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Abstract

In this thesis, a new method based on characteristic functions is proposed to

estimate the jump component in a finite-activity Lévy process, which includes the

jump frequency and the jump size distribution. Properties of the estimators are

investigated, which show that this method does not require high frequency data.

The implementation of the method is discussed, and examples are provided. We also

perform a comparison which shows that our method has advantages over an existing

threshold method. Finally, two applications are included: one is the classification

of the increments of the model, and the other is the testing for a change of jump

frequency.
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8.1.2 Estimation of Infinite-Activity Lévy Processes . . . . . . . . 218
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Chapter 1

Introduction

Lévy processes have been well-studied since long time ago, see Lévy (1954) and

Itô (1961). In recent years there is a renaissance of interest in Lévy processes.

Applications of Lévy processes exist in various fields, such as finance, economic-

s, insurance, biology, queueing, telecommunications, quantum theory and many

others, see Barndorff-Nielsen et al. (2001) for an overview.

A Lévy process consists of two parts: the diffusion component and the jump

component. In finance, Lévy processes are popular models since they accommodate

both continuous evolution and abrupt changes in the underlying assets. Compared

with the famous Black-Scholes models which consist of geometric Brownian mo-

tions, Lévy processes allow heavy tails, excess kurtosis and asymmetry.

Not only the Lévy processes include a wide range of non-continuous model

settings, they are also sufficiently mathematically tractable to permit estimators of

parameters and distributions to be constructed relatively simply. This is a major

attraction of the Lévy processes approach.

1



1.1 Lévy Processes

Loosely speaking, a Lévy process is a continuous-time stochastic process that

has independent and stationary increments. It can be thought of as an analogue of

a random walk in continuous time. In the following we first introduce the definition

of Lévy processes, and then present an important characteristic representation of

Lévy processes. Finally we discuss some well-known examples of Lévy processes.

Definition 1.1.1. Let P be a probability measure on (Ω,F). We say that L is a

Lévy process for (Ω,F ,P) if it satisfies:

1. Independent increments: for every s, t ≥ 0, Lt+s − Lt is independent of

the process (Lv, 0 ≤ v ≤ t);

2. Stationary increments: Lt+s − Lt has the same law as Ls;

3. Stochastic continuity: For each ϵ > 0, limh→0 P (|Lt+h − Lt| ≥ ϵ) = 0.

Typically we assume P(L0 = 0) = 1. Every Lévy process can be character-

ized by its characteristic function. The following famous result, Lévy-Khintchine

representation, implies many important properties of the Lévy processes.

Theorem 1.1.2 (Lévy-Khintchine). Given a ∈ R, σ ≥ 0 and a measure v on

R\{0} such that
∫
(1 ∧ |x|2)v(dx) <∞, for every u ∈ R let

ψ(u) := iau− 1

2
σ2u2 +

∫
R\{0}

(
eiux − 1− iux1|x|<1

)
v(dx). (1.1)

Then there exists a unique probability measure P on Ω under which L is a Lévy

process with characteristic function φLt(u) := E
[
eiuLt

]
= exp

{
tψ(u)

}
. Moreover,

the jump process of L, namely ∆L = (∆Lt, t ≥ 0), is a Poisson point process with

measure v.

2



The function ψ is called the characteristic exponent of the Lévy process L. The

triplet (a, σ2, v(dx)) is called the Lévy triplet. Specifically, the measure v is called

the Lévy measure. It dictates how the jumps occur: jumps of size in the set A

occur according to a Poisson process with intensity
∫
A
v(dx). If the Lévy measure

is of the form v(dx) = ξ(x)dx, we call ξ(x) the Lévy density.

The formula (1.1) has another representation form, which was frequently used

in early books that address the generalized central limit problem. As we know, the

generalized central limit problem is related to the infinitely divisible distributions,

which is in turn related to the Lévy processes. For example, in Loève (1963, page

298) or Breiman (1968, page 194), the function ψ was written as

ψ(u) = ibu+

∫
R

(
eiux − 1− iux

1 + x2

)
1 + x2

x2
G(dx), (1.2)

where b ∈ R, and G is a distribution function up to a multiplicative constant, with

G(0+) − G(0−) = σ2. The function G was called the jump function. Since the

integrand in (1.2) has a limit of −u2/2 as x→ 0, we may also write

ψ(u) = ibu− 1

2
σ2u2 +

∫
R\{0}

(
eiux − 1− iux

1 + x2

)
1 + x2

x2
G(dx). (1.3)

Let us compare the two formulas in (1.1) and (1.3). The term 1+x2

x2
G(x) in (1.3)

has the same property as the measure v(x) in (1.1) does that
∫
(1∧|x|2)v(dx) <∞.

The term iux
1+x2

in (1.3) plays the role of avoiding the integrand in (1.3) exploding

when x → 0, and the term iux1|x|<1 in (1.1) plays the same role. The difference

between a and b reflects the difference between the two integrals in (1.1) and (1.3).

Examples of Lévy Processes

The most well-known examples of Lévy processes are the Brownian motion and

the Poisson processes, which are the building blocks of Lévy processes. In the

following we present them and some other important examples.

3



1. Brownian motion with drift

A standard Brownian motion or Wiener process Wt is a Lévy process whose

increments follow normal distributions. More specifically, Wt −Ws ∼ N (0, t− s).

A Brownian motion with drift can be written as

Lt = µt+ σWt

where µ ∈ R, σ > 0 and Wt is a standard Brownian motion. The characteristic

exponent of Nt is ψ(u) = iµu− 1
2
σ2u2. Then, by Theorem 1.1.2, we can see that the

corresponding Lévy triplet is (µ, σ2, 0). Thus, this process is the only continuous

Lévy process.

2. Poisson processes

A Poisson process Nt with intensity λ is a Lévy process whose increments follow

Poisson distributions. More specifically, Nt −Ns ∼ Poisson(λ(t− s)).

The characteristic exponent of Nt is ψ(u) = λ(eiu − 1), from which we can

see that the Lévy triplet is (0, 0, λδ(1)), where δ(1) denotes the Dirac measure at

point 1. This means that the jump size always equals one. A Poisson process is an

increasing pure jump Lévy process.

3. Compound Poisson processes

A compound Poisson process can be written as

Lt =
Nt∑
i=1

Xi (1.4)

where Nt is a Poisson process with intensity λ, {Xi, i = 1, 2, ...} is a sequence of

independently and identically distributed random variables representing jump sizes

with distribution P, and Nt and {Xi}i≥1 are independent.

4



Define ν(A) = λ · P(X ∈ A), then it can be shown that the characteristic

function of Lt is

E[eiuLt ] = exp

(
t

∫ +∞

−∞
(eiux − 1)ν(dx)

)
.

Therefore, the Lévy triplet is
(∫ 1

−1
xν(dx), 0, ν(dx)

)
. If X has a density function

fX(x), i.e. P(dx) = fX(x)dx, then the Lévy density of Lt is ξ(x) = λfX(x).

4. Jump-diffusion processes

Combining the Brownian motion (with drift) and the compound Poisson process,

we obtain the jump-diffusion models as follows:

Lt = µt+ σWt +
Nt∑
i=1

Xi (1.5)

where µt + σWt is the diffusion component,
∑Nt

i=1Xi is the jump component, and

(Wt, Nt, X
′
is) are mutually independent.

Two of the most widely used jump-diffusion models are the Merton model and

the Kou model:

• Merton model: The jump size follows a normal distribution, i.e.

Xi ∼ N(µX , σ
2
X).

• Kou model: The jump size follows a double exponential distribution, i.e. the

probability density function of Xi is of the form

f(x) = pη1e
−η1x1{x>0} + (1− p)η2e

−η2|x|1{x<0} (1.6)

where η1 > 1, η2 > 0 and p > 0. Note that the requirement that η1 > 1 is to

ensure that E
[
eLt
]
<∞ since eLt is typically used to model the stock price. It

essentially means that the average upward jump cannot exceed 100%, which

is a reasonable requirement.
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5. Infinite-activity Lévy processes

In a jump-diffusion process, jumps are considered as rare events, in the sense

that within any given finite interval there are only finite number of jumps. For

infinite activity Lévy processes, there are infinitely many jumps in any finite time

interval. Many of these model can be constructed via Brownian subordination, i.e.

time-changed Brownian motion. The following are two rich classes of this type of

models.

1. Generalized hyperbolic model: The increments of this process follows a gener-

alised hyperbolic (GH) distribution. The GH distribution has five parameters

(α, β, λ, δ, µ) with the probability density given by

fGH(x) = C(δ2 + (x− u)2)
λ
2
− 1

4Kλ− 1
2
(α
√
δ2 + (x− µ)2)eβ(x−µ)

where C is a known function of (α, β, λ, δ) and K is the modified Bessel

function of the second kind. It includes the following well-known distributions:

• Normal distribution: δ → ∞ and δ/α→ σ2.

• Normal inverse Gaussian: λ = −1/2.

• Variance gamma: δ = 0 and µ = 0.

2. Tempered stable processes: It is obtained by modifying the Lévy measure for

the α-stable process.

In the financial area, the testing results in a number of articles indicate that

jumps are necessary to be included for modelling the data, see Barndorff-Nielsen

and Shephard (2006), Aı̈t-Sahalia and Jacod (2009), among others. Aı̈t-Sahalia and

Jacod (2011) further proposed tests to discriminate between the finite-activity and

infinite-activity jumps, while allowing the presence of a continuous component in
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both cases. The testing results on the stock returns indicate the presence of infinite-

activity jumps. Aı̈t-Sahalia and Jacod (2010) also discussed the problem that, while

allowing the presence of the infinite-activity jumps, whether the Brownian motion

is necessary to be included for modelling the high frequency data. When applied

to individual stock data, the test results point toward the necessity to include the

Brownian motion.

In this thesis, we mainly consider the estimation of the finite-activity Lévy

process, equivalently, the jump-diffusion model (1.5). The estimation of the infinite-

activity Lévy processes will be mentioned in Chapter 8. For the jump-diffusion

processes, the diffusion parameters µ, σ, the jump intensity λ and the distribution

of the jump size are all assumed unknown. The only available information is a

discrete record of observations of the process. We will use these observations to

estimate all the components of the jump-diffusion model.

1.2 Nonparametric Estimation of Lévy Processes

The work on the estimation of Lévy process can go back to Rubin and Tucker

(1959), where the parameter b and the jump function G in (1.2) were consistently

estimated based on data virtually observed in the continuum. Basawa and Brock-

well (1982) proposed three estimators of the jump function G of non-decreasing

pure jump Lévy processes, in the case that the jump sizes are assumed directly

observable.

In the following we consider the cases when processes are observed at discrete

time points only. Suppose we have a discrete record of equidistant observations of

a Lévy process Lt, denoted by {L0, L∆, L2∆, ..., Ln∆}, where ∆ denotes the data

frequency. Let the time horizon be T = n∆. The increments are given by

Yj ≡ Lj∆ − L(j−1)∆, j = 1, 2, ..., n.

7



We first review the methods proposed in a high frequency framework, and

then look at the methods proposed when the data frequency is fixed.

Threshold method

The threshold method was discussed in Mancini (2004) and Gegler and Stadt-

müller (2010). The idea is that we define a threshold and whenever a movement is

larger than the threshold we classify it as a jump.

In Mancini (2004), a generalized jump-diffusion model was considered of the

form

dLt = atdt+ σtdWt + γtdNt, t > 0 (1.7)

where |at| ≤M, |σt| ≤M for some M > 0, and γt ≥ Γ for some Γ > 0. That is, the

diffusion coefficients are bounded from above, and the jump coefficient is bounded

away from zero.

The contribution of the diffusion part to the increments {Yj, j = 1, 2..., n} tends

to zero quickly as ∆ decreases, because the stochastic integral
∫
σtdWt, after a

change of time, behaves as a Brownian motion. The Lévy’s modulus of continuity

theorem for the path of a Brownian motion asserts that the rate
√
2∆ log(1/∆)

measures the speed at which the increment of a Brownian motion over a time

step ∆ goes to zero. Based on this result, the author proposed to let r(∆) =√
8M2β ·

√
∆ log(1/∆) for some β ∈ (1, 2] (or let r(∆) be any other function of ∆

which goes to zero more slowly), and conclude that a jump occurs if |Yj| > r(∆).

Then the author constructed consistent estimators of {Nj∆, j = 1, ..., n}, of the
jump intensity λ and of the size of jump γτj , where τj are the instants of jump

within the time interval [0, T ]. The estimator of λ is asymptotically Gaussian.

These results hold when the time horizon T → ∞, the data frequency ∆ → 0, such

that n∆β → 0 for β ∈ (1, 2].

Since the method requires the condition that the jump size is bounded away

from zero, many widely-used financial models cannot be applied, such as the Merton
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model and the Kou model.

The threshold method was also discussed in Gegler and Stadtmüller (2010),

where a general Lévy process was considered. The authors constructed consistent

estimators of the diffusion parameters and of the Lévy measure for both the finite-

activity case and the infinite-activity case. In the finite activity case, the estimators

are shown to be asymptotically normally distributed. These results hold when

T → ∞ and ∆ → 0 such that T∆ → 0. The implementation of this method was

also included in the paper. For more details, see Chapter 6, where we compare our

method with the threshold method. The threshold method was later extended to

multivariate Lévy process in Gegler (2011).

Sieve method

A sieve method, or a penalized projection method, was used to propose estima-

tors of the Lévy density; see Figueroa-López and Houdrél (2006, 2008), Figueroa-

Lopéz (2009). An orthogonal projection of Lévy density ξ onto some space S :=

{β1ϕ1 + ...+ βdϕd : β1, ..., βd ∈ R} is given by

ξ⊥ :=
d∑
j=1

a(ϕj)ϕj(x)

where the coefficients are a(ϕj) :=
∫
ϕj(x)ξ(x)dx. Using the fact that, if ϕ is ν-

continuous, bounded and vanishing in a neighborhood of the origin, then
∫
ϕ(x)ξ(x)dx

= lim∆→0
1
∆
E[ϕ(L∆)], the coefficients are estimated by

â(ϕj) =
1

T

n∑
k=1

ϕj(Lk∆ − L(k−1)∆).

Based on this property, estimators of the Lévy density were constructed. This

method works when ∆ → 0 and T → ∞.

Estimation of a function of the Lévy density

In Comte and Genon-Catalot (2009), a sub-class of the Lévy processes is con-

sidered, which is virtually a compound Poisson process given by (1.4) with the
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requirements that
∫
R |x|v(dx) < ∞ and the Levy density ξ exists. The goal is to

estimate the function

g(x) := x · ξ(x).

The idea is to use the Fourier transform of the function g which is given by

gft(u) :=

∫
eiuxg(x)dx = −i

φ′
L∆

(u)

∆φL∆
(u)

≈ 1

∆
E(YjeiuYj),

where Yj is the increment of a Levy process over time step ∆. An empirical version

of gft(u) is defined as

ĝft(u) =
1

n∆

n∑
j=1

Yje
iuYj .

Then two methods were proposed to recover the function g. One is to use the

Fourier inversion, where a cutoff parameter is adaptively selected. This approach

is similar to our method for recovery of the jump size distribution, which will be

discussed in Chapter 5 of this thesis. The other one is to apply the penalized

projection method. The asymptotic results are derived when the data frequency

∆ → 0 and the time horizon T → ∞.

In this method, it is a function (g) of the Lévy density that was estimated.

After an estimate of the function g is obtained, we have to transform it back to

obtain an estimate of the Lévy density.

Kernel method

In Shimizu (2006), a kernel based estimator of the Lévy density was proposed for

the case of finite activity, where the threshold idea was also applied. This estimator

is rate optimal under certain smoothness assumptions. The method requires that

the time horizon T → ∞ and the data frequency ∆ → 0.

Now we look at some existing methods in the low frequency framework. In

this case, the problem of estimating the Lévy measure is closely related to a de-

convolution problem.

10



Minimum-distance estimator based on ECF

In Neumann and Reiß (2009), the volatility parameter σ and the Lévy measure

ν in the Lévy-Khintchine formula (1.1) for a general Lévy process are merged into

a single quantity νσ:

νσ := σ2δ0(dx) +
x2

1 + x2
ν(dx),

where δ0 denotes the point measure in zero. Note that this νσ is exactly the same

measure as G(x) in formula (1.2). Estimators of the drift parameter b and the

measure νσ are proposed based on the minimum-distance criterion:

(b̂, ν̂σ) := arg inf
b,νσ

d(φ̂n, φ(· ; b, νσ)),

where φ is the characteristic function of the increments, φ̂n is the empirical char-

acteristic function of the increments, and d is an appropriately selected metric.

It was shown that for equidistant observations, when time horizon T → ∞ and

the data frequency ∆ being fixed, the estimators of b and νσ are strongly consistent

under some conditions on the choice of the metric d. Thus, this method works for

low frequency data.

Later, Kappus and Reiß (2010) extended this approach to an arbitrary data

frequency, where an asymptotic upper bound for the estimator of the jump measure

was obtained with the assumption that
∫
R\{0} x

2ν(dx) <∞.

However, the combined form of νσ indicates that the volatility σ and the Lévy

measure ν cannot be estimated separately using this minimum-distance method.

Regression based method

A regression based method was proposed by Chen et al. (2010) to estimate the

Lévy characteristics of a sub-class of Lévy processes, which is modelled as a sum

of a drift, a symmetric stable process and a compound Poisson process. When the

index parameter of the stable law was assumed known, a regression based method

was used to estimate the drift, the scale of the stable process and the jump intensity.
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A nonparametric deconvolution approach was used to estimate the distribution of

the jump size. Later the index parameter of the stable law was estimated by some

existing method called the Hill estimator.

A lease square criterion was performed for the regression method. For this,

an interval of t over which the integrals of the squared residuals are taken has

to be selected. This selection represents a trade-off between the error from using

empirical characteristic function to approximate the characteristic function and the

error from assuming the characteristic function of the jump size being zero when

t is outside of the selected region. The consistency of the estimators was shown

under the asymptotics that the time horizon T increases while the data frequency

∆ is fixed.

This method has similarities to our method. But our method in selecting t is

more objective and the entire estimation procedure has less computational burden.

Fourier inversion and Kernel smoothing

In Gugushvili (2009), the method based on Fourier inversion and Kernel smooth-

ing was applied to estimate the components of a jump-diffusion model, which in-

cludes the diffusion parameters, the jump frequency and the Lévy density. Different

kernels with different restrictions were used in the construction of the estimators

of different parameters or distribution. For the estimation of the Lévy density, the

Fourier inversion technique is applied. This method works when the data frequency

is fixed. The asymptotic result is based on the sample size n → ∞, which makes

the window size go to zero. The implementation of this method was not discussed

in the paper.

In this thesis, we propose a new method based on the characteristic function

approach to estimate the jump component of a finite-activity Lévy process, when

the data frequency is fixed. It includes the estimation of the jump frequency and

the estimation of the jump size distribution, and thus we face a semi-parametric
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estimation problem. Since the sizes of the jumps are typically much larger on

average than the sizes of the diffusion increments, the characteristic function of an

increment with jump converges to zero much faster than the characteristic function

of the increment without jump does. This difference in the convergence rates of

the characteristic functions between different components of the model is the main

driver of our method. The simulation results show that our method has many

advantages over the existing threshold method discussed above.

1.3 Testing for Jumps

After obtaining estimates for all the components of the finite-activity Lévy pro-

cess, we consider the classification problem that, given an increment of the process,

we classify it as a jump or non-jump. This problem is related to the testing of

jumps. Different methods have been proposed in the literature to test the jumps.

A non-parametric statistic which tests whether a jump has occurred or not was

proposed by Aı̈t-Sahalia and Jacod (2007):

Sn =

∑[n/K]
i=1 |YiK∆ − Y(i−1)K∆|p∑n

i=1 |Yi∆ − Y(i−1)∆|p
.

It converges to two different deterministic constants depending on whether the

process has jumps or not. The test is valid for all Itô semi-martingales. In this

paper the authors discuss the testing of jumps only. Later the detection of jumps

based on the same idea was extended by Fan and Fan (2011).

Jiang and Oomen (2005) propose a test statistic that measures the impact of

jumps on the third and higher order return moments. Barndorff-Nielsen and Shep-

hard (2006) introduce a test statistic based on the bipower variation of the asset

price, which is consistent and asymptotically normal with mean zero under the null

hypothesis of no jumps. Lee and Mykland (2007) propose a non-parametric test
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not only to detect the presence of jump but also to give estimates of the realized

jump sizes.

In this thesis, we use a Bayes procedure to classify the observations with or

without jump. The theoretical results show that the misclassification probability

decreases to zero when the data frequency increases.

1.4 Outline of the Thesis

In Chapter 2, we discuss the estimation of the jump frequency of a jump-

diffusion model, assuming that the parameters in the diffusion component are

known and the data frequency is fixed. A new estimator of jump frequency based

on characteristic functions is proposed. The bias and variance analysis of this esti-

mator is performed. The consistency and asymptotic normality are proved, which

shows that our method works for low-frequency data. The selection of the tuning

parameter t for the finite sample case is also discussed.

In Chapter 3, we investigate the properties of the proposed estimator of jump

frequency when the data frequency increase, assuming that the parameters in the

diffusion component are known. We also compare our method with the maximum

likelihood method when the data frequency increases.

In Chapter 4, we discuss the estimation of the jump frequency when the diffu-

sion parameters are unknown. Firstly, we use robust procedures to obtain robust

estimates of the diffusion parameters. Then we use the same method proposed in

previous chapters to estimate the jump frequency.

In Chapter 5, we propose an estimator of the density function of jump size. This

is a de-convolution problem, for which we need to use truncation as a regularization

step to ensure that the Fourier inversion exists. The truncation point is the same

as the selected value of the tuning parameter t used for the estimation of the jump
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frequency. The consistency of the density estimator is investigated. Simulation

studies and real data examples are also provided.

In Chapter 6, we compare our method with an existing threshold method. When

the variance of jump size distribution is large (relative to the volatility in the

diffusion), the threshold method works well. However, when the variance of jump

size distribution is not too large, our method performs better. Moreover, when the

sample size increases, our method outperforms the threshold method even when

the variance of jump size distribution is large.

In Chapter 7, two applications are discussed. One is the classification of the

increments, based on a Bayes procedure. The other is the testing for a change of

jump frequency, based on the cusum method. Simulation studies for both topics

are provided.

In Chapter 8, we discuss some future work, including the extension of our

method to the infinite-activity Lévy processes.
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Chapter 2

Estimation of the Jump

Frequency when the Diffusion

Parameters are Known

The jump-diffusion models are widely used in finance and insurance. We propose

a new method to estimate the jump components of these models, which includes

the jump frequency and the jump size distribution. In this chapter, we consider

the estimation of the jump frequency. To separate the sources of the error, we

assume that the two parameters in the diffusion component, i.e. the drift and the

volatility, are known in this chapter. This assumption will be removed in Chapter

4. In this chapter the frequency with which we observe the data, which we call data

frequency, is fixed. The high frequency case will be discussed in Chapter 3.

The proposed method is based on a characteristic function approach. Consider a

discretely observed realization of a jump-diffusion model with the length of the time

interval fixed. Then each increment may or may not involve a jump (or jumps). If

there is no jump, then it is simply an increment of the diffusion component. Since
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on average the jump size is typically much larger than the increment of the diffusion

component, the increment of the model with a jump (or jumps) would correspond

to a distribution with much heavier tails than the increment of the model without a

jump does. Using characteristic function techniques, we transform the distribution

with heavier tails to a characteristic function converging to zero at a faster rate.

By capturing this difference in the convergence rates of the characteristic functions,

we construct a new estimator.

We show that, when the intensity of jumps is low, considering the jump-diffusion

model is equivalent to considering a two-component mixture model. Then the esti-

mation of the jump-diffusion model is equivalent to the estimation of the different

components of the mixture model. In this chapter, the data frequency is fixed, so

all the results in this chapter are also applicable in the context of mixture models.

Most of the literature on mixture models considers a parametric setting, i.e. the

distributions of the components are known up to a finite number of parameters,

and then the goal is to estimate the number of components, the mixing proportions

and the component parameters. Even in the case when the nonparametric setting

is considered for mixture models, all components of the model usually belong to

the same family of distributions, i.e. F (x) =
∑k

j=1 αjG(x − µj) with G unknown.

However, in our problem, the distribution of jump sizes is completely unknown,

and of course it could be different from the distribution in the diffusion component,

which is a normal distribution under our assumptions.

There are two different types of asymptotics that we may consider in our esti-

mation problem. The one that we discuss in this chapter is a “typical” one, since it

corresponds to adding more observations coming from the same distribution. This

approach has the following features:

• The sample size increases by increasing the time horizon (i.e. the total number

of years) of the data set while keeping the data frequency fixed.
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• The distribution of the sample remains the same.

• Since the data frequency is fixed, the jump frequency can be explained by

the jump ratio, i.e. the expected percentage of jump observations among all

observations.

Another type of asymptotics is discussed in Chapter 3 and has the following fea-

tures:

• The sample size increases by increasing the data frequency while keeping the

the time horizon fixed.

• The distribution of the sample changes when the sample size increases. In

particular, the jump ratio decreases when the sample size increases. This is

because the jump intensity λ is fixed, which implies that the expected total

number of jumps in a given time horizon is fixed, but meanwhile the total

number of observations increases.

• In this case, we consider the estimation of the jump intensity λ, which is

fixed. We investigate some properties of this estimator and compare it with

the maximum likelihood estimator.

It is possible to consider another type of asymptotics, where we let both the data

frequency and the time horizon increase but control the speed of the increase for

each. However, it will not be discussed in this thesis.

In the title of this chapter, we used the term “jump frequency”. In the first

type of asymptotics, “jump frequency” is simply equivalent to “jump ratio”(i.e.

the expected proportion of observations with jumps among all observations). In the

second type of asymptotics, by “jump frequency” we mean the “jump intensity”

which is the intensity parameter λ of the Poisson process.
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This chapter is organized as follows. In Section 2.1, the proposed method is in-

troduced, where the characteristic function of the observable variable is estimated

by the empirical characteristic function. Properties of the proposed estimator are

discussed in Section 2.2, including the bias and variance analysis, consistency and

asymptotic normality of the estimator. The proposed estimator involves a tuning

parameter t, whose proper selection is essential to guarantee the good performance

of the estimator. By considering the asymptotic behavior of the proposed estima-

tor, we derive the rate at which t should increase to infinity as the sample size n

increases. However, in practice for finite samples, we have to propose methods of

selecting t. This will be discussed in Section 2.3 where three methods are proposed.

In Section 2.4 we consider alternative estimators (other than the empirical charac-

teristic function) of the characteristic function which are uniformly consistent. Our

analysis shows that, however, the method based on the empirical characteristic

function leads to the most efficient estimation procedure.

2.1 Proposed Method

In this section we introduce the proposed method. In Section 2.1.1 we specify a

jump-diffusion model and in Section 2.1.2 we present the main idea that is behind

our new estimator. A two-component mixture model is introduced in Section 2.1.3,

which provides a good approximation to the jump-diffusion model. We specify the

form of the proposed estimator in Section 2.1.4. Finally the identifiability problem

for the mixture model is discussed in Section 2.1.5.

2.1.1 Model Settings

Suppose we have a discretely observed realization {L∆, L2∆, ..., Ln∆}, where ∆

is the length of the time interval between two consecutive observations, and T = n∆
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is the time horizon, from the following jump-diffusion model (representing the log-

price, lnSt), which we call Model 1:

Lt ≡ lnSt = µ0t+ σ0Wt +
Nt∑
i=1

Xi, t ≥ 0∗ (2.1)

where L0 = 0, {Wt} is a standard Brownian motion, {Nt} is a Poisson process with

an intensity parameter λ, X1, X2, ... are independently and identically distributed

(i.i.d.) random variables representing jump sizes, and (Wt, Nt, Xi) are mutually

independent. This process Lt consists of two components: the first one is the

diffusion component µ0t+σ0Wt, and the second one is the jump component
∑Nt

i=1Xi.

In the remainder of the thesis, we will impose the following assumptions con-

cerning Model 1:

(A1-1) The distribution of the jump size X is absolutely continuous with respect

to the Lebesgue measure.

(A1-2) The product λ∆ is small so that the term of order o(λ∆) in the expansion

e−λ∆ = 1− λ∆+ o(λ∆) is negligible.

The assumption (A1-1) is equivalent to the one that the distribution of jump

size X has a density function with respect to the Lebesgue measure. This is the

case for almost all financial applications where the jump-diffusion model is used.

Particular examples for jump size distribution include the normal distribution and

the double exponential distribution.

With the rapidly increasing computing power, the data set we work with in the

financial area can be daily or higher frequency. To justify the assumption (A1-2),

let us consider the following example: when ∆ = 1/250 (daily data) and λ = 12.5†,

∗This is equivalent to dLt = d lnSt = µ0dt+ σ0dWt +XdNt. By Ito’s formula for seminartin-

gales, this is also equivalent to dSt

St−
=
(
µ0 +

σ2
0

2

)
dt+ σ0dWt + (eX − 1)dNt.

†In Kou (2002), λ = 10 was used. Here we use λ = 12.5 for convenience.
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then λ∆ = 5%, which gives us e−λ∆ = 0.9512 and 1− λ∆ = 0.9500. The difference

between them is 0.0012, which is small. Thus the assumption (A1-2) seems to be

reasonable.

We are interested in the estimation of the jump component, including the jump

frequency and the jump size distribution. However, in practice, the parameters

in the diffusion component are also unknown. To separate the error due to the

estimation of the diffusion parameters from the error due to the estimation of the

jump component, in Chapters 2 and 3 we adopt the following assumption:

(A1-3) µ0 and σ0 are known.

This assumption will be removed in Chapter 4 and the subsequent chapters.

2.1.2 Methodology

The estimators of jump frequency and jump size distribution that we propose

are based on characteristic functions. The characteristic function (c.f.) of a random

variable X is defined by

φX(t) := E[eitX ], t ∈ R.

Its real and imaginary parts are denoted by

ℜ(φX(t)) = E[cos(tX)] =

∫
R
cos(tx) · fX(x)dx,

and

ℑ(φX(t)) = E[sin(tX)] =

∫
R
sin(tx) · fX(x)dx,

respectively, where fX is the pdf of the random variable X. Note that the notation

t in this thesis may have two meanings: one is the argument of a characteristic

function, and the other is the time index of a stochastic process. It should be easy

to distinguish them by the context.
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The following lemma describes the tail behavior of the characteristic function

of an absolutely continuous random variable. This result can be found in Lukacs

(1970, page 19). It can also be proved directly by the Riemann-Lebesgue Lemma.

Lemma 2.1.1. When a random variable is absolutely continuous, its characteristic

function satisfies lim|t|→∞ φ(t) → 0.

In the following we will find the characteristic function of increments of the

process Lt in (2.1). Let us denote the increments of Lt by

Yj := Lj∆ − L(j−1)∆

= µ0∆+ σ0
(
Wj∆ −W(j−1)∆

)
+

Nj∆∑
k=N(j−1)∆+1

Xk, j = 1, 2, ..., n.

Then the variables {Yj, j = 1, 2, ..., n} are i.i.d. Denote the increments of the

diffusion component by

Zj ≡ µ0∆+ σ0
(
Wj∆ −W(j−1)∆

)
, j = 1, 2, ..., n. (2.2)

Then {Zj, j = 1, 2, ..., n} are i.i.d. and Zj ∼ N (µ0∆, σ
2
0∆). Let Y be a random

variable that has the same distribution as the increments Yj’s, and Z be a random

variable with the same distribution as Zj’s. Since Yj = Zj +
∑Nj∆

k=N(j−1)∆+1Xk, the

characteristic function of Y is given by

φY (t) = E[exp{itYj}]

= E

exp
it

Zj + Nj∆∑
k=N(j−1)∆+1

Xk




= E

[
exp

{
it

(
Zj +

N∆∑
k=1

Xk

)}]
= φZ(t) · E

[
eit

∑N∆
k=1Xk

]
(2.3)
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where φZ(t) = eitµ0∆−t2σ2
0∆/2 is the characteristic function of Z, the third line is due

to the fact that
∑Nj∆

k=N(j−1)∆+1Xk and
∑N∆

k=1Xk have the same distribution, and in

the last line the independence between Zj and (Nt, X) is used.

By conditioning on the number of jumps occurring in the time interval [0,∆],

we have

E
[
eit

∑N∆
k=1Xk

]
= E

[
E
[
eit

∑N∆
k=1Xk |N∆

]]
=

∞∑
l=0

E
[
eit

∑l
k=1Xk

]
· P(N∆ = l)

=
∞∑
l=0

(φX(t))
l · (λ∆)l

l!
e−λ∆

= e−λ∆(1−φX(t)).

Therefore, by (2.3), we obtain the characteristic function of Y as

φY (t) = φZ(t) · e−λ∆(1−φX(t)). (2.4)

Due to the assumption (A1-2) and the fact that ∥1− φX(t)∥ ≤ 2, we have

e−λ∆(1−φX(t)) = 1− λ∆(1− φX(t)) + o(λ∆),

and the error term o(λ∆) is negligible.

Let us denote

α ≡ α(∆) := λ∆. (2.5)

Note that

P(N∆ ≥ 1) = 1− P(N∆ = 0) = 1− e−λ∆ = 1− (1− λ∆+ o(λ∆)) = λ∆+ o(λ∆),

that is, under the assumption (A1-2), α provides a good approximation of the

probability of at least one jump occurring during a time step of length ∆. Thus,

we may call α the jump ratio, since it approximates the expected proportion of

increments with jumps.
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Now, if we ignore the term o(λ∆), we can write (2.4) as

φY (t) = φZ(t) · (1− α + αφX(t)). (2.6)

The consequences of replacing (2.4) by (2.6) will be discussed in Section 2.1.3.

Representation (2.6) is an important formula, which we will use in the following to

derive estimators of the jump frequency and the jump size distribution.

Dividing both sides of (2.6) by φZ(t), we get

φY (t)

φZ(t)
= 1− α + αφX(t). (2.7)

By the assumption (A1-1) and Lemma 2.1.1, we have

lim
t→∞

φX(t) = 0.

Then, by taking the limits of both sides of (2.7), we get

α = 1− lim
t→∞

φY (t)

φZ(t)
. (2.8)

Since α is a real number, we may take the real part of the right-hand side to obtain

α = 1− lim
t→∞

ℜ
(
φY (t)

φZ(t)

)
. (2.9)

To characterize the distribution of X, we use equation (2.6) again to obtain

φX(t) =

φY (t)
φZ(t)

− (1− α)

α
. (2.10)

The two equations (2.9) and (2.10) form the basis of the method we propose in the

thesis to estimate the jump frequency and the jump size distribution.

2.1.3 An Equivalent Model

In this section we explain that equation (2.6) corresponds to a two-component

mixture model, and when we replace (2.4) by (2.6) we in fact approximate the

jump-diffusion model, i.e. Model 1 described in (2.1), by this mixture model.
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Suppose we have a random sample, {Y1, Y2, ..., Yn}, from the following model,

which we call Model 2:

Y = (1− I)Z + I(Z +X) (2.11)

where Z follows a normal distribution, Z ∼ N (µ0∆, σ
2
0∆); I is a Bernoulli random

variable with P(I = 1) = λ∆ = α; X represents the jump size with an unknown

distribution function; and (Z,X, I) are mutually independent. This model corre-

sponds to a two-component mixture model, where one component follows a normal

distribution and the other component follows the convolution of the normal distri-

bution and the jump size distribution. We assume that Model 2 satisfies:

(A2-1) The distribution function of X is absolutely continuous.

(A2-2) µ0 and σ0 are known.

In the following we show that Model 2 with assumption (A2-1) approximates

Model 1 with assumptions (A1-1) and (A1-2).

Let us observe that the mixture model (2.11) can be rewritten as

Y = Z + V,

where V := IX. Since Z is independent of (I,X), Z is independent of V . Thus

φY (t) = E[eitY ] = E[eit(Z+V )] = E[eitZ ] · E[eitV ] = φZ(t) · φV (t), (2.12)

where

φV (t) = E[eitV ] = E[eitIX ]

= 1 · P(I = 0) + E[eitX ] · P(I = 1)

= (1− α) + αφX(t).

Therefore,

φY (t) = φZ(t) · (1− α + αφX(t)).
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This is the same equation as (2.6) for Model 1, which was obtained by ignoring the

error term, o(λ∆).

Therefore, the distribution of Y in the mixture model (i.e. Model 2) approxi-

mates the distribution of the increments Y in the jump-diffusion model (i.e. Model

1). More specifically, Model 2 with assumption (A2-1) approximates Model 1 with

assumptions (A1-1) and (A1-2).

In the remainder of the thesis, we consider a sequence of independent random

variables Y1, Y2, ..., Yn, ... following the distribution with the c.f. given by (2.6). Note

that this distribution describes Model 2 exactly, but Model 1 only approximately.

Now we derive the cumulative distribution function (cdf) and probability density

function (pdf) of Y in Model 2. Equation (2.11) can be rewritten as

Y = (1− I)Z + IG, (2.13)

where G := Z +X. By the independence between I and (Z,G), the cdf of Y is

FY (y) = P(Y ≤ y)

= P((1− I)Z + IG ≤ y)

= P (Z ≤ y|I = 0) · P(I = 0) + P(G ≤ y|I = 1) · P(I = 1)

= (1− α)ΦZ(y) + αFG(y).

(2.14)

Since G = Z+X and Y = Z+IX, by Theorem C.0.4 in Appendix C, we have that

G and Y are both absolutely continuous, i.e. their density functions exist. Then,

from (2.14), the pdf of Y is given by

fY = (1− α)ϕZ + αfG. (2.15)

Furthermore, since G = Z + X, we have fG = ϕZ ∗ fX , where ∗ denotes the

convolution of two functions. Then equation (2.15) becomes

fY = (1− α)ϕZ + α(ϕZ ∗ fX). (2.16)
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2.1.4 Proposed Estimator

From Section 2.1.2 we see that Z follows a normal distribution Z ∼ N (µ0∆, σ
2
0∆).

To ease the notation, we may define, for a given data frequency ∆,

µ := µ0∆ and σ := σ0
√
∆. (2.17)

Then the characteristic function of Z is given by

φZ(t) = eiµt−
1
2
σ2t2 . (2.18)

By assumption (A1-3), µ and σ are known. Thus, using (2.9) we may define an

estimator of the jump ratio α by

α̂ = 1− lim
t→∞

ℜ
(

φ̂Y (t)

eiµt−
1
2
σ2t2

)
, (2.19)

where φ̂Y is an estimator of the characteristic function of Y . After obtaining α̂, we

can use (2.10) to introduce an estimator of the distribution of the jump size X in

terms of its characteristic function by

φ̂X(t) =

φ̂Y (t)

eiµt−
1
2σ2t2

− (1− α̂)

α̂
. (2.20)

To define an estimator completely, we have to address the following two issues:

• how to obtain an estimator of φY (t), where Y is observable.

• how to deal with the limit of t going to infinity in (2.19). An appropriate

selection of t might be necessary.

We first look at methods of estimating the c.f. of Y . One straightforward

approach is to use the empirical characteristic function. Other estimators of the

characteristic function will be discussed in Section 2.4.
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Given a random sample Y1, Y2, ..., Yn from the distribution of Y , the empirical

characteristic function (e.c.f.) of Y is defined by

φ̂Y (t) :=
1

n

n∑
j=1

eitYj , t ∈ R. (2.21)

By the strong law of large numbers, the e.c.f. is a strongly consistent estimator of

the underlying characteristic function, i.e. φ̂Y (t) → φY (t) a.s. for any fixed t ∈ R.

Notice that in the estimator of the jump frequency and the estimator of the

jump size distribution, the ratio of characteristic functions φY (t)/φZ(t) plays an

important role. By (2.12), this ratio is equal to φV (t). Using the e.c.f. (2.21) and

the c.f. of Z in (2.18), we can estimate the c.f. of V by

φ̂V (t) = φ̂Y (t)/φZ(t)

=
1

n

n∑
j=1

eitYj · e−iµt+
1
2
σ2t2

= e
1
2
σ2t2 1

n

n∑
j=1

ei(Yj−µ)t

= e
1
2
σ2t2

{
1

n

n∑
j=1

cos((Yj − µ)t) + i · 1
n

n∑
j=1

sin((Yj − µ)t)

}
.

(2.22)

Therefore, the estimator (2.19) becomes

α̂ = 1− lim
t→∞

ℜ(φ̂V (t))

= 1− lim
t→∞

{
e

1
2
σ2t2 · 1

n

n∑
j=1

cos((Yj − µ)t)

}
.

(2.23)

However, this estimator cannot be used directly because it involves the limit of t

going to infinity and the limit does not exist. In practice we have to use a finite t,

and thus in the following we consider the estimators of the form

α̂(t) := 1−ℜ(φ̂V (t))

= 1− e
1
2
σ2t2 · 1

n

n∑
j=1

cos((Yj − µ)t)
(2.24)
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with t > 0, and then we select an appropriate value of t. Since α is allowed to take

values only in the interval [0,1], we may trim α̂(t) by one from above and by zero

from below. However, it might be difficult to establish any theoretical property

of such an estimator. In the following we still consider α̂(t) in (2.24), but in the

simulation studies we will truncate values of our estimators to the interval [0, 1].

The formula (2.23) suggests that it is better to choose a large value of t. Howev-

er, as we will see later, when t becomes large, the variance of α̂(t) increases quickly,

which suggests that t cannot be chosen too large. A detailed discussion on the

selection of t will be provided in Section 2.2 and Section 2.3.

To gain some insight into the basic properties of the estimator α̂(t), in the

following we present two examples based on simulated data. We simulate the data

using the mixture model (i.e. Model 2), instead of the jump-diffusion model (i.e.

Model 1). This assures that there will be at most one jump occurring in one time

interval and α is exactly the expected proportion of jump observations. We have

checked that, comparing with generating observations based on the jump-diffusion

model, the difference in the estimation results of the jump frequency is small.

Example 2.1.2 (Merton Model). In the Merton model, the jump size X follows

a normal distribution. Denote X ∼ N (µX , σ
2
X), where typically σX > σ. The

parameters are set as follows:

• ∆ = 1/250, i.e. daily data. Other values of ∆ will be discussed in Chapter 3.

• µ0 = 0.1, σ0 = 0.2.‡ This implies that the expected daily return is µ =

0.1×∆ = 4× 10−4, and the daily volatility is σ = 0.2×
√
∆ ≈ 1.26%.

‡Throughout the thesis, the parameters µ0 = 0.1, σ0 = 0.2 are used in all examples, unless

otherwise stated. Note that it is the difference between the diffusion distribution and the jump

size distribution, rather than the diffusion distribution itself, that decides the performance of the

method.
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• α = 0.05. Equivalently, the jump intensity is λ = 12.5, i.e. there are 12.5

jumps per year on average.

• µX = 0, σX = 3× 0.2×
√

1/250 ≈ 3.79%.§

Note that the parameters µ0, σ0 in the diffusion component and the jump intensity

λ are close to the ones in Kou (2002). The expected value µX is assumed zero

for convenience, and later other values of µX will also be discussed. The standard

deviation σX of the jump size distribution is not far from the one in Kou (2002).

For the time horizon, we use data set over a 10-year period, i.e. T = 10. Then

the sample size is n = T/∆ = 2500.

Figure 2.1: Twenty curves of α̂(t) [Merton]
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After generating a sample of n = 2500 observations, we use equation (2.24) to

obtain a curve of α̂(t) with respect to t. Repeating this 20 times we obtain Figure

2.1. From this figure we can see that, as t increases from zero, α̂(t) starts at zero

and then increases but later it could increase to large positive values or decrease to

§Here σX = 3 ∗ σ, i.e. the standard deviation of jump size is equal to triple of daily volatility.

In the following we show that this is large enough to obtain good estimates of jump frequency,

although a larger value of σX would definitely lead to a better estimate.
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large negative values. This suggests that the variance of α̂(t) increases significantly

as t increases.

Example 2.1.3 (Kou Model). In the Kou model, the jump size X follows a double

exponential distribution with the pdf given by (1.6):

f(x) = pη1e
−η1x1{x>0} + (1− p)η2e

−η2|x|1{x<0}.

As in the Merton model, we set

• ∆ = 1/250; µ0 = 0.1; σ0 = 0.2; α = 0.05 (i.e. λ = 12.5).

The double exponential parameters are the same as the ones in Kou (2002), i.e.

• p = 0.3; η1 = 1/0.02; η2 = 1/0.04.

Then we have E(X) = −2.2% and SD(X) = 4.47%. That is, the average jump

size is −2.2%, the standard deviation of jump size is 4.47%, and on average 70% of

jumps are downward since p is the probability of a jump being positive.

Figure 2.2: Twenty curves of α̂(t) [Kou]
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As in the Merton model, we consider daily data over a 10-year period, i.e.

n = 2, 500. Figure 2.2 shows 20 curves of α̂(t) for t ∈ [0, 150].
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Similarly to the Merton model, the variance of α̂(t) increases quickly as t in-

creases. As we will explain in Section 2.2, in both cases the main reason for this

behavior is the term e
1
2
σ2t2 in equation (2.24). From the plot we may infer that, for

a fixed sample size n, a judicious selection of t is necessary to obtain an accurate

estimate of α.

Remark 2.1.4. Although invisible in Figure 2.1 or Figure 2.2, each curve α̂(t), t ≥ 0,

in these two figures is oscillating between large positive numbers and large negative

numbers. This is because the term 1
n

∑n
j=1 cos((Yj − µ)t) in equation (2.24), which

corresponds to a sample average, is oscillating around its theoretical mean, but the

term e
1
2
σ2t2 inflates the pattern significantly, especially when t is large.

2.1.5 Identifiability Problem

Now we discuss an important issue for mixture models: the identifiability prob-

lem. In general, a parametric distribution family is said to be identifiable if different

parametric values generate different members of the family. The identifiability for

our problem can be defined similarly. The estimation problem would become mean-

ingless if the model is not identifiable.

For the mixture model in (2.11), if we only look at the pdf given by (2.15):

fY = (1− α)ϕZ + αfG, (2.25)

we might infer that α and fG are not identifiable, even in the case when the pa-

rameters µ and σ in the normal density ϕZ are known. This is because for any

α belonging to the set A = {α ∈ (0, 1) : fG = (fY − (1 − α)ϕZ)/α ≥ 0}, there
exists a well-defined fG for which (2.25) holds. There is no guarantee that the set

A contains only one value: for example, if α0 ∈ A, then α0 + ϵ for some ϵ > 0

might also belong to A. Therefore, α and fG in (2.25) might not be identifiable. A

32



specific counter-example is given by the following equality:

(1− α) · ϕ(x) + α · ϕ(x− 2) + ϕ(x)

2
=
(
1− α

2

)
· ϕ(x) + α

2
· ϕ(x− 2),

where ϕ is an arbitrary even pdf. Comparing with the right side of (2.25), we may

see that α and fG in (2.25) are not identifiable.

However, based on the procedure we used to derive the proposed estimators, as

summarized by equations (2.9) and (2.10), we see that, when µ and σ are known,

α is indeed uniquely determined by φY and φZ , and so is the distribution of X. In

the following we provide some further explanations as to why the mixture model

(2.11) is indeed identifiable.

Let us look at the pdf of Y given by (2.16). To simplify the notation, we drop

the subscripts and, with some abuse of the notation, rewrite (2.16) as

f = (1− α)ϕ+ α(ϕ ∗ g), (2.26)

where g is the pdf of the jump size X. We would like to investigate whether α and

g are identifiable. For any fixed β ∈ (0, 1), (2.26) can be represented as

f = (1− β)ϕ+ β

[(
α

β

)
ϕ ∗ g +

(
1− α

β

)
ϕ

]
.

Now we ask this question: can we write
(
α
β

)
ϕ ∗ g +

(
1− α

β

)
ϕ = ϕ ∗ gnew for some

gnew? The answer is yes.[(
α

β

)
ϕ ∗ g +

(
1− α

β

)
ϕ

]
(x)

=
α

β

∫ ∞

−∞
ϕ(y)g(x− y)dy +

(
1− α

β

)
ϕ(x)

=

∫ ∞

−∞
ϕ(y)

(
α

β

)
g(x− y)dy +

∫ ∞

−∞
ϕ(y)

(
1− α

β

)
δ(x− y)dy

=

∫ ∞

−∞
ϕ(y)

[(
α

β

)
g(x− y) +

(
1− α

β

)
δ(x− y)

]
dy

= [ϕ ∗ gnew] (x)
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where

gnew =

(
α

β

)
g +

(
1− α

β

)
δ,

and δ will be defined shortly. However, this gnew is not absolutely continuous.

The reason is given as follows. Firstly, let us explain the notation δ(·). It can be

viewed as an identity element for convolution, i.e. h ∗ δ = h for any function h.

As we know, there is no identity element for convolution in L1 (otherwise, we may

use the Fourier inversion combining with the Riemann-Lebesgue Lemma to reach

a contradiction). In other words, there is no absolute continuous distribution such

that its density function δ(·) satisfies ϕ∗δ = ϕ. Instead, there exist other “functions”

which work as the identity element for convolution: the Dirac delta function and the

Kronecker delta function. They correspond to a singular distribution and a discrete

distribution whose cumulative distribution functions are the same and given by

F (x) =

1 if x ≥ 0

0 if x < 0.

Therefore, δ(·) is not absolutely continuous. This implies that gnew is not absolutely

continuous. Thus, we conclude that, when the diffusion parameters are known, the

condition that “X is absolutely continuous” ensures the identifiability of the two-

component mixture model (2.11).

When the diffusion parameters µ and σ are unknown, the identifiability problem

may occur. However, robust estimation can provide good estimates of µ and σ when

the jump ratio is not too large. Besides, the jump ratio decreases by the availability

of higher frequency data, and as a result we can have more efficient estimation of

µ and σ. Therefore, we do not need to worry too much about the identifiability

problem for this case. More details about this case will be discussed in Chapter 3.
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2.2 Properties of the Proposed Estimator

As an estimator of α we can use (2.24), which is of the form

α̂(t) = 1− e
1
2
σ2t2 · 1

n

n∑
j=1

cos((Yj − µ)t)

for an appropriate value of t. To select t, it is helpful to analyze the bias and

variance of α̂(t) as functions of t. We discuss this in Section 2.2.1. The consistency

and asymptotic distribution of α̂(t) are discussed in Section 2.2.2 and Section 2.2.3.

Some further explanation of our method are provided in Section 2.2.4. The selection

of t for finite samples will be investigated in Section 2.3.

2.2.1 Mean and Variance

The following result provides the formulas for the bias, variance and mean

squared error (MSE) of the estimator α̂(t), t > 0.

Proposition 2.2.1. Consider the estimator α̂(t) defined in (2.24), and denote

R(t) := ℜ(φX(t)), t > 0. Then we have the following:

(i) The expectation of α̂(t) is given by

E(α̂(t)) = α− αR(t), (2.27)

and hence the bias of α̂(t) is

bias(α̂(t)) = E[α̂(t)]− α = −αR(t). (2.28)

Moreover, bias(α̂(t)) → 0 as t→ ∞.

(ii) The variance of α̂(t) is given by

Var(α̂(t)) =
1

2n

(
eσ

2t2 + e−σ
2t2 [1− α + αR(2t)]− 2 [1− α + αR(t)]2

)
(2.29)
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and the mean squared error is given by

MSE(α̂(t)) = (bias(α̂(t)))2 + Var(α̂(t))

=
1

n

{
1

2

(
eσ

2t2 + e−σ
2t2 [1− α + αR(2t)]

)
−(1− α)2 − 2α(1− α)R(t) + (n− 1)α2R2(t)

}
.

(2.30)

(iii) The optimal value of t which minimizes the MSE is the solution to the

equation

σ2t
(
eσ

2t2 − e−σ
2t2 [1− α + αR(2t)]

)
+ αe−σ

2t2R′(2t)

− 2α(1− α)R′(t) + 2(n− 1)α2R(t)R′(t) = 0
(2.31)

provided that it exists and at this value of t the second derivative of MSE(α̂(t)) is

non-negative.

Proof. (i) The expectation of α̂(t) is given by

E[α̂(t)] = E

[
1− e

1
2
σ2t2 · 1

n

n∑
j=1

cos((Yj − µ)t)

]

= 1− e
1
2
σ2t2E [cos((Y − µ)t)] .

Let φY−µ(t) denote the characteristic function of the random variable Y −µ. Then

E [cos((Y − µ)t)] = ℜ (φY−µ(t)) .

Using the fact that

φY−µ(t) = E
[
eit(Y−µ)] = e−iµtφY (t)

and the equation (2.6), we obtain

E [cos((Y − µ)t)] = ℜ
(
e−iµt · eiµt−

1
2
σ2t2 · [(1− α) + αφX(t)]

)
= e−

1
2
σ2t2 · ℜ ([1− α+ αφX(t)])

= e−
1
2
σ2t2 [1− α+ αR(t)] .

(2.32)
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Therefore,

E[α̂(t)] = 1− e
1
2
σ2t2 · e−

1
2
σ2t2 · [1− α + αR(t)]

= 1− [1− α + αR(t)]

= α− αR(t).

It follows that the bias of α̂(t) is given by

bias(α̂(t)) = E[α̂(t)]− α = −αR(t).

With the assumption (A2-1), we have that limt→∞ φX(t) = 0, which implies that

bias(α̂(t)) → 0 as t→ ∞.

(ii) The variance of α̂(t) is given by

Var(α̂(t)) = Var

(
1− e

1
2
σ2t2 · 1

n

n∑
j=1

cos((Yj − µ)t)

)

= eσ
2t2 · 1

n
Var (cos((Y − µ)t))

=
1

n
eσ

2t2 ·
{
E
[
cos2((Y − µ)t)

]
− (E [cos((Y − µ)t)])2

}
.

Then using the formula cos2 x = (1 + cos 2x)/2 we obtain

E
[
cos2((Y − µ)t)

]
=

1

2
· E [1 + cos((Y − µ) · 2t)]

=
1

2

(
1 + e−2σ2t2 [1− α+ αR(2t)]

)
.

Therefore,

Var(α̂(t)) =
1

n
eσ

2t2 ·
{
1

2

(
1 + e−2σ2t2 [1− α + αR(2t)]

)
−
(
e−

1
2
σ2t2 [1− α + αR(t)]

)2}
=

1

n
eσ

2t2 · 1
2

{
1 + e−2σ2t2 [1− α + αR(2t)]− 2e−σ

2t2 [1− α + αR(t)]2
}

=
1

2n

(
eσ

2t2 + e−σ
2t2 [1− α + αR(2t)]− 2 [1− α + αR(t)]2

)
,

where in the first line we used (2.32).
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(iii) Now we can calculate the MSE:

MSE(α̂(t)) = [bias(α̂(t))]2 +Var(α̂(t))

= [−αR(t)]2 + 1

2n

(
eσ

2t2 + e−σ
2t2 [1− α+ αR(2t)]

)
− 1

n
[1− α + αR(t)]2

= [−αR(t)]2 + 1

2n

(
eσ

2t2 + e−σ
2t2 [1− α+ αR(2t)]− 2 [1− α+ αR(t)]2

)
=

1

2n

(
eσ

2t2 + e−σ
2t2 [1− α + αR(2t)]− 2 [1− α + αR(t)]2 + 2nα2R2(t)

)
=

1

n

{
1

2

(
eσ

2t2 + e−σ
2t2 [1− α + αR(2t)]

)
−(1− α)2 − 2α(1− α)R(t) + (n− 1)α2R2(t)

}
.

To find the optimal value of t which minimizes the MSE, we differentiate MSE(α̂(t))

with respect to t to obtain

∂(MSE(α̂(t)))

∂t
=

1

n

{
σ2t
(
eσ

2t2 − e−σ
2t2 [(1− α) + αR(2t)]

)
+ αe−σ

2t2R′(2t)

−2α(1− α)R′(t) + 2(n− 1)α2R(t)R′(t)
}
.

Thus the optimal value of t which minimizes the MSE is the solution to the equation

σ2t
(
eσ

2t2 − e−σ
2t2 [1− α + αR(2t)]

)
+ αe−σ

2t2R′(2t)

− 2α(1− α)R′(t) + 2(n− 1)α2R(t)R′(t) = 0,

provided that it exists and at this value of t the second derivative of MSE(α̂(t)) is

non-negative. �

The special cases in which X follows either a normal distribution (in the Merton

model) or a double exponential distribution (in the Kou model) are discussed in

the following two corollaries.

Corollary 2.2.2 (Merton model). When the jump size X ∼ N (µX , σ
2
X), we have

R(t) = ℜ(φX(t)) = cos(µXt) · e−
1
2
σ2
X t

2
. Thus the expectation of α̂(t) is

E(α̂(t)) = α− α cos(µXt) · e−
1
2
σ2
X t

2

,
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and the variance of α̂(t) is

Var(α̂(t)) =
1

2n

{
eσ

2t2 + e−σ
2t2
[
1− α + α cos(2µXt) · e−2σ2

X t
2
]

−2
(
1− α + α cos(µXt) · e−

1
2
σ2
X t

2
)2}

.

The mean squared error can be found by (2.30), and the optimal value of t which

minimizes the MSE is the solution to equation (2.31).

Corollary 2.2.3 (Kou model). When the jump size X follows a double exponential

distribution with the pdf (1.6), we have

φX(t) =
pη1

η1 − it
+

qη2
η2 + it

(2.33)

and thus

R(t) ≡ ℜ(φX(t)) =
pη21

η21 + t2
+

qη22
η22 + t2

.

Then the expectation of α̂(t) is

E(α̂(t)) = α− α

(
pη21

η21 + t2
+

qη22
η22 + t2

)
,

and the variance of α̂(t) is

Var(α̂(t)) =
1

2n

{
eσ

2t2 + e−σ
2t2
[
1− α + α

(
pη21

η21 + 4t2
+

qη22
η22 + 4t2

)]
−2

[
1− α + α

(
pη21

η21 + t2
+

qη22
η22 + t2

)]2}
.

The mean squared error can be found by (2.30), and the optimal value of t which

minimizes the MSE is the solution to equation (2.31).

In the above two corollaries, the optimal values of t which minimize the corre-

sponding MSE’s cannot be solved explicitly. But we can use numerical procedure

to evaluate them.
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Remark 2.2.4. We observe that the parameter µ does not enter the bias or variance

formula for α̂(t), and hence it has no effect on the accuracy of estimation of α.

However, when we assume µ unknown, as is the case in Chapter 4, the accuracy of

its estimate does play a role in the accuracy of the estimation of α (see Proposition

4.2.2).

In the following we discuss the asymptotic unbiasedness of the estimator α̂(t).

By the expectation formula in (2.27), α̂(t) is biased for any fixed value of t. Since

the expectation does not depend on the sample size n, we might think that it is

even not asymptotically unbiased as n goes to infinity. However, there is a tuning

parameter t which, as we will explain later, may be allowed to depend on the sample

size n in a way similar to how the window width depends on the sample size in the

context of kernel density estimation. When the sample size increases, the selected

value of t can increase. We also have limt→∞R(t) = 0 by Lemma 2.1.1. Thus, we

obtain the following corollary.

Corollary 2.2.5. The estimator α̂(t) defined by (2.24) is asymptotically unbiased

if the selected value of t satisfies limn→∞ t(n) → ∞.

Note that this corollary holds regardless of the speed of t going to infinity as a

function of n.

In the following examples we apply the above bias and variance analysis to the

Merton model and the Kou model.

Example 2.2.6 (Merton Model). With the same parameter setting as in Example

2.1.2, Figure 2.3 shows the expectation, variance and MSE of α̂(t) using the formulas

presented in Proposition 2.2.1.

From the figure we can see that, as t increases, the expected value of the esti-

mator approaches the true value of α ≡ 0.05. But the variance increases rapidly,

which confirms the first impression we had from Examples 2.1.2 and 2.1.3. The
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Figure 2.3: Mean, std and MSE of α̂(t) [Merton]
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MSE first decreases and then increases to infinity, which suggests an “optimal”

selection of t. Using a numerical procedure, we find that the smallest value of the

MSE corresponds to topt = 56.2789. At this point, we have MSEmin = 1.0767×10−4,

Mean = 0.0449 (i.e. bias=0.0041) and SD = 0.0090. Since the mean value is close

to the true value of α, and the standard deviation is small relative to the true

value of α, we can conclude that the estimate α̂(t) at this “optimal” selection of t

performs well.

Example 2.2.7 (Kou Model). With the same parameter setting as in Example

2.1.3, Figure 2.4 shows the expectation, variance and MSE of α̂(t) using the formulas

in Proposition 2.2.1.

Comparing this figure with Figure 2.3 for the Merton model, the plot of the

standard deviation is similar, but the expectation approaches the true level of α

at a lower speed. This would suggest that our estimator should perform better

for the Merton model than for the Kou model. In this figure, the lowest point on

the MSE curve corresponds to topt = 61.9214 at which MSEmin = 2.2055 × 10−4,

Mean = 0.0392 (i.e. bias=0.0108) and SD = 0.0102. The bias is significantly larger
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Figure 2.4: Mean, std and MSE of α̂(t) [Kou]
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than the one for the Merton model.

2.2.2 Consistency

In this section we investigate the conditions under which our estimator is con-

sistent. We assume that the time horizon T of the available data increases but the

data frequency ∆ remains constant. Another type of asymptotics for which the

data frequency increases will be discussed in Chapter 3.

Let Tn denote the selection of t for a given sample size n. Define a triangular

array of random variables by

Bnj ≡ Bj(Tn) := 1− e
1
2
σ2T 2

n cos((Yj − µ)Tn), 1 ≤ j ≤ n, n ≥ 1. (2.34)

Then our estimator becomes

α̂n ≡ α̂(Tn) =
1

n

n∑
j=1

Bj(Tn) =
1

n

n∑
j=1

Bnj, n ≥ 1. (2.35)

Note that, for a fixed n, α̂n can be viewed as a sample average of the i.i.d. random
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variables Bn1, Bn2, ...Bnn. But each of these random variables depend on the sample

size n through Tn.

In the following we first discuss the weak consistency of α̂n, and then discuss its

strong consistency.

Theorem 2.2.8 (Weak consistency). Consider Model 2 in (2.11) with assumptions

(A2-1) and (A2-2), and the estimator α̂(t) defined by (2.24). Let Cn be a sequence

of positive real numbers such that

Cn → ∞ and Cn/n→ 0

as n→ ∞. Then for

Tn =
√

lnCn/σ

we have that, as n→ ∞,

α̂n ≡ α̂(Tn)
p−→ α.

Proof. It suffices to show that for any ϵ > 0, we have

P(|α̂n − α| > ϵ) → 0 as n→ ∞.

Using Proposition 2.2.1, we have

P(|α̂n − α| > ϵ) ≤ P(|α̂n − Eα̂n|+ |Eα̂n − α| > ϵ)

= P(|α̂n − Eα̂n| > ϵ− |Eα̂n − α|)

= P (|α̂(Tn)− E(α̂(Tn))| > ϵ− α|R(Tn)|) .

By Chebyshev’s inequality, the expression in the last line is bounded from above

by

Var(α̂(Tn))

(ϵ− α|R(Tn)|)2

=

1
2n

(
eσ

2T 2
n + e−σ

2T 2
n [1− α + αR(2Tn)]− 2 [1− α + αR(Tn)]

2
)

(ϵ− α|R(Tn)|)2
,
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where the variance formula (2.29) is used. Note that “Cn → ∞ and Cn/n → 0” is

equivalent to “Tn → ∞ and eσ
2T 2

n/n → 0”. Moreover, R(Tn) → 0 by assumption

(A2-1). Hence, the numerator in the above ratio goes to zero and the denominator

goes to ϵ2. Therefore,

P(|α̂n − α| > ϵ) → 0 as n→ ∞.

The proof is complete. �

We actually have a stronger result under the same conditions.

Theorem 2.2.9. With the same conditions as in Theorem 2.2.8, the estimator

α̂n ≡ α̂(Tn) is consistent in the mean-square sense, meaning that E|α̂n − α|2 → 0

as n→ ∞.

Proof. To see this, we can write E|α̂n − α|2 = Var(α̂n) + bias2(α̂n). From the

proof of Theorem 2.2.8 we know that Var(α̂n) → 0 and bias(α̂n) → 0 as n → ∞.

Thus, E|α̂n − α|2 → 0 as n→ ∞. �

In the following we prove the strong consistency of α̂n. Firstly, we state a

probability inequality for sums of bounded random variables, which was proved by

Hoeffding (1963).

Lemma 2.2.10 (Hoeffding’s inequality). Suppose that X1, X2, ..., Xn are indepen-

dent, µi = E[Xi], and ai ≤ Xi ≤ bi almost surely for i = 1, 2, ..., n. Then, for

ϵ > 0,

P

(
1

n

n∑
i=1

Xi −
1

n

n∑
i=1

µi ≥ ϵ

)
≤ e−2n2ϵ2/

∑n
i=1(bi−ai)2 .
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Theorem 2.2.11 (Strong consistency). Consider Model 2 in (2.11) with assump-

tions (A2-1) and (A2-2), and the estimator α̂(t) defined by (2.24). Let Cn be a

sequence of positive real numbers such that

Cn → ∞

as n→ ∞, and
∞∑
n=1

e−
γ·n
Cn <∞

for any γ > 0. Then for

Tn =
√

lnCn/σ

we have that, as n→ ∞,

α̂n ≡ α̂(Tn)
a.s.−→ α.

Proof. We want to show that α̂n − α
a.s.−→ 0, i.e. α̂n − Eα̂n + Eα̂n − α

a.s.−→ 0.

Since Eα̂n − α = αR(Tn) → 0, we only need to show α̂n − Eα̂n
a.s.−→ 0. By the

Borel-Cantelli lemma, it suffices to prove that for any ϵ > 0, we have

∞∑
n=1

P(|α̂n − Eα̂n| > ϵ) <∞.

From equation (2.35) we see that, for a fixed n, α̂n can be viewed as a sample

average of the i.i.d. random variables Bnj’s, j = 1, 2, ..., n. Since

1− e
1
2
σ2T 2

n ≤ Bnj ≤ 1 + e
1
2
σ2T 2

n ,
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we apply Hoeffding’s inequality given in Lemma 2.2.10 to obtain

P(α̂n − Eα̂n ≥ ϵ) = P

(
1

n

n∑
j=1

Bnj −
1

n

n∑
j=1

EBnj ≥ ϵ

)

≤ exp

− 2n2ϵ2∑n
j=1

[
1 + e

1
2
σ2T 2

n − (1− e
1
2
σ2T 2

n)
]2


= exp

− 2n2ϵ2∑n
j=1

[
2e

1
2
σ2T 2

n

]2


= exp

{
− nϵ2

2eσ2T 2
n

}
.

(2.36)

It is easy to check that, if we reverse the sign of Bnj’s, the inequality in (2.36) still

holds. That is, we also have

P(α̂n − Eα̂n ≤ −ϵ) ≤ exp

{
− nϵ2

2eσ2T 2
n

}
.

Therefore,

∞∑
n=1

P(|α̂n − Eα̂n| ≥ ϵ) =
∞∑
n=1

P(α̂n − Eα̂n ≥ ϵ) +
∞∑
n=1

P(α̂n − Eα̂n ≤ −ϵ)

≤ 2
∞∑
n=1

exp

{
− nϵ2

2eσ2T 2
n

}
.

Let γ = ϵ2

2
> 0, then

∞∑
n=1

P (|α̂n − Eα̂n| ≥ ϵ) ≤ 2
∞∑
n=1

exp
{
− γ · n
eσ2T 2

n

}
.

Therefore, if
∑∞

n=1 exp
{
− γ·n
eσ

2T2
n

}
< ∞ for any γ > 0, then the strong consistency

of α̂n holds. Let Cn = eσ
2T 2

n , we reach the statement in the theorem. �

Remark 2.2.12. As we know, the series
∑∞

n=1 an < ∞ implies an → 0. Therefore,

the sequence Cn which satisfies
∑∞

n=1 e
− γ·n

Cn <∞ for any γ > 0 also satisfies Cn

n
→ 0.
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That is, the condition for strong consistency of α̂n is stronger than the condition

for weak consistency of α̂n.

Remark 2.2.13. One example of sequences satisfying the conditions “Cn → ∞ as

n → ∞” and “
∑∞

n=1 e
− γ·n

Cn < ∞ for any γ > 0” is Cn = n
(lnn)2

. To see this, we

first apply the L’Hospital’s rule to prove Cn = n
(lnn)2

→ ∞. Then we can show

“
∑∞

n=1 e
− γ·n

Cn <∞ for any γ > 0” as follows: For any γ > 0, we have

lim
x→∞

γ · (lnx)
2

lnx2
= lim

x→∞
γ ·

2 ln x · 1
x

1
x2

· 2x
= lim

x→∞
γ · lnx = ∞.

Then there exists (for any γ) an integer N such that for all n > N

γ(lnn)2 > lnn2,

which implies that

e−γ(lnn)
2

< e− lnn2

=
1

n2
.

Then ∑
n>N

e−γ
n
Cn <

∑
n>N

1

n2
.

Since
∑∞

n=1
1
n2 <∞, we have

∑∞
n=1 e

− γ·n
Cn <∞.

In the following we use the Merton model as an example to illustrate the impact

of the sample size n on the estimation accuracy, where the selection of t is based

on the criterion of minimizing the MSE.

Example 2.2.14 (Merton model). With all the other parameters the same as the

ones in Example 2.1.2, we increase the sample size to n = 4∗2, 500 = 10, 000, which

corresponds to a 40-year daily data set. In Figure 2.5, we plot the expectation,

standard deviation and MSE of α̂(t) using the formulas in Proposition 2.2.1. By

comparing this graph with Figure 2.3, we can see that the mean value stays the

same (as expected, because the expectation of α̂(t) does not depend n), but the

variance decreases for any fixed value of t. From Proposition 2.2.1 we can see
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that when the sample size increases to four times of the original one, the standard

deviation reduces to half of the original standard deviation. Now the lowest point

on the MSE curve corresponds to topt = 63.1587; at which MSEmin = 3.6958×10−5,

Mean = 0.0472 and SD = 0.0054. Thus, the optimal value of t (denoted by topt)

increases, and the performance of α̂(t) at the point topt improves in both bias and

variance.

Figure 2.5: Mean, std and MSE of α̂(t) [Merton] (n = 10, 000)
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Table 2.1 further shows how topt depends on the sample size, which is implied

by the time horizon T since the data frequency is fixed (as being daily). We can

see that topt increases when the sample size increases, but the rate of the increase

is very slow (and the rate is difficult to determine). Both the bias and the variance

of α̂(t) at topt decrease when the sample size increases. Note that in reality it is

impossible to have 106 as the number of years of data, and this table only provides

theoretical findings.
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Table 2.1: Relation between the selection of t and the time horizon T

T topt MSEmin Mean St. Dev.

10 56.2789 1.0767e-004 0.0449 0.0090

40 63.1587 3.6958e-005 0.0472 0.0054

102 67.3448 1.7914e-005 0.0481 0.0038

103 76.9574 2.7742e-006 0.0493 0.0015

104 85.5996 4.0888e-007 0.0497 5.8614e-004

105 93.5120 5.8100e-008 0.0499 2.2274e-004

106 100.8452 8.0314e-009 0.0500 8.3318e-005

2.2.3 Asymptotic Normality

In this section we discuss the asymptotic distribution of the proposed estima-

tor. The type of asymptotics is the same as the one for consistency discussed in

the beginning of the previous section. There are two results for the asymptotic

distribution: the first one is applicable in the case when t is fixed, and the second

one is for the case when the selection of t depends on the sample size.

Theorem 2.2.15. For a fixed t, as n→ ∞ we have

√
n (α̂(t)− µ∗)

d−→ N (0, σ∗2)

where µ∗ = α− αR(t) and

σ∗2 =
1

2

(
eσ

2t2 + e−σ
2t2 [1− α + αR(2t)]− 2 [1− α + αR(t)]2

)
.

Proof. The definition of α̂(t) in equation (2.24) can be rewritten as

α̂(t) =
1

n

n∑
j=1

[
1− e

1
2
σ2t2 cos((Yj − µ)t)

]
.
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Thus, for a fixed t, α̂(t) can be viewed as a sample average of the i.i.d. random

variables Dj ≡ 1 − e
1
2
σ2t2 cos((Yj − µ)t), j = 1, 2, ..., n. Applying the central limit

theorem, we obtain
√
n (α̂(t)− E[α̂(t)]) d−→ N (0, σ∗2)

as n → ∞, where σ∗2 = nVar[α̂(t)], and the expectation and variance of α̂(t) are

given in Proposition 2.2.1. �

Using the above result, we can find the confidence interval (CI) of α̂(t) for any

fixed value of t.

Corollary 2.2.16. For any fixed value of t, the β-CI of α̂(t) is given by (µ∗ −
kσ∗/

√
n, µ∗ + kσ∗/

√
n), where k = Φ−1

(
1− 1−β

2

)
, and µ∗ and σ∗ are defined in

Theorem 2.2.15 .

Example 2.2.17 (Merton Model). With the same parameters as in Example 2.1.2,

the 95%-CI of α̂(t) are plotted in Figure 2.6. Since the variance of α̂(t) gets larger

when t increases, the confidence interval becomes wider.

Figure 2.6: Confidence interval (95%) of α̂(t) [Merton]
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In the following we derive another result on the asymptotic distribution, where

the selection of t depends on the sample size.

From equation (2.35), we know that {α̂n, n ≥ 1} involves a triangular array of

random variables {Bnj, 1 ≤ j ≤ n, n ≥ 1}. To prove the asymptotic normality,

we first recall the central limit theorem for an array of random variables. McLeish

(1974) proved the central limit theorems for martingales and near-martingales with-

out the existence of moments or the full Lindeberg condition. For our problem, the

following more basic result, which can be found in Loève (1963, page 316), will be

sufficient.

Theorem 2.2.18 (Loève 1963, page 316). Suppose that for each n the variables

Xn,1, Xn,2, ..., Xn,rn are independent and such that
∑rn

j=1 E(Xn,j) → µ and
∑rn

j=1 Var(Xn,j)

→ σ2 as n→ ∞. Then

rn∑
j=1

Xn,j
d−→ N (µ, σ2) and max

1≤j≤rn
P[|Xn,j| ≥ ϵ] −→ 0

as n→ ∞ if and only if for every ϵ > 0,

rn∑
j=1

P[|Xn,j| ≥ ϵ] −→ 0 as n→ ∞.

Let rn = n and Xn,j =
Bnj−E[Bnj ]√
n·SD(Bnj)

, j = 1, 2, ..., n. Then we obtain a simplified

version of the above theorem which can be used directly in our problem.

Theorem 2.2.19 (Loève 1963, page 316, special case). Let Bn1, Bn2, ..., Bnn be a

sequence of i.i.d. random variables for each n. Then∑n
j=1(Bnj − EBnj)√
n · Var(Bnj)

d−→ N (0, 1)

as n→ ∞ if for every ϵ > 0,

nP
[∣∣∣∣Bnj − E[Bnj]

SD(Bnj)

∣∣∣∣ ≥ ϵ
√
n

]
−→ 0 as n→ ∞.
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Using Theorem 2.2.19 we obtain the following result on the asymptotic normal-

ity of our estimator.

Theorem 2.2.20 (Asymptotic Normality). Consider Model 2 in (2.11) with the

assumptions (A2-1) and (A2-2), and the estimator α̂(t) defined by (2.24). Denote

Tn =
√
lnCn/σ, where Cn is a sequence of positive real numbers satisfying

Cn → ∞, Cn/n→ 0, and R(Tn)/
√
Cn/n→ 0

as n→ ∞. Then the estimator α̂n ≡ α̂(Tn) satisfies

α̂n − α√
Cn/(2n)

d−→ N (0, 1).

Proof. By the Markov’s inequality, P(|X| ≥ a) ≤ E(|X|r)
ar

for any r > 0 and a > 0,

we obtain

P
[∣∣∣∣Bnj − EBnj

SD(Bnj)

∣∣∣∣ ≥ ϵ
√
n

]
≤ E(|Bnj − EBnj|2+δ)

[ϵ
√
n · SD(Bnj)]2+δ

for some δ > 0. Thus,

nP
[∣∣∣∣Bnj − EBnj

SD(Bnj)

∣∣∣∣ ≥ ϵ
√
n

]
≤ n · E(|Bnj − EBnj|2+δ)

(ϵ
√
n · SD(Bnj))2+δ

=
E(|Bnj − EBnj|2+δ)

ϵ2+δn
δ
2 · (Var(Bnj))

1+ δ
2

.

From the proof of Proposition 2.2.1, the mean and variance of Bnj ≡ Bj(Tn) for

j = 1, 2, ..., n are given by

E(Bnj) = α− αR(Tn),

Var(Bnj) =
1

2

(
eσ

2T 2
n + e−σ

2T 2
n [1− α + αR(2Tn)]− 2 [1− α + αR(Tn)]

2
)
.
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Then the numerator of the above ratio is

E(|Bnj − EBnj|2+δ) = E(|Bnj − α(1−R(Tn))|2+δ)

≤ E
[
(|Bnj|+ 2)2+δ

]
= E

[(∣∣∣1− e
1
2
σ2T 2

n cos((Yj − µ)Tn)
∣∣∣+ 2

)2+δ]
≤ E

[(
e

1
2
σ2T 2

n + 3
)2+δ]

= e(1+
δ
2)σ2T 2

n · (1 + o(1)),

where by o(1) we mean this term has a limit of zero as n → ∞. The last equality

can be seen from the fact that limn→∞

(
e

1
2
σ2T 2

n + 3
)2+δ

/e(1+
δ
2)σ2T 2

n = 1. Similarly,

the denominator is

ϵ2+δn
δ
2 · (Var(Bnj))

1+ δ
2

= ϵ2+δn
δ
2 ·
(
1

2

(
eσ

2T 2
n + e−σ

2T 2
n [1− α+ αR(2Tn)]− 2 [1− α+ αR(Tn)]

2
))1+ δ

2

=

(
ϵ√
2

)2+δ

· n
δ
2 · e(1+

δ
2)σ2T 2

n · (1 + o(1)).

Therefore,

nP
[∣∣∣∣Bnj − EBnj

SD(Bnj)

∣∣∣∣ ≥ ϵ
√
n

]
≤ e(1+

δ
2)σ2T 2

n · (1 + o(1))(
ϵ√
2

)2+δ
· n δ

2 · e(1+
δ
2)σ2T 2

n · (1 + o(1))

=

(√
2

ϵ

)2+δ

· n− δ
2 · (1 + o(1))

which goes to zero as n→ ∞. By Theorem 2.2.19, we have∑n
j=1(Bnj − EBnj)√
n · Var(Bnj)

d−→ N (0, 1).

Equivalently,
α̂n − E(α̂n)√

Var(α̂n)

d−→ N (0, 1)
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i.e.

α̂n − (α− αR(Tn))√
1
2n

(
eσ2T 2

n + e−σ2T 2
n [1− α + αR(2Tn)]− 2 [1− α + αR(Tn)]

2) d−→ N (0, 1).

Note that on the left side, only α̂n is random; the other terms are all deterministic.

Since Tn → ∞ as n→ ∞ and R(t) → 0 as t→ ∞, we have

lim
n→∞

√
1
2n

(
eσ2T 2

n + e−σ2T 2
n [1− α + αR(2Tn)]− 2 [1− α + αR(Tn)]

2)√
1
2n
eσ2T 2

n

= 1.

Then, using Slutsky’s theorem, we have

α̂n − α + αR(Tn)√
1
2n
eσ2T 2

n

d−→ N (0, 1).

Using the condition that R(Tn)/
√
eσ2T 2

n/n → 0, and applying Slutsky’s theorem

again, we obtain
α̂n − α√

1
2n
eσ2T 2

n

d−→ N (0, 1).

This implies that 1
2n
eσ

2T 2
n → 0. Let Cn = eσ

2T 2
n , we obtain the statement in the

theorem. �

Remark 2.2.21. We use the Merton model as an example to illustrate when the

conditions in Theorem 2.2.20 are satisfied. In this case, we require both eσ
2T 2

n/n→ 0

and e(σ
2+σ2

X)T 2
n/n → ∞. One example of a sequence satisfying these conditions is

to let Tn be such that eσ
2T 2

n/n = cnq, where −σ2
X/(σ

2 + σ2
X) < q < 0 and c is a

constant.

Remark 2.2.22. In Theorem 2.2.15 and Theorem 2.2.20, we derived two different

results on the asymptotic normality of α̂n. In the following we list some of the basic

facts about the two approaches:
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• In Theorem 2.2.15:

– t is fixed;

– the bias stays at the same level;

– asymptotic normality holds, and the convergence rate is
√
1/n.

• In Theorem 2.2.20:

– the selected value of t increases as the sample size increases, although at

a low speed;

– the bias decreases;

– asymptotic normality holds, and the convergence rate is
√
Cn/n, which

is slower than
√

1/n.

– For finite samples, this result does not tell how to select t.

In practice, when we always have a finite number of observations, we have to select t

according to a certain procedure (e.g. method 3 which will be introduced in Section

2.3).

2.2.4 Further Explanations of our Method

In this section we use another approach, which is of “geometric” nature, to re-

cover the estimator α̂(t) in (2.24) of the jump frequency. Meanwhile, this approach

also provides some insight into the selection of t, from a theoretical perspective,

which will be used in both the estimation of jump frequency and the subsequent

estimation of jump size distribution (in Chapter 5). The selection of t for finite

samples will be discussed in Section 2.3.

The mixture model was given by (2.11):

Y = (1− I)Z + I(Z +X),
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whose characteristic function was given by (2.6):

φY (t) = (1− α)φZ(t) + αφZ(t)φX(t), t ∈ R. (2.37)

In the following we take the Merton model with µZ = µX = 0 as an example

to illustrate the idea. Let σ0 = 0.2, σX = 0.2 and α = 0.1. Figure 2.7 shows the

c.f. of different components of the mixture model: the dashed curve corresponds

to the c.f. of the diffusion component Z; the dash-dotted curve corresponds to the

c.f. of the jump component Z +X; and the solid curve corresponds to the c.f. of

the mixture Y . Typically the distribution of jump size (X) corresponds to a much

larger proportion of large observations than the distribution of diffusion (Z) does,

and moreover, Z+X is a convolution of Z and X, so the convergence of φZ+X(t) to

zero would be much faster than the convergence of φZ(t) to zero. In the following

we show that this difference between the convergence rates of the c.f.’s of different

components is the main driver of our method.

Figure 2.7: Characteristic functions of different components of the mixture model
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Let t0 be the smallest point from which the c.f. of X can be considered to be

close to 0, i.e.

t0 = inf{t ≥ 0 : φX(s) ≈ 0 for all s ≥ t}.
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We may understand the notation “≈ 0” by the following more rigorous way of

defining t0: for a small ϵ > 0, let

t0 = inf{t ≥ 0 : |φX(s)| < ϵ for all s ≥ t}. (2.38)

Of course, φZ+X(t) will also be close to zero for t ≥ t0, since |φZ+X(t)| = |φX(t)φZ(t)|
≤ |φX(t)|. Ideally, we want to use this t0 as the selection of t so that the bias is close

to zero while the variance is still small, which follows from our bias and variance

analysis presented in Proposition 2.2.1.

As we explained earlier, the selection of t is important, since the accuracy of

the estimator of the jump frequency (and later the estimator of the jump size

distribution) relies heavily on this selection of t. Below we provide an alternative

explanation of this fact, where we consider two different cases.

• Case I: t ∈ [t0,∞):

On this interval, the c.f. of Z + X is approximately equal to zero, i.e.

φZ(t)φX(t) ≈ 0. Then by (2.37) we have φY (t) ≈ (1−α)φZ(t) and it implies

that

α ≈ 1− φY (t)

φZ(t)
.

This “recovers” the formula (2.24) which was used to estimate the jump fre-

quency. The bias of the estimator for t ∈ [t0,∞) can be derived as fol-

lows. From equations (2.37) and (2.38) we have |φY (t) − (1 − α)φZ(t)| =
|αφZ(t)φX(t)| < αϵ|φZ(t)|. Dividing both sides by |φZ(t)|, we obtain∣∣∣∣α−

(
1− φY (t)

φZ(t)

)∣∣∣∣ < αϵ.

This result matches the bias formula in (2.28). To avoid a large variance, we

would select the smallest value of this interval, which is t0.

• Case II: t ∈ [0, t0]:

On this interval, the c.f. φX(t) starts from one and goes to a small value, i.e.
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a value close to zero. After t0, φX(t) stays close to zero. See the following

Remark 2.2.23 for the discussion on the estimation of jump size distribution.

Remark 2.2.23. To estimate the jump size distribution (discussed in details in Chap-

ter 5), we would use mostly information about φX(t) for t ≤ t0. This can be

explained as follows:

• When t > t0, φX(t) stays close to zero. This suggests that there is not much

information on the distribution of X remanning in φX(t) for t > t0, since we

have that limt→∞ φX(t) = 0.

• We do not have the access to the true φX(t), but only to its empirical version

φ̂X(t). However, φ̂X(t) for t > t0 would mask any remaining information on

the distribution of X by bringing in estimation errors. This follows from the

observation that φ̂X(t) does not stay close to zero when t > t0 but oscillates

with an increasing amplitude as t increases.

The above facts explain why in Chapter 5 we use the method of truncating the

empirical version of φX(t) at some point to recover the distribution of X (see

equation (5.16)), and the truncating point is the same as the selected value of t

used for the estimation of jump frequency.

2.3 Selection of t for Finite Samples

For the selection of t, we obtained some theoretical results in Theorem 2.2.8 for

the weak consistency of the estimator, Theorem 2.2.11 for the strong consistency

and Theorem 2.2.20 for the asymptotic normality. However, these results do not

suggest how to select t in practice when the sample size is finite. The bias and

variance analysis in Proposition 2.2.1 provides some insight into the selection of t:
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• Larger values of t will decrease the bias of the estimator but increase the

variance. That is, t is a tuning parameter in our estimator, and its selection

rests on a trade-off between the bias and the variance.

• When the sample size n increases, we may select a larger value of t, which

leads to a smaller bias and possibly a smaller variance.

• The “optimal” value of t which minimizes the MSE solves some equation, but

in practice we cannot use this equation since it involves the unknown jump

frequency and jump size distribution.

In this section we propose three different methods of selecting t for finite samples.

The first method is based on the variance formula of α̂(t) presented in Proposition

2.2.1. The second method involves using a bootstrap procedure to obtain an esti-

mate of the variance of α̂(t). In the third method, we select t by using the shape of

the curve α̂(t) with respect to t. From the form of the estimator α̂(t) in (2.24), we

see that it is an even function of t. Thus, in the following we consider t ≥ 0 only.

2.3.1 Method 1

In Proposition 2.2.1, we obtained the variance formula of α̂(t) in (2.29):

Var(α̂(t)) =
1

2n

(
eσ

2t2 + e−σ
2t2 [1− α + αR(2t)]− 2 [1− α + αR(t)]2

)
(2.39)

From this result we can see that the variance of α̂(t) eventually increases exponen-

tially as t increases. Thus, we need to bound t to avoid a large variance.

Since R(2t) ∈ [−1, 1] and α ∈ [0, 1], it is easy to verify that

−1 ≤ 1− α + αR(t) ≤ 1, ∀ t ≥ 0.

Then, the second term in (2.39) satisfies∣∣∣e−σ2t2 [1− α + αR(2t)]
∣∣∣ ≤ 1
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and the third term satisfies ∣∣2 [1− α + αR(t)]2
∣∣ ≤ 2.

Also, as t→ ∞, we have R(t) → 0 due to Lemma 2.1.1, and e−σ
2t2 → 0. Thus, as t

increases, the second term decreases to a small value; the third term will be around

level 2 given that α is typically small; but the first term eσ
2t2 increases quickly and

could be very large. Therefore, we propose to choose t so that eσ
2t2 = 2, or

tM1 =
√
ln 2/σ.

For such a selection of t, we hope the first term in (2.39) would be comparable in

size with the remaining terms. Note that the number 2 in tM1 is not essential, and

can be changed to any other number between 1.5 and 5.

The estimate of α is then given by α̂(tM1). If α̂(tM1) < 0, we let α̂(tM1) = 0. If

α̂(tM1) > 1, we let α̂(tM1) = 1.

In our numerical studies we have found that this method works well when the

data frequency is daily. However, when the data frequency is high, i.e. ∆ is small,

we have σ ≡ σ0
√
∆ is small. Then the resulted tM1 tends to be too large, and thus

Method 1 does not work well. This can also be explained by the fact that the second

term in the variance formula (2.39) cannot be ignored when the data frequency is

high. For example, when ∆ = 1/2500, we have tM1 = 208.1387 for Merton model,

and in this case the variance is too large (comparing with the true value of α). See

Figure 3.1 in Chapter 3, where the intersection of the curve ”Approx2” and the

t-axis is the selected value of t based on Method 1.

In the following we apply this method to the Merton model and the Kou model

when the data frequency is daily.

Example 2.3.1 (Merton and Kou Models). With the same parameter settings

as in Example 2.1.2 for the Merton Model, the value of t is chosen to be tM1 =
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Figure 2.8: Histogram and QQ plot of α̂(tM1) using Method 1 [Merton]
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√
ln 2

0.2∗
√

1/250
= 65.8192. This value is not far from the “theoretical” optimal value,

56.2789, which minimizes the MSE as shown in Example 2.2.6.

Figure 2.8 shows the histogram and the QQ plot of the estimates α̂(tM1) based

on 10,000 different samples. From the histogram we see that the estimates are

bell-shaped, which suggests that α̂(tM1) is normally distributed. This is confirmed

by the QQ plot, since it shows a straight line (except for the two tails).

Table 2.2 provides a summary of the statistics for α̂(tM1). The results are

encouraging. Note that the true value of the jump ratio is α = 0.05, and the

theoretical expectation and standard deviation of α̂(tM1) are 0.0478 and 0.0115,

respectively. The term “MAD” denotes the median absolute deviation, i.e. the

median of the absolute differences between observations and the median.

Now we turn to the Kou model. With the same parameter settings as in Example

2.1.3, the value of tM1 is the same as above: tM1 = 65.8192, because the same σ is
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Table 2.2: Estimation results for α̂(tM1) using Method 1 [Merton]

Mean Std 25% quantile Median 75% quantile MAD

α̂(tM1) 0.0479 0.0115 0.0400 0.0478 0.0556 0.0077

used for both models. Figure 2.9 shows the histogram and the QQ plot for α̂(tM1)

based on 10,000 different samples. The QQ plot also suggests that the estimates

are normally distributed.

Figure 2.9: Histogram and QQ plot of α̂(tM1) using Method 1 [Kou]
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Table 2.3 provides a summary of the statistics for the Kou model. Note that

the theoretical expectation and standard deviation of α̂(tM1) are 0.0401 and 0.0113,

respectively. When compared with the Merton model, the downward bias is signif-

icantly larger. This has been explained in Example 2.2.7. However, the standard

deviation is similar, and the overall result is acceptable.

To summarize, Method 1 is easy to implement, since the selected value of t
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Table 2.3: Estimation results for α̂(tM1) using Method 1 [Kou]

Mean Std 25% quantile Median 75% quantile MAD

α̂(tM1) 0.0403 0.0113 0.0328 0.0401 0.0478 0.0075

depends on σ only. However, the drawback is that this method does not incorporate

other information about the model, such as the distribution of the jump size or the

sample size n. Also, it is not applicable for the high frequency data.

2.3.2 Method 2: Bootstrap

The bootstrap, introduced by Efron (1979), is a method typically used to esti-

mate the sampling distribution of a statistic (or, an estimator) of interest. Suppose

Y1, Y2, ..., Yn is a sequence of i.i.d. random variables with a common distribution,

and θ is a parameter. Let θ̂ be an estimator of θ, which is a function of Y1, Y2, ..., Yn.

The basic bootstrap method can be described as follows:

Step 1 Construct a re-sample of equal size by random sampling with replacement

from the original data set, and use this re-sample to compute θ̂∗1.

Step 2 Repeat Step 1 for M times to obtain θ̂∗1, θ̂
∗
2, ..., θ̂

∗
M .

Step 3 Use θ̂∗1, θ̂
∗
2, ..., θ̂

∗
M to obtain an empirical distribution of the estimator θ̂.

Then further inference about θ̂ can be made. For example, the variance of θ̂

can be estimated by the sample variance of θ̂∗1, θ̂
∗
2, ..., θ̂

∗
M .

In our problem, the observations Y1, Y2, ..., Yn from the distribution given by

(2.6) are i.i.d., so we can use the basic bootstrap method to obtain an estimate of

the variance of α̂(t) for any value of t. Then we propose to select a value of t for

which this estimated variance does not exceed a given level. This is the basic idea

of Method 2. To describe it in steps, we have the following:
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Step 1 For a given sample Y1, Y2, ..., Yn, use the basic bootstrap method to obtain

an estimate of the variance of α̂(t) for a set of values of t that we are interested

in. Denote this estimated variance by VarB(α̂(t)), and the corresponding

standard deviation by StdB(α̂(t)).

Step 2 Set a threshold value ϵ (details on how to set this value is given in the

following Example 2.3.2), and select t by

tM2 := max{t ≥ 0 : StdB(α̂(t)) ≤ ϵ}.

Step 3 The estimate of α is given by α̂(tM2). If α̂(tM2) < 0, let α̂(tM2) = 0. If

α̂(tM2) > 1, let α̂(tM2) = 1.

Example 2.3.2 (Merton and Kou Models). The same parameter settings as in

Example 2.1.2 for the Merton Model are used. We found that using M = 1, 000

re-samples already provides good estimates of the variance of α̂(t). The resample

size is equal to the sample size, i.e. 2500. The set of values of t we consider is

t = 0, 1, 2, ..., 200.

Figure 2.10 shows one curve of StdB(α̂(t)), where one sample is simulated and

used for the bootstrap procedure. We can see that the bootstrapped estimate of

standard deviation almost coincides with the true standard deviation. And it has

been checked that, for different simulated samples, the bootstrapped estimate of

standard deviation is stable.

In the following we propose two different methods of selecting t, both based on

the bootstrapped estimate of the variance of α̂(t).

For the first method, we introduce an “approximation” of the variance of α̂(t)

by

StdApprox1(α̂(t)) =

√
1

2n
(eσ2t2 + e−σ2t2 − 2), (2.40)

which is obtained by assuming R(·) = 0 and α = 0 in the formula of Std(α̂(t)) given

in (2.29). Then we may select t by comparing the two curves: the approximation
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StdApprox1(α̂(t)) and the bootstrapped estimate StdB(α̂(t)), both of which are avail-

able. More specifically, as α is typically small, the value of t for which R(·) gets

close to zero should also be the value of t starting from which the two curves become

close. From Figure 2.10, we can choose t = 75, or equivalently StdB(α̂(t)) = 0.015.

This actually defines the threshold ϵ in the above Step 2 to be ϵ = 0.015.

Figure 2.10: One bootstrapped estimate and two approximations of Std(α̂(t))
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Note that in Figure 2.10 we also plot another approximation, which is based on

StdApprox2(α̂(t)) =

√
1

2n
(eσ2t2 − 2). (2.41)

This one is obtained by further ignoring the second term, e−σ
2t2 , in (2.29). We can

see that the intersection of t-axis and the curve of this approximation defines tM1,

i.e. the selected value of t based on Method 1. If we compare the two approxima-

tions, the first one is more accurate than the second one, and moreover, the first

one is always positive for t > 0.

For the second method of selecting t, we use the curve of α̂(t) itself. To illustrate

the idea, in Figure 2.11 we add 20 curves of α̂(t), which corresponds to 20 different
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samples. We can see that a value between 60 and 80 would be appropriate for

the selection of t, which corresponds to Std(α̂(t)) between 0.01 and 0.02. At those

values of t, the standard deviation is more or less one third of the level of α̂(t),

which is considered appropriate.

Figure 2.11: One bootstrapped estimate of Std(α̂(t)) and twenty curves of α̂(t)
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In the simulation we cannot select t manually for every sample. Since both

of the above methods lead to ϵ = 0.015 as the threshold value for StdB(α̂(t)), in

the following we apply the above 3-step procedure with setting ϵ = 0.015. Repeat

the procedure 3, 000 times. Figure 2.12 shows the histogram and the Q-Q plot

of α̂(tM2), and the histogram of the selected values tM2. From the plots we see

that the estimates α̂(tM2) are close to being normally distributed, and most of the

selected values of t are between 74 and 78.

Table 2.4 provides a summary of the statistics for α̂(tM2). The mean is 0.0488,

which is quite close to the true value α = 0.05; and the standard deviation is 0.0147,

which is close to the pre-assigned level ϵ = 0.015. Comparing these results with
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Figure 2.12: Histogram of α̂(tM2) and tM2 using Method 2 [Merton]
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those obtained from Method 1, we can see that the bias decreases and the variance

increases.

Table 2.4: Estimation results for α̂(tM2) using Method 2 [Merton]

Mean Std 25% quantile Median 75% quantile MAD

tM2 76.1953 1.2513 75.0000 76.0000 77.0000 1.0000

α̂(tM2) 0.0488 0.0147 0.0390 0.0488 0.0586 0.0098

For the Kou model, the same parameter settings as in Example 2.1.3 are used.

As in Merton model, we use M = 1, 000 resamples with the resample size equal to

the sample size, the threshold value for StdB(α̂(t)) is set as ϵ = 0.015, and repeat

3,000 times. Figure 2.13 shows the histogram and the Q-Q plot of the estimates

α̂(tM2), and the histogram of the selected values tM2. The estimates α̂(tM2) are

close to being normally distributed, and most of the selected values of t are between
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75 and 78. Table 2.5 provides a summary of the statistics for α̂(tM2). The mean

value is 0.0420 and the standard deviation is 0.0146 (close to the pre-assigned level

ϵ = 0.015). The estimates of α are still biased downward, and the reason has been

provided in Example 2.2.7.

Figure 2.13: Histogram of α̂(tM2) and tM2 using Method 2 [Kou]
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Table 2.5: Estimation results for α̂(tM2) using Method 2 [Kou]

Mean Std. 25% quantile Median 75% quantile MAD

tM2 76.6750 1.2173 76.0000 77.0000 77.0000 1.0000

α̂(tM2) 0.0420 0.0146 0.0324 0.0422 0.0521 0.0099

The following example shows that Method 2 also works for some “unusual”

cases.

Example 2.3.3 (Merton Model with some extreme values of the parameter). We
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use the same parameter settings as in Example 2.1.2 for the Merton Model, except

that µX is changed from 0 to 2, noting that 2 is very big and “unusual” for the

financial data.

Similarly to Figure 2.10, Figure 2.14 shows the bootstrapped standard deviation

StdB(α̂(t)), the true standard deviation Std(α̂(t)) and two approximations of the

standard deviation: Stdapprox,1(α̂(t)) and Stdapprox,2(α̂(t)). Moreover, we add one

more curve, which is the expectation of α̂(t). As we can see, the curves of the expec-

tation and the true standard deviation are oscillating, since R(t) = cos(µXt)e
− 1

2
σ2
X t

2

is oscillating when µX ̸= 0. This might add difficulty to the selection of t. Howev-

er, the bootstrapped standard deviation still estimates the true standard deviation

well, and we can apply the same rule as before: to compare the first approximation,

Stdapprox,1(α̂(t)), with the bootstrapped StdB(α̂(t)) to select the value of t using the

point where the two curves gets close. From the figure, we may choose tM2 = 80.

Figure 2.14: Oscillating curves of standard deviation and expectation of α̂(t)
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For the cases where the true standard deviation oscillates, like in this example,

there is a more direct method to select t: find the point where the bootstrapped

69



StdB(α̂(t)) ”stops” oscillating. This is because it is R(t) that makes the standard

deviation (and the expectation) oscillate; and thus when R(t) gets close to zero, the

oscillation should seem to disappear (but not exactly, since it is just the magnitude

of the oscillation becomes too small so that it will not be seen). We can check that,

in Figure 2.14, the bootstrapped StdB(α̂(t)) ”stops” oscillating at tM2 = 80.

Now we summarize the basic features of Method 2 as follows:

• Unlike Method 1, the selected value of t using Method 2 is sample-dependent,

and thus it may incorporate more information, such as the sample size n, the

jump size distribution and the jump frequency. Unlike Method 3 introduced

below, there is no restriction on the underlying jump size distribution for

Method 2.

• However, the disadvantage is that this method depends heavily on the thresh-

old ϵ for StdB(α̂(t)), and the selection of ϵ described in this section is not

completely “automatic”. To make it worse, when later in Chapter 4 we con-

sider the case that the diffusion parameters are unknown and estimated using

some robust procedure, the curve of the bootstrapped variance StdB(α̂(t))

is no longer stable across different samples, and StdB(α̂(t)) may become far

from the true Std(α̂(t)) as t increases.

Therefore, we suggest to use this method as a follow-up step to check whether

StdB(α̂(t)) is acceptable at some value of t selected by using another method, for

example, using Method 3 introduced below.

2.3.3 Method 3: First Stationary Point

The stationary points of a function are defined as the points at which the first

derivative of the function is zero. In this section, we select t by using the first

stationary point of α̂(t), t > 0. This method works under the following assumption:
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Assumption (B1) : R(t), t > 0 is strictly decreasing.

Among the financial models, the Merton model with µX = 0 and the Kou model

satisfy the assumption (B1). For the models where assumption (B1) is not satisfied,

see Remark 2.3.10 below.

Now we investigate some properties of the curve of α̂(t), t ≥ 0:

(P1) As we know, R(0) = 1 and R(t) → 0 as t→ ∞. Then, under the assumption

(B1), R(t) is strictly decreasing from one and goes to zero. Since E(α̂(t)) =
α(1−R(t)), we introduce a notation

α(t) ≡ α(1−R(t)),

which is equal to the expectation of α̂(t). Then, under the assumption (B1),

α(t) is strictly increasing from zero to α.

(P2) The Var(α̂(t)) in (2.29) is small when t is small, and Var(α̂(0)) = 0. This

implies that α̂(t) estimates α(t) well when t is small.

Due to property (P1), α(t), t ≥ 0 is strictly increasing from zero to α, and thus

has no stationary point. However, its estimator α̂(t) will be “oscillating” because

of the nature of the trigonometric functions, and thus α̂(t) will likely have one or

more stationary points. Due to property (P2), α̂(t) approximates α(t) well when t is

small, so the first stationary point is approximately the smallest value of t such that

α(t) gets close to α, especially when α(t) converges to α quickly (or equivalently,

R(t) converges to zero quickly). Thus we propose to select t by

tM3 = first stationary point of α̂(t), t ∈ (0, tmax], (2.42)

where tmax is an appropriately selected upper bound of t. This is the basic idea of

Method 3.
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In the following we discuss some issues in the implementation of this method.

In our empirical studies we have found that the shape of α̂(t) varies and sometimes

the stationary point of α̂(t) may not exist (for t in an appropriate range that we

consider). For this case, we could use tmax as the selected t. However, to improve

the method, in such cases we would rather use the point with the smallest first

derivative. The reason of doing this can be seen from Example 2.3.7 below.

The following Lemma 2.3.4 shows that α′(t)|t=0 = 0, so we first need to exclude

an interval starting at zero, say [0, tmin) for some tmin > 0. One way to select tmin is

to use the “inflection point”. Note that the inflection points of a function are the

points at which the second derivative of the function, assuming it exits, is zero.

Lemma 2.3.4. For any random variable X with E|X| <∞, we have R′(t)|t=0 = 0,

where R(t) ≡ ℜ(φX(t)).

Proof. By Theorem C.0.5 (b) in the Appendix and letting k = 1, we have that if

E|X| < ∞, then φ′(t)|t=0 = iE(X). Taking the real part of both sides, we obtain

the result. (Note that in the last step we assumed the ability to interchange the

order of taking the real part and the differentiation of a complex-valued function.

The reason we can do so is given as follows. The definition of the differentiation

of a complex-valued function is analogous to the one for a real-valued function, i.e.

f ′(z0) = limz→z0
f(z)−f(z0)

z−z0 . Since in the current problem, the argument t is a real

number, so we can interchange the order freely.) �

The above Lemma 2.3.4 leads to the following result.

Lemma 2.3.5. For any absolutely continuous random variable X with E|X| <∞,

there exists at least one inflection point of R(t), where R(t) ≡ ℜ(φX(t)).

Proof. Since R(t) → 0 as t→ ∞ by Lemma 2.1.1 and using the fact that R(0) = 1,

there exists some interval (a, b) for 0 < a < b on which R′(t) < 0. Furthermore,
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R′(0) = 0 by Lemma 2.3.4. Then there exists an interval (c, d) for 0 < c < d

on which R′′(t) < 0. Assume that there exists no inflection point of R(t). Then

R′′(t) ≤ 0 for all t > 0. That is, R′(t) is non-increasing for all t > 0. Therefore,

there exist δ < 0 such that R′(t) < δ for all t > a. This implies that R(t) → −∞
as t→ ∞, which contradicts the fact that R(t) → 0 as t→ ∞. �

Based on Lemma 2.3.5, there exists at least one inflection point of α(t). Using

this result and property P2, we may let

tmin := first inflection point of α̂(t), t ∈ [0, tmax). (2.43)

Since α̂(t) is strictly increasing and concave upward on the interval t ∈ [0, tmin), we

have tmin < tM3.

In our empirical studies we have found that the above-defined tmin exists for

almost all samples. Very rarely (less than 0.01% for the model in Example 2.3.7

below) when tmin does not exist, we could let tM3 = tmax. However, in this situation,

α̂(t) is strictly increasing and always concave upward for t ∈ [0, tmax), so α̂(tmax) is

typically bias up high. Therefore, we would rather not apply this method to such

cases, but refer to other methods, like Method 2.

Based on the above ideas we propose the following procedure for Method 3:

Step 1 Determine an appropriately selected upper bound of t, which is denoted

by tmax.

Step 2 Determine the lower bound of t by (2.43):

tmin := first inflection point of α̂(t), t ∈ [0, tmax).

If tmin does not exist, then set flag=0, and stop.

Step 3 Select t based on the “first stationary point”:
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3-1 If there exists a stationary point of α̂(t) for t ∈ [tmin, tmax], then we select

t by (2.42):

tM3 = first stationary point of α̂(t), t ∈ [tmin, tmax].

Then set flag=1, and go to Step 4.

3-2 If there exists no stationary point of α̂(t) for t ∈ [tmin, tmax], then we let

tM3 be the point belonging to [tmin, tmax] with the smallest first derivative

of α̂(t). Then set flag=2, and go to Step 4.

Step 4 The estimate of α is given by α̂(tM3). If α̂(tM3) < 0, then we let α̂(tM3) = 0,

and set flag=31; if α̂(tM3) > 1, then we let α̂(tM3) = 1, and set flag=32.

Remark 2.3.6. For the selection of tmax, it would be enough to use tmax = 100 for

the financial data with yearly volatility σ0 ≥ 20%, since R(t) is already close to

zero at t = 100 in these cases. However, for markets with σ0 < 20%, we might

need to increase tmax. This is because those markets are typically less risky and

the jump size are typically smaller, and then R(t) becomes close to zero at a larger

value of t.

In the remaining of the thesis, we always set the upper bound to be tmax = 100

(since we always set σ0 = 20%), unless stated otherwise.

Example 2.3.7 (Merton Model). We use the same parameter settings as in Exam-

ple 2.1.2 for the Merton Model, and repeat the procedure 100,000 times. For the

lower bound tmin, the result shows that the mean is 26.6 (while the “theoretical”

value is 26.2), and the st.dev. is 3.1.

Table 2.6 shows the number of samples for each “flag”. We see that, for more

than a half of samples, the first stationary point exists. There are 6 (i.e. 0.006%)

samples where the first inflection point does not exist, and we exclude them from

consideration. There are 41,134 samples with flag=2, among which only 8,350 (i.e.
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around 8% of all observations) samples having tM3 = tmax. This explains why we

do not use tmax as the selected t in the above Step 3-2, for which the first stationary

point of α̂(t) does not exist and α̂(t) is strictly increasing for t ∈ [tmin, tmax].

Table 2.6: Number of flags [Merton]

flag 1 2 31 32 0 sum

No. of samples 58,860 41,134 0 0 6 100,000

Figure 2.15 shows the histograms of tM3 and α̂(tM3). For tM3, there is a high

“peak” in the last bin, which occurs because, as indicated above, there are around

8% of samples having tM3 = tmax. The histogram of α̂(tM3) shows a slightly heavy

right tail. This is because for the samples where tM3 = tmax the obtained estimates

α̂(tM3) tend to be larger than the true value.

Figure 2.15: Histograms of α̂(tM3) and tM3 using Method 3 [Merton]
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Table 2.7 provides the statistics of the estimates. The mean value of α̂(tM3)
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is 0.0512 and the standard deviation is 0.0145. It is biased up, due to the right

heavy tail. The result is better than Method 1, and is comparable with Method 2.

However, this Method 3 is more “automatic” than Method 2 for implementation.

Table 2.7: Estimation results for α̂(tM3) using Method 3 [Merton]

Mean Std 25% quantile Median 75% quantile MAD

tM3 73.3072 14.2709 62.3000 70.8000 83.2000 9.9000

α̂(tM3) 0.0512 0.0145 0.0409 0.0495 0.0597 0.0093

To see how Method 3 performs for different scenarios of parameter settings,

Table 2.8 shows estimation results for different jump size distribution (implied by

σX), jump frequency λ and sample size n. Note that here we record λ̂(tM3) instead of

α̂(tM3), where λ̂(·) is defined in Chapter 3 by equation (3.3): λ̂(t) = α̂(t)/∆ (in that

section it is explained that λ̂(·) estimates the intensity parameter λ). The reason

for doing so is that we will use this table in later chapters where λ is the parameter

we focus on. For every scenario in this table, tmax = 100 is used. Note that the true

value is λ = 12.5. The values inside the parenthesis are the corresponding standard

deviations.

Table 2.8: Estimation results using Method 3 for different scenarios [Merton]

σX ≈ 3.79% σX = 10% σX = 60%

λ = 12.5 λ = 25 λ = 12.5 λ = 25 λ = 12.5 λ = 25

n=1000
tM3 68.9(15.9) 74.5(14.0) 35.8(13.5) 36.7(12.1) 5.7 (1.7) 6.0 (1.7)

λ̂M3 13.0 (5.3) 25.6 (6.5) 13.6 (3.2) 26.3 (3.9) 13.1 (2.2) 25.9 (3.0)

n=2500
tM3 73.3(14.3) 78.2(12.5) 37.6(13.2) 38.5(12.0) 6.0 (1.7) 6.2 (1.7)

λ̂M3 12.8 (3.6) 25.3 (4.3) 13.2 (2.1) 25.9 (2.5) 12.9 (1.4) 25.6 (1.9)

n=10000
tM3 79.1(12.1) 83.4(10.5) 40.3(13.2) 40.8(11.8) 6.5 (1.7) 6.6 (1.6)

λ̂M3 12.7 (2.0) 25.1 (2.4) 12.9 (1.1) 25.4 (1.3) 12.7 (0.7) 25.3 (0.9)

From this table, we can see the following:
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1. As n increases, the bias and variance of λ̂(tM3) decrease.

2. As λ increases, the bias and variance of λ̂(tM3)/λ decrease.

3. As σX increases, the bias and variance of λ̂(tM3) should decrease. This is

intuitive since a larger σX implies easier classification between the jump ob-

servations and diffusion observations. However, the presented results are not

consistent with this relation when σX changes from 3.79% to 10%. This is

just because of different degrees of influence of tmax on λ̂(tM3) for different σX

(see item 6 below for more details).

4. As n increases, the mean value of tM3 increases and the variance decreases.

This matches our expectation, since a larger n implies a smaller variance of

α̂(t) for any t, i.e. α̂(t) becomes closer to α(t) on average for any t, and then

the first stationary point of α(t) would occur at a larger value of t. This fact

suggests that the estimator λ̂(tM3) may possess some asymptotic properties,

such as the consistency and the asymptotic normality; however, the speed of

the increase of t is difficult to determine.

5. As λ increases, the mean value of tM3 increases and the variance decreases.

6. As σX increases, the mean value of tM3 decreases and the variance decreases.

(There are some exceptions from σX ≈ 3.79% to σX = 10% due to the same

reason as given in the above item 3.) This is because of the following property

of R(t): when σX increases, R(t) gets close to zero at smaller values of t. This

also explains that, as σX increases, tmax = 100 has less effect on the selection of

t. For example, Figure 2.16 shows the histograms for the case when σX = 0.1

(and λ = 12.5, n = 2500), from which we see that tmax = 100 plays almost

no role in the selection of tM3. Figure 2.17 shows the histograms for the case

when σX = 0.6 (and λ = 12.5, n = 2500), from which we see that tmax = 100

plays no role at all in the selection of tM3.
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Figure 2.16: Histograms of α̂(tM3) and tM3 when σX = 0.1 [Merton]
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Figure 2.17: Histograms of α̂(tM3) and tM3 when σX = 0.6 [Merton]
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The following remark emphasizes some aspect of the role that tmax plays, as

discovered from the above example.

Remark 2.3.8. As the only tuning parameter for the implementation of Method

3, tmax = 100 may have different degrees of influence on the estimation results
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for different scenarios of parameter settings. This can be seen from the above

Merton model example: when σX = 3.79%, tmax = 100 plays an important role to

“truncate” for the selection of t; but when σX = 60%, tmax = 100 plays no role at

all because all the selected values of t are much smaller than 100. This may have

an impact on other relations, and in some cases it may obscure them. Examples of

such situations are provided in items 3 and 6 above. For these situations, we may

also say that there is a ”confounding effect” between tmax and other factors.

Example 2.3.9 (Kou Model). For the Kou model, we use the same parameter

settings as in Example 2.1.3. As before, set tmax = 100, and repeat the procedure

100,000 times. From the simulation results we have that the mean of tmin is 16.0

(the “theoretical” value is 15.4), and the standard deviation is 3.9.

Table 2.9 shows the number of samples for each flag. As we can see, there is

no sample leading to flag=0, i.e. the first inflection point exists for all samples.

There are 34,961 samples with flag=2, among which 3,727 (i.e. about 4% of all

observations) samples having tM3 = tmax.

Table 2.9: Number of flags [Kou]

flag 1 2 31 32 0 sum

No. of samples 65,039 34,961 0 0 0 100,000

Figure 2.18 shows the histograms of tM3 and α̂(tM3). Similarly, we can see that

for tM3 there is a high “peak” in the last bin, and α̂(tM3) has a heavy right tail.

Table 2.10 provides the statistics of the estimates. The mean value of α̂(tM3)

is 0.0429 and the standard deviation is 0.0137. It is biased down (although there

is a heavy right tail), unlike in the Merton model. This is because R(t) in the

Kou model converges to zero very slowly, which can be seen from the fact that

E[α̂(tmax)] = 0.0449 only when tmax = 100. (However, tmax can not be chosen too

large because otherwise the variance would be very large). Similarly to the Merton
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Figure 2.18: Histogram of α̂(tM3) and tM3 using Method 3 [Kou]
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model, for the Kou model the results based on Method 3 are better than for Method

1 and comparable with Method 2. However, Method 3 is more “automatic” than

Method 2.

Table 2.10: Estimation results for α̂(tM3) using Method 3 [Kou]

Mean Std 25% quantile Median 75% quantile MAD

tM3 67.7136 17.1301 54.2000 66.3000 80.8000 13.1000

α̂(tM3) 0.0429 0.0137 0.0329 0.0407 0.0507 0.0087

Table 2.11 shows the estimation results for different parameters of the jump size

distribution, jump frequency λ and sample size n. Note that in the two different

jump size distributions, p = 0.3 is the same. The six findings we presented for the

Merton model still hold for the Kou model.
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Table 2.11: Estimation results using Method 3 for different parameters [Kou]

η+ = 1/0.02, η− = 1/0.04 η+ = 1/0.1, η− = 1/0.2

λ = 12.5 λ = 25 λ = 12.5 λ = 25

n=1000
tM3 60.3(19.0) 68.6(16.8) 16.3 (5.8) 18.2 (5.4)

λ̂M3 10.6 (4.8) 21.5 (6.3) 11.2 (2.4) 22.8 (3.4)

n=2500
tM3 67.5(17.0) 75.3(14.6) 18.9 (5.4) 21.0 (5.3)

λ̂M3 10.7 (3.4) 21.6 (4.4) 11.4 (1.6) 23.1 (2.3)

n=10000
tM3 77.6(14.0) 84.4(11.4) 23.6 (5.4) 26.3 (5.5)

λ̂M3 10.8 (2.1) 21.8 (2.6) 11.7 (0.9) 23.7 (1.2)

Remark 2.3.10. When assumption (B1) is not satisfied, i.e when R(t), t > 0 is

not strictly decreasing, it is still possible to apply Method 3. For example, for the

Merton model with all the other parameters the same as in Example 2.1.2, but with

µX changed from 0 to a number belonging to [−0.05, 0.05]\{0}, the assumption (B1)

is not satisfied. For this case, we may still apply Method 3, but the only problem

is that the estimate may be biased up high. See Figure 2.19 for the case when

µX = −0.05, from which we can see that E[α̂(t)] is greater than α = 0.05 at the

first stationary point of E[α̂(t)]. The simulation results show that the mean value of

λ̂(tM3) is 14.7 > 12.5 and the standard deviation is 2.2. Below we present another

example for this case, which we call “Sepp model”.

Example 2.3.11 (Sepp model). In the paper by Sepp (2012), the author discussed

a jump-diffusion model with the jump size following a mixture of four different

normal distributions. In the following, we call this model the “Sepp model”. The

following are the parameters for this model:

• ∆ = 1/250, i.e. daily data.

• The diffusion parameters are σ0 = 0.1348, µ0 = −0.0091.
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Figure 2.19: Mean, std and MSE of α̂(t) (Merton model with µX = −0.05)
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• The jump size follows a mixture of four normal distributions with mean values

µX,1 = -0.0733, µX,2 = -0.0122, µX,3 = 0.0203, µX,4 = 0.1001 and the same

standard deviation σX = 0.0127; the weights of the four components are p1

= 0.0208, p2 = 0.5800, p3 = 0.3954, p4 = 0.0038.

• The jump intensity is λ = 46.4444, which implies α = λ ·∆ = 0.1858.

As before, we simulate a 10-year data set, i.e. the sample size n = 2, 500. As we

demonstrate below, the assumption (B1) is not satisfied under this model, but we

may still consider applying Method 3. Since σ0 = 0.1348, which is less than the

value 0.2 used in all previous examples, by Remark 2.3.6 we reset the upper bound

of t to be tmax=200. From the simulation results we have that the mean of the

lower bound tmin is 46.3 and the st.dev. is 9.9.

Figure 2.20 shows the mean, st.dev. and MSE of α̂(t). We see that the mean

curve is not strictly increasing, which verifies that the assumption (B1) is not

satisfied.

Table 2.12 shows the number of samples for each flag. Among samples with

flag=2, there are 1,440 samples (1.4% of all observations) having tM3 = tmax.
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Figure 2.20: Mean, std and MSE of α̂(t) [Sepp]
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Table 2.12: Number of flags [Sepp]

flag 1 2 31 32 0 sum

No. of samples 81,680 18,320 0 0 0 100,000

Figure 2.21 shows the histograms of tM3 and α̂(tM3). The last bin in the his-

togram of tM3 is less “peaked” than in the Merton and Kou models, suggesting

that the selection of t has less dependence on the upper bound tmax. The estimates

α̂(tM3) still show a heavy right tail somehow.

Table 2.13 summarizes the statistics of the results. Here we add the result for

λ̂(tM3) ≡ α̂(tM3)/∆. Comparing with the true value λ = 46.4444, we have that

λ̂(tM3) is biased up by about 12%. This can be explained by two reasons: one is

the right heavy tail, and the other one, which is more important, is similar to the

argument presented in Remark 2.3.10.

Remark 2.3.12. In Method 3, we select t by using the first stationary point of

α̂(t), t > 0. However, for a model for which the c.f. of the jump size has only

one inflection point, we may also consider selecting t by using the second inflection
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Figure 2.21: Histogram of α̂(tM3) and tM3 using Method 3 [Sepp]
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Table 2.13: Estimation results for α̂(tM3) using Method 3 [Sepp]

Mean Std 25% quantile Median 75% quantile MAD

tM3 139.7477 20.0610 125.5000 134.6000 148.6000 10.7000

α̂(tM3) 0.2087 0.0262 0.1907 0.2065 0.2241 0.0166

λ̂(tM3) 52.1847 6.5584 47.6703 51.6204 56.0142 4.1500

point of α̂(t), t > 0. Examples are the Kou model with parameters suitable for the

financial data and the Merton model. Unfortunately, using the second inflection

point is not as stable as using the first stationary point. It works well for the Merton

model. But for models with the c.f. of jump size converging to zero slowly, like the

Kou model, it may be biased down significantly. This is because for such models

the Var[α̂(t)] is already large before E[α̂(t)] becomes close to α, and thus α̂(t) is

very oscillating and then the “second inflection point” tends to come earlier than
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it should be.

Previously we presented examples where either the normal (or mixed normal)

distribution or the double exponential distribution was assumed as the jump size

distribution. Now we look at the case where the t distribution, which has heavier

tails, is used as the jump size distribution.

Example 2.3.13 (t distribution). The probability density function of a t distribu-

tion with ν > 0 degrees of freedom is given by

f(x) =
Γ(ν+1

2
)

√
νπ Γ(ν

2
)

(
1 +

x2

ν

)− ν+1
2

where Γ is the gamma function. The expectation is zero for ν > 1, and the variance

is ν/(ν − 2) for ν > 2. The characteristic function is given by

φ(t) =
Kν/2 (

√
ν|t|) · (

√
ν|t|)ν/2

Γ(ν/2)2ν/2−1
(2.44)

for v > 0, where Kν(x) is the modified Bessel function of the second kind.

Suppose W is a random variable which follows a t distribution with ν degrees

of freedom, where ν > 2. To make a t distribution comparable to the normal

distribution (with mean zero and variance σ2
X) in the Merton model, we scale this

t distribution to make its variance equal to the variance of the normal distribution,

while keeping its expectation equal to zero. Following this idea, we let the jump

size be

X = σX
√
(ν − 2)/ν ·W

for σX > 0. Thus, X follows a scaled t distribution with mean zero, variance

σ2
X and the number of degrees of freedom ν. The characteristic function of X is

φX(t) = φ(σX
√
(ν − 2)/ν · t), where φ is given by (2.44).

In our numerical example we choose ν = 3. The other parameters are set the

same as in Example 2.1.2 for the Merton Model. Figure 2.22 shows twenty curves
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of α̂(t). Figure 2.23 shows the expectation, standard deviation, and the square root

of the MSE of α̂(t). Comparing with Figure 2.3 for Merton model and Figure 2.4

for Kou model, we can see that the mean curve in Figure 2.23 approaches the true

level 0.05 more slowly. This is a consequence of the fact that the t distribution has

heavier tails than the normal distribution and the double exponential distribution.

Figure 2.22: Twenty curves of α̂(t) [t distribution]
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Figure 2.23: Mean, std and MSE of α̂(t) [t distribution]
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For the selection of a proper value of t, we consider using Method 3. In our

simulation study we have found that for some samples the curve of α̂(t) can show
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significant local oscillation so that Method 3 returns tM3 equal to zero. Such sit-

uations occur with probability less that 0.1%. In Figure 2.24 we show one such

“extreme” case (with σX = 10%, λ = 25, n = 2, 500). The reason for this behavior

is the presence of an extremely large jump size simulated from the t distribution.

For example, for Figure 2.24, the observation with the largest size is -28.8827, while

all the other observations are of sizes less than 0.6. See Figure 2.25 for the corre-

sponding histogram. Then, by using formula (2.24), the cosine curve corresponding

to this large observation has such a small period so that there is no other cosine

curve that could “smooth” out this oscillation.

Figure 2.24: α̂(t) based on one extreme sample [t distribution]
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To solve this issue, we may consider either applying some smoothing techniques

to the estimated curve of α̂(t) or using some methods of removing outliers. In

our study we have decided to remove the observation with the largest size from

every extreme sample, if it exits, and use the ”trimmed” data to estimate the jump

frequency, and at the end we correct the resulting estimate by increasing its value
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Figure 2.25: Histograms based on one extreme sample [t distribution]
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by one¶.

Based on the above revision for Method 3, Table 2.14 shows the estimation

results for different values of σX , jump frequency λ and sample size n. From the

results, we can observe the same pattern as for the Merton model example, although

the estimation accuracy is not as good as for the Merton model.

Table 2.14: Estimation results using Method 3 for different scenarios [t distribution]

σX ≈ 3.79% σX = 10% σX = 60%

λ = 12.5 λ = 25 λ = 12.5 λ = 25 λ = 12.5 λ = 25

n=1000
tM3 66.4(22.0) 76.2(18.5) 44.8(16.9) 48.0(14.7) 7.5 (2.5) 8.1 (2.2)

λ̂M3 9.4 (5.6) 19.7 (7.5) 12.6 (4.4) 24.8(5.5 ) 12.1(2.7) 24.4(3.8)

n=2500
tM3 74.1(19.5) 83.8(15.0) 49.2(15.1) 52.3(13.2) 8.3 (2.1) 8.9 (1.9)

λ̂M3 9.7 (4.1) 20.6 (5.5) 12.6 (3.0) 24.9 (3.7) 12.2(1.7) 24.6(2.2)

n=10000
tM3 85.7(14.1) 92.1(10.2) 55.8(13.3) 58.8(11.6) 9.5 (1.8) 10.1(1.7)

λ̂M3 10.4 (2.6) 21.5 (3.3) 12.5 (1.7) 24.9 (2.1) 12.3(0.8) 24.8(1.0)

¶However, when we discuss the estimation of jump size distribution in Chapter 5, we still use

the original data.
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2.3.4 Method 4: Iteration of Minimizing MSE [failed]

In this subsection, we investigate whether a method based on direct minimiza-

tion of MSE would work. Let us look at the formula (2.30) for MSE(α̂(t)): only

α and the function R(·) are unknown. If we have an initial value of t0, then we

could obtain an estimate of α, which is α̂(t0). Then, by substituting this value into

equation (2.20):

φ̂X(t) =

φ̂Y (t)
φZ(t)

− (1− α̂)

α̂
(2.45)

we would obtain an estimate of the function R(t) by

R̂(t) = ℜ(φ̂X(t)). (2.46)

Thus, we can have an estimate of MSE(α̂(t)), t ≥ 0. Then we minimize this es-

timated MSE(α̂(t)) to obtain a new value of t. This procedure may be repeated

till it converges. Fortunately the inverse Fourier transform is not involved in this

procedure since we only need R̂(t).

To make it precise, we write this procedure in the following steps:

Step 1: Given an initial value of t0, use equation (2.24) to obtain an estimate of

α, denoted by α̂0 ≡ α̂(t0). (Or, an initial value of α̂0 is given directly.)

Step 2: Substitute α̂0 into (2.45) to obtain φ̂X(t) and then R̂(t) = ℜ(φ̂X(t)).

Step 3: Substitute α̂0 and R̂(t) into the MSE formula (2.30) to obtain the empirical

version of MSE(α̂(t)), and denote it by ̂MSE(α̂(t)). Then minimize ̂MSE(α̂(t))

with respect to t to obtain a new value of t, denoted by t1. Repeat the above

till it converges.

At a first glance, this method should work. However, the values of t0 and α̂0

may decrease in every iteration, and finally α could be underestimated significantly,

or even possibly α̂0 can go to zero. Some explanations are provided in the following.
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In Step 3, an alternative way, which leads to the same result, to obtain the

empirical version of MSE(α̂(t)) is to obtain the empirical version of the mean and

variance of α̂(t) first by using formulas (2.27) and (2.29). This becomes

Ê[α̂(t)] = α̂0 − α̂0ℜ
(
φ̂V (t)− (1− α̂0)

α̂0

)
= 1−ℜ (φ̂V (t)) ≡ α̂(t)

and

̂Var(α̂(t)) =
1

2n

(
eσ

2t2 + e−σ
2t2 (1− α̂(2t))− 2 (1− α̂(t))2

)
≡ h(α̂(t)),

where h(·) is a function defined above. Note that neither of the above two equations

depend on the initial value α̂0. In other words, no matter what the initial value

α̂0 is, these two functions Ê[α̂(t)] and ̂Var(α̂(t)) would remain the same. Then the

above three steps can be rewritten in a more compact way as follows:

Step 1: Given t0, we obtain an estimate α̂0 ≡ α̂(t0).

Step 2: The new t is given by

t1 = mint ̂MSE(α̂(t)) = mint
{
(α̂(t)− α̂0)

2 + h(α̂(t))
}

and the new estimate is α̂1 = α̂(t1). Then repeat till it converges.

Within each iteration and at t = t0, we have b̂ias(t0) = Ê[α̂(t0)]− α̂0 = α̂(t0)−
α̂0 = α̂0 − α̂0 = 0, and thus ̂MSE(α̂(t0)) = ̂Var(α̂(t0)). Suppose that the curve of

the empirical variance ̂Var(α̂(t)) is strictly increasing, i.e. ̂Var(α̂(t)) > ̂Var(α̂(s)) if

t > s. Then for t ∈ (t0,∞),

̂MSE(α̂(t)) ≥ ̂Var(α̂(t)) > ̂Var(α̂(t0)) = ̂MSE(α̂(t0)).

Hence the minimum of ̂MSE(α̂(t)) can only occur at a point smaller than t0, i.e.

t1 ≤ t0.
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Therefore, if ̂Var(α̂(t)) is strictly increasing, then t1 ≤ t0 in every iteration.

Actually if we let t01 := inf{t ≥ 0 : α̂(t) = α̂0}, then t1 ≤ t01 for the same

reason as above. It is obvious that t01 ≤ t0. Therefore, t1 ≤ t01 ≤ t0.

Figure 2.26 shows an example of the empirical mean, standard deviation and

square root of MSE of α̂(t) in one iteration.

Figure 2.26: Empirical mean, std and MSE of α̂(t) [Merton]
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For the parameter settings suitable to financial applications, it happens fre-

quently that the plot of ̂Var(α̂(t)) shows an increasing curve, and t1 < t0 in every

iteration; and the estimate of α can even possibly decreases to zero through the

iterations. Therefore, the method of minimizing MSE does not work properly.

2.3.5 Summary

So far we have proposed several different methods of selecting t. Since the

method in Section 2.3.4 fails, in the following we only discuss the first three methods.

• Method 1 is based on analyzing the variance formula of α̂(t). The idea is

straightforward and the method is easy to implement. It depends only on
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σ ≡ σ0
√
∆. However, it does not incorporate other information about the

model, and it does not work well for high frequency data.

• Method 2 is based on the bootstrapped estimate of the variance of α̂(t). By

setting a threshold value for this estimated variance, we obtain a critical

value of t. This method incorporates more information about the model than

Method 1 does, and there is no constraint on the underlying distribution of

jump size. However, this method depends strongly on the selection of the

threshold value, and thus it may not be completely objective or “automatic”.

However, this method can be used as a check-up step after we use another

method to select a value of t.

• Method 3 is based on the shape of the curve α̂(t), t ≥ 0. Under the assumption

that R(t), t ≥ 0 is strictly decreasing, we select t by using the first stationary

point of α̂(t), t ≥ 0. This method is objective. The simulation results also

show that it is either better or comparable with the results obtained by using

Method 1 or Method 2. For the models where R(t), t ≥ 0 is not strictly

decreasing, we may still apply this method but possibly with larger errors.

Based on our numerical studies, among the above three methods, we recommend

Method 3.

Bias Correction [failed]

In the following, we consider the possible bias correction, after selecting t and

obtaining an estimate of α. Suppose tM is our selection of t and α̂ ≡ α̂(tM) is

the estimate of jump ratio. Note that we should be able to distinguish the two

notations: α̂ is for the estimate, and α̂(·) is for the function. From equation (2.27):

E(α̂(t)) = α− αR(t)
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we might consider correcting the bias by defining a new estimate α∗ as

α∗ = α̂− α̂R̂(tM), (2.47)

where R̂(·) is given by (2.46) and (2.45):

R̂(t) = ℜ(φ̂X(t)) = ℜ

( φ̂Y (t)
φZ(t)

− (1− α̂)

α̂

)
.

Unfortunately, this method for bias correction does not work. The reason is given

as follows. At the selected point tM , we have

R̂(tM) = ℜ

( φ̂Y (tM )
φZ(tM )

− (1− α̂(tM))

α̂(tM)

)

= ℜ

( φ̂Y (tM )
φZ(tM )

− (1− α̂(tM))

α̂(tM)

)

=
α̂(tM)−

(
1−ℜ

(
φ̂Y (tM )
φZ(tM )

))
α̂(tM)

= 0

where in the last line we used α̂(tM) = 1 − ℜ
(
φ̂Y (tM )
φZ(tM )

)
obtained by (2.24). Thus,

the new estimate is

α∗ = α̂− α̂R̂(tM) = α̂.

That is, the new estimate is the same as the estimate before correction. Therefore,

this procedure for bias correction does not work.

2.4 Application of other Estimators of the Char-

acteristic Function

In the previous sections the characteristic function of the observable variable Y

was estimated by the empirical characteristic function (e.c.f.). In this section we
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consider alternative estimators of the characteristic function. The objective is to

see whether the estimation of jump frequency can be improved.

Firstly, let us review some properties of the e.c.f.. The definition of the e.c.f.

was given by Parzen (1962) (althoug in that paper the terminology “e.c.f.” was not

used yet). Later Feuerverger and Mureika (1977) initiated a systematic study of the

e.c.f.. The convergence properties of the e.c.f. were investigated by Csörgő (1981a,

1981b, 1985) and Csörgő and Totik (1983). Properties in the context of statistical

inference were discussed by Feuerverger and McDunnough (1981a, 1981b, 1984).

By the strong law of large numbers, the e.c.f. φ̂n(t) converges to φ(t) almost

surely for any fixed t, i.e. it is a strongly consistent estimator for any fixed t. We

also have E(φ̂n(t)) = φ(t), and Var(φ̂n(t)) = (1 − |φ(t)|2)/n with a proof given in

Appendix D.

The almost sure convergence of the e.c.f. is uniform on any fixed bounded

interval (see Feuerverger and Mureika (1977)); that is, for fixed T <∞, we have

P

{
lim
n→∞

sup
|t|≤T

|φ̂n(t)− φ(t)| = 0

}
= 1.

However, the convergence of the e.c.f. φ̂n(t) to φ(t) is not generally uniform on the

whole real line. The reason was given in Feuerverger and Mureika (1977). Since

the e.c.f. φ̂n(t) is a trigonometric polynomial, it is almost periodic and hence must

approach its supremum value φ̂n(0) = 1 arbitrarily often as |t| → ∞. On the

other hand, we have φ(t) → 0 as |t| → ∞ when the distribution F (x) is absolutely

continuous. Hence, in general, we do not have supt |φ̂n(t) − φ(t)| → 0 as n → ∞;

in other words, the convergence of the e.c.f. φ̂n(t) to φ(t) is not generally uniform.

However, there is one exception that, when F (x) is purely discrete, the strong

consistency of φ̂n(t) is uniform over R. Csörgő and Totik (1983) further showed

that φ̂n(t) converges to φ(t) uniformly over R if and only if F (x) is purely discrete.

In Feuerverger and Mureika (1977), it was also showed that for any distribution

function whose singular part has characteristic function vanishing at infinity, it
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holds that

P

{
lim
n→∞

sup
|t|≤Tn

|φ̂n(t)− φ(t)| = 0

}
= 1 (2.48)

if Tn → ∞ such that Tn = O((n/ log n)1/2). This result was improved by C-

sörgő (1981a) where it was shown that (2.48) holds for any distribution function

if Tn → ∞ such that Tn = o((n/ log log n)1/2). Then this result was extended to

the multivariate case by Csörgő (1981b). Later Csörgő and Totik (1983) improved

the result again and showed that for any characteristic function φ(·) and any di-

mension, (2.48) holds if Tn → ∞ such that limn→∞(log Tn)/n = 0, or equivalently,

Tn = exp(n/Gn) for any sequence {Gn} such that Gn → ∞. Moreover, it was

shown that this rate Tn = exp(o(n)) is the best possible rate in the general case for

the almost sure convergence in (2.48). In addition, as discussed in Csörgő (1985),

if we specify the rate at which Gn goes to infinity, then we should be able to derive

the rate at which sup|t|≤exp(n/Gn) |φ̂n(t)− φ(t)| converges to zero almost surely.

In our problem of estimation of jump frequency, although the variable V = IX

follows a mixture of absolutely continuous and discrete distributions, the observable

variable Y = Z + V is absolutely continuous, which follows from Theorem C.0.4 in

Appendix C and the fact that Z is absolutely continuous. Hence, the convergence

of the e.c.f. φ̂Y (t) to φY (t) is not uniform. In this section we consider replacing the

e.c.f. by a uniformly consistent estimator of the characteristic function.

To obtain a uniformly consistent estimator of the characteristic function, typi-

cally there are two approaches. The first one is to truncate the e.c.f., i.e.

φ∗
n(t) :=

 φ̂n(t) for |t| ≤ Tn

0 for |t| > Tn,
(2.49)

where Tn → ∞ and limn→∞(log Tn)/n = 0. The following result was presented in

Lebedeva and Ushakov (2007).

Lemma 2.4.1. φ∗
n(t) in (2.49) is strongly consistent uniformly on the whole real

line.
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The shortcoming of this estimator is that its realizations are never characteristic

functions, since every characteristic function is uniformly continuous on the whole

real line (see Lukacs 1970, page 15). However, this truncation method is used

frequently in the context of de-convolution, which will be discussed in details in

Chapter 5.

The second approach is to use the kernel method, which is based on the

same smoothing idea as in the kernel method used for density estimation. Before

we define the kernel estimator of the characteristic function, we shall recall the

definition of the kernel estimator of a density function. Let X1, X2, ..., Xn be a

sequence of i.i.d. random variables. Then the kernel estimator of the density

function f of a random variable X is defined by

f̂(x) =
1

nhn

n∑
i=1

K

(
x−Xi

hn

)
, (2.50)

where K is a kernel function and hn is the window width (depending on the sample

size n). The uniform consistency of the kernel density estimator is discussed in, for

example, Nadaraya (1965) and Silverman (1978).

In the following we introduce the kernel estimator of the characteristic function.

Its definition is implicit in many places, for example, Lebedeva and Ushakov (2007).

Definition 2.4.2. The kernel estimator of the characteristic function of a random

variable X is defined as the characteristic function of the kernel estimator (as in

(2.50)) of the density function of X.

The following lemma states that the the characteristic function of the kernel

estimator is the multiplication of the e.c.f. and the Fourier transform of the kernel

function. It can be found in, for example, Lebedeva and Ushakov (2007). We can

also prove this result directly as follows.
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Lemma 2.4.3. The kernel estimator of the characteristic function of a random

variable X, denoted by φ̃n(t), can be represented as

φ̃n(t) = φ̂n(t) ·Kft(hnt) (2.51)

where φ̂n(t) = 1
n

∑n
j=1 e

itxj is the e.c.f. of the variable X, Kft(t) is the charac-

teristic function of the kernel function K in (2.50) and hn is the window width in

(2.50).

Proof. By Definition 2.4.2, φ̃n(t) is the characteristic function of the kernel esti-

mator of the density function of X. Thus we have

φ̃n(t) =

∫
R

eitx · f̂(x)dx

=

∫
R

eitx · 1

nhn

n∑
i=1

K

(
x−Xi

hn

)
dx

=
1

n

n∑
i=1

∫
R

eit(hny+Xi)K(y)dy

=
1

n

n∑
i=1

eitXi ·
∫
R

eihntyK(y)dy

= φ̂n(t) ·Kft(hnt).

Remark 2.4.4. Note that the truncated estimator φ∗
n(t) in (2.49) can actually be

viewed as a special case of the kernel estimator φ̃n(t) in (2.51) for some particular

choice of the kernel function, called the sinc kernel. More details on this kernel are

presented in Section 5.1.1.

The uniform consistency of the kernel estimator of the characteristic function

has been discussed in, for example, Feuerverger and Mureika (1977) and Lebede-

va and Ushakov (2007). In the following we present the most recent result given

by Lebedeva and Ushakov (2007). It provides the necessary and sufficient condi-

tions under which the kernel estimator is a strongly consistent estimator of the

characteristic function uniformly over the whole real line.
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Theorem 2.4.5. [Lebedeva and Ushakov (2007)] Let Kft(t) be the characteris-

tic function of an arbitrary absolutely continuous distribution. Denote φ̃n(t;h) =

φ̂n(t)K
ft(hnt), which is the characteristic function of the kernel estimator of the

density of the underlying distribution. Then

sup
t

|φ̃n(t;h)− φ(t)| → 0 almost surely, as n→ ∞,

if and only if

hn → 0 as n→ ∞,

and
− log hn

n
→ 0 as n→ ∞.

Now let us come back to our problem. The estimator α̂(t) defined in (2.24)

involves the ratio of two characteristic functions:

α̂(t) = 1−ℜ
(
φ̂Y (t)

φZ(t)

)
= 1−ℜ

(
φ̂Y (t)

eiµt−
1
2
σ2t2

)
.

The denominator is in the form of the c.f. of a normal distribution. We would

like to replace the current numerator, the e.c.f. of Y , by a uniformly consistent

estimator of the c.f. of Y . The objective is to see whether this would improve the

estimation of the jump ratio α. To do this, we could use the truncated estimator

φ∗
n(t) in (2.49) or the kernel estimator φ̃n(t) in (2.51). The following are some

findings:

• If we replace φ̂Y (t) by the truncated estimator φ∗
n(t), which is truncated at

Tn, then when t > Tn the numerator becomes exactly zero and thus α̂(t) = 1.

When t < Tn there is no change to the e.c.f.. Therefore, using the truncated

estimator does not seem to lead to any improvement of the original estimator

which uses the e.c.f..

• Now we consider using the kernel estimator φ̃n(t) in (2.51). If Kft(hnt) con-

verges to zero faster than the term e−
1
2
σ2t2 in the denominator, then α̂(t)
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would converges to one as t increases, not the true value α. If Kft(hnt) con-

verges to zero slower than e−
1
2
σ2t2 , then α̂(t) would still oscillates with an

increasing amplitude as t increases. Thus, the selection of t would pose the

same difficulties as when we use the e.c.f..

Thus, the approach of replacing the e.c.f. by a uniformly consistent estimator of

the c.f. is not promising. To verify this, in the following we discuss the implementa-

tion of the kernel estimator φ̃n(t). For the selection of the kernel function K in the

context of density estimation, different choices have been discussed in the literature,

including the Epanechnikov kernel and the Gaussian kernel (i.e. standard normal

density function). However, Silverman (1986) shows that the efficiency of different

kernels does not change much from one to another. Now it is widely recognized

that the quality of density estimates is determined primarily by the choice of the

bandwidth rather than that of the kernel (see Ait-Sahalia (1996)). Therefore, we

may choose the Gaussian kernel due to its desirable properties.

For the selection of the window width hn, different methods were suggested by

Silverman (1986). Without any prior information, we use the so-called “reference”

method (see page 45-48 of Silverman (1986)) where the window width is chosen by

hn = (4/3)1/5σn−1/5 = (4/3)1/5(2Φ−1(0.75))−1Rn−1/5 ≈ 0.7852Rn−1/5 (2.52)

with R denoting the interquartile range of the observations. The interquartile range

is defined as the difference between the upper and lower quartiles. It is easy to verify

that this window width satisfies the conditions given by Theorem 2.4.5.

Now the kernel estimator of the characteristic function of Y is given by

φ̃Y (t) := φ̂Y (t) ·Kft(hnt)

where φ̂Y (t) =
1
n

∑n
j=1 e

itYj and Kft(t) is the characteristic function of the Gaus-

sian kernel, i.e. Kft(t) = e−t
2/2. Therefore, a new estimator of the characteristic
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function of V can be represented as

φ̃V (t) = φ̃Y (t)/φZ(t)

= (φ̂Y (t)/φZ(t)) ·Kft(hnt)

=
1

n

n∑
j=1

eitYj · e−iµt+
1
2
σ2t2 · e−h2nt2/2

= e
1
2
(σ2−h2n)t2 1

n

n∑
j=1

ei(Yj−µ)t

= e
1
2
(σ2−h2n)t2

{
1

n

n∑
j=1

cos((Yj − µ)t) + i · 1
n

n∑
j=1

sin((Yj − µ)t)

}
,

(2.53)

and thus the new set of estimators of α based on the kernel method is given by

α̃(t) := 1−ℜ(φ̃V (t))

= 1− e
1
2
(σ2−h2n)t2 · 1

n

n∑
j=1

cos((Yj − µ)t).
(2.54)

The only difference between the new estimator α̃(t) and the original estimator α̂(t)

is that there appears an extra term e−h
2
nt

2/2, which comes from Kft(hnt).

Remark 2.4.6. From equation (2.54) we may infer that this kernel estimator will

not work as well as we may expect for our problem. Some explanations are given

as follows. The kernel estimator of a c.f. was originally introduced in the literature

to estimate the c.f. of an observable random variable, and can be understood as

a “smoothed version” of the e.c.f., and thus has some advantages, such as the

“uniform consistency” and “being integrable”. However, in our problem we would

like to estimate the c.f. of an un-observable random variable V which is in the

form of a ratio of c.f.’s with the denominator being the c.f. of a normal distribution

and the numerator an estimator of the c.f. of an observable variable. Thus the

estimator α̃(t) in (2.54) does not have the same advantages over α̂(t) in (2.24) as

the kernel estimator over the e.c.f. for an observable random variable. This is just

some intuitive explanation, and we will verify it by the following analysis.
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The bias and variance formulas of the new estimator α̃(t) can be found using

the same techniques as demonstrated in the proof of Proposition 2.2.1.

Proposition 2.4.7. The expectation of the kernel estimator α̃(t) defined in (2.54)

is given by

E(α̃(t)) = 1− e−
1
2
h2nt

2

[1− α + αR(t)] (2.55)

and the variance of α̃(t) is given by

Var(α̃(t)) = e−h
2
nt

2 · Var(α̂(t))

=
1

2n
e−h

2
nt

2
(
eσ

2t2 + e−σ
2t2 [1− α + αR(2t)]− 2 [1− α + αR(t)]2

)
.

(2.56)

We can see that, by using the kernel method, the variance decreases for all t,

but the difference is small when t is small. However, the bias may increase.

For the selection of t, we recommended Method 3, because it is better than

Method 1 and more objective than Method 2. This still holds here. However,

Method 3 depends on the shape of the curve α̂(t) for t belonging to a neighborhood

of zero at which the variance of α̂(t) is still small, and thus using the kernel method

may not show much advantage, if it does not create more error.

Example 2.4.8 (Merton Model). We use the same parameters as in Example 2.1.2.

We repeat 100,000 times. Applying Silverman’s method (2.52) to choose hn, we

have the mean value of hn is 2.9× 10−3 and the standard deviation is 6.9× 10−5.

Figure 2.27 shows the mean, st.dev. and MSE of α̃(t) using the formulas in

Proposition 2.4.7, with hn replaced by its mean value, i.e. 0.0029. Comparing with

Figure 2.3, the standard deviation decreases slightly (in the range of t we consider),

but the bias increases significantly when t > 50 and the mean curve is no longer

flat as t increases.

We apply Method 3 to select t. As before, we set tmax = 100. Note that there

are 122 samples out of 100,000 that has flag=0. This can be explained by Figure
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Figure 2.27: Mean, std and MSE of α̃(t) [Merton]
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2.27 where the mean curve has an increasing trend so that the first stationary point

increases on average.

Table 2.15: Estimation results using kernel c.f. [Merton]

Mean Std 25% quantile Median 75% quantile MAD

tM3 78.5406 15.1963 66.8000 76.8000 92.7000 11.9000

α̂(tM3) 0.0722 0.0186 0.0594 0.0703 0.0831 0.0117

Table 2.15 show the results. Comparing with Table 2.7 where the e.c.f is used,

the upward bias is significantly larger, and the variance is also larger. If we plot

the histograms, we can see that tM3 has a higher “peak” in the last bin and α̂(tM3)

has a heavier right tail than the ones in Figure 2.15 for which the e.c.f. was used.

To summarize, as uniformly consistent estimators of the c.f. of Y , neither the

truncation method nor the kernel method with the bandwidth hn defined by (2.52)

shows any improvement for the estimation of jump frequency.

Therefore, in the following we continue using the e.c.f. as the estimator of the

c.f. of Y to estimate the jump frequency.
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Chapter 3

Estimation of the Jump Frequency

when the Diffusion Parameters

are Known: Asymptotics when

Data Frequency Increases

In Chapter 2 we discussed the estimation of the jump frequency when the dif-

fusion parameters are known and the data frequency is fixed. In this chapter, we

still assume that the diffusion parameters are known, but let the data frequency

change. In finance, the high frequency data are often available.

As before, let ∆ be the length of the time interval (in years) between two

consecutive observations. For daily data, we have ∆ = 1/250. When there are 10

observations per day, we have ∆ = 1/2500. Notice that if the jump intensity (i.e.

the expected number of jumps per year) remains the same, then the jump ratio (i.e.

the expected proportion of jump observations among all observations) will decrease

when data frequency increases. This is a result of defining jump frequency in a
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continuous-time model. For example, suppose there are 12.5 jumps on average per

year, which corresponds to λ = 12.5 in the continuous model, then, by equation

(2.5): α = λ∆, the jump ratio is α = 12.5/250 = 5% for the daily data, but

α = 0.5% for the frequency of 10 observations per day.

As discussed in the beginning of Chapter 2, there are two different types of

asymptotics that we may consider for the proposed estimator. The first type is

fixing the data frequency and increasing the time horizon, which has been consid-

ered in Chapter 2. In this chapter, we investigate the second type: fixing the time

horizon and increasing the data frequency (i.e. letting ∆ → 0). In this case, our

set-up approaches the situation where continuous trajectories of the financial model

are available.

This chapter is organized as follows. In Section 3.1 we present some preliminary

results on the properties of the estimator when the data frequency changes. The

estimation of jump intensity in the high frequency case is discussed in Section 3.2.

In Section 3.3 we compare our method with the maximum likelihood method in the

case when ∆ → 0.

3.1 Preliminary Results

For the case when the data frequency ∆ changes, we can obtain the bias and

variance of our estimator by simply making the following substitutions into Propo-

sition 2.2.1:

1. σ = σ0
√
∆, where σ0 is the yearly volatility of the diffusion component, due

to equation (2.17).

2. α = λ∆, where λ represents the intensity of the Poisson process, i.e. the

expected number of jumps per year, due to equation (2.5).
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3. n = T/∆, where T is the time horizon, i.e. the number of years of the

available data.

Note that the function R(t) ≡ ℜ(φX(t) remains the same because the jump size

distribution remains the same when the data frequency changes. As mentioned in

Remark 2.2.4, the parameter µ = µ0∆ does not enter the bias or variance formula.

Based on the above, we obtain the following result.

Corollary 3.1.1. For each t, the bias of α̂(t) is

bias(α̂(t)) = E[α̂(t)]− α = −λ∆ ·R(t), (3.1)

and the variance of α̂(t) is

Var(α̂(t)) =
∆

2T

(
eσ

2
0∆·t2 + e−σ

2
0∆·t2 [1− λ∆+ λ∆ ·R(2t)]− 2 [1− λ∆+ λ∆ ·R(t)]2

)
.

(3.2)

Note that for any fixed T and t, we have bias(α̂(t)) → 0 and Var(α̂(t)) → 0 as

∆ → 0. However, the jump ratio α also decreases. We use the following example

to illustrate the situation.

In the following simulation studies, we consider the frequency of 10 observations

per day, i.e. ∆ = 1/2500, and refer it as “high frequency”.

Example 3.1.2 (Merton Model). We use the same parameters as in Example

2.1.2 but replace the daily frequency by the “high frequency”, i.e. ∆ = 1/250 by

∆ = 1/2500. Thus, the following parameters are the same:

µ0 = 0.1, σ0 = 0.2;λ = 12.5;µX = 0, σX = 3× 0.2×
√
1/250 ≈ 3.79%.

However, since µ = µ0∆, σ = σ0
√
∆, α = λ∆ and n = T/∆, the following

parameters are changed to:

µ = 4× 10−5, σ = 0.4%, α = 0.5%, n = 25000.
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Figure 3.1: Mean, std and MSE of α̂(t) [Merton, High freq]
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Figure 3.1 plots the expectation, standard deviation and square root of the MSE

of α̂(t)∗. The lowest point of the MSE corresponds to topt = 66.7578;MSEmin =

4.3233 × 10−7. At this point we also have Mean = 0.0048; SD = 6.2573 × 10−4.

Comparing with Example 2.2.6, where the daily frequency was used, the optimal

value of t increases. The standard deviation and the MSE decreases dramatical-

ly. However, the true value of α also decreases, so it is difficult to compare the

performance of the estimators.

Instead we may consider comparing the ratio SD(α̂)/α or
√

MSE(α̂)/α. This

leads to the following approach: instead of considering the jump ratio α, we consider

another parameter, the jump intensity parameter λ, which remains the same when

the data frequency changes.

∗The two approximations, based on (2.40) and (2.41), of the standard deviation of α̂(t) are

also shown in this figure.
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3.2 Estimation of the Jump Frequency

In this section we consider the estimation of the jump intensity λ implied by

the Poisson process. This parameter remains the same when the data frequency

changes. Using the relation (2.5), we have λ = α
∆
, and thus we may define an

estimator of λ by

λ̂(t) :=
α̂(t)

∆
(3.3)

where α̂(t) is defined by (2.24) and the selection of t is the same as discussed in

Chapter 2. Then all the previous results about α̂(t) can be applied to λ̂(t).

Based on Corollary 3.1.1, the following result provides the bias and variance of

λ̂(t) and their limits as ∆ → 0. Note that the limiting case of ∆ → 0 is equivalent

to the case when the continuous trajectories of the financial model are available

and all jumps become visible, since the increment of the diffusion component goes

to zero.

Corollary 3.2.1. (i) The bias of λ̂(t) defined by (3.3) is

bias(λ̂(t)) = −λ ·R(t) (3.4)

and the variance of λ̂(t) is

Var(λ̂(t)) =
1

2T∆

(
eσ

2
0∆·t2 + e−σ

2
0∆·t2 [1− λ∆+ λ∆ ·R(2t)]− 2 [1− λ∆+ λ∆ ·R(t)]2

)
.

(3.5)

(ii) As ∆ → 0, we have

lim
∆→0

bias(λ̂(t)) = −λ ·R(t) (3.6)

and

lim
∆→0

Var(λ̂(t)) =
λ(3 +R(2t)− 4R(t))

2T
. (3.7)
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From the above result we see that, as ∆ → 0, the bias of λ̂(t) for a fixed value

of t is unchanged when the data frequency increases. However, as we explain later,

when the data frequency increases we may choose a larger value of t to decrease

the bias.

After letting ∆ → 0, we may further let t → ∞ to obtain the following result.

Obviously, the bias will be removed.

Corollary 3.2.2. The bias of λ̂(t) defined by (3.3) satisfies

lim
t→∞

(
lim
∆→0

bias(λ̂(t))
)
= 0, (3.8)

lim
t→∞

(
lim
∆→0

Var(λ̂(t))
)
=

3λ

2T
, (3.9)

and thus

lim
t→∞

(
lim
∆→0

MSE(λ̂(t))
)
=

3λ

2T
. (3.10)

Remark 3.2.3. One observation from (3.7) and (3.9) is that the variance of λ̂(t)

as ∆ → 0 (for fixed t or letting t → ∞) will not converge to zero, but to some

constant. This can be explained by the fact that even in the case when a continuous

trajectory is available and we can simply count the total number of jumps (i.e. we

have the trajectory of the Poisson process), the total number of jumps divided by

the length of the time horizon is still only an estimate of the jump intensity, but

not exactly equal to it.

Remark 3.2.4. After an examination of the formulas (3.6) and (3.7), we see that

the results in Corollary 3.2.2 still hold if we replace “the limit of t going to infinity”

by “for a large t”, or more exactly, “for t > t0” where t0 is smallest point starting

from which R(t) stabilize at zero, i.e.

t0 := inf {t > 0 : R(s) ≈ 0, s ≥ t}. (3.11)

This is because to obtain the results in Corollary 3.2.2 by using (3.6) and (3.7), we

only need R(t) to get close to zero.
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Remark 3.2.5. From formula (3.10) and Remark 3.2.4, we see that, as ∆ → 0, the

curve of MSE(λ̂(t)) tends to stabilize at level 3λ/(2T ) for t > t0, where t0 is defined

in (3.11). This also explains why in Table 3.1 (below) the “optimal” value of t

increases more slowly when ∆ becomes smaller. Moreover, as ∆ → 0, the solution

to the minimization of MSE may not be robust, since the curve of MSE(λ̂(t)) tends

to be flat for t > t0.

Before proceeding to the simulation studies, we present an inequality which can

be easily proved by equation (3.7). It is the same as the one in Lemma C.0.6 in

Appendix C.

Corollary 3.2.6. Let φ(t) be the characteristic function of a random variable, and

R(t) ≡ ℜ(φ(t)), then

3 +R(2t)− 4R(t) ≥ 0, t ∈ R.

Example 3.2.7 (Merton Model). We use the same parameters as in Example

3.1.2 for high frequency case, i.e. ∆ = 1/2500. Figure 3.2 shows the expectation,

standard deviation and MSE of λ̂(t). We can see that it has the same shape as in

Figure 3.1 for α̂(t).

Figure 3.2: Mean, std and MSE of λ̂(t) [Merton, High freq]
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For comparison, we put together this graph and the one for the daily case into

Figure 3.3, where both focus on the parameter λ. We can see that the variance of

λ̂(t) decreases as data frequency increases. However, this is less obvious for t ∈ [0, t0]

where t0 is defined in (3.11). In this figure, we have t0 ≈ 75. The explanation has

been provided in Remark 3.2.5.

Figure 3.3: Comparison between daily frequency and high frequency [Merton]
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Let us look at the “optimal” value of t which minimizes the MSE of λ̂(t) .

When ∆ = 1/250, the optimal value is topt = 56.2789, and at this point we have

MSEmin = 6.7295, Mean = 11.2224 and SD = 2.2577. When ∆ = 1/2500, the

optimal value is topt = 66.7578, and at this point MSEmin = 2.7020, Mean = 11.9951

and SD = 1.5643. Comparing with the topt found in Examples 2.2.6 and 3.1.2 for

α̂(t), we see that the optimal value of t for a fixed ∆ stays the same, no matter

which parameter we consider: the ratio α or the intensity λ. On the other hand,

when data frequency increases, the optimal value of t increases, and the bias and

variance of λ̂(t) at this optimal point both decreases, i.e. the performance of the

estimator improves.
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Table 3.1: Relation between the optimal value of t and data frequency

∆ topt MSEmin Mean St. Dev.

1/250 = 4e-3 56.2789 6.7295 11.2224 2.2577

1/2500 = 4e-4 66.7578 2.7020 11.9951 1.5643

4e-5 74.9933 1.9851 12.2822 1.3920

4e-6 80.0683 1.8793 12.3764 1.3653

4e-7 81.6397 1.8665 12.3971 1.3623

4e-8 81.8593 1.8651 12.3997 1.3620

4e-9 81.8811 1.8650 12.3999 1.3620

Note: The time horizon is 10-year. The true value of the intensity is λ=12.5. The rounding error

might appear when ∆ is very small.

Now we continue using the Merton model to investigate how the optimal value

of t depends on the data frequency ∆. From Table 3.1, we can see that, as ∆ → 0,

the optimal value topt increases, and the bias and variance of λ̂(topt) both decrease.

Therefore, we would have better estimates of λ when the high frequency data is

available. However, the rate of topt increasing becomes slower as ∆ decreases. See

Remark 3.2.5 for explanations.

In the following we consider the estimation of jump intensity for Merton model.

Example 3.2.8 (Merton Model). We use the same parameters as in Example 3.1.2

for the high frequency case, i.e. ∆ = 1/2500. For the selection of t, Method 3 is

applied.

Figure 3.4 shows the histogram of λ̂(tM3) and tM3. We see that λ̂(tM3) seems

closer to be normally distributed, comparing with the daily case which shows an

obvious heavy right tail. Table 3.2 shows the statistics of the results. Comparing

with the daily case (see Table 2.8 for results on λ, the scenario with T = 10 and

λ = 12.5), we can see that
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• the mean value of tM3 increases and its variance decreases;

• the bias and variance of λ̂(tM3) both decrease.

That is, the estimation results are better than in the daily case.

Figure 3.4: Histograms of α̂(tM3) and tM3 when σX ≈ 3.79% [Merton, High freq]
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Table 3.2: Estimation results for λ̂(tM3) when σX ≈ 3.79% [Merton, High freq]

Mean Std 25% quantile Median 75% quantile MAD

tM3 81.6465 12.4997 71.4000 80.1000 93.2000 10.2000

λ̂(tM3) 12.6562 1.8936 11.3411 12.5570 13.8719 1.2600

In the following, we increase σX , while keeping all the other parameters the

same, and see how the high frequency influences the results for different σX .

When σX = 0.1, Figure 3.5 and Table 3.3 show the results for the high frequency

case. For the daily case, the histogram was given in Figure 2.16, and the statistics

112



can be found from Table 2.8, but we repeat the statistics in Table 3.4 with more

details. We can see that the results of λ̂(tM3) become better in both bias and

variance when the data frequency increases†.

Figure 3.5: Histograms of λ̂(tM3) and tM3 when σX = 0.1 [Merton, High freq]
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Table 3.3: Estimation results for λ̂(tM3) when σX = 0.1 [Merton, High freq]

Mean Std 25% quantile Median 75% quantile MAD

tM3 36.9208 10.8609 28.8000 34.0000 42.5000 6.2000

λ̂(tM3) 12.9381 1.4555 11.9453 12.9039 13.8929 0.9729

When σX = 0.6, Figure 3.6 and Table 3.5 show the results for the high frequency

case. For the daily case, the histogram was given in Figure 2.17, and the statistics

†It shows that in this case the mean value of tM3 decreases when data frequency increases, but

this is only because tM3 has a heavier tails in the daily case than in the high frequency case. We

can also see that the median of tM3 increases from 33.6 to 34.0 when data frequency increases.
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Table 3.4: Estimation results for λ̂(tM3) when σX = 0.1 [Merton, Daily freq]

Mean Std 25% quantile Median 75% quantile MAD

tM3 37.6227 13.1890 28.3000 33.6000 42.8000 6.3000

λ̂(tM3) 13.2106 2.0834 11.8603 12.9844 14.2451 1.1841

can be found from Table 2.8, but we repeat the statistics in Table 3.6 with better

accuracy. We can see that the results of λ̂(tM3) do improve when the data frequency

increases, but the improvement is very limited. See Remark 3.2.5 for explanations,

noting that the daily frequency is already “relatively high” for the case σX = 60%.

Figure 3.6: Histograms of λ̂(tM3) and tM3 when σX = 0.6 [Merton, High freq]
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In conclusion, the estimation results become better when the data frequency

increases. However, after ∆ drops below some level, the improvement will be quite

limited.
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Table 3.5: Estimation results for λ̂(tM3) when σX = 0.6 [Merton, High freq]

Mean Std 25% quantile Median 75% quantile MAD

tM3 6.0363 1.6968 4.7000 5.6000 7.0000 1.0000

λ̂(tM3) 12.9051 1.3947 11.9544 12.8826 13.8366 0.9408

Table 3.6: Estimation results for λ̂(tM3) when σX = 0.6 [Merton, Daily freq]

Mean Std 25% quantile Median 75% quantile MAD

tM3 6.0245 1.6928 4.7000 5.6000 7.0000 1.0000

λ̂(tM3) 12.9042 1.3743 11.9657 12.8800 13.8143 0.9244

3.3 Comparison with the MLE

As we mentioned earlier, when ∆ → 0 our set-up approaches the case when

the continuous trajectory is available. In that case, all the jumps can be identified

without any error, no matter how small the jump size is, i.e. the trajectory of

the Poisson process is available. Thus, in order to estimate the intensity λ, we

only need to work with the Poisson process. Under this situation, we may consider

the maximum likelihood estimator (MLE) to estimate the jump intensity λ of the

Poisson process.

In this section we compare the proposed estimator with the MLE. Note that

this may not be a “fair” comparison between methods, because our method also

works for the low frequency cases, but the MLE does not.

In the following we derive the MLE of the jump frequency λ for a Poisson

process. Let T be the time horizon. To find the likelihood function, we partition

the time interval [0, T ] into m sub-intervals of equal lengths: [0,∆), [∆, 2∆), ...,

[(i − 1)∆, i∆), ..., [(m − 1)∆,m∆), with m∆ = T . When ∆ is small, there is at
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most one jump in one time interval.‡ Denote

Bi :=

 1 if there is one jump during [(i− 1)∆, i∆);

0 if there is no jump during [(i− 1)∆, i∆),

for i = 1, 2, ...,m. Using the basic properties of Poisson processes and the condition

that ∆ is small we have

Bi ∼ Bernoulli(p)

where p = λ ·∆. Then the likelihood function can be written as

L(B1, ..., Bm; p) =
m∏
i=1

pBi(1− p)1−Bi

and the log-likelihood function is given by

l(B1, ..., Bm; p) = ln p ·
m∑
i=1

Bi + ln(1− p) ·

(
m−

m∑
i=1

Bi

)
.

Differentiating with respect to p and equating the score function to zero, we have

∂l

∂p
=

1

p
·
m∑
i=1

Bi +
−1

1− p
·

(
m−

m∑
i=1

Bi

)
= 0.

By solving it we obtain the MLE of p as

p̃ =

∑m
i=1Bi

m
.

Since p = λ ·∆, we obtain the MLE of λ by

λ̃ =
p̃

∆
=

∑m
i=1Bi

m ·∆
=

∑m
i=1Bi

T
.

This result is intuitive. The expectation of the MLE is

E(λ̃) =
mE(Bi)

T
=
mλ∆

T
=
λT

T
= λ, (3.12)

‡This can be made more rigorous by adding the error term and later verifying that the impact

of the error term on the estimation results is negligible in the limit.
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and the variance is

Var(λ̃) =
mVar(Bi)

T 2
=
mλ∆(1− λ∆)

T 2
=
λ(1− λ∆)

T
. (3.13)

When the partition becomes finer, i.e. ∆ → 0, we have

lim
∆→0

Var(λ̃) =
λ

T
. (3.14)

Note that
∑m

i=1Bi is the total number of intervals where there is one jump

occurring. When ∆ → 0,
∑m

i=1Bi describes the total number of jumps in the time

interval [0, T ). Thus
∑m

i=1Bi follows a Poisson distribution with parameter λT .

Using the mean and variance of this Poisson distribution, the results (3.12) and

(3.14) can also be easily recovered.

Comparing (3.9) with (3.14), we get the following result.

Proposition 3.3.1. The asymptotic relative efficiency (as ∆ → 0) of our estimator

λ̂(t) in (3.3) with a large t over the MLE is about 67%.

However, our method has the advantage of not requiring ∆ → 0, i.e. our

method works for low frequency data; while the MLE method assumes that ∆ = 0.

To provide a more specific example, let us consider the Merton model with T = 10

and λ = 12.5:

• MLE: In this case, the variance of MLE is λ/T = 12.5/10 = 1.25.

• Asymptotic result based on our method: From Corollary 3.2.2, we have

limt→∞

(
lim∆→0Var(λ̂(t))

)
= 3λ

2T
and the corresponding st.dev is

√
3λ
2T

=
√
1.875 = 1.3693.

• Low frequency result based on our method: Consider the daily frequency,

i.e. ∆ = 1/250. From Table 2.8, when σX = 60%, we have Mean(λ̂(tM3)) =

12.9042 which is close to true λ, and Stdλ̂(tM3)) = 1.3743 which is close to
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the asymptotic result 1.3693. When σX = 10%, the result still looks good.

When σX ≈ 3.79%, corresponding to the triple of daily volatility, the result

is still acceptable.

In Chapter 6, we compare our method with some other existing methods.
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Chapter 4

Estimation of the Jump

Frequency when the Diffusion

Parameters are Unknown

In this chapter, we remove the assumption that the diffusion parameters µ0

and σ0 are known. Then the parameters µ = µ0∆ and σ = σ0
√
∆ in the normal

distribution of Z are also unknown. Thus, to estimate the jump frequency, we need

first estimate the parameters µ and σ.

The cdf of the observable variable Y is given by equation (2.14):

FY = (1− α)ΦZ + αFG.

This is exactly of the same form as the α-contaminated normal distribution dis-

cussed in the context of robust statistics. For the contamination ratio α, a typical

value for the financial daily data is around 5% (i.e. the jump intensity λ = 12.5);

see Kou (2002). When higher frequency data is available, the value of α becomes

smaller. So we can use the robust statistics to estimate the diffusion parameters.
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After obtaining estimates of the diffusion parameters, we can apply the methods

discussed in the previous chapters to estimate the jump frequency.

4.1 Robust Estimation of the Diffusion Parame-

ters

We first briefly review the robust methods for the estimation of location pa-

rameter in Section 4.1.1, and the estimation of scale parameter in Section 4.1.2. A

detailed review of the robustness criterion and different types of robust estimators

is provided in Appendix A. In Section 4.1.3 we discuss the simultaneous robust

estimation of both location and scale parameters.

4.1.1 Location Estimator

The M -, L- and R- estimators are the three popular types of robust estimators.

Among them, the M - estimator is the one used mostly widely.

M-estimators

The M-estimator Tn of a location parameter is defined as a solution to the

following minimization problem

n∑
i=1

ρ(Xi − µ) := min,

and if ρ(·) is differentiable with an absolutely continuous derivative ψ(·), then Tn
solves the equation

n∑
i=1

ψ(Xi − µ) = 0. (4.1)
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Let us define a functional T (F ) on the space of distributions as the solution to∫
ψ(x− T (F ))dF (x) = 0, if it exists and is unique. Then the influence function of

T (F ) is given by

IF (x;T, F ) =
ψ(x− T (F ))∫
ψ′(y)dF (y)

.

If T (F ) is uniquely defined, then Tn is strongly consistent at F , i.e. Tn → T (F )

almost surely as n→ ∞.

In our problem, to estimate the drift parameter in the diffusion component of

the jump-diffusion model, we look for anM -estimator of the location parameter of a

distribution not very far from the normal distribution, but possibly containing an ϵ

(α in our problem) proportion of non-normal data. More precisely, this distribution

should belong to the family of ϵ-contaminated normal distributions:

Fϵ = {F : F = (1− ϵ)Φ + ϵH}.

If H is a symmetric or close to symmetric distribution, then we may use the Hu-

ber estimator proposed by Huber (1964). When H is a distribution close to be

symmetric, we may also consider the Huber estimator.

Example 1: Huber Estimator

The ρ- function of the Huber estimator is given by

ρ(x) =

 x2 if |x| ≤ k

2k|x| − k2 if |x| > k

with derivative 2ψ(x), where the ψ-function is given by

ψ(x) =

x |x| ≤ k,

sign(x) · k |x| > k
(4.2)

with k > 0 a fixed constant. The ρ- and ψ- functions are plotted in Figure 4.1.

The Huber estimator is very popular in the context of robust estimation. It has
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Figure 4.1: Huber ρ- and ψ-functions
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a bounded influence function proportional to ψH , the breakdown point ϵ = 1
2
, the

global sensitivity γ = k
2F (k)−1

, and the tail-behavior measure lima→∞B(a, Tn, F ) =

1
2
both for distributions with exponential and heavy tails. Thus, it is a robust

estimator of the center of symmetry, with a relatively low sensitivity to extreme

observations. As Huber proved in 1964, this estimator is minimaximally robust for

the contaminated normal distribution.

For the Huber estimator, typically we choose k = 1.345, which corresponds

to 95% efficiency at the normal distribution. The following proposition helps to

understand the Huber estimator in an intuitive way.

Proposition 4.1.1. The Huber estimator is equivalent to a “winsorized mean”.

Proof. We have

ψ(x− θ) =


−k if x− θ < −k,

x− θ if |x− θ| ≤ k,

k if x− θ > k.
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We need to solve the equation
∑n

i=1 ψ(xi−θ) = 0. Since the function Ψ is monotone,

the solution is unique. We have

n∑
i=1

ψ(xi − θ) =
∑

|xi−θ|≤k

(xi − θ) +
∑

xi>θ+k

(k) +
∑

xi<θ−k

(−k)

=
∑

|xi−θ|≤k

(xi − θ) +
∑

xi>θ+k

(θ + k − θ) +
∑

xi<θ−k

(θ − k − θ).

Assume θ̂ is the solution and let

Yi :=


θ̂ − k if xi < θ̂ − k,

xi if |xi − θ̂| ≤ k,

θ̂ + k if xi > θ̂ + k.

Then
∑n

i=1(Yi − θ̂) = 0, i.e.

θ̂ =
1

n

n∑
i=1

Yi.

Thus we proved that Huber estimator is equivalent to the “winsorized mean”. How-

ever, the solution θ̂ is involved in the construction of Yi’s, so an iterative procedure

is necessary to evaluate the Huber estimator. �

When the ψ- function is monotone, the estimator is called a monotone M-

estimator. The Huber estimator is one of them. There is another class of M -

estimators, called the redescending M-estimators, whose ψ- functions vanish

outside some interval. It has been found that redescending estimators sometimes

outperform the Huber estimator. For example, the redescending M-estimators are

more efficient than the Huber estimator for some symmetric and heavy-tailed dis-

tributions. This is because redescending estimators completely reject gross outliers,

while the Huber estimator treats them in the same way as moderate outliers. Ex-

amples of redescending ψ-functions include the Hample function, the Andrews sinus
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function, the Tukey bisquare or biweight function and the Cauchy function. In the

following we consider the Tukey bisquare estimator as an example.

For our problem, a jump increment is a convolution of the diffusion increments

and another jump size distribution. Therefore, the variance of the jump increments

is much larger than the variance of the diffusion increments. Hence, redescending

M -estimators might perform better than monotone M -estimators.

Example 2: Tukey Bisquare Estimator

The ρ- and ψ- functions of the Tukey bisquare estimator are given by

ρ(x) =


1−

[
1−

(x
k

)2]3
if |x| ≤ k

1 if |x| > k

(4.3)

with the derivative ρ′(x) = 6ψ(x)/k2, where

ψ(x) =


x

[
1−

(x
k

)2]2
if |x| ≤ k

0 if |x| > k.

(4.4)

These functions are plotted in Figure 4.2. Note that ψ is everywhere differentiable

and vanishes outside [−k, k].

For the bisquare estimator, the values of k and the corresponding efficiencies

(ratio of asymptotic variance of the MLE and asymptotic variance of the proposed

estimator) at the normal distribution are given in Table 4.1. In the following

simulations we will use k=4.685, which corresponds to 95% efficiency.

4.1.2 Scale Estimator

For our problem, the estimation of the scale parameter is very important, since

the estimator is very sensitive to this parameter. More explanation will be provided
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Figure 4.2: Bisquare ρ- and ψ- Functions
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Table 4.1: Choices of k in Tukey bisquare estimator

Efficiency 0.80 0.85 0.90 0.95

k 3.14 3.44 3.88 4.68

at the end of this section. In the following we first introduce some simple but widely

used robust estimators of the scale, and then discuss someM -estimators of the scale

parameter. Simulation results are also shown.

1. Median absolute deviation (MAD)

MAD is defined as the median of the absolute deviations from the data’s median:

MAD := mediani ( |Xi −medianj(Xj)| ) .

This is the most widely used robust estimator of the scale parameter. In order to use

MAD as a consistent estimator of the standard deviation of normal distributions,
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we have to take

σ̂ = MAD/(Φ−1(3/4)) = 1.4826 ∗MAD.

2. Interquartile range (IQR)

The interquartile range is defined as the difference between the 75th percentile

and the 25th percentile of a sample, i.e.

IQR := Q3 −Q1,

where Q3 and Q1 are the 75% and 25% percentiles. For a symmetric distribution (so

the median equals the average of the first and third quartiles), half the IQR equals

the MAD. The IQR has a breakdown point of 25%. To make IQR a consistent

estimator of the standard deviation of normal distributions, we let

σ̂ = IQR/(2 ∗ Φ−1(3/4)) = 0.7413 ∗ IQR.

3. Qn and Sn

These two estimators were proposed by Croux and Rousseeuw (Croux and

Rousseeuw (1992), Rousseeuw and Croux (1993)). To have a consistent estima-

tor of the standard deviation of normal distributions, we let

σ̂ = Qn/(
√
2 ∗ Φ−1(5/8)) = 2.2191 ∗Qn,

where

Qn ≈ the first quartile of{dij : dij = |xi − xj|, i < j}.

Note that the total number of dij’s is
(
n
2

)
. The other estimator, Sn, is given by

σ̂ = Sn := 1.1926 ∗medi(medj(|xi − xj|)).
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The main motivation for these estimators is the weaknesses of the MAD. Firstly,

the MAD is not very efficient at Gaussian distributions (37%). Secondly, it does

not consider the skewness, since it computes a symmetric statistic about a location

estimate. Note that the computational burden for both Qn and Sn are relatively

heavy compared with that for MAD and IQR.

4. Gini Mean Difference

The Gini mean difference is defined by

Gn :=
1

n(n− 1)

n∑
i=1

n∑
j=1

|Xi −Xj|.

It also involves relatively heavy computation compared with MAD and IQR.

5. “Shorth”

It was proposed by Martin and Zamar (1989, 1993). The “shorth” is defined as

the shortest interval containing at least half of the data. That is, b− a is the scale

estimator such that P(a ≤ X ≤ b) = 0.5 and b−a is minimized. This estimator was

shown to have the property of minimax bias under some circumstance (see Martin

and Zamar (1993)).

In the following we derive the “shorth” based on a normal distribution X ∼
N (µ, σ2). Since this pdf is a decreasing function of (|x − µ|), the shorth is a

symmetric interval centered at µ, i.e. [µ − c, µ + c] for some c > 0. Then we may

write

P(µ− c ≤ X ≤ µ+ c) = 0.5.

Equivalently,

P
(
− c

σ
≤ X − µ

σ
≤ c

σ

)
= Φ

( c
σ

)
− Φ

(
− c

σ

)
= 2Φ

( c
σ

)
− 1 = 0.5.
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So we have

Φ
( c
σ

)
=

3

4
,

or

c = Φ−1 (3/4) · σ.

Therefore, the shortest interval is [µ−Φ−1 (3/4)σ, µ+Φ−1 (3/4)σ], which is the

same as the interquartile for normal distributions, and its length is 2Φ−1 (3/4)σ.

Now suppose that, for a given set, ŝh represents the length of the shortest interval

containing half of the data. Then the (standardized) estimate of the scale parameter

σ is

σ̂h = ŝh/(2Φ
−1(3/4)).

This is almost the same as the interquartile estimator (for normal distributions,

their expectations are the same, however, when applied to data set, they could be

slightly different).

6. M-estimator of a scale parameter

We first introduce the definition of χ- functions.

Definition 4.1.2. A χ-function denotes a function χ such that

1. χ(x) is a nondecreasing function of |x|;

2. χ(0) = 0;

3. χ(x) is increasing for x > 0 such that χ(x) < χ(∞);

4. If χ is bounded, it is also assumed that χ(∞) = 1.

In general, any estimator σ̂ satisfying an equation of the form

1

n

n∑
i=1

χ
(xi
σ̂

)
= δ (4.5)
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where χ is a χ-function and δ is a positive constant, will be called an M-estimator

of scale. Equivalently, we have

1

n

n∑
i=1

(
χ
(xi
σ̂

)
− δ
)
= 0. (4.6)

This representation includes a wide class of scale estimators corresponding to dif-

ferent choices of ρ. For example, in the Huber estimator, we may take χ = ψ2.

7. Estimators based on logarithmic transformation

A scale estimator can be transformed into a location parameter as follows. Con-

sider equation (4.6), and let yi = log |xi|, µ = log σ and ψ(t) = χ(et)− δ. Then

1

n

n∑
i=1

(
χ

(
|xi|
σ

)
− δ

)
=

1

n

n∑
i=1

(χ(eyi−µ)− δ) =
1

n

n∑
i=1

ψ(yi − µ) = 0,

where we used the fact that by Definition 4.1.2 χ(·) is an even function. Thus, the

problem of selection of an M -estimator of scale is transformed to a similar problem

for location parameter. More specifically, we obtain an M -estimator of scale by

σ̂ = eµ̂

where µ̂ solves the equation 1
n

∑n
i=1 ψ(yi − µ̂) = 0.

When applying this log method, the data set after log transformation may not

have an obvious center point, even when the original data is drawn from a symmetric

distribution.

In the following we apply some of the above methods to the Merton and Kou

models using simulated data.

Example 4.1.3. With the same parameter setting as in Example 2.1.2 for the

Merton model and Example 2.1.3 for the Kou model, Table 4.2 and Table 4.3

show estimation results of the scale parameter for each model. The true value of
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the volatility parameters is σ0 = 0.2. In the two tables, “Log 1” corresponds to

applying median to the obtained location parameter after the log transformation,

and “Log 2” corresponds to applying the Huber Proposal 2 to the obtained location

parameter. We repeat 3,000 times for each scenario.

Table 4.2: Estimation results for scale parameter [Merton]

Methods MAD IQR Log 1 Log 2

σ̂0 0.2080 (0.0049) 0.2081 (0.0049) 0.1404 (0.0033) 0.1266 (0.0027)

Table 4.3: Estimation results for scale parameter [Kou]

Methods MAD IQR Log 1 Log 2

σ̂0 0.2073 (0.0048) 0.2074 (0.0048) 0.1399 (0.0033) 0.1261 (0.0027)

From the results we can see that taking the logarithmic transformation does not

lead to good results. MAD and IQR already provide acceptable estimates of the

scale parameter. However, they are not efficient enough for the estimation of α.

This is because α̂(t) is very sensitive to σ̂, which can be seen from the expression of

α̂(t) in (2.24) and the variance formula of α̂(t) in Proposition 2.2.1. In the following

we investigate more efficient estimators of both location and scale parameters.

4.1.3 Simultaneous Estimation of the Location and Scale

Parameters

In our problem, both the location and scale parameters are unknown and im-

portant. An accurate estimation of the scale parameter is of particular importance,

because it appears in the exponents of the estimator α̂(t) and of the variance for-

mula of α̂(t). Therefore, a small error in the scale estimate may potentially result
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in a large estimation error of the jump frequency. In this section, we look at the

simultaneous estimation of the location and scale parameters.

Equations (4.1) and (4.5) define theM - estimators for the location and scale. If

we put them together and consider the studentized version, then we would obtain

the following estimating functions

n∑
i=1

ψ

(
xi − µ̂

σ̂

)
= 0;

1

n

n∑
i=1

χ

(
xi − µ̂

σ̂

)
= δ

(4.7)

(see Maronna et al. (2006)). Now we solve this system of equations. Let

W1(x) :=

ψ(x)/x if x ̸= 0,

ψ′(0) if x = 0.
(4.8)

Then the first equation of (4.7) becomes

n∑
i=1

ψ

(
xi − µ

σ

)
=

n∑
i=1

W1

(
xi − µ

σ

)
· xi − µ

σ
= 0,

which equivalently can be rewritten as

µ =

∑n
i=1W1

(
xi−µ
σ

)
· xi∑n

i=1W1

(
xi−µ
σ

) .

Thus, given a starting value µ̂0, the k-th iteration for µ is

µ̂k+1 =

∑n
i=1W1 (rki) · xi∑n
i=1W1 (rki)

.

where rki :=
xi−µ̂k
σ̂k

.

For the scale parameter, let

W2(x) :=

χ(x)/x2 if x ̸= 0,

χ′′(0) if x = 0.
(4.9)
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Then the second equation of (4.7) becomes

1

n

n∑
i=1

χ

(
xi − µ

σ

)
=

1

n

n∑
i=1

W2

(
xi − µ

σ

)
·
(
xi − µ

σ

)2

= δ,

which implies that

σ2 =
1

nδ

n∑
i=1

W2

(
xi − µ

σ

)
· (xi − µ)2.

Thus, given a starting value σ̂2
0, the k-th iteration for σ2 is

σ̂2
k+1 =

σ̂2
k

nδ

n∑
i=1

W2(rki) · r2ki.

where rki =
xi−µ̂k
σ̂k

as defined above.

Putting them together, we have the k-th iteration for the two parameters:
µ̂k+1 =

∑n
i=1W1 (rki) · xi∑n
i=1W1 (rki)

σ̂2
k+1 =

σ̂2
k

nδ

n∑
i=1

W2(rki) · r2ki
(4.10)

where rki =
xi−µ̂k
σ̂k

, and W1(·) and W2(·) are given by (4.8) and (4.9).

From equation (4.10) we can see that the location estimate is expressed as a

weighted mean, and the scale estimate can be interpreted as a weighted RMS (root

mean square) estimate.

In the following we first review some existing estimators of the form (4.7), and

then look at some new estimators. The simulation results are presented at the end

of this section.
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1. Huber’s Proposal 2

According to Huber’s Proposal 2, we choose χ = ψ2. That is,
1

n

n∑
i=1

ψ

(
xi − µ

σ

)
= 0

1

n

n∑
i=1

ψ2

(
xi − µ

σ

)
= δ,

(4.11)

where ψ(x) is given in equation (4.2).

To evaluate δ, we have δ = EΦ[ψ
2(X)], where the standard normal distribution

is applied. That is,

δ = EΦ[ψ
2(X)] =

∫
R
ψ2(x)ϕ(x)dx

=

∫ k

−k
x2ϕ(x)dx+

∫ −k

−∞
k2ϕ(x)dx+

∫ ∞

k

k2ϕ(x)dx

= 2

∫ k

0

x2ϕ(x)dx+ 2k2
∫ ∞

k

ϕ(x)dx

= −2kϕ(k) + 2

(
Φ(k)− 1

2

)
+ 2k2(1− Φ(k))

= −2kϕ(k) + 2(1− k2)Φ(k) + 2k2 − 1,

(4.12)

where ϕ(·) are Φ(·) are the pdf and cdf of a standard normal distribution.

For a given k, we calculate δ based on the above formula, and then apply the

iterative method given by equation (4.10) till the procedure converges (i.e. the

difference between the results in two consecutive iterations reaches a pre-defined

tolerance level).

2. Tukey Bisquare

For Tukey bisquare estimator, we can use the same ψ as in equation (4.4) and

choose χ = ρ as in equation (4.3). Then

δ = EΦ[χ(X)] = (
6

k2
− 18

k4
+
30

k6
−2)·Φ(k)+(−2

k
+

8

k3
− 30

k5
)·ϕ(k)−(

3

k2
− 9

k4
+
15

k6
−2).
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Similarly, we use the iterative procedure given by (4.10) to find the estimates of

both location and scale.

3. Method “HT1”: Huber + Trimming 1

As discussed earlier, since the variance of the jump increments is much larger

than the variance of the diffusion increments, it is better that we use a redescending

M -estimators rather than a monotone M -estimator. For this reason, we revise the

Huber estimator by combining it with the trimming method.

We revise Huber’s estimator by letting

ψ(x) =


x if |x| ≤ k1

sign (x) · k1 if k1 < |x| ≤ k2

0 if |x| > k2.

(4.13)

We also choose χ = ψ2. The plots of ψ and χ are shown in Figure 4.3. Since we use

a redescending ψ-function, any large values will be rejected, which seems reasonable

for our problem where large jump values should be removed for the estimation of

diffusion parameters.

The value of k1 is set the same as in Huber estimator, i.e. k1 = 1.345. We choose

k2 = 2.576 which corresponds to 1%-trimming for a standard normal distribution.

To evaluate δ we have

δ = EΦ[ψ
2(X)] =

∫
R
ψ2(x)ϕ(x)dx

=

∫ k1

−k1
x2ϕ(x)dx+

∫ k2

k1

k21ϕ(x)dx+

∫ −k1

−k2
k21ϕ(x)dx

= 2

∫ k1

0

x2ϕ(x)dx+ 2k21

∫ k2

k1

ϕ(x)dx

= −2k1ϕ(k1) + 2

(
Φ(k1)−

1

2

)
+ 2k21[Φ(k2)− Φ(k1)]

= −2k1ϕ(k1) + 2(1− k21)Φ(k1) + 2k21Φ(k2)− 1,

(4.14)
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Figure 4.3: Proposed ψ- and χ- Functions
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In the plot, k1 = 1.345, k2 = 2.576.

where ϕ(·) are Φ(·) are the pdf and cdf of a standard normal distribution. Then we

use equation (4.10) to perform the iterations till the procedure converges.

4. Method “HT2”: Huber + Trimming 2

This method “HT2” is based on the same idea as the method “HT1”: combin-

ing the Huber estimator with the trimming method, but the procedure is slightly

different. The following are the steps for the method HT2:

• Step 1: Set the initial values: µ(0) and σ(0).

• Step 2: Trim the data (by the pre-defined level) and then apply the Huber’s

Proposal 2 to the trimmed data to obtain new estimates µ(1) and σ(1).

• Step 3: Repeat Steps 1 and 2 till it converges.
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By trimming the data, we mean “deleting” a certain percentage of observations

from each end of the data, which is not equivalent to “assuming them zeros” and

putting the zeros back into the data set. Note that Step 2 involves another layer of

iterations, since Huber’s Proposal 2 itself is an iterative procedure. The tolerance

level is set the same as for the outside iteration (i.e. the tolerance level in Step 3).

We set the degree of trimming corresponding to 1% in the normal data, that is,

the observation xi with (xi−µ̂0)/σ̂0 > 2.576 will be trimmed. We still use k = 1.345

when we apply Huber’s Proposal 2.

Note that the two methods, HT1 and HT2, are different. Suppose they start

from the same initial values µ̂0 and σ̂0. Then after one iteration, the obtained µ̂1

is the same, but σ̂1 are different. This is because in the step of calculating σ̂2
k+1

based on the second formula of (4.10), the factors n and δ in the denominator are

different for the two methods. For the method HT1, n corresponds to the total

number of observations and δ is the one defined in (4.14); while for method HT2, n

corresponds to the number of observations after trimming and δ is the one defined

in (4.12).

5. Method “MADT”: MAD + Trimming

It is the same procedure as in method “HT2”, but we replace the Huber’s

Proposal 2 in Step 2 by using the median and the MAD.

6. Method “IQRT”: IQR + Trimming

It is the same procedure as in method “HT2”, but we replace the Huber’s

Proposal 2 in Step 2 by using the median and the IQR.

Example 4.1.4. With the same parameter setting as in Example 2.1.2 for Merton

model and Example 2.1.3 for Kou model, Table 4.4 and Table 4.5 show the results
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of simultaneous estimation of the location and scale for Merton model and Kou

model based on the above six methods.

Table 4.4: Simultaneous estimation of location and scale [Merton]

Huber Bisquare HT1 HT2 MADT IQRT

µ̂0

0.1002

(0.0680)

0.1003

(0.0848)

0.0998

(0.0701)

0.1002

(0.0700)

0.0998

(0.0848)

0.0998

(0.0848)

σ̂0
0.2094

(0.0038)

0.2205

(0.0054)

0.2007

(0.0047)

0.2004

(0.0041)

0.2007

(0.0054)

0.2007

(0.0054)

Table 4.5: Simultaneous estimates of location and scale [Kou]

Huber Bisquare HT1 HT2 MADT IQRT

µ̂0

0.0057

(0.0682)

0.0538

(0.0851)

0.0767

(0.0701)

0.0736

(0.0701)

0.0767

(0.0851)

0.0767

(0.0851)

σ̂0
0.2087

(0.0037)

0.2197

(0.0053)

0.2002

(0.0045)

0.1999

(0.0040)

0.2002

(0.0053)

0.2002

(0.0053)

In Table 4.5, we see that the location estimates are always biased downward.

This is because for Kou model the parameters are set such that there are more

negative jumps and, moreover, the average size of negative jumps is larger than the

average size of positive jumps. For the Merton model, this problem does not exist

since we set µX = 0, i.e. the jump observations and the diffusion observations have

the same “center”.

From Table 4.4 and Table 4.5 we see that the method “HT2” performs the best.

In Figure 4.4 we plot the histograms of the estimates of µ0 and σ0 based on this

method for the Merton model. It shows a bell shape. It is the same case for the

Kou model. In the following we use the method “HT2” to estimate the location and

scale parameters of the diffusion component and then estimate the jump frequency.
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Figure 4.4: Histograms of µ̂0 and σ̂0 based on Method HT2 [Merton]
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4.2 Estimation of the Jump Frequency

We propose the following procedure to estimate the jump ratio α or the jump

intensity λ:

Step 1 Use the method “HT2” to obtain estimates, µ̂ and σ̂, of the location pa-

rameter µ and the scale parameter σ.

Step 2 To select t, apply Method 3 proposed in Section 2.3. Denote the selected

value by tM3.

Step 3 The estimate of α is α̂(tM3), where α̂(t) is defined by

α̂(t) := 1−ℜ(φ̂Y (t)/φ̂Z(t))

= 1− e
1
2
σ̂2t2 · 1

n

n∑
j=1

cos((Yj − µ̂)t), t > 0,
(4.15)
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as an analogy to (2.24). Then the estimate of λ is obtained by

λ̂(t) := α̂(t)/∆.

Example 4.2.1 (Merton and Kou models). With the same parameter setting as

in Example 2.1.2 for Merton model, Figure 4.5 shows 100 simulated curves of α̂(t)

defined in (4.15). It is interesting to see that, as t increases, the variance of α̂(t)

seems to first increase, then decrease and then increase again. For the Kou model,

it sometimes shows the same pattern.

Figure 4.5: 100 Curves of α̂(t) when µ and σ unknown [Merton]
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In the following, we provide a similar result to Proposition 2.2.1. More specif-

ically, we derive the mean and variance formulas, where instead of the true values

µ and σ we use values µ̂ and σ̂. Since µ̂ and σ̂ are not necessarily equal to µ and

σ, the result below shows that when the diffusion parameters must be estimated,

it is more difficult to analyze the behavior of the estimator α̂(t).

Proposition 4.2.2. Suppose µ̂ and σ̂ in (4.15) are estimated values (instead of

estimators) of µ and σ, respectively. Then the expectation and variance of α̂(t)
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defined by (4.15) are given as follows

E [α̂(t)] = 1− e
1
2
(σ̂2−σ2)t2A(t) (4.16)

and

Var (α̂(t)) =
1

2n

[
eσ̂

2t2 + e(σ̂
2−2σ2)t2A(2t)− 2e(σ̂

2−σ2)t2A2(t)
]

(4.17)

where

A(t) := [(1− α) + αR(t)] cos((µ− µ̂)t)− αI(t) sin((µ− µ̂)t),

and R(t) := ℜ(φX(t)), I(t) := ℑ(φX(t)).

Proof. The techniques used in this proof are similar to the ones used in the proof

of Proposition 2.2.1. The expectation of α̂(t) is

E [α̂(t)] = E

[
1− e

1
2
σ̂2t2 · 1

n

n∑
j=1

cos((Yj − µ̂)t)

]

= 1− e
1
2
σ̂2t2E [cos((Y − µ̂)t)] .

Let φY−µ̂(t) denote the characteristic function of the random variable Y − µ̂. Then

E [cos((Y − µ̂)t)] = ℜ (φY−µ̂(t))

= ℜ
(
e−iµ̂tφY (t)

)
= ℜ

(
e−iµ̂t · eiµt−

1
2
σ2t2 · ((1− α) + αφX(t))

)
= e−

1
2
σ2t2 · {cos((µ− µ̂)t) · [(1− α) + αR(t)]− sin((µ− µ̂)t) · αI(t)}

(4.18)

Thus, the expectation formula (4.16) is proved. Similarly, the variance of α̂(t) can

also be found by using (4.18) and the formula cos2 x = (1 + cos 2x)/2. That is,

140



Var (α̂(t)) = Var

(
1− e

1
2
σ̂2t2 · 1

n

n∑
j=1

cos((Yj − µ̂)t)

)

=
1

n
eσ̂

2t2 · Var (cos((Y − µ̂)t))

=
1

n
eσ̂

2t2 ·
{
E
[
cos2((Y − µ̂)t)

]
− (E [cos((Y − µ̂)t)])2

}
=

1

n
eσ̂

2t2 ·
{
1

2
[1 + E [cos((Y − µ̂)2t)]]− (E [cos((Y − µ̂)t)])2

}
.

After some algebra we obtain the desired result. �

If we let µ̂ = µ and σ̂ = σ, then equations (4.16) and (4.17) simplify to equations

(2.27) and (2.29), i.e. we recover the formulas presented in Proposition 2.2.1 when

the diffusion parameters are known.

Example 4.2.3 (Merton model). We use the same parameters as in Example 2.1.2.

For the selection of t, we use Method 3 with tmax = 100.

Figure 4.6: Histograms of estimates [Merton]
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Figure 4.6 shows the histograms of the estimates. The estimates of the µ0 and

σ0 seems to be normally distributed, but the estimates of λ shows a slightly heavy

right tail.

Table 4.6: Estimation results using Method 3 for different scenarios [Merton]
σX ≈ 3.79% σX = 10% σX = 60%

n λ = 12.5 λ = 25 λ = 12.5 λ = 25 λ = 12.5 λ = 25

1000
µ̂0 .1000(.1112) .0998(.1156) .0994(.1105) .1007(.1145) .0998(.1101) .1000(.1128)

σ̂0 .2003(.0065) .2045(.0069) .1984(.0064) .2004(.0067) .1970(.0063) .1973(.0065)

tM3 73.23(15.88) 67.17(11.48) 37.74(14.75) 36.01(10.92) 5.75(1.77) 5.97(1.71)

λ̂M3 12.56(4.22) 20.82(4.31) 14.04(3.18) 26.02(3.51) 13.15(2.19) 25.92(3.02)

2500
µ̂0 .1000(.0702) .0999(.0732) .1001(.0701) .1004(.0726) .1000(.0695) .0999(.0717)

σ̂0 .2004(.0041) .2046(.0043) .1985(.0040) .2005(.0042) .1970(.0040) .1974(.0041)

tM3 76.19(13.83) 66.47(8.16) 40.74(15.30) 37.33(10.42) 6.06(1.72) 6.27(1.69)

λ̂M3 12.21(2.72) 20.44(2.69) 13.74(2.16) 25.57(2.20) 12.93(1.38) 25.60(1.90)

10000
µ̂0 .1000(.0351) .1000(.0366) .1000(.0350) .0999(.0363) .0999(.0347) .0998(.0357)

σ̂0 .2005(.0020) .2046(.0022) .1986(.0020) .2006(.0021) .1971(.0020) .1974(.0020)

tM3 79.60(11.12) 65.37(3.72) 47.28(17.62) 39.02(9.65) 6.52(1.72) 6.69(1.69)

λ̂M3 11.96(1.39) 20.24(1.33) 13.59(1.36) 25.18(1.10) 12.73(0.69) 25.31(0.95)

Table 4.6 summarizes the estimation results for different scenarios of parameter

settings. In each scenario, Method 3 with tmax = 100 is used for the selection of t.

The following are some findings:

• Overall, the results are acceptable. The bias of λ̂ is less than 19% of the true

value for every scenario.

• For the estimation of σ0, we see that the mean value of σ̂0 increases when λ

increases, or when σX decreases, or even when n increases. This implies that

there is still room for improvement in the robust estimation of location and

scale. For example, we may consider some “adaptive” method to choose the

parameters in the robust estimation.
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• Comparing this table with Table 2.8 where the diffusion parameters are as-

sumed known, we see that the selected value tM3 tends to be smaller when σ̂0

is biased up and larger when σ̂0 is biased down (except for the first column),

so that the product σ̂0 · tM3 is corrected to some degree∗. However, the mean

value of λ̂M3 is still smaller when σ̂0 is biased up, and larger when σ̂0 is bi-

ased down. By the expectation formula of α̂(t) in (4.16), this means that the

correction to the product σ̂0 · tM3 by tM3 is still not enough to eliminate the

effect of the bias of σ̂0 on the estimation of λ.

• From Table 4.6 we also see that, λ̂M3 decreases when n increases. There

are two reasons for this: firstly, it is the same pattern as in Table 2.8 where

the diffusion parameters are assumed known; secondly, the mean value of σ̂0

increases when n increases.

Figure 4.7: Histograms of estimates [Kou]
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∗The product σ̂0 · tM3 plays a critical role in the estimation of α. This can be seen from the

definition of α̂(t) given by (4.15), or the expectation and variance formulas in Proposition 4.2.2.

143



Example 4.2.4 (Kou model). We use the same parameters as in Example 2.1.3

for Kou model. Figure 4.7 shows the histogram of the estimates.

Table 4.7 shows the estimation results for different scenarios of parameter set-

tings. The findings are similar to the ones in the Merton case.

Table 4.7: Estimation results using Method 3 for different scenarios [Kou]

η+ = 1/0.02, η− = 1/0.04 η+ = 1/0.1, η− = 1/0.2

λ = 12.5 λ = 25 λ = 12.5 λ = 25

n=1000
µ̂0 0.0736 (0.1106) 0.0438 (0.1145) 0.0957 (0.1103) 0.0913 (0.1139)

σ̂0 0.1997 (0.0064) 0.2032 (0.0067) 0.1979 (0.0064) 0.1993 (0.0066)

tM3 66.47 (19.45) 64.36 (15.33) 16.61 (6.03) 18.25 (5.40)

λ̂M3 11.14 (4.33) 18.29 (4.40) 11.39 (2.48) 22.81 (3.44)

n=2500
µ̂0 0.0739 (0.0699) 0.0435 (0.0723) 0.0962 (0.0696) 0.091 (0.0720)

σ̂0 0.1998 (0.0040) 0.2033 (0.0043) 0.198 (0.0040) 0.1994 (0.0042)

tM3 73.94 (16.55) 68.45 (12.92) 19.41 (5.76) 21.14 (5.32)

λ̂M3 11.05 (2.93) 17.96 (2.82) 11.65 (1.64) 23.21 (2.26)

n=10000
µ̂0 0.0737 (0.0350) 0.0438 (0.0362) 0.0959 (0.0349) 0.0913 (0.0360)

σ̂0 0.1999 (0.0020) 0.2034 (0.0021) 0.198 (0.0020) 0.1994 (0.0021)

tM3 83.47 (12.61) 72.27 (9.42) 24.95 (6.28) 26.56 (5.58)

λ̂M3 11.03 (1.62) 17.64 (1.40) 12.06 (0.94) 23.78 (1.22)

To summarize, in this chapter we applied some robust methods to estimate the

diffusion parameters, and then, using Method 3 for selection of t, we estimated

the jump frequency. The results of our simulation study show that the proposed

estimation method of the jump frequency yields reasonably accurate estimates of

this parameter. In the next chapter, we first apply this method to estimate the

jump frequency, and then propose a method to further estimate the jump size

distribution.
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Chapter 5

Estimation of the Jump Size

Distribution

In previous chapters, we have discussed the estimation of the jump frequency. In

this chapter we propose a method for the estimation of the jump size distribution.

The form of the characteristic function of the jump size X given by (2.10)

suggests that as its estimator we can use

φ̂X(t) =

φ̂Y (t)
φ̂Z(t)

− (1− α̂)

α̂
. (5.1)

As explained below, φ̂X(t) indeed can be used in practice:

• We can first obtain robust estimates µ̂ and σ̂, and then the characteristic

function of Z can be estimated by φ̂Z(t) = eiµ̂t−
1
2
σ̂2t2 .

• An estimate α̂ of jump frequency can be obtained by using the method dis-

cussed in previous chapters. Note that α̂ in (5.1) is a fixed value (instead of

a function of t).
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• The characteristic function of the observable variable Y can be estimated by

using its empirical characteristic function or other estimators of the charac-

teristic function, like the ones that we have discussed in Section 2.4.

Equation (5.1) involves a ratio of two characteristic functions: φ̂Y (t)/φ̂Z(t).

As discussed in Chapter 2, this ratio can be interpreted as an estimator of the

characteristic function φ̂V (t) of the random variable V = Y − Z , where Y and

Z are independent. Suppose we use the e.c.f. to estimate the c.f. of Y . Then,

similarly to equation (2.22), we have

φ̂V (t) = φ̂Y (t)/φ̂Z(t)

=
1

n

n∑
j=1

eitYj/eiµ̂t−
1
2
σ̂2t2

= e
1
2
σ̂2t2

{
1

n

n∑
j=1

cos((Yj − µ̂)t) + i · 1
n

n∑
j=1

sin((Yj − µ̂)t)

}
,

(5.2)

where the real and imaginary parts involve sums of trigonometric functions.

After we have the characteristic function of the jump size, we might want to

find the density function of the jump size, since in most applications we are more

interested in obtaining the density function. Then it becomes a Fourier inversion

problem. An introduction to the “conventional” Fourier inverse transform is given

in Section 5.1.2.

However, our problem is not a “conventional” Fourier inversion. As we have

already noticed, φ̂V (t) in (5.2) is a ratio of two characteristic functions where the

numerator is an empirical characteristic function but the denominator is in the form

of the characteristic function of a normal distribution, and thus the denominator

converges to zero much faster than the numerator does. Therefore, φ̂V (t) in (5.2)

is unbounded and not integrable. In this situation, some regularization procedure

needs to be taken before we apply the Fourier inverse transform. This is a common

issue in the so-called de-convolution problem. The monograph by Meister (2009)
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provides a good exposition of the de-convolution problem. We will briefly review

this topic in Section 5.1.1.

In Section 5.2, we discuss the estimation of jump size distribution. Simulation

studies are given in Section 5.3, and a real data example is provided in Section 5.4.

5.1 Introduction

5.1.1 De-convolution Problem

Many facts presented in this section are based on Meister (2009).

Our goal is to estimate a function f while we observe values from the distribution

h = f ∗G =

∫
f(x− y)dG(y),

that is, the convolution of f and some probability distribution G. Here we focus

on the case when G is absolute continuous and thus has a density function g. Then

we may write

h = f ∗ g =
∫
f(x− y)g(y)dy. (5.3)

This density corresponds to the following model:

Y = X + ϵ, (5.4)

where Y ∼ h,X ∼ f and ϵ ∼ g. The function g is often called the error density or

the blurring density. Here Y is the observable variable, but the distribution of X

is what we are interested in.

The characteristic function techniques are used commonly in the de-convolution

problem since the characteristic function transforms the convolution operator into

the multiplication operator. More concretely, (5.3) is equivalent to

φY = φX · φϵ,
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where φY , φX and φϵ are the characteristic functions of Y,X and ϵ, respectively.

Assuming that distribution of ϵ is known (or can be estimated), we can use the

following steps to estimate f :

Step 1: Estimate φY based on observed data, and denote the estimator by φ̂Y .

Step 2: Divide φ̂Y (t) by φϵ(t), leading to the estimator φ̂X(t).

Step 3: Regularize φ̂X so that its Fourier inverse transform f̂ exists. Take f̂ as

the de-convolution estimator of f .

This procedure looks straightforward; however, the regularization in the last step

involves many mathematical efforts.

For Step 1, suppose we estimate φY by using the empirical characteristic func-

tion:

φ̂Y,1(t) =
1

n

n∑
j=1

exp(itYj). (5.5)

Then an estimator of φX(t) is given by

φ̂X,1(t) = φ̂Y,1(t)/φϵ(t) =
1

n

n∑
j=1

exp(itYj)/φϵ(t), (5.6)

assuming that φϵ vanishes nowhere. For each fixed t, φ̂X,1(t) is an unbiased and

strongly consistent estimator of φX(t), since the e.c.f. φ̂Y,1(t) is an unbiased and

strongly consistent estimator of φY (t). We are interested in the density function f

of X, so we shall apply the Fourier inversion to φ̂X,1(t). Using the standard Fourier

inverse formula (5.12) presented in Section 5.1.2, a naive estimator of f is given by

f̂naive(x) =
1

2π

∫
R
e−itxφ̂X,1(t)dt.

However, this estimator is not well-defined because φ̂X,1(t) is neither integrable

nor square-integrable over R. (Note that the Fourier transform can be defined on

L1(R) or L2(R); see Appendix B). The tail behaviors of φ̂X,1(t) and φX(t) are
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significantly different: φ̂X,1(t) oscillates with amplitude going to infinity as t→ ∞,

while |φX(t)| < 1 for all t ∈ R and φX(t) → 0 as t→ ∞.

Therefore, we need to regularize φ̂X,1(t) before the Fourier inversion is applied.

One of the most popular regularization methods is the kernel method. Another

method is the truncation method. In the following we discuss both methods.

Kernel Method

The kernel method has been introduced in Section 2.4. Let K(x) be a kernel

function and b > 0 be the window width. Then the kernel density function of the

observable variable Y in (5.4) is given by

ĥ(x) =
1

nb

n∑
j=1

K

(
x− Yj
b

)
.

Under some condition on K, e.g. K ∈ L1(R)∩L2(R), the Fourier transform of ĥ(x)

exists and is given by

φ̂Y,2(t) := φ̂Y,1(t) ·Kft(bt),

where φ̂Y,1(t) is the e.c.f. given by (5.5), and Kft is the Fourier transform of the

functionK. This can be seen from Lemma 2.4.3. Then we obtain a second empirical

version of φX(t) by

φ̂X,2(t) = φ̂Y,2(t)/φϵ(t) = φ̂Y,1(t)K
ft(bt)/φϵ(t)

= Kft(bt)
1

n

n∑
j=1

exp(itYj)/φϵ(t).
(5.7)

The only difference between φ̂X,1(t) and φ̂X,2(t) is the deterministic term Kft(bt).

Adding this term can be viewed as a regularization for φ̂X,1(t). We hope φ̂X,2(t) ∈
L1(R) ∩ L2(R) so that its Fourier inverse would exist. However, this does not hold

for all kernel functions (and window widths). For example, if K is the Gaussian

kernel, ϵ is normally distributed with variance σ2
ϵ and σϵ > b, then φ̂X,2(t) is not
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integrable or square integrable. There is one class of kernel functions whose Fourier

transforms are bounded and compactly supported, which includes the sinc-kernel:

K(x) =
sinx

πx
(5.8)

with the Fourier transform given by

Kft(t) = 1[−1,1](t), (5.9)

where 1A denotes the indicator function of a set A. For such a kernel, φ̂X,2(t) in

(5.7) is supported on [−1/b, 1/b] and bounded whenever φϵ(t) ̸= 0 (since φϵ(·) is

continuous). Then φ̂X,2(t) is integrable and square-integrable, so we can apply the

Fourier inversion to φ̂X,2(t). This leads to the following density estimator

f̂X,2(x) =
1

2π

∫
R
e−itxφ̂X,2(t)dt

=
1

2π

∫
R
e−itxKft(bt)

1

n

n∑
j=1

exp(itYj)/φϵ(t)dt
(5.10)

which is well-defined for any non-vanishing φϵ and bounded and compactly sup-

ported Kft. This estimator f̂X,2(x) has been known as the standard de-convolution

kernel density estimator (See Meister (2009)).

Note that to avoid complex values in the estimator of a density function, we

can just take the real part of the estimator f̂X,2(x).

Truncation Method

Another method for the regularization step is truncation, where the regularized

estimator of φX(t) is given by

φ̂X,3(t) =

 φ̂X,1(t) if |t| ≤ ttrunc

0 if |t| > ttrunc,
(5.11)
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for some constant ttrunc > 0, where φ̂X,1(t) is defined in (5.6).

This truncation method can be viewed as a sub-class of the kernel method where

Kft(t) is an indicator function over a compact set. That is, when the kernel function

K is the sinc-kernel and b = 1/ttrunc, the estimator φ̂X,2(t) becomes φ̂X,3(t). On

the other hand, the kernel method with Kft bounded and compactly supported

is essentially the same as the truncation method, as long as there is no other

information implying the necessity to modify the middle part of φ̂X,1(t), i.e. when

|t| ≤ ttrunc. Typically the estimation error of φ̂X,1(t) is small when t is close to

zero and gets larger when t increases, so we might want to keep the middle part of

φ̂X,1(t) unchanged. Therefore, the kernel method and the truncation method are

equivalent.

Other Methods

There are other methods proposed for the deconvolution problem, for example,

the wavelet-based method and the ridge-parameter approach. In the wavelet-based

method, an orthogonal series is used to estimate the density while the coefficients

of the orthonormal bases are calculated using the Parseval’s identity. The ridge-

parameter approach was proposed to relax the condition that φϵ vanishes nowhere.

More details can be found in Meister (2009).

In our problem, ϵ corresponds to a normal distribution so that the condition that

φϵ vanishes nowhere holds true automatically. Thus, there is no need to consider the

ridge-parameter approach. Comparing with the wavelet-based method, the kernel

method or the truncation method is more convenient for implementation.

Therefore, in the following we shall use the kernel estimator f̂X,2(x) given in

(5.10) with Kft bounded and compactly supported, or equivalently, the truncation

method in (5.11), as the deconvolution density estimator.
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5.1.2 Inverting Transforms of Probability Distributions

This section discusses the calculation of the probability density distributions by

numerically inverting characteristic functions. Other transforms, like the Laplace

transform and generating functions, can be applied similarly. We can also use this

method to recover the cumulative distribution functions. Most of the facts in this

section are based on Abate and Whitt (1992).

The following result can be found in many monographs on Fourier transform,

or in probability books, for example, Grimmett and Stirzaker (2001, page 189).

Theorem 5.1.1. If X is continuous with density function f and characteristic

function φ then

f(x) =
1

2π

∫ ∞

−∞
e−itxφ(t)dt (5.12)

at every point x at which f is differentiable.

The cumulative distribution function of X can also be found by

F (x2)− F (x1) =
1

2π

∫ ∞

−∞

e−itx1 − e−itx2

it
φ(t)dt.

In most of the applications we are more interested in obtaining the density function

rather than the distribution function, so in the following we focus on recovering the

density function.

Theorem 5.1.1 implies the integrability of the integrand in equation (5.12). Since

f(x) is a real function, we may consider only the real part of the right-hand side of

(5.12), i.e.

f(x) =
1

2π

∫ ∞

−∞
ℜ(e−itxφ(t))dt

=
1

2π

∫ ∞

−∞
(ℜ(φ(t)) cos(tx) + ℑ(φ(t)) sin(tx)) dt

=
1

π

∫ ∞

0

(ℜ(φ(t)) cos(tx) + ℑ(φ(t)) sin(tx)) dt,

(5.13)
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where the last identity is due to the fact that ℜ(φ(t)) is an even function in t and

ℑ(φ(t)) is an odd function in t. If we denote

g(t) :=
1

π
(ℜ(φ(t)) cos(tx) + ℑ(φ(t)) sin(tx)) , (5.14)

where we suppress the dependence of g on x to simplify the notation, then (5.13)

can be written as

f(x) =

∫ ∞

0

g(t)dt.

To evaluate this integral, different approximation method can be applied, such as

the rectangular rule (or midpoint rule), the trapezoidal rule and the Simpson’s rule.

See Figure 5.1 for the underlying ideas of these three methods how to approximate

the area. Note that the Simpson’s rule can be viewed as a weighted average of the

rectangular rule and the trapezoidal rule. It is known that for smooth functions the

Simpson’s rule has faster convergence than the trapezoidal rule. However, when the

function is periodic, the trapezoidal rule typically converges faster than the other

less primitive methods. This can be explained intuitively as follows: when the

function is periodic or oscillating, there are about as many sections of the graph

that are concave up as concave down, so the errors tend to cancel. See Abate

and Whitt (1992) for more details. In our problem, the integrand g(t) exhibits

oscillating behavior, so we choose the trapezoidal rule to evaluate the integral.

By the trapezoidal rule, the approximation is given by∫ b

a

g(u)du ≈ h

[
g(a) + g(b)

2
+

n−1∑
k=1

g(a+ kh)

]

where h is the mesh size of the partition. This rule also applies when a = −∞ or
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Figure 5.1: Different methods to evaluate integrals

(a) Rectangular (b) Trapezoidal (c) Simpson

b = ∞. Using this approximation, we have

f(x) =

∫ ∞

0

g(t)dt

≈ fh(x) := h

[
g(0) + g(∞)

2
+

∞∑
k=1

g(kh)

]

=
h

π

[
1

2
+

∞∑
k=1

ℜ(φ(kh)) cos(khx) +
∞∑
k=1

ℑ(φ(kh)) sin(khx)

]

≈ fh,N(x) :=
h

π

[
1

2
+

N∑
k=1

ℜ(φ(kh)) cos(khx) +
N∑
k=1

ℑ(φ(kh)) sin(khx)

]
,

where in the third line we used g(∞) = 0 (given that the integral exists). Note

that the difference ed := |f(x) − fh(x)| is the discretization error for function f

evaluated at x with mesh size h, and et := |fh(x)− fh,N(x)| is the truncation error

resulted from considering only the first N terms of the infinite series.

To write it in another way, we let h = π/l, and replace the notation fh(·) by
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fl(·), and fh,N(·) by fl,N(·). Then

f(x) ≈ fl(x) =
1

2l
+

∞∑
k=1

1

l
ℜ
(
φ

(
kπ

l

))
cos

kπx

l
+

∞∑
k=1

1

l
ℑ
(
φ

(
kπ

l

))
sin

kπx

l

≈ fl,N(x) =
1

2l
+

N∑
k=1

1

l
ℜ
(
φ

(
kπ

l

))
cos

kπx

l
+

N∑
k=1

1

l
ℑ
(
φ

(
kπ

l

))
sin

kπx

l
.

(5.15)

The last approximation fl,N(x) is a trigonometric polynomial of degree N and

period 2l. The argument x appears only inside the sine and cosine functions, so

ℜ(φ(·)) and ℑ(φ(·)) only need to be evaluated N times, regardless of the number

of points at which we want the function f to be evaluated. Appropriate values of l

and N need to be chosen for the specific problem.

More details on this method of obtaining probability distributions from their

transforms, including the analysis on the discretization error and the truncation

error, can be found in Abate and Whitt (1992).

5.2 Estimation of the Jump Size Distribution

Now we apply the methods presented in Section 5.1 to estimate the density

function fX(·) of the jump size X.

Equations (5.1) and (5.2) provide an estimator, φ̂X(t), of the characteristic

function of the jump size X. However, we need to regularize it before we apply the

Fourier inversion, using the method described in Section 5.1.1 for the deconvolution

problem. The only difference is that φ̂X(t) in (5.1) is a little more complicated in

that it is not just a ratio of characteristic functions, but a transformation of this

ratio. However, the transformation is a basic one, and limt→∞ φX(t) = 0, so we

can still use the same regularization procedure as for the deconvolution problem.
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Among the two methods discussed Section 5.1.1, in our implementation we chose

the truncation method given by (5.11).

To use this method, we need to choose the truncation point, ttrunc. From Remark

2.2.23 we see that it is better to let ttrunc equal to the value of t selected for the

estimation of jump frequency. For finite samples, we would use the recommended

Method 3 for selection of t, as proposed in Section 2.3.

Let Tn be the selected value of t. Substituting ttrunc in (5.11) by Tn, we obtain

a regularized version of the estimator of φX(t) as

φ̂X,3(t) =

 φ̂X(t) if |t| ≤ Tn

0 if |t| > Tn,
(5.16)

where φ̂X(t) is given in equations (5.1) and (5.2) with α̂ = α̂n ≡ α̂(Tn), and α̂(t) is

given in (2.24).

After the regularization step, the Fourier inverse transform is well defined and

the estimator of the jump size density fX is given by

f̂X,3(x) =
1

2π

∫
R
e−itxφ̂X,3(t)dt (5.17)

where φ̂X,3(t) is given in (5.16).

Strong Consistency of the Density Estimator

In the following we show that the proposed density estimator f̂X,3(x) in (5.17)

is a consistent estimator of the true jump size density fX .

Firstly, we introduce a function, called the imaginary error function, which is

defined by

erfi(x) :=
2√
π

∫ x

0

et
2

dt.

This function is defined for all complex arguments x, but in the following we only

need the real arguments x.

156



Theorem 5.2.1. Consider Model 2 in (2.11) with the assumption (A2-1). Assume

that µ, σ and α are known. Suppose the truncating point Tn in (5.16) satisfies that

(A3-1) erfi (σTn/
√
2)/

√
n→ 0, as n→ ∞.

Then the estimator f̂X,3(x) defined by (5.17) satisfies, as n→ ∞,

f̂X,3(x) −→ fX(x)

weakly for every x ∈ R at which f(x) is continuous.

Proof. Fix an arbitrary x at which f(x) is continuous. We have

f̂X,3(x)− fX(x) =
1

2π

∫
R
e−itxφ̂X,3(t)dt−

1

2π

∫
R
e−itxφX(t)dt

=
1

2π

∫
R
e−itx (φ̂X,3(t)− φX(t)) dt

=
1

2π

∫
|t|≤Tn

e−itx (φ̂X(t)− φX(t)) dt −
1

2π

∫
|t|>Tn

e−itxφX(t)dt.

The second term goes to zero as n → ∞, because Tn → ∞ and the integral

1
2π

∫∞
−∞ e−itxφX(t)dt = fX(x) exists. For the first term,∣∣∣∣ 12π

∫
|t|≤Tn

e−itx (φ̂X(t)− φX(t)) dt

∣∣∣∣ ≤ 1

2π

∫
|t|≤Tn

∣∣e−itx (φ̂X(t)− φX(t))
∣∣ dt

=
1

2π

∫
|t|≤Tn

|φ̂X(t)− φX(t)| dt.

Therefore, it suffices to show that Vn
p−→ 0, or equivalently P(|Vn| ≥ ϵ) → 0 for

any ϵ > 0, where

Vn :=

∫
|t|≤Tn

|φ̂X(t)− φX(t)| dt.

Since Vn ≥ 0 and by Markov’s inequality P(Vn ≥ ϵ) ≤ E(Vn)
ϵ

, we only need to show

E(Vn) → 0.
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Since µ, σ and λ are assumed known, we have

φ̂X(t)− φX(t) =

φ̂Y (t)
φZ(t)

− (1− α)

α
−

φY (t)
φZ(t)

− (1− α)

α

=
φ̂Y (t)− φY (t)

α · φZ(t)

=
1

α
e−iµt+

1
2
σ2t2 (φ̂Y (t)− φY (t)) .

By Proposition D.0.9 in Appendix D, we have

E
[
|φ̂Y (t)− φY (t)|2

]
= Var(φ̂Y (t)) =

1

n

(
1− |φY (t)|2

)
≤ 1

n
.

Then

E
[
|φ̂X(t)− φX(t)|2

]
=

1

α2
eσ

2t2E
[
|φ̂Y (t)− φY (t)|2

]
≤ 1

α2n
eσ

2t2 .

Thus, by the Cauchy-Schwartz inequality, we have

E(Vn) =
∫
|t|≤Tn

E |φ̂X(t)− φX(t)| dt

≤
∫
|t|≤Tn

{
E
[
|φ̂X(t)− φX(t)|2

]} 1
2 dt

≤ 1

α
√
n

∫
|t|≤Tn

e
1
2
σ2t2dt

=
2
√
2

σα
· 1√

n

∫ σTn√
2

0

ex
2

dx,

or equivalently,

E(Vn) ≤
√
2π

σα
· 1√

n
erfi

(
σTn√
2

)
.

By the assumption (A3-1), we obtain E(Vn) → 0 as n→ ∞. Therefore, as n→ ∞,

f̂X,3(x) −→ fX(x) weakly for every x at which f(x) is continuous. �

Remark 5.2.2. The assumption (A3-1) in the above Theorem 5.2.1 does not de-

pend on the distribution of the jump size. One example of Tn which satisfies this

assumption is to let Tn =
√
log nq where 0 < q < 1/σ2. This can be shown by using

the loose bound that
∫ x
0
et

2
dt ≤ xex

2
for any x > 0.
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In the following we discuss the evaluation of the integral in the estimator f̂X,3(x).

Using the Trapezoidal Rule

As discussed in Section 5.1.2, we apply the trapezoidal rule (5.15) to evaluate

the integral in the estimator f̂X,3(x) given by (5.17). Then a practical estimator of

the density function fX of jump size is given by

f̂X,4(x) =
1

2l
+

N∑
k=1

1

l
ℜ
(
φ̂X,3

(
kπ

l

))
cos

(
kπx

l

)
+

N∑
k=1

1

l
ℑ
(
φ̂X,3

(
kπ

l

))
sin

(
kπx

l

)
,

(5.18)

where φ̂X,3 is given by (5.16). Note that this is a trigonometric polynomial of degree

N and period 2l. In the following we discuss the selection of the parameters N and

l.

Selection of the Truncation and Discretization Parameters

Since there are both positive and negative jumps, we may assume that the jump

size density fX(·) is “concentrated” on the interval [−lX , lX ] for some constant

lX > 0 and is negligibly small outside this interval. That is, we are interested in

the estimator f̂X,4(x) over the interval x ∈ [−lX , lX ]. The selection of lX depends

on the size of the increments of the process. For example, we may choose lX to be

a value approximately 1.5 to 2 times of the largest size of the observed increments.

Notice that [−lX , lX ] is a symmetric interval around zero. We may also assume that

fX(·) is concentrated on an asymmetric interval [−a, b] for some a, b > 0. Similarly,

we can choose a and b approximately equal to 1.5 to 2 times of the largest sizes

of the negative and the positive increments, respectively. Then the following steps

would be the same as using the symmetric interval (except changing the requirement

l ≥ lX stated below by 2l ≥ (b+ a)). Therefore, in the following we focus on using

the symmetric interval [−lX , lX ] only.
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For the selection of the discretization parameter l and the truncation parameter

N , the situation is a little different from the one in the “conventional” Fourier

inversion. It is known that in the conventional Fourier inversion, for a fixed l, the

larger value of N the better. However, in our problem, the estimated c.f. φ̂X,3 in

(5.16) is truncated. Note that in (5.16) we used the notation Tn for the truncation

point. However, to be consistent with the notation in Section 2.3 for the selection

of t for finite samples, we change to use the notation tM when we discuss the

implementation issues in the following. That is, φ̂X,3(t) = 0 for |t| > tM . Then

from f̂X,4(x) in (5.18) we can see that N and l should satisfy

πN

l
≤ tM ,

because otherwise, for a fixed l, larger N will contribute nothing to f̂X,4(x). To

ensure that we use all the information up to tM , we would rather let

πN

l
= tM ,

or equivalently,

l =
π ·N
tM

. (5.19)

Thus, the ratio N/l is fixed for a given tM . Now we only need to choose N , since l

will then be determined automatically by (5.19). For a fixed value of x ∈ [−lX , lX ],
a larger value of N means a finer partition of the interval [0, tM ] when using f̂X,4(x)

in (5.18) to evaluate the integral in f̂X,3(x) given by (5.17), and thus f̂X,4(x) will

approximate f̂X,3(x) better when N is larger. However, note that f̂X,3(x) itself is

an estimator of the true density fX and is random, so a larger value of N might not

guarantee a better estimation result of the true density fX , but instead the result

also depends on the properties of the estimator f̂X,3(x).

To clarify our notation, [−lX , lX ] is the interval over which we want to estimate

the density of jump size, and l is the discretization parameter in (5.18). It is required

that l ≥ lX so that we can obtain an appropriate density estimator (noticing that
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f̂X,4(x) is a periodic function of period 2l). We can use this requirement to define

the smallest number for N that we would consider. That is, by (5.19) and l ≥ lX ,

we have

N ≥ tM · lX
π

. (5.20)

Note that this defines the starting point of N that we would consider, and then

we would definitely try larger values of N to check the improvement of the results.

Therefore, the procedure of selecting N and l can be summarized as follows:

Step 1 Determine lX by the size of the observed increments of the process. (For

example, let lX be a value approximately 1.5 to 2 times of the largest size of

the observed increments.)

Step 2 Start by letting N = tM ·lX
π

(approximately), due to (5.20).

Step 3 The value of l is always determined by (5.19) after setting a value for N .

Then proceed with the estimation of jump size distribution, and record the

results.

Step 4 Increase N .

Step 5 Repeat Steps 3 and 4, until the estimation results of jump size distribution

do not show significant improvement. Then the value of N will be regarded

as an appropriate one.

In summary, a practical estimator of the density function fX of jump size is

given by f̂X,4(x) in equation (5.18), where the selection of parameters N and l is

discussed in the above procedure.
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5.3 Simulation Studies

In this section, we estimate the density function of the jump size in the Mer-

ton model and the Kou model using the estimator f̂X,4(x) in (5.18). The robust

procedure “HT2” as described in Section 4.1.3 is used to estimate the diffusion

parameters. For the selection of t, we apply Method 3 described in Section 2.3, and

denote it by tM3 as before. Note that this tM3 is used in both the estimation of

jump frequency and the construction of the regularized estimator φ̂X,3(t) in (5.16).

Example 5.3.1 (Merton Model). We use the same parameter settings as in Ex-

ample 2.1.2, except for changing σX from σX = 3.79% to σX = 10%∗. For the

selection of t using Method 3, the same upper bound tmax = 100 is set. We discuss

the selection of some parameters as follows:

• By looking into the size of the simulated increments, we choose lX = 0.5,

which is as large as 5 times the standard deviation of the jump size. That is,

we are interested in the estimation of the jump size density over the interval

[−0.5, 0.5].

• For the selection of N , we would start by N = tM ·lX
π

. However, tM is sample

dependent. But tM ≤ tmax, so we will just start N by a value close to
tmax·lX

π
= 100×0.5

π
≈ 16, and then increase N .

• Note that l is always determined by (5.19) for every given value of N . Since

tM is sample dependent, l is also sample dependent.

We use f̂X,4(x) to obtain the density estimate of jump size, and repeat 100,000

times. Figure 5.2 shows the quantile curves of the density estimates when N = 60 in

part (a) and N = 600 in part (b), where he curves “q1”, “q2” and “q3” correspond

∗The reason of doing this is to avoid the ”confounding” effects of tmax and other factors. See

Remark 2.3.8.
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to the 25% quantile, the median, and the 75% quantile of the 100,000 density

estimates of jumps size. We can see that the difference in the performance of the

density estimates between using N = 60 and using N = 600 is not obvious. Note

that this is also true if we simulate only sample.

Figure 5.2: Quantile curves of density estimates for different N [Merton]
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The quantile curves provide visual explanations on the performance of the den-

sity estimator. However, to quantify the performance, we need to introduce some

distance between the density functions. One popular choice is the total variation

(TV) distance, defined by

d(f, g) =
1

2

∫
R
|f(x)− g(x)|dx

for any density functions f and g. For our problem, we want to measure the distance

between the true density fX and the estimator f̂X,4 over the interval [−lX , lX ], i.e.

d(fX , f̂X,4) =
1

2

∫ lX

−lX
|f̂X,4(x)− fX(x)|dx. (5.21)

Table 5.1 provides the total variation distance d(fX , f̂X,4) for different values

of N = 20, 60, 100, 200, 300, 600. Note that the estimation error includes the
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Table 5.1: TV distance between fX and f̂X,4 for different N [Merton]

N = 20 N = 60 N = 100 N = 200 N = 300 N = 600

d(f , f̂X,4)
.1077

(.0605)

.1072

(.0600)

.1071

(.0601)

.1069

(.0600)

.1072

(.0602)

.1067

(.0600)

Note: σX = 0.1, n = 2500, λ = 12.5, tmax = 100, lX = 0.5. Repeat 100,000 times. The value

of l is determined by (5.19) for each value of N , and is sample dependent because tM is sample

dependent.

error from every step: the estimation of the diffusion parameters, the estimation of

the jump ratio, and the estimation of the jump size distribution. To evaluate the

total variation distance (5.21), we partition the interval [−lX , lX ] into 2,000 equally

spaced sub-intervals.† From the result we see that the total variation distance

decreases in the beginning as N increases. However, the improvement becomes less

obvious (or there is no improvement) when N gets large. So in the following we

choose N = 200.

For a quick comparison, Figure 5.3 shows the estimates of the jump size density

using different methods (described below), based on one simulated data set. There

are six graphs in this figure, and we explain each of them as follows:

• The graph on the first line and first row, denoted by (1,1), is the true density

function of jump size.

• The graph (1,2) shows the density estimate obtained by inverting numerically

the true characteristic function φX(·). Since it is very close to the true density,

this verifies the appropriateness of using the trapezoidal rule for the Fourier

inversion, i.e. equation (5.15).

• The graph (2,1) shows the density estimate obtained by using the e.c.f., i.e.

by inverting φ̂X(t) given in equations (5.1) and (5.2). As expected, the result

†In the following simulation studies, we always do this to evaluate the total variation distance.
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Figure 5.3: Different density estimates of jump size [Merton]
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is not good.

• The graph (2,2) shows the density estimate obtained by using the kernel

estimate of the c.f. with the Gaussian kernel, i.e. equation (2.53). The result

is similar to the one using e.c.f., because the window width hn given by (2.52)

in the kernel estimate of the c.f. satisfies hn < σ and thus the shape of the

kernel estimate is still the same as the shape of the estimate by using the

e.c.f.. This also verifies that the “conventional” kernel estimator of the c.f.

(e.g. with the Gaussian kernel) does not work well in general de-convolution

problems.

• The graph (3,1) is based on the method that we recommend, i.e. using the

truncated e.c.f. given by (5.16). The result looks significantly better.

• The graph (3,2) shows the kernel density estimate based on the true jump

observations. In practice it is impossible to separate all the jump observations

165



from the diffusion observations. Therefore, the fact that the results in the last

two graphs are comparable shows that our method is working well.

Note that graphs (2,1) and (2,2) are obtained by using the same l as in graph

(3,1) but with N increased to twice the size used in graph (3,1). In these cases, we

have found that the estimation error increases when N becomes larger. The graph

(1,2) are obtained by using the same l and N as in graph (3,1).

For further interest, Figure 5.4 shows the real and imaginary parts of different

estimates of the c.f. of jump size, based on one simulated data set. This can be used

to explain why our method (using the truncated e.c.f.) is better than the others:

from the figure we see that the real part of the truncated e.c.f. is the one closest

to the real part of the true c.f.. The real part of the truncated e.c.f. is continuous

and equals zero at the point tM (i.e. the selected value of t) by equations (5.1) and

(4.15), and stays at zero for t > tM ; while the true c.f. starts to approach zero from

the point tM . For the imaginary parts, the truncated c.f. is also the closest one to

the true c.f.

Table 5.2: TV distance between f and f̂X,4 for different scenarios [Merton]
σX ≈ 3.79% σX = 10% σX = 60%

n λ = 12.5 λ = 25 λ = 12.5 λ = 25 λ = 12.5 λ = 25

1000 .1467(.0653) .1058(.0409) .1473(.0750) .0971(.0436) .1209(.0501) .0894(.0365)

2500 .0987(.0408) .0811(.0280) .1068(.0600) .0646(.0290) .0815(.0334) .0598(.0242)

10000 .0545(.0214) .0673(.0161) .0724(.0484) .0340(.0147) .0441(.0179) .0319(.0128)

40000 .0321(.0120) .0640(.0084) .0598(.0433) .0172(.0069) .0237(.0096) .0169(.0067)

Note: N = 200, lX = 5 · σX , tmax = 100. Repeat 100,000 times.

Now we look at the estimation results under different scenarios of parameter

settings. Table 5.2 shows the total variation distance between fX and f̂X,4 for

different values of σX , jump intensity λ and sample size n. In the beginning, we

use the same analysis as in Table 5.1 to choose an appropriate value of N for every

σX , and it turns out that N = 200 is appropriate for all cases. For the selection
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Figure 5.4: Real and imaginary parts of density estimates of jump size [Merton]
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of t using Method 3, the upper bound tmax = 100 is always set. For the Fourier

inversion, we always set lX = 5 · σX . Repeat 100,000 times. From the results we

can see that:

• As n increases (while fixing the other two parameters: σX and λ), the TV

distance decreases.

• As λ increases, the TV distance decreases. (There are exceptions when σX ≈
3.79%, n = 10, 000 and when σX ≈ 3.79%, n = 40, 000. This might be due to

the different degrees of accuracy of the volatility estimator, or the different

degrees of influence of tmax on the selection of t, for different scenarios.)

• As σX increases, the TV distance decreases. (There is one exception when

comparing the first column and the third column. This might be due to the

same reasons as given above.)
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Example 5.3.2 (Kou Model). We use the same parameters as in Example 2.1.3

for the Kou model. In the following we perform a similar analysis as we did for the

Merton model.

By looking at the sizes of the simulated increments, we choose lX = 0.2. For

the selection of N , we start N by a value close to tmax·lX
π

= 100×0.2
π

≈ 6, and then

increase N . The value of l is determined by (5.19) for every given N .

Figure 5.5 shows the quantile curves of the density estimates when N = 60 in

part (a) and N = 600 in part (b). Similarly to the Merton case, the difference

between the performance of the density estimates for N = 60 and for N = 600 is

not obvious.

Figure 5.5: Quantile curves of density estimates for different N [Kou]
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One observation from Figure 5.5 is that the middle part of the density estimate

is over-smoothed. (Note that the true density is not continuous at zero.) This

problem is not caused by the Fourier inversion where the trapezoidal rule is used;

see graph (1,2) in Figure 5.6 for a counter-example. Rather it is a result of the fact

that the c.f. of the double exponential distribution in the Kou model decays slowly

comparing with the normal distribution in Merton model does. When we truncate

the e.c.f. at tM3, the true c.f. of the double exponential distribution is not close
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enough to zero yet, so we lose the information of the c.f. on the interval t > tM3.

However, we can not truncate the e.c.f. at a larger value of t because otherwise we

will increase the error – this can be verified by the graph (2,1) in Figures 5.6.

Table 5.3 provides the total variation distance d(fX , f̂X,4) for different values of

N . Based on these results, we also choose N = 200 for further studies.

Table 5.3: TV distance between fX and f̂X,4 for different N [Kou]

N = 10 N = 30 N = 100 N = 200 N = 300 N = 600

d(f , f̂X,4)
.1985

(.0490)

.1916

(.0468)

.1904

(.0468)

.1900

(.0469)

.1897

(.0465)

.1897

(.0469)

Note: η+ = 1/0.02, η− = 1/0.04, p = 0.3, lX = 0.2, n = 2500, λ = 12.5. Repeat 100,000 times.

tmax = 100.

Figure 5.6: Different density estimates of jump size [Kou]
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For a quick comparison, Figure 5.6 shows different estimates of the density

function of jump size, where one sample is used, similar to what we did for the
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Merton model. For this sample, we have tM3 = 83.0. In graph (3,1), N = 200 and

l = N ∗ π/tM3 = 7.57. Similarly to the Merton case, the estimates in graphs (2,1)

and (2,2) are not good, while the estimate in graph (3,1) is comparable with the

kernel density estimate as in graph (3,2). Note that the graphs (2,1) and (2,2) are

obtained by using the same l as in graph (3,1) but we have increased N to twice

of the size used in graph (3,1). The graph (1,2) is obtained by using the same l

as in graph (3,1) but with N increased to 1500.‡ Such a large N is required to

obtain a good density approximation, as in graph (1,2), by inverting the true c.f.

of jump size distribution, because the c.f. of the double exponential distribution

decays slowly, which can also be verified by comparing the graph (1,1) in Figure

5.7 below for the Kou case with the graph (1,1) in Figure 5.4 for the Merton case.

Figure 5.7: Real and imaginary parts of density estimates of jump size [Kou]
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For further interest, Figure 5.7 shows the real and imaginary parts of different

estimates of the c.f. of jump size where one sample is used. We see that the real part

‡Note that in the Merton case, we used the same N for graphs (1,2) and (3,1).
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of the truncated e.c.f. is the one closest to the real part of the true c.f., although it

is not as close as for the Merton case.

Table 5.4: TV distance between f and f̂X,4 for different scenarios [Kou]

η+ = 1/0.02, η− = 1/0.04 η+ = 1/0.1, η− = 1/0.2

lX = 0.2 lX = 1.0

d(f , f̂X,4) λ = 12.5 λ = 25 λ = 12.5 λ = 25

n = 1000 .2316 (.0735) .2057 (.0509) .1804 (.0547) .1415 (.0398)

n = 2500 .1898 (.0467) .1881 (.0350) .1312 (.0362) .1043 (.0275)

n = 10000 .1641 (.0291) .1833 (.0191) .0820 (.0205) .0661 (.0165)

n = 40000 .1584 (.0193) .1840 (.0103) .0533 (.0153) .0423 (.0101)

Note: p = 0.3 is fixed. N = 200, tmax = 100. Repeat 100,000 times.

Table 5.4 shows the estimation results under different scenarios of parameter

settings. Note that p = 0.3 is fixed for the different jump size distributions. The

situation is similar to the Merton model case. The TV distance decreases as n

increases, or λ increases, or the variance of jump size increases.

Table 5.5: TV distance between f and f̂X,4 for different scenarios [t distribution]
σX ≈ 3.79% σX = 10% σX = 60%

n λ = 12.5 λ = 25 λ = 12.5 λ = 25 λ = 12.5 λ = 25

1000 .2470(.1933) .2218(.0719) .1848(.0761) .1303(.0518) .1597(.0664) .1165(.0453)

2500 .1818(.0694) .1938(.0487) .1279(.0533) .0902(.0364) .1060(.0404) .0773(.0246)

10000 .1298(.0381) .1782(.0269) .0754(.0349) .0554(.0239) .0572(.0166) .0418(.0118)

40000 .1037(.0233) .1743(.0156) .0491(.0272) .0413(.0133) .0309(.0086) .0224(.0061)

Note: N = 200, lX = 5 · σX , tmax = 100. Repeat 100,000 times.

Example 5.3.3 (t distribution). We follow the same procedure as in the Merton

model example. Table 5.5 shows the total variation distance between fX and f̂X,4

for different values of σX , jump intensity λ and sample size n. From the results,
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we can see that the same pattern exists as the one in the Merton model example,

although the results are not as good as the one for Merton model.

5.4 Real Data Example

In this section we work with real data. We use the same data set as in Sepp

(2012), which is the adjusted closing values§ of the S&P500 index from January 4,

1999 to January 9, 2009, with a total of 2521 observations. Taking log of the data

set, we work with the increments of the log-price. Figure 5.8 shows the scatter plots

of the original S&P500 data set in part (a) and the increments of the log-price of

S&P500 in part (b).

Figure 5.8: Scatter plots for S&P daily data
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§close price adjusted for dividends and splits (as in Yahoo Finance web)x.
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In the following we apply our method to this data set, and then compare the

obtained results with the results presented in Sepp (2012). In Sepp (2012) the

volatility was treated as constant, and we do the same.

The robust estimates of the diffusion parameters are µ̂0 = 0.0341 and σ̂0 =

0.1378. Figure 5.9 shows the curve of λ̂(t), the bootstrapped estimate of Std(λ̂(t)),

and two “approximations” of Std(λ̂(t)) based on (2.40) and (2.41). For the selection

of t, Method 3 is used. We set the upper bound tmax = 200, with the same reason

as given in Example 2.3.11. Then we found that tM3 = 121.6, λ̂(tM3) = 44.3906, or

equivalently, α̂(tM3) = 0.1776. Later we will compare these results with the ones

presented in Sepp (2012).

Figure 5.9: The curve of λ̂(t) for S&P500 daily data
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Now let us look at the estimation of the jump size distribution. Figure 5.10

shows the estimate of the jump size density, based on the method proposed in

Section 5.2. Note that we used lX = 0.25, N = 300, and l = N ∗ π/tM3 = 7.75.

As shown in the figure, this density estimate can be well ”fitted” by a normal

distribution with µ̂X = −0.0025 and σ̂X = 0.0228. Thus, our estimated model is

not far from the Merton model.
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Figure 5.10: Density estimate of jump size [S&P500]
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Now we check the performance of the above estimation method. On one hand,

we can apply kernel density estimation to the 2520 observations of the increments

(of the log-price of S&P500) to obtain a density estimate of the increments. This

corresponds to “kernel method” in Figure 5.11. On the other hand, we may plug-

in the above estimates µ̂0, σ̂0, λ̂ and the fitted normal distribution for jump size

to the Merton model and calculate the density of the increments of the Merton

model (or use the mixture model to approximate it). This corresponds to the curve

labelled as ”our method” in Figure 5.11. Comparing the two density estimates of

the increments, we see that our method does a good job, except for the middle

part which shows underestimation (relative to the “kernel method”). This may be

because the Fourier inversion by the truncation method did not capture the high

peak of the middle part of the jump size density, but tends to have a smoothed

peak which looks like a normal distribution (see the above Kou model example).

In Table 5.6, we put together our results with the results from Sepp (2012). In

Sepp (2012), the jump size was assumed to follow a mixture of normal distributions,

although the number of components is to be determined. After fitting to the data,

the jump size in the Sepp model follows a mixture of four normal distributions (as
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Figure 5.11: Density estimate of increments [S&P500]
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introduced in Example 2.3.11). The standard deviations of the four normal distri-

butions are the same, i.e. σX = 0.0127, and the mean of this mixture distribution is

found to be −1.9 ∗ 10−4. Comparing our results with the results from Sepp (2012),

we can see the following:

• The estimates of λ are very close.

• The estimates of the volatility parameter σ0 in the diffusion are also close.

• Due to different model settings (see the footnote for equation (2.1)), the drift

term µ0 in our model corresponds to µ̃0 − σ2
0/2, where µ̃0 is the drift term

in Sepp (2012). It was assumed µ̃0 = 0 in Sepp (2012). Thus, we wrote

µ̂0 = 0− σ̂2
0/2 = −0.0091 for Sepp (2012).

• The estimates of the jump size density are different – actually it is difficult

to compare them, because the distribution of the jump size is assumed a

parametric form in the Sepp model, but it is assumed completely unknown

in our model.

The obtained results based on our method may be used as prior information for

other estimation methods, for example, the ones with parametric model settings.
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Table 5.6: Comparison of the estimation results

Our Method Sepp (2012)

µ̂0 0.0341 −0.0091

σ̂0 0.1378 0.1348

tM3 121.6 N/A

λ̂(tM3) 44.3906 46.4444

µ̂X −2.5 ∗ 10−3 −1.9 ∗ 10−4

σ̂X 0.0228 0.0127

Now let us consider a longer period of S&P 500 daily data in the past three

decades from 1983 to 2012, and see some trend in the jump component. Figure

5.12 shows the plot of the original data set in part (a) and the plot of the increments

of the log-price in part (b).

Table 5.7: Estimation results for S&P500 daily data

Period 1983-1992 1993-2002 2003-2012 1993-2012 1983-2012

# Year 10 10 10 20 30

µ̂0 0.1413 0.1439 0.1724 0.1585 0.1552

σ̂0 0.1098 0.1188 0.1173 0.1181 0.1144

tM3 157.5 141.1 139.2 139.9 147.7

λ̂(tM3) 36.2071 50.7978 51.1623 51.0299 47.1194

µ̂X 0.0006 -0.0030 -0.0028 -0.0025 -0.0021

σ̂X 0.0162 0.0185 0.0219 0.0200 0.0190

Table 5.7 shows the estimation results for different periods in the 30 years. From
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Figure 5.12: Scatter plots for S&P500 daily data [30 years]
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the results of λ̂ and σ̂X , we see that the jump rate increases during the past three

decades, and the average jump size increases as well.

To summarize, in this chapter we have proposed an estimator of the density

function of jump size, and proved its consistency. The results suggest that the

proposed estimation method performs slightly better for the Merton model than

for the Kou model, which can be explained by the fact that the c.f. of normal

distribution converges to zero faster than the c.f. of double exponential distribution

does. For the daily data, when the sample size is n = 2500 (i.e. time horizon T =

10) and the jump intensity is λ = 12.5, there are 125 jump observations on average

in each sample, which is a low number even for classical nonparametric density

estimation methods. Moreover, for our problem, we have to first figure out some way

to (explicitly or implicitly) “disentangle” the jump observations from the diffusion
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observations, which makes the problem more difficult. The presented simulation

results, as well as the real data example, show that our method could provide

reasonably accurate estimates. Although we can expect that the results would

become better when the data frequency increases, our method has the advantage

of not requiring high frequency data.
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Chapter 6

Comparison with Existing

Methods

In this chapter, we compare the method proposed in this thesis (hereafter re-

ferred as “our method”) with some of the existing methods for the estimation of

Lévy measure. In the finite activity case, the estimation of the Lévy measure is

equivalent to the estimation of jump intensity and jump size distribution.

In the literature, several such methods have been proposed (see Chapter 1).

However, many of them focus on the asymptotic behavior of the estimators and

do not provide enough information for practical implementations. In Section 6.1,

we look at the method introduced by Mancini (2004) and Gegler and Stadtmüller

(2010), which is based on the idea of defining a “threshold” to disentangle the

jumps observations from the diffusion observations. In Section 6.2, we compare our

method with this threshold method.
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6.1 Introduction

In Mancini (2004) a method was proposed to estimate the jump-diffusion mod-

els, where a “threshold” was defined to differentiate between the observations with

jumps and the ones without jumps. This method was further investigated by Gegler

and Stadtmüller (2010), where the implementation of the method was also dis-

cussed. Hereafter we refer to this method as the “threshold method”. In the

following we review this method.

Suppose Lt is a Lévy process with the characteristic triplet (µ0, σ
2
0, ν(dx)). To

ease the notation, we define a function

ν(x) := ν((−∞, x]), x ∈ R,

which is regarded as the cumulative Lévy measure. Then the notation ν could have

two meanings: the Lévy measure or the cumulative Lévy measure — it should not

be difficult to distinguish them in the context. When Lt is a finite-activity Lévy

process, ν is equal to the c.d.f, FX , of jump size X multiplied by the jump intensity,

i.e. ν(·) = λ · FX(·).

Let ∆ be the length of time step, and T be the time horizon. Then the incre-

ments of the Lévy process are denoted by

Yk = Lk∆ − L(k−1)∆, k = 1, 2, ..., n

with n∆ = T . Denote by Bn the threshold value such that an increment Yk is

classified as an observation with jump if it satisfies∗ |Yk| > Bn, and otherwise it is

classified as an observation without jump. In the finite activity case, the estimators

∗Although not mentioned in the paper by Gegler and Stadtmüller (2010), the following step is

carried out in our implementation of the method: if the increments Yk have a nonzero mean, we

first transform the data by subtracting the sample median from each increment.
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of the Lévy triplet are defined by

µ̂0 =
1

T

n∑
k=1

Yk · 1{|Yk| ≤ Bn}

σ̂0
2 =

1

T

n∑
k=1

Y 2
k · 1{|Yk| ≤ Bn} (6.1)

and

ν̂(x) =
1

T

n∑
k=1

1{−∞ < Yk ≤ x, |Yk| > Bn}, (6.2)

with

Bn = β
√
n−α(1 + 2α) log n

for α ∈ (1/2, 1) and β > σ0. It was shown by Gegler and Stadtmüller (2010)

that the above estimators are consistent and asymptotically normally distributed

as T → ∞ and ∆ → 0.

In practice, however, it is difficult to choose the threshold Bn for finite samples

because the parameters α and β are unknown. For this, Gegler and Stadtmüller

(2010) proposed a different method for the selection of Bn to be used in their

numerical implementation. The method can be described as follows.

Each of the increments can be decomposed as

Yk =
CYk +

JYk, k = 1, 2, ..., n,

where CYk and JYk correspond to the continuous and the jump part of Yk, respec-

tively. Let

En = E
[
#{k : |CYk| > Bn, k = 1, 2, ..., n}

]
.

That is, En is the expected number of misclassifications that a diffusion observation

is misclassified as a jump observation. Then

En = nγn
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with

γn = P(|CYk| > Bn). (6.3)

This expression for En can be justified by using the fact that #{k : |CYk| > Bn, k =

1, 2, ..., n} follows a Binomial distribution with parameters n and γn.

Since CYk ∼ N (µ0∆, σ
2
0∆), we have γn = 2− Φ

(
Bn+µ0∆

σ0
√
∆

)
− Φ

(
Bn−µ0∆
σ0

√
∆

)
. Note

that for small ∆ the drift term µ0∆ is negligible when compared with the term

σ0
√
∆, so we may simplify the expression of γn to γn = 2 − 2Φ

(
Bn

σ0
√
∆

)
. Solving

the latter for Bn, we obtain

Bn = σ0
√
∆z1−γn/2, (6.4)

where zα is the α-quantile of a standard normal distribution.

In the paper by Gegler and Stadtmüller (2010), the threshold method was ap-

plied to the Merton model with En = 1, i.e. γn = 1/n. In the beginning, an

iteration procedure was applied to estimate the threshold Bn and the volatility σ0

as follows: as the first step, the sample variance was used to estimate σ2
0, and then

an estimate of Bn was obtained by (6.4). After that, a new estimate of σ2
0 was

obtained by (6.1). The procedure was repeated till it converged†.

For any positive threshold Bn, it is not possible to estimate the Lévy measure on

the interval [−Bn, Bn]. To solve this problem, the authors applied the extrapolation

technique by introducing a cubic spline; more specifically, fitting two polynomials:

p1 on [−Bn, 0] and p2 on [0, Bn], each of order three. Then the (cumulative) Lévy

†Although not mentioned in that paper, we set the tolerance level for the iteration to be

|σ̂0,1 − σ̂0,0|/σ̂0,0 < 10−5.

182



measure was estimated by

ν̂c(x) =



1

T

n∑
k=1

1{−∞ < Yk ≤ x, |Yk| > Bn} if x ≤ −Bn

p1(x) if −Bn < x < 0

p2(x) if 0 ≤ x ≤ Bn

p2(Bn) +
1

T

n∑
k=1

1{Bn ≤ Yk ≤ x, |Yk| > Bn} if x > Bn.

(6.5)

Note that ν̂c(x) in (6.5) is a corrected version of ν̂(x) in (6.2). We let

λ̂un := ν̂(R) and λ̂ := ν̂c(R), (6.6)

which are the uncorrected and corrected estimators of the jump frequency.

To obtain the eight coefficients in the polynomials p1 and p2, the authors used the

continuity and the differentiability (first and second orders) of the cumulative Lévy

measure at the points −Bn, 0 and Bn, which lead to eight equations (see below).

Note that to obtain the derivatives of the step function ν̂, they fit polynomialsf1 and

f2 to ν̂ on [−κ1Bn,−Bn] and [Bn, κ2Bn], respectively, where κ1 and κ2 are chosen

such that 20% of the data on the left of −Bn and to the right of Bn, respectively,
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are in those intervals‡. The eight equations are as follows:

p1(0) = p2(0)

p′1(0) = p′2(0)

p′′1(0) = p′′2(0)

p1(−Bn) = ν̂(−Bn)

p′1(−Bn) = f ′
1(−Bn)

p′′1(−Bn) = f ′′
1 (−Bn)

p′2(Bn) = f ′
2(Bn)

p′′2(Bn) = f ′′
2 (Bn)

However, there is no guarantee that the resulting cubic spline is always nondecreas-

ing. Although the authors did not mention any adjustment in their paper, in our

implementation we take it constant whenever it decreases.

The numerical implementation of the threshold method is given in the next

section.

6.2 Comparison with the Threshold Method

In this section we compare the threshold method with our method, firstly in

the estimation of the jump frequency and then in the estimation of the jump size

distribution, based on simulated data.

For the estimation of jump frequency, let us first look at the Merton model. We

use the same parameters as in Example 2.1.2. Figure 6.1 shows the histograms of

‡In our implementation, we have slightly modified this part to include more data to fit f1 and f2.

Also, the authors did not mention the order of the polynomials f1 and f2; in our implementation

we used the order of three.
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the estimates µ̂0, σ̂0
2 of the diffusion parameters, the uncorrected estimate λ̂un and

the corrected estimate λ̂ of the jump frequency, based on the threshold method.

They all look normally distributed. As expected, the average of λ̂ is greater than the

average of the uncorrected λ̂un. However, since the true value of jump frequency is

λ = 12.5, both λ̂un and λ̂ show significant underestimation. Comparing this figure

with Figure 4.6 which presents the histograms based on our method, we see that

our method performs much better in the estimation of jump frequency.

Figure 6.1: Histograms of µ̂0, σ̂0
2, λ̂un and corrected λ̂ based on threshold method
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The statistics based on the threshold method can be found in Table 6.1, which

includes results for different scenarios of parameter settings for the Merton model.

Note that in our implementation we have fixed γn = 1/1000 (i.e. γn does not

depend on n) instead of fixing En, where γn is defined in (6.3) and can be understood

as the probability that a diffusion observation is misclassified as a jump observation.

By doing this, the “threshold” level would stay at the same level when the sample

size n changes, as long as the other parameters remain the same. For Table 6.1,
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Table 6.1: Estimation results using threshold method [Merton]
σX ≈ 3.79% σX = 10% σX = 60%

n λ = 12.5 λ = 25 λ = 12.5 λ = 25 λ = 12.5 λ = 25

1000
µ̂0 .0955(.1029) .0923(.1075) .0937(.0993) .0890(.1004) .0932(.0974) .0885(.0948)

σ̂0 .2060(.0058) .2153(.0073) .1995(.0053) .2005(.0062) .1943(.0049) .1897(.0051)

λ̂un 3.62(0.99) 6.50(1.37) 8.68(1.48) 17.06(2.07) 12.12(1.71) 24.04(2.38)

λ̂ 5.84(1.60) 10.45(2.22) 13.12(2.26) 25.83(3.14) 12.97(1.89) 25.57(2.63)

2500
µ̂0 .0952(.0648) .0920(.0682) .0939(.0629) .0891(.0634) .0934(.0615) .0881(.0600)

σ̂0 .2059(.0036) .2151(.0046) .1995(.0034) .2004(.0039) .1943(.0031) .1896(.0032)

λ̂un 3.62(0.63) 6.53(0.87) 8.67(0.93) 17.08(1.30) 12.11(1.08) 24.03(1.50)

λ̂ 5.85(1.02) 10.50(1.42) 13.12(1.43) 25.86(1.99) 12.94(1.21) 25.55(1.66)

10000
µ̂0 .0953(.0325) .0921(.0339) .0938(.0316) .0891(.0316) .0933(.0308) .0882(.0300)

σ̂0 .2058(.0018) .2149(.0023) .1995(.0017) .2003(.0019) .1943(.0015) .1896(.0016)

λ̂un 3.63(0.32) 6.54(0.44) 8.68(0.47) 17.09(0.66) 12.11(0.54) 24.03(0.74)

λ̂ 5.85(0.52) 10.51(0.72) 13.12(0.72) 25.87(1.00) 12.93(0.60) 25.54(0.83)

the average values of the threshold Bn are the same for all scenarios in the same

column. The average values for the six columns are 0.0433, 0.0453, 0.0420, 0.0422,

0.0409 and 0.0400, respectively.

Comparing Table 6.1 with Table 4.6, which shows the estimation results based

on our method, we can draw the following conclusions:

• Our method is significantly better than the threshold method when σX is

small. For example, when σX ≈ 3.79% (i.e. triple of daily volatility), the

average of the estimates of λ based on our method is around 12.2 when λ =

12.5 and 20.4 when λ = 25, but the average based on the threshold method

is around 5.8 when λ = 12.5 and 10.5 when λ = 25.

• When σX becomes larger, both the threshold method and our method perform

well and they yield similar results.

Note that the estimation results of the diffusion parameters using the iteration

procedure in the threshold method are not as good as the ones using the robust
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procedure in our method. However, the threshold method is less sensitive to the

estimation of the volatility σ0 than our method. We have checked that the results of

the threshold method would not change much if we replace the iteration procedure

by the robust procedure to estimate the diffusion parameters.

Next, we compare the threshold method with our method in the estimation of

jump size distribution.

The threshold method results in an estimate of the cumulative distribution func-

tion, while our method produces an estimate of the probability density function. To

compare them, we will transform the cdf obtained from the threshold method to a

pdf, using the “kernel” method. However, the kernel method must be modified since

there are no observations available in a neighbourhood of zero (between −Bn and

Bn). For this, we propose to simulate “small jumps” following some distribution.

Below we provide a description of the procedure that we have used.

Step 1 Put large jumps (i.e. jump observations with size larger than or equal to

the threshold Bn) in one group. Let m1 be the number of large jumps.

Step 2 The number of small jumps (i.e. jump observations with size smaller than

the threshold Bn) is calculated by

m2 = m−m1, where m = λ̂ ·#{years}.

Then simulatem2 small jumps (between −Bn and Bn) following a distribution

that is the same as the distribution of the random variable

D =
Bn

c
· Z · 1{|Z|≤c}, (6.7)

where Z is a standard normal random variable, c is the (1− m1

2m
) - quantile of

the standard normal distribution, and 1A is an indicator function over A. If

m2 = 0, then we skip this step.
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Step 3 Combine the large jumps from Step 1 and the small jumps from Step 2 to

form the jump data. Then apply the kernel method (e.g. with the Gaussian

kernel) to the jump data to estimate the pdf of the jump size.

In the above Step 2 we simulate “small jumps” from the distribution of the

random variable D defined in (6.7). By doing this, the resulted jump data “de-

scribes” a normal distribution in the Merton model case. More specifically, in the

Merton model case, the obtained “large jumps” from Step 1 represents the data of

a normal distribution with size larger than Bn and with weight m1/m, assuming

that we can ignore the effect, when the jump size is large, of the convolution of

jump size distribution with the diffusion distribution. The obtained “small jumps”

from Step 2 represents the data of a normal distribution with size smaller than Bn

and with weight 1 − (m1/m). Therefore, putting the “large” and “small” jumps

together, we obtain a sample representing a normal distribution. Of course, this

assumes that the estimation of jump intensity based on the threshold method is

good enough.

To implement the above Step 2, an easy way is to use the normal random

number generator and apply an appropriate bound. See below for details:

Step 2-1 Generate m observations, r1, r2, ..., rm, from the standard normal distri-

bution, and denote it by U .

Step 2-2 Let U1 be the set of m2 (m2 < m) observations from U with the smallest

absolute values. That is, if |r(1)| < |r(2)| < · · · < |r(m2)| < · · · < |r(m)|, then
U1 = {r(1), r(2), ..., r(m2)} ⊂ U . Denote a = r(m2) = maxr∈U1 |r|.

Step 2-3 Multiply each observation in U1 by
Bn

a
, and the resulted data will repre-

sent the “small jumps”.

Now we consider the Merton model with the same parameter settings as in

Example 2.1.2. Figure 6.2 shows an estimate of the (cumulative) Levy measure
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ν̂(x) based on the threshold method and an estimate of the jump size density using

the transformation method described above, based on one set of simulated data.

We found that it happens frequently that the middle part of the estimated density

is over-smoothed. This can be explained as follows: to estimate the Lévy measure

using the threshold method, the middle part is fit by a polynomial that increases

slowly, so that the jump intensity might be underestimated. This phenomenon is

seen more often when σX is small.

Figure 6.2: An estimate of Lévy measure based on the threshold method
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After transforming the cdf of the jump size obtained by using the threshold

method into a pdf, we calculate the total variation distance between this (estimated)

pdf and the true pdf of jump size. Table 6.2 provides the results of the total

variation distances for different scenarios of parameter settings of the Merton model.

Similarly as in Chapter 5, we use [−lX , lX ] with lX = 5σX to define the interval

over which we estimate the jump density. Repeat 100,000 times for each scenario.
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Table 6.2: TV distance for threshold method [Merton]
σX ≈ 3.79% σX = 10% σX = 60%

n λ = 12.5 λ = 25 λ = 12.5 λ = 25 λ = 12.5 λ = 25

1000 .3138(.0331) .3203(.0230) .0847(.0351) .0651(.0249) .0947(.0373) .0720(.0257)

2500 .2981(.0177) .3119(.0142) .0579(.0210) .0448(.0151) .0655(.0229) .0503(.0162)

10000 .2911(.0093) .3114(.0077) .0339(.0097) .0266(.0069) .0394(.0115) .0302(.0082)

40000 .2940(.0056) .3189(.0044) .0229(.0044) .0184(.0031) .0279(.0071) .0206(.0049)

From this table we can see that the results based on the threshold method

become better as σX increases. Comparing this table with Table 5.2, which presents

the results based on our method, we can see the following:

• When σX is small (e.g. σX = 3 ∗ 0.2 ∗
√

1/250 ≈ 3.79%, which is triple of the

daily volatility), our method performs significantly better.

• When σX is large (e.g. σX = 10%, which is approximately 8 times of the

daily volatility), the threshold method performs better, if the sample size n

is not too large. Note that, when σX is large, most of the jump observations

are visible, and the threshold method thus works well.

• An important finding is that, as n increases, our method improves faster than

the threshold method does. Thus, for large n, our method performs better

than the threshold method, even in the case when σX is large.

Remark 6.2.1. As stated in Mancini (2004) and Gegler and Stadtmüller (2010), the

asymptotic properties of the estimators based on the threshold method relies on

the requirement that the time horizon T → ∞ and the data frequency ∆ → 0.

When the sample size increases due to larger T but fixed ∆, the threshold Bn stays

at the same level, and thus there is no improvement in the estimation of jump

frequency (which is verified by Table 6.1). The improvement in the estimation of

jump size distribution is only because we observe more “large” jump observations
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which can be used to estimate the Lévy measure (or the pdf of jump size based on

the modified “kernel” method).

Table 6.3: Estimation results using threshold method [Kou]
η+ = 1/0.02, η− = 1/0.04 η+ = 1/0.1, η− = 1/0.2

λ = 12.5 λ = 25 λ = 12.5 λ = 25

n=1000
µ̂0 0.0483 (0.1020) -0.0074 (0.1052) 0.0858 (0.0990) 0.0742 (0.0983)

σ̂0 0.2039 (0.0055) 0.2102 (0.0065) 0.1975 (0.0051) 0.1962 (0.0057)

λ̂un 3.8354 (0.9993) 7.1568 (1.3891) 9.8618 (1.5659) 19.5082 (2.1768)

λ̂ 6.1276 (1.6066) 11.4701 (2.2374) 12.4640 (2.0823) 24.5758 (2.8761)

n=2500
µ̂0 0.0488 (0.0643) -0.0070 (0.0666) 0.0865 (0.0626) 0.0742 (0.0618)

σ̂0 0.2039 (0.0034) 0.2100 (0.0041) 0.1975 (0.0032) 0.1961 (0.0035)

λ̂un 3.8346 (0.6336) 7.1688 (0.8832) 9.8629 (0.9881) 19.5145 (1.3784)

λ̂ 6.1264 (1.0185) 11.4872 (1.4221) 12.4666 (1.3140) 24.5799 (1.8209)

n=10000
µ̂0 0.0488 (0.0322) -0.0064 (0.0333) 0.0862 (0.0313) 0.0745 (0.0311)

σ̂0 0.2038 (0.0017) 0.2099 (0.0020) 0.1975 (0.0016) 0.1961 (0.0018)

λ̂un 3.8356 (0.3181) 7.1699 (0.4443) 9.8538 (0.4982) 19.5181 (0.6903)

λ̂ 6.1284 (0.5115) 11.4893 (0.7152) 12.4567 (0.6619) 24.5820 (0.9100)

n=40000
µ̂0 0.0489 (0.0161) -0.0063 (0.0167) 0.0864 (0.0156) 0.0743 (0.0155)

σ̂0 0.2038 (0.0009) 0.2099 (0.0010) 0.1975 (0.0008) 0.1961 (0.0009)

λ̂un 3.8244 (0.1543) 7.1941 (0.2213) 9.8409 (0.2553) 19.5409 (0.3498)

λ̂ 6.1113 (0.2485) 11.5272 (0.3563) 12.4433 (0.3350) 24.6002 (0.4579)

Note: The threshold Bn is the same on average for all scenarios in the same column. The

average values for the four columns are 0.0429, 0.0442, 0.0416, 0.0413.

Table 6.4: TV distance for threshold method [Kou]

η+ = 1/0.02, η− = 1/0.04 η+ = 1/0.1, η− = 1/0.2

lX = 0.2 lX = 1.0

λ = 12.5 λ = 25 λ = 12.5 λ = 25

n = 1000 .3443 (.0318) .3439 (.0217) .1315 (.0383) .1072 (.0285)

n = 2500 .3315 (.0181) .3393 (.0138) .0973 (.0249) .0811 (.0187)

n = 10000 .3296 (.0095) .3420 (.0079) .0637 (.0126) .0553 (.0095)

n = 40000 .3354 (.0052) .3475 (.0045) .0445 (.0062) .0405 (.0046)

Now we present the estimation results for Kou model based on the threshold
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method. Table 6.3 shows the estimation results on the jump frequency. Table 6.4

shows the results on jump size distribution. When comparing with our method, we

arrive at exactly the same observations as in the case of the Merton model.

In conclusion, our method works better than the threshold method when the

jump sizes are relatively small on average. When the jump sizes are large on average,

the threshold method works better if the sample size is not too large. When the

sample size is large, our method performs better, even in the case that the sample

sizes are large on average.
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Chapter 7

Applications: Classification and

Testing for a Change of Jump

Frequency

In previous chapters, we proposed estimators of the diffusion parameters, the

jump frequency and the jump size distribution. Therefore, by now we have all tools

required to estimate every component of the jump-diffusion model (or equivalently,

the two-component mixture model).

In this chapter we illustrate how to apply these results to solve two problems.

The first problem is to classify each increment as the one with or without jump.

The second deals with the problem of detecting a change in the jump frequency. In

the paper by Lee et. al. (2003), the cusum method was used to test the parameter

change. We will apply this method in our simulations.
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7.1 Classification of Increments

In this section, we discuss the classification of each increment as the one with

or without jump.

As discussed in Chapter 2, under assumption (A1-2), the increments of the

jump-diffusion model (2.1) can be approximated by a two-component mixture mod-

el (2.13):

Y = (1− I)Z + IG, (7.1)

where I is a Bernoulli random variable with

P(I = 1) = λ∆ = α. (7.2)

The probability density function of Y is then given by the equation (2.15):

fY = (1− α)ϕZ + αfG, (7.3)

where fG = ϕZ ∗ fX . In previous chapters, we proposed estimators of the diffusion

parameters (i.e. in the normal density ϕZ), the jump frequency α and the jump

size density fX . Using them, we can estimate all the components of the density

function fY . In this section we consider the problem of classification of increments

as the ones with jump and the ones without jump.

Given an observation Y = y, we would like to find the probability that it can be

classified as the one that comes from the distribution G (corresponding to a jump),

i.e. we would like to find P(I = 1|Y ∈ dy). To understand the notation, we have

{Y ∈ dy} ≡ {Y ∈ (y, y + dy)},

where dy is an infinitely small number. Using Bayes’ rule, we have

p(y) := P(I = 1|Y ∈ dy)

=
P(I = 1, Y ∈ dy)

P(Y ∈ dy)

=
P(Y ∈ dy|I = 1)P(I = 1)

fY (y)dy

(7.4)
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where

P(Y ∈ dy|I = 1) = P(G ∈ dy|I = 1) = P(G ∈ dy) = fG(y)dy (7.5)

by the independence between I and G. Using equations (7.2) and (7.3) again, we

have

p(y) =
αfG(y)

(1− α)ϕZ(y) + αfG(y)
. (7.6)

On the other side, the probability that the observation y is generated from the

normal distribution Z (i.e. without a jump) is P(I = 0|Y ∈ dy) = 1− p(y). Thus,

the probability p(y), y ∈ R provides important information for the classification

problem.

Before proceeding to the discussion of the classification procedure, we present

an intuitive result describing the limiting behavior of p(y) as ∆ → 0. It states

that as ∆ → 0, which corresponds to the case where the continuous trajectory of a

model is available, we can identify all the jumps with probability one.

Proposition 7.1.1. As ∆ → 0, the probability p(y) converges to one if y ̸= 0 and

zero otherwise, i.e.

lim
∆→0

p(y) =

1, if y ̸= 0;

0, if y = 0.

To prove this result, we use the Dirac delta function δ0(·). It can be defined as

a generalized function on the real line such that

δ0(x) =

+∞, x = 0

0, x ̸= 0

(7.7)

and ∫ ∞

−∞
δ0(x) dx = 1.
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It can also be interpreted as a singular distribution which is characterized by its

cdf being a Heaviside step function H(x).

In our problem, as ∆ → 0,

ϕZ(y) ≡ ϕ(y;µ0∆, σ
2
0∆) =

1√
2πσ2

0∆
exp

{
−(y − µ0∆)2

2σ2
0∆

}
−→ δ0(y).

Then, as ∆ → 0,

fG(y) = (ϕZ ∗ fX)(y) =
∫ ∞

−∞
fX(y − x)ϕZ(x)dx −→

∫ ∞

−∞
fX(y − x)dH(x) = fX(y).

This follows from the fact that fG is the limiting distribution of a sum where one

of the two components converges to zero (in probability and in distribution). Thus,

for any y ̸= 0, we have

lim
∆→0

(1− α)ϕZ(y)

αfG(y)
= lim

∆→0

(1− λ∆)ϕZ(y)

λ∆ · fX(y)
=

1

λfX(y)
· lim
∆→0

ϕZ(y)

∆
= 0,

where for the last step the L’Hospital’s rule is used. For y = 0, we have

lim
∆→0

(1− α)ϕZ(y)

αfG(y)
=

1

λfX(y)
lim
∆→0

ϕZ(y)

∆
= ∞.

Therefore,

lim
∆→0

p(y) = lim
∆→0

αfG(y)

(1− α)ϕZ(y) + αfG(y)
= lim

∆→0

1
(1−α)ϕZ(y)
αfG(y)

+ 1
=

1, if y ̸= 0;

0, if y = 0.

This completes the proof. �

Consider the random variable p(Y ), where p(·) is defined in (7.6) and Y is a

random variable with pdf given by (7.3). To formulate our classification procedure,

we define an indicator variable by

J∗(Y ) =


1 if p(Y ) ≥ 1

2
,

0 otherwise,

(7.8)
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then an observed value y is classified as an observation with jump if J∗(y) = 1 ,

and without jump if J∗(y) = 0. This intuitive method can be verified to be optimal

in some sense as explained below.

Bayes Procedure for Decision Problems

Let us consider a general decision problem. Suppose X is a random variable

from a distribution with pdf (in the continuous case) or pmf (i.e. probability mass

function in the discrete case) given by fθ, θ ∈ Θ. Once we observe a value of X, say

x, we take an action. LetA denote the set of all feasible actions. A decision function

δ is any function on R that takes values in A, more specifically, δ(X) : R → A. A

nonnegative function L : Θ × A → R represents a loss function, in the sense that

L(θ, a) is the loss if an action a is taken when θ is the true parameter value. Note

that L(θ, δ(X)) is a random variable. Let D be a class of decision functions, then

the function R defined on Θ×D by

R(θ, δ) = EθL(θ, δ(X))

is known as the risk function associated with δ at θ.

Using a Bayesian approach, we treat θ as a random variable distributed ac-

cording to a pdf/pmf π(θ) on Θ, and π is called the prior distribution. In this

framework, the risk function R(θ, δ) is viewed as a conditional expected loss given

θ. The Bayes risk of a decision function δ is defined by

R(π, δ) = EπR(θ, δ).

The Bayes solution or Bayes rule is a decision function that minimizes the Bayes

risk R(π, δ).

The hypothesis testing problem can be regarded as a special case of the general

decision problem. In the following we assume that the set A contains only two
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points, a0 and a1, in the way that a0 corresponds to the acceptance of the null

hypothesis H0 : θ = θ0, and a1 corresponds to the alternative H1 : θ = θ1, and

Θ = {θ0, θ1}. Also, suppose the loss function is defined by

L(θ0, a1) = b > 0,

L(θ1, a0) = c > 0,

L(θ1, a1) = 0,

L(θ0, a0) = 0.

(7.9)

Further, let π(θ0) = π0 and π(θ1) = 1− π0 = π1. Then the Bayes risk is

R(π, δ) = bπ0Pθ0{δ(X) = a1}+ cπ1Pθ1{δ(X) = a0}. (7.10)

The following result, which can be found in Rohatgi and Saleh (2001), provides the

Bayes solution for this case.

Proposition 7.1.2. Let X be a random variable with pmf/pdf fθ, θ ∈ Θ = {θ0, θ1}.
Let π(θ0) = π0, π(θ1) = 1 − π0 = π1 be the prior pmf on Θ. A Bayes solution for

testing H0 : X ∼ fθ0 against H1 : X ∼ fθ1, using the loss function (7.9), is to reject

H0 if
fθ1(X)

fθ0(X)
≥ bπ0
cπ1

. (7.11)

Let us come back to our problem. In the language of hypothesis testing, we con-

sider the test that, given an observation y from the p.d.f (7.3), the null hypothesis

is

H0 : y ∼ ϕZ , i.e. with no jump,

and the alternative is H1 : y ∼ fG, i.e. with jump. Correspondingly, the prior

probabilities are π0 = 1 − α and π1 = α. Suppose we use the loss function (7.9)

with b = c. Then by Proposition 7.1.2, the Bayes solution, denoted by δ∗, is to

reject H0 if
fG(y)

ϕZ(y)
≥ 1− α

α
, (7.12)
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or equivalently

p(y) ≥ 1

2
.

Otherwise, we accept H0. This is exactly the intuitive classification criterion J∗(y)

given in (7.8).

If we further let b = c ≡ 1, i.e. the loss function in (7.9) is the 0-1 loss function,

then, by (7.10), the Bayes risk of the Bayes solution δ∗ is given by

R(π, δ∗) = (1− α)PϕZ (p(Y ) ≥ 1/2) + αPfG (p(Y ) < 1/2)

=

∫
1{p(y)≥1/2}(1− α)ϕZ(y)dy +

∫
1{p(y)<1/2}αfG(y)dy

= E
{
1{p(Y )≥1/2}(1− p(Y )) + 1{p(Y )<1/2}p(Y )

} (7.13)

or equivalently,

R(π, δ∗) = E [min (p(Y ), 1− p(Y ))] (7.14)

or

R(π, δ∗) =
1

2
− 1

2
E[|2p(Y )− 1|]. (7.15)

Note that in (7.13), E
[
1{p(Y )≥1/2}(1− p(Y ))

]
is the probability that a diffusion

observation is misclassified as a jump observation, and E
[
1{p(Y )<1/2}p(Y )

]
is the

probability that a jump observation is misclassified as a diffusion observation.

In the language of classification problem, the misclassification error of a classi-

fication criterion J(Y ) is given by

ϵ := P{J(Y ) ̸= I(Y )},

where

• I(y) = 1 means the observation y truly involves a jump;

• I(y) = 0 means the observation y does not involve a jump;
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• J(y) = 1 means the observation y is classified as the one with jump;

• J(y) = 0 means the observation y is classified as the one without jump.

When the 0-1 loss function is used for the above Bayes procedure, the Bayes risk

is equal to the misclassification error. Then the Bayes solution which minimizes the

Bayes risk is exactly the classification criterion which minimizes the misclassification

error. Since the Bayes solution δ∗ is the same as the intuitive classification criterion

J∗ given in (7.8), we conclude that the criterion J∗ minimizes the misclassification

error. Moreover, the minimized misclassification error is equal to the Bayes risk of

the Bayes solution, i.e.

ϵ∗ := P{J∗(Y ) ̸= I(Y )} = R(π, δ∗) = E [min (p(Y ), 1− p(Y ))] . (7.16)

Another proof of this form of the misclassification error can be found in Devroye

et. al. (1996).

From (7.16) we can further write

ϵ∗ =

∫
R
min {p(Y ), 1− p(Y )} fY (y)dy

=

∫
R
min{αfG(y), (1− α)ϕZ(y)}dy.

(7.17)

It is obvious that

ϵ∗ → 0, as ∆ → 0

since min{αfG(y), (1 − α)ϕZ(y)} ≤ αfG(y) and
∫
R αfG(y)dy = α = λ∆ → 0.

However, even if the misclassification error ϵ∗ converges to zero as ∆ → 0, one

reason for this is that the total number of observations goes to infinity, among

which the average number of jumps is unchanged and finite. To solve this problem,

we can consider the ”adjusted” misclassification error:

ϵ∗/∆.
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In the following proposition we show that, for the Merton and Kou models, this

”adjusted” misclassification error goes to zero. The convergence rate is also pro-

vided.

Proposition 7.1.3. For the Merton and Kou models, the misclassification error

ϵ∗ defined in (7.16) satisfies

ϵ∗/∆ → 0

as ∆ → 0. Moreover, we have

lim
∆→0

ϵ∗

∆
√
∆ log 1

∆

=
√
3σ0λ[fX(0−) + fX(0+)] (7.18)

where fX(0−) and fX(0+) are the left and right limits of the density function of

jump size.

Proof. See the appendix in the end of this chapter.

Surprisingly, the result for the Kou model is similar to the result for the Merton

model. The only difference is that for the Kou model, the density function of jump

size is not continuous at point zero, and thus in the result fX(0) is changed to

(fX(0−)+ fX(0+))/2. (Note that fX(0−) ̸= 0 and fX(0+) ̸= 0 in the Kou model.)

Remark 7.1.4. We conjecture that the results in Proposition 7.1.3 also hold true

for any model (7.1) with an absolute continuous jump size distribution whose pdf

fX is bounded (i.e. there exists M > 0 such that fX(x) ≤ M for all x ∈ R), and
the left and right limits of fX at zero exist.

In the following we use numerical procedures to find the theoretical values of the

misclassification errors at some fixed frequencies for the Merton and Kou models.

Example 7.1.5 (Merton and Kou Models). We use the same parameter settings

as in Example 2.1.2 for the Merton model, and as in Example 2.1.3 for the Kou

model.
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Note that for the Merton model, where the jump size X follows a normal dis-

tribution ϕ(·;µX , σ2
X), the convolution is fG = ϕZ ∗fX = ϕ(·;µ0∆+µX , σ

2
0∆+σ2

X),

which is still a normal distribution. For the Kou model, where X follows a double

exponential distribution with pdf in (1.6), the convolution fG = ϕZ ∗ fX is∫ ∞

−∞

1√
2πσ2

0∆
e
− (y−x−µ0∆)2

2σ2
0∆

(
pη1e

−η1x1{x≥0} + qη2e
η2x1{x<0}

)
dx

= pη1e
σ2
0∆η21
2

+η1(µ0∆−y)Φ

(
y − µ0∆− σ2

0∆η1

σ0
√
∆

)
+ qη2e

σ2
0∆η22
2

+η2(y−µ0∆)Φ

(
µ0∆− y − σ2

0∆η2

σ0
√
∆

)
.

Table 7.1 shows the theoretical values of the misclassification errors when ∆ =

1/250 and ∆ = 1/2500 for the Merton model. Note that both types of misclas-

sification errors are included in this table. To read the table, take the first entry

for example: the number 1.700% is the probability P(classified as jump, and jump

has occurred), while the number 34.0% inside the parentheses is the probability

P(classified as jump, given that jump has occurred).

Table 7.1: Theoretical classification results for Merton model

∆ = 1/250 ∆ = 1/2500

Jump Non-jump Jump Non-jump

Classified as jump
1.700%

(34.0%)

0.243%

(0.3%)

0.3411%

(68.2%)

0.0093%

(0.01%)

Classified as non-jump
3.300%

(66.0%)

94.757%

(99.7%)

0.1589%

(31.8%)

99.4907%

(99.99%)

Total
5.000%

(100%)

95.000%

(100%)

0.5000%

(100%)

99.5000%

(100%)

Let us define

Type-I error := P(classified as jump, given that jump has not occurred);

Type-II error := P(classified as non-jump, given that jump has occurred).
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Then as ∆ increases, type-I error decreases from 0.3% to 0.01%, and type-II er-

ror decreases from 66.0% to 31.8%. This verifies the result stated in Proposition

7.1.3 that the ”adjusted” misclassification errors (i.e. ϵ∗/∆) decreases as the data

frequency increases.

Figure 7.1 shows the graph of the ”adjusted” misclassification error (i.e. ϵ∗/∆)

with respect to the data frequency ∆. The rate function,
√
3σ0λ[fX(0−)+fX(0+)] ·√

∆ log 1
∆
, is also plotted (in dashed line) for comparison. It seems that the two

curves converge to zero at the same speed. This is consistent with the result in

Proposition 7.1.3.

Figure 7.1: Adjusted misclassification error v.s. data frequency [Merton]
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Similarly, Table 7.2 shows the results for Kou model. Figure 7.2 shows the graph

of the ”adjusted” misclassification error. We arrive at the same conclusion as in

the Merton case.

However, in practice p(y) is unknown. Thus, we need to propose an estimator

of p(y). Given the estimators µ̂, σ̂, α̂ and f̂X obtained in the previous chapters, we
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Table 7.2: Theoretical classification errors for Kou model

∆ = 1/250 ∆ = 1/2500

Jump Non-jump Jump Non-jump

Classified as jump
1.193%

(23.9%)

0.171%

(0.2%)

0.2686%

(53.7%)

0.0108%

(0.01%)

Classified as non-jump
3.807%

(76.1%)

94.829%

(99.8%)

0.2314%

(46.3%)

99.4892%

(99.99%)

Total
5.000%

(100%)

95.000%

(100%)

0.5000%

(100%)

99.5000%

(100%)

Figure 7.2: Adjusted misclassification error v.s. data frequency [Kou]
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can estimate p(Y ) by

p̂(Y ) =
α̂f̂G(Y )

(1− α̂)ϕ̂Z(Y ) + α̂f̂G(Y )

where f̂G = ϕ̂Z ∗ f̂X . Then we can classify a given observation y as an observation

involving a jump if

p̂(y) ≥ 1

2
(7.19)
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and otherwise we classify it as an observation without a jump. In the following we

apply this criterion for the classification of the increments.

Example 7.1.6 (Merton and Kou Models). For the Merton model, we use the

same parameter settings as in Example 2.1.2. For Kou model, we use the same

parameter settings as in Example 2.1.3.

Table 7.3 shows the classification results for the two frequencies for the Merton

model, where the numbers are the average of 100,000 repetitions. The results are

quite close to the ones in Table 7.1 where the true model was used for calculation.

Table 7.3: Classification results for Merton model

∆ = 1/250 ∆ = 1/2500

Percentage Jump Non-jump Jump Non-jump

Classified as jump 1.691% 0.255% 0.3472% 0.0184%

Classified as non-jump 3.310% 94.744% 0.1529% 99.4815%

Total 5.001% 94.999% 0.5001% 99.4999%

Table 7.4: Classification results for Kou model

∆ = 1/250 ∆ = 1/2500

Percentage Jump Non-jump Jump Non-jump

Classified as jump 1.656% 0.205% 0.3111% 0.0137%

Classified as non-jump 3.345% 94.794% 0.1889% 99.4863%

Total 5.001% 94.999% 0.5000% 99.5000%

Similarly, Table 7.4 shows the classification results for the Kou model. The

numbers are also close to the ones in Table 7.2 for which the true model was

used for calculation, although not as close as in the Merton case. This is because
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the estimation accuracy of components of the Kou model is not as good as the

estimation accuracy of components of the Merton model.

These results confirm that the Bayes classification method based on our esti-

mates of the jump-diffusion model can be used in practice.

7.2 Testing for a Change of Jump Frequency

Changes happen every day and everywhere. An awareness of these changes can

help people to avoid unnecessary losses and harness beneficial transitions. The

change point analysis (or disorder problems) is widely used in various fields such

as quality control, economics, finance, medicine, psychology and literature.

In this section we describe a method to test whether there is a change in the

jump frequency. The null hypothesis is

H0: there is no change in the jump frequency α (or equivalently, λ).

Since p(Y ) in (7.6) is defined as a conditional expectation, it follows that

E(p(Y )) = E(I) = α. Therefore we can test the change in the jump frequency

α by testing the change in the mean of p(Y ).

There exist different methods dealing with the change-point analysis, such as the

likelihood ratio, Bayesian analysis, nonparametric analysis and approaches based

on information criteria. For our problem, we do not know the distribution of p(Y ),

so we have to consider a nonparametric approach. One of the most important

nonparametric methods is the cusum test.

The cusum (cumulative sum) test was initiated by Page (1954, 1955). It has

been used widely to detect the change and locate the change point(s) for a parame-

ter. In the beginning the i.i.d. samples were considered, and then the focus moved

into the time series context. For example, in the paper by Lee et. al. (2003), the
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authors use the cusum method to construct a statistic for testing the parameter

change in time series models. It was shown that, under the null hypothesis, this

statistic has an asymptotic distribution which is the same as the distribution of

the supremum of the square of a standard Brownian bridge. This result holds in a

quite general framework. In the following we first state this result, and then apply

it to our problem of testing for a change in the jump frequency.

Theorem 7.2.1 (Lee et al. (2003)). Suppose {X1, X2, ...} is a stationary time

series, and θ ∈ R is the parameter to be tested for change. The null hypothesis

is H0: θ does not change for X1, X2, ..., Xn. Let θ̂k be an estimator of θ based on

{X1, X2, ..., Xk}, k = 1, 2, ..., n. Assume that θ̂k satisfies

θ̂k − θ =
1

k

k∑
j=1

lj(θ) +
1√
k
∆k, (7.20)

where lj(θ) forms stationary martingale differences (with respect to some filtration)

with γ = Var(l1(θ)), and ∆k satisfies

max
1≤k≤n

√
k√
n
|∆k| = oP (1).

Then, under H0, we have

Mn := max
1≤k≤n

k2

nγ
(θ̂k − θ̂n)

2 d−→ sup
0≤s≤1

(W o(s))2 (7.21)

as n → ∞, where W o is a one-dimensional standard Brownian bridge. We reject

H0 if Mn is large.

Note that the distribution of sup0≤s≤1(W
o(s))2 cannot be obtained explicitly,

but we can use simulation to obtain the empirical quantiles. See Table 7.5 for which

100,000 samples are simulated.∗

∗In our implementation, we generate the trajectories of Brownian bridge directly, based on

W o(t) = W (t) − tW (1). It is slightly different from the procedure in Lee et al. (2003) where a

formula was involved in the simulation of the data and computation of the empirical quantiles.
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Table 7.5: Empirical quantiles of supremum of square of a Brownian bridge

.01 .05 .10 .90 .95 .99

Quantile 0.183 0.256 0.311 1.457 1.794 2.574

For our problem, in order to test the change in the jump frequency α, we will

test the change in the mean of p(Y ). The difficulty in applying Theorem 7.2.1

is that p(Y1), p(Y2), ..., p(Yn) are not observable, although Y1, ..., Yn are observable.

However, we can use the methods proposed in Chapters 2-5 to estimate the function

p. Based on these estimates, we can define the following sequence:

θ̂k =
1

k

k∑
j=1

p̂(Yj) =
1

k

k∑
j=1

α̂f̂G(Yj)

(1− α̂)ϕ̂Z(Yj) + α̂f̂G(Yj)
(7.22)

with f̂G = ϕ̂Z ∗ f̂X . In (7.20), we let lj(θ) = p̂(Yj) − θ and ∆k = 0. Then γ =

Var(l1(θ)) = Var(p̂(Y1)). The other details of the proposed method are explained

in the following in the context of the Merton model.

Example 7.2.2 (Merton model). We use the same parameter setting as in Example

2.1.2, and we generate a sample of size n = 2500 from the distribution of Y assuming

that there is no change in the jump frequency. Then we do the following:

Step 1 Obtain estimates µ̂, σ̂ and α̂ by using the method discussed in Section 4.2,

and obtain an estimate f̂X by the method discussed in Section 5.2.

Step 2 Substitute the estimated values into θ̂k in (7.22). To calculate f̂G = ϕ̂Z∗f̂X ,
we approximate the convolution by discretizing the integral.

Step 3 For γ = Var(p̂(Y1)), we use the sample variance of p̂(Y1), p̂(Y2), ..., p̂(Yn).

Step 4 Calculate Mn in (7.21).

Repeat the above procedure 100,000 times. Then we obtain 100,000 values of Mn.

Based on these, we created Figure 7.3, where
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• The plot (1,1) shows the histogram of sup0≤s≤1(W
o(s))2.

• The plot (1,2) shows the histogram of Mn, for which we use estimates µ̂, σ̂,

α̂ and f̂X to obtain θ̂k in (7.22).

• The plot (2,1) shows the histogram of Mn, for which we use true values of µ,

σ, α and true density fX to calculate θ̂k in (7.22).

• The plot (2,2) shows the histogram of Mn, for which we use estimates µ̂, σ̂

and true α, fX to calculate θ̂k in (7.22).

Figure 7.3: Histograms of sup0≤s≤1(W
o(s))2 and Mn when no change occurs
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We can see that the four histograms in Figure 7.3 are quite similar to each other.

This verifies that the distribution of sup0≤s≤1(W
o(s))2 is appropriate to use as the

asymptotic distribution under H0 for testing the change in jump frequency, even if

p(Yj), j = 1, 2, ..., n are unknown and we have to use the estimated values.

209



Example 7.2.3 (Merton model (when change occurs)). Now we investigate on

the performance of our method assuming that a change in the jump frequency has

occurred. The same time horizon T = 10 and the same data frequency (daily)

are used. We generate a sample of size n = 2500 of the increment Y , assuming

that a change in the jump frequency has occurred at the moment corresponding to

n = 1300, and the jump frequency changes from λ = 12.5 to λ = 25.

Figure 7.4: Histograms of sup0≤s≤1(W
o(s))2 and Mn when a change occurs
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We follow the same procedure as described in Example 7.2.2 above. Figure 7.4

shows the histograms where:

• The plot (1,1) is the same as the one in Figure 7.3.

• The other three plots (1,2) (2,1) (2,2) still look similar to each other, but they

are different from plot (1,1).

The difference between plot (1,1) and plots (1,2) (2,1) (2,2) is what we expected
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because, when a change occurs, the asymptotic distribution of the statisticsMn will

be different from the distribution of sup0≤s≤1(W
o(s))2. The similarity between the

three plots (1,2) (2,1) (2,2) verifies that we can use the estimated values p̂(Yj), j =

1, 2, ..., n when the true values are unknown.

We have applied our method to the Kou model, and the results are very similar

to the ones we obtained for the Merton model.

Based on our simulation study we conclude that the proposed cusum method

where we estimate the function p has a practical value. Below we illustrate its

application in the context of real data.

Real Data Example

We use the same 30-year data set as in Section 5.4: the S&P 500 daily data from

1983 to 2012. There are 7565 observations. The estimation results of the diffusion

parameters and the jump component have been given in Section 5.4. Using them

we can calculate the estimated values p̂(Yj), j = 1, 2, ..., n. Then we obtain Mn =

63.2134, which is much larger than the 99% percentile (2.5738) of the distribution

of sup0≤s≤1(W
o(s))2. Thus, we reject the null hypothesis that there is no change,

and conclude that a change occurred in the jump frequency of the S&P 500 daily

data from 1983 to 2012.

For the location of the change point, we notice that Mn = 63.2134 occurs when

k = 3929 (see the definition of Mn in (7.21)). It corresponds to the date July 20,

1998.

Appendix

Proof of Proposition 7.1.3: In the proof of Proposition 7.1.1, we have showed
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that as ∆ → 0, fG = ϕZ ∗ fX → fX , ϕZ → δ0 where δ0 is the Dirac delta function,

and moreover,

lim
∆→0

(1− α)ϕZ(y)

αfG(y)
=

0, if y ̸= 0;

∞, if y = 0.

Fix a small ∆. Then there exist a(∆) ≤ 0 and b(∆) ≥ 0 such that (1− α)ϕZ(y) ≥ αfG(y) if a(∆) ≤ y < b(∆)

(1− α)ϕZ(y) < αfG(y) if y < a(∆) or y ≥ b(∆).
(7.23)

Now we prove the result for the Merton model. To find a(∆) and b(∆), we need to

solve the equation (1− α)ϕZ(y) = αfG(y). For the Merton model, the convolution

G = Z+X still follows a normal distribution, more specifically, N (µ0∆+µX , σ
2
0∆+

σ2
X). Then the equation becomes

(1− λ∆)
1√

2πσ2
0∆

e
− (y−µ0∆)2

2σ2
0∆ = λ∆ · 1√

2π(σ2
0∆+ σ2

X)
e
− (y−µ0∆−µX )2

2(σ2
0∆+σ2

X
)

or equivalently,

(y − µ0∆)2

2σ2
0∆

− (y − µ0∆− µX)
2

2(σ2
0∆+ σ2

X)
= log

(
1− λ∆

λ∆

√
σ2
0∆+ σ2

X

σ2
0∆

)
.

Thus, we obtain the two solutions as

y1,2 =
−b±

√
b2 − 4ac

2a
,

where a = σ2
X , b = 2∆(µXσ

2
0 − µ0σ

2
X), and

c = 2σ2
0∆(σ2

0∆+σ2
X) log

(
1− λ∆

λ∆

√
σ2
0∆+ σ2

X

σ2
0∆

)
+∆(µ2

Xσ
2
0+2µ0µXσ

2
0∆−µ2

0σ
2
X∆).

From (7.23), we know that a(∆) = y1 and b(∆) = y2. As ∆ → 0, we have a(∆) → 0

and b(∆) → 0. Moreover, using L’Hospital’s rule for multiple times, we obtain

a(∆) ∼ −
√
3σ0

√
∆ log

1

∆
, b(∆) ∼

√
3σ0

√
∆ log

1

∆
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where by “∼” we mean the ratio of the two sides has a limit of one. Note that the

only difference between a(∆) and b(∆) is the sign.

Using (7.23) again, the misclassification error in (7.17) can be written as

ϵ∗ =

∫ b(∆)

a(∆)

αfG(y)dy +

(∫ a(∆)

−∞
+

∫ ∞

b(∆)

)
(1− α)ϕZ(y)dy

:= I1 + I2.

• For I1: Since a(∆) → 0 and b(∆) → 0, we have fG(y)1{a(∆)≤y<b(∆)} → fX(0)

and I1 → 0. Using the facts that fG(y) ≤ maxy fX(y) <∞ and b(∆)−a(∆) <

∞, we apply the bounded convergence theorem to obtain

I1 ∼ λfX(0) ·∆(b(∆)− a(∆))

∼ 2
√
3σ0λfX(0) ·

√
∆3 log

1

∆
.

(7.24)

Note that fX(0) ̸= 0 in the Merton model.

• For I2: we have

I2 =

(∫ a(∆)

−∞
+

∫ ∞

b(∆)

)
(1− α)ϕZ(y)dy

= (1− λ∆)

(∫ a(∆)

−∞
+

∫ ∞

b(∆)

)
1√

2πσ2
0∆

e
− (y−µ0∆)2

2σ2
0∆ dy

= (1− λ∆)

(∫ a(∆)−µ0∆

σ0
√

∆

−∞
+

∫ ∞

b(∆)−µ0∆

σ0
√

∆

)
1√
2π
e−

y2

2 dy

= (1− λ∆)

[
Φ

(
a(∆)− µ0∆

σ0
√
∆

)
+ Φ

(
−b(∆) + µ0∆

σ0
√
∆

)]
.

Since a(∆)/
√
∆ → −∞ and b(∆)/

√
∆ → ∞, we have I2 → 0. Moreover,

I2 ∼ 2Φ

(
− b(∆)

σ0
√
∆

)
∼ 2Φ

(
−
√

3 log
1

∆

)
. (7.25)
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To identify the convergence rate of ϵ∗ going to zero, we need to compare the con-

vergence rates of I1 and I2 going to zero. The slower one would dominate the

convergence rate of ϵ∗. By the L’Hospital’s rule,

lim
∆→0

I2
I1

= lim
∆→0

2Φ
(
−
√
3 log 1

∆

)
2
√
3σ0λfX(0) ·

√
∆3 log 1

∆

=
1√

3σ0λfX(0)
· lim
∆→0

Φ
(
−
√
3 log 1

∆

)
√
∆3 log 1

∆

=
1√

3σ0λfX(0)
· lim
∆→0

ϕ
(
−
√

3 log 1
∆

)
· d
d∆

(
−
√

3 log 1
∆

)
d
d∆

√
∆3 log 1

∆

=
1√

3σ0λfX(0)
· lim
∆→0

1√
2π

√
3
2

3
2
log 1

∆
− 1

2

= 0.

That is, I1 converges to zero at a slower rate than I2 does. Thus, the convergence

rate of ϵ∗ is the same as the convergence rate of I1. Using (7.24) we obtain

ϵ∗ ∼ 2
√
3σ0λfX(0) ·

√
∆3 log

1

∆
.

Equivalently,

ϵ∗

∆
∼ 2

√
3σ0λfX(0) ·

√
∆ log

1

∆
(7.26)

which goes to zero as ∆ → 0. This proves (7.18).

For the Kou model, the proof is similar to the one for the Merton case. �
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Chapter 8

Future Work

In this chapter, we present some research topics that are natural extensions to

what we have investigated so far.

8.1 Extension to Infinite-Activity Lévy Processes

The jump-diffusion processes we have considered in the thesis are Lévy processes

with finite activity, i.e. there are finite number of jumps in any finite time interval.

We may consider an extension of our method to an infinite-activity Lévy process,

for which there are infinite number of jumps in any finite time interval that includes

zero.

Let us look at the jump component of the infinite-activity Lévy processes. We

may define some threshold, ϵ, to split jumps into “small” and “large” ones. As we

know, there are infinitely many “small” jumps in any finite interval. These “small”

jumps may play a role similar to the one that the Brownian motion does in a

jump-diffusion model. The remaining “large” jumps can be viewed as a compound
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Poisson process. Thus, the jump component of an infinite-activity Lévy process

can be approximated by a jump-diffusion model.

The Lévy-Khintchine formula stated in Theorem 1.1.2 can be rewritten as fol-

lows (basically, replacing one by ϵ).

Theorem 8.1.1 (Lévy-Khintchine). Let L be a Lévy process with Lévy measure v.

Then

E
[
eiuLt

]
= etψ(u),

where

ψ(u) = iau− 1

2
σ2u2 +

∫
{|x|≥ϵ}

(eiux − 1) v(dx) +

∫
{|x|<ϵ}

(eiux − 1− iux) v(dx) (8.1)

for any ϵ > 0. Moreover, given a, σ2, v, the corresponding Lévy process is unique in

distribution.

From this result, we see that a Lévy process can be decomposed into three parts,

the Brownian motion, the “large” jumps and the “small” jumps. For a Lévy process

without the Brownian motion component, we have σ2 = 0.

We would consider applying the proposed method used for the estimation of

the jump-diffusion model to estimate the Lévy measure of size larger than ϵ for

an infinite-activity Lévy process. As the data frequency ∆ → 0, we can let the

threshold ϵ→ 0 so as to obtain a complete picture of the Lévy measure.

8.1.1 Approximation of Infinite-Activity Lévy Processes

In the following we show that the component of the “small” jumps can be

approximated by another Brownian motion. Rydberg (1997) arrived at the same

result but with the emphasis on the normal inverse Gaussian processes.
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Let us work with the last term in equation (8.1). By applying the Taylor

expansion eiux = 1 + iux− u2x2

2
− iu3x3

3!
+O(x4), we obtain∫

x∈(−ϵ,ϵ)
(eiux − 1− iux)v(dx) =

∫
x∈(−ϵ,ϵ)

(
−u

2x2

2
− iu3x3

3!
+O(x4)

)
v(dx).

Since
∫
(1 ∧ |x|2)v(dx) < ∞ holds for any Lévy process (see Theorem 1.1.2) and 1

can be replace by any fixed positive number, we have

δ2ϵ :=

∫
x∈(−ϵ,ϵ)

x2v(dx) <∞. (8.2)

Then the integral of the first term becomes∫
x∈(−ϵ,ϵ)

(
−u

2x2

2

)
v(dx) = −δ

2
ϵu

2

2
.

The second term satisfies∣∣∣∣∫
x∈(−ϵ,ϵ)

(
− iu

3x3

3!

)
v(dx)

∣∣∣∣ ≤ ∣∣∣∣iuϵ3
∫
x∈(−ϵ,ϵ)

(
u2x2

2

)
v(dx)

∣∣∣∣
=

∣∣∣∣iuϵ3 · δ
2
ϵu

2

2

∣∣∣∣ = δ2ϵu
2

2
·O(ϵ),

and the remaining term also satisfies∫
x∈(−ϵ,ϵ)

O(x4)v(dx) =
δ2ϵu

2

2
·O(ϵ2).

Therefore, ∫
x∈(−ϵ,ϵ)

(eiux − 1− iux)v(dx) = −δ
2
ϵu

2

2
(1 +O(ϵ)) . (8.3)

Thus, the “small” jump component can be approximated by a Brownian motion

with drift zero and volatility δϵ. Therefore, we obtain the following result.

Proposition 8.1.2. Let L be a Lévy process with characteristic exponent ψ(u) in

(8.1). For a small ϵ > 0, L can be approximated by L̃ with

E
[
eiuL̃t

]
= etψ̃(u),
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where

ψ̃(u) = iau− 1

2
(σ2 + δ2ϵ )u

2 +

∫
{|x|≥ϵ}

(eiux − 1) v(dx), (8.4)

and the difference between the characteristic exponents of L and L̃ is

ψ(u)− ψ̃(u) = δ2ϵu
2 ·O(ϵ).

This result states that a general Lévy process with Lévy triplet (a, σ2, v(dx))

can be approximated by a jump-diffusion model, where the diffusion component is

a Brownian motion with drift a and volatility σ2 + δ2ϵ , and the jump component is

a compound Poisson process with the measure v(x)1{|x|>ϵ}.

8.1.2 Estimation of Infinite-Activity Lévy Processes

After we approximate the infinite-activity Lévy process by a jump-diffusion

model, we would like to apply the method used for estimation of the jump-diffusion

model to estimate the infinite-activity Lévy process. However, for a fixed data

frequency, we can only estimate the Lévy measure with jump size larger than some

threshold ϵ (at a given accuracy). Fortunately, as the data frequency ∆ → 0, we can

make the threshold ϵ→ 0, and thus obtain a complete picture of the Lévy measure.

This is the basic idea for an extension of our method to the infinite-activity Lévy

processes.

Let Lt denote a Lévy process with measure v. For ϵ > 0, we define the jump

frequency with size above ϵ by

λϵ := E

∑
t∈[0,1]

1{|∆Lt|>ϵ}


when the Levy measure v is an even function. Otherwise, we may define

λ+ϵ := E

∑
t∈[0,1]

1{∆Lt>ϵ}

 , λ−ϵ := E

∑
t∈[0,1]

1{∆Lt<−ϵ}

 .
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In the following, without loss of generality, we consider only the case where v is

an even function. From the definition, we can see that λϵ is the expected number

of jumps with size larger than ϵ per unit time for the Lévy process, i.e. λϵ =

ν((−∞,−ϵ] ∪ [ϵ,∞)). Our purpose is to estimate λϵ for a given ϵ. When we have

λϵ for every ϵ > 0, we obtain the Levy measure v of Lt.

For a given data frequency ∆, a practical problem is how to select the threshold

ϵ. On one hand, the threshold ϵ of the jump size needs to be small enough so that

the normal approximation in (8.3) for small jumps can be accurate; on the other

hand, the threshold ϵ cannot be too small because otherwise the assumption (A1-2)

that λϵ∆ is small will be violated.

This is an interesting research topic and worth further investigations.

8.2 Other Directions

In Chapter 4, we used some robust procedures to estimate the diffusion param-

eters. These robust procedures can be further improved by some adaptive methods.

For example, in the Huber estimator, instead of assigning a value for the parameter

k in the beginning, we could use some adaptive way to select this parameter based

on the available data.

In Chapter 5, we proved the consistency of the estimator of the density function

of jump size, when the diffusion parameters and the jump frequency are assumed

known. However, it is desirable to obtain a more general result for which the

parameters are assumed unknown. Moreover, we may consider identifying the con-

vergence rate of this estimator. For this, probably we need consider two different

types of jump size distributions: super smooth ones, and ordinary smooth ones.

Some existing results in the context of de-convolution problems may be of help.

When applying the trapezoidal rule to recover the density function of jump size,
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instead of choosing equally spaced points, we may choose points such that they are

more dense when t is closer to zero. Because the estimated characteristic function is

more accurate when t is closer to zero, such an approach may improve the accuracy

of our estimator.

For the estimation of the jump frequency, we only used the information of

the real part of the characteristic functions. We are always curious whether the

imaginary part could be used in any way for improvement.
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Appendix A

Review on Robust Statistics

All statistical procedures rely explicitly or implicitly on a number of assump-

tions. For example, the normality assumption in the least square estimator, F-test

and t-test. However, there is no guarantee that these assumptions would be ex-

actly true. Based on this consideration, alternative robust procedures have been

proposed. By robustness, we mean the insensitivity to small deviations from as-

sumptions (see Huber 1981, page 1).

The following are basically the study notes by reading the books by Huber

(1981), Jurečková and Picek (2006), and others (see the Bibliography).

A.1 Mathematical Tools

Mathematically, we consider a robust statistics as a statistical functional de-

fined on the space of distribution functions. We are interested in its behavior in a

neighborhood of a specific distribution or a model.

Suppose we have a probability space (Ω,B, P ), where Ω is the sample space,

B is a σ-algebra over Ω (i.e. a collection of events which are closed under the
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complement and countable unions of its elements; by ”an event” we mean a subset

of the sample space) and P is a probability measure (i.e. a set function such that

P : B → [0, 1]; by ”set function” we mean a function whose domain is a set).

A statistical model is a family P of probability measures or probability distribu-

tion functions, to which our specific distribution P belongs. A parametric statistical

model is a family P = {Pθ, θ ∈ Θ} of probability measures, each of which is indexed

by a unique finite-dimensional parameter θ. The parameter θ can take on any value

in the parametric space Θ ⊆ Rp. In the one-dimensional case, p = 1 and θ is a real

number. The triplet {Ω,B, Pθ : θ ∈ Θ} denotes a parametric statistical model.

Consider a random variable X with probability distribution Pθ and distribution

function F , where Pθ ∈ P . The parameter θ, typically viewed as an index for

the family P of distributions, has another interpretation. It can be viewed as a

statistical functional θ ≡ T (P ) : P → R. Sometimes we also write θ ≡ T (F ). Note

that a statistical functional is a functional defined on a set of distribution functions;

and a functional is a function whose domain is a set of functions. The following are

some examples:

1. Expected value: µ = T (P ) =
∫
R xdP = E(X)

2. Variance: σ2 = T (P ) =
∫
R x

2dP − (E(X))2

3. Median: m = T (P ) = F−1
(
1
2

)
Given a random sample X1, X2, · · · , Xn from the distribution Pθ, the empirical

probability distribution is defined by

Pn(A) =
1

n

n∑
i=1

I[Xi ∈ A], A ∈ B. (A.1)

Note that Pn can be viewed as a uniform distribution on the set {X1, X2, · · · , Xn}.
The empirical distribution function is defined by

Fn(x) = Pn((−∞, x]) =
1

n

n∑
i=1

I[Xi ≤ x], x ∈ R. (A.2)
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Then a natural estimator of the parameter θ is the ”plug-in” estimator T (Pn).

Examples are given as follows:

1. Expected value: µ̂ = T (Pn) =
∫
R xdPn = X̄n = 1

n

∑n
i=1Xi

2. Variance: σ̂2 = T (Pn) =
1
n

∑n
i=1X

2
i − X̄2

n = S2
n

3. Median: m̂ = T (Pn) = F−1
n

(
1
2

)
We say that an estimator (or a statistical functional) θ̂n = T (Pn) is a Fisher

consistent estimator of parameter θ if it satisfies T (P ) = θ. From the robustness

point of view, the natural property of Fisher consistency of an estimator is more

important than its unbiasedness (i.e. E(θ̂n) = θ).

A good estimator T (Pn) should tend to T (P ) as n → ∞, with respect to some

type of convergence defined on the space of probability measures. Examples are

convergence in probability, convergence in distribution, almost sure convergence

and convergence in the mean which corresponds to the large sample bias of an es-

timator. If T (Pn) converges to T (P ) in probability, then we say T (Pn) is (weakly)

consistent. If T (Pn) converges to T (P ) almost surely,then we say T (Pn) is strongly

consistent. Notice that neither the definition of Fisher consistency or the defini-

tion of consistency encompasses the other; the Fisher consistency can describe the

finite-sample property while the consistency cares only the limiting or asymptotic

behavior.

Since we are interested in studying the behavior of T (Pn) in a neighborhood of

P , we consider an expansion of the functional T (Pn)−T (P ) of the Taylor type. To

do this we need some concepts, such as the distances between probability measures,

the continuity and the differentiability of functional T with respect to the considered

distance.

The following are some examples of the most widely used distances of probability

measures. Let X be a metric space with metric d, separable and complete, and B

224



be the σ-field of its Borel subsets. Let P be the system of all probability measures

on the space (X ,B), with two elements P and Q.

1. Prochorov distance:

dP (P,Q) = inf{ϵ > 0 : P (A) ≤ Q(Aϵ) + ϵ, ∀A ∈ B, A ̸= ∅}

where Aϵ = {x ∈ X : infy∈A d(x, y) ≤ ϵ} is a closed ϵ-neighborhood of a

non-empty set A.

2. Lévy distance: X = R is the real line; let F , G be the distribution functions

of probability measures P , Q, then

dL(F,G) = inf{ϵ > 0 : F (x− ϵ)− ϵ ≤ G(x) ≤ F (x+ ϵ) + ϵ,∀x ∈ R}.

3. Kolmogorov distance: X = R is the real line and F , G are the distribution

functions of probability measures P , Q, then

dK(F,G) = sup
x∈R

|F (x)−G(x)|.

4. Total variation distance:

dTV (P,Q) = sup
A∈B

|P (A)−Q(A)|

=
1

2

∫
X
|f − g|dµ

where the last line holds if P and Q are absolutely continuous w.r.t. µ with

the densities f and g.

5. Hellinger distance:

dH(P,Q) =

{∫
X

(√
dP −

√
dQ
)2}1/2

.

If f = dP
dµ

and g = dQ
dµ

are densities of P and Q with respect to some measure

µ, then the Hellinger distance can be rewritten as

dH(P,Q) =

{∫
X

(√
f −√

g
)2
dµ

}1/2

=

{
2

(
1−

∫
X

√
fgdµ

)}1/2

.
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6. Lipschitz distance: Assume that d(x, y) ≤ 1,∀x, y ∈ X (we take the metric

d′ = d
1+d

otherwise), then

dLi(P,Q) = sup
ψ∈L

∣∣∣∣∫
X
ψdP −

∫
X
ψdQ

∣∣∣∣
where L = {ψ : X → R : |ψ(x) − ψ(y)| ≤ d(x, y)} is the set of the Lipschitz

functions.

7. Kullback-Leibler divergence: Let p, q be the densities of probability distribu-

tions P,Q with respect to measure µ (Lebesgue measure on the real line or

the counting measure), then

dKL(Q,P ) =

∫
q(x) ln

q(x)

p(x)
dµ(x)

The Kullback-Leibler divergence is not a metric, because it is not symmetric

in P,Q and does not satisfy the triangle inequality.

Two commonly discussed derivatives of statistical functions are the Gâteau

derivative and the Fréchet derivative. Their definitions are given in the below.

More details on these mathematical tools for robust statistics can be found in Hu-

ber (1981).

Definition A.1.1. We say that functional T is differentiable in the Gâuteau sense

in P in direction Q, if there exists the limit

T ′
Q(P ) = lim

t→0+

T (P + t(Q− P ))− T (P )

t
.

T ′
Q(P ) is called the Gâuteau derivative of functional T in P in direction Q.

Remark A.1.2. If we denote ψ(t) := T ((1− t)P + tQ), 0 ≤ t ≤ 1, then the Gâuteau

derivative is equal to the ordinary right derivative of function ψ at point 0, i.e.

T ′
Q(P ) = ψ′(0+).
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The Gâuteau derivative of order k is defined similarly, i.e.

T
(k)
Q (P ) = ψ(k)(0+).

Some Examples are given as follows:

1. Expected value: T ′
Q(P ) = EQX − EPX

2. Variance: T ′
Q(P ) = EQX2 − EPX2 − 2EPX · EQX + 2(EPX)2

Definition A.1.3. We say that functional T is differentiable in P in the Fréchet

sense, if there exists a linear functional LP (Q− P ) such that

lim
t→0

T (P + t(Q− P ))− T (P )

t
= LP (Q− P )

uniformly in Q ∈ P , δ(P,Q) ≤ C for any fixed C ∈ (0,+∞). The lineal functional

LP (Q− P ) is called the Fréchet derivative of functional T in P in direction Q.

Remark A.1.4. If T is differentiable in the Fréchet sense, then it is differentiable in

the Gâuteau sense, too, i.e. there exists T ′
Q(P ),∀Q ∈ P and it holds that

T ′
Q(P ) = LP (Q− P ), ∀Q ∈ P .

The following theorem provides the asymptotic normality property of the esti-

mators as statistical functionals. Let δx denote the dirac probability measure that

assigns probability one to a single point x.

Theorem A.1.5. Let T be a statistical functional, Fréchet differentiable in P ,

and assume that the empirical probability distribution Pn satisfies
√
n · d(Pn, P ) =

Op(1) as n → ∞ for some distance d. Then the sequence
√
n(T (Pn) − T (P )) is

asymptotically normally distributed as n→ ∞; more specifically,

√
n(T (Pn)− T (P )) −→ N(0,VarPT

′
δX1

(P )) in distribution. (A.3)
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One example is that the variance estimator:
√
n(S2

n − σ2) −→ N(0, µ4 − µ2
2).

Remark A.1.6. If the metric d is, e.g. the Kolmogorov distance, then it automati-

cally satisfies that
√
n · d(Pn, P ) = Op(1), as n→ ∞

or equivalently,

√
nmax

x∈R
|F̂n(x)− F (x)| = Op(1), as n→ ∞

due to the famous result that

√
n max

0≤x≤1
|F̂n(x)− F (x)| → max

0≤x≤1
|B0(x)| in distribution.

The scheme to prove the above result is as follows: It is well-known that maxx∈R |F̂n(x)−
F (x)| has the distribution-free property, i.e. it has the same distribution for any

choice of the continuous distribution function F . Then we may choose the Unif(0, 1)

distribution, and it can be shown that
√
n(F̂n(x)−F (x)) → B0(x) in distribution,

where B0 is a Brownian bridge. Thus we can prove the above result. Additionally,

we can use the following formula to identify the exact probability:

P
{
max
0≤t≤1

|B0(t)| > x

}
= 2

∞∑
k=1

(−1)k+1e−2k2x2 .

A.2 Robustness Criterion

In the following we first introduce the definition of qualitative robustness, and

then discuss several different measures of quantitative robustness.

Definition A.2.1. We say that the sequence of statistics (i.e. empirical function-

als) {Tn} is qualitatively robust for probability distribution P , if for any ϵ > 0 there

exists a δ > 0 and a positive integer n0 such that, for all Q ∈ P and n ≥ n0,

d(P,Q) < δ =⇒ d(LP (Tn),LQ(Tn)) < ϵ (A.4)
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where LP (Tn) and LQ(Tn) denote the probability distributions of Tn under P and

Q, respectively.

This definition was first formulated by Hampel (1968, 1971). It uses the idea of

the continuity of functional {Tn} in a neighborhood of P .

This robustness is only qualitative. However, we not only want to see whether

the functional T is qualitatively robust or not, but also we want to compare different

functionals to see which one is more robust. To do this, we must characterize

the robustness with some quantitative measure. Different quantitative measures of

robustness are introduced in the following.

Influence Function

The Influence Function is one of the most important characteristics of a statis-

tical functional.

Definition A.2.2. The Gâteau derivative of a functional T in distribution P in

the direction of the Dirac distribution δx is called the influence function of T in P ,

i.e.

IF (x;T, P ) = lim
t→0+

T ((1− t)P + tδx)− T (P )

t
. (A.5)

Or equivalently,

IF (x;T, P ) = T ′
δx(P ).

The influence function IF (x;T, P ) measures the effect of an infinitesimal con-

tamination of functional T by a single value x. Thus a robust functional T is

expected to have a bounded influence function. Notice that even T is a qualitative-

ly robust functional it does not guarantee its influence function is bounded.

The following are some properties of the influence function.

1. EP [IF (x;T, P )] = 0.
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2. Suppose T is a Fréchet differentiable functional satisfying
√
nδ(Pn, P ) =

Op(1), then from Theorem A.1.5 we have

√
n(T (Pn)− T (P )) → N(0, V arP (IF (X1;T, P ))). (A.6)

The following are some examples of the influence function.

Example A.2.3. 1. Expected value µP : IF (x;T, P ) = x−µP (unbounded)

2. Variance σ2
P : IF (x;T, P ) = (x− µP )

2 − σ2
P (unbounded)

3. Median mP : IF (x;T, P ) =
sign (x−mP )
2f(mP )

(bounded)

The most popular quantitative characteristics of robustness based on the influ-

ence functions are the global and local sensitivities.

Definition A.2.4. The global sensitivity of the functional T under distribution P

is the value

γ∗ = sup
x∈X

|IF (x;T, P )|. (A.7)

Definition A.2.5. The local sensitivity of the functional T under distribution P

is the value

λ∗ = sup
x ̸=y

∣∣∣∣IF (y;T, P )− IF (x;T, P )

y − x

∣∣∣∣ . (A.8)

Example A.2.6. 1. Expected value: γ∗ = ∞, λ∗ = 1, which implies that the

mean is not robust, but it is not sensitive to the local changes.

2. Variance: γ∗ = ∞, λ∗ = ∞, which implies that the variance is non-robust

both to large and small (local) changes.

3. Median mP : γ
∗ = 1

2f(mP )
, λ∗ = ∞, which implies that the median is robust

(although it is sensitive to local changes).
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Breakdown Point

The breakdown point, introduced by Donoho and Huber in 1983, is another

popular quantitative characteristic of robustness. Roughly speaking, the breakdown

point is the smallest proportion of contamination that may cause an estimator to

take on arbitrarily large aberrant values, or that may lead the estimator Tn up to

infinity. For example, the breakdown point is 0 for the mean and 1
2
for the median.

Minimax Bias

Another natural measure of robustness of the functional T is its maximum bias

defined as

b(Fϵ) = sup
F∈Fϵ

|T (F )− T (F0)|, (A.9)

where Fϵ is a neighborhood of a fixed distribution F0. Suppose Fϵ is the widely

used ϵ-contaminated neighborhood, i.e.

Fϵ = {F : F = (1− ϵ)F0 + ϵG, G arbitrary}. (A.10)

It is relatively easy to find the maximal bias when the statistical functional is

monotone with respect to the stochastic ordering of distribution functions. (The

definition of stochastic ordering is as follows: Random variable X with distribution

function F is stochastically smaller than random variable Y with distribution G if

F (x) ≥ G(x),∀x ∈ R.) The mean and median are examples of monotone statistical

functionals. It is obvious that the monotone statistical functional thus attains the

maximum bias by

b(Fϵ) = max (|T (F∞)− T (F0)|, |T (F−∞)− T (F0)|) , (A.11)

where F∞ = (1 − ϵ)F0 + ϵδ∞ and F−∞ = (1 − ϵ)F0 + ϵδ−∞. Based on this fact,

it can be shown that the median achieves the smallest maximum bias among all

translation equi-variant functionals over Fϵ. (Note that a functional T (·) is called
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translation equi-variant if T (X1+c, · · · , Xn+c) = T (X1, · · · , Xn)+c for any c ∈ R.
This is a desired property for an estimator of the location parameter.)

Minimaximal Robustness

Another criterion is called the minimaximal robustness. The maximum asymp-

totic variance over a specified class Fϵ of distribution functions can be considered

as a measure of robustness of the functional T . Then we look for a functional T0

which minimizes the maximum asymptotic variance.

Definition A.2.7. Suppose Tn is asymptotically normally distributed, i.e. as n→
∞,

√
n(T (Fn)− T (F )) → N(0, σ2(F, T )), (A.12)

then the estimator

T0 = arg inf
T∈T

sup
F∈Fϵ

σ2(F, T ) (A.13)

where T is a class of estimators of parameter θ and Fϵ is a neighborhood of the

assumed model, is called the minimaximally robust estimator in the class T and for

the neighborhood Fϵ.

The obtained F0 is called the least favorable distribution, which is the distri-

bution in Fϵ with the smallest Fisher information. Then we have σ2(F0, T ) ≥
σ2(F0, T0) ≥ σ2(F, T0), i.e. (F0, T0) is the saddle point for the asymptotic variance

σ2(F, T ). In the context of robustness analysis, two widely-used classes of Fϵ are

given as follows:

1. ϵ-contamination neighborhood (or gross-error neighborhood):

Fϵ = {F : F = (1− ϵ)G+ ϵH, H arbitrary} (A.14)
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2. Kolmogorov neighborhood:

Fϵ = {F : sup
x∈R

|F (x)−G(x)| ≤ ϵ}. (A.15)

Huber (1964, 1981) solved the problem for both the ϵ-contamination neigh-

borhood with G arbitrary but satisfying some regularity conditions and the Kol-

mogorov neighborhood with G = Φ. Specifically, the estimator obtained for the

family of ϵ-contaminated normal distributions is called theHuber estimator and it

has the form of (A.23) given below. The corresponding least favorable distribution

is of the density

f0(x) =


(1− ϵ)

1√
2π

e−x
2/2 |x| ≤ k,

(1− ϵ)
1√
2π

ek
2/2−k|x| |x| > k

(A.16)

i.e. it is normal in interval [−k, k] and exponential outside.

Finite Sample Minimax Property

There is another finite sample minimax property of the Huber estimator (Huber

(1968)). Consider the Kolmogorov ϵ-neighborhood of the standard normal distri-

bution, i.e.

F = {F : sup
x∈R

|F (x)− Φ(x)| ≤ ϵ} (A.17)

For a fixed a > 0, define the inaccuracy measure of an estimator T of θ by

sup
F∈F ,θ∈R

Pθ (|T − θ| > a) (A.18)

Let TH be a slightly modified version of the Huber estimator, which depends on

ϵ and a. Then TH minimizes the inaccuracy (A.18) in the family of translation

equivariant estimators of θ.
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Tail-Behavior Measure

Jurecková (1981) introduced the following tail-behavior measure of an equivari-

ant estimator Tn:

B(Tn; a) =
− lnPθ(|Tn − θ| > a)

− ln(1− F (a))
, a > 0 (A.19)

The value B(Tn; a) show how many times faster the probability Pθ(|Tn − θ| > a)

tends to 0 than 1− F (a), as a→ ∞. The larger the value B(Tn; a), the better the

estimator Tn.

Summary on Measures of Robustness

It is desirable for a robust estimator to have a bounded influence function,

small global and local sensitivities, a breakdown point of 1/2, a minimax bias,

asymptotically minimax robustness, finite sample minimax robustness and a large

value of the tail-behavior measure B(Tn; a). Of course, one estimator may not have

all these properties. We need to find a suitable robust estimator based on the

specific problem.

A.3 Type of Estimators

In the literature of robust statistics, the M -estimator, L-estimator and R-

estimator are three popular types of robust estimators. Recently the adaptive

combinations of estimators have drawn attention and the idea behind it is sim-

ple and intuitive. In the following we briefly review each of these estimators.
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M-Estimator

An M-estimator Tn is defined as a solution of the minimization problem

n∑
i=1

ρ(Xi, θ) := min, θ ∈ Θ

where ρ(·, ·) is a properly chosen function. If ρ is differentiable in θ with a continuous

derivative ψ(·, θ) = ∂
∂θ
ρ(·, θ), then Tn is a root (or one of the roots) of the equation

n∑
i=1

ψ(Xi, θ) = 0, θ ∈ Θ. (A.20)

Corresponding, the functional T (F ) is defined by∫
ψ(x, T (F ))dF (x) = 0.

Some properties of M -estimators are given as follows.

1. The influence function is

IF (x;T, F ) =
ψ(x, T (F ))

−
∫
ψ′(y, T (F ))dF (y)

where ψ′(y, T (F )) = [ ∂
∂θ
ψ(y, θ)]|θ=T (F ).

2. If T (F ) is uniquely defined, then Tn is consistent at F : Tn → T (F ) in prob-

ability and almost surely.

3. Under some regularity conditions, we have that

√
n(Tn − T (F )) → N

(
0,

EF [ψ
2(x, T (F ))]

(
∫
ψ′(y, T (F ))dF (y))2

)
.

M-Estimator of location parameter

If we are particularly interested in a location parameter θ, then we solve

n∑
i=1

ρ(Xi − θ) := min, (A.21)
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or
n∑
i=1

ψ(Xi − θ) = 0.

The influence function is

IF (x;T, F ) =
ψ(x− T (F ))∫
ψ′(y)dF (y)

. (A.22)

The breakdown point is 0 if ψ(·) is an unbounded function, and 1
2
if ψ(·) is odd

and bounded. The following are two examples of the M -estimator of the location

parameter:

• Mean: ρ(x) = x2, ψ(x) = 2x

• Median: ρ(x) = |x|, ψ(x) = sign (x).

Choice of ψ function

If we look for an M -estimator of the location parameter of a distribution be-

longing to the family of ϵ-contaminated normal distributions:

Fϵ = {F : F = (1− ϵ)Φ + ϵH, H symmetric},

where H runs over symmetric distribution functions, we should use the Huber

estimator (proposed by Huber (1964)):

ρH(x) =

 x2 if |x| ≤ k

2k|x| − k2 if |x| > k

and

ψH(x) =

x |x| ≤ k,

k · sign(x) |x| > k
(A.23)

where k > 0 is a fixed constant, depending on ϵ though the following identity:

2Φ(k)− 1 +
2Φ′(k)

k
=

1

1− ϵ
.

236



The Huber estimator is very popular in the context of robust estimation. It has

a bounded influence function proportional to ψH , the breakdown point ϵ = 1
2
, the

global sensitivity γ = k
2F (k)−1

, and the tail-behavior measure lima→∞B(a, Tn, F ) =

1
2
both for distributions with exponential and heavy tails. Thus it is a robust

estimator of the center of symmetry, insensitive to the extreme observations. As

Huber proved in 1964, this estimator is minimaximally robust for a contaminated

normal distribution. An interesting and natural question is whether there exists a

distribution F such that the Huber estiamtor is the maximum likelihood estimator

of θ for F (x − θ), i.e. such that ψH is the likelihood function for F . Such a

distribution really exists, and its density is normal in the interval [−k, k], and

exponential outside. See equation (A.16).

The ψ- function for the Huber estimator is monotone, and thus the Huber esti-

mator is one of the so-called monotone M-estimators. There is another class of M -

estimators, called the redescending M-estimators, whose ψ- functions vanish

outside some interval. It has been found that redescending estimators sometimes

outperform the Huber estimator. For example, the redescending M-estimators are

more efficient than the Huber estimator for some symmetric and heavy-tailed distri-

butions. This is because redescending estimators completely reject gross outliers,

while the Huber estimator treats them the same as moderate outliers. Also, as

an example, the MLE for the student t distribution corresponds to a redescending

ψ-function. Examples of the redescending ψ-functions include the Hample func-

tion, the Andrews sinus function, the Tukey bisquare or biweight function and the

Cauchy function.
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Studentized M-estimators

We see from equation (A.21) that the M -estimator of a location parameter is

translation equivariant:

Tn(X1 + c, · · · , Xn + c) = Tn(X1, · · · , Xn) + c,

but generally not scale equivariant:

Tn(cX1, · · · , cXn) = cTn(X1, · · · , Xn).

This can be overcome by studentizing the M-estimators by a scale statistics Sn and

solving the following equation

n∑
i=1

ψ

(
Xi − θ

Sn

)
= 0, θ ∈ R. (A.24)

To guarantee the translation and scale equivariance of the solution to (A.24), the

scale statistics Sn should satisfy the translation invariance and the scale equivari-

ance.

TheM -estimator is the most important robust estimator discussed in the litera-

ture. Other types of robust estimators include the L-estimator and the R-estimator.

L-Estimator

An L-estimator is a linear combination of order statistics, i.e.

Tn =
n∑
i=1

anih(X(i)).

Examples are the median, α-trimmed mean, α-Winsorized mean, midrange Tn =

1
2
(X(1)+X(n)) and Sen’s weighted mean for the location parameter; and sample range

Rn = X(n) − X(1) and Gini mean difference Gn = 1
n(n−1)

∑n
i=1

∑n
j=1 |Xi − Xj| for

the scale parameter.
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R-Estimator

Let Ri be the rank of Xi among a random sample X1, · · · , Xn, i.e.

Ri =
n∑
j=1

I[Xj ≤ Xi], i = 1, · · · , n

and thus Ri = nFn(Xi), i = 1, · · · , n where Fn is the empirical distribution function.

The ranks are invariant w.r.t. the class of monotone transformation of observations

and the test based on ranks have many advantages, for example, the distribution of

the test criterion under the hypothesis of randomness (i.e. if X1, · · ·Xn are i.i.d.)

is independent of the distribution of observations.

An R-estimator is typically obtained by an inversion of the rank tests. The

Hodges-Lehmann estimator is one of the examples which corresponds to the one-

sample Wilcoxon test and it is given by

Tn = median

{
Xi +Xj

2
: 1 ≤ i ≤ j ≤ n

}
,

i.e. the median of the set of all n2 pairs. There are other types of R-estimator, for

example, the normal score estimator; see Huber (1981).

Adaptive Combination of Estimators

We explain the idea of the adaptive combination of estimators by considering

the M -estimator of location parameter as an example.

Let Tn(δ) be a solution of the minimizing problem

n∑
i=1

ρ

(
Xi − θ

Sn

)
:= min, θ ∈ R, (A.25)

where

ρ(x) = δρ1(x) + (1− δ)ρ2(x), 0 ≤ δ ≤ 1
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with ρ1(x) and ρ2(x) two discrepancy functions defining the respective estimators,

and Sn is the scale estimator. For example, ρ1(x) = |x| and ρ2(x) = x2, then the

solution Tn(δ) is a combination of the sample median and the sample mean.

Let f be the pdf of the observations X1, · · · , Xn. To decide on the value of δ,

we use the following adaptive way. Suppose
√
n(Tn(δ) − θ) has an asymptotically

normal distribution N (0, σ2(δ, ρ, f)), and then we choose δ by

δ0 ≡ δ0(ρ, f) = arg min
0≤δ≤1

σ2(δ, ρ, f).

Thus, we obtain the estimator Tn(δ0) which minimizing the asymptotic variance of
√
n(Tn(δ) − θ) with respect to δ. This Tn(δ0) is an adaptive combination of two

estimators.

By using the adaptive combination of two estimators, we may be able to diminish

the shortages of both methods. For more details on the adaptive combination

of estimators, see Dodge and Jurečková (2000) where the regression analysis was

emphasized.

List of estimators for location parameter

Here we provide a list of robust estimators for the location parameter.

1. Median: A median is described as the numerical value separating the higher

half of a sample, a population, or a probability distribution, from the lower

half.

2. α-trimmed mean: It is the mean after discarding α/2 portion of a probability

distribution, or a sample, at both the high and low ends. Typically α =5%

or 10%.

3. α-Winsorized mean: It is the mean after replacing α/2 portion of a probability

distribution, or a sample, at both the high and low ends with the most extreme

remaining values. Typically α =5% or 10%.
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4. Hodges-Lehmann estimator: µ̂ = med
{
Xi+Xj

2
: 1 ≤ i ≤ j ≤ n

}
.

5. Midrange: µ̂ = (X(1) +X(n))/2.

6. Midhinge: µ̂ = (Q1+Q3)/2, where Q1 and Q3 are the first and third quartiles.

7. Sen’s weighted mean: µ̂n,k =
(

n
2k+1

)−1∑n
i=1

(
i−1
k

)(
n−i
k

)
X(i), where 0 < k <

n−1
2
.

8. Huber estimator.

9. Redescending M -estimator.

10. (Adaptive) combination of estimators.

11. MLE based on the density estimator.
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Appendix B

Fourier Transform

The Fourier transform can be defined on L1(R) or L2(R). The following results

can be found in Meister (2009, page 181 and page 185).

Theorem B.0.1. Assume that f ∈ L1(R) is bounded and continuous at some

x ∈ R; and, in addition, f ft ∈ L1(R). Then, we obtain

f(x) =
1

2π

∫ ∞

−∞
exp{−itx}f ft(t)dt.

Let C be the set of all bounded and continuous functions in L1(R) with integrable

Fourier transform.

Theorem B.0.2. The Fourier transform on L2(R), defined by the unique contin-

uation of the Fourier transform on C, is a bijective mapping from L2(R) to L2(R).
Its reverse mapping is equal to f 7→ 1

2π
f ft(−·). Further, we have

< f, g >=
1

2π

⟨
f ft, gft

⟩
, for all f, g ∈ L2(R) (Plancherel’s isometry)

and

∥f∥22 =
1

2π
∥f ft∥22, for all f ∈ L2(R) (Parseval’s identity).
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Appendix C

Characteristic Functions

Properties of the characteristic function can be found in the book by Luckacs

(1970).

Theorem C.0.3 (Luckacs (1970), page 15). Every characteristic function is uni-

formly continuous on the whole real line.

Theorem C.0.4 (Luckacs (1970), page 38). Let F = F1 ∗ F2 be the convolution of

two distributions F1 and F2. If one of the components of F is a continuous function,

then the symbolic product is also a continuous function. If one of the components

of F is absolutely continuous then F is also absolutely continuous.

The following theorem can be found in Luckacs (1970), page 23, or Grimmett

and Stirzaker 2001, page 183.

Theorem C.0.5 (Grimmett and Stirzaker 2001, page 183). (a) If φ(k)(0) exists thenE|Xk| <∞ if k is even,

E|Xk−1| <∞ if k is odd.
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(b) If E|Xk| <∞ then

φ(t) =
k∑
j=0

E(Xj)

j!
(it)j + o(tk),

and so φ(k)(0) = ikE(Xk).

Lemma C.0.6 (Luckacs (1970), page 56). Let F (x) be a distribution function and

φ(t) its characteristic function. Then ℜ[1− φ(t)] ≥ 1
4
ℜ[1− φ(2t)].

Proof. Using the elementary relation that 1−cos tx = 2 sin2 tx
2
≥ 2 sin2 tx

2
cos2 tx

2
=

1
2
sin2 tx = 1

4
(1− cos 2tx). �

By induction we obtain the following result.

Theorem C.0.7 (Luckacs (1970), page 69). Let n be a non-negative integer; then

the inequality

ℜ[1− φ(t)] ≥ 1

4n
ℜ[1− φ(2nt)]

is satisfied for every characteristic function.

Complex function of a real variable

The characteristic function φ(t) is a continuous complex-valued function of a

real variable t. Let ∥z∥ denote the norm or absolute value of a complex number z.

Proposition C.0.8. Then we have the following results:

1.
∫ b
a
ℜ(φ(t))dt = ℜ

(∫ b
a
φ(t)dt

)
.

2.
∫ b
a
ℑ(φ(t))dt = ℑ

(∫ b
a
φ(t)dt

)
.

3.
∫ b
a
φ(t)dt =

∫ b
a
ℜ(φ(t))dt+

∫ b
a
ℑ(φ(t))dt ≤

∫ b
a
∥φ(t∥dt.
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Appendix D

Empirical Characteristic

Functions

Suppose the characteristic function of a random variable X is given by

φ(t) = E[eitX ] = E[costX + isintX] := R(t) + iI(t)

where R(t) and I(t) are its real and imaginary parts. Given a random sample

X1, X2, · · · , Xn, the empirical characteristic function is given by

φn(t) =
1

n

n∑
j=1

eitXj . (D.1)

Now we want to find the mean and variance of the e.c.f. φn(t). Notice that φn(t)

itself can be viewed as a random variable; and it is a complex random variable. The

definition for the mean of a complex random variable is generally without doubt.

However, more care needs to be taken on the definition of the variance of a complex

random variable.
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Mean and Variance of a Complex Random Variable

Assume X and Y are real random variables. Let Z = X + iY , then Z is a

complex random variable. For the definition of the mean value or the expectation,

it is somehow straightforward:

E(Z) = E(X) + iE(Y ).

For the definition of the variance, we could make our own. For example, if we

naively look at the imaginary unit i as a coefficient, then it may lead to a definition

of the variance as follows: Var(X+iY ) = Var(X)−Var(Y )+2iCov(X, Y ). However,

this is a complex value, and both the real and imaginary parts could be negative.

This definition has no way to match the original meaning of the ”variance”. As we

known, the variance is used to describe the degree of spread of the data from its

mean. We could make other definitions to accommodate this property. However,

there already exists one definition in the literature which is popularly accepted:

Var(Z) = E(∥Z − E(Z)∥2),

where ∥z∥ denotes the norm or absolute value of a complex number z. This defini-

tion of the variance leads to a single non-negative real value, which matches with

the meaning of the variance, and it measures the spread of the length between the

origin and the data from the length between the origin and the mean value of the

data. It is easy to verify that

Var(Z) = E(|X − E(X)|2 + |Y − E(Y )|2) = Var(X) + Var(Y ).

More generally, the covariance of two complex random variables Z1 and Z2 is

defined by

Cov(Z1, Z2) = E
[
(Z1 − EZ1)(Z2 − EZ2)

]
,

where z denotes the complex conjugate of a complex value z. Then the variance

defined above is a special case of the covariance.
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Mean and Variance of ECF

Using the above definitions, we obtain the following result.

Proposition D.0.9. The expectation and the variance of the e.c.f. φn(t) are given

by

E(φn(t)) = φ(t) (D.2)

and

Var(φn(t)) =
1

n

(
1− ∥φ(t)∥2

)
, (D.3)

where ∥z∥ denotes the norm of a complex number z. Specifically, the variances of

the real part and the imaginary part of φn(t) are given by

Var(ℜ(φn(t))) =
1

n

[
1

2
+

1

2
R(2t)−R2(t)

]
and

Var(ℑ(φn(t))) =
1

n

[
1

2
− 1

2
R(2t)− I2(t)

]
.

Proof. The expectation of the e.c.f. is given by

E(φn(t)) = E

(
1

n

n∑
j=1

eitXj

)
= E[eitXj ] = φ(t).

The variance of the e.c.f. is given by

Var(φn(t)) = E(∥φn(t)− φ(t)∥2)

= Var(ℜ(φn(t))) + Var(ℑ(φn(t)))

where

Var(ℜ(φn(t))) =
1

n
Var(cos(tXj))

=
1

n

{
E[(cos tXj)

2]− [E(cos tXj)]
2
}

=
1

n

{
E
[
1 + cos 2tXj

2

]
−R2(t)

}
=

1

n

{
1

2
+

1

2
R(2t)−R2(t)

}
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and

Var(ℑ(φn(t))) =
1

n
Var(sin(tXj))

=
1

n

{
E[(sin tXj)

2]− [E(sin tXj)]
2
}

=
1

n

{
E
[
1− cos 2tXj

2

]
− I2(t)

}
=

1

n

{
1

2
− 1

2
R(2t)− I2(t)

}
.

Therefore, we have

Var(φn(t)) = Var(ℜ(φn(t))) + Var(ℑ(φn(t)))

=
1

n

(
1−R2(t)− I2(t)

)
=

1

n

(
1− ∥φ(t)∥2

)
.

This ends the proof. �
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[26] Csörgő, S. (1985). Rate of uniform convergence for the empirical characteristic

function Acta Sci. Math., 48, 97-102.
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