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Abstract

Cloud computing enables data centres to provide resource sharing across multiple ten-
ants. This sharing, however, usually comes at a cost in the form of reduced isolation
between tenants, which can lead to inconsistent and unpredictable performance. This vari-
ability in performance becomes an impediment for clients whose services rely on consistent,
responsive performance in cloud environments. The problem is exacerbated for applica-
tions that rely on cloud storage systems as performance in these systems is affected by disk
access times, which often dominate overall request service times for these types of data
services.

In this thesis we introduce MicroFuge, a new distributed caching and scheduling mid-
dleware that provides performance isolation for cloud storage systems. To provide per-
formance isolation, MicroFuge’s cache eviction policy is tenant and deadline-aware, which
enables the provision of isolation to tenants and ensures that data for queries with more
urgent deadlines, which are most likely to be affected by competing requests, are less likely
to be evicted than data for other queries. MicroFuge also provides simplified, intelligent
scheduling in addition to request admission control whose performance model of the un-
derlying storage system will reject requests with deadlines that are unlikely to be satisfied.

The middleware approach of MicroFuge makes it unique among other systems which
provide performance isolation in cloud storage systems. Rather than providing performance
isolation for some particular cloud storage system, MicroFuge can be deployed on top of
any already deployed storage system without modifying it. Keeping in mind the wide
spectrum of cloud storage systems available today, such an approach make MicroFuge very
adoptable.

In this thesis, we show that MicroFuge can provide significantly better performance
isolation between tenants with different latency requirements than Memcached, and with
admission control enabled, can ensure that more than certain percentage of requests meet
their deadlines.
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Chapter 1

Introduction

Cloud computing has had a transformative effect on how businesses host their online ser-
vices and manage their computational needs. It reduces the start-up and operational cost
of software services by commoditizing computing resources and enabling the clients to
shrink or grow their capacity as needed. This gives more flexibility to organizations to
experiment with new ideas or quickly deploy their products through the use of a variety
of well-tested cloud-services provided on a pay-as-you-go basis. Cloud computing is es-
pecially useful for small and medium scale enterprises as it allows them to increase their
peak-load capacity without incurring the prohibitive cost of building and maintaining their
own infrastructure.

In a pay-as-you-go model, it is uncommon for all the clients to use their allocated re-
sources at the same time. This allows cloud providers to statistically multiplex tenant ser-
vices on to the same underlying infrastructure. By consolidating resources for large groups
of tenants, a cloud provider can significantly reduce its hardware and operational costs.
This in turn allows cloud providers to offer a price-competitive hosting service to their
tenants. Unfortunately, such multi-tenant infrastructure often involves over-subscription
of resources, which results in resource contention. Such contention results in poor and
unpredictable performance if multiple tenants require the use of their resource reserva-
tions concurrently. Unpredictable performance may not affect some workloads (e.g., a
map-reduce analytical workload), but it can be unacceptable for many important latency-
sensitive workloads, such as web services and applications.

User studies have shown that web services’ user requests are latency sensitive and should
be satisfied in a specific amount of time, which is generally in few 100 ms [42]. The utility of
servicing a request is significantly reduced after the deadline is expired, irrespective of how
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close it is to the perfect response. Internet giants like Amazon and Google have realized
that any degradation in page-load time is a major source of user dissatisfaction [36, 28].
With the Tolerable Wait Time (TWT) of an average web-user shrinking every year it
is becoming increasingly difficult to meet these end-user response time SLOs, which is
necessary for a web-service to remain competitive. Therefore, the need of a system which
can help to meet these SLOs is important for such latency-sensitive workloads.

1.1 Resource Allocation in Multi-Tenant Environment

In multi-tenant environments, each tenant receives only a fraction of the total available
resources and secures a fraction of their peak throughput. Performance in such a sharing
model is affected by the workloads of the other concurrent clients, resulting in fluctua-
tions in performance of clients. To have predictable performance in such environments, a
workload should obtain sufficient resources for the expected performance, irrespective of
the behaviour of other concurrent workloads in the system. While unpredictable perfor-
mance in cloud environments is a well-known issue and is listed as one of the top obstacles
in growth of cloud computing by Armbrust et al. [15], it is still not possible to provide
performance isolation using currently available systems.

Cloud providers are aware of the problems of unpredictable performance of their clients.
However, they continue to multiplex tenant services on their infrastructure for cost rea-
sons. Cloud vendors usually allocate resources to their clients by apportioning available
resources among them, using virtualization technologies. For resources like memory, ten-
ants are generally more concerned about capacity than throughput and latency. This makes
it easy for cloud vendors to multiplex multiple workloads with memory requirements. For
other resources like CPU and network, time-sharing is efficient and causes only minor
performance interference when shared across multiple tenant services. Cloud providers
can easily allocate such resources as needed by the clients and can manage potential per-
formance problems by tuning the degree of over-subscription of the resources. However,
storage devices behave in a different manner. Unlike other resources, storage resources are
not apportioned among clients using virtualization technologies. Instead, cloud providers
offer their tenants a shared storage system in their datacenter. Such shared storage ser-
vices are based on storage devices like Hard Disk Drives (or HDDs) or Solid State Disks
(or SSDs). For these devices, throughput and latency are of much greater importance
than capacity. Dividing storage device’s resources in terms of capacity does not guarantee
proportionate performance for the clients sharing the device.

Dividing these storage devices among clients, like other computing resources, i.e., based

2



on their capacity, severely hampers the overall performance of the device. Using traditional
resource-sharing policies like time-sharing can significantly degrade their ability to meet
performance requirements, such as latency deadlines. The primary reason for such perfor-
mance behaviour of traditional storage devices like HDDs is the involvement of mechanical
components like disk-arms. However, even if these HDDs are replaced by faster, non-
mechanical Solid State Disks (or SSDs), the problem of performance interference remains.
The performance of SSDs is still not comparable to main memory, and the storage device
would still be the bottleneck in the system. Specifically, depending upon the workload,
garbage collection in SSDs can be triggered at any point of time during the course of its
operation. Since these garbage collection procedures adversely affect the I/O performance
of the device, they can make performance characteristics of SSDs unpredictable. These
issues restrict the type of applications which can deployed onto the cloud. For instance, in
our example of an online shopping website, unpredictable performance from their storage
back-end can lead to fluctuations in end-user latency, resulting in loss of revenue [28].

1.2 Taking a Middleware Approach

One possible approach to address the problem of performance interference is to incorporate
tenant and deadline-aware request scheduling into existing cloud storage systems. However,
there is a wide variety of cloud storage systems available today [43, 9, 5, 25, 8] each
offering a different set of functionalities, optimizations and trade-offs. Each one of these
systems focuses on a particular application-type and usage-scenario, and are designed to
meet the very specific expectations of those applications from the data-storage system.
For example, Cassandra [43] and Dynamo [25] are known to handle network partitions
well. FoundationDB [4] is good for applications that require ACID transactions across the
databases. Therefore, there exists a wide variety of cloud storage systems, each targeting
a particular aspect of system performance.

Since the use-cases for these systems are different from each other, there is no one
market leader in this space. Programmers need to consider various characteristics of ap-
plications and deployment-scenarios, like reliability, scalability, consistency requirements,
type of data, access-patterns, etc to make the right choice of cloud data-stores. Also,
given that each cloud storage system offers a different feature set and interface, they vary
in their storage format, data distribution and query language, among other architectural
differences. This makes the process of migrating data from one cloud provider to another
non-trivial. This is referred to as ‘cloud vendor lock-in problem’ [47]. This effectively adds
another layer of inflexibility in the process of choosing the right cloud storage system for an
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organization. A scheduling mechanism must also take many other factors tied to individual
cloud storage systems into account when making a scheduling decision. This reduces the
feasibility of a general solution, as any one scheduler will not have good performance for all
cloud storage systems and implementing it for all cloud storage systems requires exceeding
amount of effort.

1.3 Current Approaches

Most of the current approaches for achieving application-level performance isolation have
static assignment of resources, e.g. virtualization technologies [16, 41, 38]. Each appli-
cation in a shared resource environment can specify their priorities on a particular set of
resources. In previous approaches a particular application will always be preferred over
another application for the allocation of resources. This approach is effective for provid-
ing resources to high priority applications but will leave the low priority ones to resource
starvation, which may cause them to miss their stipulated SLOs . Such a rigid nature
of static resource allocation inhibits the allocation scheme from efficiently accommodating
any workload variation, leaving no choice to the cloud service provider but to over-provision
resources to provide the promised peak-load capacity during periods of high-activity for
all services simultaneously.

There is a significant amount of past work on providing performance isolation in shared
storage systems but only a few of these systems are dynamic in the way they allocate re-
sources to the applications [44]. Apart from these systems other approaches need either the
workload specific tuning of the storage service [19], an accurate model of storage service’s
performance characteristics [56] or modifications to the underlying storage system [62, 19].
However, none of these is very desirable considering the variety of applications and storage
systems in different cloud deployments.

1.4 Contributions

In this thesis, we introduce a middleware solution for the problem of performance inter-
ference in cloud storage systems, called MicroFuge. As a part of MicroFuge, we present a
deadline-conscious scheduling and a caching layer for cloud storage systems, similar to the
external distributed caching layers that are commonly used in most web service deploy-
ments [7, 55]. Using this additional middleware abstraction, we demonstrate that cloud
storage systems are able to effectively provide much stronger performance isolation for
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multi-tenant environments. As part of this thesis, we explore the effectiveness of making
the distributed caching and scheduling system on top of cloud storage systems aware of
application level SLOs.

MicroFuge provides performance isolation in part through a new cache eviction policy
that is both tenant and deadline-aware. Unlike Memcached, where there is a single LRU
queue for managing cache eviction, MicroFuge introduces multiple deadline-specific LRU
queues for different ranges of deadlines, where items with shorter deadlines (or items in
the earlier-deadline queue) are less likely to be selected for eviction than those with longer
deadline (or items in the later-deadline queues). By increasing the cache hit-rate of shorter
deadline items, MicroFuge increases the total percentage of deadlines that it can meet. This
is because requests with shorter are more likely to exceed their SLOs, if they are not served
from the cache. MicroFuge can also preferentially evict a specific tenant’s data items if it
detects a significant disparity between the memory capacity utilization of different tenants
as a means to improve fairness. We focus on meeting deadlines rather than providing
fairness in this thesis.

Although a caching policy that has knowledge of the workload can help to meet more
performance requirements, it is nevertheless impossible to meet aggressive latency deadlines
given an arbitrary request load. We address this problem in MicroFuge with the addition of
an extra layer, the distributed scheduling layer, called Deadline Scheduler (or DLS). DLS
controls access to the cloud storage system by scheduling requests to it in a deadline-aware
manner. DLS’s scheduling policies take scheduling decisions based upon the captured
performance characteristics of storage accesses and helps requests to meet their response-
time deadlines. In addition to this, DLS performs admission control to reject requests that
are unlikely to meet their latency deadlines. The scheduler, with its underlying admission
control mechanism, ensures that a certain number of requests (a tunable parameter) can
still meet their performance requirements regardless of workload characteristics. Also, the
applications making these requests can make informed decisions on their next course of
action (like reducing workload or using some static content) if notified with early request
rejections rather than knowing later that their request was not serviced by the storage
system within the stipulated time-frame.

MicroFuge enables developers to specify shorter response time deadlines for ‘must have’
items, while longer or best-effort response time deadlines for ‘nice-to-have’ items. For
instance, an online shopping website, if the storage system is lightly loaded, and all the
items (both primary and auxiliary) can be fetched from the storage system within the
response time threshold of the whole page to the end-customer, all the items are laid
out on the page. On the other hand, if auxiliary items are likely to miss their deadlines
from storage system, the front-end application would be notified (with reject-message) by
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Micorfuge’s API, which in turn can modify its page layout to show some static content
(like non-relevant ads), avoiding the page from missing few sections. Therefore, the ability
to specify the latency deadlines in MicroFuge API and to bound the deadline miss rate
would help the website in keeping its response time (or page-load time) below the ever-
decreasing [64] threshold of acceptable web-page response times for end-users.

The main contributions of this thesis are as follows:

• The design and implementation of MicroFuge, including a tenant and deadline-aware
distributed caching system.

• A distributed scheduling system, also part of MicroFuge, that performs request ad-
mission control and ensures that requests can meet their performance requirements
even when the system is heavily loaded.

• An evaluation that demonstrates the effectiveness of MicroFuge in a real deployment
using the YCSB [23] workload.

1.5 Organization

The remainder of this thesis is structured as follows: Chapter 2 provides a background in
to performance interference in shared storage systems, and discusses related work to the
systems providing performance isolation in shared storage systems. Chapter 3 describes
the design and implementation of the distributed caching layer of MicroFuge. Chapter
4 describes various design decisions and policies of the distributed scheduling layer of
MicroFuge. Chapter 6 details our experimentation environment and workloads used, before
presenting performance evaluation of every component of MicroFuge. Finally, Chapter 7
concludes the thesis.
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Chapter 2

Background and Related Work

In this chapter, we provide the necessary background and examine current state of affairs
in the field of performance isolation in cloud storage systems. We first describe the prob-
lem of performance isolation in shared storage systems. We then illustrate why taking a
middleware approach to solve this problem works better and improves upon adoptability of
such systems. Furthermore, we summarize different approaches for achieving performance
isolation in traditional storage systems and discuss how they can be used in currently pop-
ular cloud storage systems. In the end, we explore current systems targeted to achieve
performance isolation in cloud storage systems specifically.

In the context of this thesis, the target metric of performance is latency deadline. Since,
response time SLOs and latency deadlines represent the same quantity here, we would be
using these two terms interchangeably.

2.1 Performance Isolation in Shared Storage Systems

The cloud storage systems, both private or public (as in case of cloud datacenters), typically
multiplex variety of tenants for cost effectiveness. Unlike dedicated shared storage systems,
resources in a cloud storage system need not to be provisioned to accommodate peak-load
requirements of each tenant. Cloud vendors take advantage of statistical multiplexing [20]
to ensure proper utilization of the resources and cost-effectiveness for the customers. Cloud-
based storage services often form the backbone of multi-tenant application environments
in datacenters. Figure 2.1 illustrates how cloud resources can be shared among multiple
tenants at different levels of abstraction.
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App - A

Clients - A

DP - A

App - B

Clients - B
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Virtual 
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Storage 
Resources

Networking 
Resources
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App - D
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Shared - DP

Cloud Resources

Figure 2.1: Mutli-tenant application environment. Tenant-A and Tenant-B shares the
cloud resources at infrastructure level but have their own data-platform (represented as
DP) and software application (represented as App). Tenant-C and Tenant-D have their
own software applications but share the underlying data-platform service.

Depending upon the type of applications hosted in these multi-tenant environments,
their associated performance requirements could be conflicting in nature. For instance, an
analytical map-reduce application (e.g, click-stream analysis) would demand high overall
throughput from the storage service, while an user-facing transactional application (e.g.
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online shopping website), on the other hand, would require low response time from the
service. These performance requirements are generally referred to as Service-Level Objec-
tives (or SLOs). When applications with conflicting SLOs are hosted together on the same
underlying infrastructure, these storage services often introduce performance interference.

Since the resources in cloud datacenters are usually over-subscribed, the performance
of hosted applications is often affected by each other. As mentioned briefly in Chapter 1,
providing performance isolation in multi-tenant environments is fairly simple for computing
resources like CPU, memory and networking. But this is not the case for storage services,
mainly because of the mechanical nature of the underlying hardware (explained in details
in next section). This is especially true if the applications competing for resources have
different characteristics and have contrary performance metrics.

The performance, as observed by tenants of such shared storage systems, fluctuates
quite significantly and is unpredictable. This not only makes potential cloud customers
wary about moving their services to cloud, but also makes it difficult for the cloud-providers
to guaranty differential service- levels and charge accordingly. It is for this reason, that
most of the large-scale organizations host critical or popular applications in dedicated
in-house storage clusters.

Distributed cloud storage systems typically consists of various components like per-
sistent storage, external caching layer, controllers and filesystem cache. To provide any
performance guarantees for concurrent workloads in the shared storage system, all these
components must be designed in a way to support performance isolation among the clients.
Traditionally, multiplexing of workloads on shared storage resources is engineered by par-
titioning the resources statically. There has been some research [35, 33, 63, 59] on sharing
the resources using statistical multiplexing. In such systems external schedulers are used
to perform admission control and request scheduling as a way to provide performance isola-
tion. Other shared storage QoS schemes have been proposed using time-slicing of resources.
Matthew Wachs et al. [60] used synchronized global time-slice schedules to coordinate in-
dependent storage-servers’ activities as a way to achieve performance isolation for dealing
with stripped data.

2.1.1 Current Approaches for Performance Isolation

Most of the current approaches either modify one or more components of storage systems
or add another layer of abstractions on top of these components. In this thesis, we solve
this problem of achieving performance isolation in part by introducing an external caching
layer and a distributed scheduling layer. We call our distributed memory based caching
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system DeadLineCache (or DLC) and our deadline-conscious distributed scheduling layer
Deadline Scheduler (or DLS). Both the components are deadline-aware in the way they
function and helps in providing performance isolation in back-end cloud storage systems.
We defer the discussion about other approaches for providing performance isolation using
caching layer to the next section.

Previous works have examined cache sharing and scheduling for multi-tenant systems,
and the Argon storage system [61] shares some similarities with Microfuge. Argon intro-
duces a storage server that provides intelligent cache sharing between multi-tenant work-
loads, in addition to explicit workload isolation guaranteed by disk-head time slicing. The
focus of Argon was not on meeting deadlines in the system, rather on how to use isolation
to provide improved throughput and accurate exertion-based billing, where every user of
the system is charged based on their usage patterns (ensuring that users with poor ac-
cess patterns pay more than users who are efficiently using the disk). Argon focuses on
disk-head time slicing and simple cache sharing, whereas Microfuge makes explicit consid-
erations for deadline-based requests when scheduling through the use of collected latency
metadata. Microfuge furthermore directly addresses performance isolation through its mul-
tiple deadline-oriented LRU queues, and its eviction policy that favors data with tighter
deadlines.

Another similar work to our own is the Frosting system [62]. Frosting proposes a
request scheduling layer on top of a distributed storage system. Like Microfuge, Frosting
allows applications to specify high-level Service Level Objectives (SLOs), which are in
turn automatically mapped into scheduler decisions. A feedback controller is employed to
make scheduling decisions more predictable, and Frosting furthermore attempts to bound
outstanding requests while minimizing queuing at the data store layer (in an effort to
increase response times). Frosting, like Argon, focuses mainly on system throughput and
fairness, not on strict performance isolation.

Pisces [57] is another system related to our own. Its creators propose a group of me-
chanics for partitioning resources between users. The authors suggest that by considering
partition placement, weight allocation, replica selection and fair queueing for resources, the
system can split aggregate throughput in the system between clients. Although Pisces does
provide throughput isolation for performance, it does not provide beyond this: The system
has no concept of deadlines and latency-bound tasks and does not attempt to perform
isolation in this respect.

The Fast system [45] took a different approach to performance isolation for multiple
cloud tenants, introducing a block-level replicated storage service that helps provide perfor-
mance predictability by overlapping similar type of operations (sequential reads or random
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writes, for example) on the same machines, minizming interference. Unlike Microfuge,
Fast’s primary focus is on system fairness, and it additionally does not consider request
deadlines.

In the Basil system [34], a scheduler automatically manages virtual disk placement and
performs load balancing across physical devices, without assuming any underlying storage
array support. Load-balancing in the system is based around I/O load, and not simply
data volume. While this emphasizes the need to control access to data stores, it does
not actually focus on cloud data stores, and does not provide the type of client-specified,
deadline-oriented service that Microfuge does.

Similar to the ticket-based reservation system used by Microfuge’s scheduling layer,
SQLVM [51] proposed using both resource reservations and metering techniques to help
share resources between clients in a multi-tenant database environment. SQLVM is not
implemented as middleware for distributed storage systems, but rather as an environment
for multiple DBMS systems running on the same physical machine. It furthermore does
not allow client-specified deadline requirements for requests.

As the popularity of cloud-based applications has increased, several key-value stores
have been proposed to provide enhanced performance over relational database systems by
relaxing ACID properties [43, 9, 5]. These key-value stores, designed with the cloud in
mind, can often suffer from poor performance isolation. This can lead to contention for
shared physical resources. In particular, hard drives can become very heavily loaded in
cloud storage systems.

There are many approaches to performing both external and internal scheduling for ad-
mission control, and we focus on several which can be seen as inspirational for our thesis.
Schroeder et al. [48] considers optimizing concurrency levels in database systems through
admission control. Abbott and Garcia-Molina [12] propose models for performing admis-
sion control aimed at real-time database systems using deadlines. They use simulations
to understand the performance trade-offs of utilizing transactional commit behavior for
admission control. Microfuge makes use of admission control and scheduling in order to
provide multiple tenants using the same storage system with performance isolation. Our
system ensures that a certain subset of all requests with client-provided access deadlines
can still be completed regardless of system load.
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2.2 Distributed Caching Systems

Distributed caching systems are memory based caching systems which are typically used as
temporary and fast storage for frequently or recently accessed data. These caching systems
are generally much more efficient than the origin service or system, and therefore, are very
effective in improving the performance of the overall system. Also, since the caching layer
off-loads the origin service, it is very helpful in making the overall system more scalable,
flexible and fault-tolerant.

2.2.1 Types of Distributed Cache Systems

Caching systems can be divided in to 2 categories [58] :

• Forward-proxy Cache Systems
Forward-proxy cache systems can be distributed in various parts of the infrastructure
between the client and the server, like in dedicated traffic servers [2] or in browser
cache. Common examples of forward-proxy caches include Content Delivery Net-
works (CDNs) [29] for storing static content and web-cache for caching dynamic
web-pages of a compute-intensive web-service, like web-search engines (e.g., Google
and Bing).

• Reverse-proxy Cache Systems
Reverse-proxy cache systems, on the other hand, are placed close to the back-end
service infrastructure and more often than not are installed in the same server farm.
Web accelerator caching systems like Squid [10] and Varnish [11] are one of the most
commonly used reverse-proxy caching systems.

However, the purpose of these two types of cache systems is quite dissimilar : Forward-
proxy systems are mainly used to keep the data close to the end-users as it reduces their
effective latency. While reverse-proxy systems, on the other hand, are about offloading
the origin servers and increasing the efficiency of the back-end service or system, like a
Database system or DNS.

In this thesis, we focus on caching systems which are used to cache data from the back-
end database systems. These caching systems are often placed like reverse-proxy caches
in application architecture and are generally referred to as Database Caching systems.
However, depending upon the implementation they may or may not act as proxy for the
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origin database servers. Examples of such systems include Memcached [7] and Windows
Azure Caching [52].

Memcached [7] is the most popular open-source implementation of distributed memory
object caching system. The most common use-case of memcached is as a database caching
layer. All the large scale websites like Facebook [54], Youtube [24], etc use memcached
or other similar caching systems for performance and scalability reasons. For example,
Twitter uses their own version of heavily modified memcached, called Twemcache [14],
for caching of Tweets. While ‘tweets’ are persistently stored in the disks, Twemcache
caches most recently and frequently accessed tweets, alleviating the load on the disk based
database system. Also, Twitter uses Twemcache to cache tweets formatted in a particular
format (say, tailored for a cellphone application), to save repeated data-rendering overhead
for application server’s CPU. Using such caching system not only helps Twitter to make
their product more scalable but it also helps them in meeting their response time SLOs.

2.2.2 Advantages of Middle-tier Caching

Database caching system are usually deployed in a middle-tier of a multi-tier application
and are typically shared among multiple storage servers. These shared caching systems
may not outperform the dedicated local application-specific caches, as these generic caching
systems are not aware of specific caching requirements of the application. However, like
other distributed caching systems, they have the advantage of being collaborative, which
means that each application hosted on the cache has access to more cache capacity than
if the memory was used for a local application-specific cache.

Adding this additional layer of caching in any database application, improves following
aspects of the overall system [46] :

• Scalability
These caching systems reduce the back-end database servers’ load by distributing
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the query workload to multiple front-end caching servers. Along with this, since
these cache systems simulate a big hash-table, with almost no coordination among
its nodes, they are horizontally scalable. Therefore, adding such a caching layer on
top of the database makes the whole system more scalable.

• Flexibility
As mentioned before, these middle-tier caching systems gives more flexibility to ad-
ministrators of the shared services, like database system, to provide differentiated
services to the clients. For example, in the event of shared cache reaching its capac-
ity, data of low priority customers will be evicted before the data of high priority
customer.

• Performance
Since the cache is multiple orders of magnitude faster than back-end database sys-
tems [31], the average response time of the overall system improves drastically, even
with modest cache hit-rate. Moreover, these systems take advantage of locality-
patterns in the workloads and make the load to the back-end system more uniform,
helping them to meet client specified response time SLOs [27].

• Availability
These caching systems can also sometimes be useful in marginally improving the
availability of the back-end systems. For example, if the back-end service crashes,
cache can still serve the clients’ requests, provided that clients ask for only those data
items that are already present in the cache system.

In this work, we specifically focus on how database caching systems can be utilized to
achieve performance isolation in multi-tenant cloud storage systems.

2.2.3 Caching Policies

Laszlo Belady [17] in 1966, proved that the most efficient caching algorithm would be the
one which evicts the data items that are least likely to be needed for the longest time in the
future. However, such a policy would be unworkable without application-specific knowledge
or the knowledge of workload characteristics beforehand. Least Recently Used (or LRU)
based cache eviction policy, where items are ordered and evicted by their last access time-
stamp in a queue, approximates the above mentioned perfect caching algorithm for slowly
varying probabilities, without requiring to estimate those probabilities [13]. Chrobak et
al.[21] proved that the superiority of LRU over other generic cache eviction policy like FIFO
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or LFU can be attributed to the locality of reference phenomenon exhibited by request
sequences in common cache workloads. Later, O’Neil et al.[53] showed that LRU-based
cache eviction offers near-optimal caching performance. Therefore, for generic caching
systems, where cache does not have any domain knowledge, LRU [7] and even probabilistic
LRU [3] based eviction policy works quite well.

2.2.4 Example Deployment Scenario

In this section, we expand on the example of an online shopping website selling large variety
of commodities. We will illustrate how database caching can help the administrators of
the website to better meet the application level response time SLOs. Figure 2.3 represents
a typical multi-tier architecture for a large-scale website.

Each commodity sold by the business has its own web-page, which provides the details
of the product. For modern dynamic websites, web-servers commonly have to dynamically
pull the contents of a web-page from a number of internal sub-systems or services. These
services can potentially be shared with other applications of the enterprise, as shown in
Figure 2.3. Examples of such services can be a service providing news feed of the related
items, or a named entity recognition engine and so on. For the core content of the page,
data is first checked in Database Cache, if not found, it is fetched from the back-end
datastore.

Queries to these back-end services are resource-intensive and are expensive in terms of
latencies. Therefore, if we store these rendered web-pages in cache, the whole process of
serving the formatted content is accelerated. This is shown as Caching Proxy System at
layer-3 in Figure 2.3. To avoid staleness of the content, application should keep the cache
updated, each time any attribute of the web-page gets changed. All the Internet giants
like Amazon, Facebook and Google use such caching solutions for reasons mentioned in
previous sub-section (see Section 2.2.2).

2.2.5 Current Research in Caching Systems

External caching layer plays an important role in improving the performance of shared
storage systems. As a side-effect of improved performance, they are helpful in achiev-
ing performance isolation in these cloud storage systems. A workload and deadline-aware
database caching system, can assist performance isolation between concurrent clients, lead-
ing to invariable and predictable performance. However, there is very limited past work on
using the caching layer to provide performance isolation in back-end cloud storage systems.
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Memcached [7] is a general-purpose distributed memory caching system, which is mainly
used to provide a scalable memory-based caching layer for data stores, thereby improving
access latencies. As a simple external cache application, however, Memcached does not
provide performance isolation. Additionally, unlike Microfuge, Memcached does not per-
form deadline-aware caching and scheduling. As a result it also does not have any provision
for admission control.

MemC3 [26] proposes to use optimistic hashing with CLOCK-based cache management
in Memcached to improve on the access latencies in Memcached. Despite further improve-
ments to access times for items resulting from the more advanced cache eviction algorithm,
the system still does not provide the performance isolation that Microfuge offers through
the use of deadline-based caching and scheduling.

Nahanni similary modified Memcached to provide a inter-VM shared memory [32],
with a good degree of success and the potential for complementary usage of its presented
techniques with other caching systems, but was limited to VMs running on the same
physical host and provided almost no performance isolation guarantees.
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Chapter 3

Deadline Cache

Distributed caching plays a vital role in improving the performance of cloud storage sys-
tems. Most current caching schemes are designed to improve performance and reduce
the load of back-end storage servers. As a side-effect, by improving overall performance,
these caching systems also reduce the average access latencies of cloud storage systems and
enable them to meet more client specified SLOs. Current caching systems are oblivious
of these application-level requirements. In this chapter, we introduce a new distributed
caching layer called Deadline Cache (or DLC), which is deadline-aware and improves the
performance isolation in cloud storage systems.

DLC aims to improve the performance isolation in cloud storage systems by selectively
caching the requested data. Specifically, data items that have shorter response time re-
quirements are less likely to be evicted from DLC compared to the items having longer
response time requirements. This is based on the assumption that requests with longer
deadlines will meet their deadlines even if they are served from the cloud storage system.
Additionally, Deadline Cache can also distinguish between different tenants to make sure
that there is fairness among them.

3.1 Deadline Cache Architecture

In this section, we introduce a new deadline-aware distributed caching system called Dead-
line Cache (or DLC), with the aim to improve performance isolation in cloud storage
systems. DLC preferentially keeps the data items with shorter response time deadlines
using its deadline-aware cache space architecture and eviction policy. DLC provides the
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Figure 3.1: DLC architecture. Multiple Clients contact the distributed caching layer for
items with different response time requirements.

same API as Memcached, and is easy to layer over top of almost any cloud storage system.
A visual representation of the DLC architecture is presented in Figure 3.1.

The three primary elements of Deadline Cache that allow it to perform deadline-aware
caching are:

• Multiple Least-Recently Used (LRU) queues, where each queue is responsible for
storing data having deadlines in a specific range, enabling a deadline-sensitive cache
eviction policy.

• A cache management policy that takes deadlines and deadline-miss costs into account.

• A statistics collection system that enforces fairness and prevents applications from
hoarding cache usage.

All these modules work in synchrony to provide performance isolation in the cloud
storage stack, which in the context of this work is defined as the clients’ ability to meet the
application-specified response time deadlines, irrespective of other concurrent workloads
on the shared storage system. The rest of this section describes how each of these module
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Figure 3.2: Multiple LRU queues in DLC to enable deadline-aware cache eviction policy.
Each queue is responsible for items in a specific range of deadlines, and number in each
data item represents its deadline. The range of each queue is shown in the box below it.

function and contribute in providing performance isolation in cloud storage systems as a
whole.

3.1.1 Multiple LRU Queues

Although LRU achieves high cache hit-rate and good performance (see Section 2.2), it
does not take request’s response time deadlines into account when scheduling requests.
The distributed caching layer is unaware of applications’ high level SLOs [7] and most of
the current solutions require tuning the parameters of the system until the desired perfor-
mance is achieved [18]. Since performance of a tenant on a shared storage infrastructure
depends upon multiple factors like workload characteristics and other concurrent clients,
the process of tuning is non-trivial. In this section, we will analyze how making the caching
layer deadlines-aware can help us in increasing the predictability of the performance of con-
current workloads.
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In a system with strict performance requirements, the cost of a cache miss is substan-
tially higher if it leads to a deadline miss, and the likelihood of a deadline miss is much
higher for requests with short deadlines than those with long deadlines. To minimize the
cost of a cache miss, DLC uses multiple LRU-ordered queues to determine cache item
eviction ordering (as shown in Figure 3.2). Each queue is responsible for maintaining the
LRU-order of items within a particular deadline range. In our current design, the size of
each deadline range grows exponentially, with the exponential factor of 2. For example,
queue 0 is responsible for items with deadlines less than 2 ms, queue 1 is for deadlines
between 2 to 4 ms, and queue 2 is for deadlines between 4 to 8 ms, and so on.

Figure 3.3: Deadline distribution in a workload. The sectors in this chart represents
different type of requests having different range of response time requirements from storage
system. With in these sectors, distribution is considered to be uniform for the purpose of
our experiments.

The exponential distribution of deadline-ranges works well for majority of workloads
having wide variety of deadlines. Such a deadline-distribution in a workload is repre-
sentative of real-world storage workload characteristics, where a set of applications have
limited variety of requests going to the shared storage system, and with in this spectrum
of requests, deadlines are uniformly distributed. For instance, in our running example of
an online shopping website, only 3 types of request goes to storage system : product (or
feature) search request, request for product-details and related-item search. Among these,
product search type of request would have the lowest deadline (or highest priority) re-
quirements, product details request would have intermediate deadline requirements, while
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related-items search would be fine with high deadline requirements. Depending upon the
desired granularity in expected response time, with in these broad ranges of deadlines,
there may be some request which are more urgent than others and the other way round.
For example, a shopping site may want the data pertaining to a product with high mar-
gin of profit to be serviced with higher priority as compared to data related to low profit
margin product.

DLC does not partition the cache space statically. Depending upon the distribution
of deadlines of requests in the workload, the queues in DLC grow or shrink. The size of
the queue is representative of proportion of cache-space taken by data items of requests
belonging to a specific range of deadlines. The overall objective of DLC is to give priority
to data items of requests having urgent or smaller deadlines as compared to data items
of requests with uncritical or larger deadlines. This is achieved by deadline-aware cache
eviction policy of DLC (see Section 3.1.2), and such a multi-queue architecture is necessary
for an efficient implementation of our cache eviction policy.

Figure 3.2 represents a snapshot of LRU-queues in one particular state of the cache
system during the course of its operation. As can be seen, there is no static partitioning
of the cache space. The fraction of shared memory-pool apportioned to a particular queue
(deadline-range) depends on, the deadline-distribution of the workload and the cache evic-
tion policy. For example, in Figure 3.2 Queue-2 has only one data item, while on the other
hand, Queue-3 has 5 items in the queue and can grow even more if deadline-distribution
of the workload happens to have more deadlines in the range of Queue-3, which is 4-8 ms
in this case.

3.1.2 Deadline-Aware Cache Eviction Policy

In the standard LRU-based cache eviction, items are evicted from the head of the LRU-
ordered queue. However, in DLC, to incorporate the deadline-miss cost into our eviction
policy, we apply a deadline-based multiplier to the time difference between the current time
and the LRU timestamp for each item. This determines the modified recency or effective
age of an item. To limit overhead in computing this value, we select a fairly coarse-grained
multiplier function that applies a linear multiplier to an exponentially growing range of
deadlines. This linear multiplication factor is inversely proportional to the queue number
of the corresponding queue (or bucket) to which a particular cache-item belongs, where
queue number increases with increasing range of deadlines. For example, in Figure 3.2, for
deadlines less than 2 ms, the multiplier is 1; for deadlines between 2 to 4 ms, the multiplier
is 0.5; and for deadlines between 4 to 8ms, the multiplier is 0.25.
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Figure 3.4: Deadline-aware eviction policy in DLC.

The relationship between the recency and the modified recency of an item is as follows:

Rw(item) = R(item)/cq

where, Rw is the modified recency of the item, c is the constant factor in the exponential
division of deadlines in to ranges, q is the queue of the item (as per its deadline range)
and R represents the actual recency (or age) of the item in its own bucket.

Our deadline-aware eviction policy requires applying the deadline-based multiplier for
items with different deadlines, and determines the oldest items using the modified recency
metric. To perform these operations efficiently, we use the multi-queue data structure
described in Section 3.1.1. Specifically, modified− recency is calculated for head item of
each of the queues (using the above formula), and among these head items, the one with
least modified−recency is chosen for eviction. This way we evict the item with maximum
effective−age from the cache, as these queues are in LRU-order and their heads represent
the least recently used item in them. Given the exponential growth of the deadline ranges,
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each eviction operation therefore requires reading from only a small number of queues,
restricting the complexity of the eviction operation.

Deadline Cache’s eviction policy is depicted in Figure 3.4. As mentioned before in sub-
section 3.1.1, each queue is responsible for data items in a specific range of deadlines, and
number in each data item represents recency value of the item. The hexagonal box under
each queue represents the modified−recency (Rw) of their head element. After computing
Rw of each queue’s head, the head-item having minimum Rw (highlighted hexagonal box
in figure) is evicted from the cache.

3.1.3 Fairness in the Caching Layer

To prevent a client from taking unfair advantage of the cache’s capacity, DLC keeps track
of the proportion of cache capacity used by each client and adjusts its eviction policy
accordingly. At the time of eviction from the cache, in addition to the bucket (or queue)
number of the data item (refer to Section 3.1.2) being used to determine the modified
recency-value (Rw) of the item, the client’s cache capacity usage is also considered to
determine which cache item to evict. Effectively, closer the client is to its cache-capacity
quota in terms of cache-space usage, higher the chances are of its data to get evicted from
the cache. The exact formula used to determine the eviction item is:

Rw(item) = cb ∗R(item) ∗ µCi

where, µC is client Ci’s cache capacity usage factor. The value of µCi
varies from 0 to 1.

A high value for a client’s capacity usage factor denotes that the client is occupying a large
proportion of the caching system’s memory and, in the interest of fairness, its item should
be subject to eviction with a higher priority during periods of cache contention. It is to be
noted that, cache-space is not necessarily partitioned equally among the clients and their
portion may depend upon their service-level from the provider. This is a common way to
provide Quality-of-service (QoS) in terms of capacity in shared infrastructure.

This feature has not been implemented, but would be necessary to provide fairness
among clients, which is commonly associated with performance isolation in multi-tenant
environment.

3.1.4 DLC API

DeadlineCache has a simple CRUD API [37] like other key-value pair systems, .e.g. Mem-
cached [7]. In addition to regular arguments in primitive operations, Deadline Cache also
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provides an additional argument to specify the response time SLO metadata for the data
item. For example, in put operation a client can provide a hint of deadline of the data item
for future fetches. Similarly, in get operation a client can specify the response time SLO
for a particular key.

Specifically, the Deadline Cache API looks like :

• get(key, deadline);

• put(key, value, overwrite, deadline);

• erase(key);

This response time metadata is used by Microfuge, both Deadline Cache and Deadline
Scheduler (see Section 4.2), to decide the priority of the data item while evicting items
from the full cache and in the process of admission control, respectively. As mentioned
before, a data item with shorter deadline is likely to stay longer in the cache, so that it
can meet the response time SLO, which it may miss if served from the back-end system.
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Chapter 4

Deadline Scheduler

The second major component of MicroFuge is its distributed scheduling layer, the Dead-
line Scheduler (DLS), which controls ordering and overall admission for requests to the
cloud storage system in the back-end. Similar to our caching layer (Deadline Cache), the
scheduling layer functions in a deadline-aware manner. As the main focus of this work is
on providing performance-isolation in cloud storage systems, this layer aims to reduce the
fraction of SLOs that are missed by the cloud storage system.

In a latency-critical shared system, it is necessary to have predictable performance.
As discussed in Chapter 2, achieving predictable performance is especially difficult for
shared storage systems. To make performance more predictable in these systems, we need
to reduce the fraction of the requests that miss their deadlines. As discussed briefly in
Chapter 1, we need admission-control to achieve this. Admission control in the context
of this thesis would translate to rejecting the requests to the storage system as quickly as
possible and notifying the client in case it is not possible for the storage system to meet the
deadline for a request. By notifying the client that most probably the request is going to
miss the response time SLO, Deadline Scheduler enables the clients to take some preventive
measure rather than hoping for the response to come back in the stipulated time-frame.
For instance, in our prior example of an online shopping website, the website company can
serve some static content, like site-wide popular products, rather than related products on
a product page if it gets a reject notification for related products query from the storage
system. This can help the company in moderating the page-load time within the threshold
of Tolerable Wait Time (TWT) of web-users [50] rather than letting the related-products
module, which is beneficial but not critical to the business, extend the overall page-load
time.
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Deadline Scheduler has three main components in its architecture. These smaller com-
ponents work in unison to provide the scheduler with the capability to provide performance
isolation for the back-end storage system. These elements are:

• A ticket-based ordering system that controls client access to the storage layer.

• Performance statistics collection and admission control that rejects requests that will
likely miss their deadlines.

• A system that prevents clients from monopolizing storage layer resources, further
enforcing performance isolation.

This chapter outlines the functionality of the different elements of the scheduling layer
that operate on the scheduler nodes. A depiction of clients interacting with the scheduling
layer and the data store can be seen in Figure 4.1.

4.1 Scheduler Ticket System

Request ordering functionality of our Deadline Scheduler is build over a ticket based system.
A scheduler server is responsible for tracking all the requests going to one or multiple data-
servers (individual storage servers in a distributed storage system). This enables Deadline
Scheduler to do centralized scheduling for requests going to each data-server. A client that
wishes to have its requests serviced by the cloud storage system initiates request(s) to one
or more DLS servers to schedule the requests on the data server(s) containing the data
item. In parallel to sending ticket requests to DLS, the client also sends a query request
to the Deadline Cache. It then waits for a response from Deadline Cache, determining
whether or not the requested data can be served from the cache. In case of a cache hit, the
client would cancel the scheduler-tickets. On the other hand, if it is a cache miss, based
on the scheduling tickets received from the Deadline Scheduler, the client dispatches its
request to a particular data-store server of the cloud storage system. We now discuss the
exact order of messages between a client, Microfuge (including both Deadline Scheduler
and Deadline Cache) and the underlying cloud storage system in different scenarios.

A typical storage request starts with determining the list (which depends upon the
configured replication factor of the storage system) of the data-server nodes that contain
the requested data. This can be found out using the client library of the back-end cloud
storage system. Depending upon the architecture of the cloud storage system, the key
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Figure 4.1: DLS architecture. Clients contact the distributed scheduling layer to acquire
tickets. If their deadlines are not rejected they are provided a queuing ticket. After
returning from the data store, clients pass latency information to the scheduler.

to data-server mapping can be either found out from a central directory server (as in the
case of Google File System [30] or HBase [5] and PNUTS [22]) or from Hashing [40] (as
in the case of Amazon’s Dynamo [25] and Cassandra [43]). After determining the set
of corresponding data-servers, a client randomly selects two of the nodes [49] and sends
their corresponding schedulers a ticket request that includes the deadline requirements for
the client. Each of the schedulers independently determines whether or not the incoming
request would violate its performance requirements (discussed in depth in Section 4.2),
and either informs the client that the request could not be performed within the required
SLO or the other way round, in which case the client would successfully acquire a ticket.
From clients’ perspective, acquiring a scheduler-ticket for a storage node guarantees that
the request will meet its deadline if served from this particular node in the cloud storage
system.

If client receives a rejection message from both the scheduler servers, the request is
effectively cancelled. If it receives only one successful ticket it blocks on it. If both the
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tickets are accepted by the schedulers, client will choose the ticket (or data server) with
shorter response time and cancel the other one. Chapter 5.1 talks about the procedure of
selecting a ticket in more details.

Clients can also tag their requests as ‘best-effort’ meaning the application requires
delivery or storage of data without any expectation of response time. In this case, the
scheduler always accepts the scheduling request and returns the expected response time
for the data item. Even though these requests are best-effort, once accepted by scheduler
their priority is not changed even to accommodate requests which are not best-effort. This
makes our API more reasonable for application developers. Since in the case of best-effort
requests, both scheduling tickets will always be accepted, the ticket (or data-server) with
shorter response time would be chosen for serving the request.

Once our client library decides which data-server is going to serve the request, it then
waits on a response from the scheduler. This wait-request remains blocked, waiting on its
ticket until all accepted requests with earlier or shorter absolute deadlines (according to
the scheduler’s determined ordering) are completed. Only after getting the response from
the scheduler the client will proceed to contact the particular data store server.

The scheduler is implemented over a simple queue, and services requests according to a
modified shortest deadline first policy. Typical shortest deadline first policies can lead to
starvation for requests with long-lived deadlines (if they are continually pushed down in the
queue by requests with short-lived deadlines). However, this type of starvation does not
occur in DLS as its scheduling policy restrict the number of times the priority of an already
queued request can be decreased. It also provides its own admission control mechanism and
rejects incoming requests that would cause deadline violations for already-queued requests.
Therefore, a request which has been already accepted by the scheduler has a very small
chance of missing the stipulated deadline unless there is some serious hiccup in the system.

As mentioned above, requests that have successfully received a ticket are not removed
by the scheduler until they are serviced (and thus cannot be rejected once issued a ticket).
After accessing the data store, the client sends parallel requests to update the cache with
the new data-item and releases its ticket from the scheduler while providing the scheduling
server with the newly obtained request latency metadata.

In practice, this scheduling algorithm is highly efficient, and performs very well under
a wide variety of conditions. Our implementation builds on the techniques determined by
Mitzenmacher [49] in 2000, according to which the design of choosing the shortest of the
two randomly chosen replicas’ queue performs well under a large range of system param-
eters. This makes our scheduling policy significantly better than other similar scheduling
methods as we avoid using global information and introduction of additional overhead
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and complexity, which provides marginal performance gain. As mentioned by Amazon in
its Dynamo paper [25], the cost of improving performance increases significantly when a
storage system attempts to keep the percentage of SLOs missed in single digit. In such a
situation, admission control is the only way to bound the SLO misses by the storage layer,
without incurring the extensive cost of increasing the capacity of the storage system.

4.2 Request Admission Control

The MicroFuge system is designed to prevent storage requests from missing their response
time deadlines. Deadline-awareness in the cache eviction policy helps reduce the likelihood
of deadline misses by increasing the cost of evicting items with short deadlines. The ticket-
based scheduling algorithm in our scheduling layer helps distribute load and, incidentally,
increases throughput by preventing interleaved seeking on the storage system (as it only
deals with requests from a single source at a time). Despite all this, as the load on the
system increases, deadline misses are inevitable and previous work has shown that out-
standing requests on a data store can significantly impact response times [34]. Therefore,
to satisfy the performance requirements of at least a subset of the requests, new requests
must be rejected by an admission control system.

As requests complete and request the scheduling layer to remove their tickets, they
provide the scheduling node with latency information that details how long the request
took to complete. The MicroFuge system keeps track of the latency information of how
long each data-server is taking to service a request. It is to be noted that this latency
information does not consider the time taken to acquire a ticket from a scheduler node or
to remove the ticket from the scheduler node after the request is serviced. When notifying
the scheduler that the request corresponding to a ticket has been serviced and the ticket
should be removed form the queue, this latency data is included with the message. DLS in
turn uses the past response time information to generate estimates of how long an incoming
request should take to get the response from the storage system including the queuing delay
on Deadline Scheduler.

When clients make requests with deadlines that cannot be served from cache and will
likely not succeed in meeting its deadline as per the response time estimates from the
storage layer, the scheduler notifies the client that its ticket-request has been rejected.
Additionally, requests may also be rejected if adding them to the scheduler will likely
prevent other already-accepted requests from being able to complete within their respective
deadlines.
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By allowing applications to define their own deadlines on storage requests at the granu-
larity of each request, MicroFuge allows for the hosting of applications that cater to clients
with a variety of latency requirements. In our design, performance of a request is governed
by client-defined performance metrics, and not the generic (and possibly not so helpful)
decisions of the scheduler incorporated inside the data store. It furthermore empowers
clients to know almost immediately if a request will not be serviceable within desired time
limits, allowing clients to react quickly and effectively when I/O deadlines cannot be met.

Such an admission control is also useful when we want to shrink the resources or in-
frastructure allocated to the application, during the period of low-activity. For example,
the load on a website could depend on the time of the day and day of the week. During
the period of low-activity like nights or weekends, these organizations tend to decrease
the resources allocated to their web infrastructure. for cost reasons. However, there is no
direct translation of decreased load (requests/second) to amount of resources required to
achieve the target performance. In such a scenario, we can have another component which
can monitor the rejection rate from our scheduler and adjust the amount of resources al-
located to the application. This will enable the organization to save costs without losing
application performance.

4.3 Fairness in the Scheduling Layer

The overall goal of Deadline Scheduler is to provide a system that can meet application-level
response time requirements through application-specific scheduling strategies to maximize
performance for clients based on their individual needs and scheduling goals. Unfortu-
nately, a naive version of this system would be vulnerable to greedy or malicious clients
that repeatedly issues many requests with low deadline requirements. The naive version
also fails to allow resource provisioning based on quality of service guarantees.

The scheduling layer of MicroFuge deals with these issues by making scheduling QoS-
aware in addition to being deadline-aware. The system supports the definition of mutliple
different service levels, and can use these levels to provide relative fairness based on QoS
guarantees. The system can, for example, bound the proportion of requests that are
rejected for clients belonging to various service levels, ensuring that clients belonging to a
lower service level (any client in general) cannot monopolize the resources of the system.
In these cases, the scheduler will simply reject greedy ticket requests that violate QoS
policies.

Allowing for explicit quality of service definitions is not enough to solve all fairness
issues that arise in a scheduling system. In particular, the deadline-focused nature of DLC
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makes it naturally biased against requests with shorter deadlines during periods of high
contention. In these kinds of cases, without appropriate intervention, it would be possible
for a heavily loaded system to always reject requests with lower, hard to meet deadlines.
To rectify this, the MicroFuge client re-issues rejected requests at low rates. These requests
will always be accepted, and when the system eventually caches them, they are inserted
into DLC with their original deadline information.

Although fairness is important in practice in various other settings, it is not the focus
of this work. Hence, this work does not present experimental evaluation of the system’s
fairness mechanisms but rather chooses to keep the focus on performance isolation.
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Chapter 5

MicroFuge Protocol

MicroFuge uses a specific protocol to push requests through the system. This chapter
describes the MicroFuge request protocol, and then outlines the beginning-to-end progress
of a sample read request.

5.1 Protocol Details

Upon receiving a request, clients that wish to take advantage of the cache layer contact
a cache server to determine whether or not the request can be serviced immediately from
cache. When a request is serviced directly from the cache, the client is informed of the
requested value, and the protocol terminates. Requests that are not serviceable from cache
are allowed to continue through the scheduling layer.

Should the request not be serviceable from the cache, clients simultaneously begin
communication with two randomly selected nodes (servers) from the scheduling layer, both
of which are responsible for a data server node which holds a replicated copy of the data
in the request. The client informs both nodes of the request, its deadline and whether
the deadline is a hard deadline or whether the request is to be made in a best-effort
manner. Currently, these scheduling nodes are determined through simple hashing, but
could equally be determined by contacting a central directory server (like namenodes) or
through other strategies.

A client waits until it has received responses from both scheduling nodes before pro-
ceeding. Responses returned may be marked as successful, i.e., the scheduler believes it
can service the request within the client’s requested deadline, or unsuccessful. Responses
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also include an indication of how long the scheduler believes it should take to service
the request. Using this information, the client can dispatch its request to the scheduler
that provides a lower time estimate of the two tickets (representing the load of the two
schedulers). As previously mentioned, this strategy is very effective in practice [49].

If neither ticket returns succesfully, then it is unlikely that the client will be able to
service its request within its necessary deadline, and the client decides how next to proceed
(performing other, less intensive work, re-issuing the request with a relaxed deadline, etc.).

In case a client is not not particularly concerned with the deadline of a given request
(if, for example, it has no currency requirements), and additionally because it may be
necessary for a particular request to never be rejected from percolating to the data store,
MicroFuge also allows requests to be marked as best-effort.

Similar to requests with hard deadlines, best-effort requests wait on responses from both
servers before deciding which node to use for scheduling. Both succesful and unsuccesful
tickets are returned to the client with the scheduler’s estimated completion times, and the
client chooses the server with the best of the two provided times.

Unlike requests with hard deadlines, however, when servicing requests that are about to
miss their best-effort deadlines (or have already), the scheduler has the option to re-queue
the best effort request with a new, extended deadline. In this manner, best-effort requests
that will miss their deadlines can be further delayed to the benefit of other requests (both
best-effort and hard-deadline) in the system if necessary.

Write requests in MicroFuge are handled identically to read requests, but are always
treated as best-effort to ensure that updates are consistently pushed through to the data
store.

Having blocked on a ticket, the client waits until it is contacted by the scheduler to
proceed. It then contacts the data store and performs its operation. Once the request has
completed at the data store, the client contacts the cache, providing it with the request’s
value (so the cache layer can determine whether or not to retain the value). The client
also concurrently sends a message to the scheduler that the ticket has been satisfied.

5.2 Sample Request

A timeline demonstrating the scheduling journey of a sample read request in the MicroFuge
system is provided in Figrue 5.1. The read request shown in the figure is not a best-effort
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Figure 5.1: Sample timeline for a read request from a client. For this request, the requested
item is not contained in the cache and both schedulers accept the ensuing ticket requests.

request. In this section, we give a breakdown of the stages of the protocol that the request
follows.

Initially, we assume that the data store is busy processing another request. The client
then issues its read request to one of the DLC nodes. The cache node determines that the
request item is not resident (represented by ‘Not in DLC’), and informs the client that it
must contact the scheduling layer (represented by ‘Ask for Tickets’).

The client determines two scheduling nodes, each responsible for a replica of the data
that it wishes to retrieve, and simultaneously makes ticket requests to both of them, in-
cluding its deadline requirements with the request.

Scheduler one (DLS 1) informs the client that it can service the request within a given
amount of time, as does the second scheduler (DLS 2). This is shown in Figure 5.1 as
‘Success Time T1’ and ‘Success Time T2’, respectively. The client compares estimated
completion times from both the schedulers, and determines that scheduler one (DLS 1) is
likely to complete the request sooner. The client sends the second scheduler a cancel noti-
fication (represented by ‘Cancel Ticket’), and waits on a response from the first scheduler
(represented by ‘Wait on Ticket’).

Eventually, the data store finishes its previous operation, and the client that had re-
quested the data (not pictured in the figure, for simplicity) informs the scheduler that
its ticketed operation is complete. Scheduler one then contacts the sample client, which
proceeds to make its request directly to the data store (represented as ‘Read Data’).
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Once the data store has finished processing the client’s read request, it responds to
the client with the requested value. The client in turn concurrently contacts the cache
(to inform it of the request’s value), and the scheduler (to inform it that the ticketed
request has completed). The cache makes any necessary updates to the cached data set
(represented as ‘Update Cache’), and the scheduler updates its latency meta data. Having
completed all necessary steps, the protocol is complete.

5.3 Fault Tolerance

For MicroFuge, we do not provide any explicit fault-tolerance mechanism as both the
components of the system (DLC and DLS) maintain only a soft-state of the system. Also,
having a replicated component would increase the response time of the middle layer, as now
the processes would need to synchronize the states among all the replicas. In a latency-
critical system, any increase in response-time of a middle layer is not desirable. Therefore,
we decided to have a failure model which will ignore any failure of these middle layers and
continue the control-flow by using a timeout mechanism.

In the event of failure of any of DLC or DLS, MicroFuge’s client library behaves as
if the component was not there and transparently handles the failure. For example, if
a DLS node fails, the MicroFuge client will wait for the timeout (provided by Apache
Thrift framework [1]) from the node after which it will make the request directly to the
corresponding data server of the back-end cloud storage system.

This is not to say that fault-tolerance is not important. However, the performance
would depend on the failure recovery architecture of the component. If we are able to
bound the latency introduced by the failure recovery mechanism, it may be possible to
have fault tolerance with minimal loss of performance. However, any such scheme would
need to be evaluated independently and can definitely be considered as a future extension
to MicroFuge.
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Chapter 6

Experimental Evaluation

The performance characteristics of a cloud storage system are critical to the success of
the system in a multi-tenant environment, especially when employed for latency-sensitive
applications. In this chapter, we present an evaluation of the MicroFuge system and
examine its effectiveness in providing performance isolation for cloud storage systems.
We begin by a description our experimental setup and the test application we use to
benchmark performance of the system. Next we evaluate the contribution of our caching
layer (Deadline Cache) and show how deadline-aware caching policies can improve the
performance of a cloud storage environment without any support from it. Lastly, we
demonstrate the effectiveness of our scheduling layer (Deadline Scheduler) in restricting
the percentage of requests that miss their SLOs by using its deadline-aware admission
control.

6.1 Experimental Setup

For performance characterization purpose, an eight-node test cluster was configured, as
shown in Figure 6.1. The first 4 machines were configured as servers, each running our
simple cloud storage system (detailed in Section 6.1.1) and MicroFuge services. The other
4 machines were used as clients, each running an instance of a modified version of the
Yahoo! Cloud Serving Benchmark (or YCSB) framework [23] (see Section 6.1.2), a standard
benchmarking tool for key-value pair-based storage systems. All the machines are in the
same internal network, simulating the network setup of a datacenter.

Each server machine is a Quad-Core AMD FX(tm)-4100 server running at 3600 MHz
with 2GB of main memory. These nodes are configured with two Seagate Barracuda 500
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Figure 6.1: 8-node test-Cluster setup with 4 servers and 4 clients.

GB SATA 3.0 Gb/s 7200 RPM Hard Drives and two Intel PRO/1000 Gigabit Network
Adapters, so that each machine can run two instances of our simple cloud data-store
without any interference at the disk or network layer. For evaluating the performance of
our system, we use up to 4 dual-core AMD Athlon(tm)-7750 machines running at 2700
MHz with 4GB of RAM. They are configured with one Western Digital 500GB SATA
3.0Gb/s 7200 RPM HDD and one Intel PRO/1000 Gigabit Network Adapter each. All
machines were configured to run 64-bit Ubuntu-11.10 server edition on top of 3.0.0-26 of
the Linux kernel. All disks use the recommended ext-4 filesystem, with Ubuntu server
edition’s default settings.

Both the components of MicroFuge, together with our DataServers use Apache Thrift [1],
for marshalling, unmarshalling and communication over the network. Thrift is an an open
source cross-language Remote Procedure Call (RPC) framework, originally developed at
Facebook. In our current setup, we use Thrift version 0.9.0.

As discussed earlier in Chapter 1, MicroFuge can be deployed on top of any cloud
storage system. However, to keep things simple, we have implemented our own distributed
data storage layer called DataServer for the purpose of evaluating MicroFuge (see Section
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6.1.1). To characterize the performance of different configurations of the MicroFuge system
running on top of our persistent storage layer, we use a variety of workloads provided by
YCSB. The remainder of this section discusses these two systems in detail.

At the software level, our cluster has following service configurations:

• DataServer Servers
As shown in Figure 6.1, there are a total of eight DataNode Servers (DS) running in
the cluster, with each server machine hosting two instances of DS on two different
disks. We are able to multiplex these processes in this manner because they are
not CPU or memory intensive but are I/O bound. Therefore, a process running
on its own independent disk is a sufficient simulation of a process running on an
independent machine.

• Caching Servers
In a production setup, caching server processes run on dedicated machines. However,
for the purpose of basic evaluation of the system, the caching layer (either Memcached
or Deadline Cache) is run on the same set of server machines as other services in our
setup. Each server machine is running an instance of q cache server with 1.5GB of
cache-space, representing a total cache size of 6GB.

Note that in our setup, most of the main memory of the servers is used by the
external cache, leaving only the minimum required memory for the FileSystem cache.
Specifically, each server machine has 2GB of RAM, out of which 1.5GB is occupied
by the caching layer, around 200MB-350MB is taken by the OS and the remaining
200-250MB is used by the FileSystem cache. Using such a configuration, we show
that it is more beneficial towards providing performance isolation in a persistent
storage system to dedicate memory to an external distributed caching layer than it
is to dedicate that same memory to the FileSystem cache.

• Scheduler Servers
In a production setup, where we have a bigger deployment of a cloud storage system,
we have dedicated machines running our scheduler service. As discussed in Chapter
4, each instance of DLS can handle multiple data-servers. These machines running
DLS should have strong processing power, as each storage operation requests two
scheduler processes for scheduling a ticket to corresponding data-servers (outlines in
detail in Chapter 5). However, for the purpose of these experiments the scheduler
servers share machines with the caching and persistent storage services.

• Benchmarking System
An instance of our modified version of YCSB (details in Section 6.1.2) runs on each
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of our four client machines. Every YCSB process is capable of running multiple client
threads, each of which issue a sequence of I/O operations to our storage system.

6.1.1 DataServer System

We use our own cloud storage system, called DataServer, to avoid the need of performance-
tuning of more complex storage systems like HBase [5] or MongoDB [8]. DataServer is a
simple distributed key-value pair-based storage system, using leveldb [6] as its embedded
key-value storage library. DataServer tunes several of leveldb’s parameters to restrict the
extent of caching and computing resources used by the server process. This makes it easy
to understand the effect of the external caching layer and request ordering. All the major
parameters used in the current version of DataServer are listed in Table-6.1.

LevelDB Parameter Value

Key Comparator Default
Write Buffer Size 64MB (default : 4MB)
Block Size 2KB (default : 4KB)
Maximum Open Files 64 (default : 1024)
Block Cache Default (8MB)
Bloom Filter Not Used
Compression Type Snappy Compression

Table 6.1: Parameters used for LevelDB

Drawing inspiration from Dynamo and Cassandra, we use a simple hash-based scheme
to determine which keys map to which servers. By default, we use three-way replication:
the servers are determined by the key hash plus the next two servers in the ID space.

DataServer provides a modest CRUD API, resembling a typical cloud storage system.
It has a very simple data storage model inspired by Google File System [30]. Although it
supports the concept of a user-level data partition (generally referred to as a tablet in other
cloud storage systems), for our current set of experiments we employ one big tablet which
contains all the data. Like other cloud storage systems, the basic unit of data distribution
in DataServer is a tablet. DS also supports dynamic replication of tablets based upon the
usage pattern of the data.
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6.1.2 Benchmarking System

To evaluate the performance of our deployment, we use an industry-standard benchmarking
tool called Yahoo! Cloud Serving Benchmark (YCSB) [23]. YCSB is designed for bench-
marking key-value pair-based cloud storage systems and provides a variety of workloads
representing different classes of real-world workloads. Since typical key-value pair-based
cloud storage systems do not have the notion of response time SLOs, YCSB does not
provide any means for specifying these SLO values in its workloads. As MicroFuge incor-
porates deadline information for resource allocation and scheduling, we modified YCSB to
provide deadline metadata to the generated storage requests.

Range Deadlines Proportion

Range-1 10-30 ms 0.2
Range-2 30-100 ms 0.3
Range-3 100-1000 ms 0.5

Table 6.2: Distribution of deadlines in the Workload

The assignment of deadlines to different requests is based on the hash of a request’s key.
Since these deadlines are not randomly generated, a particular key will be assigned the same
deadline value every time. This simulates a practical scenario, where a given key belongs
to one particular request-type, which in turn is likely to have the same response time SLO
each time it needs to be serviced by the storage system. For the numbers presented in
this section, YCSB produces response time deadlines in the range of 10 to 1000 ms. In
this workload, 20% of requests have deadlines between 10 to 30 ms, 30% have deadlines
between 30 to 100 ms, and the remainder have deadlines ranging from 100 to 1000 ms,
as shown in Table-6.2. Within these ranges, deadlines follow a uniform distribution. This
is representative of a real-world application, where a limited variety of request types (in
this case three) are sent to the back-end storage system. This has been discussed with an
example in Section 3.1.1. However, the exact distribution used for these set of experiments
is synthetic. In a real-world deployment the distribution of deadlines for requests may
vary.

Unless otherwise specified, the data-set used for these experiments has 20 million records
and is around 21.6GB in size. Our distributed cache system (either Memcached or DLC)
has an overall capacity of 6GB, which is around 1/3rd of the total data-set size, representing
a realistic deployment scenario.

For numbers presented in the following sections, we used a standard YCSB setting
of 13-byte keys and 1KB value size to generate the data-set. For transaction workloads,
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we used predefined YCSB coreworkloads, which range from insert-heavy to read-heavy
to a mixture of both types of operations. Each run of these experiments performs 100K
operations,with a a Zipfian distribution of requests. All the experiments are reported with
an average of five independent runs, computed with 95% confidence interval.

In the next section, we show some of the results of our comprehensive evaluation of the
MicroFuge system. We start by evaluating the performance of our caching system and show
that it is comparable to basic performance characteristics of Memcached. We then show
how deadline-aware caching policy leans towards evicting data items with longer deadlines
as compared to the ones with shorter deadlines. Going further, we illustrate how Deadline
Cache is effective in providing performance isolation to underlying cloud storage systems
by meeting more SLOs. Finally, we show how Deadline Scheduler plays a principal role
in restricting the percentage of requests missing their deadlines, using its deadline-aware
admission control policy.

6.2 Performance of Deadline Cache

This section shows the performance characteristics of our caching system compared to
those of Memcached. The purpose of these experiments is to show that the two systems
are comparable in terms of space-efficiency and throughput at different levels of load. It
is necessary to prove that the comparison between the two systems is fair, and that it is
the deadline-aware caching policy of Deadline Cache (and not its engineering effort), that
helps it to meet more SLOs compared to Memcached.

It is important to recognize that our current implementation of MicroFuge is just a
prototype and not much optimization effort has gone in to making it more efficient as a
cache. On the other hand, Memcached is a highly optimized caching system which is widely
used in industry settings. Therefore, when it comes to comparison of basic performance
characteristics like throughput and space-efficiency of Deadline Cache and Memcached, the
latter may outperform the former.

6.2.1 Cache Hit-Rate

Figure 6.2 shows the overall cache hit-rate avergaed over 5 runs of the two caching systems
for 96 concurrent clients with a 95% confidence interval. Memcached achieves 2 to 3%
higher cache hits on average when compared to Deadline Cache. The principal reason for
such behaviour is that Memcached has a strict LRU caching policy, while the cache policy
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Figure 6.2: Overall cache hit-rate at different levels of load

of Deadline Cache is similar to LRU but with additional deadline-oriented considerations
(see Section 3.1.2). Therefore, the chance of finding an item in the cache when it has
recently been used, is greater for Memcached than for Deadline Cache. This is because
the eviction policy of Deadline Cache not only considers the recency of data items but also
incorporates their associated deadline metadata.

Cache System Cache Space

Deadline Cache 3004MB
Memcahced 2844MB

Table 6.3: Cache-space taken by each system in storing 200K regular YCSB records.

In conjunction with the difference between the eviction policies of the two systems,
the fact that Deadline Cache has not been fully optimized to efficiently use memory space
results in DLC storing less data items than Memcached in the same amount of memory-
space. This also contributes to lower-than-average cache hit-rate for Deadline Cache when
compared against the hit-rates of Memcached. As shown in Table-6.3, Memcached is more
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space-efficient than Deadline Cache. At least part of the reason that Deadline Cache
storage occupies more space can be attributed to the fact that it stores additional deadline
metadata with each data item, in contrast with Memcached which only stores the data
items themselves.

6.2.2 Cache Throughput

Figure 6.3 shows the throughput of the two systems under different YCSB workloads.
For these experiments, each workload performed 200K operations over 200K records. The
request distribution of the workloads was set to the default zipfian distribution.

Figure 6.3 (a) shows the throughput of INSERT operations for different numbers of
clients. The cache size for this experiment was big enough to avoid eviction, ensuring that
insert performance was not affected by eviction procedure of the systems. As shown in the
figure, the performance of Deadline Cache looks better for a small numbers of clients. As
the number of clients in the system increases, the throughput of DLC decreases accordingly.
Memcached, on the other hand, is seemingly able to retain a steady rate of 47K ops/sec even
with an increased number of clients. The better scalability of Memcached can be attributed
to additional complexity introduced by the multi-queue architecture of Deadline Cache.
Furthermore (and as previously mentioned) Memcached has seen significant amounts of
optimization over its years of development.

Figure 6.3 (b) & (c) shows the throughput of READ/UPDATE operations for work-
load C and B respectively. Workload-C represents a read-only workload, while Workload-B
represents a mixed workload with 95% read operations and 5% update operations to ex-
isting keys. Deadline Cache clearly outperforms Memcached by a considerable margin.
The predominant reason for the low throughput of Memcached (compared against that
of DLC) is fine-grained cache locking mechanism used in the latter. As discussed in [39],
the global cache lock in Memcached becomes a performance bottleneck for more than 4
threads. As we see in Figure 6.3 (b) & (c), the throughput of DLC peaks at around 96
clients, before showing a decrement of more than 10% as clients are increased to 196. Such
performance behaviour can be attributed to the fact that even DLC’s fine grained locking
is not sufficient to handle this high level of load. In such scenarios, cache locks start to act
as a performance bottleneck, similar to the bottlenecks that Memached experiences even
at lower levels of load with few clients.
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(a) INSERT performance

(b) READ performance in Workload-C (100% reads)

(c) READ/UPDATE performance in Workload-B (95% reads, 5% updates)

Figure 6.3: Average throughput of two caching systems at different load levels for a variety
of real-world workloads provided by the Yahoo! Cloud Serving Benchmark.
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Figure 6.4: Deadline missed percentage of requests which were a cache hit

6.2.3 Cache Response Time

To keep the design of MicroFuge simple throughout its design and development process,
we followed the assumption that every request which is a cache hit should also meet its
associated deadline. Figure 6.4 shows that the percentage of requests which missed their
deadlines, even when the item was found in the cache, is below 0.1% across all the load
levels. This validates our assumptions that only an insignificant fraction of such requests
miss their deadlines.

Together with the results presented in the previous sub section, this experiment shows
that neither system is faster or more efficient than the other at servicing cached requests.
Therefore, the throughput or the response time of the caching system cannot be identified
as a cause for SLO misses in cloud storage systems.

It is to be noted that in this set of experiments the deadline-aware nature of Deadline
Cache does not play any role. Rather, the effects of DLC’s deadline-conscious design
are visible when we show the DataServer’s ability to meet SLOs given the underlying
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interactions of both systems, which is the main focus of this thesis. In the next section,
we demonstrate how each of these systems helps the cloud storage system (DataServer)
reduce the fraction of requests that miss their response time SLOs.

6.3 Deadline Aware Caching

This section aims to show how the deadline-aware caching policy of Deadline Cache helps
reduce the number of requests with short-lived deadlines that miss their SLO objectives.
This is achieved by the system through intelligent caching decisions that increase cache hit-
rates for short deadline items. Since these requests are more likely to miss their deadlines in
the event of fetching the data from the disk, Deadline Cache is designed to keep these items
in the queue for a greater amount of time than items with longer deadlines. The strategy
is further supplemented by the fact that objects with longer deadlines are relatively more
likely than objects with shorter deadlines to meet their goals if they are not served from
the cache, implying that they may be removed at a higher frequency without negatively
affecting system performance.

Figure 6.5 shows a detailed graph of cache hit-rates for requests with varying deadlines
(see Section 6.1.2). These ranges are marked with horizontal violet lines in the figure.
From the figure, it is clear that the aggregate cache hit-rate (represented by thick hori-
zontal lines) of Memcached (66.06%) is higher than that of Deadline Cache (63.57%). As
discussed in Section 6.2, besides space-efficiency, the primary reason for such behaviour
is the difference in the eviction policies between the two systems. Memcached’s eviction
policy does not differentiate between the items on the basis of their associated deadlines.
On the other hand, Deadline Cache’s eviction policy considers the SLO requirements and
stores more items with shorter deadlines, evicting objects with longer deadlines in their
favour if necessary.

Owing to the special treatment of shorter deadline items by Deadline Cache, the cache
hit-rate for first two ranges of deadlines is higher for Deadline Cache than it is for Mem-
cached. This is showcased in Figure 6.6, which shows the cache hit rate for the first two
ranges of deadlines, for the same experiment as in Figure 6.5. Since, items belonging to
the shorter range have a major share of the total requests that miss their deadlines, it is
better to aim for a higher cache hit rate for them.
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Figure 6.5: Cache hit-rate versus deadline values at a moderate load of 96 concurrent
clients

6.4 Contribution of Caching in meeting SLOs

As shown in the previous section (Section 6.3) the cache hit-rate of Deadline Cache is
higher than that of Memcached for items with shorter deadlines. However, overall cache
hit-rates are higher for Memcached. This compromise in design of our system pays off
when we try to reduce the fraction of requests that miss their deadlines.

Figure 6.7 shows the deadline miss percentage for all different ranges of deadlines. As
expected, due to the high cache hit-rate for the first two ranges in Deadline Cache the
deadline miss percentage in them is less for DLC than it is for Memcached. However,
Memcached outperforms Deadline Cache in the third range. Also, as shown in Figure 6.7
(d)Deadline Cache misses less deadlines overall (14.40%) than Memached does (16.88%).
It can therefore be concluded that Deadline Cache is more effective in reducing the deadline
misses in a cloud storage system workload.

The above results are for lightly loaded systems, running 48 concurrent clients. To show
that our approach is similarly effective for high load levels in the system, we performed
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Figure 6.6: Cache hit-rate for first 2 ranges of deadlines for different deadline values at a
moderate load of 96 concurrent clients

the same set of experiments with 192 concurrent clients. As shown in Figure 6.9, in a
setting with high load, though the difference between the performance of the two systems
decreases, the overall trend remain the same. The reason for such a behaviour, as discussed
in the previous sub-section ( Section 6.2.2), is that at higher loads Deadline Cache starts
to have the same performance bottlenecks as Memcached. In summary, Memcached is
good for maximizing the cache-hit rate but since it is not deadline-aware it less effective
in helping the underlying cloud storage system to miss less deadlines for a wide range of
system load.

Finally, we compare the deadline meeting capability of our cloud storage system de-
ployment in different cache configurations. Figure 6.8 gives a summary of the performance
of three systems in terms of meeting SLOs. As expected, the DataServer without any
caching (represented by the green bar) performs worst among all three configurations,
while Deadline Cache performs the best across different degrees of system load.
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(a) Range-1 (b) Range-2

(c) Range-3 (d) All Ranges

Figure 6.7: Deadline Miss Percentage for data items in different ranges are shown in (a),
(b) and (c) at a load of 48 concurrent clients. (d) shows the same quantity but includes
all the deadlines.
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Figure 6.8: Deadline Missed Percentage (including all 3 ranges)

6.5 Contribution of Scheduling in meeting SLOs

Section 6.4 discussed the contribution of the caching layer in our overall objective of miss-
ing less SLOs. We have already established that deadline meeting performance of DLC
outruns Memcached. In this section, we will demonstrate the improvements gained by the
introduction of our scheduling layer (DLS). This layer can be deployed on top of any cloud
storage system and external caching layer. Since Deadline Scheduler and Deadline Cache
are not coupled in anyway and we want to focus on contribution of the scheduler, we will
be using DLC to represent any caching layer.

We first show how our deadline-aware scheduling helps to balance the load among the
data-server nodes in the back-end cloud storage system, as an effect of which it reduces the
number of SLOs being missed. All the requests in these set of experiments are best-effort
(see Chapter 3) and any reduction in percentage of SLOs being missed can be attributed
to our scheduling policies in DLS. Figure 6.10 gives a summary of performance of different
systems in terms of meeting SLOs. It compares the performance of following systems :
only DataServer layer with no caching (represented by ‘DataServer’), DataServer layer
with DLC (represented by ‘DLC’) and DLS over DataServer layer with DLC (represented
by ‘DLC+DLS’). Addition of scheduling layer seems to give an improvement of around
6-7% at high load. DLS does not show much improvement for lower levels of load as there
is not much opportunity to schedule requests. As expected, putting scheduling on top of
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(a) Range-1 (b) Range-2

(c) Range-3 (d) All Ranges

Figure 6.9: Deadline Miss Percentage for data items in different ranges are shown in (a),
(b) and (c) at a high load of 192 concurrent clients. (d) shows the same quantity but
includes all the deadlines.
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Figure 6.10: Contribution of Deadline Scheduler in reducing the deadline missed percentage
for different levels of load. These numbers include the results for all 3 ranges of deadline.

our caching layer successfully reduce the number of requests missing their SLOs.

In the next set of experiments, we illustrate the effectiveness of our admission control
mechanism in achieving performance isolation in cloud storage systems. Figure 6.11 out-
lines the contribution of admission control in containing the fraction of requests that miss
their deadlines. The figure represents the same quantities as shown in figure 6.10 with the
addition of a configuration DLS with admission control represented by ‘DLC + DS (AC)’.
As can be seen, with admission control turned on, Deadline Scheduler is able to restrict
the SLO missed percentage around 10%, which was our target for these set of experiments.

As discussed in Chapter 4, to limit the number of requests that miss their deadlines
we need to reject some requests. Figure 6.12 also includes the request rejection percentage
represented as ‘DLC + DS(AC) + Rejection’. As shown, we reject a limited fraction of
total requests to restrict the fraction of requests missing their deadline, below our client’s
Service Level Agreement (or SLA).

To reject the requests which are not likely to meet their deadline, a näıve approach can
end up rejecting majority of the short deadline requests. This will lead to starvation of
these urgent requests (see Chapter 4). In our design, we selectively choose the requests
which should be rejected to meet the tenant’s SLA. Figure 6.13 shows that we reject the
requests with deadlines from a wide range of values, and is not limited to short deadline
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Figure 6.11: Effectiveness of Deadline Scheduler’s admission control mechanism in restrict-
ing the percentage of requests that miss their deadlines. These numbers include the results
for all 3 ranges of deadline.

requests. Having said that, since requests with shorter deadlines are the ones which are
harder to meet their SLOs, a good portion of rejected requests comes from shorter range
of deadlines.
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Figure 6.12: Rejection rate of requests by DLS’s admission control mechanism versus load.

Figure 6.13: Rejection rate of requests by DLS’s admission control mechanism versus
deadline values for 192 concurrent clients.
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Chapter 7

Conclusion

In this thesis we introduced MicroFuge, a new middleware application that provides dis-
tributed scheduling and caching services to cloud storage systems. MicroFuge focuses on
deadline-awareness across all of its layers to help provide performance isolation that is
typically difficult to accomplish inside multi-tenant systems. MicroFuge is built with the
same API as Memcached, and is easy to layer over top of almost any cloud storage system.

MicroFuge’s distributed cache layer, Deadline Cache, uses a tenant and deadline-aware
cache eviction policy to isolate tenants and ensure that requests with short deadlines -
which are more likely to be violated on a cache miss - are also more likely to be retained
in the cache. This is performed with the use of multiple LRU queues based on deadline
ranges.

Our system’s distributed scheduling layer, Deadline Scheduler, uses a ticket-based
scheduling system that helps to not only load balance among different data-servers, but
service requests according to their deadline requirements. In addition to this, the schedul-
ing layer collects latency metadata from completed requests, and uses this data to generate
latency estimates for future requests. These estimates are, in turn, used to provide admis-
sion control, rejecting requests with deadlines that are unlikely to be met (based on the
underlying performance model).

Through experimentation we have demonstrated that MicroFuge offers significantly
better performance isolation than the current industry standard, Memcached.
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