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Abstract

A theoretical model with experimental verification is presented to enhance the quan-

tum efficiency of a superconducting single-photon detector without increasing the length

or thickness of the active element. The basic enhancement framework is based on: (1) Uti-

lizing the plasmonic nature of a superconducting layer to increase the surface absorption

of the input optical signal. (2) Enhancing the critical current of the nanowires by reducing

the current crowding at the bend areas through optimally rounded-bend implementation.

The experimental system quantum efficiency and fluctuation rates per second are assessed

and compared to the proposed theoretical model. The model originated from an accurate

description of the different liberation mechanisms of the nano-patterned superconducting

films (vortex hopping and vortex-antivortex pairing). It is built complimentary to the ex-

isting, well-established models by considering the effects of quantum confinement on the

singularities’ energy states. The proposed model explains the dynamics of singularities

for a wide range of temperatures and widths and describe an accurate count rate behav-

ior for the structure. Furthermore, it explains the abnormal behaviors of the measured

fluctuation rates occurring in wide nano-patterned superconducting structures below the

critical temperature. In accordance to this model, it has been shown that for a typical

strip width, not only is the vortex-antivortex liberation higher than the predicted rate, but

also quantum tunneling is significant in certain conditions, and cannot be neglected as it

has been in previous models. Also it is concluded that to satisfy both optical guiding and

photon detection considerations of the design, the width and the thickness of the super-

conducting wires should be carefully determined in order to maintain the device sensitivity

while crossing over from the current crowding to vortex-based detection mechanisms.
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Chapter 1

Introduction

Due to the new achievements in the field of quantum information over the past few years,

there has been a growing interest in detectors with the capability of ultra-low power de-

tection, particularly those with single-photon sensitivity. Among all the available optical

detectors, single-photon detector (SPD) provides the utmost level of sensitivity in optical

measurements making it a vital option for quantum information processing. The unique

characteristics of these devices distinguish them from their classical counterparts. This is

represented by the fact that their response is discernible from the noise level even when

the optical intensity is within the range of the quantum of light. SPD’s are the only

candidates in the applications where physical phenomena with a very small number of

photons are involved - often just one. SPDs are essential components in various fields

such as quantum optics and information [1], quantum key distribution [2], lunar laser com-

munication [3], diagnosis of integrated circuits [4] and characterization of single-photon

sources [5]. Among all available candidates to do the single-photon detection, supercon-

ducting nanowire single-photon detectors (SNSPDs) are the most promising devices. They

outperform other detectors in properties such as infrared quantum efficiency1, dark count

rate, timing jitter [7], and maximum count rate [8]. Furthermore, they provide wide-band

optical detection, a fast response time, and dispose of a platform for potential quantum

system integration [9, 10, 11]. This particular class of detectors has applications in dif-

1In 2013, an SNSPD detector with 93% system efficiency has been reported in [6]
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ferent domains such as astronomy [12, 13], biology and biochemistry [14, 15], quantum

key distribution (QKD) [16, 17], linear quantum computation [18], and are considered a

promising technology for photon counting applications [19].

In order to evaluate the performance of an ordinary detector, several technical defini-

tions such as noise equivalent power or data transmission rates are followed. However, in

the case of single-photon detection, the quantum nature of these devices raises the need

for a new set of quantum level parameters. Summarized below are, those parameters and

specifications that will be used frequently throughout this thesis,

• Quantum Efficiency (QE): QE in general is the probability of detecting a photon

by a detector. More precisely, it is the ratio of output click rate to input photon

rate. Depending on the location of the input and output measurements, it can be

divided into internal or external quantum efficiencies [20]. In the former case, QE is

only dependent to the internal parameters. In latter definition, however, the entire

system is seen as a single block and all measurements are performed at the input and

output terminals. For the most part, this parameter is highly optical wavelength-

dependent and is evaluated as to how effectively the incoming single-photons are

converted to discriminated-electric pulses.

• Dark Count Rate (DCR): This is the output rate of electric pulses when the input

optical signal is entirely blocked or the detector is in an absolute darkness. This

parameter represents a proper measure of the detector’s noise performance.

• Timing Jitter: It expresses the deviation in time resolution of a detector and is

computed by measuring the full width at the half maximum (FWHM) of the delay

histogram between photo-excitation and photo-registration events.

• Maximum Count Rate: This specifies the minimum amount of time delay required

by a detector to perform another successful detection. There is no unique definition

for this parameter; however it is usually defined as the sum of output rise and fall

(recovery) times [21].

2



Apart from these intrinsic parameters, there are other important criteria that help the

selection of an appropriate single-photon detector. Some important parameters are listed

below:

• Operation temperature;

• Size of detector’s active element;

• Size of the entire detection system;

• Sensitivity and dynamic range of the detector;

• Complexity of the readout circuit;

• Implementation cost;

• The capability of being integrated.

Single-photon detectors can also be classified based on their capability to recognize the

number of incoming photons. The vast majority of available single-photon detectors can

only differentiate between the presence and absence of photons. Photon number resolved

(PNR) single-photon detectors cannot only distinguish between the presence and absence of

photons, but can also provide information about the number of photons that the detector

comes into contact with. In order to assess the relative performance of the proposed

detector among other available counterparts, and to reveal the motivation for this work,

different state of the art single-photon detection mechanisms are presented below:

Photomultiplier Tube (PMT): Photomultiplier tubes are the most long-established

single-photon detectors. They consist of a vacuum tube along with a GaAsP or InP/InGaAs

photocathode which absorbs optical power from an input terminal. The absorption of

photons in the photocathode triggers the photoelectric effect and produces many excited

electrons. These excited electrons then flow through the vacuum tube, producing a weak

electric current. This current is multiplied by a cascade of secondary electron-emissions

until a sensible current is produced at the output terminal. The spectral range of a PMT

is governed by the material of the photocathode element such that the energy of absorbed
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Figure 1.1: Schematic of an avalanche photodetector. The large external bias accelerates

photoelectrons so that each primary electron ultimately results in thousands of electrons

at the electrode terminals.

photon must exceed the work-function of the photocathode material in order to have excited

electrons. This class of single-photon detectors is primarily carried out in visible bandwidth,

as their quantum efficiency drops rapidly at longer wavelengths [7].

Single-Photon Avalanche Diode (SPAD): These are solid-state based photodetec-

tors that are usually manufactured using either silicon or InGaAs/InP materials. In the

former case, the sensitivity is from visible wavelengths to about 1000 nm which is restricted

by the silicon’s band gap. However in the latter case, the operation wavelength can be

up to 1700 nm. In both cases, the quantum efficiency drops rapidly for frequencies which

are greater than the band gap frequency. The operation is based on a reverse biased p-n

junction such that the electric field is so high that even a single-photon injected into the

depletion layer can cause a self-sustaining avalanche process.

Transition Edge Sensor (TES): Transition edge sensors are also referred to as su-

perconducting phase-transition thermometers. They consist of a micrometer-sized super-

conducting thin-film which operates in a narrow temperature domain close to their critical

temperature. In this way, the electrical resistance after absorption of a single-photon varies

from the superconducting to non-superconducting values. In general, the absorption event

4
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Figure 1.2: Schematic of the operation of a TES single-photon detector [24].

pushes the detector, which was in the superconducting state, into the normal state by

momentarily changing the local temperature and hence increasing the electrical resistance.

This small increase in the resistance is then amplified by a series of high-gain supercon-

ducting quantum interference amplifiers (SQUIDs) [22, 23].

Superconducting Tunnel Junction (STJ): Superconducting tunnel junction con-

sists of two superconducting elements separated by a thin insulating barrier (the photode-

tection element in this detector is a Josephson junction). After the absorption of an optical

photon in one of these pads, superconducting pairs will be excited to free excess charge

carriers (quasiparticles) provided that the energy of a single absorbed photon is greater

than the superconducting energy gap ∆. As these quasiparticles penetrate the barrier, they

generate a temporary increase in the device current. This class of detectors is renowned

for their high energy resolution. This high resolution is mainly due to the fact that the

energy required for generation of an excess charge (about 1 meV) is about an order of mag-

nitude smaller than the energy gap of a typical semiconductor counterpart. This implies

an improved energy resolution of about (1000)0.5 in this detector [25]. In an actual STJ

detector, the superconducting elements consist of two different superconducting layers: a

thick absorber with a large energy gap ∆abs for high efficiency and a thin trapping layer

with small energy gap ∆trap for fast tunneling performance (see Fig 1.3). Quasiparticles
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Figure 1.3: Band diagram of an STJ detector with a trapping layer in each superconducting

element. Photon absorption generates excess charge carriers producing a current pulse

through direct quantum tunneling of the carriers.

are absorbed in the absorbing layer and then trapped in the lower-gap region by inelastic

scattering. In this detector, photoexcited quasi-particles usually tunnel several times by

breaking many superconducting pairs until their energy reduces to 2∆, which is insufficient

for further pair breaking. At this point, they regroup to form a new superconducting pair.

While this detector is mainly an X-ray detector, it also has applications in visible and

infrared optical detection as well.

Superconducting Nanowire Single-Photon Detector (SNSPD): The active el-

ement of a superconducting nanowire single-photon detector is a meander line made from

an ultrathin superconducting material. The absorption of a single-photon similar to a

localized quasiparticle injection introduces a local nonequilibrium perturbation with an

excess number of excited quasiparticles2. This change in the number of the superconduct-

ing pairs results in the depression of the local superconducting gap. Accordingly, the bias

current tends to expel from the hotspot region to the sidewalks between the hotspot and

the edges of the film where superconductivity is still stronger. The presence of a higher

current density in these regions weakens the superconducting gap at the sidewalks. If the

2This also leads to an increase in the effective temperature of the film
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Figure 1.4: Schematics of the formation of a normal belt across a superconducting nanowire

which results in a detectable voltage pulse. (a) Direct photon count. (b) Vortex-assisted

single-photon count. (c) Dark count.

current density reaches the maximum allowed value (equivalent to zero energy gap), there

would be a transition from the superconducting state to a normal state which results in

the formation of a local resistive barrier across the entire cross-section of the nanowire.

Eventually, since the device is biased with a constant current, this resistive barrier leads

to the generation of a detectable voltage pulse [26].

Aside from this mechanism of the normal belt generation, there are two other mecha-

nisms all resulting in equivalent voltage pulse generations. The first one is vortex assisted

single-photon detection. It occurs when the input photon has insufficient energy for gener-

ating an initial hotspot, but it has enough energy to initiate a subsequent vortex crossing.

The cross of this vortex generates a normal belt across the wire width and, due to the

same physical origin, a voltage pulse is formed at the output terminal. Another source

of voltage pulse generation in the absence of input photons is the vortex crossing. This

process is initiated with either thermal activation or dissipative quantum tunneling of the

vortices located at the edges of the film. These three different methods of voltage pulse

generation mechanisms are summarized in Fig. 1.4.

Generally, it is not meaningful to compare the performance of these single-photon

detectors through a set of independent parameters, as each detector offers potentials for

a particular application. Nevertheless, to get an insight about the general performance of

7



Table 1.1: Perfomance comparison of commercially available single-photon detectors.

Detectors Si InGaAs SNSPD TES STJ

Temperatures
300 200 2− 4.2 0.1 0.4

(K)

Wavelength
0.4− 1.1 0.9− 1.7 0.4− 5.6 0.1− 5 0.2− 1

(µm)

Time Resolution 300ps 300ps 18ps 300ns < 2ns

Quantum Efficiency
70% 25% 10% 92% 50%

@ 630nm @ 1.55µm @ 1.55µm @ 1.55µm @ 500nm

Dark-Count Rate
< 25 < 104 < 0.01 < 0.001 N/A

(Hz)

Maximum Count Rate 10MHz 1MHz 250MHz 20KHz 50KHz

SPDs in terms of operation temperature, wavelength, quantum efficiency, and dark count

rate, we could refer to tables similar to table 1.1 which is found in the literature [27, 7].

1.1 Goal of This Thesis

The main objective of this work is to introduce an integrated version of a superconducting

single-photon detector. The idea is to have a detector as a part of an integrated optical

system such that all processes including photon generation, guiding, and detection could

take place inside a single chip. Furthermore, to have a compatible device with a general

optical fiber communication network, the detector should also preferably operate within

the infrared bandwidth. This is primarily due to the fact that the minimum absorption

window for a common silicon fiber occurs at this bandwidth.

Generally, sensitivity at this frequency range is more challenging than that of a visible

light, as the amount of energy carried by each quantum of light is smaller for cases of

telecom photons. Among all detectors introduced in the table 1.1, InGaAs based detectors,

SNSPDs, and TESs are the best candidates for telecom bandwidth.

8
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Figure 1.5: Schematic of our proposed plasmonic detector. As an alternative configuration,

the superconducting layer can be placed on top of the dielectric core layer as well.

Preference of TES over SNSPD is usually due to its photon number resolution and

higher quantum efficiency at near-infrared (NIR). However, the operation temperature of

this class of detectors is much lower than SNSPD (about 0.1 K), which demands a lot of

precautions and preparations. Thus, if photon number detection is not a concern3, usage

of SNSPD becomes more inclined. Having high maximum count rate, low timing jitter,

very small dark count rate, and high quantum efficiency, especially at NIR, are among the

points that motivated us to base our work on this class of detectors.

As mentioned before, the active element of an SNSPD is a superconducting nanowire.

To have a reasonable operation temperature, the critical temperature of the supercon-

ducting material should be at least two times greater than the liquid helium bowling

temperature, even when the film is narrowed down to a few nanometers of thicknesses4.

Nb [28], NbN [29] and NbTiN [26] are among those superconducting materials that have

high critical temperatures. In addition they have known electrical and optical parameters

and established thin-film technology. This makes them an ideal choice for selection as the

3For number state photon statistics, looking at a sample at a time window T is equal to sample

the spatial length of vgT at a single time-shot. This sample has a statistical distribution with variance

of ∆n = 0 where |n〉 is the number state. This implies that the chance that two or more photons

simultaneously hit the detector is zero. So if a number stater single-photon source is available, there is no

need to have a detector which is sensitive to the number of photons.
4To have high performance, SNSPD is usually operated at temperature less than Tc/2.
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SiO Cladding2 

NbTiN superconducting layerOptical source Si  core layer

Figure 1.6: Two-dimension FDTD simulation for TM mode of a dielectric loaded plasmonic

waveguide. The dispersive layer is NbTiN with a thickness of 20 nm and the guiding channel

is silicon. Both cladding layers are SiO2. The operation wavelength is 1310 nm. Before

optical wave reaches the dispersive layer, power concentrates at the center of the core layer.

However, in the dispersive section, the field is compressed into sub-wavelength dimensions

around the dispersive layer.

active element. The spectral cut-off frequency for Nb thin-film occurs at the wavelength

less than 0.25µm, while for NbN and NbTiN the corresponding wavelength exceeds 2µm

[29]. Furthermore, Nb thin-film is more susceptible to latch into a finite voltage state

instead of self-resetting to the superconducting state after detecting a single-photon than

NbN or NbTiN counterparts. This is due to the fact that phonon mediated cooling in this

film is much slower [30]. As a consequence, Nb detectors are less desirable for high count

rate applications. To provide high sensitivity at NIR bandwidth, NbTiN has been chosen

as the active element of the detector in this work.

For single-photon detectors, the total quantum efficiency or system detection efficiency,

η, can be expressed as a product of three independent factors: η = ηc × A× Pr, where ηc

is the coupling efficiency, which is the probability that an incident photon from free space

or a fiber reaches the active area of the detector; A is the absorptance of the active area,

which is the probability that the photon is absorbed by the film once it has reached the

active area, and Pr is the voltage-pulse generation probability for absorbing the incident

photon [26].

Generally, enhancing the ηc ×A for an SNSPD is not a trivial task; mainly because in
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practice, (1) the length of nanowire is limited by the kinetic-inductance of the wire [31].

This kinetic-inductance put an upper limit to the nanowire length and hence the size of the

active area, and this size is usually smaller than the size required for achieving an efficient

coupling. (2) There is a great difference between the thickness of the superconducting film

and skin depth of the optical wave and therefore the input optical wave readily passes

through a normal-incidence meander-line structure [32]. Intuitively speaking, to enhance

the ηc × A of a detector, the spatial overlap between the light and active area must be

enhanced. In traditional SNSPDs, to do so, one can place a reflector beneath the active

area such that if a photon passes through the detector, with some possibilities, it could

reflect back to the active area [26] or additionally, the detector could be placed in an optical

cavity to increase the absorption probability [33]. However, in this work, I tried to enhance

the photon absorption by using the idea of plasmonic guiding. Plasmonic guiding is an

alternative to the standard dielectric waveguiding. Over the past decades, this guiding

method attracted great interest as it can compress the spatial cross-section of an optical

mode to sub-wavelength dimensions5 and moreover, it combines the small size of electronic

circuits with the speed of optical circuits.

In this work, I present a new single-photon detection structure to address these issues

without increasing the length or the thickness of the active element such that two seemingly

contradictory properties, high speed operation (requiring small active area) and high pho-

ton absorption probability (requiring large active area), can be maintained simultaneously.

The design is based on the plasmonic nature of the superconducting layer [34] to improve

the photon absorption process by exciting the surface plasmon polaritons, SPPs, at the

interface of the superconducting layer and a positive index dielectric layer [35]. Here, the

active element is patterned on the top or bottom of a dielectric slab waveguide. Likewise a

normal insulator/metal/insulator (IMI) plasmonic structure, the optical interaction occurs

through a dielectric channel and hence there is no direct optical excitation anymore. The

schematic of the layers is shown in Fig. 1.5. To get an insight about the operation, a

two-dimensional finite difference time domain simulation is performed and the result is

presented in Fig. 1.6. If the dimensions of the both plasmonic and core layers are chosen

properly, the optical mode will be confined in the proximity of the nanowire layer (nega-

5This allows a low bending loss
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tive index layer) as it reaches to the active area. Thus, in contrary to traditional SNSPD

structures, the difference in the length scales of the nanowire and the input optical wave is

not a limiting factor anymore which concludes a significant enhancement of the absorption

probability. Furthermore, since the initial guiding occurs inside a dielectric channel, ideally

no power is transfered to the radiation modes of the system and hence the only source of

loss is the absorption inside the dispersive superconducting section. In an actual device, to

provide fiber coupled operation, an inverse taper is placed at the tip of the dielectric chan-

nel to minimize the coupling loss at the connection port. By choosing the right dimensions

and materials for the taper, the coupling loss can be negligibly small.

1.2 Outline of the Thesis

Similar to a typical SNSPD, the active element of the proposed detector is made of cur-

rent biased meandering superconducting nanostrips with 180 and 90-degree turns. The

photons are guided through a dielectric structure and are absorbed in the straight section

of nanowires, while the turns only serve the purpose of electrical connection and thus do

not directly contribute to the photon detection. However, they can degrade the overall

performance of the detector by acting as current bottlenecks or by generating dark counts

as the current crowds at the inner edges of these turns and thus reduces the measured

critical current of the entire structure. In chapter 2, I will try to address these problems

by introducing an optimum design for the turns. It will be shown that there exists an op-

timum design for an arbitrary bend shape where no current crowding occurs at the inner

edge of the bend and hence no reduction in critical current is expected.

As mentioned before, reduction of the experimental critical current is degrading the

overall performance of the system. The primary source of this reduction is discussed in

chapter 3. It will be shown that in an experimental detection process, even when the input

terminal is fully blocked, still randomly distributed signals (clicks) are still generated at

the output electrical terminal of the detector if the current is close to the critical current

of the nanowires. These dark count events are of great importance not only because they

affect the precision of input photon rate to output click rate conversion, but also because of
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their adverse effect on the maximum achievable critical current of the device. In short, the

presence of these dark counts dramatically degrades the overall performance of an SNSPD.

In this chapter, the origins of dark count generation will be discussed in detail. I will

provide a clear picture of all the processes that lead to this dissipative transition of the

initial metastable state of a general superconducting nanostrip in the absence of an input

signal.

In chapter 4, the general guideline to design a plasmonic detector is provided. It will

be shown that to observe well-defined plasmonic confinement in a thin superconducting

layer, there is a minimum feature size for the width of both the dielectric waveguide

and the superconducting layer. This imposes an undesired limitation on the nanowire

from a detection perspective, particularly on single-photon sensitivity, since there is an

upper bound for the cross section area of the active element to be sensitive to single-

photons. In general, it will be shown that that there is a trade-off between the probability

of photon absorption and the internal quantum efficiency of the device. I will also present

an alternative to decouple these two phenomena based on the optical design and photon

detection mechanisms of the detector.

Although the principal goal of this work is to present a single-photon detector for

integration purposes, still free-space or fiber-coupled operations are of great importance.

Chapter 5 addresses two different coupling mechanisms. The first one is end-fire excitation

which is suitable for fiber-coupled operation and the other one is grating excitation which

is often used in free-space detections. I will show that the end-fire excitation can provide

a high performance coupling at the expense of performing a precise alignment of the input

fiber to the actual detector. However, in the case of the grating excitation, the alignment

is done without any great effort, but it lacks the high coupling performance.

Chapter 6 is dedicated to the conclusions and contributions of this work. As a closing

note, the primary challenges of this work are reviewed here:

1. From an optical point of view, the thickness of the superconducting layer needs to

be greater than the skin depth of electromagnetic field inside the dispersive layer; however,

to have single-photon sensitivity, the thickness of the superconducting strip is limited to a

few nanometers.
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2. Same issue is valid for the width of the nanowire. Again from an optical point of

view, we are interested in large surfaces; however, from an electrical point of view, the

narrower the film is, the better the electrical performance.

3. To have high quantum efficiency, a long strip is of interest. In fact, the longer the

strip is, the greater the probability of absorption of the nanowire is. However, it is known

that the length of the nanowire is directly related to the operation speed of the detector

and hence this would be at the expense of having a slow speed detector. This implies a

trade-off between the operation speed and the quantum efficiency.
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Chapter 2

Superconducting Nanowire Design

In the proposed plasmonic structure, similar to a typical SNSPD (Fig. 2.1), the active

element of this detector is made of current biased meandering superconducting nanostrips

with 180-degree turns1. The photons are guided to nanostrips that form the active area,

while the turns only serve the purpose of electrical connection. The closer the bias current

is to the critical current of the nanostrips, the higher the detection efficiency, but also

the higher the dark count rate [19]. Although the turns are typically placed outside the

photon absorbing area, and thus do not directly contribute to the photon detection, they

can degrade the overall performance of the detector by acting as current bottlenecks or by

generating dark counts.

Recently, Clem et al. [36] recaped the possible impact of sharp turns on SNSPDs: the

current crowds at the inner edge reducing the measured critical current of the meander.

Also, the current bottleneck in wide superconducting strips (300nm to 1µm wide) with

sharp bends has been experimentally demonstrated [37, 38]. However, an open question

remains on the impact of current crowding on present SNSPDs that feature much narrower

strips (∼ 100nm wide), in which both increased ratio of the bend curvature (due to inherent

finite fabrication resolution) to nanowire width, and reduced width to coherence length

ratio make the expected effect smaller [36, 38].

1Note that the number of turns has been greatly reduced in the proposed structure. A schematic of

the final design is shown in Fig. 4.9
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Figure 2.1: High resolution SEM image of a typical SNSPD detector. The fabrication of

this project has been done in collaboration with Loncar’s group at Harvard university. The

actual active element is surrounded by a dummy structure to maintain the uniformity of

the beam dose distribution during the fabrication process [39].

In this chapter, we present experiments that probe the current crowding effect on the

critical current of superconducting nanostrips with a width comparable to the commonly

used width in modern SNSPDs.

2.1 Devices and Setup

A typical device presented is illustrated in Fig. 2.2(a). A nanowire, 100nm wide and 8nm

thick, is bent either 90-degree or 180-degree, and connected to large pads by a gradual

transition to wider strips, similar to Fig. 2.1. The nanowire length is ∼ 0.5µm on either

side of the bend. Our bends fall into two categories: optimally designed with no current

crowding and thus no expected critical current reduction, and traditional bends made

without optimal considerations.
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Figure 2.2: Scanning electron microscope images of the nanowires explored in this chapter.

(a) A typical nanowire structure and its connection lines. (b) and (c) two optimized 90-

degree bends. (d) and (e) sharp and 45◦ 90-degree bends. (f) and (g) optimized and sharp

180-degree turns with 200nm spacing. (h) optimized 180-degree turn with 300nm spacing.

(i) and (j) sharp and circular (radius = 50nm) 180-degree turns with 100nm spacing. The

circles are eye guides with 35nm radius. Blue and red dashed lines are current streamlines

calculated for a superconductor thin-film enclosed by solid white lines. All the parts, except

(a) share the same length scale [21].
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Figure 2.2(b) shows an example of our optimum bends. To find the optimal bend

design, we numerically solve ∇·K = 0 and ∇×K = −d/λ2H ≈ 0 within the area enclosed

by the white lines [36], where K is the sheet current density, d is the nanowire thickness

and λ is the magnetic penetration depth. The boundary conditions are n ·Kl = 0, and

n × Ki = 0, where n is a vector normal to the edge, Kl is K on the lateral boundaries

(solid white lines) and Ki is K on the input boundaries (dotted white lines). Next, we

find the streamlines of the vector field K (dashed blue and red lines). Any two streamlines

(dashed red lines) that enclose a surface within which |K| remains less than or equal to

|K|, form an optimized bend (because K within them satisfies the same above boundary

value problem, and |K| in the bend does not exceed |K| within the nanowire).

r = W

W

(A)

g0

g0

1.6 g0

0.2 g0

(B)

g0

Figure 2.3: An example simulation result for modeling current crowding in nano-patterned

superconducting structures. Part (A) depicts finite element meshing of a sample structure.

Part (B) displays current crowding due to the presence of a 180-degree turn. According

to this result, even for a fully rounded inner corner, still current crowding is considerable.

This excess inner current density reduces the maximum tolerable current of the entire

meander structure and hence reduces the maximum achievable quantum efficiency of the

detector.

The approximation ∇×K ≈ 0 used in above calculations is valid as long as w � λ2/d,

where w is the width of nanowire (see [36] for a thorough discussion). For typical SNSPD
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designs, w is less than ∼ 100nm while λ2/d is larger than tens of µm [37]. Therefore the

condition w � λ2/d is satisfied and the optimal designs remain independent of the exact

values of λ and d. This brings robustness to the fabrication and also scalability of designed

bends (as long as the condition w � λ2/d holds).

Four different 90-degree bends have been investigated: (i) optimized bend with the

smallest possible footprint, (ii) optimized bend twice as big as the smallest one (to make

it more tolerant to fabrication errors), (iii) sharp bend and (iv) 45◦ bend (as a structure

between worse and best case scenarios) (see Figs. 2.2(b) through 2.2(e)). The smallest

possible optimum 180-degree turn (200nm spacing) is shown in Fig. 2.2(f). It will be

compared with a sharp 180-degree turn (200nm spacing) and a bigger optimum turn (300nm

spacing) as shown in Figs. 2.2(g) and 2.2(h). Finally, Figs. 2.2(i) and 2.2(j) present a

commonly used bend in present SNSPDs (sharp bend with 100nm spacing) and the same

but circularly rounded (radius is equal to 50nm).

The critical current, dark count and photoresponse of a nanowire is a function of its

dimensions (thickness and width), as well as the superconducting thin-film quality. There-

fore, when investigating the effect of bend design, it is essential to keep the nanowires

identical except at the bend. In our experiments, we only compare a set of different bends

from the designs in Fig. 2.2 that satisfy the following conditions: (i) the bends in a set are

either 90-degree or 180-degree, and (ii) they are fabricated few µm apart on the same chip.

The first condition keeps the geometries as similar as possible and therefore minimizes

slight width changes when different geometries are exposed by the electron beam. The

second condition assures the nanowires share the most identical film thickness/quality as

well as equivalent fabrication processing (to make effects of many factors including resist

variations, proximity dose effects, and others less significant).

The nanowires on any given chip share a common electrical ground. Each of the other

terminals connects to a 470nH inductor (placed next to the chip) and then to a room tem-

perature bias-T by a coax cable (50 ohm impedance). A computer controlled voltage source

that measures its output current (Keithley 2400) is connected to the DC port of the bias-T

via a low-pass filter (to reduce high frequency noise and interference). The high frequency

response of the nanowire (after room temperature amplification) is monitored through the

RF port on an oscilloscope or a programmable counter. A single mode fiber, placed several
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Figure 2.4: Schematic for experimental setup

centimeters away from the chip uniformly radiates the nanowires with 1310nm photons

from an attenuated pulsed laser source (width ∼ 200ps, repetition rate 20MHz). The 50

ohm impedance together with the inductor make a large enough time constant to observe

relaxation oscillations in all our current-voltage curve measurements, thus ensuring the

peak current is the (experimental) critical current [31]. The measurements have been done

by installing the samples in a dipstick probe and immersing it in liquid Helium (monitored

temperature ∼ 4.2K). The schematic of our setup is shown in Fig. 2.4.
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Figure 2.5: Measured critical currents of the nanowires. The horizontal axis specifies the

type of bend design by using labels that correspond to the insets of Fig 2.2. The data

points for the devices that were on the same chip are connected by solid lines.

2.2 Results and Discussions

Figure 2.5 summarizes the critical current (Ic) measurements on 38 nanowires with different

designs that were fabricated on 12 chips. The horizontal axis specifies the type of device

using the characters that name the bends in the insets of Fig. 2.2. It divides the bends

into three categories: 90-degree (black squares), 180-degree with a big enough footprint to

support the optimized design (blue circles), and 180-degree smaller than the minimum size

to support the optimized design (red triangles). It also sorts the bends in each category in

accordance to their optimality from left to right. The symbols that are connected by solid

lines show the critical currents of the nanowires within the same chip. We have confirmed

satisfactory operation of our measurement setup by measuring the critical current of our

devices several times and finding negligible mean normalized error (equal to ∼ 0.4%).

We start by looking at the data for the optimum bends for which we expect no variation

in critical current due to current crowding. The average Ic of devices c and h fabricated

on all chips is 16.1µA with standard deviation (σ) of 3.2/16.1 = 20%. For devices on

the same chip, the Ic of device b compared to the Ic of device c shows an average value
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〈Ibc/Icc 〉 = 97% with σ = 2.0%. Also, for devices on the same chip 〈Ifc /Ihc 〉 = 98% with

σ = 1.3%.

Little improvement from the smallest optimum design to the bigger one shows the va-

lidity of our design approach. The 2−3% improvement can be attributed to smaller current

density at the inner edge of the bigger designs and therefore their improved tolerance to

fabrication errors. The small deviations (2.0% and 1.3%) show reliability of the fabrication

within a chip. However, the larger deviation (20%) suggests variation of parameters from

chip to chip. Investigating the devices under scanning electron microscope, we have not

observed significant dimension changes. Therefore, an optimum design remains optimum

on all chips, and the 20% is most probably due to slight film thickness/quality change from

chip to chip.

Restricting the comparison to the devices that are on the same chip, a trend becomes

clearly visible on Fig. 2.5 for almost all the samples: the more optimal the bend, the

higher the critical current. For devices on the same chip: 〈Idc /Icc 〉 = 88% with σ = 3.6%,

〈Igc /Ihc 〉 = 91% with σ = 3.9% and 〈I ic/Ijc 〉 = 92% with σ = 8.5%. The average numbers

show the sharpest bends considerably reduce the critical currents.

Another observation is an increase in σ when comparing two optimal bends (2.0% and

1.3%), to higher values when comparing a sharp bend with an optimum bend (3.6%, 3.9%

and 8.5%). We attribute this to the uncontrollability of the radius of curvature (∼ 35nm,

see yellow circles of Fig. 2.2) for sharp bends. For the devices i and j the variation is big

enough to almost change device i to j (compare images in Fig. 2.2(i) and Fig. 2.2(j)). This

can justify the only exception (marked by an arrow in Fig. 2.5) in all the data, in which

contrary to the general trend a rounded bend in device j shows slightly lower Ic than a

sharp bend in device i. This can be also a possible explanation for small fabrication yield of

SNSPDs [19] where the large number of serially connected 180-degree turns in a meander

makes having at least one very sharp bend quite possible.

We have also measured the dark counts and photon counts generated by the nanowires.

The room temperature end of the fiber was blocked by a shutter for dark count vs bias

current measurements. Photon counts are measured by exciting the nanowires with weak

laser pulses and subtracting the expected dark counts at the same bias. We ensure single-
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Figure 2.6: (a) Photo-response and dark count measurements for samples of devices d/b

and g/f. These samples are marked on Fig. 2.5 by filled symbols. (b) Dark count measure-

ments for more samples. Each symbol is for devices on the same chip. The letters refer to

insets of Fig. 2.2. All the lines are for eye guide.
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Figure 2.7: (A) and (C) Drawings of 8nm thick NbTiN sample containing 180-degree

and 90-degree bends, respectively. (B) and (D) Magnified drawings of the green sections,

depicting optimum designs of 180-degree and 90-degree bends.
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photon sensitivity by checking the linear proportionally of the photon counts with the

number of incident photons [40].

Figure 2.6(a) shows the result for a pair of 90-degree bends (d and b) (circles), and

also a pair of 180-degree bends (g and f) (squares). The sharper bends are shown by filled

symbols. The photo-response of the bends that make a pair is almost similar for their

common range of bias. This is expected as the devices in a pair are identical except at

the small bending area. However, at the same bias current, and therefore at the same

quantum efficiency, utilizing an optimum bend can reduce the dark count rate by orders

of magnitude, a significant result for SNSPDs. We also note that the optimum bends

allow a device to be biased with a greater absolute current value, since the current density

bottleneck in sharp bends is mitigated. This enables operation at higher quantum efficiency

(or longer wavelength).

Dark count measurements for some of the nanowires fabricated on different chips (each

symbol is for devices on the same chip) are illustrated in Fig. 2.6(b). Variations for critical

current measurements of our optimum bends on different chips can be seen. However, on

each chip the trend is the same: the sharper the bend the smaller the critical current, and

the higher the dark counts.

At the inner edge of a sharp 90-degree turn with radius of curvature equal to ∼ 35nm,

we calculate the density of the sheet current, |K|, ∼ 1.7 times higher than the same density

for an optimized bend (smallest possible footprint). So, a vortex at the edge of a sharp

turn faces almost the same barrier as a vortex at the edge of an optimum bend but at

a bias current ∼ 1.7 times smaller (neglecting radius of curvature effects [36] which is

reasonable because ∼ 35nm is bigger than the coherence length). Therefore, assuming

vortices overcoming an edge barrier is the origin of dark counts [41], we expect having

the dark count vs bias current of a sharp turn to be approximately shifted to smaller

currents by ∼ 1/1.7. However, in none of our nanowires have we observed such a large

shift. The trend of disagreement with this theory is nevertheless the same as what has

been observed for critical current measurements on wider strips [37, 38]. The other possible

explanation for the origin of dark counts: unbinding of vortex-antivortex pairs [41], needs

further theoretical development before application to the bending area where the edges of

the strip are not straight and the current distribution is not uniform. More details about
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origins of dark count generation will be provided in the next chapter.

2.3 Concluding Remarks

To conclude, we have explored the possible adverse impact of sharp turns on SNSPDs

through (i) limiting their bias current and thus limiting their quantum efficiency, and

(ii) generating excess dark counts not generated by straight nanowire segments where

photons are detected. We expect the utilization of optimally designed bends to further push

SNSPDs to more efficient single-photon detection at longer wavelengths while generating

less dark counts. This optimum design will be exploited in the later chapters to improve

overall performance of the proposed detector.
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Chapter 3

Origin of Dark Count Generation

In a single photon detection, even when the input terminal is fully blocked, randomly dis-

tributed signals (clicks) are still generated at the output electrical terminal of the detector.

These output clicks, or dark counts, are of great importance not only because they affect

the precision of input photon rate to output click rate conversion, but also due to their

adverse effect on the maximum achievable critical current (known as experimental critical

current) of the device. In short, the presence of dark counts dramatically degrades the

overall performance of an SNSPD. In this chapter, the origins of dark count generation

will be discussed in details. I will try to provide a clear picture of all the processes that

lead to this dissipative transition of the initial metastable state of general superconducting

nanostrips in the absence of an input signal. This study provides a better understanding

on all aspects of the detection process, and also opens up new possibilities in using this

class of detectors as a quantum level detector.

It is generally believed that there are two distinct processes leading to this dissipative

transition, both involving vortex motion. The first, and usually the dominant mechanism,

is the motion of spontaneously generated vortices accumulated at the edge of superconduct-

ing strips at high bias currents [42, 41]. These vortices are formed when the self-generated

magnetic field at the edge of the strip is considerably greater than the lower critical field

of the superconducting material and the width of the strip is also larger than the super-

conducting coherence length. The motion of these vortices at the direction normal to the
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Figure 3.1: Internal quantum efficiency (blue curve) as well as dark count rate (green curve)

of a 5nm thick NbTiN straight superconducting strip measured at 3.5K. For a normal width

of a superconducting strip (100nm is used for this experiment), there would always be an

intersection between these two curves. Since by nature (will be explained more later in this

chapter), dark count generation has a power law dependence to the input driving current;

therefore, the presence of these intrinsic fluctuations always puts an upper bound to the

internal efficiency of the detector. By pushing the dark count curve to higher bias currents

or eliminating their generation, one could reach the saturation limit of the detector (black

dashed-line section) and thus operate the detector at its ideal detection mode.
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current density causes the formation of a normal belt across the strip which usually leads

to a normal state transition. The other source of fluctuation is attributed to the unbinding

of the spontaneously nucleated vortex-antivortex pairs (VAPs) moving across the strip in

opposite directions [43, 44]. Again, due to the same mechanism, a normal belt is formed.

Interestingly, for the nucleation of VAPs there is no direct need for an external magnetic

field as these pairs are topological excitations of the superconducting strip itself [45], but

again the presence of the bias current is crucial for VAPs to overcome the potential barrier

at the film edge.

Although the physics behind both fluctuation mechanisms has been widely studied

in the past, there are still some ambiguities in the interpretation of the experimental

observations. For instance, the fluctuation rates for wide samples decay faster than what

is predicted by the thrmodynamical model proposed by Bartolf et. al. [42]. Also, the bias

current dependence of the measured dark count rate across a wide temperature range, below

the Berezinskii-Kosterlitz-Thouless (BKT) phase transition, does not fit well within neither

the current-assisted VAP unbinding nor the thermally-excited vortex hopping model [46].

In this chapter, we present a new model for vortex and vortex-antivortex liberations

in a superconducting nanowire. The model is built complimentary to the existing, well-

established models by considering the effects of quantum confinement on vortex and an-

tivortex initial energy states. It will be shown that on the length scale of the coherence

length, the potential barrier at the edge of the superconducting strip is strongly confined

such that the initial energy levels for both cases are affected by the size and shape of the

current- and temperature-dependent potential barrier. In this limit, it is not sufficient to

only consider the ground state in the classical thermodynamic calculations, but also the

dissipative quantum tunneling of singularities may have a significant impact on the final

fluctuation rates.
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3.1 Modeling a Single Vortex in an Isolated Super-

conducting Strip

In reference [47], it has been shown that to quantitatively describe the motion of an isolated

vortex in a single thin-film superconductor, it is useful to make use of the London [48] or

Ginzburg-Landau [49] theory. The current density obeys the classical Maxwell’s equations

and is defined as,

g = −n∗2De
∗vs (3.1)

where n∗2D is the sheet density of the superconducting pairs integrated over the film thick-

ness and e∗ is the pair charge which is equal to 2e. Pair velocity is define from BCS theory

as follows,

vs = (e∗/m∗c) [A + (Φ0/2π)∇γ] (3.2)

Here m∗ defines the pair mass, A = ∇ × B is the vector potential. γ is the phase

of superconducting order parameter in the London limit. Substituting equation (3.2) in

equation (3.1), it is easy to show that the sheet current density can be written as,

g = − (c/2πΛ) [A + (Φ0/2π)∇γ] (3.3)

In equation (3.3), Λ symbol is used as the two-dimensional magnetic film screening length

and is defined by,

Λ = m∗c2/2πn∗2D (e∗)2 (3.4)

Consequently, as an alternative way, a thin-film superconducting strip can be considered

as a bulk medium such that n∗2D = n∗3Dd and Λ = λ2/d where λ =
√
m∗c2/4πn∗3D (e∗)2 is

the London penetration depth of a bulk superconducting medium.

When the thin superconducting film contains an isolated vortex with a quantum flux,

Φ0 = hc/2e located inside a superconducting layer far from the film edges, the Pearl

solution is obtained in cylindrical coordinates (ρ, φ, z) from the general solution of the

equation ∇ × B = 0, where B = ∇ × A and A = âφAφ (ρ, z). Solving the Maxwell

equation for magnetic field results in following current density distribution [47],

gφ (ρ) =
(
cφ0/8πΛ2

)
[H1 (ρ/Λ)− Y1 (ρ/Λ)− 2/π] (3.5)
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Figure 3.2: Magnetic field generated by a two-dimensional Peal vortex in an isolated

superconducting thin-film [50]. The field distribution for z > 0 and r > Λ resembles

that of a magnetic monopole (B = φ0/2πr
2) [47].

where H1 is the Struve function1 and Y1 is the second order Bessel function. Using this

current distribution, magnetic field distribution of a single isolated vortex is sketched in

Fig. 3.2.

Having the super-current distribution of the film, the self-energy of a vortex in a limiting

conditions (ρ� Λ and ρ� Λ) is simplified as,

U0 (ρ) =
(
φ2

0/4π
2Λ
)

ln (Λ/ρ) , ρ� Λ (3.6)

U0 (ρ) = φ2
0/4π

2ρ, ρ� Λ (3.7)

This potential energy is the work done by the repulsive Lorenz force (g (ρ)× φ0/c) to

move a vortex of the same sign from infinity to position of ρ from the isolated vortex. The

idea of having a vortex of the same sign at the distance of ρ is in fact the mathematical

1Struve function in power series form is
∑∞
m=0

(−1)m

Γ(m+ 3
2 )Γ(m+α+ 3

2 )

(
x
2

)2m+α+1
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implementation of an infinite potential barrier at the entrance edge of the superconducting

film such that the barrier acts as a mirror for the vortex2.

3.2 Fluctuation Rate Modeling

Throughout this thesis, the structure of both singularities (vortex and VAP) are described

by the Pearl model [50] introduced in the previous section. As usual, to study the dissipa-

tion rate in both quantum and thermal levels, the surface potential barrier i.e. Gibbs free

energy barrier faced by each singularity is defined as the starting point.

For the case of vortex hopping, the surface barrier is dependent on the current distri-

bution of the film in the presence of vortices. In the London framework, the supercurrent

flow obeys [51]:

∇ · g = 0 (3.8)

hz +
2πΛ

c
(∇× g) · âz = Φ0δ (r− rV ) , (3.9)

where Λ is the Pearl penetration depth of the superconducting strip, g defines the surface

current density, rV points to the vortex location and Φ0 is the quantum of magnetic flux

passing through the superconductor. In this formulation, the effect of the vortex core is

simplified to just a local phase perturbation of the order parameter. Also, it has been

assumed that the vortex density is low enough, such that interaction between vortex pairs

are negligible. The first term on the left-hand side of equation (3.9) introduces the screening

of the magnetic field in the strip. In reference [36], it is shown that in a straight strip,

the divergence of the supercurrent normal to the boundary is less than 0.02% for a typical

width of a strip (w ≈ 100nm) and hence the effect of the screening is negligible. Now by

introducing a scalar stream function G such that g = ∇ × Gên, the current distribution

is simplified in the form of a Poisson equation [52]:

∆G = − cΦ0

2πΛ
δ(r− rV ). (3.10)

2similar to the electromagnetic image theory
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Finally, the self-energy of a single vortex in the strip with a uniform current flow is given

by:

ε(rV ) =
Φ0

2c
G(r→ rV ). (3.11)

This is, indeed, the surface barrier when there is a negligible current flow across the strip.

In the presence of a bias current, there is an additional term due to the Lorantz force,

g(rV ) × Φ0/c, between the vortex and the external supercurrent. Combining these two

terms, the final potential barrier reads:

εV (xV ) = ε0(T, Ib)× ln

(
2W

πξ(T )
sin
(πxV
W

))
(3.12)

− |gext|xV Φ0/c,

where xV is the normal distance between the position of the vortex and the entrance edge

of the film. W is the film width and ε0(T, Ib) = Φ2
0/8π

2Λ(T, Ib) defines the characteristic

vortex energy in a thin superconducting strip.

For the case of VAP, the surface energy barrier depends on the initial position of the

spontaneous nucleation. It can be shown that the minimal increase in the Gibbs free

energy occurs only if the nucleation takes place in the middle of the strip [53]. Under this

condition, the energy barrier as a function of the pair separation (b) reads,

εVAP(b) = 2ε0(T, Ib)× ln

(
W

πξ(T )
sin

(
πb

W

))
(3.13)

− |gext| bΦ0/c.

Regardless of the nature of these decay rates, the thermal activation in the limit of weak

damping obeys the classical Kramers formula, which concludes the following rates for

equation (3.12) and equation (3.13), respectively:

RV = αv
Ib

Ic(T )
× exp

(
− εv,m
kBT

)
(3.14)

RVAP = αVAP × exp

(
−εVAP,m

kBT

)
. (3.15)

Here m refers to the maximum point of the potential barrier and αV and αVAP are the

attempt frequencies. In the case of vortex hopping, the prefactor is also proportional to
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Figure 3.3: Gibbs free energy barrier as a function of distance for vortex hopping model

(black dash-dot lines) as well as vortex-antivortex pairing model (red solid lines). All

the curves are plotted for a NbTiN strip with 180nm width and 8nm thickness. Critical

temperature of 8.50K (experimental critical temperature of the wires) and the coherence

length of ξ(Ib = 0, T = 0) = 4.7nm at zero temperature were used for these calculations.

In the derivation of equations (3.12) and (3.13), the current and temperature dependent

coherence length and penetration depth have been employed (see equation (5) and (14) of

ref. [42]).
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the number of available vortices penetrating the film and hence it is proportional to the

driving current.

The thermal fluctuation rates are the dominant processes only when the thermal acti-

vation energy is on the order of the barrier height. At sufficiently low temperatures, these

sources of dissipation gradually freeze out, opening a new possibility for quantum based

tunneling [54]. In this scenario, vortices tunnel through the surface barrier either with or

without dissipation. In the current context, the dissipative fluctuation rates are of interest.

In the limit of strong dissipation, the tunneling rate reads [55]:

RQ = αQ
Ib

Ic(T )
× exp

(
−βB

π~x2
B

2e2RNξ2(T )

)
(3.16)

where RN is the normal sheet resistance of the superconducting film, βB relates to the

surface barrier shape and is on the order of one, and xB is the barrier width at the ground

energy level and can be calculated from equation (3.12). Similarly in this model, the

attempt rate is proportional to the driving current with the same physical origin. It is

interesting to mention that unlike the previous thermal models, here the rate is related to

the Gibbs free energy through the barrier width rather than the barrier height.

3.3 Ground State Consideration

As a starting point, we refer to the experimental results of ref. [42]. In section III of this

paper, the measured fluctuation rates for wide wires decay faster than what is expected

by the power law dependence which cannot be explained within the formalism of either

thermal models, i.e. Vortex hopping or VAP unbinding. Interestingly, the deviation is

only observed at very low count rates (less than about 100Hz) where the bias current is

noticeably smaller than the experimental critical current of the device.

To explain this abnormal behavior, we highlight that to stay in the London limit, the

finite size of the vortex core has been neglected in the derivation of equations (3.12) and

(3.13). This implies the real potential barrier deviates from the theoretical predictions at

the edges of the strip. The impact of this simplification is more pronounced by examining
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the behavior of the Gibbs free energy barrier and it’s divergence at the film boundaries.

Consequently, a more sophisticated approach, such as the direct solution of the Ginzburg-

Landau equation, is required to predict the barrier shape around the edges [56]. However,

in the majority of the previous works [42, 41, 57, 58], to simplify the calculations, a standard

cutoff is defined for the vortex location at the boundaries and the initial energy level is

arbitrary set to zero. Although this assumption gives an acceptable qualitative picture for

the vortex liberation, when it comes to explaining the temperature or width dependence

without adding a set of free parameters, the models do not accurately justify experimental

observations. Here, a current-dependent energy level is suggested for the initial states.

We [59] claim that this assumption has a major impact on explaining the behavior of the

fluctuation rates in both quantum or thermal regimes.

Figure 3.3 depicts the Gibbs free energy of the vortex hopping and VAP unbinding

models as a function of vortex location and vortex-antivortex separation, respectively, for

different bias currents. From this figure, it is clear that the vortex freedom at zero energy

level in both models is on the order of the superconducting coherence length. Now the ques-

tion is what happens if this confinement is also comparable to the de-Broglie wavelength

of the vortices. In this limit, the quantum-mechanical effects such as energy discretization

and quantum tunneling are significant. To measure the importance of quantum phenom-

ena at the vicinity of the strip edge, the potential well is approximated as a harmonic

potential. If the frequency of the oscillation, ω =
√
k/M∗, is in the range of the super-

conductor’s natural frequency, ∆/~, then the lowest achievable energy level is not equal

to the minimum of the potential well anymore, meaning that in the thermal activation

calculations, the barrier height is lower than that of the classical model. Furthermore, the

quantum tunneling barrier would be also smaller than what has been predicted by the

classical model. In the context of the current model, although there is no intrinsic mass

defined for a vortex, an effective mass (inertial mass, M∗) can be associated with the vortex

motion [60, 61, 62, 63].

For a Nb film at a temperature close to the critical temperature, an order-of-magnitude

estimate on the inertial mass varies from M∗ ' 10−2m∗ per length at the dirty limit

[64] to M∗ ' 104m∗ per length at the superclean limit [65]. In order to circumvent the

problem associated with the uncertainty in the mass of a vortex, the quantum mechanical
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Figure 3.4: (A) Drawing of the actual device containing the nanowires of varying thick-

nesses. The gold pads are colored in yellow and are deposited for the purpose of wire-

bonding. The actual 8nm NbTiN (dotted area) is connected to the Gold pads through

300nm thick NbTiN layer. (B) Magnified drawing of the dotted area. All the straight

nanowires are 20µm in length and are connected to four times wider wires with width to

length ratio of 1/10 to prevent current crowding at the sharp edges.
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property of harmonic oscillators is used as an approximate model for the dynamics of a

trapped vortex at the edge of a superconducting wire. The kinetic energy and the potential

energy of a trapped vortex are related by EKmax = EPmax , where EKmax = 1
2
M∗v2

F [62] and

EPmax ≈ 1
2
kξ2, where k is the force constant. For such a system, the minimum quantum

energy is ~ω/2 ≈ ~vF/2ξ ≈ ∆(I, T ). This suggests that the initial energy of the vortex

at the edge, due to the local confinement, is a current and temperature dependent value

and cannot, arbitrarily, be set to zero. In the London’s framework this phenomenon can

also be explained: vortices are dynamical objects with finite extensions about the size of

the superconducting coherence length; therefore, they cannot be localized in a confining

potential less than the coherence length. This minimum length of the potential determines

the initial energy of a vortex.

3.4 Experimental Verifications

Figures 3.6 and 3.5 illustrate the experimental decay rates of 20µm long straight nanowires

at different temperatures and widths. All the strips are made of 8nm thick NbTiN films

deposited on oxidized silicon [21]. To measure the fluctuation rates, the samples have been

installed in a dipstick probe immersed in liquid Helium. To ensure low noise operation

which is required to measure the very low level fluctuation rates (less than 100Hz), a

custom-made remotely controlled voltage source and pulse-counter have been employed.

As shown in Fig. 3.5b, at high bias currents, there is a power law dependence between

the decay rates and the bias current as predicted by the log dependence of the rate models.

But interestingly when the bias current is reduced, a deviation from the standard model

is observed especially for wide wires.

Another abnormal observation is on the dark count curves of a single wire measured at

different temperatures (see Fig. 3.6). To describe the dark count generation of the wire

at a fixed temperature, one can fit the experimental data to equation (3.14) by defining

an attempt frequency, αV . The rest of the curves are produced according to the rate

equation without adding new free-parameters to the model. From this figure, it is seen

that in the thermally excited vortex hopping model with zero initial energy level, the curves
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Figure 3.5: a) Ground state energy level prediction for vortex hoping model (black dash-

dot lines) as well as VAP unbinding model (red solid lines) for different film widths. b)

Dark count rate versus bias current for NbTiN strips with different widths (measured from

high resolution SEM images). Orange solid lines, blue dash-dot lines and empty circle

lines represent theoretical calculation of the ground state model, power law fitting and

the experimental results, respectively. For the theoretical calculations, the total rate of

the vortex hopping (equation (3.14)) and VAP unbinding (equation (3.15)) models with

equal prefactors (αv = αVAP) is used. Note that at the operation temperature (4.2K) the

quantum tunneling rate (equation (3.16)) is several orders of magnitude smaller than the

thermal activation counterparts and hence it has been neglected. To fit the ground state

model to the experimental data, the uncertainty in vortex location at the ground state

level is set to ∆(x) = 1.3ξ(Ib, T ).
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at the lower temperatures deviate from the experimental data. To explain the origin of

these abnormal behaviors, the theoretical prediction of the current dependent ground state

levels are calculated and the results are plotted in Figs. 3.5a and 3.6. According to these

calculations when a wire is wider, based on the Heisenberg uncertainly, the ground state

is located in a higher energy level in comparison to narrow wires which is in accordance

to the higher confinement of the potential barrier for the wider wire. Also the slopes are

slower which suggests lower current dependence of the decay rate. Consequently, higher

deviation is expected for wider wires. In other words, when the wires are wider, the London

approximation for the potential shape at the edges of the film is less accurate and hence

zero level approximation also results in a more inaccurate estimation. Although when the

current approaches the experimental critical current of the structure, the coherence length

is large enough to compensate the effect of the ground state (see Fig. 3.3). This is the

reason why the deviation is only observed at low bias currents.

According to the quantum ground state model, when the barrier is more confined, the

ground state level is placed at a higher energy level. This naturally implies higher energy

levels for the case of the VAP unbinding potential in comparison to the vortex hopping

potential (see Fig. 3.5a). Consequently, the corresponding barrier for vortex-antivortex

pairing is not anymore twice as high as for the single vortex hopping model in the normal

operation temperature (4.2K) as suggested by zero energy level model. For equal prefactors

(αv = αVAP), vortex hopping is the only dominant mechanism for wide wires (w > 100nm).

For narrow wires, the rate depends on the temperature and width of the strip but since the

barriers are on the same order, neither source of dissipation can be neglected (see Fig. 3.7).

Likewise, for lower temperature, the effect of quantum tunneling (equation (3.16)) would

be more significant as the barrier width is much narrower than the prediction of the zero

ground state level. Using the quantum ground state model, for a NbN film of width 100nm,

it is possible to show that for temperatures lower than 2K, the effect of quantum tunneling

is considerable. For a temperature of about T = 0.5K, the dissipative quantum tunneling

would be the dominant process which explains the approximately equal rate observed for

the two lowest curves of figure 2 of reference [46].
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Figure 3.7: Vortex hopping rate (black dash-dot lines) compared to VAP unbinding rate

(red solid lines) for different bias currents at T = 4.2K for a strip of 82nm width. The

superconducting parameters are the same as the ones used in Fig. 3.3. The left figure (a)

depicts the classical model where the energy barrier is calculated from zero energy level

while in the right figure (b), the ground state level is calculated based on the quatum well

confinements. These calculations suggest that in contrary to the classical model, both of

the rate models (Vortex hopping and VAP unbinding) may be the dominant origin of the

dark count generation if the confinement is taken into account.

42



3.5 Concluding Remarks

It has been both theoretically and experimentally shown that to determine either the

thermal activation or quantum tunneling liberation rate, a precise estimate for the shape of

the Gibbs free energy barrier at the film edge or at the location of VAP nucleation is crucial.

Using the London approximation for the barrier shape results in an inaccurate current

distribution which leads to an inaccurate barrier height or width estimations. However,

using quantum mechanical approach it is possible to define a current-controlled initial

energy level for both singularities based on their inertial mass and the barrier confinement.

It has been shown that the consequent calculations result in a more accurate prediction

for the rate equations. The quantum treatment of the decay rate also revealed that both

the VAP unbinding and dissipative quantum tunneling models may have higher rates than

those predicted by the classical zero level energy models which suggests higher contribution

of these sources of dissipation in the final rate.
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Chapter 4

Plasmonic Superconducting

Nanowire Single-photon Detector

Despite all the promising properties of SNSPDs, low system quantum efficiency remains

one of the major obstacles in this class of detectors [7, 66, 28]. This is mainly due to the

input optical wave readily passing through a normal-incidence meander-line structure as a

result of the great difference between the thickness of the film and skin depth of the optical

wave [32]. In this chapter, we present a novel single-photon detection structure to address

this issue without increasing the length or the thickness of the active element such that

two seemingly contradictory properties, high speed operation (requiring small active area)

and high photon absorption probability (requiring large active area), can be maintained

simultaneously. The design is based on the plasmonic nature of a superconducting layer

[34] to improve the photon absorption process by exciting the surface plasmon polaritons,

SPPs, at the interface of the superconducting layer and a positive index dielectric layer

[35]. The general idea is to deposit and pattern thin-film superconducting wires on top

of a dielectric slab waveguide. Similar structures based on dielectric slab waveguides have

been previously reported, where the optical energy is mostly confined at the center of the

high index dielectric layer [11, 67]. Consequently, there is a small overlap of the optical

field with the active element, and only a small portion of the available power is absorbed.

In our plasmonic design however, the presence of a negative index superconducting layer
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Figure 4.1: Layered structure of the proposed detector. Superconducting layer (nanowires)

with thickness td is placed on top of a Si layer of thickness t and width w in an environment

of HSQ/SiO2 cladding layers. The HSQ layer is used during patterning of the wires and

can be kept as a protective layer.

leads to an additional confinement resulting in sub-wavelength mode formations.

Excitation of SSPs in a thin superconducting layer (normally less than 12nm) is the

main challenge of this work. To observe well-defined plasmonic confinement, there is a min-

imum feature size for the width of both the dielectric waveguide and the superconducting

layer. This imposes an undesired limitation on the nanowire from a detection perspective,

particularly on single-photon sensitivity, since there is an upper bound for the cross sec-

tion area of the active element. In general, we will show that there is a trade-off between

the probability of photon absorption and the internal quantum efficiency of the device.

We present an alternative to decouple these two properties based on the optical design

and photon detection mechanisms in SNSPDs (current concentration beyond the depairing

current density at the sidewalks upon photon absorption [29, 68] and vortex hopping from

one edge across the strip or vortex-antivortex unpinning [69, 42]).

This chapter is organized as follows. In section 4.1, the complex conductivity of a

superconducting material in optical frequency range is discussed. Section 4.2 describes the

possibility of plasmonic excitation of a thin-film superconductor. In spite of the extremely

thin thickness of the superconducting layer in comparison to the other layers, still excitation

of the fundamental plasmonic mode is possible with proper design of the thickness and

45



width of all layers. In section 4.3, all different possible excitation mechanisms of the

proposed structure are briefly reviewed. The pros and cons of each model are also discussed

in details. In Section 4.4, the nonequilibrium to equilibrium relaxation dynamics of the

order parameter in a superconducting film after absorption of a single-photon is studied.

The objective is to find the optimum size of each layer such that the structure can benefit

from both photon detection mechanisms mentioned above.

4.1 Complex Conductivity of a Superconductor

In this section, I will deal with complex conductivity of a superconducting sheet in the

presence of an electromagnetic field. It is known that the ideal DC properties of a super-

conductor are governed by the flow of lossless super-current within an equilibrium state of

the system. In this state, a superconductor can be approximated as a perfect conductor

which also exhibits perfect diamagnetism. This lossless behavior starts to disappear as the

frequency of electromagnetic field increases. This is because of the dissipation introduced

in the system since now normal electrons are also contributing in the conduction. In order

to calculate the conductivity at this frequency range, the BCS theory of superconductivity

comes in handy. In 1991, Zimmermann used this theory and introduced an explicit ex-

pression to describe macroscopic conductivity of a homogeneous superconductor with an

arbitrary purity. The detail derivation can be found in ref [70]. Here, we only summarize

those physical behavior predicted by this model.

A bulk superconductor shows a residual real conductivity for frequencies less than the

gap frequency provided that number of Cooper pairs exceeds the number of normally

excited quasiparticles (approximately T < 0.5TC). If there is no power consideration when

frequency is about the critical value, E ' 2∆, a sudden increase of loss happens. The

reason for this is that an individual quantum of electromagnetic radiation is powerful

enough to break down a pair and form two excited quasiparticles. If frequency further

increases, each photon can break down several quasiparticles; hence the contribution of

excited QPs in conductivity would be dominant. In fact, pairs cannot contribute anymore

in conduction unless they are first broken down to excited quasiparticles. As a consequence,
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the superconducting gap becomes smaller and material tends to behave like a normal

metal. Although this complex model gives an accurate description of microwave behavior

of a superconductor1, for higher frequencies, it approaches to the more intuitive model

introduced by Mattis and Bardeen [73, 74],

σ1

σn
=

2

~ω

∫ ∞
∆

[f (E)− f (E + ~ω)] g (E) dE (4.1)

+
1

~ω

∫ −∆

∆−~ω
[1− 2f (E + ~ω)] g (E) dE

σ2

σn
|~ω<2∆ =

1

~ω

∫ ∆

∆−~ω
[1− 2f (E + ~ω)] g (E) dE (4.2)

σ2

σn
|~ω>2∆ =

1

~ω

∫ ∆

−∆

[1− 2f (E + ~ω)] g (E) dE

here σn is the normal state conductivity, and f (E) and g (E)2 are Fermi function and

coherent factor in the BCS theory, respectively:

f (E) =
1

1 + exp
(

E
kBT

) (4.3)

g (E) =
1

(E2 −∆2)1/2 ((E + ~ω)2 −∆2
)1/2

(
E2 + ∆2 + ~ωE

)
(4.4)

Note that these two models coincide for all frequencies if an extreme limit where the

coherence length (ξ) is large compared with the penetration depth λ is considered 3.

The first term in equation (4.2) is due to the contribution of thermally excited normal

quasi-particles (n0
n) with density approximated by the Gorter-Casimir expression, n0

n/n =

(T/Tc)
4 [75]. This term exist only if temperature is not equal to zero where carriers are

a mixture of pairs and QPs. The second term is the contribution resulting from breaking

1BCS superconductor (weak coupling) with spherical Fermi surface; for those with nodes in energy gap

refer to [71] and for strong coupling refer to [72].
2Signs of the square roots are such that g (E) is positive in all integrals
3In general, the purity of a superconductor is characterized by the ratio of electron mean free path (l)

over the coherence length (ξ0). A sample is clean if this ratio is much greater than one. Otherwise, sample

is considered as dirty. In most cases, clean superconductor corresponds to type I superconductor.
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of the pairs by an external field which is zero unless photons have enough energy, i.e.

~ω > 2∆. As a result, intrinsic loss vanishes if frequency is less than gap frequency and

temperature is much lower than the critical value.

In superconductors, apart from the frequency dependency behavior introduced in equa-

tions (4.2) and (4.3), there is another important source of dispersion that arises from σn

term. This dispersion can be calculated from classical model and is known as Drude model

of conductivity:

εr(ω) = n2(ω) = 1− Ne2

mε0(ω2 − iγω)
= 1−

ω2
p

ω2 − iγω
(4.5)

σn(ω) =
σ0

1− iωτ
|σ0=ω2

pτε0

here, ω0 is natural resonance frequency of the atomic system4 and ωp is the plasma fre-

quency. Although this model gives an acceptable accuracy for low frequencies, the validity

of it breaks for ω close to the plasma frequency5. This inadequacy can be fixed by applying

these modifications:

1. Replacing the dielectric constant at very high frequencies, ω � ωp, by ε∞. This is

due to a residual polarization of highly bounded electrons [76];

2. Adding a linear superposition of Lorentz-oscillator terms due to interaction of elec-

trons with different phonon branches with different oscillator strengths[70];

3. Adding a Lorentz oscillator term as a result of electron absorption caused by inter-

band transitions [70].

Thus, optical conductivity can be expressed as:

ε (ω) = ε∞ + i
σ (ω)

ε0ω
+ Interband term +

N∑
j=1

Sjω
2
j

ω2
j − ω2 − iωγj

(4.6)

4Information about this quantity needs quantum mechanics treatment.
5For instance in case of gold, the model is only valid for energies below 3.8 eV
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where, σ (ω) is the contribution of conduction electrons. For normal conductor this term

is well described by a Drude model.

It is known that an ideal superconductor at zero temperature cannot absorb optical

radiations with frequencies smaller than 2∆/~. For optical beams with higher energies,

each absorbed photon breaks up a superconducting pair, creating two excited quasiparti-

cles. The dynamics of the relaxation process back to the equilibrium state will be discussed

later in the next section. For now, the main focus is on the optical conductivity of the

superconducting sheet. In the framework of linear response to the electromagnetic field,

optical conductivity can be calculated from Kubo formula [73] or equivalently, the super-

conductor can be treated as a bulk semiconductor medium with a band gap of around

its Fermi energy. Using the latter model, the conductivity and hence absorption can be

driven from Fermi golden rule assuming that transition probabilities for both quasiparticle

scattering and new pair generation processes are known. These two transition probabilities

are related to coefficient of matrix elements of interaction Hamiltonian [51]. In the normal

state, all the matrix elements are independent from each other, and thus the transition

probability of each particle can be easily described as the square of the corresponding

matrix element. In superconducting state however, there are two matrix elements in the

interaction Hamiltonian which relate two initial phase coherent states to final states with

equal momentum and spin differences. Thus, for superconducting case, as long as the initial

and final states remain coherent, to find the transition probability, prior to squaring, both

elements must be added up. This coherency makes the transition probability of a supercon-

ductor different from that of the normal state. To solve this disparity, Bogoliubov-Valatin

transformations come very handy. Using these transformations, the transition probability

can be rewritten in form of normal state transition just by introducing a coherence factor.

For case of optical absorption where external perturbation is in the form of p · A, the

coherence factor is defined as 1
2

(
1− ∆2

EÉ

)
where E and É are initial and final states. This

equation suggests that superconducting phase-coherence only plays an important role in

optical conduction whenever transitions with energy differences comparable to the energy

gap are involved. Note that in the case of infrared detectors, to have high photon sen-

sitivity, the wire is always biased very close to the critical current and hence the actual

energy gap is very small. In fact, from physical point of view, optical conductivity of a
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gapless superconductor or a superconductor with very small energy gap must be considered

for optical calculations. This concludes a very small deviation in optical conductivity in

comparison to the normal state conductivity should be expected for nanowires. This led

us to employ the low temperature normal state conductivity for our optical calculations.

4.2 Plasmonic Guiding

This section presents the theoretical investigation on the possibility of SPP formation at

the interface of an ultrathin superconducting film with a positive index dielectric medium.

Figure 4.1 illustrates the layered structure of the device. All materials are selected such

that the device is compatible with silicon photonics processing. For the superconducting

layer, NbTiN is selected for the possibility of thin-film deposition as well as its low sensitiv-

ity to latching in the single-photon detection regime [77, 30]. From an optical perspective,

the high index dielectric layer placed underneath the superconducting layer will serve as a

guiding (core) layer. In the absence of the superconducting layer, the significant difference

in the indices of this layer with the surrounding dielectric (cladding) layers permits strong

lateral confinement of light on the order of the core dimension. Presence of the supercon-

ducting layer alters the lateral power distribution from center of the waveguide towards

the superconducting interface and hence can improve the probability of optical absorption.

The idea of optical confinement through plasmonic excitation arises from the fact that a

superconducting film behaves like a negative index medium in the optical bandwidth [34].

Thus, by having proper dimensions in both transverse and lateral directions in all layers,

it is possible to trap optical waves along the interface of these two layers.

Before we start this section, it is necessary to consider the usefulness of the classical

optics for design of a quantum level detector. It is known that, in systems that are sensitive

to single-photons, classical optics cannot be exploited to thoroughly describe the properties

of light beams, and hence quantum mechanical formalism is used instead. In this regime,

depending on the experimental setup, photons may behave like particles or wave with the

energy and momentum of E = ~ω and P = ~k where ω denotes the angular frequency
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and k denotes the wavevector of the photon6. Furthermore, from similarity by mechanical

harmonic oscillator in this regime, magnetic potential field operator is described as follows:

A (r, t) =
∑
k,λ

ε (ωk)0

[
âk,λ (t) uk (r) + â†k,λ (t) u∗k (r)

]
(4.7)

where

ε (ωk)0 =

√
~

2ε0ωk
(4.8)[

â, â†
]

= 1 (4.9)

d

dt
â =

i

~

[
Ĥ, â

]
= −iωâ (4.10)

here, ε (ωk)0 represents the magnetic potential field per photon per wavelength and u (r) is

the spatial field profile that can be found from Helmholtz equation. It is important to stress

that according to the equation (4.7), quantization only occurs for the time and energy part,

and accordingly, the spatial pattern of electromagnetic field is still governed by traditional

Maxwell equations. This doesn’t imply that the detection of a single-photon produces a

spatial pattern of |u (r)|2 , instead in comparison to quantum mechanics, |u (r)|2 gives the

relative probability distribution for finding a photon in location r. Thus, according to this

argument, to design a single-photon detector with a high probability of detection, we still

have to exploit to classical optics to increase the |u (r)|2 term as much as possible in the

nanowire section.

4.2.1 Dispersion Equation at Interface of a Superconductor and

a Dielectric Medium

To drive the dispersion relation of our complex structure 4.1, on our first attempt, dis-

persion relation of a simplified model illustrated in Fig. 4.2 is explored. According to the

discussion made in the previous section, most of the metallic superconductors behave like

6The expectation value of the field operators for true single photon Fock state is the same as classical

optics and have probability interpretation.
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a normal metal in the optical bandwidth and thus, they support a negative refractive in-

dex. Accordingly, if a semi-infinite superconducting sheet is connected to a normal positive

index medium, the formation of surface waves are predicted by the plasmonic theory of

optical guiding [34].

Dielectric (n )1

Superconductor (n )3

x = 0
z

x

βq

p

Figure 4.2: Two semi-infinite media separated by a planar interface at z = 0

From physical point of view, this wave is a quasi-two-dimensional electromagnetic wave

coupled to the surface quasi-particle (polaritons) charge density. Therefore, similar to

a traditional metal-insulator (MI) structure, the wave inherently tends to be confined

near the superconductor surface where two-dimensional electron gas can form. Note that

according to the argument made in section 4.1, in telecom bandwidth, due the energy

consideration, superconducting pairs cannot directly contribute in the conduction unless

they are first broken down to the excited particles.

Here, instead of solving Maxwell equations from scratch at each continuous region and

applying boundary conditions to drive the dispersion equation, the interface is treated

as a special case of a slab waveguide with zero core thickness. Consequently, dielectric

waveguide mode conditions can be employed to drive the dispersion relation.

According to theory of optical guiding, existence of a TE mode with zero thickness

requires that the sum of normal wave vectors at dielectric (p) and metallic (q) sections

be equal to zero which is not possible as both of these normal wave vectors are positive

for a confined mode. This implies that no surface plasmon polariton can exist for TE

polarization in this special configuration. For TM polarization the same condition is valid

if p and q are replaced by peff and qeff (defined in equation (4.11)). This condition can be
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satisfied only when materials have opposite signs in real part of their dielectric constants;

hence, in general, formation of a surface wave at interface of a superconductor requires an

additional adjacent positive index medium.

peff + qeff = 0

n2
2

n2
3

p+
n2

2

n2
1

q = 0

β =

√
n2

3n
2
1

n2
3 + n2

1

k0 =

√
ε3ε1

ε3 + ε1

k0 (4.11)

To have surface wave, one needs [78]:

ε3 + ε1 < 0 (4.12)

ε∞ + i
σ (ω)

ε0ω
+ ε1 < 0 (4.13)

Wavevector β entering the dispersion relation of equation (4.11) is a 2D wavevector on

the surface between a superconductor and dielectric media. Thus, if a light is incident to

the surface in an oblique angle, only in-plane component of this 3D wavevector can couple

to the surface wave. According to Fig. 4.3, the dispersion line of an external radiation

always lies somewhere between light line inside dielectric medium, cβ/n1, and the vertical

axis. This suggests that light incident to an ideal superconductor cannot directly excite

surface plasmon polaritons. Special techniques such as phase-matching7,ω1/k1 = ω3/k3 ,

or mode matching8 are required to excite these polaritons via a three dimensional beam

which will be discussed later.

As the last note, it is reminded that although the dispersion equation for SC/I struc-

ture is driven from the dispersion of a slab dielectric waveguide, this structure has a few

distinguishable properties:

7For instance grating or prism coupling.
8This method is typically used for IMI structures with end-fire coupling where SPP is weakly confined

to the interface.
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Figure 4.3: Surface plasmon dispersion of a SC/I structure in NIR bandwidth. ωp is

the plasma angular frequency and the bold red line represents the ideal case where γ →
0
(
εd = 1− ω2

p/ω (ω + iγ)
)
. If β approaches to infinity, the dielectric constant would be

negligible [34].
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• The polarization state of E in the two media are mutually orthogonal (β2 = pq):

E (x > 0) · E∗ (x < 0) =

Ex (x > 0)E∗x (x < 0) + Ez (x > 0)E∗z (x < 0) =

β2 − pq
ω2ε1ε3

Hm (x > 0)H∗m (x < 0) = 0 (4.14)

• Surface plasmon wave in superconductor in contrast to dielectric media propagates

along −z direction; this is as a result of having negative index of refraction in super-

conducting area:

Sz = (E×H∗) .âz = ExH
∗
y =

β

ωε
Hm(x > 0)H∗m(x < 0) (4.15)

• This structure in contrast to the dielectric counterpart only supports a single TM

mode. In dielectric waveguides, if a TM mode is available, there must always be a

TE mode with the same order but higher effective index.

4.2.2 Effective Index of a Mode

To describe and compare confined modes with just a single variable, it is convenient to

define a normalized propagation constant, neff = β/k0 = C/vp, where vp is the phase ve-

locity of the mode. This variable plays an important role wherever an explicit analytical

treatment of a structure is not possible. According to the definition, the effective index can

be defined for any complex structure as far as the wavevector in direction of propagation

is known; however, to directly calculate it from the effective index method, the modes

of the actual structure need to be confined well above their cut-off frequencies and lin-

early polarized such that the scalar wave approximation is valid in all regions [79, 80, 81].

These key assumptions can be only fulfilled when the magnitude of field components in all

boundary regions are small enough to be neglected. This condition can be readily violated

when there is a strong interaction between layers. For instance, in case of a finite width

plasmonic waveguides like our case, this strong interaction would result in a very squeezed

optical mode and accordingly, the use of effective index method is on debate [82]. In this

section, we introduce a numerical method to address this problem.
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To investigate the possibility of mode formation, a numerical tool is required to ac-

curately determine the complex propagation constant of the optical modes as a function

of the dielectric core thickness. There are several approaches available to accomplish this

task. In this work, a derivative of the well-known transfer-matrix method, namely the

reflection pole method or RPM has been chosen [83].

4.2.3 Numerical Approach, Reflection Pole Method

For the design of our multilayer plasmonic waveguide, a numerical tool is required to

accurately determine the complex propagation constants as a function of the dielectric

core thickness. In this section, reflection pole method (RPM) is introduced for this purpose

[83]. This method is a derivative of the well-known transfer-matrix method. Essentially,

when the indices of a multilayer waveguide are complex, transfer matrix method boils

down to a complex equation rather than a real equation. Finding the roots of this complex

equation is numerically challenging. However, in RPM method, instead of directly solving

the equation, changes in the phase as a function of the real part of the effective index is

monitored.

x1

x2

xM-1

xM

x0

n = n0 clad

n1

n2

nM-1

n = nM sub

z

Figure 4.4: A general multilayer waveguide.

In Fig. 4.4, the total electric field of each layer, for instance layer i, is the summa-

tion of a forward and a backward propagating electric fields and is expressed as Eyi (x) =
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Ai exp [−ki (x− xi−1)]+Bi exp [+ki (x− xi−1)] where ki is the complex transverse wavevec-

tor and Ai and Bi are complex coefficient corresponding to +ẑ and −ẑ propagating waves,

respectively. Furthermore, xi defines the boundary between the ith and (i+ 1)th layer.

By matching the tangential field components of the electric and magnetic fields at each

interface, the field expansion coefficients at the cladding and the substrate layer can be

related through [83]:

M =

(
As

Bs

)
= TM−1TM−2 · · ·T0

(
Ac

Bc

)
=

(
T11 T12

T21 T22

)(
Ac

Bc

)
(4.16)

where Ti is the transfer matrix and defined as follows:

Ti =

 [
1 + fi

ki
ki+1

]
exp (−kidi)

[
1− fi ki

ki+1

]
exp (+kidi)[

1− fi ki
ki+1

]
exp (−kidi)

[
1 + fi

ki
ki+1

]
exp (+kidi)

 for i = 0, 1, · · · ,M − 1

(4.17)

For TE modes fi = 1 while for TM modes fi = n2
i+1

/
n2
i . For an optical wave which is

incident to the structure from substrate layer, the electric field in the cladding layer only

propagates in the −x̂ direction and hence Ac = 0. In this case, the transmission is given

as: (
As

0

)
=

(
T11 T12

T21 T22

)(
1

Bc

)
(4.18)

so the reflection coefficient would be R = Bc

Ac
= −T21

T22
. This coefficient is a function of the

complex propagation constant. The guided modes are the modes which propagate in the

ẑ directions and exponentially decay away in the +x̂ and −x̂ directions or alternatively,

they correspond to the resonances of the layered waveguide structure, which happen at the

poles of the reflection coefficient R. Consequently, the poles of the reflection coefficient

are the solutions of T22 = 0. In RPM method, to find these roots, phase of this complex

equation as a function of the real part of the propagation constant is monitored. The

guided modes correspond to the rapid changes of the T22 phase9. According to Bode plot

theory [84], an extremum in the derivative of the T22 phase corresponds to the real part of

the effective index and the full width at the half maximum of the phase derivative curve

is the imaginary part [85].

9Only phase changes equal or greater than π are correspond to an optical mode
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4.3 Excitation of Superconducting Surface Plasmon

As discussed in section 4.2, a unique feature of SPPs is that their in-plane wavevector is

larger than the wavevector of a free-propagating optical beam of the same energy. This

implies that their dispersion relation lies to the right side of the dielectric light line and

hence a special technique is necessary to excite SPPs. Generally, all excitation mechanisms

are categorized in two general groups:

(1) Phase matching technique where the momentum of the free-propagating photons

are increased such that the phase velocity approaches to that of the SPP.

(2) Spatial mode matching where high coupling efficiency is achieved by matching the

mode size of the input wave to the SPP mode.

In the following, the most well-known excitation methods that might have application

for excitation of a superconducting strip are discussed. Finally, we suggest an efficient

method to excite a nanometer sized superconductor wire. Having the lowest propagation

length to have the maximum detection speed and the minimum amount of coupling and

radiation losses are the main criteria for selecting the excitation method.

4.3.1 Prism Coupling

This technique, also known as attenuated total internal reflection, is usually employed for

the case of a three-layer system in the situations where a free spot upon the dispersive

layer is available to locate the prism. As we have discussed earlier in this chapter, there

is no crossing between dispersion curve of an SPP and the light line even for light beams

aligned to the surface; therefore, the condition for beams oriented in an oblique angle to the

surface is even worse10. In this method, the projected wavevector along with the interface,

kx = |K| sin (θ), is the one that should be in phase matched to the SPP dispersion [83].

The essence of the prism coupling is to change the slope of the light line by passing

the beam through a higher-index dielectric medium (Prism) located just upon the metal

10This is a practical situation since usually fiber is placed above the metal interface
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surface and rely on the fact that the tunneling of the electromagnetic fields to the lower-

index dielectric can take place. If the in-plane component of this wavevector suffice the

SPP condition for the other interface, the SPP of the lower-index side will be excited. The

approximate angle to have matching is given by,

Θspp = sin−1

(√
Re {εm} ε1

ε2 (Re {εm}+ ε1)

)
(4.19)

where εm defines the refractive index of the dispersive layer. In this technique, in addition

to the absorption loss within the dispersive layer (the one that we are interested in),

there are two other sources of loss: First, backreflection from the higher dielectric medium

(Prism) due to the index difference between the lower and upper layers. Second, radiation

of the excited modes because of their leaky nature. In fact, by placing the driving source in

the cladding region, there is no way to excite the actual guiding modes of a waveguide and

hence all excited modes are inherently leaky. Several options are available to address these

obstacles. For instance to reduce the backreflection, one remedy is to choose a prism with

refractive index close to that of the lower dielectric medium although most likely this will

result in the violation of the phase matching condition 4.19. To reduce the total reflected

intensity, one can alter the metal thickness such that destructive interference between

these two sources of radiation achieved. With the latter method, it is even possible to

reduce the reflected intensity to zero but it would be at the expense of getting far from the

minimum possible thickness for our dispersive layer which dramatically degrade the total

device efficiency of the detector.

This suggests that it might be more reasonable to keep the superconductor thickness

as thin as it can be achieved by the fabrication process, while regenerating SPPs from

both radiated sources with an indirect approach. The idea is to connect the prism to an

asymmetric waveguide of the same refractive index with an appropriate thickness such

that radiated beam reflects back to the metal surface at the right angle to participate in

the formation of SPPs [86, 87]. In our model, the fabricated dielectric waveguide on the

bottom of the superconducting strip does the same job.

59



--  ++  --  ++  --  ++  --  ++  --  ++  --  ++  --  ++  --  ++

θspp

ε1

ε2

At this point SPP 
excitation takes place

Figure 4.5: Regenerating SPP through coupling to an asymmetric slab waveguide

4.3.2 Grating Coupling

The idea behind this method is exactly the same as the prism coupling [88]. In fact, both

methods employ the phase matching technique; however, in this case, the mismatch be-

tween the input wavevector and in-plane wavevector of the SPP is overcome by patterning

a shallow grating (with depth of only several nanometers with an arbitrary filling factor).

The effect of this grating is to reduce the in-place wavevector through the formation of a

photonic crystal lattice, ψ(k) = ψ (k ±∆k):

knew = kold ± n(
2π

|a|
); n = 1, 2, 3 · · · (4.20)

Where a is the primitive vector. Phase-matching takes place whenever the condition knew =

β (ω) is satisfied. The old dispersion equation for β is only valid for a very shallow grating

since a significant change in the dispersion relation is expected for the case of deep grating11.

It is interesting to mention that this phenomena actually happens in all SPPs since in an

actual structure, there always exists a random surface roughness. This surface imperfection

works exactly like a series of localized scatterers with a momentum of ∆kx so the in-plane

wavevector (kx) can always be approximated as k sin (θ) ± ∆kx where θ is the incident

angle.

11As a rule of thumb, photonic band-gap can come to the picture for a groove depth on the order of

20 nm.
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4.3.3 End-fire Excitation of SPP

The underlying idea behind this method is completely different from that of traditional

prism or grating couplings. Here, instead of trying to accomplish the phase matching,

spatial mode matching is concerned. Since spatial mode size of an optical fiber is usually

much larger than that of a surface plasmon, this method is only efficient for weakly localized

SPPs in structures like IMI. Furthermore, it is also common to further decrease the mode

size of the input signal with a powerful microscope objective (60X, 100X, or 150X). This

would ensure us to have a sufficiently small mode size in the range of the SPP mode.

One advantage of this method is that the excitation of the actual guiding modes can take

place; however, due to the surface mismatch between waveguide and fiber, it requires a

very high-power driving source and it is likely that most portion of the input beam reflects

back from the waveguide tip or couples to the radiation modes of the waveguide.

4.3.4 Dielectric Loaded SPP (DLSPP)

The idea here is to deposit a rectangular dielectric waveguide just on top (or bottom) of

the superconducting nanowire. This dispersive layer is no longer a meander structure as in

a traditional SNSPD; instead, it is a straight nanowire and the waveguide is aligned with

it such that it completely covers the strip. To fabricate this structure, two steps of e-beam

lithography is performed to define both the superconducting nanowire and the waveguide

core layer. The significant difference in the indices of the dielectric core and cladding lay-

ers provides lateral confinement on the order of the core thickness; however, an additional

confinement is also expected since inside the dispersive layer, polaritons can be excited and

hence surface wave can be formed at the interface of the superconducting layer with either

core or substrate layers. Although that this intrinsic sub-wavelength vertical confinement

can inherently occur between both interfaces, the effective index would be larger for in-

terface of the superconductor and dielectric core interface [89]. This higher effective index

assures the formation of the surface wave inside the core region. Furthermore, if the input

light is coupled from the facet of the dielectric waveguide or the excitation directly takes

place inside the core region, from dielectric waveguide perspective, only guided modes are
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excited and consequently no power can radiate out of the core layer. This implies that in

contrary to the previous methods, here, radiation modes are negligible.

4.3.5 Dielectric Loaded Guiding on an Ultrathin Layer

Fundamentally, a plasmonic excitation is attainable in configurations where there is an

abnormal TM branch with a higher effective index value compared to that of the first

normal TE branch in the effective index versus core thickness diagram [78]. This branch is

known as the fundamental TM mode curve and when it appears in the structure, there is an

optical mode with exponentially decaying tails in all layers [90, 91]. Fig. 4.6 depicts the real

part of the effective index versus the core thickness for two different superconducting film

thicknesses. As shown in this figure, by decreasing the thickness of the superconducting

layer from 100nm to 8nm, the fundamental TM mode shifts to the right which implies lower

confinement for the 8nm thick negative index layer. In contrast to the 100nm thick case, in

the 8nm layer, the cut-off thickness is also reduced to zero and there is an inflection point

in the curve. In a typical structure, where the thickness of dispersive layer is more than the

skin depth of the electromagnetic field, the structure is like an asymmetric slab waveguide

and inherently has a minimum thickness for the core layer to support an optical mode.

However, when the thickness of the superconducting layer is reduced to a value smaller

than the skin depth, the structure starts to behave like a symmetric slab waveguide and the

cut-off thickness moves towards zero. For the 8nm thick sample, two different regimes of

operation are observed for different core thicknesses. It is important to stress that to have

plasmonic guiding for very thin superconducting layers, the top and bottom cladding layers

must have a similar refractive index such that the effective index seen by the plasmonic

mode at either side is almost equal [78]. This implies that the top cladding layer should

have an index greater than or equal to that of the bottom cladding (buried oxide) layer

but smaller than the core layer.

We now consider the 8nm thick superconducting structure. To qualitatively describe

the importance of the core thickness, without loss of generality, the original four layer

structure is considered as a three-layer structure with a semi-infinite boundary at the

superconducting layer. With this assumption, surface waves at both interfaces are non-
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interacting. This is only valid for structures where surface modes are tightly bound to the

superconducting interface, or equivalently, the penetration depth of the electromagnetic

field in the superconducting layer is smaller than its thickness. Although this condition is

clearly violated in this structure, it can still elucidate the intuitive behavior of the system.

At the end of this section precise numerical calculations are also provided.

For a very thick dielectric core layer, where neither a TE nor TM normal optical branch

could exist, the structure can support a single plasmonic mode similar to one that is sup-

ported by a two layer structure made from semi-infinite core/semi-infinite superconducting

layers. Decreasing the core thickness to the range of λ0/2ncore where the effect of core thick-

ness is more pronounced, creates a smaller propagation length as the finite thickness of the

high index medium forces the optical mode to be more squeezed inside this layer. This

is a direct consequence of the fact that the optical wave always tends to distribute itself

such that the highest effective index is obtained. The amount of this extra confinement is

proportional to the ratio of the optical mode size to the core thickness. Therefore, a smaller

propagation length occurs for smaller core thicknesses until some critical point where the

optical mode cannot be squeezed any further, reaching its minimum mode field size [85].

Further decrease of the core thickness would result in an increase of the mode field size

approaching to the single plasmonic operation of a semi-infinite top-cladding/semi-infinite

superconducting structure. Following this idea, the optimum core thickness which yields

the maximum mode squeezing and hence the maximum amount of absorption, can be cal-

culated by searching for the maxima in the imaginary part of effective index versus core

thickness diagram.

For the case of an ultrathin superconducting layer, the functionality of the core remains

the same as far as plasmonic confinement is possible. This can be done by decreasing the

core thickness such that the effective index of the TE0 in the presence of a superconducting

layer is larger than that of the TM0 mode in the absence of a superconducting layer. Using

the numerical tool introduced at the beginning of this section and the complex refractive

index for the NbTiN film [92], the optimum core thickness for the vacuum wavelength

of 1310nm is obtained and the results are summarized in Fig. 4.7. For a fixed core

thickness, optical power decays exponentially along the wire due to the absorption in the

superconducting film. The amount of absorption is related to the imaginary part of the
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Figure 4.6: Real part of effective index versus normalized dielectric core thickness (nor-

malized to the free-space wavelength) for 100nm and 8nm thick NbTiN superconducting

films. For the 100nm case, the fundamental plasmonic mode has a cut-off thickness which

is a direct consequence of the single interface plasmonic excitation at the interface of core

and superconducting layers. This behavior can be attributed to the penetration depth of

the optical mode being larger than the thickness of the superconducting layer. This condi-

tion is not satisfied for the 8nm structure. Therefore, no plasmonic excitation is expected

unless the structure looks symmetric to the optical mode which happens only for small

core thicknesses. Points P1, P2, and P3 will be used later in Fig. 4.7 with the same color

scheme.
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Figure 4.7: Imaginary part of effective index versus core thickness (t/λ0) for the fundamen-

tal plasmonic mode (blue curve) as well as the transverse mode field diameters versus core

width (w/λ0) for three different core thicknesses (green, black and orange curves). The

larger the imaginary part of effective index, the stronger the absorption in the dispersive

layer. From this figure, the maximum absorption happens at a core thickness of 0.14λ0.

This high absorption is achieved at the expense of not having a confined TM0 mode when

the dispersive layer is absent. By accepting lower confinement for optical mode, higher

transverse confinement is obtainable. For instance, for a 0.2λ0 core thickness, the core

width resulting in the minimum transverse mode field size is just 0.09λ0. Note that by

getting far from the maximum point of the blue curve, the lateral mode starts to decouple

from the transverse mode and hence a smaller variation in the transverse mode field diam-

eter is predicted. This behavior is observed by comparing mode field sizes of 0.17λ0 and

0.2λ0 core thicknesses. Points P1, P2, and P3 refer to three points in Fig. 4.6.
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effective index by e−2Im{ne}β0l where ne is the effective index of the confined mode and l is

the length of the nanowires. Due to the exponentially decaying nature of the absorption,

a saturation point can be defined for the nanowire length as 2Im {ne} β0lmin > 10. Here,

lmin can be considered as the optimum length of the nanowire since further increase of

this length just increases the kinetic inductance of the nanowires without significantly

improving the absorption. For the optimum core thickness (0.14λ0) where the highest

confinement is achieved, the minimum wire length to reach saturation is as short as 7.6µm.

This minimum length increases by having less lateral confinement. For instance, if core

thickness of 0.2λ0 is chosen, the minimum length would increase to 15.3µm which is still

considerably shorter than the normal length of wires used in conventional SNSPDs. These

short wire lengths would not be attainable if a higher quality negative index material (e.g.,

Gold) had been used in place of the NbTiN layer or the plasmonic nature of the thin-film

had not been utilized.

4.4 Response Mechanism of a Superconducting Film

to an Infrared Radiation

In this section, the maximum cross-section area of the nanowire which is supported by

hotspot model is calculated. This area will be used later to find the optimum thickness

of the dielectric core layer. To find this maximum cross-section area, dynamics of the

superconducting film after photon absorption is studied. This is due to the fact that for a

nanometer sized structure even a single-photon can drive the system out of its equilibrium

state.

4.4.1 Power dissipation mechanism

From thermodynamic point of view, top core and bottom cladding layers are served as

thermal reservoirs for the superconducting film. Any thermal perturbation imposed to the

system is suppressed through a sequence of dynamics in which a phononic or an electronic

process or even a mixture of both processes is responsible of external energy dissipation
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[93]. Based on the dominant component, the process is attributed to different diffusion

times and constants. If the perturbation is initiated by absorption of an infrared optical

source with frequency much higher than superconducting gap, the downconversion process

can be expressed as follows: The first step happens just after the absorption of the photon

when a set of two highly excited quasiparticles are generated. These highly nonequilibrium

particles are energetically unstable such that their stored energy decays out within a time

scale less than a picosecond through strong electron-electron interactions. By the end of

this step, a group of excited electrons with energy less than initial photon energy but

much higher than Debye energy, is accumulated locally near the photon’s absorbed spot.

The second step begins when the electron-phonon scattering rate becomes stronger than

that of electron-electron scattering which results in an avalanche multiplication of phonons.

During this stage, a phonon-mediated quasiparticle generation takes place until the average

quasiparticle energy decays to 3∆(E). This would be the threshold for the generation of

active phonons, phonons with energy higher than 2∆(E), energetic enough to participate

in quasiparticle multiplication. In the final step, no more excess quasipaticles will be

generated through phononic interaction. The relaxation at this step is all done through

naturally slow diffusion and recombination processes. This final step lasts long enough for

some phonons to leave the superconducting film for the surrounding thermal reservoirs.

4.4.2 Nonequilibrium Dynamics

Thus far, the optimum thickness of the nanowire supported by plasmonic confinement has

been calculated. In this calculation, variation of the electromagnetic field in the transverse

plane has been neglected for the sake of simplicity. This approximation is only applicable

when the lateral mode distribution of the actual hybrid branch is close to the profile of the

equivalent two-dimensional TM mode and the optical mode in the transverse plane can be

formed on top of the superconducting layer without feeling its limited width.

To investigate the possibility of mode formation, instead of using the actual indices of

refraction, the effective indices of all vertical layers are employed to construct a pseudo

two-dimensional waveguide. This waveguide is symmetric with respect to the optical axis

which implies a zero cutoff frequency for both fundamental TE and TM modes. Therefore,
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for any arbitrary width of the effective core layer, at least one optical mode is expected for

both polarizations. This statement is in fact not entirely true for all thickness to width

ratios. The decoupling of the actual hybrid mode into a set of perpendicular TE and TM

modes is only legitimate when either the width or the thickness of the core layer can be

treated as infinite in the length scale of the mode size.

As a consequence, in the slab configuration, to observe a well-defined plasmonic con-

finement, there is a lower bound on the feature size for the width of the waveguide dictated

by the optical design. This imposes an unwanted limitation on the nanowire width from

a detection perspective to achieve acceptable single-photon sensitivity, since there is an

upper bound for the cross section area of the active element. Consequently, there is a

trade-off between the probability of absorption and the internal quantum efficiency of the

device. Although it might seem obvious that the poor optical absorption can be corrected

by increasing the length of the nanowire in the direction of the wave propagation, it would

come at the expense of having higher kinetic inductance or equivalently a slower operating

device.

In this section, I will try to develop an intuitive model for the photon detection process,

and from that estimate the optimum width of the nanowire to have reasonable detection

probability as well as confined plasmonic guiding. To investigate the transient electrody-

namics of the initial stage of hotspot formation, the Rothwarf-Taylor rate equations are

utilized [94]. These rate equations are essentially coupled diffusion-recombination equa-

tions based on current continuity equations of participating particles:

[
∂

∂t
−DQP∇2

]
nQP =

2nph
τB
− nQP

τR
(4.21)[

∂

∂t
−Dph∇2

]
nph =

nQP/2

τR
−
[
nph
τB

+
nph − n0

ph

τes

]
here, n and n0 denote the time and position dependent density of the subscript particle

in the transient and steady-state regimes, respectively. τB and τes are the time required

by a phonon to break a pair or to escape from the hot area if there is an imbalance in

the population. τR is regarded as the quasiparticle recombination time. DQP and Dph
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are phenomenological diffusion coefficients for the quasiparticles and phonons. In this

model, there is no constraint on the density of quasiparticles, meaning, the number of

superconducting pairs must greatly exceed that of quasiparticles such that there is no

limitation on the quasiparticle generation. This condition is only valid when the bath

temperature is small compared to the critical temperature and there is no significant local

accumulation of quasiparticles. To fulfill these conditions, the first few picoseconds is

neglected until the initial photon energy has generated quasiparticles with an average

energy of 3∆. At this point, phonons cannot contribute to quasiparticle generation and

hence phonon density can be approximated by the thermodynamic equilibrium value, nph =

τB/τR × n0
QP/2. Having this assumption, the population of quasiparticles as a function of

time and position can be studied by injecting (~ω/∆)
(
1− e−t/τth

)
δ(r) excess quasiparticles

during the initial thermalization time, τth. The resulting quasiparticle distribution can

then be used to determine the amount of departure from the equilibrium state by relating

the order parameter to the quasiparticle density through the BCS theory considering the

strong-coupling regime,

nQP = 4× 2.08N(0)kBTcI(β) (4.22)

where N(0) is the single spin electron density, β is equal to ∆(T )/kBT and

I(β) =

∫ ∞
0

dy
1

1 + exp [β2 (1 + exp (−2F (β)) y2)]
(4.23)

F (β) = −β
2

∫ ∞
0

dx
x sinh−1 x sech2

(
[1 + x2]

1/2
β/2

)
√

1 + x2

To express the strong coupling behavior of NbTiN in these films the experimentally de-

termined relation ∆(0) = 2.08KBTc(0) for the zero temperature energy gap has been used

[95]. Combining the normalized quasiparticle density given by the rate equations with

Eq. 4.22, the local increase of temperature and suppression of the order parameter can be

monitored over time through I(β) = I(β0)nQP/n
0
QP and ∆ = ∆(0) exp (F (β)).

4.4.3 Modeling of Nonequilibrium Dynamics

The nonequilibrium dynamics for absorption of a 1310nm wavelength photon in an 8nm

thick NbTiN film is calculated and the results are shown in Fig. 4.8. According to this
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figure, the incoming photon creates a finite-sized region with a partially suppressed order

parameter within the superconducting film. This region expands over time and destroys

the local pair-coherency until the temperature at the center of the spot collapses down to a

value less than the superconducting critical temperature. At this point, further suppression

of the local order parameter is negligible, defining the end of the first stage of photon

detection.

Now the question is whether this local perturbation is strong enough to drive the whole

system out of its equilibrium state or if the superconducting coherency could dissipate

this extra energy without resulting in a phase transition. To answer this question, two

main sources of instability must be studied. The first and the most well-known source is

current density beyond the depairing current density outside the hot area in the sidewalks.

This source is prominent when the effective width of the strip carrying current can be

affected by the formation of the initial spot. To observe a voltage pulse between the two

ends of the nanowire, one needs to bias the system with a constant current source with

a current density lower than the depairing current in the normal condition, but higher

than the depairing current density when the formation of the initial hotspot reaches its

maximum effective size. The effectiveness of this source wanes as the film gets wider.

For the case where changes in the effective width before and after hotspot formation is

insignificant, the second source which is either vortex hopping or vortex-antivortex pair

unbinding becomes the dominant source of instability [96, 97]. To make the vortex-based

detection an effective mechanism, the Lorentz force between the vortex (antivortex) and

the driving current needs to be comparable to the repulsive force due to the barrier shape

when no current is flowing.

In conventional SNSPDs, there is no restriction on the minimum width of wires, there-

fore, to take advantage of the both detection mechanisms, the minimum possible width that

can be reliably fabricated (to have vortex-based detection wires need to be wider than 4.4ξ

[98]) is usually employed. However, in our plasmonic model, the wider the wires are the

higher the optical performance. Therefore, based on the non-equilibrium model introduced

in this section, I will try to find a measure for the effectiveness of the current crowding

model for a given bias condition as a function of film width. The maximum width where

current crowding still has an acceptable impact on the detection process is then selected

70



as the optimum width for the structure. Certainly the broadening of the nanowires results

in a lower internal quantum efficiency resulting from an ebbed contribution of the current

crowding mechanism. However, with recent investigations on the adverse effect of sharp

turns in the maximum current achievable in practical devices [37, 38], this reduction can

be compensated by utilizing an optimum bending procedure introduced in reference [36]

and experimentally verified in chapter 2, and also driving the detector with a bias current

high enough to have an effective vortex-based detection mechanism.

As a starting point, the current distribution in the nanowire as a function of time and

position must be calculated. This can be achieved by writing down the conservation of

current density for each time step. To solve this problem, the region with a suppressed

superconducting order parameter is bounded to a circle with radius R, with dimensions

taken from the half width at half maximum of the actual order parameter spatial distribu-

tion. Moreover, the magnitude of order parameter is considered to be a step like function

with a value equal to the average of actual order parameter inside the circle and the equi-

librium value for the rest of the film. Following the same approach as the one introduced

in reference [99], the effect of current crowding in the sidewalks can be expressed in terms

of a single coefficient (weight coefficient),

ηw = 1−
(
αR

w

)2
∫

in
ds nQP − n0

QP∫
in

ds nQP + n0
QP

(4.24)

where α varies from 2 to square root of 2 based on the location of the hotspot. 2 is for

absorption at the center of the film and square root of 2 is for absorption at the film edges.

According to this equation, aside from the clear width dependency, the size of the initial

spot becomes more pronounced when there is a significant difference in the quasiparticle

density inside and outside of the hot region.

In the inset of Fig. 4.8(b), the variation of the weight coefficient for a 150nm width wire

is plotted. According to this figure, the weight coefficient starts to decay by diffusion of

excess quasiparticles from the location of the initial hotspot until the average quasiparticle

density in the hot region degrades faster than the hotspot growth rate. At this point, the

weight coefficient reaches its minimum value and hence the maximum effect. This time

step can be regarded as the end of the initial hotspot formation. The value of the weight
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Figure 4.8: (a) Transient electrodynamics of the energy gap and quasiparticle density as a

function of time and distance from the hotspot location. (b) Minimum weight coefficient

versus wire width for an IR photon with 1310nm wavelength (black line). The weight

coefficient can be considered as a measure of how effective the current crowding model is

for a specific film width and also provides an approximate normalized current required for

unpinning the vortex and antivortex. Red line shows the minimum width requirement for

photons with higher energy (1.5 times higher energy compared to the black curve). For

these higher energy photons, at a fixed nanowire width, lower current is required to have

the same sensitivity.
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coefficient at this time step can be considered as a measure of how effectively the initial

spot can create a perturbation in the system. In general, two results can be obtained

from this coefficient. First, it gives a measure for the effectiveness of the current crowding

model for a given film width at a given driving current. Second, it provides an upper bound

for the normalized current required for the unpinning of vortex-antivortex pairs from the

normal region.

As a conclusion, when the film width increases, the effect of the current crowding model

starts to diminish and consequently to keep the film sensitivity, one needs to increase the

driving current above the value required by vortex-based detection mechanisms. Based on

our simulation, if a photon with a wavelength of 1310nm is absorbed at the center of the

wire and the source current is set to 0.7 of the depairing current, only wires with widths

smaller than roughly 150nm are well sensitive to photons. This is comparable to the nor-

mal maximum achievable current in conventional SNSPDs with sharp turns and 50% filling

factor [36]. This minimum sensitivity would jump to 250nm if the driving current can be

increased by roughly 20 percent. This can be achieved by replacing all the sharp turns

with optimum bends. It is important to stress that from experimental evidence, lower de-

tection efficiency is expected for the vortex-antivortex model [100]. This can be attributed

to the fact that not all nucleations can result in sample heating. Thus, by crossing over

from the current crowding to vortex-based detection mechanisms, a gradual reduction in

system detection efficiency is inevitable. To take advantage from both detection mecha-

nisms, considering no sharp turns in the structure, wires with width less than 200nm are

recommended for infrared photon detection.

According to the optical calculations of section 4.2, for a waveguide with confined

plasmonic operation (required for getting high optical absorption), a very poor transverse

confinement is expected. In this case, the size of the optical mode in the transverse plane

is actually the minimum width for both the dielectric core layer and the superconduct-

ing layer required to keep the mode’s surface confinement. Comparing the results of the

nonequilibrium model (maximum acceptable width must be less than 200nm) with the

mode field diameter of the first fundamental plasmonic mode, reveals that there is no op-

timum width for a single nanowire that is wide enough to cover the entire optical mode

and still give high photon sensitivity. Although a single wire cannot fulfill both of these
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Figure 4.9: Top view of a sample connection link at the input terminal. This link can

address the problem of current crowding in a high filling factor device. The detailed

instruction on the design of these optimum turns is provided in chapter 2. Optical input

terminal can be either an inverse taper coupler or a surface grating coupler [101].

requirements simultaneously, a set of wires parallel to the direction of propagation with a

spacing much smaller than the transverse mode field size can be used as a uniform disper-

sive layer from an optical perceptive. The minimum spacing between wires can be as small

as a few nanometers with current fabrication technology and is dictated by the resolution

of the electron beam tool used for patterning the wires [32].

Connection of these parallel wires with a high filling factor can generally cause two

practical problems as all dimensions are smaller than the Pearl penetration depth (more

than 50µm for our device). First, there is no optimum design for bends at this high

filling factor resulting in a lower critical current than the one predicted by Kupriyanov and

Lukichev [102]. This low driving current leads to a quantum efficiency smaller than what

can be potentially expected from the device. More importantly, for a fixed bias current,

the device exhibits a larger dark count rate in comparison to straight wires with no bends.

The high dark count rate can be explained due to the presence of local areas (bend areas)

with current density much higher than that of straight sections. These high bias regions

are very small in dimension and cannot enhance device sensitivity, but are susceptible

enough to produce huge dark counts with either vortex-antivortex unbinding [42] or vortex

hoping origins [46, 58, 41]. To address these issues, we propose connection links with a
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non-uniform filling factor and optimally rounded bends at all inner corners (Fig. 4.9). In

this design the size of connection links are small enough that they can be neglected in the

optical design but can effectively enhance the maximum achievable current of the device.

4.5 Concluding Remarks

In this chapter, the idea of enhancing quantum efficiency of SNSPDs through plasmonic

excitation of wires was proposed. In the first section, we discussed the possibility of plas-

monic excitation on a superconducting film only a few nanometers thick. We showed that

to get the maximum optical confinement, and hence maximum absorption, one needs to

use a very thin high index dielectric material in proximity to a thin-film superconductor.

The thickness of this core dielectric layer must be smaller than what is required for normal

dielectric guiding at the same wavelength. Also, the structure needs to be placed in a struc-

ture of a symmetric low index medium. The following section described how the detection

mechanism crosses over from the current crowding model to the vortex-antivortex model

by increasing the width of the nanowire. A weight coefficient based on nonequilibrium

superconductivity was introduced as a measure on the bias condition to keep the device

sensitivity when the width is increased. We also demonstrated that there is no optimum

width for wires that are wide enough to cover the entire optical mode and still provide high

photon sensitivity. To address this issue a set of wires parallel to the direction of propa-

gation with a spacing much smaller than the transverse mode field size with non-uniform

filling factors was proposed.
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Chapter 5

Optical excitation and coupling

techniques

In the previous chapter, I proposed a method to enhance the quantum efficiency of an

SNSPD through plasmonic excitation of wires. In the proposed detector, the input optical

beam is guided from a slab dielectric waveguide. This is an ideal case for the integration

purposes as the detector could be connected to the other integrated components through

high performance dielectric guiding structures; however, to evaluate the internal perfor-

mance of this detector, it is also useful to design a coupling mechanism for the dielectric

slab waveguide such that the detector could operate in free-space or fiber-coupled modes

too. In this chapter, two possible solutions are discussed.

5.1 High Performance Optical Coupling, End-fire Ex-

citation

In our model, since single-photon detection is concerned and hence the available power is

limited, utmost care must be taken to eliminate any potential sources of loss rather than

through absorption inside the nanowire. One important location where loss may occur is

the tip of the dielectric waveguide where coupling to a single-mode fiber takes place. In
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Figure 5.1: Schematic of an optical converter that scales the beam mode field diameter of

the input optical fiber down to the mode field diameter of the silicon optical waveguide.

this spot, two main sources of loss are expected: (1) coupling of the fiber mode to the

radiation modes of the actual detector. (2) The backreflection due to the index mismatch

between effective indices of the device tip and the first optical mode of the input fiber.

To effectively mitigate the first problem, the width of the dielectric waveguide is ad-

justed such that the mode volume of the input tip approaches to the mode size of the

fiber. However, according to the discussion made in section 4.3, the optimum width of

the waveguide is always dictated by the propagation length and the amount of absorption

inside the active element. To gain the highest possible coupling value without interfering

with the design of the active element, it is important to make the design of the inverse taper

independent of the waveguide design. To do so, the inverse taper is connected to the actual

waveguide through an optical converter as shown schematiclly in Fig. 5.1. Furthermore,

to adiabatically couple the light from the coupler tip to the actual dielectric waveguide,

it is important to use a long optical converter1. The length of this converter should be

long enough such that the input optical mode gradually reduces its mode field size from

the non-localized mode of the single-mode fiber to the localized first mode of the actual

dielectric structure [103].

To calculate the amount of power backreflection at the input tip of the coupler, the

effective indices of the coupler and single-mode fiber are compared to each other. This

1Around 500µm
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Table 5.1: Material constants and simulation parameters for a taper with Si core layer at

vacuum wavelength 1310 nm

ncore nclad hw
a dx = dy BCb CD (WS)c CD (S)d

Si core 3.49 1.44 232.5 nm hw
140 000S 8.02µm× 16.22µm 14.04µm× 22.23µm

aWaveguide height
bBoundary conditions: ’A’ - Hx is antisymmetric, Hy is symmetric. ’S’ - Hx is symmetric and, Hy is

antisymmetric. ’0’ - Hx and Hy are zero outside of the boundary.
cComputational Domain (without stretching)
dComputational Domain (with stretching)

value is estimated to be less than 5% if the dielectric loaded detector is surrounded with a

dielectric material of refractive index close to that of the input fiber, and it can be further

eliminated by placing a quarter-wavelength anti-reflective coating before the taper’s input

facet. To evaluate the modes profile of these structures, since the coupler is inherently

a three-dimensional slab waveguide with aspect ratio (width to thickness ratio) close to

unity, the guiding modes cannot be decoupled into the two-dimensional counterparts, TE

and TM modes, and hence a full vectorial calculation is suggested. In the following section,

a numerical tool is introduced as our primary computational tool to evaluate these hybrid

modes.

5.1.1 Numerical Approach: Full Vectorial Dielectric Mode Solver

In this section, a full-vectorial numerical mode solver is introduced [104]. This method is

based on writing down the Maxwell’s magnetic wave equation2 in terms of just the two

transverse magnetic field components, and then forming a set of coupled equations. Even-

tually, these set of continuous coupled equations are converted to an eigenvalue problem

by representing a discrete set of elements. The solution of this eigenvalue problem leads

to the mode profiles and effective indices of the complex structure.

In the divergence relation for a non-magnetic material, ∇ ·H = 0, if one of the principal

2∇× ε−1∇×H− µ∂
2H

∂t2
= 0
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Table 5.2: Material constants and simulation parameters for a single-mode fiber at vacuum

wavelength of 1310 nm [105]

ncore nclad rc
a dx = dy BCb CD (WS)c CD (S)d neff for EY mode

1.4628 1.4600 4.7µm rc
140 0S0S 16.45µm× 16.45µm 23.5µm× 23.5µm 1.461

aCore radius
bBoundary conditions: ’A’ - Hx is antisymmetric, Hy is symmetric. ’S’ - Hx is symmetric and, Hy is

antisymmetric. ’0’ - Hx and Hy are zero outside of the boundary.
cComputational Domain (without stretching)
dComputational Domain (with stretching)

axes is aligned with the direction of wave propagation3, one magnetic field component is

dependent to the other magnetic field components through:

Hz =
1

iβ

(
∂Hx

∂x
+
∂Hy

∂y

)
(5.1)

Making use of this relation, it is possible to express the magnetic wave equation just in

terms of two transverse magnetic components only with the knowledge of material indices,

ε =

εxx εxy 0

εyx εyy 0

0 0 εzz

 (5.2)

By substitution this equation into the magnetic wave equation, after some algebraic sim-

plifications, two coupled eigenvalue equations are obtained. Even though the Hamiltonian

of magnetic field wave equation by its nature is non-Hermitian, as long as the material

indices are real, this yields a real set of effective indices since this solution coincides with

3Like previous sections, z dependency of field components is assumed to be exp (−iβz)
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Symmetric Anti-symmetric

E+
‖ = E−‖ E+

‖ = −E−‖
Electric Components E+

⊥ = −E−⊥ E+
⊥ = E−⊥

H+
‖ = −H−‖ H+

‖ = H−‖
Magnetic Components H+

⊥ = H−⊥ H+
⊥ = −H−⊥

Table 5.3: Boundary conditions when structure has symmetry

the solution of electric field counterpart.

∂2Hx

∂x2
+

εyy
εzz

∂2Hx

∂y2
+
εyx
εzz

∂2Hx

∂y∂x
+

(
1− εyy

εzz

)
∂2Hy

∂x∂y
(5.3)

− εyx
εzz

∂2Hy

∂x2
+ ω2µ0 (εyyHx − εyxHy) = β2Hx (5.4)

∂2Hy

∂y2
+

εxx
εzz

∂2Hy

∂x2
+
εxy
εzz

∂2Hy

∂x∂y
+

(
1− εxx

εzz

)
∂2Hx

∂y∂x
(5.5)

− εxy
εzz

∂2Hx

∂y2
+ ω2µ0 (εxxHy − εxyHx) = β2Hy (5.6)

Now the final step is to discretize these equations to construct the final eigen-matrix.

In discretization process, the spacing between mesh points does not need to be uniform;

in fact, non-uniform spacing in the cladding area increases the size of the computational

domain without introducing extra nodes or reducing the precision of the calculation. In this

simulation, the computational region is considered to be 20µm by 20µm square to assure

that all mode amplitudes are negligible at all the boundaries for both coupler and single-

mode fiber. Furthermore, since both structures have a mirror symmetry in y direction, one

can take advantage of this symmetry to reduce a factor of two in time and storage of the

simulation. Under symmetry, each field component transforms appropriately according to

its vectorial nature as mentioned in table 5.3. In particular, electric field transforms as

vector, while magnetic field transforms as pseudo-vector 4.

4In physics, a pseudo-vector is a vector object that transforms like a vector under a proper rotation,

but gains an additional sign flip under reflection. In particular, electric fields or electric currents transform

as vectors, while magnetic fields and magnetic currents transforms as pseudo-vectors.
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Figure 5.2: Electromagnetic field components of EY mode of a single-mode fiber with

parameters of table 5.2. Black bold circle defines the location of the fiber core.
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Figure 5.3: Electromagnetic field components of EY mode of a Si taper with parameters

of table 5.1. Core width and height are 70.0 nm and 222.0 nm, respectively. Note that for

illustration purposes, dimensions are not to scale.
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Table 5.4: Coupling efficiency of 220 nm thick silicon waveguides with various widths to a

single mode optical fiber.

width ( nm) 200 100 80 70 60

ηc 0.0502 0.3412 0.4102 0.8525 0.9829

neff 1.52922 1.44863 1.44631 1.44501 1.44008

Having the optical mode profiles of the single mode fiber and the inverse taper (see

Figs 5.2 and 5.3), the coupling efficiency (ηc) is defined as [106],

ηc = |a|2 N
P

(5.7)

where

N =
1

2

∫
domain

(
E∗T,t ×HT,t

)
· az ds (5.8)

P =
1

2

∫
domain

(
E∗T,f ×HT,f

)
· az ds (5.9)

a =
1

2N

∫
domain

(
E∗T,t ×HT,f

)
· az ds (5.10)

here, subscripts f , t and T stand for the fiber, taper and transverse field components,

respectively. Electromagnetic field profiles for EY modes of the taper and single-mode

fiber are shown in Figs. 5.2 and 5.3. The coupling efficiency as a function of the coupler

width for Si core layer is listed in table 5.4. As the width of the coupler tip increases, the

mode size decreases. When the mode size of the coupler at its tip becomes similar to the

mode size of the single-mode fiber, the coupling loss is minimized. For Si waveguide, this

minimum value occurs for coupler width of around 60 nm. Even in this region, although

the mode sizes are similar and also effective indices of both structure are very close to each

other, the coupling efficiency is not exactly equal to one. This is due to the difference in

the mode shape between the fiber and the coupler.

In summary, according to the discussion made in the previous chapter, there exists a

minimum thickness and width for the dispersive layer to support the fundamental plas-

monic mode. These minimum dimensions are related to the refractive indices of all the
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Figure 5.4: Effective index versus core thickness and width for a Si slab waveguide in an

environment of SiO2.

materials used in simulation that make the design of the coupler a bit challenging. To

mitigate this problem, an optical converter is introduced in this chapter that connected

the actual inverse taper to the active element such that the coupling loss and backreflec-

tion power were minimized. These results suggest that by using an inverse taper, we can

simply gain an unlocalized mode at the taper tip with an effective index and a mode size

very close to those of single mode fiber such that coupling loss between the detector and

external optical link is extremely small.
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5.2 Low Performance Optical Coupling, Grating Ex-

citation

In this section, a systematic criteria is developed to design an input dielectric grating

coupler as the input power collector for our single-photon detector. All the results and

simulations are based on an improved perturbation analysis method [107]. The results of

this simulations cover both TE and TM modes and they apply to both shallow and deep

grating profiles [108, 109]. The purpose of this grating is to collect as much as possible of

the input optical power to transfer the energy into the active element when the detector

is employed for detection of free-space radiation.

The rigorous treatment of dielectric gratings is based on the pertinent boundary-value

problem [110, 111] which is quite complex and requires time-consuming computer programs

to yield the accurate quantitative results. To avoid this complexity several perturbation

approaches have been developed [112, 113, 114, 115, 116], however the majority of these

approaches are limited to specific profiles. Here, by using the improved perturbation ap-

proach, the restriction over grating profile has been removed. The mathematical derivation

of the electromagnetic coupling problem is given in reference [107]. Using these results,

the grating efficiency is expressed in terms of the known grating parameters through an

approximate but explicit formula. For further optimizing the grating design, a full finite

difference time domain simulation is also performed on the final structure.

The underlying idea behind the design of all gratings is to make a surface perturbation

to the system such that a guiding wave of the structure is transfered into one or more

leaky waves. This means that a grating is actually a scatterer such that the input energy

is leaking out into space-harmonic fields of the form exp [i (β0 + (2πn/d) + iα)] where d

is the grating period, α is describing the leakage of the energy and β0 is closely equal to

the K-vector of the incident surface wave considering that the permittivity of the grating

section is not different from that of the waveguide structure by a large value. These leaky

waves eventually radiate into the cladding region at angles

Φn = sin−1 (βn/Kclad) , n = 0,±1,±2, ... (5.11)

According to this equation, out radiation only occurs for the leakage beams that satisfy
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|βn/Kclad| < 1. Hence the number of outgoing beams is be controlled by selecting a proper

value of d. Based on the sign of the radiation angle, the output beams are divided into

two sections, forward and backward radiation. The boundary of Neff = λ/d defines the

boundary of these two sections and corresponds to the resonance case for which the input

K-vector satisfies the gap condition of a one-dimension photonic crystal (β0d = 2π). This

is the case where the entire power of the incident beam is reflected back to the waveguide

structure rather than being transformed into the output leakage. To avoid this, in practice,

a minimum angle of 3 − 4 degrees is required for the first and probability the dominant

leakage term. In theory, if the length of the grating is sufficiently long, it is possible to

convert all of the available input energy into the output beams. In the reciprocal case of the

input coupler, if the input beam has the intensity profile identical to that of the outgoing

beam of the same structure when it is employed as an output coupler, a complete power

conversion is achievable. In practice however, the incident beams most likely have profiles

quite different from the matching profile. For example in the case of a Gaussian incident

field, at most 80% of the incoming power can be transfered to the waveguide structure.

For the case of a uniformly distributed incident beam, the maximum achievable coupling

is only 81% [107]. In general, for these two well-known profiles, the maximum conversion

is reached when the beam width (wG) satisfies αwG sec(θ0) = 1.36 and αwG sec(θ0) = 1.25,

respectively.

Film

Substrate

Cladding

Beam Profile

w eq

L

Φ-1

Film

Substrate

Cladding

Incident
beam Reflected

beamθ0

Figure 5.5: Dielectric grating coupler viewed as guided wave to leaky wave converters. (a)

Output coupler, (b) Input coupler.
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Before studying the actual design, the importance of the different physical parameters

of a grating design is reviewed:

5.2.1 Effect of the Trenches Size

For a rectangular grating, the leakage parameter, α, is defined as the imaginary part of

the eigenvalue of the Maxwell’s boundary value problem5. Using improved perturbation

theory, if only n = −1 field component is contributed to the leakage, then the leakage term

can be approximated as [107],

α = αh (εr − εa)2 sin2 (πd1/d) (5.12)

where to the first order of magnitude, αh is not a function of the trench size. According to

this formulation, the leakage coefficient of the first field component reaches its maximum

just close to d1 = d/2 and varies as a squared sine function away from the maximum point.

Consequently, for the first backward leakage term, the largest conversion occurs when the

trenches size is just half of the actual grating period. The variation of α with respect to

the trench width is illustrated in Fig. 5.6

5.2.2 Effect of Periodicity Length

The periodicity of the grating region influences the number of the outgoing beams and their

leakage angle. Using improved perturbation theory it is possible to show that d/λ can vary

without introducing large changes in the leakage power. For instance, for a normal grating

design, the leakage varies only by 10% if d/λ sweeps over a range of 0.4− 0.6.

5Will be discussed in more details in section 5.2.3
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rectangular slab waveguide.

5.2.3 Basics of Improved Perturbation Analysis of Dielectric Grat-

ings

As a starting point, the relative dielectric constant of a grating structure with an arbitrary

profile is defined as:

ε(x, z) = εu + εp(x, z) (5.13)

where the subscript u denotes the material of the cladding, core, or grating region. Ne-

glecting the spatially varying εp(x, z) parameter, the structure is just a simple multi-layered

slab waveguide which is uniform with respect to both x and y directions. Note that, the

term εp is zero for all regions except the grating section. In this special region, εg refers to

the volume-average of the refractive index [108].

In improved perturbation method, the quantity εp = εp(x, z) which is the actual vari-

ation of the grating layer, is described as the perturbation imposed to the multi-layered

unperturbed structure. Due to the periodicity of this region, the perturbation can be
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expanded as a Fourier series:

εp = εp(x, z) =
∞∑

n=−∞

εn(z)exp(i2nπx/d) (5.14)

Since the average of the grating region is encapsulated in εu term, the n = 0 term satisfies:∫ tg

0

ε0(z)dz = 0 (5.15)

Now by knowing the refractive index distribution of the structure, the electric and magnetic

field vectors are written as,

E = Eu + Ep (5.16)

H = Hu + Hp (5.17)

where E and H refer to the fields in the actual structure. These two field elements can

be written as Eu and Hu field elements of the unperturbed structure superposed with Ep

and Hp fields when the periodic structure is introduced to modify the initial multi-layered

structure into the actual grating configuration.

Regardless of the contribution of Eu and Hu field components to the equations (5.16)

and (5.17), they are required to satisfy Maxwell equations independently. Knowing this, a
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new Maxwell equation set is introduced as,

∇× Ep = iωµ0Hp (5.18)

∇×Hp = −iωε0 (εuEp + εpEp + P) (5.19)

Here P = εpEu is a known dipole distribution generated by the interaction between the

incident field and the periodic perturbation εp. Now by comparing εpEp term to all the

other terms, it is possible to show that this term is a second order perturbation [107]. Hence

the solution to the actual field elements is resolved into two steps; first, finding the field

distribution of the unperturbed structure using homogeneous Maxwell equations and then

calculating the perturbation terms of equations (5.18) and (5.19) along the same structure

by employing inhomogeneous Maxwell equations. This leads to a result for electromagnetic

field distributions inside the grating to the first order of perturbation. The guided wave

modes of the unperturbed structure are invariant with respect to y axis and their filed are

decomposed into either TE or TM modes. However, the presence of the grating region is

modifying these waves so that they leak out energy into both the top and bottom capping

regions. For a first order perturbation, i.e. εpEp → 0, the real surface wave propagation

factor of the unperturbed structure, β0 is replaced by a complex quantity kx = β0 + iα.

5.2.4 Simulation Results

Our plasmonic detector is made of 8nm thick NbTiN films deposited on an SOI chip

with 220nm thick silicon layer. Hydrogen silsesquioxane resist was spin-coated on top

and pattered using 125keV electron beam lithography for both waveguide and nanowire

patterning steps. The write parameters were carefully tuned to achieve sharp and smooth

edges for dielectric waveguide sections as well as round bend curves for the nanowires as

identical as possible to the designs. The resist was developed in a tetra-methyl ammonium

hydroxide solution, and the pattern was transferred into the film using ion beam milling

with Argon gas. Fig 5.8 depicts a high resolution SEM image of the grating section.

To achieve the highest possible coupling in the grating area and hence maximum avail-

able system detection efficiency, the improved perturbation analysis has been performed
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Figure 5.8: A high resolution SEM image of a deep grating design for free-space operation

of the dielectric loaded plasmonic detector.
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Figure 5.9: Simulation result for the light coupling efficiency versus grating periods and

Si to SiO2 ratio for a deep grating profile (220nm thick). The structure is excited with

a Gaussian beam of TE polarization. White bold line depicts the efficiency of the fixed

300nm width silicon portion. There is a quarter wavelength SiO2 capping layer on top of

the entire structure. This capping layer is mandatory for the plasmonic operation of the

detector and also it improves the coupling efficiency of the grating structure by acting as

an optical cavity.

for a wide range of grating periods and trench sizes (grating period of 300nm to 1.2µm

and grating ratio of 20% to 80%). Results of these simulations are listed in Figs. 5.9 and

5.10. For this particular case, since the thickness of the grating structure is identical to

the actual weaveguiding structure, it is favorable to keep the width of the silicon portion

the same as the actual waveguiding structure such that the grating coupler could be po-

tentially collaborate in the single-photon detection as well. White bold lines in the TE and

TM simulations depict the results for the coupling simulations for the fixed 300nm width

silicon portions. Maximum value of the coupling for each polarization has been selected

and used for the device fabrication.
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Figure 5.10: Simulation result for the light coupling efficiency versus grating periods and

Si to SiO2 ratio for a deep grating profile (220nm thick). The structure is excited with

a Gaussian beam of TM polarization. White bold line depicts the efficiency of the fixed

300nm width silicon portion. There is a quarter wavelength SiO2 capping layer on top of

the entire structure. This capping layer is mandatory for the plasmonic operation of the

detector and also it improves the coupling efficiency of the grating structure by acting as

an optical cavity.
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Chapter 6

Conclusion and Contribution

In conclusion, I proposed an integrated version of a nanowire single-photon detector. The

main challenge of this work was to enhance the total system efficiency of this class of

detectors while keeping the idea of integration at the forefront. In general, the low quan-

tum efficiency of the detector is attributed to the great difference between the thickness of

the superconducting film and the skin depth of the incident optical beam, such that the

beam could readily pass through the meander structure of the detector without seeing the

narrow superconducting layer. Our proposed dielectric loaded plasmonic detector solution

addresses this problem. The design, simulation, and characterization of the required com-

ponents from geometrical optimization to the photon detection process were performed

during this work. A more detailed summary of the different steps are as follows,

I first explored the possible geometrical improvement of a nanowire single-photon de-

tector at the bend area. The presence of these turns is mandatory to electrically connect

straight nanowire segments together to form a single active element. However, it has been

shown that these sharp turns could dramatically reduce the total system efficiency of a

detector. In short, the adverse impact of these sharp turns can be classified into two cat-

egories: (1) Limiting the bias current of the device and hence putting an upper bound

to the internal quantum efficiency of the device which is less than what the detector is

capable of, and (2) generating excess dark counts at the bend areas due to the higher

current concentration whereas the actual photon detection process happens at the straight
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nanowire segments. A systematic approach to address the bend problem has been proposed

and experimentally verified. In the experiment, it has been shown that the utilization of

the optimally-designed bend structures could push the detector further as a more efficient

single-photon detector in terms of having a higher critical current and lower dark count

rates [21].

Next, I explored the physical origins of the dark count generation in a nano-pattered

superconducting sheet. A clear picture of all possible processes that might lead to the

normal belt formation when the input terminal of the detector is fully blocked is discussed.

It has been both theoretically and experimentally shown that regardless of the physical

model of the dissipative process, the dark count generation is always directly dependent

to the width or height of a potential barrier, barrier which originates from the self energy

of the superconductor. In general, it has been demonstrated that vortex hopping and

vortex-antivortex unbinding in thermal or quantum levels are the primary resources of

the dark count generation in a two-dimensional narrow superconducting sheet. To predict

the thermal activation or quantum tunneling liberation rate, a precise estimate of the

shape of this energy barrier at the film edges or at the location of singularity nucleation is

crucial. This is while, in the London approximation for the barrier shape which is the most

common model used to describe the barrier, there is an unacceptable simplification for the

barrier calculation at the location of a singularity. For a more accurate estimation of the

barrier shape, a quantum mechanical treatment needs to be proposed. In our quantum

model, based on the inertial mass of the singularity and the barrier confinement, a current-

controlled initial energy level is introduced for singularities. It has been experimentally

verified that the usage of this energy level results in a more accurate prediction for the

rate equations. The quantum treatment of the potential barrier also revealed that both

the vortex-antivortex unbinding and the dissipative quantum tunneling models may have

higher rates than those predicted by the classical models which suggest higher contribution

of these sources of dissipation in the final dark count generation [59].

Finally, the idea of enhancing quantum efficiency of a nanowire single-photon detector

through plasmonic excitation of wires was proposed. It has been showed that by placing

the active element on top or bottom of a dielectric slab waveguide, it is possible for the

superconducting nanowires to interact with the input optical light provided that the thick-
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ness and width of all layers are chosen carefully. It has been shown that even when the

superconducting layer has a few nanometer thickness, excitation of surface plasmons is still

possible. That was shown to get the maximum optical confinement, and hence the maxi-

mum absorption, one needs to use a very thin high index dielectric material in proximity

to a thin-film superconductor. The thickness of this core dielectric layer must be smaller

than what is required for normal dielectric guiding at the same wavelength. Also, the

structure needs to be placed in an environment of a symmetric low index medium. Even

with all these consideration, it has been discussed that the width of the superconducting

layer plays an important role in the amount of confinement. To fulfill this requirement,

the detection process after absorption of a single-photon was studied to find the maximum

possible cross section area that the system efficiency is acceptable. As a measure of sys-

tem performance, a coefficient based on nonequilibrium superconductivity was introduced.

Based on the simulation results, I demonstrated that there is no optimum width for a

single superconducting wire that is wide enough to cover the entire optical mode and still

provide high photon sensitivity. To address this issue a set of wires parallel to the direc-

tion of propagation with a spacing much smaller than the transverse mode field size with

non-uniform filling factors was proposed [117].
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