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Abstract

In modern cryptanalysis, an active attacker may induce errors during the computation
of a cryptographic algorithm and exploit the faulty results to extract information about
the secret key in embedded systems. This kind of attack is called a fault attack. There
have been various attack mechanisms with different fault models proposed in the literature.
Among them, clock glitch faults support practically dangerous fault attacks on cryptosys-
tems. This thesis presents an FPGA-based practical testbed for characterizing exploitable
clock glitch faults and uniformly evaluating cryptographic systems against them. Con-
centrating on Advanced Encryption Standard (AES), simulation and experimental results
illustrates proper features for the clock glitches generated by the implemented on-chip glitch
generator. These glitches can be injected reliably with acceptably accurate timing. The
produced faults are random but their effect domain is finely controllable by the attacker.
These features makes clock glitch faults practically suitable for future possible complete
fault attacks on AES. This research is important for investigating the viability and analysis
of fault injections on various cryptographic functions in future embedded systems.
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Chapter 1

Introduction

Security is a major concern in computing, communication systems, and e-commerce among
others and significant ongoing research is underway to address this concern. Cryptographic
algorithms such as symmetric ciphers, public-key ciphers, and hash functions are used to
construct security mechanisms. Modern cryptography relies on the assumption that cryp-
tography primitives are perfectly secure; however, it is an unproven assumption. For ex-
ample, public-key cryptosystem is based on the idea of one-way functions–functions which
are easy to compute but computationally infeasible to invert. But, it has not been proven
that the functions used in public-key cryptosystem are one-way functions or even whether
one-way functions really exist. Still, some cryptographic algorithms are unbroken and re-
main widely used. Hence, some algorithms are assumed to be secure and unbreakable.

Cryptographic algorithms can be viewed from two perspectives: classical and side chan-
nel. From a classical perspective, they are perceived as a mathematical object which re-
ceives a plaintext or message and using a key, transforms the input into a ciphertext or
vice-versa. The adversaries are assumed to have a complete understanding of the underly-
ing algorithm and access to both ciphertext and plaintext. In addition, they may have more
control over the exchanged data between the two parties e.g., by selecting the plaintexts
in a chosen-plaintext attack, or by selecting the ciphertexts in a chosen-ciphertext attack.
The attackers are only lacking knowledge of the secret key. This is the black-box view
depicted in figure 1.1 in which the attacker attempts to solve the underlying problems–
assumed to be computationally intractable–in the cryptographic protocol by exploiting the
mathematical specifications without necessarily having to implement the algorithms and
use the system.
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Figure 1.1: The Black Box view in traditional cryptography

1.1 Side Channel Attacks

In the real world, cryptographic protocols have to be implemented in software or hardware
on a device which interacts with its environment. This interaction with the environment
can be monitored by the adversary. For example, the device gives information about
the time or power consumption of operations and produces sounds or electromagnetic
radiations during the computations. In addition, the device may have some unintentional
inputs such as voltage or clock frequency which may be modified to create predictable or
faulty outputs. Such information leakage during the protocols execution is called the side
channel which is not considered in the classical security model. Figure 1.2 represents the
cryptographic view including side channels. In side channel analysis (SCA), the adversary
goes beyond the pure mathematics and takes advantage of side channel information to
recover the secret key. This kind of attack, which was presented in 1996 by Kocher [33]
for the first time, works because, the state of the cryptographic device, which is related to
the secret key, can be correlated with the measured side channel information.

1.1.1 Classifications of Side Channel Attacks

Side-channel attacks can be classified into the following three categories where these cat-
egories are orthogonal i.e. a specific type of attack can be in more than one category
[49].

Control over the process: Passive vs. Active

The first category is based on the level of control over the process execution and divides
the SCA attacks into passive attacks and active attacks. In a passive attack, the
attacker does not interfere with the device’s computation and gains information by simply
observing the device behavior, which is exactly as if there is no attack. Passive attacks are

2



Figure 1.2: The Side channel view of the cryptography

based on the observation and analysis of various measurable side channels including power
consumption, computation time, and electromagnetic or radio frequency emanation of the
device. They use the correlation between the operations, processed data and collected
measures. While in an active attack, the attacker tampers with the functioning device and
tries to affect its behavior. Active attacks are based on interrupting the algorithm process
to cause an abnormal behavior or erroneous result that can be exploited to recover the
secret key.

Access to the device: Invasive vs. Non-invasive

Depending on the attack surface (the set of physical, electrical and logical interfaces that
are exposed to a potential adversary) Anderson et al. in [4] divided the attacks into
three classes: invasive attacks, semi-invasive attacks and non-invasive attacks.
Invasive attacks require depackaging the device to have direct access to its components,
for example, placing a probing needle on a data bus to see the data transfer. A non-
invasive attack is usually an undetectable and low-cost attack that only uses the side-
channel information which is externally available. Timing analysis and power consumption
analysis are in this class. The semi-invasive attack involves depackaging of the device to
get access to its surface, but does not require electrical contact to the metal layer. For
example, in a fault induction attack, the attacker may use a laser beam to ionize a device
and change some of its memories to change the output.

3



Analysis process: Simple vs. Differential

The sampled data in a side-channel attack needs to be analyzed to reveal information
about the secret key. In the analysis process, if a single side-channel trace is used and
the secret key is directly related to that trace, the attack is referred to as a simple side
channel attack (SSCA). While, if due to too much noise in the measurements SSCA
is not feasible, a differential side channel attack (DSCA) is used. In DSCA many
traces are used to exploit the correlation between the processed data and the side-channel
leakage. Since this correlation is usually small, statistical methods are needed to exploit it
efficiently.

1.1.2 Fault Attacks

A fault attack is a fundamentally different kind of side-channel attack. Here, the adver-
sary induces faults into the device during the computation of a cryptographic algorithm
and observes its behavior. Other side-channel attacks are passive in which there is no
tampering with the attacked device. While, a fault attack is an active attack which aims
at recovering the secret key by altering the computation process and analyzing the faulty
output or reaction of the system.

The first successful fault attacks have been reported by Boneh et al. in 1997 [14] and
later in 2001 on the RSA signature scheme, the Fiat-Shamir and Schnorr identification
protocols [15]. They injected random hardware faults and showed that an RSA imple-
mentation based on the Chinese Remainder Theorem (CRT) can be broken using a single
erroneous RSA signature. A non-CRT implementation of RSA needs a larger number (e.g.
1000) of erroneous signatures. Their results also illustrates that the secret key can be
revealed in Fiat-Shamir and Schnorr identification protocols after a small number (e.g.
10) and a larger number (e.g. 10000) of faulty executions respectively. Fault attack on
ElGamal, Schnorr and digital signature algorithm (DSA) was presented by Bao et al. in
1998[9]. Biehl et al. in 2000[11] presented the fault attacks on elliptic curve public-key en-
cryption. In 1997 Biham and Shamir[12] described fault attacks on the DES symmetric-key
encryption. Transient faults or glitches were discussed by Anderson and Huhn in 1997[7].
In 2002 Skorobogatov and Anderson[46] proposed a powerful and practical optical fault
attack using inexpensive equipment on a smartcard.

The fault attacks mentioned above indicate that this kind of attack may be practical
and very realistic to mount, although more advanced knowledge and tools are needed.
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Table 1.1: Key-Block-Round Combinations [37]

Key Length (Nk words) Block Size (Nb words) Number of Rounds (Nr)
AES-128 4 4 10
AES-192 6 4 12
AES-256 8 4 14

Thus, these fault attacks may be much more effective and dangerous. Fault attacks can
break an unprotected system more quickly than any other kind of side-channel attack such
as power analysis or electromagnetic analysis. For example, the attacker can break RSA-
CRT with one faulty result, and DES and AES with two. Furthermore, the fault attack
countermeasures are more costly in terms of chip area. Hence, they must be taken into
account during the design and test of secure systems and devices.

1.2 Introduction to AES

The Advanced Encryption Standard (AES) algorithm is a symmetric 128-bit block cipher
with a key of length 128, 192 or 256, and the corresponding number of rounds for each is
10, 12, and 14 rounds respectively. The Key-Block-Round combinations is given in Table
1.1. From the original key, a different round key is computed for each of these rounds.
Consider the key length of 128 bits and hence 10 rounds. AES operates on a 4×4 array
of bytes named a state. This state undergoes 4 transformations in each round, in order,
called SubBytes, ShiftRows, MixColumns, and AddRoundKey. Before the first
round (round 0), the block is processed by AddRoundKey. The last round (round 10)
skips the MixColumns step. The complete description of the algorithm can be found in
[37]. Figure 1.3 shows the encryption process in AES algorithm.

1.2.1 AES Functions

SubBytes

SubByte transformation is a highly nonlinear byte substitution where each byte is replaced
with another from a look up table called Sbox. This nonlinear function involves finding the
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Figure 1.3: AES encryption process

inverse of the 8-bit numbers as elements of the Galois Field GF (28). The Sbox function of
an input byte a is defined by two substeps:

1. b = a−1: Multiplication inverse in GF (28) (inverse of 0 is 0)

2. a′ = M.b+ c: Affine transformation (linear plus a constant)

Figure 1.4 depicts the SubBytes transformation on the State. The affine transformation
element of the Sbox can be expressed as:



a′0
a′1
a′2
a′3
a′4
a′5
a′6
a′7


=



1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1





b0

b1

b2

b3

b4

b5

b6

b7


+



1
1
0
0
0
1
1
0


6



Figure 1.4: SubBytes [37]

Figure 1.5: ShiftRows transformation [37]

ShiftRows

The ShiftRows transformation cyclically shifts the last three rows in the State and the first
row, r = 0, is not shifted. The effect is moving the bytes to lower position in the row as
illustrated in Figure 1.5.

MixColumns

In MixColumns, each column of the State is treated as a polynomial over GF (28) and
multiplied with a fixed polynomial a(x) modulo x4 + 1 where s′(x) = a(x)⊗ s(x) and:

7



Figure 1.6: MixColumns transformation [37]

a(x) = {03}x3 + {01}x2 + {01}x+ {02}.
The matrix multiplication is as follows and the MixColumns transformation is illustrated
in Figure 1.6 

s′0,c
s′1,c
s′2,c
s′3,c

 =


02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02



s0,c

s1,c

s2,c

s3,c

 for0 ≤ c < Nb

AddRoundKey

As Figure 1.7 shows, AddRoundKey transformation is simply a bitwise XOR between each
column of the State and a word of the key matrix from the key schedule.

KeyExpansion

The KeyExpansion schedule computes the round keys. Figure 1.8 shows the pseudo code
of KeyExpansion and a block diagram of this function is displayed in Figure 1.9. The
KeyExpansion consists of SubWord and RotWord functions and Rcon Table. The Sub-
Word accepts a word as input, performs the SubBytes on each of the four bytes and
returns a word. The Rotword applies a cyclic permutation on a word (s0, s1, s2, s3) and
outputs the word (s1, s2, s3, s0). Rcon is a constant word array which contains the values
(xi−1, 0, 0, 0), i ∈ 1, 2, 3, 4.

8



Figure 1.7: AddRoundKey transformation [37]

Figure 1.8: Pseudo code of the KeyExpansion schedule in AES 128 [17]
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Figure 1.9: The block diagram of the KeyExpansion schedule in AES 128

1.2.2 Sbox Implementation

One of the most common and straight forward implementations of the S-box was to have the
pre-computed values stored in a ROM based look-up table (LUT) in which the substitution
bytes of all possible bytes are stored in a table. However, there are two drawbacks for the
LUT-based approach:

• All 256 possible values of a byte are stored in a ROM and the input byte would be
wired to the ROM’s address bus. This method suffers from a fixed delay since ROMs
have a fixed access time for read and write operations.

• Each copy of the table requires 256 bytes of storage, along with the circuitry to
address the table. Each of the 16 bytes can go through the S-box function indepen-
dently. This then effectively requires 16 copies of the S-box table for one round. To
fully pipeline, the encryption would require unrolling the loop of 10 rounds into 10
sequential copies of the round calculation. This needs 160 copies of the S-box table,
a significant allocation of hardware resources.

10



Figure 1.10: Computation sequence of S-box implementation [43].

Designing a compact S-box is one of the most critical problems for reducing the total
circuit size of AES hardware. It is possible to implement the S-box as a particular circuit
based on its functional specification by using automatic logic synthesis tools. However,
in [42] a significant reduction in the size of the S-box was achieved, by using composite
field arithmetic. In [43], they have proposed further optimization of S-box by introducing
a new composite field based on Polynomial Basis (PB). Figure 1.10 shows the outline of
such S-box implementation.

The most costly operation in the S-box is the multiplicative inversion over a field A ,
where A is an extension field over GF (28) with the irreducible polynomial m(x) = x8+x4+
x3 +x+ 1. We performed the composite field arithmetic to calculate the multiplication in-
version of the Sbox under Normal Basis (NB) rather than polynomial basis, which is done in
previous works. This is done by decomposing GF (28) to GF (28)/GF (24)/GF (22)/GF (2),
performing the required calculations and then, bringing the result to GF (28). The following
3-stage method is to be adopted to reduce the cost of the inversion operation [43]:

1. Map all elements of the field A to a composite field B , using an isomorphism function
δ−1.

11



2. Compute the multiplicative inverse over the field B.

3. Re-map the computation results to A, using the function δ.

The composite field B in stage 2 is constructed not by applying a single degree-8
extension to GF (2), but by applying multiple extensions of smaller degrees. To reduce the
cost of stage 2 as much as possible, the composite field B is built by repeating degree-2
extensions under a normal basis through the following steps:

1. Isomorphism between GF (28) and GF (28)/GF (24):

NB={U16, U}, A ∈ GF (28)⇒ A = r1U
16 + r0U , where r0, r1 ∈ GF (24).

Irreducible polynomial: u2 + u+ λ = (u+ U)(u+ U16).

2. Isomorphism between GF (24) and GF (24)/GF (22):

NB= {V 4, V }, r ∈ GF (24)⇒ r = x1V
4 + x0V , where x0, x1 ∈ GF (22).

Irreducible polynomial: v2 + v + φ = (v + V )(v + V 4).

3. Isomorphism between GF (22) and GF (22)/GF (2):

NB= {W 2,W}, x ∈ GF (22)⇒ x = p1W
2 + p0W where p0, p1 ∈ GF (2) = {0, 1}.

Irreducible polynomial: w2 + w + 1 = (w +W )(w +W 2).

To change bases we need an 8 × 8 multiplication bit matrix. δ−1 refers to the matrix
that converts a given byte (a7, a6, a5, a4, a3, a2, a1, a0) as an element of GF (28), from the
standard basis into the subfield basis. Likewise, δ represents the matrix to convert from
the subfield basis into the standard basis.

p7

p6

p5

p4

p3

p2

p1

p0


= δ−1



a7

a6

a5

a4

a3

a2

a1

a0


, and



a7

a6

a5

a4

a3

a2

a1

a0


= δ



p7

p6

p5

p4

p3

p2

p1

p0


Where,
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δ−1 =



1 1 1 0 0 1 1 1
0 1 1 1 0 0 0 1
0 1 1 0 0 0 1 1
1 1 1 0 0 0 0 1
1 0 0 1 1 0 1 1
0 0 0 0 0 0 0 1
0 1 1 0 0 0 0 1
0 1 0 0 1 1 1 1


, and, δ =



0 0 0 1 0 0 1 0
1 1 1 0 1 0 1 1
1 1 1 0 1 1 0 1
0 1 0 0 0 0 1 0
0 1 1 1 1 1 1 0
1 0 1 1 0 0 1 0
0 0 1 0 0 0 1 0
0 0 0 0 0 1 0 0



1.3 Thesis Overview

This thesis focuses on a particular fault attack called the glitch attach in which a glitch
is generated in the input clock signal and the targeted cryptosystem is the Advanced En-
cryption Standard (AES). The effect of the glitchy clock cycle on the registered values in
the output registers and how it can be used to recover the secret key is explored in this
thesis.

The thesis is organized as follows: Chapter 2 introduces the fault type and models, and
presents a survey on the most important approaches to create fault injection, including:
power spikes, clock glitches, electromagnetic and optical fault injections. This is followed
by an literature review on previous fault attacks applied on AES focused on the attack
method used, complexity and results. Chapter 3 illustrates the experimental setup by
explaining the fault model, how to use the glitch characteristics, and how to generate the
desired glitch accurately. It continues by introducing the cryptographic board and the
target AES architecture. The simulation results for an Sbox architecture based on normal
basis, and experimental result for real fault injection in AES are presented in chapter 4.
Finally, Chapter 5 provides a summary, conclusions and recommendations for future work.
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Chapter 2

Background and related work

This chapter provides a review of fault injection methods by introducing fault types and
models. This is followed by a discussion of the most common fault injection mechanisms
and surveying previous fault attacks against AES. Finally, attacking the AES datapath
rather than key schedule is discussed.

2.1 Fault injection method: The model and type of

the fault

There has been a large variety of fault attacks reported in the literature. The difference
between them is based on their fault types and fault models.

2.1.1 Fault types

There are two different fault types based on the durability of the effect of the attack:
permanent faults and transient faults.

Permanent faults A permanent fault certainly changes the value of a cell and the be-
havior of the device, and returning to the initial state is impossible. It can be caused
by injecting a fault in a ROM or by using a laser cutter to cut a wire inside the chip.

Transient faults A transient fault is a provisional fault in which the device can return to
its initial state and resume its original behavior after a short time, for example, by
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resetting the circuit or ceasing the fault’s stimulus. The transient fault in a memory
block, RAM, causes the fault to be memorized and the modified value lasts until
overwriting the variable holding it.

2.1.2 Fault models

Attackers must know the fault model they are going to inject in a proposed attack and
then use it in practice. This knowledge helps to distinguish whether or not the proposed
attack is practical. The most important factors indicating a fault model are as follows[29]:

Bit vs. byte fault In fault attacks it is plausible to affect the value of only one bit or one
byte. Modifying a single bit is more difficult and needs more precise equipments but
makes it possible to break almost all ciphers. On the other hand, since the storage
or transferring the data is done in the byte level, the attacks modifying a byte are
more practical.

Specific vs. random fault In this category the attackers determine if they assume to
change the bit or byte value to a specific or random value. In practice, it is easier to
inject a random value fault.

Static vs. computational fault If the attack aims to change the value of the memory
itself, for example flipping a secret key bit in the memory, it is of the static model,
which is usually difficult in practice. On the other hand, computational faults occur
when inducing a fault during an operation computation and is easier than the static
one to inject.

Data vs. control fault When the fault causes an omission of an instruction or iteration,
it is of the control fault group. Whereas, modifying the data is more common in
attacking on the secret key or the intermediate states.

2.2 Fault Injection Mechanisms

In a cryptographic device there are flip flops to define the current state, and combinational
logic to calculate the next state from the current state in each clock cycle [31]. There are
also input clock and voltage, transistor current, among others with many analog effects
that can be used in non-invasive attacks like the following:
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2.2.1 Power Spikes

Embedded systems such as smartcards need power supply which is provided externally.
Variations in the supply voltage can impede the device’s functionality with misinterpreta-
tion or omission of instructions as well as data misread. It enables an adversary to both
tamper with the power feeding and measuring the power consumption.

According to the ”Electronic signals and transmission protocols” standard, ISO/IEC
7816-3, a smartcard must tolerate the power supply variation of ±10% of the standard
voltage. For variations higher than 10%, the system no longer works properly. Spikes
are short massive variations of the power supply and can be used to induce faults during
the computation of the smartcard. Spikes do not require a modification of the device
itself but provoke faults by modifying the working conditions. They have different effects
depending on different parameters including time, voltage value, and the transition shape.
A spike attack is a non-invasive, or at least semi-invasive, method which can lead to wrong
computation result when the device is still able to complete the computation. Experimental
results for injecting faults into smartcards using spikes are described in details in [8].

2.2.2 Optical Fault Injection

Due to the photoelectric effects, the semiconductor transistors and the EEPROM are
sensitive to lasers and ion-beams and the memory cells can be set to 0[46]. In [31], they
depackage the device and use an optical microscope to reconstruct the layout and apply
invasive fault attacks including laser cutting and focused ion-beam manipulation to recover
the covered data. But it was not sufficiently precise to change the chosen bits. The attacker
needs to be able to control the light’s wavelength, energy, location, and emission time. In
2008, Hutter at al. [24] described a precise locolized fault injection method with affordable
equipments which enables them to interfere data, control lines, memory blocks and driver
circuits. This method is the underlying method used in a fault analysis attack against
HB+ authentication protocol used in radio-frequency identification (RFID) tags [16]. In
2010, Agoyan et al.[5] showed that it is possible to reproduce single-bit faults on SRAM
which was considered unfeasible before. In addition, today the laser attack can be applied
to the back side of the chip where there is no protecting mechanism.
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Figure 2.1: An smartcard contact assignment according to ISO 7816-2 [1]

2.2.3 Electromagnetic Attack

Emitting a powerful magnetic pulse close to the silicon area of the cryptographic device
is another way to inject faults. This emission creates local current called Eddy current
on the component’s surface. Eddy current can modify the number of electrons inside a
transistor’s oxide grid and change its threshold voltage. As a result it impedes the transis-
tor’s switching and ensures the attacker that a memory cell contains the value 1 or 0[38].
Another usage of the Eddy current is to heat a material uniformly and hence, to generate
transient or permanent faults by inducing the heat.

This attack can be performed on small parts of the device if the attacker has the
knowledge of the layout of the device to control the targeted area precisely. As reported
in [40], Eddy current can enable the adversary to induce faults very accurately and even
set or reset the individual selected bits. Hence, it has been considered a practical method
[25].

2.2.4 Clock Glitches

As shown in figure 2.1, cryptographic devices such as smartcards have an external clock
signal. According to the ISO/IEC 7816-3, a smartcard must work properly in the clock
signal with voltage variation in the range of 0.7 Vcc to Vcc for the high signal and 0 to 0.5
Vcc for low signal. Another constraint is to tolerate the clock rise and the clock fall times
of 9% from the period cycle. A deviation of the external clock which is out of the specified
tolerance scope is called glitch. Glitches may be generated by temporarily increasing the
clock frequency in one or a half cycle. Clock glitch can cause data misread in which the
circuit samples the input before it gets the new state or reads the values from the data
bus before being latched into the memory. The other possible effect can be the omission
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of instructions in which the next instruction starts executing before finishing the current
one. As presented by Agoyan et al. in [6], injecting the fault by clock glitches is currently
the simplest and most practical fault attack.

2.3 Previous Fault Attacks on AES

This sections reviews past research in fault analysis attacks on AES, attacking both the
AES datapath as well as the AES key expansion circuitry.

Fault based cryptanalysis of the Advanced Encryption Standard (AES), Blomer-
Seifert [13]

A fault attack against AES using an optical fault injection method (from [46]) has been
demonstrated in [13]. The attack was implementation independent and it recovered the
complete 128-bit AES cipher key by generating 128 faulty ciphertexts. First, they consider
the case where the block length is greater than or equal to the key length 128 (Nb ≥ Nk).
In this case the complete cipher key is used in the initial AddRoundKey. The cipher key
is stored in a 4× 4 array of bytes kij and the l− th bit of the byte is denoted by klij where
0 ≤ l ≤ 7 and 0 ≤ i, j ≤ 3. The attack encrypts a block of plaintext where each bit has
the value of 0. Then the initial AddRoundKey transformation will be performed as

sij = 0⊕ kij = kij.

Before the next transformation, the attacker tries to set slij to 0 and let the encryption
process proceed without further fault injection. If klij = 0 then the encryption results the
correct ciphertext as if there was no fault. But if klij = 1, setting the state bit to 0 affects
the temporary state and causes an incorrect ciphertext or resetting the device–if the device
can detect the corruption and reset itself . Hence, with one encryption process the value of
klij can be deduced and the attacker can determine all bits of the cipher key by encrypting
the null plaintext for 128 times, each time inducing a single fault.

If the key size is greater than the input block (Nk > Nb), the attack obtains the first
128 bits of the key as described above and then continues up to the next AddRoundKey
in round 1. The plaintext can be chosen such a way that all bits of the state before the
AddRoundKey are equal to 0. Then the attacker can set the remaining bits of the state
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one by one after the AddRoundKey of round 1. As before, if the ciphertext is correct the
key bit klij is 0, otherwise klij = 1.

DFA on AES, Giraud [21]

Giraud [21] presents two different differential fault analysis (DFA) attacks on AES. In the
first attack, the fault model is a single-bit fault which must occur right before the SubByte
transformation in the last round. If C denotes the correct ciphertext and C∗ the faulty
ciphertext, the following equations hold:{

δ = Ci ⊕ C∗i,
δ = (SubBytes[S]⊕K10)⊕ (SubBytes[S ′]⊕K10).

where fault is injected in i− th byte, S is the correct byte and S ′ is the faulty byte. If the
following two conditions hold:

• δ = SubBytes[S]⊕ SubBytes[S ′]

• one bit fault :S ⊕ S ′ = 2i, i ∈ 0, ..., 7

then, by an exhaustive search for the couple of (S, S ′), a list of possible key bytes can be
computed such that Ki = SubBytes[S]⊕ Ci.

Each pair of (S, S ′) gives one possible key which is put in a list α. If the number of
guessed keys is more than one, this process will be repeated with a new plaintext and
generate a new set β. Taking the intersection of these two sets and repeating the operation
will eventually result in only one candidate left for the key. With the probability of about
97%, using three ciphertexts will be sufficient to recover one byte of the last round key. So,
by less than 50 faulty ciphertexts the 128-bit AES key can be obtained. If the attacker has
the ability to choose the affected byte, this attack can reach the key with only 35 faulty
ciphertexts.

The second attack is more realistic because it assumes that the temporary fault affects
a whole byte. The attacker aims to induce the fault in the Key Schedule unit and pursues
the attack in 3 steps:
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1. Before computing K10, a fault is inserted in K9 and using the resulting ciphertexts,
the last 4 bytes of K9 are obtained.

2. Before computing K9, a fault is inserted in K8 and using the resulting ciphertexts,
another 4 bytes of K9 are obtained.

3. Before starting round 9, a fault is inserted in S8 and using the resulting ciphertexts
and the recovered 8 bytes of K9 the AES key will be obtained.

According to he author’s claim, the complete key can be reached by less than 250
ciphertexts and in an extended scenario where the attacker can choose which byte to
affect, the number of required faulty ciphertext is 31.

Differential fault analysis on AES key schedule and some countermeasures,
Chen and Yen

The attack presented in [17] uses the same method as the second attack in Giraud’s pub-
lication [21] , on the keypath instead of the datapath, to disclose the secret key but with
less required ciphertexts. A fault is injected into one of the last four bytes (last word)
of K9 which results in 5 faulty bytes in the last round key and consequently in the final
output. Repeating this process for a few different faults and intersecting the results of
solving the equations and statements from each process gives the exact values of these 5
key bytes. Then a fault is injected in the round key K8 in a different position (e.g. the
penultimate word). It affects 6-7 output bytes and leads to guess another 8 key bytes. The
remaining 3 bytes can be reached by a light exhaustive search. With an accurate fault
inducing method, the whole AES secret key can be disclosed by exploiting less than 44
fault injections.

Differential Fault Analysis on A.E.S, Dusart et al. [18]

The idea in this work is to first retrieve the last round key and then, using the invertibility
feature of the AES key schedule, to retrieve the initial cipher key. It is assumed that the
attacker can inject a random fault in a single byte before the last MixColumns operation.
The fault is spread over only four bytes of the ciphertext which according to their location,
the location of the fault can be deduced. Hence, the location of fault injection is not
essential and the attack is highly realistic. Suppose F is the faulty state and the unknown
fault ε is injected in the first element of the state. Then we will have
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F9,ShiftRows = S9,ShiftRows +


ε 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 .

Then the effect of the fault will be as follows:

After the MixColumns:

F9,MixColumns = S9,MixColumns +


2 · ε 0 0 0
ε 0 0 0
ε 0 0 0

3 · ε 0 0 0

 .

After the AddRoundKey:

F9,AddRoundKey = S9,AddRoundKey +


2 · ε 0 0 0
ε 0 0 0
ε 0 0 0

3 · ε 0 0 0

 .

After the last round SubBytes:

F10,SubBytes = S10,SubBytes +


έ0 0 0 0
έ1 0 0 0
έ2 0 0 0
έ3 0 0 0

 .

After the last round ShiftRows:

F10,ShiftRows = S10,ShiftRows +


έ0 0 0 0
0 0 0 έ1

0 0 έ2 0
0 έ3 0 0

 .

And finally after the last round AddRoundKey:

F10,AddRoundKey = S10,AddRoundKey +


έ0 0 0 0
0 0 0 έ1

0 0 έ2 0
0 έ3 0 0

 .
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As shown above, when a random byte fault is injected before the MixColumns oper-
ation, the fault will be spread over all four bytes of the same column. The subsequent
AddRoundKey and the last round operations modify the bytes independently. The only
operation that could exploit information about the last round key is the last SubBytes
transformation because due to the nonlinearity, some assumptions can be made on the
error value. We have the general equation

s(x+ c.ε) + s(x) = έ, (2.1)

in which c ∈ 01, 02, 03 and ε ∈ GF (28)− 0. The following four equations are driven from
the above general equation:


s(x0 + 2 · ε) = s(x0) + έ0

s(x1 + ε) = s(x1) + έ1

s(x2 + ε) = s(x2) + έ2

s(x3 + 3 · ε) = s(x3) + έ3

Solving each equation results in a set of possible values for the error. The intersection
of these sets is a smaller set which reduces the number of required ciphertexts for the full
analysis. The corresponding four key bytes can be guessed for each possible value of fault.
According to this paper, intersecting the solution sets will retrieve four bytes of the round
key quickly and the full 128-bit key can be found by analysing less than 50 ciphertexts.

A Differential Fault Attack Technique against SPN Structures, with Applica-
tion to the AES and KHAZAD, Piret and Quisquater [39]

Piret and Quisquater use a realistic fault model as they consider a random fault affecting
a byte. In the first attack scenario, the fault is induced between the MixColumns of round
9 and 8. The MixColumn of round 9 spreads the fault over the whole column. After the
non-linear computation of SubBytes the 4 faulty bytes are scattered over different columns
according to the ShiftRows transformation. This leads to obtain a set of candidates for
the 4 key bytes among which the unique correct candidate can be found by a couple of
well-located faults. Suppose a one-byte fault occurring before the MixColumns of round
9 on one of the state bytes S0,0, S1,1, S2,2, or S3,3. Using one pair of correct and faulty

22



ciphertexts (C;C∗), the attacker obtains about 1036 candidates for (K10
0,0, K

10
1,3, K

10
2,2, K

10
3,1).

By exploiting two pairs of (C;C∗), the only correct candidate for these 4 key bytes is
remained. Hence, for the whole 16 bytes of the key, only 8 faults at carefully chosen
locations are required, which in comparison with [21], [18], and [13], this attack scenario
requires a considerable less number of faulty ciphertexts. The basic attack algorithm is as
follows:

1. Consider a one-byte difference at the input of the MixColumns of round 9. There
are 255 possible differences for a byte and 4 possible locations for fault that affect
the same 4 bytes of the output.

2. Compute 255 ·4 possible differences at the output of the MixColumns and store them
in a list D.

3. Take a guess on the (K10
0,d, K

10
1,(1−d)mod4,, K

10
2,(2−d)mod4, K

10
3,(3−d)mod4).

4. Compute the difference ∆ = SubBytes−1((C⊕K10)∗,d)⊕SubBytes−1((C∗⊕K10)∗,d).
Verify if ∆ is in list D. If yes, add the key bytes to the list L of potential key
candidates.

5. Repeat the above steps with a new plaintext P and its corresponding C and C∗ with
the key guesses only from the list L, until only one candidate remains.

In a second attack scenario, a complete 128-bit key can be obtained by only 2 faulty
ciphertexts, assuming that the fault occurs in between the 7-th and 8-th round MixColumns
operations. As depicted in Figure 2.2, a one-byte fault before the MixColumns of round 8
leaves 4 faulty bytes at the output of round 8. Then the last MixColumns spreads the 4
faults over the whole state and affects all 16 bytes. This makes it possible to recover the
complete 128-bit key using only 2 faults.

Differential Fault Analysis of the Advanced Encryption Standard using a Single
Fault, Tunstall et al. [48]

In 2009, Tunstall et al. reported a differential fault analysis on AES using only a one-byte
random fault at the input of the round 8. The attack includes two steps where in the first
one the number of possible key candidates is reduced to 232, and then to 28 in the second
step. Considering Ci and C ′i as the correct and faulty bytes of the ciphertext, sixteen
equations can be obtained from MixColumns operation. This results in 232 hypotheses for
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Figure 2.2: The effect of the fault injected between rounds 8 and 7
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the key. By exploiting the relationship between round 9 and 10, and using the Inverse
MixColumns, a set of four other equations is made which tests all 232 candidates reached
from step one. From these potential keys, 28 candidates remain among which a simple
brute-force search can determine the right cipher key.

Note that the attacks explained above are not implemented on a hardware such as
FPGA. They are attack descriptions assuming that there exist fault injection mechanisms
to induce the desired fault into the targeted part of the AES architecture with a wanted
timing.

2.4 Attacking the AES State rather than Key sched-

ule

In reviewing the fault attacks on AES, as discussed above, we have attacks on both datapath
and key schedule. These attacks are classified into two tables in table 2.1. This research
only focuses on injecting faults into the datapath. As it will be discussed in next sections,
we use clock glitch which causes the fault in the output by violating the setup time. Since
generally the path delay of the key schedule in AES is much smaller than that of the
datapath, attacking the key schedule using clock glitches is not easy in practice.

To investigate the attack limits on the State, the attacker injects a random single byte
fault between the MixColumns of rounds 8 and 7. In the case of the attack on the Key
schedule, it is assumed that the same fault model can be induced in the first column of K8.
Another assumption is that the AES is theoretically unbreakable i.e. almost all attacks
have the time complexity of an exhaustive search. If the security level of AES is denoted
by Ks, then Ks = 2128.

In a DFA, when attacking the State, a fault is induced during a round computation,
causes a difference ∆S and leads to a faulty ciphertext C ′. Suppose that instead of a fault
injection, there is a classical collision based adversary Advcol who tries different plaintexts
in order to find a pair (P, P ′) which generate two states with a specific difference ∆S
after a target round r. Note that the ciphertext pair (C,C ′) is exactly the same as in
DFA. If the probability of reaching such a pair is Pr(∆S) then the number of required
plaintext pairs would be 1

Pr(∆S)
. If the DFA reduces the key search space to Kl then

Ks ≤ 1
Pr(∆S)

·Kl ⇒ Kl ≥ Ks · Pr(∆S). This means that a DFA in the best case decreases
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Table 2.1: Classification of fault attacks into two classes: DFA on datapath, DFA on key
schedule.

(a) DFA on datapath

Attack Model Number of required faults

Blomer et al [13]. Byte 90,112
Giraud [21] Byte 250
Dusart et al [18]. Byte 50
Piret et al. [39] Byte 2,1

(b) DFA on key schedule

Attack Model Number of required faults

Blomer et al [13]. Bit 128
Chen et al. [17] Byte 44
Takahashi et al. [47] Byte 7,4,2
Kim et al. [30] Byte 2

the search space to Ks ·Pr(∆S). In a single byte fault model, ∆S is a byte difference and
the probability of obtaining a plaintext pair generating a state with one byte difference
(15 similar bytes) is 2−15×8 = 2−120. Therefore an optimal one-byte fault DFA reduces the
search space to 2−120 · 2128 = 28. It can be derived that if the fault affects i bytes in the
State, then the minimum search space would be 28·i [45].

With a similar analysis, the search space limits for the DFA on Key schedule can be
computed. Here, the attacker tries to find a plaintext pair such that they generate a re-
quired difference ∆K in the rth round key. This creates a difference ∆Kp after the next
round operation. Therefore, the number of choices for P ′ is 1

Pr(∆Kp)
and the optimal DFA

is at Ks · Pr(∆Kp) level. With the assumption of a one-byte fault in the first column
of K9 in AES-128, which causes a four-byte difference in the ninth round key, the attack
reduces the key space to 2128 · ( 255

(28)4
· 1

(28)12
) = 28. However, there is no reported attack

which reaches this limit. In [30] a fault affects three bytes in the first column of the ninth
round key while generating the key and thus causes a 12-byte difference in the round key
9. Therefore in the best case the key space reduces to 2128 · ( 2553

(28)4
· 1

(28)12
) = 224.

Table 2.2 shows the optimal limits for DFA on AES-128. The second column corre-
sponds to the case in which the attacker has access to plaintext and can apply a brute force
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Table 2.2: Optimal results of DFA on AES-128 [45]

Number of faults Number of remaining keys Number of faults for unique key

State 1 28 2 [39]
Key schedule 1 28 2 [27]

search on the key hypotheses, as explained above. The third column represents the results
when the attacker does not have access to the plaintext and thus must uniquely determine
the key. It can be seen that there is no reported attack which reaches the AES-128 limits
for the number of the remaining keys. However, in the case of results for unique key, Piret’s
attack[39] obtains the best result to recover the AES-128 unique correct key by injecting
only two faults in the State. There are also attacks on the State for the AES-192 and
AES-256 which eventuates only one key after injecting 3 faults in 5 minutes, and 2 faults
in 10 minutes respectively[26]. For the DFA on Key schedule, there is only a recent attack
on AES-128 which requires 2 pairs of faulty and correct ciphertexts[28].

2.5 Summary

In this chapter fault types and models along with the most common fault injection mech-
anisms were introduced and analysed. Then various DFA attacks targeting the AES al-
gorithm were synthesized. Among them, two attacks, Piret’s attack [39] and Tunstall’s
attack [48], are particularly powerful because the number of required faults to disclose the
128-bit AES key is only 1 or 2. This increases the attack feasibility as usually it is difficult
to generate different faulty outputs from the same fault injections. Moreover, they induce
the fault into the datapath as it is easier to disturb than the key schedule. In the next
chapter, the experimental setup to inject a glitch fault in a FPGA-based implementation
of AES is described. The design of the glitch generator and how it is used for a setup time
violation in a glitch attack is described. This attack targets the critical paths which are
mostly in the datapath than in the key schedule path.
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Chapter 3

Experimental Setup

This chapter describes the experimental setup of a FPGA-based fault attack testbed. The
details of the FPGA board and AES circuit, clock glitch creation and implementation, and
final experimental setup is described and compared to previous research.

3.1 Using the clock glitch to inject the fault

In this thesis, the goal is to experimentally characterize faults generated by clock glitches,
and then determine how it can be used to implement theoretical fault analysis attacks.
Clock glitch attacks are known as a serious and practical threat since they are easy to
implement and repeatable. Being repeatable is a significant feature since as discussed in
the previous chapter, most of the practical attacks rely on the possibility of having more
than one fault occurrence to obtain the unique key. This section will briefly discuss how
clock faults occur, in purticular how a setup time violation can be created from a clock
glitch.

ICs usually process the data in combinatorial blocks and the D-flip-flops are used in
between the combinatorial blocks to separate them. For example a few hundred flip-flops
may define the IC’s current state and the combinatorial logic calculates the next state
from the current state during each clock cycle. In a synchronous circuit(figure 3.1), the
flip-flops use the same clock input and registers may latch the data at the rising edge of
the clock. The intermediate combinatorial logic modifies the data while traveling between
the registers. There are some features that can be used by an attacker including:
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Figure 3.1: Combinatorial logic and synchronous representation of a digital IC [6]

• The propagation delay can vary within a chip or between same-type chips.

• If the result of a combinatorial logic is not stabilized on a previous state, the flip-flops
do not accept the correct new state.

• During a short time slot, the flip-flops sample their input and compare it with the
power supply voltage. This sampling time is fixed, however, it can vary between
different flip-flops.

The Propagation delay (time needed for the data to propagate through the com-
binatorial logic blocks) depends on the data, the logic performed on the data, and the
capacitance and resistance of the transistors and interconnections. It also varies with the
temperature and power supply voltage [6]. The maximum propagation delay is called
Critical path, which imposes a limit on the maximum speed of the circuit. A second
parameter affecting the clock speed is the Setup time which applies to flip-flops. The
setup time is the minimum time before the clock event during which the data must be
stable in order to be reliably sampled by the clock.

In order to ensure proper circuit functionality, the clock period must be greater than
the critical path propagation delay plus the register’s setup time.

Tclk > tcritical + tsetup. (3.1)

In a glitch attack the attacker intentionally causes one or more flip-flops to accept the
wrong state. This may modify an instruction, or corrupt the data or state. One method to
do this is Overclocking in which the clock period decreases (or the frequency increases).
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Figure 3.2: Latching the data with normal and glitchy clock [20]

Decreasing the clock period potentially can violate the condition in equation 3.1. Therefore,
the register’s input does not have the sufficient time to be correctly latched, which causes
the faulty data to be latched instead. It is crucial to have the ability to precisely control
the clock period, especially when the temperature and power supply change. In this thesis,
a single transient clock glitch is generated by overclocking only in a specific time interval.
As shown in Figure 3.2, in the normal case, clock cycles are longer than the maximum
delay plus the setup time and the intermediate states are correctly stored. But, when the
glitch occurs and the generated clock cycle is shorter than the sum of maximum delay and
the setup time, a timing violation called a setup time violation happens. This causes
the output of the combinational logic (r-in)to be latched in the register (r-out) before the
correct output value is produced.

3.2 Clock glitch generating on FPGA

Generating the faulty clock with a sufficiently accurate glitch is crucial to launch an attack
on AES. To do so, there are some conditions that the glitch generator must fulfill. For
example:

• The attacker should be able to induce the glitchy cycle into any position of the clock.
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This makes it plausible to inject the fault into any desired round of the cipher. Since
as we saw in the previous sections, each fault model requires a specific AES round
to inject the fault into.

• The attacker should be able to change the glitch specifications to support a wide
range of control on the effects.

• In order to be able to acquire power traces during an attack, timing of the target
operation should be available and an internal clock counter is needed.

To generate a glitchy clock with the above mentioned features, the embedded Delay
Locked Loop (DLL) of an FPGA of Xilinx Virtex-5 family is used. The DLL circuit is
implemented by Digital Clock Manager (DCM) in Xilinx FPGAs. The Virtex-5 user guide
(UG190) provides information on clock management technology. Alternatively, in Altera
FPGAs the Phase Locked Loop (PLL) can be used. The basic function of the DLL is
to remove the clock distribution delay. It also provides additional applications such as
frequency multiplication and division, duty cycle correction, and phase shifting. In the
simplest form, a DLL consists of a variable delay line and control logic. The delay line
provides a delayed version of the input clock CLKIN. The DLL inserts a delay between the
input clock and the feedback clock until the two clocks are in the same phase. After align-
ing the input and feedback clocks, the DLL locks and as long as the circuit is processing
the data, there is no difference between the two clocks (see Figure 3.3).

To achieve the lock, DLL needs to sample several clock cycles. After achieving the
lock, the LOCKED signal, which is one of the DLL outputs, activates. Until this signal
activates, the DLL outputs are not valid and cannot be used or analyzed. They can exhibit
unwanted glitches, spikes or other imprecise movements. For instance it might affect the
duty cycle, or the CLK2X output appears as a 1X clock with a 25/75 duty cycle. Figure
3.4 shows a timing simulation waveform representing the output signals before reaching
the LOCKED signal.

In the glitch generator the DCM’s phase shifting feature which provides various phase
shift options was used. The dedicated phase shift output signals including CLK0, CLK90,
CLK180, and CLK270 always maintain their relationship. Using the ”PHASE SHIFT” at-
tribute an arbitrary fixed delay value was set and the phase relationship of all DCM clock
outputs was adjusted. The ”CLKOUT PHASE SHIFT” attribute determines the phase
shift mode and can be initialized as ”NONE” (no delay) or ”FIXED” (a fixed arbitrary
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Figure 3.3: Delay Locked Loop (DLL) in Virtex FPGAs [2]

Figure 3.4: DLL output signals from ISE software before the LOCKED signal activates.

delay).

As shown in Figure 3.5 there are a number of taps in the delay line each of 30 ps to 60
ps. The number of taps and the maximum guaranteed delay line changes per data sheet.
For the Virtex5-XC5VLX30 FPGA, there are 255 taps for the negative phase shifts and
1023 taps for the positive phase shifts, and the maximum guaranteed delay line or the
FINE SHIFT RANGE is 7ns. This means that if the period of the CLKIN input clock is
TCLKIN , then this condition must be met: PHASE SHIFT · TCLKIN/256 < 7ns [3]. for
example if the input clock period is 40ns the maximum PHASE SHIFT we can choose is
±[integer(256 · 7ns

40ns
)] = ±44, and the corresponding attributes to be set are:

defparam dcm.CLKOUT PHASE SHIFT = ”FIXED”;
defparam dcm.PHASE SHIFT = 44;

Note that the DCM has a fixed phase shift of 10 ◦. This means that, for instance, the
phase relationship between CLKIN and CLK0 is 0 ◦+ 10 ◦ = 10 ◦, or the phase relationship
between CLKIN and CLK90 is actually 90 ◦ + 10 ◦ = 100 ◦. But, the output clocks hold
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Figure 3.5: Delay line taps [3]

their phase difference i.e. the phase relationship between CLK0 and CLK90 is exactly 90 ◦.

3.2.1 Comparison to previous clock glitch generators

The glitch generator proposed in [20] uses two clock sources with the same frequency and
different phases, generated by an external pulse generator. When switching between the
two clock sources at the right time, a glitch occurs in the desired round. An oscilloscope
is employed to control the switching time in order to select or change the fault injection
round, and to measure the shortened interval of the clock cycle. However, we want to have
the whole environment integrated on a single FPGA without the need to an external pulse
generator or oscilloscope. In addition, we prefer to control the timing and shape of the
generated glitch more precisely using parameters via a control PC. Therefore, the glitch
generator we utilized, has the design idea of the one used in [19] to perform a safe-error
attack against RSA. In their attack, the clock glitch characteristics and the fault effect is
not explored. Instead it is just checked whether or not the fault has an effect on the output
power trace.

The glitch generator uses a DLL to generate a shifted clock named clk b which will be
switched with the input clock at the proper time. Another DLL is used to generate clk c
with a delay less than that of the clk b. A counter is activated by the input clock and
outputs 1 when it reaches the required clock cycle. The 1 output lasts for a half clock
cycle. The AND operation of clk c and counter output gives the selector of the MUX and
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Figure 3.6: Timing chart of the glitch generator

the output of the mux is the demanded glitchy clock. Figure 3.6 shows the timing chart
of the signals.

3.3 Experimental setup

This section provides an overview of the evaluation board on which the AES code is im-
plemented, and other software and hardware equipments needed for the experiment. The
on-chip glitch generator, which is designed on the evaluation board to generate the desired
glitch in the clock signal, is discussed and the target AES cryptosystem is introduced.

3.3.1 The target cryptographic device

In order to have a uniform evaluation environment for fault injection, the glitch generator
is implemented on the same FPGA where the AES cipher is located. Such an on-chip glitch
generator makes it possible to reproduce glitchy clock signals. The hardware utilized the
Side-channel Attack Standard Evaluation Board (SASEBO-GII) which is designed for side-
channel attack experiments. This board is used in the DPA Contest where Side-channel
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Figure 3.7: Block diagram of SASEBO-GII board [4]

attacks are publicly evaluated and compared. It is suitable for security evaluations of
comprehensive cryptographic systems or the implementation of large circuits with various
countermeasures. Figure 3.7 displays a block diagram of this board.

The board features two FPGAs: the the cryptographic FPGA (Xilinx Virtex5 XC5VLX30
or 50) on which the AES and the glitch generator are implemented, and the control FPGA
(Xilinx Spartan3A XC3S400A). The cryptographic FPGA extends the logic area and pro-
vides various ways to access the reconfiguration function of the FPGA. The FPGAs are
connected through a 38-bit common input/output bus with fully-flexibility in signal assign-
ment. There is an oscillator on the board that provides the control FPGA with a 24MHz
clock signal. An external clock input is also supported. External power source supplies
the on-board power regulators and the FPGAs with 5.0 V. The power regulators convert
the 5-V input into 3.3 V, 1.8 V, 1.2 V, and 1.0 V for the FPGAs. The core voltage of
1.0 V of the cryptographic FPGA can also be applied directly through the external power
connector. The power trace measurements are possible with the shunt resistors by insert-
ing them on the core VDD and/or ground lines of the virtex5 FPGA. A USB interface is
provided for power supply and configuration. The host PC uses this USB port to control
and communicate with the board. There are two configuration mechanisms for the cryp-
tographic FPGA: SPI-ROM and Slave-SelectMap, and the control FPGA controls these
configuration methods.
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In addition to the SASEBO-GII board, a USB cable and a host PC, the Xilinx ISE
software, the Microsoft .Net framework 3.5, the SASEBO AES Checker software and the
FPGA configuration cable are needed. The cable is used to program the flash ROMs
connected to the FPGAs. Furthermore, the driver software D2XX provided by FTDI is
needed to use USB communication. The SASEBO AES Checker software written in C#
defines the plaintexts and the cipher key, computes the correct cyphertext and provides a
comparison of this correct value and the corresponding ciphertext from the FPGA after
fault injection.

3.3.2 The target AES architecture

The AES design to be loaded on the SASEBO-GII board is publicly provided by the AIST
web site for the Differential Power Analysis (DPA) contest. Figure 3.8 depicts a hierarchy
of the code. This AES architecture implements a 128-bit key AES and supports both
encryption and decryption. It uses a composite field based Sbox which uses polynomial
basis. The output handshake signals including BSY (busy signal), Kvld (key output valid)
and Dvld (data output valid) are used to communicate with the control part. The BSY
signal is active when the cryptographic block starts encrypting or decrypting. We use this
signal as a trigger that shows the start of the round operation, and directly connect it to
the reset input of the counter in the glitch generator. Thus, as soon as the BSY signal is
activated, the counter starts counting the clock cycles. Each round takes one clock cycle
to be run. Hence, the counter indeed counts the number of AES rounds. This makes it
possible to inject the fault in the desired round in practice.

3.4 Summary

In this chapter, the focus was to develop a uniform hardware environment as a testbed, in
order to inject clock glitch faults into an FPGA-implemented AES cryptosystem, to explore
the suitable fault characteristics in fault attacks. For this purpose, the glitch generator
module and AES code provided in DPA contest, are implemented on the Xilinx Virtex5
FPGA located on the Side-channel Attack Standard Evaluation Board (SASEBO-G-II).
In the next chapter, the simulation results for the normal basis Sbox architecture, and the
experimental results for the complete AES are presented and discussed.
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Figure 3.8: The hierarchy of the AES code used in fault injection experiments
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Chapter 4

Experimental Results

This chapter provides the post-route timing simulation results of injecting the clock glitch
faults into an Sbox architecture to be able to confirm the theoretical fault models and
compare to the future experimental results. Then, an FPGA-based testbed was utilized
to inject the glitch faults into the full AES implementation and examine the feasibility of
fault attacks in practice.

4.1 Fault injection simulation in an Sbox architecture

Prior to experimentally injecting faults into the FPGA-implemented AES, a post-route
timing simulation was utilized to observe the effect of the fault. This approach supports
confirming the theoretical expectations and comparison of the experimental results to the
timing simulation. In addition, we can gradually change the glitch characteristics and ob-
serve the result. To do so, an Sbox block is designed which includes an input register, the
combinatorial logic to calculate the substitution byte for each input byte, and an output
register. Before the Sbox operation, the plaintext is XORed with a round key.

4.1.1 Simulation result for the Sbox with a glitchy-cycle clock

The glitch generator block is added to the Sbox block and then the timing simulation is
run. The timing waveform displays the exact shape of the glitchy clock and its effect on
the output bytes. To be able to compare the correct and faulty outputs, there are two
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Figure 4.1: The RTL view of the Sbox design with a glitch generator.
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Sbox blocks in the design: one with the normal clock and hence the correct output, and
another one with the glitchy clock and the faulty output. Figure 4.1 represents the RTL
view of the design and Figure 4.2 displays a typical output of the post-route timing sim-
ulation from the Xilinx ISE software. As shown in this picture, the glitch is injected in
the 30-th clock cycle. The clock cycle in which the glitch is intended to be injected is an
input to the system and the counter shows the clock cycle number. Data in is the input
byte which enters the input register and then undergoes the Sbox combinatorial logic. Q
is the output of the Sbox function and the DATA out is the latched value of the output.
The corresponding values from the Sbox block with the glitchy clock (G Sbox) are named
by a prefix G (G Q, G DATA out) and shown in the waveform. This helps us to have a
better observation of the timing, keep track of the intermediate content and compare the
correct and faulty values.

From the timing simulations it is observed that:

• We can generate the glitchy-cycle clock in any desired clock cycle except those during
which the LOCKED signal is not activated. As explained in previous chapter and
shown in Figure 3.4, before achieving this signal, the output clocks are not reliable
and the timings are incorrect. Therefore, the desired precise glitch cannot be gen-
erated. Being able to inject the glitch in a known predefined cycle is a principal
feature which enabled us to control the timing of the fault and inject the glitch in
any encryption or decryption round of AES.

• The period of the glitch can be precisely decreased by steps of Pclk/256 where Pclk is
the period of the main clock. We can also gradually change the glitch delay and glitch
width within a constant period and therefore generate a glitch cycle with variable
duty cycles. The glitch delay and glitch width are shown in Figure 3.6.

• For very small glitches, sometimes the glitch itself cannot be displayed in the wave-
form but its effect on the output byte is visible. As it can be seen in Figure 4.3
the ISE software cannot display the glitch but the shortened interval and its effect
is obvious in the waveform. This may be due to two reasons: first the glitchy clock
(G clock) causes a time delay (visible in the picture) and second, the interval between
the rising edge and the falling edge of the glitch cycle is too short.
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Figure 4.2: The waveform from the post-route timing simulation. It shows the outputs
and the intermediate values from both normal and faulty Sbox modules.

• There is an interval for glitch period (Pg) in which the glitch causes the fault. Out of
this interval two things happen: for glitch periods less than this time interval, there
is neither a glitch nor a shorter cycle detected in the waveform and obviously there
is no fault in the Sbox output (Figure 4.4). For Pg longer than the values in that
specific interval, the glitch is generated and injected but it does not cause any fault
in the output. This possibly occurs since the glitch period is likely long enough for
the result of Sbox combinatorial logic to be correctly latched into registers. Figure
4.5 represents an example of this condition.

4.2 Fault injection in the last round of the AES im-

plementation

This section examines the fault characteristics of a full AES architecture taken from AIST.
Using the glitch generator block, the AES round in which the fault is going to be injected
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Figure 4.3: A case where the ISE software cannot display the glitch but its effect is obvious
in the waveform.

Figure 4.4: A case where the ISE software cannot recognize the glitch as a clock and no
fault is generated.

Figure 4.5: A case where the glitch does not cause a fault in the Sbox output.
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can be selected. The period of the glitch as well as its delay and width can be changed.
In the current and next section, it is investigated how the glitch affects the number and
position of the faulty bytes/bits in the output when the fault injection round and the glitch
period is changed. There are two reasons for considering the number of bytes: first, the
operations in AES are executing in a byte-wise manner. Second, many fault attacks utilize
this byte-wise operation characteristics in their fault model theories. For instance, Piret’s
attack theory [39] uses a one-byte random fault in the intermediate state.

The glitch is induced into the last and the second last cipher rounds since these two
rounds are frequently used in fault attacks and are suitable for investigating the induced
faults. Our experiments are not complete attack processes but fault characterization ex-
periments in which AES is considered as a big propagation delay source. Determining the
key can be done by performing the required equations according to an attack theory based
on the properly generated faults.

In the first experiment, the clock frequency is 24MHz and each AES round happens in
one clock cycle. The glitch is injected in the tenth round and the glitch period (phase dif-
ference of clock and clock b) is gradually decreased in fine steps of 162ps. The glitch delay
(phase difference of clock and clk c) is constant and equal to 3.25ns and the glitch width
is changed by changing the phase difference of clock and clk b. Each encryption is done
with the same key and 1000 plaintexts. The SASEBO AES Checker software computes
the correct answer and compares it with the output ciphertext coming from the FPGA
via the USB port. Both the correct answer and the hardware ciphertext as well as the
plaintext are shown in the SASEBO AES Checker software screen. As soon as the system
recognizes a fault, it stops running and the trace number along with the correct and faulty
output bytes are recorded. An example is shown in Figure 4.6.

4.2.1 The number of faulty bytes and bits

As Figure 4.7 shows, the number of faulty bytes increases by shortening the glitch period
(Pg). Each dot in this figure represents the number of faulty bytes for a specific glitch
period. This may be due to the setup timing violation since in the glitchy cycle the
register latches much sooner than that in the normal condition. Hence, the output of the
combinatorial logic (the state) is sampled prematurely. This experiment is repeatable in
terms of the injected clock glitch, but the generated fault value seems to be random. The
most remarkable observations are:
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Figure 4.6: The SASEBO AES Checker software screen.

• The fault happens only when the Pg is in the interval of 5.2ns and 6.4ns which is a
narrow range. This means that the attacker can control the fault injection condition
very finely. The glitch generator provides this feasibility of generating a glitch period
in this range. In addition, the timing window in which the registers sample a wrong
state is highly limited. In other words, the reliability of the registers is high.

• A comparison of correct and faulty ciphertexts reveals that the number of faulty bytes
increases as Pg is decreased. At the beginning of the fault interval the error occurs
in only a single bit and then the number of the faulty bits progressively increases
and we see single-byte and multiple-byte faults. The number of faulty bytes varies
between 1 and 5 where for Pg ∈ [6ns, 6.4ns] there is only one output faulty byte.
Note that for Pg = 5.2ns the maximum fault occurs (14 bytes).

• Being able to induce a single-byte fault in the tenth round, means it is plausible that
injecting such a fault in other rounds is practical. This is a desired result for the
attack theories based on a single-byte fault in the output such as Piret’s attack [39]
and Tunstall’s attack [48].
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• Fault model in attacks such as Girauds one-bit attack [21] need to be able to in-
ject only a one-bit fault in the AES state. The experimental results show that it is
practical to inject one-bit errors by using such glitch generator with the capability
of finely incrementing the period of the glitch. Indeed in the interval of [6ns, 6.4ns]
only a single-bit error occurs.

• There is no faulty output for Pg < 5.2ns. This is because the experimental envi-
ronment cannot generate such a short clock cycle, as the glitch width is too short
and the hardware cannot recognize it as a clock edge. Figure 4.8 is a plot from the
oscilloscope while the algorithm is running on the FPGA. The upper signal is the
clock signal from the glitch generator module. As the picture shows, there is no glitch
detected in the glitchy clock signal. The signal below the clock is the BSY signal
from the AES module. It is used as a trigger to represent the start and end time
of the encryption procedure. As shown, at the end of the tenth round the trigger
changes its value from 1 to 0.

• There is no faulty output for glitches with Pg > 6.4ns (Figure 4.9). Such glitches are
treated as a normal clock cycle in which the state has enough time to be correctly
latched by the register. The maximum glitch period causing a fault in the output is
related to the critical path delay and differs in different ciphers or implementations.
It is somewhat less than the maximum path delay, hence, the maximum path delay
in this experiment is more than 6.4ns which is true. According to the synthesis re-
port from the Xilinx ISE software after simulating the code, the critical path delay
is 8.295ns.

4.2.2 The position of faulty bytes and bits

To observe the positions of the faulty bytes, a glitch with the same characteristics is in-
jected into the hardware during the encryption process of the same plaintext 20 times.
From Figure 4.10, it can be seen that most of the time some particular bytes are vul-
nerable against the setup time violation. This shows that these bytes have a longer path
delay than others. In general, each byte has a different path delay. For instance, in this
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Figure 4.7: The number of faulty bytes when the glitch is injected in round 10
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Figure 4.8: The experiment environment cannot generate a glitch in the glitchy clock signal
(the upper signal) with a very short interval. The lower signal is the BSY output which
shows the end of encryption.

Figure 4.9: The period of the clock glitch is 6.6ns. Glitch is treated as a normal clock and
there is no fault in the output. Upper: glitchy clock, lower: BSY signal.
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Figure 4.10: Position of faulty bytes when the glitch is injected in round 10

experiment, byte 1 is the most vulnerable one due to its longest path delay, and some bytes
like bytes 8 and 10 are hard to inject a fault in .

In case of bit positions, some specific bits are more probable to become faulty. For
example in this experiment, bits 12, 14, and 49 are the least robust bits against the
glitch fault and mostly become faulty. This shows that the path delay is significantly
variable even for the single bits. This is probably because of FPGA placement and routing
implementations.

4.2.3 Repeating the experiment with a different set of plaintext

The experiment was repeated with a different set of plaintexts to verify if the same results
are achieved. In the previous section, it was observed that some specific bytes/bits are
more sensitive to faults due to their longer path delay. Each data bit that arrives to a
register possesses its own logic path and propagation time. This highly depends on the
data handled during the operation. Consequently, it is expected that changing the plain-
text modifies the propagation delays and affects the probability of injecting a fault into
different bits. Another possible reason to have different propagation times among bits is
the type of the operation each bit undergoes. However, in AES almost all bits of the input
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Figure 4.11: The number of faulty bytes when the glitch is injected in round 10 for a second
set of plaintexts

pass the same path of functions.

Figure 4.11 shows the number of faulty bytes in the output for the new set of plain-
texts. As it can be seen, the overall flow of the fault statistics is almost same for different
plaintexts. For the glitch periods less than a specific amount (5.2 ns), the glitch is not
recognized by the experiment environment because the glitch signal shape becomes blunt.
In addition, the glitch periods in the interval of [5.2 ns, 6.6 ns] cause faulty bytes in the
output, and glitch periods greater than 6.6 ns do not affect latching the intermediate values
into the registers. Furthermore, the number of faulty bytes increases by decreasing Pg such
that for Pg = 5.2ns, the ciphertext includes 8 wrong bytes and for Pg = 6.6ns only one
byte is faulty. Figure 4.12 represents the position of the output faulty bytes.
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Figure 4.12: Position of faulty bytes when the glitch is injected in round 10 for a second
set of plaintexts
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Figure 4.13: The number of faulty bytes when the glitch is injected in round 9
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Figure 4.14: Position of faulty bytes when the glitch is injected in round 9
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Figure 4.15: Reprogramming the FPGA increases the board temperature, and the number
of output faulty bits as the result.
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4.3 Fault injection in the penultimate round of the

AES implementation

The experiment is repeated on round nine, i.e. the encryption process is performed with
a constant key and a set of 1000 plaintexts while the clock frequency is 24MHz and each
AES round occurs in a clock cycle. Then, to have a closer observation of the position of the
faulty bytes, the encryption was repeated 20 times with a constant key and plaintext. Due
to the diffusion properties of the AES block cipher which causes the error propagation, it
is expected that the number of faults increases. The diffusion is due to the MixColumn
operation in round 9 which is not executed in round 10. As shown in Figure 2.2, a single
error in a round will spread over different bytes in the next round. The number of faulty
bytes is displayed in Figure 4.13.

As expected, faults are present for a wider range of glitch period: 5.2ns < Pg < 7ns.
Besides, the fault is spread over a larger number of output bytes and bits such that, for
Pg < 5.7ns all the output bytes are faulty. Then this number decreases gradually and
finally at Pg = 6.9875ns the fault happens in only one byte. This is a pleasant result for
implementing fault attacks with a fault model based on a single-byte error. Similar to the
previous section, there are some bytes that are not easy to inject a fault in, and this con-
firms again that the path delay for different bytes is not exactly the same and some bytes
have a considerably smaller path delay. It can be seen in Figure 4.14, which represents the
fault occurrence percentage for each output byte, that bytes number 6, 9, 10, and 11 are
erroneous most of the time.

4.4 The Effect of Heating the device

Generally, electronic chips only work reliable within a certain range of temperature. If
the temperature outside or inside the chip is too low or too high, faults might occur. For
this reason, every PC has a fan to ensure that the heat produced by the internal circuitry
does not overheat the computer. There are attacks that can induce a single bit-flip fault
in virtual machines in temperatures between 80 ◦C and and 100 ◦C [23]. However, the ex-
periment also showed that if the attack conditions are not finely tuned, the attacks often
cause the operating system to crash, thus requiring a complete reinstallation. Attacking a
PC often requires one to open it or to disable the fan, while in portable devices, the device
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itself is focused by a heating source. However, it is observed that changes in memory due
to heat usually affect a large area which includes many bits.

In this section we reprogram the FPGA chip in trying to increase the heat within the IC,
i.e., by programming the chip and running the program repeatedly for several times. For
this experiment a glitch with Pg = 5.68ns is produced and the fault is induced into the tenth
round of AES. The same key and plaintext are entered into the system for all acquisitions.
In order to try to increase the chip temperature, the board was programmed ten times, one
immediately after another. However there was no temperature sensor available to verify
the temperature increment, it is assumed that the chip temperature did increase since this
could be sensed by touching the chip during the process. As a result (Figure 4.15), an
increase in the number of output faulty bits is observed. After the tenth run, to decrease
the board temperature the waiting time between two consecutive runs was increased to
5-10 minutes. This gradually decreases the number of output faulty bits.

4.5 Summary

In this chapter, the glitch generator was added to an Sbox module and simulated in Xilinx
ISE software in order to examine the theoretical fault attack hypotheses. This showed that
for a glitch period in a specific interval, an error can be injected in the output registered
value. Furthermore, changing the glitch characteristics changes the fault domain in a
controllable manner. Then, an FPGA-based testbed was utilized to inject the glitch faults
and examine the feasibility of fault attacks in practice. Based on the experimental results,
there is a specific glitch period for less than which the glitches cannot be identified by
the hardware and cause a fault in the output. Moreover, the clock glitches with a glitch
period greater than a maximum value, which is somewhat less than the critical path delay,
are treated as a normal clock cycle and hence do not produce any fault. Decreasing
the glitch period in the interval between these minimum and maximum values, increases
the fault probability. Considering the position of faulty bytes and bits, it is likely that
bits with longer path delay are more vulnerable to glitch attacks. Finally, the effect of
reprogramming the device was examined while inducing the glitch fault. This confirmed
the expectation that reprogramming the FPGA continuously for several times increases
the probability of successfully injecting faulty bytes in the ciphertext. This result is likely
due to the generation of heat within the IC from the reprogramming.
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Chapter 5

Discussion and Conclusions

This section provides a summary of the work done in this thesis, a brief discussion of
limitations, and conclusion of the observed simulation and experimental results.

5.1 Summary and Discussion

In this thesis the characteristics of the glitch which generated a fault and the effect of the
fault was explored. First, the clock glitch faults were injected into an Sbox architecture
and the post-route timing simulation results confirmed the theoretical expectations. Then,
an FPGA-based testbed was utilized to inject the glitch fault into an existing full AES.
The feasibility of fault attacks in practice were examined. Experiments verify that faults
can be successfully injected utilizing clock glitches generated on the FPGA. A comparison
of these fault injection experimental results with timing simulation of the AES circuit was
useful for verification. But unfortunately, neither the timing simulation results nor imple-
mentation information for executing it were open.

Based on the simulation approach, an Sbox based on Normal Basis arithmetic together
with a glitch generator, which was able to generate a glitch with changeable period in any
desired clock cycle, were designed. Various glitch characteristics were examined using the
post-route timing simulation. The glitch period interval in which the fault occurred was
estimated. The Sbox architecture included a glitch generator and two Sbox blocks, one
with a normal clock input and the other one with the glitchy clock generated by the glitch
generator block. Comparing the outputs of the two Sbox blocks in the output waveform
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from the Xilinx ISE software, this was observable whether or not a fault has happened in
the desired clock cycle and what the fault value was.

Hardware experiments illustrate that on-chip glitch generator on a SASEBO-GII was
successful in injecting faults in a complete AES implementation. Analysis of the faults
illustrated the following two main characteristics:

1. The fault occurrence was finely controllable by the clock glitch details.

2. The value of the faults were random.

These experimentally observed features are used in most attacks because the fault mod-
els in those attacks assume that first, single faults, either bit-wise or byte-wise, are injected.
Second, if an attack requires two faults to happen, the device must not produce the same
fault in both fault generation processes.

As explained in the previous chapter, the fault happens in the output only in a nar-
row range of the glitch period. In other words, the timing window in which the registers
sample a wrong state is highly limited. Hence, the fault occurrence is controllable by the
attacker (characteristic 1). The randomness of the fault (characteristic 2) is because when
shortening the clock cycle and the round calculation time, the probability of bit reversal is
0.5.

The position of the output faulty bytes likely indicates that each byte of the state has
a different path delay and this is perhaps why some of them are more vulnerable to setup
time violation attacks. A new place and route technique might change the path delay of
the bytes and affect their robustness against clock glitch attack. Therefore, for each dif-
ferent implementation of the AES, testing utilizing such a fault attack testbed is important.

Investigating the effect of heating the device by reprogramming it while running a cryp-
tographic function indicates that the temperature outside of the chip or inside the chip
(due to reprogramming it for several times) may increase the number of faulty bits/bytes
in the output. However, most fault attack models need a single bit or single byte fault
to be injected. So, in a real attack, the attacker must watch the temperature in order to
generate a desired single fault.
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To the best of our knowledge, this is the first FPGA-based testbed including on-chip
glitch generator to inject the glitch faults into the AES cryptosystem implemented on the
FPGA. Since the glitch generator is implemented on the same FPGA as the cryptosystem,
a uniform environment is provided to examine the robustness of a cipher against glitch
attacks. The glitch generator proposed in [20], is applied on AES, but it uses external
equipments such as two separate pulse generators and an oscilloscope and needs to be
manually tuned. The pulse generators have clock signals with the same frequency but
different phase shifts and the glitch happens when switching between the two clocks. Al-
though, this mimics a real attack (because the glitch generator utilizes off-chip circuitry),
this thesis utilizes an on-chip glitch generator in order to have a low-cost testbed design
which is useful for investigating the viability and analysis of fault injections on various
cryptographic functions in future embedded systems. The glitch generator in [19] has been
applied only on RSA cryptosystem and the glitch characteristics and resulting faults have
not been investigated. Furthermore, the effect of the temperature in clock glitch fault
attacks have not been explored in previous works.

5.2 Conclusion and Future Work

In this work the study of fault models used in fault attack theories was analyzed by observ-
ing experimental data. Chapter 2 outlines various aspects of fault injection methods and
their feasibility in practice followed by a survey and comparison of fault models introduced
in literature. Chapter 3 proposes the glitch generator design method and explains how
the glitch circuitry produces the fault and how the attacker can accurately control the
glitch features and estimate the generated fault. Furthermore, the cryptographic board
on which the AES architecture is implemented is introduced. Finally, the simulation and
implementation results are presented in chapter 4.

To conclude, a hardware testbed with a glitch generator requiring only one FPGA is
created which is proper for testing possible future susceptibility of fault attacks on AES
and other cryptosystems. The fault can be injected reliably and finely controlled and its
effect looks random. Future work would involve completing the fault injection by perform-
ing a complete analysis of the specific faults to extract the secret key.

This thesis did not examine whether or not the faults happen in the key schedule
because in AES the key path delay is considerably smaller than the data path delay. How-
ever, in designs or algorithms in which there is no noticeable difference between the two
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path delays, it would be necessary to explore the effect of the fault injection. Other fu-
ture work could explore the fault injection effect on high performance AES designs with
error-detection scheme such as [44]. In addition, having a uniform hardware testbed with
a glitch generator implemented on a single FPGA without external equipment, makes it
suitable for testing fault injection attacks on different cryptosystems. Hence, implementing
other ciphers and cryptographic functions, and injecting faults into them may be part of
the future work.

In order to have a more precise observation of the temperature increment and a better
control of the heating effect on the output faults, future work could use a temperature
sensor during the attack or test procedure. This helps the user stop running or reprogram-
ming the cryptographic function on the chip and hence prevent producing multiple-byte
fault.

As discussed earlier, even with the same glitch characteristics the value of the resulting
fault is random or at least there is no guarantee to produce the sam fault value. This is
a very useful feature because if the fault model needs more than one pair of correct and
faulty ciphertexts, then in order to solve the equation sets based on the correct ciphertext,
faulty ciphertext, and the fault value, different fault values are needed to obtain more than
one set of candidates for the secret key. Intersecting these candidate sets results in the
unique secret key. As future work, it may also be interesting why the fault value produced
is random and how further randomness guarantees may be possible.
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