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Abstract

Earthquake is undoubtedly one of the greatest natural disasters that can induce serious

structural damage and huge losses of properties and lives. The resulting destructive conse-

quences not only have made structural seismic analysis and design much more important

but have impelled the necessity of more realistic representation of ground motions, such as

inclusion of ground motion spatial variations in earthquake modelling and seismic analysis

and design of structures.

Recorded seismic ground motions exhibit spatial variations in their amplitudes and

phases, and the spatial variabilities have an important effect on the responses of structures

extended in space, such as long span bridges. Because of the multi-parametric nature and

the complexity of the problems, the development of specific design provisions on spatial

variabilities of ground motions in modern seismic codes has been impeded. Eurocode 8

is currently the only seismic standard worldwide that gives a set of detailed guidelines to

explicitly tackle spatial variabilities of ground motions in bridge design, providing both a

simplified design scheme and an analytical approach. However, there is gap between the

code-specified provisions in Eurocode 8 and the realistic representation of spatially varying

ground motions (SVGM) and the corresponding stochastic vibration analysis (SVA) ap-

proaches. This study is devoted to bridge this gap on modelling of SVGM and development

of SVA approaches for structures extended in space under SVGM.

A complete and realistic SVGM representation approach is developed by accounting for

the incoherence effect, wave-passage effect, site-response effect, ground motion nonstation-

arity, tridirectionality, and spectra-compatibility. This effort brings together various aspects

regarding rational seismic scenarios determination, comprehensive methods of accounting

for varying site effects, conditional modelling of SVGM nonstationarity, and code-specified

ground motion spectra-compatibility.

A comprehensive, systematic, and efficient SVA methodology is derived for long span

structures under tridirectional nonstationary SVGM.An absolute-response-oriented scheme

of pseudo-excitation method and an improved high precision direct integration method are

proposed to reduce the enormous computational effort of conventional nonstationary SVA.
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A scheme accounting for tridirectional varying site-response effect is incorporated in the

nonstationary SVA scheme systematically. The proposed highly efficient and accurate SVA

approach is implemented and verified in a general finite element analysis platform to make

it readily applicable in SVA of complex structures. Based on the proposed SVA approach,

parametric studies of two practical long span bridges under SVGM are conducted.

To account for spatial randomness and variability of soil properties in soil-structure

interaction analysis of structures under SVGM, a meshfree-Galerkin approach is proposed

within the Karhunen-Loève expansion scheme for representation of spatial soil properties

modelled as a random field. The meshfree shape functions are proposed as a set of basis

functions in the Galerkin scheme to solve integral equation of Karhunen-Loève expansion,

with a proposed optimization scheme in treating the compatibility between the target

and analytical covariance models. The accuracy and validity of the meshfree-Galerkin

scheme are assessed and demonstrated by representation of covariance models for various

homogeneous and nonhomogeneous spatial fields.

The developed modelling approaches of SVGM and the derived analytical SVA ap-

proaches can be applied to provide more refined solutions for quantitatively assessing

code-specified design provisions and developing new design provisions. The proposed

meshfree-Galerkin approach can be used to account for spatial randomness and variability

of soil properties in soil-structure interaction analysis.
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1C H A P T E R

Introduction

Earthquake is undoubtedly regarded as one of the greatest destructive natural disasters that

can induce serious damage of structures, thereby causing huge economic losses, including

lives and properties. The spatial variation of seismic ground motions has an important effect

on the response of long structures, e.g., long span bridges (Zerva, 2009). Thus, structural

seismic analysis and design, as the most effective approach in mitigating the consequences

of earthquakes, become much more crucial for these long structures (Housner and Jennings,

1977).

In Section 1.1, a general overview of this thesis is presented, along with the scope and

motivation of this study. Following the background introduced in Sections 1.1, the objec-

tives of this study are presented in Section 1.2, and the organization of this thesis is then

described in Section 1.3.

1.1 Motivation and Background

In the past several decades, a large number of destructive earthquakes have caused catas-

trophical damage to bridge structures and tremendous losses of casualties and property

(see Figure 1.1), such as 1906 San Francisco, 1976 Tangshan, 1979 Imperial Valley, 1994

Northridge, 1995 Kobe, 1999 Chi-Chi, 2008 Sichuan, 2010 Haiti, and 2011 Tohoku earth-

quakes. These earthquakes not only have made structural seismic analysis and design

much more essential, but impelled the necessity of more realistic representation of ground
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1.1 motivation and background

motions, e.g., inclusion of ground motion spatial variations in earthquake modelling and

seismic analysis and design of structures.

(a) 1994 Northridge (b) 1995 Kobe

(c) 1999 Chi-Chi (d) 2008 Sichuan

Figure 1.1 Collapse of bridges in the past earthquakes

1.1.1 Spatially Varying Ground Motions (SVGM)

Observations from past earthquakes demonstrated that the seismic ground motions recorded

exhibit spatial differences in their amplitude and phases (i.e., spatial variations of ground

motions), such as the El Centro differential array that was installed to record the 1979

Imperial Valley earthquake (Spudich and Cranswick, 1984), the Strong Motion Array in

Taiwan-Phase 1 (SMART-1) and Lotung Large Scale Seismic Test (LSST) array in Lotung,

Taiwan (Bolt et al., 1982), and the dense array in the Parkway Valley, Wainuiomata, New

Zealand (Zerva and Stephenson, 2011).
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1.1 motivation and background

There are three phenomena that mainly give rise to the spatial variability of ground

motions (Somerville et al., 1991; Der Kiureghian, 1996)

❧ The wave-passage effect, which results from difference in the arrival times of seismic

waves at separate stations due to finite velocity of travelling waves.

❧ The incoherence effect, which arises from random differences in the amplitudes and

phases of seismic waves due to their multiple reflections and refractions in the hetero-

geneous medium (scattering effect) and their differential superposition when arriving

from an extended source (extend source effect).

❧ The site-response effect, which is attributed to differences of the surface motions owing

to propagation of seismic waves through different site conditions.

Ground motion spatial variations significantly affect the responses of large dimensional

structures, such as pipelines, tunnels, dams, bridges, and structures with large rigid foun-

dation, e.g., nuclear power plants (Zerva, 2009). Because these long or large structures

extend over large distance, their supports will undergo different ground motion during an

earthquake. For example, spatial variations of seismic motion may result in pounding or

even collapse of adjacent bridge decks owing to the large out-of-phase responses, which

were observed and reported from almost all the past major earthquakes, e.g., the 1994

Northridge, 1999 Chi-Chi, and 2008 Sichuan earthquakes (Moehle and Eberhard, 2000).

Thus, it is necessary to account for the spatial variations in ground motion modelling and

seismic response analysis and design of bridges.

In performance-based earthquake engineering (PBEE), response history analysis (RHA)

is required to account for nonlinear behaviors of structures, where the specified time histo-

ries of ground motions at supports of the structure must be provided. Due to the scarcity

of earthquake time histories recorded at closely spaced seismographic stations and wide

ranges of practical structure dimensions, nonlinear RHA of multiply supported structures

must rely on synthetic ground motions. Therefore, the generation of synthetic SVGM is

of great importance and much more necessary than ground motion synthesis for a single

location, which prompted the study on modelling of SVGM in this thesis.
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1.1 motivation and background

1.1.2 Modelling of SVGM

Existing methods in synthesizing earthquake wave motions include the classical wave prop-

agation methods, stochastic-based methods, and other signal processing techniques, such

as the wavelet and Hilbert-Huang Transform (HHT) methods. In the wave propagation

methods, ground motions are normally obtained by solving equations of waves prorogating

through elastic and stratified medium using all the available information about the source,

path, and site characteristics (Wang, 1999). The stochastic methods modulate the generic

Gaussian white noise by an envelope function to obtain the synthetic time histories (Boore,

1983). The wavelet and HHT methods are usually used to model nonstationarity of ground

motions (Wen and Gu, 2004).

Almost all of the techniques of simulating SVGM, including the unconditional simulation

(Shinozuka and Deodatis, 1988; Hao et al., 1989; Conte et al., 1992; Deodatis, 1996) and

conditional simulation (Vanmarcke et al., 1993; Heredia-Zavoni and Santa-Cruz, 2000; Hu

et al., 2012), can be generally grouped as spectral representation method (SRM), which

involves the decomposition of cross power spectral density (PSD) matrix. This is because

that, in practice, all of the parametric modellings of spatially correlated earthquake motions

are described by the coherence function (a measure of spatial seismic motion coherency in

frequency domain), where the SRM becomes conceptually and theoretically consistent with

the existing coherence model.

For the PSD model used in SRM, a physically consistent and refined model using seis-

mological spectra, which can account for effects of the fault rupture and the transmission

of waves from the fault through the media to the ground surface (Brune, 1970), is preferred.

In combination with the stochastic representation method, seismological spectra have been

widely used to simulate the physical processes responsible for the ground shaking (Boore,

2003a; Campbell, 2003), but have been rarely used to synthesize ground motions used

for structural RHA. The stochastic representation method, combined with seismological

spectra model, is extended to simulate SVGM in Chapter 2.

In determining the seismological spectra, seismological parameters of the earthquake

scenarios, such as earthquake magnitude and source-site distance, are required. In addi-
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1.1 motivation and background

tion, the seismic hazard of these seismic scenarios should be consistent with the design

response spectra, e.g., uniform hazard spectra (UHS), since the design seismic loads spec-

ified by regulatory agencies are usually prescribed in the form of response spectra. The

determination of seismic hazard for earthquake scenarios can be accomplished through

the seismic hazard deaggregation (SHD). Atkinson (2009) utilized this scheme to gener-

ate earthquakes compatible with UHS, but it requires a number of ground motions to be

simulated for RHA, since different hazard deaggregation results of spectral acceleration on

UHS are resulted by scalar SHD at each vibration period. This leads to enormous efforts in

RHA, especially for structures with complex geometric or constitutive properties. Chapter

2 adopts the vector-valued seismic hazard deaggregation (VSHD) approach, instead of the

scalar SHD, to determine the earthquake scenarios, which can contribute seismic hazard to

spectral accelerations at multiple periods simultaneously.

Among spatial variations of seismic motions, the site-response effect can significantly

affect responses of structures extended in space, since ground motions propagating from

the base rock have significant spatial variability. Furthermore, different site amplifications

and filtering induced by non-uniform (varying) sites tend to increase the quasi-static re-

sponses of structures under SVGM. Most of the existing studies in addressing the topic of

simulations of random processes and random fields fail to (Shinozuka and Deodatis, 1988;

Hao et al., 1989; Conte et al., 1992), or only partially and simplistically, account for amplifi-

cation and filtering effect of local site condition, e.g., those using different soil parameters in

the Clough-Penzien spectrum to represent different soil conditions at structural supports

(Deodatis, 1996; Ates et al., 2006; Dumanoglu and Soyluk, 2003), or those simply incor-

porating local site conditions as a linear soil column subjected to a vertically propagating

S-wave (Konakli and Der Kiureghian, 2011b). Specifically, using different soil parameters

in Clough-Penzien spectrum can consider only one peak corresponding to the fundamental

vibration mode of the site, but cannot consider various vibration modes of the site where

local soil conditions will amplify and filter the incoming seismic waves. The approach in

Konakli and Der Kiureghian (2011b) fails to provide tridirectional site responses (as a result

of the incoming P and S seismic waves towards the site with incident angles), which are

of prime significance in tridirectional SVGM simulation and tridirectional structural re-
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1.1 motivation and background

sponse analysis including site-response effect. Moreover, these approaches cannot account

for the randomness and uncertainties of dynamic properties of site conditions and site

irregularities for structures supported in canyon sites.

In Chapter 2, a site response scheme is derived and incorporated into the SRM to model

SVGM at varying site conditions, which can capture the multiple vibration modes of local

site, provide tridirectional site response results, account for randomness and uncertainties of

local site conditions, and consider effect of site irregularities. It is believed to be an approach

that can realistically simulate the tridirectional SVGM at varying site conditions. Moreover,

the site analysis approach is futher incorporated into the stochastic vibration analysis (SVA)

methodology in Chapter 4 for structural seismic analysis including tridirectional site effect.

Besides local site effect, synthetic ground motions should have a good approximation of

nonstationary characteristics of real time histories, which is critical in seismic analysis of

hysteretic structures in PBEE. Methods in modelling nonstationarity of ground motions

in SRM usually requires the specification of an evolutionary PSD model (Cacciola and

Deodatis, 2011; Hu et al., 2012), whose analytical expression is very difficult to be established

to reflect ground motion nonstationarity induced by the source, path, and local site effect,

since very limited information is available on the spectral characteristics of propagating

seismic waves. Other methods, such as the wavelet and HHT methods, are usually used

to model nonstationarity of ground motions; however, they are limited to ground motion

simulation for a single location, due to the lack of available spatial correlation model derived

from the wavelet and HHT bases (Zeldin and Spanos, 1996; Wen and Gu, 2004).

The conditional simulation methods have been used as an alternative approach to sim-

ulate nonstationary SVGM that are compatible with prescribed real records. Based on the

stationary simulation techniques, ground motion fields are generated by conditional simu-

lation of the Fourier coefficients in the frequency domain (Kameda and Morikawa, 1994),

which cannot well preserve the nonstationary nature of ground motions. Hence, these

conditional approaches are then improved by dividing the time duration into a sequence of

time windows, to which different spectral properties are attributed (Vanmarcke et al., 1993;

Heredia-Zavoni and Santa-Cruz, 2000; Liao and Zerva, 2006; Konakli and Der Kiureghian,

2012); however, it is difficult to choose the appropriate time windows and their respective
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1.1 motivation and background

properties. Furthermore, these conditional simulation approaches are limited to the case of

uniform soil conditions that fail to account for the non-uniformity of site conditions.

In Chapter 3, a conditional simulation scheme is developed to model nonstationarity of

SVGM at canyon sites using phase difference spectrum (PDS), which preserves ground mo-

tion nonstationarity in both time and frequency domains and provides good estimations of

the ground motions using only a few model parameters (magnitude and distance). Besides,

ground motion nonstationarity has also been included in Chapters 4 to 6 in structural

stochastic seismic analysis under SVGM.

Besides spatial variations and nonstationarity of SVGM,the dimensionality is also studied

in this thesis, since the combined responses of structures with complex geometries (e.g.,

long span bridges) under tridirectional ground motions, especially tridirectional SVGM,

are important to be considered in seismic assessment. In addition, engineers have long

recognized that synthetic SVGM should be compatible with target design response spectra,

which are usually prescribed as the design seismic loads by regulatory agencies. However,

modelling of tridirectional SVGM that are compatible with design response spectra and

considering the multidimensional characteristics of SVGM in structural response analysis

and design have not been adequately studied. A simulation scheme of SVGM that accounts

for both ground motion tridirectionality and response spectra compatibility is presented

in Chapter 3. Tridirectionality of SVGM has also been included in the nonstationary SVA

scheme presented in Chapters 4 to 6.

1.1.3 Stochastic Seismic Analysis of Structures under SVGM

Seismic response analysis of structures under SVGM is often performed through lin-

ear/nonlinear RHA with design earthquake time histories, SVA with design PSD model,

and response spectrum approach (RSA) with design response spectra input. During the

past two decades, responses of bridges to SVGM have been studied extensively using RHA

(Price and Eberhard, 1998; Saxena, 2000; Kim and Feng, 2003; Zanardo et al., 2002; Lou and

Zerva, 2005; Lupoi et al., 2005; Chouw and Hao, 2008; Bi and Hao, 2013), SVA (Zerva, 1990;

Hao, 1993; Heredia-Zavoni and Vanmarcke, 1994; Harichandran et al., 1996; Dumanoglu

and Soyluk, 2003; Lin et al., 2004a; Soyluk, 2004a; Ates et al., 2006; Zhang et al., 2009; Bi et al.,
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1.1 motivation and background

2011), or RSA (Berrah and Kausel, 1992; Der Kiureghian and Neuenhofer, 1992; Konakli

and Der Kiureghian, 2011a).

Because earthquakes are in essence random and RHA usually leads to biased estimations

of structural responses owning to uncertainty and intrinsic randomness of ground motions,

stochastic vibration based aseismic analysis of structures has been gradually accepted by

bridge seismic design standards (CEN, 2005b; MCPRC, 2008). CEN (2005b) and MCPRC

(2008) have recommended SVA as one of three common structural analysis approaches

for bridges, along with RHA and RSA, since SVA is a theoretically advanced spectral tool

that can provide stable, reliable, and physically compliant structural seismic responses,

especially for bridge structures under SVGM. This prompts the necessity and significance

of developing SVA approaches in this thesis for long structures under SVGM.

As discussed in Section 1.1.2, seismic analysis of bridge structures should account for the

incoherence effect, wave-passage effect, local site effect, nonstationarity, and tridirectional-

ity of SVGM. However, considering ground motion nonstationarity in SVA, i.e., nonstation-

ary SVA, for structures subjected to SVGM is too complicated and difficult to be widely used

in general engineering computations (in spite of its recognized importance), due to which

most of existing works are limited to stationary SVA. In particular, for structures having a

large number of DoF and dozens of spatial supports, or the input nonuniformly modulated

nonstationary ground motions being spatially correlated and tridirectional, their stochas-

tic response formulas are rather complex and involve a great deal of multiple integration

and summation operations, e.g., the Riemann-Stieltjes integration, requiring considerable

computational effort.

To reduce the large computational effort involved in the conventional nonstationary

stochastic analysis, a time domain method, such as pseudo-excitation method (PEM), is

used in this study to improve the computational efficiency (Lin et al., 1997a), in conjunction

with the high precision direct integration method (HPDIM), which can further enhance

computational efficiency of the direct time domain integration within PEM scheme (Zhong

and Williams, 1994). PEM (along with HPDIM) is an accurate and efficient method that

can transform both stationary and nonstationary stochastic analyses in frequency domain

to deterministic dynamic response problems in time domain, making structural stochas-
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1.1 motivation and background

tic analysis very simple yet accurate. Time domain analyses make PEM more adaptable

for implementation in the general finite element analysis (FEA) platforms, making PEM

particularly attractive for engineering purposes.

However, HPDIM still suffers from the bottle-neck problem that the time step has to

be small enough to simulate recursively varying pseudo loadings properly, especially for

nonuniformly modulated nonstationary pseudo loadings. In Chapter 6, an improved high

precision direct integration method (I-HPDIM) is proposed to resolve these shortcomings.

Moreover, the conventional indirect approach solves equations of motion of structures

under SVGM by treating the total responses as a linear superposition of a quasi-static and a

dynamic components, where massive computations on static influence matrix and inverse

of structure stiffness matrix are required. Moreover, the linear superposition treatment has

prevented the conventional indirect approach from possible extension to the nonlinear SVA

used for PBEE (Der Kiureghian and Fujimura, 2009). To resolve these shortcomings, an

absolute-response-oriented scheme within the PEM framework is derived in Chapter 4.

In Chapter 6, the absolute-response-oriented scheme of PEM and I-HPDIM, which can

greatly improve the computational efficiencies of both PEM and conventional HPDIM, are

combined and implemented in general FEA platform, which becomes more attractive for

engineering purposes, particularly in SVA of large complex structures under tridirectional

nonstationary SVGM.

1.1.4 Random Field (RF) Representation of Spatial Soil Profiles

Besides wave-passage, incoherence, and site-response effects, seismic motions can be further

modified by the soil surrounding structural foundations or piles, known as soil-structure

interaction (SSI) effect. SSI is well-recognized to significantly affect structural responses

through the coupling between structures and the surrounding soil domain (Wolf, 1985), but

has not been adequately considered for structures under SVGM. In SSI analysis, modelling

of soil profiles is a fundamental issue, where inherent spatial variability and uncertainty of

soil should be accounted for, since, unlike some artificial materials, soil exhibits great spatial

variation and uncertainty that may exert a dominant influence in SSI (Lumb, 1966). This

impels the study of representing spatial soil profiles for SSI analysis.
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1.2 objectives of this study

Soil properties vary from point to point in space that it is natural to describe them as

random fields (RF), where the probability distributions and correlation structures of these

soil properties are required (Vanmarcke, 1977). However, due to the lack of relevant exper-

imental data, RF are usually assumed to have finite second order statistics and are usually

categorized into Gaussian and non-Gaussian fields (homogeneous or nonhomogeneous).

SRM is widely used in conjunction with the transformed field to simulate non-Gaussian RF,

but it usually requires an iterative procedure between the underlying Gaussian field and the

target non-Gaussian field, where the existence of the underlying Gaussian field cannot be

ensured. Furthermore, SRM fails to represent the nonhomogeneity of RF satisfactorily (Li

et al., 2007), although most of soil properties exhibit strong nonhomogeneity in reality.

Alternatively, the Karhunen-Loève (K-L) expansion offers a unified framework for the

simulation of homogeneous and nonhomogeneous RF that can effectively represent their

covariance kernels (Phoon et al., 2002b). However, the implementation of K-L expansion

is often hindered by the difficulty encountered in solving the Fredholm integral equation

(Ghanem and Spanos, 1991), where the numerical Galerkin method is often used relying

on the trigonometric, polynomial, or wavelet basis functions (Phoon et al., 2002a). These

basis-function-based methods may not be effective or applicable to a domain of arbitrary

shape associated with a general covariance function (Rahman and Xu, 2005).

To resolve these problems, in Chapter 7, a meshfree-Galerkin method is developed within

the K-L expansion scheme for modelling and synthesizing spatial soil properties, where

meshfree shape functions are employed as a set of complete basis functions within the

Galerkin scheme to solve Fredholm integral equation.

1.2 Objectives of This Study

In reviewing the existing standards in dealing with spatial variabilities of ground motions in

bridge design, it is found that CEN (2005b) is currently the only seismic code worldwide that

gives a detailed set of guidelines to explicitly tackle this problem, since the development of

specific design provisions in modern seismic codes has been impeded by the multiparamet-

ric nature and the complexity of the problem (Sextos and Kappos, 2009). Specifically, the US
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1.2 objectives of this study

and Japanese bridge design guidelines account for ground motion spatial variabilities solely

on the basis of seating length provisions (AASHTO, 2002; ATC/MCEER, 2003; FEMA, 2010;

JRA, 2002), the Canadian bridge code fails to account for ground motion spatial variations

in its design specifications (CSA, 2006), and the Chinese bridge design code recommends

SVA as a preferred analysis approach to account for ground motion spatial variations on

bridge responses but fails to provide the simplified design schemes or detailed and explicit

analysis approaches (see Section 6.6 of the Commentary) (MCPRC, 2008). CEN (2005b)

provides both a simplified design scheme (see Section 3.3) and an analytical approach (see

Annex D) in dealing with the problem.

In the simplified scheme, the dynamic (inertia) responses of the entire bridge should

be accounted for by the uniform excitation analysis (dynamic analysis, RSA or RHA),

while the pseudo-static responses can be calculated using the Set A and Set B deformation

displacements imposed at the supports of the bridge (static analysis). The total responses

are then obtained by combining the dynamic and pseudo-static responses through square

root of the sum of squares (SRSS) rule. In the analytical approach, specific provisions are

presented on both the simulation of SVGM by SRM (see Sections D.1 and D.2) and the

linear SVA of bridges under SVGM (see Section D.3.2).

However, in modelling of SVGM, CEN (2005b) fails to (a) provide a site-response ap-

proach that can both provide the tridirectional response results at varying sites and account

for soil randomness and uncertainties; (b) include a more reasonable approach in mod-

elling ground motion nonstationarity (its suggested envelope modulation method within

SRM scheme cannot represent ground motion nonstationarity well); (c) model ground

motion multidimensionality; and (d) consider response spectra compatibility (only PSD

compatibility is specified). As discussed in Section 1.1.2, these effects are of prime im-

portance in generating SVGM used for RHA. Moreover, CEN (2005b) also fails to present

explicit and detailed provisions or recommended commentaries on SVA of bridges under

SVGM, e.g., to include varying site effect, ground motion nonstationary, and tridirection-

ality in SVA, along with some high-efficient schemes in nonstationary SVA for the complex

bridge structures. Therefore, there is gap between the code-specified provisions and the

realistic SVGM representation and the corresponding SVA approaches.
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1.3 organization of this study

To bridge this gap, the objectives of this study are to develop a complete and realis-

tic SVGM representation approach and a comprehensive, systematic, and efficient SVA

methodology in dealing with spatial variability of seismic ground motions for bridge struc-

tures. The results of this study aim to provide more refined solutions for quantitatively

assessing the code-specified design provisions and developing new design provisions.

1.3 Organization of This Study

Following the motivations and discussions in Section 1.1 and the objectives in Section 1.2,

the organization of this study is presented below.

Chapters 2 and 3 develop a complete and realistic representation approach for SVGM,

where wave-passage effect, incoherence effect, varying site effect, ground motion non-

stationarity, tridirectionality, and response spectra compatibility are considered. Firstly,

the scheme of SRM combined with seismological spectra is derived to simulate SVGM,

where the earthquake scenarios are determined through VSHD. Secondly, a comprehensive

method of accounting for local site effect in synthesizing SVGM is proposed, including

consideration of spatial-random-variable soil profiles, the effect of water saturation, and

combining P wave, shear vertical (SV) wave, and shear horizontal (SH) wave motions to

result in tridirectional site responses. Thirdly, a conditional simulation scheme is estab-

lished to model nonstationarity of SVGM at canyon sites using PDS method. Finally, both

ground motion tridirectionality and response spectra compatibility are included in the

representation approach.

Chapter 4 provides a comprehensive,systematic,and efficient SVA methodology for struc-

tures under tridirectional nonstationary SVGM at varying site conditions. The absolute-

response-oriented scheme of PEM is established and implemented in the general FEA

platform. Site analysis approach is also incorporated into the SVA methodology for struc-

tural seismic analysis including tridirectional site effect. Relying on the theoretical basis

of Chapter 4, two practical bridges, a concrete-filled steel tubular (CFST) arch bridge and

a high-pier railway bridge, are analyzed in detail in Chapter 5. The conclusions of these
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1.3 organization of this study

examples can be considered as some specifications for seismic design and analysis of the

CFST arch bridges and high-pier railway bridges in seismic design guidelines.

In Chapter 6, the I-HPDIM scheme is proposed to improve the computational efficiencies

of the theoretical methodology in Chapter 4 for nonstationary SVA of complex long struc-

tures. The I-HPDIM scheme is then implemented in general FEA platform for engineering

purposes. Effects of local site conditions on required separation distance (RSD) of adjacent

segments of a high-pier railway bridge have been studied to avoid bridge seismic pounding.

To account for soil inherent spatial variability and uncertainty in SSI analysis, a meshfree-

Galerkin method is developed in Chapter 7 within the K-L expansion scheme for modelling

and synthesizing spatial soil properties modelled as random fields, along with an proposed

optimization scheme used for treating the compatibility between the target and analytical

covariance models. The accuracy and validity of the meshfree-Galerkin scheme is then

assessed and demonstrated through the modelling and synthesis of the spatial field models,

inferred from the field measurements, of soil properties.

A summary of conclusions from this study and some suggestions for future research are

presented in Chapter 8.
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2C H A P T E R

Modelling of SVGM:
(I) Seismic Scenarios Determination
and Varying Site Effect

The recorded seismic ground motions are observed to exhibit spatial variations because

of the incoherence, wave-passage, and site-response effects. Due to the scarcity of these

earthquakes recorded at closely spaced seismographic stations and wide ranges of practical

structure dimensions, response history analysis (RHA) of multiply supported structures

must rely on the synthetic spatially varying ground motions (SVGM). In this chapter, the

seismic scenarios determination and local site effect in simulating SVGM are studied.

2.1 Introduction

As discussed in Section 1.1.2, almost all of the techniques of simulating SVGM can be

generally grouped as spectral representation method (SRM), where the approximate ground

motion ‘‘power’’ models, e.g., the empirical Kanai-Tajimi spectrum or Clough-Penzien

spectrum, are usually used. However, these approximate spectrum fail to accurately account

for wave motions transmitted from the earthquake source through the medium. Hence,

a physically consistent and refined model using seismological spectra, which can account

for effects of the fault rupture and the transmission of waves from the fault through the

media to the ground surface, is desired. Furthermore, seismic hazard of these seismic
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2.2 modelling of spatially correlated ground motions at varying site conditions

scenarios in seismological spectra should be consistent with the design response spectra

and determined by the seismic hazard deaggregation (SHD), which is adopted by Atkinson

(2009) to generate earthquakes compatible with uniform hazard spectra (UHS), but requires

a number of ground motions to be simulated.

The site-response effect can significantly affect responses of structures extended in space.

Most of the existing studies in simulating SVGM fail to, or only partially and simplistically,

account for amplification and filtering effect of local site condition (Hao et al., 1989; De-

odatis, 1996; Dumanoglu and Soyluk, 2003; Konakli and Der Kiureghian, 2011b). These

approaches also fail to provide tridirectional site responses and do not account for the ran-

domness and uncertainties of dynamic properties of site conditions and site irregularities

for structures supported in canyon sites.

To resolve these problems, a comprehensive and rational approach of synthesizing SVGM

is developed. The scheme of modelling SVGM at varying site conditions is presented in

Section 2.2. The physically compliant seismological spectra are determined by the results

from vector-valued seismic hazard deaggregation (VSHD) in Sections 2.3.1 and 2.3.2, based

on which a simulation framework is proposed to resolve the problem that a number of

simulations need to be carried out for ground motion generation based on UHS. The

combined coherence model, utilizing different coherence models to describe the SVGM, is

proposed in Section 2.3.3. A comprehensive approach of accounting for local site effect

in simulating SVGM is presented in Section 2.4, including consideration of random and

spatially variable soil profiles, combined P-wave, shear horizontal (SH)-wave and shear

vertical (SV)-wave motions for simulating tridirectional SVGM. Following the numerical

examples presented in Section 2.5, some conclusions are drawn in Section 2.6.

2.2 Modelling of Spatially Correlated Ground Motions at
Varying Site Conditions

Consider the spatial points i-i′, j-j′, and k-k′ with different site properties at a canyon site as

shown in Figure 2.1, spatially correlated ground motions need to be synthesized to account

for the varying site effect.
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Figure 2.1 Spatially distributed points with varying site conditions

It is assumed that spatial ground motions on the base rock are stationary random pro-

cesses with zero mean values and have the same power spectral density (PSD) function,

which is reasonable since the source-to-site distance is usually much larger than the dimen-

sions of the structure. The cross-PSD function of ground motions at n bedrock locations

is

Sbedrock(iω)=











S11(iω) S12(iω) · · · S1n(iω)

S21(iω) S22(iω) · · · S2n(iω)
...

... · · · ...

Sn1(iω) Sn2(iω) · · · Snn(iω)











n×n

, (2.2.1)

where Sii(ω) is the auto-PSD function at the ith location, Sij(iω) is the cross-PSD function

for ground motions at locations i and j given by

Sij(iω) =
√

Sii(ω)Sjj(ω) γij(iω) =
√

Sii(ω)Sjj(ω)
∣
∣γij(iω)

∣
∣exp

(

−i
ω dij

vapp(ω)

)

, (2.2.2)

where γij(iω) is the spatial coherence function at the bedrock, which is combined with the

lagged coherency value
∣
∣γij(iω)

∣
∣ and the wave-passage effect as exp

{

− iωdij/vapp(ω)
}

, dij is

the spatial distance from point i to point j, and vapp(ω) is the wave apparent velocity.
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To obtain the cross-PSD matrix of ground motions at ground surface, the following

equation gives cross-PSD functions between the bedrock spatial points and ground surface

points as

Si′j′(iω)=Hi(iω)H∗
j (iω) Sij(ω), (2.2.3)

in which Hi(iω) and Hj(iω) are frequency transfer functions (FTF) between points i-i′ and

j-j′ shown in Figure 2.1, and they can be obtained based on the site amplification method

presented in Section 2.4.1. Then the cross-PSD matrix of ground motions at ground surface

can be written as

Ssurface(iω)=
[

Si′j′(iω)
]

n×n
. (2.2.4)

Matrix Ssurface(iω) is Hermitian and positive definite; it can be decomposed into the

product of a complex lower triangular matrix L(iω) and its Hermitian LH(iω) using the

Cholesky decomposition as

Ssurface(iω)=L(iω) LH(iω), (2.2.5)

where L(iω) is given by

L(iω)=











l1′1′(iω) 0 · · · 0

l2′1′(iω) l2′2′(iω) · · · 0
...

...
. . .

...

ln′1′(iω) ln′2′(iω) · · · ln′n′(iω)











n×n

, (2.2.6)

in which

li′i′(ω) =
[

Si′i′(ω)−
i′−1
∑

k′=1

Si′k′(iω)S
∗
i′k′(iω)

] 1
2

, i′ =1′, 2′, . . . , n′,

li′j′(iω) =
Si′j′(iω)−

i′−1
∑

k′=1

Sj′k′(iω)S
∗
i′k′(iω)

Sj′j′(ω)
, j′ =1′, 2′, . . . , i′.

(2.2.7)

As seen from equation (2.2.7), caculation of square roots is required in the Cholesky

decomposition in equation (2.2.6). If the matrix being factorized is positive definite as
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2.3 vshd-based seismological spectraand the combined coherence model

required, the numbers under the square roots are always positive in exact arithmetic. Un-

fortunately, sometime the numbers can become negative because of round-off errors caused

by the caculation of square roots, in which case the algorithm cannot continue. An alter-

native way avoiding extracting square roots is to use the LDL decomposition, which can be

found in detail from Krishnamoorthy and Menon (2011).

Then the stochastic process uj′(t) can be simulated using the following expression (Hao

et al., 1989)

uj′(t)=
j′
∑

m′= 1

Nf
∑

l = 1

aj′m′(ωl) cos[ωlt − θj′m′(ω, t)+ ϕm′l], (2.2.8)

where

aj′m′(ωl)=
∣
∣lj′m′(iωl)

∣
∣
√

41ω, θj′m′(ωl)= tan−1

[ℑ
(

lj′m′(iωl)
)

ℜ
(

lj′m′(iωl)
)

]

, (2.2.9)

are the amplitudes and phase angles of the simulated time histories, 1ω is the resolution

in the frequency domain, Nf is number of discrete points of frequency, and ωl = l1ω is

the lth discrete frequency. ϕm′l is the random phase angle, which is often assumed to be

uniformly distributed over [0, 2π], resulting in stochastic process uj(t) being stationary.

The nonstationary ground motions may be obtained by using the time-domain amplitude

modulating function (Deodatis, 1996; Hao et al., 1989).

2.3 VSHD-based Seismological Spectra
and the Combined Coherence Model

It is well known that a UHS cannot represent a spectrum induced by a single earthquake

event, and the simulation scheme presented by Atkinson (2009) is a time-consuming pro-

cedure, since a number of simulations are required. Similar to SHD in scalar probabilistic

seismic hazard analysis (PSHA) (presented in Appendix A.1.1), VSHD, which is based on

vector-valued probabilistic seismic hazard analysis (VPSHA) (Bazzurro and Park, 2011; Ni

et al., 2012; Zhang et al., 2013c) can be used more appropriately to select earthquake records

or to determine the seismological spectra, rather than using the SHD values on UHS.
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2.3.1 Vector-Valued Seismic Hazard Deaggregation

It is well recognized that a vector of ground motion intensity measures (IM) can give more

accurate and stable results for structural seismic response analysis. The VPSHA, provided

in detail in Appendix A.1.2, is usually employed because it can provide a multivariate

probability exceedence model of the joint shaking hazards when many ground motion

parameters are of interest for structural analysis (Bazzurro and Cornell, 1999). The joint

hazards provided in VPSHA can be deaggregated through the VSHD as follows.

For a vector of spectral accelerations at multiple vibration periods
{

Sa(T1), Sa(T2), . . . ,

Sa(Tn)
}

, the mean rate density (MRD), contributed by all (m, r)-pairs, can be expressed as

λs∗ =
N
∑

i=1

νi

{ Nm∑

j=1

Nr∑

k=1

P
{

Sa(T1)>s∗1 , Sa(T2)>s∗2 , . . . , Sa(Tn)>s∗n
∣
∣mj, rk

}

P M(mj)P R(rk)
}

i
,

(2.3.1)

and the MRD contributed by (mj, rk)-pair is given by

λs∗(mj, rk) =
N
∑

i=1

νi

{

P
{

Sa(T1)>s∗1 , Sa(T2)>s∗2 , . . . , Sa(Tn)>s∗n
∣
∣mj, rk

}

P M(mj)P R(rk)
}

i
,

(2.3.2)

in which N is the number of seismic sources of interest in the VPSHA, νi is the mean rate of

occurrence of the ith seismic source, Nm and Nr are the numbers of discrete points of mag-

nitude and site-to-source distance, respectively. s∗ =
{

s∗1 , s∗2 , . . . , s∗n
}

is the vector containing

spectral acceleration thresholds with respect to MRD,P
{

Sa(T1)>s∗1 , Sa(T2)>s∗2 , . . . , Sa(Tn)

>s∗n
∣
∣m, r

}

is the complementary cumulative probability distribution function correspond-

ing to the multivariate lognormal distribution conditional on (m, r)-pair, P M(m) and P R(r)

are the probability mass functions of earthquake magnitude and site-to-source distance,

respectively (Bazzurro and Cornell, 1999).

Similar to the SHD in PSHA, the joint hazard provided in VPSHA can be deaggregated

to all the (mj, rk)-pair; the dominant (the most likely) pair (mmax, rmax) or the mean pair,

denoted as (mβ , rβ), can be obtained based on the maximum or average contribution to the
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2.3 vshd-based seismological spectraand the combined coherence model

total mean exceedence rate pjk given by

pjk =
λs∗(mj, rk)

λs∗
. (2.3.3)

The VSHD presented in this section is performed using the seismic sources shown in Fig-

ure 2.2, in which Mmin and Mmax are the minimum and maximum earthquake magnitudes

considered in the VPSHA,ν denotes the annual mean rate of exceedence for a given seismic

source, and d is the depth of the seismic source. These seismicity parameters are given

in Figure 2.2, and Abrahamson and Silva’s predictive equation is used (Abrahamson and

Silva, 1997). Eight vibration periods, namely T = {0.01, 0.02, 0.05, 0.1, 0.3, 0.5, 1, 5} (sec)

are selected, and the VSHD result at p∗ =4×10−5 is shown in Figure 2.3, where p∗ is the

joint probability of exceedence of spectral accelerations at periods T (Zhang et al., 2012b).

2.3.2 Physically Compliant Seismological Spectra

The seismological spectrum at a site Y(M0, R, f ) can be expressed as the contribution from

earthquake source (E), path (P), site (G), and instrument or type of the motion (I) (Boore,

2003a)

Y(M0, R, f )=E(M0, f )P(R, f )G( f )I( f )

= R28VF

4πρsβ
3
s R0

1

1 + ( f/f0)
2

· Z(R) exp

(

− π f R

Q( f )cQ

)

· A( f ) exp(−πκ0 f ) · I( f ),

(2.3.4)

where M0 is the seismic moment measuring the earthquake size, R is the site-to-source

distance, R28 is the radiation pattern, V is the partition of total shear-wave energy into

horizontal components, F represents the effect of the free surface, ρs and βs are the density

and shear-wave velocity in the vicinity of the source, R0 is a reference distance which is

usually set as 1 km, cQ is the seismic velocity, Z(R) is the geometric spreading function,

A( f ) is a function of shear-wave velocity versus depth,κ0 is the diminution parameters, and

f0 is the corner frequency given by

f0 =4.9×106βs

(△σ
M0

) 1
3

, (2.3.5)

in which △σ is called stress drop with unit in bars.
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Figure 2.3 Result of vector-valued seismic hazard deaggregation
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2.3 vshd-based seismological spectraand the combined coherence model

It is seen, in equation (2.3.4), that the shape and amplitude of semiological spectrum can

be uniquely determined by an earthquake event, i.e., an (m, r)-pair. However, the problem

is how to reasonably determine an (m, r)-pair to obtain a specific seismological spectrum.

One of the most appropriate ways of obtaining (m, r)-pair is based on PSHA. Atkinson

(2009) used the hazard deaggragation results on UHS to obtain the (m, r)-pair in simulating

earthquake time histories; however, it is a time-consuming procedure because a number of

simulations are required.

On the other hand,VPSHA can provide the joint probability information for spectral ac-

celerations at multiple vibration periods, and the joint hazard can be deaggregated through

VSHD to obtain an earthquake event containing the joint information of these spectral

accelerations. Thus, the physically compliant seismological spectrum is properly related to

the deaggregated results from VSHD for the simulation of SVGM.

It is noted that simulation schemes using the seismological spectra in conjunction with

the stochastic approach are widely used in the simulation of earthquake rupture processes,

but are rarely used in ground motion synthesis for structural RHA. One approach proposed

by Atkinson (2009) is for ground motion synthesis for a single site. However, none of the

existing work is for the generation of SVGM.

It should also be noted that an (m, r)-pair may not completely represent a single earth-

quake, and other earthquake features, such as duration of ground motion, peak ground

motions, and local site effects, should also be incorporated to comprehensively determine a

single earthquake. However, it is well recognized that the (m, r)-pair is the most important

and most frequently used parameters in defining an earthquake scenario; all other features,

such as duration of ground motion, peak ground motions, and ground motion near-fault

effect, can be predicted through the (m, r)-pair (Datta, 2010; Shahi and Baker, 2011), and

these predicted features can be incorporated in the proposed approach. Other earthquake

features, such as the local site effects, in determining an earthquake event are accounted for

in details for ground motion simulation in Section 2.4.

It is assumed that the earthquake magnitude and hypocentral site-to-source distance

derived from VSHD are m = 7.0 and r =
√

b2 + h2 = 31.6 km, where h=10 km is the depth

of the source and b=30 km is the epicentral distance. The seismological spectra of Western
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2.3 vshd-based seismological spectraand the combined coherence model

North America (WNA) with this (m, r)-pair as shown in Figure 2.4 are used. Parameters

of the seismological spectra are from Campbell (2003) in verifying the ground motion

predictive models of Next Generation Attenuation (NGA).

Besides the ground motion ‘‘power’’ model, Section 2.3.3 introduces the combined

coherence model in modelling spatially correlated earthquake motions.

2.3.3 The Combined Spatial Coherence Model

As mentioned in Section 1.1.2, the coherence function is expressed in the frequency domain

to model the ground motion spatial variability. The coherence of ground motions at points

k and l is obtained from the smoothed cross-PSD that is normalized with respect to the

corresponding auto-PSD given by

γkl(ω, dkl) =
Skl(ω, dkl)

√

Skk(ω)Sll(ω)
. (2.3.6)

Because the coherence value is a complex number, equation (2.3.6) can be written as

γkl(ω, dkl) =
∣
∣γkl(ω, dkl)

∣
∣ exp [iθkl(ω, dkl)], θkl(ω, dkl) = tan−1 ℑSkl(ω, dkl)

ℜSkl(ω, dkl)
, (2.3.7)

where 0<
∣
∣γkl(ω, dkl)

∣
∣<1 is called the lagged coherence, and dkl is the spatial distance

between points k and l.

Der Kiureghian (1996) presented a theoretical study to account for incoherence effect,

wave-passage effect, attenuation effect, and site-response effect. These effects are accounted

for separately in the wave coherence function model as

γkl(ω)
combined =γkl(ω)

incoherenceγkl(ω)
wave-passageγkl(ω)

site

= cos
[

β(dkl,ω)
]

·exp

[

−1

2
α2(dkl,ω)

]

·exp

[

−i
ωdL

kl

vapp(ω)

]

·exp
[

iθkl

]

,

(2.3.8)

in which dL
kl is the spatial distance, in the propagating direction of apparent wave motions,

between points k and l,γkl(ω)
incoherence is modelled by accounting for the randomness of the

medium and is the lagged coherence, γkl(ω)
wave-passage and γkl(ω)

site are used to reflect the

phase effects of coherence model induced by wave-passage effect and local site effect, and

parameter θkl in the local site effect can be obtained through the FTF of layered soil profiles.
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2.3 vshd-based seismological spectraand the combined coherence model

The existing coherence models are mostly regressed from the spatially implemented

dense arrays; they vary from one to another due to the dependence of the array data used

and even signal analysis techniques. In reality, it is difficult to obtain a theoretically accurate

coherence model because of the difficulty in studying wave propagation through highly

variable and complex soil media. It is well-known that a more refined model can be obtained

through a more advanced analysis of wave motion transmitting through an practically

modeled medium, e.g., considering the 2-D/3-D soil domains or the heterogeneity of soil

profiles. However, most of these works fail to obtain an explicit analytical expression of the

coherence function that is needed for synthesis of SVGM.

Furthermore, in the theoretical wave coherence model by Der Kiureghian (1996), only

the randomness of rock was accounted for approximately in the incoherence effect, which

is assumed to affect the lagged coherency value only, and the local site effects is assumed

to have an influence on the phase only. However, in practice, the local soil exhibits greater

randomness and variation than the rock, which can also affect the lagged coherency value

(Bi and Hao, 2011). Unfortunately, how the local soil profile influences the lagged coherence

value, besides affecting the phase part of coherence model, is unknown.

Because of these reasons and the importance of selecting the coherency function for

seismic analysis of structures extended in space under SVGM, a more plausible and viable

approach would be to use various coherence models to obtain a weighted combined model in

describing the SVGM, which is similar to the logic tree method in combining various ground

motion predictive models in the PSHA. In this study, almost all the existing wave coherence

models, including theoretical, semi-analytical, and empirical models, are selected; a total

of 15 coherence models are collected (Loh and Lin, 1990; Harichandran and Vanmarcke,

1986; Oliveira et al., 1991; Harichandran, 1991; Tsai, 1987; Menke, 1990; Luco and Wong,

1986; Der Kiureghian, 1996). These models are combined with equal weighting coefficient

to yield the combined coherence function. The combined coherence model (d=100 m) is

shown in Figure 2.5.

It is admitted that choosing the weighting coefficient for each model is subjective; how-

ever, it has combined information of all the current models and would be an appropriate

way to account for complicated wave coherence effect as discussed above. Further studies

25



2.4 tridirectional local site amplification approach accounting for random soil profiles

should be conducted on the treatment of epistemic uncertainty of coherence models in a

more rigorous manner for the spatial ground motion simulation. For example, analogous

to the logic tree method in combining various ground motion prediction models in scalar

PSHA and VPSHA, the viability of coherence models can be reflected in the cross-PSD in

equation (2.3.6), which determines the simulated spatial earthquake motions. A family of

cross-PSD outputs, corresponding to each logic tree thread, can be obtained (like hazard

curves). The variability of coherence model can be calibrated and accounted for by using a

group of cross-PSD curves.

2.4 Tridirectional Local Site Amplification Approach
Accounting for Random Soil Profiles

As discussed in Section 1.1.2, the local site condition can strongly influence the responses

of structures extended in space, and the one-dimensional site response analysis is perhaps

the most used technique in accounting for the local site effect and is adopted in several

design standards (ASCE, 1998). It is admitted that the results obtained from 2-D or 3-D

analysis with accurate local soil modelling are preferred; however, these results are not

readily applicable in engineering practices due to the complexity of site response analysis.

In reality, spatial variations and uncertainties of soil properties always exist, which are

caused by the inherent heterogeneity or variability of soils, the limited availability of infor-

mation about internal conditions, and sometimes the measurement errors. Soil properties

can also be affected by underground water, such as the water saturation effect. As a result,

soil, which is spatially variable, random, heterogeneous, and nonlinear, becomes a natural

material that is difficult to characterize accurately; none of the existing works, to the best

knowledge of the author, presented detailed study in accounting for the local site effect in

synthesis of SVGM.

2.4.1 Site Amplification of In-plane and Out-of-plane Wave
Motions

Consider a canyon site with horizontal infinitely-extended multiple linear elastic soil layers

on a half space (base rock), as shown in Figure 2.1, in which hi, Gi, ρi, νi, ξi are the depth,
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2.4 tridirectional local site amplification approach accounting for random soil profiles

shear modulus, mass density, Poisson’s ratio, and damping ratio of layer i. The spatially

varying base rock motions are assumed to consist of out-of-plane SH-wave and in-plane

combined P-SV-waves propagating into a site with assumed incident angles. It is assumed

that the amplitude of the vertical motion is 2/3 of that of the horizontal components for the

incoming waves consisting of SH-wave and combined P-SV-waves. The incident motions

at different locations on the base rock are assumed to have the same PSD. This assumption

is reasonable, since the source to site distance is usually much larger than the dimension of

the structure.

Specifically, for two pairs of points k-k′ and l-l′ located on the bedrock and ground

surface, their cross-PSD is

Ga
k′a

l′
(ω, dk′l′) = Hkk′(ω)Hll′(−ω)Gakal

(ω, dkl), (2.4.1)

in which Hkk
′ (ω) and Hll

′ (ω) are the FTFs between points k-k′ and l-l′, and

Gakal
(ω, dkl)=γkl(ω, dkl)

√

Gakak
(ω)Galal

(ω), (2.4.2)

where Gakak
(ω)=Galal

(ω), and γkl(ω, dkl) is the coherence function for spatial points at the

bedrock.

To obtain the FTFs Hkk
′ (ω) and Hll

′ (ω) in equation (2.4.1), equations of wave motion in

volumetric strain e and in rotation strain vector � are

∇2e= − ω2

c2
p

e, ∇2�= − ω2

c2
s

�. (2.4.3)

The dynamic equations can be expressed in the frequency domain for the SH-wave and

P-SV-wave as

KSHXSH = PSH, KP-SVXP-SV = PP-SV, (2.4.4)

where XSH, PSH and XP-SV, PP-SV are the displacement and load vectors corresponding to

the incident SH-wave and combined P-SV-wave. The stiffness matrices KSH and KP-SV are

dependent on the soil properties, incident wave type, incident angle, and circular frequency

ω. The dynamic load vectors PSH and PP-SV depend on the incident wave type, bedrock

properties, incident wave frequency and amplitude. The site transfer functions in the out-of-

plane and in-plane directions can be estimated by solving equations (2.4.4) in the frequency
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2.4 tridirectional local site amplification approach accounting for random soil profiles

domain at every discrete frequency (Wolf, 1985). Detailed information on solving equation

(2.4.4) is provided in Appendix A.2.

It should be noted that, based on equations (2.4.4), tridirectional SVGM (SH wave mo-

tions in the horizontal direction and P-SV-wave motions in the horizontal and vertical

directions) can be obtained, which is of prime importance for structural seismic analysis

under tridirectional ground motions.

2.4.2 Spatial Random Field Theory

Due to the inherent spatial variation and uncertainty of historically accumulated soil pro-

files, the random field theory is one of the most appropriate approaches to describe the

variability of soil properties, which is introduced briefly in the following (Vanmarcke, 1977).

For a one-dimensional random field x(z), with the mean value x and the standard devia-

tion σx, the mean and variance of its local average process xZ(z) are given by

E[xZ(z)]=x(z), σ [xZ(z)]=λ(Z)σ 2
x, (2.4.5)

in which λ(Z) is the variance reduction parameter of x(z) that measures the reduction of

point variance σ 2
x under the local average, and it can be derived by the auto-correlation

function ρx(△z) as follows

λ(Z)= 2

Z

∫ Z

0

(

1 − △z

Z

)

ρx(△z)d(△z). (2.4.6)

By using the exponential auto-correlation function, the variance reduction function can be

expressed as

λ(Z)= 1

2(Z/rx)
2

[

2(Z/rx)+ e−2(Z/rx) − 1
]

, (2.4.7)

in which rx is the spatial correlation distance, which measures the correlation level or

persistence of the property from one point to another at a site; small values of rx suggest

rapid fluctuation about the average, whereas large values of rx imply that a slowly varying

component is superimposed on the average value x.

In the one-dimensional case, introducing correlation distance of a random property

results in a reduction of its standard deviation, i.e., the reduced variance for process x(z) is

λ(Z)σ 2
x (Vanmarcke, 1977).
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2.4 tridirectional local site amplification approach accounting for random soil profiles

2.4.3 Water Saturation Effect

For water saturation induced site amplification, Yang and Sato (2000) stated that the degree

of water saturation of a site has a significant influence on its Poisson’s ratio and P-wave

propagation, but does not affect the S-wave propagation at the site. The interactions

between the solid skeleton and pore fluid were modelled using the macroscopic laws of

mechanics, based on which the Poisson’s ratio accounting for water saturation is given by

ν= 1

2

α2M/G + 2ν′/(1 − 2ν′)

α2M/G + 1/(1 − 2ν
′
)

, (2.4.8)

where ν′ is Poisson’s ratio of soil skeleton,α and M are

ν′ = λ

2(λ+ G)
, α=1 −

Kb

Ks

, M= K2
s

Kd − Kb

, (2.4.9)

in which Ks and Kb are bulk moduli of solid grains and skeleton, respectively, and

Kd =Ks

[

1 + n
(Ks

Kf

− 1
)
]

, Kf =
1

1

Kw

+ 1 − Sr

Pa

, n= Vv

Vt

, Sr =
Vw

Vv

, (2.4.10)

where n is the porosity, Sr is the degree of saturation, Kf is the bulk modulus of homogeneous

fluid, Vv, Vw, and Vt are the volumes of pores, pore-water, and total volume, respectively, Kw

is the bulk modulus of water, and Pa is the absolute fluid pressure.

It is noted that spatial variability model of soil properties given in Section 2.4.2 and

water saturation effect model presented in Section 2.4.3 are reflected in equation (2.4.4) to

obtain the site transfer function. Furthermore, practical soil properties also exhibit great

randomness, which is accounted for by the Monte Carlo simulation. The stiffness matrix

in equation (2.4.4) is defined by site soil properties, such as the shear modulus, damping

ratio, and mass density. To model the random variability of these properties, Monte Carlo

simulation is used to estimate the mean and standard deviation

A different approach in considering the local site effect is the conditional simulation

(Vanmarcke et al., 1993), which assumes that ground motions at several spatial points are

conditional on the selected real earthquake records having similar site conditions to the

sites where these spatial points are located. However, a problem arises on how to reasonably

choose these records for structures with various dimensions.

29
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Thus, a more appropriate approach is perhaps to take a comprehensive and detailed site

response analysis that can account for the soil effects, which is also recommended in several

standards on site response analysis (ASCE, 1998).

Combining the VSHD-based semiological spectra given in Section 2.3.2 and the com-

bined coherence model presented in Section 2.3.3, a numerical example is presented in

Section 2.5, considering the incoherence effect, wave-passage effect, and local site effects.

2.5 Numerical Example

A local soil condition with heterogeneous soil profiles given in Figure 2.6 is used and the

soil properties are given in the attached table. Four pairs of equally spaced points (i-i′, j-j′,

m-m′, n-n′) located on the bedrock and the ground surface with spatial distance 100 m are

considered. The ground water level is assumed to be in the 3rd layer initially, and the WNA

generic rock site with bedrock wave velocity 620 m/sec is selected as the bedrock of soil

profiles (Campbell, 2003).

Using VSHD results in Figure 2.3, the VSHD-based seismological spectra of WNA in

Figure 2.4 are used, and the combined coherence model in Figure 2.5 is used for the four

points located at the bedrock level in Figure 2.6. The site response approach, presented

in Section 2.4, is adopted to account for the local site effect in simulation of SVGM by

the multi-variate stochastic vector process given in Section 2.2 (Deodatis, 1996; Hao et al.,

1989). The duration, sampling frequency of generated time histories, and the length of

Fourier transformation are chosen as 40.96 sec, 50 Hz, and 2048, respectively. Jenning’s

envelope function is used to obtain the nonstationary ground motions. In determining the

wave-passage effect, the apparent velocity at the bedrock is given as vapp = 1240 m/sec. The

initial wave motion incident angle beneath the bedrock is assumed to be αSH =αP =60◦.

2.5.1 Local Site Effects on the Loss of Motion Coherency

Assuming that all properties of soil profiles shown in Figure 2.6 are deterministic, SVGM on

the bedrock and ground surface are simulated to study the influence of local site condition

on the wave motion coherency. Figure 2.7 presents the lagged coherency of generated
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j m
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n

GWL

100 m

PropertyLayer h (m) G (MPa) ρ (kN/m3) ν ξ

1 Silty Clay 3.6 17.89 16.80 0.35 0.05

2 Clay 13.8 18.30 20.36 0.35 0.05

3 Silty Clay 6.8 19.33 16.00 0.32 0.05

4 Fine Sandy Clay 4.4 20.35 20.06 0.30 0.05

5 Rock 1153.20 29.40 0.25 0.05
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Figure 2.6 Schematic view of the local site condition with different soil profiles

bedrock motions and the corresponding targets between points i-j and j-n, where the lagged

coherency of generated wave motions is chosen as the mean value of 100 simulated lagged

coherency values from the Monte Carlo simulation. As shown, the lagged coherency values

of bedrock motions agree well with their targets and they will converge as the number of

simulated samples increases, which further indicates the consistency of generated spatially

correlated bedrock wave motions.

Figure 2.8 shows the mean values of 100 simulated lagged coherency functions of spatial

in-plane and out-of-plane surface motions for points i′-j′, i′-m′, and i′-n′, and the lagged

coherency functions between bedrock motions at sites i-j, i-m, and i-n are also presented. It

reveals that the coherency values between surface ground motions are significantly different

from those between the bedrock motions. The lagged coherency values of surface ground
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Figure 2.7 Lagged coherency of ground motions at bedrock

motions are smaller at all frequencies than those on the bedrock level, and the coherency

between bedrock motions is the upper bound of that on the ground surface. These phe-

nomena indicate that the local site condition can cause reduction of cross correlation of

spatial bedrock motions. These observations are consistent with those obtained by Liao

and Li (2002) and Bi and Hao (2011).

In Figure 2.8, it is observed that there are many obvious peaks and troughs in the

coherency function of surface ground motions, and these peaks and troughs are related to

the modulus of spectral ratio |Hk′(iω)|/|Hl′(iω)| shown in the same figure. For example,

six minima can be observed around frequencies 1.00, 2.70, 4.80, 6.17, 6.90, and 7.80 Hz in

the coherency function of horizontal in-plane motions between points i′ and j′, and these

minima correspond to the six peaks and troughs of the spectral ratio in Figure 2.8. Similar

results can also be observed for the out-of-plane and in-plane ground motions between

points i′ and m′ in Figure 2.8. This is because that the site amplification results are different

at certain frequencies for the two local sites, which results in the loss of coherency of surface

motions at these frequencies. These conclusions are in good agreement with observations
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obtained from real records, such as El Centro array in California, the SMART-1 strong

motion array in Taiwan, and the array in the Parkway Valley, New Zealand (Zerva, 2009).

Furthermore, the local site effect remains a minor factor on the loss of lagged coherency

of spatial locations with the same or very similar site conditions, such as site i-i′ and site

n-n′ in Figure 2.6, in which the loss of lagged coherency is caused mainly by the incoherence

effect and wave-passage effect. This conclusion can be observed from lagged coherency of

in-plane and out-of-plane surface motions between points i′ and n′ in Figure 2.8, where

wave propagation through the two sites does not significantly cause the loss of coherency

of these spatial bedrock motions. It should be noted that these observations also reveal

that the site effect can affect the modulus of coherency function, i.e., the lagged coherency

function; the conclusion that site effect can only cause the phase difference of coherency

function by Der Kiureghian (1996) is not appropriate .

2.5.2 Simulation of Spatially Correlated Ground Motions

The simulated spatially correlated ground motions, accounting for the randomness and

variability of soil properties, wave motions and water saturation level, are presented in this

section. For soil properties, the layer thickness d, shear modulus G, density ρ, damping

ratio ξ , and Poisson’s ratio ν are regarded as random variables. Their specific distributions

are not considered herein, but the variations are accounted for by the coefficients of vari-

ation cov=σ/µ, with covd =0.2, covG =0.4, covρ=0.2, covξ =0.4, and covν=0.2. The

randomness of water saturation level is accounted for by the variation of Poisson’s ratio ν,

and the randomness in wave motions is accounted for by the wave incident angle α with

covα=0.4 (Wang and Hao, 2002). The spatial correlation distance is chosen as 1.2 times of

the thickness of each soil layer (Vanmarcke, 1977), and reductions of the standard deviations

of random properties (d, G, ρ, ξ , and ν) have been considered based on one-dimensional

random field theory in Section 2.4.2. Parameters related to the water saturation are given as

Kw = 2 GPa, n = 0.37, Pa = 100 kPa, and Sr = 0.98 for each layer (Yang and Sato, 2000).

The scheme presented in Section 2.4.1 is used to obtain the site amplification functions

for every local soil profiles, and the Monte Carlo simulation method is applied to compute

the mean and standard deviation of those amplification functions. Figure 2.9 shows part
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Figure 2.8 Lagged coherency of ground motions at ground surface
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of the simulated samples, the estimated mean, mean-plus-one-SD, and mean-minus-one-

SD, for points i-i′ in the horizontal direction U of the in-plane wave motion, for points

j-j′ in the horizontal direction V of the out-of-plane wave motion, and points m-m′ in the

vertical direction W of the in-plane wave motion. Figure 2.10 presents the corresponding

phase spectra. It is seen from Figures 2.9 and 2.10 that the variability of soil properties,

incident wave motions, and water saturate level can result in variation of amplitude of site

amplification functions, shifts of natural frequencies of soil columns and phase spectrum of

site amplification functions, especially at high frequency bands. In this study, the values of

mean-plus-one-SD of site amplification amplitudes are chosen to account for the local site

amplification, and the mean value of phase spectrum is selected to account for the effect of

random phase variation of local soil profiles on the ground response.

It should be noted that the extent of variation of site amplification results is largely depen-

dent on the modelling of soil properties. It is observed that variations of site amplification

results become much larger as soil profiles are modelled to be much more nonlinear, where

these variations closely depend on both the randomness of soil properties, and randomness

and uncertainties of earthquake motions beneath soil profiles (Rathje et al., 2010; Li and

Assimaki, 2010). In this study, the soil profiles are assumed to be linear in the site amplifi-

cation analysis. Advanced modellings of soil profiles, e.g., soil dynamic viscoelasto-plastic

constitutive model, for the site response analysis are out of the scope of this study; however,

the proposed scheme is still applicable and site amplification results obtained from the

advanced site response analysis can be directly adopted in this scheme. Furthermore, it

is also indicated that the estimated surface motions differ substantially when the random

variations of soil properties are taken into account (Rathje et al., 2010; Li and Assimaki,

2010). At the same time, the calibration of the variability of ground motions is dependent

on the soil modelling, randomness and uncertainties of earthquake motions. Thus, future

studies should be conducted on the calibration of surface ground motion by simultane-

ously considering soil nonlinearity, randomness and uncertainties of earthquake motions

beneath soil profiles.

The tridirectional SVGM on the ground surface and SVGM on the bedrock are generated.

Only in-plane horizontal wave motions, including accelerations and displacements, are
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Figure 2.9 FTFs for in-plane and out-of-plane wave motions
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Figure 2.10 The phase spectrum for in-plane and out-of-plane wave motions

shown in Figure 2.11. As shown, the peak ground accelerations (PGA) and displacements

(PGD) for bedrock points i, j, m, n are 0.094 g, 0.109 g, 0.115 g, 0.092 g, and 0.098 m, 0.094

m, 0.101 m, 0.098 m, respectively, which are in good agreement with the predicted peak

ground motion acceleration and displacement of 0.104 g and 0.097 m (Vanmarcke, 1972).

More importantly, it is clearly observed that local soil profiles significantly amplify and filter

earthquake bedrock accelerations in the entire duration of ground motions, e.g., PGA at

bedrock are amplified as 0.178 g, 0.171 g, 0.185 g, 0.192 g for ground surface points i′, j′, m′,

n′. Similar observations are also obtained for the PGD.

The response spectra for ground motions at surface and bedrock points j-j′, m-m′, and

n-n′ are shown in Figure 2.12 to illustrate site amplification in the frequency domain. It
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Figure 2.11 The generated earthquake histories at the bedrock and ground surface (in-plane

horizontal)

is seen that spectra of bedrock motions are significantly amplified in certain frequencies,

e.g., at 1.12 Hz, 3.03 Hz, and 7.69 Hz with spectral amplification values 3.96, 3.36, and 1.46

for ground motions at points i-i′, and those frequencies are directly related to the natural

vibration modes of the site. It is also observed that ground motions obtained on the ground

surface are concentrated at a few frequencies corresponding to the various vibration modes

of the site, which indicates the importance of considering multiple modes of a local soil

site in the estimation of site amplification. Moreover, these conclusions and observations

regarding the site amplification, reflected in the time and frequency domains, further show

the importance and necessity of considering the local site effect in the ground motion

simulation.
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Figure 2.12 Response spectra for horizontal bedrock and in-plane surface motions (U)

Compatibility of the PSD and coherence function of the generated ground motion with

the target PSD and the coherence function can be used to check the goodness of the

generated SVGM. Figure 2.13 shows PSD for generated bedrock motions at points j, m, n

for the horizontal motions. Figure 2.14 presents PSD of generated surface motions at points

i′, j′, and m′ for both in-plane (U, W) and out-of-plane (V) wave motions. It is clearly

seen that the generated motions at the bedrock and ground surface agree well with their

targets. Good agreements are also observed in Figure 2.15 of lagged coherence functions

between bedrock points i-j, j-m, and i-n for horizontal wave motions, and in Figure 2.16

of transfer functions between generated bedrock motions and in-plane and out-of-plane

ground surface motions. These compatibilities of generated ground motions again show

the appropriateness of the synthesized spatially correlated earthquake motions.

It is noteworthy that, in simulation of tridirectional SVGM, the horizontal VSHD-based

seismological spectra (in Section 2.3.2) and combined coherence model (in Section 2.3.3)

are also assumed to be appropriate in modelling of SVGM in vertical direction for simplicity,

although seismological spectra and coherence model of the vertical SVGM sometime differ

from those of the horizontal in practice. However, the simulation scheme in this study is not

limited to any specific ‘‘power’’ model or coherence model, and these vertical seismological

spectra and coherence models can be incorporated directly in this simulation scheme.
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2.6 summary and conclusions

It should also be noted that the topography effect on site response results (in Figure 2.6,

induced by the alluvial valleys) is not considered in this study for simplicity, and it can be

investigated more accurately by 2-D or 3-D site response analysis.

2.6 Summary and Conclusions

In this chapter, a comprehensive approach of synthesizing SVGM is proposed, which in-

cludes

1. The physically compliant seismological spectra is employed to synthesize SVGM and

their earthquake scenarios are determined by VSHD, based on which a simulation

framework is proposed to resolve the problem that a number of simulations need to

be carried out for the UHS-based ground motion generation.

2. A comprehensive method of accounting for varying site effects in synthesizing SVGM

is proposed, including consideration of spatial-random-variable soil profiles, effect of

water saturation, effect of varying site conditions, and combining P-wave, SV-wave,

and SH-wave motions to simulate tridirectional SVGM.

3. A canyon site is selected to synthesize the spatially correlated earthquake ground

motions by considering the wave incoherence effect, wave-passage effect, and site-

response effect. Study of local site effects on the loss of motion coherency shows that

the local site can significantly reduce the lagged coherency at certain frequencies, and

they can not only cause the phase difference of coherency function but also affect the

modulus of coherency function.

4. Further studies should be conducted on the treatment of epistemic uncertainty of

coherence models using the logic-tree method, and calibration of the variability of

surface ground motions induced by soil variability.
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3C H A P T E R

Modelling of SVGM:
(II) Nonstationarity
and Spectra-compatibility

The synthetic spatially varying ground motions (SVGM), used in response history analysis

(RHA), are usually desired to be spatially correlated, site reflected, nonstationary, and com-

patible with target design response spectra. In addition to seismic scenarios determination

and varying site effect considered in Chapter 2, modelling of SVGM nonstationarity and

spectra-compatibility are studied in this chapter.

3.1 Introduction

Studies have revealed that nonstationarity of a specific ground motion, with proper dis-

persive characteristics and realistic wave arrival times, is largely determined by its phase

difference spectrum (PDS) (Trifunac, 1971; Ohsaki, 1979). The PDS method has been used

to capture nonstationarity of a time history. Most of the stochastic modelling procedures

of strong motions still assume phase angles to be independent and uniformly distributed,

from which only the stationary ground motions can be obtained. Nonstationary ground

motions can be simulated using phase contents of ground motions that are uniquely ob-

tained through phase difference model. Several statistical distributions were proposed to

fit phase differences using Fourier analysis or wavelet technique (Montaldo et al., 2003;
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3.1 introduction

Thrainsson and Kiremidjian, 2003); these models are frequently used in the ground motion

simulation at a single location, but have rarely been used for modelling nonstationary spatial

ground motions.

Compared to traditional geophysical or statistical approaches, the phase difference

method provides good estimations of the ground motions using only a few model param-

eters (magnitude and distance), and it enables the generation of nonstationary synthetic

strong motions without employing any specific modulation function (Montaldo et al., 2003;

Thrainsson and Kiremidjian, 2003). Moreover, the phase difference content of a ground

motion can determine the starting time and length of its stronger part, and the simulated

ground motion exhibits nonstationarity in both time and frequency domains. This chap-

ter uses the phase spectrum model by Thrainsson and Kiremidjian (2003) to model the

nonstationarity of spatially correlated ground motions.

Furthermore, the conditional simulation methods have been proposed to generate non-

stationary spatial seismic motions that are compatible with prescribed real records (Van-

marcke et al., 1993). Among these approaches, the envelope and frequency modulate

functions used in spectral representation method (SRM) are often used with the Kriging

method to generate the nonstationary space-time fields (Vanmarcke et al., 1993; Heredia-

Zavoni and Santa-Cruz, 2000; Hu et al., 2012). In this aspect, adopting phase difference

model in simulating nonstationarity of spatial motions can also be taken as a conditional

simulation, because the phase difference models used are derived from the real earthquake

records; as a result, the simulated motions exhibit similar nonstationarity. For example, one

or several phase difference models can be obtained from one or several prescribed spatial

real records, and the models can then be directly used to model the nonstationarity of the

simulated spatial motions at the respective spatial points.

Besides nonstationarity of seismic motions, the dimensionality is also included in this

chapter and Chapter 2, since the combined responses of structures with complex geometries

(e.g., long span bridges) under tridirectional ground motions are important to be consid-

ered in seismic assessment. It is particularly important to study bridge structures under

tridirectional SVGM, since spatial variability of ground motions tend to induce different

dominant modes of bridges in comparison with the uniform earthquake motions; as a re-
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3.2 conditional modelling of nonstationarity of svgm using phase difference spectrum

sult, substantially different structural responses would be induced under tridirectional or

bidirectional ground motions compared to those under unidirectional ground motions. In

addition, engineers have long recognized that synthetic SVGM should be compatible with

target design response spectra, which are usually prescribed as the design seismic loads

by regulatory agencies. However, modelling of tridirectional SVGM that are compatible

with target design spectra and considering the multidimensional characteristics of SVGM

in structural response analysis and design have not been adequately studied.

In this chapter, a method is presented for simulating SVGM considering the nonstation-

arity, local site effect, and compatibility of response spectra. Principles and examples of

PDS in conditional modelling of SVGM nonstationarity are presented in Section 3.2. The

approach for transforming response spectrum at bedrock to the ground surface, using the

site amplification method of Section 2.4.1, is given in Section 3.3.1, and modelling of SVGM

nonstationarity and spectra-compatibility in the SRM is introduced in Section 3.3.2. The

proposed scheme is then demonstrated with numerical examples in Section 3.4 for sim-

ulating nonstationary SVGM compatible with the bedrock and ground surface response

spectra. Some conclusions are drawn in Section 3.5.

3.2 Conditional Modelling of Nonstationarity of SVGM
using Phase Difference Spectrum

As discussed in Section 1.1.2, modelling of the nonstationarity characteristics of ground

motions is very important and phase difference content of ground motions can model

the characteristic of nonstationarity very well (Trifunac, 1971; Ohsaki, 1979; Zhang et al.,

2013b). Thus, the PDS method is adopted in this section for the simulation of SVGM with

nonstationarity. In this section, the principle of the underlying PDS in determining ground

motion’s nonstationarity is illustrated first, in conjunction with an example for additional

explanations that are provided behind the illustration.
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3.2 conditional modelling of nonstationarity of svgm using phase difference spectrum

3.2.1 Principles of Phase Difference Spectrum in Determining
Ground Motion’s Nonstationarity

The PDS is defined as (Ohsaki, 1979; Sato et al., 2002)

1ϕ(ωk) =









ϕk+1 − ϕk + 2π , −2π6ϕk+1 − ϕk < 0,

ϕk+1 − ϕk, 0 < ϕk+1 − ϕk
62π ,

ϕk+1, ϕk, 1ϕ(ωk) ∈ [0, 2π ],

(3.2.1)

where k=0, 1, 2, . . . , N0/2−1, N0 is the length of Fourier transformation, and ϕk+1 and ϕk

are phase angles. Equation (3.2.1) can be expressed in a different form as

1ϕ(ωk) = 2π

N01t
·
1ϕ(ωk)

1ω
or

2π

N01t
· dϕ(ω)

dω
, (3.2.2)

in which 1t is the time step,1ω is the resolution of circular frequency, dϕ(ω)/dω is called

phase derivative or group delay time (Boore, 2003b), which is defined for the continuous

time series f(t) as

dϕ(ω)

dω
= ℜ

(
RG + i IG

RF + i IF

)

= RGRF + IGIF

R2
F + I2

F

, (3.2.3)

where RF, RG, IF, and IG are the real and imaginary parts of Fourier spectrum F(ω) and

G(ω), respectively, F(ω) and G(ω) are the Fourier spectrum of time histories f(t) and t · f(t).

Equation (3.2.2) indicates that the phase difference varies linearly with the group delay

time; as a result, ground delay time can be directly reflected in the phase difference. The

group delay time is an important tool in revealing nonstationary characteristics of ground

motions, which can be rewritten as

dϕ(ω)

dω
= ℜ

(
G(ω) F∗(ω)

F(ω) F∗(ω)

)

= ℜ
(

SFG

SFF

)

, (3.2.4)

where SFF and SFG are the functions of Fourier transform of time histories f(t) and t · f(t),

given by

SFF = 1

2π

∫ ∞

−∞
E [ f(t) f(t+τ)] e−iωτdτ , SFG = 1

2π

∫ ∞

−∞
E [t · f(t) f(t+τ)] e−iωτdτ.

(3.2.5)
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3.2 conditional modelling of nonstationarity of svgm using phase difference spectrum

Substituting equation (3.2.5) into equation (3.2.4) gives

dϕ(ω)

dω
= ℜ







∫ ∞

−∞
E [t · f(t) f(t+τ)] e−iωτdτ

∫ ∞

−∞
E [ f(t) f(t+τ)] e−iωτdτ







, (3.2.6)

where it is evident that dϕ(ω)/dω denotes the arrival time of ground motion energy con-

centrated at circular frequency ω. Because actual recorded ground motions have energy

content from every frequency, the mean and variance of group delay time are given by

µ= 1

N0

N0∑

i=1

dϕ(ω)

dω

∣
∣
∣
ω=ωi

, σ 2 = 1

N0 −1

N0∑

i=1

[
dϕ(ω)

dω

∣
∣
∣
ω=ωi

]2

. (3.2.7)

In equation (3.2.7), the meanµ is the centroid of the total energy of time history in the time

axis, while the variance σ 2 denotes the degree of dispersion of the distribution of the total

energy.

The centroids of the total energy of most recorded motions lie within their stronger

portions in the time domain, because most of the ground motion energy is concentrated in

the stronger part. If the variance is small, the arrival of energy at each frequency becomes

more concentrated, which means that most of the energy is scattered over a smaller time

interval, thereby the duration of stronger part of ground motion becames shorter. On the

contrary, the larger the variance, the more dispersive of the ground motions, and the longer

the stronger parts. This is the basis that phase difference can determine the nonstationarity

and time-domain pattern of a time history, and these conclusions will be shown in the

examples in Section 3.2.2.

3.2.2 Examples of Phase Difference Spectrum in Simulating
Ground Motion’s Nonstationarity

The phase difference model by Thrainsson and Kiremidjian (2003), originally developed

from approximately 300 uniformly processed California strong ground motion data, is used

for simulating ground motion’s nonstationarity.

In this model, the Fourier phase differences are modeled conditional on the Fourier

amplitudes, which are classified into categories of small, intermediate, and large (Thrainsson
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3.2 conditional modelling of nonstationarity of svgm using phase difference spectrum

and Kiremidjian, 2003). Therefore, three types of phase difference models have been derived

for the small, intermediate, and large categories, respectively.

A Beta distribution for the large and intermediate categories f
l,i

x , and a combination of a

Beta distribution and a uniform distribution f s
x for the small group are defined for the phase

differences (Thrainsson and Kiremidjian, 2003). These distribution functions are given as

f
l,i

x = xp−1(1−x)q−1

β(p, q)
, f s

x =w+(1−w)
xp−1(1−x)q−1

β(p, q)
, 06x < 1, (3.2.8)

where x is the random variable of phase difference that is normalized to the interval [0,

1], p and q are the statistical parameters of Beta distribution, β(p, q)=
∫ 1

0
t p−1(1−t)q−1dt

is the Beta function, w is the weight coefficient of the uniform distribution. Subsequently,

Montaldo et al. (2003) applied this method in two areas with different tectonic patterns in

North-Eastern and central Italy.

Parameters of distribution functions in equation (3.2.8) are estimated for different site

conditions specified in National Earthquake Hazard Reduction Program (NEHRP) (FEMA,

2010; Thrainsson and Kiremidjian, 2003). The site conditions specified in NEHRP include

❧ #A: hard rock, Vs>1524 m/s,

❧ #B: rock, 762 m/s<Vs<1524 m/s,

❧ #C: very dense soil and soft rock, 366 m/s<Vs<762 m/s,

❧ #D: stiff soil, 183 m/s<Vs<366 m/s.

Thus, this phase difference method can model nonstationarity of ground motions recorded

at site conditions ranging from stiff soil to hard rock.

Figure 3.1 presents the target distribution functions and simulated histogram of phase

differences for each of the small, intermediate, and large categories. It is seen that variance

values at site #A&#B are about three times larger than those for sites #C and #D, which

indicates that the durations of stronger parts of ground motions at site #A&#B are larger.

This result can be clearly seen in Figure 3.2, which shows the generated spatially correlated

ground motions at three equally spaced spatial points located at site #A&#B, site #C, and

site #D, respectively. The synthetic ground motions at sites #C and #D are concentrated in a

smaller time interval, while time history at site #A&#B stretches over a longer time period.
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3.3 response spectrum at varying site surface and spectra-compatibility of spatial motions

In addition, the peak ground acceleration (PGA) recorded at harder sites are smaller than

those at softer ones, e.g., PGA at site #A&#B, #C, and #D are, respectively, 0.116 g, 0.210 g,

and 0.252 g. The mean values of phase differences at harder site are around 1.1 larger than

those at softer sites, which results in that the occurring time of the strongest parts of ground

motions at every site is close to each other, and the centroid of the total energy of synthetic

ground motions at every site condition lies within its stronger portion in the time domain.

These results are in good agreement with observations of real wave motions recorded at

hard and soft sites (Thrainsson and Kiremidjian, 2003; Kramer, 1996), which indicates that

it is reasonable to model nonstationarity of spatially correlated ground motions using phase

difference method.

3.3 Response Spectrum at Varying Site Surface and
Spectra-compatibility of Spatial Motions

Besides ground motion nonstationarity, as specified in seismic design code for response

history analysis of structures extended in space, synthetic spatially correlated ground mo-

tions are required to account for the local site effect (CEN, 2005b; MCPRC, 2008). Moreover,

the generated ground motion at both single location and multiple spatial points should be

compatible with the target design response spectrum (ASCE, 1998; NCC, 2010; NBCC, 2010;

FEMA, 2010).

3.3.1 Response Spectrum at Varying Site Surface

To obtain the power spectral density (PSD) functions at the ground surface Si
surface(ω),

the frequency transfer function (FTF) of a given site H(iω) is required in this relation

Si
surface(ω)=

∣
∣H(iω)

∣
∣

2
Sbedrock(ω). The site FTF H(iω) is obtained in Section 2.4.1.

The approach by Park (1992, 1995), requiring no numerical iterations, is used to directly

convert a target response spectrum to an equivalent PSD function Sbedrock(ω). The un-

known PSD function of a target acceleration response spectrum Rt(ω, ξ) is discretized at

circular frequencies ωj and expressed as the sum of a series of discretized power compo-

nents pj, and the target response spectrum can also be approximated by a superposition of
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the component response spectrum as (Park, 1995)

Sg(ω)=
M
∑

j=1

S(ωj)1ωjδ(ωj)=
m
∑

j=1

pjδ(ωj), R2
t (ωk, ξ)=

M
∑

j=1

pjR
2
k,j(ωk,ωj, ξ),

k=1, 2, . . . , Nrs, (3.3.1)

where R2
k,j(ωk,ωj, ξ) represents the peak acceleration response of a single degree-of-freedom

system with natural frequency ωk and viscous damping ξ , excited by an extremely narrow

band process with PSD function δ(ωj).

Using the peak factor approximation by Davenport (1964), R2
k,j(ωk,ωj, ξ) is given by

R2
k,j(ωk,ωj, ξ) ≈

√
√
√
√
√

1 + 4ξ 2(ωj/ωk)
2

(

1 − (ωj/ωk)
2)2 + 4ξ 2(ωj/ωk

)2

[
√

2 ln
(

νjTe

)

+ 0.5772
√

2 ln
(

νjTe

)

]

,

(3.3.2)

where νj =ωj/π and Te is the effective time duration. The PSD components pj can then be

obtained by the following optimization problem

Minimize

Nrs∑

k=1

[

R2
t (ωk, ξ)−

M
∑

j=1

pjR
2
k,j(ωk,ωj, ξ)

]2

, subject to pj >0, j=1, 2, . . . , M.

(3.3.3)

The equivalent PSD function is then obtained as Sj =pj/1ωj, j=1, 2, . . . , M.

For simplicity, the uniform hazard spectrum with probability of exceedence P =2.7×10−3,

derived from the seismic source configuration in Zhang et al. (2012b), is adopted as the de-

sign response spectrum at the bedrock. The target spectrum, along with the optimally

estimated response spectrum, is shown in Figure 3.3(a), and its equivalent PSD function

Sbedrock(ω) is presented in Figure 3.3(b). It is seen that the optimally estimated response

spectrum agrees with the target at almost every point and the corresponding PSD function

can be accurately and effectively obtained.

Using the equivalent PSD function Sbedrock(ω) converted from the response spectrum

at bedrock, the PSD functions at the ground surface Si
surface(ω), i=1, 2, · · · , Ns, can be

obtained through Si
surface(ω)=

∣
∣H(iω)

∣
∣

2
Sbedrock(ω), where H(iω) is the FTF of a given site,
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Figure 3.3 Conversion from response spectrum to PSD

which can be obtained through the site response analysis in Section 2.4.1. Finally, the

response spectrum at the ground surface can be determined.

3.3.2 Nonstationarity and Spectra-compatibility of Spatial
Motions

As discussed in Section 2.2, ϕm′l in equation (2.2.8) is the random phase angle that is

often assumed to be uniformly distributed over [0, 2π], leading to stochastic process uj(t)

being stationary. The nonstationary ground motions may be obtained by using the time-

domain amplitude modulating function (Deodatis, 1996; Hao et al., 1989; Bi and Hao,

2010). However, the time-domain amplitude modulating function is often criticized to

be inaccurate and arbitrary to well model nonstationarity of ground motions. The PDS

introduced in Section 3.2, which can well reveal and model nonstationarity of time series,

is used for phase angles ϕm′l to produce the nonstationary and spatially correlated ground

motions.

Besides nonstationarity, synthetic spatial ground motions should also be compatible with

target response spectrum at ground surface points i′, j′, and k′ in Figure 2.1 (ASCE, 1998;

CEN, 2005b; NCC, 2010; NBCC, 2010). The generated time histories are usually used to test
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3.4 numerical examples

if they can match well with the multiple target response spectra at different sites. If response

spectra of generated time histories Ri(ω), i=1, 2, . . . , Ns, do not match satisfactorily with

target spectra Ri
t(ω), iterations are required by multiplying the PSD function Si(ω) with

the ratio [Ri
t(ω)/Ri(ω)]

2
. This process can be repeated until satisfactory compatibility is

achieved. Usually good match can be obtained after a few iterations (Ohsaki, 1979).

3.4 Numerical Examples

The schemes presented in this chapter demonstrated using a bridge structure across a

canyon site, with different site conditions at each pier, as shown in Figure 3.4. Bridge piers i′,

j′, and k′, located on site categories #C, #B, and #D specified in NEHRP provisions (FEMA,

2010), respectively, are spaced at 100 m, and the corresponding spatial points i, j, and k are

on the base rock with site category #A. Site properties and classifications are listed in the

figure.

Using the site amplification approach presented in Section 2.4.1, site amplification spectra

for both in-plane and out-of-plane wave motions are shown in Figures 3.5 and 3.6. Figure

3.5 presents the modulus of FTF of sites #A, #B, #C, and #D for both the out-of-plane

horizontal (V) and in-plane vertical (W) motions under the assumption that the amplitude

of the vertical motion is 2/3 of that of the horizontal component for the incoming waves

consisting of SH wave and combined P and SV waves. Site amplification results for in-plane

horizontal (U) motions, not shown in the figure, are similar to those in the V direction. It

is seen that the fundamental frequencies increase, in numerical ordering, by 5 Hz, 10 Hz

and 30 Hz (in V direction) for sites #D, #C, and #B, respectively, but the site amplification

values decrease from sites #D, #C, to #B. Similar results can also be obtained for ground

motions in W direction. These results agree with the fact that the harder the site, the larger

the fundamental frequency of the site, and the smaller the site amplification factor. It is

anticipated that site amplification results in horizontal V direction are smaller than those in

the vertical W direction because P-wave contrast is greater than S-wave contrast (or P-wave

damping is smaller than S-wave damping). More importantly, fundamental frequencies in

the W direction are larger than those in the V direction for each site, e.g., the fundamental
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Figure 3.4 Schematic view of a exemplified bridge structure across a canyon site
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Figure 3.6 Phase spectrum and phase difference at different site condition

frequencies for sites #D, #C, and #B increase from 5 Hz, 10 Hz, and 30 Hz to 10 Hz, 20 Hz,

and 50 Hz. This is due to the fact that the vertical component of ground motion is primarily

dominated by the compressive P wave with larger wave velocity, causing site in the vertical

direction to be more stiff. However, in engineering practice, site amplification spectra in
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the vertical direction are often directly obtained from those in the horizontal direction by

only scaling the amplitude and ignoring the variation of fundamental frequency of local site

(without using the frequency-dependent V/H ratios), which is inappropriate in providing a

reasonable site amplification to be used in the simulation of vertical ground motions.

Soil conditions also affect the seismic wave propagation velocity and hence the phase

difference between motions at spatial points. Figure 3.6(a) shows phase spectra of each site

in V and W directions. The phase differences between motions at points i-j and i-k owing to

wave propagation from base rock to ground surface are shown in Figure 3.6(b). It is shown

that the softer is the soil, the more drastic variations are the phase spectrum and phase

difference. The variations of phase or phase difference in the W direction are also more

drastic than those in the U and V directions. This is because that wave velocity is slower at

softer site and larger in the vertical direction.

After obtaining the site amplification results, spatially correlated, nonstationary, and de-

sign response spectra compatible ground motions with and without site effects are generated

using the scheme presented in Section 3.4.1.

3.4.1 Synthesis of Spatially Correlated Ground Motions at
Bedrock

The response spectrum presented in Figure 3.3(a) is selected as the target design spectrum

at base rock; the equivalent PSD function is shown in Figure 3.3(b) (Zhang et al., 2012b).

Phase difference spectrum model for site class #A is used (Thrainsson and Kiremidjian,

2003).

The synthetic spatial accelerations at points i, j, and k are shown in Figure 3.7(a); it is seen

that they have similar values of PGA and similar characteristics of time histories. This is

because that these generated bedrock ground motions are from the same site condition (site

#A) in modelling of phase difference and do not account for the varying local site effects.

Compatibility of target response spectra and bedrock coherency function is presented in

Figures 3.8 and 3.9. It is observed, in Figure 3.8, that the simulated ground motions at

bedrock points i, j, and k are in good agreement with their targets. Good agreement is also
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Figure 3.7 Generated spatially correlated ground motions at bedrock and ground surface

observed in Figure 3.9 for coherency values of wave motions (mean values of 25 simulations)

for points i-j, j-k, and i-k.

3.4.2 Synthesis of Spatially Correlated Ground Motions at
Ground Surface

In practice, supports of a structure occupying a large space have varying local site condition.

Spatially correlated wave motions on ground surface points i′, j′, and k′ with different site

conditions in Figure 3.4 are presented in this section.
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Figure 3.9 Compatibility of spatial coherency functions for generated bedrock ground motions

Using the approach introduced in Section 3.3, Figure 3.10 presents target response spec-

trum on ground surface at each site condition in the U, V, and W directions, where similar

conclusions obtained from Figure 3.2 can also be reached. Using the phase difference model

corresponding to each site condition in Figure 3.1, spatially correlated and nonstationary

ground surface wave motions, compatible with target response spectrum on ground surface

at points i′, j′, and k′, are generated and shown in Figures 3.7(b) and 3.7(c) for the wave

motions in V and W directions. It is observed that PGA at softer sites are larger than those

at harder sites for ground motions in both V and W directions, e.g., PGA at sites #D, #C, and

#B decrease by 0.219 g, 0.176 g, and 0.117 g in the W direction and they are larger than PGA

of bedrock ground motions (site #A) in Figure 3.7(a). Furthermore, PGA in the V direction

are larger than those in the vertical W direction as compared between Figure 3.7(b) and

Figure 3.7(c), where similar results can also be observed for peak ground displacement in
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Figure 3.10 Response spectra at ground surface

the V direction. These observations agree with the conclusions that a softer site amplifies

bedrock motions more than a harder site, and ground motions in the horizontal V direction

are amplified more than those in the vertical W direction.

Similar to the results obtained in Section 3.2, synthetic ground motions at sites #C and

#D experience shorter duration in the stronger parts, while time histories at sites #A and

#B spread in a longer duration for both the horizontal and vertical ground motions. These

results are in agreement with observations of real wave motions recorded at hard and soft
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sites (Thrainsson and Kiremidjian, 2003; Kramer, 1996). Moreover, it seems that simulated

wave motions in the V direction are filtered much more by the sites than ground motions in

the W direction, especially for ground motion at site #D. This is because that more frequency

contents are filtered in the V direction as illustrated in the FTF of sites in Figure 3.5.

Compatibility of simulated surface wave motions with the target design spectra in Figure

3.10 is presented in Figure 3.11 for both horizontal and vertical ground motions, in which

good agreement is observed.
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Figure 3.11 Compatibility of response spectrum for generated ground motions at ground surface
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3.5 Summary and Conclusions

In this chapter, an approach of synthesizing spatially correlated, site reflected, nonstationary,

and response spectra compatible ground motions is presented, which includes

1. The phase difference method is developed and proved to be effective in conditional

modelling of nonstationarity of spatial ground motions.

2. The scheme of transforming response spectra at bedrock to the ground surface in

tridirections using the site amplification method is established. Modelling of SVGM

nonstationarity and spectra-compatibility within the SRM scheme is introduced.

3. Numerical examples are presented to demonstrate the proposed method. It is seen that

the generated nonstationary bedrock or ground surface wave motions are compatible

with the bedrock response spectra or derived ground surface response spectra associ-

ated with the respective site conditions, and any two of these motions are compatible

with a target coherency function.

4. The synthesized SVGM can be applied to the nonlinear RHA of multiply supported

structures under multiple excitations or the experimental shake-table tests of struc-

tures under SVGM.
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4C H A P T E R

Stochastic Seismic Analysis of Bridges
under SVGM:
(I) Theoretical Methodology

Because seismic motions are random (stochastic) in nature (Housner, 1947), spatial effects

of long span bridges can be analyzed using stochastic vibration analysis (SVA). In this

chapter, a comprehensive, systematic, and efficient SVA methodology is developed for bridge

structures under spatially varying ground motions (SVGM).

4.1 Introduction

SVA is a theoretically advanced, efficient, and effective tool providing stable and physi-

cally compliant structural response results; it has been adopted by bridge seismic design

standards (CEN, 2005b; MCPRC, 2008) in dealing with effect of ground motion spatial

variations. In SVA of bridges under SVGM, spatial variations (commonly known as the

incoherence, wave-passage, and local site effects), nonstationarity, and tridirectionality of

SVGM should be accounted for.

Earthquake motions are in essence nonstationary and they are usually treated as uni-

formly modulated random processes in most of the response history analysis (RHA) or

SVA of large structures under SVGM (Zhang et al., 2012a). In SVA, it is better to model

earthquake motions as nonuniformly modulated seismic excitations, because substantial

62



4.1 introduction

high frequency components of ground acceleration, which emerge in the early stages of an

earthquake, decay much faster than the low frequency components that the ground accel-

eration involves only low frequency components eventually. This nonstationary pattern of

frequency components of an earthquake cannot be characterized by the uniformly mod-

ulated evolutionary random process. Numerical analysis of structural responses to such

nonuniformly modulated evolutionary random seismic excitations is very rare in the litera-

ture, let alone being included in stochastic seismic analysis of spatially extended structures

under tridirectional SVGM.

However, nonstationary SVA is too complicated and difficult to be widely used in general

engineering computations in spite of its recognized importance. In particular, for struc-

tures having many degrees-of-freedom (DoF) and dozens of spatial supports, or the input

nonuniformly modulated nonstationary ground motions being spatially correlated and

tridirectional, their stochastic response formulas are rather complex and involve a great deal

of multiple integration and summation operations, requiring considerable computational

effort.

To reduce the large computational effort involved in the conventional nonstationary SVA,

Lin et al. (1997a) proposed an accurate and efficient method, known as pseudo-excitation

method (PEM),to transform both stationary and nonstationary stochastic analyses to deter-

ministic dynamic response problems. PEM has excluded any computation associated with

multiple integration and/or summation operations, making structural stochastic analysis

very simple yet accurate and making PEM particularly attractive for engineering purposes.

To be more specific, PEM is accurate because the cross-correlation terms between the par-

ticipant structural modes and between the excitations are included in the results. PEM is

computationally efficient and simple to be adopted, because stationary random analyses

are transformed accurately into harmonic analyses, and nonstationary random analyses

(for both uniformly modulated and nonuniformly modulated ground motions) are trans-

formed exactly into deterministic transient analyses, which can be solved very easily using

direct dynamic integration methods, such as the Duhamel integration, Newmark method,

or Wilson-θ method (Lin et al., 1997a). Hence, the PEM is adopted in this chapter for

nonstationary stochastic seismic analysis of bridges under tridirectional SVGM.
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Since PEM is very effective and accurate in SVA of complex structures with a large num-

ber of DoF, it is natural to integrate (implement) on general finite element analysis (FEA)

platforms, which have powerful modelling and analysis tools for seismic analysis of com-

plex structures, so that engineers can readily access PEM. In addition, the implementation

can improve and resolve drawbacks of some self-developed PEM programs without good

computational efficiencies and powerful modelling and analysis techniques. As discussed

in Section 1.1.3, the conventional indirect approach for solving equations of motion of

structures under SVGM can result in massive computations on static influence matrix and

inverse of structure stiffness matrix. Furthermore, it is also prevented from possible ex-

tension to the nonlinear SVA used for performance-based earthquake engineering (PBEE)

because of the linear superposition treatment.

Therefore, an absolute-response-oriented scheme of PEM in nonstationary SVA of bridge

structures under tridirectional SVGM has been derived in Section 4.2. In Section 4.3, the

mathematical scheme for modelling tridirectional SVGM, accounting for the incoherence

effect, wave-passage effect, and local site effect, is proposed for stochastic analysis of struc-

tures extended in large areas, where the site amplification approach of Section 2.4.1 is

incorporated in the nonstationary SVA scheme systematically to provide tridirectional site

responses. The input pseudo-forces, used in the absolute-response-oriented scheme of

PEM, are determined in Section 4.4 through decomposition of cross-power spectral density

(PSD) matrix. The proposed SVA scheme is implemented and verified in the general FEA

platform ANSYS in Section 4.5. Some conclusions are drawn in Section 4.6.

4.2 PEM in Seismic Analysis of Structures
under Tridirectional Nonstationary Spatial Motions

Considering a long span bridge structure (with m supports and n nodes) under tridirec-

tional (three translational components) multiple ground motions, the discrete equations of

motion can be written in the global coordinate system as




Mss Msb

MT
sb Mbb











Ẍs

Ẍb






+




Css Csb

CT
sb Cbb











Ẋs

Ẋb






+
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


Kss Ksb

KT
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









Xs

Xb






=







0

Pb






, (4.2.1)

in which the subscript b represents the master DoF, i.e., the support DoF, while the subscript

s represents the slave DoF.
{

Xb

}

3×m
denotes the vector of enforced displacements at m

supports,
{

Xs

}

3×n
is the vector of absolute displacements of the slave DoF, and

{

Pb

}

3×m

is the vector of enforced forces applied on all supports. Matrices M, C, and K are the

mass matrix, damping matrix, and stiffness matrix, respectively. Ẍ and Ẋ are vectors of

the absolute acceleration and velocity responses, respectively. The lumped mass model

is assumed, i.e., Msb is null, and soil-structure interaction (SSI) effect is not included for

simplicity.

4.2.1 Conventional Indirect Approach
in Solving Equations of Motion under Pseudo-excitations

For the sake of solving equation (4.2.1) conveniently, the absolute displacement vector

Xs is decomposed into the quasi-static displacement vector Ys and the relative dynamic

displacement vector Yr as






Xs

Xb






=







Ys

Xb






+







Yr

0






, (4.2.2)

in which the quasi-static displacement vector Ys satisfies



Kss Ksb

KT
sb Kbb











Ys

Xb






=







0

Ps
b






. (4.2.3)

in which Ps
b is the support reaction vector due to Xb being imposed statically at the supports.

Hence, one obtains

Ys = −K−1
ss KsbXb =FXb, (4.2.4)

where F is the static influence matrix that can be expressed as

F= −K−1
ss Ksb. (4.2.5)

Substituting equations (4.2.2) and (4.2.4) into equation (4.2.1) gives

MssŸr +CssẎr +KssYr =MssK−1
ss KsbẌb +

(

CssK−1
ss Ksb −Csb

)

Ẋb. (4.2.6)
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For the assumed stiffness proportional damping, the velocity part
(

CssK−1
ss Ksb −Csb

)

Ẋb is

proved to be zero. For other types of damping, the velocity part
(

CssK−1
ss Ksb −Csb

)

Ẋb is

very small that it can be ignored, in comparison with the response contribution from the

inertia term MssK−1
ss KsbẌb. Thus, equation (4.2.6) can be simplified as

MssŸr +CssẎr +KssYr =MssK−1
ss KsbẌb =MssFẌb, (4.2.7)

where the quasi-static displacement vector Ys and the relative dynamic displacement vector

Yr can be solved from equations (4.2.4) and (4.2.7), respectively, and the absolute displace-

ment vector Xs can be obtained from equation (4.2.2).

As seen from equation (4.2.2), dynamic responses of structures under spatially varying

support excitations can be expressed as the superposition of two components: a pseudo-

static component and a dynamic component. The dynamic component is attributed to the

dynamic inertia forces induced by the support motions, while the pseudo-static component

arises from the static response of the bridge (at each time instant) to the differential support

displacements prescribed by the SVGM (without inertia and damping forces, in equation

(4.2.3)). It is noteworthy that the pseudo-static component is zero in the case of uniform

support excitations.

In the PEM, pseudo-excitations at structural supports can be assumed to be (Lin et al.,

2004a)

¨̃Xb =Peiωt, ˙̃Xb = Peiωt

iω
, X̃b = − Peiωt

ω2
, (4.2.8)

in which P is obtained through the decomposition of PSD matrix
[

S0(iω, t)
]

3m×3m
of input

ground motions by

S0(iω, t)=P∗PT. (4.2.9)

By substituting equation (4.2.8) into equation (4.2.7), one obtains

Mss
¨̃Yr +Css

˙̃Yr +KssỸr =MssK−1
ss Ksb

¨̃Xb =MssF · Peiωt, (4.2.10)

where Ỹr is the vector of relative dynamic displacement of the slave DoF under pseudo-

excitations. Similarly, substituting equation (4.2.8) into equation (4.2.4) gives

Ỹs =FX̃b = −F · Peiωt

ω2
, (4.2.11)
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where Ỹs is the vector of the quasi-static displacement of the slave DoF under pseudo-

excitations.

The pseudo-response of absolute displacement X̃s can be obtained by solving Ỹr in

equation (4.2.10) and Ỹs in equation (4.2.11) as

X̃s = Ỹs + Ỹr. (4.2.12)

Then, nonstationary PSD of the absolute displacement X̃s is

SXSXS
(ω, t)=

[

Ỹs(iω, t)+ Ỹr(iω, t)
]∗ [

Ỹs(iω, t)+ Ỹr(iω, t)
]T
. (4.2.13)

Equations (4.2.2) to (4.2.13) are the conventional indirect approach in solving equations

of motion of structures under tridirectional nonstationary spatial seismic motions using

PEM. Some other statistical response parameters, such as the root mean square values,

spectral moments, and mean peak responses, can be derived based on the PSD of absolute

displacements X̃s in equation (4.2.13).

4.2.2 Absolute-response-oriented Direct Approach
in Solving Equations of Motion under Pseudo-excitations

In comparison with the indirect approach in Section 4.2.1, the direct approach, which is

an absolute-response-oriented scheme, is presented to solve the absolute response displace-

ment directly using the large mass method (Zhang et al., 2012a; Jia et al., 2013).

By matrix manipulation of the second block row of equation (4.2.1), one obtains

MT
sbẌs +MbbẌb +CT

sbẊs +CbbẊb +KT
sbXs +KbbXb =Pb, (4.2.14)

where the vector of seismic forces Pb can be expressed in terms of mass of supports Mbb

and the ground acceleration üb as

Pb =Mbbüb. (4.2.15)

Then equation (4.2.14) can be expressed as

MT
sbẌs +MbbẌb +CT

sbẊs +CbbẊb +KT
sbXs +KbbXb =Mbbüb. (4.2.16)

By multiplying M−1
bb in equation (4.2.16), one obtains

M−1
bb

[

MbsẌs +MbbẌb +CbsẊs +CbbẊb +KbsXs +KbbXb

]

= üb. (4.2.17)
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A very large value can be assigned to Mbb, i.e.,

M−1
bb =0, M−1

bb Mbs =0, M−1
bb Cbs =0, M−1

bb Cbb =0, M−1
bb Kbs =0, M−1

bb Kbb =0. (4.2.18)

Hence one obtains

Ẍb = üb, (4.2.19)

which indicates that the acceleration responses at structural supports approximately equal

the input ground accelerations. This is called the large mass method that has been widely

used in seismic analysis of structures under multiple earthquake excitations. Values of the

large mass Mbb are usually selected between 105 and 108 times of structural total weights

for an acceptable approximation of structural seismic responses (Zhang et al., 2012a). It

is noteworthy that the primary advantage of large mass method in the structural response

analysis to SVGM is that it allows using spatial ground accelerations, instead of spatial

ground displacements, as input of earthquake excitations. Ground displacement is difficult

to be reliably defined because the true acceleration baseline is difficult to know (Jia et al.,

2013).

Substituting equation (4.2.19) into equation (4.2.1) and expanding components in the

first block row of equation (4.2.1) yield

MssẌs +CssẊs +KssXs = −
(

Msbüb +Csbu̇b +Ksbub

)

. (4.2.20)

In the PEM, pseudo-excitations at structural supports are (Lin et al., 2004a)

¨̃ub =Peiωt, ˙̃ub = Peiωt

iω
, ũb = − Peiωt

ω2
, (4.2.21)

in which P is obtained through the decomposition of PSD matrix
[

S0(ω)
]

3m×3m
of input

ground motions by equation (4.2.9).

By substituting equation (4.2.21) into equation (4.2.20), one obtains

Mss
¨̃Xs +Css

˙̃Xs +KssX̃s = −
(

Msb +
Csb

iω
−

Ksb

ω2

)

Peiωt, (4.2.22)

where X̃s is the vector of absolute displacements of the slave DoF under pseudo-excitations

given in equation (4.2.21). This is the dynamic equation in the PEM with equivalent forces

on the right hand of equation(4.2.22).
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After the absolute displacement X̃s is obtained from equation (4.2.22), its nonstationary

PSD can be obtained as

SXsXs
(ω, t)= X̃∗

s (iω, t) X̃T
s (iω, t). (4.2.23)

Equations (4.2.14) to (4.2.23) are direct approach in solving equations of motion of struc-

tures under tridirectional nonstationary SVGM using PEM.

4.2.3 Discussions on the Indirect and Direct Approaches
in Solving Equations of Motion

As seen in Section 4.2.1, the conventional indirect approach solves equations of motion

(4.2.1) under pseudo-excitations by decomposing the absolute displacement into the quasi-

static and the relative dynamic terms. In this procedure, the static influence matrix F

and the inverse of matrix Kss have to be computed in equations (4.2.7) and (4.2.4) to

obtain the absolute response, which can significantly increase time of computation in

structural seismic analysis. Moreover, most self-developed programs of PEM that are

based on the indirect approach usually cannot be readily used in stochastic seismic analysis

of practical complex structures due to the high computational requirement and shortage of

more versatile and powerful modelling and analysis tools.

However, in the direct approach, the absolute displacement can be directly and easily

obtained in equation (4.2.22) by using the large mass method, where massive computations

are avoided. Moreover, unlike the conventional indirect approach, the direct scheme in

conjunction with PEM can be readily implemented on a general FEA platform. In Section

4.5, the absolute-response-oriented direct approach is integrated with the ANSYS platform

for stochastic analysis of complex structures.

As noted from equations (4.2.10) and (4.2.22), obtaining the pseudo-forces, i.e., matrix P,

is a crucial step in performing the stochastic analysis using PEM. A procedure on obtaining

the pseudo-forces through modelling of tridirectional nonstationary spatially correlated

ground motions is presented in Sections 4.3 and 4.4
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4.3 modelling of tridirectional nonstationary spatial motions at varying sites

4.3 Modelling of Tridirectional Nonstationary Spatial
Motions at Varying Sites

The SVGM, exhibiting variabilities in space, should be modelled by considering the coher-

ence effect, wave-passage effect, and local site effect. The modelling of tridirectional spatial

earthquake motions by accounting for the varying site conditions beneath every support

of the structures is presented in this section. Properties of these SVGM with different site

conditions should be reflected in the input pseudo-forces of the PEM. The spectral repre-

sentation method (SRM) given in Section 2.2 is used in modelling spatial ground motions

and determining the pseudo-forces.

Consider the spatial points i-i′, j-j′, and k-k′ with different site properties at a canyon site

in Figure 2.1, the cross-PSD matrix of tridirectional nonstationary ground motions at m

ground surface locations can be expressed by

S3
surface(iω, t)=

[

Si′j′(iω, t)
]

3m×3m
, where Si′j′(iω, t)=

[

Si′j′, pq(iω, t)
]

3×3
, (4.3.1)

in which p, q∈{x, y, z} and each sub-matrix element of S3
surface(iω, t), i.e., Si′j′(iω, t), is a

3×3 matrix corresponding to two horizontal (x, y) and one vertical (z) components of

tridirectional ground motions, given by

Si′j′(iω, t)=










Si′j′, xx(iω, t) Si′j′, xy(iω, t) Si′j′, xz(iω, t)

Si′j′, yx(iω, t) Si′j′, yy(iω, t) Si′j′, yz(iω, t)

Si′j′, zx(iω, t) Si′j′, zy(iω, t) Si′j′, zz(iω, t)










. (4.3.2)

Using the evolutionary spectra for nonstationary processes by Priestley (1965) and as-

suming the correlation coefficients between the horizontal components and vertical com-

ponent to be 0.6 (Smeby and Kiureghian, 1985), the off-diagonal elements of Si′j′(iω, t) are

given by

Si′j′, xy(iω, t)=Si′j′, yx(iω, t)=
√

Si′j′, xx(iω, t)Si′j′, yy(iω, t) ,

Si′j′, xz(iω, t)=Si′j′, zx(iω, t)=0.6
√

Si′j′, xx(iω, t)Si′j′, zz(iω, t) ,

Si′j′, yz(iω, t)=Si′j′, zy(iω, t)=0.6
√

Si′j′, yy(iω, t)Si′j′, zz(iω, t) ,

(4.3.3)

70
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where Si′j′, xx(iω, t), Si′j′, yy(iω, t), and Si′j′, zz(iω, t) can be related to Sij, xx(iω, t), Sij, yy(iω, t),

and Sij, zz(iω, t) (cross-PSD functions of tridirectional nonstationary bedrock motions)

through the tridirectional site response transfer functions by

Si′j′, xx(iω, t)=HU,i(iω)H∗
U,j(iω) Sij, xx(iω, t) ,

Si′j′, yy(iω, t)=HV,i(iω)H∗
V,j(iω) Sij, yy(iω, t) ,

Si′j′, zz(iω, t)=HW,i(iω)H∗
W,j(iω) Sij, zz(iω, t) ,

(4.3.4)

in which HU,i(iω), HW,i(iω), HV,i(iω), and HU,j(iω), HW,j(iω), HV,j(iω) are site frequency

transfer functions (FTF) between spatial points i-i′ and j-j′ for the P-SV wave motions in

the horizontal and vertical directions and SH wave motions in the horizontal direction,

respectively. Sij, xx(iω, t), Sij, yy(iω, t), and Sij, zz(iω, t) can be obtained based on the theory

of evolutionary power spectrum for nonstationary stochastic processes by Priestley (1965)

(for x-component)

Sij, xx(iω, t)=Gi,x(ω, t)Gj,x(ω, t)
√

Sii, xx(iω)Sjj, xx(iω) · γij(iω), (4.3.5)

where Sii, xx(iω) is the auto-PSD function of x-component of tridirectional stationary

bedrock ground motions at the ith spatial support. γij(iω) is the coherence function of

bedrock ground motions between the ith and jth spatial supports, which consists of the

lagged coherence part
∣
∣γij(iω)

∣
∣ and the wave-passage effect exp[− iωdij/vapp(ω)] of SVGM

given by γij(iω)=
∣
∣γij(iω)

∣
∣exp[− iωdij/vapp(ω)], where dij is the spatial distance from point

i to point j, and vapp(ω) is apparent wave velocity (Zerva, 2009). Gi,x(ω, t) is the modulating

function (in time and frequency domain) of x-component of tridirectional ground motions

at the ith spatial support. Based on the formulation of Gi,x(ω, t), three types of ground

motion process can be obtained, which are

❧ stationary: Gi,x(ω, t)=1,

❧ uniformly modulated nonstationary: Gi,x(ω, t)=g(t),

❧ nonuniformly modulated nonstationary: Gi,x(ω, t)=G(ω, t).

To obtain site FTF in equation (4.3.4), the one-dimensional wave propagation theory

in equation (2.4.4) is used. The base rock motions for a site with horizontally extended
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multiple soil layers are assumed to consist of out-of-plane SH wave or in-plane combined

P-SV waves propagating into a site with assumed incident angles, and the site FTF HU,i(iω),

HV,i(iω), and HW,i(iω) can be obtained for each of the varying sites in tridirections by

solving equations of wave motion in equation (2.4.4) in the frequency domain for the SH

wave and P-SV wave.

Hence, based on equations (4.3.1) to (4.3.5), the cross-PSD matrix of tridirectional non-

stationary ground motions at ground surface in equation (4.3.1) can be obtained uniquely.

For the modelling approach of tridirectional nonstationary spatial motions in this section,

1. Stationary, uniformly modulated nonstationary, and nonuniformly modulated non-

stationary tridirectional spatial motions can be modelled.

2. More rational tridirectional site response approach, which can reflect varying site

conditions, are incorporated systematically in the modelling of out-of-plane SH wave

and in-plane ground motions.

S3
surface(iω, t) will be used in Section 4.4 to obtain the input pseudo-forces in stochastic

seismic analysis of structures using PEM.

4.4 Determination of Pseudo-forces
through Decomposition of Cross-PSD Matrix

To obtain the pseudo forces in equations (4.2.10) and (4.2.22), the cross-PSD matrix of

tridirectional nonstationary SVGM on ground surface S3
surface(iω, t) can be decomposed as

(Lin et al., 2001)

S3
surface(iω, t)=P∗(iω, t)PT(iω, t)

=G(ω, t)W∗(iω)
√

Sg(iω)Q QT
√

Sg(iω)WT(iω)GT(ω, t),
(4.4.1)

where the dimension of matrix P is 3m×r, and r is the rank of matrix S3
surface(iω, t).

Matrix W(iω) in equation (4.4.1) has dimension 3m×3m and denotes the wave-passage

effect and the phase part of the local site effect

W(iω)=diag
[

· · · , e
− i(ωTi,x +θi,x), e

− i(ωTi,y +θi,y), e
− i(ωTi,z +θi,z), · · ·

]

3m×3m
, (4.4.2)
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where Ti,x, i=1, 2, · · · , m, represents the time at which x-component of tridirectional

ground motions propagate to the ith support. θi,x, θi,y, and θi,z represent phases in the

x, y, and z directions of the local site at support i, respectively, and they can be determined

by the relationship of PSD functions between the bedrock and ground surface as

Si′j′, xx(iω, t)=
∣
∣HU,i(iω)H∗

U, j(iω)
∣
∣

︸ ︷︷ ︸

exp [i(θ i,x −θj,x)]
︸ ︷︷ ︸

Sij, xx(iω, t),

amplitude phase

θij,xx =θ i,x −θj,x = tan−1

[

ℑ
(

HU,i(ω)HU,j(−ω)
)

ℜ
(

HU,i(ω)HU,j(−ω)
)

]

, in x direction, (4.4.3)

in which θij,xx is the phase difference in x direction between spatial points i-i′ and j-j′.

Matrix Sg(iω) in equation (4.4.1) represents the PSD functions of bedrock ground

motions and amplification effects of the local site conditions, which is expressed as

√

Sg(iω)=diag
[

· · · , |HU,i|
√

Sgi, x , |HV,i|
√

Sgi, y , |HW,i|
√

Sgi, z , · · ·
]

3m×3m
, (4.4.4)

where Sgi, x, i=1, 2, · · · , m, denotes the PSD function of x-component of tridirectional

bedrock ground motions in the ith spatial support, and the ratio of PSD amplitudes of

horizontal bedrock motions (Sgi, x or Sgi, y) and vertical bedrock motions (Sgi, z) is assumed

to be 3/2.

Matrix G(ω, t) in equation (4.4.1) represents the nonuniformly modulated functions of

tridirectional nonstationary ground motions

G(ω, t)=diag
[

· · · , Gi,x(ω, t), Gi,y(ω, t), Gi,z(ω, t), · · ·
]

3m×3m
, (4.4.5)

which can be obtained by assuming Gi,x(ω, t)=Gi,y(ω, t)=Gi,z(ω, t)=G(ω, t), i=1, 2, · · ·, m,

for simplicity.

Matrix R in equation (4.4.1) denotes the coherence matrix of the tridirectional ground

motions, which is either positive definite or positive semi-definite symmetric and can be

decomposed through the LDLT-decomposition as

R=Q3m×r [QT]r×3m =
[

|γij|
]

3m×3m
,
(

|γij|=1, when i= j; 06 |γij|<1, when i 6= j
)

,

(4.4.6)
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which can be decomposed as the summation of non-zero eigenvalues αj with the corre-

sponding normalized eigenvectors ϕj with dimension 3m×1 ( j=1, 2, · · · , r, r63m) given

by

R=
r
∑

j = 1

αjϕ
∗
j ϕ

T
j , where Rϕj =αjϕj and ϕT

i ϕ∗
j =δij ( j=1, 2, · · · , r). (4.4.7)

Pseudo-excitation corresponding to the jth eigen-mode can then be obtained for partially

coherent (diagonal elements of matrix R are 1) SVGM

Pje
iωt =G(ω, t)W

√
αj ϕj

√

Sg(iω) eiωt, (4.4.8)

where the coherence effect, wave-passage effect, local site effect, and ground motion non-

stationarity are reflected in the input pseudo forces of the PEM through
√
αj ϕj (matrix Q),

W, Sg(iω), and G(ω, t), respectively.

It is noteworthy that pseudo-excitations for the fully coherent (rank of R is 1, i.e., r=1, and

all of its elements are 1; α1 =1, {ϕ1}3m×1 is a vector of all ones) and completely incoherent

(R has full rank and its off-diagonal elements are 0 and diagonal elements are 1; αj =1,

{ϕj}3m×1 is the jth natural basis of the Euclidean space ej, j=1, 2, · · · , r) can be simplified

through pseudo-excitation of partially coherent SVGM in equation (4.4.8), which are

Fully coherent:

Pje
iωt =G(ω, t)WQ

√

Sg(iω) eiωt, (4.4.9)

Completely incoherent:

Pje
iωt =G(ω, t)W

√

Sg(iω) eiωt. (4.4.10)

After obtaining the pseudo-excitations corresponding to different coherence level of

spatial seismic motions, the pseudo-responses can be derived in both the conventional

indirect and direct approaches, which are presented in Sections 4.4.1 and 4.4.2.

4.4.1 Conventional Indirect Approach

Substituting equation (4.4.8) into equations (4.2.8) and (4.2.10), the pseudo-response

of relative dynamic displacement under partially coherent spatial ground motions can be
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obtained as

Ỹr(iω, t)=
r
∑

j = 1

ỹrj =
r
∑

j = 1

F
√

αjSg(iω) Ij(t), (4.4.11)

where

Ij(t)=
∫ t

0
h(t−τ)G(τ )Wϕj eiωτdτ. (4.4.12)

Similarly, substituting equation (4.4.8) into equations (4.2.4) and (4.2.8), the pseudo-

response of quasi-static displacement under partially coherent spatial ground motions is

Ỹs(iω, t)=
r
∑

j = 1

ỹsj =
r
∑

j = 1

−F
√

αjSg(iω)ω
−2G(τ )Wϕj. (4.4.13)

Hence, PSD of the pseudo-response of absolute displacement under partially coherent

spatial ground motions can be resulted by substituting equations (4.4.11) and (4.4.13) into

equation (4.2.13), which is

SXSXS
(iω, t)=





r
∑

j = 1

−F
√

αjSg(iω)ω
−2G(τ )Wϕj +

r
∑

j = 1

F
√

αjSg(iω) Ij(t)





∗

·





r
∑

j = 1

−F
√

αjSg(iω)ω
−2G(τ )Wϕj +

r
∑

j = 1

F
√

αjSg(iω) Ij(t)





T

. (4.4.14)

Similarly, PSD of pseudo-response of absolute displacement under fully coherent and

completely incoherent spatial seismic motions are

Fully coherent:

SXSXS
(iω, t)=

[

−F
√

Sg(iω)ω
−2G(t)WQ+F

√

Sg(iω)I0(t)
]∗

·

[

−F
√

Sg(iω)ω
−2G(t)WQ+F

√

Sg(iω)I0(t)
]T

, (4.4.15)

where

I0(t)=
∫ t

0
h(t−τ)G(τ )WQeiωτdτ. (4.4.16)

Completely incoherent:

SXSXS
(iω, t)=

[

−F
√

Sg(iω)ω
−2G(t)W+F

√

Sg(iω)I(t)
]∗

·
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[

−F
√

Sg(iω)ω
−2G(t)W+F

√

Sg(iω)I(t)
]T

, (4.4.17)

where

I(t)=
∫ t

0
h(t−τ)G(τ )Weiωτdτ. (4.4.18)

4.4.2 Absolute-response-oriented Direct Approach

In the direct approach, the pseudo-response of absolute displacement ỹaj with respect to the

jth eigenvalue can be obtained by substituting equation (4.4.8) into equation (4.2.22)

ỹaj =
√

αjSg(iω)Ij(t), (4.4.19)

where Ij(t) is given in equation (4.4.12).

Then, the PSD of pseudo-response of absolute displacement under partially coherent

tridirectional nonstationary ground motions can be expressed by substituting equation

(4.4.19) into equation (4.2.23)

SXSXS
(iω, t)=

r
∑

j = 1

ỹ∗
aj ỹ

T
aj =

r
∑

j = 1

I∗
j IT

j αjSg(iω). (4.4.20)

Similarly, PSD of the pseudo-response of absolute displacement ỹa under fully coherent

and completely incoherent spatial ground motions are

Fully coherent:

SXSXS
(iω, t)= ỹ∗

a ỹT
a = I∗

0IT
0 Sg(iω), (4.4.21)

in which I0 is given in equation (4.4.16).

Completely incoherent:

SXSXS
(iω, t)= ỹ∗

a ỹT
a = I∗ITSg(iω), (4.4.22)

where I is given in equation (4.4.18).

As discussed in Section 4.2.3, the formulations are more complicated for the indirect

method (equations (4.4.14), (4.4.15), and (4.4.17)) in obtaining the pseudo-response of

absolute displacement than the direct method (equations (4.4.20), (4.4.21), and (4.4.22)).

Moreover, in the indirect method, the static influence matrix [F] and the inverse of matrix

[Kss] have to be calculated at every eigenmode, increasing the time of computation of PEM
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4.5 implementation and verification of stochastic analysis scheme in general fea platform

in structural seismic analysis. On the other hand, the direct approach provides an explicit

and simple formulation that can be readily implemented in a general FEA platform without

increasing the computation time. A brief description of the implementation and verification

on the ANSYS platform is presented in Section 4.5.

4.5 Implementation and Verification of Stochastic
Analysis Scheme in General FEA Platform

The direct approach presented in Sections 4.2.2 and 4.4.2 is implemented in the general

FEA platform ANSYS to make PEM readily applicable for stochastic seismic analysis of

complex long span structures under tridirectional nonstationary SVGM (Kohnke, 2010).

The procedure for the implementation is presented in detail in the flow chart of Figure 4.1.

To validate the implementation, a single DoF oscillator under nonstationary excitations

is studied for comparison. The mathematical statement is (Caughey and Stumpf, 1961)

ÿ+2ζω0 ẏ+ω2
0 y=g(t)x(t), (4.5.1)

y(0)= ẏ(0)=0, g(t)=









1.0, t>0,

0, t60.

(4.5.2)

The analytical solutions of the time-dependent PSD of the single DoF oscillator are

Syy(ω, t)=|H|2Sxx(ω) ·
{[

exp (−εt)
( ε

ωε
sinωεt+ cosωεt

)

− cosωt

]2

+

[

exp (−εt)
( ω

ωε
sinωεt

)

− sinωt

]2}

, (4.5.3)

where H=
(

ω2
0 −ω2 +2iζω0ω

)−1
, ε=ζω0, ωε=ω0

√

1−ζ 2, ω0 =
√

k/m, the oscillator

mass m=1.0, stiffness k=1.0, and damping ratio ζ =0.05.

Figures 4.2, 4.3, and 4.4 present the theoretical solutions and ANSYS solutions (based on

the implementation) for the time-dependent PSD atω=0.5, 1.5, and 15 (rad/s), respectively,

where it is observed that the ANSYS solutions agree with the theoretical solutions very well,

meaning that the implementation of PEM in ANSYS is accurate in obtaining structural seis-

mic results. Based on the implementation, the nonstationary stochastic analysis approach is
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Preprocessing (modeling and 
boundary conditions)

Transient analysis (antype, trans,
ANSYS) at each eigenmode

for the real parts, in 
Eq. (4.4.19)

Transient analysis (antype, trans,
ANSYS) at each eigenmode
for the imaginary parts, in 

Eq. (4.4.19)

Combine the responses from both
the real and imaginary parts

at each eigenmodel

Caculating the response power
spectral density                   , in 

Eqs. (4.4.20)-(4.4.22)
)t,(

ssXX ωiS

Decomposition of )t,(3

surface ωiS

to obtain     in Eq. (4.4.1)P

Partition     as the real and 
imaginary parts at each

eigenmode, in Eqs.
(4.4.8)-(4.4.10)

P

Figure 4.1 Flow chart of implementation of the direct approach of PEM in ANSYS

applied to a high-pier railway bridge under tridirectional nonstationary SVGM in Chapter

5.

4.6 Summary and Conclusions

In this chapter, a comprehensive, systematic, and efficient stochastic seismic analysis ap-

proach is derived for long span structures under tridirectional nonstationary spatial mo-
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Figure 4.2 PSD of displacements (ω= 0.5 rad/s)
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Figure 4.3 PSD of displacements (ω= 1.5 rad/s)
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Figure 4.4 PSD of displacements (ω= 15 rad/s)

tions, considering ground motion incoherence effect, wave-passage effect, tridirectional

local site effect (uniform and non-uniform site conditions), nonstationarity, and tridirec-

tionality, which includes

1. An absolute-response-oriented scheme of PEM (in time domain) is developed to re-

duce the enormous computational effort of the conventional indirect nonstationary

SVA (in frequency domain) in solving equations of motion of structures under non-

stationarity tridirectional SVGM.

2. A scheme in accounting for tridirectional varying site-response effect is incorporated

in the nonstationary SVA scheme systematically.

3. The proposed SVA approach is implemented and verified in the general FEA platform

to make it readily applicable in stochastic seismic analysis of complex structures.

4. This analytical SVA approach is more attractive for nonstationary stochastic seismic

analysis of practical long span structures under tridirectional SVGM.
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5C H A P T E R

Stochastic Seismic Analysis of Bridges
under SVGM:
(II) Practical Applications

Based on the theoretical stochastic vibration analysis (SVA) methodology in Chapter 4, two

practical bridges, a concrete-filled steel tubular (CFST) arch bridge and a high-pier railway

bridge, are analyzed in details in this chapter.

5.1 Introduction

During the past two decades, responses of bridges to spatially varying ground motions

(SVGM) have been studied extensively on various types of long span bridge structures,

such as suspension bridges (Harichandran et al., 1996; Wang, 1999), cable-stayed bridges

(Nazmy and Abdel-Ghaffar, 1992; Dumanoglu and Soyluk, 2003; Soyluk, 2004a), and arch

bridges (Hao, 1993; Zanardo et al., 2004), and bridge pounding and isolation (Ates et al.,

2005) under SVGM. In these works, SVA has been widely used (Zerva, 1990; Hao, 1993;

Harichandran et al., 1996; Dumanoglu and Soyluk, 2003; Soyluk, 2004a; Ates et al., 2006;

Zhang et al., 2009).
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5.1 introduction

The Long Span Arch Bridge

The long span CFST arch bridges have been widely accepted and rapidly constructed

because of its advantageous structural style, which impels indepth studies of CFST arch

bridge for its design and analysis. Most of the previous studies are devoted to the static

behavior, thermal and creep effects of concrete and steel, forms of structural members, or

the construction technology; few researches have been carried out on the analysis of seismic

behaviors of the CFST arch bridge, especially on its seismic performance under SVGM.

Hao (1993, 1994) investigated an in-plane circular incompressible arch under multi-

ple earthquake motions by considering the incoherence effect of spatial seismic motions,

and concluded that seismic responses could be overestimated or underestimated if spa-

tial variabilities of ground motions were not taken into account. Several similar studies,

Harichandran et al. (1996), Kawashima and Mizoguti (2000), Zanardo et al. (2004), Soyluk

(2004a), and Su et al. (2007), have been conducted for the arch bridges. However, these stud-

ies only partially and simplistically provide a systematic approach in the seismic analysis of

arch bridges under SVGM.

The Long Span High-pier Railway Bridge

Constructions of railways are under enormous development in China in recent years; many

of them have been built or are being built in the southwestern regions of China. Among

these railways, high-pier railway bridges are usually constructed due to mountainous site

topographies of southwest China, around 40% of which have piers higher than 40m, e.g., the

Beipanjiang railway bridge located on the Yunnan-Guizhou Plateau has the highest pier of

100m (Wang and Gan, 2011). These mountainous railway bridges usually have continuous

and rigid frame girders in the superstructure and thin-walled hollow piers with varying

heights in the substructure, besides the large slenderness ratio of piers.

As known, the southwestern regions of China, where these railway bridges are located,

are seismic zones with high incidence of earthquakes, e.g., the 2008 Sichuan Earthquake

(occurred on May 12, 2008 in the Sichuan province with moment magnitude Mw =7.9

and caused a wide range of damages on different types of railway bridges). Thus, seismic

analysis and design of these high-pier railway bridges are essential and significant and have
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5.2 example i: a long span cfst arch bridge

been regulated in the seismic design code of railway engineering in China (MRC, 2006).

However, the dimensions of many newly built railway bridges, such as the span lengths and

pier heights, are beyond the bridge dimensions to which specifications of MRC (2006) are

applicable, e.g., the China railway seismic design code applies only to railway bridges with

span shorter than 120m and pier lower than 30m. Hence, special seismic analysis becomes

necessary for those railway bridges with large dimensions.

Moreover, seismic performance of high-pier railway bridges may differ significantly from

highway or pedestrian bridges due to their special structural configurations and varying

complex gully site conditions, e.g., piers of railway bridges in the substructure are usually

high yet flexible, while the girders in the superstructure are often required to be more rigid

to avoid derailment of high-speed train and excessive vertical deflection caused by rail loads.

However, the seismic performance of these high-pier railway bridges has been studied in

only a few works (Caglayan et al., 2011), besides some studies on dynamic interaction of

bridge-train system under SVGM (Xia et al., 2006).

Based on the analytical SVA methodology in Chapter 4, a systematic and detailed seismic

analysis for a long span arch bridge and a high-pier railway bridge is presented in Sections

5.2 and 5.3, respectively. Some conclusions drawn from these two examples are presented

in Section 5.4.

5.2 Example I: A Long Span CFST Arch Bridge

5.2.1 Structural Systems

The three-span CFST arch bridge considered, with layout of 51m+158m+51m, is a swallows-

type half-through bridge structure having single arch rib and has been in operation for

around 2 years. The main arch rib has the triangular cross-section composed of three steel

tubes connected by pulling slabs on the sides and bottom, and the stable arch rib has the

single tube cross-section. The angle between the plane of the stable arch rib and the vertical

plane is 21.8◦. The main arch rib is connected with the left and right stable arch ribs using

the diagonal bracing with box cross section, while the left and right stable arch ribs are

connected by the lateral bracing with tube cross section.
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5.2 example i: a long span cfst arch bridge

The main girders of the side spans are constructed using prestressed concrete materials,

and they are fixed together with the V-shape legs and the foot parts of the main arch rib. The

main girders of the side spans extend across the foot parts of the main arch rib to connect

with the box-girder of the main span using two corbels, and the box-girders of the main

span are simply supported in the corbels by using the vertical bearings and the transverse

restrict-sliding bearings. The forward inclined legs act as part of the main arch rib and

are fixed with main girders of the side spans, while the axial lines of the backward inclined

legs are designed to have the parabola forms and are fixed with main girders of the side

spans. The forward and backward inclined legs are constructed using prestressed concrete

structures with single-box dual-chamber cross section. The CFST bridge has a total of 16

suspenders and 6 horizontal flexible ties (Li et al., 2013).

Figure 5.1(a) shows the 3-D schematic view of the bridge structure, and the integral layout

of the actual bridge is shown in Figure 5.1(b). Material properties of the concrete, steel,

suspenders, and tie bars, i.e., the elastic modulus, density, and the design compressive and

tensile stresses, are given in Table 5.1 (Li et al., 2013).

5.2.2 The Finite Element Analysis Model

The 3-D linear elastic finite element analysis (FEA) model of the CFST arch bridge is built

using ANSYS (Kohnke, 2010). The beam189 element (Timoshenko beam element including

shear deformation effect) is used to model the main arch rib, with section properties

determined from the composite section given in Figure 5.2. The stable arch rib, diagonal

bracing, lateral bracing, box-type concrete girder, steel main girder, forward and backward

inclined legs, and the upright columns are modeled by the beam44 element (3-D tapered

unsymmetric beam). The link10 element is used to model the suspenders and tie bars, and

connections between the concrete girders and steel girders are simulated using combin14

element (linear spring-damper element) by coupling their translational degrees-of-freedom

(DoF) and releasing the rotational DoF. Other detailing about the FEA model is shown in

Figure 5.2, such as connections of the FEA model at detail-A and detail-B. The FEA model

has a total of 445 nodes, 484 beam elements, 34 link elements, 6 spring elements, and 2650

DoF, shown in Figure 5.2 (Li et al., 2013).
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Main arch rib
Stable arches Diagonal bracing

Lateral bracing
Suspender

Tie bar

Steel main girder

Concrete main girder

Forward inclined leg

Pile cap

 Corbel

 Traffic lane

Sidewalk Sidewalk 

Stable arches Stable arches

 Diagonal bracing

3500

Backward inclined leg

Tie bar Lateral bracing

Stable arches

Forward inclined leg

Backward inclined leg

 Traffic lane

Section of Main arch rib

158005100 5100

2226.5

Elevation view

Plan view

Side view

(in cm)

(in cm)

(a) 3-D schematic view of the CFST arch bridge

(b) The integral layout of the actual bridge

Figure 5.1 Schematic view of the CFST arch bridge (Li et al., 2013)

Table 5.1: Material properties of the CFST arch bridge

Property  

Concrete Steel  Cable 

C30 C50 Q345 
suspender

PES(FD)7-199 

tie bar 
PES(FD)7-61 

elastic modulus
E (MPa)

3.00 10  3.45  2.06  2.05  2.05  

sdf (MPa) 
20.1 32.4 345 - - 

2.01 2.65 345 1140 1140 

ν
0.2 0.2 0.3 0.3 0.3 

2.55  2.55  7.70  7.85  7.85  

design compressive stress

poisson ratio

tdf (MPa) 

design tensile stress

mass density
ρ (kg/m )3

4 410 510 510 510

310 310 310 310 310
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Using the FEA model, the modal analysis is conducted by using the block-Lanzos method.

The first two natural frequencies are 0.6280 Hz and 1.6236 Hz and have the transverse sym-

metric and antisymmetric mode shapes, respectively. The third and fourth mode shapes

have the vertically antisymmetric and symmetric deformation with natural frequencies

2.1738 Hz and 2.4576 Hz, respectively. The fifth mode shape maintains a symmetric trans-

verse deflection with frequency 3.1617 Hz. These mode shapes are shown schematically in

Figure 5.3 for the 3-D plot.

5.2.3 Stationary Stochastic Seismic Response Analysis

Based on the formulations presented in Chapter 4, stochastic seismic analysis of the CFST

arch bridge under SVGM, considering effects of the incoherence, wave-passage, local site

condition, and ground motion dimensionality, is performed in the following subsections.

5.2.3.1 Effect of Spatial Variability of Ground Motions

As discussed in Section 1.1.1, the inconsistency of earthquake excitations is due to inco-

herency effect, wave-passage effect, and site-response effect. These effects can be accounted

for separately in the wave coherence function model as γij(ω)=γij(ω)
iγij(iω)

wγij(iω)
s,

respectively (Der Kiureghian, 1996).

Based on the site response analysis approach in Section 2.4.1, the influence of apparent

wave velocity is only related to the base rock properties and the incident angle of wave

motion on the base rock, meaning that the apparent wave velocity is fixed for a specific site.

However, the variations of apparent wave velocity in cases #4, #6, #7, and #8 are to study

the wave-passage effect on structural responses, and to investigate which incoherence effect

and wave-passage effect plays a more significant role on structural responses. Thus, no site

conditions are assumed or considered in these cases and details of the site-response effect

are presented in Section 5.2.3.2.

To investigate effects of spatial variability of ground motions on structural responses, 8

cases are considered, as listed in Table 5.2. Specifically, case #1 is the uniform ground motion

(no time delay and no loss of coherency between support excitations, γij(ω)
iγij(iω)

w =1);

case #2 is for the wave-passage effect (no loss of coherency between the support excitations,
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Detail-A

Detail-A

Detail-B
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c c s s
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=
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E I E I
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+
=

A —The area of  equivalent section

I —The inertia moment of  equivalent section

Cross section of main arch rib

Slave node

Master node
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Concrete main beam

Detail-A

Master node

Slave node
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Slave node
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rotational freedoms of x, z-dirction are constrained 

Combin44 element: all displacement freedoms are constrained 
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Figure 5.2 FEA model of the CFST arch bridge (Li et al., 2013)

(a) f   =0.6280 Hz (transverse symmetry)1 (b) f   =1.6236 Hz (transverse antisymmetry)2

(c) f   =2.1738 Hz (vertical antisymmetry)3 (d) f   =2.6576 Hz (vertical symmetry)4

(e) f   =3.1617 Hz (transverse symmetry)5

Figure 5.3 Natural frequencies and mode shapes from FEA model
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γij(ω)
i =1); case #8 is for the incoherence effect (no time delay between support excitations,

γij(iω)
w =1); #3 to #7 are general excitation cases with different degrees of coherency losses

and wave-passage effect.

Table 5.2: Effect of spatial variability of ground motions

Number Incoherence effect Wave-passage effect

#1 γij(ω)
i = 1 γ ij(iω)

w = 1

#2 γij(ω)
i = 1 intermediate

#3† high (β= 1.109×10− 4, a = 3.583×10− 3) intermediate

#4 intermediate (β= 3.697×10− 4, a = 1.194×10− 2) intermediate (Vapp = 400)

#5 weak (β= 1.109×10− 3, a = 3.583×10− 2) intermediate

#6 intermediate small (Vapp = 50)

#7 intermediate large (Vapp = 2000)

#8 intermediate γ ij(iω)
w = 1 (Vapp = inf )

† Parameters are obtained based on spatial earthquake array of SMART1-Event45.

The ground motion coherence model by Oliveira et al. (1991) is used

|γ (dij, f )|= exp(−βdij) exp
(

−α( f )d1/2
ij f 2

)

, (5.2.1)

where β is a constant, dij is the spatial distance between supports i and j in the wave

propagation, α is a function of f as α( f610)=a/f+bf+c,α( f > 10)=α( f=10), and

f is the frequency in Hz. For SMART1-Event45, the parameters are β=1.109×10−4,

a=3.853×10−3, b= −1.811×10−5, and c=1.177×10−4, corresponding to case #3 in

Table 5.2.

For the half-through CFST arch bridge with single arch rib, the transverse direction is

more vulnerable to the stability failure due to the smaller transverse stiffness, while the arch

bridge exhibits larger stiffness in the longitudinal and vertical directions because the arch

rib is supposed to resist the compression forces. In this section, analyses of the CFST arch

bridge under transverse, vertical, and longitudinal ground motions are conducted, and the
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resulting peak responses for cases in Table 5.2 are presented in Figure 5.4 (based on the

stationary peak factor formulas in Appendix A.3).

Comparing the responses of case #1 (uniform excitations) and the other 7 cases (multiple

excitations) in Figure 5.4, spatial variabilities of ground motions can introduce a significant

effect on structural responses of the arch rib under transverse, vertical, and longitudinal

excitations (e.g., displacements UY and bending moments MZ in Figure 5.4(a) and (b) under

transverse excitations, axial forces FX and bending moments MY in Figure 5.4(c) and (d)

under vertical excitations, and axial forces FX and bending moments MY in Figure 5.4(e)

and (f ) under longitudinal excitations). It is concluded from these observations that

1. the conventionally used uniform input assumption by neglecting both the phase shifts

and the coherency losses might greatly underestimate or overestimate the responses,

2. neglecting ground motion spatial variations in analysis may lead to incorrect predic-

tions of structural responses,

3. it is necessary and important to include spatial variabilities of ground motions in

seismic analysis and design of CFST arch bridges with large span.

For the wave-passage effect, transverse displacements of the arch rib and bending mo-

ments in the middle of the arch rib increase as the apparent wave velocity Vapp increases

from 50 m/s (in case #6) to infinite (neglecting the wave-passage effect, in case #8), and

the rate of increase decreases as the apparent wave velocity decreases. Specifically, large

discrepancies of displacements and bending moments (in the middle of the arch rib) can be

observed in Figure 5.4(a) and (b), respectively, between cases #6 and #8 as U
#8
Y /U

#6
Y =1.20

and M
#8
Z /M

#6
Z =1.42. Similar observations can also be obtained for the axial forces FX of

the arch rib under vertical ground motions in Figure 5.4(c), but the opposite observations

that the responses decrease as the apparent wave velocity increases are made for the axial

forces FX and bending moments MY of the arch rib under longitudinal ground motions in

Figure 5.4(e) and (f ).

These observations show that, at the same apparent wave velocity level, the wave-passage

effect becomes more significant for structures with larger spans. On the other hand, it is also

demonstrated that the wave-passage effect is more significant than the effect of coherence
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loss on structural responses, which can be seen from variations of the structural responses

(UY and MZ in Figure 5.4(a) and (b), FX and MY in Figure 5.4(c) and (d), and FX and MY

in Figure 5.4(e) and (f )) for cases #3 (high coherence loss), #4 (intermediate coherence

loss), and #5 (weak coherence loss) under the transverse, vertical, and longitudinal multiple

ground motions, respectively. These observations are in good agreement with results

obtained by Hao (1994) and Su et al. (2007).

More importantly, as seen from comparisons of responses between case #1 (uniform

excitations) and the other 7 cases (multiple excitations) under the transverse motions in

Figure 5.4(a) and (b), the vertical motions in Figure 5.4(c) and (d), and the longitudinal

motions in Figure 5.4(e) and (f ), it is concluded that

1. ignoring spatially variable transverse ground motions would overestimate the response

displacements and bending moments of the arch rib,

2. ignoring variabilities of vertical ground motions can also overestimate responses of

the arch rib,

3. ignoring spatially correlated longitudinal excitations can underestimate the axial forces

FX and bending moments MY of the arch rib.

Similar conclusions to observations 2 and 3 are made by Su et al. (2007) for a 2-D steel truss

arch system by the response history analysis (RHA). Hence, the conventional assumptions

that vertical and transverse free-field ground motions are spatially uniform can be used to

assure the degree of seismic safety of the half-through CFST arch bridge with single arch rib.

Multiple longitudinal excitations are recommended in the actual seismic design of CFST

arch bridge structures from the safety perspective.

These phenomena are attributed to the following reasons. For structural responses

under transverse excitations, the uniform (symmetric) excitations would excite the 1st

mode (symmetric shape in the transverse direction) as the dominant mode, while spatially

variable ground motions can induce both the 1st mode and 2nd mode (antisymmetric in

the transverse direction) to be the dominant modes, where the antisymmetric transverse

mode shape can reduce (‘‘average’’) the transverse displacements or internal forces of the

arch rib, as shown in Figure 5.4(a) and (b). Similarly, for structural responses under vertical
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excitations, the uniform ground motions would mainly induce the vertically symmetric

4th mode, while spatial motions can excite both the 3rd (vertically antisymmetric) and

4th modes, reducing FX and MY of the arch rib of the CFST arch bridge. For structural

responses under longitudinal excitations, spatially varying wave motions would excite the

3rd coupled mode (coupling between the longitudinal and vertical deformations), because

of which large vertical deformations can be induced by the longitudinal multiple excitations,

causing large axial forces and bending moments in the arch rib as seen in Figure 5.4(e) and

(f ).

Additionally, the vertical and longitudinal excitations contribute to the axial forces of the

arch rib much more than the transverse excitations do; the transverse motions maintain a

negligible effect on the axial forces of the arch rib. Hence, unlike the conventional seismic

analysis of arch structures under longitudinal and transverse excitations, the vertical exci-

tations are recommended to be included in the seismic design of the arch bridge structures.

Moreover, the transverse, vertical, and longitudinal excitations can all lead to significant

bending moments of the arch rib. The longitudinal excitations can result in the largest

bending moments at the springing joint of the arch rib, suggesting that special attentions

should be paid to the design of springing joint of the arch rib to avoid possible plastic hinges

occurring under longitudinal motions at multiple supports.

Besides the displacements UY in Figure 5.4(a), the axial forces FX in Figure 5.4(c) and (e),

and the bending moments MY in Figure 5.4(f ), it is also observed that the bending moments

MZ under the transverse multiple excitations (in Figure 5.4(b)) and MY under the vertical

multiple motions (in Figure 5.4(d)) are larger than those under the uniform transverse or

vertical excitations. These observations agree with results obtained by other researchers

that spatial variabilities of ground motions can sometimes increase or decrease structural

responses as compared with those under the uniform excitations; the levels of increase or

decrease depend on the response quantities and their positions along the arch (Hao, 1994).

However, comparing with structural responses obtained from the uniform excitations, all

of the responses at key sections (0, L/4, L/2, 3L/4, L, the controlling parts in design of the

arch structures) are smaller under the spatial transverse and vertical spatial motions. Hence,

the aforementioned three observations still hold, i.e., the conventional seismic evaluations
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of arch structures under uniform transverse and vertical excitations are conservative, which

are recommended in the actual seismic design and analysis of the half-through CFST arch

bridge with single arch rib.

5.2.3.2 Effect of Local Site Conditions

Effects of the local site conditions, varying site conditions, site irregularities, and different

incident angles of bedrock ground motions are considered in this section. Categories of site

conditions specified in National Earthquake Hazard Reduction Program (NEHRP) are used

and presented in Table 5.3, with the corresponding soil properties (G is the shear modulus,ρ

the mass density,ν0 the Poisson’s ratio,ξ the damping coefficient, Vs the shear wave velocity,

and h the depth of the soil layer) (FEMA, 2010).

Table 5.3: Soil properties of site categories specified in NEHRP (FEMA, 2010)

Site categories Property G (MPa) ρ (kg/m3) ν0 ξ Vs (m/s) h (m)

#A: hard rock Vs>1524 5285.5 2200 0.20 0.03 1550 --

#B: rock 762<Vs< 1524 1344.0 2100 0.25 0.05 800 46.5

#C: soft rock 366<Vs< 762 326.5 2041 0.30 0.06 400 46.5

#D: stiff soil 183<Vs< 366 65.3 1633 0.35 0.07 200 46.5

#E: soft soil Vs< 183 15.0 1500 0.45 0.09 100 46.5

For effects of the local site conditions and varying site conditions, a total of 5 (#1-#5) and

6 (#6-#11) cases are considered, respectively. Depths of the soil profiles are chosen to be

h=46.5 m as inferred from the actual depths of piles of the CFST arch bridge. To study the

effects of site irregularities and different incident angles of bedrock ground motions, a total

of 7 cases (#12-#18) are considered (h1 =23 m, h2 =69 m). The incident angles of bedrock

motions propagating towards the sites are varied by 10◦, 60◦, and 90◦. Details of these cases

are given in Table 5.4.

The site response analysis in Section 2.4.1 is performed for different site categories in

Table 5.4. Amplification results of sites #B and #D for both in-plane (U, W) and out-of-

plane (V) wave motions are shown in Figure 5.5(a), which indicate that the fundamental
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Table 5.4: Analysis cases in study of effect of local site conditions

Local site conditions†1 Varying site conditions Site irregularities and incident angles†2

#1: A-A-A-A #6: C-B-B-C #12: C(h1)-C(h2)-C(h2)-C(h1)

#2: B-B-B-B #7: D-C-C-D #13: C(h1)-C(h1)-C(h2)-C(h2)

#3: C-C-C-C #8: E-D-D-E #14: E(h1)-E(h2)-E(h2)-E(h1)

#4: D-D-D-D #9: D-C-B-E #15: E(h1)-E(h1)-E(h2)-E(h2)

#5: E-E-E-E #10: B-C-D-E #16: D(10◦)-D(10◦)-D(10◦)-D(10◦)

-- #11: B-D-E-C #17: D(60◦)-D(60◦)-D(60◦)-D(60◦)

-- -- #18: D(90◦)-D(90◦)-D(90◦)-D(90◦)

†1 A-B-C-D denotes that site conditions beneath the 1st to the 4th supports are categories of #A, #B, #C, and

#D, respectively.

†2 C(h1) denotes the site category #C with depth of soil layer h1, and D(10◦) denotes the site category #D with

incident angle of bedrock motions as 10◦.

frequencies increase by around 1.0 Hz to 4.8 Hz in the U and V directions for sites #B and

#D, respectively. Similar results can also be obtained for ground motions in the W direction.

These results indicate that the harder the site, the higher the fundamental frequency of

the site, and the smaller the site amplification factor. More importantly, fundamental

frequencies in the W direction are higher than those in the V direction for each site, which

is due to the fact that the vertical component of ground motion is dominated by the

compressive P wave with larger wave velocity, causing site to be more stiff in the vertical

direction. However, in practice, site amplification spectra in the vertical direction are

directly obtained from those in the horizontal direction by scaling only the amplitude and

ignoring the variation of fundamental frequency of local site, which is inappropriate in

providing a reasonable site amplification in the vertical direction.

Figure 5.5(b) presents the site amplification results in the V direction of site #D for

different incident angles of the bedrock wave motions. It is seen that larger site amplification

results can be induced by larger incident angles. Specifically, the site amplification results

for 90◦ incident angle are around 3 times larger than those for 10◦ incident angle. This
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Figure 5.5 Site amplification results at different site conditions and different incident angles

is the reason why incident angles of bedrock motions are usually assumed to be 90◦ in

the conventional site response analysis from the conservative perspective (Kramer, 1996).

In addition, the differences between the site amplifications for different incident angles

decrease as the incident angles increase. These observations show that site amplifications

are largely dependent on incident angles of bedrock wave motions. In practice, however, it

is difficult to know or even measure these incident angles; hence site response results for 90◦

incident angle are usually adopted in site response analysis. Alternatively, the incident angle

can be assumed to be a random variable and the effect of the incident angle in site response

analysis can be accounted for by using the Monte-Carlo simulation (Zhang et al., 2012b).

However, for brevity and because of the minor differences of site amplifications for 60◦ and

90◦ incident angles, the incident angles can be reasonably assumed to be 60◦ in other cases

(besides cases #16 and #18) in Table 5.4.

Figure 5.6 presents the displacements, axial forces, and bending moments of the arch rib

under the transverse, vertical, and longitudinal spatial motions at site categories #B, #C,

#D, and #E. The response amplification factors Ramp =Rs/R0 at key-sections of the arch

rib are listed in each sub-figure (Rs and R0 are the structural responses with and without

considering the site effect, respectively). It can be seen that the site conditions can have a

significant effect on the resulting structural responses under the transverse, vertical, and
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longitudinal spatial motions, e.g., site #5 amplifies the transverse displacement in the middle

of the arch rib by around 10 times as shown in Figure 5.6(a).

In addition, the softer the site conditions, the larger the response amplification factors.

These observations can be obtained from the transverse displacements UY, axial forces

FX, and bending moments MY and MZ of the arch rib in Figure 5.6(a), (c), (b), and (d),

respectively. Because softer sites have lower fundamental frequencies (at which peaks

of site amplification factors occur) and these dominant frequencies are close to the natural

frequencies of the predominant mode of the CFST bridge, structural responses are amplified

much more under the softer site conditions due to the resonant effect. Moreover, structural

responses amplified under the vertical multiple excitations are less than those under the

transverse and longitudinal motions, because the site amplification factors in the vertical

direction (W) are less than those in the horizontal directions (U and V) as shown in Figure

5.5(a).

However, it is noted that softer sites do not always induce larger response amplifications,

and this can be seen from Figure 5.6(e) and (f ) for axial forces and bending moments

of the arch rib under longitudinal multiple excitations. As discussed above, structural

response amplifications are dependent on site amplification factors and structural modal

properties. For example, the fundamental frequency of site #C in the U direction is around

2.2 Hz, which is close to the 3rd and 4th predominant coupling frequencies of the CFST

arch bridge, resulting in the largest structural response at site #C in Figure 5.6(e) and (f ).

These results indicate that more advanced yet easily applicable methods in modelling of

local site effect are desired, because fundamental frequencies of the site can significantly

affect the structural response amplifications. The site amplification approach in Section

2.4.1 can provide amplification results under both in-plane and out-of-plane wave motions

for multi-layer soil profiles with varying site conditions, and is therefore recommended for

seismic analysis of structures accounting for the local site effect. Moreover, the conventional

vertical site amplification, which is obtained directly from those in the horizontal directions

by scaling only the amplitude and ignoring the variation of fundamental frequencies of

local site, can lead to inappropriate response amplifications of structures under vertical

excitations.
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To study the effect of varying site conditions, 6 cases (from #6 to #11 in Table 5.4) are

considered with varying site conditions beneath each support. The axial forces of the

suspenders and bending moments of the arch rib under transverse multiple excitations

are presented in Figure 5.7(a) and (b), respectively. It is observed that the varying site

conditions can induce significant variations of structural responses, suggesting that different

site conditions beneath each support should be accounted for in the seismic analysis and

design of structures extended in large space. Responses of case #11 are significantly different

from those of other cases, because the softest site #E is assumed for the 3rd structural support

(excitations at the 2nd and 3rd supports have dominant contributions in responses).

Similarly, as seen from Figure 5.7(c) and (d), significant variations of structural responses

induced by site irregularities can be observed for cases #12 to #15 in Table 5.4. The

irregular site conditions of cases #12 and #13 can introduce the most significant variations

of transverse displacements (at middle of the arch rib) and bending moments (at around

1/4 and 3/4 span of the arch rib). This demonstrates that site conditions beneath supports

of critical structures with large spans should be characterized in details, to avoid incorrect

predictions of structural responses.

Axial forces and bending moments of cases #16, #17, and #18 are shown in Figure

5.7(e) and (f ) to illustrate the effect of incident angles of bedrock motions. It is seen that

the responses with 10◦ incident angle exhibit larger variations than those with 60◦ and 90◦

incident angles, due to the site amplification factors shown in Figure 5.5(b). Response forces

and bending moments of the arch rib with 60◦ and 90◦ incident angles are approximately

the same, showing that the assumption of the 60◦ incident angle of bedrock motions is

conservative and reasonable.

5.2.3.3 Effect of Dimensionality of Multiple Seismic Motions

A total of 10 cases, cases #1 to #5 without the site effect and cases #6 to #10 with site

category #D as listed in Table 5.5, are considered to study the effect of dimensionality

of multiple seismic motions on structural responses. Assuming that amplitudes of the

power spectral density (PSD) inputs in the vertical (V) direction are 2/3 of those in the
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horizontal directions H1 (longitudinal) and H2 (transverse), the displacements, axial forces,

and bending moments of the arch rib are presented in Figure 5.8.

Table 5.5: Effect of dimensionality of multiple earthquake motions

Case number Without the site effect Case number With the site effect

#1 H1 (A-A-A-A) #6 H1 (D-D-D-D)

#2 H2 (A-A-A-A) #7 H2 (D-D-D-D)

#3 V (A-A-A-A) #8 V (D-D-D-D)

#4 H1 +H2 (A-A-A-A) #9 H1 +H2 (D-D-D-D)

#5 H1 +H2 +V(A-A-A-A)†1 #10 H1 +H2 +V (D-D-D-D)

†1 H1, H2, and V denote the longitudinal, transverse, and vertical directions, respectively.

It is seen from Figure 5.8 that large variabilities of responses exist between cases #5 and

#10 (under tridirectional excitations) and cases #1 to #4, #6 to #9 (under unidirectional

or bidirectional excitations), showing that neglecting the tridirectional excitations would

lead to significantly inaccurate predictions of structural responses. Specifically, as shown

in Figure 5.8(b), (c), (e), and (f ), the tridirectional motions (cases #5 and #10) can induce

the largest axial forces and bending moments of the arch rib with and without the site

effect. This suggests that structural responses can be underestimated if the tridirectional

motions are not considered, causing the resulting responses unconservative in the seismic

evaluations and design.

More importantly, by comparing the responses in cases #4 and #9 (H1 +H2) and cases

#5 and #10 (H1 +H2 +V) in Figure 5.8, it is observed that results between these two cases

exhibit significant differences, suggesting that the vertical ground motions should be in-

cluded in cases #4 and #9 to avoid the erroneous response predictions. Conventionally,

only the longitudinal and transverse directions are concerned in the seismic analysis of arch

bridge under multidimensional earthquake loadings; however, as observed in Figure 5.8,

the vertical components of seismic motions should be included in the seismic evaluations

and design of arch bridges under multidimensional excitations.

It should be noted that the longitudinal excitations can result in larger responses than

the transverse motions can, while the transverse excitations have a negligible effect on FX
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and MY; this is because the spatially varying longitudinal wave motions can excite the 3rd

coupled mode (coupling between the longitudinal and vertical deformations).

5.3 Example II: A Long Span High-pier Railway Bridge

5.3.1 Structural Systems

To study local site effects on high-pier railway bridges under tridirectional nonstationary

spatial motions, a large-span high-pier continuous rigid frame bridge, which is under

construction in the western Guizhou province of China, is considered. The railway bridge

consists of the left bridge system (LBS) and the right bridge system (RBS) and has a total

span of 466 m. The left bridge segment is a prestressed-concrete continuous rigid frame

system with layout of 88 m+168 m+88 m , while the right segment is a prestressed-concrete

continuous beam system with layout of 33 m+56 m+33 m. This bridge is situated on a

V-shape gully zone with the river-bed length around 15∼25 m and the water depth less than

1.0 m.

Piers of the railway bridge are numbered from Piers #1 to #5. The highest pier, i.e., Pier #2,

has height of 103 m. Pier #1 and Pier #2 have the variable hollow rectangular cross-sections,

while the other three piers have variable hollow oval cross-sections. These configurations

are presented in details in Figure 5.9.

A 3-D FEA model of the high-pier railway bridge is built using a general FEA platform

ANSYS (Kohnke, 2010). The beam189 element is used to model main girders and piers.

The mass21 element is adopted to simulate the large masses that are attached to structural

supports in the large mass method. The fixed boundary conditions apply to the bottom

of Piers #1 to #5. The vertical DoF (Z), transverse DoF (Y), and the rotational DoF with

respect to Z (Rotz) and X (Rotx) directions are fixed in both the north and south abutments

of the railway bridge. All DoF of Pier #1, Pier #2, and Pier #4 (the DoF in the connection

point of the piers and main girders) are coupled with the corresponding DoF of the main

girders, while the longitudinal DoF (X) in the connection points of Pier #3, Pier #5, and the

main girders are released. The 3-D FEA model of the high-pier railway bridge in ANSYS is

shown in Figure 5.10(a).
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Figure 5.9 Schematic view of the high-pier railway bridge (Jia et al., 2013)

Using the FEA model, modal analysis is conducted using the block-Lanczos method

(Kohnke, 2010). The first nine natural frequencies and their respective mode shapes are

presented in Figure 5.10(b), where it is seen that most of these modes have dominant

transverse deflections because of the smaller stiffness in the transverse direction.

5.3.2 Ground Motion Input

The Clough-Penzien spectrum is used as the auto-PSD functions, which is given by

Sg(ω)=
1 + 4ζ 2

g

(

ω/ωg

)2

[

1 −
(

ω/ωg

)2
]2

+ 4ζ 2
g

(

ω/ωg

)2

(

ω/ωf

)4

[

1 −
(

ω/ωf

)2
]2

+ 4ζ 2
f

(

ω/ωf

)2
S∗, (5.3.1)

where S∗ is the constant spectral density of the white-noise input, ωg and ζg are the filter

parameters of the well-known Kanai-Tajimi model representing, respectively, the natural

frequency and damping of the soil layer, and ωf and ζf are the parameters of a second filter
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(a) FEA model of the high-pier railway bridge in ANSYS

(b) Modal frequencies and mode shapes

Figure 5.10 FEA model and mode parameters of the high-pier railway bridge
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that is introduced to assure a finite power for the ground displacement. The proportion of

PSD amplitudes of the tridirectional ground motions in x, y, and z directions is assumed to

be 1:0.72:0.42 (MCPRC, 2008; NCC, 2010). The local site effect is considered in the input

ground PSD model for the firm (F), medium (M), and soft (S) site conditions using the

physical parameters given in Table 5.6.

Table 5.6: Parameters of PSD functions of different soil types (Der Kiureghian and Neuenhofer, 1992;

Dumanoglu and Soyluk, 2003)

Soil types ωg (rad/s) ζg ωf (rad/s) ζf S∗ (m2/s3)

Firm (F) 15.0 0.6 1.5 0.6 0.00177

Medium (M) 10.0 0.4 1.0 0.6 0.00263

Soft (S) 5.0 0.2 0.5 0.6 0.00369

The ground motion coherence model by Lin et al. (2004b),
∣
∣γ (dij, f )

∣
∣= exp

[

−a(ω)d
b(ω)
ij

]

is used, in which a(ω)=a1ω
2 +a2,b(ω)=b1ω

2 +b2,a1 =0.00001678,a2 =0.001219,b1 = −
0.0055, and b2 =0.7674.

Earthquake ground motions are nonstationary, because they initially grow from zero,

then have a steady phase, and eventually decay to zero. Therefore, nonstationarity of

earthquake ground motions should be considered. The uniformly modulated function G(t)

is widely used and is adopted to model the nonstationarity of ground motions (Jennings

et al., 1968)

G(t)=















(

t/t1

)2
, 06 t6 t1,

1, t1
6 t6 t2,

e−c(t− t2), t> t2,

(5.3.2)

where t1, t2, and c are shape-control parameters of the time modulating function, which are

given as t1 =7.1 sec, t2 =19.5 sec, and c=0.16. The duration of ground motions is assumed

to be 25 sec. For simplicity, the modulating functions at x, y, and z directions are assumed

to be the same.
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Table 5.7: Analysis cases under different sites

(F-firm site, M-medium site, S-soft site)

Group Case P #1 P #2 P #3 P #4 P #5 

#A 

#1 F F F F F 

#5 F M F F F 

#6 F S F F F 

#8 F F F F M 

#9 F F F F S 

#B 

#2 M M M M M 

#4 M F M M M 

#7 M M M M F 

#10 M M M M S 

#15 M S M M M 

#C 

#3 S S S S S 

#11 S S S S F 

#12 S S S S M 

#13 S F S S S 

#14 S M S S S Figure 5.11 PSD of different site conditions

5.3.3 Analysis Cases under Different Site Conditions

As seen in Figure 5.9, dimensions of piers of the high-pier railway bridge vary significantly,

e.g., the height difference between the highest pier (Pier #2) and the shortest pier (Pier #5) is

around 50m. In addition, since the highest pier plays a significant role on seismic responses

of the railway bridge, local site conditions beneath Piers #2 and #5 are varied and are studied

primarily for the local site effects on structural seismic response.

The analysis cases are presented in Table 5.7 for various combinations of site categories

(including firm (F), medium (M), and soft (S) sites) under Pier #1 to Pier #5. As discussed

in Section 5.3.2, local site effect is reflected in the input PSD functions; the PSD functions

corresponding to the three site conditions are shown in Figure 5.11 using site parameters

given in Table 5.6. It is noteworthy that the shape parameters ωg, ζg,ωf, ζf used in Table 5.6

for each site condition are developed by Der Kiureghian and Neuenhofer (1992), while the

corresponding amplitude parameters S∗ used in Table 5.6 are determined by Dumanoglu

and Soyluk (2003) by equating the variance of the input Clough-Penzien spectrum to the

variance of the East-West components of Erzincan earthquake accelerations in 1992.

Cases #1, #2, and #3 are uniform site conditions for all five piers under site categories F,

M, and S, respectively, based on which a total of 15 cases are considered and categorized into
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three groups, i.e., Groups #A, #B, and #C. Group #A (cases #1, #5, #6, #8, and #9) is to study

the local site effect induced by varying site conditions under the highest Pier #2 and the

shortest Pier #5 when the other three piers are in the F site conditions. Similarly, Group #B

(cases #2, #4, #7, #10, and #15) and Group #C (cases #3, #11, #12, #13, and #14) are to study

the effect of varying site conditions under Pier #2 and Pier #5 when Piers #1, #3, and #4 are

in M and S site conditions, respectively. If the specific site condition beneath every pier is

known in practice, the local site effects can be directly accounted in the seismic analysis,

otherwise the worst response scenario of site conditions in Table 5.7 can be considered as

the local site conditions of the high-pier railway bridge in the seismic analysis and design.

In seismic response analysis of the high-pier railway bridge under SVGM, the local site

effect is primarily investigated and the wave-passage effect is ignored, because there are

extensive previous investigations for the wave-passage effect on structural seismic response

but very few works for the local site effect. Similarly, only completely incoherent spatial

motions are considered as the input SVGM, since they can cause the worst structural

response among the fully coherent, partially coherent, and completely incoherent spatial

seismic motions.

5.3.4 Nonstationary Stochastic Seismic Response Analysis:
Results and Discussions

The nonstationary stochastic seismic analysis is conducted for the high-pier railway bridge

under tridirectional SVGM considering the local site effect. In the analysis, the circular

frequency is bounded as ω∈[0.1, 50] rad/s with the frequency resolution as 1ω=0.05

rad/s. The damping ratios of all the modes of interest are assumed to be 0.05.

5.3.4.1 Effect of Uniform Local Site Conditions

For local site effects on structural response, the uniform site conditions, i.e., the soft site

S, medium site M, and firm site F, are considered under all piers of the railway bridge in

case #3, #2, and #1 of Table 5.7, respectively. For brevity, structural responses, such as shear

forces FX and FY and bending moments MX and MY, at the bottom of Pier #2 only are

reported because of the dominant role of Pier #2 in the bridge seismic responses. The 3-D
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response PSD functions under site F, M, and S are presented in Figures 5.12, 5.13, and 5.14,

respectively.

As expected, PSD functions of structural responses exhibit time and frequency non-

stationary characteristics. Moreover, as seen in Figure 5.12(a) and (c), the predominant

response frequencies of FX and MX are bounded between 0.60 to 0.80 Hz, meaning that the

first mode (0.73 Hz, shown in Figure 5.10(b)) has been excited to be the dominant mode

on the responses of FX and MX. Similarly, responses of FY and MY, with predominant

frequencies of 0.60∼0.80 and 1.35 Hz, are dominated by the first, third, and fourth modes

of the railway bridge (0.73 Hz, 1.23Hz, and 1.36Hz, shown in Figure 5.10(b)).

As observed in Figures 5.12(b), 5.13(b), and 5.14(b) for structural response MY, the

response PSD function at S site is different from those at M and F sites with more pre-

dominant frequencies and larger site amplification results, because of the narrow frequency

band of the soft site and the resonance between the soft site and the railway bridge. Similar

conclusions can also be drawn for PSD of response FY in Figures 5.12(d), 5.13(d), and

5.14(d).

A more important observation is that the softer the uniform site conditions the larger the

structural response results. Specifically, the ratios between the peaks of PSD at S, M, and F

site conditions are 1.00:0.74:0.62 for MX, 1.00:0.50:0.45 for MY, 1.00:0.53:0.49 for FX, and

1.00:0.72:0.61 for FY, respectively.

5.3.4.2 Effect of Non-uniform Local Site Conditions

Besides the effect of uniform local site conditions on structural seismic responses, the effect

of the non-uniform (varying) site conditions is studied. The time-dependent response

mean square deviation σ(t) is derived based on the obtained nonstationary PSD function

of response S(ω, t) by

σ(t)=
√

2

∫ ∞

0
S(ω, t)dω. (5.3.3)

Responses of Group #A (#1, #5, #6, #8, #9) are presented in Figure 5.15. They include the

longitudinal (X) displacement of main girder in the left bridge system DX, shear forces FX

and FY at the bottom of Pier #2, axial force FN at the bottom of Pier #2, bending moments
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Figure 5.12 PSD functions of nonstationary structural responses under site #1: F-F-F-F-F

Figure 5.13 PSD functions of nonstationary structural responses under site #2: M-M-M-M-M
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Figure 5.14 PSD functions of nonstationary structural responses under site #3: S-S-S-S-S

MX and MY at the bottom of Pier #2, and bending moments ML,Y and MR,Y on the left and

right side of the main girder supported by Pier #2. It is seen in Figure 5.15 that effects of the

varying site conditions are very significant in the time-dependent nonstationary structural

seismic responses.

Specifically, case #6 (F-S-F-F-F) can result in the largest structural response and case

#5 (F-M-F-F-F) can lead to the second largest structural response among all the cases

in Group #A. This indicates that the larger site difference between Pier #2 and the other

piers the larger the structural seismic responses obtained, which confirms the fact that the

highest Pier #2 plays a dominant role on the seismic response of the railway bridge. In

addition, site variations under Pier #5 play a negligible effect on structural responses, i.e.,

all seismic responses of case #1 (F-F-F-F-F), case #8 (F-F-F-F-M), and case #9 (F-F-F-F-S)

are overlapped over the entire duration of ground motion, because the longitudinal (X)

constraint between Pier #5 and the main girder of the right bridge system has been released

to avoid shear failure of Pier #5.
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The ratios between peak responses of case #6 and peaks of the other three overlapped

cases #1, #8, and #9 are 5.57, 3.50, 1.76, 3.60, 2.12, 4.96, 3.00, and 15.38, respectively, for

DX, FX, FY, FN, MX, MY, ML,Y, and MR,Y in Figure 5.15, which indicate that the varying

site conditions can significantly affect structural seismic response in comparison with the

uniform site conditions. It is also concluded that structural seismic response may be largely

underestimated if effect of varying site conditions is not considered, especially the variation

of local site conditions beneath the highest pier. Therefore, it is of primary importance to

account for the varying site effect in seismic evaluations of high-pier railway bridge under

tridirectional nonstationary spatial ground motions.

Similar to Group #A, Figure 5.16 presents DX, FX, FY, FN, MX, MY, ML,Y, and MR,Y, for

Group #B (#2, #4, #7, #10, #15). The largest responses are resulted in case #15 (M-S-M-M-

M) due to the largest site difference between Pier #2 and the other piers. The ratios between

peak responses of case #15 and peaks of the other three overlapped cases #2, #7, and #10 are

4.44, 3.64, 1.58, 2.47, 1.50, 4.04, 2.01, and 14.16 for DX, FX, FY, FN, MX, MY, ML,Y, and MR,Y

in Figure 5.16, respectively. It again reveals that the varying site conditions can significantly

affect structural seismic response in comparison with the uniform site conditions, and it

is essential to account for the varying site effect in structural seismic analysis. Similar

conclusions can also be drawn for response mean square deviation functions presented in

Figure 5.17 for Group #C (#3, #11, #12, #13, #14), where the ratios between peak responses

of case #13 and peaks of the other three overlapped cases #3, #11, and #12 are 2.16, 1.69,

1.21, 3.42, 1.40, 1.90, 1.76, and 10.00 for DX, FX, FY, FN, MX, MY, ML,Y, and MR,Y in Figure

5.17, respectively.

More importantly, ratios between the peaks (between case #6 and the three overlapped

cases #1, #8, and #9 in Group #A, between case #15 and the three overlapped cases #2, #7,

and #10 in Group #B, and between case #13 and the three overlapped cases #3, #11, and

#12 in Group #C) of a specific structural response, e.g., DX, decrease from site Group #A to

Group #C. Specifically, the ratios for each structural response are listed as

1. from 5.57, 4.44, to 2.16 for DX shown in Figures 5.15(a), 5.16(a), and 5.17(a);

2. from 3.50, 3.64, to 1.69 for FX shown in Figures 5.15(b), 5.16(b), and 5.17(b);

3. from 1.76, 1.58, to 1.21 for FY shown in Figures 5.15(c), 5.16(c), and 5.17(c);
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4. from 3.60, 2.47, to 3.42 for FN shown in Figures 5.15(d), 5.16(d), and 5.17(d);

5. from 2.12, 1.50, to 1.40 for MX shown in Figures 5.15(e), 5.16(e), and 5.17(e);

6. from 4.96, 4.04, to 1.90 for MY shown in Figures 5.15(f), 5.16(f), and 5.17(f);

7. from 3.00, 2.01, to 1.76 for ML,Y shown in Figures 5.15(g), 5.16(g), and 5.17(g);

8. from 15.38, 14.16, 10.00 for MR,Y shown in Figures 5.15(h), 5.16(h), and 5.17(h).

These observations again indicate the fact that the softer the local site conditions beneath

the highest pier the larger the structural response results. Hence, two important and

effective measures can be taken at the design stage to prevent or mitigate structural failures

of high-pier railway bridges induced by site amplification:

❧ to avoid soft site beneath the highest pier,

❧ to avoid large difference of site conditions between the highest pier and the other piers.

Comparing cases #6 (F-S-F-F-F), #15 (M-S-M-M-M), and #13 (S-F-S-S-S) that induce

the largest structural responses in Groups #A, #B, and #C, case #6 results in the largest

structural responses among these three cases, although site differences between Pier #2 and

other piers are the same in cases #6 and #13. It is because the resonance between local

site condition of Pier #2 and the railway bridge is more significant in case #6 than in case

#13; it again indicates that avoiding soft site conditions under the highest pier and large

site differences between the highest pier and other piers are effective to prevent or mitigate

seismic failures of high-pier railway bridges caused by local site amplification.

5.3.4.3 Effect of Ground Motion Nonstationarity

It is well known that recorded ground motions exhibit intrinsic nonstationary characteris-

tics in both time and frequency domains, and inclusion of ground motion nonstationarity

in SVA of structures is appropriate. It is seen from Figures 5.12 to 5.14 that PSD functions

of structural responses exhibit nonstationary time and frequency dependent characteristics

in the 3-D time frequency plot. In addition, similar to the piecewise modulating function,

the response mean square deviation functions also show nonstationary characteristics that

can be divided into three segments, i.e., the rising part, the plateau, and the decaying part,

as shown in Figures 5.15 to 5.17.
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Figure 5.15 Nonstationary seismic responses at key positions of the bridge under site group #A
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Figure 5.16 Nonstationary seismic responses at key positions of the bridge under site group #B
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5.3 example ii: a long span high-pier railway bridge
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Figure 5.17 Nonstationary seismic responses at key positions of the bridge under site group #B
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5.4 summary and conclusions

To explore the effect of ground motion nonstationarity on structural seismic response,

stationary SVA is conducted in case #6 (F-S-F-F-F) of Group #A for comparison with

nonstationary response results, shown in Figure 5.15. The ratios between the stationary

responses and peaks of nonstationary responses for DX, FX, FY, FN, MX, MY, ML,Y, and

MR,Y are 1.32, 1.34, 1.17, 1.36, 1.28, 1.32, 1.30, and 1.36, shown in Figure 5.15, respec-

tively (stationary response results are DX =0.13 m, FX =4.02×107 N, FY =1.61×107 N,

FN =2.44×107 N, MX =1.05×109 N·m, MY =1.79×109 N·m, ML,Y =3.91×108 N·m, and

MR,Y =1.38×109 N·m).

As seen, structural seismic responses can be overestimated by 20% to 30% if ground

motion nonstationarity is not taken into account. Hence, ground motion nonstationarity

should be considered in structural SVA to represent more accurate and appropriate seis-

mic design loads, although conventional stationary stochastic seismic analysis can lead to

conservative design results.

It is noteworthy that this chapter is devoted to study effects of ground motion spatial

variations on structural responses, and comparison of the seismically induced loads to

structure members capacities (from structure design point) is ignored in this study.

5.4 Summary and Conclusions

From the parametric studies of the CFST arch bridge and the high-pier railway bridge under

SVGM, conclusions are drawn below.

The Long Span Arch Bridge

1. The conventionally used uniform input motions by neglecting both the phase shifts

and the coherency losses might greatly underestimate or overestimate the responses.

The wave-passage effect is more significant than the effect of coherence loss on struc-

tural responses, and the wave-passage effect becomes more significant for structures

with larger spans.

2. Variabilities of transverse and vertical ground motions can decrease responses of the

half-through CFST arch bridge, while spatially correlated longitudinal excitations can

increase structural responses. Hence, the uniform vertical and transverse input ground
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5.4 summary and conclusions

motions and multiple longitudinal excitations are recommended in the actual seismic

design of half-through CFST arch bridge to ensure structural seismic safety.

3. The site effect must be included in seismic analysis of structures under multiple excita-

tions because it significantly affects structural responses under the transverse, vertical,

and longitudinal spatial motions. Softer site conditions can cause larger structural re-

sponses. Furthermore, the varying and irregular site conditions can induce significant

variations of structural responses, and they should be accounted for in seismic design

to avoid erroneous response predictions.

4. The tridirectional motions must be used in seismic evaluations and design, because

structural responses can be underestimated if the tridirectional motions are not con-

sidered. Moreover, the vertical ground motions should be included in the conventional

seismic evaluations and design of arch bridges under multidimensional excitations.

The Long Span High-pier Railway Bridge

1. Ground motion nonstationarity should be considered in stochastic seismic analysis of

structures to represent more accurate and appropriate seismic design loads, although

conventional stationary analysis can lead to conservative design results. Structural

seismic responses can be overestimated by 20% to 30% if ground motion nonstation-

arity is not taken into account.

2. Under uniform site conditions, softer site can induce larger structural responses. Spa-

tially non-uniform sites can induce more significant structural responses than the

uniform sites.

3. The spatially varying site conditions, especially site variations under the highest pier,

should be considered in seismic analysis and design of high-pier railway bridge struc-

tures; otherwise, structural seismic responses could be significantly underestimated.

4. Site conditions beneath the highest pier and site difference between the highest pier

and other piers play a dominant role in the seismic responses of high-pier railway

bridges. The larger the site difference between the highest pier and other piers, the

larger the structural seismic response results.
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5.4 summary and conclusions

5. Two important and effective ways can be adopted at the design stage to prevent or

mitigate seismic failures of the high-pier railway bridge caused by site amplification:

❧ to avoid soft sites beneath the highest pier,

❧ to avoid large site difference between the highest pier and other piers.

6. Detailed inspections of geological conditions and appropriate design of site condi-

tions beneath the high-piers are recommended to effectively reduce the site induced

earthquake damages to the high-pier railway bridges.
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6C H A P T E R

Stochastic Seismic Analysis of Bridges
under SVGM:
(III) A Highly Efficient and Accurate
Scheme

The pseudo-excitation method (PEM) scheme developed in Chapter 4 can transform the

nonstationary stochastic vibration analysis (SVA) in the frequency domain to determin-

istic dynamic response problems in time domain, where the direct dynamic integration

methods are required to solve the transient analyses. However, these direct dynamic inte-

gration methods usually require rather small integration time steps that are dependent on

the natural periods of structures to ensure sufficient computational precision and stable

response results, thereby increasing the computational effort. To resolve this problem, the

high precision direct integration method (HPDIM) is studied in this chapter to improve the

computation efficiency.

6.1 Introduction

The HPDIM, which can use larger time step and is not subjected to any limitation from

the natural periods of structures, was proposed by Zhong and Williams (1994) in station-
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6.1 introduction

ary/nonstationary random response analysis, reducing the computation time considerably

(Lin et al., 1997a).

Because of good computational efficiency of PEM and HPDIM, these two methods can

be combined to make nonstationary SVA, whether for uniformly or nonuniformly mod-

ulated evolutionary random excitations, much easier and much more efficient. However,

the combined scheme is generally still very time consuming and costly, because the time

step of HPDIM still has to be small enough to simulate recursively varying pseudo loadings

properly, especially for nonuniformly modulated nonstationary pseudo loadings (the limi-

tation of assumption of loading form between two adjacent time steps, e.g., linear loading

form, sinusoidal loading form). This becomes the bottle-neck problem in the application

of HPDIM in nonstationary random response analysis (Lin et al., 1997a). To resolve the

bottle-neck problem, the HPDIM parallel algorithm, in conjunction with PEM, was used

to solve the independent structural equations of motion subjected to deterministic pseudo

loadings at each frequency step (Lin et al., 1997b). However, the parallel algorithm improves

the efficiency of computation utilizing the parallel capability of computer hardware, rather

than improving on the algorithms of HPDIM.

To resolve the bottle-neck problem in the application of HPDIM in solving structure

equations of motion, an improved high precision direct integration method (I-HPDIM),

in conjunction with the absolute-response-oriented scheme of PEM in Section 4.2.2, is

proposed in Section 6.2. It reduces significantly the number of transient analyses, without

requiring small time step to maintain accurate approximation of forms of pseudo loadings

between two adjacent time steps. The proposed I-HPDIM, combined with the absolute-

response-oriented scheme of PEM, can greatly improve the computational efficiencies of

both PEM and conventional HPDIM, and it becomes more attractive for engineering pur-

poses, particularly in the SVA of some large yet complex structures under tridirectional

nonstationary spatially varying ground motions (SVGM).

To demonstrate the proposed SVA scheme, a seismic pounding analysis of a high-pier

railway bridge under tridirectional nonuniformly modulated SVGM is conducted in Section

6.2 using the proposed absolute-response-oriented scheme of PEM combined with the I-
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6.2 theoretical basis: scheme of i-hpdim

HPDIM. Seismic pounding frequently caused serious damage on the superstructures of

bridges and even the collapse of bridges during past earthquakes (Bi et al., 2011).

6.2 Theoretical Basis: Scheme of I-HPDIM

In the absolute-response-oriented direct approach presented in Section 4.4.2, structural

absolute responses can be derived in equations (4.4.20), (4.4.21), and (4.4.22) for par-

tially coherent, fully coherent, and completely incoherent tridirectional nonstationary SVGM,

respectively, based on the obtained pseudo-response of absolute displacement given in

equation (4.4.19).

In obtaining structural absolute responses in Section 4.4.2, the conventional method

(CM) is used (Jia et al., 2013). Besides, this section presents three other methods in

obtaining structural absolute responses, including improved conventional method (I-CM)

in Section 6.2.2, HPDIM in Section 6.2.3, I-HPDIM in Section 6.2.4, discussions on these

four methods in Section 6.2.5, and implementation and verification of the proposed SVA

methodology in general finite element analysis (FEA) platform ANSYS in Section 6.2.6.

6.2.1 Conventional Method (CM)

In the direct scheme of equations of motion presented in Section 4.4.2, power spectral den-

sity (PSD) of absolute displacement Xs under partially coherent tridirectional nonstationary

ground motions is derived in equation (4.4.20), where the conventional method (CM) is

used in obtaining structural stochastic response (Jia et al., 2013)

As seen from equation (4.4.20), a total of 2r transient analyses are required to be con-

ducted for both the real and imaginary parts of the input pseudo-excitation Pje
iωt, by

means of direct dynamic integration methods, such as the Duhamel integration, Newmark

method, or Wilson-θ method, to derive response PSD function at each discrete frequency

step by superposition of response results from all r modes, i.e., the total number of transient

analyses ntotal is 2nωr (nω is total number of discrete frequency step). However, transient

analysis is a time-consuming procedure, especially for large ntotal. Moreover, for some large

and complex structures having dense modal frequencies and significant contributions from
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6.2 theoretical basis: scheme of i-hpdim

higher modes, the computation demand may be greatly increased by requiring a large nω to

accurately represent the response dynamic characteristics of these structures. Furthermore,

the rank r of matrix R may be large for long span structures having many spatial supports

(denoted as ns) and being subjected to tridirectional (denoted as ndof =3) spatial seismic

motions, i.e., r=ns ×ndof =3ns. As a result, huge computation requirements are needed in

CM (Zhang et al., 2013a).

The computation demands of obtaining response PSD functions in the absolute-response-

oriented scheme of PEM are attributed to three sources:

❧ the total number of discrete frequency step nω,

❧ the discrete number of time domain nt in transient analysis for every frequency step,

❧ matrix rank r owning to spatially correlated ground motions.

Hence, the computation efficiency can be further improved on these three aspects. The

improved conventional method (I-CM) is proposed on the aspect of parameter r (presented

in Section 6.2.2). The adopted HPDIM (Zhong and Williams, 1994) and the proposed im-

proved HPDIM, i.e., I-HPDIM, are presented in Sections 6.2.3 and 6.2.4, respectively, on the

aspect of parameter nt. It is noteworthy that improvements of computational efficiency on

the aspect of parameter nω are not under investigations because parameter nω is determined

by the modal information of structures. Some possible ways, such as the parallel computing,

can be applied in solving equations of motion at each frequency step independently (Lin

et al., 1997b), which are out of the scope of this study.

6.2.2 Improved Conventional Method (I-CM)

The computational efficiency is achieved by the proposed improved algorithm of the CM to

reduce r transient analyses into one transient analysis at every frequency step.

The I-CM is based on the principle that a total of r pseudo-excitations Pje
iωt, j =

1, 2, . . . , r, can be first superposed owning to the linear elastic stochastic seismic vibra-

tion analysis. Hence, one pseudo-excitation input Peiωt for the partially coherent spatial

ground motions can be obtained

P eiωt =G(ω, t)WU
√

Sg(iω) eiωt, (6.2.1)
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6.2 theoretical basis: scheme of i-hpdim

where U=
∑r

j = 1 ϕj
√
αj, and the corresponding response PSD function is

SXsXs
(iω, t)= I∗

γ IT
γ Sg(iω), where Iγ (ω, t)=

∫ t

0
h(t−τ)G(ω, τ)WU eiωτdτ , (6.2.2)

based on which a total of 2nω transient analyses are required in the I-CM compared to 2nωr

transient analyses in the CM.

As discussed above, deterministic transient analyses Ij and Iγ can be solved by means of

direct integration methods, such as Newmark or Wilson-θ methods, which usually require

rather small time step to ensure sufficient computational precision and stable response

results, thus increasing the computational effort on the aspect of nt (Lin et al., 1997a). Hence,

HPDIM is proposed and used in place of these direct integration methods in nonstationary

random response analysis (Zhong and Williams, 1994), which can use larger time step to

reduce computation time considerably and the time step size is not dependent on natural

periods of structures (Lin et al., 1997a).

6.2.3 High Precision Direct Integration Method (HPDIM)

Let Ỹ(ω, t)=
(

Msb +Csb/iω−Ksb/ω
2
)

Peiωt, system state equation of equation (4.2.22) and

its general solution can be derived as (Lin et al., 1997a, 1995)

V̇=H V+F(ω, t), V(t)=eHtV(0)+
∫ t

0
eH(t−τ)F(ω, τ)dτ , (6.2.3)

in which eHt is termed as the exponential matrix, Y(ω, t) is the nonstationary input pseudo-

excitation at circular frequency ω, and

V=









X̃s

˙̃Xs









, F= −WỸ, H=






0 I

−M−1
ss Kss −M−1

ss Css




 , W=









0

M−1
ss









. (6.2.4)

The general solution of equation (6.2.3) can be calculated recursively using the time

domain discrete integration method with time step1t, namely, responses V(ti)=Vi at time

ti can be expressed by responses V(ti−1)=Vi−1 at time ti−1 as

Vi =T · Vi−1 +
∫ ti

ti − 1

eH(ti −τ)F(ω, τ)dτ , (6.2.5)
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6.2 theoretical basis: scheme of i-hpdim

where T=eH1t is the exponential matrix that can be expressed as T=eH1t =
[

eH1t/m
]m

(Zhong and Williams, 1994). Let τ0 =1t/m and m=2N; τ0 becomes very small as m is very

large (N=20). T can then be approximated by the Taylor series expansion as

T(τ0)=
[

eHτ0
]m ≈

[

I+Hτ0 +(Hτ0)
2/2!+ · · · +(Hτ0)

L/L!
]m ≡ [I+Ta,0]m, (6.2.6)

where L is the truncation order of the Taylor expansion of the exponential matrix T.

In equation (6.2.6), the approximation is caused by the truncation of the Taylor expansion

of the exponential matrix T(τ0). It is generally negligibly small when L=4 and N=20, the

first term ignored by the truncation is of the order O(1τ0
5)=10−30O(1t5), which is of the

order of the round-off errors of ordinary computers.

It is further noted that

(

I+Ta,i−1

)2 = I+2Ta,i−1 +Ta,i−1Ta,i−1 ≡ I+Ta,i, i=1, 2, · · · N. (6.2.7)

Hence, we have

I+Ta,N ≡
(

I+Ta,N−1

)2 =
(

I+Ta,N−2

)4 = · · · =
(

I+Ta,0

)m =T(τ0). (6.2.8)

Equations (6.2.6) and (6.2.8) suggest that, in order to avoid the loss of significant digits in

matrix T(τ0), it is desirable to compute Ta,1 directly from Ta,0, Ta,2 from Ta,1, and so on, i.e.,

Ta,i =2Ta,i−1 +Ta,i−1Ta,i−1, i=1, 2, · · · N. (6.2.9)

Then T(τ0) is computed from T(τ0)= I+Ta,N.

Assuming that the input nonstationary pseudo-excitations F(ω, t) are piecewise linear

functions within the ith time interval
[

ti−1, ti

]

, F(ω, t) can be discretized as a sequence of

excitations F0, F1, F2, · · · , Fk at time steps t0, t1, t2, · · · , tk that is expressed for a given

frequency step ω as

F(ω, t)= r0 +r1(t−ti−1), t∈
[

ti−1, ti

]

, (6.2.10)

where r0 and r1 are the time-invariant vectors.

By substituting equation (6.2.10) into equation (6.2.5), the recurrence formula can be

obtained (Zhong and Williams, 1994)

Vi =TVi−1 −H−1
[

H−1
(

Fi −Fi−1

)

/1t+Fi

]

+TH−1
[

H−1
(

Fi −Fi−1

)

/1t+Fi−1

]

,

(6.2.11)
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6.2 theoretical basis: scheme of i-hpdim

where H−1 can be obtained as H−1 =H∗/|H|.
As discussed in Section 6.1, HPDIM can use large time step to obtain structural response

recursively by equation (6.2.11) (Zhong and Williams, 1994); however, the accuracy of

approximation of pseudo loadings in equation (6.2.10) cannot be ensured if a large time

step is adopted. This becomes the bottle-neck problem when the HPDIM method is used

in nonstationary random response analysis (Lin et al., 1997a); the I-HPDIM is proposed to

resolve the bottle-neck problem of HPDIM.

6.2.4 Improved High Precision Direct Integration Method
(I-HPDIM)

Equation (6.2.11) can be further written as

Vi =TVi−1 +
[

(I−T)
(

H−2/1t
)

+TH−1
]

Fi−1 +
[

(T−I)
(

H−2/1t
)

−H−1
]

Fi,

(6.2.12)

which can be simplified as

Vi =TVi−1 +S1Fi−1 +S2Fi, i=1, 2, · · · , k, (6.2.13)

in which

S1 = (I−T)
(

H−2/1t
)

+TH−1, S2 = (T−I)
(

H−2/1t
)

−H−1, H−2 =H−1H−1.

(6.2.14)

Hence, for every given circular frequency ω having initial condition V0 =0, one can

obtain the following equations based on equation (6.2.13)









V1 =S1F0 +S2F1, i=1,

Vi =Ti−1S1F0 +Ti−2S3F1 + · · · +T0S3Fi−1 +S2Fi, 26 i6k,

(6.2.15)

where S3 =TS2 +S1.

Alternatively, letting matrices Ai,0, Ai,1, Ai,2, · · · , Ai,i−1, and Ai,i denote the coefficient

matrices of F0, F1, F2, · · · , Fi−1, and Fi, respectively, equation (6.2.15) can be written as

Vi =Ai,0F0 +Ai,1F1 +Ai,2F2 + · · · Ai,i−1Fi−1 +Ai,iFi, 26 i6k, (6.2.16)
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where Ai,0, Ai,1, Ai,2, · · · , Ai,i−1, and Ai,i are completely determined by structural properties

that represent structural response characteristics under excitations F0, F1, F2, · · · , Fi−1, and

Fi. Ai,0, Ai,1, Ai,2, · · · , Ai,i−1, and Ai,i can be obtained recursively by









A1,0 =S1,

A1,1 =S2,

















A2,0 =TA1,0,

A2,1 =S3,

A2,2 =A1,1,

















Ai,0 =TAi−1,0,

Ai,1 =TAi−1,1, 36 i6k, 26 j6 i,

Ai,j =TAi−1,j−1,

(6.2.17)

By substituting equation (6.2.17) into equation (6.2.15), the matrix form of equation

(6.2.15) can be obtained as AF=V at the given circular frequency point ω, given by
























0 × × × × ×

A1,0 A1,1 × × × ×

A2,0 A2,1 A1,1 × × ×

...
...

...
. . . × ×

Ak−1,0 Ak−1,1 Ak−2,1 · · · A1,1 ×
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, (6.2.18)

where it is seen that all block-elements of A can be determined if the block-elements in

the first two block-columns of A are known. As observed, the block-elements in the first

block-columns of A, i.e.,
{

0, A1,0, A2,0, A3,0, · · · , Ak−2,0, Ak−1,0, Ak,0

}

, can be obtained in

a transient analysis by letting F0 be a vector of ones and all other elements of F are zeros.

Similarly, block-elements in the second block-columns of A can be obtained in a transient

analysis by letting F1 be a vector with ones and all other elements of F are zeros. For

response Xi or Xj at a specific degree-of-freedom (DoF), e.g., vertical displacement in the

midspan, the input excitations F in obtaining block-elements in the first two block-columns

of A correspond to the triangular unit impulse excitations at instants t0 and t1, respectively,

which are given in Figure 6.1(b).
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Figure 6.1 Scheme of I-HPDIM for nonstationary stochastic analysis of bridges under tridirec-

tional spatial motions

Once matrix A is obtained, responses V of the structure under nonstationary pseudo-

excitations F can be determined directly from AF=V, without transient analysis, for all

discrete frequency steps in the frequency domain. More specifically, the triangular unit

impulse excitations at instants t0 and t1 should be exerted in each direction at every spatial

pier support to construct the respective matrix A for responses Xi or Xj at a given DoF,

respectively, as shown in Figure 6.1(a). Then, tridirectional structural response V of Xi or

Xj can be obtained by V(ωi) = AF(ωi) at the ith circular frequency ωi. Finally, structural

pseudo-response V(ω) at all the frequency steps can be determined, and their PSD functions

can then be obtained by equation (4.2.23).

As observed, the proposed I-HPDIM scheme has not only overcome the time-consuming

drawbacks of CM and I-CM that require r and 1 transient analyses at every single frequency

step, respectively, but also resolved the bottle-neck problem of HPDIM that requires rather

small time step to simulate recursively varying pseudo loadings properly, as discussed

in Section 6.1. It is very attractive for engineering applications, particularly in stochastic

seismic analysis of complex structures extended in space under tridirectional nonstationary
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spatial seismic motions. Moreover, I-HPDIM can also enhance computational efficiency by

choosing only the output responses of interest, rather than the entire structural responses

required to be calculated in the scheme of I-HPDIM and the absolute-response-oriented

scheme of PEM.Because structural responses at certain locations of structures are of interest

as response output, these outputs of interest, e.g., Xi and Xj in Figure 6.1(a), can be selected

in I-HPDIM, thereby reducing time of computation (Zhang et al., 2013a).

Because the proposed I-HPDIM can achieve significant computational efficiencies and

good accuracy, it is implemented in a general FEA platform (with powerful and versatile

modelling and analysis capabilities) for stochastic seismic analysis of structures. Details on

the improved computational efficiency of I-HPDIM are given in Section 6.2.5, and details

of its FE implementation are presented in Section 6.2.6.

6.2.5 Discussions on CM, I-CM, HPDIM, and I-HPDIM

Because transient analysis is a time-consuming procedure, the total number of transient

analyses has been adopted as a measure of computational efficiency for comparison of

schemes of CM, I-CM, HPDIM, and I-HPDIM. The respective total numbers of tran-

sient analyses of these four methods are nCM =2nωr, nI-CM =2nω, nHPDIM =2nωr, and

nI-HPDIM =2nsndof =2r.

As seen, CM and HPDIM have the same total number of transient analyses, but larger

time step can be adopted in HPDIM, i.e., smaller discrete number of time domain nt can

be adopted to increase computational efficiency in every single transient analysis. However,

sometimes time step of HPDIM is required to be rather small to simulate recursively

varying pseudo loadings properly, and this becomes the bottle-neck problem for application

of HPDIM method, as discussed in Section 6.1. I-HPDIM, proposed in this study, has

overcome the bottle-neck problem of HPDIM and is more computationally efficient than

all the other three methods.

Specifically, one can obtain the following formula for comparison of computational

efficiencies between the four approaches

nI-HPDIM = 1

nω
nHPDIM = r

nω
nI-CM = 1

nω
nCM. (6.2.19)
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Assuming that nω=2000 for a complex structure with dense modal frequencies, r=ndof ×ns =
3×6=18, then equation (6.2.19) becomes

nI-HPDIM = 1

2000
nHPDIM = 1

110
nI-CM = 1

2000
nCM, (6.2.20)

from which it is seen that the proposed I-HPDIM and I-CM have higher computational

efficiencies than conventional CM and HPDIM schemes; in particular the I-HPDIM scheme

can achieve the highest efficiency of computation and has improved the computational

efficiencies of the conventional methods significantly.

6.2.6 Implementation and Verification of the Proposed SVA
Scheme in General FEA Platform

Since the proposed I-HPDIM, in conjunction with the absolute-response-oriented scheme

of PEM, is very effective and accurate in stochastic response analysis of complex struc-

tures with a large number of DoF, it can be integrated (implemented) with general FEA

platforms that have powerful modelling and analysis tools for seismic analysis of complex

structures. Furthermore, the implementation can improve and resolve the drawbacks of

some self-developed programs lacking computational efficiencies and powerful modelling

and analysis techniques.

The proposed I-HPDIM combined with the absolute-response-oriented scheme of PEM

in nonstationary stochastic seismic analysis of structures under tridirectional spatial mo-

tions is implemented in the general FEA platform ANSYS (Kohnke, 2010). Procedure of the

implementation is presented in the flow chart of Figure 6.2.

To validate the implementation, the theoretical stochastic response solution of a single

DoF oscillator under nonuniformly modulated nonstationary excitations is derived for

comparison. The equation of motion is

¨̃y+2ξω0
˙̃y+ω2

0ỹ=F(ω, t)=
√

Sg(ω)β(ω, t)g(t), ỹ(0)= ˙̃y(0)=0, (6.2.21)

in which F(ω, t) is any nonuniformly modulated evolutionary pseudo excitation, g(t) is the

time-domain amplitude modulation function given by g(t)=1.0 when t>0 and g(t)=0

when t<0, β(ω, t) is the frequency modulation function given by β(ω, t)=e−ηωt/ωata , η is

the frequency modulation factor and is adjustable to adapt to engineering circumstances
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Modelling tridirectional nonstationary
spatial ground motions, in Eq. (4.3.1)

3
Ssurface(iω, t)

Decomposition of PSD matrix to 
obtain P,  in Eq. (4.4.1)

FE model and boundary 
conditions in ANSYS

Apply 6ns triangular unit impulse 
excitations on the ns spatial supports in 

tridirections,  respectively,  get 6nsnN pairs
 of paramerters in the !rst two 

columns of matrix A, and save these
parameters, in Figure 6.1

Load the saved 6nsnN pairs of parameters 
to construct 3nsnN  parameter 

matrices A of Eq. (6.2.18)

Obtain 3nsnN  pairs of responses V 
by V=AF, in Eq. (6.2.18)

Superposition of 3nsnN  pairs of responses V 
as nN  pairs of responses V 

Obtain time-dependent power spectral density for
nN pairs of responses V, by Eq. (4.2.23) 

Figure 6.2 Flow chart of implementation of the proposed I-HPDIM scheme combined with the

absolute-response-oriented scheme of PEM in ANSYS

and experimental data, and ωa and ta are arbitrarily assigned parameters used to make

ω and t dimensionless. When ωa and ta are fixed, η can be adjusted to make different

frequency components decay at different rates. Sg(ω) is the Clough-Penzien acceleration

power spectrum model in equation (5.3.1) with the constant spectral density of the white-

noise input S∗ =1.0 m2/s3 and ground motion filter parameters ωg =15.0 rad/s, ξg =0.6,

ωf =1.5 rad/s, and ξf =0.6 (Jia et al., 2013).

After lengthy derivations, the pseudo-response ỹ in equation (6.2.21) is given by

ỹ=
{

e−ξω0t

[

− 1

λ2 +2ξω0λ+ω2
0

cos(ωdt)− λ+ξω0

ωd(λ
2 +2ξω0λ+ω2

0)
sin(ωdt)

]

+

eλt

λ2 +2ξω0λ+ω2
0

}
√

Sg(ω), (6.2.22)
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and the response PSD function of displacement y can be obtained as

S(ω, t)= ỹ∗ỹT =
{

eλt −e−ξω0t

[

cos(ωdt)+ λ+ξω0

ωd

sin(ωdt)

]}2

·
Sg(ω)

(λ2 +2ξω0λ+ω2
0)

2
,

(6.2.23)

where damping ratio ξ =0.05,natural frequencyω0 =
√

k/m=1.0 rad/s (m=1.0 kg, k=1.0

N/m), ωd =ω0

√

1−ξ 2, and λ= −ηω/ωata + iω. The time-dependent response standard

deviation (SD) function σ(t) is derived based on the obtained nonstationary PSD function

of response S(ω, t) as σ(t)=
√

2
∫∞

0 S(ω, t)dω.

Figure 6.3 presents the theoretical solutions and ANSYS solutions (based on the imple-

mentation) for the contour plot of the time-dependent PSD and the response SD functions

for η=0, 5, and 10, where it is observed that ANSYS solutions agree with the theoretical

results very well, implying that the implementation of the proposed I-HPDIM scheme, in

conjunction with the absolute-response-oriented scheme of PEM, in ANSYS is accurate in

obtaining structural seismic responses.

Based on the implementation, the proposed nonstationary stochastic analysis approach

is applied in seismic pounding analysis of a high-pier railway bridge under tridirectional

nonuniformly modulated SVGM in Section 6.3.

6.3 Practical Application: Seismic Pounding Analysis of
Bridges

To demonstrate the ANSYS implementation of the proposed I-HPDIM combined with

the absolute-response-oriented scheme of PEM, seismic pounding analysis of a high-pier

railway bridge under tridirectional nonuniformly modulated nonstationary SVGM is con-

ducted.

6.3.1 Bridge Seismic Pounding

Seismic pounding of bridge is attributed to the large out-of-phase movement between

adjacent segments owning to different dynamic characteristics, spatial variabilities of

ground motions, and soil-structure interaction (SSI). To preclude pounding effect, the most

straightforward approach is to provide sufficient separation distances between adjacent

131



6.3 practical application: seismic pounding analysis of bridges

5 10 15 20 25 30 35 40 45 50
0.8

0.9

1

1.1

1.2

1.3

1.4

1.5
C

ir
cu

la
r 

fr
eq

u
en

cy
 (

ra
d

/s
)

 

 

Theoretical solution

ANSYS solution

5 10 15 20 25 30 35 40 45 50
0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

 

 

Theoretical solution

ANSYS solution

5 10 15 20 25 30 35 40 45 50

1

1.5

2

2.5

3

 

 

Theoretical solution

ANSYS solution

0 10 20 30 40 50
0

0.5

1

1.5

2

2.5

3

Time (s)

S
ta

n
d

ar
d

 d
ev

ia
ti

o
n

 (
m

)

 

 

Theoretical solution

ANSYS solution

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Time (s)

 

 

Theoretical solution

ANSYS solution

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Time (s)

 

 

Theoretical solution

ANSYS solution

(a)   =0η

(b)   =5η

(c)   =10η

Time (s)

Time (s)

C
ir

cu
la

r 
fr

eq
u

en
cy

 (
ra

d
/s

)
C

ir
cu

la
r 

fr
eq

u
en

cy
 (

ra
d

/s
)

S
ta

n
d

ar
d

 d
ev

ia
ti

o
n

 (
m

)
S

ta
n

d
ar

d
 d

ev
ia

ti
o

n
 (

m
)

Figure 6.3 Contour plot of the time-dependent PSD of displacements and their response SD

functions
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structures; however, the seating gap between adjacent bridge segment cannot be arbitrar-

ily large in practice in order to maintain smoothness of traffic. Hence, these required

separation distances (RSD) should be specified for bridges to avoid the pull-off-and-drop

collapse of their decks owning to the large differential movements of the adjacent segments

compared to the seating lengths provided.

Studies on the RSD, i.e., the maximum relative displacement of adjacent bridge segments,

for bridge structures under SVGM have been carried out by many researchers using SVA

techniques (Bi et al., 2011; Hao, 1998). However, in these works, very simple 2-D bridge

models (excluding the rotational DoFs), which cannot model 3-D eccentric pounding be-

tween adjacent segments, i.e., surface-to-surface pounding, are adopted in the SVA. More-

over, only point-to-point pounding in the longitudinal direction is considered, failing to

study transverse pounding of adjacent segments induced by tridirectional ground motions

(particularly the transverse ground motions) due to analysis complexity. Furthermore, only

stationary vibration analysis, rather than the more appropriate and accurate nonstationary

stochastic vibration analysis, is conducted to obtain the RSD, because of analysis complexity

and large computational effort. These shortcomings (Bi et al., 2011; Hao, 1998) can be re-

solved by the proposed scheme of I-HPDIM, combined with the absolute-response-oriented

scheme of PEM, that has been implemented in a general FEA platform.

For brevity, this section focuses on only the local site effects of SVGM on the longitudinal

RSD between adjacent bridge segments to avoid multi-sided pounding. Some other rarely

studied effects on the RSD, e.g., ground motion dimensionality, 3-D surface-to-surface

pounding modelling, the RSD in the transverse direction, SSI, will be studied in the future.

It is noted that tridirectional SVGM are included when considering the local site effect, while

the effect of the frequency ratio of adjacent bridge segments is ignored for brevity.

6.3.2 Bridge Model and Analysis Cases

The large-span high-pier continuous rigid frame railway bridge in Figure 5.9 is adopted for

stochastic seismic pounding analysis. There are three potential locations for multi-sided

pounding, including the connection area of the main girder with the left and right bridge
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6.3 practical application: seismic pounding analysis of bridges

abutments and the connection part between LBS and RBS, with RSD, i.e., maximum relative

longitudinal displacements, △1, △3, and △2, respectively.

The 3-D FE model of the high-pier railway bridge is built using ANSYS (Kohnke, 2010).

The fixed boundary conditions are applied to the bottom of Piers #1 to #5. Based on the

actual structural configurations, the vertical DoF (Z), transverse DoF (Y), and the rotational

DoF with respect to Z (Rotz) and X (Rotx) directions are fixed in both the north and south

abutments of the railway bridge. All DoF of Pier #1, Pier #2, and Pier #4 (the DoF in the

connection point of the piers and main girders) are coupled with the corresponding DoF of

the main girders, while the longitudinal DoF (X) in the connection points of Pier #3, Pier

#5, and the main girders are released.

Effects of uniform local site conditions, varying site conditions, and site irregularities are

studied on the RSD of adjacent bridge segments to avoid seismic pounding. Categories of

site conditions specified in National Earthquake Hazard Reduction Program (NEHRP) are

used and presented in Table 5.3, with the corresponding soil properties (FEMA, 2010).

Table 6.1: Analysis cases in study of effect of local site conditions

Uniform site condition†1 Varying site condition†1 Site irregularity†2

#1: B-B-B-B-B #4: B-C-B-B-B #10: C(40)-C(40)-C(40)-C(60)-C(60)

#2: C-C-C-C-C #5: B-E-B-B-B #11: C(40)-C(40)-C(40)-C(20)-C(20)

#3: E-E-E-E-E #6: C-B-C-C-C #12: C(60)-C(60)-C(60)-C(40)-C(40)

-- #7: C-E-C-C-C #13: C(20)-C(20)-C(20)-C(40)-C(40)

-- #8: E-B-E-E-E #14: C(60)-C(40)-C(50)-C(50)-C(60)

-- #9: E-C-E-E-E --

†1 A-B-C-D-E denotes that site conditions (with depth of soil layer h = 40 m) beneath the 1st to the 5th pier

supports are categories of #A, #B, #C, #D, and #E, respectively. †2 C(h1) denotes site category #C with depth of

soil layer h1.

A total of 3 (#1 to #3) and 6 (#4 to #9) cases are considered for effects of the uniform

site conditions and varying site conditions, respectively, where depths of the soil profiles are

chosen to be h=40 m. To study the effects of site irregularities, a total of 5 cases (#10 to

#14) are considered with varying depths of the soil profiles. Details of these cases are given
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in Table 6.1. The site response analysis approach in Section 2.4.1 is performed for the site

cases in Table 6.1, and the site response results are incorporated in the proposed stochastic

seismic analysis scheme by equation (4.3.4).

In the stochastic analysis, the lagged coherency model of SVGM proposed by Menke

(1990) is used, which is |γij(iω)|=e−κ(ω/2π)dij , where κ=0.7 km−1Hz−1. The incident

angle of bedrock motions propagating to the layered sites is assumed to be 60◦. Based on

bedrock property and the incident angle of bedrock motion, the apparent wave velocity of

base rock is 3100 m/s.

The Jennings’s time-domain amplitude modulation function in equation (5.3.2) is used,

where t1 =7.1 s, t2 =19.5 s, and c=0.16 (Jennings et al., 1968). The frequency modulation

function β(ω, t)=e−ηωt/ωata is used with η=3, ωa =15.6 rad/s, and ta = (t1 +t2)/2. The

Clough-Penzien power spectrum in equation (5.3.1) is used, with the constant spectral

density of the white-noise input S∗ =0.00177 m2/s3 and ground motion filter parameters

ωg =15.0 rad/s, ξg =0.6,ωf =1.5 rad/s, and ξf =0.6 (Jia et al., 2013).

The circular frequency ω is bounded within interval [0, 25] rad/s with circular frequency

resolution 1ω=0.0244 rad/s, and the time t is bounded within interval [0, 25] s with time

step1t=0.05 s. The damping ratios of all the modes of interest are assumed to be 0.05.

6.3.3 Effect of Uniform and Non-uniform Local Site Conditions
on RSD

For the uniform local site effect on RSD11,12, and13, three cases, i.e., #1, #2, and #3, are

considered. The response SD functions of the 3-D nonstationary response PSD functions of

11,12, and13 are presented in Figure 6.4, from which it is observed that the softer uniform

site conditions can cause larger RSD 11, 12, and 13. Specifically, the ratios between the

peaks of response SD functions at E (#3), C (#2), and B (#1) site conditions are 4.55:4.09:3.70

for11, 8.62:6.66:6.12 for12, and 7.52:6.60:5.91 for13, respectively.

The response SD functions of 11, 12, and 13 under varying spatial site conditions

in Group #A (#1, #4, #5), Group #B (#2, #6, #7, #10, #11, #12, #13, #14), and Group #C

(#3, #8, #9) are presented in Figure 6.5(a), (b), and (c), respectively. It is seen in Figure
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Figure 6.4 Effect of uniform site conditions on the RSD
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Figure 6.5 Effect of varying site conditions on the RSD
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6.5 that effects of the varying site conditions are very significant in the time-dependent

nonstationary structural seismic pounding responses.

For Group #A in Figure 6.5(a), case #5 (B-E-B-B-B) can result in the largest required

pounding distance among all the cases in Group #A, which indicates that the larger site

difference between Pier #2 and the other piers the larger structural pounding responses

obtained, confirming the fact that the highest Pier #2 plays a dominant role on the seismic

response of the railway bridge. In addition, it is noteworthy that site variations under Pier

#2 play a negligible effect on13, i.e., all seismic pounding responses of 13 in case #1 (B-B-

B-B-B), case #4 (B-C-B-B-B), and case #5 (B-E-B-B-B) are overlapped in the entire duration

of ground motion, because the site conditions of piers of the right bridge system remain the

same among cases #1, #4, and #5. Similar observations can be obtained for cases #2, #6, and

#7 in Group #B and cases #3, #8, and #9 in Group #C in Figure 6.5(b) and 6.5(c), respectively.

The ratios between peaks of response SDs between cases #5, #4, and #1 in Group #A are

5.30:3.86:3.7 for 11 and 6.83:6.01:6.12 for 12, 5.48:4.09:3.37 for 11 and 7.33:6.66:6.34 for

12 between cases #7, #2 and #6 in Group #B, 5.38:4.74:4.55 for 11 and 8.58:8.24:8.62 for

12 between cases #9, #8 and #3 in Group #C. It is indicated that the varying site conditions

can significantly affect structural pounding response in comparison with the uniform site

conditions. Additionally, it is concluded that structural pounding response may be largely

underestimated if effect of varying site conditions are not considered, especially the varia-

tion of local site conditions beneath the highest pier. Therefore, it is of prime importance

to account for the varying site effect in seismic pounding evaluations of high-pier railway

bridge under tridirectional nonstationary spatial ground motions. Two important and ef-

fective measures can be taken to prevent or mitigate the seismic pounding failure of the

high-pier railway bridge induced by the site:

❧ to avoid the soft site beneath the highest pier,

❧ to avoid large difference of site conditions between the highest pier and the other piers.

The pounding response results of 11, 12, and 13 in cases #2, #10 to #14 are presented

in Figure 6.5(b) for effect of site irregularities. The ratios between peaks of response SDs

for cases #2, #10 to #14 are 4.09:4.09:4.1:4.51:4.19:4.35, 6.66:8.62:6.93:7.54:7.45:6.69, and
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6.4 summary and conclusions

6.60:7.33:6.01:6.59:6.62:6.71 for11,12, and13, respectively. It is seen that site irregularities

can sometimes significantly affect the seismic pounding responses between adjacent bridge

segments. Hence, detailed inspections of geological conditions and appropriate design of

site conditions beneath the high-piers are recommended to effectively reduce site induced

seismic pounding damages to the high-pier railway bridges.

6.4 Summary and Conclusions

From the theoretical background and numerical examples presented in this chapter, the

following conclusion can be drawn.

1. The I-HPDIM, in conjunction with absolute-response-oriented scheme of PEM, has

been derived for nonstationary SVA of structures extended in space under tridirec-

tional nonuniformly modulated SVGM. The proposed I-HPDIM has resolved the

bottle-neck problem of conventional HPDIM that it can significantly improve compu-

tational efficiency of HPDIM in nonstationary SVA.

2. This highly efficient and accurate SVA approach is more attractive in engineering

practices for nonstationary SVA of structures with large geometrical dimensions.

3. The proposed nonstationary SVA scheme has been implemented and verified in a gen-

eral FEA platform for SVA of some large and complex structures under tridirectional

nonstationary SVGM.

4. Effects of local site conditions on RSD of adjacent segments of a high-pier railway

bridge have been studied to avoid bridge seismic pounding. It is concluded that

❧ the varying site conditions can significantly affect and underestimate structural

pounding response in comparison with the uniform site conditions, especially

the variation of local site conditions beneath the highest pier,

❧ the site irregularities can also significantly affect the seismic pounding responses

between adjacent bridge segments.
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7C H A P T E R

Random Field Representation
of Spatial Soil Profiles:
A Meshfree-Galerkin Approach

Besides wave-passage, incoherence, and site-response effects, spatial variations of ground

motions can be further modified by soil-structure interaction (SSI) effect. In SSI analysis,

the inherent spatial variability and uncertainty of soil should be accounted for, since soil

exhibits great spatial variation and uncertainty that may exert a dominant influence in SSI

(Lumb, 1966). The study of representing spatial soil profiles using random fields (RF)

approach is conducted in this chapter.

7.1 Introduction

Unlike some artificial materials, such as concrete or steel, soil exhibits great spatial variation

and uncertainty due to the variations in deposition conditions and stress histories (Phoon

and Kulhawy, 1999b). Because of the significant effect of variability and uncertainty of soil

properties, it is necessary to account for the spatially variable and uncertain soil profiles

in practical analysis, e.g., SSI analysis of bridges under spatially varying ground motions

(SVGM). The representation of spatial variability and uncertainty characterizing the soil-

structure system parameters (input) is a fundamental issue in SSI analysis.
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7.1 introduction

A convenient way for describing these uncertain soil quantities in space is using RF, where

the probability distributions and correlation structures of these soil properties are required

(Vanmarcke, 1977). However, due to the lack of relevant experimental data, assumptions

have to be made regarding these probabilistic characteristics. For example, RF are usually

assumed to have finite second order statistics, and they are usually categorized into Gaussian

and non-Gaussian fields.

There are several methods in simulating Gaussian and non-Gaussian, homogeneous

and nonhomogeneous RF. The spectral representation method (SRM) is widely used in

conjunction with the transformed field to simulate non-Gaussian RF. However, it usually

requires an iterative procedure between the underlying Gaussian field and the target non-

Gaussian field, where the existence of the underlying Gaussian field cannot be ensured.

Furthermore, the spectral representation method fails to represent the nonhomogeneity

of RF satisfactorily (Li et al., 2007). However, modelling the nonhomogeneity of soil

properties is necessary because most of soil properties exhibit strong nonhomogeneity in

reality (Lumb, 1966). The Karhunen-Loève (K-L) expansion offers a unified framework for

the simulation of homogeneous and nonhomogeneous RF, which can be seen as a special

case of orthogonal series expansions and can effectively represent the covariance kernel of a

homogeneous or nonhomogeneous random field (Ghanem and Spanos, 1991; Phoon et al.,

2002b).

However, the implementation of K-L expansion is often hindered by the difficulty en-

countered in solving the Fredholm integral equation. Closed-form solutions are only avail-

able when the covariance kernel has simple functional forms, such as exponential or linear

functions, and numerical treatments are required in realistic problems involving complex

covariance functions (Ghanem and Spanos, 1991). The numerical Galerkin method is often

used to solve the integral equations, where the trigonometric, polynomial, and wavelet basis

functions are usually adopted (Phoon et al., 2002b).

However, these basis-function-based methods may not be effective or applicable if the

domain of a multi-dimensional random field is irregular (i.e., an arbitrary shape of domain

associated with a general covariance function) (Rahman and Xu, 2005). Irregular domains,

in which the system properties are considered to be spatially variable, are usually required in
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7.1 introduction

engineering problems, such as dynamic SSI analysis of nuclear power plant structures. For

example, in accounting for the transmitting boundary for wave propagation in unbounded

domains in SSI analysis, these domains usually have arbitrary geometry, over which the

simulation of spatially variable soil properties is required (Bazyar and Song, 2008). Another

example would be the SSI analysis by considering different layers of soil profiles, where each

soil layer may have variable and arbitrary domain due to different historical accumulations

(Simos and Costantinoa, 2004). Moreover, it is important to note that the accuracy in

computing the eigen-pairs of the covariance kernel strongly influences the efficiency of K-L

series. Hence, more general methods are required to solve the eigenvalue problem.

Alternatively, the meshfree shape functions can be employed as a set of complete basis

functions within the Galerkin scheme for solving the eigenvalue problems of Fredholm

integral equation of K-L expansion. The meshfree method, which is applicable to domains

with arbitrary shape, is applied to avoid meshing problems in the finite element analysis

(FEA) of fracture, crack, or dislocation problems (Belytschko et al., 1994; Rahman and Xu,

2005; Arun et al., 2010). The meshfree method is more general than the methods using

other basis functions and can solve problems involving a multi-dimensional random field

with an arbitrary covariance function and an arbitrary domain (Rahman and Xu, 2005).

It is preferred in modelling spatial soil properties with arbitrary covariance functions and

arbitrary domains.

In this chapter, a Galerkin scheme using meshfree shape functions for the calculation of

eigen-pairs of integral equation is introduced and applied in modelling and synthesizing

spatially variable soil properties. The proposed scheme is applied to the modelling and

synthesis of 1-D spatial soil properties with various covariance models. Studies on other

related topics, such as the probability distribution of a random field, and the modelling and

synthesis of spatial soil property field with higher dimensions and arbitrary domains, are

reccomended in Section 8.4.4.

The K-L expansion approach for representation of the random field, with an optimization

scheme in treating the compatibility of target covariance model, is presented in Section 7.2.

The meshfree-Galerkin scheme is introduced for eigenvalue problems of integral equation

in Section 7.3. The meshfree-Galerkin scheme for eigen-solutions and representations
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7.2 random field representation by karhunen-loève expansion

of RF with diverse covariance models is assessed in Section 7.4. The proposed scheme

in modelling and synthesizing spatially variable soil properties is applied in Section 7.5.

Conclusions are drawn in Section 7.6.

7.2 Random Field Representation by Karhunen-Loève
Expansion

For the mathematical preliminaries, define a complete probability space (�,F ,P) with

sample space�, which corresponds to the outcomes of some experiments,F the σ -algebra

of subsets in� (events), and P : F→[0, 1] the probability measure. Let L2(D) be the space

of those measurable functions on D for which the integral of the square of the function is

finite.

A random field β(x,ω), indexed by a spatial coordinate x∈D∈R
n (D is bounded), is a

measurable function β :D×�→R. For a fixedω∈�,β(x,ω) is a realization of the random

field, i.e., a function D→R; for a fixed x∈D, β(x,ω) is a random variable with respect to

the probability space (�,F ,P).

7.2.1 Finite Dimensional Noise Assumption

Any second-order random field β(x,ω) can be represented as a sequence of random vari-

ables at each spatial location {β(x1,ω),β(x2,ω), ...,β(xn,ω)} as

β(x,ω) ≈
{

β(x1,ω),β(x2,ω), ...,β(xn,ω)
}

. (7.2.1)

An infinite number of random variables are required to completely characterize a random

field, which poses a numerical challenge in modelling uncertainty in physical quantities that

have spatial variations, hence necessitating the need for a reduced-order representation (i.e.

reducing the infinite-dimensional probability space to finite-dimension). Such a procedure,

commonly known as a finite dimensional noise assumption, can be achieved through any

truncated spectral expansion of the random field in the probability space. One such choice

is K-L expansion (Ma, 2010).
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7.2 random field representation by karhunen-loève expansion

7.2.2 Karhunen-Loève Expansion

The K-L expansion of a random field β(x,ω) is based on the spectral expansion of its

covariance function Kββ(x, y), where x and y denote spatial coordinates, and ω denotes

the random nature of the corresponding quantity. The K-L theorem is a projection of

the random field β(x,ω) onto a particular Hilbert basis. It is analogous to a Fourier

series representation of a function, but the distinction is that the ‘‘Fourier’’ coefficients are

uncorrelated random variables. The K-L theorem can be stated as follows (Ghanem and

Spanos, 1991)

Karhunen-Loève Theorem: Consider a random field β(x,ω) (x∈D) with the continuous

covariance function Kββ(x, y) on D2, there exist a summable sequence of non-negative

numbers λi, orthonormal basis φi(x)(i∈N0) in L2(D), and a sequence of zero-mean

variance-one random variables ξi(ω) such that

β(x,ω) = β̄(x)+
∞
∑

i=1

√

λi ξi(ω)φi(x), (7.2.2)

and the convergence is in the mean square value and is uniform in x. Furthermore, {φi(x)}
are the eigenfunctions and {λi} are the eigenvalues of the covariance kernel, and can be

evaluated as the solution of the following Fredholm integral equation of the second kind as
∫

D

Kββ(x, y)φi(y)dy = λiφi(x), (7.2.3)

where β̄(x) denotes the mean of the random field, and D denotes the spatial domain over

which the random field β(x,ω) is defined.

The covariance function Kββ(x, y), being symmetric and positive definite by definition,

has all its eigenfunctions mutually orthogonal and they form a complete set spanning the

function space to which β(x,ω) belongs (Ghanem and Spanos, 1991). It is shown that the

deterministic set
{√

λiφi(x)
}

, which are orthogonal, are used to represent the field β(x,ω),

and the random coefficients {ξi(ω)} used in the expansion are also orthogonal. This is the

reason why K-L expansion is called ‘‘bi-orthogonal’’ expansion.

The most important aspect of K-L expansion is that the spatial random fluctuations have

been decomposed into a set of deterministic functions in the spatial variables multiplying

random coefficients that are independent of these variables. If the random field β(x,ω) is
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7.2 random field representation by karhunen-loève expansion

Gaussian, then the random coefficients {ξi(ω)} form an orthogonal Gaussian vector. The

K-L expansion is mean square convergent irrespective of the probabilistic structure of the

field or process being expanded, provided it has a finite variance (Ghanem and Spanos,

1991). K-L expansion, given by equation (7.2.2), is quite useful in stochastic mechanics,

because it provides a parametric representation of an arbitrary random field with bounded

covariance functions. This representation does not require any spatial discretization of the

domain.

In practice, the truncated K-L expansion is often used by truncating the order larger than

M as

β(x,ω) = β̄(x)+
M
∑

i=1

√

λi ξi(ω)φi(x). (7.2.4)

The second order statistics of the random field can be reproduced by the target covariance

model as

K̂ββ(x, y) = E
[

β(x,ω)− β̄(x)
]

E
[

β(y,ω)− β̄(y)
]

=
M
∑

i=1

M
∑

j=1

√

λiλjφi(x)φi(y)E
[

ξi(ω)ξj(ω)
]

=
M
∑

i=1

λiφi(x)φi(y). (7.2.5)

7.2.3 An Optimization Scheme for Compatibility of the Target
and Analytical Covariance Models

In general, solving the associated eigenvalue problem in equation (7.2.3) is not an easy task.

Closed-form solutions are only available when the covariance kernel has simple functional

forms, such as exponential and linear functions. When the covariance function is more

complex, numerical methods are needed to solve the eigenvalue problem.

Moreover, the compatibility of the target covariance model K̂ββ(x, y), given by equation

(7.2.2), with the analytical, Kββ(x, y), is often required in the simulation of random field

with an analytical covariance model. The compatibility is also employed as a way to validate

the accuracy of calculated eigen-pairs in integral equation (7.2.3). Thus, an optimization

scheme is employed in the following to accommodate the compatibility between the target
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7.3 meshfree-galerkin scheme in eigenvalue problems of integral equation

and the analytical covariance models, where parameter αi is introduced to each calculated

eigenvector φi(x), given by (Zhang et al., 2013d)

Minimize
∥
∥Kββ(x, y)− K̂ββ(x, y)

∥
∥=

∥
∥Kββ(x, y)−

M
∑

i=1

λi · αiφi(x) · αiφi(y)
∥
∥,

subject to αi >0, i=1, 2, . . . , M, (7.2.6)

in which ‖·‖ denotes the L2 norm.

From equation (7.2.6), parameter αi can be interpreted as a scaling factor of the eigenvec-

tor, whose amplitude is modulated without loss of the orthogonality, and this modification

can be viewed as a postprocess scheme of the calculated eigenvectors. In spite of its simplic-

ity, this scheme is very effective in modifying the target covariance model to be compatible

with the analytical covariance. Incompatibility may result if the amplitude scaling param-

eter is not taken into consideration, such as the eigenvectors obtained in Arun et al. (2010).

These observations will be shown through examples in Section 7.4.

To obtain the eigen-pairs of the analytical covariance model, a meshfree-Galerkin scheme

in the solution of the associated eigenvalue problem (7.2.3) is illustrated in Section 7.3.

7.3 Meshfree-Galerkin Scheme in Eigenvalue Problems
of Integral Equation

As discussed in Section 7.1, the meshfree-Galerkin scheme, employing meshfree shape

functions as a complete set of basis functions, is more general and effective in solving

the integral equation (Rahman and Xu, 2005). The meshfree shape functions, meshfree-

Galerkin scheme, the assessment of meshfree-Galerkin scheme in solving the eigen-pairs

of integral equation, and the representation of various covariance models are introduced in

the following.

7.3.1 Meshfree Shape Function

Meshfree approximations for a scalar function u(x, t) in terms of the Lagrangian coordinates

can be expressed as

u(x, t) =
∑

I ∈S

8I(x)uI(t)=8Tu, (7.3.1)
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7.3 meshfree-galerkin scheme in eigenvalue problems of integral equation

Node

Node I
�I

�

Figure 7.1 Discretization of meshfree method (nodes, domains of influence)

where 8I : �→R are the shape functions, uI are the nodal values at particles I located at

position xI, and S is the set of nodes I for which 8I(x) 6= 0. Equation (7.3.1) is identical

to a FEA approximation; however, it differs from FEA in that the shape function 8I(x) in

equation (7.3.1) are only approximations and not interpolants, since uI 6= u(xI).

The shape functions 8I are obtained from the kernel (weight) functions, which are

often called window or weighting functions, and they are denoted as ωI : �→R. The kernel

functions have compact support and the support size is defined by the dilatation parameters,

which play the role of element size in the finite element method as shown in Figure 7.1. The

weight function should be continuous and positive in its support, and the continuity of the

shape function is determined solely by the continuity of the kernel function (Nguyen et al.,

2008).

For node I, the quartic spline kernel function used in this study has the following form

ϒI(r)=







1 − 6r2 + 8r3 − 3r4, r61,

0, r>1,

with r = ‖xI −x‖
dI

, for all node I, (7.3.2)
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7.3 meshfree-galerkin scheme in eigenvalue problems of integral equation

where dI is the support size of node I. In the two-dimensional cases, circular and rectangular

supports are usually used. It is noted from equation (7.3.2) that the weight function is

expressed as a functional form with the scale parameters dI and the dilation parameter

‖xI −x‖, causing the meshfree shape functions to be a set of function with different scale

and dilation parameters. This observation is like the wavelet basis functions and it will be

illustrated in the following paragraph.

The moving least squares (MLS) approximation method was first introduced by Shepard

for constructing smooth approximations to fit a specified cloud of points (Shepard, 1968).

It was then applied within the element-free Galerkin method by Belytschko et al. (1994).

The approximation uh : �→R of function u : �→R can be expressed as a polynomial

of degree m with nonconstant coefficients. The local approximation around a point x̄∈�,

evaluated at a point x∈�, is given by

uh
L(x, x̄) = pTa(x̄), (7.3.3)

where

pT(x) =
{

1, x, x2, ..., xm
}

, (7.3.4)

and a(x̄) contains nonconstant coefficients that depend on x (hence the name moving)

aT(x) =
{

a0(x), a1(x), a2(x), ..., am(x)
}

. (7.3.5)

The unknown parameters aj(x) are determined at any points x by minimizing the func-

tional J (x) as

J (x) =
n
∑

I=1

ω(x − xI)
[

uh
L(xI, x)− uI

]2
=

n
∑

I=1

ω(x − xI)
[

pT(xI)a(x)− uI

]2
, (7.3.6)

where n is the number of nodes in the neighborhood of x with the weight function ϒI(x −
xI) 6= 0.

An extremum of J (x) with respect to the coefficients a(x) can be obtained as

n
∑

I=1

ω(x − xI)p1(xI)
[

pT(xI)a(x)− uI

]

= 0,

n
∑

I=1

ω(x − xI)p2(xI)
[

pT(xI)a(x)− uI

]

= 0,
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...
n
∑

I=1

ω(x − xI)pm(xI)
[

pT(xI)a(x)− uI

]

= 0. (7.3.7)

Equations (7.3.7) can be written, by rearrangement, as

n
∑

I=1

ω(x − xI)p(xI)p
T(xI)a(x)=

n
∑

I=1

ω(x − xI)p(xI)uI, (7.3.8)

or

A(x)a(x) = B(x)u, (7.3.9)

where

Am×m(x) =
n
∑

I=1

ω(x − xI)p(xI)p
T(xI), (7.3.10)

Bm×n(x) = [ω(x − xI)p(x1),ω(x − x2)p(x2), ...,ω(x − xn)p(xn)]. (7.3.11)

The solved a(x) in equation (7.3.9) can be substituted into equation (7.3.3) to yield

uh
L(x, x̄) = pTA−1(x)B(x)u. (7.3.12)

Based on the approximation given in equation (7.3.1), the shape function from MLS

approximation can be given by

8T(x) = pTA−1(x)B(x), (7.3.13)

or the shape function8I(x) associated with node I at a point x

8I(x) = pTA−1(x)ω(x − xI)p(xI). (7.3.14)

The computation of the MLS shape functions involves the inverse of the moment matrix

A, which becomes burdensome in two and three dimensions. In order to avoid the direct

computation of the inverse of the moment matrix, the MLS shape function is usually written

in the form

8I(x) = cT(x)ωI(x)p(xI), where A(x)c(x) = p(x), (7.3.15)

with

A(x) =
n
∑

I=1

ωI(x)p(xI)p
T(xI). (7.3.16)
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Figure 7.2 Dilation and scale properties of 1-D MLS shape functions

To compute c(x) efficiently in equation (7.3.15), the LU factorization of A is performed

together with backward substitution as

LUc(x) = p(x), Uc(x) = L−1p(x), c(x) = U−1L−1p(x). (7.3.17)

It is noted that the MLS shape functions obtained from equation (7.3.15) satisfy the

rule of partition of unity, which is a paradigm where a domain is divided into overlapping

subdomains �I (in Figure 7.1), each of which is associated with a function 8I(x) that is

nonzero only in�I, and (Nguyen et al., 2008)

N
∑

I=1

8I(x) = 1, in �. (7.3.18)

This characteristics of MLS shape functions can be observed from the following examples.

Consider a 1-D domain 06x610, divided into 9 equal sub-domains, with the quartic

spline weight function and size of sub-domains of influence 2.5, Figure 7.2(a) shows the

dilation property of the MLS shape functions, a set of ‘‘moving’’ functions over the domain,

and the property of partition of unit for these shape functions is presented in Figure 7.2(b).

The scaling property of MLS shape functions at node 5 is shown in Figure 7.2(c), from which

it is seen that the shape functions can exhibit different scale for different sizes of domain

of influence. In addition, Figure 7.3(a) presents a typical 2-D MLS shape function (on
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Figure 7.3 Dilation and scale properties of 2-D MLS shape functions

node 13 with dI =7.5), over domain [x, y]=[0, 20] × [0, 20], and the property of partition

of unit for shape functions over this domain is shown in Figure 7.3(b). The scaling (with

different domain of influence) and dilation (at different nodes) properties of the 2-D shape

functions are given in Figure 7.3(c) and Figure 7.3(d). These observations from both 1-D
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7.3 meshfree-galerkin scheme in eigenvalue problems of integral equation

and 2-D examples show that the MLS shape functions, with partition of unity property and

un-orthogonality, are similar to a set of wavelet basis functions, but are more advantageous

than the wavelet basis functions that they can be applied in the following meshfree-Galerkin

scheme in solving eigenvalue problems of integral equation.

7.3.2 Meshfree-Galerkin Scheme

The MLS shape functions 8k(x), obtained from equation (7.3.15), can be used as a set of

basis functions in the Hilbert space H of the Galerkin scheme, and each eigenfunction of

kernel Kββ(x, y)may be represented approximately as

φi(x) =
N
∑

k=1

dik8k(x), i=1, 2, . . . , N, (7.3.19)

with an error εi
N resulting from truncating the summation after the Nth term given by

εi
N = φi(x)−

N
∑

k=1

dik8k(x). (7.3.20)

Substituting equation (7.3.19) into equation (7.2.3) yields the following expression of error

εi
N =

N
∑

k=1

dik

[∫

D

Kββ(x, y)8k(y)dy − λi8k(x)

]

. (7.3.21)

By setting the error in equation (7.3.21) to be orthogonal to each basis function8j(x)

(

εi
N, 8j(x)

)

= 0, j = 1, 2, ..., N, (7.3.22)

the following equation can be obtained

N
∑

k=1

dik

[∫

D

∫

D

Kββ(x, y)8k(y)8j(x)dxdy

]

− λi

N
∑

k=1

dik

[∫

D

8k(x)8j(x)dx

]

= 0,

(7.3.23)

or

AD = 3BD, (7.3.24)

in which the components in all the N×N matrices are

Akj =
∫

D

∫

D

Kββ(x, y)8k(y)8j(x)dxdy, Dik = dik, 3ij = δijλj, Bkj =
∫

D

8k(x)8j(x)dx,

(7.3.25)
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in which the dimensions of integral of Akj for 1-D, 2-D, and 3-D fields are 2, 4, and 6, respec-

tively, and these multiple integration in equation (7.3.25) can be integrated numerically by

Gaussian quadrature method.

The generalized algebraic eigenvalue problem, in equation (7.3.24), can be solved to

obtain the eigenvalue λi and coefficient dik, then the corresponding eigenfunction can

be obtained from equation (7.3.19). The Galerkin scheme described above is known to

produce lower bound solutions for the eigenvalues and is more accurate for eigenvalues

than for eigenvectors (Ghanem and Spanos, 1991). The validity and accuracy of this

meshfree-Galerkin scheme is assessed in Section 7.4.

7.4 Assessment of the Meshfree-Galerkin Scheme

To assess the validity and merits of the meshfree-Galerkin method introduced in Section

7.3, assessment of the resulting eigen-solutions of integral equation and the representation

of various RF is conducted in the following.

7.4.1 Assessment of Solutions for Eigenvalue Problems of
Integral Equation

Three commonly used covariance functions for both homogeneous and nonhomogeneous

RF are employed to assess the validity and accuracy of meshfree-Galerkin scheme in ob-

taining the eigen-solutions of integral equation. Numerical solutions of these covariance

models, with Galerkin scheme, using the Legendre polynomial and trigonometric basis

functions are also presented for comparisons. Information regarding the Legendre polyno-

mial and trigonometric basis functions is given in Appendix A.4.

Example 1. Homogeneous field with rational spectra. An example in this class is the

first-order Markov random field that has the exponential covariance function

Kββ(x, y)=σ 2 exp
(

− |x−y|/l
)

, x, y∈[0, a], (7.4.1)

where σ is the standard deviation of field β(x), and l is the correlation parameter (Phoon

et al., 2002a). In this example,σ =1, a=2, l=1, 0.5, 0.2.
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Example 2. Stochastic field with squared exponential covariance. Consider the random

field with squared exponential covariance function

Kββ(x, y)=σ 2 exp
(

− (x−y)2/l2
)

, x, y∈[0, a], (7.4.2)

where σ is the standard deviation of field β(x), and l is the correlation parameter. In

this example, σ =1, a=2, l=1, 0.5, 0.2. The squared exponential covariance function is

differentiable everywhere, while the exponential covariance function in Example 1 is non-

differentiable at the origin and this feature poses considerable difficulties for K-L expansion

(Phoon et al., 2002a).

Example 3. Special class of nonhomogeneous field. Consider the Wiener-Levy field with

covariance function

Kββ(x, y)=σ 2min(x, y), x, y∈[0, a]. (7.4.3)

In this example, σ =a=1. This example is provided to demonstrate that K-L expansion

can provide an efficient and unified simulation tool for both homogeneous and nonhomo-

geneous fields if the proposed meshfree-Galerkin scheme is applied.

Figure 7.4 presents the eigen-results from the meshfree-Galerkin method and Galerkin

schemes using the Legendre polynomial and trigonometric basis functions (Np =10). It is

seen that the meshfree-Galerkin scheme achieves good accuracy in obtaining the eigenval-

ues and eigenvectors (normalized with unit length) for both the homogeneous (exponential

and squared exponential) and nonhomogeneous (Wiener–Levy) fields. Good agreement

is also seen in the eigen-results for the exponential and squared exponential covariance

models with different correlation lengths, i.e., l/a=0.5, 0.25, 0.1.

Moreover, it is observed that Galerkin scheme using meshfree shape functions can achieve

more accurate and robust eigen-results than those based on the Legendre polynomial

and trigonometric basis functions, as demonstrated in the resulting eigenvectors in Fig-

ure 7.4(b). All three methods can obtain eigenvalues accurately; the Galerkin scheme is

more accurate in obtaining the eigenvalues than the eigenvectors (Ghanem and Spanos,

1991). Specifically, the meshfree-Galerkin method results in accurate and robust eigenvec-

tors for the exponential, squared exponential, and Wiener–Levy covariance functions, while

Galerkin scheme using the Legendre polynomial and trigonometric basis functions fail to
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provide satisfactory results for the 6th eigenvector of the exponential and squared exponen-

tial covariance functions, and the covariance function of nonhomogeneous Wiener–Levy

field, respectively.

An additional fact, shown in Figure 7.4(a), that should be noted is that the rate at which the

magnitude of the eigenvalue decreases strongly depends on the correlation length parameter

l (for the exponential and squared exponential covariance models). The smaller the value

of l, the more contribution is expected from the terms associated with smaller eigenvalues

(Ghanem and Spanos, 1991).

As demonstrated in Section 7.3.1, the meshfree shape functions are a set of basis functions,

having scaling and dilation properties, and it plays an effective role in obtaining the eigen-

results for covariance functions of various RF. It is therefore necessary to study the effects

of the scaling property (number of discrete nodes over the domain) and dilation property

(dI/a) on the obtained eigen-results. Figure 7.5(a) shows the calculated eigenvalues and

eigenvectors for the exponential and Wiener–Levy covariance models with different number

of discrete nodes over the domain (Ns =5, 20, 50, 100), where it is seen that the resulting

eigen-pairs converge to the targets as the number of discrete node points increases, and the

case of Ns =20 can be reasonably selected due to its good accuracy of results and efficiency

in computation time. As shown in Figure 7.5(b), the obtained eigenvalues of the squared

exponential covariance model remain unchanged with the variation of scaling parameter

of meshfree shape functions (dI/a=0.0579, 0.1053, 0.1579, 0.2632), which indicates that

the scaling parameter of meshfree shape functions has minor influence on the obtained

eigen-results. Similar results are also obtained for eigenvectors of the other two covariance

functions, but are not reported here for the sake of brevity.

However, it should be noted that these conclusions are limited to most of commonly used

covariance models that have regular eigenvectors, i.e., those selected in this study, but the

resulting eigen-pairs may vary with dI/a, and meshfree shape functions with smaller dI/a

may be required to capture local irregular variation of eigenvectors of certain covariance

models that are not usually used.

154



7.4 assessment of the meshfree-galerkin scheme

2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Number

E
ig

en
va

lu
es

 

 

Wiener-Levy,  a=1

Wiener-Levy,  a=1

Legendre

Trigonometric

MLS

2 4 6 8 10
0

0.5

1

1.5

Number

E
ig

en
va

lu
es

 

 

2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

Number

E
ig

en
va

lu
es

 

 

Exponential,  a=2 Exponential,  a=2,   l =0.5

Square exponential,  a=2,   l =0.5

Squared exponential,  a=2

Legendre

Trigonometric

MLS

Legendre

Trigonometric

MLS

Legendre

Trigonometric

MLS

0 0.5 1 1.5 2
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

Domain

N
o

rm
al

iz
ed

 E
ig

en
ve

ct
o

rs

 

 

(1) (6)  Legendre

(1) (6)  Trigonometric

(1) (6)  MLS 

(1) (6)  Legendre

(1) (6)  Trigonometric

(1) (6)  MLS 

(1) (6)  Legendre

(1) (6)  Trigonometric

(1) (6)  MLS 

0 0.5 1 1.5 2
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

Domain

N
o

rm
al

iz
ed

 E
ig

en
ve

ct
o

rs

 

 

0 0.2 0.4 0.6 0.8 1
−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

Domain

N
o

rm
al

iz
ed

 E
ig

en
ve

ct
o

rs

 

 

(a) Eigenvalues (b) Eigenvectors

l/a=1.0

l/a=0.5

l/a=0.25

Legendre

Trigonometric

MLS

Legendre

Trigonometric

MLS

Legendre

Trigonometric

MLS

l/a=1.0

l/a=0.5

l/a=0.25

Figure 7.4 Eigenvalues and eigenvectors

155



7.4 assessment of the meshfree-galerkin scheme

2 4 6 8 10

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

Number

 

 

Exponential,  a=2,  l =0.5
N

o
rm

al
iz

ed
 E

ig
en

va
lu

es

2 4 6 8 10

0.6

0.7

0.8

0.9

1

Number

 

 

Weiner-Levy, a=1

Weiner-Levy, a=1

N
o

rm
al

iz
ed

 E
ig

en
va

lu
es

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

Domain

E
ig

en
ve

ct
o

rs

 

 

Ns=5

Ns=20

Ns=50

Ns=100

3rd

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

Domain

E
ig

en
ve

ct
o

rs

 

 

5th

(a) Effect of  dilation parameter (number of discrete points of domain)

2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

Number

E
ig

en
va

lu
es

 

 

dI/l=0.0579

dI/l=0.1053

dI/l=0.1579

dI/l=0.2632

(b) Effect of scaling parameter

Ns=5

Ns=20

Ns=50

Ns=100

Ns=5

Ns=20

Ns=50

Ns=100

Ns=5

Ns=20

Ns=50

Ns=100

Weiner-Levy
a=1

Squared exponential,  a=2,  l =0.5

Figure 7.5 Convergence of meshfree-Galerkin scheme

156



7.4 assessment of the meshfree-galerkin scheme

7.4.2 Assessment on the Representation of Various Random
Fields

The eigen-results, obtained through meshfree-Galerkin scheme in Section 7.4.1, are used to

represent various RF with a wide range of covariance functions. A total of eight commonly

used models are selected in Table 7.1 to assess the target covariance models, constructed

from equation (7.2.5), and to compare between the target and analytical covariance func-

tions.

The selected models in Table 7.1 include the first-order Markov field with exponential

covariance function (#1), the second-order Markov field with linear-exponential (modified)

covariance function (#2), the random field with squared exponential covariance function

(#3), band-limited (truncated) white noise field with sine covariance function (#4), the

binary noise field with triangular covariance (#5), and the nonhomogeneous fields #6, #7,

and #8. The parameters of each model are listed in Table 7.1 and details of these models are

provided in Ghanem and Spanos (1991).

Table 7.1: Selected covariance models (the homogeneous and nonhomogeneous,σ = 1)

No Name Covariance functions [a, b] Parameter

1 Exponential σ 2 exp
(

− |x1−x2|
l

)

[0, 2] l = 0.5

2 M-exponential(1) σ 2 exp
(

−2.276|x1 −x2|
) (

1 + 2.276|x1 −x2|
)

[0, 2] -

3 S-exponential(2) σ 2 exp

(

−
[ |x1−x2|

l

]2
)

[0, 2] l = 0.5

4 T-white-noise(3) σ 2 sin(x1−x2)
π(x1−x2)

[0, 2] -

5 Triangular σ 2
(

1 − l|x1 −x2|
)

[0, 2] l = 0.5

6 Wiener-Levy σ 2min(x1, x2) [0, 1] -

7 Brownian-Bridge σ 2
(

min(x1, x2)− x1x2
l

)

[0, 1] l = 1.0

8 U-modulated(4) σ 2 exp[−(x1 +x2)] exp
( |x1 − x2|

l

)

[0, 2] l = 0.5

(1) the modified exponential model. (2) the squared exponential model. (3) the truncated white noise model.

(4) the uniformly modulated model (nonhomogeneous).

Figure 7.6(a) shows the first five eigenvectors for the modified exponential covariance

model using meshfree-Galerkin method, which are in good agreement with the analytical
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Figure 7.6 Eigen-pairs and contour plot of modified exponential covariance model

solutions (Spanos et al., 2007; Arun et al., 2010). Using these eigenvectors, the target covari-

ance model is constructed by equation (7.2.5) (M = 20), without the optimization scheme

proposed in equation (7.2.6), and is given in Figure 7.6(b) together with the analytical

model. It is observed that the target covariance model, with sufficient truncated number

M=20, does not exhibit good agrement with the analytical modified covariance function.

Similar observations and conclusions can also be obtained for other covariance models, but

are not presented for brevity. However, this problem can be effectively resolved by using the

optimization scheme in equation (7.2.6), which is shown in Figure 7.7.

The target and analytical covariance functions and their comparisons, for selected RF in

Table 7.1, are shown in Figure 7.7. It is demonstrated that the meshfree-Galerkin scheme, in

conjunction with K-L expansion and optimization scheme in Section 7.2.3, can accurately

and effectively represent various homogeneous and nonhomogeneous RF with different

covariance models. This is an additional validation on the accuracy, validity, and merits of

the proposed scheme, which can be readily applied in the simulation of spatially varying

soil properties in Section 7.5.
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7.5 Modelling and Synthesis of Spatially Varying Soil
Properties

As discussed in Section 7.1, the site-specific soil properties are always random and variable

in space, and these uncertainties and variabilities are demonstrated and qualified using the

field measurements. In this section, the spatial variability modelling of soil properties is first

qualified and calibrated using field measurements, based on which the meshfree-Galerkin

scheme is applied to simulate these spatially varying soil properties.

7.5.1 Soil Variability Models Inferred from the Field
Measurements

In practice, the physical properties of soil (e.g., shear modulus, cohesion, friction angle,

elastic modulus, Poisson’s ratio) and the associated uncertainties and variabilities can be

inferred from the cone penetration test (CPT), vanes shear test (VST), or laboratory test

during the soil investigation (Phoon and Kulhawy, 1999b; Popescu, 1995). The soil property

β(x) at space point x can be represented by

β(x) = β̄(x)+ εβ(x), (7.5.1)

in which β̄(x) is the deterministic (trend) function giving the mean soil property, and εβ(x)

is the residual at point x, representing the uncertainty and spatial variability of soil property,

which can be defined as a random field (Vanmarcke, 1977, 2010). εβ(x) is often attributed to

include the inherent variability, the measurement errors, and the transformation uncertainty

(Phoon and Kulhawy, 1999a), but only the inherent variability is considered in this study.

As seen from equation (7.5.1), the probabilistic characteristics of inherent spatial vari-

ability of soil can be represented by the trend function β̄(x), the marginal probability

distribution function Pβ , and the covariance function Kββ(x, y) between spatial points x

and y (the second-order random field). By varying Pβ , different types of RF, e.g., the Gaus-

sian field, Gamma field and Beta field, can be obtained using generalized polynomial chaos

expansion (gPCE) method. However, as discussed in Section 7.1, this topic is recommended

for future research in Section 8.4.4.
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The covariance function of random field β(x) can be written as

Kββ(x, y)=E
([

β(x)− β̄(x)
] [

β(y)− β̄(y)
])

=E[εβ(x)εβ(y)]=σ 2ρββ(x, y), (7.5.2)

where σ is the variance parameter, and ρββ(x, y) is the correlation structure between spatial

points x and y. As seen from equations (7.5.1) and (7.5.2), the mean value β̄(x) varies with

spatial location, which is a characteristic of nonhomogeneous field (generalized homoge-

neous field). In contrast, it can be reasonably assumed that the variance σ in equation

(7.5.2) remains constant over the space, because σ may not exhibit large variation over

the space, and it is very difficult to obtain the specific expressions of σ as a function of

spatial location in practice. To the best knowledge of the authors, most of the soil variability

models, determined from the field measurements, provide one scalar value of σ over the

entire spatial domain for various types of soil (Phoon and Kulhawy, 1999a; Nobahar, 2003;

Popescu, 1995).

After extensive research conducted in the evaluation and calibration of the probabilistic

characteristics of soil property by geotechnical measurements (Phoon and Kulhawy, 1999b;

Popescu, 1995; Cressie, 1993), the ranges of uncertainties in geotechnical properties have

been suggested. The coefficient of variation, Cv =σ/β̄(x), was evaluated to account for

uncertainty of soil property for various types of soil profiles due to the inherent variability.

For the undrained shear strength of stiff clay soil deposits, a typical Cv ranges between 10%

and 40%, and the variability may reach a possible upper limit of Cv =80% for highly variable

soft soil, both resulting solely from the inherent spatial variability of soil strength. In

determining the spatial correlation structures of soil properties, various covariance models,

such as those in Table 7.1, are calibrated from the field data, where it is demonstrated that

most of the practical variations of soil properties in space follow these models (Vanmarcke,

2010; Popescu, 1995; Christakos, 1992).

However, to the best knowledge of the author, almost all of the field data, used for

calibration of these models of soil physical properties, is limited to the 1-D random field.

This may be due to the inconvenience of obtaining higher-dimensional measurements of

soil mechanical properties in practice. Przewlocki (2000) presented the laboratory test of

2-D uniform layer of clay by simultaneously calibrating the probabilistic parameters of this
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2-D random field for shear strength. Since the scope of this study is for the simulation of 1-D

random field, the 1-D fields parametrized from the field measurements are selected in Table

7.2 (Przewlocki, 2000; Srivastava and Babu, 2009), which will be employed for simulation of

spatially varying soil properties in Section 7.5.2.

Table 7.2: Selected 1-D random fields inferred from field measurements

β(x) ρββ(x, y) Parameters [a, b]

cu
(1)

(

1 + l|x1 −x2|
)

exp
(

−l|x1 −x2|
)

β̄(x)= 49.97, σ = 14.99, l = 3.588 m (0, 4.5) m

Es
(2) exp

(

−
[ |x1−x2|

l

]2
)

β̄(x)= 5.5+1.189x, σ = 2.87, l = 4 m (0, 8) m

(1) shear strength (KPa) (Przewlocki, 2000); (2) elastic modulus (MPa) (Srivastava and Babu, 2009).

7.5.2 Simulation of Spatially Varying Soil Properties

The RF, inferred from field measurements, in Table 7.2, can be simulated by using equation

(7.2.4). The eigenvalues obtained from the meshfree-Galerkin method and the optimized

eigenvectors by equation (7.2.6) are used for the field representation. As mentioned before,

the components of random vector, ξi(ω), i=1, 2, ..., M, are uncorrelated but not indepen-

dent. However, the independence between components of ξi(ω) is assumed in this study

for simplicity, although Rosenblatt transformation can be used to resolve the problem to a

set of independent random variables (Das et al., 2009). Moreover, it has been numerically

verified that this assumption can also give accurate results (Ma and Zabaras, 2011; Stefanou

et al., 2009).

Following the above simulation procedure, RF in Table 7.2 are represented. Figure 7.8(a)

gives the simulated results of the shear strength cu with varianceσ =13.65 KPa. It is seen that

the variance of simulated shear strength is close to the target 14.99 KPa (Przewlocki, 2000),

where good representation of uncertainties of the shear strength in the simulated results is

observed. Besides the uncertainty, the spatial variability of simulated results can be seen

from Figure 7.8(c), by using the optimized eigenvectors given in Figure 7.8(b). As observed,

the simulated covariance model is in good agreement with the analytical model, which
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shows the validity of the meshfree-Galerkin scheme in simulating the spatially varying soil

properties.
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Figure 7.8 The simulated results for shear strength cu

Similar observations can be made from Figure 7.9 for the simulation of elastic modu-

lus Es, the second random field in Table 7.2, based on the comparison of the simulated
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Figure 7.9 The simulated results for elastic modulus Es

variance and covariance function with their target and analytical models. These results

again demonstrate the validity of the meshfree-Galerkin scheme in simulating the spatially

varying soil properties.
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7.6 Summary and Conclusions

In this chapter, a meshfree-Galerkin approach is introduced within K-L expansion scheme

for representation of spatial soil properties modelled as RF, which includes

1. The meshfree shape functions are introduced and employed as a set of basis functions

in the Galerkin scheme to obtain the eigen-solutions of integral equation of K-L

expansion. An optimization scheme is proposed for the resulting eigenvectors in

treating the compatibility between the target and analytical covariance models.

2. The meshfree-Galerkin scheme is assessed by considering the resulting eigen-solutions

and the representation of covariance models for various homogeneous and nonhomo-

geneous RF.

3. The accuracy and validity of the meshfree-Galerkin approach are demonstrated through

the modelling and synthesis of the spatial field models, inferred from the field mea-

surements, of soil properties.

4. Further studies should be conducted on the modelling and synthesis of RF of the spatial

soil properties with higher dimensions and arbitrary domains, and the modelling of

the probability distributions of the spatial soil field.
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Conclusions and Future Research

Recorded seismic ground motions exhibit spatial variations in their amplitude and phases,

and spatial variations of ground motions have an important effect on the response of

long structures, e.g., long span bridges. However, there is gap between the code-specified

provisions and the realistic representation of spatially varying ground motions (SVGM) and

the corresponding stochastic vibration analysis (SVA) approaches. This study is devoted to

bridge this gap. The main contributions and findings are summarized below.

8.1 Modelling of SVGM

In Chapters 2 and 3, a complete and realistic SVGM representation approach is developed

by accounting for the incoherence effect, wave-passage effect, site-response effect, ground

motion nonstationarity, tridirectionality, and spectrum-compatibility. It includes

1. The physically compliant seismological spectra are employed to synthesize SVGM and

their earthquake scenarios are determined by vector-valued seismic hazard deaggre-

gation (VSHD), based on which a simulation framework is proposed to resolve the

problem that a number of simulations need to be carried out for the uniform hazard

spectra (UHS)-based ground motion generation.

2. A comprehensive method of accounting for varying site effects in synthesizing SVGM

is proposed, including consideration of spatial-random-variable soil profiles, effect of
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water saturation, effect of varying site conditions, and combining P-wave, SV-wave,

and SH-wave motions to simulate tridirectional SVGM.

3. The phase difference method is developed and proved to be effective in conditional

modelling of nonstationarity of SVGM.

4. Modelling of SVGM nonstationarity and spectrum-compatibility within the spec-

tral representation method (SRM) scheme is established. A scheme of transforming

response spectra at bedrock to the ground surface in tridirections using the site am-

plification method is developed.

5. Study of local site effects on the loss of motion coherency shows that the local site

can significantly reduce the lagged coherency at certain frequencies, and they will not

only cause the phase difference of coherency function but also affect the modulus of

coherency function.

6. The synthesized SVGM can be applied to provide more refined solutions for quan-

titatively assessing the code-specified design provisions and developing new design

provisions.

8.2 Development of SVA Approaches for Structures
under SVGM

In Chapters 4, 5, and 6, a comprehensive, systematic, and efficient stochastic seismic analy-

sis approach is derived for long span structures under tridirectional nonstationary spatial

motions, considering ground motion incoherence effect, wave-passage effect, tridirectional

local site effect (uniform and non-uniform site conditions), nonstationarity, and tridirec-

tionality, which includes

1. An absolute-response-oriented scheme of pseudo-excitation method (PEM) (in time

domain) is developed to reduce the enormous computational effort of the conventional

indirect nonstationary SVA (in frequency domain) in solving equations of motion of

structures under nonstationary tridirectional SVGM.

2. The improved high precision direct integration method (I-HPDIM), in conjunction

with absolute-response-oriented scheme of PEM, has been derived for nonstationary
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SVA of structures under tridirectional SVGM. The proposed I-HPDIM has resolved

the bottle-neck problem of conventional HPDIM and, as a result, it can significantly

improve computational efficiency of HPDIM in nonstationary SVA.

3. A scheme in accounting for tridirectional varying site-response effect is incorporated

in the nonstationary SVA scheme systematically.

4. The proposed highly efficient and accurate SVA approach is implemented and verified

in the general finite element analysis (FEA) platform to make it readily applicable in

stochastic seismic analysis of complex structures.

5. This analytical SVA approach is more attractive in engineering practices for nonsta-

tionary stochastic seismic analysis of long span structures under tridirectional SVGM.

6. Based on the proposed SVA approach, parametric studies of a practical long span arch

bridge and a long span high-pier railway bridge under SVGM are conducted.

7. The design values (considering structure ductility) can be further determined by

dividing the elastic effects (obtained from the developed SVA approaches) by the

appropriate behaviour factor q, which is recommended in D.3.2 of CEN (2005b).

8.3 Random Field Representation of Spatial Soil Profiles

To account for spatial randomness and variability of soil properties in soil-structure inter-

action (SSI) analysis of bridges under SVGM, a meshfree-Galerkin approach is proposed in

Chapter 7 within the Karhunen-Loève (K-L) expansion scheme for representation of spatial

soil properties modelled as random field (RF), which includes

1. The meshfree shape functions are introduced and employed as a set of basis functions

in the Galerkin scheme to obtain the eigen-solutions of integral equation of K-L

expansion. An optimization scheme is proposed for the resulting eigenvectors in

treating the compatibility between the target and analytical covariance models.

2. The meshfree-Galerkin scheme is assessed by considering the resulting eigen-solutions

and the representation of covariance models for various homogeneous and nonhomo-

geneous RF.
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3. The accuracy and validity of the meshfree-Galerkin approach are demonstrated through

the modelling and synthesis of the spatial field models, inferred from the field mea-

surements, of soil properties.

8.4 Recommendations for Future Research

Following the conclusions drawn from Sections 8.1, 8.2, and 8.3, the following topics for

future studies in the area of bridge responses under SVGM are recommended.

8.4.1 Development of Simplified Design Provisions for Bridges
under SVGM

In Chapters 2 to 6, methodologies on modelling of SVGM and SVA approaches for long

structures under SVGM are developed. These approaches can provide more refined solu-

tions for quantitatively assessing the code-specified design provisions and developing new

design provisions. It is found that CEN (2005b) is currently the only seismic code world-

wide that gives a set of detailed guidelines to explicitly tackle spatial variabilities of ground

motions in bridge design. Hence, development of these simplified design procedures in

many other bridge seismic guidelines worldwide need to be conducted in the future.

8.4.2 Incorporation of SSI Effect in the SVA Methodology

The SVA approaches developed in Chapter 4 fail to include the SSI effect for simplicity;

however, spatial variations of ground motions can be further modified by the SSI effect, and

SSI is well-recognized to significantly affect structural responses but has not been adequately

considered for structures under SVGM. Therefore, further investigations on inclusion of SSI

effect in the SVA methodology are recommended.

8.4.3 Performance-based Seismic Pounding Analysis of Bridges

In Section 6.3.1, only the local site effects of SVGM on the longitudinal required separation

distance (RSD) between adjacent bridge segments are studied. Some other rarely studied

effects on the RSD, e.g., ground motion dimensionality, ground motion nonstationarity, 3-D

surface-to-surface pounding modelling, the RSD in the transverse direction, SSI, need to be

169



8.4 recommendations for future research

studied in the future using the SVA approaches provided in Chapters 4 and 6. Furthermore,

more rational approaches, e.g., the performance (reliability)-based methods for seismic

pounding risk analysis, are also recommended in mitigating seismic pounding of bridge

structures (Lin and Weng, 2001; Barbato and Tubaldi, 2012).

8.4.4 2-D and 3-D RF Representation of Spatial Soil using
Generalized Polynomial Chaos Expansion

In modelling the spatial soil field in Chapter 7, only 1-D spatially varying soil properties

are simulated based on the proposed meshfree-Galerkin scheme in conjunction with the

K-L expansion. Further studies should be conducted on the modelling and synthesis of RF

of the spatial soil properties with higher dimensions (2-D or 3-D) and arbitrary domains,

and the modelling of the probability distributions of the spatial soil field (e.g., the Gaussian

field, Gamma field, or Beta field) using the generalized polynomial chaos expansion (gPCE)

method (Xiu, 2010).
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AA P P E N D I X

A.1 Seismic Hazard Analysis

For seismic analysis and design of structures, ground motion shaking hazards are required.

They are usually obtained through deterministic seismic hazard analysis (DSHA) and prob-

abilistic seismic hazard analysis (PSHA). Figure A.1 shows the meanings and procedure for

typical SHA, DSHA, and PSHA.

A.1.1 Scalar Probabilistic Seismic Hazard Analysis

In a typical hazard estimation for a site surrounded by N potential sources in PSHA, the

total average exceedence rate λs∗ , contributed by all seismic sources, is given by

λs∗ =
N
∑

i = 1

νi

{ ∫

r

∫

m
P
{

S>s∗
∣
∣m, r

}

fM(m) fR(r)dm dr
}

i
, (A.1.1)

in which S is a ground motion intensity parameter, such as the spectral acceleration, and s∗

is the corresponding threshold value at a specified hazard exceedence level. νi is the mean

rate of occurrence of the ith seismic source. P
{

S>s∗
∣
∣m, r

}

is the conditional probability of

exceedence conditional on magnitude m and site-to-source distance r; it is usually assumed

to be the complementary cumulative density function of lognormal distribution and can

be derived through the ground motion predictive model that is presented in Appendix

A.1.3. fM(m) and fR(r) are the probability density functions of earthquake magnitude

and site-to-source distance, respectively. The distribution model of magnitude is usually
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Figure A.1 DSHA and PSHA

obtained through the widely-used Gutenberg-Richter recurrence Law. The probability

density function of site-to-source distance is usually derived based on the assumption that

all potential seismic sources are composed of uniformly distributed point sources.
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The uncertainty regarding the temporal occurrence of earthquakes is usually character-

ized by a Poisson distribution as

P
{

ST>s∗
}

=1 − e
−λ

s∗T
, (A.1.2)

where P
{

ST>s∗
}

denotes the probability of ST exceeding s∗ in time period T, and it is often

called the annual probability of exceeding s∗ when T=1 year.

Typical procedure for a PSHA at a site of interest, shown in Figure A.1, can be preformed

in four steps (Kramer, 1996):

1. identification and characterization of the potential seismic sources;

2. characterization of the seismicity or temporal distribution of earthquake recurrence;

3. determination of the ground motion intensity parameters by earthquakes having any

possible size occurring at any possible point in each source zone using the correspond-

ing predictive model;

4. combining uncertainties from earthquake location, earthquake size, and ground mo-

tion parameter prediction to obtain the probability that the ground motion intensity

parameter is exceeded during a specified time period.

A.1.2 Vector-valued Probabilistic Seismic Hazard Analysis

Vector-valued probabilistic seismic hazard analysis (VPSHA) can provide a multivariate

statistical model when many ground motion parameters are of interests for structural

analysis. Parameters contained in the vector of ground motion parameters may include

spectral accelerations, earthquake intensities, or soil condition parameters. A detailed

description of the methodology of VPSHA is given by Bazzurro and Cornell (1999).

For a ground motion vector
{

Sa(T1), Sa(T2), . . . , Sa(Tn)
}

, the mean rate density (MRD)

is given by

MRDSa(T1),Sa(T2),...,Sa(Tn)
(s1, s2, . . . , sn)=

N
∑

i=1

νi

{ ∫

r

∫

m
fSa(T1),Sa(T2),...,Sa(Tn)

(s1, s2, . . . , sn

∣
∣m, r) fM(m) fR(r)dm dr

}

i
, (A.1.3)

where sk, k=1, 2, . . . , n, is the threshold corresponding to Sa(Tk), fM(m) and fR(r) are the

probability density functions of magnitude M and source-site distance R,νi is the mean rate
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of occurrence for source i, and N is the number of seismic sources. fSa(T1),Sa(T2),...,Sa(Tn)
(s1, s2,

. . . , sn

∣
∣m, r) is the joint probability density function of vector

{

Sa(T1), Sa(T2), . . . , Sa(Tn)
}

conditional on m and r for source i, which is verified to be the multivariate lognormal

probability density function (Jayaram and Baker, 2008).

A.1.3 Ground Motion Predictive Model

Proper design of earthquake-resistant structures and facilities requires estimation of the

level of ground shaking to which they will be subjected. Ground motion parameters, such as

intensity, peak ground acceleration (PGA), and spectral accelerations, have been frequently

employed to describe the level of ground shaking. Models for estimating the ground motion

parameters are thus required and are called ground motion predictive models.

A ground motion predictive model is expressed as the specified ground motion pa-

rameter, such as the spectral acceleration, PGA or other intensity parameters, in terms of

the quantities having strongest affect on them, which is of great importance in the PSHA

(Kramer, 1996). The spectral acceleration is considered in the following as a ground motion

parameter to demonstrate a typical predictive model.

A widely-used predictive relation of spectral acceleration with intra-event and inter-event

residuals is expressed as (Kramer, 1996; Jayaram and Baker, 2008)

ln Sa(T1)= ln Ŝa(mi, rj, pi, T1)+ σ(mi, p1i, T1)ε + τ(mi, p2i, T1)η, (A.1.4)

in which Sa(T1) is the spectral acceleration at vibration period T1, ln Ŝa(mi, rj, pi, T1) de-

notes the logarithmic predicted median spectral acceleration that depends on magnitude mi,

distance rj, period T1, and other parameters pi, such as local-site conditions. ε and η denote

the normalized intra-event and inter-event residuals, respectively, which are both univariate

normal random variables with zero mean and unit standard deviation. σ(mi, p1i, T1) and

τ(mi, p2i, T1) are standard deviations, estimated as part of the ground-motion model, and

are functions of period, earthquake magnitude, and other parameters p1i and p2i.

For a specified earthquake event, e.g., earthquake with magnitude mi, site-to-source

distance rj, spectral acceleration and intra-event residual ε and η in equation (A.1.4) at a
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given vibration period T1 are random variables usually assumed to be independent and

individually follow standard normal distribution (Jayaram and Baker, 2008).

It is noted that ground motion predictive models are originally derived from the ap-

proximate physical model of earthquake rupture process. However, due to the complexity

of earthquake rupture mechanism and more ground motion measurements are becoming

available, these models are mostly derived or updated using regressed results based on actual

earthquake records, such as models included in the Next Generation Attenuation (NGA)

(Jayaram and Baker, 2008).

A.2 Dynamic Stiffness Matrix of Soil Layers

By using the trial function, solution of equation (2.4.3) can be obtained in the vertical plane

(x-z) for the combination of P- and S-waves as (Wolf, 1985)




























u= lxAP exp

[

iω

(

− lxx

c∗
p

− lzz

c∗
p

)]

+ mzASV exp

[

iω

(

−mxx

c∗
s

− mzz

c∗
s

)]

,

v=ASH exp

[

iω

(

−mxx

c∗
s

− mzz

c∗
s

)]

,

w= lzAP exp

[

iω

(

− lxx

c∗
p

− lzz

c∗
p

)]

+ mxASV exp

[

iω

(

−mxx

c∗
s

− mzz

c∗
s

)]

,

(A.2.1)

in which

c∗
p = cp

√

1 + 2ζpi, c∗
s = cs

√

1 + 2ζsi, cs =
√

G

ρ
, cp =

√

λ+ 2G

ρ
,

lx and lz are the direction cosines of axis x and z for P-wave, mx and mz are the direction

cosines of axis x and z for S-wave, cp and cs are the wave velocity for P-wave and S-wave, AP,

ASH and ASV are amplitudes for P-wave, SH-wave and SV-wave, λ is the lame constant, G

and ρ are the shear modulus and mass density of the soil layer.

Based on equation (A.2.1), the dynamic equation for the out-of-plane motion (SH-wave)

and in-plane motion (P- and SV-waves) can be obtained as

❧ Out-of-Plane Motion (SH-wave)

v(z, x)= [ASH exp(i ktz)+ BSH exp(−i ktz)] exp(−i kx), (A.2.2)
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where

c= c∗
s

mx

, k= ω

c
, t= − i

√

1 − 1

m2
x

.

❧ In-Plane Motion (P-SV-wave)

u(z, x)=u(z) exp(−i kx), w(z, x)=w(z) exp(−i kx), (A.2.3)

where








u(z)= lx

[

AP exp(i ksz)+ BP exp(−i ksz)
]

− mxt
[

ASV exp(i ktz)− BSV exp(−i ktz)
]

,

w(z)= − lxs
[

AP exp(i ksz)− BP exp(−i ksz)
]

− mx

[

ASV exp(i ktz)+ BSV exp(−i ktz)
]

,

c= c∗
s

mx

=
c∗

p

lx

, k= ω

c
, t= − i

√

1 − 1

m2
x

, s= − i

√

1 − 1

l2
x

.

Thus, the dynamic stiffness matrix for both out-of-plane and in-plane waves can be

obtained.

❧ Out-of-Plane Motion (SH-wave)

KL
SH(ω)=

ktLG∗L

sin ktLd




cos ktd −1

−1 cos ktd



 , (A.2.4)

and the corresponding half-space rock stiffness matrix is

KR
SH(ω)= i ktG∗R. (A.2.5)

❧ In-Plane Motion (P-SV-wave)

KL
P-SV(ω)=

(1 + t2)kG∗L

D










K11 K12 K13 K14

. K22 K23 K24

. . K33 K34

. . . K44










, (A.2.6)

where superscripts ∗, L, and R denote transpose and complex conjugate, soil layer, and

bedrock, respectively, and D is given by

D=2(1 − cos ksd cos ktd )+
(

st+ 1

st

)

sin ksd sin ktd. (A.2.7)

The matrix elements in equation (A.2.6) are

K11 = 1

t
cos ksd sin ktd + s sin ksd cos ktd, (A.2.8)
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K12 = 3 − t2

1 + t2
(1 − cos ksd cos ktd)+ 1 + 2s2t2 − t2

st(1 + t2)
sin ksd sin ktd, (A.2.9)

K13 = −s sin ksd − 1

t
sin ktd, (A.2.10)

K14 = cos ksd − cos ktd, (A.2.11)

K22 = 1

s
sin ksd cos ktd + t cos ksd sin ktd, (A.2.12)

K23 = − cos ksd + cos ktd, (A.2.13)

K24 = −1

s
sin ksd − t sin ktd, (A.2.14)

K33 = K11, (A.2.15)

K34 = t2 − 3

1 + t2
(1 − cos ksd cos ktd)+ t2 − 1 − 2s2t2

st(1 + t2)
sin ksd sin ktd, (A.2.16)

K44 = K22. (A.2.17)

and the corresponding half-space rock stiffness matrix is

KR
P-SV(ω)=kG∗R









i s(1 + t2)

1 + st
2 − 1 + t2

1 + st

2 − 1 + t2

1 + st

i t(1 + t2)

1 + st









. (A.2.18)

A.3 Peak Factor in Prediction of Structural Peak Response

Let f(t) represent a stationary process with zero mean and the one-side power spectral

density (PSD) function Gf(ω), the maximum absolute value of the process over duration T

is defined as

fmax,T(t)=max
∣
∣ f(t)

∣
∣ , 0 < t < T. (A.3.1)

The mean and standard deviation of fmax,T(t) can be obtained from the model by Der

Kiureghian (1980) as

µmax,f =
[

√

2 ln(veT)+ 0.5722
√

2 ln(νeT)

]

σf , (A.3.2)
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σmax,f =

















[

1.2
√

2 ln(νeT)
− 5.4

13+(2 ln(νeT))3.2

]

σf , νeT > 2.1,

0.65σf , νeT62.1,

(A.3.3)

in which σf is the standard deviation of process f(t), and νe is given by

νe =









(

1.63q0.45 −0.38
)

ν, q < 0.69,

ν, q>0.69,
(A.3.4)

where

q=
√

1− λ2
1

λ0λ2

, ν= 1

π

√

λ2

λ0

, (A.3.5)

and

λm =
∫ ∞

0
ωmGf(ω)dω, m=0, 1, 2, (A.3.6)

where λm is the mth moment of PSD Gf(ω).

The peak factor model in equations (A.3.2) and (A.3.3) not only provides accurate

predictive result but is also more appropriate to be used in the earthquake engineering.

A.4 Polynomial and Trigonometric Basis Functions

The ith normalized polynomial basis function8i(x) over the interval [a, b] is given by

8i(x) =
ψi

(
2x

b−a − b+a
b−a

)

ηi

, ηi =

√
∫ b

a
ψ2

i

(
2x

b − a
− b + a

b − a

)

dx , (A.4.1)

where ψi(·) is the Legendre polynomial, up to P = (Np −1)th degree, over interval [−1, 1]
as

ψ0 = 1, ψ1 = x, ..., ψi = 2i−1

i
xψi−1 − i−1

i
ψi−2 , i = 2, 3, ..., P. (A.4.2)

The trigonometric basis functions, up to T= (Np −1)/2 harmonics, on the interval [a, b]
are

80 =1, ...,82i−1 = cos

(
2iπx

b−a
− iπ(b+a)

b−a

)

,82i = sin

(
2iπx

b−a
− iπ(b+a)

b−a

)

,

i = 1, 2, ..., T. (A.4.3)
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