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Abstract 

Lignocellulose is one of the most abundant carbon sources in nature. This naturally-occuring 

substance is an underutilized source of bioenergy. A major bottleneck in biofuel processing is the 

enzymatic hydrolysis of lignocellulose into its ultimate fermentable product, glucose. 

Cellulomonas fimi is a well-studied soil organism known for its capabilities to efficiently 

hydrolyze cellulose. Recently sequenced genomes of Cellulomonas fimi and Cellulomonas 

flavigena have allowed analysis to reveal previously unidentified cellulases from several 

glycoside hydrolase (GH) families.  This study also includes the expression of secreted cellulases 

from families GH 5, 6, and 9 at the protein level by the native organism after growth in media 

supplemented with carboxymethylcellulose or soluble xylan. In order to find enzymes with novel 

qualities, the cloning and expression of these newly identified cellulases from C. fimi and C. 

flavigena were done. One of these enzymes is Celf_1230 (Cel6C), a putative cellobiohydrolase 

from the glycoside hydrolase family 6. Using substituted cellulose derivatives as substrates, we 

have characterized Celf_1230 to be a thermostable enzyme with endoglucanase activity. 
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Chapter 1 

 Summary 
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Lignocellulose is an abundant organic compound that is currently a highly underutilized carbon 

source that has potential for biofuel production. Enzymes are necessary for the saccharification 

of cellulose into oligosaccharides, cellobiose, and ultimately into glucose for downstream 

fermentation. In nature, cellulose decomposition is achieved through the action of cellulase 

enzymes from microorganisms like fungi and bacteria. These organisms are responsible for the 

recycling of carbon that is trapped in the terrestrial biosphere. Thus, the glycoside hydrolases of 

interest, which are necessary for the complete degradation of this substrate, are: endo-β-1,4-

glucanases (endoglucanases), exo-β-1,4-glucanases (cellobiohydrolases), β-glucosidases, and the 

corresponding enzymes that act on hemicellulosic substrates. Cellulomonas spp. potentially 

possess the key enzymes to improve industrial production of bioproducts. Analysis of the 

recently sequenced genomes of actinobacteria Cellulomonas fimi and Cellulomonas flavigena 

have revealed previously unidentified cellulases of several glycoside hydrolase (GH) families. 

This thesis focuses on expression and characterization of recombinant glycosidases from families 

GH 5, 6, and 9. This permitted me to investigate uncharacterized endo-β1,4-glucanases and 

cellobiohydrolases. Moreover, GH 5 and 9 are large families with diverse substrate specificities 

that are of interest for biomass utilization.  

In Chapter 2, biomass is introduced and the composition of lignocellulose is discussed in detail. 

Additionally, cellulosic substrates used in research are explained and compared. Additionally, 

glycoside hydrolases, specifically those that act on cellulosic substrates, are discussed in this 

chapter. This details discussing the mechanisms utilized by these enzymes. Cellulase-producing 

organisms are briefly compared in Chapter 2. Furthermore, this chapter introduces the traits of 

the Cellulomonas spp. for a complete profile. Chapter 3 presents the complete materials and 

methods for the entire thesis. Chapter 4 presents the results of the thesis. This includes 



3 
 

bioinformatics, proteomic and RT-PCR data and procedures used to elucidate the expression of 

cellulases from C. fimi and C. flavigena. Information gathered from this, along with genomic 

analysis, provided an initial screen for targets to be cloned, expressed, and purified for detailed 

characterization of enzymatic activity. Among the dozens of genes that were cloned, there was 

one successful and interesting cellulase Celf_1230. The expression, purification, and 

characterization of this enzyme is the subject of the second half of Chapter 4. The last chapter 

will focus on the future perspectives that can be pursued to complement the work that is 

presented here. 
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Chapter 2 

Introduction 
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2.1 Biofuels 

The decreasing global reserves of fossil fuels and the exponential increase in demand have 

necessitated the search for alternative sources of energy. In particular, biofuels are one of the 

popular options for renewable energy for several reasons. First, biofuels are readily introduced 

into our current energy infrastructure due to the similarity to fossil fuels. In fact, contemporary 

fuel is already supplemented with as much as 5-10% bioethanol in certain geographic regions 
1,2

. 

Also, slight modifications to combustion engines can allow this machinery to run on 85% 

biofuels today 
2
. Secondly, its liquid property allows energy to be stored and transported for long 

durations and distances. This is in contrast to the limitations of the energy grid of other 

alternative solutions (i.e. hydro, wind, and solar energy). Biofuels can be subcategorized into two 

broad categories. Contemporary biofuels are either sugarcane- or starch-based; while second-

generation are based on lignocellulosic starting material. The intrinsic difference between the 

two feedstocks is their characterization as alpha- and beta-carbohydrates, respectively.  

Contemporary (first generation) biofuels poses two problems: First, existing supplies of starch 

raw materials are insufficient to meet increasing demand
3
. Secondly, they are a controversial 

resource for bioconversion due to rising food costs
3
. However, relative to starch, lignocellulose is 

difficult to process due to its composition of lignin, hemicellulose, and crystalline cellulose. For 

this reason, contemporary biofuels continue to be the choice of biofuel producers. 

Production of lignocellulose biofuel (next generation) requires three fundamental steps: 

Pretreatment of lignocellulose; hydrolysis/saccharification of long-chain carbohydrates; and 

fermentation of monosaccharides into ethanol 
4
. One of the major bottlenecks in lignocellulose 

processing are enzyme production and saccharification, which is the hydrolysis of cellulose and 
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hemicellulose into their respective fermentable sugars
4,5

 As a result of the current pretreatment 

methods, the industrial bioconversion of cellulose into ethanol is currently uneconomical and 

unfeasible due to the lack of inexpensive efficient biocatalysts that can perform at harsh 

conditions 
4,5

. 

2.2 Starch 

Starch, a source of first-generation biofuel, is a carbohydrate macromolecule composed of 

amylopectin and amylose 
6
. Amylose is a linear polymer made of α-1,4 linked D-glucopyranosyl 

monomers. On the other hand, amylopectin is a polysaccharide composed of α-1,4-glucan chains 

that branches with α-1,6 linkages in a cluster-like design 
6
. Amylase (EC 3.2.1.1) hydrolyzes 

amylose & amylopectin by either acting at random sites or from the non-reducing end to 

ultimately produce maltose, which is a disaccharide of glucose molecules in an α-1,4 

configuration 
7
. Amylase has huge economic and industrial impact, which makes up about 30% 

of the world’s enzyme production 
8
.  

2.3 Lignocellulose 

Plants contain 99% of the carbon found in living organisms, approximately 27 x 10
10

 tons 
9
. 

Lignocellulose is a highly abundant organic compound from plant biomass that is underutilized 

in the rising efforts towards renewable green energy 
1,4,5,10,11

. There are rich sources of 

lignocellulose from agricultural residues and industrial waste, which makes it an excellent 

alternative compared to biofuel from food crops 
5
. Lignocellulose is made up of three significant 

substances (Figure 1): Cellulose makes up the core and acts as the framework; Hemicellulose 

surrounds the cellulose as a matrix component; and Lignin is a resilient encrusting substance that 
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gives wood its hardy characteristic. It can be extrapolated that about 40% of the plant-carbon is 

bound in cellulose, 30% in lignin, 26% in other polysaccharides 
9
.  

2.4 Plant cell wall  

The fundamental organization of bundled cellulose is the elementary fibril. A cross-sectional 

view of an elementary fibril shows that it could contain roughly 40 cellulose chains. Aggregates 

of elementary fibrils are covered by hemicellulose and lignin 
12

. These micelles then form highly 

ordered cellulose microfibrils and its width can vary between different materials 
13,14

. These 

microfibrils are indefinite in length and are linked laterally into lamellae that form different cell 

wall layers 
13

. The conceptual organization of the cell wall contains a thin primary outer layer 

and three secondary layers 
13

. These layers are differentiated from one another based on the order 

and orientations of the microfibrils. 

2.5 Lignin 

Lignin accounts for roughly 30% of the organic carbon found in the biosphere, which makes it 

the second most abundant biopolymer in existence 
15

. Here, the importance of lignin lies within 

understanding the pretreatment methods and innovations for processing efficiency. However, due 

to its carbon content, lignin itself is actually a source of potential energy and useful chemical 

components. 

The lignin architecture is fundamental for the structural integrity of the cell wall and thus the 

rigidity of the wood 
15

. Likewise, the structure and constitution of lignin makes it highly resistant 

to degradation and enzymatic action. It is a three-dimensional racemic aromatic polymer with an 

irregular and disordered branching structure 
9,15

. Its configuration is a random combination of 

phenylpropane [hydroxycinnamyl alcohol] units (p-coumaryl, coniferyl, and sinapyl alcohols) 
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that differ in their degree of methoxylation 
15,16

. However, studies in the past decade show that 

there are other monolignols involved aside from the three aforementioned phenylpropanoids 
15

.  

2.6 Hemicellulose 

Hemicellulose is a heterogeneous polysaccharide that has a complex structure made up of 

polymers of different sugars. Depending on the plant material, hemicellulose will have varying 

content of pentoses (xylose and arabinose), hexoses (glucose, mannose, and galactose), sugar-

acids, and deoxy-sugars 
16

. For hardwoods, the primary hemicellulose component is xylan 

(polymer of xylose), while softwoods contain a heteropolymer such as glucomannan and 

arabinogalactans 
9,16,17

. Hemicelluloses differ from celluloses by containing shorter chains and 

significant branching of these chains 
9
. In particular, xylan is comprised of a homopolymer 

backbone of xylose that is interlaced with an irregular pattern of 4-O-methylglucuronic acid 

sidechains as well as traces of rhamnose and galacturonic acid 
9
. These sugar-acid molecules are 

suggested to be the reason for alkali resistance of hemicellulose 
9,17,18

. Furthermore, 

hemicellulose serves as the link that connects the lignin polymer and the crystalline cellulose to 

create a more rigid complex 
19

. 

Among the three main components of lignocellulose, hemicellulose is the most thermo-chemical 

sensitive component 
20

. During pre-treatment, the sidegroups of hemicellulose react first then this 

is followed by reaction with the backbone. 

2.7 Pectin 

This polymer is a minor component in the lignin-hemicellulose network that encapsulates the 

microfibril structure 
21

. The pectin polysaccharide is a matrix component for plant cell wall 
21

. Its 

structure is made up of alternating blocks of copolymers (branched or unbranched). The 
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branched block has a main chain that is comprised of galacturonan subunits and interlaced & 

bent by rhamnose units with various sidechains (arabinose and/or galactose). The second 

copolymer is unbranched and is made up of a galacturonan backbone 
21

. 

2.8 Cellulose 

At the center of each microfibril is a core of densely-packed crystalline cellulose, a linear 

polysaccharide of β-1,4-linked D-glucose subunits
9
. The dry portion of plant material can be 

composed of 40-45% of cellulose 
17

. Furthermore, the cellulose chain has a reducing and non-

reducing end. The OH-group at the C1 position has reducing properties due to the pyranose ring 

formation creating an aldehyde hydrate group at one end 
9
. The non-reducing end of the cellulose 

chain is an alcoholic hydroxyl group at the C4 position.  

In order to further appreciate the structure of the cellulose polymer, it is crucial to understand its 

biosynthesis. Cellulose synthase (a specific glycosyl transferase) acts in a processive manner by 

adding two -D-glucoses from UDP-glucose to the growing chain 
22

. The two-by-two addition of 

D-glucose molecules removes the need for a cellulose primer; and maintains the two-fold screw 

axis shaped by the repeating cellobiose (disaccharide) units
22

. Fundamentally, the repeating unit 

of cellulose is a cellobiose unit. The adjacent glucose molecules are joined by elimination of one 

water molecule between their hydroxylic groups at carbon 1 (C1) and carbon 4 (C4) of the first 

and second unit respectively
9
. The β-linkage requires the second glucose unit to rotate 180° 

around the C1-C4 axis (Figure 2). This allows the linear chain to maintain a single plane 

arrangement. An α-linkage would lead to a helical formation as observed in amylose.  

Moreover, the cellulose fibers have a strong tendency to form intra- and intermolecular hydrogen 

bonds, which intensifies its supramolecular structure
17

. The cellulose synthase polymerizes 
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adjacent glucan chains in close proximity that encourages crystallization 
22

. A structure called the 

terminal complex is found at the growing end of the microfibril. The variations of the terminal 

complex are responsible for producing different minisheets of crystalline cellulose 
22

. Segments 

of the native cellulose core are amorphous regions that lack hydrogen bonding and are more 

susceptible to enzymatic hydrolysis.  

Crystalline cellulose has been investigated by X-ray diffraction to solve for its structure. Native 

cellulose (cellulose I) have their chains organized in a parallel orientation 
17

. In contrast, 

regenerated cellulose (cellulose II) has a staggered and antiparallel orientation. Cellulose I is 

converted into cellulose II by alkali swelling, which introduces more hydrogen bonding and 

deforms the lattice 
17

. Cellulose III and IV are formed when I and II are exposed to heat and 

chemical treatments 
17

. 

2.8.1 Cellulose as a substrate 

Pretreatment of natural substrates required the delignification of the plant material. The product 

achieved after delignification is called holocellulose. Ideally, this process should completely 

remove all lignin material without chemically modifying or hydrolyzing the polysaccharide 

inside 
9
. For research purposes, the two most common methods for delignification are 

chlorination (then alcohol extraction) and acidification 
9
. Multiple investigators have modified 

these processes to obtain hemicellulose and cellulose that are less unaffected. Factors that were 

considered include reaction temperature, time, chemical amount, and pH of solution 
9
. 

Lignocellulose pretreatment is a vast subject matter on its own and will not be further discussed 

here. Detailed descriptions are given in the following review articles (e.g. Fan et al., 1982; 

Hendriks & Zeeman, 2009; Mosier et al., 2005; Sun & Cheng, 2002). 
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Producing pure cellulose for research requires intensive treatments involving partial hydrolysis, 

dissolution, and precipitation, which consequently leads to very short molecular chains 
9
. Thus, 

when isolating cellulose from natural substrates, it is common to achieve a crude preparation 

called α-cellulose. This compound refers to the material that remains insoluble after treating 

wood with strong sodium hydroxide solution. β-cellulose refers to the soluble fraction that can be 

precipitated by neutralizing the solution. The matter that remains soluble in the neutralized 

fraction is called γ-cellulose 
9
.  

It is worth noting that alkali alone is unable to solubilize native cellulose, as only depolymerized 

cellulose fragments with a low degree of polymerization are alkali soluble 
17

. Alkali celluloses, 

those that are swollen by sodium hydroxide, are important intermediates due to its increased 

reactivity. This allows other reagents to penetrate the substrate and permit downstream 

modifications and derivations 
24

.  

Commercial grades of cellulose derivatives are distinguished based on their degree of 

substitution (DS) and degree of polymerization (DP). These two factors have a profound effect 

on the viscosity of solubilized substrates. An increase in DS increases the solubility of the 

modified cellulose. To be considered as cellulose, the glucan chains must have at least several 

hundred residues; although a very low DP of 6-8 will already render the Beta-1,4-glucan as 

insoluble 
22

. Native cellulose can have DP of 10,000 glucose residues 
25

 but 

carboxymethylcellulose would be roughly 3200 (Sigma C5013). 

2.8.2 Cellulose derivatives 

Cellulose derivatives have garnered interest for both industrial use and research purposes. 

Derivatives such as regenerated cellulose and cellulose ethers are used as filters, coatings, films, 
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and as additives (i.e. food, building material, and pharmaceuticals) 
24

. Each D-glucopyranose 

within a polysaccharide chain retains three reactive hydroxyl groups (OH-2, OH-3 and OH-6) 
17

. 

Cellulose can be esterified with either organic (i.e. acetic acid) or inorganic acids (e.g. nitric, 

sulfuric, and phosphoric acids). It is essential that the acid has the ability to induce swelling of 

the polysaccharide chain 
17

. Nitrocellulose and cellulose acetates are two common materials for 

filtration systems. Cellulose esters are typically insoluble in water but soluble in various organic 

solvents or in acidic/alkaline solutions.  

Cellulose ethers are, in general, water soluble substrates such as hydroxyethylcellulose and 

carboxymethylcellulose 
17

. These compounds are prepared by treating alkali-swollen cellulose 

with various reagents like alkyl or aryl halides. Synthesis and molecular descriptions of these 

compounds will not be discussed further in detail.  

Cellulose (and hemicellulose) derivatives can be further modified to crosslink dye compounds. 

These substrates are then used to assess glycoside hydrolases for enzymatic activity. However, 

most cellulases are inhibited by the modifications on these substrates hence there is a decrease in 

available hydrolysis sites. This necessitates the need for a more “natural” substrate to assess 

cellulolytic activity. Cotton, which consists of 95-99% crystalline cellulose can be used to assess 

exocellulases 
9
. Unmodified swollen cellulose is a prime example of a pretreated natural 

substrate. Swelling of avicel (crystalline cellulose) can be economically performed by 

investigators. The most popular method is the preparation of phosphoric acid-swollen cellulose 

(PASC). Details of this process will be discussed further under experimental procedures (Section 

6.1.3). 
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2.9 Glycoside hydrolases 

2.9.1 Annotation by the CAZy database 

Carbohydrate-active enzymes are those that create, modify, or cleave glycosidic bonds. The 

CAZy [Carbohydrate Active enZymes] database (http://www.cazy.org/) classifies known 

CAZymes according to family based on amino acid sequence similarity
26,27

. There are only five
26

 

enzyme classes that are presently annotated by CAZy: glycoside hydrolases (GH) (EC 3.2.1.-); 

glycosyltransferases (GT) (EC 2.4.x.y); polysaccharide lyases (PL) (EC 4.2.2.-); carbohydrate 

esterases (CE) (mainly EC 3.1.1.-), and recently, auxiliary activities (AA) (mainly EC 1.1.3.- and 

1.11.1.-). Additionally, CAZy also annotates associated modules. Presently, this category only 

covers carbohydrate-binding modules (CBMs). 

Glycosyltransferases catalyze the formation of glycosidic bonds, while glycoside hydrolases 

degrade or rearrange glycosidic bonds. To date, there are 132 glycoside hydrolase (GH) families. 

However, some families have since been deleted (i.e. GH-21, 40, 41, 60, 69) due to 

reclassification. The list of families is systematically updated based on NCBI releases and using 

the database’s internal BLAST. Positive hits are listed either automatically or manually under the 

family with sequence similarity. Enzyme activity/biochemistry and structure are extracted from 

the literature after they are experimentally demonstrated and publicly available.  

Members of these families will have similar mechanism, protein fold, and catalytic residues 

responsible for hydrolysis but then vary between different families. Moreover, hydrolase families 

can be further classified into larger groups called clans that are based on significant similarity of 

their tertiary structure, which is better conserved than their sequences 
28

. Thus, predicted protein 
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folds of the new cellulases, compared to folds of well-studied enzymes, should provide clues to 

its potential action on cellulosic substrates.  

This thesis focuses on families GH 5, 6, and 9 since these are the major families that include 

cellulases. GH5
29

 employs a retaining mechanism while GH families 6
30

 and 9
31

 uses a single-

displacement reaction thereby causing an inversion of stereochemistry configuration at the 

anomeric carbon (discussed further below). The GH 5 family belongs to the clan GH-A where it 

shares a (β/α)8 barrel fold with members of that clan
32

. GH 9 has an (α/α)6 barrel and is classified 

as part of the GH-G clan
33

. On the other hand, GH 6 does not belong to any clan and members of 

this family have varying folds in respect to their activity. 

2.9.2 Mechanism 

In terms of mechanism, all glycoside hydrolases act by a general acid/nucleophile mechanism 

where two amino acids in the active site take part in either a single- or double-displacement 

reaction
34

 (Figure 3). There are two types of mechanisms for glycoside hydrolases: inverting or 

retaining, depending on the anomeric hydroxyl group configuration after the reaction 
35

. The 

inverting mechanism relies on two amino acids in the catalytic pocket. Both of these amino acids 

have a –COOH side group (i.e. aspartic acid and glutamic acid) where one would serve as a 

general acid while the other as a general base 
36

. The catalytic acid residue donates a proton to 

the anomeric carbon of the substrate, “while the catalytic base removes a proton from a water 

molecule to increase its nucleophilicity” 
35

. The reaction proceeds through an oxocarbenium ion-

like transition state 
37

. 

The retaining glycoside hydrolases generally follow the classical Koshland retaining mechanism. 

Initially, one of the carboxyl-containing amino acids serves as a general acid by protonating the 
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oxygen of the glycosidic bond. The other catalytic residue serves as a nucleophile to the 

anomeric carbon which forms a glycosyl-enzyme intermediate 
35

. Subsequently, the carboxylate 

deprotonates a water molecule and increases its nucleophilicity to disrupt the glycosyl-enzyme 

intermediate 
35,36

. Other glycosyl hydrolases that degrade non-cellulosic substratres have been 

observed to follow a non-Koshland retaining mechanism. These enzymes employ either 

neighboring group participations, alternative nucleophiles, NAD as a cofactor, or substrate-

assisted mechanisms
35

. These mechanisms are beyond the scope of this work and will not be 

discussed further here. 

2.9.3 Classes of Glycoside Hydrolases 

Glycoside hydrolases can also be classified based on their substrate specificity. In particular, 

cellulases are GHs that act on cellulosic substrates. Based on their mode of action, cellulases can 

then be sub-categorized into endoglucanases, exoglucanases/cellobiohydrolases, and β-

glucosidases. Endoglucanases (Figure 4), whose ability is to hydrolyze β-1,4 glycosidic 

linkages, are enzymes that act randomly on internal sites in the chain thereby increasing the 

amount of shorter chains available
4
. Exoglucanases (Figure 4) then degrades the molecule 

further by processively removing cellobiose either from the reducing end or non-reducing end 

(CBHI and CBHII, respectively)
4
. After removing the disaccharide product, several subsites on 

the enzyme allow it to remain bound to the polysaccharide substrate
38

. β-glucosidases hydrolyzes 

cellobiose into glucose in preparation of downstream fermentation. Substantial hydrolysis of 

native cellulose typically requires the synergistic activity of these three types of cellulases. 
39

 

Some glycoside hydrolases have a multi-modular organization that contains one or more 

catalytic domains (CD) and one or more non-catalytic domains
38,40

. One of the non-catalytic 
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modules is the carbohydrate-binding module (CBM), which plays a role in substrate binding, 

while other modules (fibronectin type III and immunoglobulin-like domains) have unknown 

functions
38,40–42

. Non-modular cellulases, those that do not contain a CBM, have decreased 

activity on insoluble substrates but maintains their ability on soluble substrates
43

. A similar 

observation is seen on modified modular enzymes when the CBM is genetically or 

proteolytically excised
33,44,45

.  

 

2.10 Cellulase-producing organisms 

2.10.1 Overview 

Cellulase-producing organisms span the phylogenetic tree across all three kingdoms. Most of the 

lignocellulose degradation is accomplished by fungi and bacteria 
39

. 

Animal parasites such as insects (e.g. boring beetles, termites, and ants), crustaceans (i.e. gribble) 

and mollusks (i.e. shipworms) are also able to feed on wood 
9
. Herbivores and soil macro-

invertebrates rely on symbiotic gut bacteria to utilize cellulosic material 
46

. As exemplars, 

ruminants process their diet in their fore-stomach that allows slow transit, anaerobic conditions, 

and thus the formation of short-chain fatty acids for host utilization 
46

. The rumen holds a 

complex microbial community consisting of anaerobic fungi, protozoa, bacteria, and 

methanogenic archaea 
46

. This community contains numerous organisms whose growth 

conditions have not been elucidated and thus remain elusive as research strains. As a result, there 

is considerable amount of interest in metagenomic analysis to discover novel glycoside 

hydrolases from various sources 
47,48

.  
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2.10.2 Eukaryotic sources 

Fungal cellulases are currently popular in industrial applications due to its potency, ease of 

purification, and sheer yield of enzyme production. The fungal model organism is Trichoderma 

reesei, but substantial attention has also been given to Aspergillus spp. and Humicola spp. among 

other industrially relevant cellulase producers 
49

. Cellulolytic fungi can be subdivided based on 

the wood condition after degradation (i.e. brown-rot, white-rot, and soft-rot) 
9
. These groups vary 

in their ability to degrade lignin and polysaccharides. For instance, brown-rot fungi are able to 

hydrolyze polysaccharides of lignocellulose with minimal degradation of the lignin coating 
9
. 

2.10.3 Prokaryotic sources 

Although fungal cellulases are the preferred enzymes for industrial applications, bacterial 

cellulases still receive strong interest in the quest for novel enzymes. Bacterial enzymes represent 

greater diversity compared to their fungal counterparts. It was common to view the cellulolytic 

systems of the two as similar. However, it is evident that cellulolytic fungi are better equipped to 

penetrate natural woody substrates 
9
. Furthermore, cell-free supernatants of cellulolytic bacteria 

have a decreased activity on crystalline cellulose even though the cultures are able to feed on the 

substrates 
50

. However, current bioprocessing practices rely on heat and acid for the pretreatment 

of lignocellulose. Thus considerable attention has been focused on discovering thermophilic and 

acidophilic cellulases 
3
. That being said, there have been relatively few thermophiles and 

acidophiles whose genomes have been fully sequenced. This can be attributed to the difficulty in 

cultivating these organisms under laboratory conditions 
3
. Additionally, recombinant strategies to 

produce these thermostable enzymes in a mesophilic host bacteria can be challenging 
51,52

. It has 

been assumed that bacterial communities act synergistically and symbiotically to degrade 
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varying lignocellulosic substrates. As an exemplar, it was surprising that Clostridium 

thermocellum can efficiently degrade xylan but is unable to utilize xylose as a carbon source 
53,54

. 

Within this community are cellulolytic species of aerobic actinobacteria. 

The model organisms for cellulolytic actinobacteria have been Thermobifida fusca and 

Cellulomonas fimi 
55

. The following section further describes Cellulomonas, which is the focus 

of this thesis. 

2.10.3.1 Cellulomonas 

Cellulomonas spp. are Gram-positive and coryneform rod bacteria of the Actinobacteria phylum 

(Gram-positive bacteria with high G+C ratios)
56

. For Cellulomonas, its G+C ratio has been 

determined to be in the range of 71-76 mol% 
57,58

. They are best known for their capability of 

decomposing lignocellulosic substrates
10

. Their main habitat is the soil where they were initially 

isolated 
57

. More specifically, Cellulomonas fimi and C. flavigena were isolated from a landfill of 

domestic refuse 
57

. There are currently 10 species within this genus, all of which have 

cellulolytic activities 
57

. They are differentiated phenotypically by peptidoglycan determination, 

cell wall sugars, and utilization of various substrates 
57

. Cellulomonas spp. has received 

considerable attention relative to other cellulolytic bacterial species 
59

. Although C. flavigena is 

considered the type species for the Cellulomonas genus, most of the biochemical studies on 

hydrolases were done with C. fimi
57

.  

All species of Cellulomonas can grow at aerobic or microaerophilic conditions while C. uda and 

C. fermentans can also grow under strict anaerobic conditions 
57

. With C. fimi, it was observed 

that glucose uptake was doubled under aerobic conditions relative to N2 or H2 growth conditions 

57
.  
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Under laboratory conditions, C. fimi and C. flavigena are typically grown under aerobic 

conditions in low-salt media (containing yeast extract or peptone at neutral pH) at a moderate 

temperature (30°C). 

Recently, widespread genome sequencing has allowed the identification of putative glycoside 

hydrolases in numerous organisms, both eukaryotic and prokaryotic. Currently, Cellulomonas 

fimi (NC_015514.1, NCBI) and C. flavigena (NC_014151.1)
56

 are the only two species of their 

genus to have their genomes fully sequenced. This has provided reason to revisit the two 

Cellulomonas spp. to identify and characterize hydrolases that were previously overlooked due 

to technical limitations.  

C. fimi’s CAZome
1
 consists of 109 glycoside hydrolases, while C. flavigena

2
 has 89 of these 

enzymes. Among these, only 14 have been characterized in C. fimi ATCC 484, and only 5 

enzymes in C. flavigena CDBB-531 (a different strain to our group’s strain). Characterized 

enzymes of interest from C. fimi are: 4 endo-1,4-glucanases (A, B, C, & D), 2 cellobiohydrolases 

(A & B), 3 xylanases (Cex, C, & D), and a β-glucosidase. The few enzymes that are studied from 

C. flavigena are: endo-1,4-glucanase B, cellobiohydrolase A, and a xylanase (fragment).  

The overall goal of this project is the purification, biochemical and molecular analysis of newly 

identified cellulases in Cellulomonas fimi and C. flavigena. This will hopefully identify enzymes 

with novel or superior qualities that are beneficial for industrial applications. 

  

                                                           
1
 http://www.cazy.org/b1651.html  Accessed on: 2013-07-23  

2
 http://www.cazy.org/b1248.html  Accessed on: 2013-07-23 
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Figure 2.1. Structure of lignocellulose. Reprinted with permission from Rubin EM. Genomics 

of Cellulosic Biofuels. Nature. Copyright (2008) Nature Publishing Group.  
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Figure 2.2. Cellobiose. Two glucose molecules with a two-fold screw axis along the C1-C4 

plane. 
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Figure 2.3. General mechanisms for (a) inverting and (b) retaining glycosidases. Reprinted 

with permission from Zechel DL and Withers SG. Glycosidase Mechanisms: Anatomy of a 

Finely Tuned Catalyst. Accounts of Chemical Research. Copyright (2000) American Chemical 

Society. 
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Figure 2.4. Enzyme classes of cellulases. Reprinted with permission from Yeoman CJ et al. 

Thermostable Enzymes as Biocatalysts in the Biofuel Industry. Advances in applied 

microbiology. Copyright (2010) Elsevier. 
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Chapter 3 

Materials and Methods 
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3.1 Strains 

Cellulomonas fimi ATCC 484 and Cellulomonas flavigena ATCC 482, both of which are type 

strains of their respective species, were source for genomic DNA for cloning purposes. AD202
3
 

is an OmpT protease-deficient E. coli strain (K-12 derivative) used for expression of 

recombinant proteins. Shuffle Express™ (New England Biolabs)
4
 was used for protein 

expression that requires disulfide bond formation. Shuffle Express™ is an E. coli BL21 

derivative that constitutively expresses cytoplasmic disulfide bond isomerase DsbC, which also 

serves as a chaperone for protein folding. In addition, it has gene deletions for glutaredoxin 

reductase (Δgor) and thioredoxin reductase (ΔtrxB) to prevent the reduction of cysteines in the 

cytoplasm. Occasionally, various cloning strains such as DH5α or XL10 were used for 

troubleshooting purposes. 

3.2 Supernatant proteomics by LC-MS analysis 

“Overnight (16 hrs)” bacterial cultures (1 Litre) of C. fimi and C. flavigena were grown in low-

salt LB media (1.0% Tryptone; 0.5% Yeast extract; 0.1% NaCl (w/v)). This was used to 

inoculate fresh media supplemented with either carboxymethylcellulose (CMC) or oat-spelt 

xylan at 0.2% w/v. These were incubated at 30°C with shaking for 24 h. After a centrifugation 

step (8,000 x g for 10 min) to remove cellular matter and debris, the supernatant was pooled and 

collected. The supernatant proteins were concentrated by TCA precipitation (20% w/v, on ice 30 

min, then collected by centrifugation 20,000 x g for 30 min). The proteins were then solubilized 

for 1D SDS-PAGE analysis. Bands were visualized after staining with Biosafe Coomassie blue 

(BioRad). For GelLC, each of the sample-containing lanes were cut into 25 equal slices, using a 

                                                           
3
 F-, [araD139]B/r, Δ(argF-lac)169, ompT1000::kan, λ-, flhD5301, Δ(fruK-yeiR)725(fruA25), relA1, rpsL150(strR), 

rbsR22, Δ(fimB-fimE)632(::IS1), deoC1. http://cgsc.biology.yale.edu/Strain.php?ID=30158 
4
 fhuA2 [lon] ompT ahpC gal λatt::pNEB3-r1-cDsbC (SpecR, lacI

q
) ΔtrxB sulA11 R(mcr-73::miniTn10--Tet

S
)2 [dcm] 

R(zgb-210::Tn10 --Tet
S
) endA1 Δgor ∆(mcrC-mrr)114::IS10 
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gel cutter, from about 150 kDa to just above the dark smear at the bottom of the gel.  Tryptic 

fragments were then examined by LC-MS analysis. The protein ID was performed using 

MASCOT, and proteins with a score over 50 are shown in Figures 4.4-4.7. Processing and 

analysis were performed by the Biological Mass Spectrometry and Glycomics Facility of the 

National Research Council-Institute of Biological Sciences (NRC-IBS). 

3.3 Cloning and expression of putative cellulases from families GH 5, 6, 9 

3.3.1 Genomic DNA extraction 

C. fimi and C. flavigena gDNA was harvested from saturated 40 hour cultures grown in low-salt 

LB. The procedure follows the standard protocol for Gram-positive bacteria found in DNeasy 

Blood & Tissue kit (Qiagen).  

3.3.2 Primer design and Polymerase Chain Reaction 

The list of primers used in this study is found in Table 1. Primers were supplied by either 

Eurofins MWG Operon or Sigma-Aldrich. Constructs were designed to include an EcoRI-NdeI-

His6
5
 in the 5’ end, and a Stop codon-SalI-HindIII site on the 3’ end. The primers had 

complementary sequence between 20-28 base pairs. Primer design was optimized for % GC 

ratios and primer length, and also against hairpins and dimerization.  Primer melting temperature 

(Tm) could not be optimized due to the intrinsic high GC ratio of the Cellulomonas genome. 

Thus, PCR amplification of the genes of interest had various annealing temperatures and 

conditions. For cloning purposes, Phusion High-Fidelity polymerase and GC buffer (New 

England Biolabs) were used and DMSO was frequently used as an additive to achieve successful 

amplification.  

                                                           
5
 Hexamer of histidine residues to serve as a tag for protein purification 
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3.3.3 Digestion, Ligation, and Transformation 

Initially, the restriction enzymes used were NdeI and SalI but due to unforeseen internal 

restriction sites, NdeI and HindIII were used for cloning purposes instead. A 10-fold (enzyme 

loading) overdigestion was regularly followed as recommended by the manufacturer. 

Furthermore, an additional 3-fold increase was used when dealing with supercoiled plasmids. 

The reaction was allowed to proceed for 1-4 hours prior to enzyme inactivation at 65°C. 

Restriction enzymes were purchased from New England Biolabs.  

After digestion, insert DNA was purified by MinElute PCR Purification Kit (Qiagen) while the 

cut vector backbone was gel extracted before being applied to a MinElute spin column. Ligation 

reactions were typically prepared in a 3:1 (Insert : Vector) molar ratio with approximately 30 

fmol of vector. The reaction mixture consists of linear vector, insert DNA, ligase buffer, and T4 

DNA ligase supplied by Fermentas. Transformations into bacterial strains were performed by 

either heat-shock or electroporation. Ligated DNA samples were purified and eluted with water 

to remove salts for electroporation. This step was not necessary for chemical transformation. 

Electrocompetent cells were thawed on ice (no longer than 20 min) and ice-cold DNA sample 

was added to the cells. The DNA-cell mixture was then transferred to an ice-cold electroporation 

cuvette (2 mm gap size). An electric charge was delivered to the cuvette using a Micropulser 

(Bio-Rad) set at Ec2 (2.5 kV, 1 pulse). SOC (2% w/v Tryptone, 0.5% w/v Yeast extract, 10 mM 

NaCl, 2.5 mM KCl, 10mM MgCl2, 10 mM MgSO4, 20 mM D-glucose) media was immediately 

added and mixed with the DNA-cell suspension. The cells were allowed to recuperate at 37°C 

with shaking prior to plating on antibiotic-containing plates. 

3.3.4 Preparation of Competent Cells 
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Chemical competent 

An overnight culture of an E. coli strain is prepared in 5 mL LB-Miller broth at 37°C. This is 

used to inoculate a 100 mL flask of fresh LB-Miller broth at 1:100 dilution. The culture is 

incubated again at 37°C until it reaches an early-log growth phase indicated by an OD600 

between 0.2-0.4. The cells are chilled on ice for 10 min then pelleted by centrifugation (5,000 g 

for 5 min). The supernatant media is removed and the cells are washed with sterile ice-cold 0.1 

M CaCl2 and left on ice for at least 30 minutes. The cells are subjected to a second centrifugation 

step (5,000 g for 5 min) and then resuspended in ≤3 mL of 0.1 M CaCl2. Glycerol is added to a 

final concentration of 16% (v/v) to allow long term storage in the freezer. Cells are divided into 

50 µL aliquots for each transformation experiment.  

Electrocompetent 

Similarly, an overnight culture of an E. coli strain is prepared in 10 mL LB-Miller or Super 

Optimal Broth (SOB, Beckton-Dickinson). This is used to inoculate a 500 mL flask of LB-Miller 

or SOB broth at 1:100 dilution. The culture is incubated at 37°C until it reaches midexponential 

phase indicated by an OD600 of 0.5-0.7. The cultures are placed on ice for at least 15 minutes 

and it is crucial for the cells to stay ice-cold from this point on. The cells are centrifuged (5000 g 

for 10 min) and then washed with 200 mL of chilled sterile 10% (v/v) glycerol. This step is 

repeated at least 3 times to remove the salts from the media. The cells are eventually resuspended 

in 2 mL of 10% (v/v) glycerol, which leads to an OD600 of 200-250. The high density of cells is 

crucial to successful electroporation. The cells are divided into 50 µL aliquots and stored at -

80°C. 
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3.3.5 Cloning verification 

To verify successful ligation of PCR products into digested plasmid vectors, colony PCR was 

performed. Colonies were picked off the plates using sterile wooden toothpicks and swirled into 

sterile water. This dilute cell suspension was used as the template for the PCR reaction with 

either Taq or Phusion polymerase. Cycling conditions were adjusted to accommodate the change 

in enzyme. Occasionally, the purified plasmid is further subjected to double digest and 

diagnostically run on an agarose gel for a more conclusive analysis. 

3.3.6 Gene sequencing 

Plasmids were prepared from clones using standard protocol from Qiaprep Spin MiniPrep kit 

(Qiagen). To accommodate for low yields, the “low-medium copy” plasmid protocol was 

followed. Purified plasmids containing inserts of the appropriate size were sent for gene 

sequencing using specific sequencing primers (Table 3) by either the NRC (Ottawa) or The 

Centre for Applied Genomics (TCAG, Toronto). 

3.3.7 Small-scale expression of recombinant proteins 

E. coli expression strain AD202 was used for all expression trials unless otherwise stated. Strains 

containing cellulase constructs were grown overnight in LB media (1.0% w/v Tryptone, 0.5% 

w/v Yeast extract, 1.0% w/v NaCl) with 150 µg/mL Ampicillin (Amp150) as a selective marker. 

A fresh 20 or 50 mL LB-Amp150 was inoculated 1:100 and grown at 37°C with shaking in 

beveled flasks. These were grown to log-phase (OD600 0.5-0.7) and the shaking was discontinued 

while the incubator was changed to the desired induction temperature. After the incubator has 

achieved its new setting, the flasks were allowed to equilibriate with its new temperature prior to 

adding sterile isopropyl β-D-1-thiogalactopyranoside (IPTG). The final concentration of IPTG 
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was either 0, 0.1, or 0.5 mM unless otherwise specified. Induction and protein expression was 

allowed to go on for 3-15 hours. The cells were then harvested by centrifugation (8000 g for 10 

min at 4°C). The cell pellet was then frozen at -20°C until needed. The cell pellet was then 

thawed and resuspended in binding buffer (20 mM NaPO4, 20 mM Imidazole, 500 mM NaCl, pH 

7.4 @ 25°C) to a final concentration of 10% w/v. The cell suspension was then sonicated on ice 

for cell lysis. A 20 µL fraction was set aside to represent the whole cell extract (WCE). The rest 

was centrifuged for 15 min at 18,000 g at 4°C to remove cellular debris. The supernatant fraction 

containing the soluble proteins was set aside for SDS-PAGE analysis. 

3.4 SDS-PAGE analysis 

The whole cell extract and the supernatant fractions were diluted 1:4 in water to prevent 

overloading. The diluted samples were then added to the 6x sample buffer (0.375 M Tris pH 6.8, 

10% w/v SDS, 50% v/v glycerol, 10% w/v β-mercaptoethanol, 0.025% w/v bromophenol blue) 

and heated for 5 min at 95°C before being loaded onto 0.75 mm-thick 10% acrylamide gels. 

Standard discontinuous buffer system by Laemmli
60

 was employed to separate proteins for 

analysis. The proteins were visualized by InVision in-gel His stain (Invitrogen) followed by 

Coomassie R-250 stain. Step-by-step procedure for the His-stain followed the manufacturer’s 

recommendation with slight modifications to the volumes used. Occasionally, the His-stain is 

skipped and only Coomassie blue staining was employed for visualization. Gels were incubated 

with the stain and subjected to microwave treatment to accelerate the process. Once sufficiently 

stained, the background stain was removed using a destain solution (10% acetic acid, 50% 

EtOH) and also heated by microwave treatment until satisfactory. 
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3.5 Congo Red analysis 

Agar plates containing 1.0% (w/v) CMC and 50 mM KPO4 (pH 7 at 25°C) was used to screen 

and qualitatively detect endoglucanase activity. Filter-paper discs were soaked with enzyme-

containing solutions (of various purity) were placed on top of the agar and allowed to incubate 

for a few hours or overnight at 37°C. After the incubation, the filter paper discs are removed and 

the petri dish is flooded with congo red solution (0.1% w/v) (Figure S5). After soaking for at 

least 30 minutes, the solution is poured off the plate and quickly rinsed with deionized water to 

remove residual solution. The petri dish is then flooded with 1 M NaCl for 5 minutes twice. 

Optionally, the color contrast can be increased by soaking the plate in 5% (v/v) acetic acid 

solution because the reagent is sensitive to pH. The congo red reagent was purchased from J.T. 

Baker (F788). The sodium chloride solution interferes with the hydrogen bonds that formed 

between the cellulose and the azo & amine groups of congo red. It is possible to completely wash 

off the congo red stain but it preferentially decreases the stain at sites of hydrolysis. At those 

sites, the congo red molecule is more readily liberated off shorter chains of cellulose. 

Alternatively, the agar plates can contain LB-Miller, Cellulose, and IPTG to induce growth of 

strains that contain plasmid constructs. After the colonies have grown to sufficient size, the 

colonies are smeared away using a gloved finger and then washed away with deionized water. 

The congo red staining follows the aforementioned procedure from this point forward. Colonies 

that expressed active cellulases are able to produce zones of hydrolysis without an added lysis 

step. This method works for both secreted and unsecreted recombinant cellulases.  
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3.6 Expression and purification of recombinant proteins 

3.6.1 Celf_1230 (from here on known also as Cel6C) 

Celf_1230 (aa51-415) was codon-optimized for E. coli expression and subsequently gene 

synthesized by GeneArt® (Life Technologies). The construct featured EcoRI-NdeI restriction 

sites at the 5’ end and a tandem stop codon followed by HindIII-XbaI restriction sites at the 3’ 

end. This construct proved difficult to express and purify, and thus required modifications. The 

original construct was modified by PCR and DNA techniques to extend the N- and C-terminus 

that contained aa31-433. This resulting construct was subcloned into pVEK-06 (see 

supplementary information) and renamed as Cfi-28, which features an N-terminal His-tag fusion 

protein. The nucleotide sequence was verified prior to downstream experiments. The primers 

used to lengthen the original construct can be found in Table 1. Cfi-28 was transformed into 

Shuffle Express™ (New England Biolabs) for protein production. Another construct was made 

to extend only the C-terminus of the original construct and produce residues aa51-433. This 

plasmid is renamed as Cfi-29, which produces soluble active protein but was not thoroughly 

investigated. 

E. coli Shuffle Express™ strain containing Cfi-28 was inoculated into 20 mL of 2YT broth 

(Sigma) containing Amp150 and grown overnight at 30°C with shaking. The saturated bacterial 

culture was then diluted into a fresh 1 L of 2YT broth containing Amp150. This was incubated at 

30°C for a few hours until the OD600 was between 0.6-0.8 indicating mid-log growth phase. The 

culture was induced with a final concentration of 0.5 mM IPTG and left to express overnight at 

30°C. The cells were harvested by centrifugation (8000g for 10 min) and frozen at -20°C and 

then stored at -80°C until needed. For lysis and purification, the cells were thawed in the 
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refrigerator and resuspended in 10% w/v of binding buffer (20 mM NaPO4, 20 mM Imidazole, 

500 mM NaCl, pH 7.4 at 25°C) containing cOmplete EDTA-free Protease Inhibitor Cocktail 

(Roche). The cell suspension was then subjected to lysis by using an Emulsiflex C5 (Avestin) 

with >17,000 psi. The lysate was centrifuged (18,000 g for 20 min) to remove debris. The 

supernatant fraction of this was subjected to further centrifugation (44,000 rpm for 1 hour) to 

remove material that clogs the chromatography columns. The clarified cell lysate was then 

injected into a pre-equilibrated HisTrap column (GE Healthcare) using a Bio-Rad FPLC 

equipment. Afterwards, the protein bound to the Ni-NTA resin was eluted using a linear gradient 

from 0-60% of elution buffer (20 mM NaPO4, 500 mM Imidazole, 500 mM NaCl, pH 7.4 at 

25°C) over 50 mL. Selected fractions were pooled and placed in an Amicon®-Ultra 10K 

(Millipore) for concentration and buffer exchange to remove the contaminating imidazole. The 

concentrated protein sample was aliquoted in 20 µL amounts and frozen with liquid nitrogen for 

storage.  

3.6.2 Celf_3184 (Cel6A) 

The Celf_3184 construct was created by Dr. Anthony Clarke and his group at the University of 

Guelph. This construct featured the full-length protein and was inserted into a pET-30a(+), 

which fused a C-terminal His-tag. For more details, please see the corresponding reference 
64

. 

Also, the expression and purification of the protein followed their methods with minor changes. 

For my purposes, the immobilized metal affinity chromatography (IMAC) was sufficiently pure 

without the need of anion exchange chromatography. 
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3.7 Assays 

3.7.1 HBAH reducing sugar assay 

The increase of reducing ends produced by glycoside hydrolases was measured using ρ-

hydroxybenzoic acid hydrazide (HBAH) as a reagent developed by Lever
66

. Several changes 

were made to his original methods and the following procedure contains these modifications. 

The alkali solution (0.5 M NaOH, 0.02 M EDTA pH 8, and 0.02 M CaCl2) was prepared fresh 

daily in advance from stock solutions and then kept chilled on ice. The HBAH reagent is 

weighed and added to the alkali solution to a final concentration of 1.0% w/v. This solution is 

left in the refrigerator on a stirplate until it is fully dissolved. The solution is then dispensed in 3 

mL volumes using a repeat pipetter into pre-chilled glass test tubes. The solution-containing 

tubes are kept on ice and must be used within a few hours once the reagent is dissolved. To stop 

a time point, 500 µL of the assay is added to the 3 mL of HBAH solution. These sample-HBAH 

mixtures are kept on ice bath until all time points are completed. A vigorously boiling-water bath 

is used to heat the solutions for 6 min then promptly returned to ice to stop the heating process. A 

200 µL aliquot of these samples are transferred to a 96-well plate for colorimetric quantification 

at a wavelength of 410 nm. Aside from the Michaelis-Menten experiments, all HBAH assays 

were performed on 1.0% CMC (medium viscosity, Sigma C-4888). Standard curves of glucose 

were prepared to determine the amount of reducing sugars released. One unit of activity (U) is 

defined as the number of micromoles of glucose equivalents released per minute. The typical 

amount of enzyme used was approximately 0.667 µg/mL of assay. 
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3.8 Preparation of PASC (Phosphoric acid-swollen cellulose) 

Avicel PH-102 (2.5 g) is slowly added to 50 mL of cold neat H3PO4 (85% w/v ortho-phosphoric 

acid) and left on a stirplate in the refrigerator for 1 hour. The cold temperature is necessary to 

decrease acid hydrolysis of the cellulose. The suspension is poured into 1 L of ice-cold water and 

left to stir for 30 min. Pour off the water and repeat rinse with 1 L for 2 more times for 10 min 

each. Next, wash the swollen cellulose with cold 1% (w/v) of NaHCO3 three times to neutralize 

the solution. Centrifugation (8000 g for 15 min) was used to sediment the cellulose in between 

washes. Wash (3x) the cellulose with 500 mL of ice-cold water again to remove the sodium 

bicarbonate solutes. The slurry is collected by centrifugation and homogenized by an overhead 

stirrer (Wheaton) (Figure S3). Hardy lumps of avicel are removed and discarded. Sodium azide 

is added to a final concentration of approximately 5 mM as a preservative and then the 

suspension is kept at 4°C. The concentration (% w/w) of the substrate is determined comparing 

the dry weight over the wet weight after placing an aliquot in a 37°C incubator overnight. 

3.9 Differential Scanning Calorimetry 

In order to determine the melting temperature of the enzymes, a differential scanning calorimetry 

(VP-DSC) machine from MicroCal was used. The enzymes were diluted to 0.5-1.0 mg/mL in 

buffer (25 mM MOPS (or NaPO4), 50 mM NaCl, pH 7 at 25°C) and degassed using a vacuum 

pump. The DSC was equilibrated with an overnight buffer-buffer scans to create a baseline. 

During a downscan, the buffer is quickly removed from one of the vessels in the DSC and 

replaced with enzyme-containing sample. After the measurements are complete, the enzyme 

sample is removed and kept aside to measure the actual protein concentration within the vessel. 

Baseline determination was done automatically by the Origin program for the DSC machine.  
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3.10 Thin-layer Chromatography 

Determination of hydrolysis products was done by separating the molecules by thin-layer 

chromatography (TLC). Using a classical silica gel 60 plate on a glass backing (Merck), there 

was a distinct separation of cellodextrins (G1-G5 molecules) as observed with the standard that 

had a concentration of 2 mg/mL of each molecule. The hydrolysis of cellopentaose (G5) was 

done with or without Cel6C in a 60°C water bath for approximately one hour. The sample was 

then dried onto the silica plate prior to exposing it to the liquid phase solvent. The solvent (Ethyl 

acetate : MeOH : Water : Acetic acid in a 4:2:1:0.1 ratio by volume) was placed in a glass jar and 

sealed to maintain a saturated air environment. Finally, the carbohydrates on the TLC plate are 

visualized by dipping the plate in the staining solution (5% v/v H2SO4 in ethanol), air-dried, then 

charred over a hot plate until bands are visible.  

3.11 Dye-conjugated cellulosic substrates 

Various substrates have to be used to give a complete picture of cellulolytic activity since 

cellulases are diverse in nature. Azurine-crosslinked-substrates (Megazyme) (AZCL) like AZCL-

Hydroxyethylcellulolose (AZCL-HEC), AZCL-Avicel, and AZCL-Xylan was used to determine 

substrate specificity in a colorimetric assay. These substrates are insoluble and tend to adhere to 

tubes and pipets making them problematic to handle. The powdered substrate is directly weighed 

in microfuge tubes to approximately 10 mg. Buffer (25 mM MOPS, 50 mM NaCl, pH 7 at 25°C) 

and water was added to a final volume of 1 mL then incubating it in a water bath for preheating. 

The enzyme or buffer is added and then mixed by inverting the tubes. The reaction is allowed to 

proceed for 1-4 hours depending on the enzyme activity. The assay is chilled on ice to stop the 
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enzymatic action then centrifuged (5000 g for 10 min) to pellet the insoluble material and 100-

200 µL is moved to a 96-well plate for quantification and read at 590 nm. 

3.12 2,4-dinitrophenyl-β-D-cellobioside 

The soluble substrate 2,4-dinitrophenyl-β-D-cellobioside (dNPC) was generously provided by 

Dr. Steve Withers from the University of British Columbia. It has been shown to be an excellent 

substrate for screening for both types of cellulases, endoglucanases and cellobiohydrolases 
63

. 

This characteristic can be attributed to the modified analogue (2,4-dinitrophenol) which makes it 

a better leaving group relative to the 4-nitrophenol at neutral pH 
67

. The reaction conditions 

consisted of 1 mM of substrate, buffer (20 mM MOPS, 50 mM NaCl, pH 7 at 25°C). The 

reaction was initiated upon addition of the enzyme in a temperature controlled plate reader. The 

molar extinction coefficient of dNPC is 0.9384 mM
-1

mm
-1

, which was derived experimentally 

using a nanodrop spectrophotometer. The dNPC substrate can be detected at 300nm, while the 

2,4-dinitrophenol product is detected at 360nm. The kinetic assays are done on standard 

polystyrene flat-bottomed 96-well plates (Greiner Bio-one). The enzyme concentration for 

Cel6A and Cel6C was 4.61 and 6.22 µg/mL of assay, respectively. 

3.13 Determination of the Michaelis constant 

The Michaelis constant (KM) was determined using the HBAH reducing sugar assay and using 

CMC as the substrate. A range of substrate concentrations was used from 0.05 to 1.4% at pH 7 

using 20 mM MOPS with 50 mM NaCl as the buffer. The amount of enzyme used was 0.05 µg 

per mL of assay to minimize substrate depletion. The KM was determined by nonlinear 

regression of the Michaelis-Menten plot based on the substrate inhibition (uncompetitive) 

equation using the enzyme kinetics module of SigmaPlot (SysStat Software Inc).  
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3.14 Ball-milled Biomass substrates 

Time of Flight-Secondary Ion Mass Spectrometry (ToF-SIMS) 

In order to better characterize Cel6C, natural substrates was used to detect hydrolytic activity. 

With the help of Drs. Emma Master and Marie Couturier of the University of Toronto, I was able 

to perform analysis on ball-milled biomass substrates (specifically aspen and spruce, which are 

hardwood and softwood respectively). Surface analysis of these substrates was performed by 

ToF-SIMS. This technique employs bombardment of barium ions to the sample which liberates 

secondary ions from the sample. The molecules containing the secondary ions project towards 

the detector and their time of flight is a derivative of their mass. Unhydrolyzed substrates would 

have spectra that contain more polysaccharide-known peaks, while hydrolyzed substrates would 

have a higher proportion of lignin-peaks since the celluloses have been degraded. Analysis of 

this data was done using Principal Component Analysis (PCA) that allows pattern recognition 

for complex spectra. For more details on this technique and its application for investigating 

cellulases, please see the following reference from Goacher, Jeremic, and Master 
68

. A reducing 

sugar assay accompanied the ToF-SIMS result to quickly check for hydrolytic activity on the 

biomass substrate. The reducing sugar assay used here was the dinitrosalicylic acid (DNS) assay, 

details of which will not be provided. 

3.15 Enzyme concentrations 

Enzyme concentrations were determined by A280 on a nanodrop spectrophotometer. The 

theoretical extinction coefficient (M
-1

 cm
-1

) used for Cel6A and Cel6C are 107,745 and 108,205, 

respectively. The coefficients used are with the assumption that all pairs of Cys residues form 
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disulfide bonds. The predicted molecular weights are 48.25 kDa and 45.45 kDa respectively. 

Both parameters were determined by ExPASy ProtParam
69

. 
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Chapter 4 

Results 
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4.1 Bioinformatics, cloning, and test expressions 

4.1.1 Bioinformatics 

Figure 4.1 Amino acid sequence alignment between the catalytic domains of Family 5 

Glycoside Hydrolases of Cellulomonas fimi and Cellulomonas flavigena. Quality curve, 

depicting the alignment’s conservation score, is shown below each row of amino acid sequence. 

The alignment was performed using ClustalX2 software. 

The alignment and comparison of the catalytic domains of GH 5, 6, and 9 putative cellulases 

from C. fimi and C. flavigena are shown in Figures 5.1-5.3, respectively. Only Celf_1924 

(Cel5A/CenD) has been characterized in detail 
61

. Cfla_1897 appears to be a close homolog in C. 

flavigena for Cel5A.  

The GH 6 family consists of two distinct groups and two outliers. One group (Celf_3184, 

Cfla_2912, Cfla_2913) contains putative endoglucanases since Celf_3184, also known as Cel6A, 
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has been characterized previously 
62–64

. Cfla_2912 and Cfla_2913 have closely related amino 

acid sequence and their position in the C. flavigena genome suggest this arose from a gene 

duplication event. The second group (Celf_1925, Cfla_1986) are cellobiohydrolases since 

Celf_1925, also known as Cel6B, has been characterized previously 
45,65

. Celf_1230 and 

Celf_0233 are the two outliers with unknown function and substrate specificity.  

In the GH 9 family, Celf_0019 (Cel9A/CenB) and Celf_1537 (Cel9B/CenC) are two C. fimi 

enzymes that have been characterized as endoglucanases. There appears to be substantial 

sequence similarities among the Cel9A-like group and the Cel9B-like group. However, the 

various differences in amino acid residues could lead to significant kinetic differences. It also 

begs the question of the physiological importance of the redundancy of Cel9A-like enzymes. 
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Figure 4.3 Amino acid sequence alignment between the catalytic domains of Family 9 

Glycoside Hydrolases of C. fimi and C. flavigena. Quality curve is shown below each row of 

amino acid sequence. The alignment was performed using ClustalX2 software. 
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4.1.2 Proteomics of secreted proteins 

 

Figure 4.4. SDS-PAGE analysis of the secretome of C. fimi and C. flavigena under CMC or 

xylan. Gel was visualized by staining with Biosafe Coomassie blue (Bio-Rad). Preparation of the 

secretome for proteomic analysis. Supernatants were precipitated with 20% w/v TCA, and the 

proteins were then solubilized for 1D SDS-PAGE analysis (Figure 5.4) 

The following data (Figures 4.4-4.7) are provided by Dr. Wakarchuk and the Biological Mass 

Spectrometry and Glycomics Facility of the National Research Council-Institute of Biological 

Sciences (NRC-IBS). 
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Figure 4.5. Secretome analysis by mass-spectrometry of C. fimi cellulases or xylanases. 

Proteins with a MASCOT score of less than 50 are not shown. The % coverage of protein is a 

correlation to the relative amount of protein. Proteins that are unique to C. fimi are qualitatively 

determined by amino acid sequence. Proteins that were identified in both supernatant samples are 

represented by stacked bars. 

Several proteins that had high % coverage are labeled in Figure 5.5 as these proteins matched 

known characterized proteins from their corresponding literature. Those experiments involved 

blind cloning from screening recombinant libraries and from work involving purified enzymes 

from the host organism. Thus, it goes to show that the highly expressed cellulases were more 

easily detected with those techniques. However, a few “new” glycoside hydrolases were 

overlooked even though they have a relatively modest expression level.  
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Figure 4.6. Secretome analysis by mass-spectrometry of C. flavigena cellulases or xylanases. 

Proteins with a MASCOT score of less than 50 are not shown. The % coverage of protein is a 

correlation to the relative amount of protein. Proteins that are unique to C. flavigena are 

qualitatively determined by amino acid sequence. Proteins that were identified in both 

supernatant samples are represented by stacked bars. 
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Figure 4.7. Secretome analysis by mass-spectrometry of other C. fimi proteins. Proteins with 

a MASCOT score of less than 50 are not shown. The % coverage of protein is a correlation to the 

relative amount of protein. Proteins that are unique to C. fimi are qualitatively determined by 

amino acid sequence. 

Non-cellulase proteins were also found to be secreted by C. fimi. A substantial number of these 

are hypothetical proteins and more than half of these were only expressed under growth with 

CMC as a substrate. 
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4.1.3 Cloning of catalytic domains of putative cellulases 

PCR attempts for downstream cloning 

 

L: O Gene Ruler DNA Ladder Mix (Fermentas SM1173) (Appendix) 

1: Celf_1924 (Cel5A) – 1077 bp 

2: Celf_1925 (Cel6B) – 1170 bp 

3: Celf_0019 (Cel9A) – 1362 bp 

4: Celf_1537 (Cel9B) – 1485 bp 

5: Celf_0019 – 1362 bp 

6: Celf_1705 – 1539 bp 

7: Celf_0376 – 915 bp 

8: Celf_2403 – 684 bp 

Figure 4.8. PCR attempt to check cycling conditions and annealing temperatures for 

successful cloning. Lanes 4 and 6 were unsuccessful. Other lanes produced prominent bands that 

correspond to the specific gene target, among other non-specific amplifications.  
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L: O Gene Ruler DNA Ladder Mix 

1: Cfla_2811 – 750 bp 

2: Cfla_2913 – 849 bp 

3: Cfla_1986 – 1170 bp 

4: Cfla_1515 – 1491 bp 

5: Cfla_3563 – 1458 bp 

6: Cfla_0139 – 1581 bp 

7: Celf_0045 – 1455 bp 

8: Celf_0233 – 831 bp 

Figure 4.9. PCR attempt to check cycling conditions and annealing temperatures for 

successful cloning. Lanes 2, 5, 7, and 8 all produced a weak band of the correct size. Other lanes 

produced prominent bands that correspond to the specific gene target, among other non-specific 

amplifications.  
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L: O Gene Ruler DNA Ladder Mix 

1: Celf_1537 (Cel9B) – 1485 bp 

2: Cfla_0736 – 603 bp 

3: Cfla_1897 – 1074 bp 

4: Celf_1481 – 1497 bp 

5: Celf_1705 – 1539 bp 

6: Cfla_3031 – 1536 bp 

Figure 4.10. PCR attempt to check cycling conditions and annealing temperatures for 

successful cloning. Only lane 1 was unsuccessful. Other lanes produced prominent bands that 

correspond to the specific gene target, among other non-specific amplifications.  
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L: O Gene Ruler DNA Ladder Mix 

1: Celf_3184 (Cel6A) – 846 bp 

2: Celf_1230 – 1152 bp 

3: Cfla_2912 – 849 bp 

4: Cfla_0016 – 1365 bp 

Figure 4.11. PCR attempt to check cycling conditions and annealing temperatures for 

successful cloning. Lane 1 produced a weak band of the correct size, while lane 2 was 

unsuccessful. Lanes 3 and 4 were able to produce prominent bands that correspond to the 

specific gene targets.  
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Figure 4.12. Colony PCR of clones made with NdeI and HindIII as restriction enzymes. 

Quadrants 1-3 correspond to the following gene targets: (1) Celf_1924 (Cel5A), (2) Celf_1925 

(Cel6B), (3) Celf_0376. The first 6 lanes in each quadrant refer to 6 different colonies tested for 

the presence of inserts. The 7
th

 lane (indicated by arrows) of each quadrant was performed with 

genomic DNA to serve as positive controls. 

Not all cloning experiments are shown here.  
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4.1.4 Test expressions of clones 

 

Figure 4.13. SDS-PAGE analysis of expression trial of Celf_2403 and Cfla_0736. WCE: 

whole cell extract. Expected sizes of Celf_2403 and Cfla_0736 are 23.76 kDa and 20.79 kDa, 

respectively. The ladder (L) used was Pageruler Plus Prestained from Thermo Scientific. The 

induction was initiated by the addition of 0.5 mM IPTG at 37°C for 3 hours. Only insoluble 

recombinant protein is observed here. 
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Figure 4.14. SDS-PAGE analysis of expression trial of Celf_2403 and Cfla_0736. WCE: 

whole cell extract. Expected sizes of Celf_2403 and Cfla_0736 are 23.76 kDa and 20.79 kDa, 

respectively. The ladder (L) used was Pageruler Plus Prestained from Thermo Scientific. The 

induction was initiated by the addition of 0.5 mM IPTG at 30°C and left overnight. There is no 

noticeable overexpression detected. 
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(a)  

(b)  

Figure 4.15. SDS-PAGE analysis of expression trials of Celf_0233 for 37°C and 30°C. 

Different induction conditions are represented based on induction temperature (°C) or the final 

concentration of IPTG (mM). The expected size of Celf_0233 is 60 kDa. The protein gel was (a) 

stained with Coomassie after (b) the same gel had been stained using InVision In-gel His-stain 

(Invitrogen). The ladders used were: (L1) BenchMark™ His-tagged Standard (Invitrogen) and 

(L2) Precision Plus (Bio-Rad). WCE: whole cell extract. 
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(a)   

(b)  

Figure 4.16. SDS-PAGE analysis of expression trials of Celf_0233 for 15°C and 20°C. 

Different induction conditions are represented based on induction temperature (°C) or the final 

concentration of IPTG (mM). The expected size of Celf_0233 is 60 kDa. The protein gel was (a) 

stained with Coomassie after (b) the same gel had been stained using InVision In-gel His-stain 

(Invitrogen).  The ladders used were: (L1) BenchMark™ His-tagged Standard (Invitrogen) and 

(L2) Precision Plus (Bio-Rad). WCE: whole cell extract. The red arrow indicates the protein 
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band is at 60 kDa as seen with the coomassie stain since the ladder was not visible during the 

His-staining. 

Celf_0233 in Vek-06 (Cfi-19) was placed in Shuffle Express™ for expression trials (Figures 

5.20-5.21). It mostly produces insoluble protein except when induced at 15°C overnight. This 

produced a little but mostly soluble protein (Figure 5.21 b). However, the expressed protein was 

not able to bind to a nickel column (not shown).  

4.1.5 Summary 

Here we show sequence comparisons, secretome analysis, and test expressions of various 

recombinant cellulases from C. fimi and C. flavigena. Though most of our expressions proved to 

be unproductive, work must continue on expressing and characterizing the unique glycoside 

hydrolases identified by sequence comparisons. It is very likely that the constructs designed to 

express the catalytic domains of these cellulases were flawed. The boundaries defined for the 

catalytic domain was too restrictive and relied on BLAST homology determined by NCBI. Thus, 

the constructs resulted in truncated catalytic domains and could be missing necessary amino 

acids for proper folding. This design error likely resulted in the insoluble expression that was 

observed. Future directions include extending these domains to proper boundaries using PCR 

amplification or re-cloning all the gene targets to make full-length protein constructs. There have 

been expression trials with a vector (pMalE-Thr) that fuses a maltose-binding protein to the N-

terminal of the construct (data not shown). This appeared to produce soluble protein but was 

inactive on preliminary assays. The assumption from this observation is that the actual cellulase 

construct continues to produce misfolded protein but is then able to maintain solubility due to the 

large maltose-binding protein. Thus, this approach was abandoned for this particular project.  
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Other attempts to express Celf_0233 involved moving it into vectors pCW (no his-tag) or pVEK-

07 (C-terminal his-tag)
6
. An attempt to remove the stop codon from the Celf_0233 insert using 

PCR was unsuccessful. Thus, the Vek-07 construct would have been unusable since the C-

terminal tag would not be expressed. The pCW-Celf_0233 construct produced no significant 

overexpressed protein. The Celf_0233 expression project has also been put on hold and other 

expression strategies are currently being explored by other members of the group.  

Among all the constructs, Celf_1230 in pVEK-06 showed promise in solubility and activity. The 

work done with this enzyme is the focus of the following section. This enzyme is renamed as 

Cel6C, in reference to being the third GH 6 enzyme characterized for Cellulomonas fimi.  

                                                           
6
 For more information on these vectors, consult supplementary image (S4). The Cfi-28 (pVEK-06 with insert) is 

derived from pCW. 
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4.2 Characterization of Celf_1230 (Cel6C) 

4.2.1 Bioinformatics of Cel6C  

 

 

 

Figure 4.17.  Comparisons of the different members of the Family 6 glycoside hydrolase 

from C. fimi. The different domains of the GH6 cellulases are shown. Cel6A has a N-terminal 

CBM-2 domain while Cel6B has a C-terminal CBM-2 domain. Cel6C has no identifiable CBM 

domain while Cel6D has a putative mannose-binding B-lectin domain on the N-terminal end. 
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Figure 4.19. Amino acid sequence alignment of full-length Celf_1230 (Cel6C) and 

Celf_3184 (Cel6A). Quality curve is shown below each row of amino acid sequence. The 

alignment was performed using ClustalX2 software. 
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Figure 4.20. Aligned two sequence by BLAST (bl2seq) for the full-length amino acid 

sequences of Cel6A and Cel6C. The query and subject proteins are Cel6C and Cel6A, 

respectively. The identities found are based on 82% coverage as indicated by the result. 

Celf_1230 (YP_004452752.1) was subjected to a BLAST analysis to find homologs (Figure 6.2). 

None of the homologs produced an identity >60%. Notably, one of the close homolog is an 

uncharacterized putative cellulase from Acidothermus cellulolyticus 11B (YP_871896.1). This 

cellulase from A. cellulolyticus has a 52% identity for 96% coverage of Celf_1230. 

A direct comparison of Celf_1230 and Celf_3184 was conducted on their amino acid sequences 

using ClustalX2 (Figure 6.3)or BLAST (Figure 6.4). For the BLAST method, the subject 

alignment starts at aa193, which are about 20 amino acids into the catalytic domain of Cel6A. 

These residues start to have similarity with aa69 for Cel6C, which are about 35 amino acids after 

its signal peptide. Note that the sequence alignments of ClustalX2 and BLAST differ from one 

another.
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4.2.2 Boundary extensions of Cel6C construct 

 

Figure 4.21. PCR-based addition of nucleotides to extend the boundaries of the Celf_1230 

construct. A band of the correct size was detected for both PCR experiments. (L) GeneRuler 1 

Kb ladder (Fermentas) 

Celf_1230-NC (aa31-433) was cloned successfully into pVEK-06 and renamed as Cfi-28. 

Celf_1230-C (aa51-433) was also successfully cloned into pVEK-06 and renamed as Cfi-29. The 

enzymatic characterization of Celf_1230 was only done using the Cfi-28 construct. However, 

preliminary data suggests that Cfi-29 produces relatively equal amounts of protein with similar 

activity (not shown). 
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Figure 4.22. Detection of insert-positive plasmids by a double restriction digest (NdeI and 

HindIII). Note that the vector backbone between colonies 1 and 2 (red arrows) have slightly 

different sizes. (L) GeneRuler 1Kb ladder (Fermentas) 

Colony 1 of both constructs were sent for sequencing and subsequently used for protein 

expression. The shorter backbone (1) has been attributed to a mutation in the vector that 

produced a second HindIII site away from the insert (upstream of the promoter region). This 

appears to have no effect on the expression of Celf_1230 but it prevents the reuse of this 

backbone for other NdeI-HindIII cloning projects. 
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Figure 4.23. Nucleotide sequence verification of Cfi-28. The line “Celf_1230 NC1 Read” 

indicates the sample sent for sequencing. There are no variations in the two nucleotide 

sequences. 
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4.2.3 Expression and purification of recombinant Cel6A and Cel6C 

 

Figure 4.24. SDS-PAGE analysis of the expression of Cfi-28 (Celf_1230 aa31-433). This gel 

was visualized by Coomassie stain to detect the overexpressed protein, which has an expected 

size of 45.45 kDa. Lane 1 is the whole cell extract while lane 2 is only the supernatant soluble 

fraction. The ladder (L) used here was Precision Plus Dual Color (Bio-Rad).  

This SDS-PAGE analysis shows that approximately half or more of the recombinant protein 

remains insoluble. The protein was expressed at 30°C overnight with 0.5 mM IPTG. 
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Figure 4.25. SDS-PAGE analysis of the purification of Cfi-28 (Celf_1230 aa31-433) by 

IMAC. This gel was visualized by Coomassie stain to detect the purified recombinant protein, 

which has an expected size of 45.45 kDa. Lane 1 is the flowthrough fraction while lane 2 and 3 

are the wash fractions. Lanes 4-8 are various fractions taken during the elution gradient. A 

prominent band of the correct size is detected in both lanes 6 and 7 with minimal contaminating 

proteins. The ladder (L) used here was Precision Plus Dual Color (Bio-Rad). 
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Figure 4.26. Chromatogram of Celf_1230 (aa 31-433) IMAC purification using an FPLC. 

The largest peak corresponds to the overexpressed recombinant Cel6C/Celf_1230. The protein 

was detected by a UV-Vis detector set for A280nm. The x-axis is duration of the purification in 

minutes. 
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Figure 4.27. SDS-PAGE analysis of purity of Cfi-28 (Celf_1230 aa31-433). This gel was 

visualized by Coomassie stain to detect the pooled purified recombinant protein. In order to 

detect contaminating proteins, the gel was substantially overloaded to meet the minimum 

sensitivity of the reagent to detect protein levels. 
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Figure 4.28. SDS-PAGE analysis of batch purification of Cel6A produced from the 

construct pACDC-003. The following lanes contain: (1) the solubilized pellet, (2) the 

supernatant soluble fraction, (3) purification flowthrough, and (4) the wash step. Lanes 5-7 are 

the three collected fractions from the elution steps and a band of the correct size (48 kDa) is 

detected. The ladder (L) used here was Precision Plus Dual Color (Bio-Rad). 
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4.2.4 Assays 

 

Figure 4.29. Thin-layer chromatography to detect the hydrolysis products produced by 

Cel6C on cellopentaose. The experimental lane (E) shows cellobiose (G2) and cellotriose (G3) 

as products when cellopentaose is incubated with Cel6C for approximately an hour at 60°C. The 

control (C) was treated the same but excluding the enzyme. The standard (L) is made up of 

various amounts of cellodextrins from glucose (G1) up to cellopentaose (G5). 
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Figure 4.30. Differential scanning calorimetry (DSC) analysis of Cel6A and Cel6C. The two 

proteins were analyzed separately but their graphs are overlaid here. The peaks for each enzyme 

correspond to their respective melting temperature. 

The DSC was performed in buffer containing 20 mM MOPS and 50 mM NaCl at a pH of 7. A 

related experiment tested the melting temperature (Tm) of Cel6C in the presence of 20mM 

NaPO4 buffer instead of MOPS (not shown). The Tm of Cel6C in the phosphate buffer was 

73.86, which is not significantly different from the Tm with MOPS (74.09). This concludes that 

the thermostability is not due to a buffer effect. 
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Figure 4.31. Activity vs Temperature profile of Cel6A and Cel6C on CMC as a substrate. 

This assay was conducted using the HBAH method to detect reducing sugars.  

The measurement was done based on initial reaction rates so that substrate depletion was not an 

issue. This allowed Cel6A to have a detectable amount of activity at an assay temperature of 

60°C since it was able to hydrolyze CMC before being completely denatured under these 

conditions. Specific activity is in µmol/min/mg. 
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Figure 4.32. Activity vs pH profile of Cel6C on CMC as a substrate. This assay was 

conducted at an assay temperature of 30°C on 1.00% CMC. Cel6C prefers buffers within a 

neutral pH but can tolerate mild acidity (pH 5-7). 
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Figure 4.33. The relative activites of Cel6A and Cel6C on CMC or phosphoric acid-swollen 

cellulose (PASC) as substrates. The relative activities were normalized to Cel6A’s activity on 

CMC.  

Cel6C has comparable activity (90%) to Cel6A on CMC as a substrate. Both Cel6A and Cel6C 

had a significant decrease in activity when the substrate was switch to PASC. However, Cel6C 

has nearly double the activity of Cel6A on PASC.  
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Figure 4.34. The relative activites of Cel6A and Cel6C on modified substrates. The relative 

activities were normalized to the highest activity for each substrate between the two enzymes.  

Cel6C only has 23% activity of Cel6A on Azurine-crosslinked hydroxyethyl cellulose (AZCL-

HEC). Cel6C has no activity at all on 2,4-dinitrophenyl cellobioside (2,4-dNPC) but Cel6A had 

an average Vmax of 14.2 (mili-A360nm/min). 
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(a) 

 

 

(b) ToF-SIMS Principal Component Analysis  

 

Figure 4.35. Hydrolytic activity on ball-milled biomass substrates. (a) DNS assay showed 

that Cel6A is able to hydrolyze spruce (softwood) or aspen (hardwood) on its own. Cel6A and 

Celluclast® (a commercial blend of Trichoderma cellulases) have an additive effect on these 
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substrates. Cel6C has little to no activity on these substrates on its own. However, with the 

addition of Cellulclast®, Cel6C shows some hydrolytic activity. (b) (right) ToF-SIMS analysis 

of the biomass substrates shows stark differences between the C. fimi GH6 cellulases (Cel6A and 

Cel6C) and the rest (Cel7B (T. reesei source), Cellulclast® only, and negative control). On the 

left, there is no clear pattern of separation between the lignin peaks (green stars) and the 

polysaccharide peaks (red triangles). Thus, the scores and clustering observed on the right graph 

cannot be attributed to polysaccharide hydrolysis but to some other parameter that is currently 

unknown. 

The end-point assay was conducted by incubating the enzymes with the substrate at 45°C. The 

enzymatic activity was quantified based on reducing sugar release using the DNS assay. 
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Figure 4.36. Michaelis-menten plot of Cel6C on CMC as a substrate. Cel6C shows substrate 

inhibition for [CMC] ≥ 0.45%.  

The model with the best R-squared value is shown here, which is based on the substrate 

inhibition equation. The R-squared value here was 0.72447.  
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Chapter 5 

Discussion 
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5.1 Results and their significance  

Here I present evidence that Cel6C is a novel endoglucanase from C. fimi. Relative to known 

endoglucanases of the organism, this enzyme has significant thermostability over its 

counterparts. In addition, cellulases are typically multi-modular that consists of a signal peptide, 

a carbohydrate-binding module, and the catalytic domain. In the GH 6 family of C. fimi, Cel6A 

(an endoglucanase) has an N-terminal CBM approximately 100 amino acid residues long. On the 

other hand, Cel6B (a cellobiohydrolase) has a C-terminal CBM that is about 100 amino acid 

residues long and possibly longer depending on the actual boundary. Cel6C appears to have no 

CBM and its catalytic domain is nearly 100 residues longer than Cel6A’s catalytic domain. The 

CBM enhances the enzymatic hydrolysis of cellulose by facilitating the association of the 

enzyme with the substrate. This is particularly evident when dealing with insoluble and highly 

inaccessible substrates. Gilkes et al
45

 showed that the proteolytic excision of the cellulose-

binding domain from CenA (Cel6A) results in an apparent increase in activity on soluble 

substrates but had a decrease against microcrystalline cellulose.   The fact that Cel6C has no 

identifiable CBM explains why the enzyme has very little activity on pretreated insoluble 

biomass substrates. However, cellulases that do not have a CBM still require the ability to bind 

to the substrate during hydrolysis. Further research is required into the amino acid residues 

responsible for sugar-binding of catalytic domains. 

Glycoside hydrolases can have one of three types of active sites: the pocket, the cleft, or the 

tunnel 
38

. Classical endoglucanases have a relatively open cleft at its catalytic site and this allows 

it to attack at random internal sites of a cellulose chain 
38

. Nonetheless, some endoglucanases act 

in a processive manner, where it cleaves cellulose at an internal point then releases 

oligosaccharides before detaching from the substrate 
70,71

. In simplest terms, a processive 
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endoglucanase is a hybrid of endo- and exo-acting enzymes. It is normally required to have the 

synergistic effect of endo- and exoglucanases to solubilize filter paper but processive 

endoglucanases are able to do this on its own 
70

. It has been shown previously that Cel6A acts in 

a relatively nonprocessive manner on CMC 
72

. Overnight incubation of Cel6A or Cel6C with 

filter paper results in no detectable solubilization (data not shown). This suggests that the known 

GH6 C. fimi endoglucanases are relatively nonprocessive. 

Based on results on PASC, modified, and conjugated-substrates, the substrate specificity of 

Cel6A and Cel6C provides clues to the shape of its active-site. Based on NCBI, both Cel6A and 

Cel6C amino acid sequence predicts cellobiohydrolase. Furthermore, Phyre2
7
 (secondary 

structure prediction) also incorrectly models Cel6C to be a cellobiohydrolase (not shown) but 

correctly models Cel6A’s catalytic domain to be an endoglucanase. To date, neither Cel6A nor 

Cel6C from C. fimi has had their molecular structure solved experimentally. Since Cel6C has 

aforementioned interesting qualities, it is only logical to determine its molecular structure. This 

would provide insight into its thermostability, binding cleft, and substrate-binding ability. An 

initial high-throughput screen conducted by the Hauptman-Woodward Institute (HWI) resulted 

only in salt crystals (not shown). Collaboration with Dr. Alisdair Boraston of the University of 

Victoria (Canada) is now underway to hopefully produce protein crystals for x-ray diffraction.  

5.2 Future Directions  

Enzyme engineering 

Aside from structure determination of Cel6C, future directions involving this enzyme involve 

constructing a chimeric enzyme. The rationale behind this project is to increase the hydrolytic 

                                                           
7
 Protein Homology/analogY Recognition Engine V 2.0 

http://www.sbg.bio.ic.ac.uk/~phyre2/html/page.cgi?id=index (Kelley and Sternberg 2009) 

http://www.sbg.bio.ic.ac.uk/~phyre2/html/page.cgi?id=index
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activity of Cel6C while maintaining or improving its thermostability. The objective would be to 

fuse one or more thermostable CBMs from other organisms to either the N- or C-terminal end of 

Cel6C catalytic domain. There is precedent in this type of work that involves optimizing the 

number of domains added as well as optimizing the linker regions between the domains 
73

. A 

study showed that the addition of a CBM to endoglucanases, which naturally had no CBM, 

caused a two- to three- fold increase in activity on insoluble substrates 
74

. Furthermore, there are 

naturally occurring multifunctional glycoside hydrolases that contain several catalytic domains 

from various families 
75,76

. This can serve as precedent for attempting to fuse other catalytic 

domains onto Cel6C. 

To further understand which regions or which residues are important for thermostability, random 

mutagenesis on Cel6C can be done. Mutations that lead to a significant reduction on 

thermostability would provide indicators as to which secondary structures or residues are crucial. 

Other types of assays 

The reducing sugar analysis on ball-milled biomass showed that Cel6C has little to no activity on 

this insoluble substrate. However, when simultaneously treated with the addition of Celluclast®, 

there appears to be a synergistic increase in liberated reducing sugars. This provides evidence 

that Cel6C has novel activity relative to Cel6A on natural substrates. Work will be continued on 

these biomass substrates to have a better understanding on the difference between these enzymes. 

A protein sample of Cel6C has been given to Dr. Jose Moran-Mirabal of the McMaster 

University (Canada) for a unique assay. His group utilizes single-molecule investigation of 

biomolecular interactions. Using specially fabricated slides, they are able to maintain high 

temperatures and observe assays in real time using high resolution fluorescence microscopy. 
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Hopefully, this collaboration would elucidate the cellulase-cellulose interaction of Cel6C on 

various substrates.  

Additionally, a more comprehensive examination of synergistic effects is needed to understand 

Cel6C’s role in a complete cellulase system. This would require testing Cel6C with 

cellobiohydrolases, β-glucosidases, lytic polysaccharide monooxygenases, and hemicellulases on 

real biomass substrates. 

5.3 Concluding remarks 

Currently, cellulases for industrial applications are generally from fungal sources. This is due to 

the fact that fungal enzymes tend to be produce in copious amounts, have high catalytic activity, 

and some of which are thermostable and stable in non-neutral pH levels. Thermostability is a 

desired trait since the pretreatment results in a prolonged heated environment. Also, the 

Arrhenius’ equation dictates that reaction rates are temperature dependent and positively 

correlated. However, it is also discussed that it is both economically inefficient and energetically 

wasteful to produce fuel that requires heat input. Therefore, progress needs to continue to find 

pretreatment alternatives that use less energy and remain effective. That being said, research into 

mesophilic cellulose degradation should go hand in hand. In the meantime, the discoveries and 

explanations that come from Cel6C should benefit the field of cellulases and provide new topics 

to explore. 
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Tables 

Table 1. Gene targets and primers used 

Gene 

name 

Tube 

number Primer Sequence (5’ to 3’) 

Celf_1924  

1 - 

Forward 

ACTAAGGAATTCCATATGCATCATCACCATCACCACACGATCGTCGACTCGACCGG

GAAGGAG 

(aka 

Cel5A/CenD) 

1 - 

Reverse 

AAGTCAAAGCTTGTCGACCTAGCCGGTGTCGCCCGAGTTCGGGTT 

Celf_1925  

2 - 

Forward 

ACTAAGGAATTCCATATGCATCATCACCATCACCACGTGAACCCCACGTGGGCCGC

CTC 

(aka 

Cel6B/CbhA/

Cex) 

2 - 

Reverse 

AAGTCAAAGCTTGTCGACCTAGCGGTCGAACCGCTTGCCCTGGTCG 

Celf_0019  

3 - 

Forward 

ACTAAGGAATTCCATATGCATCATCACCATCACCACAACTACGCCGAGGCCCTGCA

GAAGTC 

(aka 

Cel9A/CenB) 

3 - 

Reverse 

AAGTCAAAGCTTGTCGACCTAAGCGAGGGCGCTGGTGAAGCC 

Celf_1537  

4 - 

Forward 

ACTAAGGAATTCCATATGCATCATCACCATCACCACTACCAGCAGCTCCGGTACGA

CG 

(aka 

Cel9B/CenC) 

4 - 

Reverse 

AAGTCAAAGCTTGTCGACCTACGAGGCGACCCAGGACAGC 

Celf_0376 

5 - 

Forward 

ACTAAGGAATTCCATATGCATCATCACCATCACCACAACACCCTCGACGCGGTCGG

C 

 

5 - 

Reverse 

AAGTCAAAGCTTGTCGACCTAGCCGTTGTCCCACCACATCGTCGT 

Celf_2403 

6 - 

Forward 

ACTAAGGAATTCCATATGCATCATCACCATCACCACGCGAACACCGTGCGCCTGCC

GATCAAC 

 

6 - 

Reverse 

AAGTCAAAGCTTGTCGACCTACCAGTAGACGAGCCCGATGCCCTGG 

Cfla_0736 

7 - 

Forward 

ACTAAGGAATTCCATATGCATCATCACCATCACCACGACTACCTCGCGAGCCGCGG

CGT 

 

7 - 

Reverse 

AAGTCAAAGCTTGTCGACCTAGGAGTAGAAGTGCTGGGAGTACATGACC 

Cfla_1897 

8 - 

Forward 

ACTAAGGAATTCCATATGCATCATCACCATCACCACAAGATCGTCGACGCCTCCGG

CAAG 

 

8 - 

Reverse 

AAGTCAAAGCTTGTCGACCTACCCGGTGTCACCCGAGTTCGGGTTGAGC 

Cfla_2811 

9 - 

Forward 

ACTAAGGAATTCCATATGCATCATCACCATCACCACCTCGTCGAGCGCGACGGCAC

CCCCTTCG 

 

9 - 

Reverse 

AAGTCAAAGCTTGTCGACCTACATGATCGTCGCCTCGTCGGGGTCACC 

Celf_3184  

10 - 

Forward 

ACTAAGGAATTCCATATGCATCATCACCATCACCACGTCGACCCGACGACGCAGGG

CTA 

(aka 

Cel6A/CenA) 

10 - 

Reverse 

AAGTCAAAGCTTGTCGACCTACTCCTGCCACCACTGGCCGG  

Celf_0233 

11 - 

Forward 

ACTAAGGAATTCCATATGCATCATCACCATCACCACTCCGCGGCCGCGCTGCTGAA

CAGGG 

 

11 - 

Reverse 

AAGTCAAAGCTTGTCGACCTACTCCTCCCACAGCTGCCCCGCCGGG 

Celf_1230 

12 - 

Forward 

ACTAAGGAATTCCATATGCATCATCACCATCACCACAACCCCGGCGCGACCGAGCA

GA 

 

12 - 

Reverse 

AAGTCAAAGCTTGTCGACCTACTGCGGGAACCACGCGCCCG 

Cfla_2913 

13 - 

Forward 

ACTAAGGAATTCCATATGCATCATCACCATCACCACGTCGACCCCGAGACGGCGGC

CTA 

 

13 - 

Reverse 

AAGTCAAAGCTTGTCGACCTACGACTGCCACCAGGCGCCGGCC 
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Cfla_1896 

14 - 

Forward 

ACTAAGGAATTCCATATGCATCATCACCATCACCACGTGAACCCGAACTGGGCAGC

GACGG 

 

14 - 

Reverse 

AAGTCAAAGCTTGTCGACCTAGCGGTCGAAGCTCTTGCCCTCGTCGT 

Cfla_2912 

15 - 

Forward 

ACTAAGGAATTCCATATGCATCATCACCATCACCACGTCGACACCACGAACCAGTC

GTACC 

 

15 - 

Reverse 

AAGTCAAAGCTTGTCGACCTACGACTGCCACCACTGACCGG 

Celf_0045 

16 - 

Forward 

ACTAAGGAATTCCATATGCATCATCACCATCACCACAAGAAGCTGCGGTACGACGC

GCTCGCG 

 

16 - 

Reverse 

AAGTCAAAGCTTGTCGACCTAGGCGAGCCAGGCCAGCGCCGAGTT 

Celf_1481 

17 - 

Forward 

ACTAAGGAATTCCATATGCATCATCACCATCACCACGACTCGCTCGTGGTGTTCTAC

GG 

 

17 - 

Reverse 

AAGTCAAAGCTTGTCGACCTACGCCGCGACCCAGGCCAGCGCCGAGTT 

Celf_0019* 

18 - 

Forward 

ACTAAGGAATTCCATATGCATCATCACCATCACCACAACTACGCCGAGGCCCTGCA

GAAGTC 

 

18 - 

Reverse 

AAGTCAAAGCTTGTCGACCTAAGCGAGGGCGCTGGTGAAGC 

Celf_1705 

19 - 

Forward 

ACTAAGGAATTCCATATGCATCATCACCATCACCACTACCAGCAGCTGCGGTACGA

CG 

 

19 - 

Reverse 

AAGTCAAAGCTTGTCGACCTACGACGCCACCCAGGACAGCGCCGAGT 

Cfla_1515 

20 - 

Forward 

ACTAAGGAATTCCATATGCATCATCACCATCACCACTACGCGCAGCTGCGGTACGA

CGC 

 

20 - 

Reverse 

AAGTCAAAGCTTGTCGACCTACGACGCGACCCACGACAGCGCCGAGT 

Cfla_3563 

21 - 

Forward 

ACTAAGGAATTCCATATGCATCATCACCATCACCACAAGCAGCTCCGGTACGACGC

GCTCGC 

 

21 - 

Reverse 

AAGTCAAAGCTTGTCGACCTACGCCGTCAGCCACGCGAACGCCGA 

Cfla_0016 

22 - 

Forward 

ACTAAGGAATTCCATATGCATCATCACCATCACCACCTGCAGAAGTCGATGTTCTT 

 

22 - 

Reverse 

AAGTCAAAGCTTGTCGACCTAGTACTGGGCCGTCAGGTACG 

Cfla_0139 

23 - 

Forward 

ACTAAGGAATTCCATATGCATCATCACCATCACCACAACCTCGCGCAGGCCCTGCA

GACCT 

 

23 - 

Reverse 

AAGTCAAAGCTTGTCGACCTACGCGAGCGCGCCCACGAACCCGGCGTT 

Cfla_3031 

24 - 

Forward 

ACTAAGGAATTCCATATGCATCATCACCATCACCACTACCAGGACCTGCGGCAGGA

CG 

 

24 - 

Reverse 

AAGTCAAAGCTTGTCGACCTACGACGCCACCCACGAGAGTGCCGAGT 

Celf_1230 

NC 

NC-

Forward 

GAATTCCATATGGGTGGTCCGCCTCATGGTTATCCGAGCGGCACCACCCGTCTGTAT

ACACCGCCTCCGAATCCGGGTGCAACCGAGCAG 

 

NC-

Reverse 

TCTAGAAAGCTTTTATTAGCTACGCGGACCACCAATAGGCGGAACTGCATTATGAA

CCAGTTCCAGTGCCATCTGCGGAAACCATGCACCCGC 

Celf_1230 C C-Forward 
CATATG-AATCCGGGTGCAACCGAGCAG 

 C-Reverse 
(same as NC-Reverse) 

*Celf_0019 was designed and synthesized twice by mistake. 

Theoretical primer Tm is not shown here since it varies greatly with the experimental annealing 

temperatures that were successful. 

 

 



89 
 

Table 2. RT-PCR primers 

Gene name Tube number Primer Sequence (5’ to 3’) Primer Tm (°C) 

Celf_1924 (aka Cel5A/CenD) 1 - Forward AAGGACAACTTCAAGCACTTCGCC 70.2 

 1 - Reverse AAGTCCTTCTGGAACCACTTCTGG 67.4 

Celf_1925 (aka Cel6B/CbhA/Cex) 2 - Forward GCTCGTGTTCAACCTCGTCATCTA 68.3 

 2 - Reverse AGTGGCCGATGTCGATGTAGTTGT 69.5 

Celf_0019 (aka Cel9A/CenB) 3 - Forward GTTCGTCAGCGACTACTTCGTCAA 68.4 

 3 - Reverse TACGTGCCGAACTGCTTGTTGT 68.7 

Celf_1537 (aka Cel9B/CenC) 4 - Forward TACGACGCGCTCAACTACTTCTAC 65.3 

 4 - Reverse TTGACGACGTACTTGCCGTGGT 70.6 

Celf_0376 5 - Forward TGCTGTTCGAGAGCATCAACGA 70.3 

 5 - Reverse AAGAACTTCAGCTTCTCGCCCT 66.4 

Celf_2403 6 - Forward AGAAGCCGTAGAAGTGCAGGGACA 70.8 

 6 - Reverse ACGAGAACAACCCGAAGGTCTACT 66.9 

Cfla_0736 7 - Forward ACCTGCTCAACGAGACCCACAT 69.1 

 7 - Reverse AAGTGCTGGGAGTACATGACCTTG 67.2 

Cfla_1897 8 - Forward AGTTCCTCGAGATGAGTGACGAGT 66.4 

 8 - Reverse GGCGAAGTGCTTGAAGTTGTCCTT 70.2 

Cfla_2811 9 - Forward GTGCAGATCAACATCGGCAACGAA 73.8 

 9 - Reverse TACATGTGGACGGAGAACAACGTG 69.8 

Celf_3184 (aka Cel6A/CenA) 10 - Forward TTCCTCAAGTACGCCGCCAAGT 70.6 

 10 - Reverse AGGTGTCGATGACGAACTTCTTGC 69.4 

Celf_0233 11 - Forward TTTCGCGGTCAACACGTCGAACTT 73.9 

 11 - Reverse TCTTGACCCACAGGTCCGCCA 74.3 

Celf_1230 12 - Forward ACGCCAAGGCCCTGAAGAAGAT 70.8 

 12 - Reverse TGAGCTGGTAGTTCGAGACGTTGA 69 

Cfla_2913 13 - Forward AAGATCGCGCAGATCGTCGTGTA 71.7 

 13 - Reverse ACGTGTCGATGACGAACTTCTTGC 70.3 

Cfla_1896 14 - Forward AGATGTTCGTGATGAGGTTCGGGA 71.5 

 14 - Reverse TCAACCTCGTCATCTACAACCTGC 68.2 

Cfla_2912 15 - Forward TCGACACCACGAACCAGTCGTA 69.9 

 15 - Reverse ACGTGTCGATGACGAACTTCTTGC 70.3 

Celf_0045 16 - Forward AACCCGCTGAACCAGTCGTACAT 69.5 

 16 - Revesre TTCCAGTTGATCGCGACCTCGTT 72.6 

Celf_1481 17 - Forward AACGGCCTGCTGCTCAACAA 70.2 

 17 - Reverse AGTTGATCGTCATCTCGTTCACGC 70.3 

Celf_0019* 18 - Forward AAGTCGATGTTCTTCTACCAGGCG  

 18 - Reverse TTGACGAAGTAGTCGCTGACGAAC  

Celf_1705 19 - Forward TACGACGCGCTCGACTACTTCTA 66.9 

 19 - Reverse TCCAGTCGACGTCATGGACCTTGT 72.8 

Cfla_1515 20 - Forward TACGACGCGCTGAACTACTTCTACCT 68.5 
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 20 - Reverse AACTCCTGGTCGTACTCGCTGAA 68 

Cfla_3563 21 - Forward ACAAGATGCACGACGAGAACTGGA 71 

 21 - Reverse TTGTAGAATGACGAGCCCGTGACA 71.4 

Cfla_0016 22 - Forward ACGACTACTTCGTCAAGGCACACA 68.8 

 22 - Reverse TCTCGTTGCTCAGCTTGTCGTACT 68.2 

Cfla_0139 23 - Forward AAGTACTGGTACTACTTCCGCTGG 63.3 

 23 - Reverse TGTCGCCCATGAGGTAGTTCATCT 69.6 

Cfla_3031 24 - Forward CTCGATCCTCAACAACCAGGTGAT 69.2 

 24 - Reverse GTTCCAGTTGACGGTGATCTCGTT 69.2 

C. fimi 16s 25 - Forward GCGGATTAATTCGATGCAACGCGA 75.4 

 25 - Reverse TGCGGGACTTAACCCAACATCTCA 72 

C. flavigena 16s 26 - Forward TTTCAGCAGGGAAGAAGCGAGAGT 70.1 

 26 - Reverse GCCCAATAATTCCGGACAACGCTT 72.6 

*This Celf_0019 RT-PCR primer is different from Tube 3 but was not ordered since it serves the same 

purpose. 

 

Table3. Sequencing primers used 

Oligo 

Name Sequence (5' to 3') Length Direction 

Tm 

(°C) Comments 

PCW-

FP TTG CGC CAT TCG ATG GTG TC 20 FP 58.6 pCW primer, ~400 bp from end 

PCW-

RP TTC GTC TTC AAG CAG ATC TG 20 RP 52.3 pCW primer, ~100 bp from end 

MB1041 

GGT GAT CAA CGC CGC CAG CGG 

TCG 24 FP 73.1 

forward primer for malE, after malE-

F2 

RCW70 

AGG CCC TTT CGT CTT CAA GCA 

GAT C 25 RP 66.2 pCW primer, 70 bp from end 

FCW1 ACAGGATCCATCGATGCTTAGGAG 24 FP 64.6 pCW primer, covers Bam HI site 

RCW20 TGTTTGACAGCTTATCATCG 20 RP 56.3 pCW primer, 20 bp from end 

malE-

F1 

GAA GCG TTA TCG CTG ATT TAT 

AAC 24 FP 52.2 forward primer for malE   

malE-

F2 CCG TTC GTT GGC GTG CTG AG 20 FP 61.6 forward primer for malE   

malE-

R1 CTC AGC ACG CCA ACG AAC GG  20 RP 61.6 reverse primer for malE   

malE-

R2 

GTT ATA AAT CAG CGA TAA CGC 

TTC  24 RP 52.2 reverse primer for malE  
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Supplementary information  
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Figure S1. Homogenizer using an overhead stirrer. Image is a representation of the equipment 

used. 

 

Figure S2. Vector map of Cfi-28. Celf_1230 aa31-433 inserted into the multiple cloning site of 

pVEK-06. 
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Figure S3. sodium salt of 3,3'-([1,1'-biphenyl]-4,4'-diyl)bis(4-aminonaphthalene-1-sulfonic 

acid) or Congo Red. The hydroxyl groups of the cellulose chain forms hydrogen bonds with the 

azo and amine groups of congo red. Adapted with permission from Puchtler et al. On the Binding 

of Congo Red by Amyloid. Journal of Histochemistry & Cytochemistry. Copyright (1962). 

SAGE Publications. 

 

S4. Nucleotide sequence of Celf_1230 (aa31-433) that was codon-optimized for E. coli 

expression. 

ATGGGTGGTCCGCCTCATGGTTATCCGAGCGGCACCACCCGTCTGTATAC  50 

ACCGCCTCCGAATCCGGGTGCAACCGAGCAGATTGCACAGCTGCTGCGTG  100 

ATCGTCAGTATGCAGATGCAAAAGCACTGAAAAAAATGGTTGCAACACCG  150 

CAGGCAGTTTGGTTTACCAAAGGTACACCGCAAGAAGTTCGTAAAGCAGT  200  

TGATAGCACCGTTCGTCAGGCAAAAAAACAGCGTGCAGTTCCGGTTATTG  250  

TTGCATATAATCTGCCGTTTCGTGATTGTGCACAGTATAGTGCCGGTGGT  300  
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GCACTGGATACCGCAAGCTATCTGGCATGGGTTGATGGTCTGGCAAAAGG  350 

 TATTGGTAAAAGCGAAGCAATTGTTCTGCTGGAACCGGATGGCCTGGGTA  400  

TTATTCCGTGGTATACAACAATTAACGGCGATCAAGAATGGTGTCAGCCT  450  

GCAGAAGCAGATCCGGCAACCGCAGCAGCAGATCGTTTTGCCCAGCTGAG  500  

CGGTGCAGTTGATCGTCTGAGCGCACTGCCGAATGTTAGCCTGTATCTGG  550  

ATGGCACCCATAGCGGTTGGCTGGGTGCGGGTGATGCAGCGGATCGTCTG  600  

CATAAAGCCGGTGTTGCCAAAACCGATGGTTTTTTTCTGAATGTGAGCAA  650  

CTATCAGCTGACCGAACGTCAGGTTAAATATGCAAGCTGGGTTAGCCAGT  700  

GTCTGTGGTATGGCACCAATGATGCAGAAGGTGGTTGGCGTCTGGGTCAT  750  

TTTGAACATTGTGGTAGCCAGTATTATCCGGCAGATCCGAATGATTTTAG  800  

CACCTGGGGTCTGACCGATCAGTGGTATCTGGACAATGTTACCAATGCAG  850  

CAAATCCGCCTAGCGGTCCGGAAGTTCTGGCACATGCAGTTATTGATACC  900  

AGCCGTAATGGTCAGGGTCCGTGGACCGCACCGGCTGATCGTCCTGCCGG  950  

TGATGCCCAAGAGTGGTGTAATCCGCCTGATCGTGGTCTGGGTCCGCGTC  1000  

CGACCACCAGTACCGGTGATCCGTATGTTGATGCATATCTGTGGGTTAAA  1050  

ATTCCGGGTGAAAGTGATGGTCAGTGTTTTCGTTGGGCACCGGAAAGCGG  1100  

TATTGATCCGGTTCGTGGTTATCCGGGTCCGGCAGCGGGTGCATGGTTTC  1150  

CGCAGATGGCACTGGAACTGGTTCATAATGCAGTTCCGCCTATTGGTGGT  1200  

CCGCGTAGC  1209  
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Figure 2.4. Enzyme classes of cellulases. 
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Figure S3. sodium salt of 3,3'-([1,1'-biphenyl]-4,4'-diyl)bis(4-aminonaphthalene-1-sulfonic 

acid) or Congo Red. 
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