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Abstract

Precise measurements of corneal layer thickness are required to treat, evaluate risk of,
and determine the progression of pathologies within the eye. The thickness measurements
are typically acquired as 2D images, known as tomograms, from an optical coherence
tomography (OCT) system. With the creation of ultra-high resolution OCT (UHROCT),
there is active research in precisely measuring, in vivo, previously unresolvable corneal
structures at arbitrary locations within the cornea to determine their relationship with
corneal health.

In order to obtain arbitrary corneal thickness measurements, existing reconstruction
techniques require the cornea to be densely sampled so that a 3D representation can be
interpolated from a stack of tomograms. Unfortunately, tomogram alignment relies solely
on image properties such as pixel intensity, and does not constrain the reconstruction to
corneal anatomy. Further, the reconstruction method cannot properly compensate for eye-
motion. The deficiencies due to eye-motion are exacerbated due to the amount of time
required in a single imaging session to acquire a sufficient number of tomograms in the
region of interest.

The proposed methodology is the first to incorporate models of the anatomy and the
imaging system to address the limitations of existing corneal reconstruction methods. By
constructing the model in such a way as to decouple anatomy from the imaging system,
it becomes less computationally expensive to estimate model parameters. The decoupling
provides an iterative methodology that can allow additional constraints to be introduced
in the future. By combining sparsely sampled UHROCT measurements with a proper-
ly designed corneal model, reconstruction allows researchers to determine corneal layer
thicknesses at arbitrary positions in both sampled and unsampled regions.

The proposed methodology demonstrates an approach to decouple anatomy and physi-
ology from measurements of a cornea, allowing for characterization of pathologies through
corneal thickness measurements. Another significant contribution resulting from the corneal
model allows five of the corneal layer boundaries to be automatically located and has al-
ready been used to process thousands of UHROCT tomograms. Recent studies using this
method have also been used to correlate contact-lens wear to hypoxia and corneal layer
swelling. While corneal reconstruction represents the main application of this work, the
reconstruction methodology can be extended to other medical imaging domains and can
even represent temporal changes in tissue with minor modifications to the framework.
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Nomenclature

This section contains reference to all major notation, categorized by primary mathematical
purpose. The following general rules are applied throughout the document.

1. Capital letters are used to represent matrices and sets.

2. Capital script letters are used to denote kernels.

3. Vectors are denoted in bold, for example v.

4. Directional vectors often used to represent basis vectors are represented with an

overline, for example
−→
d .

5. Elements in a vector, matrix, or set, are indexed using subscripts, for example v0,
M0,3, and Si respectively.

6. The symbol : in a subscript indicates all elements in the dimension where the symbol
is used, for example M:,1 is a column vector containing all elements in the first column
of matrix M and M3,: is a row vector containing all the elements in row three of matrix
M .

7. Scalars are never bold.

8. Functions are represented by either a capital or lower case letter with optional sub-
scripts followed by parentheses containing parameters, f(a, b, c).

9. To avoid confusion with the function notation, multiplication involving parentheses
is explicit, for example a · (b+ c).

10. 2D coordinates are represented in the form (x, y) and 3D coordinates are represented
in the form (x, y, z).
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Chapter 1

Introduction

Ralph Waldo Emerson wrote that “science does not know its debt to imagination,” [37].
While problem solving requires a great deal of technical knowledge and skill, it also requires
the creativity and persistence to shape that knowledge, transforming it to make the world
a better place. Statistical model-based reconstruction encompasses these ideals. The
surrounding world can be expressed as a mathematical model through creativity, knowledge
of structure, and knowledge of behaviour. Using the model as context, observations are
given meaning, which leads to better understanding and more accurate models. Then, it
is up to humankind to use that knowledge to improve the world.

1.1 Statistical model-based reconstruction

When statistical model-based reconstruction is applied to a discipline, it helps satisfy a
number of goals. It can provide better insight from observations, provide a means to judge
observation accuracy, and a means to estimate unknown parameters even if direct measure-
ments are unavailable. The advantages of applying statistical model-based reconstruction
to the application of corneal reconstruction are presented here.

Often researchers are not interested in raw measurements, but are interested in the
implications of the raw measurements. During reconstruction, these raw measurements are
fitted to a statistical model. If the model was purposely designed, the model parameters,
estimated from the raw measurements, can provide better insight into the measurement
implications. For example, the length of the cranium has much more meaning when it is
combined with an anthropological model allowing the volume to imply sex [1].

1



A statistical model also provides a way to determine measurement accuracy. When
the model parameters are estimated during reconstruction, measurement obtained from
the real world will differ from measurements sampled from the reconstruction due to mea-
surement uncertainty. The difference between real-world and reconstructed measurements
are referred to as residuals. Statistical anomalies can be detected from these residuals
indicating the inability of the model to capture a trend, often in the form of unpredictable
measurement uncertainty.

Statistical model-based reconstruction can generate estimates of regions that have not
been measured directly. After model parameters are estimated using the available mea-
surements, estimation methods can be applied to unsampled regions. Statistical modelling
ensures that relationships between measurements are mathematically formulated so that
unsampled measurements can be derived from a model. The mathematical model should
incorporate application specific knowledge, including available measurements of the sub-
ject. For example, current raw wind and pressure measurements can be combined with
a formally developed weather forecasting model to predict future conditions [64] or, for
a spatial example, unsampled regions of a cornea can be estimated from a few sparse
measurements.

1.2 Corneal reconstruction

Recent advances in corneal imaging allow researchers to visualize corneal structures as thin
as 5 µm at a rate of 29 to 47 tomograms per second from patients without paralytics and
without coming in contact with the eye [18, 86]. A tomogram is high resolution images of
the cornea. Although imaging has advanced, existing corneal reconstruction techniques still
require every voxel, a point in a 3D volume, to be directly sampled [79, 106, 114, 134, 148]
in order for the researcher to obtain and use a 3D visualization of the data. Sampling
every voxel requires millions of measurements. Further, eye-motion during imaging makes
it difficult to determine exactly where the imaging system sampled the eye [140].

A statistical corneal model-based reconstruction can allow researchers to quantify and
reduce measurement uncertainty and to estimate corneal structures in unsampled regions
based on known corneal anatomy and physiology. Using historic data statistical corneal
model-based reconstruction can be improved and extended to provide a comprehensive
corneal model. Historic patient data can be registered to the model allowing treatment
and diagnostic measurements to be consistently measured at arbitrary places within the
cornea.

2



While reserving a detailed discussion of corneal anatomy, imaging systems, and recon-
struction limitations for Section 2.2, a high level overview is presented here so that existing
limitations and challenges of corneal reconstruction can be better understood.

Ophthalmological overview

The cornea is the outermost structure in the eye, protecting the interior and refracting
light into the lens where the light is ultimately focused on the retina [125,141]. There are
six distinct layers within the cornea that are responsible for its structure and transparency:
epithelium, Bowman’s layer, stroma, Dua’s layer, Decement’s membrane, and endotheli-
um [34, 50, 81, 111]. Pathologies cause the six layers to change shape, which can decrease
the cornea’s transparency and cause light entering the cornea to no longer project at the
proper location on the retina [106, 133]. Diseases also result in dynamic alterations in the
thickness of some or all of the corneal layers [73,145]. Therefore, precise measurements of
the thicknesses of the corneal layers, as a function of spatial location in the cornea and
over time, can be used as a biomarker for the clinical investigation at the onset and during
stages of development of various corneal diseases [25,26,51,62,73,82].

Optical coherence tomography

Optical coherence tomography (OCT) is an imaging method for non-invasive, high resolu-
tion (1−15 µm), volumetric imaging of biological tissue at depths of one to two millimeters
below the tissue surface [41,56]. Unlike other imaging systems, OCT does not require con-
tact with the cornea, reducing the risk of eye damage and infection. Within the last decade,
Fourier-domain optical coherence tomography (FDOCT) has been established as an impor-
tant clinical diagnostic modality in ophthalmology for non-invasive clinical assessment of
retinal and corneal health [32, 103,122]. FDOCT has the advantage of improved scanning
times since measurements in the depth direction are sampled simultaneously using Fourier
transforms instead of being individually sampled using a moving apparatus [40].

Corneal thickness measurements

Until recently, the axial resolution of OCT technology in the human cornea was limited
to approximately 10 µm to 15 µm, which is insufficient for resolving the thin corneal lay-
ers, such as Bowman’s membrane or the Descemet’s endothelium complex. Consequently,
segmentation algorithms were only capable of measuring the thicker epithelium and stro-
ma layers. For example, Benchmann [8] measures the thickness of these layers, but that
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algorithm can only measure near the apex of the cornea. Fishman developed a method
that requires the user to manually select points on the image allowing measurements be-
tween these points, a time consuming and potentially inconsistent process [43]. Wang et
al.’s algorithm measured the layer thickness for the epithelial layer [138]. Due to the large
refractive index difference, the boundaries of these layers appear to have high contrast
in the OCT images, therefore Wang et al.’s segmentation algorithm was able to evaluate
the thickness of this layer. However, Wang et al.’s [138] method fails to locate the inner
corneal layers, Bowman’s layer, stroma, and Descemet’s membrane, since they have a lower
contrast. An alternative localization method is required to segment these layers.

There is also considerable interest in constructing 3D corneal representations from 2D
segmented images, in which case hundreds of OCT images can be segmented in order
to measure thickness at arbitrary positions within a 3D corneal representation. With-
out model-based reconstruction to estimate corneal structure from unsegmented regions, a
1000× 1000× 512 3D model would require 1000 tomograms to be acquired and segment-
ed. A model-based reconstruction can infer structure from OCT measurements requiring
fewer tomograms and allowing structure estimation in unsampled corneal regions. An au-
tomated algorithm to locate each corneal layer is essential to build a structural model from
corneal layer statistics collected from thousands of tomograms, since a trained technician
can require approximately 15 to 20 minutes to manually segment a single 2D UHROCT
image [35]. Further, the boundaries located using an automated boundary localization
algorithm can be used to estimate corneal structure during reconstruction.

1.3 Thesis scope

The previous sections have motivated the need to apply statistical model-based reconstruc-
tion to corneal imaging. A model-based corneal reconstruction can allow researchers to
take measurements from arbitrary locations without having to sample each point within
the reconstruction. Further, a corneal model can allow OCT error to be quantified using
residuals from the reconstruction process. By applying anatomical corneal model con-
straints to the measurement data, measurements taken from the reconstruction should be
more consistent with corneal anatomy.

To achieve the goal of a corneal reconstruction, detailed background is provided in
Chapter 2, a problem formulation is presented in Chapter 3, and the following high level
objectives are required to create the first model-based corneal reconstruction method that
integrates both anatomy and raw imaging data.
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1. Extend general reconstruction theory
To allow statistical model-based reconstruction to be applied to corneal imaging and
other similar applications, the general reconstruction theory detailed in Section 2.1 is
expanded in Chapter 4. This extension illustrates how measurements collected within
imaging planes can be mapped into a random field and presents a proposed method
allowing a corneal model to be decoupled into anatomy and scattering potential data.
This extension is necessary since this is the first time that this reconstruction theory
is applied to OCT corneal data.

2. Create 2D corneal structure model
As a first step toward understanding and designing a corneal structure model, a s-
tatistical analysis of corneal layer structure is performed through the creation of an
automated corneal layer boundary algorithm in Chapter 5. Then structures from 2D
tomogram data can be analyzed. This model based method is the first to automati-
cally segment five corneal layers from OCT.

3. Create 3D corneal model
Using the 2D statistical model created in Chapter 5 a 3D structural model can be
designed in Section 6.1 and a model relating OCT measurements can be designed
in Section 6.2. Then using background from Subsection 2.2.3, a corneal eye-motion
model can be designed in Section 6.3 to help reduce measurement location error.
This objective is fundamental to corneal reconstruction since the corneal model is
used to estimate unknown measurements and correct noisy data. The anatomical
portion of the model is the first to incorporate corneal layer boundaries as part of
the reconstruction process and can be extended in the future to include additional
structures as desired.

4. Generate synthetic cornea from model
Since 3D corneal OCT samples from healthy human subjects that have been manually
segmented and manually registered in 3D space are not available in datasets, and
synthetic OCT corneal data is not available, synthetic corneas can be generated
using the 3D corneal model to augment the four human subjects that were sampled
in the University of Waterloo, Department of Physics. For each synthetic cornea,
ground truth is randomly generated based on a statistical analysis of OCT data.
Then a synthetic cornea is generated using the ground truth.

5. Reconstruct cornea from tomograms without tomogram motion correction
In Chapter 7, for the first time, a reconstruction combining corneal anatomy and OC-
T imaging data can be obtained using the 3D corneal model and tomograms from
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each human and synthetic subject. This first reconstruction can estimate unsampled
cornea regions and produce tomograms at any cross-section within the reconstructed
cornea using all of the available tomogram data for a particular subject. This re-
construction does not attempt to estimate the pose, position and orientation, of the
tomograms based on eye motion. Consequently, this reconstruction process dose not
distinguish between measurement uncertainty and uncertainty due to eye-motion.

6. Reconstruct cornea from tomograms with tomogram motion correction
Chapter 8 expands the reconstruction process of Objective 5 to explicitly account for
tomogram pose error due to eye-motion during scanning, which is not corrected using
existing corneal reconstruction techniques. Through an optimization formulation,
the pose of each tomogram is iteratively determined through the minimization of
reconstruction error.

7. Extract corneal layer thickness measurements
Ever since the 1990s, researchers have wanted to view the cornea from any arbitrary
perspective [79]. With the proposed reconstruction method, corneal layer thickness
measurements can now be acquired using anatomical constraints and eye-motion
correction in Chapter 7 and Chapter 8. Unlike existing methods, the proposed re-
construction method also utilizes these measurements to quantify the accuracy of the
reconstruction when these measurements are compared with ground truth, obtained
through manual segmentation of human data and through the creation of synthetic
data.

Document organization

This document is divided into five parts. The first part, Chapter 2, provides detailed back-
ground on statistical reconstruction theory and corneal reconstruction. The second part,
Chapter 3, provides a detailed description of the reconstruction challenges and detailed
objectives. The third part, Chapter 4, expands upon existing reconstruction methods in-
troducing additional notation, non-linear model decoupling strategies, and tomogram pose
estimation. The following three chapters, Chapter 5, Chapter 6, and Chapter 7, make up
the fourth part and implement model-based reconstruction for corneal medical imaging.
The fifth part, Chapter 8, reduces reconstruction error using an optimization formulation
to better estimate pose parameters for corneal tomograms.
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Chapter 2

Background

This chapter is designed to introduce notation and concepts that are used throughout this
document. While some sections are fundamental to understanding, many of the sections
are referred to in the following chapters and are designed to provide additional detail or
motivation that may not be necessary to thoroughly understand on the first read through.
It is recommended that the reader have a high level familiarity with the background ma-
terial and to review specific sections and notation as they are referred to throughout the
other chapters.

Chapter organization

This background is divided into two main sections that describe statistical reconstruction
theory and corneal background.

The first section, Section 2.1, describes existing statistical reconstruction theory and
the components involved in creating a reconstruction from measurements and a model of
the subject. Since the entire document is based on this section, a good understanding of
the concepts is recommended.

The second section, Section 2.2, provides background specific to reconstruction applied
to corneal imaging. This section describes the anatomy of the cornea, a corneal imaging
system, phsyological motion that occurs during imaging, existing reconstruction methods,
and existing methods to extract useful measurements. This section provides supporting
background for chapters 5 to 8. On the first read through, it is recommended that the
reader be familiar with how the corneal structure appears after being imaged and that eye
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motion during imaging can create measurement location uncertainty when attempting 3D
reconstructions. Any other detailed background is referenced explicitly in later chapters.

2.1 Statistical reconstruction theory

The statistical model-based reconstruction theory is designed to recreate an arbitrary sub-
ject, such as a cornea, from a series of measurements. During the reconstruction process,
the properties of the arbitrary subject are estimated such that measurements obtained
from the reconstructed subject are consistent with measurements from the real subject.
Subsection 2.1.4 discusses many existing techniques that incorporate probabilistic models
and deterministic models.

The method presented here formulates a subject model explicitly decoupling non-linear
relationships and simplifying the reconstruction process. Additional states and a paramet-
ric non-linear, or linear, decoupling function can separate the underlying subject states into
sets of decoupled states. The decoupling function can then be integrated into the forward
model, Subsection 2.1.3, allowing existing reconstruction processes to estimate the decou-
pled subject states. Chapter 7 applies this decoupling technique to reconstruct a cornea
given a non-linear constrained corneal model. Further, an estimate of the forward model
parameters can be generated through an optimization formulation, minimizing the recon-
struction error, improving the reconstruction process, and providing the imaging operator
with motion corrected parameters.

Section organization

This section presents the theory in recommended implementation order: obtain measure-
ments, understand and model the subject, relate the measurements to the subject model,
reconstruct the subject from the measurements, and improve estimates related to the mea-
surement process using the reconstruction.

2.1.1 Measurements

The first step when attempting to reconstruct an object is to obtain measurements. Since
many reconstruction operators utilize matrix multiplication, lexicographic reordering [42,
47] allows arbitrarily sized measurement fields to be converted into and from measurement
vectors.
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Measurements are denoted using the vector m. It is useful to distinguish subsets of m,
which are denoted as mi,

m =
[
m0 m1 m2 · · · mi · · ·

]T
. (2.1)

Then element k within subset i can be refereded to as mi,k,

mi =
[
mi,0 mi,1 mi,2 · · · mi,k · · ·

]T
. (2.2)

Then the vector m can be written in terms of all of its elements,

m =



m0,0

m0,1

m0,2
...

m1,0

m1,1

m1,2
...

mi,0

mi,1

mi,2
...



∼ N (0, R), (2.3)

and are assumed to be Gaussian distribution with a variance of R.

Using the notation defined for m, an arbitrary 2D matrix containing measurement data,
M , can be rewritten into a vector using lexicographic reordering [42, 47]. Each element
(a, b) in M , Ma,b, can be reordered and stored in m,

m =
[
M0,0 M0,1 M0,2 · · · M1,0 M1,1 M1,2 · · ·

]T
. (2.4)

Vector m can also be written using each row of M , Ma,:,

m =


MT

0,:

MT
1,:

MT
2,:

...

 . (2.5)
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For notational purposes, lexicographical reordering can simply be denoted using M:,

m = M:. (2.6)

Similarly, an arbitrary 3D field, Z can be lexicographically reordered into a vector z,

z = Z: (2.7)

z =



Z0,0,0

Z0,0,1

Z0,0,2
...

Z0,1,0

Z0,1,1

Z0,1,2
...

Z1,0,0

Z1,0,1

Z1,0,2
...

Z1,1,0

Z1,1,1

Z1,1,2
...



. (2.8)

This reordering is generalizable to any multi-dimensional field.

2.1.2 Subject model

A subject model describes the object that is being reconstructed. Without a subject
model, there is nothing to reconstruct. In general this model can contain any number
of parameters, or states, and a mathematical definition used to generate a representation
from the states. For example, a deterministic subject model of a sphere may consist of
parameters representing the radius, ρ, the center, c, and a mathematical definition relating
all of the points, x, on the sphere,(

ρ2 −
(
x0 − c0

)2 −
(
x1 − c1

)2 −
(
x2 − c2

)2
)

= 0. (2.9)
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While there is an infinite number of possible subject models, when designing a subject
model it is important to understand how the model is used and what measurements are
available such that the relationship between the measurements and the model parameters,
or states, can be straightforward.

There are a large number of resources that describe the modelling process for various
applications, such as ecological rodent populations [11], rainfall distribution [20], archeol-
ogy [12], and large number describing general modelling methods [23,38,42].

For the application of corneal imaging, there are several useful tools that merit discus-
sion and definition: Markov random fields and model state decoupling.

A random field is an ordered collection of random variables [27,60,72,112]. The states
for a subject model can be stored as random variables within the field and the relationships
between the states can be defined mathematically in order to complete the model.

Discrete verses continuous

Random fields can be represented either continuously or discretely. This document focuses
on spatially discrete random fields containing continuous states; a discrete number of con-
tinuous states are stored in a multi-dimensional matrix, Z. While a continuous random
field can represent Z with infinite precision, a continuous random field has practical com-
puting limitations when trying to estimate Z. A discrete random field has the advantage
of storing every state in Z for use in calculations. The computational ease of working
with a spatially quantized representation of a continuous field is preferred to working with
a continuous field directly; there are a finite number of states that require estimation.
The decision to move from continuous to discrete random fields reduces computational
complexity at the cost of increased use of computer memory.

For convenience, the matrix Z can be lexicographically reordered into the vector z.
Each element in z represents a state of the subject model. The value of state j, zj is
application specific and, for example, in an image processing context, can contain pixel
intensity values, representing values in a texture [135], satellite imaging data [126], brain
magnetic resonance images [147], and retinal layer boundaries [63].

Markov random field

Using a Markov random field, the subject model can be decoupled so that probability
distribution of one state, zj, is conditional on the states in its neighbourhood, the states
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surrounding zj [42]. The neighbourhood can be extended to any size, but the relationship
must be reciprocated, forcing the shape to be symmetric [42]. If the field is also stationary,
the statistical relationships between neighbouring elements are the same at all locations
within the field [60,72]. Thus once the statistics for a single neighbourhood are determined,
the statistics for the entire field are known and the storage complexity of a problem can
be greatly reduced.

A covariance matrix, P , relating all of the elements of a stationary Markov random
field zj, has a special property that the relationships contained in the first column of
P encompass the relationships of the entire field. These relationships can be compactly
written as the matrix kernel [42], P ,

P: = P:,1. (2.10)

The number of non-zero elements in P represents the order of the Markov random field.

The Markov random field subject model is defined by relationships P and the discrete
states, Z.

Deterministic random field

Unlike a Markov random field based on statistical relationships, a deterministic random
field relates states in terms of constraints. In a linear model, a local constraint matrix, L,
relates each neighbouring element in Z [42]. While a hard constraint matrix would ensure
that

Lz = 0, (2.11)

requiring every local constraint to be satisfied, the soft constraints can be represented as
a minimization criterion [42],

zTLTLz, (2.12)

allowing deviations from the constraint when they conflict with measurements. Of course,
if the real world and ideal model are identical, the minimum of (2.12) occurs when (2.11)
is satisfied. The squared constraints, Q, are represented as a positive-semidefinite matrix
and are defined as

Q = LTL. (2.13)
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Like a stationary Markov random field, a stationary deterministic field can be repre-
sented using a matrix kernel. The matrix L has a corresponding kernel L [42], defined such
that, (

L ∗ Z
)

:
= Lzj. (2.14)

The matrix Q can be represented as a kernel, Q, using a similar relationship. A complete
stationary deterministic field subject model can be represented using L and Z or by Q and
Z.

Second-order deterministic model

The following briefly derives a 3D second-order deterministic model, Q, by convolving
many first-order constraints with each other. The deterministic random field constraint
kernels L0, L1, and L2 are defined as first-order constraints in each respective dimension
as

L0,0,0,0 = −1, L1,0,0,0 = −1, L2,0,0,0 = −1, (2.15)

L0,1,0,0 = 1, L1,0,1,0 = 1, L2,0,0,1 = 1. (2.16)

The second-order constraints are defined by convolution,

L20 = L0 ∗L0 (2.17)

L21 = L1 ∗L1 (2.18)

L22 = L2 ∗L2, (2.19)

and Q is defined as the sum of convolutions,

Q = L20 ∗L20 + L21 ∗L21 + L22 ∗L22. (2.20)

In 3D, the kernel becomes

Q:,:,0 = Q:,:,4 =


0 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0

 (2.21)

Q:,:,1 = Q:,:,3 =


0 0 0 0 0
0 0 0 0 0
0 0 -4 0 0
0 0 0 0 0
0 0 0 0 0

 (2.22)
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and

Q:,:,2 =


0 0 1 0 0
0 0 -4 0 0
1 -4 18 -4 1
0 0 -4 0 0
0 0 1 0 0

 . (2.23)

Model state decoupling

One of the largest challenges of modelling is dealing with coupled states. Coupling refers
to the interaction between states within the random field. When estimating coupled states
there are a number of dependencies, either statistical or deterministic that must be dealt
with. For example, when solving a system of linear equations, Ax = b, the matrix A
is generally dense. Assuming that a unique solution exists, the linear model, A, can be
decoupled through a change of basis, using eigenvalue decomposition [131], A = V ΛV T .
Once decoupled, the solution to the linear system is straightforward since V −1 = V T and
Λ is a diagonal matrix, x = A−1b = V Λ−1V T b. In this example, the states can also be
solved as a sequentially coupled system [42] through Gauss-Jordan elimination [131], once
one state is known, the next state can be determined until all states are determined.

Although linear deterministic systems are well understood, decoupling linear models,
and especially nonlinear stochastic models, are not trivial in general. States can be sequen-
tially, acyclic, cyclic, or multilayer coupled [42]. A sequential coupling is when each state,
expect for an initial state, is either stochastically or deterministically dependent on the
previous state. This form of coupling is fairly straightforward because each state is only
dependent on one other state. An acyclic coupling occurs when each state is dependent
on one or more previous states. The complexity increases as the number of dependencies
increase since one state may have a probability conditioned on every other state. Acyclic
coupling can be causal or anti-causal [42].

Cyclic coupling extends sequential coupling by allowing future states to be dependent
on past states and past states to be dependent on future states [42]. Cyclic coupling is
non-causal. Estimating parameters for cyclic coupling models is challenging since solving
this type of problem can involve estimating one state, propagating its changes, and then
estimating another state. Unless the states reach equilibrium, these changes can propagate
indefinitely. Unlike cyclic coupling, multilayer coupling allows any state to be dependent
on any other state and is usually defined through a hierarchy of dependencies. Trying to
estimate a state that is dependent on every other state, and knowing that simply modifying
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the state value can propagate to any other state, which in turn propagates back cyclically,
makes solving multilayer coupling problems the most challenging [42].

Depending on the type of coupling, a model might be decoupled by modifying the basis
or through restructuring their dependence on scale, time, or hierarchical organization [42].
The structure of each modelling application dictates the correct decoupling approach. As-
suming that a decoupling function, ` exists, if Z is coupled, ` can separate z into decoupled
states z1, z2, · · · , z1

z2
...

 = `
(
z
)
. (2.24)

For corneal reconstruction, decoupling is further investigated in Section 4.2 and Chap-
ter 6 to find functions of ` that can decouple a corneal model.

2.1.3 Forward model

This section describes general components of the forward model. The forward model should
account for the subject structure, the subject behaviour, and subject imaging techniques.
The application specific forward model requires intimate understanding of the subject mat-
ter and the imaging process; often the forward model is iteratively constructed, starting
with a simple model and increasing the complexity at each iteration as additional subject
knowledge is introduced into the model. However, once a forward model is created, the
relationship between the subject and obtained data can be exploited to correct for mea-
surement errors in the data, infer missing measurements, and create synthetic models using
the knowledge gained of the subject structure and behaviour

The forward model, f , is a function that relates the measurements, m, to the state
variables, z,

m = f
(
z
)
. (2.25)

In general, a forward model is an application specific arbitrary non-linear function. How-
ever, if the subject model can be designed with the goal of simplifying the measurement
and state relationship, the forward model can be simplified. Ideally, if there is a direct
correspondence from m to z, the forward model can be simplified and reduced to a sparse
correspondence matrix, C,

m = Cz. (2.26)
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2.1.4 Reconstruction

Given a set of measurements, m and a forward model, f , reconstruction determines the
most likely set of states, Z, that minimize, Z̃, the difference between the true states, Z,
and the estimated states, Ẑ,

Z̃ = Z − Ẑ. (2.27)

Since the true value of Z is rarely known, the reconstruction process can minimize the
residual error, m̃, the difference between m and the measurement value corresponding to
Ẑ, m̂,

m̂ = f
(
Ẑ
)

(2.28)

m̃ = m− m̂. (2.29)

It is also difficult to calculate Z directly from f and m, since an explicit inverse model,
f−1, may not exist, may be highly sensitive to noise, or otherwise difficult to calculate.

Estimators

The Bayesian Estimator (BE) [42, 123] generates Ẑ, an estimate of an unknown field Z
that minimizes the expectation of some cost function C

(
Z, Ẑ

)
given measurements m,

Ẑ , argẐ minE
[
C
(
Z, Ẑ

)∣∣m]. (2.30)

When C
(
Z, Ẑ

)
is the quadratic cost function,

C
(
Z, Ẑ

)
,
(
Z − Ẑ

)T (
Z − Ẑ

)
, (2.31)

(2.30) becomes the Bayesian Least Squares Estimator (BLSE),

Ẑ , argẐ minE
[(
Z − Ẑ

)T (
Z − Ẑ

)∣∣m]. (2.32)

The Bayesian linear least-squares estimation [42, 123], makes the assumption that the
relationship between Z and m is linear, further simplifying (2.32),

ẑ =
(
CTR−1C + P−1

)
CTR−1 (m− Cµz) + µz. (2.33)
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2.2 Corneal background

This section provides background into corneal imaging by first introducing corneal anato-
my and then by understanding the ultra-high resolution optical coherence tomography
UHROCT imaging system. Since the reconstruction method requires data obtained from
UHROCT, it is important to be familiar with the advantages and limitations of the imag-
ing process; for instance, the benefits of a 3D reconstruction over a 2D reconstruction are
robustness through the understanding of imaging noise. To build a structural model of
the cornea and to segment important corneal regions, the anatomy of the human cornea
must also be understood; the anatomy provides the basis for a mathematical constraints.
Further, understanding physiology, in particular eye-motion during imaging, allows recon-
struction to account for measurement location uncertainty during the imaging process.
It is possible for the eye to slowly move during imaging causing the location of the last
measurements to differ from their expected location in reference to the first measurements.
Therefore the following subsections provide necessary background to justify modelling de-
cisions made in the modelling and reconstruction sections that follow.

2.2.1 Anatomy

To facilitate sight, the human eye consists of several components integrated into a visual
system, as illustrated in Fig. 2.1. The light enters the eye through the cornea and passes
into the aqueous, a clear fluid which maintains a constant pressure within the eye. Then
the iris changes the size of the pupil to regulate the amount of light that passes from
the aqueous and into the lens. The lens can change shape to allow the eye to focus on
both near and far objects. Once through the lens, the focused light passes through the
vitreous, which fills the centre of the eye and primarily consists of water, and lands on the
retina. The retina consists of photoreceptors that are stimulated by the light. The optical
nerve is responsible for sending the photoreceptors signals to the brain for processing and
interpretation [125].

The cornea is the transparent tissue covering the front surface of the eye serving mul-
tiple purposes: it provides nearly 70% of the eye’s refractive power [94], protects the eye
from foreign matter [93], can act as a minimally invasive pathway for therapeutic drug
delivery [70] to the lens and retina, and protects the inner eye from over-exposure to sun-
light [7]. The cornea is the first structure that light passes through when entering the eye
and as such, defects in the corneal structure can prevent the incoming light from correct-
ly interacting with the retina [55, 133, 141]. A reconstruction of the cornea can play an
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Table 2.1: Distance measurements used to create Fig. 2.1 are referenced.

Distance Measurements in the Human Eye
Measurement Distance [mm]
fovea to lens 17 [15,118]

lens major axis 10 [45]
lens minor axis 4 [45]

anterior pole to retinal Bruch’s membrane 24 [83]
anterior pole to center of rotation 13.5 [83]

corneal posterior curvature 6.5 [142]
corneal anterior curvature 7.8 [142]

important role in by allowing researchers to better identify these structural defects. The
following discussion focuses on the corneal structure, the light’s optical flow through the
cornea, and discussion of disease and disorder associated with abnormal corneal structure.

Structure

Although the cornea consists mostly of water and protein, there are six distinct layers
that can affect the path of light through the cornea, the epithelium, Bowman’s layer, the
stroma, Dua’s membrane, Descemet’s membrane, and the endothelium layer, illustrated in
the rightmost panel of Fig. 2.2. Each distinct corneal layer is composed of different cells
and collagen fibers that are stacked from the outer to the inner surface. The discovery of
Dua’s membrane was only published in September, 2013, and has yet to be confirmed by
other researchers [34].

Corneal layers

The thickness for each layer is presented in Table 2.2. The epithelium layer consists of
six layers of cells, the outermost cells constantly replaced by quickly regenerated interior
cells [130]. The epithelium has the highest refractive index in the cornea and separates air
from the inner layers [14]. Bowman’s layer consists of tough collagen fibers that protect the
stroma [6]. The stroma, the largest corneal layer, consists of collagen fibers and keratocytes.
While the collagen fibers provide structure for the stroma, the keratocytes repair damage
to the stroma [145]. The Descemet’s membrane consists of collagen fibers that are less
rigid than those found in the stroma and Bowman’s layer [6]. The Descemet’s membrane
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(a)

(b)

Figure 2.1: The human eye consists of many components that affect the passage of light.
The major components of the eye are labelled above (a), the cornea, the iris, the pupil, the
lens, and the retina. The anterior pole and fovea are also labelled for reference. Additional
distances are labelled in (b) illustrate the anterior and posterior corneal curvature near
the anterior pole and the distances from the anterior pole and fovea to the eye’s center of
rotation. All of the distances used to construct this diagram are referenced in Table 2.1.
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Figure 2.2: A cornea’s structure consists of six layers: the epithelium, Bowman’s mem-
brane, stroma, Dua’s layer, Descemet’s membrane, and the endothelium.

allows fluid to pass into the stroma for hydration and prevents stroma swelling, evacuating
fluid using “ionic pumps” [95]. The collagen in the Descemet’s membrane is produced
by the hexagonally shaped endothelium cells [111]. Unlike the other corneal layers, the
endothelium cells do not regenerate; instead when endothelium cells die, the surrounding
living cells stretch to cover any gaps [130].

Transparency

A transparent and functional cornea is highly dependent on the shape and structure of the
layers. Even though the stroma is made up of non-transparent cells, representing about 90%
of the cornea thickness [69], there are two prominent hypotheses explaining how the cornea
maintains overall transparency. Maurice [81] describes transparency through destructive
interference relating to the cellular lattice structure of the cornea while Goldman [50]
expands on Maurice showing that the spacing of collagen fibers must be less than 200nm
for transparency to occur. Both theories indicate the importance of structure required for
a transparent cornea.
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Table 2.2: The mean central thickness in µm of each corneal layer for an adult is presented
below. UHROCT can resolve 5 µm in the axial direction, making it difficult to resolve the
endothelium layer boundaries.

Layer Thickness (µm)
epithelium 50 - 59.1 [111,117]
Bowman’s layer 8 - 21.2 [111,117]
stroma 424 - 500 [108,111]
Dua’s layer 6.3 - 15.8 [34]
Descemet’s membrane 7.8 - 14.0 [34, 111]
endothelium 4 - 6 [106,111]

Disease and disorder

A healthy cornea is designed to focus light through the iris and onto the lens. However,
corneal disease and disorder can interfere by changing the shape and transparency of the
cornea. Many of these diseases can be screened, treated, or avoided through the use of
optical coherence tomography.

Keratitis is an inflammation of the cornea caused by bacterial, fungal, viral, or other
foreign organisms [77]. The severity of inflammation may be superficial, only causing
the epithelium to swell or may be more severe causing swelling throughout the entire
cornea [107]. Corneal thickness measurements were historically used to study the amount
of inflammation induced by keratitis [25] and, more recently, optical coherence tomography
corneal thickness measurements were utilized to study reduction of inflammation due to
treatment of bacterial keratitis [62].

Corneal abrasion is a loss of the epithelium layer, often in the form of a scratch, re-
sulting from particulates, chemical burns, or a foreign object coming into contact with the
cornea [139]. Since deep scratches can result in infection [139], there is great incentive
to use non-contact imaging, such as optical coherence tomography, to diagnose and treat
other diseases to avoid the risk of corneal abrasion [102].

While glaucoma is a disease that affects the optical nerve, not the cornea, glaucoma
increases intraocular eye pressure [51]. Measuring corneal layer thickness provides a way to
screen patients for risk; patients with thin corneal thickness are more sensitive to pressure
than patients with thicker corneal layers [26, 51, 82]. An automated method to measure
corneal layer thickness can provide medical personal with fast and accurate feedback allow-
ing a technician to verify the procedure instead of manually measuring the cornea. Further,
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since patients with thinner corneal thickness have higher risk of glaucoma independent of
intraocular eye pressure and age, recent research is attempting to find the genes responsi-
ble for glaucoma by identifying genes responsible for thinner corneal layer thickness [137].
This research area can benefit from an automated layer measurements.

Corneal hypoxia occurs when the cornea is deprived of oxygen and is associated with a
disorder called neovascularisation, causing blood vessels to grow into the cornea [109,145].
Since hypoxia is common in patients wearing contact lenses [145] lenses were designed to
reduce the effect of hypoxia and discomfort on patients [132]. Hypoxia studies relay on
corneal layer thickness measurements to determine how much corneal swelling occurs due
to contact lens wear [10].

Keratoconus is a disorder in which the shape of the cornea resembles a cone [124].
Patients suffering from keratoconus complain of blurred vision and often require contact
lenses [145]. The use of optical coherence tomography has also been used to diagnose
moderate and severe keratoconus with the same accuracy as previous diagnostic tools,
but has a significant advantage of being able to detect early onsets of the disorder due
to the ability of optical coherence tomography to image corneal thickness [73]. Having a
3D reconstruction of the cornea, would allow keratoconus measurements to be obtained
from the same location from the reconstruction reducing measurement location error due
to eye-motion during scanning.

Fuchs’ dystrophy causes the Descemet’s membrane layer to thicken gradually over time
causing blurred morning vision that worsens with age [92]. The increased resolution avail-
able from ultra-high resolution optical coherence tomography allows early screening of
Fuchs’ dystrophy since the thickness of the Descemet’s membrane can be twice as thick in
patients with the disease than healthy patients [121].

Measurements

Corneal packymetry is the methodology of measuring corneal layer thickness. From the
discussion of corneal disorders and diseases corneal thickness measurements provide an
important role in diagnostics and treatment. The accuracy of these measurements rely
on consistently measuring the same location within the cornea. Since obtaining a 2D
tomogram at a reproducible location within the cornea is difficult due to eye-motion [97],
a 3D reconstruction can help determine the location of the tomogram allowing metrics to
be measured from more consistent positions.

Layer thickness is measured as the distance between each layer boundary, Fig. 2.3.
Corneal thickness is the distance between each corneal layer boundary measured in the
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Figure 2.3: Layer thickness is measured as the distance between layer boundaries along
the corneal axial direction.

axial direction [68,74]. It is also difficult to know exactly where in the cornea the tomogram
is imaged; for instance it is difficult to know how far the imaging plane is placed relative to
the apex of the cornea. Since the apex can be identified as the area in the cornea with high
reflectivity, which correspond to imaging artifacts in the tomogram, Fig. 2.4. As a result,
researchers rely on repeated measurements to estimate the central corneal thickness, usually
in reference to the apex, in order to obtain reproducible measurements [91]; measuring layer
thickness in a location other than the apex is unrepeatable, without registration. Once a
3D model is created for a cornea, corneal layer measurements can be consistently obtained
at any position within the model.

Li applied confocal microscopy through focusing to measure the central layer thickness
of the epithelium, Bowman’s layer, and total corneal thickness [71]. Although the approach
is limited to manually measuring the central thickness, it was the first technique to obtain
measurements for three of the five corneal layers. In more recent work, Li was able to
automatically measure the central corneal thickness using optical coherence tomography
and the average of the prominent epithelium and endothelium boundary layer locations [74].
Unfortunately, this method is limited to only the central corneal thickness.
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(a) reproduced from Baikoff [4]

(b) (c)

Figure 2.4: The appearance of the cornea and corneal layer boundaries within OCT tomo-
grams is presented to illustrate the presence of corneal features depending on scale. (a) A
view at this scale contains features, such as the iris structure, that can be useful for re-
construction. (b) As the imaging magnification increases, there are few features remaining
that can be used for registration. The corneal structure remains, but has similar appear-
ance from many different perspectives. (c) As the imaging system nears the anterior pole,
or corneal apex, high levels of scatter potential, indicated by pixels with low intensitiy
(dark) appear. (a) is reproduced from Baikoff [4] and (b) and (c) are obtained from the
University of Waterloo, Department of Physics.
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Corneal reconstruction motivation

An accurate reconstruction of the cornea can assist in the study of corneal deformation.
Diseases and disorders specific to the cornea may be detected or studied using a 3D model
obtained from OCT images. By comparing current corneal layer thickness measurements
to previously obtained values in the same corneal region, the progression of the disease or
treatment can be measured. Further reconstruction can reduce eye-motion during imaging
that would otherwise require specialized sampling schemes, such as repeated sampling of
the same volume [97].

2.2.2 Ultra-high resolution optical coherence tomography

From the discussion of corneal diseases and disorders in Subsection 2.2.1 the usage of
optical coherence tomography (OCT), an imaging technology, in diagnostics, treatment,
and research is prominent [10,62,73,102,121,137]. OCT allows non-contact in vivo corneal
imaging, which reduces risk of corneal abrasion and infection. Further, the evolution of
corneal ultra-high resolution optical coherence tomography (UHROCT) allowed the cornea
to be imaged with 6 µm axial resolution in 2005 [18] and 3.4 µm axial resolution in 2007 [19].
The data used throughout this study has 3.2 µm axial by 10 µm lateral resolution [57]. This
resolution is a major improvement over regular OCT as it allows five individual corneal
layers to be resolved [19], the epithelium, Bowman’s layer, stroma, Descemet’s membrane,
and endothelium.

Appearance of cornea within UHROCT

Fig. 2.4 (a) shows an example of OCT imaging and Fig. 2.4 (b) and Fig. 2.4 (c) show the
magnification capabilities of UHROCT imaging. The high levels of scattering potential
in Fig. 2.4 (c) are one of the few reference points useful for reconstruction. The lack of
prominent differences between Fig. 2.4 (b) and Fig. 2.4 (c) make it difficult to determine
precisely where (b) is located relative to (c). Fig. 2.5 shows the location of each visible
corneal layer within the UHROCT tomogram. Dua’s layer is not labelled since expert data
for an UHROCT tomogram is not yet available.

An UHROCT for a human cornea is represented in Fig. 2.5. Notice that the outer layer
boundaries are clearly distinguishable from the surrounding fluid, the inner layers are more
difficult to visualize because they have a low refractive index. Since inner layer boundaries
have only suitable visual contrast with the presence of noisy cellular scattering potential,
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Figure 2.5: Five of the six corneal layers are visible and labelled in the UHROCT tomogram
above. This tomogram has 3.2 µm axial resolution and 10 µm lateral resolution. The
corneal layer dimensions are to scale.
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locating inner layer boundaries is a challenge. Fig. 2.5 labels and highlights each visible
corneal layer. Notice that while the outer corneal layers are clearly visible and can even be
located with basic image processing filters [68], the inner corneal layers are much harder
to segment.

UHROCT sampling time

It is important to profile the length of time required to capture a tomogram so that the
amount of patient movement can be statistically modelled. When the UHROCT system
samples a human cornea, a tomogram is constructed from a series of A-scans that sample
the cornea in the axial direction. Each A-scan is represented as a vector containing inten-
sities calculated from a narrow conical beam. A single image, a tomogram, produced from
UHROCT imaging is referred to as a B-scan. The B-scan is a 2D matrix containing pixel
intensities that are populated by two or more A-scans. Common B-scan format consists
of 500 to 1, 000 A-scans. Typical UHROCT imaging speeds can capture 29, 000 to 47, 000
A-scans per second [18,86]. A B-scan consisting of 1000 A-scans would require about 21 ms
to 34 ms to generate a single tomogram, allowing 29 to 47 tomograms to be imaged per
second.

OCT notation

This notation is essential since it is used throughout this document. A tomogram is a
matrix, often stored as a bitmap, containing measurements of scattering potential [40],
also referred to as scattering coefficient [144], and in some OCT imaging systems, equiv-
alent to backscatter [116]. During an imaging session corneal thickness measurements are
determined from a set of tomograms, T , for a single patient. The index variable i is used
to denote an individual tomogram, Ti, from the set. Since bitamps are commonly used to
store Ti, let ηs,0,i and ηs,1,i represent the number of pixels in the horizontal and vertical
direction, respectively, within tomogram i. Since the dimensions of each pixel are depen-
dent on the imaging system, let γs,0,i and γs,1,i denote the width and height, respectively,
of Ti in µm. Using an UHROCT system with 3.2 µm axial and 10 µm lateral resolution, a
tomogram with dimensions (ηs,0,i, ηs,1,i) = (1000 pixels, 256 pixels) would sample a corneal
cross-section with a size of (γs,0,i, γs,1,i) = (10, 000 µm, 819.2 µm). For future notational
convince, let

γs,i =
[
γs,0,i γs,1,i

]T
. (2.34)
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A position in a tomogram can be denoted using the vector s, which contains the position
along the horizontal (s0) and vertical (s1) axis of a tomogram,

s =
[
s0 s1

]T
, (2.35)

as illustrated in Fig. 2.6. Thus, an arbitrary position within Ti can be denoted as si,

si =
[
s0,i s1,i

]T
, (2.36)

and the position of the aribtrary pixel k, is denoted as si,k,

si,k =
[
s0,i,k s1,i,k

]T
. (2.37)

OCT principles

An UHROCT sampling model, that will only be used in this subsection, can be defined
based on the physics of OCT. This discussion is included to supplement understanding
of corneal imaging and is not necessary to understand other sections of this document.
Further, the work by Fercher published in 2003 is an excellent resource if additional details
are desired [40]. Since the data for this document was collected using low-coherence inter-
ferometry (LCI) and Fourier-domain OCT (FDOCT), the discussion is limited to FDOCT
implemented with LCI. See Fercher [40] for a discussion of other OCT system variants. All
of the following notation is used exclusively for the remainder of this section.

All FDOCT require a coherent light source, Fig. 2.7 (a). For optimal resolution, the
light source should have low temporal coherence, giving the system greater depth resolu-
tion, and high spatial coherence, giving the system greater lateral resolution [40]. Let A(i)

represent the amplitude of the coherent light source, φ(t) represent the phase at time t,
λ represent the wavelength, ω represents the angular frequency, k(i) represent the wave
vector, and k represent the wave number defined as

k =| k(i) |= 2π

λ
. (2.38)

Then the wave, V (i) can be described in terms of time t and position r,

V (i)(r,k(i), t) = A(i) exp
(
jk(i) · r− jωt

)
, (2.39)

by definition [40,136], where j =
√
−1.
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Figure 2.6: Ti(s) is a point within the tomogram Ti. The physical width γs,0,i and height
γs,1,i correspond to ηs,0,i and ηs,1,i pixels in the horizontal and vertical directions respec-
tively.
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Figure 2.7: A Fourier-domain optical coherence tomography (FDOCT) system contains
(a) a coherence source that splits at (d) the fiber coupler and routed to (b) the sample and
to the reference mirror. The reference beam reflects off of the reference mirror and returns
to (e) before entering (d). The sample at (b) causes backscattering that returns alone the
probe beam path to (c) before entering (d). The reference and probe beams are combined
at (d) creating interference patterns and are routed to (f) the beam detector that measures
the spectrum and sends the samples to a PC.

The scattering potential of the sample, Fs(r, k), at position r for the specified k, il-
lustrated in Fig. 2.7 (b), is defined in terms of the sample’s complex refractive index
distribution, m, as

Fs(r, k) = k2
(
m(r, k)2 − 1

)
. (2.40)

The scattered wave, Vs at distance d from the sample, resulting from V (i)(r,k(i), t) can
be derived using the scattering vector k(s) and K, the difference between of k(i) from k(s)

and the far field approximation to determine the amplitude of AS, the scattered sampled
wave [40],

Vs(r,K, t) = AS exp
(
jk(s) · r− jωt

)
(2.41)

AS(r,K, t) ≈ A(i)

4πd

∫
V ol(r′)

Fs(r
′) · exp(−jK · r′)d3r′. (2.42)

The scattering vector k(s) is the wave vector from the sample to the detector. Using
a narrow beam, measuring backscatter, and assuming that Fs is independent in lateral
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directions simplifies (2.41) and (2.42). The amplitude aS and phase φS of the backscatter
wave at location Fig. 2.7 (d) allows the wave to be written as [40]

VS(z,K, t) = AS(2k) exp(−jkz − jωt) (2.43)

AS(2k) ≈ as(2k) exp
(
jφS(2k)

)
. (2.44)

Since the sample scattering wave, AS, can be shown to be proportional to the inverse
Fourier transform of the scattering potential using (2.42) and by fixing the value of d [40],

AS(2k) ∝ F−1
(
Fs(z)

)
(2.45)

Fs(z) ∝ F
(
as(2k) exp

(
jφS(2k)

))
. (2.46)

For the particular FDOCT LCI imaging system used to collect data for this application,
the scattering potential, Fs(z), is proportional to the backscattering sample wave, AS(2k).

Let | γSR | represent the degree of coherence between AS and R, δSR represent the phase
delay, IS represent the spectral intensity of AS, IR represent the spectral intensity of R, φS
represent the phase angle of AS, and φR represent the phase angle of R. The interferogram,
is created at Fig. 2.7 (d) where a reference beam, R, Fig. 2.7 (e), is combined with AS,
creating a function of the cross-correlation between AS and R, GSR [40],

GSR(2k) = 2
(
IS(2k)IR(2k)

).5 | γSR | <(exp
(
j
(
φS(2k)− φR(2k)

)))
. (2.47)

The spectral interferogram, I(2k) at the beam detector, Fig. 2.7 (f) is the result of com-
bining AS, R, and GSR [40],

ISR(2k) = IS(2k) + IR(2k) +GSR(2k). (2.48)

Using these relationships, Fercher shows that ISR(2k) can be found in terms of the zR, the
distance of the reference mirror to the beam splitter [40],

ISR(2k) = | F̂s(2k) |
2

+R + 2
√
R | F̂s(2k) | cos(2kzR). (2.49)

The distance zR should be twice the desired sampling distance to avoid sample overlap [40].

The constant terms | F̂s(2k) |
2

and R can be removed from ISR(2k) by taking two mea-
surements of the same location, ensuring that the second measurement is out of phase
with the first, and subtracting the results [115], or by simply removing the DC gain from
a spectrometer,

ISR(2k) = 2
√
R | F̂s(2k) | cos(2kzR). (2.50)

A measurement of Fs(2k) can be determined from measurements and (2.50).
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Table 2.3: The corneal eye motion resulting from tremors, drifts, and microsaccades is
summarized. Unlike drifts and microsaccades, the tremors are aperiodic and wave-like,
negating the tremor effect within each A-scan every 11ms, approximately. The microsac-
cades have a larger range since specific patient and laboratory conditions can affect the
effect of microsaccades, see Martinez et al [78] for details.

units epithelium endothelium
tremor (amplitude) µm 5.14 4.92

drift µm
s

96.6 92.5
microsaccades (trained) µm

s
707− 3299 676− 3157

microsaccades (typical) µm
s

908− 4240 869− 4060
microsaccades (max) µm

s
6600− 11500 6310− 11000

2.2.3 Eye motion

It is important to compensate for the eye motion while the human subjects are staring on
a light in the UHROCT scanner during the UHROCT sampling process. This subsection
describes three types of eye motion that occur while the patient is fixating at an object.
Section 6.3 develops an eye motion model based on the contents of this subsection. Table 2.3
summarizes the range of motion that is detailed in the following discussion.

When focusing on an object, first the eye suddenly moves at a very high speed and then
enters a relatively stable state for about 200 to 600ms [58] while the eye focuses on the tar-
get. While studying the effects of neural and visual fixation, Martinez-Conde details three
primary eye-movements that occur during fixation, tremor, drifts and microsaccades [78].
In humans, the wavelike tremors occur at approximately 90Hz with an amplitude of ap-
proximately 1 − 4 µm, the diameter of a cone in the fovia [16, 105, 146]. This amplitude
measured at the retina can be converted into corneal amplitude at the anterior pole using
the rotational center of the eye about a point approximately 13.5 mmbehind the anterior
pole (cornea) and the distance of 24 mmbetween the anterior pole and Bruch’s membrane
(retina) for a healthy adult [83],

rretina = 24− 13.5 = 10.5 mm (2.51)

βretina =
1 µm

10500 µm
= 9.52× 10−5rad (2.52)

βcornia = βretina = 9.52× 10−5rad (2.53)

rcornia = 13.5 mm (2.54)

dcornia = rcorniaβcornia = 1.29 µm, (2.55)
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resulting in a distance between 1.29 and 5.14 µm at outer corneal epithelium layer bound-
ary. Similarly using the same derivation assuming an average central corneal thickness
of 581 µm [8], the amplitude of the tremor is approximately 1.23 to 4.92 µm. Since the
resolution of a corneal UHROCT of approximately 3 × 10 µm (axial × lateral) [10] the
resulting tremor motion will account for any measurement to be offset by no more than
2 pixels in the axial direction and no more than 0.5 pixels in the lateral direction at any
time.

A drift is a slow trending motion of the eye that, for the duration of the UHROCT
sampling procedure, last about 0.2− 1 seconds [110] with an average speed of 24.6min per
second [128] measured at the retina. This motion can be converted into corneal motion,

ωretina = 24.6
min

s
(2.56)

ωcornia = ωretina = 24.6
min

s
= 7.16× 10−3 rad

s
(2.57)

rcornia = 13.5 mm (2.58)

scornia = rcorniaωcornia = 96.6
µm

s
. (2.59)

The drift motion causes the epithelium of the cornea to move at approximately 96.6 µm
per second. Using the resolution of a corneal UHROCT on average the eye can drift in
the lateral direction by 9.6 pixels per second near the epithelium layer and, using the same
derivation assuming an average central corneal thickness of 581 µm [8], a drift of 92.5 µm
per second or 9.2 pixels per second near the endothelium layer.

Although the role of microsaccades is contested [78], this motion is the most significant
of the three eye motions and takes the form of short and quick eye motion. While it is
possible to train patients to suppress microsaccades under some circumstances, a typical
human experiences microsaccades at a frequency between 0.23 Hz to 2.5 Hz [78] with an
average speed of 3 to 14 deg per second [31, 146, 149]. Again, this retinal measurement
is converted into a corneal measurement resulting in 707 to 3299 µm per second and
676 to 3157 µm per second at the epithelium and endothelium boundaries respectively.
Although microsaccades occur less frequently than drifts, when microsaccades occur they
can account for a retinal speed of 706 to 3300 µm per second [87], or 908 to 4240 µm
per second and 869 to 4060 µm per second at the epithelium and endothelium boundaries
respectively. Regardless that some theories suggest that microsaccades correct for drift
and that microsaccades return the subject of focus to the center of view [78], a max speed
of 28 to 49 deg per second, or measured at the cornea, 6600 to 11500 µm per second, or
6310 to 11000 µm per second at the epithelium and endothelium boundaries respectively.
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Throughout the entire tomogram, a trained patient results in about 71 to 330 pixels per
second and an average patient results in 91 to 424 pixels per second in the lateral direction.
The axial motion is 236 to 1100 pixels per second and 303 to 1410 pixels per second for a
trained and average patient, respectively.

The maximum microsaccade motion is significant, 1155 pixels per second laterally and
over 3800 in the axial direction. It is assumed that the UHROCT operator discards tomo-
grams containing such large obvious motions, when a corneal layer boundary is visible at
the start of sampling but not at the completion of sampling, for example. However, the
compounded maximum microsaccade motion may be less obvious after several sequential
scans.

Table 2.3 summarizes the eye motion resulting at the outer corneal epithelium and
endothelium layer boundaries. The drift and microsaccade motion is illustrated in Fig. 2.8,
reproduced from Pritchard [100]. Fig. 6.22 illustrates how the human eye rotates about
all three axes [9]. The rotational eye movement causes each point on the corneal layer
boundary to translate in all three directions with respect to the UHROCT imaging system.

2.2.4 Reconstruction methods

Corneal reconstruction is the process of converting sets of corneal data into a 3D model.
Unfortunately existing reconstruction techniques attempt to align sequential sets of images
by pixel correspondence and then proceed to stack the images without any regard for eye-
motion during scanning and little regard to estimating unsampled corneal regions. In
corneal literature, reconstruction implies reshaping corneal measurements into a 3D data
structure requiring each voxels in the volume to be measured directly.

Corneal reconstruction

In 1990, Masters constructed an optical dataset of a rabbit cornea using confocal mi-
croscopy and sampled every voxel of a 256 × 256 × 134 volume with 3 µm resolution in
each dimension [79]. The first 3D reconstruction and visualization of a rabbit cornea was
created directly from the confocal microscopy data. The authors created the reconstruc-
tion to allow other researchers to view their dataset from multiple perspectives and the
authors were able to take arbitrary cross-sections of their data within the volume. This
was a major feat in 1990. Like Masters, the purpose of reconstruction in this document
is also to allow arbitrary cross-sections and views of corneal data. However instead of
relying on measurements for each voxel, the definition of reconstruction throughout this
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Figure 2.8: The drift and microsaccade motion are illustrated on the retina. The diameter
of the fovea above is 50 µm. The jagged curves results from the drift while the lines
represent the microsaccade motion. This figure is reproduced from Pritchard [100].
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Figure 2.9: The human eye rotates on all three axes [9] about a point 13.5 mm [83] behind
the anterior pole. The curvature of the cornea with respect to the curvature of the eye
is not to scale and exaggerated to illustrate that eye rotations cause the distance of the
UHROCT imaging system to the cornea, and all the corneal layers, to vary.
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document also utilizes corneal anatomy and physiology to estimate missing data, reducing
noisy measurements, and accommodating movement during the imaging process.

In 2002, Vabre created a 3D reconstruction of a tadpole using an optical coherence
tomography system [134]. The process required 300 tomograms to sample a volume that
was 360 µm× 360 µm× 200 µm achieving an axial resolution of 1 µm. Like Masters, this
process was reconstructed by populating all of the voxels with tomogram data. Although
the authors wrote their own visualization software, there was no use of a corneal model or
attempt to reduce measurement error during reconstruction. The relationship between Z
and m is one-to-one.

In 2007, Scarpa presents a method to reconstruct a human cornea from confocal mi-
croscope imaging [114] with the assumption that each corneal image can be translated in
the x-y plane. A region of interest is identified in each sequential set of images, then a
normalized correlation method [28] is applied to the region of interest to find correspon-
dences between the image frames. The images in the stack are translated to align the
correspondences in consecutive images. The process, however, does not use corneal an-
taomy for reference, and does not account for eye-motion, only shifts in the x-y plane.
The method also constrains the sampling process, requiring densely sampled parallel sets
of medical images to be obtained. The process assumes that each layer is separated by a
single pixel, and fills in missing layers using linear interpolation between the two nearest
images. Their reconstruction process does not take into account measurement noise and
without a corneal model, does not provide any justification to their interpolation scheme.

In 2009, Zhivov presented a reconstruction method from a confocal microscope using
a software package AMIRA 3.1 [148]. Like Scarpa, the image stacks were aligned. Zhivov
used a semi-automatic least-square algorithm to align the stack of images before reconstruc-
tion. The volumetric renderings of the 3D cornea using AMIRA have a nice appearance,
but the authors should be cautious using such reconstructions. There is no discussion of
how missing measurements are determined, no discussion of any underlying model used
for reconstruction, and no discussion of reconstruction error. It is very likely that the re-
construction error is in fact zero indicating that the reconstruction corresponds exactly to
perfect measurements and that eye motion during imaging was not considered. A proper
reconstruction should have residual error because measurements are imprecise and the lack
of discussion from Zhivov indicates that measurement error has been overshadowed by nice
visualizations.

AMIRA is a popular image stacking tool used to generate 3D views of the cornea.
The software provides a suit of tools that can be used to align a stack of OCT images
by comparing the direct image intensity and any salient features contained in sequen-
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tial images [106, 129]. The software also allows the users to manually align the images.
Unfortunately, the package does not use the structural properties of the cornea in the
reconstruction process, preventing a suitable 3D reconstruction, and the generated 3D
reconstructions failed to yield the accuracy necessary for corneal layer thickness research.

While pixel intensity is a prominent feature in corneal images, it is not unique and
should not be used in isolation without other techniques.

Non-corneal reconstruction

There are several examples of reconstruction techniques in other medical fields that de-
velop models to account for measurement uncertainty and to estimate unsampled regions
of the subject. Some of these methods also utilize unique and prominent features allow-
ing the medical images to be registered. Depending on the scale of the object, different
reconstruction algorithms are applied to the data collected from the imaging process.

Feng and Ip [39] performed surface reconstruction on brain magnetic resonance imaging
(MRI) data. Each region of the brain is approximated using a low-resolution geometric
model. The model is then deformed to statistically and physically fit the high-resolution
imaging data. The statistical and physical constraints allow the surface edges to be more
robust to noise near the region boundaries. The low-resolution step allows the model to
represent the large-scale structures from a small sample size of training subjects. Building
a model from small training sets is particularly important for multi-dimensional recon-
struction as high dimensional subject data is rare and the high dimensionality requires
large amounts of memory.

When performing gross medical imaging, a series of 2D images might be stacked to-
gether if the object motion and the imaging system motion is negligible compared to the
overall dimensions of the object. For example, when performing ultra-sound to image large
organs, the vibrations of the ultra-sound probe and the small motion of muscles surround-
ing the organs are insignificant due to the relative scale of the object being imaged [22].
In addition, stacking can be acceptable if a stationary object reference is visible in each
frame. When performing a brain MRI, the stationary bone structure of the skull can be
used to translate the 2D scans for the registration process [53]. These methods are suitable
for large scale stationary objects, and can be used to supplement small scale objects with
ambitious features as long as other methods are also utilized.

On the smaller scale, electron microscopy is used to image cells. In these cases, the
vibrations and motions of the cells are significant. However, like in gross medical imaging,
electron microscopy can use reference points that are present in multiple 2D images [65].
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Single-particle analysis [46, 52] attempts to identify macromolecules in each view and at-
tempts to determine the orientation of each macromolecule in the particle.

Ahmad et. al [2] present research on volumetric reconstruction of bone density from
four bone density scans, in the form of dual-energy x-ray absorptiometry (DXA). A 3D
reconstruction was iteratively generated such that the bone density difference of 2D projec-
tions of the reconstruction onto the DXA imaging plane with the DXA data was minimal.
Ahmad stated that bone density measurements sampled from their DXA reconstruction
could replace qualitative computed tomograms (QCT), thereby reducing the radiation dose
by a factor of 100. Like Ahmad, the reconstruction method proposed in this document also
attempts to reduce the reconstruction error projected into the corneal tomogram domain.
Existing corneal literature did not attempt to minimize reconstruction error.

Since retinal OCT imaging is similar to corneal imaging, it is useful to briefly examine
Wojtkowski’s 3D OCT retinal imaging system [140]. Wojtkowski created a volume render-
ing of a 3D region of size 6 mm × 6 mm × 1 mm and performed retinal boundary layer
measurements on the result. There is great appreciation that the authors correctly claimed
to create a volume rendering instead of a reconstruction since the retinal measurements
were mapped directly into a volumetric rendering. Although the retinal thickness mea-
surements looked promising, unfortunately the methods do not transfer to corneal layer
thickness measurements, which will be shown in Subsection 2.2.5.

Findings

The non-corneal reconstructions utilize models that incorporate structure or pixel intensity
similarity and all attempt to minimize reconstruction error. Given a corneal model, the
reconstruction process should be able to produce a corneal reconstruction that accounts
for anatomy and physiology. Further a corneal model should relax the dense sampling
requirement that is required in stacking to populate voxel values.

2.2.5 Corneal layer boundary localization

Subsection 2.2.1 explains the importance of corneal anatomy in the vision process in addi-
tion to introducing the corneal structures and corneal layers that, if diseased or disordered,
can prevent light from projecting correctly onto the retina. In particular, the shape, mea-
sured through corneal layer boundary locations, is a metric of disease and disorder. Since
the goal of this document is to create a 3D reconstruction of the cornea, the corneal model
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requires understanding of the layer boundary structure. This subsection provides back-
ground on methods that can locate these layer boundary layers within UHROCT samples.
A statistical shape model can then be constructed using labelled boundaries obtained from
UHROCT as data samples. This subsection also motivates the need for automated corneal
layer boundary localization, which is proposed in Chapter 5.

Object boundary extraction in digital images has been a long-standing problem in the
computer vision community. A deformable model, first formulated by Kass et al. [59], is
an elegant approach and it and its variants are widely used for object boundary extraction.
Deformable model-based image segmentation approaches are broadly divided into three cat-
egories: parametric [21, 59, 143], non-parametric [17], and user-interactive [85, 90], where
the parametric and non-parametric methods require no user interaction, and the interac-
tive methods prompt the user during the segmentation process. These three approaches
model the object boundary using an energy minimizing spline and express the total energy
as a sum of internal energy (prior) and external energy (measurement). Further, these
approaches follow a specified optimization technique, such as gradient descent, to obtain
the global minimum of the total energy, based on a curve evolution technique.

There is a fundamental problem with parametric and non-parametric active contours
that limit their direct use for corneal layer extraction. Active contours are curves designed
to surround lines and shapes that may be present in the image [3, 21, 59, 76]. The active
contour converges when the sum of internal (prior) and external (measurement) forces are
minimized, such that the internal forces prefer contour smoothness (or some other prior
shape), and the external forces prefer a fit to the given image, normally related to the
image gradient. Both parametric and non-parametric active contours are sensitive to local
minima, and the cornea images obtained in this study are highly contaminated with speckle
noise, which creates false local minima, potentially misleading the active contour towards
false layers. Therefore, existing unsupervised parametric and non-parametric active con-
tours are not suitable for corneal layer extraction. However existing user interactive active
contours, such as intelligent scissors [85,90], can be used for interactive segmentation.

Mortenson et al. [90] first introduced intelligent scissors (IS), a semi-automatic segmen-
tation algorithm, a process that takes advantage of user knowledge when finding a bound-
ary. For this method, the user selects seed points on the boundary and, as the mouse
moves along the boundary, the optimal boundary path between the starting point and
the current point is obtained using a dynamic programming method and hard constraints.
There are two principal advantages to this approach. First, rapid image segmentation can
be accomplished in real-time as the operator can trace the layer boundaries. Second, the
boundary accuracy of interactive segmentation is generally higher than automatic methods
since user knowledge is utilized throughout the process [90].
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(a) (b)

Figure 2.10: UHROCT segmentation results for (left) geometric active contour and (right)
intelligent scissors. Neither method produces accurate segmentation results.

However, there are drawbacks to the IS methods for the corneal problem considered
here. First, the boundary definition for IS methods relies on image gradients, making
the algorithm sensitive to contrast non-uniformities found in low signal-to-noise (SNR)
UHROCT images of the human cornea. Fig. 2.10 illustrates the performance of the al-
gorithm despite having the user generate 20 to 30 points for each layer. Second, existing
IS methods require the clinician to perform relatively accurate manual tracing along the
region boundary, which is time consuming and laborious, particularly for complex regions
of interest and large sets of three-dimensional corneal images, which may number in the
hundreds or thousands.

Mishra et al. [85] proposed enhanced intelligent scissors (EIS) which uses a phase-based
representation of the image as the external local cost, instead of the image gradient, and
employs a Viterbi search to avoid the hard constraints of IS. However, as shown in Fig. 2.11,
EIS produces non-smooth boundaries for the outer corneal layers and cannot distinguish
Bowman’s membrane and Descemet’s endothelium complex due to insufficient contrast.
EIS still requires the user to select many points on each layer boundary requiring about
five to ten minutes for our trained technicians to semi-automatically segment a single 2D
UHROCT image. While EIS is an improvement over completely manual segmentation, the
resulting segmentation is sensitive to image artifacts and noise near the layer boundaries.
Active contours were also investigated to automate the process, however preliminary testing
on 20 real world tomograms showed that the active contour produced completely unusable
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Figure 2.11: Enhanced intelligent scissors (EIS) [85] provides inaccurate localization of the
two outer corneal boundaries and a third boundary that unpredictably weaves between the
epithelium-Bowman boundary and the Bowman-stroma boundary. Further, Descemet’s
endothelium complex cannot be segmented.

results and was unable to segment the cornea from the background. Instead, to precisely
locate the layers of the cornea, Chapter 5 proposes a novel model-based segmentation
method that is automatic.

While many well developed retinal OCT imaging techniques exist to identify layer
boundaries of the retina, corneal imaging provides different challenges. Garvin proposes
the use of a general graph-based approached that attempts to reconstruct the retinal im-
ages into a 3D model and isolate the surfaces that correspond to the retinal layers [48].
In addition, Mishra developed a method using image gradient information and a kernel
function to successfully compensate for the speckle noise, present in OCT images, and
efficiently segments retinal layers [84]. The major difference between retinal and corneal
segmentation is due to composition of the layers. As shown in Fig. 2.12, unlike the cornea,
the retinal layers have different mean intensities for each layer. The retinal methods are
good at finding the edge between these layers. In contrast, corneal layers have a similar
mean intensity, but are separated by low-contrast, discontinuous, thin layer boundaries
instead. As a result, retinal methods are able to find the high contrast outer layers, but
could not locate the inner layers.

For corneal boundary localization, LaRocca et al. [67] use dynamic programming to
isolate three of the five corneal layer boundaries on OCT images with an axial resolution
of 3.4 µm, but do not differentiate the endothelium-Bowman’s membrane boundary from
the Bowman’s membrane-stroma boundary.

Although UHROCT can resolve the five corneal layers, the endothelium has a layer
thickness of only 5 µm and cannot be resolved with sufficient contrast from a single to-

42



Figure 2.12: Comparison of retinal (left) and corneal (right) UHROCTs. Unlike corneal
layers, each retinal layer has a visibly distinct intensity compared to adjacent layers. In
contrast, corneal layers contain a visible thin, dark boundary between each layer.

mogram on a 3 µm system. Instead the Descemet-endothelium complex, combining the
Descemet’s membrane and the endothelium layer, can be resolved. An automated segmen-
tation method is presented in Chapter 5 to allow each layer boundary to be automatically
identified. This method has been published as the first method to automatically identify
the inner corneal boundaries and is shown to be capable of segmenting five corneal layer
boundaries [35]. This method is useful to accurately measure the thickness of each layer
so that a statistical 3D corneal model can be generated.
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Chapter 3

Problem Formulation

This chapter defines the motivation, objectives, and scope required to better incorporate
anatomy and physiology into general statistical reconstruction. Section 3.2 overviews all
of the objectives that are introduced in this chapter and pursued in the following chap-
ters. Subsection 3.2.1 describes these changes in relation to the general medical imaging
applications. Subsection 3.2.2 applies these techniques to corneal imaging in hopes to cre-
ate awareness to existing corneal reconstruction limitations and to provide a method to
produce more meaningful reconstructions to the field.

To best understand this chapter, the reader should have familiarity with all of the high
level components, notation, and concepts in general reconstruction, Section 2.1. The reader
should also be familiar with existing corneal reconstruction methods, Subsection 2.2.4.

3.1 Existing limitations

From the discussion in Chapter 1 and Section 2.2, corneal reconstruction limitations were
identified. Existing corneal reconstruction methods simply create a 3D field and populate
the values directly from densely sampled measurements. These methods require hundreds
of corneal tomograms that are then translated and stacked. Since a corneal model is not
utilized the UHROCT measurement uncertainty due to imaging noise or eye-motion is
not being quantified as part of the reconstruction process. While other medical imaging
applications contain unique reference points that can be used for registration, UHROCT
corneal tomograms have similar structural appearance from many different perspectives
making it difficult to determine the location of the imaging plane.
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While general reconstruction theory works very well for decoupled and linearized sys-
tems, it is challenging to formulate the general Bayesian estimator for the cornea. The
FDOCT LCI imaging forward model, (2.49), to relate scattering potential measurements
to cellular structure is highly non-linear [89]. Further the scattering potential measure-
ments are spatially coupled to the distribution of cells within the cornea. If the measure-
ment and corneal model state parameters can be decoupled and made into a linear system
then reconstruction can become straightforward. These challenges probably result in the
simplified one-to-one measurement-to-volume mapping common in existing state-of-the-art
corneal reconstruction methods.

3.2 Objectives

The objectives introduced in Section 1.3 are listed below for reference. The details for
Objective 1 are presented in Subsection 3.2.1 and the corneal specific Objectives 2 through 7
are detailed in Subsection 3.2.2.

1. Extending general reconstruction theory

(a) Decouple subject model states

(b) Estimate forward model parameters

2. Create 2D corneal structure model

3. Create 3D corneal model

(a) Create corneal structure model

(b) Create corneal texture model

(c) Create corneal motion model

4. Generate synthetic cornea from model

5. Reconstruct cornea from tomograms without tomogram motion correction

6. Reconstruct cornea from tomograms with tomogram motion correction from pose
estimates

7. Extract corneal layer thickness measurements
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3.2.1 Extending general reconstruction theory

Section 2.1 presents a general theory used to reconstruct an arbitrary object from a given
set of measurements. Due to the general nature of theory, there are additional challenges
that are not addressed because they are specific to an application. For corneal imaging
applications, imaging constraints and coupled subject models are common; the measure-
ments are subject to the anatomy, physiology, and presence of pathologies. For corneal
imaging, it is important to introduce additional notation and strategies into the existing
statistical reconstruction theory.

In addition, physiological effects, such as motion, affect the imaging system. While
statistical reconstruction works well when a clear correspondence between measurements
and their respective properties in the subject model exists, any motion or change in subject
behaviour make the correspondence uncertain. Therefore, in the presence of physiological
effects, it is important to complement reconstruction with a physiological model and corre-
sponding parameter estimation; when estimating subject model states the forward model
parameters should also be estimated.

Objective 1, expands upon Section 2.1 by introducing corneal imaging specific com-
ponents into the general theory. This objective can be broken down further into two
sub-objectives: subject model decoupling and tomogram pose estimation.

Subject model decoupling

The first sub-objective is a strategy that can decouple the subject model using knowledge
of anatomy and physiology. While the same strategy can be extended to pathology, the
scope of the work is limited to healthy subjects. The key contribution lies in the fact
that the subject model states, Z, can be rewritten as a, generally non-linear, decoupling
function, `, and a set of decoupled states, {Z1, Z2, . . .},

Z = ` (Z1, Z2, . . . ) . (3.1)

Then a preprocessing function can be introduced and the forward model can be redefined
such that,

℘1 (m) = f1 (Z1) (3.2)

℘2 (m) = f2 (Z2) (3.3)

..., (3.4)
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with the goal to make Z... straightforward to estimate from ℘...(m). The introduction
of ` and ℘... make an otherwise convoluted reconstruction feasible. While Section 4.2
still provides a general description of how this can be applied to arbitrary medical imaging
applications, Chapter 6 provides a specific example of how decoupling is applied specifically
to UHROCT corneal imaging.

Corneal image pose estimation

The second sub-objective addresses the effects of physiology on measurement location un-
certainty. Instead of estimating the measurement location corresponding to every pixel
within a medical image, the scope of work is limited to estimating the location and ori-
entation of each medical image. Many medical images are designed to rapidly sample a
region of the subject such that any motion introduced by physiology is negligible, through
a combination of high speed sampling and reducing physiological motion by influencing
the subject. For this scope, it is assumed that physiological motion within a single image
is negligible, but that effects of physiological motion are apparent between the acquisition
of sequential images. Section 6.3 verifies these assumptions for the corneal reconstruction
application. Section 4.1 introduces a set of parameters, Θ into the forward model,

m = f (Z,Θ) , (3.5)

that define the pose and center of the imaging plane. Further, Section 4.3 presents a
general optimization formulation that attempts to estimate Θ for each medical image
through reconstruction error minimization.

3.2.2 Corneal reconstruction

As shown in Subsection 2.2.1, the central corneal thickness is a useful statistic in deter-
mining corneal health and the effectiveness of treatment. However a better metric is to
also include the thickness of each corneal layer instead of only measuring the thickness of
the entire cornea. However locating each corneal layer within an UHROCT tomogram is
time consuming since it requires an expert operator to manually segment and measure each
corneal layer boundary. An automated corneal layer segmentation tool, Objective 2, would
allow the corneal layer boundaries to be extracted and measured allowing practitioners and
researchers to immediately obtain thickness measurements without having to wait for the
manual segmentation expert to be available. Further, the automated segmentation tool
can be applied to thousands of tomograms providing statistics for a corneal model. This
tool is created in Chapter 5.
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As shown in Subsection 2.2.4, existing medical reconstruction techniques can create
3D corneal volumes by correlating multiple 2D tomograms and stacking them to create a
volume. While correlation is useful in retinal images containing unique features within a
tomogram, UHROCT corneal tomograms have layer boundaries that have similar appear-
ance in every tomogram. The lack of distinct features combined with eye motion make
it difficult for the operator to determine precisely from where the tomogram is sampled.
While the stacking approach will produce a nice looking 3D volume, it does not take into
account any physiological eye-motion, it does not take advantage of known corneal anato-
my during the reconstruction, it does not have a model from which to estimate scattering
potential in unsampled regions of the cornea or to reduce measurement noise in densely
sampled regions.

Corneal model decoupling

Chapter 6 and Chapter 7 attempt to address these limitations by constructing a corneal
model, Objective 3, and by reconstructing a cornea through corneal model state estimation,
Objective 5. Since UHROCT measures scattering potential, m, at a specified measurement
location, a convenient corneal model can simply contain a field of scattering potentials, Z,
that correspond to m through a forward model reduced to a correspondence matrix, C,
such that

m = Cz. (3.6)

The matrix C is determined by mapping the measurement from the imaging plane into
a point on the cornea in 3D space, derived in Section 4.1. Existing techniques use pixel
intensity correspondence to estimate C and, without a corneal model, guesses at values for
Z that do not have a direct corresponding m.

By decoupling Z into two sets of states, Z1 and Z2, a corneal anatomy model and a
scattering potential model can be created and used to estimate Z based on the value of
every single measurement, allowing regions of Z to be estimated without a corresponding
m. The states in Z1 correspond to parameters in the corneal anatomy model used to
describe the shape of each corneal layer, Section 6.1. The states in Z2 correspond to
scattering potential. With the structure removed, Z2 can be modelled as a stationary
Markov random field. This allows the neighbouring relationships within Z2 to be modelled
as a kernel determined through analysis of the scattering potential found in a tomogram,
Section 6.2. The statistical model of Z2 can be represented as a state covariance matrix, P2.
The motion of the eye is also modelled in Section 6.3 but is used after the reconstruction
process when attempting to estimate tomogram pose in Chapter 8.
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Synthetic data

Using the corneal models, synthetic data can also be generated since it provides an unlim-
ited source of ground truth for use in evaluating reconstruction and tomogram estimation.
Objective 4 is satisfied throughout Chapter 6 and the resulting synthetic dataset is de-
scribed in Section 7.1.

Reconstruction

During reconstruction, measurement preprocessing can determine the location of each
corneal layer boundary using the automated method created in Chapter 5. Let ℘1 be
the preprocessing function that generates a vector of states that correspond to Z1 and let
℘2 be the preprocessing function that generates a vector of scatter potential that has been
mapped into a random field such that the corneal structure has been removed,

℘1 (m) = C1Z1 (3.7)

℘2 (m) = C2Z2. (3.8)

Then Z2 can be estimated using Bayesian linear least-squares estimation [42, 123] and an
estimation of measurement noise, R,

Ẑ2 =
(
CT

2 R
−1C2 + P−1

2

)
CT

2 R
−1 (℘2 (m)− µZ2) + µZ2 . (3.9)

The value of Z1 can be found using ℘2 (m) and Z2 through surface parameter estimation
described in Section 7.2.

In addition to a 3D volume of scattering potential data, Z, and is also obtained using
existing corneal reconstruction techniques, the reconstruction also produces estimates for
all of the corneal layer boundaries, Z1. This allows the operator to easily obtain corneal
boundary layer thickness measurements at any arbitrary cross section, satisfying Objec-
tive 7.

Pose estimation

The final object is to improve pose estimation using the corneal model, Objective 6. In
Chapter 8, the translation and orientation of each corneal tomogram are estimated using
the optimization formulation in Section 4.3 and previously described in Subsection 3.2.1.
Since C is derived by transforming the location of each tomogram measurement into a
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position on the cornea, C is dependent on the pose of the tomogram, and can be written
explicitly as C(Θ),

m = C (Θ) z, (3.10)

where Θ contains all of the parameters to map the location of m to the location in Z. The
values of Θ are determined through an iterative optimization formulation that minimizes
the reconstruction error,

Θ̂ = arg min
Θ

∣∣∣C(Θ) ˆZ(Θ)−m
∣∣∣ . (3.11)

Notice that Ẑ is also a function of Θ because it implicitly contains C(Θ).

The optimization cost function becomes slightly more complicated when the decoupled
states are introduced,

Ẑ(Θ) = `
(
Ẑ1(Θ), Ẑ2(Θ)

)
(3.12)

Θ̂ = arg min
Θ

∣∣∣C(Θ)`
(
Ẑ1(Θ), Ẑ2(Θ)

)
−m

∣∣∣ . (3.13)

Again, the estimation of Z1 and Z2 are dependent on Θ since the tomogram pose affects the
reconstructed corneal surface, C1 and, similarly, how the scattering potential is mapped,
C2.
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Chapter 4

Extended Statistical Reconstruction

This chapter focuses on extending statistical reconstruction theory with additional notation
and components specific to reconstruction involving a set of medical images, or tomograms
T , that are obtained from a subject. The values of T are measurements of unknown
subject states, Z. If Z contains coupled states, it can be difficult to estimate Z from T .
For example, in corneal reconstruction, the scattering potential measurements are coupled
with the position of the measurement within the cornea making it difficult to ascertain if
a difference in scattering potential is due to a change in cellular density or a change in
the amount of backscatter when imaging near a corneal layer boundary. While a human
OCT operator can learn to decouple position from cellular density through tomogram
observation, a corneal reconstruction algorithm requires a mathematical model. The most
challenging aspect of corneal reconstruction is creating a model that decouples Z and
relates T to Z linearly.

Once Z is decoupled, a forward model, f , can contain unknown parameters. For corneal
reconstruction, these unknown parameters are the positions where measurements are sam-
pled within the cornea. Since the subject moves during imaging, the desired measurement
location and the actual measurement location differ, creating measurement location uncer-
tainty. The pose, position and orientation, of each tomogram at the time of measurement
needs to be estimated in addition to the states in Z, in order to reduce measurement
location uncertainty. Section 4.3 describes a means to reconstruct the cornea while also
estimating the pose of each tomogram. Chapter 8 tests this theory during corneal recon-
struction.
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Chapter organization

This chapter is divided into three sections. Section 4.1 defines a linear relationship between
the measurement locations in T to their locations in 3D space in the actual cornea. This
section introduces notation required to express the location of measurement in T in 3D
space given an arbitrary pose for T . Section 4.2 provides a brief overview of the decoupling
strategy that is used throughout Chapter 6. The last section, Section 4.3, describes a
method to estimate the pose of each tomogram using an optimization formulation.

4.1 Measurement mapping

This section describes how the locations of each measurement within a set of tomograms,
T , are mapped to the corresponding sampling location in 3D space.

4.1.1 Lexicographical reordering

The tomograms are mapped into a vector so that multi-dimensional matrices can be ma-
nipulated using normal matrix operations. Using lexicographical reordering, (2.6), Ti can
be mapped into mi,

mi = Ti,:, (4.1)

which can be rewritten in terms of pixel k, the associated measurement, mi,k, and the
position of pixel k within Ti, si,k,

k = s0,i,k + s1,i,kηs,0,i, (4.2)

mi,k = Ti(si,k). (4.3)

Using the relationship between m and mi from (2.1), m can contain all of the measurements
from T ,

m =
[
mT

0 mT
1 mT

2 · · · mT
i · · ·

]T
. (2.1 on page 9)
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4.1.2 Planar notation

Tomogram i, Ti, contains a set of measurements, mi, that were sampled within an imaging
plane Πi. The plane Πi is centered at the point ci in <3,

ci =
[
c0,i c1,i c2,i

]T
, (4.4)

and has a normal vector denoted as −→n i. Since the image on the tomogram can be rotated
arbitrarily within the plane, θi represents the amount that Ti is rotated about the axis −→n i,
as illustrated in Fig. 4.1. Incorporating γs,i, the scale of Ti defined in (2.34), all of the
parameters required to represent the scale and pose, the position and orientation, of Ti are
collected into the vector Θi, let

Θi ,


−→n i

ci
θi
γs,i

 . (4.5)

The parameters for all tomgrams in the set, T , are denoted using Θ,

Θ =


Θ1

Θ2
...

Θi
...

 . (4.6)

4.1.3 Define <3 notation

Let Z ∈ <3 be spanned by the basis vectors, −→x 0, −→x 1, and −→x 2,

−→x 0 =
[
1 0 0

]T
(4.7)

−→x 1 =
[
0 1 0

]T
(4.8)

−→x 2 =
[
0 0 1

]T
. (4.9)

The arbitrary point, x in <3, is positioned x0 along −→x 0, x1 along −→x 1, and x2 along −→x 2

x = x0 · −→x 0 + x1 · −→x 1 + x2 · −→x 2. (4.10)
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Figure 4.1: The random field Z (blue) is sampled using the planar subspace of tomogram
Ti (orange). Let ci (red) be the center position of Ti, let −→n i (green) be the vector normal
to the sampling plane, and let θi (black) be the rotation of the plane about −→n i through ci.
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Let ηx,0,j, ηx,1,j, and ηx,2,j,

ηx,j =
[
ηx,0,j ηx,1,j ηx,2,j

]T
, (4.11)

represent the number of elements in the −→x 0, −→x 1, and −→x 2 directions, respectively and let
γx,j represent the dimensions of Z. Let xj represent the position of zj in <3 and let x0,j,
x1,j, and x2,j represent the number of elements in the −→x 0, −→x 1, and −→x 2 directions. The
center of field Z is located at cj in <3. See Fig. 4.1 for an illustration of these parameters.

4.1.4 Coordinate mapping

A mapping function is needed to convert from s in <2 to x in <3 to establish a spatial
correspondence, C, in Subsection 4.1.5 between m and z. Fig. 2.6 illustrates the arbitrary
point Ti(s) in the local image space of Ti. The horizontal and vertical directions in Ti
corresponds to the directional vectors −→s 0,i in <3 and −→s 1,i in <3, respectively. The vectors
−→s 0,i and −→s 1,i can be found in terms of Θi, by finding two mutually orthonormal vectors
orthogonal to −→n i using a series of cross-products. When performing higher dimensional
reconstructions, the Gram-Schmidt process [113] can be utilized to find these mutually
orthonormal vectors more efficiently.

The following derives a change of basis that allows the point ψ ∈ <2 to be transformed
into x ∈ <3. The details of the derivation are provided for completeness and the results
are necessary to determine a correspondence between m and Z in Chapter 7. Equation-
s (4.18), (4.19), and (4.20) can be accepted and the derivation can be skipped on the first
read through without loss of understanding in other chapters.

The first basis vector, u0,i, is equal to −→n i,

u0,i = −→n i. (4.12)

The second basis direction, u1,i, is found by calculating the cross product of u0,i with −→x 0,
−→x 1, and −→x 2,

u1,i,x0,i = u0,i ×−→x 0, u1,i,x1,i = u0,i ×−→x 1, and u1,i,x2,i = u0,i ×−→x 2. (4.13)

Then, the most numerically stable vector, defined as the vector with the greatest L2-norm,
either u1,i,x0,i , u1,i,x1,i , or u1,i,x2,i , is selected as the second basis vector. The third basis
direction, u2,i, can be calculated using the cross-product,

u2,i = u0,i × u1,i. (4.14)
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The final step is to define the basis vectors, e0,i, e1,i, and e2,i by normalizing u0,i, u1,i, and
u2,i,

e0,i =
u0,i

‖u0,i‖
e1,i =

u1,i

‖u1,i‖
, and e2,i =

u2,i

‖u2,i‖
. (4.15)

Then, since the imaging plane parameter θi allows the entire plane to rotate about −→n i, e1,i

and e2,i are rotated by θi radians about e0,i allowing the horizontal and vertical directions
in Ti to be mapped to vectors −→s 0,i and −→s 1,i,

−→s 0,i = e1,i cos θi + e2,i sin θi (4.16)

and

−→s 1,i = e2,i cos θi − e1,i sin θi. (4.17)

Given that Ti consists of ηs,0,i by ηs,1,i pixels and has a width and height of γs,0,i by
γs,1,i µm, the mapping from si to xi is represented as

xi =
(
s0,i −

ηs,0,i
2

)γs,0,i
ηs,0,i

−→s 0,i +
(
s1,i −

ηs,1,i
2

)γs,1,i
ηs,1,i

−→s 1,i + ci. (4.18)

Fig. 4.2 illustrates the transformation. Finally, using xi, the positional correspondence
between pixel k on tomogram i and the sampling position within the volume Z can be
defined as

xi,k =
(
s0,i,k −

ηs,0,i
2

)γs,0,i
ηs,0,i

−→s 0,i +
(
s1,i,k −

ηs,1,i
2

)γs,1,i
ηs,1,i

−→s 1,i + ci. (4.19)

The forward model for the entire imaging plane, can be rewritten for pixel k on tomogram
i,

Ti(si,k) = f
(
Z,xi,k

)
(4.20)

These two equations are essential for reconstruction since (4.19) is required to map the
positions of measurements from T to their corresponding positions in Z, in the following
section, and (4.20) defines the forward model used in Subsection 6.3.2.
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Figure 4.2: This illustration summarizes the mapping from (left) Ti(si), a point in the
image space, to (right) xi, the point in Z space.
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4.1.5 Correspondence matrix

Using the derivation from Subsection 4.1.4, a correspondence matrix, C, that maps the loca-
tion of measurements within a tomogram and the corresponding location of measurements
in the cornea can be expressed. Although the mapping equations can appear algorithmic,
rest assured that C is very useful in Chapter 7 and Chapter 8 when m is mapped into Z
during reconstruction.

Then xj can be determined in terms of x0,j, x1,j, and x2,j,

j = x0,j + x1,jηx,0,j + x2,jηx,1,jηx,0,j, (4.21)

xj =


γx,0,j
ηx,0,j

(
x0,j − ηx,0,j

2

)
+ c0,j

γx,1,j
ηx,1,j

(
x1,j − ηx,1,j

2

)
+ c1,j

γx,2,j
ηx,2,j

(
x2,j − ηx,2,j

2

)
+ c2,j

 . (4.22)

If the tomogram point xi,k and the point in zj, xj correspond, matrix Ci
k,j will have a value

of 1, otherwise it will have a value of 0,

Ci
k,j =

{
1 if all

(
| xi,k − xj |< γx,j./ηx,j

)
0 else

. (4.23)

The function all(. . .) is true if all elements of (. . .) are true and the function is false otherwise
allowing Ci

k,j to be 1 if the tomogram element position is contained within the zj position.
The operator ./ is elementwise division. Finally, C can be determined by stacking all Ci

matrices,

C =


C0

C1

...
Ci

...

 . (4.24)

During the construction of C, values from (4.19) and (4.22) are substituted into (4.23).
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4.2 Decoupling

The corneal model in Chapter 6 is designed to decouple the states Z so that reconstruction
can estimate Z using a Bayesian linear least-squares estimator, which is preferable to the
general Bayesian estimator. The decoupling strategy is outlined here and demonstrated in
more detail in Chapter 6.

Given a forward measurement model, f , and a collection of measurements m, a para-
metric subject model can be developed. The parameters of the model populate a random
field, Z, such that m = f(Z). However structural and behavioural characteristics can
decompose Z into a set of independent states, {Z1, Z2, . . .}, related by the function `,

Z = `(Z1, Z2, . . .) (4.25)

to ease estimation of Z from measurements m and a forward model f .

The key is to decouple Z into sub-models based on existing subject domain knowledge.
For example, if general knowledge of corneal anatomy is known, then that knowledge can be
parameterized and separated from other states within Z. By introducing prior knowledge
into sub-models, the data become more constrained, creating fewer degrees of freedom
that need to be estimated, and ensuring that the data behave according to physical or
behavioural restrictions.

For example, structural constraints applied to layers within a human cornea can be
modelled as part of `; ` can decouple structural parameters, Z1, from the visual scatter
potential characteristics, Z2, removing dependency of scattering potential characteristics
from relative position to corneal structure. A Bayesian linear least-squares estimator can
be applied to the resulting linear scattering potential model relating m and Z2. Then a
specifically designed non-linear structural estimator can be applied to a carefully designed
structural model with parameters to determine Z1 from m. The reconstruction component
estimates values of Z given f and m, allowing unmeasured elements of Z to be estimated
and reducing measurement noise through a prior subject model of Z.

4.3 Pose estimation

While imaging the cornea using UHROCT, a set of tomograms, T are obtained. While it
is desired to sample tomogram i at imaging plane Πi, eye-motion during imaging changes
the actual location of Πi. The purpose of tomogram pose estimation is calculate Θ̂i, the
estimate for the actual imaging plane parameters, Θi. By formulating an optimization
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problem, Θ̂i can be calculated for all tomograms with the goal of reducing tomogram pose
error, Θ̃i,

Θ̃i = Θi − Θ̂i. (4.26)

However, unless ground truth is available, the actual parameters in Θi are not known, so
the reconstruction measurement residual error is used instead,

m̃ = m− m̂. (2.29 on page 16)

The pose estimation problem should attempt to minimize the reconstruction error over
the entire field, otherwise a single tomogram might improve at a time to the detriment of
fitting all of the data to the field. For example, if only the reconstruction error specific
to tomogram i is minimized, m̃i can be driven to zero by deforming the corneal structure
and scattering potential field causing all other tomograms to have very high reconstruction
error. Consequently, the goal is to minimize the sum of squared error,

min
∑(

m̃
)2
, (4.27)

which leads to

Θ̂ = argΘ′ min
∑
∀i,∀k

(
mi,k − f

(
Z,xi,k(Θ

′
i)
))2

, (4.28)

by substitution. It is convenient to use the mean squared error metric since the values
can be better compared across different subjects when the number of measurements differ.
However minimizing either the sum of squared error or the mean squared error makes no
difference as long as the number of measurements remain constant.

The mean squared error metric was selected over the mean absolute error metric for
two reasons. First, the mean squared error criterion penalizes tomograms that are farther
from their correct locations more heavily than the mean absolute error criterion. Pose
estimation allows these misaligned tomograms, that would otherwise be outliers, to move
so that a better fitting corneal surface can be constructed. The second reason is that during
optimization, the derivative of the absolute value function has a discontinuity that requires
additional complexity when working with derivatives of the minimization function.

In general, the approach to solving this optimization problem depends on f . A non-
linear forward model, coupled states, and a discrete coordinate system transformation
dependent on Θi, can be difficult to solve. In the worst case, a very unlikely case, the
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values of f can have large variability producing a field with very little correspondence to
Z. Instead of attempting to solve (4.28) for the general case, a specific f leads to a much
more meaningful and succinct discussion.

Assuming Chapter 6 can decouple Z into Z1 and Z2 such that,

℘1 (m) = C1Z1 (3.7 on page 49)

℘2 (m) = C2Z2, (3.8 on page 49)

with a slight modification to introduce Θ,

℘1 (m) = C1(Θ)Z1(Θ) (4.29)

℘2 (m) = C2(Θ)Z2(Θ), (4.30)

equation (4.28) can be rewritten as a weighted combination, using $, of residual errors,

Θ̂ = argΘ′ min$
(
℘1 (m)− C1(Θ′)z1(Θ′)

)2
+ (1−$)

(
℘2 (m)− C2(Θ′)z2(Θ′)

)2
. (4.31)

Although C1(Θ′) and C2(Θ′) are not linear in terms of Θ′, they are sparse matrices con-
taining ones and zeros. Unfortunately, despite the simple appearance of C1 and C2, the
construction involves coordinate transformations using many of the derivations from Sec-
tion 4.1 required to express (4.24).

While it is possible to formulate C(Θ)z(Θ) as a continuous field relating each measure-
ment to every single element in z, eliminating the stepwise construction of C, the sparsity
of C is lost and the resulting relationship, while differentiable, is still difficult to solve
directly. For example, mi,k can be related to z by weighting every single value of z as a
decaying exponential function of the distance xi,k to xj for all i, j, and k,

m̂i,k =
∑
j

zj(Θ
′) · exp

(
−α
(
xj − xi,k

)2
)
. (4.32)

Equation (4.32) becomes much more complicated after (4.19) is substituted.

Instead, an iterative optimization approach is preferred using an initial estimate of Θ,
and the Jacobian [80], J , of m̂ for Θ and its corresponding reconstruction, Ẑ(Θ),

J(m̂) =



δ ˆm1,1

δΘ1

δ ˆm1,1

δΘ2
· · ·

δ ˆm1,2

δΘ1

δ ˆm1,2

δΘ2
· · ·

...
...

. . .
δm̂i,1

δΘ1

δm̂i,1

δΘ2
· · ·

δm̂i,2

δΘ1

δm̂i,2

δΘ2
· · ·

...
...

. . .


, (4.33)
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where
δ ˆmi,k
δΘ...

can be estimated using a central difference numerical differentiation approxi-
mation,

δm̂i,k

δΘ...

≈ C(Θ + ∆Θ)ẑ(Θ)− C(Θ−∆Θ)ẑ(Θ)

2 ‖∆Θ‖
. (4.34)

Note that central difference approximation [13] is used because the function C is evaluated
at C(Θ + ∆Θ) and C(Θ−∆Θ) to calculate the Hessian [80]. If a Hessian approximation
is determined using quasi-Newton methods [49], then single-point numerical differentia-
tion [13] in the Jacobian can be used instead.

Using the Jacobian and Hessian, or an approximation of the Hessian, existing trust-
region methods [24,88,127] can be used to estimate the tomogram pose.
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Chapter 5

Corneal Layer Boundary Localization

Since the corneal model requires precise measurements from which to form a statistical
model, the design of a 2D corneal tomogram model and an automated layer boundary
localization tool allows layer measurements to be quickly generated from UHROCT data.
The results from the localization tool can be used to generate synthetic test images and to
determine reasonable parameter estimates for a 3D model. An expert technician can deter-
mine the location of each boundary by observing faint layer boundaries due to the difference
in refractive index for each layer, which is visible in an UHROCT tomogram, Fig. 2.5, as
a subtle change in scattering potential intensity. Using this approach, an automated tool
should also be able to segment the layers by determining the most likely position of each
layer through the relative difference in scattering potential at their interfaces. A structural
model can then be created using measured layer boundary thickness and the refractive
index at their interfaces, with the assumption that the inner-layer cellular structure can
be represented as a texture in Section 6.2.

Any curve, Ω(s) where s ∈ <1, can be used to represent a layer boundary. The true layer
boundaries are represented by the curve Ωα(s), where α ∈ [0, 1]. The index variable ι is
introduced so that each true boundary can be represented as Ωαι(s), where ι ∈ {1, 2, 3, 4, 5}
and αι ≤ αι+1, corresponding to the epithelium (α1), Bowman’s membrane (α2), stroma
(α3), Descemet’s-Endothelium complex (α4), and the endothelium (α5).

Since the inner layers are sandwiched between the extreme (outer) layers, the 2D to-
mogram model asserts that the shape of each inner layer can be expressed as a continuous
transformation between the shape of the epithelium and endothelium boundaries, such
that the true (unknown) curve Ωα(s) is approximated as Ω̂α(s), where

Ω̂α(s) = αΩ̂1(s) + (1− α)Ω̂0(s). (5.1)
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and boundary layers Ω̂0(s) and Ω̂1(s) are defined by arbitrary parameterized curves, C(s,Θ),

Ω̂0(s) = C(s,Θ0) (5.2)

Ω̂1(s) = C(s,Θ1). (5.3)

Each layer boundary is then approximated as a linear combination of the epithelium and
endothelium boundaries. The curves C(s,Θl) parameterize Ωl(s), using some parameter set
Θl, for l ∈ {0, 1}. Since the outermost corneal boundaries have high contrast and can be
consistently and reliably segmented, C(s,Θl) can be determined by locating the outermost
boundaries. The curve C(s,Θl) can be parameterized using a low-dimensional corneal
model; ellipses, quadratics, and cubic polynomials were tested, however these curves were
not able to capture all of the manually segmented corneal layer curvature throughout the
entire OCT tomogram. For the given datasets, a fourth-order polynomial, P(s,Θl), was
found to be a suitable model for a healthy cornea:

Θl =

[
θl,0,0 θl,0,1 θl,0,2 θl,0,3 θl,0,4
θl,1,0 θl,1,1 θl,1,2 θl,1,3 θl,1,4

]
(5.4)

P(s,Θl) =

[
s0,l(s)
s1,l(s)

]
= Θl ·

[
1 s s2 s3 s4

]T
. (5.5)

The prior smoothness of C(s,Θl) allows the layer boundaries to be located despite the
high speckle noise introduced during the UHROCT imaging process.

To ensure a continuous and robust linear transform for (5.1), the parameters of curve
C(s,Θl) are defined such that the distance between C(s,Θ0) and C(s,Θ1) is always the
shortest distance, as opposed to a perpendicular metric, which is less robust due to the
effect of noise on local curvature. The curve C(s,Θ0) and the parameters Θ0 are established
such that,

C(s,Θ0) ≡ P(τ,Θ0)
∣∣
τ=arg minω‖C(ω,Θ1)−C(s,Θ0)‖2

, (5.6)

to ensure that the closest points from C(s,Θl) to the outer boundaries are C(s,Θ0) and
C(s,Θ1) for all s and l.

The following list summarizes the properties associated with the corneal shape model
defined in equations (5.1) through (5.6):

1. Ω̂αι(s) is a fourth-order polynomial.

2. The curves Ω̂αι(s) have C inf geometric continuity [5].
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Figure 5.1: The coordinate system used to parameterize each corneal layer boundary illus-
trates the curve Ωα(s), defined in terms of α and s.

3. The Euclidean distance
∥∥∥Ω̂α(s)− Ω̂0(s)

∥∥∥
2

does not decrease as α increases.

What remains is to estimate Θ̂l in Section 5.2 and, given the outer boundaries, to find
estimates of α̂ι in Section 5.3 to locate the inner boundaries.

Since the epithelium and endothelium outer boundaries have the highest contrast, it
is comparatively straightforward to extract them using existing algorithms [8]. However,
as seen in Fig. 2.5, the inner corneal layer boundaries have lower contrast and cannot be
accurately identified by known algorithms, with one example illustrated Fig. 2.10.

However, since the corneal anatomy is layered, with the inner boundaries parallel to the
high-contrast outer boundaries, the corneal structure can be modeled. A correspondence
model can be established between the upper and lower layers, with the model requiring only
a small number of parameters to describe the shape of the inner corneal layer boundaries.
Therefore, the corneal layer boundaries are determined through the construction of pa-
rameters estimation for such a model such a model and is implemented as an optimization
problem.
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5.1 Outer boundary segmentation

This section proposes one heuristic approach to segmenting the outer boundaries. The
proposed corneal model can be registered to these boundaries allowing the inner bound-
aries to be segmented, which is the key contribution of automatic corneal layer boundary
localization. The parameters Θ̂l need to be found such that C(s, Θ̂l) is a good fit for the
outermost corneal layer boundaries. Although the outer boundaries have the greatest con-
trast, image noise and artifacts interfere with segmentation. Since the contrast of the layer
boundaries varies over the image, adaptive histogram equalization (AHE) [150] is applied
to the OCT image1. As a result the boundaries across the entire image have consistent
contrast with respect to the surrounding pixel intensities.

In addition, to enhance the arc-like structures of the boundaries, morphological op-
erations [119] are applied. The layer boundaries are enhanced by first applying an open
operator with a rectangular 1 × 7 pixel structuring element to the grey scale tomograms.
The angle of the structuring element is iteratively modified so that the operation can p-
reserve arc structures. The process begins with the structuring elements oriented at −30
degrees and ends when the structuring element is at 30 degrees with a change of 3 degrees
per iteration. With each morphological iteration, the epithelium and endothelium bound-
aries become better connected. To reduce the presence of noisy boundaries and produce
a more uniform boundary, a large amount of blurring2 is applied to produce a prepro-
cessed image, presented in Fig. 5.2 (b). The blurring should have the effect to remove all
tomogram details while preserving the general corneal shape.

The edges of the cornea are found by applying a horizontal edge detector [99] to the
region that represents the cornea. This preserves the predominantly horizontal arc-shape of
the cornea while ignoring vertical edges that might be associated with noise. To strengthen
the boundaries, the image is dilated with a rectangular structuring operator, as shown in
Fig. 5.2 (c). The edge detector and dilation produces sets of points in pixel coordinates,
Ψl =

{
(s0,l,1, s1,l,1), (s0,l,2, s1,l,2), . . .

}
, for l = {0, 1}, that correspond to the positions of

pixels located on the outer corneal boundaries. All of the detected points are assigned to
either the epithelium point set, Ψ0, or the endothelium point set Ψ1. Points in the upper
half of the image are assigned to the epithelium set, Ψ0 and points in the lower half of the

1AHE was applied with the following parameters: the number of tiles is equal to 8× 8, the clip limit is
0.01, the number of bins is equal to 256, the full image intensity is used, and a uniform distribution was
used.

2Gaussian blurring is applied twice sequentially with kernel size of 250 µm× 37.5 µm lateral by axial
and with sigma equal to 25 µm laterally and 3.75 µm axially. Gaussian blurring is then applied a third
time with a size 250 µm× 37.5 µm lateral by axial and sigma equal to 50 µm laterally and 7.5 µm axially.
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(a) Original (b) Preprocessed

(c) Edge Detection (d) Upper/Lower Curves

Figure 5.2: Steps involved in the proposed approach to segment the layers of the cornea
images. The raw image (a) is preprocessed in (b) so that initial estimates of the upper and
lower curves can be calculated. Edge detection (c) is applied to the preprocessed image
and (d) the algorithm locates an estimate for the upper, Ω̂0(s), and lower, Ω̂1(s), curves.
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image are assigned to the endothelium set Ψ1.

5.2 Outer layer parameter estimation

The parameters in Θl are estimated so that C(s, Θ̂l) best fits the points in the set Ψl. A
linear programming model, [104],

Θ̂l = argΘl
min

(∑
∀k∈Ψl

(
min
s
‖Ωl(s)−Ψl,k‖2

)

+
∑
ι,j

(
cstl,ι,j

(
Yl,ι,j,min + Yl,ι,j,max

)))
, (5.7)

such that:

θl,ι,j +MYl,ι,j,min > θl,ι,j,min ∀l, ι, j (5.8)

θl,ι,j −MYl,ι,j,max < θl,ι,j,max ∀l, ι, j (5.9)

Yl,ι,j,min, Yl,ι,j,max ∈ {0, 1} ∀l, ι, j, (5.10)

is established to ensure that each parameter in Θl is between a reasonable minimum and
maximum value. The ranges are established with training data consisting of hundreds of
segmented healthy tomograms. The indicator variables,

Yl,ι,j,min ∀ l, ι, j, (5.11)

and

Yl,ι,j,max ∀ l, ι, j, (5.12)

are equal to 1 if θl,ι,j is outside the minimum or maximum allowable value, otherwise the
indicator variables are equal to zero. The variable M is defined as a sufficiently large
constant3 such that,

M � θl,ι,j ∀ l, ι, j. (5.13)

The constraints (5.8)-(5.10) utilize M , causing Yl,ι,j to be set to 1 if θl,ι,j exceeds its limits.
For every Yl,ι,j that equals 1, a sufficiently large cost, cstl,ι,j (5.14), is injected into the cost

3M was specified here to be 10e10
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function (5.7) whenever the value of the parameter θl,ι,j is not within the range θl,ι,j,min to
θl,ι,j,max.

The optimization function minimizes the distance between each point in Ψl and the
corresponding curve C(s, Θ̂l) by finding Θ̂l, the optimal value of Θl. The cost function has
been designed to improve convergence by penalizing the difference between θl,ι,j and the
nearest valid parameter value, θl,ι,j,min or θl,ι,j,max, when θl,ι,j is outside the valid range.
The cost function can be defined as

cstl,ι,j = M

∣∣∣∣∣θl,ι,j − 1
2

(
θl,ι,j,max + θl,ι,j,min

)
θl,ι,j,max − θl,ι,j,min

∣∣∣∣∣∀l, j. (5.14)

Once Θ̂l is determined, C(s, Θ̂l) becomes defined allowing the model, Ω̂α(s) to be usable.
The next step is to accurately locate all five boundaries, Ω̂αι(s), using the pixel intensities
of the original, unprocessed UHROCT tomogram.

5.3 Model guided segmentation

The most significant contribution of this research tool is to present a parameterized layer
model that guides the segmentation process allowing low-contrast layer boundaries to be
located. The model is registered using the outer layers, C(s, Θ̂0) and C(s, Θ̂1), from Sec-
tion 5.2, and the layers can be estimated using the model defined by the curves Ω̂αι(s),
from (5.1). Each layer boundary can now be located by determining α̂ι, the estimate
of αι. In this instance, the model parameterizes the boundary segmentation into a one-
dimensional exhaustive search for α̂ι∀ι that utilizes an average pixel intensity metric, edge
detection, and prior statistics. Ultimately, the actual boundary, Ωαι(s), is estimated as
Ω̂α̂ι(s).

To reduce the possibility of falsely identifying the layer boundary due to imaging noise,
the image is implicitly denoised using a spatial weighted average. The average pixel inten-
sity metric, f(N , α), averages all pixels in the vicinity of the curve Ωαι(s) ∀s as α varies.
The subset of pixels within the surrounding neighborhood is defined to be in the set N .
The average pixel intensity metric is a single value that quantifies the intensity of all pixels
in N .

The corneal layer boundary is represented by a curve made up of darker intensity
pixels surrounded by lighter intensity pixels. A rudimentary edge detector can locate the
boundary by taking the average pixel intensity difference between the lighter set and the
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darker set of pixels. The set of pixels within the immediate vicinity of Ωαι(s) ∀s are
assigned to the near neighborhood, Nn,α. The set of pixels surrounding the potential layer
boundary are by definition adjacent to Nn,α and are contained in the far neighborhood set,
Nf,α.

Pixels near Ωαι(s) are assigned to either Nn,α or Nf,α based on their distance from
Ωαι(s). To define the distance metric, each pixel in the image, located at (s0,p, s1,p) in the
image coordinate space, is transformed to the point (αp, sp) in the corneal model coordinate
space, such that

Ω̂αp(sp) =

[
s0,p

s1,p

]
. (5.15)

Then the distance from (s0,p, s1,p) to Ωα(s) is defined as

dα (s0,p, s1,p) = αp − α, (5.16)

which, from the construction of the model, is the distance from the pixel to the curve
projected onto the shortest line segment connecting the outer corneal boundaries. The
neighborhood Nn,α contains all the pixels within τn pixels of the curve,

Nn,α =

{
(s0,p, s1,p)

∣∣∣∣∣∣dα (s0,p, s1,p)
∣∣ ≤ τn

}
, (5.17)

and Nf,α contains pixels surrounding Nn,α. The pixels in Nf,α are between τn and τf pixels
away from the curve,

Nf,α =

{
(s0,p, s1,p)

∣∣∣∣τn < ∣∣dα (s0,p, s1,p)
∣∣ ≤ τf

}
. (5.18)

Due to imaging noise, the average intensity metric, f(N , α), utilizes a weighting func-
tion, Wp, that weights pixels based on their distances from the curve,

f(N , α) =

∫
N Wp

(
dα (s0,p, s1,p)

)
· I(xp, yp)dN∫

N Wp

(
dα (s0,p, s1,p)

)
dN

, ∀(s0,p, s1,p) ∈ N . (5.19)

The weighting function, Wp, is specific to the noise levels in the tomogram and the thresh-
olds are determined by the spatial imaging scale. The neighbourhoods should be as narrow
as possible, setting both τn and τf to the mean width of the corneal layer boundaries. For
noise-free tomograms, Wp should weight pixels further from the curve less than pixels near
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(a) cross-section

(b) average curve intensity for all α

Figure 5.3: (a) The image intensity evaluated at the cross section through the centre of
the UHROCT image as α increases from 0 to 1. (b) In contrast with (a), (b) the average
intensity along constant α gradients, which is equal to the neighborhood image intensity,
f(Nα, α) with uniform weights and τn = 0. The significant minima of f(Nα, α) correspond
to the layer boundaries.
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the center of the curve so that the center of the curve generates the most significant edge
detection response. However for noisier tomograms, Wp should become more uniform, in-
creasing the amount of blurring thus making boundary location more robust to artifacts,
as illustrated in Fig. 5.3.

Since the tomogram is discrete, the average intensity is calculated by sampling the in-
tensities at desired intervals along s and desired distances away from Ωα(s). The intensities
can be interpolated at the non-integer pixel values obtained when evaluating Ωα(s) using a
desired interpolation method. For this implementation, n points were uniformly sampled
along s, and m points were uniformly sampled in the y direction for every value of s until
their distance exceeded τn and τf . A bilinear interpolation method was applied.

Since the algorithm is attempting to locate layer boundaries, it is expected that the
difference between f(Nn,α, α) and f(Nf,α, α), defined as

g(Nn,α,Nf,α) = f(Nf,α, α)− f(Nn,α, α), (5.20)

should have a large magnitude to indicate the presence of an edge. Ideally, the five-
most prominent values of g(Nn,α,Nf,α) should correspond to α̂ι for the five boundaries.
However, since there are global contrast variations between the upper and lower pixels
in the tomogram, the average contrast varies throughout the image. Consequently, the
five-most prominent edges may correspond to false boundaries passing through the center
of the tomogram, creating a need for a spatial filter that focuses on statistically likely
boundary locations.

Statistical prior knowledge is incorporated into spatial filters that boost the contrast of
regions where boundaries are expected and reduce the contrast in between the boundaries.
The values of g(Nn,α,Nf,α) are weighted according to a probability density function (PDF),
P (αι), corresponding to likely values of αι for each boundary. Using segmentation results
obtained from hundreds of corneal tomograms, the PDFs for the ιth boundary can be
approximated as a Gaussian distribution with a mean of µαι and a standard deviation of
σαι ,

P (αι) =
1

2πσαι
exp

(
−(αι − µαι)2

2σαι
2

)
. (5.21)

Using P (αι) as a spatial weighting, g(Nn,α,Nf,α) is transformed into,

h(Nn,α,Nf,α) = P (αι) · g(Nn,α,Nf,α), (5.22)

for each boundary layer.
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Finally the location of each corneal layer can be estimated. The five most prominent
local minima of h(Nn,α,Nf,α), a weighted difference of f(Nα, α) illustrated in Fig. 5.3 (b),
are calculated for ι ∈ {1, 2, 3, 4, 5}. The associated values of α are assigned to each α̂ι. The
resulting curves, Ω̂α̂ι(s) ∀ι, represent the location of each of the five layer boundaries, given
the tomogram data and the underlying model assumptions. The algorithm corresponding
to the entire localization process can be found in Algorithm 1, page 170.

5.4 Evaluation data

The human corneal images for this application are two-dimensional tomograms acquired
in-vivo from healthy volunteers with a research grade UHROCT system operating in the
1060nm wavelength region. Technical details about the system design and performance
have been discussed elsewhere [10, 57, 101]. The imaging system provides 3 µm axial and
about 15 µm lateral resolution in the human cornea. The optical power of the imaging
beam incident on the cornea is limited to 1.5mW in accordance with ANSI regulations [30].

Data from a group of twelve healthy human volunteers of different age, gender and
ethnicity were recruited for this study and their corneas were imaged with the UHROCT
system in compliance with university approved ethics protocols. Two-dimensional corneal
UHROCT tomograms were acquired close to the apex of the cornea and have dimensions
of 1000× 512 pixels (lateral by axial), such that the physical image dimensions are about
5 mm×1 mm. An example UHROCT image of the human cornea is shown in Fig. 2.5. All
corneal layers, except for the endothelium, are clearly visible in the UHROCT tomogram.

The robustness of the automated boundary localization method was validated by seg-
menting several types of tomogram artefacts acquired during the imaging session. Some
tomograms have low optical quality or contain artefacts related to eye motion, satura-
tion of the optical signal due to back reflection from the apex of the cornea, or eyelashes
obstructions due to subject blinking. These artefacts are presented in Fig. 5.5.

Because the limited axial resolution of the research grade UHROCT imaging system is
3 µm per pixel, the boundary between Descemet’s membrane and the endothelium cannot
be resolved. Instead the Descemet’s membrane and the endothelium are segmented as a
single region, referred to as Descemet’s endothelium complex. The data in this document
were acquired with an UHROCT system, which allows for non-invasive imaging of a hu-
man cornea with 3 µm axial resolution and an acquisition rate of 47, 000 2D scans per
second [33].

Ground truth was established by having a trained technician manually locate each
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Table 5.1: Segmentation Experimental Results

Error
Layer Bias [pixels] Std.Dev [pixels] Bias [µm] Std.Dev [µm]

epi 1.32 1.26 3.92 4.38
bow 0.709 10.7 4.59 5.38
str 2.56 5.19 2.86 3.50
des 3.68 4.69 5.94 6.07
end 2.52 3.25 6.52 7.11

corneal boundary. Using a computer, the technician selected between 50 to 100 pixels to
represent each inner layer boundary. Due to the labour intensive nature of this process, the
technician manually segmented the inner boundaries for 20 randomly selected tomograms
and the author, after training, manually generated ground truth for an additional 80 tomo-
grams. Since the outer boundaries had higher contrast and were easier for the technician
to segment, the technician provided between 10 and 20 pixels on each outer boundary for
all 2, 050 tomograms.

5.5 Results

The proposed algorithm located the epithelium and endothelium boundaries to about 1.32
pixels and 2.52 pixels, respectively, of the manually segmented images for all of the images,
with a standard deviation of about 1.3 and 3.2 pixels, respectively. Table 5.1 contains
the results in pixels and µm for the other layers. A close-up of the boundary localization
results are presented in Fig. 5.4.

The residual error, rl,ι,auto, of the proposed method is quantified as,

rl,ι,auto = s1,l,ι,auto − s1,l,ι,man, (5.23)

where (s0,l,ι,man, s1,l,ι,man) are the pixel coordinates of the ground truth and (s0,l,ι,auto, s1,l,ι,auto)
are the nearest corresponding points generated using the automated method for each of
the layer boundaries. The mean absolute error over all samples, e,

e =
∑ 1

nι

nι∑
l

|rl,ι,auto|,
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Table 5.2: Error Statistics Measured in Micrometers for each Layer Boundary: mean
absolute error (eι), mean bias (bι), and the mean standard deviation (σι)

EIS

layer (i) eι bι σι
epi 5.07 -1.26 9.24
bow 5.76 -3.18 12.42
str 6.42 1.89 15.42
des 6.36 -0.24 14.82
end 4.86 -0.48 8.76

Proposed

layer (i) eι bι σι
epi 3.87 -3.87 4.86
bow 12.81 -12.81 4.56
str 20.60 -20.60 4.98
des 6.00 -6.00 3.24
end 6.60 -6.18 7.62

75



Figure 5.4: Layer boundaries are accurately located using the proposed corneal model.

the bias b, and the standard deviation, σι, can be used to quantify the accuracy of the
obtained layers, and are shown in Table 5.2.

The bias of the EIS algorithm, Table 5.2, is less than that of the automated method
due to the fact that the automated algorithm consistently underestimates the location of
the resulting corneal boundary. The cause is due to selecting a minimum of f(Nα, α) in-
stead of selecting a point half way between the minimum and maximum. Since the bias
is systematic, the boundary layers are easily corrected by translating the corresponding
layer boundaries upward. The standard deviation of the proposed algorithm, is similar
for the epithelium layer and notably less for the inner corneal layers, indicating that the
fully-automated proposed algorithm is more consistent than a human operator using a
semi-automated segmentation process. To further improve the algorithm it may be possi-
ble to refine the boundaries given by the proposed method using local optimization tech-
niques. The proposed algorithm, however, is the first published fully-automated algorithm
to successfully segment the three inner corneal boundaries [35].

Fig. 5.5 and Fig. 5.6 visually illustrates how well the proposed algorithm identifies each
layer boundary compared to EIS. Bowman’s membrane and stroma boundary and the
Descemet’s endothelium complex are indistinguishable to the epithelium and bowman’s
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Figure 5.5: Performance of the automated approach compared to EIS for five corneal
images. Rows 3 and 4 contains dark regions because the UHROCT images are obtained
near the apex of the cornea, and row 5 contains degraded vertical regions due to the
obstruction of eye lashes during the imaging process. The automatic method correctly
locates all five layer boundaries for each type of image. Although EIS can obtain the
general position of the 3 most prominent corneal layer boundaries, inaccuracies of EIS
prevent cannot resolve the subtle inner boundaries.
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Figure 5.6: Six close-up examples of applying 2D corneal segmentation to OCT images.
The model accomplishes exact segmentation, despite significant noise and varying corneal
layer location within the image. The prominent imaging artifacts result from the high
corneal backscatter due to imaging near the apex.
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membrane boundary and the outer endothelium boundary due to the large standard devi-
ation associated with these boundaries, Table 5.2. As seen in rows 3 through 5 of Fig. 5.5,
the proposed algorithm performs well despite the presence of imaging artifacts. The re-
sults for the 2050 UHROCT data set contain a representative set of UHROCT imaging
artifacts.
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Chapter 6

Corneal Model

To reduce measurement noise during the imaging process, measurement location uncertain-
ty due to eye movement, and to estimate regions of the cornea that are sparsely sampled,
a corneal model is essential as it establishes relationships between neighbouring corneal
regions. During the reconstruction process, the corneal model is used to introduce corneal
structural, corneal motion, and additional consistency constraints. Since the corneal model
establishes corneal layer constraints and a eye motion model, the reader should have an
understanding of corneal layers and boundaries, Subsection 2.2.1, their visual appearance
within an UHROCT tomogram, Subsection 2.2.2, and an understanding of eye motion,
Subsection 2.2.3. Further, while the details of Chapter 5 are supplemental, the structural
constraints in this model are derived from the statistics collected in Section 5.5. The reader
should also be familiar with Section 2.1 to understand the importance of a subject model
and to better understand the model design strategy; Subsection 2.1.2 is essential to this
chapter. After the corneal model is created, the resulting model is utilized in Chapter 7.
While the details are important for the construction of the model and to satisfy Objec-
tive 3, page 45, only high level knowledge of the corneal model is required for understanding
reconstruction.

While an infinite number of corneal models can be created, a useful corneal model is
one that simplifies the measurement to model correspondence, simplifies the reconstruc-
tion process, and allows meaningful data to be extracted. While modelling the cornea
at a cellular level allows UHROCT tomograms to be obtained using a UHROCT forward
model as one does in reality, the forward model measures coherent light source scattering
potential at a specified position, with a complex relationship with the underlying physical
characteristics of individual cellular anatomy. Instead, both overall model complexity and
forward model complexity can be simplified by modelling scattering potential at any point
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within the random field representing the cornea; in this case the forward model can be re-
duced to a linear measurement correspondence matrix and the intra-relationships between
neighbouring elements within the scattering potential 3D field can be modelled. Since one
goal of corneal reconstruction is to provide an estimate of the corneal layer thickness in
various cross sections, the corneal model should also include a means from which the loca-
tion of corneal layer boundaries can be easily determined. Further, Fig. 5.3 in Section 5.5
illustrates that scattering potential is coupled with the location of the corneal layer bound-
aries. The corneal model is designed to decouple these properties, simplifying the structure
model parameters and the scattering potential field estimation during the reconstruction
process.

Finally, a model of the corneal eye motion is presented as an attempt to bound the error
due to measurement location uncertainty. Since the measurement correspondence is part of
the forward model, the reconstruction in Chapter 7 estimates the structural and scattering
potential field assuming that these values are given. The main use of the eye motion model
occurs in Chapter 8 where the measurement location parameters are estimated through an
optimization problem designed to minimize reconstruction error.

Synthetic tomograms can then be generated from the corneal model, satisfying Objec-
tive 4, page 45. While not essential to the process, they provide easily accessible tomogram
data with ground truth for reconstruction and parameter estimation evaluation. Although
the model depends on statistics, anatomy, and imaging systems from existing background,
the design theory and selective combination of background produce a novel corneal model
that facilitates corneal reconstruction and contains an explicit representation of the corneal
structure, from which corneal layer thickness measurements can be directly obtained.

Chapter organization

This chapter separates the design of the corneal model into a structural model, a scattering
potential field model, and an eye motion model. First, Section 6.1 describes how the 2D
layer boundary statistics, presented in Section 5.5, can be expanded to create a 3D surface
model for each of the corneal layer boundaries and how the parameters of the surface
can be estimated from a random field containing 2D boundary layer statistics collected
from all of the available tomograms. Second, Section 6.2 presents Markov random field
models that represent the scattering potential relations within each corneal layer, modelling
scattering potential as one would model a texture. Third, a simplified eye-motion model
is presented in Section 6.3 that quantifies measurement location uncertainty and derives
a linear coordinate system transformation allowing measurement location for each pixel
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within a tomogram to be repositioned based on eye-motion parameters. Each section also
provides synthetic examples of the model for visualization.

6.1 Structural model

The purpose of the structural model is to enforce anatomical corneal structure while per-
forming reconstruction. Since corneal layers are the significant source of structure, mod-
elling theses layers in 3D is the primary objective of this section. The goal of this section is
to parameterize each corneal layer boundary in 3D so that it can be calculated efficiently
and robustly from the tomogram measurements during reconstruction. For synthesis, the
parameters of each layer boundary can be determined through statistical analysis of the
2D corneal layer boundaries described in Section 5.5 and through anatomy described in
Subsection 2.2.1. The structural model presented here models healthy human cornea.

This section first presents two different structural models. The first model in Subsec-
tion 6.1.2 and extended in Subsection 6.1.3 is useful for creating synthetic cornea because
there are a large number of parameters that can be obtained from UHROCT statistics
allowing for subjects with greater structural variance. However this model has parame-
ters that are hard to estimate robustly. The second model in Subsection 6.1.4 models the
corneal layers as a sphere, reducing the number of parameters required to estimate and
allowing the use of existing spherical fitting algorithms. Estimating the spherical model
parameters is more robust than the rotating curve parameters thus making it more suitable
for reconstruction purposes.

6.1.1 Curvature statistics

Ideally a surface can be constructed from a large dataset of 3D UHROCT containing the
location of each corneal layer boundary through manually segmentation. Unfortunately,
fully 3D reconstructed corneal data is difficult to obtain and time consuming to manually
reconstruct. Further, manually segmented corneal layers within these datasets are non-
existent. Instead statistics from individual tomograms combined with expected anatomy
can provide corneal curvature information.

The layer boundary model from Chapter 5 models each boundary within a tomogram
as a 2D curve. Estimates of each curve,Ω̂αι(s)∀ι ∈ [1, 2, 3, 4, 5], are extracted from the
tomogram measurements providing a large collection of corneal curvature measurements.
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These measurements can be utilized to convert a 2D curve into a smooth and continuous
3D surface suitable for a structural model.

6.1.2 Rotating curve model

A primitive surface model rotates the first half of the 2D curve, Ω̂αι(s), oriented in the −→x 0

and −→x 1 plane and centered such that the halfway point of the curve intersects the −→x 1 axis,
in 3D space by 360 degrees about −→x 1. Fig. 6.1 (a) illustrates this rotation. The results are
smooth and this method models uses the 2D curve allowing it to capture deviations from
a spherical corneal model.

6.1.3 Multiple rotating curves model

A slightly better model is to rotate the entire 2D curve using spherical interpolation [120],
such that the resulting curve is equal to the first half of Ω̂αι(s) at 0 degrees and the resulting
curve is equal to the second half of Ω̂αι(s) at 180 degrees, as illustrated in Fig. 6.1 (b). This
improvement preserves continuity and surface smoothness but allows asymmetry about the
−→x 1 axis.

The spherical interpolation can be extended such that arbitrary curves can be inserted
at any desired angle. The surface can be created by interpolating the half curves located at 0
degrees to an independently selected half curve at 90 degrees. Then spherical interpolation
continues from 90 to 180 degrees, 180 to −90 degrees, and −90 to 0 degrees. Fig. 6.2
illustrates how surfaces can be generated using this method. While spherical interpolation
from multiple curves can be utilized using an infinite number of curves, the model is
arbitrarily restricted to the use of two curves, one curve located in the −→x 0 and −→x 1 plane
and the other perpendicular curve located in the −→x 1 and the −→x 2 plane. The arbitrary
choice is purely based on the amount of effort required to collect corresponding 2D curve
statistics from real human tomograms. The result of using this method from two randomly
generated curves using real human tomogram statistics is illustrated in Fig. 6.1 (c).

6.1.4 Spherical model

Although the curve rotation models presented in Subsection 6.1.2 and Subsection 6.1.3
are useful for generating synthetic corneal models, fitting data points to multiple rotating
curves is difficult and sensitive to noise introduced in sparsely sampled corneal regions. For
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(a) (b)

(c)

Figure 6.1: (a) shows how a primitive 3D corneal layer boundary surface is created by
rotating half of a layer boundary curve. (b) extends (a) by rotating the entire curve from
0 degrees to 180 degrees, using spherical interpolation so that both halves of the curve
match the other when rotated 180 degrees. (c) generalizes curve rotation by adding any
number of curves to be interpolated.
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Figure 6.2: The epithelium and endothelium corneal surface layers are generated from
spherical interpolation of two perpendicular curves determined through random parameter
generation based on curve statistics collected from the UHROCT dataset.
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instance, if the layer boundaries from one tomogram contradict a second tomogram the
average position from both can be used to reduce measurement noise, or a new curve can
be added to the model to perfectly fit both. If the one tomogram is sufficiently far from
other tomograms, that tomogram will influence the shape of the curve causing the layer
boundaries to be more suspectable to measurement noise. Tomograms in an unsampled
corneal region can heavily influence the shape of the cornea, especially if the tomogram’s
pose has uncertainty.

Instead, a simplistic spherical model with four parameters for each corneal layer is
suitable. Since least squares spherical data fitting algorithms already exist [75], there is no
need to create a new fitting algorithm from scratch. Further a spherical corneal model is
a good approximation of corneal anatomy, shown in Subsection 2.2.1. With only a radius,
ρ, and the location of the center, c, for each layer, there are few parameters relative to
the number of layer boundary measurements from each tomogram. The parameters can
be calculated from only two tomograms sufficiently far apart, for instance on either side
of the apex, or two perpendicular tomograms. Additional tomograms improve parameter
estimation accuracy.

The parameters for each of the layer boundary radius, ρι and center, ci, can be repre-
sented in the vector Z1,

Z1 =



ρ1

c0,1

c1,1

c2,1

ρ2

c0,2

c1,2

c2,2
...
ρ5

c0,5

c1,5

c2,5



. (6.1)

The same layer numbering scheme used in Chapter 5 is also used here. For example, the
radius and center of the spherical representation of the epithelium surface is stored as ρ1

and (c0,1, c1,1, c2,1) and the spherical representation of the endothelium layer is stored as ρ5

and (c0,5, c1,5, c2,5). The spherical model is shown in Fig. 6.3, illustrating five corneal layer
boundaries.
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Figure 6.3: All five corneal layer boundaries, green, blue, magenta, black, and red, are
synthesized using parameters sampled from all of the UHROCT boundary location data
from Section 5.5.
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In isolation the spherical model does not explicitly model local deviations from the
sphere. However the location deviations are not removed from the measurements. Instead,
when the structure is removed, the location deviations will exist in the relatively structure
free scattering potential random field, Z2. Then the scattering field is reintegrated with
the spherical structure model, the local deviations will also be introduced. Thus averaged
corneal layer thickness measurements can be taken directly from the spherical model, how-
ever more accurate thickness measurements should be taken directly from the combined
structural and scattering potential model.

6.2 Scattering potential model

The limited number of human patients and the lack of existing corneal UHROCT dataset-
s with labelled boundaries presents a problem when trying to develop a reconstruction
algorithm. While the structure of the corneal layers have been statistically modelled, char-
acterizing scattering potential at a cellular level is more challenging. This section attempts
to establish a practical scattering potential model that can characterize the appearance
of scattering potential within the corneal layers. While the primary purpose of the model
is to estimate scattering potential within a 3D reconstruction, the secondary purpose is
to generate simulated UHROCT tomogram ground truth by varying parameters in the
structural model, which produces known boundary locations, and to use this scattering
potential model to synthesis intra-layer characteristics. Using these models, reconstruction
method can be evaluated on a large amount of synthetic data.

While it is possible to extend the scattering potential model beyond appearance, the
generation of ground truth for verification and testing is much more challenging than
the generation of ground truth for the corneal layer boundaries. For this application,
layer boundary segmentation tools were written so that ground truth could be extracted
efficiently from human corneal UHROCTs. While having such a tool to model corneal
cellular structure is invaluable for other corneal research, the cellular structural modelling
falls outside the scope of work for this particular application. Instead, a scattering potential
model representing a collection of cells within a corneal layer is more feasible and more
robust for the purposes of layer boundary reconstruction than modelling individual cell
scattering potential from physics and first principles. The parameters of a regional model
are fewer than those required to model the structure of individual cells. The regional
model can also be designed using corneal layer statistics that can be segmented using the
automated layer boundary localization tool from Chapter 5.

This section is divided into four subsections. The first subsection, Subsection 6.2.1,
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decouples the corneal layer structure from scattering potential within an UHROCT tomo-
gram and develops an atlas so that all patient tomograms can be compared and analyzed.
The second and third subsections, Subsection 6.2.2 and Subsection 6.2.3, determine how
the scattering potential within an UHROCT cross-section can be modelled using a texture
model. The fourth subsection, Subsection 6.2.4, shows how the scattering potential from
the atlas and be recombined with the structural model so that an UHROCT cross-section
can be synthesized.

6.2.1 2D UHROCT atlas

This subsection explores how to develop an UHROCT atlas while simultaneously modelling
the scattering potential of the corneal layers from UHROCT tomogram using a random
field described in Section 2.1.2.

Since each corneal UHROCT cross-section is imaged at different positions in the cornea
for each subject, a consistent cellular density measurement process is necessary to capture
the spatial cellular density biases and variances. The intensity of the layer boundaries near
the apex of the cornea differ from the intensities further from the anterior pole. Measuring
the cellular density as a function of an arbitrary reference frame with basis vectors −→s 0,i

and −→s 1,i dependent on the imaging perspective and independent of the cornea is simple,
but confounds intensity with the position and shape of the cornea within the UHROCT.
Instead each UHROCT can be registered to an atlas.

Although each UHROCT cross-section can be registered to any atlas, the form of the
atlas can be constrained so that scattering potential can be easily and consistently mapped
from the tomogram to the atlas once the cross-section is registered. Since every cross-
section must be registered, the atlas should capture characteristics common to all cross-
sections. The layer boundaries are convenient common characteristics because they are
the most prominent structure in each tomogram and, unlike the location of the anterior
pole, are common in all of the tomograms. In addition, the layer boundaries can be
automatically located using the automatic layer boundary localization tool, previously
discussed in Chapter 5.

Further the use of the layer boundaries reduces the registration problem into a mapping
problem; each pixel in Ti can be mapped from the point (s0,p, s1,p) to the corresponding
point in the corneal model coordinate space using the relationship defined in (5.15). The
point (s0,p, s1,p) is mapped to (sp, αp) and αp and sp are linearly transformed into the atlas
space. The point (sp, αp) = (0, 0) is mapped to (0, 750) and the point (sp, αp) = (1000, 1)
is mapped to (1000, 250).

89



Fig. 6.4 represents the atlas corresponding to the registration process and Fig. 6.5
illustrates the registration of a single tomogram. Notice that the air to corneal epithelium
boundary and the inner eye to corneal endothelium boundary are straightened during the
registration process. This is the result from defining the air to corneal epithelium boundary
as Ωαp=0(s) and the inner eye to corneal endothelium boundary as Ωαp=1(s); since αp is
constant and the registration maps points from (s0,p, s1,p) to (αp, sp), the epithelium and
endothelium boundaries become line segments along αp = 0 and αp = 1, respectively.
The (αp, sp) space can be quantized so that a bitmap can be used to store the results of
registering tomogram Ti.

6.2.2 Simple uniform model

The texture model can be created iteratively by starting with the simplest model and
adding complexity until the model is sufficient. The simplest texture is a uniform model
that can represent both the vertical and horizonal scattering potential trends using the
mean of all tomograms for the same region. Fig. 6.6 represents the mean from all the
patients in the dataset. Notice that all five layer boundaries are straightened and appear as
dark borders within the composite. The textures in each corneal layer also have interesting
characteristics. For instance, the stroma has patches of high scattering potential indicating
trends in all of the patients. In contrast, the epithelium, Bowman’s membrane, and the
Descemet’s endothelium complex are largely uniform in intensity.

The trends of the texture can be determined using line integrals through the α direction,
shown in Fig. 6.7 and Fig. 6.9. Ignoring the extremities, using vertical line integrals, the
horizontal trends create lighter intensity near the edges and darker intensity towards the
center. Similarly, using horizontal line integrals, the vertical trends correspond to relatively
lower local intensities at each corneal layer boundary, shown in Fig. 6.8. This model can
be synthesized by simply extending the results of the vertical and horizonal line integrals
in the horizontal and vertical directions, respectively, and taking the mean of the result,
which produces the synthetic model shown in Fig. 6.10.

6.2.3 Scattering potential model

Since the synthetic texture model should represent scattering potential of the corneal layers
within the tomogram, the previous model from Subsection 6.2.2 provides a good estimate of
the average scattering potential, but does not attempt to model local values. Fortunately,
a Markov random field with sufficient complexity can parametrically model textures, such
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Figure 6.4: The texture registration process adjusts each tomogram to match this atlas.
The air-epithelium layer boundary occurs 250 pixels from the top of the image and the
inner eye-endothelium layer boundary occurs 250 pixels from the bottom of the image. The
other layer boundaries occur approximately at the values specified in the figure but have
slight variation in each tomogram. A spatial mapping function specific to each tomogram
is required to convert pixel coordinates from the atlas to micrometers.
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Figure 6.5: This figure illustrates the result of registering an arbitrary human tomogram
to a cornea atlas. The epithelium and endothelium boundaries become straightened dur-
ing the process. These boundaries are consistently located at the same location for all
tomograms.
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Figure 6.6: Each tomogram was warped such that the outer corneal boundaries were s-
traightened. Then all of the tomograms were registered and averaged to create the above
composite. Vertical and horizontal intensity parameters can be estimated from the com-
posite.
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(Vertical Trends) (Horizontal Trends)

Figure 6.7: Vertical and horizonal trends (blue) are measured using line integrals (red)
through the UHROCT composite. The vertical intensities (left-blue) are measured by
finding the mean of all pixels in each horizontal line (left-red) while the horizonal pixel
intensities (right-blue) are measured by finding the mean of all pixels in each vertical line
(right-red).
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Figure 6.8: The pixel intensity of the composite’s vertical trends is measured and illustrated
above. Notice that each layer boundary corresponds to a local pixel intensity minima.
The air-epithelium layer occurs when α equals zero and the inner eye-endothelium layer
boundary occurs when α equals one.

Figure 6.9: The pixel intensity of the composite’s horizontal trends is measured and illus-
trated above. Notice that the apex of the cornea represents a lower pixel intensity than
the surrounding edges.
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Figure 6.10: Using the intensities for the vertical (Fig. 6.8) and horizonal (Fig. 6.9) trends,
a simple synthetic composite can be constructed. Parameters corresponding to the position
of layer boundaries can be used to create variations. This simple synthesis does not contain
any cellular texture.
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as tree bark, cloth, sharp and blurry textures [42]. The uniform model can be combined
with a Markov random field to model local trends.

Existing methods to estimate a Markov random field are presented in Subsection 2.1.2.
Using these methods, the covariance, P , is calculated for each corneal layer within Ii,c,
the bitmap result of registering tomogram Ti to the corneal atlas. Fig. 6.11 illustrates P
associated with the stroma layer for one arbitrary Ii,c. In addition to covariance for one
Ii,c, the covariance of the entire population is estimated using the dataset of UHROCT
tomograms, illustrated in Fig. 6.12. It is important to note that the general structure
of P appears to be stationary and periodic since each column of P in Fig. 6.12 can be
approximated from the first column, P:,1, with a rotation. For example

Pa,b ≈ Pa−1,b−1. (6.2)

In fact, the mean absolute error satisfies,

1

n

∑
∀a>1,b>1

(
‖Pa,b − Pa−1,b−1‖2

)
< 6.15e− 005, (6.3)

and the mean absolute percentage error satisfies,

1

n

∑
∀a>1,b>1

(∥∥∥∥Pa,b − Pa−1,b−1

Pa,b

∥∥∥∥
2

)
< 1.18%. (6.4)

The stationary and periodic covariance assumption is supported by the low error terms.
The resulting covariance matrix is illustrated in the left image in Fig. 6.12. The dense
covariance matrix P can be converted into a kernel P using material from Subsection 2.1.2.

The statistical model P is now used to synthesize a cellular density texture. The
random field representing the texture is seeded with random initial conditions. Potential
seed functions such as Gaussian noise, speckle noise, and salt and pepper noise, and uniform
noise can be proposed to simulate the visual appearance of the corneal. Representative
samples of the seed images are illustrated in Fig. 6.13.

Using a desired noise function, the random field, N , is populated with the desired
seed, such as the sampled CDF seed function. The resulting cellular density texture, Z, is
obtained by convolving the square of P with the randomly seeded field N [42]

Z = F−1

(√
<
(
FP

)
· FN

)
. (6.5)
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Figure 6.11: The covariance associated with the stroma corneal layer from an arbitrary
tomogram after registration to the corneal atlas is visually represented. The red and yellow
colors along the diagonal indicate that pixels near each other have a high correlation while
the darker colors further from the diagonal indicate that pixels further from each other
have less correlation than the closer pixels.
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(covariance from all data) (periodic and stationary estimate)

Figure 6.12: The covariance matrix on the left is obtained from all subjects, which has less
noise than the sample covariance for a single random tomogram illustrated in Fig. 6.11.
The covariance matrix on the right is obtained by finding the stationary and periodic
properties of the covariance matrix on the left. Notice that each column of the periodic
and stationary estimate is a cyclic rotation of the columns next to it, as is expected for
stationary and periodic structures.
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(Gaussian) (Salt and Pepper)

(Speckle) (Uniform)

Figure 6.13: These seed functions, Gaussian, salt and pepper, speckle, and uniform are
noise functions that can be used in combination with a Markov model to generate a scat-
tering potential appearance found in a typical UHROCT tomogram. The Gaussian and
Speckle noise is smooth while the salt and pepper and uniform noise contains neighbours
with larger pixel differences.
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The benefit of using a uniform seed is that histogram equalization [96], can applied to Z
such that the resulting marginal distribution matches that of the corneal layers. The PDF
and CDF for the stroma obtained from a collection of UHROCT tomograms is illustrated
in Fig. 6.14 and the inverse CDF is illustrated in Fig. 6.15.

In addition to the statistical model, P , a deterministic model consisting of second-order
constraints, Q, derived in Subsection 2.1.2, is illustrated in Fig. 6.16. The P model es-
timated from many tomograms has suppressed covariance values due to averaging many
covariance matrices together. Both the second-order constraints and the P estimate from
a single tomogram produce reasonable results. The second-order constraints created par-
ticulates more similar in size to those in a real tomogram than texture model based on the
P estimate from a single tomogram.

The primary desired trait that is still missing is the horizontal structure that is present
in the real tomogram, but lacking from the textures. While P is calculated from statistics,
the deterministic second-order constraint model, Q can be modified to give more weight
to elements in the horizontal, the −→x 0 and −→x 1 directions. Fig. 6.17 illustrates the results
of the horizontal bias for the deterministic second-order constraint model, Q.

Using Q the 3D random field, Z2 can be estimated from a set of existing tomograms or
a synthetic cornea can be sampled from the deterministic model using a random seed. The
random field estimation is discussed in Section 7.2.2 so that the pixel intensities between
tomograms can be estimated from a set of measurements.

6.2.4 Combined atlas and scattering potential model

The Markov random field texture model of the scattering potential and the horizontal and
vertical trends obtained from analyzing the UHROCT cross-section atlas represent two
different aspects of the UHROCT model. Both the trends and scattering potential model
can be combined to create a realistic model of the cross-section. The pixel intensity trends
match the format of the corneal atlas and provides a mean to which the scattering potential
model can be added. To prevent image saturation and to produce a resulting image that is
similar to the human UHROCT cross-sections, the intensities of the vertical and horizontal
trends are repeated to create a 3D field the same size as scattering potential field. The
two intensity fields are added together so that the resulting intensities closely resembles a
human UHROCT cross-section. The combined model containing the Markov random field
texture and the structural and illumination biases is illustrated in Fig. 6.18.

The final step is to warp the 3D field of scattering potential, Z2 to the warped field Z
using the structure model from Section 6.1. Points are mapped in 3D in a similar process
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(Normalized Histogram)

(Estimated CDF)

Figure 6.14: The PDF is estimated from a histogram of pixel intensities (scaled from zero
to one) of stroma regions extracted from UHROCT tomograms. The CDF (red spline) is
calculated directly from a cumulative sum of the normalized histogram.
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(Inverse CDF)

Figure 6.15: The inverse CDF allows a random uniform density function to be transformed
to have the same distribution as the PDF.

to the 2D mapping that used (5.15). Let xi,2 represent a point in N2 and let xi,0 represent
the same point after it is mapped to Z. Also note that when the tomogram data was
registered to the corneal atlas, the vertical direction is equal to an affine transformation of
the α dimension,

x2,i,2 = −500α + 750. (6.6)

The horizonal and depth components, x0,i,2 and x1,i,2, are independent. When the structure
is reintegrated, the horizonal and depth can remain the same,

x0,i,0 = x0,i,2 (6.7)

x1,i,0 = x1,i,2, (6.8)

but the vertical component depends on the vertical position of the epithelium, x2,epi,0 and
endothelium, x2,end,0 layers. Adapting (5.1) for the 3D transform results in

x2,i,0 = αx2,end,0 + (1− α)x2,epi,0 (6.9)

x2,i,0 =

(
750− x2,i,2

500

)
x2,end,0 +

(
1− 750− x2,i,2

500

)
x2,epi,0. (6.10)
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(real tomogram) (second-order constraint)

(estimated from single tomogram) (estimated from many tomograms)

Figure 6.16: The three scattering potential textures above have been sampled using the
same uniform noise seed function and different cellular density models. The texture gen-
erated from the deterministic second-order constraints is able to produce a texture with
large particulates, similar in size to those in a real-tomogram, while the texture generated
by estimating P from a single tomogram does not.
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Figure 6.17: Each corneal layer in the above texture is sampled from a second-order deter-
ministic kernel, Q, with horizontal biases. Notice how the resulting texture now has more
prominent horizonal noise compared to Fig. 6.16 (second-order constraint).

Then the appropriate structure model is used to determine x2,epi,0 and x2,end,0 for all the
coordinates x0,i,0 and x1,i,0. While the rotating curve structural model is implemented
using Delaunay triangulation [29], the mapping for the spherical model substitutes

x2,epi,0 =

(
ρ1

2 −
(
x0,i,0 − c0,1

)2

−
(
x1,i,0 − c1,1

)2
) 1

2

+ c2,1 (6.11)

x2,end,0 =

(
ρ5

2 −
(
x0,i,0 − c0,5

)2

−
(
x1,i,0 − c1,5

)2
) 1

2

+ c2,5. (6.12)

into x2,i,0.

This formulation allows any number of tomograms to be generated along any specified
imaging plane to be sampled from the resulting 3D field, Z. While perpendicular and par-
allel sampling is exemplified in Fig. 6.19 and Fig. 6.20 respectively, the sampling interface
allows the pose of each individual tomogram to be specified facilitating any image plane
through the cornea, within the range limitations inherit in the UHROCT dataset.

Arbitrary 2D tomograms can be sampled from the 3D synthetic corneal model, illus-
trated in Fig. 6.21. The resolution of the tomogram is specified by the operator during
sampling and the resolution of the discrete 3D corneal model is specified by the operator
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(combined synthetic model)

(real tomogram)

Figure 6.18: A cross-section of the combined cellular texture model (top) is created from
a fast fourier transform from a uniform seed generated from a second-order determinis-
tic model for each layer boundary. A real human tomogram (bottom) is provided for
comparison.
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Figure 6.19: 3D synthetic tomogram sets are generated from the corneal model allowing
the operate to specify perpendicular sampling focusing on densely sampling the center of
the cornea (top) and focusing on a wider perspective of the same subject (bottom).
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Figure 6.20: 3D synthetic tomogram sets are generated by specifying parallel sampling of
the corneal model.
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Figure 6.21: A 2D corneal tomogram is sampled from the 3D corneal model. The tomogram
sampling resolution for this particular tomogram is specified as 600× 1000 pixels, sampled
from a synthetic 3D model with resolution 800× 800× 1000 pixels.

during synthesis. The image quality of the sampled tomogram is dependent on both the
sampling and synthesis resolutions. While high image quality is desired, high quality comes
at the cost of increased processing time to create a synthetic model and increased memory
usage. For this particular implementation the resolutions were tuned based on available
computing hardware such that a 3D corneal model can be synthesized without exceeding
20Gb of RAM at any time during synthesis. Initially solid-state disk drive (SSD) paging
was implemented to provide an additional 500Gb of memory during synthesis, however the
computational time required for the RAM to SSD input/output interface was impractical.
High-definition 3D models, 2000 × 2000 × 2000 pixels required days to synthesis. Since
the implementation was becoming increasingly complex the paging was discontinued and
replaced with a highly optimized and memory efficient implementation, allowing textures
of up to 10Gb given available RAM of 20Gb.
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6.3 Integrated motion model

The reconstruction process can compensate for eye movement during data acquisition using
the 3D corneal model synthesized in Section 6.2 by integrating the uncertainty caused by
tremors, drift, and microsaccades described in Subsection 2.2.3. The rotations illustrated
in Fig. 6.22 gives each point in the UHROCT three degrees of freedom in the tangential di-
rection. This section integrates the eye motion into the corneal model allowing tomograms
to be sampled from a synthetic corneal model with representative random eye movement
and ultimately allowing reconstruction from real human tomograms that contain such eye
motion.

6.3.1 Motivation

Since, as described in Subsection 2.2.2, a single tomogram can be imaged in about 21 to
34ms, the eye-motion described in Table 2.3 results in a mismatch between the desired
location of the last measurement and the actual location of the measurement. Let d be the
Euclidean distance between the desired location of the last measurement and the actual
location of the measurement. For an average healthy human cornea, eye motion accounts
for d = 26.2 µm to d = 153 µm. When viewed from the tomogram, this tomogram is
primarily in the tangential direction since, for small angular rotation approximations at
the anterior pole,

sin(θ) ≈ θ (6.13)

cos(θ) ≈ 1− θ2

2
(6.14)

tan(θ) ≈ θ, (6.15)

the tangential direction corresponds to the direction of travel, perpendicular to the radius
of the cornea. Since, on average, the Euclidean distance from the anterior pole to the center
of rotation is rcornea = 13.5 mm [83], the axial, daxial, and tangential dtangential components
of d can be calculated for θ, the angular deviation of the A-scan from the anterior pole, as,

daxial = d sin(θ) ≈ dθ (6.16)

dtangential = d cos(θ) ≈ d

(
1− θ2

2

)
. (6.17)
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(a) sagittal (b) transverse

Figure 6.22: The tomogram sampling area (orange) represents two tomograms (a) and (b)
with the lateral direction centered at the anterior pole. While the image plane for the
sagittal tomogram (a) is clearly visible, the image plane for the transverse tomogram (b) is
into the page. As the eye rotates at very small angles, the rotation motion results primary
in tangential translation, see Fig. 6.23.

For an UHROCT that has resolution of 3×10 µm, (axial × lateral), and 300×1000 pixels,
the angle at the extents, ±500 pixels from the center, can be calculated as,

tan(θ) ≈ θ =
10 µm

pixel
· 500pixels

rcornea µm
=

5000

13500
= 0.37 (6.18)

corresponding to daxial and dtangential, 56.7 and 142 µm, given d = 153 µm. Fig. 6.23
illustrates daxial and dtangential at several positions within a tomogram centered at the
anterior pole.

As presented in Fig. 6.23, d for a single tomogram is reasonable, and on average, does
not exceed 153 µm. However, as the number of tomograms increases, d also increases. In
UHROCT imaging, the patient is asked to stare at a target. If a target was not present,
d could increase until bounded by physical rotation limits or, more realistically, by envi-
ronment and patient specific neurological impulses. However, the target exists, and as d
becomes too large, theories suggest that the microsaccades refocus the eye towards the
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Error (red regions) due to drift after 0.034 s
region axial (µm) lateral (µm) area (mm2)

(a) 56.7 142 0.0081
(b) 25.5 151 0.0039
(c) 0.00 153 0.0000
(d) 59.2 142 0.0084
(e) 26.6 151 0.0040

Figure 6.23: When eye motion occurs during UHROCT sampling measurement location
error (red region) occurs. The error (c) at the anterior pole is a horizonal line since the
only allowable motion is lateral due to the anatomy of the eye and 3D rotational axes. As
the tomogram sampling moves further from the anterior pole, from (c) through (b) to (a),
the eye motion allows the volume containing the measurement location error increase; note
that the lateral direction also expands into and out of the page and only the cross-section of
the volume is shown in this figure. Note that (a) and (d) have the same pixel location, not
the same axial location. This figure is to scale assuming a spherical corneal assumption,
an epithelium radius of 7.5 mm [61], and a central corneal thickness of 581 µm [8].

112



target every 0.23 Hz to 2.5 Hz [78], or every 0.40 to 4.35 seconds. During 0.40 seconds,
between 10 to 20 UHROCT tomograms can be obtained, but the anterior pole might move
as much as 1740 µm. Fig. 6.24 presents a visualization of d after 0.40 seconds of sequen-
tial UHROCT sampling and Fig. 6.25 compares d for after 0.034, 0.40, and 1.6 seconds,
respectively.

At the upper limit of the microsaccades period, 4.35 seconds, the anterior pole might
move as much as 18, 800 µm or 54.4 deg, which is nearly the entire vertical field of view, and
should be discarded by the operator if all corneal layers would no longer be visible in the
tomogram. Since corneal regions appear very similar, however, the UHROCT tomogram at
the desired measurement location can be mistaken for many other corneal regions resulting
in great difficulty and location uncertainty when attempting to measure a desired location.
The rest of this section parameterizes this location uncertainty so that the actual measured
position can be estimated based on all available tomograms. Note that while the last
tomogram in a sequence may have a large d relative to the first tomogram in the same
sequence, the d within the same tomogram is relatively small since the sampling period for
a single tomogram is only 0.021 to 0.034 seconds; the location of measurements within the
same tomogram are relatively consistent.

6.3.2 Motion model

The large amount of measurement uncertainty during sequential tomogram imaging due
to eye motion, discussed in Subsection 6.3.1, justifies the need to model the uncertainty
of the tomogram pose, Θi, previously defined in Subsection 2.1.2. This section establishes
consistent relationships between the elements of Θi and the eye motion.

Modelling only the eye motion, the vector connecting the position of the corneal axes
of rotation to the UHROCT imaging system remains constant. Hence, establishing the
origin of the coordinate system at the corneal axes of rotation ensures that the coordinate
system does not translate relative to the UHROCT system. Further, a spherical coordinate
system can represent three rotational degrees of freedom, in the form of pitch, roll, and
yaw Euler angles (ϕ, ψ, ϑ) required to model human eye motion at any given point in
time. The radial distance (ρ) is determined as the distance from the origin of the spherical
coordinate system to the desired sampling point, xi,k, specified by the UHROCT imaging
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Error (red regions) due to drift after 0.40 s
region axial (µm) lateral (µm) area (mm2)

(a) 644 1620 1.0433
(b) 290 1720 0.4988
(c) 0 1740 0.0000
(d) 673 1610 1.0835
(e) 303 1710 0.5181

Figure 6.24: Similar to Fig. 6.23, which illustrates accumulated error after sampling for
0.034 s, after sampling for 0.4 s, or about 10 to 20 sequential UHROCT tomograms, eye
motion can cause the following daxial and dtangential error at the epithelium and endothelium
layers.
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Error due to drift in region (b)
region time (s) axial (µm) lateral (µm) area (mm2)
(b.i) 0.034 25.5 151 0.0039
(b.ii) 0.400 290 1720 0.4988
(b.iii) 1.600 1150 6840 7.8730

Figure 6.25: The amount of drift error is represented as cross-sections, to scale, of the
volumes containing the desired measurement are illustrated for point (b), for 0.034 s (b.i)
from Fig. 6.23, 0.40 s (b.ii) from Fig. 6.24, and 1.60 s (b.iii). After 1.60 s, or the time
required to sample about 40 to 80 sequentially sampled tomograms, the error is significantly
larger, 7.57 mm, and larger than the radius of the cornea.

115



system. The corresponding homogenous rotation matrix, Hrot,

Hrot0(ψ) =


1 0 0 0
0 cos(ψ) − sin(ψ) 0
0 sin(ψ) cos(ψ) 0
0 0 0 1

 (6.19)

Hrot1(ϕ) =


cos(ϕ) 0 − sin(ϕ) 0

0 1 0 0
sin(ϕ) 0 cos(ϕ) 0

0 0 0 1

 (6.20)

Hrot2(ϑ) =


cos(ϑ) sin(ϑ) 0 0
− sin(ϑ) cos(ϑ) 0 0

0 0 1 0
0 0 0 1

 (6.21)

Hrot(ϑ, ϕ, ψ) = Hrot0(ψ)Hrot1(ϕ)Hrot2(ϑ) (6.22)

which can rotate a point centered at the spherical origin about the spherical origin given
(ϑ, ϕ, ψ).

The pose parameters in Θi are specified by the UHROCT imaging system but instead
of sampling at the desired location xi,k,

Ti(si,k) = f
(
Z,xi,k

)
, (4.20 on page 56)

the desired sampling point xi,k of tomogram i and pixel k is rotated about the spherical
origin to determine the actual sampling point, xa,i,k,

xa,i,k = Hrot(ϑ, ϕ, ψ)xi,k. (6.23)

The tomogram sampling function, (4.20), becomes

Ti(si,k) = f
(
Z,xa,i,k

)
, (6.24)

or by substitution,

Ti(si,k) = f
(
Z,Hrot(ϑ, ϕ, ψ)xi,k

)
. (6.25)

The motion parameters ψ and ϕ are determined from the tremors, drifts, and microsac-
cades. Tremors, despite actually being aperiodic, are modelled using sinusoid at 90 Hz and
an amplitude of 0.0218 deg for simplicity, drifts are modelled as random walk over time
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with a speed of 0.41 deg per second and random direction calculated from θrand,d. The
random walk is discretely applied every ∆t, where ∆t is equal to the UHROCT sampling
period,

ψ(t+ ∆t) = ψ(t) + 0.0072∆t cos(θrand,d) + 2.20× 10−4∆t cos(180πt) (6.26)

ϕ(t+ ∆t) = ϕ(t) + 0.0072∆t sin(θrand,d) + 2.20× 10−4∆t cos(180πt), (6.27)

and microsaccades are modelled as periodic jumps at 2.4 Hz of random distance, drand,m,
between 2.06 deg and 9.64 deg in a randomly improving direction, where θrand,m is within
90 deg of the direction of steepest descent for [ψ(t), ϕ(t)]. Microsaccades update ψ(t) and
ϕ(t) every 0.417 seconds during the simulation,

ψ(t) = ψ(t) + drand,m sin(θrand,m) (6.28)

ϕ(t) = ϕ(t) + drand,m cos(θrand,m). (6.29)

The ψ is modelled to only be affected by tremors,

ϑ(t+ ∆t) = ϑ(t) + 2.20× 10−4∆t cos(180πt). (6.30)

Note that the termor is arbitrarily applied as 2.20 × 10−4∆t sin(180πt) equally to each
rotational axis.

The resulting simulated random eye motion is illustrated in Fig. 6.26, which can be
compared with actual measured eye motion in Fig. 2.8. While the simulation correctly
models the range of motion when compared to real measurements, several nuances are
not modelled, and are not present in the simulation. For instance, the exact strategy
of how microsaccades correct drift, i.e. the angle of correct, the amount of correct, and
the circumstances affecting the correction period, are intentionally not modelled. The
drift was modelled after a random walk, and could instead be modelled as a second-order
random walk to reduce the variability of the randomly chosen direction. Further, while
the tremor is simulated, the effects are negligible compared to drift and microsaccades and
can be removed from the motion model. While the model presented here can incorporate
these elements in the future, the eye motion model correctly accounts for the amount of
eye motion that can occur while obtaining an A-scan and is utilized to add measurement
uncertainty into the forward model and to illustrate reasonable motion limits .
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Figure 6.26: The green curves represent the random drift while the black lines represent
microsaccades. When compared to Fig. 2.8, the direction of simulated microsaccades does
not seem to drift correct toward the desired target of (0, 0) as well as the measured eye
motion. Further the simulated drift is modelled as a random walk, where the real drift
motion appears to follow a smoother curve. The patch has a width and height of 50 µm
and is located on the cornea.
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Chapter 7

Corneal Reconstruction

Once the measurements are obtained, the corneal model is created, and the forward model
is defined, corneal reconstruction can be performed to estimate states and parameters of
the corneal model from the measurements. This chapter implements the reconstruction
process of Section 2.1, satisfying Objective 5, page 45, using the corneal model and modified
forward model defined in Chapter 6, for which the reader should be familiar. In addition to
using the reconstruction process described in this chapter to produce a 3D corneal volume
and 3D surfaces for each corneal layer boundary, Chapter 8 uses the reconstruction process
extensively when estimating parameters associated with the forward model.

Using real patient tomograms and synthetic corneal tomograms, the structural and s-
cattering potential reconstruction methods are presented in this chapter. A preprocessing
step is applied to the tomogram that decouples the corneal structure from the UHROC-
T measured scattering potential in the same way decoupling was applied in the corneal
model; preprocessing locates the layer boundaries using Chapter 5 and each tomogram is
registered to the UHROCT tomogram atlas defined in Subsection 6.2.1. Reconstruction
uses the scattering potential that is mapped into the tomogram atlas and the boundary
layer location information to estimate corneal model states. While parameter estimation
by itself is not new, the corneal model state estimation and corresponding reconstruction
is novel for the UHROCT corneal application area. The ability to measure the corneal
thickness through an arbitrary cross-section is the primary contribution resulting from the
reconstruction, satisfying Objective 7, page 45.
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Chapter organization

This chapter is split into three sections. Section 7.1 presents the tomogram sets from
healthy patients and synthetic cornea that are reconstructed and measured in the following
sections. Section 7.2 presents all of the parameter estimation from tomograms registered to
the tomogram atlas. Then the parameters are used to create a 3D volumetric representation
of the corneal layers and a second 3D volumetric representation of the scattering potential.
Finally, Section 7.3 presents the reconstruction results using the evaluation data presented
in Section 7.1.

7.1 Evaluation data

The UHROCT data obtained from human subjects are described in Section 5.4. For 3D
reconstruction, three healthy human subjects were imaged. Ground truth for the data
was determined through manual segmentation and reconstruction for use in reconstruction
evaluation. The data is summarized in Table 7.1. Although data from four human subjects
were collected, initial problems with the imaging procedure prevented the use of some data
because the cornea moved out of the imaging plane as one of the subjects was being
scanned.

In addition, while over 100 synthetic subjects were created from the corneal model
described in Chapter 6 to refine the reconstruction process, 15 synthetic subject sets were
randomly generated to be used for reconstruction tests. Their characteristics are summa-
rized in Table 7.2. The corneal layer boundary structure for these subjects was generated
using the corneal structure model, in Section 6.1, with randomly selected corneal curva-
ture based on statistics collected from the human dataset, Section 5.4. These synthetic
test subjects were synthesized using the scattering potential model, in Section 6.2, and
warped to produce scattering potential sandwiched between the corneal structure. Fur-
ther, three different tomogram sampling schemes were utilized: densely centered sets of
sagittal and transverse sampled tomograms (Fig. 6.19 (top)), evenly spaced sets of sagittal
and transverse sampled tomograms (Fig. 6.19 (bottom)), and evenly spaced sagittal sam-
pled tomograms, (Fig. 6.20). Fig. 7.1 illustrates the sagittal and transverse directions for
corneal sampling.
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Figure 7.1: Light enters through the epithelium and exits through the endothelium layers
illustrated in blue. The cornea is sampled in the sagittal (pink) and transverse (green)
directions.

Table 7.1: Three human corneas, each sampled twice, were manually segmented to produce
ground truth for 6 tomogram sets.

Set Subject Num. Samples Sampling Scheme Sampling Spacing
1 1 44 sagittal evenly spaced
2 1 44 transverse evenly spaced
3 2 175 sagittal evenly spaced
4 2 50 transverse evenly spaced
5 3 92 sagittal evenly spaced
6 3 40 transverse evenly spaced
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Table 7.2: Five synthetic corneas were each sampled three different ways to produce 15
tomogram sets used to evaluate reconstruction.

Set Subject Num. Samples Sampling Scheme Sampling Spacing
1 1 40 sagittal/transverse dense center
2 2 40 sagittal/transverse dense center
3 3 40 sagittal/transverse dense center
4 4 40 sagittal/transverse dense center
5 5 40 sagittal/transverse dense center
6 1 40 sagittal/transverse evenly spaced
7 2 40 sagittal/transverse evenly spaced
8 3 40 sagittal/transverse evenly spaced
9 4 40 sagittal/transverse evenly spaced
10 5 40 sagittal/transverse evenly spaced
11 1 40 sagittal evenly spaced
12 2 40 sagittal evenly spaced
13 3 40 sagittal evenly spaced
14 4 40 sagittal evenly spaced
15 5 40 sagittal evenly spaced
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7.2 Decoupled reconstruction

This section utilizes the decoupled corneal model designed in Chapter 6 to reconstruct a
cornea. Subsection 7.2.1 preprocesses the measurements m, extracts boundary information
using the automated boundary localization method, in Chapter 5, and estimates, Z1, the
corneal structural parameters from the measurements. Subsection 7.2.2 performs weighted
least-squares to estimate the Markov random field, Z2, representing the scattering potential
at each point within the reconstruction volume. After the decoupled states Z1 and Z2 are
estimated independently, they are combined in Subsection 7.2.3 to produce a full corneal
reconstruction, Z, a Markov random field containing scattering potential with structural
constraints.

7.2.1 Structure

Referring back to Subsection 3.2.2, the corneal measurements are related to the structural
states through

℘1 (m) = C1Z1. (3.7 on page 49)

The function ℘1(m) is the result of the automatic corneal layer boundary localization tool
applied to all of the tomograms. Let Υ represent the location in <3 of each measurement
on each corneal layer boundary such that,

Υ = ℘1(m). (7.1)

Further, each layer boundary is isolated by notating Υι as a subset of Υ containing all of
the measurement locations for corneal boundary layer ι,

Υ = {Υ1,Υ2,Υ3,Υ4,Υ5}. (7.2)

Then, using the spherical structure model designed in Section 6.1 and a least-squares
spherical fitting algorithm [75], Algorithm 2, page 171, the radius, ρι, and center, cι, of a
sphere that fits all of the data in Υι can be estimated for each corneal layer boundary.

Since there are few parameters to estimate and a large number of samples, this pro-
cess is robust to imaging noise. Since structure is based on a model of corneal anatomy,
the boundary extrapolation in unsampled corneal regions is also robust. Fig. 7.2 illus-
trates the result of the structure fitting process. Fig. 7.2 (a) uses color to identify all of
the measurement locations for each layer boundary after they are discovered using ℘1.
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Fig. 7.2 (b) shows how the corneal structure is extrapolated and how well it lines up with
the measurements.

It should be noted, that at this stage, corneal layer thickness measurements can be ob-
tained using the spherical corneal model. However, this structural model does not take any
local deviations into account. Consequently, a more accurate measurement can be obtained
when the scattering potential is combined with the structural model in Section 7.2.3.

7.2.2 Scattering potential

The relationship between the measurement scattering potential, m, and the states, Z2 from
Section 6.2, is reproduced from Subsection 3.2.2,

℘2 (m) = C2Z2. (3.8 on page 49)

Instead of using the locations of the corneal boundaries, the ℘2(m) becomes a set of mea-
surements corresponding to straightened corneal tomograms; each point in the tomogram
is transformed from (s0, s1) to (α, s) and then mapped into x ∈ <3 using the transforma-
tion derived in Section 4.1. While the pose of the tomogram and the parameter s have
been transformed into x0 and x1, the scattering potential field was designed to decouple
structure from scattering potential, forcing x2 to correspond directly to α.

The decoupled scattering potential states, Z2, can be estimated using a weighted least-
squares formulation [42], µ2, the mean of ℘2(m), and the previously designed deterministic
constraints, Q,

Ẑ2 =

(
C2

TR−1C2 +Q

)−1
(
C2

TR−1

(
℘2

(
m
)
− µ2

))
+ µ2. (7.3)

The mean, µ2, is first removed so that any scaling factors due to R or Q scale only the
differences in measurements and not their overall intensity. The mean is added back into
Ẑ2 after the scaling process. Pseudocode, Algorithm 3, page 171, solves for Ẑ2 based on
(7.3).

The resulting random field, Ẑ2, is illustrated in Fig. 7.3 for an evenly spaced synthetic
cornea and in Fig. 7.4 for a synthetic cornea with dense tomogram sampling near the apex
of the cornea. When comparing these two figures, notice that Fig. 7.3 (d) has more noise
near the left and right edges of the image compared to Fig. 7.4 (d). The proximity of
measurements near the image edges in Fig. 7.3 have greater influence than measurements
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(a)

(b)

Figure 7.2: (a) The parameters of the corneal structure model are estimated using pa-
rameter estimation from a set of tomograms. (b) Reconstruction of unsampled regions is
achieved through the use of the corneal model, incorporating anatomy. The corneal layer
boundaries are highlighted through color: outer-epithelium (green), epithelium-Bowman’s
layer (blue) Bowman’s layer-stroma (magenta), stroma-Descemet’s membrane (black), and
endothelium-outer (red).
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further away, as in Fig. 7.4. In unsampled corneal regions, the nearest measurements have
the greatest impact on scattering potential estimation while the furthest measurements
have less impact. In these regions, there are few measurements to perturb the estimate
from a mean, resulting in a tendency to have more uniform scattering potential estimates.
While arbitrary scattering potential noise can be simulated based on other regions, the
estimate from (7.3) is closer to the mean of scattering potential in that region, and therefore
more appropriate.

The success of the reconstruction can be seen by comparing Fig. 7.4 (b) to Fig. 7.4 (d).
Using every tomogram available, the scattering potential in Fig. 7.4 (d) has been recon-
structed where no previous data existed.

7.2.3 Combined structure and scattering potential

The combined reconstruction reintegrates the previously estimated structure and scatter
potential to calculate Ẑ from Ẑ1 and Ẑ2 using the same process as described in Subsec-
tion 6.2.4, but reiterated here using a reconstruction specific context. Pseudocode for a
reconstruction implementation is presented in Algorithm 4, page 172.When the tomograms
were straightened in Section 7.2.2, each tomogram was warped such that epithelium bound-
ary layer and the endothelium boundary layer were straightened and the measurements
between were transformed from (s0, s1) to (α, s). Then each point is positioned from (α, s)
to (x0, x1, x2)2 in the reconstructed volume Ẑ2. Integrating the structure into the scattering
potential field maps (x0, x1, x2)2 to (α, s).

The position of a point in Z2 can be mapped to Z using three pieces of information.
First, x2 in the context of Z2 corresponds directly to α. Second α relates the position
at (α, s) to a relative distance between the epithelium and endothelium corneal boundary
layers. Third, the position of the epithelium and endothelium corneal boundary layers are
calculated directly from Ẑ1. Essentially this results in Ẑ2 becoming warped and constrained
between the estimated boundary layers.

Fig. 7.5 illustrates the result of warping the scattering potential random field when
combined with the estimated corneal structure. Fig. 7.5 is the complete reconstruction
from a synthetic corneal model with densely centered tomogram sampling.
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(a) (b)

(c) (d)

Figure 7.3: Synthetic data sampled evenly using a perpendular and parallel tomogram
sampling scheme is illustrated in (a).(a) is sampled at the cross-section in blue to produce
(b). The measurements from (a) are reconstructed in (c) and similarly (c) is sampled at the
same cross-section to produce (d). Notice in (d) that the left and right edges are slightly
more uniform than the center regions. While the boundary layers in (b) can hardly be
seen, they can easily be seen in (d), the reconstruction.
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(a) (b)

(c) (d)

Figure 7.4: Similar to Fig. 7.3, (a) is sampled at the cross-section in blue to produce (b)
and used to reconstruct (c). Similarly (c) is sampled at the same cross-section to produce
(d). However, in this case, the synthetic subject is densely sampled near the apex. Notice
that the left and right edges in (d) are much more uniform than those in Fig. 7.3 (d) due
to the proximity of measurements to the estimated states.
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(a)

(b)

Figure 7.5: (a) The structure and scattering potential are combined to produce a full
3D reconstruction for the cornea. Since, the structure has been previously calculated the
corneal boundary layers can be quickly labelled (b). Note that for illustrative purposes
some pixels were removed from the 3D visualization so that the corneal structure can be
seen. As a result many reconstruction details, such as texturing visible in Fig. 7.2.3 (d) are
not visible above. Further, the circular pattern is also an artefact created when attempting
3D visualization. The corneal layer boundaries are highlighted using color in (b).
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7.3 Results

The reconstruction results for the synthetic and human subjects are presented in the fol-
lowing two subsections.

7.3.1 Synthetic corneal model

Each of the five synthetic subjects were reconstructed three times using different tomogram
sampling schemes: for each synthetic subject, 1) 20 samples in the sagittal direction and
20 samples in the transverse direction with a dense concentration near the center of the
cornea, 2) 20 samples in the sagittal direction and 20 samples in transverse direction with
an even spread concentration, and 3) 40 samples in the sagittal direction with an even
spread concentration.

Table 7.3 and Table 7.4 detail the mean distance from each boundary layer to the
corresponding point on the corneal structure model. As the tables and the previously
illustrated Fig. 7.2 suggest, the reconstruction error associated with the structural model
is less than 0.17 µm on average over all of the layers. This indicates that the reconstruction
error for corneal structure model is significantly less than the width of the thinnest corneal
layer, 5 µm.

Similarly, the reconstruction error associated with the scattering potential was neg-
ligible. Since the synthetic models were derived exactly from the scattering potential
model, the scattering potential, scaled from 0 to 1, for all three subjects is summarized
in Table 7.5. The difference between tomogram scattering potential and reconstructed
scattering potential was insignificant, less than 0.0178 for 50% of all pixels for all synthetic
subject tomograms. The difference was less than 0.0869 for 95% of all pixels and less than
0.1431 for 99% of all pixels. Since the stroma-Descemet’s membrane boundary is difficult
for a trained UHROCT operator to distinguish, having an average scattering potential
value of 0.0869, the value of 0.0178 for 50% of all pixels is insignificant. Similarly, the
endothelium-Bowman’s layer boundary has a scattering potential similar to 0.1431, so a
value less than 0.1431 for 99% of all pixels is visible to a trained technician. Overall, the
scattering potential model fits well to the synthetic data, which was generated using the
same model. The minor differences are primarily due to an imperfect structural model and
to numerical issues that occur during the calculation of C.
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Table 7.3: The reconstruction results show that the mean distance between the 2D corneal
tomogram layer boundaries and the reconstructed corneal structure layer boundaries for
the epithelium through stroma boundaries is less than 0.058 µm when using a densely
spaced sagittal and transverse sampling scheme of 40 tomograms. The mean distance is
less than 0.166 µm for an evenly spaced sagittal and transverse sampling scheme and less
than 0.135 µm for an evenly spaced sagittal sampling scheme.

outer-epithelium
Synthetic Subject dense sag. trans. even sag. trans. even sag.

1 0.033 0.143 0.129
2 0.094 0.210 0.124
3 0.042 0.120 0.102
4 0.035 0.136 0.129
5 0.085 0.220 0.191

mean 0.058 0.166 0.135
std. dev. 0.029 0.046 0.033

epithelium-Bowman’s layer
Synthetic Subject dense sag. trans. even sag. trans. even sag.

1 0.033 0.140 0.127
2 0.092 0.202 0.120
3 0.041 0.116 0.099
4 0.034 0.132 0.125
5 0.082 0.212 0.184

mean 0.056 0.160 0.131
std. dev. 0.028 0.044 0.032

Bowman’s layer-stroma
Synthetic Subject dense sag. trans. even sag. trans. even sag.

1 0.032 0.137 0.124
2 0.089 0.195 0.116
3 0.040 0.113 0.096
4 0.033 0.128 0.121
5 0.079 0.204 0.177

mean 0.055 0.155 0.127
std. dev. 0.027 0.041 0.030
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Table 7.4: Similar to Table 7.3, the distance in µm between the 2D tomogram boundaries
and the reconstructed boundaries for the stroma, Descemet’s membrane, and endothelium
are presented. The densely spaced sagittal and transverse sampling scheme and evenly
spaced sagittal sampling scheme produce similar values for stroma to Descemet’s membrane
and endothelium to outer corneal boundaries.

stroma-Descemet’s membrane
Synthetic Subject dense sag. trans. even sag. trans. even sag.

1 0.028 0.049 0.039
2 0.076 0.102 0.026
3 0.010 0.020 0.013
4 0.018 0.037 0.019
5 0.048 0.093 0.072

mean 0.036 0.060 0.034
std. dev. 0.026 0.036 0.023

endothelium-outer
Synthetic Subject dense sag. trans. even sag. trans. even sag.

1 0.028 0.048 0.037
2 0.077 0.107 0.029
3 0.011 0.023 0.015
4 0.018 0.039 0.021
5 0.050 0.099 0.077

mean 0.037 0.0632 0.036
std. dev. 0.027 0.038 0.024
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Table 7.5: The scattering potential difference for the 50th, 95th, and 99th percentile over all
synthetic subjects is presented. 0.0124 is insignificant, 0.0813 is approximately the subtle
change in pixel intensity used to detect the stroma-Descemet’s membrane boundary, and
0.1371 is significant since it corresponds to the change in intensity for the more prominent
epithelium-Bowman’s membrane boundary.

Scattering Potential Difference for all Synthetic Subjects
Percentile dense sag. trans. even sag. trans. even sag. mean

50th 0.0106 0.0178 0.0086 0.0124
95th 0.0790 0.0869 0.0781 0.0813
99th 0.1343 0.1431 0.1340 0.1371

7.3.2 Human cornea

Notice that while the structure appears to fit well, Fig. 7.6, any deviations from the ideal
structure are apparent as abrupt edges in the scattering potential field, Fig. 7.7; this
alignment is corrected through tomogram pose estimation, in Chapter 8.

Table 7.6 presents the structural reconstruction error for human corneas. On average,
the reconstructed structure is within 0.18 µm of the corneal layer boundaries located on
each individual tomogram. Since the reconstructed surface was fitted to the automated
boundary layer locations, a low error is expected.

The difference between measured and reconstructed scattering potential, scaled be-
tween 0 and 1, is presented in Table 7.7. While these values are significantly larger than
those of the synthetic cornea, which were created using the scattering potential model, the
scattering potential error for 50% of all pixels is negligible, and the scattering potential
for 95% of the pixels on all surfaces is less than 0.197 on average, which represents the
appearance of the epithelium-Bowman’s layer boundary in an UHROCT; 95% of pixels
from reconstructed human subjects will have visually noticeable changes in pixel intensity.
These values represent a reasonable UHROCT scattering appearance, as was designed in
the scattering potential model. The model captures the measurement variations and the
mean scattering potential.
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(a) Subject 2 - Transverse

(e) Subject 3 - Transverse

Figure 7.6: The reconstructed corneal structure for (a) subject 2 - transverse and (b)
subject 3 - transverse illustrates how corneal layer surfaces can be estimated in unsampled
regions. The surface was constructed robustly despite using desired values of Θ instead of
values derived from pose estimation.
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(a) Subject 1 - Transverse

(b) Subject 3 - Sagittal

Figure 7.7: The reconstructed corneal scattering potential after removing structure for
(a) subject 1 - transverse and (b) subject 2 - sagittal illustrates estimation in unsampled
regions.
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Table 7.6: For human subjects, the distance, in µm between the 2D tomogram boundaries
and the reconstructed boundaries for the epithelium (epi.), Bowman’s layer (Bow.), stroma
(str), Descemet’s membrane (Desc), and endothelium (end.) are presented. Like the
synthetic corneal reconstruction, the difference between each layer boundary of the same
subject are similar.

Subject Sampling Dir. outer-epi. epi.-Bow. Bow.-str. str-Desc. end-outer
1 Sagittal 0.666 0.665 0.665 0.650 0.650
1 Transversal 0.059 0.058 0.057 0.048 0.049
2 Sagittal 0.267 0.267 0.267 0.267 0.267
2 Transversal 0.032 0.032 0.032 0.030 0.030
3 Sagittal 0.065 0.064 0.063 0.056 0.056
3 Transversal 0.062 0.061 0.061 0.052 0.052

mean Both 0.1918 0.1912 0.1908 0.1838 0.1840
std. dev. Both 0.2476 0.2476 0.2478 0.2450 0.2449

Table 7.7: The scattering potential difference for the 50th, 95th, and 99th percentile over all
human subjects is presented. 0.044 is insignificant, but 0.197 corresponds to the change in
intensity for epithelium-Bowman’s membrane boundary.

Scattering Potential Difference for Human Subjects
Human Subject Direction 50th 95th 99th

1 Sagittal 0.033 0.181 0.295
1 Transversal 0.047 0.214 0.334
2 Sagittal 0.054 0.222 0.366
2 Transversal 0.035 0.169 0.278
3 Sagittal 0.065 0.218 0.359
3 Transversal 0.033 0.178 0.288

mean Both 0.044 0.197 0.320
std. dev. Both 0.013 0.023 0.038
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Chapter 8

Corneal Tomogram Pose Estimation

The corneal eye motion is a major source of measurement location uncertainty causing the
UHROCT imaging system to sample at an unintended location. This chapter attempt-
s to estimate the tomogram sampling location using residuals, differences between the
corneal measurements and measurements obtained from corneal reconstruction, satisfying
Objective 6, page 45. Subsection 2.2.3 describes the processes governing eye motion and
Section 6.3 derives a motion model that is essential for this chapter. Chapter 7 provides the
reconstruction method that is used extensively while improving the forward model param-
eters. The reader should also be familiar with the visual appearance of corneal boundary
layers within an UHROCT presented in Subsection 2.2.2.

Tomogram pose estimation is implemented using a large-scale optimization problem,
involving six pose parameters for each tomogram and a random-field, Z2, of size 150 ×
150×150 states, designed to translate and rotate each tomogram. Since the reconstruction
process can be computationally expensive, especially for large amounts of data, the pose
estimation process is designed to be iterative. At the end of each iteration, poses are
selected such that the reconstruction error does not get any worse. The advantage of
the iterative approach is that the optimization process, which may take several weeks to
complete, can be stopped at anytime, allowing convergence to be studied during the design
of the implementation.

Chapter organization

This chapter is divided into three sections. The criteria for the optimization formulation is
presented in Section 8.1. Section 8.2 applies the criteria to study how well the optimization
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implementation converges. The last section, Section 8.3, provides results of how the pose
estimate methods performed compared to reconstruction without pose estimation.

8.1 Pose estimation criteria

The criteria that determines how well the alignment of tomograms fit to the corneal struc-
ture model and how well the measurement error from the corneal reconstruction is mini-
mized are defined in this section. The overall optimization formulation from Section 4.3
seeks to find

Θ̂ = argΘ′ min$
(
℘1 (m)− C1(Θ′)z1(Θ′)

)2
+ (1−$)

(
℘2 (m)− C2(Θ′)z2(Θ′)

)2
.

(4.31 on page 61)

By incorporating mean squared structural distance, dsurf,Ti
2, and mean squared scattering

measurement error, dmeas,Ti
2, between the reconstruction and the tomogram measurements,

(4.31) becomes

Θ̂ = argΘ′ min$
∑
Ti

dsurf,Ti
2 + (1−$)

∑
Ti

dmeas,Ti
2. (8.1)

The following subsections define the structural and scattering potential criteria.

8.1.1 Structure criterion

The structure for each tomogram, as determined using the automated layer boundary
localization tool, is compared against the structure of the entire reconstruction, using the
corneal structure model in Section 6.1. The objective function, (8.1) minimizes the mean
squared distance between each corneal layer within each tomogram and the corresponding
distance to the reconstructed layer.

Given that the reconstructed corneal structure is modelled as a spherical surface, Sι
with a radius, ρι, and a center, cι, and the corresponding layer boundaries are represented
as the curves, Ω̂α̂ι,Ti(s) ∀ι, for tomogram Ti, the distance, dsurf,ι,Ti between a point on the

spherical surface, Sι,Ti(s), and the corresponding point Ω̂α̂ι,Ti(s) on tomogram Ti, can be

calculated using the following equations. Each point on Ω̂α̂ι,Ti(s) can be transformed into
a point in <3 so that it can be compared against surface Sι.

138



First the point si is determined from the curve Ω̂α̂ι,Ti(s) for each value of s,

si = Ω̂α̂ι,Ti(s). (8.2)

Then si is transformed from the tomogram coordinate system, <2, into the corneal system,
<3, using (4.18),

xi =
(
s0,i −

ηs,0,i
2

)γs,0,i
ηs,0,i

−→s 0,i +
(
s1,i −

ηs,1,i
2

)γs,1,i
ηs,1,i

−→s 1,i + ci. (4.18 on page 56)

Using xi, the point on the corresponding spherical surface layer, Sι,Ti(s), can be calculated
as,

Sι,Ti,0(s) = x0,i (8.3)

Sι,Ti,1(s) = x1,i (8.4)

Sι,Ti,2(s) =

√
ρ2
ι −

(
Sι,Ti,0(s)− cι,0

)2 −
(
Sι,Ti,1(s)− cι,1

)2
+ cι,2. (8.5)

Then dsurf,ι,Ti can be calculated for all points along Ω̂α̂ι,Ti(s),

dsurf,ι,Ti
2 =

∑
s

(
Sι,Ti,2(s)− x2,i

)2∑
s 1

. (8.6)

Then the mean distance, dsurf,Ti for all layers on Ti to the corresponding layers on S is

dsurf,Ti
2 =

∑
ι

∑
s

(
Sι,Ti,2(s)− x2,i

)2∑
l

∑
s 1

. (8.7)

Note that (8.7) weighs all layers equally by normalizing for s and that the values of xi are
implicity dependent on tomogram pose, Θi. The structural criterion is to minimize dsurf,Ti

for tomogram Ti.

8.1.2 Scattering potential criterion

The scattering potential criterion is defined by calculating the difference in pixel intensity
between each pixel in tomogram i and the corresponding pixel in the reconstructed cornea.
From Section 4.1, each pixel in Ti is mapped to the measurement vector mi; pixel k is
mapped to mi,k. Then the corresponding position of mi,k in <3 is xi,k, previously defined
as

xi,k =
(
s0,i,k −

ηs,0,i
2

)γs,0,i
ηs,0,i

−→s 0,i +
(
s1,i,k −

ηs,1,i
2

)γs,1,i
ηs,1,i

−→s 1,i + ci. (4.19 on page 56)
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Using the previously defined correspondence matrix, Ci
k,j,

Ci
k,j =

{
1 if all

(
| xi,k − xj |< γx,j./ηx,j

)
0 else

, (4.23 on page 58)

the measurement error, m̃i,k, can be determined from

m̃i,k = mi,k − Ci
kz, (8.8)

where

Ci
k =

[
Ci
k,1 Ci

k,2 · · · Ci
k,j · · · .

]
(8.9)

The mean squared measurement error, dmeas,Ti for tomogram i is defined as

dmeas,Ti
2 =

∑
k

(
mi,k − Ci

kz
)2∑

k 1
. (8.10)

Also note that Ci
k and z are dependent on Θi and Θ respectively.

8.2 Convergence

Using the previously defined criteria, tomogram pose estimation can now be performed
using existing optimization techniques. Unfortunately, there are many nuances that de-
termine how well the optimization converges to the desired pose estimates. To allow the
optimization to converge in a reasonable amount of time, this section provides discussion
and details on preliminary studies used to select an optimization method and appropriate
modifications to (8.1).

A preliminary study, using data from Section 7.1, was conducted to investigate the basin
of convergence [44] for individual tomogram pose parameters; the goal of this preliminary
study was to determine if convergence is feasible through manipulation of a sub-set of
pose parameters. For this preliminary study, each tomogram was perturbed by a given
translation, ∆xi, where ∆xi is proportional to the distance from the center of the sampled
region. For example, if each tomogram is sampled every 20 µm in the lateral direction and
each tomogram was translated by 110% of the ideal inter-spacing, then the tomogram at
the center of the region would remain at its initial location, the tomogram 20 µm away from
center would be translated by 2 µm, and the tomogram 40 µm away would be translated
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by 4 µm. Fig. 8.1 shows the basin of convergence when all tomograms are simultaneously
translated laterally as a function of translation percentage. This figure shows that, when
all tomograms are translated between 80% to 120% of the ideal spacing, a gradient exists
and can be calculated numerically allowing an optimization minimization function to find
the ideal spacing of 100%. Since this study did not evaluate all six pose parameters for
each tomogram, this example serves only as a proof of concept that convergence may be
possible.

While it was desired to recalculate z for updated Θ on each iteration, initial attempts at
convergence for a single subject failed after running several optimization algorithms, each
continuously for a week: trust-region reflective [88], trust-region dog-leg [98], and Nelder-
Mead simplex search [66]. It should also be noted that Nelder-Mead marginally had the
lowest residual after a week than the other methods. Investigation showed that calculating
derivatives was computationally expensive. After a week, each algorithm did improve upon
the initial reconstruction error, however two additional steps helped to improve convergence
time.

First, an assumption was asserted that the change of z is negligible as long as the step
size for Θ is sufficiently small, as determined by the error associated with a quadratic model
approximation [88]. Then, when the change of Θ exceeds that step size, z is reconstructed
using the updated Θ. However, for example, instead of creating a quadratic model [88]
for C(Θ′)z(Θ′), requiring hundreds of derivatives to determine its curvature, the original
function C(Θ′)z(Θ′) simply becomes C(Θ′)zΘ′′ , where zΘ′′ is a 0th order Taylor-series
approximation of z about Θ′′. The value of Θ′′ is initially selected and updated when the
difference between Θ′ and Θ′′ is sufficiently large. However, calculating the validity of the
C(Θ′)zΘ′′ to specify a sufficiently large difference, is computationally expensive. For the
implementation, the model, C(Θ′)zΘ′′ , was used for all possible values of Θ′ and zΘ′′ each
time the implementation converged. Using this approach, zΘ′′ was updated two or three
times when estimating the tomogram pose for each subject.

Second, homotopy [54] was introduced to improve convergence. Instead of trying to
minimize the error for all tomograms at once, the criteria for each tomogram was iteratively
added during the optimization process. For instance, the method starts using only the
criteria associated with tomogram 1. While the criteria for tomogram 1 is being minimized,
the criteria for tomogram 2 is slowly introduced. Each additional group of criteria is
introduced as the process continues, until all of the criteria has been minimized. The
criteria, d2, is calculated for each iteration, t, using the weighting functions, $t,Ti ,

d2 =
∑
t

$t,Ti

(
$
∑
Ti

dsurf,Ti
2 + (1−$)

∑
Ti

dmeas,Ti
2

)
. (8.11)
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(a) (b)

(c) (d)

Figure 8.1: The basin of convergence when the inter-spacing between corneal layers is
perturbed is illustrated for (a) synthetic subject 1 set 1, (b) synthetic subject 1 set 1 larger
scale, (c) synthetic subject 2 set 1, and (d) synthetic subject 2 set 2. In all cases a gradient
for the corneal inter-spacing distance exists with a minimum value near the true value of
100%.

142



The weighting functions $t,Ti are defined such that,

$t,Ti ≥ $t,Ti+1
(8.12)

$t+1,Ti ≥ $t,Ti , (8.13)

for all t and Ti. The rate of increase for $t,Ti and the value of $ was determined experi-
mentally until the convergence time was reduced from indefinite to several hours.

Given a synthetic cornea subject with intentionally perturbed Θ, Fig. 8.2 shows how the
perturbed states converge toward the ideal states using the techniques above. While the
results appear to have reached a local minima near the ideal solution, the state estimates
did improve, reducing the overall reconstruction error. From this example, it should be
observed that without an absolute reference point, the states tend to cluster relatively.
Even though the deviation from the ideal Θ should be zero, Fig. 8.2 shows clustering
about −0.05, the mean of the initial conditions, indicating that all of the tomograms are
translated together from an absolute origin and that all of the tomograms are aligned
with an orientation that is no longer perfectly sagittal. The resulting tomogram poses are
aligned relative to each other.

Using these convergence techniques, the optimization using Nelder-Mead simplex search [66]
was completed in several hours for each test subject. Algorithm 5, page 173 presents a
simplified implementation of pose estimation. While the subjects are successfully recon-
struction, the efficiency of the optimization implementation can be further improved in
future work.

8.3 Results

Using the criteria and convergence methods defined previously in this chapter, pose esti-
mation is applied to the human subjects specified in Section 7.1. By incorporating corneal
anatomy and compensating for eye-motion, the results show that reconstruction error is
successfully reduced. In addition, by observing the change of depth of each tomogram
after pose estimation is applied, it is apparent that the reconstruction is consistent with
corneal anatomy constraints unlike existing corneal reconstruction methods, which only
align tomograms based on pixel intensity.

For human subjects, pose estimation resulted in a 32.2% to 93.6% decrease in recon-
struction error from the non-pose estimated reconstruction from Chapter 7. The results for
each human subject are presented in Table 8.1. In many cases, pose estimation created a
better fit by accounting for motion during the scan. By comparing human subjects to the
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Figure 8.2: A synthetic corneal model was perturbed such that the measured states (red)
did not match the desired states. The deviation from the ideal states should be zero. After
optimization, the deviation of states converged towards their final values (blue). Although
they did not converge to zero, it is suspected that they converged relatively to each other
since there is no absolute reference frame forcing convergence to zero. Instead, the states
have clustered about a local minima, near the mean of the initial states. The reconstruction
error was reduced during the minimization process.
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Table 8.1: Reconstruction error for human cornea are presented for reconstruction without
and with pose estimation.

Mean Reconstruction Error (| d2 |)
Without With

Human Subject Direction Pose Estimation Pose Estimation % Error Reduction
1 Sagittal 0.5977 0.0425 93.6%
1 Transversal 0.0533 0.0249 58.0%
2 Sagittal 0.2447 0.0465 82.5%
2 Transversal 0.0326 0.0171 55.0%
3 Sagittal 0.0589 0.0414 32.2%
3 Transversal 0.0561 0.0249 60.3%

ideal synthetic subjects, reconstructed without any eye-motion in Section 7.3, the human
subjects have the same magnitude of reconstruction error. The mean human reconstruc-
tion error, | d2 |, after pose-estimation is 0.033 and the mean synthetic reconstruction error
from known tomogram poses is 0.080. There is no significant difference between the human
and synthetic error. This indicates that the pose estimation method is, at least partially,
correcting for eye-motion and corneal anatomy.

The depth position of each tomogram for three human subject sets, illustrated in
Fig. 8.3, was adjusted during pose estimation to better satisfy corneal anatomy constraints.
All of the human tomogram sets were initially aligned such that their scanning depth was
level. After pose estimation, the corneal curvature became consistent with expected corneal
curvature. For instance, in Fig. 8.3 (a), the expected change in height, from the center of
the cornea to a tomogram approximately 200 µm away, should be approximately 2.67 µm,
assuming a corneal radius of approximately 7.5 mm [61], and is measured to be approx-
imately 2.75 µm. The other subject sets, in Fig. 8.3 (b) and Fig. 8.3 (c), show similar
results for their distances. Although ideal corneal anatomy should resemble an ellipse, the
points associated with the depth changes are noisy. It is suspected that the pose estimation
is correcting for sources of motion that contribute to the noise.

When the proposed motion corrected reconstruction results, Fig. 8.3 (a), are com-
pared to existing tomogram stacking reconstruction methods, Fig. 8.4 (b), the difference
in reconstructed corneal anatomy is significant. Without a model of anatomy, existing
stacking reconstruction methods align corneal tomograms based solely on scattering po-
tential intensity. Instead, the proposed motion corrected reconstruction integrates both
corneal anatomy and scattering potential. Unlike existing methods, the proposed method
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produces reconstructions typical of healthy corneal layer curvature.

A limitation of the optimization methodology is that the tomogram pose estimation
does not appear to automatically correct for UHROCT refraction, which occurs when the
imaging beam enters the cornea. Given a corneal radius of 7.5 mm [61], a distance of about
200 µm from the furthest tomogram to the center of the cornea, the angle of incidence,
ϑind is equal to

ϑind = arcsin
0.200

7.5
= 1.53 deg. (8.14)

Given that the cornea has an average refractive index of 1.377 [142], from Snell’s law [125],
the angle of refraction, ϑref , is equal to

ϑref = arcsin
1.377 · 0.200

7.5
= 2.10 deg. (8.15)

From the derivation, it is expected that the pose parameters associated with the angle of
refraction should have a magnitude of about 2.10 degrees at a distance of 200 µm away
from the center of the cornea. However, the measured magnitude was about 0.2 degrees,
indicating that the tomogram has not been rotated enough to match the expected refraction
values. It is suspected that the optimization algorithm consistently converges to a local
minima instead of finding the global minimum. For example, the error caused by not
correcting for refraction may be partially corrected through translation. It is also possible
that the objective function does not have a minimum when the tomogram pose is consistent
with the expected refraction pose. Future work should investigate these possibilities.
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(a)

(b) (c)

Figure 8.3: The change of scanning depth is corrected during pose estimation for (a) subject
3 sagittal, (b) subject 2 sagittal, and (c) subject 3 transverse. Since the initial pose is
initialized to a constant depth for all transverse tomograms, a change of depth to reflect
the curvature of the cornea is expected, and illustrated above, during pose estimation.
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(a) Proposed method, reproduced from Fig. 8.3 (a)

(b) Existing stacking method

Figure 8.4: The corneal anatomy is compared between (a) the proposed reconstruction
method and (b) the existing state-of-the-art tomogram stacking method. The corneal
epithelium curvature of (a) the proposed method is ellipsoidal and has curvature typical of
a healthy cornea. The curvature estimated using (b) existing tomogram stacking methods
does not resemble an ellipsoid and has almost three times the amplitude of curvature
than (a). Unlike the proposed method, existing reconstruction methods do not model or
constraint corneal anatomy.
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Chapter 9

Conclusions

This chapter describes the significance of chapters 5 through 8. The impact of corneal
reconstruction and corneal layer thickness measurements are presented in addition to other
projects that have utilized statistical modelling based on the techniques in this document.

9.1 Objectives

This subsection concludes on the status of each objective introduced in Chapter 1 and de-
tailed in Chapter 3. The success of each objective shows that the proposed reconstruction
methodology is the first method to not only combine corneal anatomy and UHROCT imag-
ing into a 3D model, but to also use the model to successfully reconstruct corneal structure
and to compensate for eye-motion. Unlike existing reconstruction methods, the proposed
method generates reconstructions that are consistent with healthy human anatomy.

1. Extend general reconstruction theory
This objective focuses on the development of a systematic method capable of pro-
ducing a 3D reconstruction from a set of tomograms. The method accounts for
measurement error and unknown tomogram pose. Chapter 4 develops the framework
and supporting mathematics utilized throughout the remaining chapters to fulfill this
objective. The reconstruction results in a corneal application area, objectives 5 and
6, provide validation of the proposed method.

2. Create 2D corneal structure model
A structural model capable of parameterizing a 2D corneal tomogram is derived in
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Chapter 5. This model was validated using twelve human subjects, thousands of
tomograms, through the implementation of a method that can automatically locate
each corneal layer boundary to within 6.52 µm. This method was the first method to
locate five corneal layer boundaries from UHROCT. The 2D model allowed layers to
be located despite prominent image artefacts that thwarted other non-model based
methods.

3. Create 3D corneal model
Chapter 6 extends the 2D corneal structural model into a 3D corneal model that com-
bines both structure and scattering potential. A parametric 3D structural surface
was designed based on the statistics extracted using the 2D corneal structure model.
Several parametric models were proposed, including rotated polynomials and spher-
ical models, and are validated in objectives 5 and 6. Eye rotation is also modelled
and is utilized to produce synthetic tomograms from a synthetic cornea generated
from this model.

4. Generate synthetic cornea from model
The parameters of the 3D corneal model can be manipulated to generate a synthetic
model. Each synthetic cornea contains a 3D random field of scattering potential data
and a parametric surface for each corneal layer boundary. The document has shown
how tomograms are sampled from the synthetic model for use in the development
of reconstruction methods. The success of this objective allows reconstruction to be
tested on synthetic data containing known ground truth.

5. Reconstruct cornea from tomograms without tomogram motion correction
Chapter 7 applies the methodology of objective 1 to corneal reconstruction using the
corneal model created in objective 3. The reconstruction method was proven using
synthetic cornea with known ground truth created through the success of objective
4. The scattering potential reconstruction was proven by reconstructing tomograms
sampled from the synthetic cornea and comparing the results against the known,
synthesized, scattering potential. Similar results were shown for estimating synthetic
corneal structure. As expected, the results of the synthetic testing showed mini-
mal differences between the reconstructed structure and scattering potential and the
corresponding synthesized values. Having been proven for synthetic corneas, the re-
construction tests were repeated for manually segmented human corneas, which also
provided reasonable reconstruction error considering that the reconstruction did not
explicitly account for eye-motion during the corneal imaging process. To the au-
thor’s knowledge this is the first successful method to include anatomy to create a
3D corneal reconstruction from tomograms.
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6. Reconstruct cornea from tomograms with tomogram motion correction
In addition to using a corneal model to distinguish this corneal reconstruction method
from existing state of the art, the reconstruction is further extended to translate and
orient each tomogram to better align the tomograms with corneal anatomy while
simultaneously aligning tomograms based on scattering potential. Pose-estimation
using multi-objective optimization criteria successfully illustrates how the tomogram
alignment after reconstruction becomes consistent with corneal anatomy constraints;
the reconstruction estimated the corneal curvature of the subject and aligned tomo-
grams to correspond. Results on human subjects are greatly improved when com-
pared to the non-motion corrected reconstruction in objective 5. While convergence
can be improved, a means to correct tomogram pose is validated.

7. Extract corneal layer thickness measurements
By the design of the corneal model, corneal layer thickness measurements can be
easily and directly obtained at any point within the reconstruction since the corneal
structure is parameterized and decoupled from the scattering potential measure-
ments. One advantage of using the structure model is that the position of corneal
layer boundaries can be estimated from sparse sets of tomograms that require less
time to obtain than dense sampling required by existing reconstruction methods.
Imaging sessions are shorter and, consequently, there is less error due to eye-motion.
The result of the successful reconstruction in objectives 5 and 6 is that corneal layer
thickness can be measured at any point within the parameterized model.

9.2 Impact and contributions

While the previous section explicitly discusses each objective, this section describes the
overall impact of this research. The reconstruction methods presented in this document
utilize models of corneal anatomy, scattering potential, and eye-motion. This is a significant
improvement over existing literature, since many of the existing corneal reconstruction
techniques stack corneal tomograms using alignment methods based solely on the scattering
potential intensity.

9.2.1 3D model-based corneal reconstruction

Even if motion is not accounted for, such as in the 3D reconstruction from Chapter 7,
unmeasured corneal regions, those not directly measured through imaging, can be esti-
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mated from the corneal model. In particular, the structural model allows researchers to
perform corneal layer thickness measurements at unsampled locations. Unlike existing
reconstruction, producing tomogram stacks from densely sampled corneal regions, the pro-
posed reconstruction allows sparse sampling of the corneal region as long as the epithelium
and endothelium layer boundaries are visible.

When motion is accounted for through tomogram pose estimation, Chapter 8, the re-
construction error is further reduced as the estimates of tomogram pose are improved.
During pose estimation, the structural constraints encourage the tomograms to translate
and reorient so that tomograms better follow the curvature of the cornea and, using the
scattering potential model, pose estimation attempts to reduce differences between scat-
tering potential for each tomogram and its corresponding value in the reconstruction.

9.2.2 Layer thickness measurements

In conjunction with reconstruction, this document presents the first automated corneal
layer boundary localization algorithm capable of segmenting five corneal layer boundaries
from OCT tomograms. The proposed segmentation algorithm can automatically generate
thickness measurements from each segmented layer. Using the structural correspondence
of the epithelium and endothelium and their spatial relationship with the remaining lay-
ers, the locations of the five corneal layers can be calculated. The experimental results
from Section 5.5 demonstrate the robustness and applicability of the method applied to
over 2, 050 images.

The automatic corneal layer boundary localization is operationally used in the Depart-
ment of Optometry, University of Waterloo to locate and measure the thickness of corneal
layers [10,57]. The department has used measurements from this method to study the rela-
tionship between contact lens induced hypoxia with corneal swelling. Other potential uses
of this work include the segmentation of tissue layers that occur in medical and biological
imaging or thickness measurements of sediment core samples taken from lakes. In particu-
lar, this framework is applicable in situations where measuring the thickness between two
correlated layers is important.

9.2.3 Other statistical modelling contributions

There are other non-corneal related statistical modelling projects based on the same prin-
cipals used for corneal modelling. Ongoing collaboration with the University of Waterloo
Anthropology Department has helped to develop a statistical model that can be used to
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determine the species and sex of olive and yellow baboons based on nasal cavity measure-
ments obtained from computed tomography (CT) imaging of baboon skulls. The hope
is that trends found in baboons can be correlated to recent human ancestors to identify
hybrids between Neanderthals and anatomically modern humans.

Another project utilizes statistical modelling to reduce error associated with a local
positioning system [36]. This system was designed to locate a transponder, primarily using
vision. A set of accelerometers and gyroscopes were incorporated to continue tracking if the
vision system was obstructed. Human movement was modelled as a hidden Markov model
to incorporate measurements with the best signal processing and filtering given a specific
type of human action. Based on the statistical modeling aspects for the accelerometer
and other modelling aspects for the vision system, this work has won three international
industrial awards, the PLASA 2012 Gold Innovation Award, IABM 2012 Game-Changer
Award, and the PLASA 2010 Innovation Award. Each award was granted by committees
for technical excellence and potential to change an industry.

9.3 Future work

The ability to produce large, three-dimensional corneal reconstructions facilitates signifi-
cant clinical and research opportunities. Collaborators in science and optometry are eager
to continue refining the methodology so that fine structural details of corneal and retinal
anatomy can be revealed and modelled. One of the major issues is the efficiency of the
current implementation. While much of the implementation tried to take advantage of
Matlab best practices, e.g. avoiding for-loops, creating custom classes to represent ma-
trices as non-copied handles, and avoiding computationally expensive visualizations, these
practices have not been applied in all circumstances, leaving room for additional improve-
ments. For instance, simply loading a large human OCT can take up to ten minutes using
the proprietary Matlab format; some of the memory paging techniques used to load inde-
pendent texture data into memory during texture synthesis might be applied to save and
load OCTs. If this particular corneal reconstruction implementation is to be used in future
studies, these computational limitations should be improved.

Further, some tasks are highly parallelizable and can be better solved using hundreds
and thousands of low-powered processors, such as those found in graphics cards. Since
calculating the position correspondence between m and z is highly parallelizable, but
computationally expensive for large volumes, calculating the correspondence matrix C on
the parallel computing framework is ideal. While some aspects, such as texture generation
iterations, already utilize a graphics card, many such improvements can be made.
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The resolution of the reconstructed area can also be increased as the efficiency improves.
One ongoing project is modelling the development of shark embryo growth. The study
analyzes high resolution 2D images of cellular development over time. Unfortunately the
reduction of resolution during the spatial and temporal reconstruction prevents the fine
cellular boundaries of the shark embryo from being located. The best approach is to
increase efficiency and to introduce additional reconstruction decoupling so that different
spatial and temporal regions can be reconstructed first and then stitched together to form
a larger, consistent reconstruction. The goal is to subdivide the reconstruction area into
segments that do not need to exist simultaneously in memory. In a similar sense, corneal
patient data can be reconstructed over time as well. The key is to have sufficient resolution
to capture important measurements for the application.

9.4 Summary

Overall, the corneal model and reconstruction successfully reconstruct human and synthetic
corneal tomograms. The automated corneal layer boundary localization was proven after
successfully segmenting over 2, 000 tomograms and proven in studies that measure change
in corneal layer thickness. With improvements to computational efficiency and increased
reconstruction resolution, the methodology can be applied to model finely detailed cellular
structures in future applications such as studying the development of shark embryo cells
and the effects of pathology on corneal layer cells.
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Appendix A

Pseudocode

This chapter provides pseudocode as reference implementations for algorithms found through-
out the document. Many of these functions use general function names, such as Gaus-
sianBlur, Mean, or Sqrt, to indicate an arbitrary implementation. In other cases, these
functions use Matlab functions, such as linspace, polyfit, or polyval, using Matlab syntax
to communicate the function purpose.

Algorithm 1 (page 170)
implements boundary localization for a 2D tomogram, Ti, allowing Υ to be deter-
mined from a single tomogram.

Algorithm 2 (page 171)
The structural parameters for a spherical model of a corneal layer, the radius, ρι,
and center, cι, can be estimated from a set of points, Υι, that exist on the corneal
layer using an implementation from Lukacs [75].

Algorithm 3 (page 171)
The scattering potential random field, Z2, is estimated using weight least-squares.

Algorithm 4 (page 172)
Corneal reconstruction without explicitly accounting for motion is demonstrated us-
ing Algorithm 1, Algorithm 2, and Algorithm 3.

Algorithm 5 (page 173)
Pose estimation for each tomogram allows for motion during imaging to be corrected
during the reconstruction. Each tomogram is rotated and translated to minimize
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the overall reconstruction error, accounting for both corneal structure and scattering
potential. The simplified implementation presented here does not include homotopy
as it greatly complicates the code structure. For simplicity the calculation of residual
error has been reduced to function calls, ErrorProjectionStructureToTomogram and
ErrorProjectionScatteringToTomogram.
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Algorithm 1 Corneal Layer Boundary Localization

function LocateBoundaries(Ti)
B ←GaussianBlur(Ti) . Preprocessing
E ←EdgeDetection(B) . Segment edges
y0 ←GetUpperEdgePoints(E) . Assign edges to outer layers
y1 ←GetLowerEdgePoints(E)
s0 ←linspace(−200, 1200, 500) . Space is scaled between −200 and 1200 units in

lateral tomogram direction
s1 ←linspace(−200, 1200, 500)
C(s, Θ̂0)←polyfit(s0, y0, 4) . Fit points to curves
C(s, Θ̂1)←polyfit(s1, y1, 4)
s0,1 ← [] . Find s0,1, shorest distance correspondence between

for each s ∈ s0 do . each point on C(s, Θ̂0) to each point on C(s, Θ̂1).
s′ ← args′ min C(s = s, Θ̂0)− C(s = s′, Θ̂1)
s0,1 ←Append(s0,1, s

′)
end for
smap ←polyfit(s0, s0,1, 3) . Arbitrary correspondence function

pmap(s0, α)← [x, y]map ← α

[
map(s0)

C(s = map(s0), Θ̂1)

]
+ (1− α)

[
s0

C(s = s0, Θ̂0)

]
f(α) = [] . Pixel intensity integral in α direction
for each α ∈linspace(−0.1, 1.1, 500) do

[x, y] = pmap(s0, α)
f(α) = Ti(x, y)

end for
Wn ←ones(5, 1) . Use neighbourhoods to smooth out f(α).
Nn,α ←filter(Wn, 1, f(α))
Wf ← [ones(5, 1);zeroes(5, 1);ones(5, 1)] . Remove near-neighbourhood
Nf,α ←filter(Wf , 1, f(α))
for each i ∈ 1 : 5 do . Find local minima

h←PriorSpatialFilter(i) . Gaussian prior for α with a mean and std. dev.
for each layer boundary from statistics

α̂ι ←ArgMin(h(Nn,αι −Nf,αι))
[x, y] = pmap(s0, αι)
Υι ← [x, y]

end for
return [Υ, pmap(s0, α)]

end function
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Algorithm 2 Spherical Parameter Estimation of Z1

function EstimateSphere(Υι)
µx ←Mean(Υι,x)
µy ←Mean(Υι,y)
µz ←Mean(Υι,z)
d2← Υι,x .ˆ 2 + Υι,y .ˆ 2 + Υι,z .ˆ 2

A←

Υι,x .∗Υι,x − µx 2 ∗Υι,x .∗Υι,y − µy 2 ∗Υι,x .∗Υι,z − µz
0 Υι,y .∗Υι,y − µy 2 ∗Υι,y .∗Υι,z − µz
0 0 Υι,z .∗Υι,z − µz


A← A+ AT

B ←Zeros(3, 1)
B1 ←Mean(d2 .∗

(
Υι,x − µx

)
)

B2 ←Mean(d2 .∗
(
Υι,y − µy

)
)

B3 ←Mean(d2 .∗
(
Υι,z − µz

)
)

cι ←Solve(Acι = B)

d2←
((

Υι,x − µx
)
.ˆ 2 +

(
Υι,y − µy

)
.ˆ 2 +

(
Υι,z − µz

)
.ˆ 2
)

µd2 ←Mean(d2)
ρι ←Sqrt(µd2)
return [ρι, cι]

end function

Algorithm 3 Weighted Least-Squares Parameter Estimation of Z2

function EstimateZ2(m, R, C2, ℘2)
m2 ← ℘2

(
m
)

µ2 ←Mean(m2)
U ←CholeskyDecomposition(C2

TR−1C2 +Q) . UTU = C2
TR−1C2 +Q

X1 ←Solve(UTX1 = C2
TR−1

(
m2 − µ2

)
) . Solve using forward substitution

Ẑ2 ←Solve(UẐ2 = X1) . Solve using backward substitution
return Ẑ2

end function
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Algorithm 4 Reconstruction of Z without Motion Correction

function Reconstruct(T,R,Θ)
m← T:

C1 ← [] . Determine structural correspondence
for all i ∈ Ti do

Ci ←GetCorrespondence(Θi)
C1 ←Append(C1, Ci)

end for
Υ← [] . Locate corneal boundaries in each tomogram
for all i ∈ Ti do

[U, pi,map(s0, α)]←LocateBoundaries(Ti)
Υ←Append(Υ, U)

end for
for each ι ∈ 1 : 5 do . Estimate structure for each boundary

[ρι, cι]←EstimateSphere(Υι)
end for
C2 ← [] . map space from tomogram to [s, α]
℘2(m)←m . For this implementation, all preprocessing is moved into C2

[s0α]←ndgrid(−200 : 1200,−.1 : 1.1)
for all i ∈ Ti do

[xy]← pi,map(s0, α)
smap ←TriScatteredInterp(x, y, s0)
αmap ←TriScatteredInterp(x, y, α)
[xyz]←GetCoordinates(mi)
[sa]← [smap(x, y), αmap(x, y)]
C2,iGetCorrespondence(x, y, z, s, a,Θi)
C2 ←Append(C2, C2,i)

end for
Ẑ2 ←EstimateZ2(m, R, C2, ℘2)
return [ρ, c, Ẑ2]

end function
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Algorithm 5 Motion Corrected Parameter Estimation of Z

function EstimatePose(T,R,Θ0) . Create initial reconstruction based on Θ0

Θ← Θ0

for each l ∈ 1 : 5 do . Run for five iterations
[ρ, c, Ẑ2]←Reconstruct(T,R,Θ)
f(Θ)←@EstimatePoseOptFun(T,R,Θ)
e, Θ̂←ArgMinTheta(f(Θ)) . Solve using optimization implementation

end for
return Θ̂

end function
function EstimatePoseOptFun(T,R,Θ, ρ, c, Ẑ2)

e← 0
w ← .5 . Weight between structure and scattering potential
for all i ∈ Ti do

ei,structure ←ErrorProjectionStructureToTomogram(Ti, ρ, c)

ei,scattering ←ErrorProjectionScatteringToTomogram(Ti, Ẑ2)
e← e+ wei,structure + (1− w)ei,scattering

end for
return e . return residual error

end function
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