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Abstract

Machine learning has enjoyed astounding practical success in a wide range of applica-

tions in recent years—practical success that often hurries ahead of our theoretical under-

standing. The standard framework for machine learning theory assumes full supervision,

that is, training data consists of correctly labeled i.i.d. examples from the same task that

the learned classifier is supposed to be applied to. However, many practical applications

successfully make use of the sheer abundance of data that is currently produced. Such

data may not be labeled or may be collected from various sources.

The focus of this thesis is to provide theoretical analysis of machine learning regimes

where the learner is given such (possibly large amounts) of non-perfect training data. In

particular, we investigate the benefits and limitations of learning with unlabeled data in

semi-supervised learning and active learning as well as benefits and limitations of learning

from data that has been generated by a task that is different from the target task (domain

adaptation learning). For all three settings, we propose Probabilistic Lipschitzness to

model the relatedness between the labels and the underlying domain space, and we discuss

our suggested notion by comparing it to other common data assumptions.
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Chapter 1

Introduction

Modern machine learning theory started about 30 years ago with the introduction of formal

computational learning models by Valiant [1984]. In the past decade, machine learning has

become one of the most influential tools of computer science, playing a key role in a very

wide range of fields. It is extensively applied in bioinformatics, in finance, in astronomy,

in social sciences as well as for many computer science tasks such as natural language

processing and computer vision. However, with the expansion into practical use, new

learning scenarios have emerged that are not well addressed by the standard machine

learning theory.

Machine learning research comprises numerous tasks such as classification, regression,

pattern recognition and clustering. Each of these tasks is investigated with various models

for the input to the learner. These range from fully supervised to unsupervised and from

batch to online or reinforcement learning models. In this work, we focus on binary classi-

fication in a batch model. Classification tasks occur in a variety of applications, including

the analysis of medical data, spam detection, handwritten digit recognition, or sentiment

analysis.

The standard theory for binary classification learning tasks models the environment as

a probability distribution P over some domain X with labels in {0, 1}. The training data

is assumed to be an i.i.d. labeled sample from this distribution P . A learning algorithm

receives such a training sample and produces a classifier, that is, a function from the domain
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to the labels. The goal of the learner is to produce (with high probability) a classifier that

has a low probability of misclassifying instances with respect to the distribution P .

This general framework is well understood. The theory of VC-dimension character-

izes precisely for which classes of labeling functions (or classifiers) learning can succeed.

However, there are many practical scenarios that are not well addressed by this standard

framework. Many practical applications successfully make use of the sheer abundance of

data that is currently produced. Such data may not be labeled or may be collected from

divers sources.

An important issue, disregarded by the standard framework, is that obtaining correctly

labeled training data for the task at hand can be expensive, if not impossible. The data

might be noisy, obtaining labels for the training data might require hiring expensive experts

or there might be labeled training data available only from a different (but related) task.

Unlabeled training data is often easier and cheaper to come by than correctly labeled

training data. In many practical applications unlabeled data has been successfully utilized

to boost up learning algorithms. However, from a learning theory perspective, we are far

from being able to explain this phenomenon.

The goal of the research in this thesis is to advance our understanding of the success of

these heuristics. Which conditions on the underlying data distribution render the availabil-

ity of unlabeled training data beneficial? When can the access to unlabeled data provably

reduce the number of labeled instances required for learning? What kind of benefits can

we get from unlabeled data?

In this thesis, we analyze three settings of learning with non-standard supervision:

Semi-supervised learning, domain adaptation learning and active learning. The goal in

all three of these learning scenarios is to save standard supervision (where by “standard

supervision” we refer to the above described setting of learning with correctly labeled i.i.d.

training examples with training and test distribution being identical). Semi-supervised

learning approaches aim to save labeled examples by also considering (a large amount of)

unlabeled training examples. In domain adaptation learning, there are no (or very little)

labeled training examples from the relevant task available. To compensate for this, domain

adaptation learners seek information from labeled training examples that were generated
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by a different task and also from unlabeled examples. Active learners get only an unlabeled

sample as input, but are equipped with the ability to autonomously query for (some of the)

labels. The goal of active learning is to succeed with as few as possible such label queries.

We focus on investigating the sample complexity of learning in these scenarios. That

is, we provide upper and lower bounds on how many training examples a learner requires

in order to output a low-error classifier. We focus particularly on labeled versus unlabeled

sample complexity.

1.1 Contributions

Each of the learning settings that we investigate in this thesis, has been the subject of

studies in learning theory before. We will now outline the original contributions that our

work offers to these areas.

Probabilistic Lipschitzness

Several results in this thesis (in all three learning settings) employ the assumption of

Probabilistic Lipschitzness (PL), a notion of clusterability of the learning task. This notion

was introduced by Urner et al. [2011]. Prior to that, a very similar data parameter has

been proposed by Steinwart and Scovel [2007] in the context of analyzing the performance

of Support Vector Machines.

Probabilistic Lipschitzness is new to the analysis of the sample complexity of semi-

supervised learning, active learning and domain adaptation learning. While data assump-

tions are essential in the analysis of these learning settings (this is implied by previously

established lower bounds), PL, or any closely related parameter, has not been employed in

this context before. We believe that PL provides a suitable way of modeling relatedness

between the the distribution over the unlabeled instances and the labels. Such a related-

ness is crucial to the possibility of gathering valuable information from unlabeled data for

classification tasks. Thus, introducing PL to the analysis of learning settings that employ

unlabeled data provides new insights into when and why unlabeled data is useful.
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In addition to introducing and motivating the notion of Probabilistic Lipschitzness, we

provide a discussion and comparisons of PL to other notions that have been proposed in

the context of analyzing of the sample complexity of (standard and non-standard) learning.

Semi-Supervised Learning

In Semi-Supervised Learning (SSL), the learner gets as input a small sample of labeled ex-

amples and a large sample of unlabeled examples. Most previous work on semi-supervised

learning focuses on investigating how the unlabeled data can be exploited to learn a clas-

sifier of lower error. Our work takes a different path: We investigate whether unlabeled

data can be beneficial to learn classifiers that satisfy some application-defined requirement,

such as being fast at prediction time or being easy to interpret.

We model this situation as proper semi-supervised learning, that is, SSL with the addi-

tional requirement that the output classifier is a member of a specific predefined hypothesis

class. We propose an algorithmic framework for proper SSL, in which we first use the (small

amount of) labeled data to learn some low-error classifier that is not necessarily from the

predefined class. The algorithm then uses this classifier to label the (large) unlabeled input

sample and uses this now labeled data to learn a classifier that complies with the proper-

ness requirements. This two-stage SSL learning has been employed in practice before by

Liang et al. [2008] and Bucila et al. [2006]. However, it has not been subject to a thorough

sample complexity analysis.

We analyze the performance of our algorithm under two data assumptions: realizability

by a class and under Probabilistic Lipschitzness. We provide upper bounds on the labeled

and unlabeled sample complexity in both these settings. We complement these with lower

bounds on the sample complexity of these tasks without unlabeled data. The performance

guarantees we prove for our algorithm together with the lower bounds imply that unlabeled

data is provably beneficial for proper learning. To the best of our knowledge, provable

reductions in label complexity with SSL have not been established before.
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Domain Adaptation Learning

Domain Adaptation (DA) refers to the machine learning problem where the labeled training

data was generated by a distribution (the source distribution) that is different from the one

that the learned classifier should actually be applied to (the target distribution). However,

unlabeled examples from that target distribution may be available. The formal framework

for domain adaptation as learning from a labeled source sample together with an unlabeled

target sample was introduced by Ben-David et al. [2006].

There have been various studies on the theory of domain adaptation learning in this

framework. Most of these studies assume that source and target distribution are related

with respect to a hypothesis class (via the dA-distance of Kifer et al. [2004] or the notion

of discrepancy by Mansour et al. [2009]). Practical studies often make an assumption on

the pointwise weight ratio between source and target density (Sugiyama et al. [2007]).

We introduce a new measure to the analysis of domain adaptation, that generalizes the

pointwise weight ratio. We propose to assume a bound on the weight ratio between source

and target for a fixed class of subsets of the domain space. We also show that (under certain

conditions on the class of subsets) this measure can be estimated from finite unlabeled

source and target samples.

We investigate a popular DA paradigm under these assumptions: Reweighting a labeled

source sample (to make it similar to a target generated sample) using unlabeled data

from the target. This approach has been promoted by practical studies, in particular in

combination with the pointwise weight ratio assumption, for example by Sugiyama et al.

[2008]. Our contributions are two-fold: On the negative side, we prove that even under very

strong assumptions about the relationship between source and target distribution and, in

addition, a realizability assumption for the target task with respect to a very simple class,

the required total sample sizes grow prohibitively. This shows that, in general, reweighting

techniques require unrealistically large training samples. On the other hand, we present a

reweighting algorithm, that, under slight additional assumptions, has a sample complexity

that almost matches our lower bounds. Moreover, the algorithm shows that the (necessarily

large) samples can be mostly unlabeled target samples. These results imply that unlabeled

target generated data is provably beneficial for DA learning.

5



We also present an analysis of Nearest Neighbor learning under the assumption of

Probabilistic Lipschitzness together with the bounded weight ratio. Nearest Neighbor

approaches have not been analyzed for domain adaptation before.

Finally, we provide an analysis of proper DA learning. We present a lower bound that

implies that target generated (possibly unlabeled) data is indispensable in this setting.

Combining this with an approach for proper DA learning that is similar to our paradigm

for proper SSL learning, we establish that unlabeled target samples are provably beneficial

in this setting. The emphasis on proper learning, and the implications on the necessity

and benefits of (unlabeled) target samples in this setting are new to the study of domain

adaptation.

Active Learning

In Active Learning (AL), the learner receives an unlabeled sample and can autonomously

query labels. The goal is to make as few as possible queries while still learning a low-error

classifier. Active learning is applied in practice and there is also a rich body of literature

on the theory of active learning. Most of these studies analyze active learning approaches

that aim to use the queries in order to efficiently reduce a space of relevant hypotheses.

Our work builds on ideas of Dasgupta and Hsu [2008], that take a different approach by

analyzing active learning based on an assumption of clusterability of the data.

Dasgupta and Hsu [2008] propose a general framework for using active label queries

when the learner is provided with a hierarichal clustering of the unlabeled data. We

suggest a specific version of this framework and provide a new analysis of the obtained

procedure under the assumption of Probabilistic Lipschitzness. The algorithm, PLAL, can

be viewed as activising standard learners. It takes an unlabeled sample, queries the labels

of some of its members, and outputs a full labeling of that sample. Assuming the data

satisfies PL, we show that for several common learning paradigms, applying our procedure

as a preprocessing leads to provable label complexity reductions (compared to any passive

learning algorithm, under the same data assumptions).

6



1.2 Organization

Chapter 2 introduces the formal framework of standard machine learning theory. It also

presents some well established results on the sample complexity of learning in this frame-

work. These results serve as a baseline for our investigations of the sample complexity in

non-standard learning settings. Chapter 3 introduces the notion of Probabilistic Lipschitz-

ness. In addition to the formal definition we provide a discussion of this parameter that

includes motivation and comparison to other data assumptions. The chapter also contains

some new results on the sample complexity of standard learning under Probabilistic Lips-

chitzness. Our results on semi-supervised learning are presented in Chapter 4. Chapter 5

contains our study on domain adaptation and Chapter 6 our work on active learning. Each

of these three latter chapters starts with an overview, provides a discussion of related work,

and then proceeds to the formal presentation of the results. We end with some concluding

remarks in Chapter 7.

The content of this thesis is based on four publications: The results on semi-supervised

learning were published in “Unlabeled Data can Speed-up Prediction Time” by Urner et al.

[2011]; the results on domain adaptation were published in “On the Hardness of Domain

Adaptation and the Utility of Unlabeled Target Samples” by Ben-David and Urner [2012]

and “Domain Adaptation–Can Quantity compensate for Quality?” by Ben-David and

Urner [2013] (and the latter publication’s earlier conference version Ben-David et al. [2012]);

the results on active learning were published in “PLAL: Cluster-based active learning” by

Urner et al. [2013].
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Chapter 2

Definitions and Background

2.1 Overview

The focus of this thesis is to compare the number of labels required to learn (the label

complexity or labeled sample complexity) in various learning frameworks. In particular, we

compare the labeled sample complexity of semi-supervised learning, domain adaptation and

active learning to the scenario, where a learner is provided only with a fully labeled i.i.d.

sample from some training distribution and this distribution is identical to the distribution

that the learned classifier will be applied to. In this work, we refer to this baseline setting

as the standard learning framework.

We now introduce our formal model for standard learning. We provide formal notions

of learnability and sample complexity (Section 2.2). We then briefly survey known results

on the sample complexity of learning in this framework (Section 2.3). These results serve

as a baseline for our exploration of the labeled sample complexity in other settings. Our

model of learning is in line with the setting of (agnostic) PAC (Probably Approximately

Correct) learning, a well established framework for analyzing binary classification tasks,

first introduced by Valiant [1984].

8



2.2 The Standard Learning Framework

2.2.1 Basic notions

Mathematics notation We use common notation for sets and functions. In particular,

for sets X and Y , we let Y X denote the set of all functions from X to Y . To state that

some object h is a function from X to Y , we also write h : X → Y . For a function h ∈ Y X

and a subset U ⊆ X, we let h|U denote the restriction of h to U , that is h|U : U → Y and

h|U(u) = h(u) for all u ∈ U .

If P is a probability distribution over some space X and E ⊆ X is an event, we use the

notation Prx∼P [x ∈ E] to denote P (E). If V : X → R is a random variable, we denote its

expectation of V by Ex∼P [V (x)].

Learning theory notation We let X denote a domain set and Y some label set. In

this work, we mostly consider X = [0, 1]d for some d ∈ N and always a binary label

set Y = {0, 1}. Whenever the domain is X = [0, 1]d, we consider it equipped with the

Euclidean metric and denote the distance of two domain points by ‖x − y‖. For x ∈ X ,

we denote the ball of radius r around x by Br(x) := {z ∈ X : ‖x− z‖ ≤ r}.

A hypothesis (or label predictor or classifier), is a binary function h : X → {0, 1}, and

a hypothesis class H is a set of hypotheses. We model a learning task as some distribution

P over X × {0, 1} that generates data. We denote the marginal distribution of P over

X by PX and let l : X → [0, 1] denote the induced conditional label probability function,

l(x) = P (y = 1|x). We call l the labeling function or labeling rule of the distribution P .

We say that the labeling function is deterministic, if l(x) ∈ {0, 1} for all x ∈ X . Otherwise,

we call the labeling function probabilistic.

For some function h : X → {0, 1} we define the error of h with respect to P as

ErrP (h) = Pr
(x,y)∼P

[y 6= h(x)].

For a class H of hypotheses on X , we let the smallest error of a hypothesis h ∈ H with

respect to P be denoted by

optP (H) := inf
h∈H

ErrP (h).
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We call optP (H) the approximation error of the hypothesis class H with respect to P . We

let optP = infh∈{0,1}X ErrP (h) denote the smallest possible error of any classifier over X
with respect to P . We refer to optP as the Bayes optimal error of P . The Bayes optimal

classifier is defined as hbayes(x) = 1 if l(x) ≥ 1/2 and hbayes(x) = 0 if l(x) < 1/2. The

Bayes optimal classifier attains the minimum error optP . Note that, if the labeling function

is deterministic, then optP = 0.

Let S = ((x1, y1), . . . , (xn, yn)) ∈ (X × {0, 1})n be a finite sequence of labeled domain

points. We define the empirical error of a hypothesis with respect to S as

ErrS(h) =
1

|S|
∑

(x,y)∈S

|y − h(x)|.

A standard learner A is an algorithm that takes a sequence S = ((x1, y1), . . . , (xn, yn))

and outputs a hypothesis h : X → {0, 1}. Formally,

A :
⋃∞
m=1(X × {0, 1})m → {0, 1}X .

2.2.2 Learnability and sample complexity

We distinguish (and compare) three types of learning: General learning, class learning and

proper learning. The three learning scenarios differ in the way the quality of the learned

hypothesis is evaluated. Next, we provide formal definitions of learnability and sample

complexity in these scenarios. As the learner receives only one sample, which is labeled, in

the standard framework, the sample complexity of a standard learner is identical to its label

complexity or labeled sample complexity. We start with general definitions of learnability

and sample complexity and then explain how the three special types mentioned above

correspond with these general definitions.

As a disclaimer we point out that characterizing learnability of a hypothesis class in

terms of its VC dimension (see Section 2.3.2), requires some subtle measure theoretic con-

ditions. A commonly assumed such condition is the well behavedness of a class introduced

by Ben-David as part of a study by Blumer et al. [1989]. Virtually any hypothesis class

that is considered in the context of machine-learning applications is well behaved. In this

thesis, we therefore always implicitly assume the well-behavedness a hypothesis class.
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Definition 1 (Learnability). Let X denote some domain. We say that an algorithm A
learns some class of binary classifiers C ⊆ {0, 1}X with respect to a set of distributions

Q over X × {0, 1}, if there exists a function m : (0, 1) × (0, 1) → N such that, for all

distributions P ∈ Q, and for all ε > 0 and δ > 0, when given an i.i.d. sample of size at

least m(ε, δ) from P , then, with probability at least 1 − δ over the sample, A outputs a

classifier h : X → {0, 1} with error at most optP (C) + ε. In this case, for given ε and δ, we

also say that the algorithm (ε, δ)-learns C from m(ε, δ) examples with respect to Q.

Let F ⊂ N((0,1)×(0,1)) be a class of functions from (0, 1)× (0, 1) to N. We use the symbol

≤ for functions in F in the sense of being pointwise smaller, that is we write m ≤ n for

m,n ∈ F if m(x) ≤ n(x) for all x ∈ ((0, 1) × (0, 1)). The pointwise minimum over all

functions in F is defined by minF(x) = min{f(x) : f ∈ F} for all x ∈ (0, 1) × (0, 1).

Note that the pointwise minimum function over all functions m that satisfy the above

learnability condition, also satisfies the condition. We use term “smallest function” in this

sense in the below definition of sample complexity and, as argued, this is well defined in

this context.

Definition 2 (Sample Complexity). We call the smallest function m : (0, 1)× (0, 1)→ N
that satisfies the condition of Definition 1 the sample complexity of the algorithm A for

learning C with respect to Q. We denote this function by m[A,Q, C]. We call the smallest

function m : (0, 1) × (0, 1) → N such that there exists a learner A with m[A,Q, C] ≤ m

the sample complexity of learning C with respect to Q and denote this function by m[Q, C].
We omit Q in this notation, when Q is the set of all distributions over X ×{0, 1}, and call

m[C] the sample complexity of learning C.

General learning

We refer to learning as general learning if the class C considered in the above definition is

the set of all functions from X to {0, 1}. For general learning, the quality of the learned

hypothesis is thus measured with respect to the Bayes optimal error of the data generating

distribution.

Definition 3 (General Learning). We say that an algorithm A learns with respect to a

set of distributions Q over X × {0, 1} if it satisfies Definition 1 for C = {0, 1}X .
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As C is the class of all binary classifiers, we omit it in our notation for the sample

complexity of general learning. We denote the sample complexity of algorithm A for general

learning with respect to Q by m[A,Q] and the sample complexity of general learning with

respect to Q by m[Q].

We employ this definition of learnability mainly in the context of Nearest Neighbor

learning (see Definition 11).

Class learning (PAC learning)

For class learning, the quality of the learned hypothesis is measured with respect to the

approximation error of a fixed hypothesis class H. In this situation, learnability is usually

considered with respect to all distributions or with respect to all distributions that are

realizable by a certain hypothesis class (see Definition 4 for realizability below). This is

the setting called PAC learning (Valiant [1984]). However, in the non-standard learning

frameworks (like semi-supervised learning or active learning) we investigate in this work,

reductions of label complexity are often provably impossible when learnability is considered

with respect to all distributions. Therefore, learning is investigated under specific condi-

tions on the data generating distribution, that is, the class of distributions is restricted.

For a fair comparison of label complexity bounds it is thus necessary to also consider stan-

dard learning under the same conditions. We therefore use Definition 1 as our notion of

class learnability with respect to specific sets of distributions. We now explain how the

framework of PAC learning relates to our definitions.

In the setting of PAC learning, we distinguish between learning in the realizable case

and agnostic learning.

Definition 4 (Realizability). A distribution P over X ×{0, 1} is realizable by a hypothesis

class H ⊆ {0, 1}X if there exist a classifier h ∈ H such that ErrP (h) = 0. We let QXH denote

the class of all distribution over X that are realizable by H, and QdH denote the class of

all such distribution over [0, 1]d.

Definition 5 (PAC Learning). We say that an algorithm A agnostically PAC learns some

hypothesis class H over X if it satisfies Definition 1 with respect to the set of all distribu-

tions over X × {0, 1}. In this case, we also call A an agnostic (PAC) learner. We say that
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A PAC learns some hypothesis class H (in the realizable case) if A satisfies Definition 1

for learnability with respect to the set of distributions QXH and call A a PAC learner in

this case.

In accordance with Definition 2, we denote the sample of complexity of agnostically

PAC learning a class H by m[H] and the sample complexity of PAC learning H in the

realizable case by m[QXH , H].

Proper learning

For proper learning, the learner is required to output a hypothesis from a fixed hypothesis

class H and, as in the class learning scenario, the quality of the output is measured with

respect to the approximation error of H.

Definition 6 (Proper Learning). We say that an algorithm A properly learns some hy-

pothesis class H over X with respect to a set of distribution Q over X ×{0, 1}, if it satisfies

Definition 1 and always outputs a classifier h ∈ H.

We denote by m[A,Q, H, proper] the sample complexity of an algorithm A for properly

learning H with respect to Q and by m[Q, H, proper] sample complexity of properly learning

H with respect to Q. We omit Q in this notation, when Q is the set of all distributions

over X × {0, 1}, and call m[H, proper] the sample complexity of properly learning H.

2.2.3 Use of Landau notation

In this work, we investigate the sample complexity of algorithms and learning tasks as

a function of 1/ε. Whenever we use Landau-notation to denote some functions’ growth

behavior, this function is considered as a function ε only, and we consider the asymptotic

behavior as ε tends to 0.
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2.3 Sample Complexity in Standard Framework

We now present some well established upper and lower bounds on the sample complex-

ity of learning in the three settings presented above. These bounds are the baseline for

our exploration of sample complexity bounds in non-standard learning settings. Most of

these results can be found in Shalev-Shwartz and Ben-David [2014] and we provide a refer-

ence therein for each theorem; note however, that we rephrased them to comply with our

notation.

2.3.1 General learning

We start with a negative result that is known as the No-Free-Lunch principle. It states

that for every learning algorithm, there is a task that the algorithm fails on. In other

words, there is no “universal learner”.

Theorem 7 (No-Free-Lunch; Theorem 5.1 in Shalev-Shwartz and Ben-David [2014]). Let

X be a finite domain, let A be a learner and let m ∈ N, m ≤ |X |/2 be a sample size. There

exists a distribution P over X × {0, 1} with a deterministic labeling function such that

Pr
S∼Pm

[ErrP (A(S)) ≥ 1/8] ≥ 1/7.

Note that the proof of this theorem provided in Shalev-Shwartz and Ben-David [2014]

contains the statement that there exists a distribution P over X×{0, 1} with a deterministic

labeling function such that

ES∼Pm [ErrP (A(S))] ≥ 1/4.

We will also employ this version of the No-Free-Lunch statement.

The impossibility result stated in the No-Free-Lunch Theorem is a consequence of

allowing all possible labeling functions in the class of distributions to be learned. Roughly

speaking, if a learner gets to see the labels of less than half of the domain points, it can

only guess the labels of the remaining points, and this guess will be wrong half of the time

(leading to the expected error exceeding 1/4).
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The No-Free-Lunch Theorem implies that there exists no algorithm that learns the

class of all binary classifiers with respect to the class of all distributions over an infinite

domain. One task of the theory of machine learning is thus, to formally model properties

of “benignity” of learning tasks that enable learnability. Ideally, such properties should

also comply with our intuition about “naturally occurring learning tasks. We then analyze

general learning only with respect to the restricted classes of distributions that have these

properties.

One restriction to avoid the No-Free-Lunch phenomenon is to consider only distribu-

tions whose labeling function satisfies a Lipschitz condition (this represents one possible

way of modeling “benignity” of a distribution). Recall the definition of (standard) Lips-

chitzness:

Definition 8 (Lipschitz condition; Definition 12.6 in Shalev-Shwartz and Ben-David

[2014]). A function f : Rd → R is L-Lipschitz if

|f(x)− f(y)| ≤ L · ‖x− y‖

holds for all x, y ∈ [0, 1]d.

If the labeling function of a distribution is deterministic, and the domain is X = [0, 1]d,

then the Lipschitz condition enforces the labeling to be constant. To avoid this, we relax the

requirement of Lipschitzness to only hold on sets of positive probability mass (as formalized

in the next definition). We introduce the following notation for classes of distributions over

[0, 1]d × {0, 1} whose labeling function satisfies the Lipschitz condition:

Definition 9. (Classes of Lipschitz distributions; deterministic Lipschitz labeling func-

tions) Let X = [0, 1]d. We let QdL denote the class of distributions over X × {0, 1} whose

labeling function is L-Lipschitz. Further, we let QdL,det denote the class of all distributions

P over X × {0, 1} with a deterministic labeling function l such that

Pr
x∼PX ,y∼PX

[ |l(x)− l(y)| > L · ‖x− y‖ ] = 0.

Slightly abusing the notions, we also refer to the labeling function of the distribution as

being L-Lipschitz in this case .
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The above situation of a deterministic labeling function being Lipschitz (with respect to

a distribution) can also be viewed as classifying with a margin (where a Lipschitz-constant

L corresponds to a margin of 1/2L). As this term is more common for classifiers (e.g. for

halfspaces), we now also formally introduce the notion of a margin-classifier.

Definition 10. (Margin classifier; Realizability with a margin) Let X ⊆ Rd be some

domain, P a distribution over X × {0, 1}, and h : X → {0, 1} a binary classifier. We say

that h is a γ-margin classifier with respect to P if

Pr
x∼PX ,y∼PX

[ h(x) 6= h(y) ∧ ‖x− y‖ < γ ] = 0.

If this holds for some function h ∈ H for a hypothesis class H ⊆ {0, 1}X , then we also say

that P is realizable by H with margin γ.

The Nearest Neighbor (NN) algorithm is an example of a learner that learns the class

of all distributions whose labeling function satisfies the Lipschitz-condition if the labeling

is deterministic.

Definition 11 (Nearest Neighbor algorithm; Section 19.1 in Shalev-Shwartz and Ben–

David [2014]). Given a sequence S = ((x1, y1), . . . (xm, ym)), the Nearest Neighbor algo-

rithm NN returns a classifier NN(S) that labels every domain point according to the label

of its nearest sample point in S. Formally, for all x ∈ [0, 1]d:

NN(S)(x) = yi, where i = argmini∈{1,...,m}‖x− xi‖.

For this algorithm, the following learning guarantee holds for the set of distributions

with general (probabilistic) labeling rules:

Theorem 12 (Nearest Neighbor Learning; Theorem 19.3 in Shalev-Shwartz and Ben-David

[2014]). Let P a distribution in QdL. Then

ES∼Pm [ErrP (NN(S))] ≤ 2 optP + 4 L
√
d m−

1
d+1 .

Note that this result does not comply with our definition of learnability as the error

bound states convergence to twice the Bayes optimal error. This can be improved by
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classifying with (the average label of) k-Nearest Neighbors (see, for example, Theorem 19.5

in Shalev-Shwartz and Ben-David [2014]). In this work, we employ the 1-Nearest Neighbor

algorithm for several results (Section 4.5 in Chapter 4 and Section 5.6 in Chapter 5). Thus,

with Nearest Neighbor algorithm, we always refer to the 1-Nearest Neighbor algorithm.

One could extend those results to using k-Nearest Neighbors and analogously improve the

convergence behavior.

The above bound yields an O(1/εd+1) bound of the sample size in order to guarantee

excess error (the (4L
√
dm−

1
d+1 )-part of the bound) smaller than ε. In the case of deter-

ministic labeling, we can obtain better upper bounds on the label complexity of general

learning under the assumption of L-Lipschitzness, in that the dependence on ε is only

linear. The following is a special case of Theorem 20, which we prove in Section 3.4.1.

Theorem 13. The sample complexity of general learning the class of distributions QdL,det

satisfies

m[QdL,det](ε, δ) ≤ m[NN,QdL,det](ε, δ) ≤
(
L
√
d
)d 6

εδe
.

On the other hand, there are also lower bounds on the sample complexity of learning

this class:

Theorem 14 (NN lower bound; Theorem 19.4 in Shalev-Shwartz and Ben-David [2014]).

For any L > 1, and every learner A, there exists a distribution P ∈ QdL,det, such that for

sample sizes m ≤ (L+1)d

2
we have

Pr
S∼Pm

[ErrP (A(S)) ≥ 1/8] ≥ 1/7.

Thus, in summary, we get that the sample complexity of general learning the class of

distributions QdL,det satisfies

(L+ 1)d

2
≤ m[QdL,det](ε, δ) ≤

(
L
√
d
)d 6

εδe

for all ε ∈ (0, 1/8), δ ∈ (0, 1/7) and L > 1.
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2.3.2 Class learning

The established framework to investigate learnability of binary hypothesis classes is PAC

(Probably Approximately Correct) learning. The PAC learning framework considers learn-

ability of a hypothesis class H with respect to all distribution. The No-Free-Lunch result

(Theorem 7) implies that learnability in this sense for the hypothesis class of all binary

classifiers is impossible. In the previous section, we have seen that restricting the class of

distributions with respect to which we aim to learn, is a way of overcoming the pessimistic

message of the NFL theorem. Another way to avoid the NFL phenomenon, is to restrict

the hypothesis class, with respect to which we measure the performance of the output

classifier.

We therefore focus our attention to classes of bounded VC-dimension. The VC-

dimension is a measure of complexity of classes of binary classifiers that was introduced

by Vapnik and Chervonenkis [1971]. It is well-known that it characterizes the PAC learn-

ability of a hypothesis class. A class is learnable (in the sense of Definition 1 with respect

to the class of all distributions) if and only if it has bounded VC-dimension (see Theorem

16 below).

Definition 15 (Shattering, VC-dimension; Definition 6.5 in Shalev-Shwartz and Ben–

David [2014]). Let X be a domain and H ⊆ {0, 1}X hypothesis class over X . We say that

H shatters a subset S of X if the restriction of H to S is equal to the set of all binary

functions with domain S. Formally,

{h|S : h ∈ H} = {0, 1}S.

The VC-dimension of H is the maximal size of a subset of X that H shatters and is denoted

as VCdim(H).

The following theorem provides upper and lower bounds on the sample complexity

of class learning in the realizable and in the agnostic case. The upper bounds in these

results are achieved by the ERM (Empirical Risk Minimization) principle. Given a labeled

sample S from some learning task, an ERM algorithm for some hypothesis class H returns

a classifier from H with smallest empirical error on the sample S. Recall that QXH denotes

the class of all distributions over X × {0, 1} that are reliable by the class H.
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Theorem 16 (Sample complexity of class learning; Theorem 5 in Shalev-Shwartz and

Ben-David [2014]). Let X be some domain, let H be a hypothesis class of functions from

X to {0, 1} with VCdim(H) <∞. Then, there are absolute constants C1, C2 such that the

following holds:

Realizable case: H is PAC learnable with sample complexity

C1
VCdim(H) + ln(1/δ)

ε
≤ m[QXH , H](ε, δ) ≤ C2

VCdim(H) ln(1/ε) + ln(1/δ)

ε
for all ε, δ ∈ (0, 1).

Agnostic case: H is agnostically PAC learnable with sample complexity

C1
VCdim(H) + ln(1/δ)

ε2
≤ m[H](ε, δ) ≤ C2

VCdim(H) + ln(1/δ)

ε2

for all ε, δ ∈ (0, 1).

2.3.3 Proper learning

A lower bound on the sample complexity of class learning is also a lower bound on the

sample complexity of proper learning. As the upper bounds in Theorem 16 are realized by

the ERM principle, they also hold for proper learning.

Corollary 17 (Sample complexity of proper learning). Let X be some domain, let H be

a hypothesis class of functions from X to {0, 1} with VCdim(H) < ∞. Then, with the

constants C1, C2 from Theorem 16 the following holds:

Realizable case: H is properly learnable with sample complexity

C1
VCdim(H) + ln(1/δ)

ε
≤ m[QXH , H, proper](ε, δ) ≤ C2

VCdim(H) ln(1/ε) + ln(1/δ)

ε
for all ε, δ ∈ (0, 1).

Agnostic case: H is properly learnable with respect to all distributions with sample com-

plexity

C1
VCdim(H) + ln(1/δ)

ε2
≤ m[H, proper](ε, δ) ≤ C2

VCdim(H) + ln(1/δ)

ε2

for all ε, δ ∈ (0, 1).
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Chapter 3

Probabilistic Lipschitzness

3.1 Motivation

In this chapter we introduce the notion of Probabilistic Lipschitzness (PL), a property that

measures the of marginal-label relatedness of a distribution with respect to the geometry

of the space. PL bounds the mass of points for which the labeling function changes signif-

icantly in a small area around these points. We employ this property mostly in the case

of deterministic labeling. In this case, for every radius λ, PL bounds the mass of points,

that lie in label-heterogeneous balls of radius λ by a function φ(λ).

Many common learning paradigms implicitly rely on the labeling function to comply

with the geometry of the space, or, put more simply, they rely on close-by points being

likely to have the same label (or conditional label probability). Obvious examples of such

paradigms are Nearest Neighbor methods or algorithms that classify with halfspaces (or

other geometrically defined classifiers). The success of such paradigms suggests that, for

many label prediction tasks, there is a significant correlation between the geometry of the

space, the marginal distribution over the data points and the labels. Under a suitable data

representation, or feature choice, we expect that the closer two instances are, the less likely

they are to have different labels. Probabilistic Lipschitzness is a measure that quantifies

this correlation.
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The notion of learnability introduced in the previous chapter considers a worst case

scenario: In order to meet the success criteria, an algorithm has to perform well with

respect to all possible data generating distributions. However, applications often perform

better than what is suggested by the lower bounds in that framework of analysis. This

is particularly the case for settings that exploit information from unlabeled data, such as

semi-supervised learning or active learning. For both these learning regimes, there are lower

bounds on the label complexity in the presence of unlabeled data that meet the complexity

of learning in the standard regime (without access to unlabeled data). Despite these

pessimistic prospects, many practical applications successfully boost learning performance

by taking information from unlabeled data into account. A theory that aims to explain

the benefits of unlabeled data for learning thus needs to identify properties, that are both

realistic (in that we can expect real world tasks to comply with the property), and yet

mathematically sufficiently accessible to allow for a sound analysis. PL aims to combine

these requirements, by formally modeling an intuition that is implicit in many machine

learning algorithm designs.

We now proceed to defining PL, and providing some examples of distributions and their

Probabilistic Lipschitzness. In Section 3.3, we then discuss other data-assumptions that

have been considered in previous studies, either in order to analyze standard learning not

from a worst case perspective or in order to account for the utility of unlabeled data in

non-standard learning regimes. Finally, in Section 3.4 we present some upper and lower

bounds on the sample complexity of standard learning under PL.

Probabilistic Lipschitzness was introduced by Urner et al. [2011]. A very similar notion

has been proposed earlier by Steinwart and Scovel [2007] (see discussion in Section 3.3.1

below).

3.2 Definition

We define Probabilistic Lipschitzness as a relaxation of standard Lipschitzness (see Defini-

tion 8). Loosely speaking, for PL, we require Lipschitzness to only hold with some (high)

probability. That is, we allow the Lipschitz-condition to be violated for some fraction of the
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points. How large this fraction of points is allowed to be, is determined by the distance of

the two points involved in the Lipschitz condition (larger distance implies more allowance).

While the standard Lipschitz condition can be readily applied to probabilistic labeling

rules l : X → [0, 1], it has strong implications in the case of deterministic labeling func-

tions. A Lipschitz constant λ for a distribution with deterministic labeling function forces

a 1/λ gap between differently labeled points. Thus, the standard Lipschitz condition for

deterministic labeling functions implies that the data lies in label homogeneous regions

(clusters) that are separated by 1/λ-margins of weight zero with respect to the distribu-

tion. This is a rather strong assumption of label conform clusterability. PL weakens this

assumptions by allowing the margins to “smoothen out”. The relaxation from Lipschitz-

ness to Probabilistic Lipschitzness is thus particularly relevant to the deterministic labeling

regime. It allows to model the marginal-label relatedness without trivializing the setup.

Definition 18 (Probabilistic Lipschitzness). Let X be some Euclidean domain and let

φ : R → [0, 1]. We say that f : X → R is φ-Lipschitz with respect to a distribution PX

over X if, for all λ > 0:

Pr
x∼PX

[
Pr
y∼PX

[ |f(x)− f(y)| > 1/λ ‖x− y‖ ] > 0

]
≤ φ(λ)

If, for some distribution P = (PX , l), the labeling function l is φ-Lipschitz, then we also say

that P satisfies the φ-Probabilistic Lipschitzness. We denote the set of all such distributions

over [0, 1]d × {0, 1} by Qdφ and the set of all such distributions over [0, 1]d × {0, 1} with

deterministic labeling functions by Qdφ,det. Given some PL-function φ and some ε, we let

φ−1(ε) denote the smallest λ, such that φ(λ) ≥ ε.

Note, that it would be straightforward to define PL for functions on any metric space.

The above definition reflects that, in this work, we focus on Euclidean domains.

If a distribution P is φ-Lipschitz for some function φ, then there always exists a non-

decreasing function φ′ ≤ φ (pointwise) such that P is also φ′-Lipschitz. It is easy to see

that the pointwise minimum function φ that satisfies Definition 18 for some distribution

P is non-decreasing and satisfies φ(0) = 0. For all PL-functions φ considered in this work,

we will thus implicitly assume that φ is non-decreasing and satisfies φ(0) = 0. We will also

refer to that minimum function as the Probabilistic Lipschitzness of the P .
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If a distribution P = (PX , l) with a deterministic labeling function l is φ-Lipschitz, then

the weight of points x that have a positive mass of points of opposite label in an λ-ball

around them, is bounded by φ(λ). This definition generalizes the standard definition of

Lipschitzness (Definition 8) in the following way: For points x and y at distance smaller

than λ with opposite labels, the standard Lipschitz condition for Lipschitz constant 1/λ is

violated as |l(x)− l(y)| = 1 > 1/λ‖x− y‖. Thus, if the labeling function l of a distribution

is L-Lipschitz then it satisfies Probabilistic Lipschitzness with the function φ(λ) = 1 if

λ ≥ 1/L and φ(λ) = 0 if λ < 1/L.

3.2.1 Examples of Probabilistic Lipschitzness

Linear Separators Let PX be the uniform distribution over X = [0, 1]d. If l is a linear

separator, then φ(λ) = C · λ, for some constant C.

Ball Let PX be the uniform distribution over X = [0, 1]d. For some ball B ⊆ X we

let l label points in B with label 1 and points outside B with label 0. Then the

Probabilistic Lipschitzness is bounded by φ(λ) = C · λd for some constant C.

Generalized Clusters To demonstrate how the marginal distribution influences the Prob-

abilistic Lipschitzness, we consider distributions over X = [0, 1] and let the labeling

function l be 0 for x ≤ 1/2 and 1 for x > 1/2. Now we let the density d of the

distribution form clusters by setting d(x) = c · (x − 1/2)α for a suitable constant c

(that ensures that d is a density function). Then we have for all λ < 1/2 that

Pr
x∼PX

[
Pr
y∼PX

[ |l(x)− l(y)| > 1/λ ‖x− y‖ ] > 0

]
≤
∫ 1/2+λ

1/2−λ
c · (x− 1/2)αdx

≤ 2 ·
∫ λ

0

c · xαdx ≤ C · λα+1

for some constant C. We will also refer to this type of PL function (φ(λ) = C · λα)

as polynomial Lipschitzness.
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In the same manner, by letting the marginal distribution form clusters over the

domain, we can construct an example of (what we call) exponential Lipschitzness,

that is a distribution with PL function bounded by φ(λ) = C ·e−1/λ for some constant

C. Again, we consider distributions over X = [0, 1] and let the labeling function l be

0 for x ≤ 1/2 and 1 for x > 1/2. Let the density d of the distribution be d(1/2) = 0

and d(x) = ce−1/|1/2−x| for x 6= 1/2, for a suitable constant c (that ensures that d is

a density function). Now, we have for λ ≤ 1/2 that

Pr
x∼PX

[
Pr
y∼PX

[ |l(x)− l(y)| > 1/λ ‖x− y‖ ] > 0

]
≤
∫ 1/2+λ

1/2−λ
ce−1/|1/2−x|dx

= 2 ·
∫ λ

0

ce−1/xdx

≤ 2 ·
∫ λ

0

c
1

x2
e−1/xdx ≤ C · e−1/λ

for some constant C.

3.3 Comparison to Other Data Assumptions

We now discuss other data properties that have been investigated to account for various

improvements of learning performance in comparison to the standard framework. Some

studies show that under certain conditions the performance of standard learning improves.

The margin exponent (Section 3.3.1) has been introduced in the context of studying the

performance of SVMs. The Tsybakov noise condition (Section 3.3.2) was first employed

to prove rates of the sample complexity of standard learning that interpolate between the

realizable and the agnostic case. Other properties, that we discuss here, were introduced

in the context of studying the benefits of unlabeled data. The cluster assumption (Section

3.3.4) is often invoked to motivate the design of algorithms that exploit unlabeled data

in practice. Niceness and Local conservativeness (Section 3.3.3) and various notions of
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compatibility of a distribution with a hypothesis class (Section 3.3.5) were introduced in

studies on the theory of learning with unlabeled data.

We loosely distinguish between data assumptions and prior knowledge assumptions. We

refer to a condition or property as prior knowledge, if the property is used by the algorithm.

We call a condition a data assumption if it is used only in the analysis of the algorithms

performance. In this work, PL is only used as a data assumption.

Some of the properties we discuss now, are aimed to bound the “noise” of the labeling

function of a distribution. The term noise is here used in the sense of the labeling function

not being deterministic. In accordance with this, in the following discussions, a probabilis-

tic labeling function l : X → [0, 1] is considered “noisy” at points, where it is close to the

value 1/2 (that is, both labels are assigned with high probability).

3.3.1 Margin exponent

Steinwart and Christmann [2008] propose a parameter called margin exponent in the con-

text of analyzing performance of Support Vector Machines (SVMs). In the case of determin-

istic labeling functions, the margin exponent coincides with our Probabilistic Lipschitzness

for PL-functions of the form φ(λ) = C · λn (for some constant C ∈ R and some n ∈ N).

Using our notation, the margin exponent is defined as follows: Let P be a distribution

over X × {0, 1}, with labeling function l : X → [0, 1]. We define a function fl for this

distribution by

fl(x) =


0 if l(x) < 1/2

1 if l(x) > 1/2

1/2 if l(x) = 1/2.

Now, the distribution has margin exponent α, if there exists a constant c > 0 such that

Pr
x∼PX

[∃ y ∈ Bt(x) : |fl(x)− fl(y)| = 1] ≤ c · tα.

Like PL in the deterministic case, the above quantity bounds the mass of points that are

close to the decision boundary and quantifies how fast this mass shrinks with the distance

parameter t. The formulation of the margin exponent is sensitive to changing the values
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of the labeling function on sets of measure zero (as also pointed out by Steinwart and

Christmann [2008]). Our formulation of PL avoids this sensitivity.

Chapter 8 of Steinwart and Christmann [2008] presents various examples of distribu-

tions with bounded margin exponent. These can equally serve as examples for a bound on

the Probabilistic Lipschitzness of these distributions.

Steinwart and Christmann [2008] show that when the margin exponent is combined

with a condition on the noise rate and marginal distribution near the decision boundaries

of data, it can be used to bound the approximation error of Gaussian kernels. Intuitively,

close to the decision boundary, the noise is required to be high and the density is required

to be low. A version of this combination of margin exponent and bounds on the noise

rate was earlier introduced by Steinwart and Scovel [2007] under the name geometric noise

exponent.

3.3.2 Tsybakov noise condition

The Tsybakov noise condition was first introduced by Mammen and Tsybakov [1999] and

is now a well known measure of how noisy a labeling function is. It controls the mass

of points with labeling function l close to 1/2, by bounding the rate at which this mass

decreases as a function of the distance |l(x)− 1/2|.

The noise condition can be formally stated as follows: There exist parameters C > 0,

α > 0 and t∗ < 1/2 such that

Pr
x∼PX

[|l(x)− 1/2| ≤ t] ≤ C · tα

for all 0 ≤ t ≤ t∗. Mammen and Tsybakov [1999] use this condition in order to prove sample

complexity rates that interpolate between the rates for class learning in the realizable

case and the rates in the agnostic case. For these results, the Bayes optimal classifier is

assumed to be a member of some known hypothesis class. The bounds further employ a

measure of complexity for the hypothesis class in question (a measure different from the

VC-dimension), which is argued to hold for some classes with smooth decision boundaries.
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Tsybakov [2004] generalizes these results to the case where the Bayes classifier is only

assumed to be a member of some collection of known hypothesis classes.

The above noise condition is weakest, if there exists a small α such that the inequality

holds. At the other extreme, the strongest condition of the above type is bounding l(x)

away from 1/2, that is |l(x) − 1/2| > η for some η > 0 (with probability 1). This latter

condition is also known as the Massart condition. Massart and Nédélec [2006] provide

results on the sample complexity of learning under this condition.

The Massart condition has also been used to show benefits of active learning. Balcan

et al. [2007] provide guarantees on the label complexity of active learning of halfspaces in

the realizable case and under the Massart low noise condition when the Bayes optimal is

a halfspace.

These low noise conditions are incomparable with our Probabilistic Lipschitz condition.

While PL imposes smoothness on the labeling function (with respect to the underlying

marginal), these conditions bound the labeling function away from the “noisy value” 1/2.

In turn, the low noise conditions are typically employed to generalize results that were first

obtained in the realizable setting. This is done by allowing noise that complies with the

condition while still requiring the Bayes optimal classifier to a member of a fixed hypothesis

class. PL, in contrast, becomes relevant for a different type of agnostic regime. While we

mostly consider PL with deterministic labeling functions (that is with “zero noise” in the

above low-noise framework), we do not impose any restrictions on the Bayes optimal (which

is in our case identical to the deterministic labeling function).

3.3.3 Niceness and local conservativeness

Urner et al. [2012] investigate learnability from labels that are of low quality, for example

as obtained via crowd-sourcing. This scenario is modeled as learning from two types of

supervision: a strong teacher (domain expert) that provides labels according to the true

labeling function; and a weak teacher (crowd) that labels according to an average of the

labeling function in the neighborhood of a point. Urner et al. [2012] show that under

some smoothness conditions on weak teachers’ labels, learning is possible in this scenario
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from few expert labels (in comparison to the standard learning setting that considers only

expert labels) and many weak labels. The smoothness conditions proposed in this work

are referred to as niceness and local conservativeness.

Niceness formalizes the property of having not too many label-heterogeneous neighbor-

hoods. Like PL, this can be viewed as stating that the underlying marginal distribution

over the instances is sparse around the label decision boundaries. If the labeling function

of the weak teacher is denoted by πs(x) (that is, πs is the labeling function obtained by

averaging the labels of points in a neighborhood according to some notion of similarity s),

niceness is formally defined as follows:

For a function ψ : [0, 1/2] → [0, 1], we say that a distribution P is ψ-nice if for all

0 ≤ λ ≤ 1/2

Pr
x∼PX

[min{πs(x), 1− πs(x)} ≥ λ] ≤ ψ(λ).

That is, the average label over a local neighborhoods is, for most of the instances, either

close to 0 or close to 1. Note that this condition is similar to the Tsybakov low noise

condition. However, the Tsybakov condition is a requirement on the labeling function

l itself, while niceness imposes a similar requirement on the neighborhood-averages πs.

Further, in contrast to the noise bounding function in the Tsybakov condition, the niceness

function ψ is not required to be of any particular type. If the neighborhood is a ball around

the point, niceness can also be viewed as a generalization of Probabilistic Lipschitzness.

To prove learnability from weak teachers, Urner et al. [2012] impose a second condition

on the weak teachers’ labeling function. Local conservativeness bounds the probability of

points that have a label different from the vast majority of their neighbors. Formally, for

a function ϕ : [0, 1]→ [0, 1], a distribution P is ϕ-locally conservative if for all 0 ≤ λ ≤ 1.

Pr
x∼PX

[|πs(x)− l(x)| > 1− λ] ≤ ϕ(λ).

That is, for most of the instances, the average label over their neighborhood is a good

indication of the probability of having label 1 for that instance.

While these requirements can be viewed as relaxations of the Probabilistic Lipschitzness,

the learnability results for this setting assume access to a large amount of weakly labeled
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data (that is a large amount of information about the average labeling around a point)

and, in addition, the possibility to actively query the true labeling function.

3.3.4 Cluster assumption

Many studies on utilizing unlabeled data in practice invoke the cluster assumption or low-

density assumption to motivate their methods. The cluster assumption implies that the

data can be divided into clusters that are (almost) label-homogeneous and are separated

by low-density regions. Label conform clusterability has been cited for justifying practical

learning paradigms in all three learning settings considered in this work: semi-supervised

learning, domain adaptation and active learning.

Most notably, semi-supervised algorithm designs are often motivated by stating the

cluster assumption. Chapelle and Zien [2005] refer to this assumption when proposing a

method for learning distances for transductive SVM. Rigollet [2007] proposes some for-

malization of the cluster assumption and presents a semi-supervised learning paradigm

that relies on the label homogeneity of the clusters. Singh et al. [2008] analyze the use of

unlabeled data in semi-supervised learning for a setup where the data is generated as label

homogeneous clusters.

Shi and Sha [2012] propose a method for using unlabeled data from the target domain

in a domain adaptation learning scenario. They motivate their approach with a setting

where the label classes are separable and, in addition, where source and target clusters

overlap. Thus, the label clusters are identifiable in source and target and it is possible

to match the appropriate source and target groups. Patra and Bruzzone [2012] design an

active learning scheme that relies on the data satisfying the cluster assumption.

Probabilistic Lipschitzness can be viewed as a way of formalizing the cluster assumption.

PL implies that areas where both labels occur (that is the decision boundaries) can not be

too heavy with respect to the underlying marginal distribution. PL thus provides one way

of formally modeling and quantifying the cluster-assumption.
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3.3.5 Compatibility with a class

It is interesting to note that, while practical studies often refer to some general notion

of clusterability of the data, work on the theory of learning with unlabeled data mostly

employs data assumptions that model some sort of compatibility of the data generating

distribution with the hypothesis class to be learned.

Balcan and Blum [2005] propose a PAC-style framework for semi-supervised learning

of a hypothesis class. For this, they introduce a notion of compatibility of a classifier with

the unlabeled data distribution. This is defined in terms of a pointwise compatibility, that

is a function χ : H × X → [0, 1]. The compatibility of a hypothesis h ∈ H is then defined

as the expectation of this function and can be estimated from unlabeled data. An example

for such a notion of compatibility for the class H of halfspaces is the margin (which can

be estimated from the distances of unlabeled points to the halfspace). Balcan and Blum

[2005] suggest to use unlabeled data to reduce the hypothesis space to only compatible

classifiers and then use labeled data to learn a good classifier from this reduced hypothesis

space. Under the assumption that the optimal (in terms of classification performance)

classifier is compatible with the underlying marginal distribution, this framework admits

finite sample learning bounds from both labeled and unlabeled data.

For domain adaptation, Ben-David et al. [2010a] analyze how well an ERM classifier for

a labeled source sample performs respect to some target distribution. Obviously, without

any further assumptions on the relatedness between the two tasks, the target-error of a

source-ERM classifier can be arbitrarily high. To bound this error, Ben-David et al. [2010a]

introduce two parameters that measure the relatedness between source and target task with

respect to a hypothesis class H. The distance between the source and target distribution

is measured by the dH-distance, which is defined as the maximum difference between the

source weight and the target weight of the symmetric difference between two classifiers in

H. Formally, for a source distribution P S and target distribution P T ,

dH(P S
X , P

T
X ) = sup

h1,h2∈H
|P S
X (h1∆h2)− P T

X (h1∆h2)|.

See also Section 5.4.2 in Chapter 5. The second parameter, λH , introduced in this work is

the infimum, over all functions in H, of the sum of source and target error. The obtained
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error bound is then the sum of the usual error bound and these parameters. The success

of this domain adaptation framework thus crucially depends on these parameters being

small, that is, it depends on source and target being similar with respect to the class H

that is to be learned. Kifer et al. [2004] argue that the dH distance can be estimated from

finite (unlabeled) samples. These notions and bounds have been generalized by Mansour

et al. [2009] to real-valued function classes and more general loss functions. Here as well,

the class H is assumed to serve the purpose of bridging between the source and target

distribution.

The most prominent parameter that has been employed to analyze the performance

active learning is the disagreement coefficient. It was introduced by Hanneke [2007]. For a

hypothesis class H, it bounds the disagreement regions around the optimal classifier. More

precisely, let h∗ denote a classifier in H of minimum error. The disagreement coefficient of

a class H with respect to a distribution PX over a domain X of diameter D, is

sup
r∈[0,D]

PX (
⋃
h∈H:PX (h∆h∗)≤r(h∆h∗))

r
.

For example, the disagreement coefficient of the class of initial segments of the unit inter-

val under the uniform distribution over the unit interval is 2. The disagreement coefficient

measures “into how many dimensions” the disagreement regions h∆h∗ spread. This be-

comes relevant for active learning strategies that aim to employ label queries to reduce the

hypothesis space to contain only classifiers that are close to the optimal classifier h∗. The

disagreement coefficient has been used in various studies to provide performance guaran-

tees for active label querying strategies (Dasgupta et al. [2008], Beygelzimer et al. [2010],

Beygelzimer et al. [2009]).

Probabilistic Lipschitzness differs from these assumptions in that its definition does not

involve any specific hypothesis class. It is a property of the data generating distribution

only. Results obtained under this assumption thus typically hold for learning any (learn-

able) hypothesis class. In addition, while the above mentioned properties can be viewed

as prior knowledge assumptions, we use PL only as a data assumption
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3.4 Learning under Probabilistic Lipschitzness

In this section, we prove upper and lower bounds on the sample complexity of learning

under Probabilistic Lipschitzness of the underlying distribution.

3.4.1 Upper bounds

We start with providing upper bounds for general learning. These bounds are obtained

by generalizing the sample complexity bounds of the Nearest Neighbor algorithm under

standard Lipschitzness to the case of Probabilistic Lipschitzness.

For the upper bounds on the error probability of the Nearest Neighbor algorithm, we

need the following technical lemma to bound the probability of points that do not have

a close neighbor in the sample set S. This lemma and its proof can be found in Shalev-

Shwartz and Ben-David [2014].

Lemma 19 (Lemma 19.2 in Shalev-Shwartz and Ben-David [2014]). Let C1, C2, . . . , Cr be

a sequence of subsets of some domain set X and let S be a set of points of size m, sampled

i.i.d. according to some distribution PX over X . Then we have

ES∼(PX )m

 ∑
i:Ci∩S=∅

PX [Ci]

 ≤ r

me
.

We start with bounding the sample complexity of Nearest Neighbor learning with re-

spect to the class of distributions that have deterministic labeling functions and satisfy

PL. Recall that Qdφ,det denotes the class of distributions over [0, 1]d that satisfy the φ-PL

assumption and have a deterministic labeling function.

Theorem 20. Let φ : R→ [0, 1]. The sample complexity of the Nearest Neighbor algorithm

with respect to the class Qdφ,det, is bounded by

m[NN,Qdφ,det](ε, δ) ≤
2

ε δ e

( √
d

φ−1(ε/2)

)d

.
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Proof. Let λ = φ−1(ε). Note that we can cover X = [0, 1]d with r =
(√

d/λ
)d

boxes

(axis-alligned rectangles) C1, C2, . . . Cr of side-length λ/
√
d and diameter λ. For a domain

point x ∈ X = [0, 1]d we denote the box (from the above cover) that contains x by C(x).

We can bound the error of the Nearest Neighbor classifier NN(S) for a sample S as

follows:

ErrP (NN(S)) = Pr
x∼PX

[NN(S)(x) 6= l(x)]

≤ Pr
x∼PX

[SX ∩ C(x) = ∅] + Pr
x∼PX

[ ∃ y ∈ C(x) : l(y) 6= l(x)],

where SX denotes the projection of S to X (SX contains the sample points in S without

their labels). That is, a point will only be labeled erroneously by NN(S), if it falls into a

box that was not hit by the sample S or if it falls into a box that contains points of the

other label.

By the choice of λ, the probability that a (test-)point falls into a box that contains

sample points of the opposite label is bounded by ε.

We now show that for m ≥ 1
εδ

( √
d

φ−1(ε)

)d
, the total mass of boxes that are not hit by a

sample of size m is bounded by ε as well (with probability at least (1−δ) over the sample).

This implies that, for such samples, the error of the Nearest Neighbor classifier is bounded

by 2ε.

With Markov’s inequality, Lemma 19 implies that for any ε > 0 and m we have

Pr
S∼Pm

 ∑
i:Ci∩S=∅

P [Ci]

 > ε

 ≤ r

εme
=

(√
d/λ
)d

εme
.

Setting this to be smaller than δ and solving for m now shows that a sample of size

m >

(√
d/λ
)d

εδe

suffices to guarantee that with probability at least (1− δ), the error of the output function

NN(S) is at most 2ε. Substituting ε/2 for ε yields the statement in the theorem.
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We now provide an upper bound for the sample complexity of Nearest Neighbor learning

for the case of general (possibly probabilistic) labeling functions. Recall that Qdφ denotes

the class of all distributions over [0, 1]d × {0, 1} that satisfy the φ-PL assumption.

Theorem 21. Let the domain be the unit cube, X = [0, 1]d, let φ : R → [0, 1]. Then, for

all λ > 0, for all P ∈ Qdφ,

ES∼Pm [ErrP (NN(S))] ≤ 2 optP + φ(λ) + 4λ−1
√
dm−

1
d+1 .

Proof. For λ > 0, we define the “non Lipschitz region” U ⊆ X of the domain as

U := {x ∈ X : Pr
z∼PX

[|l(x)− l(z)| > 1/λ‖x− y‖] > 0}.

By the definition of Probabilistic Lipschitzness, we have PX (U) ≤ φ(λ). We have

ErrP (NN(S))

= Pr
(x,y)∼P

(NN(S)(x) 6= y)

≤ PX (U) Pr
(x,y)∼P

(NN(S)(x) 6= y | x ∈ U) + PX (X \ U) Pr
(x,y)∼P

(NN(S)(x) 6= y | x ∈ X \ U)

≤ φ(λ) + 1 · Pr
(x,y)∼P

(NN(S)(x) 6= y | x ∈ X \ U).

For the term Pr(x,y)∼P (NN(S)(x) 6= y | x ∈ X \ U), we can employ the error bound in

Theorem 12, and thereby obtain the claimed bound on the expected error.

This is also a special case of Theorem 52 that deals with the performance of the Nearest

Neighbor algorithm in the context of domain adaptation. We provide a full proof of that

Theorem in Chapter 5.

3.4.2 Lower bounds

We now present lower bounds on the sample complexity of standard learning under the

assumption of Probabilistic Lipschitzness. We start with a lower bound for general learning:
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Theorem 22. Let φ : R → [0, 1] with φ(1) ≥ 1. For every passive learning algorithm A
and every ε > 0 there exists a distribution P ∈ Qdφ,det such that,

m <
d

32ε

(
1

φ−1(8ε)

)d−1

implies that

ES∼Pm [ErrP (A(S))] > ε.

Proof. The No-Free-Lunch theorem (Theorem 7) states that if a learner gets a sample of

size less than half the size of the domain, then there is a distribution with a deterministic

labeling function over this domain, such that the expected error of the learner for this

sample size is at least 1/4.

We construct a distribution on [0, 1]d that satisfies the φ-Lipschitzness as follows: We

set P (0̄) = 1 − 8ε and distribute the remaining mass of 8ε uniformly on points of a grid

G of sidelength λ = φ−1(8ε) “at the far side of the surface of” [0, 1]d, i.e. the points

x = (x1, . . . xd) where at least one of the xi has value 1 and the others have values in

{iλ : 1 ≤ i ≤ d}. Now P is φ-Lipschitz under any labeling of the grid points.

There are |G| ≥ d/(λ)d−1 such grid points. We show that with probability at least 1/2,

a sample of size at most m hits less than |G|/2 gridpoints. The expected number of such

hits is bounded by 8εm, formally

ES∼Pm [|S ∩G|] = 8εm.

Now Markov’s inequality yields

Pr
S∼Pm

[|S ∩G| > |G|/2] ≤ 16εm

|G|
.

Now m < d
32ε

( 1
φ−1(8ε)

)d−1 and |G| ≥ d
(λ)d−1 = d

(φ−1(8ε))d−1 implies

Pr
S∼Pm

[|S ∩G| > |G|/2] <
16ε · d

32ε
( 1
φ−1(8ε)

)d−1

d
(φ−1(8ε))d−1

=
1

2
.

The above mentioned no-free-lunch result implies that, there is a labeling for the points on

G, such that the learner A has expected error at least 1
4
·8ε = 2ε given that the sample hits
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at most half of the grid points. Since we have shown that this happens with probability

at least 1/2 for samples of size at most m, the learners’ expected error over all samples of

size at most m is at least ε.

We now provide a lower bound on the sample complexity of proper learning under

Probabilistic Lipschitzness.

Theorem 23. Let X = [0, 1]d and let φ : R → [0, 1] with φ(1) ≥ 1. For any v ∈ N there

exists a class hypothesis class H over X with VC-dimension v such that

m[Qdφ,det, H, proper] = Ω(1/ε2).

Proof. Consider two points x and y at distance 1 and let H be such that for every h ∈ H,

h(x) = h(y). A distribution in Qdφ,det can give two different labels to these points. Then,

estimating a bias of 1/2 ± ε on the weight of these two points requires a sample size of

Ω(1/ε2). See Section 4.4.2 in Chapter 4 for a more precise argument of this type.

3.5 Discussion

In this chapter, we formally defined Probabilistic Lipschitzness, a data assumption that is

relevant for several results in this thesis. We view PL as a property that formally captures

the cluster assumption, a notion that is often invoked to motivate practical methods for

learning with unlabeled data. In contrast to other data-assumptions or notions of prior

knowledge that have been employed in theoretical studies in this area, PL is a property of

the data generating distribution only. It does not involve any notion of compliance with a

specific hypothesis class and is used in the analysis of our algorithms only.

Machine learning is often preceded by a process of feature selection or feature construc-

tion. Probabilistic Lipschitzness complies with an intuition of how such features should

behave and can thus also provide a measure for the quality of a feature representation. It

would be intriguing to investigate if PL, or a similar notion, could serve as an objective

for developing a theoretical framework for feature learning.
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Section 3.3.3 suggests a way to generalize the Probabilistic Lipschitzness condition.

Instead of just measuring the mass of (even only mildly) heterogeneous neighborhoods, we

could consider the function that assigns every point the heterogeneity of a neighborhood

around it. Interpreting this function as a new labeling function and imposing a low noise

condition (like the Tsybakov noise condition) provides a measure that is weaker than PL,

but captures a similar property. It would be interesting to see if the results, that are here

derived under the assumption of PL, generalize to this case.
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Chapter 4

Proper Semi-Supervised Learning

4.1 Overview

Semi-Supervised Learning (SSL) is a framework of learning a classifier from a small number

of labeled examples and many unlabeled examples. The goal of SSL is to use the available

unlabeled data to save label supervision. This is widely used in practice. However, from

a theoretical point of view, the question whether (or under which conditions) unlabeled

data can provably be beneficial for reducing the number of labels needed for learning, is

not well understood yet. (We discuss previous work on this topic in the next section.)

Most work on SSL focuses on how using unlabeled data can improve the accuracy

of the learned classifiers. Here, we analyze how unlabeled data can be beneficiary for

constructing better classifiers in other respects. We propose an algorithmic framework

for semi-supervised learning that utilizes unlabeled examples for learning classifiers that

satisfy specific, user-defined, requirements. For example, an application might require the

learned classifier to run fast at prediction time. Or, a user might be interested to learn

a label predictor that is easily interpretable. Linear separators (halfspaces) are examples

of classifiers that satisfy both these requirements. Therefore, we particularly explain how

our framework applies to learning halfspaces. However, the results of the chapter apply to

(and are derived for) learning arbitrary classes of finite VC-dimension.
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We formally analyze semi-supervised learning under such requirements. We propose

an algorithmic framework for this setting and present conditions under which we provably

save labels in comparison to standard (fully supervised) learning. Most of the content of

this chapter appeared in a publication by Urner et al. [2011].

Outline of our results We model learning with requirements on the output classifier

as proper learning (see Definition 6). That is, we specify a collection of predictors H,

consisting of the classifiers that meet the prior requirements. We call this collection H

the output class. Our goal is to find a low error classifier that is a member of the output

class H. In many cases such a restriction renders the learning task harder. If the learner

has some prior knowledge about the learning task, he can exploit this prior knowledge to

learn some classifier with only a small number of samples. However, this classifier may not

necessarily comply with the requirements, that is it may not be from the class H. Thus,

if the learner is required to output a classifier from H, he might require more examples

despite the prior knowledge about the task.

We propose to first ignore this restriction to the output class and use the labeled sample

to solve the unrestricted learning task, that is to make full use available prior knowledge

and learn some classifier of low error. As a second step, we use the unlabeled data to

transform the learned classifier into a predictor from H. More concretely, our learning

algorithms follow a, rather simple, 2-step paradigm:

1. Use the labeled sample to learn a classifier that is not necessarily a member of the

output class H, but has small prediction error.

2. Apply that learned classifier to label the points of the unlabeled input sample, and

feed that now labeled sample to a fully supervised H-learner.

Since labeled samples are needed only for the first step of this paradigm, the labeled

sample complexity of our algorithm equals the sample complexity of the unrestricted learn-

ing task (in the standard framework). Consequently, whenever the search for an unre-

stricted low error classifier has a relatively low sample complexity, our SSL paradigm
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allows us to find a low error predictor in the output class H with fewer labeled-examples

than what is required by any fully supervised algorithm for properly learning H.

We investigate two scenarios where such a saving of labeled examples occurs. In Section

4.4, we analyze our algorithmic paradigm when, on top of the output class H, which is

determined by the task, the learner is aware of a different (possibly larger) class, the

accurate class H ′, that contains a low error classifier. Then, in Section 4.5, we investigate

an alternative approach, that does not require the prior knowledge of such an H ′. Instead,

it uses the Nearest Neighbor algorithm in the first step of our paradigm. This second

version is a sensible approach if the learner has good reasons to assume that the data is

clusterable.

We now start with discussing relevant previous work (Section 4.2). We introduce a

formal framework for SSL in Section 4.3 and then proceed to present the two scenarios

mentioned above.

4.2 Related Work

Semi-supervised learning is a very active research area. Probably the most prolific direction

is the introduction of algorithmic approaches and describing their application to real life

learning tasks. Both Chapelle et al. [2006] and Zhu [2008] provide an overview on various

algorithmic techniques that are used for semi-supervised learning in practice. Most of the

work along these lines emphasizes experimental results and is not supported by formal

performance guarantees.

Among practically oriented studies most relevant to our work on proper SSL, is a study

by Liang et al. [2008]. This work also deals with the setup of using unlabeled data to

improve the runtime of the learned classifier. It discusses learning for Natural Language

Processing (NLP) tasks, where expressive conditional random field (CRF) predictors have

low error but are slow to compute. It proposes to use unlabeled data to replace the CRF

predictors by fast computable Independent Logistic Regression (ILR) classifiers. Liang

et al. [2008] provide an upper bound on the sample complexity of the procedure, but do

not address the reduction of sample sizes that is due to the use of unlabeled samples.
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Their algorithmic paradigm is similar to ours and, in a sense, our work here can be viewed

as generalizing that work. Prior to that, Bucila et al. [2006] showed experimentally how

a similar idea can be applied to replace complex ensembles by compact neural network

predictors.

At the other end of the spectrum there is purely theoretical research that focuses on

abstract models. There are two lines along which SSL has been theoretically analyzed. In

the first setting there are specific assumptions on the data generating distribution. Castelli

and Cover compare the value of labeled and unlabeled samples in specific generative models,

where they assume that the learner knows the distributions generating each label-class, but

not the mixing-parameter (Castelli and Cover [1995], Castelli and Cover [1996]).

The other direction of theoretical research on SSL deals with methods that do not

impose any prior assumptions about the data-generating distributions. Kääriäinen [2005]

shows that in the realizable case, access to unlabeled data can reduce the error of the

learned classifier by a factor of 2. In this setting, the unlabeled data is used to choose

a classifier, among the empirical risk minimizers, that minimizes the maximum distance

to another classifier in this set. However, it remains open in which cases such a classifier

actually exists so that the error bound would be reduced. Furthermore, the work of Ben-

David et al. [2008], shows that, even for the simple case of learning initial segments on the

unit interval, unlabeled data cannot reduce the error by more than a factor of 2, if the

marginal of the underlying distribution is a continuous function.

Balcan and Blum [2005] propose a framework for SSL that allows for PAC learning

analysis and sample complexity bounds. They suggest to use a notion of a compatibility

function that assigns a higher score to classifiers which “fit nicely” with respect to the

marginal distribution. If compatible classifiers can be identified by unlabeled samples, these

can be used to reduce the hypothesis space to only highly compatible classifiers, which

in turn might reduce the labeled sample complexity for learning this now smaller class.

However, it remains open whether (or under which conditions) a significant decrease of

the hypothesis space actually occurs. Furthermore, their results also concern the realizable

case only.

The negative results of Ben-David et al. [2008] imply that unlabeled data can only
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be provably beneficial under assumptions on the relationship between the marginal dis-

tribution and the labels. A popular assumption in that context is the so-called cluster

assumption, postulating that the data contains clusters that have homogeneous labels. Un-

der such an assumption, SSL works by using the unlabeled observations to identify these

clusters, and then considering only classifiers that are constant on each cluster. Closely

related to the cluster assumption are the smoothness assumption and the related low den-

sity assumption which suggests that the classification decision boundaries should lie in low

density regions (Chapelle and Zien [2005]).

There is a line of work that proposes practical algorithms inspired by this intuition and

provides some analysis of the proposed algorithms under this assumption. For example,

Rigollet [2007] provides a mathematical formalization of (a version of) the cluster assump-

tion. This work assumes that the data contains a collection of countably many connected

components of high density (with respect to some threshold density level) and that the

Bayes optimal classifier of the distribution is constant on those clusters. This work then

restricts its attention to learning classifiers that also label the set of identified clusters ho-

mogeneously and analyses the benefits of unlabeled data for this task. The risk of reducing

the set of potential classifiers according to the clusterability assumption in this manner,

is that the learner may be left with only poorly performing classifiers, if the presumed

label-structure relationship fails to hold.

4.3 Formal Framework for SSL

In this section we provide a formal framework for proper SSL learning.

As in standard learning (see Chapter 2), a learning task is modeled as a distribution P

over X ×{0, 1}, where X is some domain set. In this chapter, we assume that the labeling

function l of the distribution P is deterministic, (i.e. l(x) ∈ {0, 1} for all x ∈ X ). Given

a hypothesis class H ⊆ {0, 1}X , an H-proper SSL learner A takes a labeled sample S,

generated i.i.d. by P , and an unlabeled sample T , generated i.i.d. by PX , and outputs a

function h ∈ H. Formally,

A : (
⋃∞
m=1(X × {0, 1})m ×

⋃∞
n=1X n ) → H .
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We now present notions of learnability and label-complexity for proper semi-supervised

learning. These are adaptations of our Definitions 6 and 2 to this setting.

Definition 24 (Proper SSL Learning). We say that an SSL learner A properly learns

some hypothesis class H over X with respect to a set of distribution Q over X × {0, 1},
if there exist functions m : (0, 1) × (0, 1) → N and n : (0, 1) × (0, 1) → N such that, for

all distributions P ∈ Q, for all ε > 0 and δ > 0, when given an i.i.d. (labeled) sample of

size at least m(ε, δ) from P and an i.i.d. (unlabeled) sample of size at least n(ε, δ) from

PX , then, with probability at least 1 − δ over the samples, A outputs a classifier h ∈ H
with error at most ErrP (H) + ε. In this case, we also say that the SSL learner properly

(ε, δ)-learns H with respect to Q.

It is commonly assumed that unlabeled data is abundantly available, and therefore we

are not as concerned with the size of the unlabeled sample in semi-supervised learning as

we are with bounding the number of labeled examples we use. The following definition of

the labeled sample complexity of proper SSL learning reflects this emphasis on the size of

the labeled sample. We define the labeled sample complexity of an algorithm (or a learning

task) as the smallest function m for the size of the labeled sample for which there exists

some (possibly large) function n for the size of the unlabeled sample such that m and n

satisfy the condition in Definition 24. Alternatively, one could define the labeled sample

complexity stagewise, first with respect to a fixed function n, and then taking the minimum

over all these. To avoid unneeded notation, we chose to omit this step. However, we do

provide concrete bounds on the unlabeled sample sizes in all of our results (as opposed to

mere existence proofs that would also comply with the definition below).

Definition 25 (Labeled Sample Complexity of Proper SSL Learning). We call the smallest

function m : (0, 1)× (0, 1)→ N for which there exist a function n : (0, 1)× (0, 1)→ N such

that m and n together satisfy the condition of Definition 24 the labeled sample complexity of

the SSL learner A for properly learning H with unlabeled data with respect to Q. We denote

this function by mssl[A,Q, H, proper]. We call the smallest function m : (0, 1)× (0, 1)→ N
such that there exists an SSL learner A with mssl[A,Q, H, proper] ≤ m the labeled sample

complexity of properly learning H with unlabeled data with respect to Q and denote this

function by mssl[Q, H, proper].
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4.4 Proper SSL Using a Large Accurate Class

One scenario in which we can make use of unlabeled data for learning a classifier from H,

is the learner having prior knowledge of a richer class of predictors H ′ that has low (or

even zero) approximation error with respect to the data-generating distribution. To allow

for label savings, its approximation error needs to be much lower than that of the best

predictor in the class H. We call this class H ′ the accurate class.

If the data generating distribution is realizable (see Definition 4) by a class H ′ of finite

VC-dimension, we know that it can be learned (in the standard, fully supervised, setup)

with a sample complexity of C2
VCdim(H′) ln(1/ε)+ln(1/δ)

ε
with the constant C2 from Theorem

16. In this case, our algorithm first learns a low error classifier from this accurate class

H ′ (with the stated number of labeled examples), and then uses the learned classifier to

label an unlabeled sample and learn a classifier from the output class H with this. The

labeled sample complexity of our paradigm is O(1
ε
) for any such pair of accurate class H ′

and output class H.

On the other hand, we prove a lower bound of Ω( 1
ε2

) labeled samples, for certain pairs

of output class H and accurate class H ′. Note that we cannot simply invoke the lower

bound for proper learning from Corollary 17. For the upper bound on the labeled sam-

ple complexity that we present here, the learner has the additional prior knowledge of

realizability by the accurate class H ′. Therefore, a fair comparison requires establishing

a lower bound on the labeled sample complexity under those same conditions. We prove

that a lower bound of Ω( 1
ε2

) holds for the task of learning linear separators (as the output

class) without unlabeled examples for distributions that are realizable by some learnable

accurate classes H ′. It follows that in such scenarios, the labeled sample complexity of our

SSL learning algorithm is strictly lower than that of any fully supervised proper learner

for the output class H of linear classifiers.

4.4.1 Upper bound

Let H be the output class of our H-proper SSL learner and let H ′ be an accurate class.

We denote by A(H,H′) the version of our two stage SSL algorithm, that first learns H ′ using
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the labeled examples and then learns H using the predictions of the previous stage on

unlabeled examples.

We first derive an upper bound on the labeled sample complexity of A(H,H′). For this,

we need the following lemma that states the robustness of agnostic learners (see Definition

5) to small shifts in the data generating distribution. More concretely, it states that if an

agnostic learner gets a sample that was labeled by a low-error function, instead of the true

labeling function of the distribution, the error of its output will not deteriorate too much.

This will allow us to use the function that is learned in the first step of our paradigm for

labeling some unlabeled sample and feed this to an agnostic learner.

Recall that m[A, H](ε, δ) denotes the sample size required by A to (ε, δ)-learn H for an

agnostic learner A.

Lemma 26. Let P be a distribution over X ×{0, 1}, let f : X → {0, 1} be a function with

ErrP (f) ≤ ε, let A be an agnostic learner for some hypothesis class H over X . Then, if

given an i.i.d. sample of size m[A, H](ε, δ) from P ’s marginal PX labeled by f , A outputs

a hypothesis h with

ErrP (h) ≤ optH(P ) + 3ε

with probability at least (1− δ).

Proof. Let P ′ be the distribution that has the same marginal as P (i.e. P ′X = PX ) and f

as its deterministic labeling rule. We first show that

|ErrP (h)− ErrP ′(h)| ≤ ε (4.1)

holds for any classifier h : X → {0, 1}. We have

ErrP (h) = Pr
(x,y)∼P

[y 6= h(x)]

≤ Pr
(x,y)∼P

[y 6= h(x) ∧ y = f(x)] + Pr
(x,y)∼P

[y 6= h(x) ∧ y 6= f(x)]

≤ ErrP ′(h) + ε,
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and similarly

ErrP ′(h) = Pr
x∼PX

[f(x) 6= h(x)]

= Pr
(x,y)∼P

[f(x) 6= h(x)]

≤ Pr
(x,y)∼P

[f(x) 6= h(x) ∧ y = f(x)] + Pr
(x,y)∼P

[f(x) 6= h(x) ∧ y 6= f(x)]

≤ ErrP (h) + ε.

This implies Equation 4.1. Now, for the optimal hypothesis h∗ in H with respect to P we

get

ErrP ′(h
∗) ≤ ErrP (h∗) + ε = optP (H) + ε,

and thus

optP ′(H) ≤ ErrP ′(h
∗) ≤ optP (H) + ε.

This implies, that when we feed an i.i.d. sample S of size m[A, H](ε, δ) from P ′ to the

agnostic learner A, it outputs a classifier h with

ErrP ′(h) ≤ optP ′(H) + ε ≤ optP (H) + 2ε

with probability at least (1 − δ), where the first inequality follows from the definition of

an agnostic learner. The last inequality implies for this function h that

ErrP (h) ≤ ErrP ′(h) + ε ≤ optH(P ) + 3ε.

Using this lemma, it suffices to prove that the output of the first step of the algorithm

on the labeled sample S results in a classifier of small probability of error. Then, when

we feed the unlabeled sample T labeled by this function to an agnostic proper learner

A for H, this learner is still guaranteed to output a good predictor. More precisely, for

each of our positive results, we will argue that the first step outputs a classifier of error

at most ε/3 with probability at least 1 − δ/2. Then, if we label an unlabeled sample of

size m[A, H, proper](ε/3, δ/2) with this classifier and use this to agnostically learn H with

46



A in the second step, Lemma 26 implies that our paradigm outputs a classifier from H of

error at most ε with probability at east 1− δ.

With this, we obtain the following result for the labeled sample complexity of AH,H′ :

Theorem 27. There exists a constant C > 0 such hat for every pair of hypothesis classes

H, H ′, every ε, δ ∈ (0, 1) and every distribution P over some domain X × {0, 1}, if

optH′(P ) = 0 then, given access to a labeled sample S of size

C
VCdim(H ′) ln(1/ε) + ln(1/δ)

ε
,

and an unlabeled sample T of size

C
VCdim(H) + ln(1/δ)

ε2
,

with probability at least (1− δ), we have

ErrP (A(H,H′)(S, T )) ≤ optH(P ) + ε.

Proof. To prove the bound, we make use of standard results of VC-theory. We set C ′ to

be the constant C2 from Theorem 16. Then, as H ′ is realizable, Theorem 16 tells us that

a sample size of

C ′
VCdim(H ′) ln(3/ε) + ln(2/δ)

ε/3

suffices for ERM(H ′) to output a classifier from H ′ that has error at most ε/3 with prob-

ability at least 1− δ/2. Similarly, for ERM(H) a labeled sample of size

C ′
VCdim(H) + ln(2/δ)

(ε/3)2

suffices to output a classifier with error at most ε/3 with probability at least 1 − δ/2.

Now Lemma 26, and setting C to substitute ε for ε/3 in the above formulas, implies the

claim.

Note that, even in cases where VCdim(H) < VCdim(H ′), for small enough values of

ε this upper bound on the sufficient size of the labeled sample is smaller than the known
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lower bound of Ω
(

VCdim(H)+log(1/δ)
ε2

)
on the required labeled sample size for learning a

hypothesis from H in the agnostic setup when no additional unlabeled sample is available.

We show in the next subsection, that there are specific distributions for which we can prove

the lower bound of Ω( 1
ε2

) on the sample complexity of learning from labeled examples only,

even under the additional assumption of realizability by some accurate class H ′.

4.4.2 Lower bound

For our lower bound, we let H be the class of halfspaces in Rd and let H ′ be the class

of all unions of members of H. A halfspace hw : Rd → {0, 1} is a classifier that labels

each x ∈ Rd by 1 if sign(wx) is positive and by 0 otherwise, where w ∈ Rd is a vector

defining the halfspace and wx denotes the inner product between w and x. A union of two

halfspaces hw and hv is a classifier hwv that labels an element x ∈ Rd with 1 if and only if

at least one of hw and hv assigns label 1 to x.

Further, we let Q be the family of all data probability distributions over Rd × {0, 1}
that are realizable by H ′.

Theorem 28. The sample complexity of (ε, δ)-agnostically learning halfspaces in Rd with

respect to the set of distributions Q, is bounded from below by

1− (4ε)2

2(4ε)2
ln

(
1

8δ(1− 2δ)

)
.

The rest of this subsection is devoted to presenting the proof of this theorem. Our

proof follows the idea of the proofs of lower bounds for the sample complexity of learning

in Chapter 5 of Anthony and Bartlett [1999].

Let PT be the set of probability distributions that have the discrete set

T = {(z1, 1), (z2, 0), (z3, 1)}

of three distinct, collinear points as their support. We require z1, z2 and z3 to lie on a line

in Rd and z2 to lie between z1 and z3 on this line. Note that PT ⊆ Q, as the labeling on

z1, z2 and z3 can be realized by a union of two halfspaces.

48



We now describe the main idea of our proof: Clearly, no halfspace can label all of these

three point correctly, so the choice of the optimal classifier in H depends on the relative

weights that the input distribution assigns to these points. Having access to a large sample

(labeled or unlabeled) will allow approximating these weights to arbitrary accuracy (as the

size of the sample goes to infinity), and therefore a labeled sample that contains all three

of these points will allow detecting the optimal H predictor. In case the weights of z1 and

z3 are roughly the same, say the difference is only ε, we can adapt the lower bound from

Lemma 5.1 in Anthony and Bartlett [1999] (fully cited as Theorem 29 below) to show that

we need at least 1−(1.5ε)2

2(1.5ε)2 ln
(

1
8δ(1−2δ)

)
= Ω(1/ε2) sample points to decide which point has

more weight. Thereby we show that, without access to any unlabeled samples, the number

of labeled sample points required to properly learn H with error below optP (H) + ε is

Ω(1/ε2)

To formally prove our lower bound, we consider the following problem and reduce it to

our learning problem:

The two-coin-problem with parameter ε: There are two coins, for one the proba-

bility of Heads is 1/2 + ε/2 and for the other it is 1/2− ε/2. Let us denote the coin with

higher heads probability CH and the other coin CT . One of these coins is tossed m times.

A learner gets the outcome of these m coin tosses, and has to determine which of the two

coins was used.

Theorem 29 (Lemma 5.1 in Anthony and Bartlett [1999]). If the coin is picked randomly,

with probability 0.5 for CH and 0.5 for CT , then, for any 0 < δ < 1/4 and any 0 < ε < 1,

if the number of seen coin tosses, m, is less than

2
1− ε2

2ε2
ln

(
1

8δ(1− 2δ)

)
then any algorithm for the two-coin problem (i.e., a function that takes the outcome of the

coin tosses as input and outputs either CH or CT ) has probability of error larger than δ.

Reduction of the two-coin problem to properly learning H with respect to

P:

Given a series (c1, . . . , cm) of outcomes of coin tosses, ci ∈ {Heads, Tails}, we generate

a labeled sample S = ((x1, y1), . . . (xm, ym)) for our learning problem as follows:
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1. Define a function f : {Heads, Tails} → T by f(Heads) = (z1, 1) and f(Tails) =

(z3, 1).

2. Draw a an i.i.d. sample p1, . . . , pm of size m from a Bernoulli distribution, where

each pi is 1 with probability 2/3 and 0 with probability 1/3.

3. To construct the sample S, set (xi, yi) to be f(ci) if pi = 1, and set (xi, yi) to be

(z2, 0) whenever pi = 0.

4. Finally, let S∗(c1, . . . , cm) be ((x1, y1), . . . , (xm, ym)).

The operator S∗ defined above transforms a series of coin tosses to a sample from the

set T . Depending on the coin that generated the series of coin tosses, this sample can be

viewed as an i.i.d. sample from one of the following two distributions:

• Either from S∗(CH), the distribution over T with Pr[(z1, 1)] = (1+ ε)/3, Pr[(z3, 1)] =

(1− ε)/3 and Pr[(z2, 0)] = 1/3,

• or from S∗(CT ), the distribution over T with Pr[(z1, 1)] = (1 − ε)/3, Pr[(z3, 1)] =

(1 + ε)/3 and Pr[(z2, 0)] = 1/3.

Note that both these distributions are members of our class of distributions PT .

Lemma 30. For any ε, δ ∈ (0, 1) and any m ∈ N the following holds: If there exists

an algorithm A that (ε/4, δ)-properly learns H over T from m labeled examples (without

unlabeled samples), then there also exists an algorithm AC that solves the two-coin problem

with parameter ε correctly from m coin tosses with probability greater than (1− δ).

Proof. Given the result ofm i.i.d. coin tosses, (c1, . . . , cm), the labeled sample S∗((c1, . . . , cm))

is an i.i.d. sample from the distribution S∗(CH) or from the distribution S∗(CT ), depending

on which coin was chosen. Now, given a learning algorithm, A, for distributions supported

on T that outputs hypotheses from H, we define an algorithm AC for the two-coin problem

by setting AC(c1, . . . , cm) = CH if and only if A(S∗((c1, . . . , cm))(z1) = 1; that is, if the

halfspace that A outputs on the input S∗((c1, . . . , cm)) labels the point z1 positively.
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It is easy to see that, for each of the distributions S∗(CH) and S∗(CT ), the true error of

the optimal predictor from H is (1− ε)/3. However, whenever AC predicts the wrong coin,

the error of the hypothesis A(S∗((c1, . . . , cm))) is at least 1/3 (it is 1/3 if the halfspace

A(S∗((c1, . . . , cm))) labels both z1 and z3, and thus also z2, with 1; it is (1+ ε)/3 if it labels

the lighter point with 1 but z2 with 0; and it is larger in all other cases). Now note that

1/3 = ErrP (H) + ε/3 > ε/4, where P ∈ {S∗(CH), S∗(CT )} is the distribution induced by

the coin that was tossed.

Now Lemma 30 and Theorem 29 imply Theorem 28.

4.4.3 Reduction of label complexity

The scenario analyzed above demonstrates that there are situations in which access to

unlabeled samples provably reduces the labeled sample complexity of proper learning.

Consider the set PT of distributions over the set T from the previous section. For a concrete

example, let H ′ be the class of unions of halfspaces and H be the class of halfspaces over

R2. The class H ′ has VC-dimension 5 and every distribution over T is realizable by H ′.

Therefore the upper bound from Theorem 27 applies. Thus, using AH,H′ , we can properly

learn H, which has VC-dimension 3, with a labeled sample of size C 5 ln(1/ε)+ln(1/δ)
ε

, provided

that we have also access to an unlabeled sample of size C 3+log(1/δ)
ε2

, where C is the constant

from Theorem 27.

Combining this with the lower bound of Ω(1/ε2) in Theorem 28 for properly learning H

under the same conditions from labeled samples only, yields that in this situation the use

of unlabeled data is provably beneficial, as our algorithmic paradigm requires less labeled

data than any fully supervised proper learner.

Corollary 31. Let et H ′ be some class of finite VC-dimension over Rd such that the class

QH′ of distributions that are realized by H ′ contains the set PT of distributions from Section

4.4.2 for some set of collinear points T = {z1, z2, z3}. Consider the task of proper learning

the class H of halfspaces in Rd with respect to QH′. For this task, the labeled sample

complexity of our SSL algorithm A(H,H′) is strictly below the labeled sample complexity of
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any proper learning algorithm in the standard framework (that does not have access to

unlabeled examples).

4.5 Proper SSL Using Nearest Neighbors

We now investigate our paradigm when the first step is carried out using a Nearest Neighbor

algorithm. The obvious advantage of this version over the SSL algorithm discussed above is

that it does not require the prior knowledge of any class of low (or even zero) approximation

error. The Nearest Neighbor algorithm (NN) takes a labeled sample and, when required

to label some domain point, assigns to it the label of its nearest neighbor in the labeled

sample (with respect to some underlying metric). See Section 2.3.1 for a precise definition.

We investigate the sample complexity of the NN-based SSL paradigm as a function of

the degree by which the learning task conforms with the cluster assumption, as quanti-

fied by our probabilistic Lipschitzness measure. We first consider the case that the data

distribution can be partitioned into homogeneously labeled clusters with some margin sep-

arating any pair of differently labeled clusters. Recall that, if this is the case, the labeling

function satisfies the standard Lipschitz condition (Definition 8). We show that in this

case the labeled sample complexity of our algorithm is O(1/ε) (for any learnable output

class H, and, in particular, for the task of prediction with linear halfspaces).

We then proceed to show that the NN-based SSL algorithm can also be beneficial

under milder conditions. In particular, if the underlying data distribution satisfies some

probabilistic Lipschitzness condition, the labeled sample complexity of our SSL algorithm

is C · 2
εδ

( √
d

φ−1(ε)

)d
for some constant C, where d is the dimension of the Euclidean space in

which our data is embedded, for any learnable output class H.

Finally, we again argue that properly learning the class of linear separators without

access to unlabeled data requires a (labeled) sample size of Ω( 1
ε2

) even under certain as-

sumptions on the probabilistic Lipschitzness. We then combine the upper and lower bounds

on the labeled sample complexity of proper learning under these conditions to establish the

benefits of unlabeled data for proper learning under probabilistic Lipschitzness for specific

PL-functions φ.
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4.5.1 Upper bounds

In this section we provide upper bounds on the labeled sample complexity of our algorithmic

paradigm when a Nearest Neighbor algorithm is used in the first step. We denote this

version of our paradigm by ANN(S, T ).

We begin by considering the scenario where the data is scattered in separated, homoge-

neously labeled clusters. It is easy to see that under this assumption, the Nearest Neighbor

algorithm will have close-to-zero error if the input sample is large enough to hit (almost)

each of these clusters. As explained in Section 2.3.1, this situation can be modeled by

requiring that the labeling function is L-Lipschitz (where 1/L is a lower bound on the

separation between any two differently labeled clusters). Recall that QdL,det denotes the set

of distributions over [0, 1]d × {0, 1} with a deterministic, L-Lipschitz labeling function.

Theorem 32. Let X = [0, 1]d be the unit cube of Rd and let H be a hypothesis class of

finite VC-dimension over X . Then, there exists a constant C such that, for all ε, δ ∈ (0, 1),

for all L > 0, and for every distribution P ∈ QdL,det, we have with probability at least 1− δ
over an i.i.d. labeled sample S of size at least(

L
√
d
)d 6

εδe

and an i.i.d. unlabeled sample T of size at least

C
VCdim(H) + ln(1/δ)

ε2

that

ErrP (ANN(S, T )) ≤ ErrP (H) + ε.

Proof. This result follows from Lemma 30 by noting the following:

1. A sample size of
(
L
√
d
)d

6
εδe

suffices to output classifier of error at most ε/3 with

confidence at least 1− δ/2 (see Theorem 13).

2. C VCdim(H)+ln(1/δ)
ε2

= m[H, proper](ε/3, δ/2) is the sample complexity of properly (ε/3, δ/2)-

learning H for a suitable constant C (see Corollary 17).
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Thus, if the data lies in well separated clusters, the required labeled sample size grows

only linearly with 1/ε. Next, relaxing this condition, we assume that the probability of two

differently labeled points decays smoothly as they get closer. Recall that Qdφ,det denotes

the class of all distribution over [0, 1]d×{0, 1} whose labeling function is deterministic and

satisfies the φ-probabilistic Lipschitzness.

Theorem 33. Let X = [0, 1]d be the unit cube of Rd, let H be a hypothesis class of finite

VC-dimension over X and let φ : R → [0, 1] be some PL-function. Then, there exists a

constant C such that, for all ε, δ ∈ (0, 1), and for every distribution P ∈ Qdφ,det, we have

with probability at least 1− δ over an i.i.d. labeled sample S of size at least

2

ε δ e

( √
d

φ−1(ε)

)d

and an unlabeled i.i.d. sample T of size at least

C
VCdim(H) + ln(1/δ)

ε2

we have that

ErrP (ANN(S, T )) ≤ optH(P ) + ε.

Proof. The proof is identical to that of Theorem 32 except for here citing Theorem 20 for

the sample complexity learning under probabilistic Lipschitzness for the size of the labeled

sample.

4.5.2 Lower bound

In this section we argue that we can adapt the lower bound for proper learning from Section

4.4.2 to the setting of proper learning with respect to distributions whose labeling function

satisfies some probabilistic Lipschitzness. To adapt the construction from that section,

we need to be able to place three collinear points z1, z2, z3 in the space [0, 1]d and set the
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labeling l(z1) = 1, l(z2) = 0 and l(z3) = 1. In order for this labeling to comply with the

probabilistic Lipschitz function φ (with the weights chosen in that construction), we need

φ(|z1− z3|/2) = 1. If this holds, we can place z2 at equal distance from z1 and z3 (between

the two) and give it the required label. Note that the largest distance we can enforce

between two points in [0, 1]d is
√
d. Thus, we get the following result:

Corollary 34. Let φ : R → [0, 1] be a non-decreasing function with φ(
√
d/2) = 1. Then

the sample complexity of any standard proper learner for the class of halfspaces with respect

to a set of distributions that includes Qdφ,det is at least Ω( 1
ε2

).

The above lower bound holds in particular for the function φ that corresponds to

standard (2/
√
d)-Lipschitzness. (Recall that this is the function φ with φ(λ) = 0 of 0 ≤

λ ≤
√
d/2 and φ(λ) = 1 for λ >

√
d/2.)

4.5.3 Reduction of labeled sample complexity

Theorem 32 provides an upper bound O(1/ε) on the number of labels that our algorithm

requires to properly learn any class H of finite VC-dimension over [0, 1]d with respect

to distributions whose deterministic labeling function satisfies the standard Lipschitzess.

Thus, the lower bound of Theorem 34 implies that, for the class of distributions with

Lipschitz constant at most L ≤ 2/
√
d, unlabeled data is provably beneficial for properly

learning the class of halfspaces over [0, 1]d, as the labeled sample complexity gets reduced

from Ω(1/ε2) to O(1/ε).

For the case of probabilistic Lipschitzness, we consider two cases for the function φ:

First, we set φ(λ) = λn (polynomial Lipschitzness). In this case the upper bound on the

labeled sample complexity in Theorem 33 becomes

2

ε δ

(
21/n
√
d

ε1/n

)d

= O

((
1

ε

) d+n
n

)
.

Thus, the labeled sample complexity of our paradigm is o(1/ε2) if n > d. On the other

hand, we have φ(
√
d/2) ≥ 1 for any n if d ≥ 4. With this, the lower bound of Theorem 34
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applies and we have established that unlabeled data provably reduces the labeled sample

complexity of properly learning halfspaces over [0, 1]d, where d ≥ 4, with respect to the

class of distributions that satisfy the φ-probabilistic Lipschitzess for the function φ(λ) = λn

with n > d.

Next, we consider φ(λ) = e(λ−1)/λ = e · e−1/λ (exponential Lipschitzness). In this case

the upper bound on the labeled sample complexity in Theorem 33 becomes

2

εδ

(√
d ln(2e/ε)

)d
= O

(
ln(1/ε)d

ε

)
= o

(
1

ε2

)
.

Further, we have φ(
√
d/2) ≥ 1 if d ≥ 4. Thus, the lower bound of Theorem 34 applies and

we have established that unlabeled data provably reduces the labeled sample complexity

of properly learning halfspaces over [0, 1]d, where d ≥ 4, with respect to the class of

distributions that satisfy the φ-probabilistic Lipschitzess for the function φ(λ) = e(λ−1)/λ.

4.6 Discussion

We have presented an SSL framework for properly learning a hypothesis class of finite VC-

dimension. Our paradigm is relevant, if the learner is confined to outputting a classifier of

a certain type (for example due to interpretability or speed of computation requirements),

but can more easily learn a low error classifier of a different type. We analyzed situations

under which this framework provably saves labels in comparison to any fully supervised

(standard) proper learner, in particular for the class of linear halfspaces.

While we have presented lower bounds only for learning linear halfspaces in this chapter,

it is not difficult to see that one could construct similar lower bounds for other (pairs of)

hypothesis classes. The lower bound construction uses that the larger (accurate) class H ′

can realize a labeling on some set that cannot be realized by the output class H, although

H can shatter any subset (or realize any part of the labeling on a subset). In our case,

the class of unions of halfspaces shatters a set of three collinear points while the class of

halfspaces cannot realize any labeling on such points. Therefore, for determining the best

halfspace, it becomes essential to estimate the weights of the points, so that a halfspace
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that misclassifies the lightest point can be identified as optimal. This construction can

be applied to any other such situation resulting in the same reduction of labeled sample

complexity for proper SSL learning. Such a more general construction has been presented

by Ben-David and Ben-David [2011] in order to lower bound the sample complexity of

proper learning in a setting where the learner knows the true labeling function in advance.

The upper bound on the size of the labeled sample in Theorem 27 corresponds to the

sample complexity of learning the class H ′. We apply it to learn a class H that has higher

sample complexity due to having higher approximation error. However, it is easy to see

that the same paradigm can be applied when the higher sample complexity of H is due to

other reasons, such as having higher VC dimension. In fact, this situation occurs in the

scenario discussed by Liang et al. [2008].

Both versions of our paradigm (the one using an accurate class and the one using

Nearest Neighbors) have been experimentally evaluated by applying it to the MNIST data

set (Urner et al. [2011]). The experiments confirm the theoretical results. They show that,

in both cases, using unlabeled data reduces the number of labeled examples needed in

order to learn linear classifier of a certain accuracy.
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Chapter 5

Domain Adaptation

5.1 Overview

The standard model of machine learning focuses on a setting where the training and test

data are generated by the same underlying distribution. While this may sometimes be a

good approximation of reality, in many practical tasks this assumption cannot be justified.

The data generating distribution might change over time or a learner may resort to using

training data generated by a different distribution when labeled data available from the

relevant target domain is hard to get by. The task of learning when the training and

test data generating distributions differ is referred to as Domain Adaption (DA) learning.

We call the distribution that generates the training data the source distribution and the

distribution that the learned classifier is supposed to be applied to the target distribution

(or target task).

Domain adaptation tasks occur in many practical situations and are frequently ad-

dressed in experimental research (see related work section for examples). For example, in

natural language processing one might be able to access labeled documents of a certain

type, say from legal documents, but needs to build a classifier to label the content of

documents of a different type, say medical documents. In many such applications, while

labeled data from the target distribution is not readily available, it is easy to get unlabeled

examples from that target domain.
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A domain adaptation setting can be characterized by the following aspects:

The input data available to the learner: A learner might get both labeled and

unlabeled data from the source distribution (as well as, presumably in smaller numbers,

from the target distribution). In line with most theoretical work on DA, we consider a

setting where the learner has labeled data from a source distribution and unlabeled data

from a target distribution available. Some DA learning approaches do not make use of the

unlabeled target sample, and rather just learn a classifier from the source generated labeled

sample, expecting that this classifier will also perform well on the target distribution. In

this work, we call such DA learners conservative. A DA learner that actually employs the

data available from the target distribution is called non-conservative or adaptive. We focus

on analyzing the sample complexity of DA learning with respect to each of these types of

samples (labeled source and unlabeled target sample). We present both conservative and

adaptive DA paradigms.

The relationship between the source and target data generating distribu-

tions: It is not hard to see that domain adaptation learning is doomed to fail, if the

source and target generation do not exhibit sufficient similarity. One task of a theoretical

analysis of DA learning is thus to identify relatedness assumptions for source and target

that allow DA learning to succeed. For our analysis, we assume the so-called covariate

shift setting (Sugiyama and Mueller [2005]), that is, we assume that source and target

distribution have the same labeling function. This assumption is often made in studies

on the theory of DA and is justified for many practical applications (see Section 5.4.1 for

a discussion). Besides the covariate shift assumption, we consider several measures for

the relationship between the marginals of the source and target distribution. Mainly, we

employ a bound on the ratio of target and source weights for certain collections of subsets

of the domain. We show, that we can estimate this weight ratio from finite samples.

The prior knowledge about the task: Prior knowledge about a learning task is

required for any guarantees of success (this is the No-Free-Lunch principle, see Theorem

7 and discussion). Since the goal of the learner is to come up with a low-error predictor

for the target task, prior knowledge about that task is essential. For our positive results,

we assume that the target task satisfies Probabilistic Lipschitzness or that is satisfies a

realizability assumption (with a margin). In previous work, it is often assumed that the
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learner has knowledge of a hypothesis class, that “bridges” the differences between source

and target tasks. Often that is a class which has small approximation error with respect

to both source and target task (see the related work section for more details).

Summary of our results

Lower bounds: The first contribution of this chapter is a rather strong negative result:

A lower bound on the sample complexity that holds for general, class, and proper DA learn-

ing. We show in Section 5.5 that even under very strong assumptions, namely, covariate

shift, a bound on the point-wise weight-ratio between the two marginal distributions and

realizability of the target distribution by a class of VC-dimension 1, the number of needed

training examples may need to grow to infinity with the size of the domain set. (Here, “the

number of needed training examples” refers to the sum of the number of source generated

labeled examples and the number of target generated unlabeled examples.) In other words,

even when learning from task-generated labeled examples is trivial (one labeled example

from the target would suffice in the example constructed for our lower bound), learning

based on a sample generated by a closely-related source distribution and only unlabeled

target data yields very high sample complexity. We also extend our sample complexity

lower bound to the case of a Euclidean domain, assuming that the labeling function is

known to be Lipschitz. The bound we obtain in this situation is exponential in the Eu-

clidean dimension of the domain. Both of our lower bounds apply regardless the choice

of learning algorithm. As an aside, our lower bound employs a reduction from a novel

probabilistic task that may find further applications in machine learning theory.

We complement our lower bounds with positive results for several DA settings. Our

lower bound implies that the sum of the labeled source and the unlabeled target sample

needs to be very large. We explore which combinations of sizes for source and target samples

render DA possible. In some situations, only labeled data from a source distribution may

be available. In others, there might also be unlabeled target data at hand and in this

situation we would like to keep the number of labeled examples from the source rather

small. We present algorithms for both these scenarios.
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General DA learning: In Section 5.6, we present positive results for general DA learning

(with possibly non-zero Bayes error). Assuming a bound on the weight ratio of boxes in

Rd (or only a bound on the weight ratio of boxes of a fixed sidelength), we show that

the Nearest Neighbor algorithm is a successful DA learner. Instead of using a target

generated sample, one can feed the Nearest Neighbor algorithm with a sample from a

source distribution (whose size depends on the usually required size for this method and

the box-wise weight ratio) without worsening the error guarantee by much in comparison

to Nearest Neighbor learning in the standard setting. As no data from the target task

is used for learning, this constitutes a conservative DA paradigm that uses rather large

amounts of labeled (source) data.

DA learning under target realizability: In Section 5.7, we present an algorithm

that, instead of this large amount of labeled source data, uses unlabeled data from the

target to succeed at DA. More specifically, we propose an adaptive DA paradigm for class

learning under the assumption that the target distribution is realizable by some class of

finite VC-dimension. Our algorithm gets a labeled source sample and then uses unlabeled

target data to decide which sample points from the source sample to take into account for

learning (and which ones to discard). We analyze two scenarios for this paradigm and show

that here DA learning is possible on the basis of (large) unlabeled samples together with a

labeled sample whose size is basically determined by the VC-dimension of the concept class

(as well as a weight ratio between the two marginal distributions and the usual accuracy

and confidence parameters, ε and δ, but does not depend on the domain size). In the first

scenario we assume that the learner has prior knowledge of a concept class with respect to

which the target distribution is realizable with margins. In the second scenario we assume

finiteness of the domain (but no margin or Lipschitz assumptions on the involved labeling

functions).

Proper DA learning: The positive result concerning Nearest Neighbor learning seem

to indicate that plentiful source generated samples suffice for domain adaptation to succeed

(provided some strong weight ratio assumption). However, we show in the last part of this

chapter, in Section 5.8, that, in some settings, using (possibly unlabeled) target generated
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data is necessary for the success of domain adaptation learning. We consider the setting

of proper DA learning, where the learner is required to output a predictor from some

predetermined class. We show that there are cases in which, even under the assumption of a

bound on the point-wise weight ratio and covariate shift, no conservative DA algorithm can

succeed at the domain adaptation task. On the other hand, we present a non-conservative

learning paradigm that is guaranteed to succeed in this setting. (This paradigm is similar to

the two-stage learning algorithm for semi-supervised learning from the previous chapter.)

We now proceed to discussing relevant previous work on domain adaptation in Sec-

tion 5.2, then set the formal framework for DA learning in Section 5.3 and present the

source/target relatedness assumptions that we employ in Section 5.4.

The results of this chapter were published by Ben-David and Urner [2012] and Ben-

David and Urner [2013] (and the latter publications earlier conference version by Ben-David

et al. [2012]).

5.2 Related Work

Domain adaptation techniques are developed for a large variety of applications. For ex-

ample, adaptation techniques are developed to account for different sources of images in

object recognition tasks (Gong et al. [2012]), to make use of text documents from vari-

ous languages in automated translation systems by (Daumé III and Jagarlamudi [2011]),

to have an automated fatigue detection system adjust to the physiological differences in

people (Chattopadhyay et al. [2011]), or to adapt from reviews from certain products to

reviews for other products in sentiment analysis (Chen et al. [2011]).

The basic formal model of DA that we follow in this work was defined by Ben-David

et al. [2006]. It assumes that the learner has access to a labeled sample generated by

the source distribution, and an unlabeled sample from the target distribution. Below, we

discuss some of the assumptions (or measures of relatedness between the source and target

tasks) and methods that have been proposed to facilitate successful DA. We focus on those

that are related to our work on DA.
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Much of the work on DA considers the covariate shift setting, where the labeling func-

tions of the target and source data are identical. Under this assumption, source and target

data distribution only differ in their marginals. Therefore, a natural approach for covariate

shift DA learning is to reweight the training sample to make it as similar as possible to

a sample generated by the target distribution (see for example studies by Huang et al.

[2007] and Sugiyama and Mueller [2005]). The idea is that such reweighting, when im-

plemented precisely, turns the distribution over source generated training samples into a

distribution close to that over target generated samples, thus overcoming the source-target

discrepancy (since under the covariate shift assumption this discrepancy is only due to dif-

ferent instances having different probability weights). Similar ideas underly the methods

of discrepancy minimization by Mansour et al. [2009], importance weighting by Sugiyama

et al. [2007] and density ratio estimation by Tsuboi et al. [2009]. However, our sample

complexity lower bound in Theorem 41 implies that in order to obtain such a reliable

reweighting the learner needs access to huge samples, of sizes that go to infinity with the

size of the underlying domain. (Note that reweighting is also referred to as reweighing in

the literature.)

A weight ratio assumption has previously been considered by Cortes et al. [2010]. This

study proposes a domain adaptation paradigm with provable success rates, assuming the

learner can access the values of the point-wise weight ratio. It also acknowledges the

excessive strength of an assumption that bounds the point-wise weight ratio and discuss

some relaxations of this. The seeming contradiction between these sample complexity

upper bounds and our lower bounds is due the the sample complexity of estimating the

weight ratio (which the former analysis assumes is given to the learner). To address

the sample complexity of estimating the weight-ratio function, Cortes et al. [2010] refer

to Cortes et al. [2008]. However, the sample complexity analysis of Cortes et al. [2008]

assumes that all the points of the labeled source sample S occur also in the unlabeled

target sample T . When S and T are sampled independently, as is the case in the covariate

shift DA learning setting, the size of T required to guarantee hitting every member in S

grows unboundedly with the size of the support of the target distribution.

Distribution independent error bounds for domain adaptation learning were shown in

an analysis of the problem with respect to a given “bridging” hypothesis class H, that is
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a class that is assumed to provide good approximation to both the source and the target

distributions. Ben-David et al. [2010a] propose to measure the relatedness of the two

distributions by two parameters that depend on the class H; the discrepancy between the

marginal distributions by the so-called dA distance (as introduced by Kifer et al. [2004],

see Definition 37), and a notion of a “joint approximation error” of the class with respect

to source and target. The paper provides upper bounds, in terms of these parameters,

on the error of the simplest conservative domain adaptation algorithm—the empirical risk

minimization (ERM) over the training data. A follow-up paper, Mansour et al. [2009],

extends the dA distance to real-valued function classes and loss functions other than the 0-

1 loss. In addition, it proposes a non-conservative learning paradigm, a certain reweighting

procedure aimed to minimize the discrepancy between the source and target input samples.

This is further extended to regression problems by Cortes and Mohri [2011].

Lower bounds for DA learning under covariate shift have previously been presented

by Ben-David et al. [2010b]. This study presents worst case lower bounds on the sample

complexity of reweighting paradigms for DA learning in the setup of a bridging hypothesis

class. Both that paper and our lower bound consider the covariate shift setup and further

assume that the marginals of the training and test data are “similar”. However, the

notion of the distributions’ similarity by Ben-David et al. [2010b], namely having small

dA distance, is weaker. The lower bound in that paper takes advantage of a looseness of

the dA distance and constructs a scenario in which, although the marginals look similar

with respect to that distance, the target distribution is supported on regions that have

zero weight in the training distribution. It is not surprising that under such circumstances

DA may fail (the training sample misses significant parts of the target distribution). For

our lower bound, we consider the strong assumption that the point-wise density ratio

between the two distributions is bounded from below by 0.5 (implying that no region that

is significant with respect to the target is missed by the source distribution). Nevertheless,

we show that any DA algorithm may fail, even if it just has to decide between the all-

zero and the all-one predictors for the target. The failure of DA in this a setting is quite

surprising.
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5.3 Formal Framework for Domain Adaptation

For the domain adaptation setup, where the training and test data generating distributions

differ, we use the following notation: Let P S and P T be two distributions over X ×{0, 1}.
We call P S the source distribution and P T the target distribution. We denote the marginal

distribution of P S over X by P S
X and the marginal of P T by P T

X , and their labeling rules

by lS : X → [0, 1] and lT : X → [0, 1], respectively.

A Domain Adaptation learner (DA learner) takes as input a labeled i.i.d. sample S

drawn according to P S and an unlabeled i.i.d. sample T drawn according to P T
X and aims

to generate a good label predictor h : X → {0, 1} for P T . Formally, a DA learner is a

function

A :
∞⋃
m=1

∞⋃
n=1

((X × {0, 1})m ×X n)→ {0, 1}X .

We call a domain adaptation learner A conservative if it ignores the unlabeled sample it

receives from the target distribution; namely, if A(U, V ) = A(U,W ) for all U ∈
⋃∞
m=1(X ×

{0, 1})m and all V,W ∈
⋃∞
n=1X n.

Definition 35 (DA Learnability). Let X be some domain, W a class of pairs (P S, P T )

of distributions over X × {0, 1}, C ⊆ {0, 1}X a hypothesis class and A a DA learner.

We say that A solves DA for C with respect to the class W , if there exists functions

m : (0, 1) × (0, 1) → N and n : (0, 1) × (0, 1) → N such that for all pairs (P S, P T ) ∈ W ,

for all ε > 0 and δ > 0, when given access to a labeled sample S of size m(ε, δ), generated

i.i.d. by P S, and an unlabeled sample T of size n(ε, δ), generated i.i.d by P T
X , then, with

probability at least 1− δ (over the choice of the samples S and T ) A outputs a function h

with ErrPT (h) ≤ optPT (C)+ ε. For s ≥ m(ε, δ) and t ≥ n(ε, δ), we also say that the learner

A (ε, δ, s, t)-solves DA for C with respect to the class W .

With this, it is easy to see how to define general DA learning, class (PAC) DA learning

and proper DA learning analogously to Definitions 3, 5 and 6.

We are interested in finding pairs of functions m and n for the labeled source and

unlabeled target samples sizes respectively, that satisfy the definitions of DA learnability

for some DA learner A. However, the preferences for either keeping the labeled source

65



sample or the target sample small may differ in practical scenarios (according to which

type of data is more readily available). Further, even for a specific DA learner, it is

conceivable that the performance might be equally good when one of the two sample types

is small while the other is large as when those sample sizes are switched. Thus, to not

induce an unnatural emphasis on one of the two types of sample sizes, we refrain from

formally defining the sample complexity of a DA learning task or that of a DA learner. For

each of our positive results, we present one pair of functions m and n that attest the success

of the suggested DA procedure according to the appropriate definition of DA learnability.

5.4 Relatedness Assumptions for Domain Adaptation

Clearly, the success of Domain Adaptation (DA) learning cannot be achieved for every

source-target pair of learning tasks. A challenge for DA research is to discover conditions,

or properties of learning tasks, that enable successful DA learning. Such properties typically

express some relationship between the source and target distribution. In this section we

define some such relatedness measures.

5.4.1 Covariate shift

The first property we introduce is often assumed in domain adaptation analysis (for exam-

ple by Sugiyama and Mueller [2005]). In this work, we assume this property throughout.

Definition 36 (Covariate shift). We say that source and target distribution satisfy the

covariate shift property if they have the same labeling function, that is, if we have lS(x) =

lT (x) for all x ∈ X . We then denote this common labeling function of P S and P T by l.

The covariate shift assumption is realistic for many DA tasks. For example, it is a

reasonable assumption in many natural language processing (NLP) learning problems, such

as part-of-speech tagging, where a learner that trains on documents from one domain is

applied to a different domain. For such tasks, it is reasonable to assume that the difference

between the two tasks is only in their marginal distributions over English words rather
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than in the tagging of each word (an adjective is an adjective independently of the type

of text it occurs in). While, on first thought, it may seem like under this assumption DA

becomes easy, our lower bound in Section 5.5 implies that DA remains a very hard learning

problem even under covariate shift.

5.4.2 The dA-distance

DA learning may become impossible when the source and target distributions are supported

on disjoint domain regions (unless the learner has prior knowledge about a mapping be-

tween the source support and the target support, in which case source and target support

can be considered to be the same via this mapping). For theoretical analysis of DA learning

it is thus common to put restrictions on how much the source and target weight can differ

on certain subsets of the domain. We now first present the dA-distance, a measure that

has first been introduced to the analysis of DA by Kifer et al. [2004], and been generalized

to the notion of source-target-discrepancy for general loss functions (Mansour et al. [2009],

Cortes and Mohri [2011]). In this work, we use this measure only in context of our lower

bound.

Definition 37 (dA-Distance). Let X be some domain, P and Q distributions over X , and

A ⊆ 2X a collection of subsets of X measurable with respect to both P and Q. Then the

dA-distance of P and Q is defined as

dA(P,Q) = sup
A∈A
|P (A)−Q(A)|.

For class learning, this measure is used as dH∆H , where, for some hypothesis class

H ⊆ {0, 1}X we define

H∆H = {h1∆h2 | h1, h2 ∈ H},

and

h1∆h2 = {x ∈ X | h1(x) 6= h2(x)}.
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5.4.3 Weight ratio

Another way of restricting the divergence of source and target weights on domain subsets

is to assume some non-zero lower bound on the density ratio between the two distributions

on these subsets. The strongest such assumption (which is nevertheless often employed)

is a bound on the pointwise weight-ratio. However, this is rather unrealistic. Going back

to the NLP example, it is likely that there are technical legal terms that occur in legal

documents but will never show up in any news article. Furthermore, such a pointwise

assumption cannot be verified from finite samples of the domain and target distributions.

To overcome these drawbacks, we propose the following relaxation of that assumption.

Definition 38 (Weight ratio). Let B ⊆ 2X be a collection of subsets of the domain X
measurable with respect to both P S

X and P T
X . For some η > 0 we define the η-weight ratio

of the source distribution and the target distribution with respect to B as

CB,η(P
S
X , P

T
X ) = inf

b∈B
PTX (b)≥η

P S
X (b)

P T
X (b)

,

Further, we define the weight ratio of the source distribution and the target distribution

with respect to B as

CB(P S
X , P

T
X ) = inf

b∈B
PTX (b)6=0

P S
X (b)

P T
X (b)

.

We denote the weight ratio with respect to the collection of all sets that are P S
X and

P T
X -measurable by C(P S

X , P
T
X ).

These quantities become relevant for domain adaptation when bounded away from zero.

Note that in the case of discrete distributions C(P S
X , P

T
X ) is equal to the point-wise weight

ratio C(P S
X , P

T
X ) = C{{x}|x∈X}(P

S
X , P

T
X ). For every collection B ⊆ 2X of measurable subsets

we have C(P S
X , P

T
X ) ≤ CB(P S

X , P
T
X ). Thus bounding this weight ratio away from 0 is the

strongest restriction.
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Estimating the weight ratio from finite samples

We show that the η-weight ratio can be estimated from finite, unlabeled samples from

source and target distribution for any class B of finite VC-dimension. For a sample S, we

denote the empirical estimate of the weight of a set b ∈ B by Ŝ(b) = |S∩b|
|S| .

For the proof of the next theorem, we need the notion of an ε-approximation, which

was defined by Haussler and Welzl [1986].

Definition 39 (ε-approximation, Haussler and Welzl [1986]). Let X be some domain,

B ⊆ 2X a collection of subsets of X and P a distribution over X . An ε-approximation for

B with respect to P is a finite subset S ⊆ X with

|Ŝ(b)− P (b)| ≤ ε

for all sets b ∈ B.

It is shown in Theorem 3.3 of Haussler and Welzl [1986] that, for a collection B of

subsets of some domain set X with finite VC-dimension and any distribution P over X ,

an i.i.d. sample of size

16

ε2

(
VCdim(B) ln

(
16VCdim(B)

ε2

)
+ ln

(
4

δ

))
is an ε-approximation for B with respect to P with probability at least 1− δ.

Theorem 40. Let X be a domain and (P S
X , P

T
X ) be a pair of (source and target) distri-

butions over X . Let B ⊆ 2X a collection of P S
X - and P T

X -measurable sets of finite VC-

dimension. Then, for all ε > 0 and δ > 0 and η > ε, with probability at least 1− δ over a

sample T from P T
X and a sample S from P S

X , each of size at least

16

ε2

(
VCdim(B) ln

(
16VCdim(B)

ε2

)
+ ln

(
8

δ

))
,
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we have

CB,η+ε(P
S
X , P

T
X ) ≥ inf

b∈B
T̂ (b)≥η

Ŝ(b)− ε
T̂ (b) + ε

≥ CB,η−ε(P
S
X , P

T
X )
η − ε
η + ε

− 2ε

η + ε
.

Proof. In this proof, we will use Cα as shorthand for the α-weight ratio CB,α(P S
X , P

T
X ) of

P S
X and P T

X with respect to B.

As discussed above, by Theorem 3.3 of Haussler and Welzl [1986], S is an ε-approximation

for B with respect to P S
X with probability at least 1 − δ

2
and likewise we know that with

probability at least 1− δ
2
, T is an ε-approximation for B with respect to P T

X . This means

that with probability at least 1− δ we have

|Ŝ(b)− P S
X (b)| ≤ ε

and

|T̂ (b)− P T
X (b)| ≤ ε

for all b ∈ B. Thus we get that for all b ∈ B

P S
X (b)

P T
X (b)

≥ Ŝ(b)− ε
T̂ (b) + ε

.

With this we derive the first inequality for all η > ε:

Cη+ε = inf
b∈B

PT (b)≥η+ε

P S
X (b)

P T
X (b)

≥ inf
b∈B

PT (b)≥η+ε

Ŝ(b)− ε
T̂ (b) + ε

≥ inf
b∈B

T̂ (b)≥η

Ŝ(b)− ε
T̂ (b) + ε

.
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Now note that by the definition of the weight ratio, we have

P S
X (b) ≥ CαP

T
X (b)

for all α > 0, and all b ∈ B with P T
X (b) ≥ α. As P T

X (b) ≥ T̂ (b)− ε, this gives

P S
X (b) ≥ Cη(T̂ (b)− ε)

for all b with P T
X (b) ≥ η − ε, which implies

Ŝ(b) ≥ Cη(T̂ (b)− ε)− ε

and thus, as T̂ (b) > η implies P T
X (b) ≥ η − ε,

inf
b∈B

T̂ (b)≥η

Ŝ(b)− ε
T̂ (b) + ε

≥ inf
b∈B

T̂ (b)≥η

Cη−ε(T̂ (b)− ε)− 2ε

T̂ (b) + ε

≥ Cη−ε(η − ε)− 2ε

η + ε
,

where the last inequality holds as the expression

Cη−ε(T̂ (b)− ε)− 2ε

T̂ (b) + ε

is monotonously increasing in T̂ (b) and T̂ (b) ≥ η.

This theorem quantifies the information that the empirical estimate of the η-weight ratio

provides about the true η-weight ratio. The first inequality tells us that if the ε-estimate

(the middle term in the theorem) of this weight ratio is large, then the true weight ratio

is also large (for slightly larger η). On the other hand, the second inequality shows that,

if the true weight ratio is large, then the empirical estimate (for a slightly larger η) is also

bounded away from 0. Note that, if ε ≤ Cη−εη
2+Cη−ε

, then Cη−ε(η−ε)−2ε

η+ε
> 0, and this condition

holds for sufficiently small ε.
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The theorem further implies that, if source and target distribution are absolutely con-

tinuous (have a density function), then with growing sizes of source and target samples S

and T , the empirical weight ratio Ŝ(b)

T̂ (b)
of subsets b ∈ B of target weight at least η converges

to CB,η(P
S
X , P

T
X ): As ε tends to 0, both

CB,η+ε(P
S
X , P

T
X )

and

CB,η−ε(P
S
X , P

T
X )
η − ε
η + ε

− ε

η + ε

converge to CB,η(P
S
X , P

T
X ), and thus so does

inf
b∈B

T̂ (b)≥η

Ŝ(b)− ε
T̂ (b) + ε

.

In contrast with the above results, the negative result of Theorem 41 implies that

any stronger weight ratio estimate that suffices for domain adaptation learning cannot be

reliably obtained from finite samples (of distribution-independent sizes). In particular,

this negative result applies to estimating the weight ratio at every point (as opposed to the

η-weight ratio), since it is easy to see that Domain Adaptation under covariate shift and

a non-zero lower bound of 1/2 on the point-wise weight ratio, can be readily done upon

having a good estimate of the weight ratio at every point.

5.5 Lower Bounds for Realizable Domain Adaptation

The lower bound in this section shows that no reasonably small amount of labeled source

and unlabeled target data suffices for DA under covariate shift even with a large bound

on the pointwise weight ratio. We show that even in the case where the learner knows

that the target is realizable by the class H1,0 that contains only the all-1 and the all-0

labeling functions, a class of VC-dimension 1, the sizes of the source sample and the target

sample need to be (roughly) as large as the square-root of the domain size for domain

adaptation to be possible. This is in sharp contrast to the standard learning framework,
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where realizability by a small class represents a very strong prior knowledge, that renders

the learning task very easy. In fact, realizability by the class H1,0 implies that one labeled

example would suffice for standard learning.

Theorem 41. For every finite domain X , for every ε and δ with ε+δ < 1/2, no algorithm

can (ε, δ, s, t)-solve the DA problem for the class W of pairs (P S, P T ) satisfying covariate

shift, with C(P S, P T ) ≥ 1/2, dH1,0∆H1,0(P S, P T ) = 0 and optPT (H1,0) = 0 if

s+ t < min{
√

ln(2)|X |,
√

ln(1/(2(ε+ δ)))|X |} − 1.

This lower bound implies that even for relatively large values of ε and δ, namely any ε

and δ with ε + δ ≤ 1/4, the required sample size for DA is lower bounded by
√

ln(2)|X |
and thus grows with the domain size. The proof of this theorem is presented in Section

5.5.1.

This hardness result is quite surprising since it applies to a setting in which DA learning

is seemingly as easy as it can get; the prior knowledge about the target task is so strong that

one labeled target example would suffice for finding a zero error classifier. Furthermore,

the source and target distributions share the same deterministic labeling function, and the

marginals of the two distributions are similar from both the dH∆H-distance and the weight

ratio perspectives (namely the source probability of any domain point is at least half its

target probability).

Several conclusions can be drawn from this lower bound:

1. If one assumes target realizability by a small hypothesis class but does not assume

that there is such a class that has small approximation error with respect to both the source

and the target, the DA sample complexity cannot be bounded as a function of only the

VC-dimension of the class that realizes the target distribution. This is in sharp contrast

to the sample complexity of standard learning without discrepancy between the training

and test data.

2. It is necessary to have some data generated by the target distribution available, if

the number of labeled examples is only allowed to depend on the VC-dimension of the

class.
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3. Since having access to the ratio between a the source and target probability of

domain points allows successful DA learning under the covariate shift assumption and

bounded weight ratio, our result implies that the sample sizes needed to obtain useful

approximations of that ratio, as required, e.g. , for importance weighting techniques, are

prohibitively high.

A lower bound in terms of Lipschitzness Our next result, Theorem 42, implies a

lower bound for the size of the sample for infinite domains under the additional assumption

that the labeling function satisfies the Lipschitz property for some Lipschitz constant L.

Again, this lower bound holds under the assumption that the target is realizable by a

two-function-class.

Theorem 42. Let X = [0, 1]d, ε > 0 and δ > 0 be such that ε + δ < 1/2, let L > 1

and let WL be the set of pairs (P S, P T ) of distributions over X satisfying covariate-shift,

with optPT (H1,0) = 0, C(P S, P T ) ≥ 1/2, dH1,0∆H1,0(P S, P T ) = 0 and L-Lipschitz labeling

functions l. Then no DA-learner can (s, t, ε, δ)-solve the DA-problem for the class WL

unless

s+ t < min{
√

ln(2)(L+ 1)d,
√

ln(1/(2(ε+ δ)))(L+ 1)d} − 1.

Proof. Let G ⊆ X be the points of a grid in [0, 1]d with distance 1/L. Then we have

|G| = (L+ 1)d. The class WL contains all triples (P S, P T , l), where the support of P S and

P T is G, optPT (H1,0) = 0, C(P S, P T ) ≥ 1/2, dH1,0∆H1,0(P S, P T ) = 0 and arbitrary labeling

functions l : G → {0, 1}, as every such function is L-Lipschitz. As G is finite, the bound

follows from Theorem 41.

5.5.1 Proof of Theorem 41

This section is devoted to the proof of our main lower bound in Theorem 41. We start

by presenting the Left/Right problem, a statistical decision problem that we make use of,

and provide an overview on the idea of the lower bound proof. We then derive a lower

bound on the needed sample sizes to solve the Left/Right problem and, in the last part
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of this section, proceed to a reduction of the Left/Right problem to DA, which establishes

the hardness of DA.

The Left/Right problem

We consider the problem of distinguishing two distributions from finite samples. The

Left/Right Problem was introduced by Kelly et al. [2010]:

Input Three finite samples, L, R and M of points from some domain set X .

Question Assuming that L is an an i.i.d. sample from some distribution P over X , that

R is an an i.i.d. sample from some distribution Q over X , and that M is an i.i.d.

sample generated by one of these two probability distributions, was M generated by

P or by Q ?

Overview on the proof idea

We first derive a lower bound on the sample size needed to solve the Left/Right problem in

Lemma 44. Then we reduce the Left/Right problem to the problem of domain adaptation

under target realizability, thereby obtaining a lower bound on the sample size needed to

solve DA. Intuitively, one can not answer the Left/Right-question if the sampleM intersects

neither the sample L nor the sample R. This yields a lower bound for the Left/Right

problem in the order of the square-root of the domain size by a standard calculation from

the “Birthday paradox”. The idea of the reduction to domain adaptation is to define a

source distribution that is a balanced mixture of P and Q with a labeling function that

gives label 1 to points from L (generated by P ) and label 0 to points from R (generated by

Q). The sample M can then be considered an unlabeled sample from a target distribution

that is equal to either P or Q. Thus, predicting label 0 or 1 correctly corresponds to

deciding whether M was generated by P or by Q. Thereby, we obtain a lower bound for

domain adaptation for the sum of the sizes of the labeled source sample and the unlabeled

target sample, in the order of the square-root of the domain size.
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Lower bound for the Left/Right problem

We use the following notion of success for an algorithm on the Left/Right problem:

Definition 43 (Left/Right problem solvability). We say that a (randomized) algorithm

(δ, l, r,m)-solves the Left/Right problem with respect to a class W of triples (P1, P2, P3)

of distributions (where P3 = P1 or P3 = P2), if, given samples L i.i.d. from P1, R i.i.d.

from P2 and M i.i.d. from P3 of sizes l, r and m respectively, it correctly decides whether

P3 = P1 or P3 = P2 with probability at least 1− δ.

We will now show that for any sample sizes l, r and m and for any γ < 1/2, there exists

a finite domain X = {1, 2, . . . , n} and a small class Wuni
n of triples of distributions over X

such that no algorithm can (γ, l, r,m)-solve the Left/Right problem with respect to this

class. In our class, both the distribution generating L and the distribution generating R

are uniform over half of the points in X , but their supports are disjoint. Formally, we

construct the class as follows: Wuni
n = {(UA, UB, UC) | A∪B = {1, . . . n}, A∩B = ∅, |A| =

|B|, and C = A or C = B}, where, for a finite set Y , UY denotes the uniform distribution

over Y . With this we obtain:

Lemma 44. (Left/Right problem lower bound) For any given sample sizes l for L,

r for R and m for M and any 0 < γ < 1/2, if k = max{l, r}+m, then for

n > max{k2/ ln(2), k2/ ln(1/2γ)}

no algorithm has probability of success greater than 1− γ over the class Wuni
n .

The rest of this subsection is devoted to prove this lemma. For this, we employ a

method introduced by Batu et al. [2013] in the context of deriving a lower bound on

the sample size for a related problem. The authors show that, when testing so-called

permutation invariant properties, that is, if the property does not change with permuting

the underlying domain, it suffices to consider algorithms that take only a fingerprint of

the sample as input (see precise definition below). Note that the Left/Right problem is

permutation-invariant, since, whether M is a sample from P or from Q does not depend

on a permutation of X .
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Definition 45 (Fingerprint). Let L, R, M be three multi-sets of sizes at most n each

sampled from distributions P or Q over some domain X as in the definition of the

Left/Right problem. We define the fingerprint of this triple of multi sets as the set

{Ci,j,k | 1 ≤ i, j, k ≤ n} where Ci,j,k is the number of elements of X , that appear ex-

actly i times in L, j times in R and k times in M .

The following lemma allows us to restrict our attention to fingerprints of an instance

of the Left/Right problem as input.

Lemma 46 (Batu et al. [2013]). If there exists an algorithm A for testing some permutation-

invariant property of distributions, then there exists an algorithm for that same task that

gets as input only the fingerprints of the samples that A takes and enjoys the same guar-

antee on its probability of success.

Proof sketch. This lemma is proven by Batu et al. by showing how to reconstruct the

samples from a fingerprint for some fixed permutation of the distribution. To see this, one

notes that each element of X contributes to at most one of the Ci,j,k. Thus, an algorithm

can reconstruct a permuted sample from the fingerprint and then feed this sample as input

to A. As the property is permutation-invariant, this can not change the (distribution over

the) output(s).

The following lemma gives a lower bound on the sample size needed to see repetitions

in a sample from a uniform distribution over a finite domain. Its proof is similar to the

calculations used for establishing the no-collision probabilities in the well known “Birthday

paradox”. We include this calculation for completeness.

Lemma 47. Let X be a finite domain of size m. For every 0 < β < 1, with probability

exceeding β, an i.i.d. sample of size at most n ≤ min{
√

ln(2)m,
√

ln(1/β)m} uniformly

drawn over X , contains no repeated elements.

Proof. Note that, we always have n ≤ m/2. Now, the probability of not drawing any
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element twice, when choosing n elements uniformly at random from a set of size m is

m− 1

m
· m− 2

m
· . . . · m− (n− 1)

m

= (1− 1

m
) · (1− 2

m
) · . . . · (1− n− 1

m
)

≥ e−2( 1
m

+ 2
m

+...+
(n−1)
m

)

= e−
n(n−1)
m

≥ e−
n2

m ,

where the first inequality holds as (1− x) ≥ e−2x for 0 ≤ x ≤ 1/2. Thus, if

n ≤ min{
√

ln(2)m,
√

ln(1/β)m},

then we get that this probability is at least β (for β ≤ 1/2, it is at least 1/2, and for

β ≥ 1/2 it is at least β).

With this, we can now complete the proof of Lemma 44.

Proof of Lemma 44. Set β = 2γ. By Lemma 47, with probability exceeding β the input

to the Left/Right problem overWuni
n has no repeated elements and the three input samples

are disjoint. Consequently, with probability exceeding β, the fingerprint F of the input

has C1,0,0 = l, C0,1,0 = r, C0,0,1 = m and Ci,j,k = 0 for all other combinations of i, j and k

independently of whether the sample M was generated by UA or by UB.

Let A be some algorithm. Let p ∈ [0, 1] be the probability that A outputs UA on input

F . Now, if p ≤ 1/2 we have that A errs with probability larger than β/2 = γ for all triples

where C is equal to B. Otherwise it errs with probability larger than β/2 = γ on all triples

where C is equal to A. Thus, no algorithm can (γ, l, r,m)-solve the Left/Right problem

for the class Wuni
n .

Reducing the Left/Right problem to domain adaptation learning

In order to reduce the Left/Right problem to domain adaptation, we define a class of DA

problems that corresponds to the class of triples Wuni
n , for which we have proven a lower
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bound on the sample sizes needed for solving the Left/Right problem. For a number n,

let WDA
n be the class of pairs (P S, P T ), where P S

X is uniform over some finite set X of

size n, P T
X is uniform over some subset U of X of size n/2 and their common labeling

function l assigns points in U to 1 and points in X \ U to 0 or vice versa. Note that we

have C(P S, P T ) = 1/2 and dH1,0∆H1,0(P S, P T ) = 0 for all (P S, P T ) in WDA
n . Further, for

the class H1,0 that contains only the constant 1 function and the constant 0 function, we

have optPT (H1,0) = 0 for all elements of WDA
n .

Lemma 48. The Left/Right problem reduces to domain adaptation. More precisely, given

a number n and an algorithm A that, given the promise that the target task is realizable by

the class H1,0, can (ε, δ, s, t)-solve DA for a class W that includes WDA
n , we can construct

an algorithm that (ε+ δ, s, s, t+ 1)-solves the Left/Right problem on Wuni
n .

Proof. Assume we are given samples L = {l1, l2, . . . , ls} and R = {r1, r2, . . . , rs} of size s

and a sample M of size t+ 1 for the Left/Right problem coming from a triple (UA, UB, UC)

of distributions in Wuni
n . We construct an input to domain adaptation by setting the

unlabeled target sample T = M \ {p} where p is a point from M chosen uniformly at

random and construct the labeled source sample S as follows: We select s elements from

L×{0} ∪R×{1} by successively flipping an unbiased coin, and depending on the output

choosing the next element from L× {0} or R× {1}.

These sets can now be considered as an input to domain adaptation generated from a

source distribution P S = UA∪B that is uniform over A ∪B. The target distribution P T of

this domain adaptation instance has marginal equal to UA or to UB (depending on whether

M was a sample from UA or from UB). The labeling function of this domain adaptation

instance is l(x) = 0 if x ∈ A and l(x) = 1 if x ∈ B. Observe that we have C(P S, P T ) = 1/2,

optPT (H1,0) = 0, and (P S, P T ) ∈ WDA
n . Assume that h is the output of A on input S and

T . The algorithm for the Left/Right problem then outputs UA if h(p) = 0 and UB if

h(p) = 1 and the claim follows as we have Errh(P
S) ≤ ε with confidence 1− δ.

Lemma 44 together with Lemma 48 shows that no algorithm can solve the DA problem

for WDA
n , even under the assumption of realizability by H1,0, if the sample sizes of the

source and target sample satisfy |S| + |T | + 1 < min{
√

ln(2)|X |,
√

ln(1/(2(ε+ δ)))|X |}.
This completes the proof of Theorem 41.
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5.6 General DA Learning

We now turn to presenting algorithms that do succeed at domain adaptation learning. In

this section, we show that for the Nearest Neighbor algorithm a target generated sample

can be replaced by a source generated sample while maintaining the error guarantee. For

this, we employ a Lipschitzness assumption on the labeling function and a weight-ratio

assumption with respect to the class of axis-aligned rectangles. Note that for a fixed

dimension of the space, this class is of finite VC-dimension and the η-weight ratio can

therefore be estimated from finite samples as shown in section 5.4.3.

We consider the target task performance of a Nearest Neighbor method with respect

to a source labeled training sample. Given a labeled sample S ⊆ X × {0, 1}, this Nearest

Neighbor algorithm outputs a function NN(S) that assigns to each point the label of its

nearest neighbor in the sample S. We will analyze its performance as a function of the

Lipschitzness and the weight ratio.

We use the following notation: Let SX denote the sample points of S without labels

(namely, SX := {x ∈ X | ∃y ∈ {0, 1} : (x, y) ∈ S}). For any x ∈ SX , let lS(x) denote the

label of the point x in the sample S. Given some labeled sample set S and a point x ∈ X ,

let NS(x) denote the nearest neighbor to x in S, NS(x) = argminz∈SX ‖x − z‖. We define

NN(S) for all points x ∈ X by NN(S)(x) = lS(NS(x)) (as in Definition 11).

In this chapter, we assume that our domain is the unit cube X = [0, 1]d. We let B denote

the set of axis alligned rectangles in [0, 1]d and Bγ the class of axis aligned rectangles with

sidelength γ for some γ > 0. We will analyze the Nearest Neighbor algorithm for domain

adaptation under Probabilistic Lipschitzness with a bound on either Bγ, for some fixed γ,

or on B. For both settings, we consider the case that the labeling function is deterministic

as well as having a probabilistic labeling function.

Note that the exponential dependence on the dimension of the space in the bounds of

this section is inevitable. This follows, for example, from our lower bound in Theorem 42.

But, as standard learning can be viewed as a special case of domain adaptation learning

(where source and target are the same), this also already follows from the lower bound

in Theorem 14 (see Chapter 2) and is known as “the curse of dimensionality of Nearest
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Neighbor learning” (see discussion in Section 19.2.2 of Shalev-Shwartz and Ben-David

[2014]).

We start by giving a bound for deterministic labeling (l : X → {0, 1}) when the weight

ratio is bounded for Bγ. The proofs of the following two theorems are adaptations of the

proof of Theorem 20 to the DA setting.

Theorem 49. Let the domain be the unit cube, X = [0, 1]d, and for some C > 0 and some

γ ≥ 0, let W be a class of pairs (P S, P T ) of source and target distributions over X ×{0, 1}
satisfying the covariate shift assumption, with CBγ (P

S
X , P

T
X ) ≥ C, and their common de-

terministic labeling function l : X → {0, 1} satisfying the φ-probabilistic-Lipschitz property

with respect to the target distribution, for some function φ. Then, for all m, and all

(PS, PT ) ∈ W,

ES∼PSm [ErrPT (hNN)] ≤ φ
(
γ
√
d
)

+
1

γdm eC
.

Proof. Consider a cover of the space [0, 1]d with boxes of sidelength γ. A test point from

the target gets the wrong label only if it sits in a box that was not hit by the source sample

S or if its box contains a point of S but that point from S has the opposite label.

The latter probability is bounded by φ
(
γ
√
d
)

: A box of side-length γ has diameter

γ
√
d and thus

Pr
x∼PT

[l(x) 6= l(NS(x)) ∧ ‖NS(x)− x‖ ≤ γ
√
d]

≤ Pr
x∼PT

[|l(x)− l(NS(x))| ≥ (1/γ
√
d) · ‖NS(x)− x‖]

≤ φ
(
γ
√
d
)
.

The probability that a point is in a box that is not hit by S can be bounded using Lemma

19 (see Chapter 3). We can cover the space with (1/γd) many boxes of sidelength γ. Let

C1, C2, . . . , C1/γd be such a cover of the set [0, 1]d using boxes of side-length γ. We have

P T
X (Ci) ≤

1

CB(P S
X , P

T
X )
P S
X (Ci) ≤

1

C
P S
X (Ci)
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for all these boxes Ci. Thus, Lemma 19 yields

ES∼PSXm

 ∑
i:Ci∩S=∅

P T
X [Ci]


≤ ES∼PSXm

 ∑
i:Ci∩S=∅

1

C
P S
X [Ci]


≤ 1

C
ES∼PSXm

 ∑
i:Ci∩S=∅

P S
X [Ci]

 ≤ 1

γdC m e
.

The two bounds together imply the theorem.

If, for the case of deterministic labeling, the weight ratio is bounded for the set B of all

axis alligned rectangles, we get the following result of DA learnability:

Theorem 50. Let the domain be the unit cube, X = [0, 1]d, and for some C > 0, let W be

a class of pairs (P S, P T ) of source and target distributions over X × {0, 1} satisfying the

covariate shift assumption, with CB(P S
X , P

T
X ) ≥ C, and their common deterministic labeling

function l : X → {0, 1} satisfying the φ-probabilistic-Lipschitz property with respect to the

target distribution, for some function φ. Then, for all ε, δ > 0, for all (P S, P T ) ∈ W, if S

is a source generated sample of size at least

m ≥ 2

ε δ C e

( √
d

φ−1(ε/2)

)d

,

then, with probability at least 1 − δ (over the choice of S), the target error of the Nearest

Neighbor classifier is at most ε.

Proof. As shown in the proof of the previous theorem, we can bound the total target weight

of boxes of some sidelength γ that are not hit by a source sample S by

ES∼PSXm

 ∑
i:Ci∩S=∅

P T
X [Ci]

 ≤ 1

γdC m e
.
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Applying Markov’s inequality thus yields

Pr
S∼PSX

m

 ∑
i:Ci∩S=∅

P T
X [Ci] ≥ ε/2

 ≤ 2

ε γdC m e
.

Setting this inequality to be smaller than δ yields that if m ≥ 2
εδγdCe

, then with probability

at least 1 − δ at most an ε/2-fraction of points are sitting in boxes that are not hit by

the sample. The error in this case is thus bounded by ε/2 + φ(γ
√
d). Now, setting γ =

φ−1(ε/2)/
√
d implies the claimed statement.

We now give a similar bound for general labeling functions l : X → [0, 1]. The proof

of this theorem is an adaptation of the Nearest Neighbor analysis in Shalev-Shwartz and

Ben-David [2014] to the case of domain adaptation and Probabilistic Lipschitzness. We

start with the case of a bounded weight ratio for Bγ.

Theorem 51. Let the domain be the unit cube, X = [0, 1]d, and for some C > 0 and

γ ≥ 0, let W be a class of pairs (P S, P T ) of source and target distributions over X ×
{0, 1} satisfying the covariate shift assumption, with CBγ (P

S
X , P

T
X ) ≥ C, and their common

labeling function l : X → [0, 1] satisfying the φ-probabilistic-Lipschitz property with respect

to the target distribution, for some function φ. Then, for all λ and all m, we have

ES∼PSm [ErrPT (hNN)] ≤ 2 optPT + φ(λ) +

√
d

λC

(
1

m e γd
+ γ

)
.

Proof. We start by proving that

ES∼PSm [ErrPT (hNN)] (5.1)

≤ 2 optPT + φ(λ) + λ−1ES∼PSm,x∼PTX [‖x−NS(x)‖] (5.2)

We first note that given two instances x, x′ we have

Pr
y∼l(x),y′∼l(x′)

[y 6= y′] = l(x)(1− l(x′)) + l(x′)(1− l(x))

≤ 2l(x)(1− l(x)) + |l(x′)− l(x)| .
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The error of the NN procedure can be therefore written as

ES∼PSm [ErrPT (hNN)]

= ES∼PSmEx∼PT
[

Pr
y∼l(x),y′∼l(NS(x))

[y 6= y′]

]
≤ ES∼PSmEx∼PT [2l(x)(1− l(x)) + |l(NS(x))− l(x)|]
≤ 2 optPT + ES∼PSmEx∼PT [|l(NS(x))− l(x)|] .

Using the definition of Probabilistic Lipschitzness and the fact that the range of l is [0, 1],

we have, for any set S,

Ex∼PT [|l(NS(x))− l(x)|] ≤ φ(λ) + λ−1Ex∼PT [‖NS(x)− x‖] ,

which yields equation 5.1. Thus, in order to prove learnability, we need an upper bound

on

ES∼PSm,x∼PTX [‖x−NS(x)‖].

Now, let C1, . . . , Cr be the cover of the set [0, 1]d using boxes of side-length γ. We have

P T
X (Ci) ≤

1

CBγ (P
S
X , P

T
X )
P S
X (Ci) ≤

1

C
P S
X (Ci)

for all boxes Ci. Thus, Lemma 19 yields

ES∼PSXm

 ∑
i:Ci∩S=∅

P T
X [Ci]

 ≤ ES∼PSXm

 ∑
i:Ci∩S=∅

1

C
P S
X [Ci]


≤ 1

C
ES∼PSXm

 ∑
i:Ci∩S=∅

P S
X [Ci]

 ≤ r

Cme

For each x, x′ in the same box we have ‖x − x′‖ ≤
√
d γ. Otherwise, ‖x − x′‖ ≤

√
d. For

x ∈ X we let Cx ∈ {C1, . . . , Cr} denote the box that contains the point x. Therefore,

ES∼PSm,x∼PTX [ ‖x−NS(x)‖ ]

≤ ES∼PSm
[

Pr
x∼PTX

[Cx ∩ S = ∅]
√
d+ Pr

x∼PTX
[Cx ∩ S 6= ∅]

√
d γ

]
≤
√
d(

r

meC
+ γ) .
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Since the number of boxes is (1/γ)d we get that

ES∼PSm,x∼PTX [‖x−NS(x)‖] ≤
√
d

(
1

m eC γd
+ γ

)
.

Combining this with equation 5.1, we get

ES∼PSm [ErrPT (hNN)]

≤ 2 optPT + φ(λ) + λ−1
√
d
(

1
m eC γd

+ γ
)

≤ 2 optPT + φ(λ) + λ−1
√
d 1
C

(
1

m e γd
+ γ
)

Note that, in the setting of the above theorem, for m ≥ 2
γd+1 , we get, for all λ > 0 that

ES∼PSm [ErrPT (hNN)] ≤ 2 optPT + φ(λ) + 2λ−1

√
d

C
γ .

With a bound on the weight ratio for the set B of all axis alligned rectangles we get an

error bound that approaches 2 optPT + φ(λ) as the sample size grows.

Theorem 52. Let our domain X be the unit cube, [0, 1]d, and for some C > 0, let W
be a class of pairs (P S, P T ) of source and target distributions over X × {0, 1} satisfying

the covariate shift assumption, with CB(P S
X , P

T
X ) ≥ C, and their common labeling function

l : X → [0, 1] satisfying the φ-probabilistic-Lipschitz property with respect to the target

distribution, for some function φ. Then, for all λ, for all (P S, P T ) ∈ W,

ES∼PSm [ErrPT (hNN)] ≤ 2 optPT + φ(λ) +
4
√
d

C λm
1
d+1

.

Proof. Theorem 51 states that

ES∼PSm [ErrPT (hNN)]

≤ 2 optPT + φ(λ) + λ−1
√
d 1
C

(
1

m e γd
+ γ
)

if we have a bound on the weight ratio for Bγ (see third to last line of the proof). As the

bound now holds for all γ we can set γ = m−
1
d+1 . This gives

2d+1γ−d

me
+ γ = 2md/(d+1)

me
+ 2m−1/(d+1)

= 2m−1/(d+1)(1/e + 1) ≤ 4m−1/(d+1)
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and we obtain ES∼PSm [ErrPT (NN(S))] ≤ 2 optPT + φ(λ) + 4λ−1
√
d 1
C
m−

1
d+1 .

Note that, if source and target data are the same, then the same analysis leads to an

error bound of ES∼Pm [ErrP (NN(S))] ≤ 2 optPT + φ(λ) + 4λ−1
√
dm−

1
d+1 for applying the

Nearest Neighbor algorithm in the standard setting. This is the bound of Theorem 21.

For the results in this section we can actually settle for the η-weight ratio (see Definition

38). For boxes of very small target-weight, we do not need to require the source distribution

to have any weight at all. More precisely, since the number of boxes we are using to cover

the space in the proofs in this section is
(
1/γd

)
, aiming for some value of ε, we could waive

the requirement for boxes that have target weight less than γdε. Thus by assuming a lower

bound on the γdε-weight ratio, the potential misclassification of these boxes sum up to at

most ε and thus we only produce an additional error of ε.

5.7 DA under Target Realizability

In many learning scenarios labeling examples can by costly and time-consuming. Thus, it

is natural to investigate, whether the amount of data that is necessary for domain adap-

tation can be covered by unlabeled target data rather than labeled source data. We now

present a domain adaptation algorithm for the case where the labeling function satisfies the

(standard) Lipschitz property and the target is realizable with a margin (recall Definition

9 and Definition 10).

Note that the results of the previous section also provide a DA algorithm for labeling

functions that satisfy the Lipschitz property, namely the Nearest Neighbor algorithm.

However, this approach uses a large amount of labeled data (from the source distribution)

and does not make use of any information from the target distribution. Here, we show that

we can compensate for labeled source examples by a large unlabeled target sample if the

learner has knowledge of a class that realizes the target distribution. Hereby, the size of

the labeled sample required for success goes from the Nearest Neighbor sample complexity
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down to the (much smaller) sample complexity of standard learning under a realizability

assumption.

For the results of this section, we need the notion of an ε-net. This was introduced by

Haussler and Welzl [1986].

Definition 53 (ε-net, Haussler and Welzl [1986]). Let X be some domain, W ⊆ 2X a

collection of subsets of X and P a distribution over X . An ε-net for W with respect to P

is a subset N ⊆ X that intersects every member of W that has P -weight at least ε.

Corollary 3.8 of Haussler and Welzl [1986] tells us that, there exists a constant c such

that for any class W of finite VC-dimension, an i.i.d. sample from some distribution P of

size at least

c

(
VCdim(H) + log(1/δ)

ε
log

(
VCdim(H)

ε

))
is an ε-net with probability at least 1− δ.

We relate ε-nets for a source distribution to ε-nets for a target distribution:

Lemma 54. Let X be some domain, W ⊆ 2X a collection of subsets of X , and P S and

P T a source and a target distribution over X with C := CW(P S, P T ) ≥ 0. Then every

(Cε)-net for W with respect to P S is an ε-net for W with respect to P T .

Proof. Let N ⊆ X be an (Cε)-net for W with respect to P S. Consider a U ∈ W that has

target-weight at least ε, that is P T (U) ≥ ε. Then we have P S(U) ≥ CP T (U) ≥ Cε. As N

is an (Cε)-net for W with respect to P S, we have N ∩ U 6= ∅.

In this section, we assume the labeling function l to be deterministic.

5.7.1 Realizability with a margin

We propose the following adaptive domain adaptation procedure for the case that the

learner has prior knowledge of a hypothesis class that realizes the target distribution with

a margin:
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Algorithm A

Input An i.i.d. labeled sample S from P S, an unlabeled i.i.d. sample T from P T
X

and a margin parameter γ.

Step 1 Partition the domain [0, 1]d into a collection B of boxes (axis-aligned

rectangles) with sidelength (γ/
√
d).

Step 2 Obtain sample S ′ by removing every point in S, which is sitting in a box

that is not hit by T .

Step 3 Output an ERM classifier from H for the sample S ′.

The following theorem provides upper bounds on the sizes of the labeled and the un-

labeled sample that suffice for algorithm A to succeed. Note that the complexity of the

labeled sample is comparable to the size of a labeled sample required in standard learn-

ing. It depends only on the VC-dimension, the accuracy parameters and the weight ratio

between source and target.

In the statement of the theorem we use the following notation: For two collections of

subsets A ⊆ 2X and B ⊆ 2X of some domain set X , we let A u B denote the set of all

intersections of elements from A with elements from B, formally

A u B := {c ⊆ X : c = b ∩ a for some a ∈ A and b ∈ B}

Theorem 55. Let X = [0, 1]d, γ > 0 a margin parameter, H be a hypothesis class of

finite VC dimension and W be a class of pairs (P S, P T ) of source and target distribution

satisfying covariate shift with

• CI(P S, P T ) > 0 for the class I = (H∆H) u B, where B is a partition of [0, 1]d into

boxes of sidelength γ/
√
d

• P T is realizable by H with margin γ

• their labeling function l is a γ-margin classifier with respect to P T .
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Then there is a constant c > 1 such that, for all ε > 0, δ > 0, and all (P S, P T ) ∈ W, when

given an i.i.d. labeled sample S from P S of size

|S| ≥ c

(
VCdim(H) + log(1/δ)

CI(P S, P T )2(1− ε)2ε
log

(
VCdim(H)

CI(P S, P T )2(1− ε)2ε

))
and an i.i.d. unlabeled sample T from P T

X of size

|T | ≥ 2(
√
d/γ)d ln(3(

√
d/γ)d/δ)

ε

then, with probability at least 1− δ, algorithm A outputs a classifier h with ErrPT (h) ≤ ε.

Proof. Let ε > 0 and δ > 0 be given and set C = CI(P
S, P T ). We set ε′ = ε/2 and

δ′ = δ/3 and divide the space X up into heavy and light boxes from B, by defining a

box b ∈ B to be light if P T (b) ≤ ε′/|B| = ε′/(
√
d/γ)d and heavy otherwise. We let X l

denote the union of the light boxes and X h the union of the heavy boxes. Further, we

let P S
h and P T

h denote the restrictions of the source and target distributions to X h, that

is, we have P S
h (U) = P S(U)/P S(X h) and P T

h (U) = P T (U)/P T (X h) for all U ⊆ X h and

P S
h (U) = P T

h (U) = 0 for all U * X h. As |B| = (
√
d/γ)d, we have P T (X h) ≥ 1 − ε′ and

thus, P S(X h) ≥ C(1− ε′).

We will show the following:

Claim 1 With probability at least 1 − δ′ an i.i.d. P T -sample T of size as stated in the

Theorem hits every heavy box.

Claim 2 With probability at least 1 − 2δ′ the intersection of S and X h, where S is an

i.i.d. P S-sample of size as stated in the theorem is an ε′-net for H∆H with respect

to P T
h .

To see that these imply the claim of the theorem, let Sh = S∩X h denote the intersection

of the source sample and the union of heavy boxes. By Claim 1, T hits every heavy box

with high probability, thus Sh ⊆ S ′, where S ′ is the intersection of S with boxes that are

hit by T (see the description of the algorithm A). Therefore, if Sh is an ε′-net for H∆H

with respect to P T
h (as guaranteed by Claim 2) then so is S ′. Hence, with probability at
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least 1− 3δ′ = 1− δ the set S ′ is an ε′-net for H∆H with respect to P T
h . Now note that an

ε′-net for H∆H with respect to P T
h is an ε-net with respect to P T as every set of P T -weight

at least ε has P T
h weight at least ε′, by definition of X h and P T

h .

Finally, we need to show that S ′ being an ε-net for the setH∆H of symmetric differences

with respect to the target distribution, suffices for the ERM-classifier from the class H to

have target error at most ε. Let h∗T ∈ H denote the γ-margin classifier of zero target error.

Note that every box in B of positive target weight is labeled homogeneously with label 1

or label 0 by the labeling function l as l is a γ-margin classifier as well. Let s ∈ S ′ be a

sample point and bs ∈ B be the box that contains s. As h∗T is a γ-margin classifier and

P T (bs) > 0 (bs was hit by T by the definition of S ′), bs is labeled homogeneously by h∗T as

well and as h∗T has zero target error this label has to correspond to the labeling by l. Thus

h∗T (s) = l(s) for all s ∈ S ′, which means that the empirical error with respect to S ′ of h∗T
is zero.

Now consider a classifier hε with ErrPT (hε) ≥ ε. Let s ∈ S ′ be a sample point in h∗T∆hε

(which exists as S ′ is an ε-net). As s ∈ h∗T∆hε, we have hε(s) 6= h∗T (s) = l(s) and thus, hε

as an empirical error larger than zero, which implies that no classifier of error larger than

ε can be chosen by ERM on input S ′.

Proof of Claim 1: Let b be a heavy box, thus P T (b) ≥ ε′/|B|. Then, when drawing

an i.i.d. sample T from P T , the probability of not hitting b is at most (1− (ε′/|B|))|T |. Now

the union bound implies that the probability that there is at a box in Bh that does not get

hit by the sample T is bounded by

|Bh|(1− (ε′/|B|))|T | ≤ |B|(1− (ε′/|B|))|T | ≤ |B|e−ε′|T |/|B|.

Thus if

|T | ≥ |B| ln(|B|/δ′)
ε′

=
2(
√
d/γ)d ln(3(

√
d/γ)d/δ)

ε

the sample T hits every heavy box with probability at least 1− δ′.

Proof of Claim 2: Let Sh := S ∩ X h. Note that, as S is an i.i.d. P S sample, we can

consider Sh to be an i.i.d. P S
h sample. We have the following bound on the weight ratio
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between P S
h and P T

h :

CI(P
S
h , P

T
h ) = infp∈I,PTh (p)>0

PSh (p)

PTh (p)
= infp∈I,PTh (p)>0

PS(p)
PT (p)

PT (Xh)
PS(Xh)

≥ C PT (Xh)
PS(Xh)

≥ C(1− ε′),

where the last inequality holds as P T (X h) ≥ (1 − ε′) and P S(X h) ≤ 1. Note that every

element in H∆H can be partitioned in to elements from I, therefore we obtain the same

bound on the weight ratio for the symmetric differences of H:

CH∆H(P S
h , P

T
h ) ≥ C(1− ε′).

It is well known that there is a constant c > 1 such that, conditioned on Sh having size

at least

M := c

(
VCdim(H∆H) + log(1/δ′)

C(1− ε′)ε′
log

(
VCdim(H∆H)

C(1− ε′)ε′

))
,

with probability at least 1− δ′ it is a C(1− ε′)ε′-net with respect to P S
h and thus an ε′-net

with respect to P T
h by Lemma 54 (see Definition 53 and discussion above).

Thus, it remains to show that with probability at least 1 − δ′ we have |Sh| ≥ M . As

we have P S(X h) ≥ C(1 − ε′), we can view the sampling of the points of S and checking

whether they hit X h as a Bernoulli variable with mean µ = P S(X h) ≥ C(1− ε′). Thus, by

Hoeffding’s inequality we have that for all t > 0

Pr(µ|S| − |Sh| ≥ t|S|) ≤ e−2t2|S|.

If we set C ′ = C(1− ε′), assume |S| ≥ 2M
C′

and set t = C ′/2, we obtain

Pr(|Sh| < M) ≤ Pr(µ|S| − |Sh| ≥ C ′

2
|S|) ≤ e−

C′2|S|
2 .

Now

|S| ≥ 2M

C ′
>

2(VCdim(H∆H) + log(1/δ′))

C2(1− ε′)2ε′

implies that e−
C′2|S|

2 ≤ δ′, thus we have shown that Sh is an ε′-net of H∆H with probability

at least (1− δ′)2 ≥ 1− 2δ′.

Imitating the proof of Claim 1 by Ben-David and Litman [1998] one can show that

VCdim(H∆H) ≤ 2VCdim(H) + 1. This completes the proof.
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5.7.2 Finite domain

The procedure A from the previous section can be modified to work on any finite domain

with arbitrary labeling functions and hypothesis classes of finite VC-dimension (under the

target-realizability assumption). For the modification, we delete Step 2 and instead of

Step 3 the algorithm removes every point from the labeled source sample S which is not

hit by the unlabeled target sample T . This does not change the size of the source sample S

needed for a guarantee of success, but the size of the target sample now depends on the size

of the domain instead of the labeling function’s Lipschitzness. The proof of the following

result is a simple modification of the proof of Theorem 55 and is left to the reader.

Theorem 56. Let X be some domain, H be a hypothesis class of finite VC dimension

and W = {(P S, P T ) | C(P S
X , P

T
X ) > 0, optPT (H) = 0} be a class of pairs of source and

target distributions satisfying covariate shift, with bounded weight ratio and the target being

realizable by H. Then there is a constant c > 1 such that, for all ε > 0, δ > 0, and all

(P S, P T ) ∈ W, when given an i.i.d. labeled sample S from P S of size

|S| ≥ c

(
VCdim(H) + log(1/δ)

C(P S, P T )2(1− ε)2ε
log

(
VCdim(H)

C(P S, P T )2(1− ε)2ε

))
and an i.i.d. unlabeled sample T from P T

X of size

|T | ≥ 2|X | ln(3|X |/δ)
ε

then algorithm A outputs a classifier h with ErrPT (h) ≤ ε with probability at least 1− δ.

5.8 Proper DA Learning

In this section, we show that in the context of proper domain adaptation, the use of

algorithms that utilize target generated data, is necessary. We show that there are classes

that can not be properly learned without access to data from the test distribution:

Theorem 57. Let our domain set be the unit cube in Rd, for some d. Consider the class

H of half-spaces as our target class. Let x and z be a pair of antipodal points on the unit
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sphere and let W be a set that contains two pairs (P S, P T ) and (P S, P T ′) of distributions

with:

1. both pairs satisfy the covariate shift assumption,

2. l(x) = l(z) = 1 and l(0̄) = 0 for their common labeling function l,

3. P S
X (x) = P S

X (z) = P S
X (0̄) = 1/3,

4. P T
X (x) = P T

X (0̄) = 1/2 and P T
X
′
(z) = P T

X
′
(0̄) = 1/2.

Then, for any ε < 1/2, any δ < 1/2 and any number m, no DA learning algorithm can

(ε, δ,m, 0) solve the domain adaptation task of properly learning H with respect to W.

Proof. Clearly, no halfspace can correctly classify the three points, x, 0̄ and y. Note that

for any halfspace h, we have ErrPT (h) ≥ 1/2 or ErrPT ′(h) ≥ 1/2 (or both). Thus for every

DA learner, there exists a target distribution (either P T or P T ′) such that, with probability

at least 1/2 over the sample, outputs a function of error at least 1/2. Lastly, note that the

approximation error of the class of halfspaces for the target distributions is 0.

This theorem implies that no conservative DA learner succeeds in domain adaptation

learning of halfspaces even with respect to the simple class of distributions W . Note that

both target distributions in W are realizable by the class of halfspaces. Thus, we obtain

the following result (recall that we call a DA-learner conservative if it does not make use

target generated data, see Section 5.3):

Corollary 58. No conservative DA-learner can properly learn the class of halfspaces over

the domain X = [0, 1]d with respect to a class W of pairs of source and target distributions

that satisfy covariate shift, have weight ratio larger than C for some 0 < C < 2/3 and

where the target is realizable by H.

In the example of Theorem 57 it becomes crucial for the learning algorithm to estimate

whether the support of the target distribution is on x and 0̄ or on z and 0̄. This information
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cannot be obtained without access to a sample of the target distribution despite of a point-

wise weight ratio as large as 1/2. Thus, no amount of source generated data can compensate

for having a sample from the target distribution.

We now present a general method for proper DA learning. The idea of our construction

is to apply a simple two step procedure, similar to the one suggested Chapter 4 in the

context of semi-supervised learning. In the first step, we use the labeled examples from the

source distribution to learn an arbitrary predictor, which should be rather accurate on the

target distribution. For example, as we have shown in the previous section, this predictor

can be the Nearest Neighbor rule. In the second step, we will apply that predictor to the

unlabeled examples from the target distribution and feed this constructed (now labeled)

sample to a standard agnostic learner for the usual supervised learning setting.

As in our results for proper semi-supervised learning we make use of Lemma 26, which

quantities the robustness of agnostic learners to small changes in the labeling function of

the data generating distribution. This lemma implies that, in order to prove the success of

our DA algorithm, it suffices to show that the classifier that we learn in the first step has

error smaller than ε/3 with confidence at least 1− δ/2. If we then use an agnostic learner

for our output-class H in the second step and feed this agnostic learner with a sample of

the size it needs to (ε/3, δ/2)-learn H, our 2-step procedure (ε, δ)-learns H. Applying this,

we readily get:

Theorem 59. Let X be some domain and W be a class of pairs (P S, P T ) of distribu-

tions over X × {0, 1} with optPT = 0 such that there is an algorithm A and functions

m : (0, 1)2 → N, n : (0, 1)2 → N such that A (0, ε, δ,m(ε, δ), n(ε, δ))-solves the domain

adaptation learning task for W for all ε, δ > 0. Let H be some hypotheses class for which

there exists an agnostic proper learner. Then, the H-proper domain adaptation problem

with respect to the class W can be (1, ε, δ,m(ε/3, δ/2), n(ε/3, δ/2) + m′(ε/3, δ/2))-solved,

where m′ is the sample complexity function for agnostically learning H.

Proof. Given the parameters ε and δ, let S be a P S-sample of size at least m(ε/3, δ/2)

and T be an unlabeled P T
X -sample of size n(ε/3, δ/2) +m′(ε/3, δ/2). Divide the unlabeled

sample into a sample T1 of size n(ε/3, δ/2) and T2 of size m′(ε/3, δ/2). Apply A(S, T1), the

predictor resulting form applying the learner A to the S and T1, to label all members of
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T2, and then feed the now-labeled T2 as input to the agnostic proper learner for H. The

claimed performance of the output hypothesis now follows from Lemma 26.

The algorithm A used in this theorem could be the Nearest Neighbor algorithm, if

the class W satisfies the conditions for Theorem 51. In summary, we have shown that

with a non-conservative DA algorithm, that employs unlabeled examples from the target

distribution, we can agnostically learn a member of the hypotheses class for the target

distribution, whereas without target generated data we can not.

5.9 Discussion

We have analyzed domain adaptation learning in the setting where the learner has access

to labeled source and unlabeled target data. Our lower bounds in Section 5.5 imply that

DA learning is impossible unless at least one of these types of samples is available in very

large quantities. This holds even for DA learning under assumptions that are so strong

that they may seem to trivialize the problem. Thus any positive learning guarantees for

DA with reasonable samples sizes will hold only under rather strong assumptions on the

relatedness between source and target task.

The type of data that is easier to obtain for a DA learning task, determines whether

it is more appropriate to employ a conservative DA algorithm (that uses only data from

the source distribution) or to choose an adaptive paradigm. We have presented algorithms

(and discussed previous work on) both these types of approaches.

The Nearest Neighbor algorithm discussed in Section 5.6 is a conservative approach to

DA. It labels target (test-)points solely by their nearest neighbor in a source generated

sample. We have shown that this is successful if source and target distribution have

bounded weight ratio with respect to the set of axis-alligned rectangles, and if the size of

the source-generated sample is large enough to compensate for the discrepancy between

source and target (as quantified by the weight ratio). Thus, here DA is possible with a

(rather large) source sample without access to target data.
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We have further shown that, if labeling is expensive but there is unlabeled data from

the target data, then a large unlabeled target sample can reduce the necessary amount of

labeled data back to what is also needed in the standard setting (its size depending on the

VC-dimension of the class to be learned and the weight ratio between source and target). In

Section 5.7 we present a reweighting paradigm that achieves this under the assumption that

the target task is realizable with a margin by some hypothesis class and source and target

have bounded weight ratio with respect to the set of symmetric differences of the class.

Thus, for this setting, DA is possible with a relatively small number of labels provided the

unlabeled target data. Note that our lower bound in Theorem 42 applies to this setting

and therefore DA is not possible with this small amount of labeled data without the large

unlabeled sample.

Ben-David et al. [2012] also show that, if the learner has prior knowledge that the

source distribution is realizable by some class and source and target have bounded weight

ratio with respect to the set of symmetric differences in this class, then DA is also possible

by simply applying a classifier that is learned from source data to the target (the error is

worsened by a factor that corresponds to the weight ratio in this case). More precisely:

Observation 60 (Ben-David et al. [2012]). Let X be a domain and let P S and P T be a

source and a target distribution over X × {0, 1} satisfying the covariate shift assumption,

with CH∆H(P S
X , P

T
X ) > 0. Then we have ErrPT (h) ≤ 1

CH∆H(PSX ,P
T
X )

ErrPS(h) for all h : X →
{0, 1}.

Combining the lower and upper bounds described above, we conclude that when the

size of the source generated labeled sample is supposed to be small (i.e. independent of the

domain size) then, without strong prior knowledge about the source distribution, successful

DA is possible only by adaptive algorithms (algorithms that make use of target generated

data). In other words, in that setup, unlabeled target generated data is provably necessary

and beneficial for DA learning.

It is interesting to note that in the setting of proper learning, DA is impossible without

access to target generated DA independently of the amount of source generated (labeled)

data. We formally proved this in Section 5.8.
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Chapter 6

Active Learning

6.1 Overview

In Active Learning (AL), the learner gets a sample of unlabeled instances as input. It can

then successively choose points from that sample and obtains their labels. The learner’s

choice of points for label query is based on the instances in the unlabeled input sample

and, at each step, on the previously seen labels. By choosing the instances wisely, the

learner aims to achieve good prediction performance while using as little label queries as

possible, and, in particular, less than the amount of labeled examples required for learning

from a fully labeled random sample.

Active learning paradigms are successful in practice and there is also a variety of the-

oretical studies analyzing the possibilities and limitations of AL. However, several studies

have shown that, under worst-case scenarios, AL algorithms are bound to require as many

labeled sample points as their “passive” fully supervised counterparts (see discussion of

related work in in Section 6.2). Those negative results set the frame for most of the theo-

retical research on AL. Rather than trying to show that active choice of label queries can

always reduce the number of training labels, one aims to identify properties of the learning

task under which an AL paradigm is beneficial. In this chapter, we show that allowing

active label queries provably reduces the labeled sample complexity of learning tasks, if

the data generating distribution satisfies Probabilistic Lipschitzness.
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We present a procedure that takes an unlabeled sample, queries the (true) labels of

some of the sample points, and returns a full (but possibly erroneous) labeling of the

input sample. This algorithm (PLAL) follows a paradigm proposed by Dasgupta and Hsu

[2008] for exploiting cluster structure in active learning. While most previous work on

the theory of active learning focused on an efficient version space reduction for learning

a hypothesis class, Dasgupta and Hsu [2008] suggest a labeling procedure based on a

hierarchical clustering of the training data. The authors of that study show that, assuming

that the learner is given a “good” hierarchical clustering, an unlabeled sample can be

labeled almost correctly with relatively few label queries. They suggest to then feed the

now labeled sample to any standard learning procedure. Here, we analyze a version of their

approach under the assumption of PL. This condition is weaker than the availability of a

“good” clustering tree in that we only need it for the analysis of our procedure (as opposed

to the need for a successful preprocessing step that finds the good clustering tree).

Summary of our results

Our main result is proving reductions in labeled sample complexity for active learning with

PLAL in comparison to standard (passive) learning for several learning paradigms.

Our labeling procedure, PLAL, is presented in Section 6.4. We show here that PLAL

assigns incorrect labels to at most an ε-fraction of the original unlabeled sample, where

ε is an error parameter provided as input to the algorithm. Furthermore, we show that,

under the assumption of bounded PL, PLAL queries labels only for a fraction of the input

sample points. We derive bounds on the number of label queries in terms of the input

error parameter and the size of the input unlabeled sample.

In Section 6.5, we analyze under which conditions PLAL can be used as a preprocedure

to other learning paradigms to reduce the their label complexity. We argue in his section

that it is safe (in that it does not increase the error of the learned classifier by too much) to

use PLAL as a pre-procedure to a variety of learning methods: When learning a hypothesis

class, it is safe to use PLAL prior to any ERM or RLM learner. Further, we show that it

is safe to use PLAL for Nearest Neighbor learning.

The labeling-error and query number bounds for PLAL together with proving that using
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PLAL can not increase the error of the learned classifier by much, result in upper bounds

for the labeled sample complexity of PLAL-based active learning under PL. Combining

these with the lower bounds for passive learning under Probabilistic Lipschitzness from

Chapter 3, we show that, under polynomial rates of Probabilistic Lipschitzness, PLAL

significantly reduces the labeled sample complexity of learning some VC-classes as well as

unrestricted (Nearest Neighbor based) learning.

We start with discussing previous related work in Section 6.2. In Section 6.3 we present

our formal framework for active learning. The content of this chapter was published by

Urner et al. [2013].

6.2 Related Work

Active learning is a very lively area of research. There are many, practically relevant

techniques for employing active queries in order to reduce the number of labels needed.

Settles [2009] provides an overview and comparison of available methods. We focus on

discussing previous work on the analysis of active learning in the framework of statistical

learning theory.

The theoretical analysis of active learning was motivated by a simple example of learning

initial segments on the line, where binary search leads to an exponential improvement of

labeled sample complexity from 1/ε to log(1/ε) in the realizable case, see Dasgupta [2004].

This has inspired a large body of work, that analyses how active queries can reduce the

number of labels needed to reduce a hypothesis space to only close to optimal functions, by

eliminating all functions that have non-zero empirical error. Dasgupta [2005] showed that

this is not possible with less than 1/ε queries in general. Depending on the target concept

the labeled sample complexity of a specific task (learning linear separators under uniform

marginal) can vary between O(log(1/ε)) and Ω(1/ε). Dasgupta [2004] and Dasgupta et al.

[2003] show that a greedy label querying strategy for finding a hypothesis that is consistent

with a sample approximates the optimal strategy up to a factor of log(|H|). Adler and

Heeringa [2012] that the optimal strategy can not be approximated to arbitrarily small

factors.
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Research has thus mostly focused on finding properties and parameters of learning

tasks (distributions, hypothesis classes and combinations of these) that allow for provable

reductions in sample complexity by active learning methods. Dasgupta [2005] introduced

the splitting index, a parameter that relates a hypothesis class to a marginal distribution,

and presents labeled sample complexity bounds for active learning in the realizable case in

terms of this parameter. Balcan et al. [2007] investigate active learning of linear separators

under a margin assumption and uniform marginal distribution. For the case of learning

linear separators under a margin assumption the greedy strategy has recently been revisited

by Gonen et al. [2013].

There have been extensive efforts to generalize the positive results for active learning

from the realizable to the agnostic case. Lower bounds of Ω(1/ε2) by Kääriäinen [2006]

imply that, again, improvements in labeled sample complexity for learning a hypothesis

class are not possible in general. Thus, here as well, research focuses on identifying param-

eters that characterize learning tasks where active learning is beneficial. The, so far, most

prominent such parameter is disagreement coefficient, introduced by Hanneke [2007]. Wang

[2011] presents some upper and lower bound on the disagreement coefficient for classes with

smooth classification boundaries with respect to distributions that have smooth densities.

The disagreement coefficient has been used to bound the labeled sample complexity of var-

ious querying strategies (Hanneke [2007], Dasgupta et al. [2008], Beygelzimer et al. [2010],

Beygelzimer et al. [2009]). However, the bounds on the number of label queries in these

papers all involve the approximation error of the hypothesis class. They become relevant

only when the approximation error is small, the learning task thus close to the realizable

case.

The survey “The two faces of active learning” by Dasgupta [2011] contrasts two general

approaches for active learning: Using label queries to more efficiently search through a

hypothesis space and exploiting cluster structure in data. Almost all of the theoretical

work so far has focused on the former setup. A first approach at exploiting cluster structure

by active learning has been presented by Dasgupta and Hsu [2008]. This study presents

a labeling strategy for an unlabeled data, when the learner is also given a hierarchical

clustering of the data. It is shown that the suggested strategy mislabels at most an ε-

fraction of the points. The authors suggest that the labeling of the sample points, that
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is hereby obtained, could then be used for a “second round of learning”, however no

performance guarantees for this second round of learning are given. Furthermore, the

bound on the number of labels depends on the depth of the effectively used clustering tree

and it is unclear how to control this parameter. Our work builds on the ideas of Dasgupta

and Hsu [2008]. We provide a clean analysis of the labeling strategy and show how to use it

for the second round of learning in a way that admits provable performance guarantees and

reduction of labeled sample complexity under the assumption of Probabilistic Lipschitzness.

We bound the number of queries of our algorithm in terms of the Probabilistic Lipschitzness

of the underlying data distribution (independently of the depth of the resulting cluster tree

and independently of the approximation error of a class).

A framework, where an unlabeled sample is labeled by a preliminary, active labeling

procedure and then fed to a standard learner has been introduced by Hanneke [2012] under

the title “activized learning”. Assuming the data is realizable by a VC-class, the author

presents labeling procedures based on repeated computations of the shatter function of

version spaces and shows how this labeling procedure reduces the labeled sample complexity

of the original standard learner. Our PLAL procedure achieves labeled sample complexity

reduction results for data with bounded PL, which we believe is a more realistic assumption,

and is substantially simpler and easy to implement.

6.3 Formal Framework for Active Learning

In this chapter, we consider domain sets X = [0, 1]d for some dimension d, and distributions

P over X × {0, 1} with a deterministic labeling function l : X → {0, 1}.

An active learner receives an unlabeled sample SX = (x1, . . . , xm) generated i.i.d. by PX

(throughout this chapter, we use the notation SX as opposed to S, if we want to stress that

a sample consists of unlabeled domain points). The active learner can then sequentially

query labels for points in SX , that is, the learner chooses indices i1, . . . , in ∈ {1, . . .m} and

receives the labels l(xi1), . . . , l(xin). At each step, the choice of each ij can depend on SX

and the labels seen so far. Based on the unlabeled sample SX and the queried labels, the

learner outputs a hypothesis.
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We say that an algorithmA actively learns some hypothesis class H over X with respect

to a set of distribution Q over X × {0, 1}, if there exist functions mu : (0, 1)× (0, 1)→ N,

ml : (0, 1) × (0, 1) → N, such that, for all ε, δ ∈ (0, 1), for all distributions P ∈ Q, with

probability at least 1− δ over an i.i.d. unlabeled PX -generated sample SX of size mu(ε, δ),

the algorithm A queries at most ml(ε, δ) members of S for their labels and ErrP (A(SX )) ≤
ErrP (H) + ε. Given a function mu for the size of the unlabeled sample, we say that A
has labeled sample complexity or label complexity ml with respect to mu for the smallest

function ml such that the pair of functions (ml,mu) that satisfies the above condition.

The minimum such function ml for which there exists a function mu such that the pair

of functions (ml,mu) satisfies the above condition is called the labeled sample complexity

of A for actively learning H with respect to Q and denoted by mact[A, H,Q]. We define

mact[H,Q] and mact[H,Q, proper] analogously to the passive counterparts in Section 2.2.2.

6.4 The PLAL Labeling Procedure

The framework for our algorithm was suggested by Dasgupta and Hsu [2008]. The idea

is to use a hierarchical clustering (cluster tree) of the unlabeled data, check the clusters

for label homogeneity by starting at the root of the tree (the whole data-set) and working

towards the leaves (single data points). The label homogeneity of a cluster is estimated by

choosing data points for label queries uniformly at random from the cluster. If a cluster can

be considered label homogeneous with sufficiently high confidence, all remaining unlabeled

points in the cluster are labeled with the majority label and no further points from this

cluster will be queried. If a cluster is detected to be label heterogeneous, it is split into its

children in the pre-defined cluster tree. Since the cluster tree is fixed before any labels were

seen, the algorithm can reuse labels from the parent cluster (the induced subsample can

be considered a sample that was chosen uniformly at random from the points in the child-

cluster) without introducing any sampling bias. Dasgupta [2011] provides a nice overview

on this.

Dasgupta and Hsu [2008] analyze this framework and provide label-query bounds as-

suming that there exist a label homogeneous clustering of the data consisting of a relatively
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small number of tree-node clusters. In contrast, our analysis depends on the rate in which

the diameters of the clusters shrink. Invoking the PL assumption, we can turn such cluster-

diameter bounds into error bounds and label query bounds of the procedure. The rates

in which cluster diameters shrink have been analyzed for cluster trees that are induced

by spatial trees by Verma et al. [2009]. In our work, we consider a version of the general

framework that employs spatial trees for the hierarchical clustering. To obtain a concrete

algorithm from the general framework, we also need to specify how many points to query

per cluster, and in which order to choose the clusters. We describe our version of this

labeling procedure in the next subsection.

6.4.1 The algorithm

A spatial tree is a binary tree T , where each node consists of a subset of the space X =

[0, 1]d. We refer to these subsets as cells. The root Root(T ) of a spatial tree is the whole

space [0, 1]d and for each node (cell) C the children Left(C) and Right(C) form a 2-partition

of the node C. This implies that for each level (distance from the root) k, the nodes at this

level form a 2k-partition of the space. For a sample S, a spatial tree induces a hierarchical

clustering of S with clusters S ∩ C for the nodes C in the tree.

Our algorithm works in rounds (see pseudocode in Algorithm 1). It takes an unlabeled

i.i.d. sample SX and a spatial tree T as input. At each round, the algorithm maintains

a partition of the space [0, 1]d into active and inactive cells. Initially, there is only one

active cell, which is the root of the tree T , that is, the entire unit cube [0, 1]d containing

all sample points. Per round (level), the algorithm queries sufficiently many labels from

the SX points in each of the active cells, to detect if the cell is label heterogeneous (the

next paragraph gives a more detailed explanation for this method, called C.query() in line

7 of the pseudocode). A label homogenous cell (all seen labels in the cell are the same) is

declared inactive and all remaining sample points in the cell are assigned that label. For

a label heterogeneous cell, the children of the cell in T are added to the list of active cells

for the next round, if they still contain unlabeled points.

For a cell C at level k, method C.query(qk) queries the labels of the first qk sample

points in the cell. For this, it reuses labels of points that were queried in earlier rounds
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Algorithm 1 PLAL labeling procedure

1: Input: unlabeled sample SX = (x1, . . . , xm), spatial tree T , parameters ε, δ

2: level = 0

3: active cells[0].append(Root(T ))

4: while active cells[level] not empty do

5: qlevel = level·2·ln(2)+ln(1/δ)
ε

6: for all C in active cells[level] do

7: C.query(qlevel)

8: if all labels seen in C are the same then

9: label all points in C ∩ S with that label (cell C now becomes inactive)

10: else

11: if there are unqueried points in C ∩ S then

12: active cells[level + 1].append(Right(C),Left(C))

13: end if

14: end if

15: end for

16: level = level + 1

17: end while

18: Return: labeled sample S = ((x1, y1) . . . , (xm, ym))

(that is, does not actually query those). We call the sequence (qk)k∈N the query numbers.

If the cell contains fewer than qk sample points, the labels of all unlabeled points among

these are queried and the cell is declared inactive. In this case, it is not important whether

the cell is label homogeneous or label heterogeneous, as the algorithm does not infer labels

for any of the points and thus all the labels of points in such cells are correct labels. Note

that “declaring a cell inactive” is implicit in the code of Algorithm 1: Only for cells that

are heterogeneous and contain unlabeled points the children are added to the list of active

cells for the next round.

At the end of the procedure all sample points in SX are labeled. Each point was either

queried or obtained an induced label from the homogeneous declared cell it resides in. Only

in the latter case, a point might possibly have obtained an erroneous label. We show in
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Subsection 6.4.2 below that, by setting the query numbers to qk = k·2·ln(2)+ln(1/δ)
ε

, we can

bound the number of labeling mistakes this algorithm makes.

6.4.2 Error bound

In this section, we prove that with high probability over the unlabeled input sample, PLAL

will label almost all points in the sample correctly. This error guarantee holds without

any assumptions on the data-generating process (that is, in particular, independently of

Probabilistic Lipschitzness). We use the following simple probability calculation in order

to ensure, that PLAL will not oversee label-heterogeneity of a sub-sample in a cell:

Lemma 61. Let X be a domain, PX a distribution over X , and l : X → {0, 1} a labeling

function. For any ε, δ > 0, if l assigns both labels with PX -probability larger than ε, then

with probability at least 1− δ in an i.i.d. PX -sample, labeled by l, of size at least

ln(2/δ)

ε

both labels will occur.

Proof. By our assumption, each label is assigned with probability at most (1−ε) according

to PX . Thus, for each label, the probability that we do not see a point of this (fixed) label

in a sample of size m is bounded by

(1− ε)m ≤ e−εm.

Thus, the probability that we either do not see a 1 or do not see a 0 is bounded by

2e−εm.

If m ≥ ln 2/δ
ε

then 2e−εm ≤ δ. Thus, the probability that we do not see both labels although

both labels have weight at least ε is less than δ.

For arguing that PLAL will detect label heterogeneity in the subsample SC of a cell C,

we would like to employ the statement in the above lemma with the uniform distribution

105



over this subsample SC . Then, sampling from this distribution, corresponds to choosing

points from SC uniformly at random with replacement. However, we suggest to query the

labels of the first qk (where k is the level of cell C) sample points in SC according to the

order of points in the original sample. This corresponds to sampling from SC without

replacement. Note that sampling without replacement will only increase the probability of

seeing both labels, since the fraction of a label gets smaller while we are only seeing this one

label (that is, in the above proof, the probability seeing one (fixed) label is still bounded

by (1− ε)m). This type of sampling further allows us to consider the set of points from SC

whose labels were queried as as a sample from the data generating distribution restricted

to the cell C, which in turn means that we are also testing the label-heterogeneity of the

underlying distribution on this cell (also see Remark 63 below).

We can now present the following bound on the labeling errors of PLAL:

Theorem 62. Let X = [0, 1]d be the domain, PX a distribution over X , l : X → {0, 1} a

labeling function and m ∈ N. Then, when given an i.i.d. unlabeled PX -sample SX of size

m and parameters ε and δ, with probability at least (1− δ) (over the choice of the sample

SX ), PLAL labels at least (1− ε)m many points from SX correctly.

Proof. Consider a cell that is declared inactive by the PLAL procedure. This cell was

either declared homogeneous or all the points in the cell were actually queried for their

label. In the latter case, all points receive the correct label. We show that in each cell C,

that was declared homogeneous, at most an ε-fraction of the points are labeled incorrectly.

Lemma 61 together with the ensuing discussion shows that, for any cell C, if min{Pr[l =

1|C],Pr[l = 0|C]} ≥ ε, then PLAL choosing a subsample of size ln(2/δ)
ε

for label query has

probability at most δ of seeing only one label. Therefore, choosing query numbers ln(2/δC)
ε

,

for every cell C, guarantees that with probability at least 1− δC , it will either be declared

homogeneous, resulting in at most an ε-fraction of the sample points in the cell being

misclassified or the cell will be declared heterogeneous and split further. By choosing

δC = δ/22k−1, where k is the level of the cell C, we ensure that the sum over all confidence

parameters δC for all cells C, that are declared homogeneous, is at most δ (note this results

in our query numbers ln(2/δC)
ε

= k·2·ln(2)+ln(1/δ)
ε

) Thereby, with probability 1−δ over samples,

PLAL labels at least a (1− ε)-fraction of the points correctly.
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Remark 63. It is interesting to note that, if the spatial tree was fixed before the unlabeled

sample SX was drawn, then for a given cell C the set of points whose labels were queried

can be viewed as a sample from the underlying distribution restricted to this cell. This

implies that, when PLAL declares the sample in a cell label homogeneous (after querying

the labels of the first ln(2/δC)
ε

sample points in the cell), we can actually conclude that at

most an ε-fraction (according to the distribution) of all domain points in the cell are of the

opposite label. Thus, if we restrict our view to the cells that get declared homogeneous

during a run of PLAL, the labeling that labels those cells with the detected label has error

at most ε (with high probability over the sample). We use this, when arguing that we can

use PLAL as a preprocedure to Nearest Neighbor learning in Section 6.5.2.

6.4.3 Bound on the number of queries

We now provide a bound on the number of queries the algorithm makes when fed with

an unlabeled sample of size m under the assumption that the data generating distribu-

tion satisfies a Probabilistic Lipschitz condition. Our bounds involve the spread of the

sample points at level k, called the data diameter. In order to avoid overloaded no-

tation, we consider the spatial tree T fixed for this definition. For a set of unlabeled

points SX , we let λSXk denote the maximum data-diameter in a cell at level k, that is,

λSXk = max{diam(C, SX ) : C is a cell at level k}, where diam(C, SX ) is the data-diameter

of the sample points in cell C, defined as diam(C, SX ) = maxx,y∈C∩SX ‖x−y‖. The diameter

of a cell is always an upper bound on its data-diameter.

Theorem 64. Let X = [0, 1]d be the domain, PX a distribution over X , l : X → {0, 1}
a labeling function that is φ-Lipschitz for some function φ, let qk = k·2·ln(2)+ln(1/δ)

ε
denote

the query numbers of PLAL for level k and let (λk)k∈N be a decreasing sequence with

λk ∈ [0,
√
d]. Then the expected number of queries that PLAL makes on an unlabeled

i.i.d. sample SX from PX of size m, given that the data diameter of SX at level k satisfies

λSXk ≤ λk for all k, is bounded by

min
k∈N

(qk2
k + φ(λk) ·m).
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Proof. For each level, the Probabilistic Lipschitzness allows us to bound the number of

points that lie in heterogeneous cells at level k: For any sample point x that lies in a label

heterogeneous cluster at level k, there is a sample point y in this cluster, such that the

labeling function l on x and y violates the (standard) Lipschitz condition for 1/λSXk , and

thus also for 1/λk. The total weight of such points x is bounded by φ(λk). Therefore (as

λk was fixed before drawing the sample), the expected number of sample points that lie in

heterogeneous clusters at level k is bounded by φ(λk) ·m. Thus, the expected number of

points that are still unlabeled at the beginning of round k + 1 is bounded by φ(λk) ·m.

Consider the partition of the space PLAL has produced at the beginning of round k

(some of the cells in this partition are homogeneous cells from previous rounds and some

are the active cells at this level k). Clearly, qk is a bound on the number of label-queries

the algorithm made so far for each of the cells in this partition, as we reuse labels from

previous rounds, and the sequence (qi)i∈N is non-decreasing. There are at most 2k cells in

this partition. Thus qk2
k is an upper bound on the number of queries made up to level k.

These two bounds together imply that the number of queries is bounded by qk2
k+φ(λk) ·m

for any k.

The following corollary will allow us to obtain concrete bounds on the number of queries

for various probabilistic Lipschitz functions (see Table 6.1 below). It follows directly from

Theorem 64. Note that, provided the sequence (qi)i∈N of query numbers is non-decreasing,

the condition φ(λk∗) · m ≤ qk∗ · 2k
∗d in the corollary is satisfied for sufficiently large k∗:

φ(λ) is decreasing for λ→ 0, and λk → 0 for k →∞ (see comment after Definition 18).

Corollary 65. Under the conditions of Theorem 64, let k∗ be such that φ(λk∗)·m ≤ qk∗ ·2k
∗
.

Then the expected number of queries that PLAL makes on an unlabeled i.i.d. sample from

PX of size m is bounded by

2 · qk∗ · 2k
∗

=
k∗ · 2 · ln(2) + ln(1/δ)

ε
· 2k∗+1.

6.4.4 Bounds for dyadic trees

Here we provide concrete bounds on the expected number of queries for dyadic trees. In a

dyadic spatial tree, cells are always partitioned by halving one of the coordinates, cycling
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through the dimensions. That is, for any k, the initial unit cube [0, 1]d (at the root of the

tree) is split into 2kd cubes of sidelength 1/2k at level k · d. The diameter of such a cube at

level kd is λkd =
√
d/2k, which is at the same time an upper bound on the data diameter

λSXkd at level kd for any sample SX .

Table 6.1 provides an overview on the bounds that we get from Corollary 65 for the

polynomial and the exponential Lipschitz assumption. For each of the considered proba-

bilistic Lipschitz functions, we first calculate a value k∗ such that φ(λk∗) ·m ≤ qk∗ · 2k
∗

and

then plug this into the formula of Corollary 65 in order to bound the expected number

of queries. The calculations can be found below. The simplifications to Landau-notation

omit log-factors. We implicitly assume here that the size m of the input sample depends

polynomially on 1/ε, that is m = O( 1
εα

) for some α ∈ R.

Table 6.1: Dyadic trees

Lipschitzness Bound on expected number of queries

φ(λ) = λn 2 · log(
√
d
n
mε)

d
n+d ln(2)+ln(1/δ)
ε

· (
√
d
n
mε)

d
n+d = O(m

d
n+d

(
1
ε

) n
n+d )

φ(λ) = e
−1
λ

√
d
d

log(εm)d

ε
2(log(log((εm)

√
d))d ln(2) + ln(2/δ)) = O(1

ε
)

Proofs for the bounds in Table 6.1:

Polynomial Lipschitzness Assume φ(λ) = λn. We determine a k∗ such that

φ(λk∗) ·m ≤ qk∗2
k∗ ,

where qk = k·2 ln(2)+ln(1/δ)
ε

. Note that, if this inequality holds for some some value

k = k∗ it will also hold for all k ≥ k∗. We have λkd =
√
d

2k
. We show that for

k = log(
√
d
n
mε)

1
n+d

we have

φ(λkd) ·m ≤ qkd2
kd.
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With the above value for k we get

k =
log(
√
d
n
mε)

n+ d
,

thus

2k(n+d) =
√
d
n
mε,

thus

2kd
1

ε
≥
√
d
n

2kn
m,

thus

2kd
kd · 2 ln(2) + ln(1/δ)

ε
≥
√
d
n

2kn
m,

which is what we needed to show. Thus we can set k∗ = kd = d log(
√
d
n
mε)

1
n+d =

log(
√
d
n
mε)

d
n+d . According to Corollary 65 the number of queries is now bounded by

2 · k
∗ · 2 ln(2) + ln(1/δ)

ε
· 2k∗

= 2 · log(
√
d
n
mε)

d
n+d ln(2) + ln(1/δ)

ε
· (
√
d
n
mε)

d
n+d

Exponential Lipschitzness Assume φ(λ) = e−
1
λ . Again, we determine a k∗ such that

φ(λk∗) ·m ≤ qk∗2
k∗ ,

where qk = k·2 ln(2)+ln(1/δ)
ε

. We show that for

k = log(log(εm)
√
d)

we have

φ(λkd) ·m ≤ qkd2
kd.

With the above value for k we get

2k√
d

= log(εm),
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thus

kd+
2k√
d

log(e) ≥ log(εm),

thus

2kde
2k√
d ≥ εm,

thus

(kd · 2 ln(2) + ln(1/δ)) · 2kde
2k√
d ≥ εm,

thus
(kd · 2 ln(2) + ln(1/δ))

ε
· 2kd ≥ e

−2k√
d m,

which is what we needed to show. Thus we can set k∗ = kd = d log(log(εm)
√
d).

According to Corollary 65 the number of queries is now bounded by

2 · k
∗ · 2 ln(2) + ln(1/δ)

ε
· 2k∗

=
2(log(log(εm)

√
d)d ln(2) + ln(1/δ))

ε
· (log(εm)

√
d)d

=

√
d
d

log(εm)d

ε
2(log(log((εm)

√
d))d ln(2) + ln(1/δ)).

Remark 66 (Other spatial trees). Often, the intrinsic dimension of real data is considerably

smaller than the Euclidean dimension of its feature space. Verma et al. [2009] show (for

several notions of intrinsic dimension) that, for various classes of spatial trees, the expected

data diameter decreases as a function of this intrinsic dimension. Thus, we expect that the

query bounds of PLAL used with these trees scale well with the intrinsic dimension.

6.5 PLAL as a Pre-Procedure to Passive Learners

In this section, we argue that using PLAL with dyadic trees as a pre-procedure can reduce

the label complexity of a passive learner. In Section 6.5.1, we first show that Empirical

Risk Minimizers (ERM algorithms) and Regularized Loss Minimizers (RLM algorithms)
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are robust to the label errors that PLAL might introduce. This implies that for these types

of algorithms it is safe to use PLAL for labeling, in the sense that it will not increase the

error of the learned classifier by much (and using PLAL can never increase the number of

label queries made). Generalizing this, we then argue that it is safe to use labels from PLAL

to mimic the oracle for any statistical learning algorithm. In a second step in Section 6.5.2,

we prove that there are scenarios, where employing PLAL reduces the label complexity of

a learning task.

6.5.1 Robustness of algorithms

In the previous section we have shown how, given any sample, S = ((x1, y1), . . . , (xm, ym)),

the PLAL labeling procedure takes its unlabeled projection SX (x1, . . . , xm) as input, queries

some of the labels and outputs a labeled sample S ′ = ((x1, y
′
1), . . . , (xm, y

′
m)) such that,

with high probability, the number of label errors |{i : yi 6= y′i}| is bounded (as a function

of the Probabilistic Lipschitzness and the number of labels PLAL queried). We show that

in many cases such a sample S ′ suffices for successful learning.

Note that we can not simply invoke Lemma 26 since running PLAL does not give us

access to a full labeling function f : X → {0, 1} of error smaller than ε, such that the

PLAL-labels could be considered labels from this low-error function. In cells, where PLAL

queries all points, we have no information about the labeling of the cell outside the sample

points. We thus consider the following notion of robustness of learners:

Definition 67. Let X be a domain set and P a distribution over X × {0, 1}. Given a

sequence of labeled instances, S = ((x1, y1), . . . , (xm, ym)) ⊆ X × {0, 1} and ε ≥ 0, define

the ε-neighborhood of S as

Nε(S) = {S ′ = ((x1, y
′
1), . . . , (xm, y

′
m)) : |{i : yi 6= y′i}|/m ≤ ε}.

We say that a learning algorithm A is (m, ε, δ, η)- robust with respect to P , if

Pr
S∼Pm

[ ∀S ′ ∈ Nε(S), ErrP (A(S ′)) ≤ ErrP (A(S)) + η] ≥ (1− δ).

The next lemma (that upper bounds the error introduced by the use of PLAL for robust

algorithms) follows directly from this definition and Theorem 62.
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Lemma 68. Let A be a learner that is (m, ε, δ, η)-robust with respect to a distribution P

over [0, 1]d×{0, 1}. Then on random training samples of size m generated by P , replacing

the fully labeled sample with one actively labeled by the PLAL (with parameters ε, δ), results

in deterioration of the error of A(S) by at most η (with probability at least (1 − 2δ) over

the samples).

Next, we show that many common learning algorithms are indeed robust with respect

to any data generating distribution, for sufficiently large sample sizes. Applying Lemma

68, we then conclude that for such algorithms PLAL can be applied as a preliminary

procedure, and reduce the label complexity of learning, in cases where the query numbers

required by PLAL are sufficiently small (so that it compensates for the η loss of accuracy).

We require the following basic notions:

Definition 69. Let X be a domain set, P a distribution over X ×{0, 1} and H ⊆ {0, 1}X

a hypothesis class. We say that a labeled sample S is ε-representative of H with respect

to P , if

|ErrS(h)− ErrP (h)| ≤ ε

for every h ∈ H. We say that a class H satisfies the uniform convergence property with

rate mUC
H : (0, 1)× (0, 1)→ N if, for any data generating distribution P , any ε, δ > 0, and

any m ≥ mUC
H (ε, δ), we have

Pr
S∼Pm

[S is ε-representative for H with respect to P ] ≥ 1− δ.

It is well-known that every class H of finite VC-dimension satisfies the uniform con-

vergence property and that there exists a constant c such that, for every such H we have

mUC
H (ε, δ) = cVCdim(H)+log(1/δ)

ε2
.

Recall that an algorithm A is an Empirical Risk Minimizer (ERM) for a class H if

A(S) ∈ argminh∈HErrS(h). A Regularized Loss Minimizer (RLM) B minimizes a com-

bination of the empirical error and some regularization function ϕ : H → R, that is

B(S) ∈ argminh∈H(ErrS(h) + ϕ(h)). The following lemma is a consequence of the above

definitions.
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Lemma 70. Let X be a domain set, P a distribution over X × {0, 1} and H ⊆ {0, 1}X a

hypothesis class. If m ≥ mUC
H (ε, δ) and A is an ERM (or RLM) algorithm for H, then A,

is (m, ε, δ, 4ε)-robust ((m, ε, δ, 6ε)-robust respectively) with respect P .

Proof. ERM algorithms: For some sample S, we let hS denote an empirical risk mini-

mizer in H with respect to S, that is, hS = argminh∈HErrS(h). By Definition 67 we need

to show that

Pr
S∼Pm

[ ∀S ′ ∈ Nε(S), ErrP (hS′)) ≤ ErrP (hS) + 4ε] ≥ (1− δ).

By the Definition 69 (uniform convergence property) we know that a sample of size at

least m ≥ mUC
H (ε, δ) is ε-representative for H with probability at least 1− δ. Thus, we now

assume that the sample S is ε-representative and it remains to show that we have for all

S ′ ∈ N (S):

ErrP (hS′) ≤ ErrP (hS) + 4ε.

We have

ErrP (hS′) ≤ ErrS(hS′) + ε as S is ε-representative

≤ ErrS′(hS′) + 2ε as S ′ ∈ N (S)

≤ ErrS′(hS) + 2ε by definition of hS′

≤ ErrS(hS) + 3ε as S ′ ∈ N (S)

≤ ErrP (hS) + 4ε as S is ε-representative

RLM algorithms: Now, for some sample S, we let hS denote a regularized risk minimizer

in H with respect to S, that is, hS = argminh∈H(ErrS(h) + ϕ(h)). Again, we assume that

the sample S is ε-representative and now need to show that we have for all S ′ ∈ N (S):

ErrP (hS′) ≤ ErrP (hS) + 6ε

We start by proving that

ϕ(hS)− ϕ(hS′) ≤ 2ε (∗)
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By way of contradiction, let us assume that, on the contrary, ϕ(hS) > ϕ(hS′) + 2ε. Then

we get

ErrS(hS) + ϕ(hS) > ErrS(hS) + ϕ(hS′) + 2ε by assumption

≥ ErrS′(hS) + ϕ(hS′) + ε as S ′ ∈ N (S)

≥ ErrS′(hS′) + ϕ(hS′) + ε by definition of hS′

≥ ErrS(hS′) + ϕ(hS′) as S ′ ∈ N (S)

This contradicts the definition of hS. With this, we conclude:

ErrP (hS′) ≤ ErrS(hS′) + ε as S is ε-representative

≤ ErrS′(hS′) + 2ε as S ′ ∈ N (S)

≤ ErrS′(hS) + (ϕ(hS)− ϕ(hS′)) + 2ε by definition of hS′

≤ ErrS′(hS) + 4ε by (∗)
≤ ErrS(hS) + 5ε as S ′ ∈ N (S)

≤ ErrP (hS) + 6ε as S is ε-representative

6.5.2 Reducing labeled sample complexity with PLAL

Table 6.1 provides an upper bound on the expected number of label queries the PLAL

procedure makes using dyadic trees, given the unlabeled projection SX of a sample S of

size m, to generate a sample S ′ ∈ Nε(S). We now apply these bounds to prove reductions

in the label complexity achieved by using PLAL as a pre-procedure to passive learning

algorithms. Given a passive learning algorithm A, we let A◦PLAL denote the composition

of A with the PLAL procedure. That is, A ◦ PLAL considers an unlabeled sample SX ,

applies PLAL to SX and then applies A to the resulting labeled sample S ′ ∈ Nε(S).

Since the PLAL query bounds are derived under the assumption that the data-generating

distribution satisfies PL, a fair comparison requires contrasting these with the lower bounds
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for the sample complexity in the standard model (of learning from fully labeled random

training samples) under the same PL assumptions.

In this section, we consider PL-functions φ with φ(1) = 1, in particular the “polynomial

PL functions”, φ(λ) = λn. In this case, the expected number of queries is bounded by

O(m
d

n+d

(
1
ε

) n
n+d ), see Table 6.1. For an algorithm with (fully supervised) sample complexity

m = Θ((1/ε)α), this yields a O(
(

1
ε

)n+αd
n+d )) bound on the expected number of queries. Thus,

using PLAL reduces the label complexity whenever α > 1.

PLAL for proper class learning

We start by considering proper learning, that is learning a hypothesis class H under the

additional requirement that the output classifier is a member of H. Any algorithm that

is an ERM or an RLM learner is also a proper learner and we have seen in the previous

section that we can use labels from PLAL for these.

Theorem 71. Let X = [0, 1]d, let d, n, v ∈ N and let φ(λ) = λn. Then, there is a hypothesis

class H of VC-dimension v, such that for any passive proper learner A, mact[PLAL ◦
ERM, H,Qdφ,det] = O(

(
1
ε

)n+2d
n+d ), but m[A, H,Qdφ,det] = Ω( 1

ε2
), and thus

mact[PLAL ◦ ERM, H,Qdφ,det] = o(m[A, H,Qdφ,det]).

Proof. We apply the query bound from Table 64 to the sample complexity of O(1/ε2)

of passive proper learning to obtain the upper bound mact[PLAL ◦ ERM, H,Qdφ,det] =

O(
(

1
ε

)n+2d
n+d ). Comparing this with the lower of Ω( 1

ε2
) bound from Theorem 23 yields the

result.

Note that the upper bound on the labeled sample complexity that we obtain for proper

learning with PLAL is below the upper bound for proper learning with our SSL framework

(see Section 4.5.3 in Chapter 4). The upper bound of O
((

1
ε

) d+n
n

)
derived there, is obtained

by first using a labeled sample to learn a low error classifier, then using this to label an

unlabeled sample and learning a classifier from H with this. This could be viewed as

a “naive activising strategy”, where the preprocedure chooses a subset of the examples
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uniformly at random and labels the rest of the sample points by their Nearest Neighbors

on this subsample. PLAL improving over this “naive strategy” is consistent with our

intuition that the ability to choose where to query allows the learner to save labels.

PLAL for unrestricted class learning

Next, we analyze the use of PLAL for unrestricted learning a hypothesis class of finite

VC-dimension.

Theorem 72. For every n, v ≥ 2 and d ≥ 3n + 1, there exists a class H over [0, 1]d such

that VCdim(H) = v and, for every passive learner A,

mact[PLAL ◦ ERM, H,Qdφ,det] = o(m[A, H,Qdφ,det]).

We use the following lemma in the proof:

Lemma 73. Let 0 < ε, δ < 1/4, let X be a domain of size at least 1/ε3 and let Q be

the set of distributions over X × {0, 1} whose marginal distribution PX is uniform over X
and whose labeling function deterministically labels a (1/2− ε)-fraction of the points 0 and

(1/2+ε)-fraction of the points 1, or the other way around. Let H be the hypothesis class that

contains only the constant function 1 and the constant function 0. Then, (ε/2, δ)-learning

H with respect to Q requires a sample size of Ω(1/ε2).

Proof. For every distribution P in Q we have optP (H) = 1/2 − ε. Consider the majority

algorithmM that, given a sample S = ((x1, y1) . . . (xm, ym)), predicts with a function that

agrees with the labels of the sample points on S and outside the sample predicts with

the majority label in S. We will now first argue that, for every distribution P ∈ Q, this

algorithm needs to see Ω(1/ε2) many points to succeed at the task. Then we show that for

any other learning algorithm A, there exits a distribution in Q where A performs worse

than M. These two steps together imply the claim.

Step 1: Assume that the sample size is |S| ≤ 1
2ε2

. Note that this corresponds to

at most an ε/2-fraction of the sample points. Thus, if M predicts (outside of S) with

a label that is not the overall (true) majority label, then the error of M(S) is at least
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1/2 + ε−|S|/|X | ≥ 1/2 + ε/2 > optP (H) + ε/2. This implies that, forM, (ε/2, δ)-learning

H with respect to Q reduces to correctly learning what the majority label is, that is, it

reduces to correctly predicting the bias of a coin. The lower bound in Lemma 5.1 by

Anthony and Bartlett [1999] now implies that M requires a sample larger than 1
2ε2

for

ε, δ < 1/4.

Step 2: Consider some algorithm A and assume that this algorithm (ε/2, δ)-learns H

with respect to Q with samples of size m. Fix a sequence of m domain points (x1, . . . , xm).

We now consider the expected performance of the learner A averaged over all distributions

in Q, given that the domain points in the sample are SX = (x1, . . . , xm). Recall that

every distribution in Q has uniform marginal over X , thus the different distributions are

distinguished solely by their labeling functions. Slightly abusing the notation, we denote

this set of labeling functions also by Q.

Consider a test point x that is not one of the (x1, . . . , xm). Note that, for a fixed

labeling of the points in SX , among the labeling functions of distributions in Q agreeing

with that labeling on SX , there are more functions that label x with the majority label

on SX than functions that label x with the minority label on SX . For a labeling function

l ∈ Q, we let Sl denote the points in SX labeled with l. This implies that

Ex∼PX El∼Q[1A(Sl)(x)6=l(x) | x /∈ SX ] ≥ Ex∼PX El∼Q[1M(Sl)(x) 6=l(x) | x /∈ SX ],

where l is chosen uniformly at random from the set Q. As the expectation is commutative,

we get

El∼QEx∼PX [1A(Sl)(x)6=l(x) | x /∈ SX ] ≥ El∼QEx∼PX [1M(Sl)(x) 6=l(x) | x /∈ SX ].

As this is independent of the choice of SX , we further obtain

ESX∼PmEl∼QEx∼PX [1A(Sl)(x)6=l(x) | x /∈ SX ] ≥ ESX∼PmEl∼QEx∼PX [1M(Sl)(x)6=l(x) | x /∈ SX ].

This yields

El∼QESX∼PmEx∼PX [1A(Sl)(x)6=l(x) | x /∈ SX ] ≥ El∼QESX∼PmEx∼PX [1M(Sl)(x)6=l(x) | x /∈ SX ].

This implies that there exists a function l ∈ Q such that

ESX∼PmEx∼PX [1A(Sl)(x)6=l(x) | x /∈ SX ] ≥ ESX∼PmEx∼PX [1M(Sl)(x)6=l(x) | x /∈ SX ].
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That is, for this distribution with labeling function l, the expected error of A is larger than

the expected error ofM (outside the sample). This completes the proof of the lemma.

With this we can proceed to the proof of the above theorem.

Proof of Theorem 72. We consider the class H = {fi,j : i, j ∈ {0, 1}} of functions that are

constant on X \ 0̄. More precisely, we define fi,j to be the function with f(0̄) = i and

f(x) = j for all x 6= 0̄. This is a class of VC-dimension 2. We show that for every ε < 1/4

there exist a class of distributions Qε ⊆ Qdφ,det such that passively learning the class H

with respect to Qε requires a sample size of Ω( 1
ε1.5

), whereas applying PLAL allows us to

learn H with only O(1
ε
) many queries.

For Qε, we consider all distributions that have support {0̄} ∪ G, where G is a grid of

sidelength φ−1(
√
ε) such that every point in G has distance at least 1 from 0̄. As in the

proof of Theorem 22, we can construct such a grid with d
(

1
φ−1(

√
ε)

)d−1

= d
(

1
ε

) d−1
2n ≥

(
1
ε

)1.5

many points (where the last inequality follows from d ≥ 3n + 1). All distributions in Qε
assign weight 1 −

√
ε to 0̄ and distribute the remaining weight

√
ε uniformly over G. We

further allow all labeling functions that assign a (1/2−
√
ε)-fraction of the gridpoints one

label (either 0 or 1) and a (1/2 +
√
ε)-fraction of the gridpoints the other label (and assign

any label to 0̄). By construction, each of these distributions is φ-Lipschitz.

The approximation error of the class H is ErrP (H) =
√
ε(1

2
−
√
ε) = (

√
ε

2
− ε) for every

distribution P ∈ Qε. Thus, ε-learning the class H with respect to Qε corresponds to
√
ε-

learning the class that contains only the constant 1 and the constant 0 functions on the

grid points. Since |G| ≥ 1
ε1.5

, Lemma 73 implies that Ω
(

1
ε

)
many sample points on the grid

are necessary for this task. By Theorem 16, O
(

1
ε

)
are also sufficient. As the total weight

of the gridpoints is
√
ε, a random sample from the distribution needs to be of size Ω( 1

ε1.5
),

for that many hits to the grid. However, it is easy to see that PLAL would only query

the label of 0̄ once. Thus, using PLAL for this task, results in labeled sample complexity

O(1
ε
).
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PLAL for Nearest Neighbor learning

Finally, we analyze the use of PLAL for Nearest Neighbor learning. Lemma 68 does not

imply that Nearest Neighbor is a robust algorithm. In order to show, that using PLAL

can also reduce the label complexity of unrestricted learning, we consider a slight variant

of the standard 1-NN algorithm and denote this by NN ◦ PLAL. Instead of labeling each

point by the label of its nearest neighbor in the space, we consider the partition of the

space into cells at the end of the run of PLAL, and label each point with the label of its

nearest neighbor within its cell. If a point falls into a cell that is empty, we label it with

the label of its nearest neighbor within its parent-cell (note that this one is never empty).

This slight modification allows us to show the following:

We adapt the proof from Theorem 20 for the success of the 1-Nearest Neighbor algo-

rithm under Lipschitzness to its modified version of 1-NN with PLAL. We will here prove

the following:

Lemma 74. Let P be a distribution over [0, 1]d with PL-function φ(λ) = λn. Then applying

NN ◦ PLAL to an unlabeled sample SX of size

m ≥
(

1

ε

) d
n

+1
(2
√
d)d

δe

results in classification error at most 2ε with probability at least (1− δ) (over the choice of

SX ).

Proof. Let λ =
√
d/2k for the smallest k such that

√
d/2k ≤ φ−1(ε). This implies φ−1(ε) ≥

λ ≥ φ−1(ε)/2. We can cover X = [0, 1]d with r =
(√

d/λ
)d

= 2kd boxes C1, C2, . . . Cr of

side-length λ/
√
d = 1/2k. Note that any two points inside such a box are at distance at

most λ.

Using Markov’s inequality, Lemma 19 from Chapter 3 implies that for any ε > 0 and

m we have

Pr
S∼Pm

 ∑
i:Ci∩S=∅

P [Ci]

 > ε

 ≤ r

εme
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It follows that in this setting, for any ε, δ > 0, a sample of size

m ≥

(√
d

λ

)d
1

εδe
=

r

εδe

suffices to guarantee that with probability exceeding (1−δ), at most an ε-fraction of domain

points are in boxes that are not hit by the sample. By noting that φ−1(ε) = ε1/n (for the

polynomial Lipschitzness function φ(λ) = λn) and recalling that λ ≥ φ−1(ε)/2, we obtain

that (
2
√
d

ε1/n

)d
1

εδe
=

(
2
√
d

φ−1(ε)

)d
1

εδe
≥

(√
d

λ

)d
1

εδe
=

r

εδe
.

Therefore, the sample size stated above suffices for hitting all but an ε-fraction of the boxes.

Now consider the modified 1-NN labeling rule, where every point x gets the label of

its Nearest Neighbor within the cell that a run of PLAL produced on a sample SX . We

denote the sample SX with the labels from PLAL by S . We refer to the elements of the

partition that PLAL produced as cells and to the elements of the partition in the argument

above as boxes. All these elements are axis-alligned rectangles that have powers of 1/2 as

sidelengths. For a point x, we denote the box that contains x by b(x) and the cell that

contains x by c(x). As the sidelengths of both boxes and cells are powers of 1/2, and we

use the dyadic spatial trees, we have b(x) ⊂ c(x) or c(x) ⊂ b(x) or b(x) = c(x) for all x.

To bound the probability that a test point x receives the wrong label, we consider the

following cases:

Case 1: c(x) was declared homogeneous by PLAL.

Then x will receive the label of c(x). By Remark 63, the total error resulting restricted to

this condition is at most ε.

Case 2: c(x) was not declared homogeneous by PLAL and b(x) ⊆ c(x).

We chose the sample size of S so that (with probability at least 1−δ) at most an ε-fraction

of points lie in boxes that are not hit by S, thus the probability (over the choice of x) that

S ∩ b(x) = ∅ is bounded by ε. If S ∩ b(x) 6= ∅, then the Nearest Neighbor of x inside c(x)

has distance at most λ from x (recall that the diameter of b(x) is λ). As φ−1(ε) ≥ λ, at

most an ε fraction of points x are at distance less than λ from some point of opposite label.

Thus, the error of our labeling rule in this case is at most 2ε.
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Case 3: c(x) was not declared homogeneous by PLAL, c(x) ⊂ b(x) and c(x) ∩ S 6= ∅.
We can bound the probability that x receives a wrong label by 2ε in the same way as in

Case 2. (The probability that b(x) ∩ S = ∅ is bounded by ε and otherwise x receives the

label of a point that is at distance at most λ.)

Case 4: c(x) was not declared homogeneous by PLAL, c(x) ⊂ b(x) and c(x) ∩ S = ∅.
In this case x receives the label of its Nearest Neighbor in the parent cell of c(x). We denote

this cell by p(c(x)). The cell c(x) was produced when PLAL decided to split p(c(x)). Thus

the parent cell p(c(x)) contains points from S. Note that c(x) ⊂ b(x) implies p(c(x)) ⊆ b(x).

This implies that the Nearest Neighbor of x in p(c(x)) is at distance at most λ from x and

as under Case 2 we bound the probability that this neighbor has a different label than x

by ε.

Now the lower bound from Theorem 22 in Chapter 3 together with the above result

implies:

Theorem 75. Let d, n ≥ 2 and let φ(λ) = λn. Applying PLAL to the Nearest Neighbor

algorithm (in the way described above) results in active sample complexity for learning

Qφ that is below the sample complexity of any passive learning algorithm for that class.

Namely, for any passive learner A, m[A,Qφ] = Ω((1
ε
)1+ d−1

n ), but mact[NN ◦ PLAL,Qφ] =

O((1
ε
)1+ d2

n(n+d) ), and thus

mact[NN ◦ PLAL,Qφ] = o(m[A,Qφ]).

Proof. For φ(λ) = λn, the lower bound for unrestricted learning in Theorem 22 becomes

Ω((1
ε
)1+ d−1

n ). If we apply NN ◦ PLAL with samples of size Θ((1
ε
)
d+n
n ) (see Lemma 74),

we reduced the label complexity to O((1
ε
)1+ d2

n(n+d) ) (note that d2

n(n+d)
≤ d−1

n
for any d, n ≥

2).

Summary of reductions

Our upper bounds for active learning with PLAL together with the lower bounds for

learning under Probabilistic Lipschitzness in Chapter 3 imply the following reductions in

labeled sample complexity:
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Table 6.2: Label complexity reductions

Passive PLAL-Active

Proper Learning of H Ω (1/ε2) O
((

1
ε

)n+2d
n+d

)
Unrestricted Learning of H Ω

(
1
ε1.5

)
O
(

1
ε

)
Nearest Neighbor Learning Ω

(
(1
ε
)1+ d−1

n

)
O

(
(1
ε
)1+ d2

n(n+d)

)

6.6 Discussion

In this section, we have presented a procedure, PLAL, that takes an unlabeled sample (and

accuracy and confidence parameters) as input, and outputs a full labeling of the sample

points while querying the label of only a fraction of these points. We have shown that

we can bound the number of label queries that PLAL makes in terms of the Probabilistic

Lipschitzness of the data-generating distribution. This lead to reductions in labeled sample

complexity for proper learning, unrestricted class learning and Nearest Neighbor learning

under PL in comparison to these learning scenarios in the (passive) standard framework.

By analyzing PLAL under the assumption of Probabilistic Lipschitzness, we have intro-

duced a new measure to the literature of active learning theory. Intuitively, the possibility

to actively choose which points to label should be beneficial to a learner, if there are dense

label homogenous areas, where usual i.i.d. sampling would “waste” labels due to this high

density, while an active learner would need to make only one (or few) queries to identify the

label of this dense area. Our analysis of active learning under Probabilistic Lipschitzness

provides a way to formalize and solidify this intuition. Most previous work has provided

bounds in terms of the disagreement coefficient, which is a measure that relates the hypoth-

esis class to be learned to the target distribution. Probabilistic Lipschitzness, in contrast,

is a property of the underlying data distribution only and we thereby obtain bounds that

are independent of a specific hypothesis class.

Using PLAL as a preprocedure to a passive learning algorithm, can be viewed as “av-

tivising” this passive learner. In contrast to previously suggested activising procedures,

PLAL is computationally efficient. The number of cells it produces is at most the number

of points in the input sample, the running time is thus polynomial in the size of the input
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sample.

In this chapter, we have shown that using PLAL is safe for ERM and RLM learners,

since labels from PLAL do not change the empirical error of any classifier by much. Urner

et al. [2013] argue, more generally, that it is safe to use PLAL to to mimic the input to

any statistical algorithms. The framework of learning from statistical queries has been

introduced independently by Ben-David et al. [1990] (as “learning by distances”) and by

Kearns [1993]. Feldman et al. [2013] shows that many practically relevant learners can be

cast in this framework.

Finally, Urner et al. [2013] also present some experimental results on using PLAL for

some synthetic datasets. They illustrate that using PLAL label queries results in higher

accuracy (of NN) than choosing a random subset of the same size for label query. In

addition, they show that PLAL is extensible in a straightforward manner to multi-label

learning settings.
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Chapter 7

Concluding Remarks

We have analyzed machine learning paradigms that are frequently and successfully em-

ployed in practice, but are not appropriately modeled by standard learning theory. In

particular, this thesis presents formal results on the usefulness of unlabeled data and data

that is generated by a different task than the target task. We hope that our analysis

advances the understanding of when learning with such training data is possible and ben-

eficial.

The data assumption of Probabilistic Lipschitzness has proven to be meaningful for the

analysis of all three non-standard learning settings investigated in this thesis. As we have

argued earlier, data assumptions are necessary for any provable results on the benefits of

unlabeled data. This is implied by lower bounds that were previously established in the

standard worst-case (over all distributions) framework of analysis. In practice however,

these lower bounds often prove to be too pessimistic. In order to understand this dis-

crepancy, we propose to analyze machine learning paradigms under data assumptions that

aim to model natural learning tasks (as opposed to learning tasks that are constructed to

defeat a worst case framework of analysis). In particular, we suggest that learning theory

put a greater focus on exploring how to model (parameters of) naturalness of learning

tasks. We believe that our analysis of non-standard learning settings under Probabilistic

Lipschitzness provides a step in this direction.
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