M∏
k=1

πk(dxk), (3.28)

s.t. : ∀k ∈ [M ]

fk(xk) =
λke

−ζkx

pk(xk)

(
π0
k +

∫ xk

0+
e−ζkvfk(v) dv

)
, (3.29)

π0
k +

∫ Lk

0+
fk(xk) dxk = 1, (3.30)

π0
k ≥ 0, fk(xk) ≥ 0, (3.31)

which maximizes the overall expected throughput of the multiple access channel subject to
the stationary probability measure constraints of the batteries. Nonetheless, tackling this
non-linear optimization problem is challenging as the feasibility constraint in (3.29) is not
in an explicit form. To circumvent this difficulty, we use a calculus of variations approach
to transform the problem into a set of necessary conditions for an optimal solution. As a
starting point, consider the following linear mappings

gk(xk) , fk(xk)e
ζkxk , xk > 0, (3.32)
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that converts the positive recurrent condition in (2.11) into

gk(xk) =
λk

pk(xk)

(
π0
k +

∫ xk

0+
gk(v) dv

)
(3.33)

=
λk

pk(xk)
Gk(xk), (3.34)

with Gk(xk) =
(
π0
k +

∫ xk
0+
gk(v) dv

)
as in (2.12). Hence, (3.25) is valid with

pk(xk) =

{
λkGk(xk)/gk(xk) xk > 0

0 xk = 0,
(3.35)

πk(dxk) = [π0
kδ(xk) + e−ζkxkgk(xk)]dxk. (3.36)

With this substitution, we obtain an equivalent formulation for the optimization problem
in (3.28)-(3.31) as below

sup
{π0

k},{gk(xk)}

∫
A
r
( M∑
k=1

pk(xk)
) M∏
k=1

πk(dxk), (3.37)

s.t. : ∀k ∈ [M ]

Gk(xk) =
(
π0
k +

∫ xk

0+
gk(v) dv

)
, (3.38)

π0
k +

∫ Lk

0+
e−ζkvgk(v) dv = 1, (3.39)

π0
k ≥ 0, gk(xk) ≥ 0, (3.40)

where pk(xk) and πk(dxk) are according to (3.35) and (3.36).

Through the formulation in (3.37)-(3.40), we can show that the throughput maximiza-
tion problem in (3.28)-(3.31) is concave with respect to each coordinate over a convex
feasible set. In particular, since the transformation between fk(xk) and gk(xk) is lin-
ear, the concavity of (3.28)-(3.31) can be shown equivalently by proving the concavity
of the formulation in (3.37)-(3.40). To this end, suppose that

{(
π0,1
k , g1

k(xk)
)}M

k=1
and{(

π0,2
k , g2

k(xk)
)}M

k=1
are two arbitrary sets of optimization parameters belonging to the fea-

sible region defined in (3.38)-(3.40). Then for all α ∈ [0, 1] and ᾱ , (1 − α), it readily
follows that {

(
π0,α
k , gαk (xk)

)
}Mk=1 also satisfies (3.38)-(3.40), where π0,α

k = απ0,1
k + ᾱπ0,2

k and
gαk (xk) = αgk(xk) + ᾱgk(xk) are the convex combinations of the densities and atoms, re-
spectively. This proves the convexity of the feasible region (3.38)-(3.40).
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Proposition 1 LetRα
j , R1

j andR2
j be the utility functions corresponding to

{(
π0,α
k , gαk (xk)

)}M
k=1

,{(
π0,1
k , g1

k(xk)
)}M

k=1
, and

{(
π0,2
k , g2

k(xk)
)}M

k=1
respectively, such that(

π0,α
k , gαk (xk)

)
= α

(
π0,1
k , g1

k(xk)
)

+ ᾱ
(
π0,2
k , g2

k(xk)
)
, k = j,(

π0,α
k , gαk (xk)

)
=
(
π0,1
k , g1

k(xk)
)

=
(
π0,2
k , g2

k(xk)
)
, k 6= j.

Then,

Rα
j ≥ αR1

j + ᾱR2
j . (3.41)

Proof 2 The proof is relegated to Appendix B.

Now define an ensemble of perturbation functions, {ψk}Mk=1, such that∫ Lk

0+
ψk(v) dv = 0, (3.42)∫ Lk

0+
exp(−ζkv)ψk(v) dv = 0, (3.43)

and the ψk are continuous and bounded on their domain (0, Lk] with ψk(0) = 0. For
sufficiently small εk > 0, k ∈ [M ], it thus follows that gεkk (xk) , gk(xk) + εkψk(xk) meets
(3.38)-(3.40) with the same atoms π0

k and thus lies inside the feasibility region. Then, with
ε = (ε1, ε2, · · · , εM), it must be true for a global maximum solution that

Rε ≤ R, (3.44)

where

Rε =

∫
A
r
( M∑
k=1

pεkk (xk)
) M∏
k=1

πεkk (dxk), (3.45)

and

πεkk (xk) , [π0
kδ(xk) + e−ζkxkgk(xk) + εke

−ζkxkψk(xk)]dxk

= πk(dxk) + εke
−ζkxkψk(xk)dxk, (3.46)
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and pεkk (xk) is calculated from (3.35) to be,

pεkk (xk) =

λk
Gk(xk) + εkΨk(xk)

gk(xk) + εkψk(xk)
xk > 0

0 xk = 0,
(3.47)

with,

Ψk(xk) ,
∫ xk

0

ψk(v) dv. (3.48)

For the moment, we assume that only the jth coordinate is perturbed; that is εk = 0,∀k 6= j.
Expanding the right hand side of (3.45) to first order then results in

Rεj =

∫
A

[
r
( M∑
k=1

pk(xk)
)

+ εj
∂r
(∑M

k=1 pk(xk)
)

∂pj(xj)

dp
εj
j (xj)

dεj

∣∣∣
εj=0

]
×
[
πj(dxj) + εje

−ζjxjψj(xj)dxj

] ∏
k∈[M ]−j

πk(dxk) (3.49)

= R+ εj

∫
A
r
( M∑
k=1

pk(xk)
)
eζjxjψj(xj)dxj

∏
k∈[M ]−j

πk(dxk)

+ εj

∫
A

∂r
(∑M

k=1 pk(xk)
)

∂pj(xj)

dp
εj
j (xj)

dεj

∣∣∣
εj=0

M∏
k=1

πk(dxk)

+O(ε2j). (3.50)

On the other hand, we note that

dp
εj
j (0)

dεj

∣∣∣
εj=0

= 0, (3.51)

since pεjk (0) = 0 from (3.47).1 Therefore,∫
A

∂r
(∑M

k=1 pk(xk)
)

∂pj(xj)

dp
εj
j (xj)

dεj

∣∣∣
εj=0

δ(xj)dxj = 0, (3.52)

1Alternatively, pεjj (0) = 0 for all εj as the battery is empty.
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and we thus have from (3.50)

Rεj = R+ εj

∫
A
r
( M∑
k=1

pk(xk)
)
eζjxjψj(xj)dxj

∏
k∈[M ]−j

πk(dxk)

+ εj

∫
A

∂r
(∑M

k=1 pk(xk)
)

∂pj(xj)

dp
εj
j (xj)

dεj

∣∣∣
εj=0

eζjxjgj(xj)dxj
∏

k∈[M ]−j

πk(dxk) +O(ε2j).

This expansion, accompanied with inequality (3.44) establishes the following necessary
condition for a locally (and thus globally) optimal solution∫

A
r
( M∑
k=1

pk(xk)
)
eζjxjψj(xj)dxj

∏
k∈[M ]−j

πk(dxk)

+

∫
A

∂r
(∑M

k=1 pk(xk)
)

∂pj(xj)

dp
εj
j (xj)

dεj

∣∣∣
εj=0

eζjxjgj(xj)dxj
∏

k∈[M ]−j

πk(dxk) = 0, (3.53)

and we have neglected the second order term O(ε2j). Now with slight abuse of notation, let

Ej

[
r
( M∑
k=1

pk(xk)
)]
,
∫
Aj

r
( M∑
k=1

pk(xk)
) ∏
k∈[M ]−j

πk(dxk), (3.54)

denote the expectation over all the coordinates except the jth. Then (3.53) can be restated
as
Lj∫

0

[
∂Ej

[
r
(∑n

k=1 pk(xk)
)]

∂pj(xj)

dp
εj
j (xj)

dεj

∣∣∣
εj=0

e−ζjxjgj(xj) + Ej
[
r
( M∑
k=1

pk(zk)
)]
e−ζjxjψj(zj)

]
dxj = 0,

(3.55)

where we used the fact that

Ej

∂r
(∑n

i=1 pi(zi)
)

∂pj(zj)

 =
∂

∂pj(zj)
Ej

[
r
( n∑
i=1

pi(zi)
)]
. (3.56)

On the other hand, from (3.47), we compute

gj(xj)
dp

εj
j (xj)

dεj

∣∣∣
εj=0

= λj

[
Ψj(xj)−

ψj(xj)Gj(xj)

gj(xj)

]
(3.57)

= λjΨj(xj)− ψj(xj)pj(xj). (3.58)
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We thus further proceed by substituting (3.58) in (3.55), i.e.,

Lj∫
0

[
λje
−ζjxj ∂Ej

[
r
(∑M

k=1 pk(xk)
)]

∂pj(xj)

]
Ψj(xj)dxj

−
Lj∫

0

[
e−ζjxj

∂Ej
[
r
(∑M

k=1 pk(xk)
)]

∂pj(xj)
pj(xj) + e−ζjxjEj

[
r
( M∑
k=1

pk(xk)
)]]

ψj(xj) dxj = 0.

(3.59)

Integrating by parts, the second integral can be evaluated as follows

Lj∫
0

[
e−ζjxj

∂Ej
[
r
(∑n

k=1 pk(xk)
)]

∂pj(xj)
pj(xj) + e−ζjxjEj

[
r
( M∑
k=1

pk(xk)
)]]

ψj(xj) dxj

=
[
e−ζjxj

∂Ej
[
r
(∑M

k=1 pk(xk)
)]

∂pj(xj)
pj(xj) + e−ζjxjEj

[
r
( M∑
k=1

pk(xk)
)]]

Ψj(xj)
∣∣∣Lj

0

+

Lj∫
0

∂

∂xj

[
e−ζjxj

∂Ej
[
r
(∑M

k=1 pk(xk)
)]

∂pj(xj)
pj(xj) + e−ζjxjEj

[
r
( M∑
k=1

pk(xk)
)]]

Ψj(zj) dxj.

(3.60)

But since Ψj(0) = Ψj(Lj) = 0 due to the definition in (3.48) and (3.42), the second term
in (3.60) vanishes. Replacing the remaining terms in (3.59), then

Lj∫
0

(
λje
−ζjxj ∂Ej

[
r
(∑M

k=1 pk(xk)
)]

∂pj(xj)
− ∂

∂xj

[
e−ζjxj

∂Ej
[
r
(∑M

k=1 pk(xk)
)]

∂pj(xj)
pj(xj)

+ e−ζjxjEj
[
r
( M∑
k=1

pk(zk)
)]])

Ψj(xj)dxj = 0, (3.61)

which must remain valid for all Ψj(xj) such that Ψj(xj) satisfies (3.42) and (3.43). A family
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of solutions for equation (3.61) can be supplied by simultaneously noting from (3.43) that

0 =

∫ Lj

0

e−ζjxjψj(xj) dxj (3.62)

= e−ζjxjΨj(xj)
∣∣∣Lj

0
+ ζj

∫ Lj

0

e−ζjxjΨj(xj) dxj (3.63)

(a)
= ζj

∫ Lj

0

e−ζjxjΨj(xj) dxj, (3.64)

where (a) is true since Ψj(0) = Ψj(Lj) = 0 as noted before. Now, if pj(xj) is twice
continuously differentiable, it follows that the term inside the parentheses in (3.61) is con-
tinuously differentiable as the rate function r(x) is assumed to be three times continuously
differentiable. Furthermore, since ψj(xj) is also continuously differentiable, from (3.64)
and the fundamental lemma of the calculus of variations, we subsequently conclude that
(3.61) holds only if the term inside the parentheses is in the form of Kj exp(−ζjxj) for
some constant Kj. Thus, as a necessary condition, we have

pj(xj)p
′
j(xj)

∂2Ej[r(
∑M

k=1 pk(xk))]

∂2pj(xj)
+ (λj − ζjpj(xj))

× ∂Ej[r(
∑M

k=1 pk(xk))]

∂pj(xj)
+ ζjEj[r(

M∑
k=1

pk(xk))] +Kj = 0. (3.65)

Remark 6 Rewriting (3.65) as

p′j(xj) =

[
− pj(xj)

∂2Ej[r(
∑M

k=1 pk(xk))]

∂2pj(xj)

]−1[
(λj − ζjpj(xj))

× ∂Ej[r(
∑M

k=1 pk(xk))]

∂pj(xj)
+ ζjEj[r(

M∑
k=1

pk(xk))] +Kj

]
, (3.66)

it is easy to verify that Kj provides a degree of freedom to set the initial slope p′j(xj)
∣∣
xj=0+

of the power policy pj(xj).

Now since the choice of jth coordinate was arbitrary, (3.65) holds for all j ∈ [M ].
Accordingly, we obtain a system of coupled PIEDs over M coordinates with 2M degree of
freedoms where the integration is implicit in the notation of Ej[·] (ref. Eq. (3.54)).2 In the
following, we consider solutions in the infinite and finite battery cases.

2In the system of equations, {pk(0+)}Mk=1 and {p′k(0+)}Mk=1 (or equivalently {pk(0+)}Mk=1 and {Kk}Mk=1)
are free parameters.
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3.3.1 Infinite Storage Battery

Motivated by the converse result for the infinite storage battery, we consider a set of
admissible policies as below

p̄k(xk) =

{(
λk/ζk

)
+ % xk > 0

0 xk = 0,
(3.67)

where the excess power % > 0 is added to ensure the positive recurrence of the process. In
the limit, as %→ 0, the suggested policies in (3.67) satisfy (3.65) for all j, provided

Kj = −ζjEj

[
r
( M∑
k=1

λk
ζk

)]
. (3.68)

The average transmission power of (3.67) can then be evaluated as

E[p̄k(xk)] = π0
kp̄k(0) +

(
(λk/ζk) + %

) ∫ ∞
0+

fk(xk)dxk (3.69)

=
(
(λk/ζk) + %

)(
1− π0

k

)
(3.70)

On the other hand, in light of (3.22) we have E[p̄k(xk)] = λk/ζk. As a result, a transmission
node that exploits p̄k(xk) as transmission power policy has the following probability mass
at zero

π0
k =

%

(λk/ζk) + %
, (3.71)

i.e., it sends information for a fraction
(λk/ζk)

%+ (λk/ζk)
of time. Moreover, associated with

p̄k(xk), the mean square deviation of transmission power is given by

σ2
(
p̄k(Xk)

)
=
(λk
ζk

)2
π0
k +

∫ ∞
0+

(
p̄k(xk)−

λk
ζk

)2

fk(xk) dxk (3.72)

= (λk/ζk)%. (3.73)

For these power transmission strategies, we also have

R ≥ r
( M∑
k=1

(λk/ζk + %)
) M∏
k=1

(λk/ζk)

(λk/ζk) + %
, (3.74)
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where the inequality follows from neglecting situations in which a strict subset of nodes are
transmitting and the rest are silent due to battery exhaustion. As % ↓ 0, the upper bound
(3.23) and the lower bound (3.74) coincide with each other. The total average throughput
is given asymptotically by

R = r
( M∑
k=1

λk/ζk

)
. (3.75)

Thus, near optimal performance of the energy harvesting system can be achieved when
% ↓ 0, and the behaviour of a classical communication systems (in the sense of using a
constant power supply without interruption) can be closely approximated at the same
time.

3.3.2 Finite Storage Battery

In contrast to the case of batteries with infinite capacity, the system of equations in (3.65)
doesn’t appear to admit a closed form expression for power policies when the storage
capacity is finite. The remaining option is thus to solve (3.65) numerically. However, the
complexity in dealing with such systems is that the equations are not independent, but
coupled. Alternatively, if all but one of the pk(·) are known, the remaining one can be
obtained by solving a first order non-linear ODE in terms of the corresponding coordinate,
using (3.65). First from (3.34) and since G′k(xk) = gk(xk) we obtain by integration

lnGk(xk)− lnGk(0) =

∫ xk

0+

λk
pk(vk)

dvk. (3.76)

Therefore,

Gk(xk) = π0
k exp

(∫ xk

0+

λk
pk(v)

dv
)
. (3.77)

By differentiating both sides with respect to xk, we obtain

gk(xk) =
π0
kλk

pk(xk)
exp

(∫ xk

0+

λk
pk(v)

dv
)
, (3.78)

or equivalently,

fk(xk) = π0
k

e−λkxkλk
pk(xk)

exp
(∫ xk

0+

λk
pk(v)

dv
)
. (3.79)
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Also due to the normalization condition

π0
k +

∫ Lk

0+
fk(xk) dxk = 1, (3.80)

we have

π0
k =

[
1 +

∫ Lk

0+

e−λkxkλk
pk(xk)

exp
(∫ xk

0+

λk
pk(v)

dv
)
dxk

]−1

, (3.81)

which can simply be derived via substituting (3.79) in (3.80) and solving for π0
k.

With the help of (3.79) and (3.81), we propose an iterative method, outlined as Algo-
rithm 1, that computes a solution for (3.65). Also, the convergence analysis of Algorithm
1 follows three steps

i) at each iteration of Algorithm 1, the utility function (3.25) is non-decreasing,

ii) the utility function in (3.25) is bounded above,

iii) the utility (3.25) thus converges if Algorithm 1 is allowed to iterate indefinitely (i.e.
no termination constraint).

Specifically, in the first step, we denote the utilityR as an explicit function of the power
policies in Algorithm 1, e.g., R(p

(0)
1 (x1), p

(0)
2 (x2), · · · , p(0)

M (xM)) is the initial utility. After
the Nth full iteration of steps 5-10 (outer loop) of Algorithm 1, in the jth iteration of 6-10
(inner loop), we then obtain

p
(N+1)
j (xj) = arg max

ξ
R(p

(N+1)
1 (x1), · · · , p(N+1)

j−1 (xj−1), ξ, p
(N)
j+1(xj+1), · · · , p(N)

M (xM)).

Therefore,

R(p
(N+1)
1 (x1), · · · , p(N)

j (xj), · · · , p(N)
M (xM)) ≤ R(p

(N+1)
1 (x1), · · · , p(N+1)

j (xj), · · · , p(N)
M (xM)).

(3.82)

In addition, since the objective function is upper bounded by (3.16), we further have

Rsup , sup
{pk(xk)}

R(p1(x1), p2(x2), · · · , pM(xM)) (3.83)

≤ r
( M∑
k=1

λk
ζk

(1− exp(−ζkLk))
)
. (3.84)
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Algorithm 1
1: for all k ∈ [M ] do
2: initialize pk(xk) with some arbitrary function;
3: compute (3.79) and (3.81);
4: end for
5: repeat
6: for j ← 1,M do
7: calculate (3.54);
8: update pj(xj) by solving (3.65) for optimized values of pj(0+) and Kj;
9: update (3.79) and (3.81) for k = j;
10: end for
11: until termination criterion is satisfied.

Concluding from (3.82) and (3.84), the sequence R
(
{pNk (xk)}∞N=0

)
must converge in the

limit as N →∞.

Now, we concentrate on two important degenerate cases of our problem that can sub-
stantially reduce the computational burden of solving the PIEDs. In the first scenario,
suppose that all the transmission nodes scavenge energy in the same manner. By this
statement, we mean that the statistical parameters of all the energy harvesters are identi-
cal, i.e., λk = λ and ζk = ζ for all k = 1, 2, · · · ,M . In the symmetric case, further assume
that the batteries have identical capacities (Lk = L). These assumptions then let us apply
one policy to all the transmitters (pk(xk) = p(xk)) and to specialize (3.65) as below

p(xj)p
′(xj)

∂2Ej[r(
∑M

k=1 p(xk))]

∂2p(xj)
+ (λ− ζp(xj))

× ∂Ej[r(
∑M

k=1 p(xj))]

∂p(xj)
+ ζEj[r(

M∑
k=1

p(xj))] +K = 0, (3.85)

where j is arbitrary and chosen from [M ], and the operator Ej[·] now simplifies as

Ej

[
r
( M∑
k=1

p(xk)
)]

=

∫
Aj

r
( M∑
k=1

p(xk)
) ∏
k∈[M ]−j

π(dxk). (3.86)

If we rearrange the terms in equation (3.85), we have that

p(xj) = F
(
p(xj)

)
, (3.87)
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where the mapping F (·) : C1(0, L]→ C1(0, L] is given by

F
(
p(xj)

)
= p(0+)−

∫ xj

0+

[
Kj + ζEj[r(

M∑
k=1

p(vk))] + (λ− ζp(vj))

× ∂Ej[r(
∑M

k=1 p(vk))]

∂p(vj)

][
p(vj)

∂2Ej[r(
∑M

k=1 p(vk))]

∂2p(vj)

]−1

dvj. (3.88)

As a result, it follows that the desired p(xj) is a fixed point for F (·). This then supplies
us with an alternative algorithm for this special case (see Algorithm 2).

Now in the second scenario, consider that there is only one transmitter in the commu-
nication system (i.e. a point-to-point setup). We thus have a simplified formulation as a
necessary condition here, i.e.,

p(x)p′(x)
d2r
(
p(x)

)
d2p(x)

+
(
λ− ζp(x)

)dr(p(x)
)

dp(x)
+ ζr

(
p(x)

)
+K = 0. (3.89)

As argued in [29], this is a second order, non-linear, autonomous ODE that can be
solved numerically by employing linear multistep methods (e.g. Runge-Kutta or Adams-
Bashforth). The next lemma demonstrates some properties of solutions to this ODE.

Lemma 1 Suppose K > −ζr(λ/ζ) in (3.89), then for the Shannon rate function

(a) any solution p(x) is a strictly increasing function of x for x ≥ 0, and p(x) → ∞ as
x→∞.

(b) p(x) grows doubly exponentially fast as x→∞. �

Proof 3 Solving (3.89) for p′(x), we have

p′(x) =

(
λ− ζp(x)

)
r′
(
p(x)

)
+ ζr

(
p(x)

)
+K

−p(x)r′′
(
p(x)

) . (3.90)

From concavity of the rate function as well as the first constraint on admissible power
policies we have r′′(p(x)) < 0 and p(x) ≥ 0, respectively. Therefore, the denominator is
always positive and p′(x) > 0 for all x ≥ 0 iff

K > −
[(
λ− ζp(x)

)
r′
(
p(x)

)
+ ζr

(
p(x)

)]
, ∀x > 0. (3.91)
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Algorithm 2

1: initialize p(0)(xj) with some function.
2: repeat
3: compute (3.79) and (3.81);
4: compute (3.86);
5: update p(N+1)(xj) = F (p(N)(xj)) from (3.88) for optimized values of p(N)(0+) and
K(N);

6: until termination criterion is satisfied.

Moreover, it can be verified that

d

dp(x)

[(
λ− ζp(x)

)
r′
(
p(x)

)
+ ζr

(
p(x)

)]
=
(
λ− ζp(x)

)
r′′(p(x)).

Hence, p(x) = λ/ζ is a global maxima for the right hand side of (3.91). Replacing p(x) =
λ/ζ into (3.91), the numerator of (3.90) is then lower bounded by

K + ζr(λ/ζ) > 0.

Furthermore, since r(x) =
1

2
log2(1 +

x

N0

), we upper bound the denominator by

−p(x)r′′(p(x)) =
1/N0

2 ln 2

p(x)/N0

(1 + p(x)/N0)2

≤ 1/N0

8 ln 2
.

and thus p(x)→ +∞.

To prove the second part of Lemma 1, consider the substitution

p(x)/N0 = exp(S(x)), (3.92)

where S(x) increases since p(x) increases. Then we have

S(x)→ +∞, as x→∞. (3.93)

Consequently, for the Shannon rate function we obtain

dr
(
p(x)

)
dp(x)

=
1

2 ln 2

1/N0

1 + p(x)/N0

' 1/N0

2 ln 2
exp(−S(x)), (3.94)

d2r
(
p(x)

)
dp(x)2

=
−1

2 ln 2

1/N2
0

(1 + p(x)/N0)2
' −1/N2

0

2 ln 2
exp(−2S(x)), (3.95)
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and

r(p(x)) =
1

2
log2

(
1 + p(x)/N0

)
' 1

2 ln 2
S(x). (3.96)

Replacing (3.94)-(3.96) in (3.89) yields that for x→∞

−S ′(x) + (λ− ζN0e
S(x))(e−S(x)/N0) + ζS(x) + (K/2 ln 2) = 0, (3.97)

As x→∞ and due to (3.93), (3.97) reduces to

ζS(x) = S ′(x), (3.98)

which has the following solution

S(x) = A exp(ζx), (3.99)

for some constant A, and thus

p(x) = O
(

exp(eζx)
)
, as x→∞. (3.100)

Remark 7 On account of Lemma 1, it is easy to verify that when K ≤ −ζr(λ/ζ), the
property of (3.100) does not hold in general. In fact, for sufficiently large negative K,
solutions of (3.89) are decreasing power policies. However, we conjecture that all such
power policies are suboptimal as they fail to control the overflow in the battery. A more
detailed discussion will be presented in the following section.

3.4 Discussion and Numerical Solution

We now study a multiple access communication system consisting of two nodes (M = 2)
with λ1 = λ2 = λ = 1 and ζ1 = ζ2 = ζ = 1. Because of the symmetry of the MAC, the
achievable power policies for this setting are obtained through Algorithm 2. Nevertheless,
to implement Algorithm 2 according to steps 1-6, one is obliged to search for optimized
values of p(0+) andK at each iteration. To ease this process and in what follows, Algorithm
2 is modified in a way that once the values of p(0+) and K are initialized, the same values
are used at each iteration step. 3

3Although this approach is potentially suboptimal, it always yields achievable results, and in the case
of the considered example here, the achievable results are close to the upper bound.
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Table 3.1:
Total average throughput for two identical nodes, using Shannon rate function, r(x) = 1

2 log(1 +

x/N0), with N0 = 1, equation constantK = 0, initializing function p(0)(x) = x+p(0+), 0 < x ≤ L,
and for various storage capacity L and initial values p(0+).

Initial Value p(0+)
L Rupper 0.001 0.001 0.1 1
0.5 0.4187 0.3177 0.3152 0.3094 0.2797
1 0.5895 0.4217 0.4159 0.4069 0.3722
2 0.7243 0.4634 0.4575 0.4511 0.4075
3 0.7681 0.4652 0.4593 0.4510 0.4091

With this modification, Fig. 3.1a then illustrates the designed power policy as a function
of the remaining charge in the battery with initial conditions p(0+) = 0.1 and K = 0
and initializing function p(0)(xk) = xk + p(0+), 0 ≤ xk ≤ Lk. After N = 10 iterations,
the power policy has converged to a solution of (3.85). It can also be seen from Fig.
3.1a that as the remaining charge in the battery increases, the transmission power also
increases rapidly. Supported by part (b) of Lemma 1, we further conjecture that this
increase is in fact doubly exponential in x. Indeed, when the occupied charge of the battery
becomes large, the chance of overflow due to new energy arrivals increases as well. In this
regard, an optimal power policy is one which consumes the battery charge fast enough
such that the occurrence of overflow is traded-off against suboptimality of employing a large
instantaneous transmission power (see Section IV). On the other hand, for sufficiently large
negative K, solutions of (3.85) are non-increasing (ref. Remark 7 for the point-to-point
case) and they thus fail to manage battery overflow. The numerical results have further
verified that for non-increasing power policies, the achieved sum-throughput is strictly less
than for increasing ones. As a result, here we only consider increasing power policies.

Corresponding to the designed power policy in Fig. 3.1a, Fig. 3.1b shows the absolutely
continuous part (density) of the probability measure in (2.8). In this case, consistent with
our earlier observation for the power policy, the density function also falls off quickly. In
terms of ergodicity, this is basically an assertion of the fact that the system spend little
time with large stored charge in the battery. Using Algorithm 2, we have computed the
achievable rates provided in Table I and Table II, where the termination criterion is taken
to be

θ =
r
(∑M

k=1 p
N+1(xk)

)
− r
(∑M

k=1 p
N(xk)

)
r
(∑M

k=1 p
N(xk)

) < 1%,
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Table 3.2:
Total average throughput for two identical nodes, using Shannon rate function, r(x) = 1

2 log(1 +

x/N0), with N0 = 1, initial value p(0+) = 0.001, initializing function p(0)(x) = x+ p(0+), 0 < x ≤
L, and for various storage capacity L and equation constant K. The upper bound for an infinite
storage battery (Lk =∞) is given by R∞ = 1

2 log(1 + 2) = 0.792.

.

Equation Constant K
L Rupper +0.5 0 −0.5 Optimum(% of Rupper)
0.5 0.4187 0.3017 0.3177 0.3057 0.3262 (77.9%) [K=-0.15]
1 0.5895 0.3707 0.4217 0.4410 0.4612 (78.2%) [K=-0.37]
2 0.7243 0.3854 0.4634 0.5725 0.5951 (82.1%) [K=-0.63]
3 0.7681 0.3858 0.4652 0.5907 0.6654 (86.6%) [K=-0.67]

i.e., the iteration stops whenever the increase in rate is less than one percent. With this
precision, Table 3.1 shows the sum throughput for several choices of p(0+) and fixed K = 0.
The upper bound is also computed from (3.16) and denoted by Rupper in the table.

Based on a comparison between the upper and lower limits on the rate function, it is
immediate that the choice of p(0+) = 0.001 results the best performance of the designed
power policy. For the same choices of p(0+) as in Table 3.1 and K = 0, Fig. 3.2 shows the
power policy solutions. Except for the case of p(0+) = 1, all the power policy solutions
adopt a small transmission power when battery charge is small. Along the same lines, Table
3.2 shows the upper and lower limits on the average throughput for fixed p(0+) = 0.001
and variable K. We have particularly provided the best value of K up to precision 0.01
as well as the corresponding achievable rates. The best achievable rate, as a percentage of
the upper bound, is also evaluated.

Finally, to show the robustness of the iterative algorithm to the initializing function,
a different choice of p(0)

k (xk) is studied in Fig. 3.3. Therein, we particularly have selected
p

(0)
k (xk) = pk(0

+), 0 ≤ xk ≤ 3 for purpose of initialization in Algorithm 2 while the rest of
the parameters are the same as in Fig. 1a. Evidently, the power policy converges to an
identical function as one depicted in Fig. 1a. Similarly, the same convergence was observed
when p(0)

k (xk) = pk(0
+)+
√
xk, 0 ≤ xk ≤ 3. In this respect, the proposed algorithm appears

to be insensitive to the choice of the initial power policy.
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Figure 3.1: Battery capacity L = 3, equation constant K = 0, and p(0+) = 0.1 for two nodes case.
(a) The convergence of transmission power policy to an achievable policy (denoted by squares)
after N = 10 iterations with initializing function p(0)(x) = x + p(0+) (dashed lines) and iterates
(solid lines), (b) Absolutely continuous part f(x) of π(x) for the converged solution.
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Figure 3.2: Transmission power policies p(x) with different initial values (L = 3,M = 2,K = 0).
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Figure 3.3: Robustness to the initializing function, using a constant initializing function (dashed
line) p(0)(xk) = p(0+), 0 ≤ xk ≤ L (L = 3,M = 2,K = 0 and N = 10).
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Chapter 4

Summary and Future Research

4.1 Summary

We have considered continuous-time power policies for a multiple access communication
system where each node is capable of harvesting energy.

First, we modelled the battery as a compound Poisson dam, where the remaining
charge in the battery modulates the transmission power. We then analysed this storage
dam model in the ergodic case. In particular, we characterized an upper bound on the
maximum sum-rate as a function of the energy arrivals distributions and the capacity of
the batteries.

For batteries with infinite capacity, we proved that any rate close to the upper bound
is achievable by a set of constant power policies. For batteries with limited capacity, we
showed that optimal power policies can be derived by solving a system of simultaneous
partial integro-differential equations. To solve these equations, we developed an iterative
algorithm based on the Gauss-Seidel approach.

We next derived a fixed point algorithm for the symmetric MAC case where the multi-
ple access nodes have identical energy harvesting statistics. Furthermore, the convergence
of the utility function that results from the proposed algorithms was established. Numer-
ical results show that for a battery capacity of L = 3, the achievable scheme provides a
throughput of up to 86.6% of the upper bound.
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4.2 Future Research and Extensions

Clearly, the problem is still open in the finite battery case due to the gap that exists
between the given upper bound and achievable rates. Therefore, further investigation is
required to close the gap by obtaining a tighter upper bound or better achievable power
allocation schemes.

An interesting extension to this work is to study energy harvesting communication over
fading channels, where the transmission power is adapted to both channel fading process
and storage process of battery. This study particularly reveals the relation between the
water-filling power policy (for a constant average power constrain) and energy harvesting
power policies.

Another extension is to consider continuous-time power policies that are modulated by
the stored energy and data in the battery and buffer, respectively. In this case, the per-
formance metric can be either the average transmission rate or the average delay incurred
by data packages in the buffer. Furthermore, based on a generalized rate conservation law
for multi-dimensional càdlàg processes (see [20]), necessary conditions for ergodicity of the
energy storage process can be established.

Current and Future direction in energy harvesting technologies is concentrated on the
fabrication of hybrid EH devices where different energy sources can be harvested in one
platform. Therefore, the power output of EH devices is expected to substantially increase
in the near future. The energy harvesting technologies will thus play a central role in the
global power supply chain over the next decades.
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Appendix A

Optimality of Markov Power Policies

In the following, we show that for every power policy with memory, p∗k(Xk(u);u ≤ t),
there exist a memoryless counterpart pk(Xk(t)) that attains the same or better sum-
throughput performance. In particular, let (Ω,F ,P) be a complete probability space and
X∗k(t;ω),−∞ < t < ∞ be a stationary and ergodic stochastic process defined on this
probability space and whose evolution for t ≥ 0 is given by1

X∗k(t;ω) = X∗k(0;ω) + E In
k

(
(0, t];ω

)
−
∫ t

0

p∗k
(
X∗k(u;ω);u ≤ s

)
ds. (A.1)

In conjunction with the process X∗k(t;ω), we then define the following empirical CDFs,

F̃ ∗k (ρk, xk;ω) , lim
T→∞

1

T

∫ T

0

1
(
pk(X

∗
k(u;ω);u ≤ s) ≤ ρk

)
1(X∗k(s;ω) ≤ xk) ds, (A.2)

π̃∗k(xk;ω) , lim
T→∞

1

T

∫ T

0

1(X∗k(s;ω) ≤ xk) ds (A.3)

= lim
ρk→∞

F̃ ∗k (ρk, xk;ω). (A.4)

Now since X∗k(t) is ergodic, F̃ ∗k (ρk, xk;ω) and π̃∗k(xk;ω) are well defined, and constant
P−almost surely on Ω, i.e.,

F̃ ∗k (ρk, xk;ω)
P−a.s.

= F ∗k (ρk, xk), (A.5)

π̃∗k(xk;ω)
P−a.s.

= π∗k(xk), (A.6)

1For clarity, we make the dependence on ω ∈ Ω explicit.
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For the functions F ∗k (ρk, xk), π∗k(xk) in (A.5) and (A.6) we define the conditional CDF
F ∗k (ρk|xk) by

F ∗k (ρk, xk) =

∫ xk

0

F ∗k (ρk|s)π∗k(ds). (A.7)

Also, we define the memoryless power policy pk(xk) as follows

pk(xk) ,
∫ ∞

0

ρkF
∗
k (dρk|xk), (A.8)

and a corresponding storage process Xk(t) governed by

Xk(t) = Xk(0) + E In
k (0, t]−

∫ t

0

pk
(
Xk(s)

)
ds. (A.9)

Also, we denote the stationary measure of Xk(t) by πk(xk). Our objective now is to prove
that the throughput using the storage process with memory p∗k(X∗k(u;w), u ≤ t) is no better
than that of it’s memoryless counterpart pk(Xk(t)), i.e.,

R({p∗k(X∗k(s;w); s ≤ t)}Mk=1)
P−a.s.
≤ R

(
{pk(Xk(t))}Mk=1

)
. (A.10)

To show this result, we begin with the definition of the long term average throughput for
the storage process in (A.1), i.e.,

R
(
{p∗k(X∗k(s;w); s ≤ t)}Mk=1

)
, lim

T→∞

1

T

∫ T

0

r
( M∑
k=1

p∗k(X
∗
k(s;w); s ≤ t)

)
ds (A.11)

(a)
=

∫
A

∫
B
r(

M∑
k=1

ρk)
M∏
k=1

F̃ ∗k (dρk, dxk;w) (A.12)

P−a.s.
=

∫
A

∫
B
r(

M∑
k=1

ρk)
M∏
k=1

F ∗k (dρk, dxk) (A.13)

=

∫
A

∫
B
r(

M∑
k=1

ρk)
M∏
k=1

F ∗k (dρk|xk)π∗k(dxk), (A.14)

where (a) follows from the definition of F̃ ∗k (dρk, dxk;w) in (A.2), and B , [0,∞)× [0,∞)×
· · · [0,∞) is the domain of integration on {ρk}Mk=1. From concavity of the rate function, we
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then upper bound (A.14) as follows

R
(
{p∗k(X∗k(s;w); s ≤ t)}Mk=1

) P−a.s.
=

∫
A

∫
B
r(

M∑
k=1

ρk)
M∏
`=1

F ∗` (dρ`|x`)
M∏
k=1

π∗k(dxk) (A.15)

≤
∫
A
r(

M∑
k=1

∫
B

ρk

M∏
`=1

F ∗` (dρ`|x`))
M∏
k=1

π∗k(dxk) (A.16)

=

∫
A
r
( M∑
k=1

∫ ∞
0

ρkF
∗
k (dρk|xk)

) M∏
k=1

π∗k(dxk) (A.17)

,
∫
A
r
( M∑
k=1

pk(xk)
) M∏
k=1

π∗k(dxk), (A.18)

where the last step follows from the definition of pk
(
xk
)
in (A.8). The remaining task is

now to show that π∗k(xk) = πk(xk),∀k ∈ [M ]. For this purpose, we define some notation
in conjunction with an arbitrary, stationary, càdlàg2 process Y (t) whose jumps (positive
or negative) occur at time instants T 0, T 1, · · · . In particular, the right hand derivative of
Y (t) is defined by

Y +(t) , lim
ε↓0

Y (t+ ε)− Y (t)

ε
. (A.19)

In addition, define

Y (t−) , lim
ε↓0

Y (t− ε). (A.20)

Theorem 4 Let Y (t) be an ergodic, stationary, càdlàg process. Then,

f(y)E
[
Y +(t)|Y (t) = y

]
= λ0E0

[
1{Y (T 0,−)>y}1{Y (T 0)<y} − 1{Y (T 0,−)<y}1{Y (T 0)>y}

]
, (A.21)

where f(y) is the probability density at y, and E0 denotes the expectation with respect to
the Palm probability distribution corresponding to the point process (with assumed intensity
λ0) for the jumps. �

Proof 5 A proof based on the rate conservation law (RCL) can be found in [28, pp. 36].
2Right continuous with left hand limit. Note that both the storage processes in (A.1) and (A.9) are

càdlàg.
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Remark 8 The term 1{Y (T 0,−)>y}1{Y (T 0)<y} in the right hand side of Theorem 4 corre-
sponds to negative jumps in the sample path while 1{Y (T 0,−)<y}1{Y (T 0)>y} corresponds to
positive jumps.

Remark 9 As the memoryless storage process in (A.9) only contains positive jumps,

E0
[
1{Xk(T 0,−

k )>xk}1{Xk(T 0
k )<xk}

]
= 0,

where as defined in Section 2.1-B, T 0
k , T

1
k , · · · denote the energy arrival times for the kth

node. In this special case, we then have

fk(xk)E[X+
k (t)|Xk(t) = xk] = fk(xk)E[−pk(Xk(t))|Xk(t) = xk] (A.22)

= −fk(xk)pk(xk). (A.23)

For the right hand side of Theorem 4 we obtain

λ0E0[−1{Xk(T 0,−)<xk}1{Xk(T 0)>xk}]
(a)
= λkE[−1{Xk(T 0,−)<xk}1{Xk(T 0)>xk}] (A.24)

= −λk
∫ xk

0

(
1−Bk(xk − vk)

)
πk(dvk) (A.25)

= −λk
[(

1−Bk(xk)
)
π0
k +

∫ xk

0+

(
1−Bk(xk − vk)

)
f(vk) dvk

]
,

(A.26)

where (a) follows from the notion of Poisson Arrivals See Time Averages (PASTA) [28,
Prop. 1.23] for Poisson energy arrival process with intensity λ0 = λk. Equating (A.23)
and (A.26) according to Theorem 4, we obtain

fk(xk)pk(xk) = λk

[(
1−Bk(xk)

)
π0
k +

∫ xk

0+

(
1−Bk(xk − vk)

)
fk(vk) dvk

]
, (A.27)

which is the equilibrium condition in (2.10) with the density fk(xk) and the atom π0
k.

Returning to the storage process with memory in (A.1), now it is also easy to see that

E
[
(X∗k(t))+|X∗k(t) = xk

]
=

∫ ∞
0

ρkFk(dρk|xk) (A.28)

, pk(xk), (A.29)
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which is simply the average rate of down crossing at level xk corresponding to the stationary
distribution of X∗k(t) in (A.1). Applying the same technique as Remark 9 to the process
in (A.1), we thus obtain

f ∗k (xk)E
[
(X∗k(t))+|X∗k(t) = xk

]
= f ∗k (xk)pk(xk) (A.30)

= λk

[(
1−Bk(xk)

)
π∗,0k +

∫ xk

0+

(
1−Bk(xk − vk)

)
f ∗k (vk) dvk

]
,

(A.31)

where π∗,0k and f ∗k (xk) are the atom and the continuous part (density) of the probability
measure π∗k(xk). Since from Theorem 1 the probability measure that solves (A.27) and
(A.31) is unique,

π∗k(xk) = πk(xk), ∀xk. (A.32)

Concluding from (A.18), we thus showed that

R
(
{p∗k(X∗k(s;w); s ≤ t)}Mk=1

) P−a.s.
≤

∫
A
r
( M∑
k=1

pk(xk)
)
π∗k(dxk)

=

∫
A
r
( M∑
k=1

pk(xk)
)
πk(dxk)

P−a.s.
= R

(
{pk(Xk(t))}Mk=1

)

Remark 10 We note that in the ergodic regime, the upcrossing rate as well as the drift
component of the storage process in the finite battery case also obey the law stated in
Theorem 2. Thus, we again obtain (A.31) as battery overflow does not change the upward
and downward rates. Therefore, a similar proof can be used to show Xk(t) is a sufficient
statistic for optimal power policies in the storage model with a finite battery capacity (2.7).
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Appendix B

Concavity of the Objective Function
Over Each Coordinate

Since for all k 6= j,

(π0,α
k , gαk (xk)) = (π0,1

k , g1
k(xk)) = (π0,2

k , g2
k(xk)),

we have that

παk (dxk) = π1
k(dxk) = π2

k(dxk).

Then,

Rα
j =

∫
A
r

(
λj
Gα
j (xj)

gαj (xj)
+

∑
k∈[M ]−j

λk
Gk(xk)

gk(xk)

)
παj (dxj)

∏
k∈[M ]−j

πk(dxk) (B.1)

= Ej
[ ∫ Lj

0

r

(
λj
Gα
j (xj)

gαj (xj)
+

∑
k∈[M ]−j

λk
Gk(xk)

gk(xk)

)
παj (dxj)

]
(B.2)

= Ej
[ ∫ Lj

0

r

(
λj
Gα
j (xj)

gαj (xj)
+

∑
k∈[M ]−j

λk
Gk(xk)

gk(xk)

)
[π0,α
j δ(xj) + e−ζjxjgαj (xj)]dxj

]
(B.3)

= Ej
[ ∫ Lj

0

r

(
λj
Gα
j (xj)

gαj (xj)
+

∑
k∈[M ]−j

λk
Gk(xk)

gk(xk)

)
e−ζjxjgαj (xj)dxj

]
+ π0,α

j Ej
[
r

( ∑
k∈[M ]−j

λk
Gk(xk)

gk(xk)

)]
.

(B.4)
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For the term inside the first expectation in (B.4), we proceed as below∫ Lj

0

r

(
λj
Gα
j (xj)

gαj (xj)
+

∑
k∈[M ]−j

λk
Gk(xk)

gk(xk)

)
e−ζjxjgαj (xj)dxj

=

∫ Lj

0

r

(
λj
αG1

j(xj) + ᾱG2
j(xj)

αg1
j (xj) + ᾱg2

j (xj)
+

∑
k∈[M ]−j

λkGk(xk)

gk(xk)

)(
αe−ζjxjg1

j (xj) + ᾱe−ζjxjg2
j (xj)

)
dxj

=

∫ Lj

0

r

(
λj
αe−ζjxjG1

j(xj) + ᾱe−ζjxjG2
j(xj)

αe−ζjxjg1
j (xj) + ᾱe−ζjxjg2

j (xj)
+
∑

k∈[M ]−j

λkGk(xk)

gk(xk)

)
×
(
αe−ζjxjg1

j (xj) + ᾱe−ζjxjg2
j (xj)

)
dxj

(a)

≥
∫ Lj

0

r

(
λj
αe−ζjxjG1

j(xj)

αe−ζjxjg1
j (xj)

+
∑

k∈[M ]−j

λkGk(xk)

gk(xk)

)
αe−ζjxjg1

j (xj) dxj

+

∫ Lj

0

r

(
λj
ᾱe−ζjxjG2

j(xj)

ᾱe−ζjxjg2
j (xj)

+
∑

k∈[M ]−j

λkGk(xk)

gk(xk)

)
ᾱe−ζjxjg2

j (xj)dxj

= α

∫ Lj

0

r

(
λj
G1
j(xj)

g1
j (xj)

+
∑

k∈[M ]−j

λkGk(xk)

gk(xk)

)
e−ζjxjg1

j (xj) dxj

+ ᾱ

∫ Lj

0

r

(
λj
G2
j(xj)

g2
j (xj)

+
∑

k∈[M ]−j

λkGk(xk)

gk(xk)

)
e−ζjxjg2

j (xj)dxj,

where (a) can be verified via lemma given in Appendix C and choosing

a1 = αe−ζjxjg1
j (xj), a2 = ᾱe−ζjxjg2

j (xj),

b1 = αe−ζjxjG1
j(xj), b2 = ᾱe−ζjxjG2

j(xj),

and

γ = λj, β =
∑

k∈[M ]−j

λkGk(xk)

gk(xk)
.
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Therefore, for the first term of (B.4) we obtain

Ej
[ ∫ Lj

0

r

(
λj
Gα
j (xj)

gαj (xj)
+

∑
k∈[M ]−j

λk
Gk(xk)

gk(xk)

)
e−ζjxjgαj (xj)dxj

]

≥ αEj
[ ∫ Lj

0

r

(
λj
G1
j(xj)

g1
j (xj)

+
∑

k∈[M ]−j

λk
Gk(xk)

gk(xk)

)
e−ζjxjg1

j (xj)dxj

]

+ ᾱEj
[ ∫ Lj

0

r

(
λj
G2
j(xj)

g2
j (xj)

+
∑

k∈[M ]−j

λk
Gk(xk)

gk(xk)

)
e−ζjxjg2

j (xj)dxj

]
. (B.5)

Splitting the second term of (B.4) as

π0,α
j Ej

[
r

( ∑
k∈[M ]−j

λk
Gk(xk)

gk(xk)

)]
=

απ0,1
j Ej

[
r

( ∑
k∈[M ]−j

λk
Gk(xk)

gk(xk)

)]
+ ᾱπ0,2

j Ej
[
r

( ∑
k∈[M ]−j

λk
Gk(xk)

gk(xk)

)]
, (B.6)

and combining (B.5) and (B.6) we derive

Rα
j ≥ αR1

j + ᾱR2
j . (B.7)

�
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Appendix C

A Lemma

Lemma 2 Let γ, β > 0, ak > 0 and bk > 0 be given. Then∑
k

akr(γ
bk
ak

+ β) ≤ ar(γ
b

a
+ β), (C.1)

where a =
∑

k ak and b =
∑

k bk. �

Proof 6 we define the function V (x) = xr
(
(γ/x) + β

)
which is known to be concave for

all x > 0 since

V ′′(x) =
γ2

x3
r′′(

γ

x
+ β) < 0,

where the concavity property of the rate function has been used. We then proceed as∑
k

akr(γ
bk
ak

+ β) =
∑
k

bk(ak/bk)r(γ
bk
ak

+ β)

=
∑
k

bkV (ak/bk)

= b
∑
k

(bk/b)V (ak/bk).
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Furthermore, from concavity of V (x),

b
∑
k

(bk/b)V (ak/bk) ≤ bV (
∑
k

bk/b× ak/bk)

= bV (a/b)

= ar(γ
b

a
+ β).

Hence, ∑
k

akr(γ
bk
ak

+ β) ≤ ar(γ
b

a
+ β).
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Appendix D

Formulation of Power Policies on a
Finite-Time Horizon

Here, we consider the dynamic programming approach to characterize an optimal trans-
mission power policy in a single user communication system (k = 1) over the time slot of
[0, T ] and with the finite battery capacity L. The energy arrival model is assumed to be
the same as Section 2.1. However, the storage model (2.7) now takes the following form

X(t) = X(0) + E In
k (0, t]−

∫ t

0

p(s,X(s)) ds, (D.1)

where p(s,X(s)) is the transmission power that is a function of time and the energy of the
battery. We note that t is running up to the exit time from the boundary x = L, i.e.,

0 ≤ t ≤ min
{
τ+(L), T

}
, (D.2)

where τ+(x) := inf{t ≥ 0 : X(t) ≥ x}.

Definition 3 The set of admissible power controls, π[t, x] at time t and for energy storage
value of X(t) = x is defined as the set of 5-tuples

(
Ω,F ,P, {E In

k (0, s]}t≤s≤T , p(·)
)
satisfying

the following conditions 1

•
(
Ω,F ,P) is a complete probability space.

1Here, we are only interested in Markov transmission power policies.
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• {E In
k (0, s]}s≥t is the arrival process defined on

(
Ω,F ,P) with filtration F[t,s] = σ{E In(0, r] :

t ≤ r ≤ s}.

• p(·) : [t, T ]× [0, L]× Ω→ R+ is an {F[t,s]}t≤s≤T -adapted process on
(
Ω,F ,P).

The objective is to maximize the total expected transmission rate over the interval [0, T ],
i.e.,

sup
p(·)

E

[∫ min{τ+(L),T}

0

r
(
p(s,X(s))

)
ds+ ψ(X(T ))1{τ(L)≥T}

]
, (D.3)

where ψ(·) : [0, L]→ R− is the terminal cost function that establishes the penalty of having
the residual energy in the battery at the time deadline t = T . Now, we define the value
functional V (t, x) as follows

V (t, x) , sup
p∈π[t,x]

E

[∫ min{τ+(L),T}

t

r
(
p(s,X(s))

)
ds+ ψ(X(T ))1{τ(L)≥T}

]
. (D.4)

Definition 4 A two-parameter family of linear operators {T (r, t)}0≤r,t is a semigroup if
it satisfies

• T (r, s)T (s, t) = T (r, t) for all r, s, t ≥ 0.

• T (t, t) = I for all t ≥ 0 where I is the unit operator.

Definition 5 The infinitesimal generator of a family of operators [T (u, t)f ](x) is defined
as

(Atf)(x) , lim
h↓0

1

h
[[T (t, t+ h)f(t+ h, ·)](x)− f(t, x)] , (D.5)

on those functions f(·) for which the limit exists.
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HJB Equation

From Bellman’s principle of dynamic programming we have that

V (t, x) = sup
p(·)∈π[t,x]

E

[∫ min{τ+(L),t+h}

t

r
(
p(s,X(s)

)
ds+ V (t+ h, x(t+ h))

]
, (D.6)

which can be transformed into the semigroup form for all 0 ≤ t ≤ t+ h ≤ T as follows

V (t, x) = [T (t, t+ h)V (t+ h, ·)](x), (D.7)

where the non-linear semigroup T (t, t+ h) is defined as

[T (t, t+ h)V (t+ h, ·)](x) := sup
p(·)∈π[t,x]

E

[∫ min{τ+(L),t+h}

t

r
(
p(s,X(s)

)
ds+ V (t+ h, x(t+ h))

]
(D.8)

From (D.7) and by taking h ↓ 0 we obtain

lim
h→0

1

h

(
V (t, x)− [Tt,t+hV (t+ h, ·)](x)

)
Def.5
= [AtV (t, ·)](x)

= 0. (D.9)

Proposition 2 The generator of the semigroup T (u, t) in conjunction with the energy
storage process X(t) in (D.1) has the Courrège form, i.e.,

[Atf(t, ·)](x) =∂f(t, z)/∂t+ [Gtf(t, ·)](x) (D.10)

where for p̄ , lims↓t p(s,X(s)), Gt is defined as

[Gtf(t, ·)](x) = sup
p̄∈[0,∞)

{
r
(
t, p̄
)

+ p̄∂f(t, x).∂x
}

+ λ

∫ ∞
0

f(t, x+ x′)− f(t, x)]
(
1−B(dx′)

)
, (D.11)

where λ is the energy arrival rate and B(x) = 1− exp(−ζx).

Proof 7 See [7, Thm. 3.3.3].
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From Proposition 2 we obtain

∂V (t, x)

∂t
+ sup

p̄∈[0,∞)

{
r(p̄) + p̄

∂V (t, x)

∂x

}
+ λ

∫ ∞
0

[V (t, x+ x′)− V (t, x)]
(
1−B(dx′)

)
= 0. (D.12)

This is the Hamilton-Jacobi-Bellman equation for optimal power control p(·) with boundary
condition V (x, t)|t=T = ψ(x).The optimal power policy is thus the solution to the following
problem

pOptimal(·) ∈ arg sup
p̄∈[0,∞)

{
r(p̄) + p̄

∂V (t, x)

∂x

}
. (D.13)

Remark 11 The PDE in (D.12) does not have a classical solution in the sense that there
are some points (t, x) ∈ [0, T ] × [0, L] for which V (t, x) is not differentiable. Therefore,
V (t, x) is the general solution (viscosity solution) of (D.12) (ref. [16]).
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