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Abstract 

Time-interleaved analog-to-digital converters are an attractive architecture for 

achieving a high speed, high resolution ADC in a power efficient manner. However, 

due to process and manufacturing variations, timing skews occur between the 

sampling clocks of the sub ADCs within the TI-ADC. These timing skews 

compromise the spurious free dynamic range of the converter. In addition, jitter on 

the sampling clocks, degrades the signal-to-noise ratio of the TI-ADC. Therefore, in 

order to maintain an acceptable spurious free dynamic range and signal-to-noise ratio, 

it is necessary to correct the timing skews while adding minimal jitter. 

Two analog-based architectures for correcting timing skews were 

investigated, with one being selected for implementation. The selected architecture 

and additional test circuitry were designed and fabricated in a 0.18µm CMOS process 

and tested using a 125 MSPS 16-bit ADC. The circuit achieves a correction precision 

on the order of 10’s of femtoseconds for timing skews as large as approximately 

180 picoseconds, while adding less than 200 femtoseconds of rms jitter. 
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Chapter 1  

Introduction 

Speed, magnitude and efficiency; for better or for worse, the world demands that the 

boundaries be pushed for how fast, how many and how efficiently things can be done. 

Within the realm of analog-to-digital converters (ADCs) this means pushing the 

boundaries to obtain: higher analog input bandwidths (to handle RF carrier 

frequencies), faster sample rates (to accommodate wider bandwidths), higher 

resolutions (to meet the linearity requirements of the advanced coding schemes) and 

an energy efficient architecture. One technique that is used to help ADCs achieve 

these requirements is time-interleaving [1]. 

The theory and operational details behind time interleaving and time-

interleaved analog-to-digital converters (TI-ADCs) is left to Chapter 2 to be 

discussed. For now the technique of time-interleaving can be viewed as paralleling 

multiple ADCs, not unlike the trend in microprocessors to use multiple cores to 

accomplish processing tasks. Like multi-core processors, the idea and necessity 

behind using TI-ADCs is that it is more energy efficient and practical (in terms of 

heat dissipation) to use multiple, slower, high resolution ADCs in parallel than to 

design a single very high speed, high resolution ADC [1]. However, implementing a 
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TI-ADC such that it achieves all of the previously mentioned requirements is non-

trivial. 

One challenging aspect of implementing a TI-ADC is achieving the correct 

clock timing between each of the sub ADCs within the TI-ADC [1]. If there is a skew 

in the clock timing, here-in referred to as timing skew, of one or more of the 

interleaved ADCs then the resolution of the TI-ADC will be degraded in proportion 

to the magnitude of the skew relative to the other interleaved ADCs and the frequency 

of the input signal to the TI-ADC [1]. Correcting the timing skews requires 

adjustment of the clocks (analog domain) or the digital output data (digital domain) to 

an accuracy and precision on the order of femtoseconds or better [1]. In addition the 

method of correction is required to add as little jitter to the clock as possible in order 

to minimize the impact on the TI-ADC’s noise performance [1]. This thesis presents 

an option to address the challenge and requirements of correcting timing skews in 

TI-ADCs. It details the design and implementation of a low jitter analog 

circuit/method which can correct timing skews to the femtosecond level. 

1.1 Thesis Outline 

This thesis is divided into 5 main chapters dealing with the background theory, 

potential architectures, design and implementation, measured results and the major 

conclusions. Chapter 2 presents relevant background concepts on ADCs and 

TI-ADCs as well as the pertinent performance specifications. In addition the theory 

on timing skews and their impact on the TI-ADCs performance specifications are 

presented as well as the performance impact of clock jitter on ADCs. Lastly, 

Chapter 2 concludes with a definition of the performance requirements for a timing 

skew correction system/circuit. Chapter 3 begins with a comparison of analog and 

digital methods of correcting timing skew. It then presents analog circuit techniques 

that can be used to adjust the timing skew of a clock. Chapter 3 then continues by 
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comparing two circuit architectures that can introduce timing skews and their relative 

performance in terms of jitter and precision. Lastly, Chapter 3 concludes with a 

recommendation for which circuit structure to implement and the necessary system-

level architecture in order to test the structure’s performance. Chapter 4 presents the 

design, layout and fabrication of the various circuits required to implement the system 

described in Chapter 3 in TSMC’s 0.18µm CMOS. Chapter 5 discusses the 

implementation details of the fabricated chip, including the accompanying printed 

circuit board (PCB) design and test setup details. In addition the measured results of 

the fabricated chip are presented, with relevant comparisons to post-layout 

simulations. Finally, Chapter 6 presents the major conclusions within the thesis as 

well as future considerations and directions for this research. 
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Chapter 2  

Time-Interleaved 

Analog-to-Digital Converters 

As discussed in Chapter 1, time-interleaving is one technique that can be used to 

increase the sample rate of an ADC without requiring excessive power dissipation 

[1]. However, issues arise when designing TI-ADCs beyond those already present in 

the design of a typical ADC. The issue that this thesis focuses on is timing skews. In 

order to understand the impact and source of timing skews in a TI-ADC, it is useful to 

understand the concepts surrounding a TI-ADCs operation and the ADC performance 

metrics the timing skews affect. It is important to note that although the focus is on 

timing skews, other issues that can impact or limit the ability to measure or correct 

timing skews are covered as well. 

This chapter begins with an overview of how the performance of an ADC is 

measured and a description of the fundamental performance metrics and limits that 

are useful when evaluating a TI-ADC’s operation subject to timing skews. Next, the 

basic operation of a TI-ADC is shown along with an explanation of timing skews and 

other related issues that occur when the operation is non-ideal. The issue of timing 

skews is then expanded on with a mathematical analysis showing their impact and the 
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degree to which timing skews need to be corrected. After this, the concept of jitter is 

presented, along with the desired limits to which jitter needs to be controlled. Lastly, 

a summary of the desired performance for a system to correct timing skews is 

discussed, setting two of the key design goals of this thesis. 

2.1 ADC Concepts 

The important ADC concepts, beyond those dealing with the operation of the ADC, 

have to do with understanding the performance specifications and the fundamental 

limits of an ADC. In most cases the performance specifications of an ADC are 

measured using a single-tone sinusoidal input, which can be represented as: 

     
   

 
            (2.1) . 

where     is the full-scale input voltage and     is the frequency of the sinusoidal 

tone. Note that within this thesis, unless otherwise noted, when there is an input to an 

ADC or TI-ADC it is assumed to be a single-tone represented by Equation (2.1). For 

evaluation purposes, the digital output of the ADC is converted to the frequency 

domain via a Fast Fourier Transform (FFT). The performance specifications can then 

be measured and/or calculated from the FFT plot. In short, the FFT converts a 

discretized (digital) signal of a specific length,  , into a magnitude versus frequency 

spectrum which contains   ⁄  discrete frequency bins, each spaced apart by 

        ⁄ , over a bandwidth of            ⁄ , where         is the sampling 

frequency. One very important assumption buried within the FFT operation is that the 

discretized signal is sampled uniformly, meaning all the samples have exactly the 

same spacing in time between one another. Knowledge of this assumption is 

important when analyzing timing skews in TI-ADCs, as is shown in Section 2.3. 
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2.1.1 Sampling Rate, Aliasing and

 Analog Input Bandwidth 

As previously mentioned,         is the frequency the analog input signal to an ADC 

is sampled at. Alternatively, this frequency is commonly referred to as the sample rate 

of the ADC and is usually expressed as the number of samples per second (SPS). The 

sample rate sets the limit for the widest bandwidth,    , the ADC can accurately 

convert, which is determined by the Nyquist rate as: 

     
       

 
 (2.2) . 

However, it is very important to note that this is not the limit for the highest 

frequency the ADC can convert, which is roughly determined by the ADC’s analog 

input bandwidth [2]. 

Knowing that the FFT only recognizes frequencies between    and 

        ⁄ , aliasing together with Nyquist zones describe how a frequency higher 

than         ⁄  is represented in an FFT plot. Aliasing is the phenomenon of a higher 

than Nyquist rate signal being reflected back to the              ⁄  range or first 

Nyquist zone. A Nyquist zone is a region of width         ⁄ , whose zone number 

and frequency range is determined by [2]: 

 

                
            

 
 

        

 
 

            

(2.3) . 
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The Nyquist zone in which the input frequency falls, determines the frequency of the 

reflected (aliased) signal,        and is given by: 

 

                             
            

 
 

            

(2.4) . 

 

                         
        

 
     

            

(2.5) . 

To illustrate how all of these concepts tie together, Figure 2.1 shows an ideal FFT 

plot over 5 Nyquist zones of two discrete signals and their aliases along with an 

overlay of a typical analog bandwidth profile. For simplicity, the images that also 

appear with aliasing are ignored. 

 

Figure 2.1: Ideal FFT Illustrating Aliasing and Analog Input Bandwidth 
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2.1.2 Resolution and Quantization Noise 

The resolution of an ADC indicates the ideal number of distinct levels the analog 

input signal to the ADC can be discretized to. It is usually expressed in terms of the 

number of bits,  , that are required to represent the binary number of discrete levels, 

  . Due to the finite number of levels an ADC can represent, an error will typically 

exist between the actual sampled analog signal level and the discrete level the ADC 

uses to represent it. Provided certain conditions are met, this error is random and is 

commonly referred to as quantization noise. Mathematically the magnitude of the 

quantization noise can be expressed as [2]: 

         
   

  √  
 (2.6) . 

where         is the root mean squared (rms) noise voltage due to quantization. Note 

that         is the total quantization noise and it is spread uniformly over the first 

Nyquist zone             ⁄  .  

The value,        , is commonly used as a limit or level to which non-ideal 

behaviours in ADCs should be kept below and one that is used in later sections to set 

the desired degree to which to correct timing skews and limit jitter. 
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2.1.3 Signal-to-Noise Ratio 

The signal-to-noise ratio (SNR) of an ADC is typically defined as the ratio between 

the input signal’s rms amplitude and the rms value of the sum of all other frequencies 

within the first Nyquist zone, excluding harmonics of the input and    [2]. If the 

only noise present in the ADC is due to the quantization noise given by (2.6) then the 

SNR is: 

      

   

 √ 
   

  √  

 (2.7) . 

More commonly, Equation (2.7) is expressed in decibels (dB) as: 

                   (2.8) . 

Note that this is the best possible SNR for an ADC and in reality, it is degraded by 

many additional noise sources, one of which, as is shown in Section 2.4, is jitter. 

However, when an FFT plot of the output of the ADC is produced, the apparent SNR 

is often much better than the level predicted by (2.8). 

The FFT conversion process takes the total noise in the discretized input 

signal and divides it uniformly, assuming the noise is random, among the frequency 

bins in the first Nyquist zone. This spreading of the noise appears as a decrease in the 

SNR of the ADC (processing gain), where the improvement in the SNR, in dB, is 

given by [2]: 
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        (
 

 
) (2.9) . 

Adding this to (2.8) gives the output SNR for an N-bit ADC, viewed by an   point 

FFT as: 

                          (
 

 
) (2.10) . 

Figure 2.2 illustrates the different SNR’s with an          point FFT plot of an 

     ADC with only quantization noise, sampling an input with a  

           1 at a rate                . 

 

Figure 2.2: FFT Plot Illustrating Various SNR Calculations for a             and 

                

                                                 
1
 The actual coherent frequency used is 110.00442553 MHz 
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2.1.4 Spurious Free Dynamic Range 

A spurious tone is a distinct frequency that is generated from non-idealities within an 

ADC or TI-ADC as they sample a signal. Spurious tones (spurs) are almost always 

undesirable as they can interfere in trying to resolve the sampled input signal. An 

important performance specification for ADCs that measures how bad the worst 

spurious tone is in the ADC is the spurious free dynamic range (SFDR). It is usually 

defined as the ratio between the magnitude of the input sinusoid and the magnitude of 

the largest spurious tone      , as seen on an FFT plot: 

      
|   |

|     |
 (2.11) . 

In Section 2.3, it is shown that TI-ADCs subject to timing skews, give rise to 

spurious tones. For the purpose of this thesis, unless otherwise noted, SFDR is the 

ratio between the magnitude of the input and the magnitude of the timing skew 

spurious tone       : 

      
|   |

|       |
 (2.12) . 

Figure 2.3 illustrates this definition of the SFDR for two different magnitudes of 

timing skew spurious tones. 
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Figure 2.3: SFDR as Defined by Two Different Spur Magnitudes 

It is important to note that the SFDR provides a direct measurement for characterizing 

timing skews in TI-ADCs. 

2.2 TI-ADC Concepts 

A TI-ADC is composed of   sub ADCs whose inputs and outputs are clocked at a 

rate of        or        ⁄ . Each of the sub ADCs clocks are precisely shifted 

relative to one another, such that only one of the sub ADCs at a time samples the 

input signal and outputs a digital code. The shifts for each of the clocks are derived 

from a master clock whose rate                 ⁄   is given by: 
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                 (2.13) . 

which sets the overall sample rate of the TI-ADC [1]. In other words, if an ADC with 

a sample rate of        is time-interleaved   times, the overall sample rate         

of the formed TI-ADC has increased by   times compared to the sub ADCs sample 

rate. An example of an     TI-ADC, with the corresponding clocking scheme, is 

shown in Figure 2.4. 

 

Figure 2.4: 4-Way TI-ADC System with Clocking [1] 
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It should be noted that each of the digital codes output by the sub ADCs are combined 

to form the complete digital representation of the sampled signal. 

Two important implementation details are assumed in the above theory. The 

first is that each of the sub ADCs has an analog input bandwidth equal to or greater 

than         ⁄  such that it can sample a Nyquist rate signal (i.e.            ⁄ ). 

The second assumption is that everything is ideal, as in each of the sub ADCs are 

identical and the clocks have perfect relative timing to one another such that they can 

sample a signal uniformly. In reality, things are non-ideal and mismatches occur 

between the sub ADCs and the timings of each of the clocks are skewed from their 

ideal positions. 

2.2.1 Mismatches 

A mismatch in this thesis refers to the variation in a designed operating parameter 

between each of the sub ADCs within the TI-ADC. Mismatches in the offset, gain 

and clock timing (timing skews) are usually the most problematic for TI-ADCs, 

however bandwidth and linearity mismatches also pose problems [1]. A brief 

discussion of offset, gain and bandwidth mismatches is presented below. A detailed 

discussion of timing skews is left to Section 2.3. 

Mismatches in the offsets between the sub ADCs of a TI-ADC spawn 

spurious tones. The frequencies of these tones      are given by [1]: 
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(2.14) . 

These offset induced tones can interfere with the spurious tones produced as a result 

of gain and timing skews. For example, as will be shown later, in a 4-way TI-ADC 

with             ⁄ , the spurious tones due to offset, gain and timing skew 

mismatches all overlap. However, with careful selection of    , the use of a 2-way 

TI-ADC or the correction and/or elimination of the possibility of the offset 

mismatches, the spurious tones induced only due to timing skews can be isolated. 

Gain mismatches between each of the sub ADCs result in spurious tones 

whose frequencies     are given by [1]: 

 

    
        

 
     

           

(2.15) . 

Unfortunately, the frequencies of these tones are not exclusive to gain mismatches. It 

will be shown in the next section that timing skews also result in spurious tones 

whose frequencies are given by (2.15). When trying to characterize, measure and/or 

correct timing skews, all of which are of vital importance to this thesis, it is critical to 

have the ability to correct or eliminate the possibility of gain mismatches. This 

ensures that the observed spurious tones in the output of the TI-ADC under 

consideration are only due to the timing skews themselves and not the combination of 

gain and timing skew mismatches. 
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Finally, bandwidth mismatches between the sub ADCs result in both gain 

mismatches and timing skews producing spurious tones at frequencies given by 

(2.15). However, in the bandwidth mismatch case, the magnitude of the gain and 

timing skew tones depend non-linearly on the input frequency     [3]. Once again, 

care must be taken to correct or remove the possibility of bandwidth mismatches if 

analysis of only timing skews in TI-ADCs is the goal. A testing architecture that does 

this is presented in Chapter 3. 

2.3 Timing Skews 

Clock timing mismatches or more commonly, timing skews, pose one of the biggest 

challenges for TI-ADCs. To explain what timing skews are, it is useful to refer back 

to the clocking diagram in Figure 2.4. Each of the clocks for the sub ADCs are shifted 

with respect to one other by exactly         ⁄ , such that the rising edge of each 

clock, the edge that an ADC samples on, does not overlap with any of the others. This 

allows only one sub ADC to sample at a time. For a     TI-ADC, this can be 

mathematically expressed as: 

       
 

       
 (2.16) . 

where    and    are the times consecutive samples are taken by the first and second 

sub ADCs respectively. Based on this, a timing skew       exists if  

              ⁄  which is defined as: 

        |        
 

       
| (2.17) . 
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Once a TI-ADC is manufactured there are 3 main components that can contribute to 

      ; fixed timing shifts between the sub ADCs due to design and process 

variations, drifts in timing between sub ADCs due to aging and random noise or jitter 

on each of the sub ADCs clocks’. Note that in general, timing skews can exist 

between each sub ADC within the TI-ADC.  

Timing skews are problematic because they shift the times at which each of 

the sub ADCs sample the input, which causes non-uniform sampling of the input 

signal [4]. An illustration of a timing skew in an     TI-ADC and its impact on the 

sampling of a sine wave is shown in Figure 2.5. The blue waveform/points are the 

ideal sampled sine wave, which can also be thought of as the average between the red 

and green points. The red waveform/point corresponds to sub ADC ‘A’ sampling 

later in time than it should, whereas the green waveform is sub ADC ‘A’ sampling 

sooner in time than it should. 

 

Figure 2.5: Time-Domain Plot of an Ideal and Timing Skewed Sampled Sine Waves 
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2.3.1 Analysis 

A full frequency domain analysis of non-uniform sampling, which can be thought of 

as timing skews being applied to a uniformly sampled signal, is performed in [4]. 

This thesis analyzes timing skews in an alternative, time-domain based way, yielding 

similar results as [4]. To simplify the analysis and to match the test architecture used 

to evaluate the circuit designed in this thesis, an     TI-ADC case is presented 

where the timing skew between the two sub ADCs is       . Note that for an     

case, the SFDR is the worst for a given        and the difference between the SNR 

for an     case and the     case is only 3 dB, with typical practical values 

being    , however very large scale integration (VLSI) makes larger values of   

practical [4]. 

Referring back to Figure 2.5, it shows that the non-uniform sampling of a sine 

wave appears like two sine waves that are uniformly sampled and shifted with respect 

to one another by the amount            . Alternatively, the shift can be viewed 

with respect to the input sine wave by               ⁄    for the red wave and 

              ⁄   for the blue wave. These two sine waves can then be thought of 

as inputs to two sub ADCs which exhibit no timing skew, since the sine waves 

themselves now capture the timing skew. One sine wave is applied to the first sub 

ADC and the other to the second, where the sine waves can be mathematically 

expressed using (2.1) as: 

      
   

 
   (            

      

 
) (2.18) . 
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   (            

      

 
) (2.19) . 

When the outputs of the two interleaved ADCs are combined, the overall output 

contains two terms, an average of the two inputs and an error term as explained in [5]. 

Taking the average of the two input terms yields: 

         
 

 
(

   

    (            
      

 )

 
   

    (            
      

 )
) (2.20) . 

Simplifying (2.20) gives: 

         
   

 
(

   (            
      

 )

    (            
      

 )
) (2.21) . 

Equation (2.21) can be further simplified by using the cosine identity  

                                   to give: 
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 ))

 
 
 
 

 (2.22) . 

which, when reduced to its most compact form, results in: 
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(              (     

      

 
)) (2.23) . 

According to (2.23)        affects the amplitude of the signal, however given that 

timing skews are usually on the order of picoseconds at most which result in a 

negligible change in amplitude, (2.23) can be further reduced using the small-angle 

approximation of          for small  , yielding: 

         
   

 
                (2.24) . 

Note that this is the ideal sampled input from (2.1), which shows that the desired 

input does appear in the output of a TI-ADC subject to timing skews. 

Dealing now with the error term, it appears in the output as a consequence of 

the difference between the sine waves that each sub ADC sees and the interleaving 

process. As the interleaving process grabs one sample from one sub ADC and next 

from the other sub ADC, the interleaved output samples appear to oscillate back and 

forth. This oscillation can be represented by a series of alternating magnitude 

impulses, i.e.             , with a frequency of         ⁄  [5]. The impulses 

modulate the difference between the two sine waves. Given this, the error term, 

          can be expressed as follows: 

                    (  
       

 
 ) (2.25) . 

       is obtained by taking the difference between the sine waves, (2.18) and (2.19) 

yielding: 
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   (            
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) (2.26) . 

Once again using the cosine identity  to simplify results in: 
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               (     
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 (2.27) . 

Combining terms reduces (2.27) to: 

                          (     

      

 
) (2.28) . 

Substituting (2.28) into (2.25) gives: 

                  (     

      

 
)               (  

       

 
 ) (2.29) . 

Equation (2.29) shows the amplitude modulation,                ,  

that occurs due to the interleaving impulses. Using the sine identity  

             
 

 
                    on (2.29) results in: 
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) (2.30) . 

Rearranging the arguments of the two cosine terms: 
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) (2.31) . 

The total output is given by the sum of (2.23) and (2.31): 
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 (2.32) . 

Equation (2.32) shows that for an     TI-ADC with a timing skew        

between the two sub ADCs clocks there are three tones that appear in the output. The 

first tone is the desired sampled input tone with a magnitude of: 

 |   |  
   

 
   (     

      

 
) (2.33) . 

The two other tones are spurious tones, generated by the timing skew with 

magnitudes of: 
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 |       |  
   

 
   (     

      

 
) (2.34) . 

and frequencies of: 

             
       

 
 (2.35) . 

It should be noted that the two frequencies actually appear as the same spurious tone 

in an FFT plot, as they both alias to the same frequency. In general, with    , 

additional spurious tones appear with magnitudes typically less than the tone in the 

    case and at frequencies given by [1]: 

 

            
        

 
 

           

(2.36) . 

As an example, Figure 2.6 shows a 32,768 point FFT plot of an             

input, sampled at a rate                 with an     TI-ADC, subject to a 

timing skew            . 
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Figure 2.6: FFT Plot of a 2-way TI-ADC with             and 

                , Subject to a 6 ps Timing Skew 

The most useful way to consider Figure 2.6, in terms of timing skews, is to 

calculate the SFDR. Using equations (2.12), (2.33) and (2.34), the SFDR for a     

TI-ADC is given by: 

      

   

 √ 
   (     

      

 )

   

 √ 
   (     

      

 )
 (2.37) . 

Simplifying (2.37) yields: 
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   (     
      

 )
 (2.38) . 

Equation (2.38) shows that the SFDR for a 2-way TI-ADC subject to timing skews 

directly depends on the ratio between the input and the spurious tone due to the 

timing skew. This is a very important result, implying that timing skews can be 

detected and characterized from the measured SFDR of a TI-ADC. 

From Figure 2.6 and the analysis in this chapter, it is clear that timing skews 

degrade output spectrum of TI-ADCs. This degradation is captured in the resolution 

and SFDR specifications and must be corrected to a certain limit described in the next 

section.  

2.3.2 Timing Skew Requirements 

The timing skews and corresponding spurious tones that occur in a TI-ADC system 

can never be eliminated entirely, as this would require a correction method with 

infinite precision. However, perfect elimination is not required. It is only necessary to 

supress the spurious tones to a level that does not affect the desired resolution and 

SFDR of the TI-ADC. Usually this means correcting the timing skews to the point 

where the spurious tones are below the quantization noise level. 

To establish concrete design goals for this thesis and push the boundaries of 

what current ADCs are doing by time interleaving, a modern high resolution, high 

speed ADC is considered. The 16-bit, 20 MSPS AD9266 by Analog Devices is 

representative of a modern high resolution, high speed ADC [6]. It is assumed that an 
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improvement of 16 to 32 times the original sample rate (interleaving 16 or 32 

AD9266 ADCs) is representative of a push in the boundaries. This assumption is 

valid as recent, state of the art TI-ADCs have 2 to 24 interleaved ADCs [7], [8], [9], 

[10], [11]. In addition, it is assumed that achieving a timing skew limited 

             for a             is representative of boundary pushing 

performance. The implication this value has on the precision the analog timing skew 

correction circuit needs to achieve is shown later in this section. 

Considering the previous statement about the quantization noise level, the rms 

values of (2.6) and (2.34) are used to express, for a 2-way TI-ADC, the relationship 

between the quantization noise level and the magnitude of the timing skew spurious 

tone: 

 
   

  √ √  
 

   

 √ 
   (     

      

 
) (2.39) . 

Using the small-angle approximation          for small   and rearranging to solve 

for the input frequency     yields: 

     
 

   √        

 (2.40) . 

This relation shows that for a given resolution   and timing skew    there is a limit 

on the maximum input frequency to the TI-ADC such that the resolution does not 

degrade below   bits. A plot of (2.40) is shown in Figure 2.7, illustrating the 

maximum input frequency possible for a given resolution, subject to various orders of 

timing skew. 
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Figure 2.7: Input Frequency vs. Timing Skew for Specific Resolutions 

It is evident from Figure 2.7 that as the input frequency increases, the degree 

to which timing skews need to be corrected also increases in order to maintain a 

certain resolution. Alternatively, if the assumption is made that the input frequency to 

the TI-ADC will be set at the highest rate possible within the first Nyquist zone, i.e. 

              ⁄  , then (2.40) becomes: 

 
      

       
 

 

   √  
 (2.41) . 

Equation (2.41) is also a useful way to think of timing skews as it relates them to the 

sample rate. Furthermore, it works out that the ratio of              ⁄  needs to be 

on the same order as the resolution of the converter when sampling at the Nyquist 

rate. 
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As mentioned in the previous section, a very useful way to consider timing 

skews is in terms of the SFDR of the TI-ADC. Equation (2.38) can be further 

simplified by using the small angle approximations for both        and        and 

putting it in dB, which results in: 

             (
 

          
) (2.42) . 

Equation (2.42) shows that the SFDR of a TI-ADC will degrade as     increases, 

unless there is a corresponding decrease in the timing skew       . Figure 2.8 

illustrates this behaviour, showing the expected SFDR for a range of input 

frequencies, given various orders of timing skew. 

 

Figure 2.8: SFDR vs. Timing Skew for Specific Input Frequencies 
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It is very important to note that Figure 2.8 is a vital reference as it quickly 

shows the precision level to which timing skews need to be corrected for a given 

input frequency and SFDR. This is useful to know when either designing or 

measuring the performance of a circuit for correcting timing skews in TI-ADCs since 

the precision level is one of the main specifications to consider for such a circuit. 

Based on Figure 2.8 then, a timing skew limited              for a  

           , results in a precision requirement of 25 fs for the timing skew. This 

means that in order reduce the spurious tone 100 dB below the fundamental; the 

correction circuit requires a precision/step size of 25 fs when correcting the timing 

skew. This serves as the first main design goal of this thesis and is representative of a 

boundary pushing goal as recently reported TI-ADCs [7], [11], [9] are achieving 

approximately 65 fs, 250 fs and 570 fs of timing skew correction precision 

respectively. 

The second main design goal related to timing skews is the largest magnitude 

of timing skew the correction circuit can handle, which herein is referred to as the 

range. The range requirement determines how large of a timing skew can exist 

between any two sub ADCs in a TI-ADC and still be corrected for down to the 

precision requirement. The maximum range that needs to be covered is usually on the 

order of tens to hundreds of picoseconds, with 25 ps [12], 50 ps [13] and 500 ps [14] 

being reported in the literature. In this thesis, a range of approximately 100 ps to 

200 ps is set as the design goal. This range specification represents a rough average of 

what the literature reports, leaning more towards the low end in order to cater to 

integrated circuit based TI-ADCs. 

2.4 Jitter 

Jitter is the random variation in timing of when a signal crosses a specific threshold. 

The random variation in timing is a result of noise being present on the signal whose 
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threshold crossing is important. All ADCs whether they are TI-ADCs or not, are 

degraded by the presence of jitter on their sampling clocks and on the input signal to 

the ADC. In this thesis the jitter of concern is that on the sampling clocks provided to 

the sub ADCs in a TI-ADC. Jitter on a sampling clock gives rise to an error in the 

sampled voltage as shown in Figure 2.9. 

 

Figure 2.9: Sampling Clock Jitter’s Effect on the Sample Analog Input [2] 

Figure 2.9 shows that for a given jitter         , the error in the sampled 

voltage        is related to the jitter through the slope or slew rate      of the 

sampled signal. Mathematically this is expressed as: 

                    (2.43) . 
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Note that the error in the sampled voltage is referred to as a noise        because 

         is a random value, which means the voltage error is a random value and will 

appear as a noise on the output of the ADC. Furthermore          is typically 

expressed as an rms value, resulting in        also being an rms voltage. 

As mentioned in Section 2.1, ADCs are usually tested with a sinusoidal input 

signal. Given this, the worst-case        for a given          on the sampling clock, 

occurs when the maximum slew rate is observed on the sinusoidal input. The 

sinusoidal input can be expressed as follows: 

     
   

 
            (2.44) . 

Taking the derivative with respect to t and solving for the maximum value yields: 

 
    

  
                 (2.45) . 

Substituting (2.45) into (2.43) results in: 

                         (2.46) . 

It is important to note that for either an increase in          or an increase in 

    the noise output from the ADC will increase. Additionally the jitter does not 

depend on the sample rate. The sample rate only establishes the Nyquist zone that     

falls into. 
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2.4.1 Jitter Requirements 

As in the case with the timing skews, jitter can never be eliminated from a TI-ADC or 

any ADC for that matter, only controlled to within a set limit. Similarly then, it is 

desirable to have the jitter controlled to a level that is below the quantization floor. 

This can be expressed, using the rms values of (2.6) and (2.46), as follows: 

 
   

  √ √  
 

   

√ 
             (2.47) . 

Rearranging to solve for     yields: 

     
 

   √          

 (2.48) . 

A plot of (2.48) is shown in Figure 2.10, which illustrates the highest     for a 

specific resolution subject to various amounts of jitter on the sampling clock. 
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Figure 2.10: Input Frequency vs. Jitter for Specific Resolutions 

Just as in the timing skew case, as a higher     is required, the amount of jitter 

that can be tolerated on the sampling clocks is reduced for a given resolution. One 

interesting observation that is seen when comparing Figure 2.7 with Figure 2.10 is the 

factor of 2 difference between the       level and the          level at the same 

   . 

Alternatively if a specific SNR is desired, which is jitter limited, it is useful to 

have an expression as follows: 
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 √ 
   

√ 
            

 (2.49) . 

Simplifying (2.49) and putting it in dB yields: 

            (
 

             
) (2.50) . 

Figure 2.11 shows a plot of (2.50) for various amounts of jitter. 

 

Figure 2.11: SNR vs. Input Frequency for Various Amounts of Jitter 

Just as in the case with timing skews, it is important to control the amount of 

additive jitter that the clocking sources for the sub ADCs experience. Similar to the 
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timing skew SFDR goal, an additive jitter limited           for a  

            is assumed representative of a boundary pushing performance goal. 

Based on Figure 2.11 then, an additive jitter limited           for a  

           , results in the correction circuit having an additive jitter requirement 

of 25 fs rms allowing the     degradation due to jitter to not mask the desired timing 

skew correction precision. This serves as the third and final main design goal of this 

thesis. 

2.5 Summary 

Timing skews result in non-uniform sampling of a signal in TI-ADCs. This non-

uniform sampling gives rise to distinct spurious tones, whose magnitude depends on 

the input frequency to the TI-ADC and the how large of a timing skew is present 

between any two sub-ADCs. These spurious tones degraded the SFDR and resolution 

of the TI-ADC. In addition, jitter on the sampling clocks to the sub ADCs further 

degraded the resolution or SNR of the TI-ADC. From these two phenomena, timing 

skews and jitter, three system level requirements or design goals are established. The 

first being the precision required to correct timing skews, the second being the largest 

range required to correct the timing skews and the third being the amount of additive 

jitter that can be tolerated on the sampling clocks, such that the SFDR, resolution and 

SNR are not impacted up to a maximum input frequency. Based on the example 

TI-ADC system with boundary pushing performance levels of a timing skew limited 

             and an additive jitter limited           for a            , 

the resulting design goals are a precision/step size of 25 fs for        with a range of 

100 ps to 200 ps for        and an additive jitter          of 25 fs. Circuits to 

achieve these design goals are explored in the following chapters. 
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Chapter 3  

Analog Techniques to Correct 

Timing Skews 

This chapter begins with a brief comparison between correcting timing skews in the 

analog domain and correcting them in the digital domain. It then proceeds to analyze 

and compare different analog circuit techniques that can be used to correct timing 

skews. Next, two circuit architectures that use the analog circuit techniques are 

compared, with one being selected as the design for this thesis. After this, a 

discussion is presented on how the selected architecture is implemented such that it 

can be tested in terms of the three design goals. Lastly, a summary of the complete 

architecture to be designed is presented along with the design goals for each block 

within the architecture. 

3.1 Analog vs. Digital Correction 

At the heart of any method to correct timing skews in TI-ADCs is the idea of 

adjusting the timing of the samples such that they appear as uniform as possible. In 
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the analog domain, this is accomplished by adjusting the clock edges of each sub 

ADC such that the TI-ADC’s samples are taken in a uniform manner. Whereas in the 

digital domain, the samples are taken with the timing skews present and then the 

output is post processed, adjusting the phase of each sub ADCs data such that the 

overall digital data appears to be uniformly sampled. Correction methods designed in 

either domain are subject to the three main design requirements of precision, additive 

jitter and range. Additionally the bandwidth over which the correction method 

operates and how power intensive they are, matter to both analog and digital domain 

correction methods. Given these five requirements, the two domains can now be 

compared. 

As previously mentioned correcting timing skews in the analog domain 

requires a circuit to adjust the clock edges the sub ADCs use to sample. Fortunately 

there are circuits already present in TI-ADCs that can be modified to perform the 

clock edge adjustment such as the on chip clock buffers or clock divider circuits. In 

addition, analog correction does not affect the bandwidth     of the TI-ADC and 

allows multiple input signals in different Nyquist zones to be converted while having 

the timing skews corrected. Analog correction circuits also offer high correction 

precision, while not always being directly proportional to the power. Unfortunately, 

analog circuits are subject to noise and thus jitter, which usually requires adding 

power to reduce the jitter. Similarly, in order to cover a larger range, i.e. larger timing 

skew between any two sub ADCs, more power is also needed. 

Digital correction of timing skews is usually accomplished through the design 

of a fractional delay filter or interpolation filter, which allows for the phase shifting of 

the digital data samples [1]. This signal processing adds noise due to the finite 

precision of the arithmetic and rounding errors, requiring more bits for less noise and 

thus more power. In addition, the precision, range and bandwidth are all proportional 

to the order of the digital filters used to correct the timing skews, meaning better 

performance in any of these requires more power. Furthermore, the bandwidth is 
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fundamentally limited to slightly less than one Nyquist zone due to aliasing.  This 

means that for digital correction methods to cover more of one Nyquist zone, more 

power is required. Furthermore, if the signal being sampled by the TI-ADC changes 

Nyquist zones, the digital correction method has to re-configure the filter for the new 

Nyquist zone in real-time. Finally, the filters require multipliers running at a rate at 

least equal to the sub ADC rate if not the full clock rate of the TI-ADC. This is also 

power intensive, as high-speed multiplication is generally a high power operation. 

A summary of how analog domain and digital domain timing skew correction 

compare in terms of the five requirements; additive jitter/noise, precision, range, 

bandwidth and power is presented in Table 3.1. 

Table 3.1: Performance Comparison of Analog Domain and Digital Domain Timing 

Skew Correction 

 Analog Correction Digital Correction 

Additive Jitter/Noise  
 

     
 

               

                   

Precision Level 

                  

              

       

Range               

Bandwidth 

                     

                

       and limited to  

< one Nyquist zone 

There are two important things to note between analog and digital correction of 

timings skews. The first is that while analog correction requires power to reduce the 
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amount of additive jitter, digital correction requires power to increase the precision 

level to which timing skews are corrected. The second is that analog correction can 

tolerate signals that change Nyquist zones or span multiple Nyquist zones, while 

digital correction for the most part cannot tolerate these signals. Both domains are 

useful for the specific applications that are unaffected by the limitations they each 

have. This thesis focuses on analog correction and minimizing the limitations that 

exist with it. 

3.2 Circuit Techniques 

Analog correction of timing skews is a matter of adjusting clock edges while 

affecting little else in the TI-ADC. In circuit terms, this means being able to vary the 

delay of a clock edge while not loading the clock or adding significant jitter. To 

understand what techniques can be used to accomplish this, it is best to consider a 

buffer or inverter. Figure 3.1 shows the schematic of a MOSFET based differential 

buffer/inverter with a capacitive load. 
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Figure 3.1: Schematic a Differential Buffer/Inverter 

A buffer/inverter takes in a clock edge and outputs a delayed edge due to the 

charging/discharging of the capacitive load  . This delay,       , is usually on the 

order of 10’s of picoseconds for a capacitive load comparable to the intrinsic 

capacitance of the buffer/inverter. The intrinsic delay of a single buffer then is too 

small to cover the desired delay range of 100 ps to 200 ps. The delay is also too large 

for fine-tuning, as placing two buffers in series provides too large a delay step to 
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achieve the desired precision or step size of 25 fs. Given this, it is useful to analyze 

the buffer/inverter to see how delays in between a single buffer and two buffers can 

be achieved and varied to meet the precision requirement. Note the analysis of how 

delays much larger than the intrinsic delay can be achieved is left to Section 3.3. 

3.2.1 Analysis 

Two important aspects of the differential buffer/inverter need to be considered, how 

the delay can be varied and how this impacts the additive jitter of the buffer. To 

simplify the analysis of the differential buffer/inverter in Figure 3.1, a single-ended 

model of it is considered, shown in Figure 3.2 

 

Figure 3.2: Single-Ended Model of a Differential Buffer/Inverter 

The switch in the model is controlled by the input clock, opening when it transitions 

from high to low (falling edge) and closing when transitioning from low to high 

(rising edge). To understand the delay behaviour of the model in terms of      ,   and 

 , the step response is calculated. Equations (3.1) and (3.2) are the step responses for 
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the rising       and falling       input clock edge respectively assuming zero initial 

voltage on the capacitor. 

                  
  
   (3.1) . 

 
                    

  
    (3.2) . 

The step response of the model turns out to be very similar to that of the familiar    

circuit and shows that varying      ,   or   will vary       and        and 

correspondingly the delay. Note     is considered the supply voltage for the majority 

of analog circuits in the TI-ADC and thus a constant, non-variable value since it 

would change the behaviour of other circuits. Additionally, it is assumed that the 

output swing            is kept constant due to practical reasons, i.e. the need to 

keep the current source MOSFET in saturation. The implication of this is that if       

increases by a factor of two,   must decrease by a factor of two to maintain the same 

output swing. 

For differential circuits, a common way to calculate the delay is based off 

when the output reaches the common-mode value, since it is at this point the 

following stage switches. Typically, the common-mode value corresponds to the time 

when the output has achieved 50% of its final value, assuming a symmetric swing 

about the common-mode. In terms of the single-ended model this corresponds to the 

time   when                      ⁄ . Using this, the assumption of a fixed 

swing, (3.1) and (3.2), the delay        is solved for yielding the familiar    circuit 

expression: 
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                 (3.3) . 

Note that  (3.3) applies for either the rising or falling edge. Equation (3.3) shows that 

the delay of the differential buffer/inverter is proportional to   and   or       ⁄ . The 

delay then can be varied by scaling  ,   or       such that it covers the range in 

between a single buffer and two series buffers. With the delay behaviour of the 

differential buffer/inverter characterized, the jitter behaviour is now considered. 

Referring back to (2.43), the jitter for a circuit can be approximated to the first 

order by: 

 
         

      

  
 (3.4) . 

In this case,        is the total rms noise voltage at the        point and    is the 

slew rate at the same point. Using (3.1), (3.2) and (3.3) the slew rate at time   

       is calculated yielding: 

 
   

     

  
 (3.5) . 

Note the slew rate is the same whether      is rising or falling. Furthermore, the slew 

rate is linked to   only through the fixed output swing assumption. 

To simplify the calculation of        it is assumed that only   and       

contribute noise and not the switch or supply    . Note that the noise due to       is a 

result of the current source being implemented by using a MOSFET in saturation.  In 

addition, only the thermal noise of the two elements is considered to simplify further 
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the analysis of       . Given these assumptions, Figure 3.3 shows the noise model of 

the circuit in Figure 3.2. 

 

Figure 3.3: Simplified Noise Model of a Differential Buffer/Inverter 

In Figure 3.3,    is the total thermal noise, which is composed of the       

noise       and   thermal noise      . The expressions for the thermal noise of a 

MOSFET in saturation    , thermal noise of a resistor     and the total noise    are 

[15]: 

 
   

  
     

 
   (3.6) . 

 
   

  
   

 
   (3.7) . 
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  (
   

 
 

 

 
)     (3.8) . 

where   and   are constants and    implies that the noise is per Hz.    is usually set 

to     ⁄  which approximates the noise bandwidth of the circuit [15]. The term    is 

the transconductance of the MOSFET and relates to      , i.e.     √      . Given 

these things, (3.8) is rewritten as: 

 

   √(
 √     

 
 

 

 
)

  

   
 (3.9) . 

Relating    to the output noise        requires multiplying    by   yielding: 

 

       √(
  √     

 
  )

  

 
 (3.10) . 

Simplifying and rearranging results in: 

 

       √(  
  √     

 
)
  

 
 (3.11) . 

The  √      term is usually appreciably greater than one to allow a reasonable output 

swing. Note that this implies that the active device (MOSFET) noise is typically 

greater than the passive devices. Using this, (3.11) is approximated as: 
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       √(
  √     

 
)
  

 
 (3.12) . 

Since only the relation of      ,   and   to        matter; (3.12) is simplified 

resulting in: 

 

       √ √     

 
 (3.13) . 

Using equations (3.4), (3.5) and (3.13) the relationship between      ,   and   and 

the additive jitter          is given by: 

 

         

√ √     

 

     

  

 
(3.14) . 

Simplifying (3.14) gives: 

 
         

√ √ 

     

 
 ⁄
 (3.15) . 

 

With (3.15), the relationship between  ,       and   is established and a comparison 

can be made between each in terms of their influence on        and         . 
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3.2.2 Comparison 

Using (3.15), the effects of varying  ,       and   on the delay and jitter of the 

differential buffer/inverter are shown in Table 3.2 and Figure 3.4.   is varied 

independently of   and      , whereas   and       are varied in two ways. The first 

way is that for both        and         , the assumption that                 is 

considered. The second way is that for only         , the effect of varying   and 

      independently is considered. Although the effect on the delay is not considered 

in Table 3.2 for the second way, the general trend is that increasing       by    

results in a     decrease in        whereas increasing   by    results in a     

increase in        when considering the same output voltage level at which        is 

measured. The opposite variation of   and       is not valid as decreasing either 

shrinks the signal swing, which can lead to the output not swinging enough to switch 

subsequent gates. 
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Table 3.2: Effect of Varying  ,       and   on        and          
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Figure 3.4:          vs.        Trade-off when Varying  ,       and   

Based on Table 3.2 and the above statements it is best to vary the load 

capacitance     to achieve delays larger than a single intrinsic buffer as it provides a 

better delay increase vs. additive jitter trade-off as compared to   and      . 

However, the precision of the delay steps is limited to the smallest capacitor that can 

be implemented in the chosen process. If a more precise delay step is desired an 

interesting option exists in terms of the best delay vs. jitter trade-off. Consider adding 

a unit  , the smallest   possible, to the load, the current       can then be increased to 

shrink the delay step from the unit  , which according to Table 3.2, allows for better 

precision and for the jitter to improve as more current is added. Note that this assumes 

      can be increased in smaller units relative to its original value then a unit  . The 

validity of this assumption will be shown in Chapter 4. 
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3.3 Circuit Architectures 

The differential buffer and the variable capacitor technique will serve as the basis for 

the two circuit architectures considered. Similar to the previous section, the goal is to 

establish how both architectures behave in terms of delay and jitter only over a range 

covering multiple buffer delays instead of a single buffer. The first architecture to be 

evaluated is a single differential buffer with a variable capacitor load as shown in 

Figure 3.5(a). The second circuit architecture consists of   selectable fixed delay 

differential buffers with a single variable differential delay buffer on the output as 

shown in Figure 3.5(b) [16]. Note the differential buffers are represented by their 

single ended equivalent in Figure 3.5. 
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a) Single Variable Delay Buffer 

 

b)   Fixed Delay Buffers with a Single Variable Delay Buffer 

Figure 3.5: Two Circuit Architectures for Correcting Timing Skews 

For the analysis of both architectures, the single-ended model and 

corresponding equations from Section 3.2 are used. 
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3.3.1 Single Differential Buffer with Variable

 Capacitor Load 

The delay of the differential buffer with a variable capacitor load can be expressed 

using (3.3): 

 
             (  

  

 
) (3.16) . 

In this case,   represents the minimum capacitive load on the buffer and    

represents the amount of added capacitance such that the delay variation of the buffer 

meets the range specification for the timing skew correction. Similarly, the additive 

jitter is expressed using (3.15): 

 

         √  (  
  

 
) (3.17) . 

As expected, the additive jitter maintains its square root relationship with the varying 

of the buffers capacitive load. Furthermore, the additive jitter has a square root 

relationship with delay of the buffer, which illustrates the inherent trade-off between 

the range of timing skews that can be corrected and the amount of additive jitter from 

the correction circuit. 
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3.3.2   Fixed Delay Buffers and One Variable

 Delay Buffer 

Referring back to Figure 3.5 (b), the operating principle behind this circuit 

architecture is that the single variable delay differential buffer is set to cover the delay 

range between any two selectable paths and as the delay needs to be extended beyond 

this, more fixed delay buffers are added in [16]. Note that once an additional fixed 

delay buffer is added in, the variable delay buffer is reset back to its minimum delay 

so delays in between the current path and next path can be achieved. The delay for 

this circuit architecture can be expressed in a similar manner as the previous 

architecture: 

 
                     (  

  

 
) 

           

(3.18) . 

In (3.18),   represents the number of fixed delay buffers needed such that the overall 

circuit architecture can achieve the range specification required of the timing skew 

correction circuit. 

It is assumed that the additive jitter of each buffer is uncorrelated to any of the 

other buffers. This enables the magnitude of each buffer’s jitter to be summed as 

follows: 

 
         √    

      
       

 
 (3.19) . 
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where     
 
 is the jitter of the single variable delay buffer and     

      
 
 are the 

additive jitters of each fixed delay buffer that is currently added between the input 

and the variable delay buffer. Assuming each of the fixed delay buffers have the same 

magnitude of additive jitter, (3.19) is rewritten: 

 
         √     

      
 
 (3.20) . 

Substituting (3.17), which represents the additive jitter if a single variable delay 

buffer, into (3.20) results in: 

 

         √     
    (  

  

 
) (3.21) . 

The jitter for the fixed delay buffer can be represented by the same equation by 

setting     , which yields the following: 

 

         √      (  
  

 
) (3.22) . 

Equation (3.22) shows the same square root relationship as the single variable buffer 

architecture only for this case, either   or    is used to vary the delay. 
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3.3.3 Comparison 

The square root relationship between the additive jitter and delay of both circuit 

architectures given by (3.17) and (3.22) is shown in Figure 3.6. 

 

Figure 3.6:          vs.       Trade-off for the Two Circuit Architectures 

Based on Figure 3.6 alone, both architectures perform equally well in terms of the 

jitter and delay trade-off. However, when the gain and parasitic capacitances of the 

buffer and variable capacitors are considered, the jitter/delay behavior changes. 

For practical reasons, the small signal gain of the differential buffer is usually 

greater than one over some bandwidth. This means that any noise within that 
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bandwidth and present on the input of the buffer increases by gain, thus increasing the 

jitter at the output of the buffer. The second architecture then, is susceptible to 

potentially large increases in the output jitter when many buffers are placed in series 

to correct large timing skews. On the other hand, since the first architecture contains 

only a single buffer, the output jitter would increase by a much smaller amount. 

The parasitic capacitances from the MOSFET switches, wiring and 

MOSFETS in the differential buffer both benefit and hurt the jitter/ delay behavior of 

the variable delay differential buffer. The benefit is that since the unit capacitor is 

added in parallel with the parasitic capacitances present in the circuit, the relative 

change in delay becomes smaller or the precision of the unit capacitor increases. 

However, this also results in the delay range shrinking and therefore more unit 

capacitors are needed in order to span the desired timing skew correction range. The 

increased amount of capacitance on the output of the differential buffer causes the 

jitter to degrade, although by the same square root relationship as before. In addition, 

for a large timing skew correction range the area required for the variable capacitors 

could become prohibitive. The first and second architecture both exhibit this behavior 

since they both use a variable delay differential buffer, though the first architecture 

sees a greater increase in the jitter and area since more capacitors are needed to span 

the same delay range as the second architecture. 

Based on these two non-idealities, the first architecture is selected to be 

designed. The jitter degradation is less sensitive to the gain for this architecture and 

although extra area is required for the additional variable capacitors, the second 

architecture requires extra area for each additional fixed delay buffer required to span 

the correction range. Furthermore, each additional buffer in the second architecture 

increases the power requirement of the timing skew correction circuit in a linear 

fashion, whereas the first architectures power increases less according to (3.15), to 

compensate for the increased jitter due to the parasitic capacitors. It is important to 

note that the two architectures jitter vs. delay behavior is close enough that both are 
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worth investigating however, due to time constraints, only one architecture could be 

designed. 

3.4 Implementation and Testing Architecture 

To explicitly illustrate how the proposed circuit architecture is used to correct timing 

skews in a TI-ADC, Figure 3.7 shows a revised version of Figure 2.4 with analog 

timing skew correction. 
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Figure 3.7: A TI-ADC with the Proposed Timing Skew Correction Circuit [1] 

In Figure 3.7, each sub ADC has a correction circuit associated with it, such that any 

timing skew on the clock can be corrected by adjusting the delay introduced by the 

correction circuit itself. It is important to note that only the relative difference in 

timing between each sub ADC matters and that if the delay/skew introduced by each 

correction circuit is set to be equal for each, the timing skew will still exist. Also, note 

that the correction circuit itself could be made a part of either the sub ADC or the 

clock generation circuit. 
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Although Figure 3.7 represents the manner in which the correction circuit 

should be implemented in a TI-ADC, it does not represent the best way to test and 

prove the circuit architectures ability to correct timing skews. The reason for this 

comes from Chapter 2’s description of the other mismatches that occur within a 

TI-ADC. To best prove the circuits’ ability, the chance of having gain or offset 

mismatches must be eliminated completely. One way to do this is to test the circuit 

with a single ADC, which eliminates the possibility of any mismatches. However, the 

single ADC needs to operate in a way that allows the proposed correction circuit to 

introduce non-uniform sampling, while allowing the degree of non-uniform sampling 

to be adjusted. Figure 3.8 shows a circuit and its operation, which does just this. Note 

Figure 3.8 presents a single-ended version of the test architecture however, in this 

thesis a differential version is used [5]. 
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a) Schematic 

 

b) Operation 

Figure 3.8: Schematic and Operation of the Proposed Test Architecture 
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Figure 3.8 (b) shows that when a clock      , whose frequency corresponds 

to the maximum sample rate         of the ADC, is input to the test architecture, it is 

first gated through two NAND gates by       ⁄  and      
̅̅ ̅̅ ̅̅ ̅̅  ⁄ . This produces two 

signals   and   which are 75% duty cycle clocks, shifted with respected to one 

another by one period of      . Signal   passes through a variable delay buffer, 

while signal   passes through a fixed delay buffer whose delay is set at half of the 

entire delay adjustment range of the variable delay buffer. The resulting signals,    

and    are then recombined using the final NAND gate to produce       , which 

has the same frequency as       but has one set of rising edges (dashed lines) 

controlled by signal   , and a second set of rising edges (solid lines) controlled by 

signal   . When the variable delay buffer controlling signal    is set to the same delay 

as the fixed delay buffer controlling signal   , the output        is a standard 50% 

duty cycle clock (ideally). This allows the ADC, which samples on the rising edges of 

      , to sample     uniformly since the time between each rising edge is equal. 

Note that the time between each rising edge, or between a dashed rising edge and 

solid rising edge, in this case is         ⁄ . However, if    is shifted using the 

variable delay buffer to not have the same delay at    then the time between 

consecutive rising edges in        are not equal and non-uniform sampling occurs. 

Relating the above back to Chapter 2’s definition of timing skews, if the time 

of a dashed rising edge is   , the time of the previous solid rising edge is    and the 

ideal time between the two consecutive rising edges is         ⁄ , then (2.17) can be 

used to define the timing skew created by the test architecture as: 

 
               

 

       
 (3.23) . 

Equation (3.23) shows that when the dashed rising edge and solid rising edge have a 

time difference between them of         ⁄  as is the case when    and    have the 

same delay, then no timing skew exists. However, when the delay of    is varied 
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away from that point using the variable delay buffer, the time difference between a 

dashed rising edge and the previous solid rising edge is no longer         ⁄  and this 

results in a timing skew       . Therefore, the test architecture successfully avoids 

the gain and offset mismatches associated with a TI-ADC, while allowing the 

proposed analog timing skew correction circuit to vary the magnitude of the timing 

skew the single ADC sees, which can be measured by looking at the SFDR. It is 

important to note that when operating the single ADC in this manner, it essentially 

behaves as two ADCs interleaved. Therefore, the timing skew induced spurious tone 

that appears in the FFT output has a frequency given by (2.35). 

Additional circuitry is needed for the test architecture in the form of a 

differential NAND to gate the two paths and recombine them (while acting as an 

output driver) and a differential D-Flip Flop (DFF) that is used to generate       ⁄ . 

The design of both circuits along with the design of the variable delay differential 

buffer is presented in Chapter 4. 

3.5 Summary 

Analog correction of timing skews involves adjusting the times each sub ADC 

samples the input signal in a TI-ADC. The adjustment of the times and corresponding 

correction of the timing skews is accomplished by varying the delay of each sub 

ADC’s sampling clock. The differential buffer/inverter is analyzed in terms of its 

additive jitter vs. delay performance, showing that low jitter precise delay 

adjustments are best achieved by varying either the capacitive load of the buffer or 

the buffer’s bias current. Two circuit architectures are then analyzed in a similar 

fashion, showing that both are capable of achieving precise delay adjustment over a 

broad delay range while having a favourable additive jitter behavior. The single 

variable delay differential buffer is selected as the preferred timing skew correction 

circuit, due to its likely lower noise/jitter gain. Finally, a test architecture that uses a 
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single ADC, eliminating the gain and offset mismatches associated with a TI-ADC, 

for the proposed timing skew correction circuit is shown. Based on this, a variable 

delay differential buffer, differential NAND and differential D-Flip Flop are required. 

The design of each circuit is presented in Chapter 4. 
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Chapter 4  

Design of an Analog Timing Skew 

Correction Circuit 

The design of the three main circuit blocks and their supporting circuitry for the test 

circuit described previously is presented in this chapter. The first design presented is 

that of the variable delay differential buffer which includes the variable capacitor 

bank load and the variable current source as well as the bias circuit. Next, the 

differential NAND circuit design is discussed along with its corresponding bias 

circuit. The design of the final main circuit block, the differential D-Flip Flip (DFF), 

which is composed of 2 D-latches is then presented. The final sections detail the full 

test chip’s design, layout, and fabrication. The design, layout and fabrication is done 

in TSMC’s 0.18µm CMOS process with the option for metal-insulator-metal (MIM) 

capacitors and a nominal supply voltage of 1.8 V. 
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4.1 Variable Delay Differential Buffer 

The variable delay differential buffer is the key circuit design in this thesis, as it 

stands as the only circuit that is needed in a TI-ADC to correct for the timing skews 

aside from the digital logic to control its variable delay. Figure 4.1 shows the 

schematic of the variable delay differential buffer, complete with the variable 

capacitor load and the variable current source. 

 

Figure 4.1: Schematic of the Variable Delay Differential Buffer 
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The differential architecture for the variable delay buffer is selected due to its 

attractive aspect of rejecting common-mode noise, either from the inputs or from the 

power supplies. Additionally, it is just good practice in noise and speed critical 

designs to use a differential architecture. In saying this, the performance goals that 

dictate the areas in which the design focuses on are minimizing output noise, 

maximizing speed/slew rate (i.e. minimizing the output jitter) and keeping the power 

consumption as low as possible. 

4.1.1 Common-Mode and Output Swing 

Three of the parameters that dictate how a differential circuit interfaces with other 

circuits surrounding it are its common-mode levels and its output swing. The input 

common-mode level       is tied to the gate-to-source voltage of transistors     

and            and therefore will affect how they are biased and serves as the first 

design parameter for the differential buffer. The output common-mode level        

for the differential buffer is given by: 

 
       

     

 
    (4.1) . 

Similarly, the single-ended output swing        is given by: 

                 (4.2) . 

For both equations,    refers to the value of either     or     since both would be 

equal in a differential design. Equations (4.1) and (4.2) show that the output 

common-mode and the output swing are directly linked to one another, differing only 

by a factor of 2 and thus can be thought of as one design parameter. 
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In order to determine appropriate values for both such that the 

design/performance goals are met, two aspects are considered. The first and most 

important is how the two parameters       and               relate to the output 

jitter. An extensive analysis of the output noise/jitter of the differential buffer/inverter 

is performed in [17]. According to the thesis’s findings, the total rms output jitter for 

the differential buffer including the terms relating to        and        is: 

 

         √
    

 
 

√  

     
 

      

        
 (4.3) . 

It is important to note that (4.3) and this thesis’s approximate model of the differential 

buffer’s jitter, (3.15), are comparable in their component dependencies, confirming 

the validity of the analysis and conclusions reached in Chapter 3. The terms of 

interest in (4.3) for the parameters currently considered are      and       . From 

(4.3) it is clear that in order to minimize the output jitter of the differential buffer, 

       should be minimized and      maximized, while insuring the circuit can still 

operate properly (i.e. provide sufficient swing for any following circuits and maintain 

M0 in saturation). This implies that       should be maximized to allow for a large 

     value and        should be maximized to minimize       . Since both       

and        should be maximized and to simplify the interfacing of each of the 

circuits with each other, the input and output common-mode voltages are set to be the 

same (i.e.                 ). This restriction applies to all circuit blocks, 

meaning the variable delay differential buffer, differential NAND and differential 

DFF all have the same common-mode levels. 

The second important aspect to consider in selecting     and        is what 

    and        can be tolerated by differential clock inputs to the testing ADC. The 

test ADC used in this thesis is Analog Devices AD9265 16-bit 125 MSPS ADC, 

which can tolerate a common mode voltage of up to 1.4 V on its differential clock 

inputs and a signal swing as low as 0.15 V peak-to-peak [18]. Therefore to allow the 
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test chip to directly drive the clock inputs of the AD9265 a           is selected 

for the differential buffer as well as the other circuit blocks. 

4.1.2 Output Noise and Jitter 

At the heart of the design of the variable delay differential buffer is its output 

noise/jitter behaviour and thus the most time is spent on it. To begin with, an       

     is chosen as a start point for the bias current which corresponds to a load 

resistor value of            . As was shown in Chapter 3 and confirmed in (4.3), 

a high bias current is required for a low jitter design, which establishes the      

starting current as not unreasonable. As a starting point for the widths and lengths of 

      and    , all are set to have       and        . From this starting 

point a periodic steady state (PSS) noise and jitter analysis is performed to identify 

the main contributors to the output noise and jitter of the differential buffer. The 

resulting noise contribution break down shows that     and     are the largest 

contributors to the output noise, then the load resistors     and R1b and after that 

some of the transistors in the bias network for the differential buffer and lastly    . 

The next step in the design process is to identify how to reduce the noise due     

and    . Note that the reduction of the output noise due to the bias network is 

covered in Section 4.1.4  which deals with the bias network. 

The expressions for the thermal noise and flicker noise of a MOSFET in 

saturation are [15]. 

 
  

  
       

 
 (4.4) . 
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 (4.5) . 

Note, all of the MOSFETs at the point of interest, i.e. when the crossing threshold 

occurs, are in saturation by design. The transconductance    of the MOSFET is 

given by [15]: 

 

   √     

 

  
      (4.6) . 

Substituting (4.6) into (4.4) and (4.5) results in: 

 

  
  

     

 
 √     

 

 
      (4.7) . 

 
  

  
           

   
 (4.8) . 

From (4.7) and (4.8) it is clear that in order to lower the noise of a MOSFET a large   

and small   is desirable. The implication of this in terms of typical bias terms is best 

explained by considering the following equation for the MOSFET’s drain current    

in saturation [15]: 

 
        

 

  
        

  (4.9) . 
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In order to maintain the same    while increasing   and decreasing  , the overdrive 

voltage              needs to increase, i.e. a large     is desirable. 

Additionally, the equations indicate that a low bias current is needed however; the 

noise is only one part of the story in lowering the output jitter. 

As mentioned in the Section 4.1.1, an in depth analysis of the differential 

buffer/inverter’s output jitter has been performed in the literature [17]. From the 

analysis in the thesis, the general expression for the total output jitter from the 

differential buffer is [17]: 

 

         √
    

 
 

  √  

     
 (4.10) . 

In (4.10)   is a scaling term that captures the noise contributions from       and 

      (the noise contribution from     in the thesis’s analysis is assumed zero for 

the operating point of concern).    is the small-signal gain of the differential buffer, 

which is given by [17]: 

 

          
  

     

  

          
 

      

     
 (4.11) . 

If (4.11) is substituted into (4.10), the resulting expression is (4.3) from the previous 

section. As (4.11) shows (and is expected), increasing not decreasing the bias current 

reduces the output jitter due to the output slew-rate being important to the total output 

jitter. 

Using the results from (4.3) and (4.6) to (4.11), the following design 

guidelines reduce the output jitter of the differential buffer. First, it is best to have as 
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large a     on       as possible, while keeping enough headroom for     to 

remain in saturation over process variations. To achieve a large     requires       

to be sized for a small   and large   for a given constant       value. As part of this 

   shrinks due to both the large     and the smaller       as part of the reduced 

       (which was optimized based off the limit on the common-mode levels from 

the previous section). The second guideline is to increase      as necessary to reach 

the targeted output jitter performance after the first guideline is performed. The third 

and final guideline is to keep the load capacitance to a minimum, including both the 

parasitic capacitances due to the transistors and the variable capacitor load. 

Applying the guidelines, the   and   of     and     are scaled until their 

noise contributions are comparable to    ’s noise contribution. The resulting 

transistor size for     and     is           and        .     is sized to 

ensure it remains in saturation over the process corners, resulting in a size of  

            and        . This forms the unit variable differential buffer, 

where instances are then paralleled to raise the bias current until the output jitter 

requirement is met. The final circuit details including simulation results are presented 

in Section 4.1.7. 

4.1.3 Gain and Bandwidth 

As was shown in the previous sections, the design decisions that reduce the output 

jitter are coupled with reducing the gain of the differential buffer (i.e. to reduce one is 

to reduce both). In terms of the gain and bandwidth of the differential buffer, the 

expression for the frequency response of the differential buffer is given by [15]: 
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(4.12) . 

From this the dominant pole, which sets the -3 dB bandwidth for the circuit, is 

obtained yielding [15]: 

 
   

 

  (         (        
  
  

))

 
(4.13) . 

In (4.12) and (4.13), all of the terms except for    and    depend on the sizing and 

biasing of transistors      .    represents the source resistance of the circuit driving 

the differential buffer, which ends up being the same value as    since all circuit 

blocks are designed with the same common-mode levels. In saying all of this, the 

steps and analysis performed to reduce the output jitter from the previous section 

already set the parameters within these two equations. Therefore, the gain and 

bandwidth of the differential buffer cannot be design independently from the output 

noise/jitter design. However, the transistor sizing decisions from the previous section 

do work to reduce gain and bandwidth. For example, in sizing       for a large     

value the gate area of the transistor increases, increasing     , which reduces the 

bandwidth of the differential buffer. The final circuit’s simulated gain and bandwidth 

is shown in Section 4.1.7. 

4.1.4 Bias 

The bias for the variable delay differential buffer is established with a replica bias 

circuit. The schematic for the replica bias circuit is shown in Figure 4.2. 
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Figure 4.2: Replica Bias Circuit for the Variable Delay Differential Buffer 

There are two design aspects to the bias circuitry, the first is the circuit parameter(s) 

or performance the bias is intended to set and the second is the desired current 

mirroring ratio between the master bias current input to the       node and       in 

the differential buffer. Dealing with the first aspect, the replica bias circuit is designed 

around the input and output common-mode voltages being the same. The reason for 

this is that the output common-mode voltage sets the crossing threshold for the rising 

edge (or falling edge) and thus sets when the ADC samples and correspondingly the 
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time point which needs to be varied to correct the timing skews in TI-ADCs. 

Therefore, it is important to set the biasing of the transistors in the differential buffer 

based off the crossing threshold/output common-mode voltage to ensure the jitter and 

timing at the threshold is controlled. In addition, since the bias point of the transistors 

sets their performance and process variations can shift the design points, the bias 

current       is brought out to a pad to be set and controlled externally. This provides 

the simplest means of tuning the performance of the differential buffer to compensate 

for process variations or potential design errors. 

It is important to note that the bias circuitry contributes a significant amount 

of noise and thus jitter to the output of the differential buffer as any noise in the bias 

circuitry is amplified by the gain     to the output. To reduce the noise due to the 

bias circuitry a large 10µF filtering capacitor is placed on the       node, which 

would be placed externally on the test chip’s printed circuit board since the node is 

brought out of the chip. If an external filtering capacitor is not viable, 

switched-capacitor techniques can be used to provide filtering. 

For the second design aspect of the bias network, the mirroring ratio, is 

selected to be 1:8 for the final sizing of the variable delay differential buffer. Once 

again, the final device sizes for the bias circuitry are shown in Section 4.1.7. 

4.1.5 Variable Capacitor Load 

The analysis in Chapter 3 showed that the best way to correct for timing skews with 

the differential buffer is to adjust the output delay by adjusting the capacitive load on 

the output. To accomplish this, a variable capacitor bank (represented by       is 

designed using the MIM capacitors in the 0.18µm process. Given the importance of 

achieving the smallest delay step possible with the capacitor bank to give the best 
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precision when correcting timing skews, the capacitor bank is designed around the 

smallest capacitor available in the 0.18μm process. The smallest capacitor, referred to 

as a unit capacitor, is achieved with a         MIM capacitor, which yields a 

capacitance of 20.3 fF. The next step in the design of the variable capacitor bank is 

deciding how the array of unit capacitors is switched to connect/disconnect them from 

the output of the differential buffer. Previous work found that it is best, in terms of 

smallest capacitor array area and the least parasitic capacitance, to connect the unit 

capacitors that form the array to the output in a single-ended fashion [5]. Figure 4.3 

shows the final single ended capacitor array. 

 

Figure 4.3: Final Variable Capacitor Load 

Two instances of the variable capacitor load are required, one to load       and one 

to load       since both signals form the differential pair and need to be delayed 

equally. 

The final capacitor bank size is determined by scaling the number of unit 

capacitors forming the array in a binary fashion until the designed delay range is 

achieved. This results in an array of 255 unit capacitors that are switched in binary 

weighted arrays, each consisting of the appropriate number of unit capacitors 

paralleled together as shown in Figure 4.3. In addition to the sizing of the array, the 

other design aspect of the variable capacitor load is sizing the MOSFET switch. As 
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discussed in the output jitter section, minimizing the capacitive load is important to 

ensure as low an output jitter as possible. This implies that the MOSFET switch 

should be sized as small as possible to ensure the parasitic capacitance between the 

drain-to-bulk/substrate, which appears in series with the MIM capacitor, is as small as 

possible. The final size for the MOSFET switch is         and        . 

This is not the smallest MOSFET possible however, it is the smallest that allows two 

contacts to the drain and source of the MOSFET. The two drain/source contacts are 

done to ensure a reliable connection (i.e. if one contact is manufactured incorrectly, 

the other allows the circuit to still function). The final variable capacitor load 

generates a post-layout extracted delay range of approximately 150 ps, with step sizes 

of approximately 600 fs at the output of the test chip with 8 control bits. 

4.1.6 Variable Current Source 

The 600 fs step size from the variable capacitor load is not precise enough, therefore 

as suggested in Chapter 3, a variable current source is needed in order to reach the 

desired 25 fs step size. The design of the variable current source is approached in the 

same manner as the variable current source. Relative to the main current source for 

the differential buffer      , a smaller current source is added in parallel that allows 

the output delay to change by the desired step size of 25 fs. This forms the unit 

current source, which adds 15.625 µA of current and can be shut off as shown in 

Figure 4.4. 
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Figure 4.4: Variable Current Source Added to The Variable Delay Differential Buffer 

As in the case of the variable capacitor load, more unit current sources are added in a 

binary switched fashion until the step size of variable capacitor load is covered with 

margin for process variation. This results in 5 control bits for the variable current 

source, where the simulated current for each of the most significant bits (MSBs) is 

given in Table 4.1. 
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Table 4.1: Variable Current Source’s Switch Currents 

Variable Current Source Bit Additional Bias Current Added (µA) 

I0 15.8 

I1 31.6 

I2 63.16 

I3 126.18 

I4 251.8 

In order to allow for the variable current source to be biased independently of 

the main bias for the differential buffer, a duplicate scaled version of the main bias 

circuitry shown in Figure 4.2 is used with a master bias current on       of 250 µA 

supplied externally. The final sizing of the transistors used in the variable current 

source and its corresponding bias circuit are presented in Section 4.1.7 

4.1.7 Final Circuit and Simulation Results 

The final circuit is simulated at an approximated die temperature of 60 degrees 

Celsius. The final sizes and bias currents for the full variable delay differential buffer 

are shown in Table 4.2. 

Table 4.2: Final Device Sizes and Bias Currents for the Variable Delay Differential 

Buffer 

Component Width Length Bias Current 

   ,                                  

                                 ) 

   ,     

[~25 Ω effective] 
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The values in parentheses in Table 4.2 correspond to the sizes for the unit differential 

buffer and the 16 times multiplier represents the 16 parallel instances of the unit 

differential buffer to make the final circuit. The resistors       are poly resistors 

whose equivalent resistance at 60 degrees Celsius for the final differential buffer is 

approximately 25 Ω. The final sizes and bias currents for the replica bias circuit are 

shown in Table 4.3. 

Table 4.3: Final Device Sizes and Bias Currents for the Differential Buffer Bias 

Circuitry 

Component Width Length Bias Current 

                             ) 

                                     

                                

                                      

    

[~200 Ω effective] 

                

 
                     

The sizing and currents for the final unit current source that forms the basic building 

block for the variable current source and its bias circuit are shown in Table 4.4 and 

Table 4.5. 
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Table 4.4: Final Device Sizes and Bias Currents for the Unit Current Source 

Component Width Length Bias Current 

                                  

                                   

                                   

                                   

                                     

M4                      

M5a                      

Table 4.5: Final Device Sizes and Bias Current for the Variable Current Source Bias 

Circuitry 

Component Width Length Bias Current 

M1c, M1d                              

M3f, M3g                             ) 

R1c 

[~1600 Ω effective] 

            

 
                  

The parasitic extracted post-layout simulation results for the final design of 

the differential buffer are shown in Figure 4.5 to Figure 4.8. First, Figure 4.5 shows 

the transient response illustrating the designed 1.4 V output common-mode voltage 

and the approximate 0.8 V peak-to-peak output voltage swing for the 125 MHz 

frequency the differential buffer is designed to handle. 
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Figure 4.5: Simulated Transient Response of the Variable Delay Differential Buffer 

A magnified plot of the rising and falling edge of       along with the slope of the 

output for the worst case jitter scenario (i.e. the maximum capacitor load 

corresponding to code 255) is shown in Figure 4.6. The slope of           ⁄  

indicated on the figure is taken at the crossing threshold for the edge with the slowest 

slew-rate. Using (3.4) and the total integrated output noise of         √  ⁄  in 

Figure 4.7 results in a total rms output jitter of: 

 

              

      
  

√  
           

          
(4.14) . 
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Figure 4.6: Simulated Slope of the Worst-Case Slew-Rate Edge for the Differential 

Buffer 
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Figure 4.7: Simulated Total Output Noise for the Differential Buffer 

The resulting jitter for the output meets the design goal of 25 fs. Figure 4.8 shows the 

final differential buffer’s gain and bandwidth for the output jitter-optimized circuit. 



 

85 

 

 

Figure 4.8: Simulated Gain and Bandwidth of the Differential Buffer 

To ensure the circuit would still operate as expected under process variations, 

corner case simulations are run, ensuring that     remains in saturation and no 

unusual behaviour is observed. 

4.2 Differential NAND 

The design of the differential NAND is approached in the exact same manner as that 

of the differential buffer since the same noise/jitter trends in sizing the transistors 

apply. In previous low noise/jitter designs using differential or current-mode logic 

(CML) NANDs, two architecture’s that are not well suited to differential signalling 
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principles were used [5], [19]. A schematic similar to these architectures that 

illustrates the differential signalling issue is shown in Figure 4.9. 

 

Figure 4.9: Schematic of a CML NAND Gate [19] 

The issue in terms of the differential signalling with the circuit in Figure 4.9 is the 

imbalance in the parasitic capacitances.  For example, on the      node there are 3 

MOSFET drains each having their own set of parasitic capacitances whereas on the 

     node there is only one MOSFET drain and thus one set of parasitic 

capacitances (assuming all transistors are the same size). This imbalance usually 

gives rise to distortion in differential circuits as well as giving different delay times 

on the positive and negative signalling lines. To solve this issue, an alternative 

differential/CML NAND architecture is proposed. The schematic for the proposed 

differential NAND designed for the test chip is shown in Figure 4.10. 
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Figure 4.10: Schematic of the Proposed Differential NAND Circuit 

As is seen from Figure 4.10, if     to     and     to     all have the same 

sizes, then all the differential inputs and outputs of the NAND will have equal 

parasitic capacitances on the positive and negative signalling lines. This ensures good 

differential behaviour since all signalling and parasitics are symmetric. 

The differential NAND circuit shares the same design requirements as the 

differential buffer, i.e. low jitter, low gain and the same 1.4 V input and output 

common-mode levels. This combined with the similar circuit structure, means the 

same principles governing the design of the differential buffer can be applied to the 

differential NAND. The point of the similar circuit structure comes from the idea that 

the input transistor for the differential buffer can be split apart (length and width 



 

88 

 

wise) to form the inputs to the differential NAND. This allows the NAND to maintain 

enough voltage headroom such that     to     and     to     have the proper 

operating point for the common-mode levels given the double vertical stack of 

transistors. The final transistor sizing’s for     to     and     to     for the unit 

differential NAND are           and        . The resistor and bias 

transistor sizing’s for the unit differential NAND are duplicates of the unit differential 

buffer’s. Additionally, the differential NAND uses a replica bias circuit designed in 

the same fashion as that of the differential buffer’s. Figure 4.11 shows the schematic 

of the differential NAND’s replica bias circuit, with the final sizing shown in the 

following section. 

 

Figure 4.11: Schematic of the Differential NAND Replica Bias Circuit 
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Just as in the differential buffer’s case, the final differential NAND gates in 

the design consist of multiple parallel instances of the unit cell whose sizing is 

tabulated in the next section. 

4.2.1 Final Circuit and Simulation Results 

The differential NAND is simulated under the same conditions (60 degrees Celsius 

and post-layout) as the differential buffer. In addition, the differential NAND is 

simulated for its two operating scenarios (path gating device and path 

recombining/output device) by varying the capacitive load the final differential 

NAND sees. The NAND’s used for both operating scenarios share the same final 

sizing’s, 16 parallel instances of the unit differential NAND. The final component 

sizes for the differential NAND and its replica bias circuit are shown in Table 4.6 and 

Table 4.7. 

Table 4.6: Final Device Sizes and Bias Currents for the Differential NAND 

Component Width Length Bias Current 

   ,    ,    , 

   ,    ,    , 

   ,     

                               

                                 ) 

   ,     

[~25 Ω effective] 
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Table 4.7: Final Device Sizes and Bias Currents for the Differential NAND Bias 

Circuit 

Component Width Length Bias Current 

   ,                                 

   ,                                      

                                

                                      

    

[~200 Ω effective] 
                                  

The two capacitive loads used to simulate the two operating scenarios for the 

differential NAND are 5 pF single-ended on each output node (path gating device) 

and 100 pF single-ended on each output node (output driver). Note  that when using 

the differential NAND as the output driver it should be able to drive a 100 Ω 

differential load for proper termination. Given the approximate 50 Ω differential load 

(2×25 Ω single-ended) the final differential NAND naturally drives, this is not an 

issue. The final post-layout simulated transient response of the differential NAND for 

the two capacitive loads/operating scenarios is shown in Figure 4.12. 
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Figure 4.12: Simulated Transient Response of the Differential NAND 

From Figure 4.12 it is easy to see the reduced slew-rate of the differential NAND gate 

when it is operating as the path recombining/output driver due to the significantly 

larger capacitive load. Due to the large capacitive load, the jitter analysis in either 

(3.15) or (4.3) and the simulated jitter of the designed differential buffer, it is 

expected that the output driver NAND is the dominant jitter source in the overall test 

circuit. The total worst-case output jitter for the differential NAND gate with the 

100 pF load is calculated from the worst-case output slope in Figure 4.13 and the total 

integrated noise in Figure 4.14 and is shown in (4.15). 
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Figure 4.13: Simluated Slope of the Worst-Case Slew-Rate Edge for the Differential 

NAND with a 100 pF Load 
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Figure 4.14: Simulated Total Output noise for the Differential NAND with a 100 pF 

Load 

 

                 

      
  

√  
           

           
(4.15) . 

As expected, the 105.39 fs of rms output jitter for the output driver differential 

NAND is much higher than that of variable delay buffer’s 24.36 fs. The total rms 

output jitter of the differential NAND when acting as the path gating device (5 pF 

load) is also simulated, but at lower accuracy (i.e. less jitter than the circuit will 

actually have) due to time constraints and determined to be approximately 16 fs. 

However, using a quick calculation based on (4.3) and the difference in the capacitive 
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loads between the two operating scenarios, another approximation of the rms output 

jitter for the path gating NAND can be calculated and is shown in (4.16). 

 
                

         

√
      
    

          
(4.16) . 

The value in (4.16) correlates well with the simulated output jitter of the variable 

delay differential buffer (24.36 fs) which is the most accurately simulated jitter in this 

thesis. Note that the two circuit’s rms output jitter should be close given the similar 

capacitive loads (approximately 5 to 10 pF single-ended on each output node for the 

differential buffer) and shared design philosophies. 
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4.3 Differential D-Flip Flop 

The design of a differential D-Flip Flop (DFF) is required in order to generate the 

      ⁄  signal, which is accomplished by feeding back an inverted version of the 

DFF’s output to its input. A simple way to create a differential DFF is with two 

differential latches as shown in Figure 4.15. 

 

Figure 4.15: Schematic of the Differential DFF Using Two Latches 

The schematic for a differential latch is shown in Figure 4.16 [19]. 
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Figure 4.16: Schematic of a Differential Latch [19] 

Like the differential NAND, the design of the differential latch borrows from the 

design of the variable delay buffer to achieve the same design goals. The unit 

differential latch is designed by again splitting the transistors of the variable delay 

buffer vertically and maintaining the widths to ensure sufficient voltage headroom. 

The final device sizes for the differential latch are shown in Table 4.8. Note that there 

are only 8 parallel instances of the differential latch to establish one half of the DFF, 

for layout purposes and since the output jitter of the DFF isn’t important for the 

design. 
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Table 4.8: Final Device Sizes and Bias Currents for the Differential Latch 

Component Width Length Bias Current 

 1a,                                  

 2a,  2b,  2c, 

 2d 
                             

                                 

   ,     

[~50 Ω effective] 
                            

The replica bias circuit for the differential latch is shown in Figure 4.17 and the final 

device sizes are in Table 4.9. 

Table 4.9: Final Device Sizes and Bias Currents for the Differential Latch Bias 

Circuit 

Component Width Length Bias Current 

   ,                                 

   ,                                      

                              

                                      

    

[~200 Ω effective] 
                                  

Finally, the transient output of the differential DFF is plotted in Figure 4.19 in  

Section 4.4. 
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Figure 4.17: Schematic of the Replica Bias Circuit for the Differential Latch 
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4.4 Complete Test Circuit 

The basic schematic and operation of the test circuit was shown in Figure 3.8; 

however a complete schematic of the test chip with the important pin names, is shown 

in Figure 4.18. 

 

Figure 4.18: Schematic of the Complete Test Circuit 

First, in order to allow the circuit to compensate for process variations and potential 

design errors, each of the major blocks (DFF’s, path gating NAND’s, buffers… etc.) 

contained within the test chip had their biases generated off chip. In combination with 

this a duplicate of the unit resistor common to all the major circuit’s is included in 

order to tune, in combination with the bias currents, the common-modes of each of 

the circuit blocks. Next, the controls for the variable capacitor bank and the variable 

current source are brought directly out of the chip. Although this requires a large 

number of I/O pins, it minimizes the risks of designing additional circuitry to control 

them internally via an external serial communication bus. Finally, the variable delay 

buffer of path   is set as the variable path, whereas the variable delay buffer in path   

is configured with only its two most significant bits of its delay control (i.e. the binary 

weighted banks of 64 and 128 capacitors) switchable and its variable current source 
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disabled. This is done for three reasons; first to allow any positive or negative timing 

skew introduced between the two paths by process variation or layout non-idealities 

to be correctable for different delay regions, in case due to some defect a certain delay 

region proves unreachable/correctable. Second it allows the inherent timing skew 

introduced for the above reasons between paths   and    to be explicitly shown when 

they are both set at the same delay point while thirdly showing that timing skews 

depend only on the relative timing difference and not the absolute. 

The complete test circuit is simulated under the same 60 degree Celsius 

operating temperature and at the process corners to ensure functionality. The nominal 

DC current for the test chip is 252 mA                 . Figure 4.19 shows 

the post-layout transient simulation for the complete test circuit with a 100 pF 

capacitive load placed on the NAND output driver. 
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a) Transient Response of DFF and Path Gating NANDs 

 

b) Transient Response of the Delay Buffers and Output Driver NAND 

Figure 4.19: Simulated Transient Response of the Complete Test Circuit 
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From the transient simulation, glitches are observed in the       ⁄  signals that the 

DFF’s generate, resulting in further glitches in the subsequent gates. In simulations, 

these glitches did not affect the performance of the test circuit and due to the 

impending tape out deadline they were left in the design. A discussion about this 

issue and its effects on the measured test chip is left to Chapter 5. Further simulations 

dealing with the timing skew precision and jitter proved extremely difficult to 

perform due to the large circuit, limited computing resources, and limited knowledge 

of the author in large-scale simulations. For example, the jitter simulations which are 

perform using Cadence Spectre simulation tool by performing a periodic-steady-state 

(PSS) noise simulation would not converge before the computer would run out of 

memory. Additionally, the timing skew precision simulations proved to be too large 

and long as well for the desired accuracy settings of the simulator. The post-layout 

simulated timing skew range for the test chip is determined to be approximately 

143 ps. In order to get a rough estimate of the total output jitter of the test chip the 

simulated output jitter for path gating NAND, variable delay buffer and output driver 

NAND can be root-sum-squared (RSS) together as illustrated in (4.17) and (4.18). 

 
         √               

               
                

 
 (4.17) . 

          √                             (4.18) . 

This results in a rough estimate for the final test chip’s rms output jitter of 

approximately 110 fs. 
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4.4.1 Layout and Fabrication 

As mentioned earlier in this thesis, the design, layout and fabrication of the test chip 

is done in TSMC’s 0.18μm CMOS process with MIM capacitors option. A die size of 

                      is selected and approved by Canadian 

Microelectronics Corporation (CMC) for fabrication on March 19, 2012 with a chip 

designation of ICFWTAB1. The test chip is packaged in a 80-pin CQFP lead frame to 

ensure a sufficient number of I/O and supply pins. 

In order to ensure the best chance of the taped out test chip operating correctly 

and as predicted by simulations, several recommended and essential layout guidelines 

are followed. First, ESD bond pads and protective circuits are implemented and latch-

up prevention measures (maximize substrate contacts) are followed to protect the test 

chip from both types of failure events. Second, due to the high current requirements 

of the circuitry, current densities are considered for relevant areas (routing for clocks, 

routing for device outputs, routing for supply and ground lines, transistors, resistors 

and capacitors) and the poly resistors are sized in order to minimize the odds of 

overheating due to their high power dissipation. Third, extensive efforts are taken to 

ensure equal path lengths and capacitive loading for all critical signals, since matched 

timing is at the heart of designing a TI-ADC and any mismatches will show the 

insufficiency of best layout practices and the need to be able to correct timing skews. 

Additionally, dummy transistors, resistors, and capacitors are placed around their 

respective devices that are desirable to match, again to minimize timing and 

performance differences. The test load resistor to tune the bias currents on the test 

chip is placed and centered around the majority of the load resistors used in the chip 

to ensure better thermal and device matching. On chip decoupling capacitors are 

placed where possible to minimize transient switching effects and the noise in the test 

chip. Finally, all switches include pull-ups/pull-downs to ensure their nodes are 

defined and the switches are not partially on/off. 
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The final layout of the test chip and bonding diagram are shown in 

Figure 4.20 and Figure 4.21 respectively. Furthermore, the pin out and pin description 

for the test chip is include in Table A.1 in Appendix A. A die photograph of the 

fabricated test chip is shown in Figure 4.22. 

 

Figure 4.20: Final Layout of the Test Chip 
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Figure 4.21: ICFWTAB1 Test Chip Bonding Diagram 
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Figure 4.22: ICFWTAB1 Test Chip Die Photograph 
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Chapter 5  

Testing Details and Measurement 

Results 

 

The testing details and measurement results of the fabricated test circuit designed in 

Chapter 4 are presented in this chapter. The design of the printed circuit board (PCB) 

used to interface with the fabricated chip is first discussed. Next, the details of the test 

setup are presented including all the equipment used. The test procedures for the DC, 

transient, timing skew’s precision and range, as well as the jitter measurement are 

then shown.  Finally, the measured results are presented, comparing them when 

possible to the simulated results shown in Chapter 4. Lastly, suggestions for 

improving the designed timing skew correction and test circuit are discussed and 

future things to explore are suggested. 
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5.1 Test Board Design 

A custom PCB is designed to power and interface with the fabricated test chip in 

Chapter 4. The PCB uses a FR-4 substrate and contains 4 layers, of which the top and 

bottom are reserved for signal routing and the two middle layers consist of separate 

power and ground planes. Any leftover area on the top and bottom layers is filled 

with copper and connected to the ground plane. The schematics and layout of each 

layer of the PCB are included in Appendix B. As part of the layout, a means of 

decoupling of the chip from the surface mount components during assembly is 

included, such that the possibility of harming the fabricated chip with an electrostatic 

discharge (ESD) event is minimized. In addition, this decoupling allows any shorts 

between power and ground to be checked before power is applied to the chip. 

Furthermore, the decoupling provides a way to tune and verify the operation of the 

PCB’s support circuitry before it is connected to the fabricated test chip. As a final 

note on the layout of the PCB, thermal relief vias are placed under the fabricated test 

chip in case thermal sinking of the package is needed due to the high current 

draw/power dissipation of the test chip. 

Since the test chip is designed to minimize the amount of output noise and 

jitter, a low noise linear regulator is used to supply power to the test chip. The linear 

regulator’s output is adjustable via R74, a 100 KΩ potentiometer. Resistors R82, R84, 

R85, R86, R90 and R91 are included to allow the linear regulator to be setup and 

tested before it is connected to the fabricated chip. In addition, placeholder resistors 

R79, R80, R81 and R89 are provided to allow the current being supplied to the PCB 

to measured. Two sets of two parallel 22 µF ceramic capacitors are used as input and 

output capacitors on the linear regulator to smooth out high transient currents. 

Additional, 1 uF decoupling capacitors are placed as close as possible to each VDD 

pin on the fabricated chip. Connectors CONN5 and CONN6 are used to supply power 

and ground from a bench top power supply to the PCB’s linear regulator. 
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To allow the performance of the chip to be tuned and to compensate for 

process variations, tunable bias networks are provided. Potentiometers R64, R66, 

R68, R70 and R72 are used as variable resistors to tune the bias currents of each 

circuit’s internal bias structure independently. As part of the tuning procedure 

resistors R65, R67, R69, R71 and R73 are used to measure the bias current for each 

circuit block, ensuring each block is biased with the correct current. Furthermore, test 

points TP13 and TP14 are included to measure the process variation of the calibration 

load resistors, such that the bias currents can be tuned to obtain a common-mode 

voltage of 1.4 V for all the circuits within the test chip. To protect from an ESD event 

while measuring the calibration resistor, either R1 or R2 is left connected to the 

ground plane. The noise generated by the internal bias networks and external tuning 

networks are filtered using 10 µF capacitors placed on each circuit’s bias network. 

Finally, note that the fabricated chip can be completely shut down by shorting the 

bias tuning networks to the ground plane while disconnecting them from the power 

plane. This allows the background current draw of the chips support circuitry to be 

measured. 

The test chip requires differential inputs; however the signal generator used to 

provide the sampling clock is single-ended, requiring a single-ended to differential 

conversion. An RF transformer with good amplitude and phase balance, T1, is 

included to convert the signal generator’s output to a differential one. The RF 

transformer has a center tap on the differential side, to provide a means to set and 

adjust the input common mode via R59, a 500 Ω potentiometer. As part of the input 

path, placeholders for 50 Ω termination resistors are included if needed to allow for 

good matching of the input signal. The PCB traces for the input and output clock 

paths are sized to have approximately 50 Ω characteristic impedances. The output 

differential pair also includes a set of resistors R62 and R63 which can be replaced by 

capacitors to AC couple the output, allowing any DC paths on the output such as 

50 Ω terminations to not change the output NAND’s bias point. Lastly, a set of 

clamping diodes, D1, is used to allow a large amplitude sine wave to be applied to the 

input and subsequently clipped to present a square wave like edge to the test chip 
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without over driving the input of the test chip.  The steeply sloped, high slew rate 

edges reduce the jitter on the sampling clock. 

Several switch banks, SW1 to SW4, are included to control the 10-bit lines for 

the variable capacitor banks and to control the 5-bit lines for the variable current 

sources. On each lines, 1 KΩ pull up and pull down resistors are used to further 

ensure that the internal MOSFET switches are not left floating. In addition, 100 nF 

capacitors are placed on each line to dampen the transient current when the switches 

are toggled. 

5.2 Test Bench Setup and Procedures 

The complete test bench setup for evaluating the fabricated test chip is shown in 

Figure 5.1. The test setup consists of two Rhode & Schwarz SMA100A signal 

generator, one provides the analog input signal to the test ADC and the other provides 

the sampling clock to either the fabricated test chip or the test ADC. The analog input 

signal is filtered using one of two band pass filters from TTE, depending on the input 

frequency used. The first filter, used for low frequency testing, is an 8-pole elliptical 

band pass, with a center frequency of 10 MHz and a bandwidth of 50% designed for 

ADC testing. The second filter, used for high frequency testing, is a 9-pole 

Chebyshev band pass, with a center frequency of 110 MHz and a bandwidth of 5% 

designed again for ADC testing. The filters are high order to ensure any noise or 

harmonic content from the signal generator(s) is minimized such that it does not 

interfere with the FFT based testing. In addition, the filter frequencies were selected 

such that any aliasing of the fundamental or harmonics would not interfere with the 

spurious tone generated due to the introduced timing skew and so they fall in a bin 

within the FFT to ensure coherent sampling. 
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Figure 5.1: Test Bench Setup 

An Analog Devices AD9265 16-bit 125 MSPS ADC evaluation board is used 

as the test ADC. The evaluation board outputs its digital data to a high speed FPGA 

based FIFO buffer capture board, which then sends the data to a desktop computer. 

The desktop computer has running on it Analog Devices Visual Analog software, 

which allows the output data to be viewed using a FFT plot. To ensure the test chip 

does not damage the ADC, the differential output of the chip is AC coupled into the 

AD9265 evaluation board. It is important to note that the AD9265 has a built in duty 

cycle stabilizing (DCS) circuit, which could interfere with the clock signal produced 

by the test chip [18]. For the testing conducted in this thesis, the DCS circuit is 

disabled to make sure it cannot interfere. 
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An Agilent E3630A bench top power supply is used to power the test chip 

through the linear regulator on the test PCB. Note that under certain test scenarios, the 

linear regulator is bypassed and the test chip is supplied directly from the bench top 

power supply. In addition, a Tektronix DMM4020 digital bench top multimeter 

(DMM) and Tektronix DSA70804 oscilloscope are only utilized for specific test 

scenarios as well. 

5.2.1 Chip Staging and DC Measurement

 Details 

To ensure that each circuit block within the test chip can be DC biased correctly, each 

is powered up independently. First, the background current draw of the test chip is 

measured, with the test chip shut down as described in Section 5.1 and the input 

common-mode voltage set to 0 V. Next, the bias network potentiometer for the first 

circuit, the differential D-Flip Flops, is tuned using the DMM to the nominal 

resistance value calculated to provide the proper bias current when the supply voltage 

is set at 1.8 V. Note no power has been applied yet. After this, power is applied to the 

test board using the bench top power supply, sweeping the supply voltage from 0 V to 

1.8 V in 0.1 V increments to ensure predictable behavior is observed. Note that the 

linear regulator is bypassed and disconnected from the power plane since it cannot 

provide voltages in between 0 V and 1.0 V. The input common-mode voltage is then 

swept from 0 V to 1.8 V in 0.1 V increments, allowing the D-Flip Flops to draw 

current. The current draw is measured, with the supply at 1.8 V and input common-

mode at 1.4 V, using the DMM to determine the voltage drop across a 10 Ω resistor. 

The current measured is compared to the nominal simulated DC current draw to 

verify the two are close. The power supply is then cycle three times by disconnecting 

and reconnecting the power cable to ensure the D-Flip Flops start up predictably and 

draw the same DC current as the first measurement. After this, when the board is 

powered down, the bias network for the D-Flip Flops is disconnected from the power 
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plane and shorted to ground to ensure the it remains off while the other circuits are 

staged. The above procedure is then repeated, with the exception of the background 

current draw and the changing of the common-mode voltage, which is left at 1.4 V, 

for every other circuit block (input NANDs, variable delay buffer and output 

NANDs). Note that only one circuit block is powered up at a time, with the others 

being disconnected and shorted to ground via their bias network. This concludes the 

first part of the chip staging. 

The second part of the chip staging involves powering up all the circuit blocks 

sequentially, to ensure the chip does not behave adversely as more blocks are active 

at a time. Note that in this case, the bias networks are left connected to the power 

plane but the pins on the chip (DFF_B, NAND_B0, NAND_B1, DLY_B and 

VAR_B) are shorted to ground for any not currently powered up. This requires the 

background current to be measured as each circuit block is powered. After each 

additional circuit block is added, the current is measured, only this time due to the 

higher current draw, a 1 Ω resistor is used to determine the voltage drop and 

corresponding supply current. Once again, the power is cycled to verify that the 

circuit starts up as expected and that no latch-up events occur. The next step is to 

measure the calibration load resistor, after the chip has been powered up for a while 

to stabilize the resistor’s temperature. Using the measured value, the bias networks 

are adjusted such that the input/output common-mode level is set to approximately 

1.4 V for each circuit block. After this, the linear regulator bypass is removed to 

allow it to regulate the power supply’s voltage. Note that the correct operation and 

output voltage (1.8 V) is verified before connecting the linear regulators output to the 

power plane. With this, the DC measurements can take place. 

Characterizing the DC performance of the test chip involves four 

measurements. The first is to measure and record the voltage on the output of the 

linear regulator. The second measurement is to record the voltage on each of the bias 

networks test points, TP1 to TP5, allowing the bias current for each circuit block to 
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be calculated. The third measurement records the total current being supplied to the 

test chip via the 1 Ω resistor placed between the power supply and the input to the 

linear regulator. It is important to note that the background current draw of the linear 

regulator and other ancillary circuitry that is not included on the fabricated chip needs 

to be subtracted off this measurement. The final fourth DC measurement is to record 

the common-mode output voltage on VO+ and VO-. One final note is that, no other 

equipment is used in the chip staging or measurements other than the bench top 

power supply and the DMM. 

5.2.2 Transient Measurement Details 

The transient measurement is done to verify that the output of the test chip resembles 

the post-layout simulated output. The output of the test board is connected to channel 

1 and channel 2 of the oscilloscope and AC coupled by replacing resistors R62 and 

R63 with 100 nF capacitors. This is done to prevent the oscilloscope, which has a 

50 Ω input impedance, from shifting the bias point of the output NANDs. One of the 

Rhode & Schwarz signal generators is set to output a sine wave at 125 MHz with a 

peak-to-peak amplitude of 0.8 V, corresponding to an output power of approximately 

2.5 dBm. The output of the signal generator is verified using the oscilloscope. The 

output of the signal generator is then disabled and connected to the input of the test 

board. The signal generator is then enabled and measurements detailing the peak-to-

peak amplitude, frequency and rising and falling slew rates are setup. A screen 

capture of VO+ and VO- is recorded with the measurements displayed. 

Note that it is important to measure the output transient behavior using the 

same cables as those that take the timing skew and additive jitter measurements, to 

ensure the same capacitive loading. In saying this, the SMA cables used to connect 

the output of the test board to the oscilloscope are approximately 3’ long and have a 

capacitive load of approximately 90 pF [20]. 
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5.2.3 Timing Skew Precision and Range

 Measurements 

As was mentioned in Chapter 2, the best way to measure and characterize timing 

skews is to use a FFT plot and monitor the SFDR with respect to the spurious tones 

due to the timing skews. Visual Analog by Analog Devices is used to capture and 

display the FFT of the AD9265’s output in order to measure the SFDR and 

characterize test circuit’s timing skew behavior. For all timing skew characterization 

measurements, ten 32,768-point FFT plots are captured with a running average of the 

measurements being generated over time to ensure the measurements are accurate and 

repeatable. The details of the signals used for the timing skew measurements are 

shown in Table 5.1. 

Table 5.1: Test Signals Used for Timing Skew Measurements 

Purpose 

Frequency 

[Aliased] 

(MHz) 

Signal Generator 

Amplitude (dBm) 
Filtered 

Aliased Timing 

Skew Spurious Tone 

Frequency (MHz) 

Analog Input 9.99832153 3.15 Yes 52.502 

Analog Input 
110.004425 

[14.996] 
17.33 Yes 47.504 

Clock Input 125 2.5 No N/A 

The filters used for the analog input signals are the ones described in Section 5.2. An 

important thing to note is the amplitude of each input signal is set such that the 

measured fundamental (signal) power in the captured FFT is -9 dBFS. Normally the 

fundamental’s power would be set to -1 dBFS, however due to the high insertion loss 

of the 110 MHz filter (approximately 11 dB) the required output power from the 

signal generator is too high to maintain the desired noise performance. Given this, the 

-9 dBFS level is selected as the reference level for both analog input signals for all the 
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timing skew and jitter measurements. The frequencies for the timing skew tones that 

are controlled and corrected by the test chip are calculated from (2.35). 

Several measurements are required to characterize the test chip’s precision 

level in correcting timing skews and the total range over which the timing skews can 

be corrected. Table 5.2 lists the various measurements that are taken to characterize 

the timing skew correction circuit. Note that measurements 1 to 10 are all taken with 

the 110 MHz input signal, while measurements 11 to 13 are taken with the 10 MHz 

input signal. For the measurements listed in Table 5.2, the path   capacitor bank is 

set to the middle of the range (i.e. code 127). The path   variable capacitor bank is 

varied according to measurements 1 to 6 in Table 5.2 such that all the major code 

transitions (i.e. 00111111 to 01000000) are covered, the range of correction is 

covered and a reasonable number of steps (approximately 100) are covered to 

characterize the precision of the steps. Measurement 4 is comprised of three code 

sweeps of the variable capacitor bank around the middle of the correction range, each 

taken on a different day after the test chip has been powered off for some time to 

characterize the repeatability and consistency of the timings steps and of the 

mismatch between the two paths. The decimal values for the code ranges in 

measurement 4 and measurement 8 correspond to the three measurement time points, 

where matching decimal numbers indicate the same testing time at which the 

measurements are taken. It is important to note that when path   is set to code 127, 

which matches path  , the timing skew measured from the FFT represents the 

inherent path mismatch due to process and manufacturing variations. It is also 

important to note that for measurement 4, the variable capacitor code that minimizes 

the timing skew (i.e. provides the best possible timing skew correction with just the 

variable capacitor bank) is then used as the starting point for measurement 8. 
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Table 5.2: Measurements for Characterizing the Timing Skew Correction Ability 

Measurement Purpose 
Measurement 

Number 

Path A Variable 

Capacitor Code(s) 

Variable Current 

Source Code(s) 

Variable Capacitor 

Timing Skew 

Correction Precision 

and Range 

1 0 – 20 

0 

2 30 – 33 

3 54 – 74 

4.1 116 – 137
 

4.2 115 – 137
 

4.3 108 – 130
 

5 182 – 202 

6 235 – 255 

Variable Current 

Source Timing Skew 

Correction Precision 

and Range 

7 0 0 – 31 

8.1 118
 

0 – 8
 

8.2 118
 

0 – 23
 

8.3 119
 

0 – 31
 

9 127 0 – 31 

10 255 0 – 31 

Timing Skew 

Correction Holds Over 

Input Frequency 

11 127 0 

12 118 0 

13 118 4 

Similar to measurements 1 to 6 for the variable capacitor bank, measurements 

7 to 10 are used to characterize the range of correction and precision of the steps for 

the variable current source. Measurement 8 sweeps the variable current source around 

the variable capacitor code that minimized the timing skew tone, to show the best 

timing skew correction the chip can achieve for the nominal variable bias current 

setting. The final measurements, 11 to 13, are FFT plots used to show that the timing 

skew correction settings hold for a different input frequency. 



 

118 

 

5.2.4 Additive Jitter Measurement Details 

The procedure for measuring the additive jitter of the test chip is taken from Analog 

Devices AN-501 application note [21]. Based on the application note, four 

measurements are required to characterize the additive jitter performance of the 

fabricated test chip. Two low frequency SNR measurements are taken, one without 

the test chip in the sampling clock path (measurement ‘A’) and one with the test chip 

present (measurement ‘B’). Note that the test without the test chip is done with a 

duplicate test PCB that does not have the test chip attached, instead the differential 

input traces are connected directly to the output traces. The other two measurements 

are high frequency SNR measurements, one without the test chip (measurement ‘A’), 

and one with the test chip in the sampling clock path (measurement ‘B’). 

The first two low frequency SNR measurements,        and       are 

taken at approximately 10 MHz in order to determine noise level of the AD9265 

when no jitter effects are present. Figure 5.2 shows that for the AD9265 with an input 

frequency of 10 MHz that the SNR is indeed not limited by the jitter. 
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Figure 5.2: AD 9265 SNR vs. Input Frequency for Various Amounts of Jitter [18] 

With this, the following equation is used to calculate the composite rms DNL   for 

both measurements, A and B, which captures the noise contributions of all sources 

other than jitter using the low frequency measured SNR’s [21]: 

 
          

           

     (5.1) . 

The high frequency SNR measurements,        and        are taken at an 

input frequency of approximately 110 MHz, which according to Figure 5.2 results in 

an SNR that is jitter dependant. The        measurement, which is without the test 
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chip, captures the jitter induced noise of all components other than the test chip, 

whereas the        measurement captures all the noise from all jitter contributing 

sources in the sampling clock path, test chip included. The total rms jitter without the 

test chips contribution,          , and with its contribution,          , is calculated 

from the two       measurements and two calculated   values from (5.1) using the 

following equation [21]: 

 

                  

√(  
           

  )

 

 (
      

  )
 

     
 

(5.2) . 

Using the two total rms jitters calculated from (5.2), the rms additive jitter due to the 

test chip alone is calculated using the following: 

 
         √         

           
 
 (5.3) . 

Just as in FFT measurements from the previous section, Analog Devices 

Visual Analog software is used to capture the FFT and the corresponding SNR 

measurements to characterize the additive jitter performance of the test chip. 

Similarly, ten 32,768-point FFT plots are captured with a running average of the 

measurements being generated over time to determine the SNR for each of the four 

measurements. Additionally the same signals and signal parameters that are listed in 

Table 5.1 are used for the four required SNR measurements. 
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5.3 Measured Results 

The major results for each of the measurements detailed in the previous section are 

now presented. 

5.3.1 Chip Staging and DC Measurements 

The measured DC bias points from the test chip as each stage is powered up are 

shown in Table 5.3. The calibration load resistor used to set the bias points is 

measured to be  approximately 463 Ω, which results in the desired bias of 

1.715 mA/3.43 mA for each of the gates such that the 1.4 V common-mode voltage 

for all the gates is met. 

Table 5.3: Initial Measured DC Bias Points of the Test Chip 

Gate(s) Powered 
VTP(Gate) 

(V) 

IBIAS(Gate) 

(mA) 

IMEASURE 

(mA) 

IBACKGROUND 

(mA) 

IGATE 

(mA) 

DFF  

(VCM = 0) 
1.457  3.43 27.74 20.91 0 

DFF 

(VCM = 1.4V) 
1.457 3.43 83.41 20.91 55.7 

DFF + NAND0 1.457 3.43 139.97 14.16 56.45 

DFF + NAND0 + DLY 1.457 3.43 195.23 7.42 55.14 

DFF + NAND0 + DLY 

+ VAR 
1.55 0.25 195.7 7.03 

See 

Table 

5.4 

DFF + NAND0 + DLY 

+ VAR + NAND1 
1.628 1.715 223.14 3.66 27.74 
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VTP(Gate) is the test point voltage used to calculate the bias current (IBIAS(Gate)) for 

the most recent gate powered up. For example, in the case of DFF + NAND0, the gate 

of concern is NAND0 and all measurements titled with the word gate in it are for the 

NAND0 gate. Based on Table 5.3 the total chip current for the initial DC 

measurements is 219.48 mA (223.14-3.66) which compares well with the simulated 

post layout extracted current of 218.7 mA when the same gate bias currents are used. 

The common mode voltages for the outputs, VO+ and VO-, are measured to be 

1.377 V and 1.422 V respectively. This compares to the simulated post-layout 

extracted common-mode voltages for the outputs of 1.444 V and 1.46 V for VO+ and 

VO- respectively. The difference between the two values is mainly due to the load 

resistors in simulation being the nominal approximate 400 Ω rather than the 463 Ω 

measured. 

The measured currents IVCS for each of the five taps in the variable current 

source are shown in Table 5.4. The corresponding simulated currents from Section 

4.1.6 are also included in Table 5.4 for comparison purposes. 

Table 5.4: Comparison of Simulated and Measured Variable Current Source Currents 

Variable Current Source 

Code 

Nominal Simulated 

IVCS (µA) 
Measured IVCS (µA) 

00001 15.8 17.X 

00010 31.6 32.X 

00100 63.16 69.X 

01000 126.18 133.X 

10000 251.8 270.X 

Compared to the nominal simulated currents, the measured currents are slightly 

higher by up to approximately 10%, which is within the expected values for process 

variations. 
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During the measurement process for the test chip a non-ideal/unexpected 

behaviour was observed, which consisted of a raised and sporadic noise floor in the 

measured FFT.  The non-ideal behaviour was found to be due to the D-Flip Flops not 

having enough gain to switch properly and generate the       ⁄  signal, leaving both 

inputs of the clock gating NANDs on. The fix for this was to lower the bias current 

through the D-Flip Flops, which increases the gain of the transistors, allowing the 

D-Flip Flops to switch properly. The corrected DC bias point for the D-Flips Flops is 

shown in Table 5.5. VTP(Gate) was measured from the test chip, however the IGATE 

current report in Table 5.1 is not measured, it is calculated based off of the mirroring 

ratio of 16.23 times between IBIAS(Gate) and IGATE from the DFF measurement in 

Table 5.3 to give an idea as to the total bias current for the D-Flip Flops. 

Table 5.5: Corrected DC Bias Point for the DFF 

Gate Powered 
VTP(Gate) 

(V) 

IBIAS(Gate) 

(mA) 

IMEASURE 

(mA) 

IBACKGROUND 

(mA) 

IGATE 

(mA) 

DFF 1.57 2.3 N/A N/A 37.33 

Due to limited time, the revised total test chip current could not be re-measured. 

However, based on the approximate change in the D-Flip Flops bias current the 

revised total test chip current would be 201.11 mA, which compares favorably to the 

199.2 mA from simulations. 
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5.3.2 Transient Measurements 

During the transient measurements, it was found that the clamping diodes on the 

PCB, D1, did not work as well as expected. The diodes appeared to have a large 

internal resistance and did not sink enough current fast enough to allow a large 

amplitude sine wave to be clamped and appear as a square wave with sharp rising and 

falling edges. Due to this, the input to the test chip       was a sine wave as shown 

in Figure 5.3. 

 

Figure 5.3: Oscilloscope Capture of the Input Signal       to the Test Chip 
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Additionally, the use of a sine wave input pointed out a non-ideal behavior in the test 

chip as the chip was simulated using an input signal with faster edges then a sine 

wave. The non-ideal behaviour, which consisted of a raised and unstable FFT noise 

floor, was observed while taking the timing skew measurements however, it also 

appeared in the transient output as a random shift in the triggering point of the output. 

The measured transient output for the corrected D-Flip Flops bias current of 

the test chip using the 90 pF SMA cables are shown in Figure 5.4. Channel 1 

(Yellow) corresponds to VO+ and Channel 2 (Blue) corresponds to VO-. 

 

Figure 5.4: Measure VO+ and VO- Using the 90 pF SMA Cables 

The measured VO+ and VO- peak-to-peak values of 376 mV and 354 mV 

respectively compare reasonably well with the simulated post-layout extracted values 
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of 426 mV and 405 mV taken from Figure 4.19 in Section 4.4. The difference could 

be attributed to the simulation not capturing the transmission line effects between the 

test chip and the ADC clock inputs or the clamping diodes that were left on the ADC 

evaluation board to protect the ADC’s clock inputs from being over driven which 

could leak current and reduce the output swing. 

5.3.3 Timing Skew Precision and Range

 Measurements 

The results for measurements 1 to 6 detailed in Section 5.2.3 are shown in Figure 5.5 

to Figure 5.8. First, Figure 5.5 shows the measured SFDR and corresponding timing 

skew magnitude for the variable capacitor code sweep ranges. Note that the SFDR 

presented in Figure 5.5 is relative to the input signal level since it is the ratio between 

the analog input level and the timing skew spur that is important. The timing skew 

magnitude on the right vertical axis is in a log scale and is calculated using (2.42). 
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Figure 5.5: Variable Capacitor Timing Skew Performance Over Capacitor Codes 

From Figure 5.5 the entire timing skew adjustment range is approximately 

183 ps given by the code 0 to code 255 timing skew magnitude difference. This meets 

the original design goal range of 100 ps to 200 ps, successfully showing the test 

chip’s timing skew range performance. Figure 5.6 shows a magnified view of the 

mid-range variable capacitor codes for the three different timing points measured. 

The results show that at different time points and with power cycles, the capacitor 

bank performance is quite consistent. Note that the SFDR/timing skew magnitude 

minimum between measurement 4.1 and measurements 4.2 and 4.3 corresponds to a 

timing skew magnitude difference of only approximately 300 fs, which could easily 

be compensated for using a background calibration routine. 
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Figure 5.6: Variable Capacitor Timing Skew Minimization Performance 

The precision of the timing skew correction using the variable capacitor bank 

is shown in Figure 5.7 and Figure 5.8. Figure 5.7 shows the magnitude of the timing 

skew steps between consecutive capacitor codes over the code ranges measured. The 

step sizes are relatively consistent over the entire capacitor code range, gradually 

reducing as the capacitive load on the differential buffer increases, which is expected. 

The spikes observed in the measurements, occur at the MSB change points (i.e. 

00011111 to 00100000), and are a result of capacitor mismatch in the process and the 

binary switching scheme. To reduce these effects, unit switching for the capacitor 

bank should be used and further matching optimized layout of the capacitors should 

be observed. Figure 5.8 shows a histogram plot of the approximately 110-capacitor 

steps record for the first time point set of measurements. The histogram clearly shows 

that the average step size is approximately 700 fs and thus the precision to which the 

timing skew tone can be corrected is approximately 700 fs using only the variable 
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capacitor bank, which is within the expected +/- 20% of the 600 fs determined in 

simulation. 

 

Figure 5.7: Variable Capacitor Timing Skew Precision Over Capacitor Codes 
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Figure 5.8: Distribution of the Variable Capacitor Timing Skew Correction Precision 

The results from measurements 7 to 10 for the variable current source are 

captured in Figure 5.9 to Figure 5.11. Similar to the variable capacitor measurements, 

the first figure, Figure 5.9, shows the SFDR and resultant timing skew magnitude for 

the three time point measurements. The SFDR/timing skew tone minimum points 

occur at different code ranges over time, which is not unexpected since the sensitivity 

of the system to temperature and environment variation and even circuit burn-in is 

likely high at this precision level. Although the codes that minimize the timing skew 

spurious tone vary for the different time points, the ultimate minimum is very similar 

between each case proving the precision level and repeatability of the correction. 
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Figure 5.9: Variable Current Source Timing Skew Minimization Performance 

Expanding on the timing skew correction precision achieved by the variable current 

source, Figure 5.10 and Figure 5.11 show the timing skew correction step size and the 

corresponding histogram of the 90 steps. The average measured step size is 

approximately 60 fs, which is reasonably close to the design goal of 25 fs. It is 

important to note that the precision level can improved as well by reducing the bias 

current of the variable current source; however due to time constraints only the 

nominal 250 μA bias point was measured. 
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Figure 5.10: Variable Current Source Timing Skew Precision Over Current Source 

Codes 
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Figure 5.11: Distribution of Variable Current Source Timing Skew Correction 

Precision 

A compilation of the captured FFT plots from the key timing skew 

performance measurements are shown in Figure 5.12. In Figure 5.12 VC serves as the 

short form of variable capacitor bank and VCS serves as the variable current source 

short form. Further note that the timing skew magnitude axis does not correspond to 

the dB value on the left axis, but instead represents the magnitude of the timing skew 

for a tone of that vertical height, which is again calculated based off of the SFDR. 

These FFT plots show that the timing skew introduced by the test chip can be 

corrected to well below the other spurious and harmonic tones at an input frequency 

of 110 MHz. Additionally the test chip can correct timing skew tones corresponding 

to magnitudes of up to +/- 91.5 ps (i.e. the range of 183 ps). Furthermore, the timing 

skew tone appears at the expected frequency of 47.504 MHz. The timing skew range 

compares reasonably well with the post-layout simulated range of 143 ps, with the 
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discrepancy likely being due to the difference in the simulated and measured 

capactive load the test chip drives. 

Lastly, the measurements verifying that the timing skew correction applies to 

and holds over different input frequencies are shown in Figure 5.13 to Figure 5.15. 

The timing skew spurious tone appears at the expected frequency of 52.502 MHz and 

can be corrected for with the same settings as in the 110 MHz case. Furthermore, the 

tone magnitude is smaller for the same correction settings for example, the capacitor 

code setting of 127 which for 10 MHz the tone is approximately at -82 dB whereas 

for an input frequency of 110 MHz the tone magnitude is approximately -62 dB. This 

agrees with the theory presented in Chapter 2 which showed the dependence of the 

timing skew tone on input frequency which increases in magnitude as the input 

frequency increases. 
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Figure 5.12: FFT Timing Skew Correction Range and Precision Performance 
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Figure 5.13: Alternate Input Frequency FFT Performance for Variable Capacitor 

Code 127 
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Figure 5.14: Alternate Input Frequency FFT Performance for the Variable Capacitor 

Code 118 
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Figure 5.15: Alternate Input Frequency FFT Performance for Variable Capacitor 

Code 118 and Variable Current Source Code 13 
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5.3.4 Additive Jitter Measurements 

The four SNR measurements from the test chip are shown in Table 5.6. 

Table 5.6: SNR Measurements for Output Jitter Calculation 

Measurement 

Type 

Input Frequency 

(MHz) [Aliased] 

Measured 

SNR 

Calculated 

ε 

Calculated 

            (fs) 

A 

9.99832153 70.01 19.70 N/A 

110.004425 

[14.996] 
69.05 N/A 227.3 

B 

9.99832153 70.29 19.044 N/A 

110.004425 

[14.996] 
68.7 N/A 294.2 

As was stated in Section 5.2.4, ‘A’ measurements were taken without the test chip in 

the sampling clock while ‘B’ measurements were taken with it present. Based on 

these measurements and (5.3) the total rms jitter          for the test chip is: 

          √                       (5.4) . 

Comparing the measured jitter in (5.4) to the approximate simulated jitter calculated 

in Section 4.4 results in approximately 110 fs for the simulated total chip jitter and 

186.8 fs for the measured total test chip jitter. As expected, the simulated jitter is 

quite a bit better than the measured, most likely due to the 

precision/time/convergence limitations on accurate jitter simulations for large 

circuits. However, the measured and simulated do not differ by more than a factor of 

two which is encouraging in that the simulations seem to model the jitter relatively 

well (i.e. if longer, higher precision simulations were/could be performed on the full 
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test chip the simulated value would likely converge on the measured). In regards to 

the original design goal of 25 fs of additive jitter for the variable delay differential 

buffer, it is not possible to measure the additive jitter of just the test chip’s differential 

buffer to verify how close the fabricated buffer is to the design goal. However, in 

comparing the results of (5.4) and the approximate simulated jitter calculation in 

Section 4.4, it is not unreasonable to say that the measured jitter of just the variable 

delay differential buffer should be relatively close (i.e. within a factor of 2) of the 

design goal. In saying this, a test chip should be fabricated with just the variable 

differential buffer on it to better verify its jitter performance relative to the design 

goal. 

5.4 Improvements and Future Considerations 

The fabricated test chip overall operated as expected and produced results that were 

within reason. However, there were two non-ideal behaviors found with the circuit. 

First, as mentioned in the previous section, the test chip exhibited an unstable bias 

point which resulted in the raised and sporadic noise floor. This is attributed to the 

DFF’s that divide the incoming clock by 2, not having sufficient gain at the nominal 

bias current to switch properly with a sine wave input. To improve this in a future 

implementation of the test chip, either a lower bias current or revised transistor 

sizing’s to increase the gain of the D-latches should be used. The second non-ideal 

behaviour, was observed in the final simulation of the test chip with the input as a 

sine wave instead of the sharp rising square wave used in the simulations pre-tapeout. 

The issue observed is with the glitch at time points 20 ns and 36 ns for the   path and 

12 ns and 28 ns for the   path. These glitches should not be present, as the signal at 

these points should not be switching. The reason for this switching is due to the delay 

between       and       ⁄ , therefore to fix this a buffer should be inserted such 

that all the signals applied to the first set of NAND’s arrive at the same time. 
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Due to limited time and die area, not all of the circuits or tests that are useful 

to fully characterizing the performance of the test chip and its internal circuits could 

be included or performed. In terms of the circuits, both the NAND gate and the 

variable delay differential buffer should be fabricated as individual circuits so that 

their jitter or just for the NAND, their performance can be compared to the traditional 

implementations in terms of transient and harmonic performance. For the additional 

tests that should be performed, there are several. First, the performance metrics 

measured in the previous sections should be done over different supply voltages, 

temperatures and over longer time spans. This is to characterize how stable the timing 

skew correction circuit is under these common variations. Second, the power supply 

rejection ratio (PSRR) performance of the test circuit and the individual gates 

previously mention should be measured. This is to verify the noise suppression ability 

of the differential structures used. Lastly, the oscilloscope’s input capacitance as well 

as the all the sources of capacitance between the test chip and the clock inputs on the 

AD9265 should be measured to more accurately compare simulations to the measured 

results. In addition to these suggest future steps and improvements, a calibration 

algorithm could be developed to allow the timing skew correction circuit to have a 

closed loop means of minimizing the spurious tones due to the timing skews. This 

calibration method should be designed to handle varying samples rates, operating 

temperatures and supply voltages. 
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Chapter 6  

Conclusions and Future Work 

The SFDR and SNR performance of time-interleaved analog-to-digital converters 

suffer if the non-idealities of timing skews and jitter are not minimized. A good way 

to minimize/correct for these non-idealities is in the analog domain. This thesis 

successfully presented the analysis, design and fabrication of an analog timing 

correction test circuit that was able to isolate timing skew behaviour, precisely control 

the timing skew over a wide range of timing skew and add minimal jitter while doing 

this. The fabrication test chip achieved a measured timing skew precision of 

approximately 60 fs over a timing skew range of approximately 183 ps. Additionally 

the entire test circuit had a measured total rms output jitter of approximately 187 fs. 

These measured results achieved are reasonably close to the original design goals of 

the thesis and prove the success of the designed test chip. 

In order to achieve these results, it was found that using a variable delay 

differential buffer is a good way to balance the timing skew precision, range and 

output jitter requirements demanded of a timing skew correction circuit. The variable 

delay should be achieved by varying both the capacitive load seen the differential 

buffer in combination with varying the bias current to achieve the desired timing 

skew correction precision. In designing the variable delay differential buffer it was 
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determined that the overdrive voltage if the input transistors should be maximized  in 

combination with minimizing the gain of the buffer such that the overall output jitter 

is minimized. Additionally the noise of the bias transistor and bias network should 

also be considered and minimized in order to further reduced the output jitter of the 

variable delay differential buffer. Beyond this, the design of a unique (to this author’s 

best knowledge) differential NAND gate was presented that better balances the 

signalling and parasitics within the gate for better differential operation. Finally, an 

architecture that allows timing skews exclusively to be tested and evaluated was 

shown and proved to operate as intended. 

During the design and evaluation of the test chip, some recommendations for 

future work and improvements were identified. The variable delay differential buffer 

should be taped out on as a separate circuit with different sizing’s to completely 

evaluate the output jitter performance of the circuit and the accuracy of the 

simulations. The same should be done for the differential NAND gate to evaluate not 

only its jitter performance but also its harmonic and transient performance to confirm 

its improved differential behavior. As mentioned earlier, the accuracy of the jitter 

simulations should be verified by accurately determining the load capacitance in 

combination with the previous recommendations. Furthermore, research should be 

done to find methods to improve the simulation time, accuracy and convergence of 

precise jitter simulations on large circuits; helping to solve some of the jitter 

simulation issues encountered in this thesis. The performance of the test chip should 

be evaluated over temperature, voltage, and time to evaluate how the timing skew 

correction holds over these variations. In combination with this, a method of 

incorporating an online background calibration routine should be developed to ensure 

the correction is maintained over these variations. Finally, to improve the existing test 

chip, the DFF and input clock path should be redesigned such that the low gain and 

observed glitching is corrected. 
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Appendices  

Appendix A  

Test Chip and PCB Pin Mapping and Pin 

Description 

The pin mappings between the test chip and test PCB as well as their corresponding 

pin description are included in Table A.1. 

Table A.1: Pin Mapping and Pin Description of the Test Chip and PCB 

Pin Number Layout Pin Name 
PCB Pin 

Name 
Pin Description 

1 NC GND Not Connected/Signal Ground 

2 NC GND Not Connected/Signal Ground 

3 VSS GND Signal Ground 

4 DFF_BIAS DFF_B DFF Circuit Bias 

5 VSS GND Signal Ground 

6 VDD 1.8V 1.8V Supply 

7 VDD 1.8V 1.8V Supply 
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Pin Number Layout Pin Name 
PCB Pin 

Name 
Pin Description 

8 VSS GND Signal Ground 

9 R1 TP14 Bias Resistor Test Point 

10 VSS GND Signal Ground 

11 CLK2+ N/A Not Implemented 

12 CLK2- N/A Not Implemented 

13 CLK- CLK- 
Negative Differential Clock 

Input 

14 CLK+ CLK+ 
Positive Differential Clock 

Input 

15 VSS GND Signal Ground 

16 R2 TP13 Bias Resistor Test Point 

17 VSS GND Signal Ground 

18 VDD 1.8V 1.8V Supply 

19 VDD 1.8V 1.8V Supply 

20 VSS GND Signal Ground 

21 NAND_BIAS_0 NAND_B0 NAND0 Circuit Bias 

22 VSS GND Signal Ground 

23 NC GND Not Connected/Signal Ground 

24 NC GND Not Connected/Signal Ground 

25 NC GND Not Connected/Signal Ground 

26 VDD 1.8V 1.8V Supply 

27 VDD 1.8V 1.8V Supply 

28 VSS GND Signal Ground 

29 DLY_BIAS DLY_B Delay Circuit Bias 

30 VSS GND Signal Ground 

31 VDD 1.8V 1.8V Supply 



 

147 

 

Pin Number Layout Pin Name 
PCB Pin 

Name 
Pin Description 

32 VDD 1.8V 1.8V Supply 

33 VSS GND Signal Ground 

34 I0 I0 
Variable Current Source 

Control Bit 0 

35 VSS GND Signal Ground 

36 VDD 1.8V 1.8V Supply 

37 VSS GND Signal Ground 

38 NAND_BIAS_1 NAND_B1 NAND1 Circuit Bias 

39 I1 I1 
Variable Current Source 

Control Bit 1 

40 NC GND Not Connected/Signal Ground 

41 NC GND Not Connected/Signal Ground 

42 NC GND Not Connected/Signal Ground 

43 I2 I2 
Variable Current Source 

Control Bit 2 

44 I3 I3 
Variable Current Source 

Control Bit 3 

45 I4 I4 
Variable Current Source 

Control Bit 4 

46 CAPB6 CB6 
Path B Variable Capacitor 

Bank Bit 6 

47 CAPB7 CB7 
Path B Variable Capacitor 

Bank Bit 7 

48 VSS GND Signal Ground 

49 VDD 1.8V 1.8V Supply 

50 VSS GND Signal Ground 
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Pin Number Layout Pin Name 
PCB Pin 

Name 
Pin Description 

51 VO+ OUT+ Positive Differential Output 

52 VO- OUT- Negative Differential Output 

53 VO2- OUT2- Not Implemented 

54 VO2+ OUT2+ Not Implemented 

55 VSS GND Signal Ground 

56 VDD 1.8V 1.8V Supply 

57 VSS GND Signal Ground 

58 CAP7 C7 
Path A Variable Capacitor 

Bank Bit 7 

59 CAP6 C6 
Path A Variable Capacitor 

Bank Bit 6 

60 CAP5 C5 
Path A Variable Capacitor 

Bank Bit 5 

61 CAP4 C4 
Path A Variable Capacitor 

Bank Bit 4 

62 CAP3 C3 
Path A Variable Capacitor 

Bank Bit 3 

63 NC GND Not Connected/Signal Ground 

64 NC GND Not Connected/Signal Ground 

65 NC GND Not Connected/Signal Ground 

66 CAP2 C2 
Path A Variable Capacitor 

Bank Bit 2 

67 CAP1 C1 
Path A Variable Capacitor 

Bank Bit 1 

68 VSS GND Signal Ground 

69 VDD 1.8V 1.8V Supply 
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Pin Number Layout Pin Name 
PCB Pin 

Name 
Pin Description 

70 VSS GND Signal Ground 

71 CAP0 C0 
Path A Variable Capacitor 

Bank Bit 0 

72 VSS GND Signal Ground 

73 VDD 1.8V 1.8V Supply 

74 VDD 1.8V 1.8V Supply 

75 VSS GND Signal Ground 

76 VAR_BIAS VAR_B 
Variable Current Source 

Circuit Bias 

77 VSS GND Signal Ground 

78 VDD 1.8V 1.8V Supply 

79 VDD 1.8V 1.8V Supply 

80 NC GND Not Connected/Signal Ground 
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Appendix B  

Test PCB Documentation 

The schematics for the test PCB are shown in Figure B.1 to Figure B.3. Additionally 

the corresponding layer masks and signal routing are included in Figure B.4 to Figure 

B.9. 

 

Figure B.1: Page 1 of the PCB Schematics Showing the Test Chip Connections 
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Figure B.2: Page 2 of the PCB Schematics Showing the I/O Connections 
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Figure B.3: Page 3 of the PCB Schematics Showing the Power and Bias Supplies 
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Figure B.4: Component Locations on Top Layer of the Test PCB 
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Figure B.5: Signal Routing on Top Layer of the Test PCB 
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Figure B.6: Ground Plane (2
nd

 layer) of the Test PCB 
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Figure B.7: Power Plane (3
rd

 Layer) of the Test PCB 
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Figure B.8: Component Locations on Bottom Layer of the Test PCB 
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Figure B.9: Signal Routing on Bottom Layer of the Test PCB 
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