
ReserveTM: Optimizing for Eager
Software Transactional Memory

by

Gaurav Jain

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Applied Science
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2013

c© Gaurav Jain 2013

CORE Metadata, citation and similar papers at core.ac.uk

Provided by University of Waterloo's Institutional Repository

https://core.ac.uk/display/144146899?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Software Transactional Memory (STM) helps programmers write correct concurrent
code by allowing them to identify atomic sections rather than focusing on the mechanics
of concurrency control. Given code with atomic sections, the compiler and STM runtime
can work together to ensure proper controlled access to shared memory. STM runtimes
use either lazy or eager version management. Lazy versioning buffers transaction updates,
whereas eager versioning applies updates in-place. The current set of primitives suit lazy
versioning since memory needs to be accessed through the runtime. The goal of this thesis
present a new set of runtime primitives that better suit eager versioned STM.

We propose a novel extension to the compiler/runtime interface, consisting of mem-
ory reservations and memory releases. These extensions enable optimizations specific
to eager versioned runtimes. A memory reservation allows a transaction to perform
instrumentation-free access on a memory address. A release allows a read-only address to
be modified by another transaction. Together, these reduce the instrumentation overhead
required to support STM and improve concurrency between readers and writers. We have
implemented these primitives and evaluated its performance on the STAMP benchmarks.
Our results show strong performance and scalability improvements to eager versioned al-
gorithms.

iii

Acknowledgements

To my advisor Dr. Patrick Lam, it has been a privilege to pursue graduate studies under
your guidance, and I sincerely appreciate your continuous support and encouragement.
Thank you for giving me the opportunity and intellectual freedom to explore the areas of
my interest. You taught me not to fear failing, and instead just try, because without trying
I would inevitably fail.

I would also like to acknowledge my readers, Dr. Wojciech Golab and Dr. Frank Tip.
Thank you for all your invaluable suggestions, which have contributed tremendously to
this thesis. A special thanks to Dr. Ondr̆ej Lhoták and Dr. Peter Buhr, for allowing use
of the evaluation system.

To my family, thank you for your unwavering support that enables me to achieve my
goals. To my wife Swati, it is your devotion and support that has pushed me along this
journey. Thank you for giving me the confidence to pursue my dreams. Finally, to my
daughter Avni, you have been my constant source of joy and inspiration.

iv

Table of Contents

List of Figures vii

1 Introduction 1

1.1 Background . 1

1.2 Approach . 4

1.3 Limitations . 8

1.4 Contributions . 9

1.5 Organization . 9

2 Related Work 11

2.1 Privatization and Reservations . 12

2.2 Releases . 12

3 ReserveTM 14

3.1 STM Primitives . 16

3.2 ReserveTM Primitives . 19

3.3 Further optimizations . 22

3.3.1 Compression . 22

3.3.2 Reserve Dependencies . 23

3.4 ByteEager . 25

3.4.1 Read-Write Byte-locks . 26

3.4.2 ReserveTM Byte-locks . 27

v

4 Experimental Evaluation 31

4.1 Benchmark Optimizations . 32

4.2 Evaluation . 33

4.2.1 kmeans . 33

4.2.2 Yada . 35

4.2.3 Vacation . 39

4.2.4 Genome . 40

4.2.5 Intruder . 41

4.2.6 Labyrinth . 42

4.2.7 SSCA2 . 43

5 Conclusions and Future Work 44

5.1 Future Work . 44

References 46

vi

List of Figures

1.1 Application of privatization on a linked list 3

1.2 Comparison of instrumentation primitives 6

1.3 Writer stall . 7

3.1 Motivating example using with language-support for transactions 15

3.2 Motivating example instrumented with the current STM primitives 18

3.3 Motivating example instrumented with ReserveTM primitives 21

3.4 Reducing instrumentation with compression 22

3.5 Thread pool code excerpt . 24

3.6 Byte-lock layout . 26

3.7 ReserveTM byte-locks . 28

4.1 Original iterator access in STAMP . 32

4.2 Modified iterator access in STAMP . 32

4.3 kmeans transaction . 33

4.4 Speedup of STM threads for kmeans-low++ 34

4.5 Speedup of STM threads for kmeans-high++ 34

4.6 Speedup of STM threads for yada++ . 36

4.7 Speedup of STM threads for vacation-low++ 37

4.8 Speedup of STM threads for optimized vacation-low++ 37

4.9 Speedup of STM threads for vacation-high++ 38

vii

4.10 Speedup of STM threads for optimized vacation-high++ 38

4.11 Vacation cancellation . 39

4.12 Speedup of STM threads for genome++ 40

4.13 Speedup of STM threads for intruder++ 41

4.14 Speedup of STM threads for labyrinth++ 42

4.15 Speedup of STM threads for ssca2++ . 43

viii

Chapter 1

Introduction

Concurrency control in multithreaded programs is notoriously difficult for programmers to
implement correctly. Transactional memory provides a clean, high-level interface for speci-
fying required concurrency control, in the form of atomic sections, i.e. transactions. Under
Software Transactional Memory (STM), it is the responsibility of the developer to specify
atomic sections in a program’s implementation. Given this annotation, an STM runtime
enables concurrent execution of transactions and ensures that atomicity and serializability
is maintained while accessing shared memory.

In the presence of concurrency, runtime instrumentation could be explicitly invoked by
the programmer on accesses to shared memory within a transaction. In recent work [28]
[22] [8] [1], the compiler has taken responsibility for adding runtime instrumentation. The
design of the STM primitives play a fundamental role in a compiler’s ability to apply
program transformations. In this work, we propose improvements to the runtime interface
that can be easily applied without domain-specific knowledge and reduce prior restrictions
imposed on the compiler.

1.1 Background

Current trends in processor technology have led to the parallel programming model being
applied to almost all types of systems, ranging from high-end servers to desktop computing
and even mobile phones. Despite the community’s experience with parallelism, it has
proven notoriously difficult to move from a sequential programming model to a parallel
one. Parallel programs are harder to understand and debug, and it is especially difficult to

1

write parallel programs that unlock the expected performance benefits. Programmers have
developed a number of synchronization tools to aid in concurrent software development, the
most fundamental being a lock. Locks are low-level primitives that lack an association with
the higher-level programming language. It is up to the programmer to design and enforce
a lock discipline that is correct (deadlock-free, race-free, etc.) and enables concurrency
between parts of a parallel program.

Transactional memory provides synchronization between program threads by allowing
a programmer to define a block of code as a transaction. Transactions appear to execute in
an atomic step, with memory side-effects atomically visible to other threads. They allow
a programmer to focus on identifying the logic that needs to be synchronized, and leave it
to the runtime to determine how to perform the synchronization safely and efficiently. As
the program logic changes, the runtime adapts.

An STM runtime captures all shared memory accesses during the execution of a trans-
action to guarantee that once a transaction commits, there exists a valid serial ordering
of transactions. A serial ordering defines a sequence by which each transaction appears to
have executed sequentially and in isolation from each other. This allows the programmer to
understand transactions as if they executed one at a time. The code within a transactional
block should view memory as a snapshot of program state between transaction commits.
The runtime enables transactions to execute in parallel, when possible, while ensuring that
the serial ordering conditions are met.

When a transaction commits, it attempts to finalize any side-effects of an atomic block.
If a transaction cannot be serialized with another transaction, there is a conflict and the
runtime must abort and possibly rollback any memory side-effects. Thus a key respon-
sibility of an STM runtime is to support rollback of uncommitted transactions and their
speculative updates through version management of memory.

The two main types of version management are lazy and eager. In lazy versioning, a
transaction performs memory operations on a runtime-managed snapshot of the system
and buffers any updates. Usually the runtime detects conflicts in a lazy manner during the
commit sequence by validating the snapshot and then applying the buffered writes. This
enables invisible readers and/or invisible writers, whereby in-flight transactions are not
aware of each other’s read or write set during execution. Lazy versioning can result in more
overhead at commit time due to conflict management, but allows for transactions to operate
in isolation. Isolation improves efficiency when communication cost between threads may
be high. The cost could be due to the cache line coherency protocol, processor interconnect
traffic, or network communication in the case of Distributed Transactional Memory (DTM).
Lazy runtimes are successful for workloads where transactions are under high contention,

2

1 List pL;

2
3 atomic {

4 pL.head = L.head;

5 L.head = NULL;

6 }

7
8 for (each n in PL) {

9 process(n);

10 }

(a) T1: process list elements
outside the transaction

1 atomic {

2 Node n;

3 n = L.head;

4
5 while (n.next) {

6 n = n.next;

7 }

8
9 process(n);

10 }

(b) T2: process list elements
inside a transaction

1 atomic {

2 Node n = L.head;

3 int x = n.val;

4 while (n.next) {

5 if (n.next.val == x)

6 n.next = n.next.next;

7 else

8 n = n.next;

9 }

10 }

(c) T3: cache the head and
process inside a transaction

Figure 1.1: Application of privatization on a linked list

and hence are likely to have conflicts. If a conflict is only detected at commit time, a lazy
system can ensure forward progress by making sure at least one transaction will win the
conflict and commit.

Conversely, eager versioning reads and writes data in-place, resulting in a need to detect
conflicts right away. The runtime protects access to addresses with metadata locks, allowing
it to track ownership and conflicts. A transaction accesses its snapshot of the program
state with direct memory access. Thus concurrent transactions cannot have snapshots
with different values for a specific address without runtime protection. Snapshots with
overlapping addresses that have only been read do not conflict. However, if an address is
in the write set of one transaction and in the write or read set of another, the snapshots
are conflicting. A runtime can support conflicting snapshots, where values for an address
are different, by enforcing ordering on transactions. If a transaction will no longer access
a specific address, the address can be modified by another transaction if ordered after the
initial one. Eager versioning makes direct memory access possible at the cost of early
conflict detection. An undo log that records the previous value of an address is still needed
to support transactions that have written to memory and may abort. The previous value
is recorded either when a transaction starts of before the address is first written to.

Transactional memory can be supported through software (STM) or hardware (HTM).
STM allows for a more flexible design, supporting large transactions and advanced conflict
resolution policies. However, HTM offers a low overhead which STM is unable to compete
with due to runtime overhead. As a result, considerable effort has been made to support
privatization in STM runtimes. Privatization allows transactions to access memory without
incurring the overhead of the runtime. Memory can be accessed within a thread’s local
scope or outside of a transaction context.

3

Figure 1.1 demonstrates where transaction T1 privatizes the head of List L in order
to process the remainder of the list outside of a transaction. T1 records the head of the
list and makes the list nodes unreachable by setting the value to NULL. The list is
then iterated over outside the transaction using the previously recorded value of the list
head. On the other hand, transaction T2 iterates over the list within a transaction. Thus
T1 may commit while T2 is processing a node deeper in the list, causing the node to be
processed both within and outside of a transaction. T3 utilizes privatization within a
transaction, by caching the value of the head element in the stack variable x, and thus
avoids repeated runtime entries to read the value. Weak isolation [24] is the model where
transactional code and non-transactional code do not concurrently access the same memory
addresses. Privatization is less of an issue with strong isolation, where the runtime is aware
of the memory accesses of non-transactional code. With weak isolation though, conflicts
between non-transactional and transactional code cannot be detected by a runtime as
memory accesses in non-transactional code is not instrumented. Most high performance
STMs adopt a weak isolation model in order to avoid the overhead of instrumenting non-
transactional code. Privatization safe runtimes handle conflicts between non-transactional
and transactional code. Supporting privatization safety is non-trivial and techniques to
support it can incur undesired overhead [26].

This work explores a means to support software transactions for eager versioned run-
times, with privatization safety and efficient runtime performance.

1.2 Approach

A memory access through the STM runtime can have significant overhead. Each access
has to read and process some runtime-managed metadata which can pollute the CPU
cache and cause additional traffic for the cache line coherency protocol. Operations on
this metadata may invoke memory fences or execute locked CPU instructions, further
hampering instruction level parallelism. In addition, the presence of function calls in place
of direct memory access prevents certain compiler optimizations, such as load and store re-
ordering. These optimizations typically cannot cross function boundaries as the compiler
may not have knowledge of what memory side-effects a function call may have. As a result,
privatization attempts to avoid runtime overhead for memory accesses by either doing work
outside of a transaction or working on a thread-local private copy of the data.

Only accesses performed within a transaction are instrumented. To access memory
outside of a transaction, data accessible from within a transaction needs to be made un-
reachable by other transactions. T1 in Figure 1.1 makes all the nodes of the list unreachable

4

by other transactions by clearing the head pointer. The remaining nodes can then be freely
modified outside a transaction without interference from the runtime. Similarly, a trans-
action may choose to operate on a copy of data in a thread-local scope, while within
a transaction and thus avoid runtime instrumentation. T3 operates on a local copy of
L.head.val with the local stack variable x. The technique utilized by T1 usually requires
programmer intervention as it requires domain-specific knowledge to understand how to
make data unreachable. However, this thesis demonstrates that due to visibility of reads
and writes in eager versioned systems, the privatization technique utilized by T3 can be
applied without application knowledge.

Current STM primitives (including those proposed for LLVM [8], gcc [22], and Intel [1]
compilers) do not expose whether the compiler is instrumenting for an eager or a lazy
versioned runtime. As a result, these primitives require instrumentation at every shared
memory access. Compilers identify reads and writes to shared memory locations and
replace them with STM API calls to TM_READ and TM_WRITE.

On a transactional memory access, eager versioning performs conflict resolution through
metadata manipulation, but does little version management as it reads and writes memory
in-place This suggests that the conflict resolution and version management can be split,
allowing the runtime to only perform metadata operations. Eager algorithms tend to
allow concurrency between read operations, while writes require an exclusive lock. Until
the writer transaction has committed, other transactions cannot freely read or write in-
place to the same address. This is because there is no knowledge that the transaction
has completed all its updates, or that it may abort and rollback the updates. Thus an
encounter-time locking [5] scheme is used to abort any other transaction that reads a locked
address. If a transaction accesses a location that it has already locked for write, it simply
needs to validate that its lock is still held and proceed with accessing the address for read
or write. Reads may acquire a shared reader lock to enable concurrent access and block
writers from modifying the address during the lifetime of reader transactions. This results
in a simple commit sequence that does not need to validate the read set since the memory
stored at the read addresses is never modified. Another approach to reads is to perform a
read without acquiring a lock. Instead of holding a lock the address metadata may contain
version number that allows a subsequent accesses to know if the value has changed since
the last access. This approach requires the read set to be validated at commit time.

Analyzing this read and write behavior, we can demonstrate how privatization can be
leveraged to reduce instrumentation overhead. We consider that once a transaction is free
to write to an address, it has in effect privatized the address and it need no longer access the
location through the runtime. We refer to this as a write reservation. A write reservation
privatizes read and write accesses to an address for the remainder of a transaction. Since

5

1 TM_BEGIN ();

2 Node n = TM_READ(L.head);

3 while (TM_READ(n.next)) {

4 int val = TM_READ(n.next.val);

5 if (val == TM_READ(L.head.val)) {

6 Node next = TM_READ(n.next.next);

7 TM_WRITE(n.next , TM_READ(next));

8 } else {

9 n = TM_READ(n.next);

10 }

11 }

12 TM_END ();

(a) Standard primitives

1 TM_BEGIN ();

2 Node n = TM_READ(L.head);

3 TM_READ_RESERVE(L.head.val);

4 while (TM_READ(n.next)) {

5 int val = TM_READ(n.next.val);

6 if (val == L.head.val) {

7 Node next = TM_READ(n.next.next);

8 TM_WRITE(n.next , next);

9 } else {

10 n = TM_READ(n.next);

11 }

12 }

13 TM_END ();

(b) ReserveTM primitives

Figure 1.2: Comparison of instrumentation primitives

the address is protected by a lock that can only be released by the writer, it is no longer
considered to be shared memory since other transactions can neither read nor write to it.
The runtime need only record the original value stored at an address so if the transaction
should abort, the value could be restored. For reads, if the program acquires a shared
reader lock, we can privatize future read accesses in the same manner: a read reservation
privatizes read accesses for the remainder of a transaction. Since the reader lock protects
the address from being modified, it is possible to continue reading the memory location
without runtime overhead. Unlike with writes, this privatization can be shared with other
readers. Eager versioning algorithms that do not acquire locks during a read, need to be
extended to stall or abort writers during a read reservation.

We claim that this scheme of privatization is possible to apply safely without any do-
main knowledge. The stripping of runtime calls is possible with path-sensitive compiler
alias-analysis which identifies whether a runtime call refers to the same memory address
as a previous call. The locking of readers achieves privatization safety through Pessimistic
Concurrency Control [26], Figure 1.2 demonstrates how transaction T3 would be instru-
mented had programmer privatization not been used, and how our approach avoids the
need for excessive runtime calls to access L.head.x.

Acquiring a lock before a read can incur a high overhead [20]. As a result, we only
apply a reservation if it is clear that there are multiple runtime calls that can be omitted.
In Figure 1.2 the value of the head node is needed on each loop iteration. Thus, the
locking incurred by a single read reservation alleviates the need to have an instrumented
read on each loop iteration. Another problem with using shared reader locks to support

6

1 atomic { // T_1

2 a = x;

3 b = y;

4 }

1 atomic { // T_2

2 x = x + 1;

3 y = y + 1;

4 }

Figure 1.3: Writer stall

privatization, is that it prevents writers from making forward progress on addresses that
have been read by a transaction. This places a cost to concurrency control that may be
detrimental to performance.

Memory reservations therefore allow efficient runtime-free access. However, there is
a performance cost associated with this scheme, as we have chosen a reader-writer lock
solution that limits concurrency between readers and writers. New readers or writers
cannot operate on a write-reserved address, as the address is subject to change without
communication to the runtime. Similarly, writers cannot write to a read reserved address
until all readers have committed. Locking out writers is more of a concern as transactions
tend to have larger reader sets. In addition, when operating on dynamically sized data
structures, it is common for addresses to be read only once. For example a lookup in a tree
would first read parent nodes. Herlihy et al. [13] observed a resulting problem for accesses
to, for instance, the root node. It would be read, but not usually modified, in most tree
operations. They proposed the utilization of early releases to remove an address from the
read set of the transaction, enabling more concurrency and simplifying validation.

We therefore pair read reservations with a release: Owners may release addresses which
are no longer being used. A transaction can only release an address in its read set, allowing
writers to make forward progress and modify released addresses. It is also possible for a
transaction to access a released address again for read or write. If the address has been
locked for write by another reading transaction, that reader must abort.

An implication of releases is that a writer may stall during commit. If any released
readers are still in-flight, the writer must wait for them to commit or abort. This is because
it is possible that a reader attempts to read a value that has been written to by the writer.
Consider Figure 1.3, if T1 releases x early, and then T2 modifies both x and y, T1 could
read an incorrectly modified value of y. This would cause an inconsistent snapshot, since
x and y should both be incremented atomically.

Using reservations to privatize access to shared memory and releases to allow writers to
make forward progress, we are able to improve the performance of eager versioned runtimes.

7

1.3 Limitations

The main benefit of reservations is the omission of unnecessary library calls to the runtime.
This hinges on the capabilities of compiler alias-analysis to identify when shared memory
accesses are to the same address. This is easier to do with intra-procedural analysis as
opposed to inter-procedural. However there are a number of programming patterns where
inter-procedural analysis is essential. In object oriented programming, access to internal
object data is often wrapped by functions. If multiple object methods are called that access
the same member data, inter-procedural analysis would be needed to add a reservation early
on and remove the instrumentation from follow-on accesses. Intra-procedural alias analysis
faces additional limitations when the functions are not in the same compilation unit, as
it then requires whole-program analysis. Thus our approach hinges on the strength of a
compiler’s alias-analysis capabilities.

Library instrumentation points provide a means for an STM runtime to perform op-
erations upon a running transaction. This includes, externally initiated actions such as
remote aborts [21], metadata modifications or swapping out the STM algorithm [29]. By
reducing the number of instrumentation points, the runtime has fewer opportunities to
perform such actions, and as a result, actions may be delayed. We do not expect this to
be a serious issue as it is unlikely that readers will generally make a release runtime call,
and writers are not generally aborted.

The runtime is also unable to understand the full usage pattern of memory accesses.
Wang et al. [29] choose the best runtime algorithm based on the access pattern of the
workload. Omitting runtime calls complicates their analysis.

Our use of releases is flexible in that it allows addresses to be re-read after being released.
To permit this, the runtime must be able to detect whether the value has changed since
it was released. This can add a blocking operation to a commit sequence or require the
storing of version numbers in the metadata. The impact of this approach maybe minimal,
since the writer is guaranteed to commit, and is only waiting for reads to commit or abort.
Thus, a runtime could choose to schedule other work instead of stalling the writer. Also,
we argue that it is important for application developers to consider transactions as critical
sections, in their code. As with most critical sections it is important to do the minimal
amount of work necessary in order to facilitate a quick release of the critical section. The
onus is on the programmer to be efficient and avoid repeated memory accesses.

A major limitation of our approach is that it is only applicable to eager versioned
solutions. Lazy versioned runtimes do not expose information on how to directly access
an address in the memory snapshot. There is an opportunity to explore an API that

8

exposes direct access to an address snapshot. However it is unclear whether this is possible
or beneficial. We find that our approach allows better performance of eager versioned
runtimes and improved scalability. Though lazy versioning may be important for certain
workloads, our results show that using our instrumentation scheme, eager systems can enjoy
performance that is comparable to lazy versioning. Eager systems are also more suitable
for unmanaged languages such as C/C++. Since these languages are used to having direct
access memory, reservations allow the runtime operations to be separate from memory
operations. This allows the use of existing tooling such as debuggers.

By focusing our analysis on eager versioned runtimes and constraining the design space
of STM runtime we find that we are able to provide performance benefits to STM operation.

1.4 Contributions

This thesis makes the following contributions:

• Memory Reservations: A privatization technique that can be applied without
domain-specific knowledge, thereby reducing the instrumentation overhead required
to support STM.

• Memory Releases: A means to remove items from the read set of a transaction,
increasing opportunities for concurrency between readers and writers.

• ReserveTM Byte-locks: An implementation of byte-locks [6] that supports read-
write lock primitives as well as reservations and releases. Byte-locks are used by the
ByteEager algorithm provided by the RSTM [18].

• Benchmark Evaluation: Results of our approach on the STAMP [19] benchmark
suite. Additionally, we provide a comparison of our approach to unmodified ByteEa-
ger and ByteLazy algorithms.

1.5 Organization

The remainder of this thesis is organized as follows:

Chapter 2 discusses related work in the area of STM. We describe how our work applies
previously described techniques and how our approach differs.

9

Chapter 3 describes our API in detail and provides examples on how it can be used. We
further discuss the optimizations that we were able to apply that extend from our work.
We describe the ByteLock algorithm and how we extended it to support reservations and
releases.

Chapter 4 shows our results with the STAMP benchmark suite and discusses in detail
how our approach changed the behavior of each of the benchmark tests. If any modifications
were made to a benchmark they are described with a clear motivation.

Chapter 5 discusses future work and how we plan to apply our approach more thor-
oughly to a compiler as well as to more eager versioned algorithms.

10

Chapter 2

Related Work

The work presented in this thesis extends many of the previous STM concepts, in an effort
to describe the primitives needed to build an efficient and scalable STM runtime that does
not require domain-specific knowledge.

Herlihy and Moss [14] first introduced Transactional Memory as a means for hardware
to provide non-blocking synchronization. Their work described transactions as a concur-
rency primitive for programmers to build lock-free data structures. Transactions ensure
serializability and atomicity. Serializability allows transactions to be ordered such that
they don’t appear to interleave with one another, whereas atomicity ensures that either
the transaction completes in its entirety or fails to execute at all.

Shavit and Touitou [23] developed Software Transactional Memory, which enabled the
transactional semantics to be simulated by software. Their implementation required a
transaction to declare, at the start of a transaction, a vector of addresses that it may access.
Despite this constraint, STM could be utilized right away as it utilized existing concurrency
primitives to build transactions. Following work improved the efficiency of STM, defined
program workloads and designed conflict resolution mechanisms. DSTM [13] made the
key contribution of the first Dynamic Software Transactional Memory system, whereby
a transaction need not declare its working set in advance. Since then, the community
has expanded to make transactional memory (both hardware and software) more viable
for programmers. Currently, both Intel [2] and IBM [11] support Hardware Transactional
Memory and STM solutions exist for GCC [22], LLVM [8] and the Intel Compiler [1].

11

2.1 Privatization and Reservations

Shavit and Touitou [23] described the most basic form of a reservation. A transaction must
declare at the start, all addresses that it might access. The runtime would then generate
a serializable snapshot of memory for a transaction to execute with. As a result, the sys-
tem was inherently lazy versioned as transactions needed to access memory through the
generated snapshot. Generating a vector of addresses for a transaction requires domain-
specific knowledge. Generally a transaction does not know, in advance, all the addresses
which it would need. Thus, a transaction pessimistically reserved all the addresses it could
possibly access, rather than only those that it needed. When accessing data structures,
a transaction reserves the entirety of a data structure that it could access. This not only
added excessive overhead, but is simply impossible for many dynamically sized data struc-
tures such as linked lists and trees. Dynamic data structures require traversals to obtain
the addresses of all the allocated nodes. In addition, compilers cannot necessarily build a
vector of memory addresses simply from static analysis (except for trivial examples). Our
approach avoids these limitations, as it dynamically applies read and write reservations,
and operates with an eager versioned runtime.

Privatization originates from lock-based concurrency control, where programmers try
to limit the amount of work done while holding a lock. Code attempts to do as much work
as possible outside of the lock by moving heavy processing out of the critical section. In
Figure 1.1a, T1 efficiently removed all elements from the list within the transaction, and
processed the list outside of the transaction. Spear et al. [26] noted that privatization
imposes correctness issues for previously proposed STM algorithms and stated that many
algorithms are not privatization-safe, which posed a problem for programmers expecting
STM to be a drop-in replacement for locks. They provided an exhaustive investigation of
techniques for handling privatization and proceeding work provided alternatives [17][24].
Our work applies many of the techniques presented, but uniquely uses different techniques,
depending on whether an address has been reserved or released. When an address has
been reserved, the runtime can utilize Pessimistic Concurrency Control, while releases are
supported with a Transactional Fence [26].

2.2 Releases

Early releases were first introduced by DSTM [13] to support dynamically sized data struc-
tures. When a transaction released a memory address, it indicated that other transactions

12

may freely access the address without conflicting with the current transaction. It re-
quired manually inserted releases with domain-specific knowledge to determine if a release
would be “safe”. A transaction performing a lookup in a binary search tree, could release
parent nodes during its traversal since lookups do not backtrack on previously accessed
nodes. DSTM does not require commit-time validation of addresses that have been re-
leased, thereby avoiding blocking and reducing commit overhead. Though early releases
increase concurrency, manually instrumented releases are error-prone, as the conditions
supporting a release may change. In our approach, we are able to apply early releases to
any read and enable significant concurrency between readers and writers. Writers need to
perform a blocking commit-time validation for any released addresses that it read. We also
allow an address to be re-read after being released.

ReserveTM releases differ fundamentally from early releases as it does not require a
balancing of reserve and release calls. DSTM proposed that for each address access, there
should be a corresponding release. Each access would increment a reference count which
would be decremented by a release. Reference counting adds CPU bus traffic and adding
release calls results in additional runtime overhead. ReserveTM releases do not require
reference counts to be maintained and only requires a single release call to release an
address.

TinySTM [9] supports releases on reads by never holding any locks while doing a read.
Thus, a reader never blocks a writer from making forward progress. Its policy favors
writers, as readers cannot safely privatize an address for instrumentation-free access. Since
transactions have larger read sets than the write sets, reducing instrumentation for reads is
essential for performance. Our approach recognizes this behavior and allows read accesses
to be instrumentation-free while ensuring privatization-safe access.

13

Chapter 3

ReserveTM

We recognize the importance of privatization and early releases in Section 2, and introduce
a new set of runtime primitives to instrument transactional memory accesses. ReserveTM
primitives enrich the communication between a transaction and the runtime in order to
improve application performance. The runtime is explicitly aware of when privatization
occurs and can adjust accordingly. These primitives come at the cost of restricting the
design space of STM runtimes, as we only support eager versioning. However, there is
still sufficient room to innovate and design new runtime algorithms, while observing the
benefits of adopting ReserveTM primitives.

We continue by presenting the running example, shown in Figure 3.1. Our example
extends the C language by adding an atomic block that denotes the start and end of a
transaction. Functions foo and bar operate on both global and thread-local addresses
and can be called from within or outside of a transaction. Either a programmer or a
compiler must transform the code within an atomic block to utilize STM primitives for
shared memory accesses.

The following sections describe the current STM primitives used today and then demon-
strate how they would be applied to our example. We then present and apply the Re-
serveTM primitives and discuss how it improves the instrumentation and enables unique
optimizations. Finally, we adapt an eager versioned STM algorithm to support ReserveTM
primitives.

14

1 int a, b, c, d;

2
3 int bar(int& x) {

4 return x+1;

5 }

6
7 int foo() {

8 a = 2;

9 b = 2;

10 if (d >= 0) {

11 b = c + d;

12 } else {

13 a = bar(b);

14 }

15 return a + b;

16 }

17
18 int main() {

19 int i, j, k;

20
21 atomic {

22 i = foo();

23 }

24
25 atomic {

26 int l = 2;

27 j = bar(l);

28 }

29
30 k = bar(j);

31 }

Figure 3.1: Motivating example using with language-support for transactions

15

3.1 STM Primitives

An STM runtime provides a mechanism to denote the start and end of a transaction,
as well as memory access operations. A runtime may also support self-abort, whereby a
thread can explicitly abort the current transaction. We describe the API as follows:

• TM_BEGIN(): Signals to the runtime that the current thread wishes to start a transac-
tion. A runtime may use this opportunity to pre-allocate any data structures needed
during transaction execution, notify other threads of the new transaction and apply
any scheduling policies such as disallowing thread preemption.

If a transaction were to abort, it would return to this point for re-execution. A
architecture-specific operation (such as setjmp/longjmp on x86) restores the pro-
gram state including the program counter, registers and stack pointer.

• TM_END(): Instructs a runtime to commit the actions performed by a transaction and
make them visible to other transactions. If a conflict is detected, the transaction will
abort and return the thread to the point at which TM_BEGIN was called. Otherwise,
the thread continues execution outside of a transactional scope.1

Lazy versioning systems will attempt to resolve conflicts and apply their buffered
updates upon commit. Eager versioning usually has a more lightweight commit
routine, as updates have already been made and most of the conflicts would have
already been resolved. If a transaction performed any speculative operations, such
as reading a write of an in-flight transaction, a commit might stall waiting for the
writer to commit. Additionally, a transaction may need to validate its read set and
abort if it has changed.

• TM_ABORT(): Invokes an explicit abort to the runtime. STM allow transactions to
issue a self-abort. The primary motivation is to allow a programmer to easily rollback
any modifications made by a transaction and return to the start. A lazy versioned
runtime would simply discard any updates made, whereas an eager runtime would
need to apply its undo log to restore modified values to their original state.

1We stated that after a transaction commits the thread is not in a transactional scope. This is not
necessarily true for nested transactions whereby a transaction can be started from within another trans-
action. Nested transactions allow a runtime to do nested aborts whereby the thread only returns to the
start of the sub-transaction on abort.

A runtime that does not have explicit support for nested transactions can increment a nesting level on
each TM_BEGIN() and decrement it on each TM_COMMIT() such that only a commit on level 0 results in
the commit logic being applied. Correspondingly, an abort in a nested transactions would abort all nested
transaction levels and return to the outermost TM_BEGIN.

16

• TM_READ(addr): Returns the value at addr in the current transaction’s memory snap-
shot. Any address that could be accessed by another concurrently running transac-
tion needs to be protected by an access through the runtime. A runtime must return
a value that is consistent with the snapshot of memory which it is presenting to the
currently running transaction.

Lazy versioning systems may build the snapshot on demand and copy the current
value into the snapshot state before returning the value. Subsequent reads of addr
would be loaded from the snapshot. If the running transaction has written to addr,
the runtime must return the value that was written. Eager versioning systems need
to perform some metadata checks before returning the value stored at address addr.

The behavior in the presence of writes shows a stark contrast between lazy and eager
versioned systems: lazy versioning requires use of the runtime to ensure that the
correct value is loaded from the snapshot, while eager versioning systems can access
the value in-place.

• TM_WRITE(addr, val): Writes the value val, to address addr. For lazy versioned
systems, if the value was previously read, the runtime updates the value in its snap-
shot, else it needs to record a new address in its snapshot. Eager systems may need
to resolve conflicts before a write if the address has not previously been written to.
A write may cause a metadata lock to be acquired, which may stall thread execution,
or abort the transaction in the failure case.

Figure 3.2 shows how the STM primitives are applied to the running example.

The function bar is duplicated to __TX_bar. The duplicate function is needed because
bar could be called from a non-transactional scope and to avoid the overhead of calling
into the runtime if it is not necessary. A runtime may support performing a read and write
outside of a transaction, but in a weak isolation model it incurs unnecessary overhead.
Avoiding function duplication is possible if a function, as well as functions that it could
call, do not require STM instrumentation, or always requires instrumentation as with foo.
Side-effect free functions do not require instrumentation and thus need not be duplicated.

TM_BEGIN and TM_END calls are placed at the boundaries of atomic blocks and any
functions called within the block are replaced with transactional versions. The TM_READ

and TM_WRITE calls replace accesses to shared memory in transactional versions of functions.
In our example, __TX_bar accesses parameter x, which could be a global or a thread-local
variable, when called from __TX_foo or main respectively. We must apply instrumentation
conservatively on __TX_bar and always instrument the read to x. As a result, access to l

17

1 int a, b, c, d;

2
3 int bar(int& x) {

4 return x+1;

5 }

6
7 int __TX_bar(int& x) {

8 return TM_READ(x)+1;

9 }

10
11 int foo() {

12 TM_WRITE(a, 2);

13 TM_WRITE(b, 2);

14 if (TM_READ(d) >= 0) {

15 TM_WRITE(b, TM_READ(c) + TM_READ(d));

16 } else {

17 TM_WRITE(a, __TX_bar(b));

18 }

19 return TM_READ(a) + TM_READ(b);

20 }

21
22 int main() {

23 int i, j, k;

24
25 {

26 TM_BEGIN ();

27 i = foo();

28 TM_END ();

29 }

30
31 {

32 TM_BEGIN ();

33 int l = 2;

34 j = __TX_bar(l);

35 TM_END ();

36 }

37
38 k = bar(j);

39 }

Figure 3.2: Motivating example instrumented with the current STM primitives

18

will be mediated by the runtime, even though it is stack variable that will not be accessed
by other transactions. If a private memory address is instrumented then the program has
been over-instrumented. Compilers often suffer from over-instrumentation due to difficulty
in detecting which addresses are shared.

Runtime instrumentation restricts the compiler from performing certain optimizations.
In __TX_foo the global a is written to twice if d is less than 0. In the non-transactional
version of the code, a compiler could have re-ordered the logic to avoid the duplicate writes
by moving the test of d to be earlier. Similarly, when d is greater than or equal to 0, there
is a second instrumented read to d. Typically, a compiler could avoid the second read
from memory by loading d into a local register. The current STM primitives impedes such
code transforms. Read and write calls are opaque function calls and the compiler cannot
perform optimizations across them without knowledge of the side-effects.

3.2 ReserveTM Primitives

ReserveTM primitives extend the the existing API by clearly defining when an address
is privatized and can be freely accessed without runtime instrumentation. In addition,
it enables extensive use of releases in order to enable more concurrency between readers
and writers. ReserveTM primitives are performed out-of-band, i.e. they do not directly
perform a read or write to memory. As a result, calls can be re-ordered to allow for compiler
optimizations.

The TM_BEGIN(), TM_END() and TM_ABORT() primitives remain unchanged. ReserveTM
primarily concerns itself with handling conflict detection for memory accesses. ReserveTM
defines the following calls:

• TM_READ_RESERVE(addr): Indicates that addr is being privatized by the current
transaction for read-only access. All subsequent reads to addr may be made without
runtime instrumentation. The runtime guarantees that it will not allow any trans-
action to modify the address for the duration of the read reservation. Note that
there is no means for a runtime to enforce this constraint, it is simply a contract
between the transaction and the runtime, where the transaction will only perform
read operations.

This function returns a boolean value indicating whether the runtime supports re-
leases and if the address can be released. If the address was already in the reserved
read set of the current transaction, the call will return false. Only if the address

19

was never read before or had already been released does TM_READ_RESERVE return
true. This allows us to avoid DSTM’s [13] reference counting mechanism, as only
when TM_READ_RESERVE returns true, should a thread attempt to release an address.
Thus in the presence of nested reservation calls, a release is only paired with the first
reservation call.

• TM_WRITE_RESERVE(addr, val): Requests to privatize addr for read and write ac-
cess. If successful, the address is exclusively privatized by the current transaction
and subsequent reads and writes do not require instrumentation. If the reservation
cannot be fulfilled, the runtime will abort the transaction. Performing a write reser-
vation causes the runtime to record the old value for roll back operations and acquire
any metadata locks to maintain exclusive access.

• TM_READ(addr): Privatizes addr for read-only access and returns the value at addr.
ReserveTM maintains compatibility with the standard STM primitives by making
TM_READ the same as a TM_READ_RESERVE followed by a direct read from the address.

• TM_WRITE(addr, val): Privatizes addr for write access and writes the value val

at address addr. Similar to TM_READ, the write API implies a TM_WRITE_RESERVE

followed by a direct write.

• TM_RELEASE(addr): If addr has not been write reserved, releases addr to allow a
writer to acquire it for write access. A release is only applicable for addresses in the
read set of a transaction. For addresses that have been written to, this call is ignored.

The call terminates a read reservation, such that an address can no longer be trans-
parently accessed. If the transaction wishes to read to the address again it can do
so after issuing a new read reservation. If it has been write reserved by another
transaction, the value at the address may have changed since when it was first read.
As a result, the transaction will need to abort if the address has been write reserved.

Note that a TM_RELEASE should only be called if a previous call to TM_READ_RESERVE

returned true. This avoids releasing an address earlier than expected. Once again,
the runtime cannot enforce this constraint, as it is only a contract.

• TM_READ_RELEASE(addr): Mimics a TM_READ_RESERVE followed by a direct access to
the address and then a TM_RELEASE. Note that if addr was already in the read set,
no release is performed. TinySTM implements reads in a similar manner.

We demonstrate the use of ReserveTM primitives in Figure 3.3a and 3.3b, with the latter
including optimizations. ReserveTM removes the need to duplicate the bar function, as it

20

1 int a, b, c, d;

2
3 int bar(int& x) {

4 return x+1;

5 }

6
7 int foo() {

8 TM_WRITE_RESERVE (&a);

9 a = 2;

10 TM_WRITE_RESERVE (&b);

11 b = 2;

12 bool release = TM_READ_RESERVE (&d);

13 if (d > 0) {

14 b = TM_READ_RELEASE (&c); + d;

15 if (release)

16 TM_RELEASE(d);

17 } else {

18 if (release)

19 TM_RELEASE(d);

20 a = bar(b);

21 }

22 return a + b;

23 }

24
25 int main() {

26 int i, j, k;

27
28 {

29 TM_BEGIN ();

30 i = foo();

31 TM_END ();

32 }

33
34 {

35 TM_BEGIN ();

36 int l = 2;

37 j = bar(l);

38 TM_END ();

39 }

40
41 k = bar(j);

42 }

(a) Naive use of ReserveTM

1 int a, b, c, d;

2
3 int bar(int& x) {

4 return x+1;

5 }

6
7 int foo() {

8 TM_WRITE_RESERVE (&a);

9 TM_WRITE_RESERVE (&b);

10 bool release = TM_READ_RESERVE (&d);

11 if (d > 0) {

12 a = 2;

13 b = TM_READ_RELEASE (&c); + d;

14 if (release)

15 TM_RELEASE(d);

16 } else {

17 b = 2;

18 if (release)

19 TM_RELEASE(d);

20 a = bar(b);

21 }

22 return a + b;

23 }

24
25 int main() {

26 int i, j, k;

27
28 {

29 TM_BEGIN ();

30 i = foo();

31 TM_END ();

32 }

33
34 {

35 TM_BEGIN ();

36 int l = 2;

37 j = bar(l);

38 TM_END ();

39 }

40
41 k = bar(j);

42 }

(b) Optimized

Figure 3.3: Motivating example instrumented with ReserveTM primitives

21

1 TM_WRITE(a, TM_READ(a)+1);

(a) Read and write

1 TM_READ_RESERVE(a);

2 tmp = a;

3 TM_WRITE_RESERVE(a);

4 a = tmp + 1;

(b) Reservations

1 TM_WRITE_RESERVE(a);

2 a = a + 1;

(c) Compression

Figure 3.4: Reducing instrumentation with compression

no longer requires instrumentation. Though bar performs a read of x, it does not need to
perform a read reservation when called from main, since l is already privatized from being
a local stack variable. Also, when foo calls bar with b, it has already been write reserved
earlier on.

As reservations are performed out-of-band, and the side-effects are known (i.e. it will
not directly modify any shared memory), they can be moved to the beginning of the
function foo. This enables optimizations of writes to a and b, such as to avoid unused
writes.

Releases are applied wherever possible. Before reading d, a read reservation is requested
and accordingly the release is conditionally called based on the value of the release vari-
able. Since c is accessed only once we instrument it with a TM_READ_RELEASE. We do not
instrument releases to a or b since they are both reserved for write.

Code instrumented with ReserveTM primitives is cleaner, optimized and incurs less
runtime overhead. It also can avoid the need to duplicate functions under the correct
conditions.

3.3 Further optimizations

ReserveTM primitives reduce the instrumentation required to support STM by explicitly
defining when an address is privatized. Using these primitives, we describe how compiler
static analysis could further reduce STM instrumentation.

3.3.1 Compression

A common pattern is that a value is read and then updated, as with the increment oper-
ation in Figure 3.4a. If we naively apply reservations, the TM_READ and TM_WRITE would

22

be replaced by a read and write reservation as illustrated in Figure 3.4c. Incurring the
overhead of 2 reservation calls can be avoided by performing a single write reservation. If
a read reservation is guaranteed to be followed by a write reservation to the same address,
we replace the initial read reservation with a write reservation. Figure 3.4c demonstrates
compression applied to the increment operation. A compiler can apply a path-sensitive
alias-analysis to identify such opportunities. Similarly, we omit any read or write reserva-
tions that follow a write reservation since the write reservation has already privatized the
address.

3.3.2 Reserve Dependencies

Reservations allow a transaction to avoid having to instrument each memory access, with
the additional benefit where they reduce opportunities for conflict between transactions. If
a transaction has reserved all of its working set, then it is guaranteed to commit (unless the
programmer issues a self-abort). With the use of whole-program alias analysis we identify
when a transaction cannot be aborted and eliminate any subsequent reservations.

We define a reservation dependency between addresses A and B, when a write reser-
vation to A always precedes a read or write reservation to B for all program paths. Since
only a single transaction can attain the reservation to A, B can be reserved if and only if
the write reservation to A succeeds. Furthermore, if the last reservation of a transaction
cannot have any conflicts, an eager versioned STM runtime can eliminate the reservation
and directly access the associated address. Thus, we omit the reservation of B if it is the
last reservation of a transaction. Reservation dependencies differ from compression as A
and B can be different addresses. In addition, the dependency must hold for all program
paths, thus requiring whole-program path-sensitive analysis.

We use Figure 3.5 as an example of how reservation dependencies can be applied to re-
duce instrumentation. The example describes a thread pool class which uses transactions
to enable concurrent access to the internal pool. Clients are assigned threads from the
thread pool by invoking getThread and return threads with the returnThread method.
The thread pool maintains counters for the number of allocated threads (threads), idle
threads (idle), and in-use threads (active). The destroyThreads method is used deal-
locate threads from the thread pool. It prevents additional getThread calls and waits till
all the threads have been returned to the thread pool before destroying the threads.

We observe that a write to threads is always preceded by a write to idle in ei-
ther getThread or returnThread. Thus, there is a reserve dependency between idle

and threads. The write to threads does not need to be instrumented as any conflicts

23

1 class ThreadPool {

2 void addThread(Thread* t) {

3 atomic {

4 // Add t to thread pool

5 idle = idle + 1;

6 threads = threads + 1;

7 }

8 }

9
10 Thread* getThread () {

11 Thread *t;

12 atomic {

13 if (drain || (idle == 0)) {

14 return 0;

15 }

16
17 // get thread t from pool

18 --idle;

19 ++ active;

20 }

21
22 return t;

23 }

24
25 void returnThread(Thread *t) {

26 atomic {

27 ++idle;

28 --active;

29 }

30 }

31
32 void destroyThreads () {

33 bool spin = false;

34 atomic {

35 drain = true;

36 if (active) {

37 spin = true;

38 }

39 }

40
41 while (spin) {

42 sleep (1); // Sleep outside of transaction

43 atomic {

44 if (active == 0) {

45 spin = false;

46 }

47 }

48 }

49
50 // destroy threads

51 }

52
53 // Further implementation

54 };

Figure 3.5: Thread pool code excerpt

24

would have been resolved during the write to idle. Conversely, active is preceded by
writes to idle in getThread and returnThread, but not in destroyThreads. Therefore,
active cannot have a reservation dependency with idle as a successful write reserva-
tion of idle does not guarantee conflict-free access to active. If a transaction is exe-
cuting destroyThreads, it may conflict with another transaction running getThread or
returnThread.

Reservation dependency analysis can remove both read and write reservations. Re-
moving a write reservation has the additional benefit of avoiding undo log tracking, since
rollback cannot occur. With reserve dependency analysis, we are able to significantly
reduce instrumentation in the kmeans benchmark as described in Section 4.2.1.

3.4 ByteEager

ByteEager is an STM algorithm provided by RSTM [25], similar to TLRW [6]. In this
section we describe how ByteEager operates and our extensions to support ReserveTM
primitives.

ByteEager adopts eager versioning. Writes are performed in-place while maintaining
an undo log for rollback in the event of an abort. Prior to an in-place read or write,
ByteEager acquires a metadata lock. ByteEager utilizes byte-locks [6] which have read-
write lock semantics. A write must acquire an exclusive lock to prevent other readers or
writers from accessing an address. Readers acquire a shared reader lock, allowing multiple
readers to concurrently read the same address. Each memory address hashes to a byte-lock
from a fixed size pool. A hash collision causes a byte-lock to protect access to multiple
addresses.

Byte-locks offer low read-lock acquisition overhead by avoiding an expensive compare-
and-swap (CAS) operation in favor of atomic byte operations. We extend byte-locks to
support the ReserveTM primitives described in Section 3.2, while maintaining backward
compatibility with read-write byte-locks.

25

owner

bl3bl2bl1bl0

...

bl47bl46bl45bl44

read− counter

64

bytes

(a) TLRW

owner

bl3bl2bl1bl0

...

bl55bl54bl53bl52

64

bytes

(b) RSTM

Figure 3.6: Byte-lock layout

3.4.1 Read-Write Byte-locks

Figure 3.6a illustrates the layout of byte-locks as original proposed in TLRW [6]. Byte-locks
consist of 3 zones:

• Owner field: Signals whether a lock is held (or is in the process of being acquired)
by a writer. If the byte-lock is locked, the owner field contains the thread id of the
lock owner. A value of 0 indicates that the lock is free.

• Byte-array: Indicates slotted threads that hold a shared reader lock. Each slotted
thread owns an element in the fixed size byte-array which indicates whether the lock
is held in read mode.

• Read-counter: A counter for unslotted threads that hold the lock as a shared
reader. Each unslotted thread increments the read-counter for read-lock acquisition
and decrements to free the lock.

The byte-lock structure is constrained to a 64 byte cache line to minimize memory
overhead and CPU bus traffic. Constraining the size limits the number of slotted threads
with an associated element in the byte-array. TLRW byte-locks use atomic byte opera-
tions on byte-array elements to perform efficient read-lock acquisition for slotted threads.
Unslotted threads increment and decrement the read-counter with an expensive CAS. Ad-
ditionally, the read-counter is shared between unslotted threads, causing higher contention
than experienced by slotted threads. Thus, slotted threads have less read-lock overhead
than unslotted threads. RSTM’s implementation of byte-locks maintain consistent perfor-
mance of read-lock acquisition by removing support for unslotted threads and omitting the
read-counter as observed in Figure 3.6b.

26

A TM_WRITE call acquires a byte-lock in exclusive mode by storing the thread id of the
current transaction in the owner field. Owner acquisition uses a CAS operation to set the
owner field from 0 to the thread id. If the lock is held, the CAS will fail as the owner field
is not 0. Thus, a writer can only acquire a lock that is free. A writer may restart a failed
acquisition for a number of times before aborting a transaction.

After owner acquisition succeeds, the writer must query all the flags in the byte-array
to ensure that there are no active readers. A writer may stall for a specified interval, in
order for readers to “drain out”. A reader is drained when it frees the lock due to a commit
or abort. Once there are no more readers, the writer has exclusive access to the memory
address protected by the byte-lock. Subsequent reads and writes by a writer need only
look at the owner field to verify ownership before performing a read or write.

A reader acquires a lock in shared mode by setting the current thread’s flag in the
byte-array and then querying the owner field for write ownership. If the lock is currently
held, a reader must clear its byte-array flag and either abort the current transaction or
spin before re-trying. A successful acquisition guarantees the address protected by the lock
will not be modified until the read lock has been freed. When a transaction tries to re-read
a previously read address, it first checks the owner field to determine if it has exclusive
access before querying the byte-array.

Upon commit, a transaction’s read locks are freed by clearing the respective byte-array
element and write locks are freed by setting the owner field to 0. Thus, all the lock
operations are non-blocking2.

3.4.2 ReserveTM Byte-locks

To support ReserveTM primitives we extend byte-locks as illustrated in Figure 3.7. Specif-
ically, we use 2 cache lines, add a released field as well as a release flag to byte-array
elements.

TLRW and RSTM constrain a byte-lock to a single cache line. Our evaluation system
has 64 hardware threads, which cannot be supported by only slotted threads. To retain
the consistent performance of RSTM’s implementation, we also do not support unslotted
threads. We allow byte-locks to spill across 2 cache lines and dedicate a cache line to the
byte-array. Larger byte-locks only incur a performance degradation [6] in artificial, random

2Lock operations may choose to spin and retry. However, this would be for a fixed interval and is only
applied as a performance improvement for pathological races.

27

owner

released

(unused)

bl3bl2bl1bl0

...

bl63bl62bl61bl60

f0f1(unused)

64

bytes

64

bytes

reserve flag

release flag

Figure 3.7: ReserveTM byte-locks

access benchmarks. Opting to use 2 cache lines was necessary for our setup and did not
have a measurable impact on our evaluation benchmark.

A reader sets the reserve flag during a read reservation and sets the release flag when
performing a release. The owner of the write lock uses the released field to indicate whether
there were any readers that have released the lock but have yet to commit. The writer
checks the release flags in the byte-array to determine if the lock has been released by a
reader. If the released field is set, the writer must stall at commit until all readers have
freed the lock.

To execute a TM_READ_RESERVE or TM_WRITE_RESERVE the lock acquisition logic remains
largely the same as with TM_READ and TM_WRITE, except memory access is not performed
by the runtime. The acquisition of a writer lock ensures that no other transaction can
read or write to an address. Thus after a successful write reservation, a thread can freely
modify the address without additional instrumentation. Similarly upon acquiring a read
lock for a read access, the address is guaranteed to not change and can be read without
instrumentation. Removing instrumentation from subsequent accesses improves the use of
the CPU cache. We avoid the need to reload the byte-lock cache lines to verify that the
state of the owner field or byte-array element. Avoiding the byte-array check is essential
for readers, as the cache line could be invalidated by other readers that acquire or release

28

the lock.

To release an address, a thread first checks the owner field of the associated byte-
lock. If it is set to the current thread id, then the release is ignored: writes cannot be
released. Otherwise, the byte-array byte is atomically modified to clear the reserve flag
and set the release flag. Both the reserve and release flags must be cleared on commit or
abort. A repeat read to a released memory address must atomically set the read bit while
maintaining the release bit. If the owner field is set to the thread id of another thread,
this implies that a writer has acquired the released lock and the reader must abort. Since
writers may modify the value in an address, the reader must abort to avoid reading a value
inconsistent with its initial read.

DSTM [13] used reference counting between read reservations and releases, in order to
detect the final release of an address. Updating a reference count makes reads and releases
more expensive due to cache line invalidation. ReserveTM byte-locks avoid writes on repeat
reads by returning true on a TM_READ_RESERVE if the read flag was previously unset, and
false otherwise. A program should only perform a release if the read reservation returns
true.

Read-write byte-locks do not allow a writer to acquire a lock while there are in-flight
readers. Releases enable a TM_WRITE_RESERVE call to acquire a lock on a released address.
Writers may modify memory locations without waiting for readers to drain, thereby in-
creasing concurrency between transactions. To support acquisition of released locks, the
writer continues to acquire the lock by setting the owner field and checking the reserve
flags as with read-write byte-locks. If there are readers that are concurrently trying to re-
acquire a released lock, they will abort upon observing the owner has been set. Thus, no
readers can reacquire the read lock after write-lock acquisition. Upon successful write-lock
acquisition, the writer must check the release flags in the byte-array to identify any active
released readers. If the lock has been released, the writer must set the reserved field in
order to perform commit-time validation.

The introduction of a blocking operation at commit is a key difference between read-
write byte-locks and ReserveTM byte-locks. During a commit, the writer must check that
all released readers have been drained. The writer must block until all the released readers
have committed or aborted. This ensures serializability of transactions, since readers could
not have executed before the writer. In addition, the order in which read and write locks
are freed is critical. Since a writer blocks during commit, it is possible to have a circular
dependency whereby a writer is blocked waiting for a thread that is also blocked. If the
second thread is waiting for the first writer to free a released lock, they will deadlock.
Thus a writer must first free all of its read locks before blocking. This circular dependency

29

cannot be resolved without at least one of the transactions aborting.

30

Chapter 4

Experimental Evaluation

We evaluated our approach with a manually-instrumented version of the STAMP [19]
benchmark suite provided with RSTM [25]. Note that the bayes++ benchmark did not
run under our setup. We use the modified byte-locks [6], as described in the previous
section, and adapt the benchmarks to use the ReserveTM primitives. For each benchmark,
we compare our results against using the standard API with the ByteEager and ByteLazy
algorithm, which use byte-locks in an eager or lazy versioned fashion respectively. Any pair
of reservations and releases that we added represent a pessimistic view of what a compiler
could do; i.e. we only apply reservations and releases with intra-procedural analysis and
do not cross function boundaries. Furthermore, we favor the use of the TM_READ_RELEASE

call over TM_READ, thus optimistically releasing reads to improve concurrency.

We run the benchmarks on a 4-way AMD Opteron 6100 with a total of 64 hardware
threads and 128GB of RAM. To increase predictability, we execute one software thread
per hardware thread, distribute threads evenly across all NUMA nodes, and disable thread
migration. Disabling thread migration enables cache line traffic to be more consistent since
a thread’s working set does not need to be migrated. Previous evaluations report results
which utilized more software threads than supported by the processor. This causes the
thread scheduler to affect the performance of the benchmark, as it is possible for a thread
to be scheduled out during the execution of a transaction, increasing unpredictability as
follows. If an in-flight transaction has a working set which conflicts with another transac-
tion, a thread switch may result in a longer transaction time, resulting in more conflicts
than expected. Conversely, if a transaction is stalling during commit-time validation, al-
lowing another thread to execute may improve performance as it allows useful work to be
done. Understanding the role of the thread scheduler in the performance of an STM run-
time is beyond the scope of this work and requires a dedicated analysis. Our methodology

31

1 if (TMLIST_ITER_HASNEXT (&it, chainPtr)) {

2 pair_t* pairPtr = TMLIST_ITER_NEXT (&it, chainPtr);

3 dataPtr = pairPtr ->secondPtr;

4 break;

5 }

Figure 4.1: Original iterator access in STAMP

1 pair_t* pairPtr = 0;

2 if ((pairPtr = TMLIST_ITER_NEXT (&it , chainPtr))) {

3 dataPtr = pairPtr ->secondPtr;

4 break;

5 }

Figure 4.2: Modified iterator access in STAMP

allows us to stably measure and compare our approach to the standard API. We expect
an optimized thread scheduler to further improve upon our results.

4.1 Benchmark Optimizations

Manual instrumentation of STAMP results in very little over-instrumentation. RSTM
applies domain-specific knowledge to only instrument access to memory that could be
shared between transactions. However, we developed a LLVM [15] compiler pass to add
profiling to the runtime instrumentation functions, looking for optimization opportunities.
In particular, we used dynamic profiling to look for patterns where a benchmark was re-
reading a released address and examined whether it could be optimized with a reserve and
release. Our investigation was able to identify a common pattern, as shown in Figure 4.1.

Profiling showed that the definition of TMLIST_ITER_NEXT loads nextPtr, a member of
the it iterator object. When it is read, our analysis identified it as a previously released
address. This is because the check in TMLIST_ITER_HASNEXT will always read nextPtr

first (to check that it is not-null). Rather than utilizing a reserve and release to reduce
the instrumentation overhead, we modified the code as shown in Figure 4.2. The modified
implementation of TMLIST_ITER_NEXT only accesses the data member once and returns null
if nextPtr is null. Note that TMLIST_ITER_HASNEXT was used in many other places and
was not always followed by a call to TMLIST_ITER_NEXT call. This pattern was seen with
more complex data structures as well. Such data structures also introduced unnecessary
duplicate lookups. This is discussed at greater length in the benchmark evaluation.

32

1 TM_BEGIN ();

2 long val = TM_READ (* new_centers_len[index]) + 1;

3 TM_WRITE (* new_centers_len[index], val);

4 for (j = 0; j < nfeatures; j++) {

5 val = TM_READ(new_centers[index][j]) + feature[i][j];

6 TM_WRITE(new_centers[index][j], val);

7 }

8 TM_END ();

Figure 4.3: kmeans transaction

4.2 Evaluation

For each benchmark we calculate the speedup over sequential performance, provided by
three algorithms:

• ReserveTM: ReserveTM byte-locks with ReserveTM primitives.

• ByteEager: Read-write byte-locks with eager versioning and traditional STM prim-
itives.

• ByteLazy: Read-write byte-locks with lazy versioning and traditional STM primi-
tives.

Speedup is calculated by taking the ratio of the time to execute an STM instrumented
workload versus a non-instrumented sequential workload. In addition, we compare the
performance of ReserveTM and ByteLazy to ByteEager to demonstrate any improvements
that ReserveTM achieves and how lazy versioning compares to eager versioning.

4.2.1 kmeans

The kmeans benchmark applies a k -means clustering algorithm to group n samples into k
clusters. The transactional version of this algorithm uses 3 transactions. The main work
is done in a single transaction, shown in Figure 4.3, which increments the length of the
cluster centers and then sums all the objects within it.

The remaining 2 transactions increment 2 separate globals. As a result, those transac-
tions are small and the contention is largely determined by the earlier described transaction.
The kmeans benchmark has both high and low contention configurations which adjust the
value of k, the number of clusters. More clusters would result in fewer conflicts since
transactions are less likely to be processing the same cluster center.

33

1 4 8 16 32 48 64
0×

2×

4×

6×

8×
Speedup over Sequential

1 4 8 16 32 48 64
0%

20%

40%

60%

80%

100%

Speedup over ByteEager

ReserveTM ByteLazy ByteEager

Figure 4.4: Speedup of STM threads for kmeans-low++

1 4 8 16 32 48 64
0×

1×

2×

3×

4×
Speedup over Sequential

1 4 8 16 32 48 64

−100%

−50%

0%

50%

100%

Speedup over ByteEager

ReserveTM ByteLazy ByteEager

Figure 4.5: Speedup of STM threads for kmeans-high++

34

For kmeans, any access to an address consists of a TM_READ immediately followed by
a TM_WRITE. Since all addresses that are read, are written to, releases cannot be used
as it is not possible to release an address in the write set of a transaction. However,
compression can collapse the 2 instrumentation points into a single TM_WRITE_RESERVE

call. The dependency analysis in section 3.3.2 removes all instrumentation from the for
loop in Figure 4.3, since each loop iteration depends on the previous one. Further, since a
write to new_centers[index][0] is dependent on a write to *new_centers_len[index]

a single write reservation is sufficient for the entire transaction. Hence, each transaction
only requires a single TM_WRITE_RESERVE instrumented call.

Figure 4.4 and 4.5 demonstrate how the use of the ReserveTM primitives give consistent
improvements over both eager and lazy versioning. We show significant improvements
over sequential performance, up to 16 cores with low contention and 8 cores with high
contention. In both configurations, as we add more threads the contention from writer
acquisition dominates the benchmark. Though contention is restricted to a single write
reservation in a transaction, expensive cache line invalidations across NUMA nodes degrade
the performance of the benchmark with more threads.

Our results show an important trade-off between eager and lazy versioning. Lazy
versioning has slightly better performance than eager versioning under low contention.
This is due to the lazy commit sequence applying all updates to the new_centers in
bulk at commit time. The sequential array access benefits from processor caching logic.
On the other hand, eager versioning is updating the array in-place in an expensive loop
that includes acquiring metadata locks. Under high contention, lazy versioning performs
poorer than eager versioning since transactions are more likely to abort during commit-time
validation. ReserveTM enjoys the benefits of in-place updates, while performing efficient
sequential array access as the for loop does not have any runtime instrumentation.

4.2.2 Yada

The yada benchmark implements Delaunay mesh refinement. Yada transactions operate
on a mesh data structure which utilizes vectors and trees to represent connections between
mesh elements. Mesh traversal incurs significant contention, as transaction working sets
are large and likely to conflict. Releases enable the benchmark to avoid livelock due to the
contention with more threads.

35

1 4 8 16 32 48 64
0×

1×

2×

3×

4×

5×
Speedup over Sequential

ReserveTM ByteLazy ByteEager

Figure 4.6: Speedup of STM threads for yada++

In Figure 4.6, increasing the running threads to 32 threads degrades the performance
of all algorithms. Beyond 32 threads, eager conflict detection in ByteEager causes livelock,
while ByteLazy and ReserveTM continue to make forward progress. For ByteLazy, lazy
conflict resolution favored transactions that committed early. As a result, ByteLazy always
committed at least one of the conflicting transaction and continued to operate beyond
32 threads. Eager conflict detection favored transactions with smaller reserved read sets.
However, the large transaction working sets caused transactions to repeatedly be in conflict,
causing livelock for ByteEager. Releases reduced the reserved read set of a transaction,
reducing the opportunity for conflicts and avoided livelock. Thus, the performance of
ReserveTM degrades more gracefully than ByteEager. We expect ReserveTM to livelock
with sufficient concurrent threads.

A shared work queue in yada also increases conflicts between transactions. The queue
elements are stored in an array-backed heap. Whenever yada removed an element from the
heap, it removed the root node and replaced it with the last element in the heap. Modifying
the root node caused a write conflict between concurrent dequeue operations. This caused
concurrent dequeues to always have conflicting write sets. None of the algorithms were
able to exploit concurrency during concurrent dequeues.

36

1 4 8 16 32 48 64
0×

0.5×

1×

1.5×

2×
Speedup over Sequential

1 4 8 16 32 48 64

−40%

−20%

0%

20%

Speedup over ByteEager

ReserveTM ByteLazy ByteEager

Figure 4.7: Speedup of STM threads for vacation-low++

1 4 8 16 32 48 64
0×

0.5×

1×

1.5×

2×
Speedup over Sequential

1 4 8 16 32 48 64

−20%

−10%

0%

10%

20%

30%

Speedup over ByteEager

ReserveTM ByteLazy ByteEager

Figure 4.8: Speedup of STM threads for optimized vacation-low++

37

1 4 8 16 32 48 64
0×

0.5×

1×

1.5×

2×
Speedup over Sequential

1 4 8 16 32 48 64

−40%

−20%

0%

20%

40%

Speedup over ByteEager

ReserveTM ByteLazy ByteEager

Figure 4.9: Speedup of STM threads for vacation-high++

1 4 8 16 32 48 64
0×

0.5×

1×

1.5×

2×
Speedup over Sequential

1 4 8 16 32 48 64

−20%

0%

20%

40%

Speedup over ByteEager

ReserveTM ByteLazy ByteEager

Figure 4.10: Speedup of STM threads for optimized vacation-high++

38

1 TM_BEGIN ();

2 long bill = MANAGER_QUERY_CUSTOMER_BILL(managerPtr , customerId);

3 if (bill >= 0) {

4 MANAGER_DELETE_CUSTOMER(managerPtr , customerId);

5 }

6 TM_END ();

Figure 4.11: Vacation cancellation

4.2.3 Vacation

Vacation simulates a travel reservation system, modifying reservations and customers as
elements in a red-black tree. There are 3 types of transactions that occur: reservations,
cancellations and updates. The reservation transaction finds the item to reserve, checks
the price, adds a new customer to the database and finally creates a reservation record.
The cancellation transaction searches for a customer based on an id and then deletes the
customer from the tree if their bill is 0. The update transaction is the simplest, which
adds or removes items from the inventory by looking up the item in the inventory tree and
updating its associated record.

Most vacation transactions perform writes after accumulating a large read working sets
from tree traversals. The large read sets prevent transactions from concurrently executing.
Even though transactions may operate on different branches of a tree, if a write needs to
re-balance the red-black tree, it conflicts with the read set of another in-flight transaction.
As a result, Figure 4.7 and 4.9, show ByteEager to perform poorly as we increased threads.
ReserveTM performs better than ByteEager, matching the performance of ByteLazy, as it
is able to release its read set while doing tree traversals.

Surprisingly, ReserveTM had poorer performance than ByteEager at lower thread
counts. Our profiling determined the cause to be re-reads of released addresses. The
re-reads were due to redundant lookups in the benchmark implementation. Figure 4.11
lists the cancellation transaction. The transaction performs 2 lookups of customerId in
the customer tree. The first lookup finds the customer record and gets the balance of the
customer’s bill and the second lookup is to delete the customer. The reservation trans-
action suffers in the same manner as it does a 3 separate lookups for an item: the initial
lookup for the presence check, then for the price and lastly to make the reservation. We
modified the benchmark to avoid the unnecessary lookups and were able to improve the
performance of ReserveTM at lower thread counts as compared to ByteEager. Figure 4.8
and 4.10, show results from using the optimized benchmark.

39

1 4 8 16 32 48 64
0×

0.5×

1×

1.5×

2×

2.5×
Speedup over Sequential

1 4 8 16 32 48 64

−40%

−20%

0%

20%

40%

60%

Speedup over ByteEager

ReserveTM ByteLazy ByteEager

Figure 4.12: Speedup of STM threads for genome++

4.2.4 Genome

The genome benchmark takes a number of DNA subsequences and constructs the original
sequence from them. This benchmark, is notable for containing 2 phases. The first phase
populates a shared hash table with unique sequences from the subsequences, while the
second phase builds a set of unmatched segments and dequeues from it to construct the
original sequence. Most contention came from hash table operations. The hash table
buckets consisted of a linked list of nodes sorted by their key. To insert an element into
the hash table, the key was hashed to find the hash bucket and then the list was iterated
over to see if an element for the node already existed, before inserting it.

With ByteEager, most of the transaction aborts were from writers that blocked on
readers. ReserveTM reduced the number of aborts, but at the cost of more reader aborts.
Since the workload was very read heavy, figure 4.12 illustrates ReserveTM to generally
have poorer performance than byteEager. However, ByteEager performance degraded
sharply when increasing the contention with more threads. Thus ReserveTM had better
performance with 64 threads.

40

1 4 8 16 32 48 64
0×

0.2×

0.4×

0.6×

0.8×

1×
Speedup over Sequential

1 4 8 16 32 48 64

−20%

0%

20%

40%

60%

80%

100%

Speedup over ByteEager

ReserveTM ByteLazy ByteEager

Figure 4.13: Speedup of STM threads for intruder++

4.2.5 Intruder

Intruder models a transactional network intrusion detection system. It consists of 3
transactions. 2 of these transactions pop items from a queue, while the 3rd processed trees
and linked list data structures. We observed from Figure 4.13, that none of the algorithms
offered any scalability improvements, as they all were slower to execute than the sequential
version of the benchmark. The poor performance was attributed to early writes that would
consistently cause conflicts. As a result, more of the processing time was spent resolving
conflicts and rolling back changes, rather than doing actual work.

41

1 4 8 16 32 48 64
0×

5×

10×

15×

Speedup over Sequential

1 4 8 16 32 48 64

−5%

0%

5%

10%

Speedup over ByteEager

ReserveTM ByteLazy ByteEager

Figure 4.14: Speedup of STM threads for labyrinth++

4.2.6 Labyrinth

The labyrinth benchmark applied Lee’s algorithm [16] to solve maze routing. The
benchmark makes a private copy of the global three-dimensional grid, without runtime
instrumentation, and works off the copy to find a path in the maze. Once the benchmark
finds a path, it attempts to add the path back into the global grid while revalidating points
along the path. This approach avoids conflicts while performing path finding, as working
off the grid copy does not require runtime instrumentation.

As a result of this design, privatization is built into the algorithm and aborts are scarce.
Figure 4.14 shows little additional speed up that a specific STM algorithm can offer. All
the algorithms have very similar performance whereby the speedup tapers off at higher
thread counts. ReserveTM offers a very slight improvement over the other algorithms, as
it is able to use compression to reduce instrumentation when reading the grid for validation
and adding a path.

42

1 4 8 16 32 48 64
0×

2×

4×

6×

8×

10×

12×
Speedup over Sequential

1 4 8 16 32 48 64

−5%

0%

5%

10%

Speedup over ByteEager

ReserveTM ByteLazy ByteEager

Figure 4.15: Speedup of STM threads for ssca2++

4.2.7 SSCA2

The Scalable Synthetic Compact Applications 2 (SSCA2) [3] benchmark executes mostly
small transactions on a large multi-graph. There is hardly any contention, as very little
time is spent executing transactional code, and the read and write sets of transactions are
quite small. As a result, similar to labyrinth, Figure 4.15 show the performance of STM
algorithms do not differ much as most of the benchmark operates outside of a transac-
tion.

43

Chapter 5

Conclusions and Future Work

ReserveTM improves the performance and scalability of eager versioned STMs by strongly
embracing privatization and eager releases. Reservations enable instrumentation-free ac-
cess to shared memory while releases enable additional concurrency between readers and
writers.

For a runtime to fully realize the benefits of ReserveTM, it must support a new set of
primitives that explicitly communicate when an address has been privatized. The primi-
tives reduce instrumentation overhead while still enabling interleaving of transactions.

Our evaluation showed significant performance gains which either surpassed the per-
formance of lazy versioning or narrowed the difference between eager and lazy runtimes.
The exception was with genome where the performance gains were only visible at higher
thread counts.

5.1 Future Work

Through experimentation with manual instrumentation we found that the ReserveTM
provides a highly effective means to communicate with the STM runtimes. Manual instru-
mentation, as opposed to compiler instrumentation, is brittle and can easily be incorrectly
applied. We plan on implementing ReserveTM within a compiler to transparently instru-
ment transactions. As compilers often suffer from over-instrumentation, we believe that
reservations can be use to reduce the impact of over-instrumented addresses.

We were able to demonstrate that modifications could be made to byte-locks to support
reservations and releases. In order to validate our claim that ReserveTM can be applied to

44

other eager versioned algorithms, we plan on adapting TinySTM to support reservations
and releases.

The STAMP benchmark suite also did not offer enough variance in workloads, as some
of the benchmarks were impossible to improve upon. We intend to evaluate ReserveTM
on additional benchmarks such as STMBench7 [10].

45

References

[1] Intel R© Transactional Memory Compiler and Runtime Application Binary Interface.
Intel R© Corporation, November 2008.

[2] Intel Architecture Instruction Set Extensions Programming Reference, 2012. http:

//software.intel.com/file/41604.

[3] David A Bader and Kamesh Madduri. Design and implementation of the HPCS graph
analysis benchmark on symmetric multiprocessors. In Proceedings of the 12th interna-
tional conference on High Performance Computing, pages 465–476, Berlin, Heidelberg,
2005. Springer-Verlag.

[4] Luke Dalessandro, Dave Dice, Michael L. Scott, Nir Shavit, and Michael F. Spear.
Transactional Mutex Locks. In 16th International Euro-Par Conference on Parallel
Processing: Part II, pages 2–13, Berlin, Heidelberg, 2010. Springer-Verlag.

[5] Dave Dice, Ori Shalev, and Nir Shavit. Transactional Locking II. In Proceedings of
the 20th International Conference on Distributed Computing, pages 194–208, Berlin,
Heidelberg, 2006. Springer-Verlag.

[6] Dave Dice and Nir Shavit. TLRW: Return of the Read-Write Lock. In Proceedings
of the 22nd ACM Symposium on Parallelism in Algorithms and Architectures, pages
284–293, New York, NY, USA, 2010. ACM.

[7] Aleksandar Dragojevic, Yang Ni, and Ali-Reza Adl-Tabatabai. Optimizing Transac-
tions for Captured Memory. In Proceedings of the 21st Annual Symposium on Par-
allelism in Algorithms and Architectures, pages 214–222, New York, NY, USA, 2009.
ACM.

[8] Pascal Felber, Christof Fetzer, Ulrich Müller, Torvald Riegel, Martin Süßkraut, and
Heiko Sturzrehm. Transactifying Applications using an Open Compiler Framework.
In 2nd ACM SIGPLAN Workshop on Transactional Computing, August 2007.

46

http://software.intel.com/file/41604
http://software.intel.com/file/41604

[9] Pascal Felber, Christof Fetzer, and Torvald Riegel. Dynamic Performance Tuning of
Word-Based Software Transactional Memory. In 13th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, pages 237–246, New York, NY,
USA, 2008. ACM.

[10] Rachid Guerraoui, Michal Kapalka, and Jan Vitek. STMBench7: A Benchmark for
Software Transactional Memory. In Proceedings of the 2nd ACM SIGOPS/EuroSys
European Conference on Computer Systems 2007, pages 315–324, New York, NY,
USA, 2007. ACM.

[11] Ruud A Haring, Martin Ohmacht, Thomas W Fox, Michael K Gschwind, David L
Satterfield, Krishnan Sugavanam, Paul W Coteus, Philip Heidelberger, Matthias A.
Blumrich, Robert W Wisniewski, Alan Gara, George Liang-Tai Chiu, Peter A Boyle,
Norman H Chist, and Changhoan Kim. The IBM Blue Gene/Q Compute Chip. IEEE
Micro, 32(2):48–60, 2012.

[12] Tim Harris, James Larus, and Ravi Rajwar. Transactional Memory, 2nd edition.
Synthesis Lectures on Computer Architecture, 5(1):1–263, 2010.

[13] Maurice Herlihy, Victor Luchangco, Mark Moir, and William N. Scherer, III. Software
Transactional Memory for Dynamic-Sized Data Structures. In Proceedings of the
Twenty-Second ACM Symposium on Principles of Distributed Computing, pages 92–
101, New York, NY, USA, 2003. ACM.

[14] Maurice Herlihy and J Eliot B Moss. Transactional Memory: Architectural Support for
Lock-Free Data Structures. In Proceedings of the 20th annual international symposium
on computer architecture, pages 289–300, New York, NY, USA, 1993. ACM.

[15] Chris Lattner and Vikram Adve. LLVM: A Compilation Framework for Lifelong Pro-
gram Analysis & Transformation. In 2004 International Symposium on Code Gener-
ation and Optimization, pages 75–86, Palo Alto, CA, USA, March 2004.

[16] C. Y. Lee. An Algorithm for Path Connections and Its Applications. Electronic
Computers, IRE Transactions on, EC-10(3):346–365, 1961.

[17] V J Marathe, M F Spear, and M L Scott. Scalable Techniques for Transparent Priva-
tization in Software Transactional Memory. In Proceedings of the 2008 37th Interna-
tional Conference on Parallel Processing, pages 67–74, 2008.

[18] Virendra J. Marathe, Michael F. Spear, Christopher Heriot, Athul Acharya, David
Eisenstat, William N. Scherer, III, and Michael L. Scott. Lowering the Overhead

47

of Nonblocking Software Transactional Memory. In 1st ACM SIGPLAN Workshop
on Languages, Compilers, and Hardware Support for Transactional Computing, June
2006.

[19] Chi Cao Minh, JaeWoong Chung, Christos Kozyrakis, and Kunle Olukotun. STAMP:
Stanford Transactional Applications for Multi-Processing. In 2008 IEEE International
Symposium on Workload Characterization, pages 35–46, September 2008.

[20] Bratin Saha, Ali-Reza Adl-Tabatabai, Richard L. Hudson, Chi Cao Minh, and Ben-
jamin Hertzberg. McRT-STM: A High Performance Software Transactional Memory
System for a Multi-Core Runtime. In Proceedings of the 19th ACM SIGPLAN Sympo-
sium on Principles and Practice of Parallel Programming, pages 187–197, New York,
NY, USA, 2006. ACM.

[21] William N. Scherer, III and Michael L. Scott. Advanced Contention Management
for Dynamic Software Transactional Memory. In Proceedings of the Twenty-Fourth
Annual ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing,
pages 240–248, New York, NY, USA, 2005. ACM.

[22] Martin Schindewolf, Albert Cohen, Karl Wolfgang, Andrea Marongiu, and Luca
Benini. Towards Transactional Memory Support for GCC. In 1st GCC Research
Opportunities Workshop (2009), January 2009.

[23] Nir Shavit and Dan Touitou. Software Transactional Memory. In Proceedings of
the fourteenth annual ACM symposium on Principles of distributed computing, pages
204–213, New York, NY, USA, 1995. ACM.

[24] Tatiana Shpeisman, Vijay Menon, Ali-Reza Adl-Tabatabai, Steven Balensiefer, Dan
Grossman, Richard L. Hudson, Katherine F. Moore, and Bratin Saha. Enforcing Iso-
lation and Ordering in STM. In Proceedings of the 2007 ACM SIGPLAN Conference
on Programming Language Design and Implementation, pages 78–88, New York, NY,
USA, 2007. ACM.

[25] Michael F. Spear. Lightweight, Robust Adaptivity for Software Transactional Mem-
ory. In Proceedings of the 22nd ACM Symposium on Parallelism in Algorithms and
Architectures, pages 273–283, New York, NY, USA, 2010. ACM.

[26] Michael F. Spear, Virendra J. Marathe, Luke Dalessandro, and Michael L. Scott.
Privatization Techniques for Software Transactional Memory. Technical Report 915,
February 2007.

48

[27] Amy Wang, Matthew Gaudet, Peng Wu, José Nelson Amaral, Martin Ohmacht,
Christopher Barton, Raul Silvera, and Maged Michael. Evaluation of Blue Gene/Q
Hardware Support for Transactional Memories. In Proceedings of the 21st Interna-
tional Conference on Parallel Architectures and Compilation Techniques, pages 127–
136, New York, NY, USA, 2012. ACM.

[28] Cheng Wang, Wei-Yu Chen, Youfeng Wu, Bratin Saha, and Ali-Reza Adl-Tabatabai.
Code Generation and Optimization for Transactional Memory Constructs in an Un-
managed Language. In 2007 International Symposium on Code Generation and Op-
timization, pages 34–48, March 2007.

[29] Qingping Wang, Sameer Kulkarni, John Cavazos, and Michael Spear. A Transactional
Memory with Automatic Performance Tuning. ACM Transactions on Architecture and
Code Optimization, 8(4):54:1–54:23, 2012.

[30] Richard M. Yoo, Yang Ni, Adam Welc, Bratin Saha, Ali-Reza Adl-Tabatabai, and
Hsien-Hsin S. Lee. Kicking the Tires of Software Transactional Memory: Why the
Going Gets Tough. In Proceedings of the 20th Annual Symposium on Parallelism in
Algorithms and Architectures, pages 265–274, New York, NY, USA, 2008. ACM.

49

	List of Figures
	Introduction
	Background
	Approach
	Limitations
	Contributions
	Organization

	Related Work
	Privatization and Reservations
	Releases

	ReserveTM
	STM Primitives
	ReserveTM Primitives
	Further optimizations
	Compression
	Reserve Dependencies

	ByteEager
	Read-Write Byte-locks
	ReserveTM Byte-locks

	Experimental Evaluation
	Benchmark Optimizations
	Evaluation
	kmeans
	Yada
	Vacation
	Genome
	Intruder
	Labyrinth
	SSCA2

	Conclusions and Future Work
	Future Work

	References

