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Abstract

We consider a single-part, two-echelon supply chain problem for spare parts. The
network consists of a single manufacturing plant, a set of service centers (SCs) and a set
of customers. Both echelons keep spare parts using the base-stock replenishment policy.
The plant behaves as an M/M/1 queueing system and has limited production and storage
capacity. Demand faced by each SC follows an independent Poisson process. The problem
is to determine optimal location-allocation and optimal base-stock levels at both echelons
while satisfying the target service levels and customer preferences of SCs. We develop a
mixed integer non-linear programming model and use cutting-plane method to optimize
the inventory-location decisions. We present an exact solution procedure for the inventory
stocking problem and demonstrate the limitations of using traditional inventory models like
METRIC-like and Approximate in case of high utilization rates. We show the effectiveness
of our proposed cutting-plane algorithm and provide important managerial insights for

spare parts management.
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Chapter 1

Introduction

In this thesis, we study a two-echelon supply chain design problem for spare parts with
customer preferences and response time requirements. The research is motivated by the
problem faced by Bombardier Inc. in designing its spare parts logistics system. The sys-
tem operated by the company consists of a central manufacturing plant having limited
production capacity in the first echelon, multiple service centers (SCs) in the second eche-
lon and spatially dispersed customers. The SCs keep stock to fulfill customer demand and
are replenished by the plant. Both the plant and SCs have limited storage capacity and
operate using continuous review (one-for-one) replenishment policy. Demand faced by each
SC follows an independent Poisson process. Customers are assigned to the SCs based on
their preferences. Each customer requires a mean target response time (the average time
between when the customer places an order and when the order is filled). The company
wants to decide on the SC to open, the assignment of customers to SCs, and the base-stock
levels at the plant and SCs. These decisions have to be made simultaneously since response

time depends on the assigned SCs and the base-stock levels at both echelons.



The supply chain design problem we study is applicable to several other industries that
have a significant spare parts business with low demand and high inventory holding cost.
Spare parts inventories are different from raw materials, work-in process or finished goods
inventories because spare parts are used to maintain the operations of any manufactured
equipment. For example in industries like the aerospace, automotive, computer manu-
facturing, telecommunication networks and military, products are comprised of different
interdependent parts. In such high technology products, failure of even a single component
may lead to complete system failure. The difference between spare parts and other regular
products arises because of maintenance policies, reliability information, failure process of
parts, high costs, loss of production and obsolescence [33]. Thus special inventory manage-
ment solutions are required as compared to generic supply chain policies for spare parts

management.

Continuous review base-stock replenishment policy, referred to as (S-1,S) policy, is
appropriate for managing inventory for spare parts which are characterized by infrequent
and low demand, high inventory holding and shortage costs, and relatively low order setup
costs. This policy has been used extensively in the literature for multi-echelon inventory
systems [26, 30, 44, 45, 58, 62, 63, 66]. Moinzadeh and Lee [13] study the problem of
determining optimal batch order size and stocking policy at all stocking echelons in multi-
echelon inventory systems. Their results are in accordance with the practice of using
base-stock policy for items with low demand and high inventory holding cost compared to

ordering cost.

A service requirement between a manufacturer and customers is a key element in spare
parts management. These requirements vary depending on the nature of the industry
and products being manufactured. For spare parts, time-based service requirements are

considered because customers are highly sensitive to response times. When there is a



breakdown of any component that may result in an interruption in production, customers
want to recover operations as quickly as possible. Therefore to ensure system reliability,
different industries where customers are sensitive to the response times now use multi-
echelon inventory control systems and keep supply of spare parts close to the customers so

that they can maintain the target service levels.

One way to satisfy customer demand within the target response time is to stock ample
supply of spare parts. Flint [23] points that the aviation industry stocks $45 billion worth
of spare parts including 4000 spare engines. The industry incurs almost $2 Billion every
year in maintenance cost for such a high valued inventory. Thus, maintaining ample supply
is not an economical option as most of the spare parts are expensive, have erratic and low
demand and require high maintenance. This has become a major challenge for supply chain
professionals to trade-off between high inventory holding costs and maintaining customer
service levels. Manufacturers can make significant savings using an efficient spare parts
supply chain network designs, which incorporate customer service requirements in the
design stage. Sherbrooke [6] finds that commercial airlines can achieve a 20% increase in
target service levels with a 40% reduction in inventory holding costs using efficient supply

chain designs.

Since supply chain networks are becoming more complex, competitive and integrated
than ever, the facility location and inventory stocking decisions need to be made simulta-
neously rather than sequentially. The facility location and inventory stocking decisions are
two main problems in supply chain network design [32]. Traditionally, the facility location
decisions are made separately from inventory stocking decisions which usually results in
sub-optimal supply chain designs [12, 141, 39, G1]. In the United States, inventories account
for one-third of all assets of a typical company [17]. The Canadian manufacturing sector

incurs 11% higher inventory holding costs as compared to the U.S.A whereas the retail



sector suffers from 31% higher costs than in the U.S.A. [57]. Cohen et al. [13] show that
maintenance contracts yield 63% of the after-sales service revenue whereas part sales ac-
count for 5%, and time and material contracts and internal service add up to 21%. These
statistics suggest that inventory investments must be considered while designing any sup-
ply chain network. Therefore, there is a need to integrate both the facility location and

inventory stocking decisions in order to design efficient supply chain systems.

The rest of the thesis is organized as follows: Chapter 2 presents a review of litera-
ture related to the facility location, inventory stocking, and inventory-location problems.
Chapter 3 describes the formulation of the inventory-location problem. Chapter 4 presents
the formulation of the inventory stocking problem, discusses existing models to calculate
the distribution of the number of the outstanding orders at SCs, and gives an exact so-
lution procedure to solve the inventory stocking problem. Chapter 5 proposes an exact
cutting-plane algorithm for the inventory-location problem. We test our solution approach
and report results in Chapter 6, perform sensitivity analysis in Chapter 7 and conclude

the thesis in Chapter 8.



Chapter 2

Literature Review

This section reviews three different streams of research which are related to our work. This
review is not meant to be exhaustive but we review the key contributions in these research
areas. The first stream of research is on the facility location problem that focuses on
locating facilities and allocating customers to open facilities to fulfill demand. The second
stream is on the inventory stocking problem which determines base-stock levels and the
third stream is on the inventory-location problem which incorporates the facility location

and inventory stocking problems.

2.1 The Facility Location Problem

The facility location problem has been studied considerably in the Operations Research
literature. The classical facility location problem determines the location of facilities and
allocates customers to these locations to fulfill their demand. These models aim to minimize

facility location and transportation costs and ignore inventory holding and shortage costs.



The P-median problem and the uncapacitated fixed-charge location problem (UFLP) are
two classical facility location problems. In P-median problem, P facilities are to be selected
on a network in order to minimize total demand-weighted distances whereas in UFLP, the
model locates facilities and assigns customers to these facilities while minimizing facility
location and transportation costs. Mirchandani and Francis [12], Daskin [15] and Drezner
[18] provide a detailed review on location models and extensions. Snyder [07] reviews
the location models under uncertainty, in which facilities may become unavailable due
to unforeseen circumstances. Recently, Klose and Drexl [34], ReVelle and Eiselt [55] and
ReVelle et al. [56] provide an extensive overview of facility location problems. For facility
location problems in the context of supply chain management, the reader is referred to

Owen and Daskin [50], and Melo et al. [38].

The location feature of our problem is a special case of a typical facility location problem
because we allocate customers to facilities based on their preferences and not on minimum

allocation cost.

2.2 The Inventory Stocking Problem

A rich literature exists on multi-echelon inventory stocking problems. These problems focus
on finding optimal base-stock levels at all echelons so that inventory holding and backorder
costs are minimized. Sherbrooke [62] presents the METRIC model, one of the most studied
models in the multi-echelon inventory literature. He develops an approximation technique
to minimize expected backorder level at each echelon in a two-echelon inventory system
for recoverable items. The METRIC model assumes a Compound Poisson failure process,

ample repair capacity and an (S-1,S) replenishment policy. Since then, many extensions of

the METRIC model have been studied. Muckstadt [11] develops the MOD-METRIC model

6



considering multi-indenture levels i.e., hierarchical parts structures. Slay [66] suggests to
fit the negative binomial distribution to approximate the outstanding orders in the VARI-
METRIC model. In his seminal work, Graves [20] presents a model to find the exact
steady state distribution of the number of the outstanding orders at each SC assuming
Compound Poisson failure processes and deterministic shipment times. He also suggests
a two-moment approximation for the distribution of the number of outstanding orders
under the assumption of Poisson failure processes, (S,S-1) replenishment policy and ample
repair capacity. He shows that the two-moment approximation performs better than the

METRIC approximation in terms of accuracy.

A key restricting assumption of these multi-echelon inventory models is “ample repair
capacity”. This is an unrealistic assumption for most of the modern business frameworks.
It means there are no queueing effects and no item has to wait for repair as the repair
process is modeled by an M/G /o0 queue. In order to relax this assumption, Gross et al.
[27; 28; 29], Albright [2], Albright and Gupta [3], Albright and Soni [1], Avsar and Zijm [7]
and recently Wong et al. [71] present different queueing models. Gross et al. [27] study a
multi-echelon repairable network with limited repair capacity for the first time. Their work
is an extension of Mirasol [11], who study a single-echelon capacitated repairable system.
Diaz and Fu [10] study the impact of limited repair capacity on inventory levels for different
types of repair processes. They find that the ample repair capacity assumption may yield
misleading results and underestimate the spare parts requirements for high utilization
rates. They suggest using a double negative binomial approximation and demonstrate
improvement over traditional models like the METRIC and Graves [26] in case of high

utilization rates.

An important aspect of our inventory stocking problem is the response time require-

ments imposed by customer agreements. Caglar et al. [11] propose a heuristic to minimize



total inventory holding cost at both echelons subject to a mean response time require-
ment. They use Lagrangian decomposition and show that their approach works well for
relatively large scale problems. Their problem is a special case of Hopp et al. [31], who
assume a general (r,Q) replenishment policy for the central warehouse and a continuous
review (S-1,S) policy for the regional warehouses. Ettl et al. [22] develop a multi-echelon
inventory model to optimize inventory investments while satisfying time-based customer
service requirements. They use a queueing based approximation to incorporate actual lead

times and use a conjugate gradient method [51] to find optimal solutions.

Kutanoglu [35] considers time-based service levels in a two-echelon distribution system.
He allows emergency lateral shipments, a possibility of sharing inventory among local
stocking locations whenever another local stocking location stocks out. He suggests that
in service parts logistics, time-based fill rates are more appropriate than traditional fill rates
as customers are sensitive to the time-based target service levels. Recently, Wong et al.
[71] and Topan and Bayindir [69] develop greedy heuristic approaches in multi-product
two-echelon spare parts inventory systems in order to minimize the system-wide inventory
holding costs under aggregate mean response time service level. Caggiano et al. [10] suggest
an efficient procedure to compute channel fill rates for multi-product, multi-echelon service
parts inventory system. They define channel fill rate as the probability of fulfilling demand
for a specific part at a specific location within a target response time. Muckstadt [10]

provides an excellent review of multi-echelon inventory management.

The inventory feature of our problem is different from the papers mentioned so far
in this section. None of the papers consider both time-based response requirements and
limited repair capacity, whereas our problem assumes limited repair capacity and includes

target response time constraints.



2.3 The Inventory-Location Problem

The inventory-location problem has attracted attention in the last decade and spawned a
lot of research. It integrates the inventory stocking and facility location problems. The
inventory-location problem aims to minimize the facility location, transportation and in-

ventory holding costs.

Erlebacher and Meller [21] incorporate inventory holding costs in addition to facility
location and transportation costs. They develop a heuristic approach to solve a two-echelon
distribution problem. Nozick and Turnquist [18] include inventory holding costs in the
fixed-charge facility location model by estimating a linear relationship between inventory
holding costs and the number of distribution centers. They assume a base-stock policy and
Poisson demand in a single-echelon inventory-distribution system. Nozick and Turnquist
[19] extend this analysis to a multi-product two-echelon system where inventory is held at

both echelons.

Daskin et al. [14] study three-echelon supply chain design which consists of a single
supplier, a set of distribution centers and a set of retailers. They explicitly include cycle
stock and safety-stock inventory holding costs in the UFLP. The costs include facility loca-
tion costs, local delivery costs, cycle stock and safety-stock inventory holding costs. They
develop a location model with risk pooling (LMRP) which aims to capture risk pooling
effects, grouping the retailers to get significant inventory holding cost savings [20]. LMRP
uses a (Q,r) inventory control strategy by assuming an economic order quantity (EOQ)
based ordering policy. They present a non-linear integer-program and use a Lagrangian
relaxation algorithm to solve the special case of their problem in which ratio of the mean
to the variance of the demand distribution is identical for all the retailers. Shen et al.

[61] study a model similar to Daskin et al. [14]. They use a set-covering formulation and



develop a column generation based solution algorithm. Miranda and Garrido [39] analyze a
model identical to LMRP. They develop a Lagrangian relaxation based heuristic approach

and their results demonstrate the potential benefits of taking an integrated approach.

Different extensions and variations of LMRP have been studied and analyzed. Miranda
and Garrido [10] and Ozsen et al. [51] extend LMRP to the capacitated warehouse location
model with risk pooling (CLMRP) by including a stochastic capacity constraint. Balcik
[7], Shen [59] and Vidyarthi et al. [70] present a multi-product case of LMRP. Shen and
Daskin [00] include customer service consideration to the LRMP model of Shen et al. [61],
while Snyder et al. [68] study the stochastic version of LMRP, stochastic location model
with risk pooling (SLMRP). Gebennini et al. [21] introduce a dynamic version of LMRP
and Ozsen et al. [52] extend CLMRP to the multi-sourcing capacitated inventory-location

model with risk pooling (MCLMRP).

Candas and Kutanoglu [12] integrate location and inventory stocking decisions in a
multi-product two-echelon setting. They minimize facility location, transportation and
inventory holding costs while satisfying a system wide target service level. They demon-
strate the potential benefits of integrating facility location, inventory level and correspond-
ing variable fill rates. They linearize the non-linear integer programming model and solve
reasonable size problems. Their model assumes infinite plant capacity, deterministic lead
time, a base-stock replenishment policy, Poisson distribution for customer demand and first
come first serve (FCFS) service discipline. Benjaafar et al. [3] consider a single-echelon
joint demand allocation and inventory control problem in which inventory is only kept
at SCs. They assume Poisson demand, stochastic production and supply lead time, lim-
ited production capacity, base-stock replenishment policy, and a FCFS policy to fill the
orders. They develop a mixed integer linear program and present an exact solution pro-

cedure. Their goal is to optimize demand allocation and base-stock levels at each location

10



while minimizing expected total costs. Abouee-Mehrizi et al. [1] study a two-echelon joint
production-inventory problem. They aim to determine optimal base-stock levels at both
echelons, optimal demand allocation to open facilities while minimizing inventory holding,
backorder and transportation costs. They present a formulation of their problem using
Flow-Unit approach by Axsater [(]. They assume queueing system at plant with limited
production capacity, base-stock policy at both echelons, Poisson demand and FCFS basis

to satisfy the orders.

All the papers mentioned so far in this section either consider deterministic replenish-
ment time or they do not incorporate service levels or they are single-echelon inventory-
location models. Nozick and Turnquist [19] is the only exception who study a model in
which inventory is stored at both echelons, consider stochastic replenishment lead time and

service considerations, whereas our problem also includes response time constraints.

The work most related to our problem is due to Mak and Shen [37]. They consider
a two-echelon integrated inventory-location system for spare part items. They assume
M/M/1 queueing system at the plant with limited production and storage capacity, base-
stock policy for both echelons, FCFS approach for filling the outstanding orders, Poisson
demand and deterministic shipment times between plant and SCs. They develop a nonlin-
ear mixed-integer program and use Lagrangian relaxation to determine optimal location
of SCs, optimal allocation of the customers to SCs, and optimal base-stock levels at both
echelons while satisfying time-based service levels. Our work differs from that of Mak and
Shen [37] in three main aspects. First, the allocation decisions are based on customer
preferences and not on minimum allocation cost. Second, we develop an exact algorithm
to solve the inventory stocking problem which is able to use any inventory model including
the METRIC, and Exact and Approximate models [26]. Third, we propose a novel exact

cutting-plane algorithm to solve the inventory-location problem.

11



The contribution of this work is three-fold. First, we incorporate customer preferences
in our optimization model. Second, we present an iterative exact procedure to solve the
inventory stocking problem. Third, to the best of our knowledge, this is the first work to

propose an exact cutting-plane algorithm for inventory-location problem.
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Chapter 3

The Inventory-Location Problem

3.1 Problem Description

The problem that we address is to design a single-part, two-echelon supply chain system
for spare parts. It consists of a single manufacturing plant (the upper echelon), a number
of SCs (the lower echelon) and a number of customers. The plant manufactures and stocks
items to fill SC orders. The SCs, in turn, hold inventory to fulfill customer demand. Both
the plant and SCs have limited storage capacity. Parts fail at each customer site according
to a Poisson process independent of other sites. Customers have a preference ordering of
the SCs for the purpose of parts replacement and are assigned to a SC based on their

preferences.

The plant and SCs use a base-stock (S-1,S) replenishment policy: When a part fails at
a customer site, the customer places an order from its assigned SC. If there is inventory on
hand, the customer order is filled, and the SC orders a replacement part from the plant.

The plant, if it has inventory, will immediately send one part to the SC and at the same

13



time will trigger an order to produce another item. There is a fixed shipment lead time
between the plant and the SC. If either the SC or the plant is out of stock, the item is
backordered until a replacement part becomes available. Backorders are filled on a FCFS
basis. The time between when the customer places an order and when the order is filled
is referred to as the customer response time. Customers require a mean target response

time. Figure 3.1 shows the replenishment process at the plant and SCs.

The manufacturing facility can produce items at a rate p, and has processing times
that are independent and exponentially distributed. Since the arrival rate of orders at the
plant is the superposition of independent Poisson processes, the plant can be viewed as an
M/M/1 queueing system. We are interested in the long-run behavior of this system, so we

consider only its steady state behavior.

The problem is to locate the SCs, assign customers to the SCs, and determine base-
stock levels at the SCs and the plant so that customer response time requirements are
met and customer preferences are satisfied. The objective is to minimize total costs which
include inventory holding costs at the plant and SCs, facility location costs associated with

the SCs, and backorder costs at the SCs.

3.2 Problem Formulation

We formulate the problem using the following notation, some of which is also used in Mak

and Shen [37].

Parameters:

I = Set of customers.
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Figure 3.1: Replenishment process at the plant and SCs

J = Set of potential SC locations.

hj = The unit inventory holding cost per unit time at SC j,j € J.
p = The unit backorder cost per unit time.

f; = The fixed cost of locating a SC j,j € J.

A; = The demand rate of customer 7,7 € .

A = The total demand rate at the plant (= Z i)

el
i = The production rate at the plant.
p = The utilization rate of the plant(= \/u).

7 = The mean target response time.

dmae = The upper limit on the distance between a customer and the assigned SC.
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J; = The ordered list of SC locations indicating the preference of customer i (only those
locations which are within d,,,, are considered).

a; = The deterministic shipment lead time between the plant and SC j,j € J.

Cp = The storage capacity at the plant.

C; = The storage capacity at SC j,j € J.

Decision Variables:

X, =1if SC j is opened, 0 otherwise, j € J.
Y;; = 1 if customer ¢ is assigned to SC 7,0 otherwise, ¢ € I, j € J.
S; = The base-stock level at SC j,j € J.

So = The base-stock level at the plant.

Auxiliary Variables:

Iy = The steady state mean inventory level at the plant.
By = The steady state mean backorder level at the plant.

= The steady state mean response time at the plant.

o

he steady state mean inventory level at SC j,7 € J.

he steady state mean backorder level at SC j,j € J.

=

; = The steady state mean response time to a customer at SC j,j € J.

Ej = The steady state mean replenishment lead time at SC 7,5 € J.
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Let Z be the total inventory holding and backorder cost in the system, Z = > . AL+
pB;j) + hoIy}. Using the notation described above, the inventory-location model is formu-

lated as:

[P]:  min ijXj +Z (3.1)
jedJ
st > V=1 iel (3.2)
jedJ
j—1
V=X, - Y X, ieljel (3.4)
=1
S; < CjX; jef{0}uJ (3.5)
W;<r jedJ (3.6)
S; =0, integer  je{0}uJ (3.7)
Z >0 (3.8)
X;€{0,1} jeJ (3.9)
Y;; € {0,1} iel,jeld (3.10)

The objective function (3.1) minimizes the sum of the inventory-location costs namely
facility location costs, inventory holding and backorder costs at the SCs, and inventory
holding costs at the plant. Constraints (3.2) ensure that all customers are assigned to SCs.
Constraints (3.3) link Y;; and X, variables; they state that customers are only assigned to

open SCs. Constraints (3.4)! ensure that the location preference with the smallest index

!These are closest assignment constraints, see Gerrard and Church [27].

17



among the available location preferences is selected (when j=1, the summation term drops
and Y;; = X; by (3.3) and (3.4)). Constraints (3.5) require that the base-stock level at a
SC should be less than or equal to the storage capacity. Constraints (3.6) are the response
time constraints. They ensure that the mean response time should not exceed the target

response time. Constraints (3.8)—(3.10) are non-negativity and integer requirements.

The formulation [P] is different from Mak and Shen [37]. The primary difference lies
in the assignment of customers. In [P], customers are assigned on the basis of customer

preferences and not on the minimum transportation costs.

It is difficult to solve [P] directly using commercial software due to the complicating
response time constraints (3.6). The mean response time W is a function of mean backorder
level Ej and the demand faced by the SC j, whereas, Ej is a function of the base-stock level
at SC j and the plant. In order to calculate the mean response time, we first need to find
mean backorder and base-stock levels at the SCs and plant, which makes [P] a complex
problem to solve. One approach to address this problem is to split these complicating
response time requirements from other constraints using some decomposition technique.
Mak and Shen [37] use Lagrangian relaxation to decompose the problem, whereas we

propose an exact cutting-plane algorithm to handle the complicating constraints.

Before describing the solution algorithm, in the next chapter we derive the mean in-

ventory and backorder level expressions required to calculate the mean response time.
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Chapter 4

The Inventory Stocking Problem

The inventory stocking problem itself is of great significance for the spare parts industry.
It has a similar problem setting and assumptions as the inventory-location problem de-
scribed in Chapter 3. Given location and assignments of customers, the inventory stocking
problem aims to find base-stock levels so that the inventory holding and backorder costs

are minimized while satisfying storage capacity (3.5) and response time requirements (3.6).

4.1 Problem Formulation

Let J < J = {7: )A(j = 1} be the set of open SCs and ffij Y, ={ij: }A/ij = 1} be the set

of customers allocated to .J. For a given .J and fﬁ-j, [ISP] is formulated as:

[ISP]: Z; = min Z(hjfj + pB;j) + hoIy (4.1)

jeJ
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A~

s.t. Sj < Cj j j € {O} ) j (42)
W; <7 jed (4.3)
S; = 0, integer je{o}uJ (4.4)

The objective function (4.1) minimizes the sum of the inventory holding costs at the
plant and inventory holding and backorder costs at the open SCs. Constraints (4.2) enforce
the storage capacity, the base-stock level at an open SC should be less than or equal to the
storage capacity. Constraints (4.3) are the response time constraints. They ensure that
the mean response time at open SC should not exceed the target level. Constraints (4.4)

are sign and integrality requirements on Sj.

The complicating constraints (4.3) make [ISP] a difficult problem to solve. However,
considering each SC as a queueing system, we use Little’s law [30] to find the waiting time

expression as:

B,
W, =L 4.5
J )‘j ( )
Using (4.5), we replace constraints (4.3) by
Bj < T)\j. (46)

In order to solve [ISP], we need to find mean inventory and backorder level expressions.
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4.2 Inventory Level at the Plant and SCs

Considering the steady state behavior of the queueing system at the plant, we use standard

inventory and backorder level expressions!
Iy = Sy — E[No] + By (4.7)

where Ny denotes the steady state number of outstanding orders in the queueing system

at the plant,
_ So—1
By = E[No| — Z [1— Fo(s)] (4.8)
s=0

and

Considering an M/M/1 queueing system at the plant and substituting the steady state
probabilities for M/M/1 in equations (4.7) and (4.8), we get the mean inventory and
backorder levels at the plant as given by Buzacott and Shanthikumar [9]:

I = [So — ﬁu — )], (4.9)
. pSO+1
By = (T (4.10)

1See Caglar et al. [11] and Mak and Shen [37].
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Hence, the mean waiting time at the plant is calculated as:

— By pot!
k. G S— 4.11
o= =) 41

Similarly, considering each SC as a queueing system, the mean inventory level, backo-

rder level and waiting time at SCs is:

I; = S; — E[N,] + B (4.12)

where N, denotes the number of outstanding orders at SC j (that are either in transit from

the plant to SCs or backordered at the plant),

B = E[N]— S [1- Fy(s)] (4.13)
and
Fy(s) = P(Nj =m)

In order to solve equations (4.12-4.13), we need to find the probability distribution of

the number of outstanding orders N;,j € J .
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4.3 Distribution of the Number of Outstanding Or-
ders at the SCs

In this section, we analyze different algorithms proposed in the multi-echelon inventory

management literature to find the distribution of the number of outstanding orders, NN;.

Exact Model

Graves [20] suggests an exact algorithm to obtain the steady state distribution of N;. In
order to find the exact steady state distribution, we first find the distribution of the aggre-
gate outstanding orders and then we disaggregate this distribution into the distributions

of the number of outstanding orders at each SC.

The number of aggregate outstanding orders at all SCs is derived from Graves [20] as:
N = B(Sy) + D (4.14)

where N is the aggregate outstanding orders at all sites, B(Sy) is the back-orders at the
plant for base-stock level Sy and D is the aggregate failures at all SCs. B(Sp) and D are

independent random variables due to the fact the failure process is Poisson.
In order to get the distribution of N, we convolve the distribution of B(Sy) and D
h

Pr(N = h) = > Pr(B =i)Pr(D = h —i).

=0

Assuming an M/M/1 repair system, the distribution of B(Sy) is given by Buzacott and
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Shanthikumar [9]:
Pr(B=1i)=(1-p)p™ wherei=0,1,2,3,... (4.15)

As the shipment time from the plant to the SCs is deterministic, D has a Poisson

distribution. We assume that the shipment time from plant to SC is the same for all the

SCs, a1 = ag = az... = Q,

— () h—i
Pr(D = h—i)= A e i =012, h=0123.  (416)
(h—1)!

Using equations (4.15) and (4.16),

h —(Aa) h—i
. . . i+5’0€ ()\Oé)

h ; _

) )\Oé)h
(1 ) S0e-0a) N P A
(1—p)p*e ;(ﬁ—w

multiplying and dividing by p":




h

) (—ha) {
Pr(N = h) = {(1 = p)p™ (>} S ,,(“O‘) . (4.17)
i!
i=0
According to Graves [20], once we find the distribution of the number of aggregate

outstanding orders, we disaggregate this distribution into the distributions of outstanding

orders for each SC as:

Pr(N; =m) = i [Pr(N = h)][Pr(N; =m|N =h)] for each je J. (4.18)

h=m
Since the plant fills the backorder requests on a FCFS basis, we use the binomial

distribution for the conditional distribution Pr(N; = m|N = h).

Thus, the steady state distribution of the number of the outstanding orders at each SC

1S

Pr(N; =m) = hi [Pr(N = h)] (h) l%r [A ;Ajr_m for cach je J.  (4.19)

METRIC-like Model

The METRIC-like model approximates the distribution of the number of the outstanding
orders IN; with a Poisson distribution which requires only the expression of the mean of

N; given by Graves [20]:

Ao
E[N]] = X]BO + )\jOéj. (420)
Sherbrooke’s METRIC model [62] assumes Compound Poisson failure processes and

ample repair capacity, and thus the repair process behaves like an M/G/o0 queue. The
p p p Y, b p q

25



distribution of N; is thus asymptotically Poisson [53]. Since the shipment time from the
plant to the SCs is deterministic, D has a Poisson distribution. This implies that B(S) has
a Poisson distribution since N and D are assumed Poisson [26]. Thus, the METRIC-like
model approximates the backorder level at the plant (4.10) with a Poisson random variable
in case of deterministic shipment time to the SCs [20] and as a result we replace Fj(s) by

the Poisson CDF with mean \;L; [11, 37].

The Poisson distribution is given by:

Pr(Nj =m) = i (4.21)
where
_ o pS()+1
L; =W, = ;. 4.22
j 0ty A(l—p)+a] ( )

Approximate Model

The Approximate Model suggested by Graves [20] approximates N; by a negative binomial
distribution. It assumes that all failure processes are Poisson and the plant fills order
requests on a FCFS basis. It requires both the mean of N, given in equation (4.20) and

the variance of N; calculated in [20]:

Var(N;) = (%)2‘/@7’{3(50)} + (%) (A _AAJ) By + \jay. (4.23)

The variance of the backorder level at the plant for base-stock level S is calculated as

P2 —p— ™t

Var{B(Sy)} = 1=

(4.24)
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The negative binomial distribution is given by
Pr(N; =m) = <T * :Z a 1)(]’"(1 —q)! form =0,1,2, ... (4.25)
where (0 < ¢ < 1) and (r = 0),
E(Nj=m)=r(1-q)/q, (4.26)
Var(Nj =m) =r(1 - q)/¢* (4.27)

Graves [20] compares the results of the METRIC and Approximate models with the
Exact model. They find that both approximations are effective in approximating the dis-
tribution of the number of the outstanding orders N;, however, “the negative binomial
approximation virtually dominates the METRIC approximation” in terms of accuracy.
Mak and Shen [37], use the METRIC-like approximation, claiming that finding the exact
distribution is computationally expensive and using the negative binomial distribution re-
quires rounding of the parameter r, which makes the optimization difficult. They use the
METRIC-like approximation without verifying whether it is appropriate. We on the other
hand experiment with all the three models; the Exact, METRIC-like and Approximate.

We present an exact solution of [ISP] in the next section.

4.4 Exact solution of [ISP]

In this section, we propose an exact procedure to solve inventory stocking problem [ISP] in-
troduced in section 4.1. Given location and allocation variables X ; and ﬁj, [ISP] calculates

the base-stock levels Sy and S; that satisfy response time (4.6) and capacity constraints
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(4.2) while minimizing inventory holding costs (4.1).

The iterative procedure is able to use any of the inventory models presented in section
4.3, and iteratively finds the minimum inventory holding cost solution for a given set of

facility locations and customer allocations.

The algorithm starts with Sy = Cj and finds all the possible feasible base-stock levels
S; that satisfy constraints (4.2) and (4.6). Once we find all possible feasible solutions we
pick the solution which has the lowest inventory holding cost, this is a local minimum cost
solution. However, if we are unable to find a feasible base-stock level S; for given value of

So then [ISP] is infeasible.

Once we find a local minimum cost solution for Sy, we decrease Sy by one and repeat
the above procedure. This process is continued till Sy reaches zero or we are unable to find
local minimum cost solution for some given value of Sy. After finding all the local minimum
cost solutions, we pick the minimum, this becomes the global minimum inventory holding

cost solution 2j for given (X,Y).

The [ISP] Algorithm is summarized as:
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Inventory Stocking Problem Algorithm [ISPA]

Initialize: Sy = Cy
while Sy > 0 do
Initialize S; = 0
for each open SC do
B, = E[N;] - (1- F(s))
while Bj > 71\ do
if §; < C; then
set S; «— S; +1
set Bj « Bj — (1 — Fy(s))
end if
end while
for each feasible S; do
set S; < 5; +1
set Bj < Bj — (1 - Fy(s))
end for
end for
set Sy «— Sy —1

end while

The [ISPA] calculates the steady state state parameters and may use the METRIC-like,

Approximate or Exact model to do so.

We present the solution approach based on the cutting-plane algorithm in the following

chapter.
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Chapter 5

Exact Solution of the
Inventory-Location Problem by

Cutting-Planes

The formulation [P] is a mixed integer non-linear program. It is difficult to solve because
of complicating constraints (3.6). In this chapter, we propose a cutting-plane method
that solves a relaxation of [P] where constraints (3.5) and (3.6) are dropped. We calculate
minimum cost inventory solution by solving [ISP] and based on [ISP] solution we propose

a family of valid cuts to strengthen the relaxation.

In general, a cutting-plane algorithm would first solve a relaxed master problem where
complicating constraints are dropped. The relaxed master problem solution gives a lower
bound to the original problem. Then based on the relaxation solution, a subproblem is
solved to get an upper bound to the original problem and valid cutting-planes, or cuts, are

derived. These cuts are added to the relaxed master problem to tighten the relaxation.
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If the relaxation solution is feasible then an optimality cut is added to improve the lower
bound, and if the relaxation solution is infeasible then a feasibility cut is added. This
process keeps on repeating to refine the relaxation until an optimal solution (when lower

bound becomes equal to upper bound) is obtained.

Consider the relaxed location-allocation master problem [RLAMP] defined by (3.1)-
(3.4), (3.8)-(3.10). Let (X, Y, Z) be a minimum cost solution to [RLAMP], J = {j : )A(j =
1} be the set of open SCs, and 3\]- = Dt )\iﬁj be the demand rate at open SC j. For
solution ()2' Y.Z ) to be feasible to [P], it has to satisfy the relaxed constraints (3.5) and
(3.6). To verify this, we solve the inventory stocking problem [ISP]. The [ISP] solves for
the minimum cost solution (2 ) given ()? : EA/) by finding the base-stock levels that satisfy
the relaxed constraints (3.5) and (3.6). If [[SPA] finds a feasible solution an optimality
cut is added to [RLAMP] to improve the lower bound, and if [ISPA] is unable to find a
feasible solution then a feasibility cut is added to [RLAMP] to remove the current relaxed

solution.

5.1 Valid Cuts and Cutting-Plane Algorithm

In case we get a feasible [ISP] solution, it gives us the minimum inventory holding cost,

Ej. Then an optimality cut for [RLAMP] is formally stated as:
Z>Z;-7;) (1- X)) (5.1)
jej

where J is the set of open facilities and 2j is the minimum inventory holding cost incurred
at location j in order to satisfy customer demand. If the same SCs are open again by

[RLAMP], then the summation term in cut (5.1) is dropped and the optimality cut is
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reduced to the form

7> 7 (5.2)
which forces Z to be greater than or equal to the minimum inventory holding cost.

If the [ISPA] is unable to find the feasible solution then we add feasibility cut to
[RLAMP] as:

XY M-X) =1 (5.3)

jeJ jeJ
If the same customers are assigned to the same SC by [RLAMPYJ, then >}, 71— X;) =0

and cut (5.3) becomes
YX;=1 (5.4)
J¢J
which forces [RLAMP] to remove the current infeasible solution and to find a new solution.
Constraints (5.1) and (5.3) are valid cuts since they do not cut any feasible solution
and they do remove the current infeasible solution from [RLAMP] and lead to optimality

by narrowing down the solution space and closing the gap between bounds.

We decompose [P] into relaxed location-allocation master problem [RLAMP] and inven-
tory stocking problem [ISP]. The cutting-plane algorithm iteratively solves the [RLAMP]
by locating facilities, and allocating customers to the open facilities. Since, [RLAMP] is
a relaxation of the original minimization problem [P], it gives a lower bound to [P]. Then
given (X,Y), we solve [ISP] to generate a feasible solution and an upper bound to [P].
If the [ISPA] finds a feasible solution, we generate valid optimality cut to tighten the re-
laxation and to improve the lower bound. However, if the [ISP] solution is infeasible, we
add a feasibility cut to [RLAMP]. This procedure is repeated until an optimal solution is

obtained.
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The formal description of the cutting-plane algorithm is given as:

Cutting-Plane Algorithm [CPA]

Initialize: UB = inf, LB = 0.
While LB # UB
Step 1. Solve [RLAMP], obtain solution ()A(,}A/, 2), update LB.
Step 2. Test: if solution ()A(, Y, 2) is feasible with respect to (3.5) and (3.6),
UB = LB, Stop.
Step 3. Solve [ISP], to construct a feasible solution
- If [ISP] is feasible:
- Construct feasible solution ()A( Y, Zj), update UB.
- Add optimality cut (5.1) to [RLAMP].
- If [ISP] is not feasible:
- Add feasibility cut (5.3) to [RLAMP].
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Chapter 6

Numerical Testing

In this chapter, we analyze the effectiveness of cutting-plane algorithm [CPA]. The [CPA]
is implemented in Matlab 7.14 on VAIO computer with Intel (R) Core i5-2540M CPU @
2.60 GHz, 8.00 GB RAM, and Windows 7. The relaxed mixed-integer problem [RLAMP]

is solved using GUROBI 4.6, a mixed-integer programming solver.

6.1 Performance of CPA

In this section, we run a set of experiments to test the performance of [CPA] using industrial
data obtained from Bombardier Inc. and Daskin datasets [15].
6.1.1 Daskin Instances

We have used three data sets from Daskin [15] ; a 49-node, 88-node and a 150-node data

set. The 49-node dataset contains capitals of the 48 states of the United States along with
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Washington, D.C. in the 1990 U.S. census. The 88-node data set is defined on the 50 most
populous cities in the 1990 U.S. census along with the 48 capitals of the continental U.S.
The 150-node data set represents the 150 largest cities in the 1990 U.S. census. Every node
is considered a potential SC location and a customer. These datasets are modified from
Daskin [1995] in the following way: we have used the same facility location costs f;. The
demand rates ); are obtained by dividing the 1990 population figure (First Demand) by
10%. The per unit inventory holding costs (h,, h;) and backorder costs p are 50 and 150,

respectively.

We have used two different versions of each data set. In version 1 (v1) of the Daskin
instances, shipment lead time «; is obtained by dividing the distance between the cor-
responding demand node and and Springfield (node 6), IL, in the 49-node dataset and
Chicago (node 3) in the 88-node and 150-node datasets by 100. The Plant and SC capaci-
ties (C,, C;), utilization rate p, response time requirement 7, and the distance requirement
dpmaz are set to 10, 0.9, 5.5 and 2000, respectively. For version 2 (v2), the shipment lead
time «; is obtained by dividing the distance between the corresponding demand node and
and Springfield (node 6), IL, in the 49-node dataset and Chicago (node 3) in the 88-node
and 150-node datasets by 1000. The Plant and SC capacities (C,, C;), utilization rate p,
response time requirement 7, and the distance requirement d,,,, are set to 5, 0.5, 1.5 and

500, respectively.

Version 2 of all the datasets contains relatively tougher instances because of smaller
target time, smaller value of d,,,, and low storage capacity. Therefore, we expect to see
more than one facility required to open to fulfill customer demand for version 2 datasets
and less number of facilities for version 1. However, high utilization rate for version 1 will
make a congested system and as a result we expect high inventory holding costs for version

1 datasets as compared to version 2 datasets.
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In the Tables 6.1-6.2: Iter denotes the number of iterations; #SC stands for number
of open SCs; UB denotes upper bound; Z refers to optimal inventory holding costs as
percentage of UB; Gap is an optimality gap and calculated as % x 100; Time is the
total clock time used in seconds; ISPS is the [ISP] solution time as percentage of total
time; Solver is the solver time as percentage of total time; Fgap stands for Gap in the first
solution; - stands for infeasible solution; M stands for METRIC-like model; A stands for

Approximate model and E stands for Exact model

Table 6.1: Performance of CPA for Daskin instances

Instance | Iter | Model | #SC 7 UB Gap | Solver | ISPS | Time | Fgap
49 vl 30 M 1 48.7 | 119919 | 0 98 1.9 168.27 | 1.47
49 vl 30 A 1 48.7 | 119919 | 0 99.8 0.1 179.28 | 1.47
88_vl 12 M 1 8.5 58457 0 97.9 2.1 90.52 62.1
88_vl 12 A 1 8.5 | 58457 0 99.8 0.1 93.65 62.1
150_v1 44 M 1 5.5 | 105880 | 0 99.1 0.8 | 1889.84 -
150_v1 44 A 1 5.5 | 105880 | 0 99.7 0.2 | 1768.38 -
49 _v2 8 M 5 7.52 | 313161 | O 80.2 | 17.7 2.77 -
49 _v2 8 A 5 7.52 | 313161 | O 94.7 5.1 2.63 -
88_v2 1 M 7 0.61 | 419600 | 0O 96.9 2.9 2.74 -
88_v2 1 A 7 0.61 | 419601 | O 97.6 2.2 2.61 -
15002 | 1073 M 6 0.62 | 603751 | 0 94.4 5.5 | 5203.06 | 0.77
15002 | 1073 A 6 0.62 | 603751 | 0 99.2 0.7 | 3782.29 | 0.77

Table 6.1 shows the performance of [CPA] for Daskin instances in terms of speed and
optimality gap. For all the instances tested, optimality gap is 0% and they are solved from

3 seconds up to 85 mins. For 49-node and 88-node dataset, version 1 optimal solution is
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found within 3 seconds, whereas, version 2 takes 3 mins. The 150-node dataset is solved

from 32 mins up to 85 mins.

6.1.2 Bombardier Instances

We have also used industrial dataset, which is obtained from Bombardier Inc. This dataset
consists of 20 potential SC locations and 121 customers. We have used a spare part which

has the highest demand.

The distance from customer i to facility j is given in hours and the demand is given
monthly. Shipment lead time o; is 0.23 months for every j. Two different version of
Bombardier instances (BBD) are used to test the algorithm. In version 1, the Plant and
SC capacities (C,, C}), utilization rate p, response time requirement 7, and the distance
requirement d,,,; are set to 10 units, 0.9, 0.025 months and 40 hours, respectively whereas

in version 2, these values are set to 5 units, 0.5, 0.01 months and 25 hours, respectively.

Similar to the Daskin instances, Version 2 of (BBD) instances are considered to be
difficult relative to version 1.

Table 6.2: Performance of CPA for Bombardier instances

Instance | Iter | Model | #SC 7 UB Gap | Solver | ISPS | Time | Fgap
20 vl 15 M 1 57.23 | 116,911 | 0 96.9 3.0 5.68 | 133.8
20wl 15 A 1 59.88 | 124,626 0 87.9 11.9 6.04 149.2
20_v2 43 M 2 35.42 | 190,998 | 0 99.9 | 0.04 | 863.06 -
20_v2 43 A 2 24.23 | 190,259 | 0 99.9 | 0.05 | 562.07 -

Table 6.2 shows the performance of [CPA] for Bombardier instances. For the METRIC-

like model, the solution times range from 6 seconds to 14 min and for Approximate Model,
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the solution times range from 6 seconds to 9.5 mins. Optimality gap is 0% for all the tested

instances.

Results in Tables 6.1 and 6.2 show that [CPA] solves the inventory-location problem ef-
fectively for industry size instances. All instances are solved to optimality within reasonable
computational time. We observe that as expected, version 2 datasets of the Bombardier
and Daskin instances are difficult to solve and require more than one SC to fulfill customer
demand and incur low inventory holding costs as compared to corresponding version 1
datasets. We also observe that solver takes most of the time for all the instances tested

and [ISPS] is almost negligible.

Moreover, we find that 50% of time first solution is infeasible for both Bombardier and
Daskin instances. For the first solutions which are feasible we see that the gap is improved
from 149.2 % to 0% for Bombardier instances, whereas maximum improvement for Daskin

instances is from 62.1% to 0%. The Fgap shows the benefits of using an integrated approach.

Furthermore, the results for Daskin instances show that both the METRIC-like and
Approximate models give the same solutions all the time, whereas the Bombardier instances
show that using the METRIC-like versus the Approximate model does not lead to the same
solution all the time. Moreover, for Bombardier instances version 1, solution is different
due to different base-stock levels, whereas for version 2, solution differs in base-stock levels

as well as in SC locations.

It is important to understand when these models differ and if possible find out which is
a better approximation. We carry out further testing in the following section to investigate

these issues.

38



6.2 Comparison of the METRIC-like and Approxi-
mate Models

In this section, we run a set of experiments to verify the results of the METRIC-like and
Approximate models with the Exact model described in chapter 4. For these tests we solve
inventory-location problem [P] using the METRIC-like model [M], and based on location
decision )2']-, we solve [ISP] with the Approximate model [A] and Exact model [E].

In computing the exact distribution, we find that the aggregation and disaggregation
procedures are very time consuming especially for high demand and large values of S, even
for small scale problems, which makes the [ISPA] computationally expensive. Thus, we
perform the following set of experiments only on version 1 profiles of all datasets, with
low value of demand and S, = 0, because for such setting we are able to compute the

distribution in reasonable time.

In the rest of the chapter, we use the following notation in addition to that introduced
in Sections 3.2 and 6.1.1. )A(j denotes the open SC location obtained by solving [P] using
M], Zj refers to optimal inventory holding costs at open SC as percentage of total cost,
§j refers to the base-stock level at open SC, éj refers to the mean backorder level at open
SC, IAJ refers to the mean inventory level at open SC, I//I\/j refers to the mean response time
to a customer at open SC, and %dev refers to percentage deviation calculated as (exact

cost-approximation cost)/exact cost)x100.
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Table 6.3: Comparison of approximations with the Exact model for BBD 20_v1
J =201 =121\ = 17.44, d,,pn = 40, 7 = 0.025, o = 0.2308

~

>

—~

Model | X; | Z; | S, | I, | B, W, |S;| B I; W, UB | %dev
p=20.1

E |12 [3610| 0 | 0 | 0.1111 | 0.0064 | 6 | 0.2271 | 2.0913 | 0.013 | 78250 | -

M |12 36.07| 0 | 0 |0.1111 | 0.0064 | 6 | 0.2261 | 2.0903 | 0.013 | 78209 | -0.14

A | 123632| 0 | 0]0.1111|0.0064 | 6 |0.2337 | 2.098 | 0.0134 | 78522 | +0.96
p=0.3

E |12 [3672| 0 | 0 | 0.4286 | 0.0246 | 6 | 0.3251 | 1.8719 | 0.0186 | 79011 -

M | 12 [36.20| 0 | 0 | 0.4286 | 0.0246 | 6 | 0.3094 | 1.8562 | 0.0177 | 78372 | -2.20

A |12 3577 0 | 0 | 04286 | 0.0246 | 6 | 0.2966 | 1.8434 | 0.017 | 77850 | -4
p=0.5

E | 12]4033| 0|0 1 00573 | 7 |0.3352 | 2.3105 | 0.0192 | 83788 | -

M |12 ]3810| 0 | 0 1 00573 | 7 | 0.2614 | 2.2368 | 0.015 | 80781 | -8.89

A 123694 0 |0 1 00573 | 7 |0.2247 | 2.2001 | 0.0129 | 79288 | -13.31
p=0.7

E |12 [51.05| 0 | 0 | 2.3333 | 0.1338 | 10 | 0.3689 | 4.0109 | 0.0212 | 102146 | -

M |12 4021 | 0 | 0 | 2.3333 | 0.1338 | 8 | 0.4146 | 2.0567 | 0.0238 | 83632 | -35.5

A |12 4017 | 0 | 0 | 2333301338 | 8 | 0.413 | 2.0551 | 0.0237 | 83566 | -35.6
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Table 6.4: Comparison of approximations with the Exact model for Daskin 49_v1
J =49,1 =49, \ = 40, d,,4, = 2000,C; = 10,7 = 5.5, = 1.5986

~

~

—~

Model | X; | Z; | S, | Io| By Wo |S;| B I; W, | UB | %dev
p=0.1

E |15 |11.65| 0 | 0 [ 0.1111 | 0.0028 | 10 | 54.0562 | 0 | 1.3514 | 69608 | -

M |15 | 11.65| 0 | 0 | 0.1111 | 0.0028 | 10 | 54.0562 | 0 | 1.3514 | 69608 | 0

A |15 1165| 0 | 0 | 01111 | 0.0028 | 10 | 54.0562 | 0 | 1.3514 | 69608 | 0
p=0.3

E |15 |11.71| 0 | 0 | 0.4286 | 0.0107 | 10 | 54.3736 | 0 | 1.3593 | 69656 | -

M |15 | 11.71| 0 | 0 | 0.4286 | 0.0107 | 10 | 54.3736 | 0 | 1.3593 | 69656 | 0

A |15 1171 0 | 0 | 0.4286 | 0.0107 | 10 | 54.3736 | 0 | 1.3593 | 69656 | 0
p=05

E |15/1182] 0|0 1 0.025 | 10 | 54.945 0 | 1.3736 | 69742 | -

M | 151182 |0 |0]| 1 0.025 | 10 | 54.945 0 | 1.3736 | 69742 | 0

A 1511820 0| 1 0.025 | 10 | 54.945 0 | 1.3736 | 69742 | 0
p=07

E |15 |1207| 0 | 0 |2.3333|0.0583 | 10 | 56.2784 | 0 1.407 | 69942 | -

M |15 1207 | 0 | 0 | 2.3333 | 0.0583 | 10 | 56.2784 | 0 1.407 | 69942 | 0

A | 151207 | 0 | 0 |23333|0.0583 | 10 | 56.2784 | 0 1.407 | 69942 | 0

C; =170,p=0.9

E |15 175 |00 9 0.225 | 70 | 6.2173 | 3.2722 | 0.1554 | 62596 | -

M |15] 138 [ 0|0]| 9 0.225 | 70 | 5.0548 | 2.1098 | 0.1264 | 62364 | -21.21

A |15 143 0|0 9 0.225 | 70 | 5.2094 | 2.2643 | 0.1302 | 62395 | -18.39
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Table 6.5: Comparison of approximations with the Exact model for Daskin 88_v1
J = 88,1 =88, \ =44.8400, h, = 50, h; = 50 for every j
ez = 2000,C; = 10,7 = 5.5, = 0.8592

~

>

Model | X; | Z; | S, | Iy | B Wo |S;| B I; W; UB | %dev
p=0.1

E |17 | 743 | 0 | 0 | 0.1111 | 0.0025 | 10 | 28.6375 | 0 | 0.6387 | 57795.6 | -

M | 17 | 743 | 0 | 0 | 0.1111 | 0.0025 | 10 | 28.6375 | 0 | 0.6387 | 57795.6 | 0

A |17 [743| 0 | 0 | 0.1111 | 0.0025 | 10 | 28.6375 | 0 | 0.6387 | 57795.6 | 0
p=0.2

E |17 | 747 0 | 0| 0.25 |0.0056 | 10 | 28.7764 | 0 | 0.6418 | 57816.5 | -

M | 17 | 747 0 | 0 | 0.25 |0.0056 | 10 | 28.7764 | 0 | 0.6418 | 57816.5 | 0

A |17 [ 7470 | 0| 025 |0.0056 |10 | 28.7764 | 0 | 0.6418 | 57816.5 | 0
p =03

E |17 | 751 0 | 0 | 0.4286 | 0.0096 | 10 | 28.9549 | 0 | 0.6457 | 57843.2 | -

M | 17 | 751 | 0 | 0 | 0.4286 | 0.0096 | 10 | 28.9549 | 0 | 0.6457 | 57843.2 | 0

A |17 [ 751 0 | 0 | 0.4286 | 0.0096 | 10 | 28.9549 | 0 | 0.6457 | 57843.2 | 0
p=04

E |17 | 757 0 | 0 | 0.6667 | 0.0149 | 10 | 29.193 0 | 0.651 | 57879 -

M | 17 | 757 | 0 | 0 | 0.6667 | 0.0149 | 10 | 29.193 0 | 0.651 | 57879 0

A |17 7570 | 0 | 0.6667 | 0.0149 | 10 | 29.193 0 | 0.651 | 57879 0
C;=70,p=

E | 17|14 |0 [ 0| 9 ]0.2007|53]| 24368 | 7.9105 | 0.0543 | 54261 -

M |17 [082| 0 [ 0| 9 ]02007|52]| 1.1036 | 55772 | 0.0246 | 53944 | -41.61

A [17]09 00| 9 0200752 1.3153 | 5.789 | 0.0293 | 53987 | -36.04
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Table 6.6: Comparison of approximations with the Exact model for Daskin 150_v1
J =150,1 = 150, A = 58.1970, d,,q,, = 2000,C; = 10,7 = 5.5, = 0.7678

Model | X; | Z; | S, | Io| By Wo |S;| B I W; UB | %dev
p=0.1

E [126|496| 0 | 0 | 01111 | 0.0019 | 10 | 34.7944 | 0 | 0.5979 | 105219 | -

M | 126|496 | 0 | 0 | 0.1111 | 0.0019 | 10 | 34.7944 | 0 | 0.5979 | 105219 | 0

A | 126496 | 0 | 0| 01111 | 0.0019 | 10 | 34.7944 | 0 | 0.5979 | 105219 | 0
p=02

E [126]498| 0 | 0| 025 | 0004310 |34.9333| 0 |0.6003 | 105240 | -

M | 126|498 | 0 | 0| 025 |0.0043| 10| 349333 | 0 | 0.6003 | 105240 | 0

A 126498 0 | 0| 025 |0.0043 |10 |34.9333| 0 |0.6003 | 105240 | 0
p=03

E [126| 5 | 0| 0 |0428 | 0.0074 | 10 | 35.1118 | 0 | 0.6033 | 105267 | -

M |126| 5 | 0|0 |04286 |0.0074 | 10| 351118 | 0 | 0.6033 | 105267 | 0

A |126] 5 | 0| 0 |0428 |0.0074 |10 | 35.1118 | 0 | 0.6033 | 105267 | 0
p=04

E [126|504| 0 | 0 |0.6667 | 0.0115 | 10 | 353499 | 0 | 0.6074 | 105303 | -

M | 126|504 0 | 0 |0.6667 | 0.0115 | 10 | 35.3499 | 0 | 0.6074 | 105303 | 0

A |126]504] 0 | 006667 | 0.0115 | 10 | 35.3499 | 0 | 0.6074 | 105303 | 0

C; =70,p=0.9

E [126077| 0| 0| 9 0154660 | 23074 | 8.6241 | 0.0396 | 100777 | -

M 126|047 |0 | 0| 9 |0.1546 |59 | 1.0351 | 6.3519 | 0.0178 | 100473 | -39.17

A 126049 0 | 0| 9 [0.1546 |59 | 1.1332 | 6.45 | 0.0195 | 100492 | -36.64

Tables 6.3-6.6 compare the results of approximations with the Exact model. We ob-

serve that the METRIC-like model outperforms the Approximate model for Bombardier
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instances in terms of % deviation whereas the Approximate model dominates the METRIC-
like model for Daskin instances. We also observe that, for Daskin instances, both approxi-
mations predict the same base-stock, backorder and inventory levels as the Exact model for
low and medium utilization rates, and differ for high utilization rates and high capacity.
For Bombardier instances, the approximations differ for all of the cases tested and the

differences are more significant for high utilization rates.

These results suggest that the Approximate and METRIC-like models produce solutions
that differ from the Exact model solutions at high utilization rates. Since the inventory
and backorder levels depend on the probability distribution of the number of outstanding
orders, we further explore and plot the distributions of the number of outstanding orders

for the three models for different values of utilization rates to verify the differences.
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a) Probablity distribution of N; , rho=0.3

b) Probablity distribution of N;, rho=0.5
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Figure 6.1: Probability distribution of N; for Daskin 49_v1
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a) Probablity distribution of N; , rho=0.3

b) Probablity distribution of N;, rho=0.5
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Figure 6.2: Probability distribution of N; for Daskin 88_v1
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a) Probablity distribution of N;, rho=0.1 b) Probablity distribution of N;, rho=0.3
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Figure 6.4: Probability distribution of N; for BBD 20_v1

Figures 6.1-6.4 show the probability distribution plots of the number of the outstanding
orders for the METRIC-like, Approximate and Exact models for Bombardier and Daskin
instances. It is observed that in case of deviation, the Approximate model overestimates the
exact distribution whereas the METRIC-like model underestimates the exact distribution.
Graves [20] has made similar observations as well. We observe that the METRIC-like and
Approximate models provide accurate approximation for low (p=0.1, 0.3) and medium

(p=0.5) utilization rates, however they deviate from the exact distributions in case of high
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(p=0.7, 0.9) utilization rates.

Our results are in agreement with those shown by Diaz and Fu [16]. They have demon-
strated that the METRIC and Approximate models do not work well in case of the high

utilization rates because these models ignore the queueing effects in the repair process.
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Chapter 7

Sensitivity Analysis

In this chapter, we perform a set of experiments to investigate the impact of capacity,
backorder cost and the utilization rate on the solution in terms of total cost, base-stock
level and backorder level. In the following experiments, we solve inventory-location problem
[P] using the METRIC-like model [M]. In this chapter, we use the notation introduced in
Sections 3.2 and 6.1.1.

7.1 Effects of Capacity

In this section we vary the capacity level for Daskin and Bombardier instances so we can

get a better understanding of the effect of capacity on the problem solution.
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Table 7.1: Effects of capacity on Daskin 49 _v1
J =49, =49, \ =247.05,p = 09,7 = 5.5, = 1.5986

#SC s S, | Io By | Wy S; Bj I_J Wj Cost Time
Cy,C; =10 1 48.7 | 10 | 4.14 | 3.14 | 0.01 | 10 | 388.08 | O | 1.57 | 119919 | 168.27
Co,C; = 30 1 474 |1 131 6.29 | 2.29 | 0.01 | 30 | 367.23 | O | 1.49 | 116899 | 191.27
Co,C; =50 1 46 | 131 6.29 | 2.29 | 0.01 | 50 | 347.23 | 0 | 1.41 | 113899 | 187.98
Cy,C; =70 1 44.5 | 13| 6.29 | 2.29 | 0.01 | 70 | 327.23 | 0 | 1.32 | 110899 | 248.68
Co,Cj =90 1 43 | 131 6.29 | 2.29 | 0.01 | 90 | 307.23 | 0 | 1.24 | 107899 | 322.57

Table 7.2: Effects of capacity on Daskin 88_v1
J =88,1 =88\ =44.8400,p = 0.9, 7 = 5.5, = 0.8592

#SC Z So Io B() WO Sj Bj Ij Wj Cost Time

Co,C; =10 1 85|10 | 414 | 3.14 | 0.07 | 10 | 31.66 | O | 0.71 | 58457 | 95.98
Co, C; = 30 1 3.5 |12 | 554|254 |0.06 | 30 | 11.15 | 0.08 | 0.25 | 55454 | 56.33
Co, C; =50 1 08 1] 01 | 81 |0.18]|50| 1.39 | 4.76 | 0.03 | 53951 | 62.04
Co,C; =170 1 081 0 0 9 0.2 | 52| 1.1 | 558 0.02| 53944 | 89.42
Co,C; =90 1 081 0 0 9 0.2 | 52| 1.1 | 558 |0.02 | 53944 | 133.59
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Table 7.3: Effects of capacity on Daskin 150_v1
J =150,1 =150, = 58.1970,p = 0.9, 7 = 5.5, = 0.7678

#SC | Z | S, | I By | Wy S; Bj I_J Wj Cost Time
Co,Cj =10 1 55| 10 | 4.14 | 3.14 | 0.05 | 10 | 37.82 | 0 | 0.65 | 105880 | 1889.84
Co,Cj = 30 1 28 | 13 [ 6.29 | 2.29 | 0.04 | 30 | 16.98 | 0.01 | 0.29 | 102862 | 1941.99
Co,C; =50 1 06| 6 | 1.78 | 4.78 | 0.08 | 50 | 2.55 | 3.08 | 0.04 | 100625 | 2601.48
Co,Cj =170 1 05 0 0 9 [0.15|59 | 1.04 | 6.35 | 0.02 | 100473 | 2817.76
Co,Cj =90 1 05] 0 0 9 [0.15]59 | 1.04 | 6.35 | 0.02 | 100473 | 3850.55

Tables 7.1-7.3 show the change in problem solution due to an increase in capacity for

Daskin instances.

As capacity at SC and the plant increases, base-stock levels at the SC increase which

results in a decrease in backorder levels and increase in inventory levels. On the other hand,

base-stock levels decrease at the plant which results in an increase in backorder levels and

decrease in inventory levels at the plant. The trade-off between backorder and inventory

holding costs leads to a decrease in total cost. Increasing capacity means that capacity

constraints are less tight so either the previous solution is still optimal or the new solution

has a better (lower) cost. It is worth noting that holding more stock at the SCs does not

necessarily lead to smaller base-stock levels at the plant as is the case for Daskin 49 v1.

One possible explanation is that the high utilization rate at the plant may push stock to

be held at the plant rather than at SCs.
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a) Total Cost, Version 1 b) Total Cost, Version 2
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Figure 7.1: Effect on total cost by increasing capacity at the plant and SCs for Daskin
instances

Figure 7.1 shows the impact of capacity on total cost for Daskin instances. For version 1,
when capacity increases, total cost decreases for 49-node dataset. The total cost decreases
because the decrease in backorder costs outweighs the increase in inventory holding costs as
the capacity increases. However, the inventory level remains zero at the SC and increases
at the plant. The reason for such behavior is high utilization rate p. Since p is high, it’s
better to keep inventory at the plant as compared to SCs. For 88-node dataset, the total
cost decreases as the capacity is increased but it remains the same for C; greater than
50. The reason for the initial decrease in the total cost is the same as for the 49-node
dataset, however, for C; greater than 50, the optimal base-base-stock policystock level and
backorder level at SCs remain the same. This is because at optimality, Sp = 0 and there
is no room for improvement. The 150-node dataset exhibits similar trend as the 88-node
dataset. The total cost decreases as the capacity is increased but it remains the same for

C; greater than 70.

Similarly, for version 2, as capacity increases the total cost decreases for the 49-node

dataset. However for 88 and 150-node dataset, the total cost initially decreases but it
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remains the same for C; greater than 25.

Table 7.4: Effects of capacity on BBD 20_v1
J=20,1=121,A=17.44, p=0.9, 7 = 0.025, o« = 0.2308

#SC Z SO I_o B(] Wo Sj Bj I_] Wj Cost Time
Co, Cj =8 21 43.2 | 5 1.31 | 5.31 | 0.30 7 0.18 | 2.5 | 0.02 | 175,938 | 2353
Co, Cj =9 22 42.7 | 4 0.9 59 1034 | 75| 0.17 | 2.7 | 0.02 | 174,647 | 2286
Co,Cj =10 1 572 | 8 | 2.87 | 3.87 | 0.22 | 10 0.4 2.5 10.02 | 116,911 | 5.68
Co,Cj =11 1 53.6 | 6 | 1.78 | 4.78 | 0.27 | 11 | 0.42 | 2.62 | 0.02 | 107,821 | 5.57
C'O,Cj =12 1 524 | 5 1.31 | 531 | 0.3 12 1 0.35 | 3.02 | 0.02 | 104,964 | 5.93
Co,C; =13 1 51.5 | 4 0.9 59 034 | 13 | 0.31 | 3.38 | 0.02 | 103,061 | 6.31
a) Total Cost, Version 1 b) Total Cost, Version 2
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Figure 7.2: Effect on total cost by increasing capacity at the plant and SCs for Bombardier
instances

Figure 7.2 shows the impact of capacity on total cost for Bombardier instances. For

ISince there are two open SCs, S;, B;, I; and W; refer to average levels of the two open SCs
2See footnote 1
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version 1, as capacity increases, total cost decreases as expected. With the increase in
the capacity at the SCs and plant, base-stock levels at the SCs increase which results in a
decrease in backorder levels and increase in inventory levels at the SCs. On the other hand,
base-stock levels decrease at the plant which results in an increase in backorder levels and
decrease in inventory levels at the plant. However, we see a drastic change in this trend
both at the plant and SC when capacity reaches 10. This is because of the change in the
number of open SCs and it leads to an increase in the base-stock level at the only open
SC. Since the open SC reaches capacity, it also pushes the plant to hold more stock which
results in a decrease in backorder levels and increase in inventory levels. The increase
in inventory levels is offset by the decrease in backorder levels and as a result total cost
decreases. It is worth noting that total cost changes significantly because of decrease in

facility location cost as now it requires only one SC to open.

Version 2 exhibits similar behavior as the version 1 dataset. The total cost decreases
drastically when capacity increases from 4 to 5 because of the decrease in the facility

location cost as well as inventory holding cost.

7.2 Effects of Backorder Cost

In this section we study the effect of backorder cost for Daskin instances on the problem

solution.
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Table 7.5: Effects of backorder cost on Daskin 49_v1
J =491 =49\ =247.05,p=0.9,7 = 5.5, = 1.5986

#SC Z SO I_(] Bo W(] gj éj fj Wj Cost Time
p =50 1 375 6 | 1.78 | 4.78 | 0.02 | 10 | 593.32 | O 2.4 79255 27.24
p =100 1 38.8 110 | 4.14 | 3.14 | 0.01 | 10 | 388.08 | O | 1.57 | 100515 | 86.12
p =150 1 48.7 | 10 | 4.14 | 3.14 | 0.01 | 10 | 388.08 | O | 1.57 | 119919 | 168.27
Table 7.6: Effects of backorder cost on Daskin 88_v1
J =881 =88 \=44.8400,p = 0.9, 7 = 5.5, = 0.8592
#5C Z S, fo BO WO §j éj f] Wj Cost Time
p =50 1 31 6 | 1.78 | 478 | 0.11 | 10| 33.31 | O | 0.74 | 55255 | 56.05
p =100 1 59110 | 4.14 | 3.14 | 0.07 | 10 | 31.66 | O 0 56873 | 103.03
p =150 1 85110 (4.14 | 3.14 | 0.07 | 10 | 31.66 | O | 0.71 | 58457 | 95.98
Table 7.7: Effects of backorder cost on Daskin 150_v1
J =150,1 =150, A = 58.1970,p = 0.9,7 = 5.5, = 0.7678
#SC 7 S, I_() BO Wo §j Ej j; I//I\/j Cost Time
p =50 1 2 6 | 1.78 | 4.78 | 0.08 | 10 | 39.47 | 0 | 0.68 | 102062 | 2063.17
p =100 1 3.8 110|414 | 3.14 | 0.05 | 10 | 37.82 | 0 | 0.65 | 103989 | 1852.04
p =150 1 55110 | 4.14 | 3.14 | 0.05 | 10 | 37.82 | O | 0.65 | 105880 | 1889.84

Tables 7.5-7.7 show the change in problem solution due to an increase in backorder cost
for Daskin Instances. As backorder cost p increases, backorder levels decrease both at the
plant and SCs. This results in an increase in base-stock levels and as a result inventory

levels increase at the plant, whereas inventory levels remain the same at SCs as base-stock
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levels at SCs are at capacity. The inventory holding costs outweigh the backorder costs
and as a result total cost increases. There is no change in backorder levels from p = 100
to p = 150 because base-stock levels are at capacity both at the plant and at the SCs.
However, the increase in backorder cost drives the backorder costs up and hence the total

cost increases.

a) Total Cost, Version 1 b) Backordered Level, Version 1
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Figure 7.3: Effect on total cost by increasing backorder cost at the SCs for Daskin instances

From Figure 7.3, we see that when backorder cost increases, total cost increases for all

three Daskin datasets for both versions as expected.
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7.3 Effects of Utilization Rate

In this section we vary the utilization rate for Daskin and Bombardier instances so we can

analyze the impact of utilization rate on the problem solution.

Table 7.8: Effects of utilization rate on Daskin 49 _v1
J =491 =49, X\ =247.05,p =0.9,7 = 5.5, = 1.5986

~ ~ —~

#SC| 2z |S,| Io | Bo | Wo |8 | Bj |Ij| W; | Cost | Time

p=0.1 1 484 | 0 0 0.11 | 0.0005 | 10 | 385.05 | O | 1.56 | 119258 | 161.87
p=205 1 485 | 2 | 1.25 1 0.25 | 0.001 | 10 | 385.19 | 0 | 1.56 | 119341 | 163.49
p=209 1 48.7 | 10 | 4.14 | 3.14 | 0.01 | 10 | 388.08 | O | 1.57 | 119919 | 168.27

Table 7.9: Effects of utilization rate on Daskin &88_v1
J=88,1=88\A=44.84,p=0.9,7 = 5.5, a = 0.8592

~ ~ ~ —~

#SC Z SO Io Bo Wg Sj Bj Ij Wj Cost Time

p=0.1 1 7410 0 0.11 | 0.002 | 10 | 28.64 | 0 | 0.64 | 57796 | 81.26
p=205 1 76| 1| 05 | 05 | 001 |10]29.03] 0 | 0.65 | 57879 | 83.14
p=209 1 85110 | 414 | 3.14 | 0.07 | 10 | 31.66 | 0 | 0.71 | 58457 | 95.98

Table 7.10: Effects of utilization rate on Daskin 150_v1
J =150,1 =150, A = 58.1970,p = 0.9,7 = 5.5, = 0.7678

~ ~ ~ —~

#SC Z So Io Bo Wg Sj Bj Ij Wj Cost Time

p=0.1 1 491 0 0 0.11 | 0.002 | 10 | 34.79 | 0 | 0.6 | 105219 | 1916.25
p=0.5 1 5 1105 |05 | 001 |10]3518| 0 | 0.6 | 105302 | 1912.31
p=209 1 9.5 110 | 414 | 3.14 | 0.05 | 10 | 37.82 | 0 | 0.65 | 105880 | 1889.84
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Tables 7.8-7.10 show the change in problem solution due to the increase in utilization
rate for Daskin instances. As utilization rate p increases at the plant, base-stock, backorder
and inventory levels increase at the plant. On the other hand, inventory levels remain the
same at SCs as base-stock levels at SCs are at capacity, whereas backorder levels increase
as utilization rate increases. The increase in the base-stock, backorder and inventory levels

in the system leads to an increase in the total cost.

a) Total Cost, Version 1 b) Total Cost, Version 2
140000 650000
120000 * - —e 600000
603683 603769 604319
119919 550000
100000 | 119258 119341
. 105219 105302 105880 500000
%
& 80000 & 450000
- =4=49 Nodes - —a—a =4=49 Nodes
£ 60000 £ 400000
k3 L i B ssNodes 2 419542 419736 420085 —m— 88 Nodes
20000 57796 57879 58457 350000
150 Nodes & N 5 150 Nodes
300000 ® .
313077 313161 313923
20000 250000
0 ‘ 200000
0.1 0.5 0.9 01 0.5 0.9
Utilization Rate at Plant Utilization Rate at Plant

Figure 7.4: Effect on total cost by increasing utilization rate at the plant for Daskin
instances

Figure 7.4 shows the impact of utilization rate on total cost for Daskin instances. We
observe that as utilization rate increases, total cost increases for all the instances. For
p = 0.1, optimal base-stock level at the plant is zero because there is no need to hold stock
at the plant when it’s almost idle, and base-stock level at SCs are at capacity. However, for
p = 0.5, the plant holds stock since it becomes slightly busy but base-stock levels at SCs
remain at capacity, whereas backorder levels increase both at the plant and at the SCs.
For p = 0.9, the optimal base-stock level at the plant reaches to capacity as the plant is

now really busy so there is a need to stock more at the plant to satisfy the response times,
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whereas base-stock levels at SCs remain at capacity, and backorder levels increase both at

the plant and the SCs.

Table 7.11: Effects of utilization rate on BBD 20_v1
J=20,1 =121,A=17.44, p = 0.9, 7 = 0.025, « = 0.2308

#SC 7 S, | Iy By | Wy §j fj’j 1"\] Wj Cost Time
p=0.1 1 36.1| 0 0 |011]0.01| 6 |0.23|209]|0.01]| 78209 | 2.59
p=03 1 36.2 | 0 0 |043]0.02| 6 | 031|186 |0.02| 78372 | 2.61
p=05 1 3811 0 0 1 10.06| 7 |0.26]|224|0.01 | 80,781 | 2.62
p=0.7 1 40.2 | 0O 0 |233]013| 8 | 041|206 0.02]| 83,632 | 2.75
p=209 1 57.2 | 8 | 287|387 022|101 04 | 25 | 0.02 | 116,911 | 5.68

a) Total Cost, Version 1 b) Total Cost, Version 2
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Figure 7.5: Effect on total cost by increasing utilization rate at the plant for Bombardier
instances

Figure 7.5 shows the impact of utilization rate on total cost for Bombardier instances.
We observe that as p increases total cost increases for Bombardier instances. For low values

of utilization rate, p = 0.1,0.3, the plant is idle and hence optimal base-stock level at the
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plant is zero whereas SCs hold stock. For relatively high utilization rates, p = 0.5,0.7, the
optimal base-stock level at the plant is still zero although now the plant is relatively busy
as compared to p = 0.1. The reason could be the increase in the base-stock levels at the
SCs. However, for p = 0.9, the optimal base-stock, backorder and inventory levels increase

at the plant. The reason for the sudden increase is the high utilization rate.

The results of the above experiments show us that, in general, we see an increase in
total cost with the increase in backorder cost or utilization rate. However, the total cost

either decreases or remain the same with the increase in capacity.
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Chapter 8

Conclusion

In this thesis, we have considered a supply chain design problem for spare parts that
incorporates customer service requirements and customer preferences of SCs. It is a two-
echelon inventory-location system consisting of a central manufacturing plant, a set of SCs
and multiple customers with stochastic demand. The demand rates at the SCs follow
an independent Poisson process. The plant manufactures at a rate p with independent
and exponential production times. Both the plant and SCs hold stock in anticipation of
demand and use base-stock replenishment policy. We assume deterministic shipment times

between plant and SCs and FCFS service discipline to fill the outstanding orders.

We present a mixed integer non-linear model that determines the optimal location-
allocation and optimal base-stock levels at both echelons by minimizing the facility location
costs of SCs, inventory holding costs at the plant and SCs and backorder costs at the SCs

subject to a response time requirements and customer preferences.

To the best of our knowledge, our problem is the first to propose an exact cutting-

plane algorithm for inventory-location problem. We consider time-based service require-
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ments, customer preferences for SCs and stochastic replenishment process in an integrated
inventory-location problem. Customers are allocated to the SCs based on their preferences
and not on minimum allocation cost, which makes it a unique problem. The inclusion of
time-based service requirement makes it difficult to solve. In order to handle this complex-
ity, we propose a novel cutting-plane algorithm that exploits the structure of inventory-
location problem by separating the location decisions from the inventory stocking decisions.
We present an exact solution procedure that iteratively solves a relaxation of inventory-
location problem in the master problem and the inventory stocking problem to generate
valid cuts. We have demonstrated that the traditional inventory models like METRIC-like
and Approximate model [20] do not perform well in approximating the distribution of the

number of the outstanding orders in case of high utilization rates.

We have tested the cutting-plane algorithm on two different types of datasets; Bom-
bardier datasets and Daskin datasets. Our results show the efficiency of the cutting-plane
algorithm in terms of speed and optimality gap. We have achieved optimal solutions
with zero optimality gap in reasonable times. We have also performed post optimality
experiments to present important managerial insights. These experiments demonstrate a
significant decrease in total cost due to increase in capacity and use of medium utilization

rate especially in case of Bombardier datasets.

Finally, we suggest potential extensions for this problem setting. One possible exten-
sion is to allow for lateral shipments since it is becoming more relevant in modern supply
chain networks. Another extension could be to implement the double negative binomial
approximation suggested by Diaz and Fu [10] to this framework as most of the manufac-
turing facilities operate at high utilization rate. One possible future direction is to consider
more than one manufacturing facility. Finally, we suggest studying multi-echelon (more

than two levels) inventory systems.
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APPENDICES

The results presented in Chapter 6 are summary of the following results.
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Appendix A

Daskin Results
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Table A.1: Results for Daskin Metric 49_v1

J =49,1 =49, \ = 247.05, h, = 50, h; = 50 for every j,p = 150
ez = 2000, p = 0.9,7 = 5.5,C; = 10 for every j

Iter X]’ Zj SO fo BO Wo Sj Bj fj Wj LB UB Time
0 8, 71.69 | 10 | 4.14 | 3.14 | 0.01 | 10 | 81552 | 0 | 3.3 | 48400 | 170934 | 0.88
1 32, 73.45 | 10 | 4.14 | 3.14 | 0.01 | 10 | 835.66 | O | 3.38 | 48800 | 170934 | 1.54
2 30, 64.25 | 10 | 4.14 | 3.14 | 0.01 | 10 | 591.68 | O | 2.39 | 49500 | 138458 2.2
3 31, 137.61 | 10 | 4.14 | 3.14 | 0.01 | 10 | 1268.88 | 0 | 5.14 | 54600 | 138458 | 2.81
4 28, | 13947 |10 | 414 | 3.14 | 0.01 | 10 | 1286.05 | O | 5.21 | 54900 | 138458 | 3.39
5) 44, - - - - - - - - - 59500 | 138458 3.8
6 14, 7754 | 10 | 4.14 | 3.14 | 0.01 | 10 | 7144 0 | 2.89 | 60800 | 138458 | 4.39
7 15, 48.72 | 10 | 4.14 | 3.14 | 0.01 | 10 | 388.08 | O | 1.57 | 61500 | 119919 5
8 36, | 116.08 | 10 | 4.14 | 3.14 | 0.01 | 10 | 926.63 | O | 3.75 | 61700 | 119919 | 5.64
9 33, | 116.72 | 10 | 4.14 | 3.14 | 0.01 | 10 | 931.72 | O | 3.77 | 64200 | 119919 | 6.62
10 46, - - - - - - - - - 67900 | 119919 | 7.11
11 49, - - - - - - - - - 68700 | 119919 | 7.62
12 20, | 122.36 | 10 | 4.14 | 3.14 | 0.01 | 10 | 976.87 | O | 3.95 | 70900 | 119919 8.9
13 3, - - - - - - - - - 72600 | 119919 | 9.89
14 17, 90.16 | 10 | 4.14 | 3.14 | 0.01 | 10 | 719.39 | O | 2.91 | 74400 | 119919 | 13.22
15 16, 69.87 | 10 | 4.14 | 3.14 | 0.01 | 10 | 557.22 | O | 2.26 | 75200 | 119919 | 16.19
16 26, - - - - - - - - - 79000 | 119919 | 20.74
17 | 5,44 - - - - - - - - 97900 | 119919 | 30.85
18 | 5,29 - - - - - - - - - 98700 | 119919 | 41.16
19 37, - - - - - - - - - 99000 | 119919 | 53.31
20 | 5,43 - - - - - - - - - 101600 | 119919 | 70.49
21 | 5,35 - - - - - - - - - 105600 | 119919 | 79.46
22 | 5,41 - - - - - - - - - 106100 | 119919 | 86.02
23 | 5,46 - - - - - - - - - 106300 | 119919 | 96.47
24 | 5,49 - - - - - - - - - 107100 | 119919 | 104.65
25 3,9 - - - - - - - - - 111000 | 119919 | 114.01
26 | 5,24 - - - - - - - - - 115500 | 119919 | 126.28
27 | 5,18 - - - - - - - - - 116200 | 119919 137
28 | 5,26 - - - - - - - - - 117400 | 119919 | 149.04
29 | 29,44 - - - - - - - - - 119800 | 119919 | 159.63
30 15 48.72 | 10 | 4.14 | 3.14 | 0.01 | 10 | 388.08 | O | 1.57 | 119919 | 119919 | 168.27
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Table A.2: Results for Daskin Approximate 49 _v1
J =49,1 =49, \ = 247.05, h, = 50, h; = 50 for every j,p = 150
ez = 2000, p = 0.9,7 = 5.5,C; = 10 for every j

Iter | X; Zi |So| I | Bo | Wo | S;| B |Ij| W, | LB UB | Time
0 8, | 71.69 |10 | 4.14 | 3.14 [ 0.01 | 10 | 81552 | 0 | 3.3 | 48400 | 170934 | 0.66
1 | 32, | 7345 |10 | 4.14 | 3.14 | 0.01 | 10 | 835.66 | 0 | 3.38 | 48800 | 170934 | 1.31
2 | 30, | 64.25 | 10 | 4.14 | 3.14 | 0.01 | 10 | 591.68 | 0 | 2.39 | 49500 | 138458 | 1.96
3 | 31, |137.61| 10 | 4.14 | 3.14 | 0.01 | 10 | 1268.88 | 0 | 5.14 | 54600 | 138458 | 2.45
4 | 28, |139.47 | 10 | 4.14 | 3.14 | 0.01 | 10 | 1286.05 | 0 | 5.21 | 54900 | 138458 | 2.81
5 | 44, - - - - -] - - - | - | 59500 | 138458 | 3.17
6 | 14, | 7754 | 10 | 4.14 | 3.14 | 0.01 | 10 | 7144 | 0 | 2.89 | 60800 | 138458 | 3.54
7 | 15, | 48.72 | 10 | 4.14 | 3.14 | 0.01 | 10 | 388.08 | O | 1.57 | 61500 | 119919 | 3.91
8 | 36, |116.08 | 10 | 4.14 | 3.14 | 0.01 | 10 | 926.63 | 0 | 3.75 | 61700 | 119919 | 4.29
9 | 33, |116.72 | 10 | 4.14 | 3.14 | 0.01 | 10 | 931.72 | 0 | 3.77 | 64200 | 119919 | 4.77
10 | 46, - - - - -] - - - | - | 67900 | 119919 | 5.22
11 | 49, - - - - -] - - - | - | 68700 | 119919 | 5.67
12 | 20, |122.36 | 10 | 4.14 | 3.14 | 0.01 | 10 | 976.87 | 0 | 3.95 | 70900 | 119919 | 6.7
13 | 3, - - - - -] - - - | - | 72600 | 119919 | 7.63
14 | 17, | 90.16 | 10 | 4.14 | 3.14 | 0.01 | 10 | 719.39 | 0 | 2.91 | 74400 | 119919 | 10.65
15 | 16, | 69.87 | 10 | 4.14 | 3.14 | 0.01 | 10 | 557.22 | 0 | 2.26 | 75200 | 119919 | 14.28
16 | 26, - - - - -] - - - | - | 79000 | 119919 | 18.9
17 | 5,44 - - - - -] - - - | 97900 | 119919 | 29.22
18 | 5,29 - - - - -] - - - | - | 98700 | 119919 | 45.41
19 | 37, - - - - -] - - - | - | 99000 | 119919 | 57.38
20 | 543 - - - - -] - - - | - | 101600 | 119919 | 73.77
21 | 5,35 - - - - -] - - - | - | 105600 | 119919 | 82.28
22 | 541 - - - - - - - - | - | 106100 | 119919 | 88.86
23 | 5,46 - - - - -] - - - | - ] 106300 | 119919 | 100.18
24 | 5,49 - - - - - - - - | - | 107100 | 119919 | 108.74
25 | 3,5 - - - - -] - - - | - ] 111000 | 119919 | 118.84
26 | 5,24 - - - - - - - - | - | 115500 | 119919 | 132.67
27 | 5,18 - - - - -] - - - | - ] 116200 | 119919 | 145.4
28 | 5,26 - - - - -] - - - | - | 117400 | 119919 | 157.6
29 | 2944 | - - - - - - - - | - | 119800 | 119919 | 169.64
30 | 15 | 48.72 | 10 | 4.14 | 3.14 | 0.01 | 10 | 388.08 | O | 1.57 | 119919 | 119919 | 179.28
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Table A.3: Results for Daskin Metric 83_v1
J = 88,1 =88, \ =44.8400, h, = 50, h; = 50 for every j,p = 150
ez = 2000, p = 0.9,7 = 5.5,C; = 10 for every j

Iter | X; | Z; |[So| Io | Bo | Wo |S;| B; |Ij| W, | LB | UB | Time
0 |67 [3833]10|4.14 |3.14[0.07 [ 10 | 200.8 | 0 | 4.48 | 48800 | 79126 | 3.22
1 | 56 | 28.56 | 10 | 4.14 | 3.14 | 0.07 | 10 | 130.55 | 0 | 2.91 | 49500 | 69289 | 4.46
2 [ 10| - -] - - - - - - | - | 49700 | 69289 | 5.65
3 |34 (2467 |10 | 4.14 | 3.14 | 0.07 | 10 | 109.3 | 0 | 2.44 | 50700 | 67303 | 8.96
4 | 17 | 848 | 10 | 4.14 | 3.14 | 0.07 | 10 | 31.66 | 0 | 0.71 | 53500 | 58457 | 12.39
5 |55 | - - - - - - - - | - | 54600 | 58457 | 15.82
6 | 47 | 48.32 | 10 | 4.14 | 3.14 | 0.07 | 10 | 186.94 | 0 | 4.17 | 54600 | 58457 | 21.08
7029 - - - - - - - - | - | 54900 | 58457 | 32.3
8 | 18 | 54.01 | 10 | 4.14 | 3.14 | 0.07 | 10 | 209.12 | 0 | 4.66 | 55700 | 58457 | 43.77
9 | 31 (4539 |10 | 4.14 | 3.14 | 0.07 | 10 | 175.5 | 0 | 3.91 | 56100 | 58457 | 55.78
10 | 50 | - - - - - - - - | - | 56700 | 58457 | 67.15
11 | 4 - - - - -] - - - | - | 58000 | 58457 | 79
12 | 17 | 848 | 10 | 4.14 | 3.14 | 0.07 | 10 | 31.66 | 0 | 0.71 | 58457 | 58457 | 90.52

Table A.4: Results for Daskin Approximate 88_v1
J = 88,1 =88, \ = 44.8400, h, = 50, h; = 50 for every j,p = 150
ez = 2000, p = 0.9,7 = 5.5,C; = 10 for every j

Iter | X; | Z; | So| Io | Bo | Wo | S;| B |Ij| W; | LB UB | Time
0 |67 [3833]10]4.14 |3.14[0.07 | 10 | 200.8 | 0 | 4.48 | 48800 | 79126 | 3.07
1 | 56 | 28.56 | 10 | 4.14 | 3.14 | 0.07 | 10 | 130.55 | 0 | 2.91 | 49500 | 69289 | 4.2
2 | 10| - - - - -] - - - | - 49700 | 69289 | 5.41
3 |34 2467 |10 | 4.14 | 3.14 | 0.07 | 10 | 109.3 | 0 | 2.44 | 50700 | 67303 | 8.81
4 | 17 | 848 |10 | 4.14 | 3.14 | 0.07 | 10 | 31.66 | O | 0.71 | 53500 | 58457 | 12.12
5 |55 - - - - -] - - - | - | 54600 | 58457 | 15.66
6 | 47 | 48.32 | 10 | 4.14 | 3.14 | 0.07 | 10 | 186.94 | 0 | 4.17 | 54600 | 58457 | 20.93
7029 - - - - -] - - - | - | 54900 | 58457 | 32.67
8 | 18 | 54.01 | 10 | 4.14 | 3.14 | 0.07 | 10 | 209.12 | 0 | 4.66 | 55700 | 58457 | 45.68
9 | 31 (4539 | 10 | 4.14 | 3.14 | 0.07 | 10 | 175.5 | 0 | 3.91 | 56100 | 58457 | 57.84
10 | 50 | - - - - - | - - - | - | 56700 | 58457 | 69.47
11 | 4 - - - - - |- - - | - | 58000 | 58457 | 80.99
12 | 17 | 8.48 |10 | 4.14 | 3.14 | 0.07 | 10 | 31.66 | 0 | 0.71 | 58457 | 58457 | 93.65
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Table A.5: Results for Daskin Metric 150_v1
J =150,1 = 150, A = 58.1970, h, = 50, h; = 50 for every j,p = 150
ez = 2000, p = 0.9, 7 = 5.5,C; = 10 for every j

Tter Xj Zj So I_O Bo Wg Sj Bj I_J Wj LB UB Time

0 150 | - - - - - - - - |- 100000 | 1000000 || 607.59
1 88 | - - - - - - - - |- 100000 | 1000000 || 614.16
2 126 | 5.55 10 | 4.14 | 3.14 || 0.05 | 10 | 37.82 0 | 0.65 | 100000 | 105880 623.18
3 95 | 10.93 || 10 | 4.14 | 3.14 || 0.05 | 10 | 75.77 0 | 1.3 | 100000 | 105880 648.81
4 112 | 33.43 || 10 | 4.14 | 3.14 || 0.05 | 10 | 234.57 || 0 | 4.03 | 100000 | 105880 659.29
5 84 | - - - - - - - - |- 100000 | 105880 669.21
6 95 | 27.8 10 | 414 | 3.14 || 0.05 | 10 | 194.84 || O | 3.35 | 100000 | 105880 679.92
7 149 | 37.41 || 10 | 4.14 | 3.14 || 0.05 | 10 | 262.66 || O | 4.51 | 100000 | 105880 690.75
8 147 | - - - - - - - - |- 100000 | 105880 701.38
9 62 | - - - - - - - - |- 100000 | 105880 711.85
10 | 77 | 2449 | 10 | 4.14 | 3.14 || 0.05 | 10 | 171.5 0 | 2.95 | 100000 | 105880 738.98
11 143 | 21.18 || 10 | 4.14 | 3.14 || 0.05 | 10 | 148.13 || O | 2.55 | 100000 | 105880 750.43
12 17 |- - - - - - - - |- 100000 | 105880 778.56
13 |56 | 2148 || 10 | 4.14 | 3.14 || 0.05 | 10 | 150.22 || O | 2.58 | 100000 | 105880 804.63
14 | 80 | 9.89 10 | 4.14 | 3.14 || 0.05 | 10 | 68.46 0 | 1.18 | 100000 | 105880 830.75
15 |74 |- - |- - - - |- - |- 100000 | 105880 858.28
16 | 141 | - - - - - - - - |- 100000 | 105880 870.76
17 14 - - |- - - - |- - |- 100000 | 105880 885.57
18 | 8 - - - - - - - - |- 100000 | 105880 899.7
19 |10 |- - - - - - - - |- 100000 | 105880 914

20 192 | 4438 10 | 4.14 | 3.14 || 0.05 | 10 | 314.82 || O | 5.41 | 100000 | 105880 927.42
21 13 | 12.71 || 10 | 4.14 | 3.14 || 0.05 | 10 | 88.31 0 | 1.52 | 100000 | 105880 942.35
22 179 |9.29 10 | 4.14 | 3.14 || 0.05 | 10 | 64.19 0 | 1.1 | 100000 | 105880 981.16
23 | 78 |38.16 || 10 | 4.14 | 3.14 || 0.05 | 10 | 267.95 || 0 | 4.6 | 100000 | 105880 1020.06
24 159 |- - |- - - - |- - |- 100000 | 105880 1050.98
25 149 |- - - - - - - - |- 100000 | 105880 1092.7
26 |52 |- - |- - - - |- - |- 100000 | 105880 1125.24
27 142 | - - - - - - - - |- 100000 | 105880 1159.04
28 |41 | 28.38 || 10 | 4.14 | 3.14 || 0.05 | 10 | 198.93 || 0 | 3.42 | 100000 | 105880 1192.68
29 |33 | 2058 | 10| 414|314 | 0.05 | 10 | 143.91 || O | 2.47 | 100000 | 105880 1226.92
30 |46 | 34.86 || 10 | 4.14 | 3.14 || 0.05 | 10 | 244.67 || 0 | 4.2 | 100000 | 105880 1261.23
31 109 | - - - - - - - - |- 100000 | 105880 1293.43
32 169 |- - - - - - - - |- 100000 | 105880 1327.53
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Table A.5 — Continued

Iter | X; | Z; So|Io | By || Wo | S;| B I | W; | LB UB Time
33 17 | 6.31 10 | 4.14 | 3.14 || 0.05 | 10 | 43.16 0 | 0.74 | 100000 | 105880 1361.68
34 25 | 31.74 || 10 | 4.14 | 3.14 || 0.05 | 10 | 222.67 || 0 | 3.83 | 100000 | 105880 1399.15
35 28 | - - - - - - - - - 100000 | 105880 1431.89
36 27 | - - - - - - - - 100000 | 105880 1472.27
37 107 | - - - - - - - - - 100000 | 105880 1511.64
38 138 | - - - - - - - - - 100000 | 105880 1555.22
39 37 | - - - - - - - - - 100000 | 105880 1595.51
40 30 32.75 || 10 | 4.14 | 3.14 || 0.05 | 10 | 229.81 || 0 | 3.95 | 100000 | 105880 1630.85
41 124 1 35.33 || 10 | 4.14 | 3.14 || 0.05 | 10 | 247.99 || 0 | 4.26 | 100000 | 105880 1664.78
42 18 3894 || 10 | 4.14 | 3.14 || 0.05 | 10 | 273.48 || 0 | 4.7 100000 | 105880 1701.21
43 26 | - - - - - - - - |- 100000 | 105880 1741.36
44 126 | 5.55 10 | 4.14 | 3.14 || 0.05 | 10 | 37.82 0 | 0.65 | 105880 | 105880 1889.84

Table A.6: Results for Daskin Approximate 150_v1

J =150,1 = 150, A = 58.1970, h, = 50, h; = 50 for every j,p = 150

ez = 2000, p = 0.9,7 = 5.5,C; = 10 for every j
Tter Xj Zj So fo BO Wg Sj Bj fj Wj LB UB Time
0 150 | - - - - - - - - |- 100000 | 1000000 || 611.83
1 88 | - - - - - - - - - 100000 | 1000000 || 617.9
2 126 | 5.55 10 | 4.14 | 3.14 || 0.05 | 10 | 37.82 0 | 0.65 | 100000 | 105880 625.94
3 95 10.93 || 10 | 4.14 | 3.14 || 0.05 | 10 | 75.77 0 |13 100000 | 105880 650.17
4 112 | 33.43 || 10 | 4.14 | 3.14 || 0.05 | 10 | 234.57 || O | 4.03 | 100000 | 105880 659.73
5} 84 | - - - - - - - - - 100000 | 105880 669.14
6 99 27.8 10 | 4.14 | 3.14 || 0.05 | 10 | 194.84 || O | 3.35 | 100000 | 105880 678.74
7 149 | 37.41 || 10 | 4.14 | 3.14 || 0.05 | 10 | 262.66 || O | 4.51 | 100000 | 105880 688.39
8 147 | - - - - - - - - - 100000 | 105880 697.78
9 62 | - - - - - - - - |- 100000 | 105880 707.67
10 77 24.49 || 10 | 4.14 | 3.14 || 0.05 | 10 | 171.5 0 | 2.95 | 100000 | 105880 733.11
11 143 | 21.18 || 10 | 4.14 | 3.14 || 0.05 | 10 | 148.13 || 0 | 2.55 | 100000 | 105880 743.97
12 75| - - - - - - - - - 100000 | 105880 773.64
13 56 21.48 || 10 | 4.14 | 3.14 || 0.05 | 10 | 150.22 || O | 2.58 | 100000 | 105880 798.47
14 80 9.89 10 | 4.14 | 3.14 || 0.05 | 10 | 68.46 0 | 1.18 | 100000 | 105880 822.9
15 74 | - - - - - - - - - 100000 | 105880 849.97
16 141 | - - - - - - - - 100000 | 105880 862.36
17 4 - - - - - - - - - 100000 | 105880 876.93
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Table A.6 — Continued

Iter | X; | Z; S, | Io By Wo | Sj | B, I; | W; |LB UB Time
18 |8 - - |- - - - |- - |- 100000 | 105880 || 890.26
19 |10 |- - - - - - |- - - 100000 | 105880 || 903.84
20 |92 | 44.8 | 10 | 4.14 | 3.14 || 0.05 | 10 | 314.82 || 0 | 5.41 | 100000 | 105880 | 915.98
21 |13 | 1271 10 | 4.14 | 3.14 || 0.05 | 10 | 88.31 || 0 | 1.52 | 100000 | 105880 | 928.94
22 (79 929 |[10|4.14|3.14|[0.05| 10 | 64.19 | 0 | 1.1 | 100000 | 105880 || 965.48
23 |78 |38.16 || 10 | 4.14 | 3.14 || 0.05 | 10 | 267.95 || 0 | 4.6 | 100000 | 105880 || 999.44
24 |59 |- - - - - - |- - - 100000 | 105880 || 1027.74
25 |49 |- - - - - - |- - - 100000 | 105880 || 1066.83
26 |52 |- - - - - - |- - - 100000 | 105880 || 1097.22
27 | 42 | - - - - - - |- - - 100000 | 105880 || 1128.39
28 |41 | 2838 |10 | 4.14 | 3.14 || 0.05 | 10 | 198.93 || 0 | 3.42 | 100000 | 105880 || 1158.96
29 (33 |20.58 || 10 | 4.14 | 3.14 || 0.05 | 10 | 143.91 || 0 | 2.47 | 100000 | 105880 || 1190.26
30 |46 | 34.86 || 10 | 4.14 | 3.14 || 0.05 | 10 | 244.67 || 0 | 4.2 | 100000 | 105880 || 1220.85
31 | 109 | - - - - - - |- - - 100000 | 105880 || 1250.79
32 |69 |- - - - - - |- - - 100000 | 105880 || 1282.68
33 |17 | 631 |10 |4.14 | 3.14 | 0.05| 10 | 43.16 | 0 | 0.74 | 100000 | 105880 || 1313.34
34 |25 |31.74 1| 10 | 4.14 | 3.14 || 0.05 | 10 | 222.67 || 0 | 3.83 | 100000 | 105880 || 1346.82
35 |28 |- - - - - - |- - - 100000 | 105880 || 1376.75
36 |27 |- - - - - - |- - 100000 | 105880 || 1416.47
37 | 107 - - - - - - |- - - 100000 | 105880 || 1452.59
38 | 138 - - - - - - |- - - 100000 | 105880 || 1491.13
39 |37 |- - - - - - |- - - 100000 | 105880 || 1527.6
40 |30 |32.75( 10 | 4.14 | 3.14 || 0.05 | 10 | 229.81 || 0 | 3.95 | 100000 | 105880 || 1558.44
41 | 124 | 35.33 || 10 | 4.14 | 3.14 || 0.05 | 10 | 247.99 || 0 | 4.26 | 100000 | 105880 || 1587.4
42 | 18 |3894 | 10 | 4.14 | 3.14 || 0.05 | 10 | 273.48 || 0 | 4.7 | 100000 | 105880 || 1618.93
43 126 |- - - - - - |- - - 100000 | 105880 || 1654.2
44 1126 | 5.55 || 10 | 4.14 | 3.14 || 0.05 | 10 | 37.82 || 0 | 0.65 | 105880 | 105880 || 1768.38
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Table A.7: Results for Daskin Metric 49_v2
J =49,1 =49, \ = 247.05, h, = 50, h; = 50 for every j,p = 150
ez = 500, p = 0.5,7 = 1.5,C; = 5 for every j

Iter X Zj LB UB Time
0 5,29,31,35,36 - 282200 | 10000000 | 0.4
1 5,31,35,36,41 | 7.52 | 289600 | 313161 0.63
2 5,20,29,31,35 - 291400 | 313161 0.81
3 5,21,29,35,36 - 295500 | 313161 1
4 5,20,31,35,41 | 7.58 | 298800 | 313161 1.28
5 5,24,31,36,41 | 7.45 | 299500 | 313161 1.59
6 5,21,35,36,41 | 7.87 | 302900 | 313161 2.04
7 |5,21,24,36,41 | 7.8 | 312800 | 313161 2.51
8 5,31,35,36,41 | 7.52 | 313161 313161 2.77

Table A.8: Results for Daskin Approximate 49 _v2
J = 49,1 = 49, X\ = 247.05, h, = 50, h; = 50 for every j,p = 150
ez = 500, p = 0.5,7 = 1.5,C; = 5 for every j

Iter X Zj LB UB Time
0 5,29,31,35,36 - 282200 | 10000000 | 0.4
1 5,31,35,36,41 | 7.52 | 289600 | 313161 0.69
2 5,20,29,31,35 - 291400 | 313161 0.98
3 5,21,29,35,36 - 295500 | 313161 1.15
4 5,20,31,35,41 | 7.58 | 298800 | 313161 1.35
5 5,24,31,36,41 | 7.45 | 299500 | 313161 1.55
6 5,21,35,36,41 | 7.87 | 302900 | 313161 1.88
7 |5,21,24,36,41 | 7.8 | 312800 | 313161 2.38
8 5,31,35,36,41 | 7.52 | 313161 313161 2.63
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Table A.9: Results for Daskin Metric 88_v2

J = 88,1 =88, \ =44.8400, h, = 50, h; = 50 for every j,p = 150

ez = 500, p = 0.5,7 = 1.5,C; = 5 for every j

Iter X Zj LB UB Time
0 15,22,46,47,55,65,75 - 417000 | 419600 2.3
1 15,22,46,47,55,65,75 | 0.61 | 419600 | 419600 | 2.74

Table A.10: Results for Daskin Approximate 88_v2
J = 88,1 =88, \ = 44.8400, h, = 50, h; = 50 for every j,p = 150

ez = 500, p = 0.5,7 = 1.5,C; = 5 for every j

Tter X; Z; LB UB | Time
0 | 15,22,46,47,55,65,75 | - | 417000 | 419601 | 2.28
1 | 15,22,46,47,55,65,75 | 0.61 | 419601 | 419601 | 2.61

Table A.11: Results for Daskin Metric 150_v2

J =150,1 = 150, A = 58.1970, h, = 50, h; = 50 for every j,p = 150

dyae = 500, p = 0.5,7 = 1.5,C; = 5 for every j

Iter | X; Z; LB UB Time

0 33,84,102,121,144,145 | 0.77 || 600000 | 604652 | 608.95
1 33,84,96,102,144,145 | 0.75 || 600000 | 604506 | 610.2

2 77,84,96,102,144,145 | 0.77 || 600000 | 604506 | 611.46
3 33,73,84,102,144,145 | 0.75 || 600000 | 604506 | 613.21
4 39,77,84,102,144,145 | 0.7 600000 | 604203 | 615.21
5 33,73,84,139,144,145 | 0.76 || 600000 | 604203 | 617.06
6 33,39,84,102,144,145 | 0.68 || 600000 | 604086 | 618.87
7 77,84,96,144,145,146 | 0.72 || 600000 | 604086 | 620.93
8 29,33,39,61,84,145 0.63 || 600000 | 603821 | 624.28
9 77,84,90,96,145,146 0.73 || 600000 | 603821 | 625.64
10 21,33,39,61,84,145 0.63 || 600000 | 603820 | 628.97
11 33,39,84,133,144,145 | 0.7 600000 | 603820 | 632.23
12 48,84,129,144,145,149 | 0.73 || 600000 | 603820 | 635.88
13 10,29,39,61,78,145 0.67 || 600000 | 603820 | 639.06
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Table A.11 — Continued

Iter | X; Z; LB UB Time

14 10,29,39,78,145,146 0.67 || 600000 | 603820 | 642.02
15 33,84,102,125,144,145 | 0.78 || 600000 | 603820 | 643.31
16 29,61,77,84,96,145 0.73 || 600000 | 603820 | 644.93
17 33,64,84,102,144,145 | 0.71 || 600000 | 603820 | 647.26
18 33,84,102,104,144,145 | 0.79 || 600000 | 603820 | 649.25
19 33,84,97,102,144,145 | 0.75 || 600000 | 603820 | 651.45
20 33,84,102,103,144,145 | 0.73 || 600000 | 603820 | 653.5

21 5,33,84,102,144,145 0.76 || 600000 | 603820 | 655.63
22 33,84,102,108,144,145 | 0.78 || 600000 | 603820 | 657.9

23 33,54,84,102,144,145 | 0.75 || 600000 | 603820 | 660.17
24 33,84,102,111,144,145 | 0.76 || 600000 | 603820 | 662.16
25 61,77,84,90,96,145 0.73 || 600000 | 603820 | 663.91
26 33,84,98,102,144,145 | 0.78 || 600000 | 603820 | 665.98
27 33,65,84,102,144,145 | 0.76 || 600000 | 603820 | 668.02
28 1,33,84,102,144,145 0.76 || 600000 | 603820 | 670.07
29 33,48,84,102,144,145 | 0.68 || 600000 | 603820 | 672.04
30 33,60,84,102,144,145 | 0.76 || 600000 | 603820 | 673.73
31 61,77,84,91,96,145 0.73 || 600000 | 603820 | 675.39
32 33,84,96,139,144,145 | 0.76 || 600000 | 603820 | 677.15
33 33,84,102,131,144,145 | 0.76 || 600000 | 603820 | 678.5

34 33,84,102,136,144,145 | 0.78 || 600000 | 603820 | 680.47
35 19,33,84,102,144,145 | 0.75 || 600000 | 603820 | 682.65
36 33,84,102,122,144,145 | 0.75 || 600000 | 603820 | 684.65
37 12,33,84,102,144,145 | 0.75 || 600000 | 603820 | 687.28
38 48,84,91,145,146,149 | 0.69 || 600000 | 603820 | 691.2

39 20,33,84,102,144,145 | 0.79 || 600000 | 603820 | 692.66
40 33,81,84,102,144,145 | 0.76 || 600000 | 603820 | 694.22
41 6,33,39,84,144,145 0.67 || 600000 | 603820 | 698.58
42 33,39,61,84,91,145 0.63 || 600000 | 603820 | 702.81
43 33,39,84,129,144,145 | 0.67 || 600000 | 603820 | 706.92
44 33,36,84,102,144,145 | 0.77 || 600000 | 603820 | 709.52
45 5,21,33,84,145,146 0.71 || 600000 | 603820 | 713.56
46 21,33,84,104,145,146 | 0.74 || 600000 | 603820 | 717.61
47 33,39,61,84,144,145 0.62 || 600000 | 603753 | 721.6

48 33,39,50,84,144,145 0.69 || 600000 | 603753 | 725.64
49 1,33,61,84,90,145 0.71 || 600000 | 603753 | 729.27
50 6,30,48,84,144,145 0.7 600000 | 603753 | 733.39
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Table A.11 — Continued

Iter | X; Z; LB UB Time
501 19,29,61,77,84,145 0.73 || 600000 | 603751 | 2668.26
502 | 33,84,98,135,144,145 | 0.79 || 600000 | 603751 | 2674.43
503 | 29,30,48,84,145,146 0.66 || 600000 | 603751 | 2680.74
504 | 6,33,84,136,144,145 0.77 || 600000 | 603751 | 2687.24
505 | 39,46,61,84,144,145 0.66 || 600000 | 603751 | 2693.48
506 | 33,54,84,129,144,145 | 0.75 || 600000 | 603751 | 2699.76
507 | 39,46,84,144,145,146 | 0.66 || 600000 | 603751 | 2707.6
508 | 48,61,77,84,144,145 0.65 || 600000 | 603751 | 2712.98
509 | 39,61,84,91,145,149 0.66 || 600000 | 603751 | 2719.06
510 | 39,46,84,135,144,145 | 0.73 || 600000 | 603751 | 2725.22
511 39,84,102,112,144,145 | 0.71 || 600000 | 603751 | 2726.9
512 | 2,39,84,112,144,145 0.73 || 600000 | 603751 | 2733.25
513 | 29,48,61,84,112,145 0.66 || 600000 | 603751 | 2739.32
514 | 30,39,66,84,144,145 0.69 || 600000 | 603751 | 2745.9
515 | 33,61,84,104,144,145 | 0.73 || 600000 | 603751 | 2749.4
516 19,33,84,132,144,145 | 0.75 || 600000 | 603751 | 2755.77
517 | 33,81,84,90,145,146 0.71 || 600000 | 603751 | 2758.75
518 | 33,50,84,96,144,145 0.76 || 600000 | 603751 | 2762.53
519 | 21,30,48,84,145,146 0.66 || 600000 | 603751 | 2768.93
520 | 6,39,77,84,144,145 0.69 || 600000 | 603751 | 2775.73
521 1,33,84,91,145,146 0.72 || 600000 | 603751 | 2780.27
522 | 33,36,84,91,145,146 0.72 || 600000 | 603751 | 2784.99
523 | 33,84,90,136,145,146 | 0.73 || 600000 | 603751 | 2790.55
524 | 6,33,84,104,144,145 0.78 || 600000 | 603751 | 2796.49
525 | 2,33,84,104,144,145 0.8 600000 | 603751 | 2802.05
526 | 5,33,84,91,145,146 0.71 || 600000 | 603751 | 2806.81
527 | 33,73,84,91,145,146 0.71 || 600000 | 603751 | 2811.65
528 | 33,84,108,129,144,145 | 0.77 || 600000 | 603751 | 2816.03
529 | 33,84,91,103,145,146 | 0.68 || 600000 | 603751 | 2820.07
530 | 33,66,84,136,144,145 | 0.78 || 600000 | 603751 | 2825.25
531 12,33,84,90,145,146 0.71 || 600000 | 603751 | 2828.97
532 | 29,33,73,84,145,146 0.71 || 600000 | 603751 | 2833.16
533 | 6,33,73,84,144,145 0.75 || 600000 | 603751 | 2837.35
534 | 21,33,73,84,145,146 0.71 || 600000 | 603751 | 2843.01
535 1,6,33,84,144,145 0.76 || 600000 | 603751 | 2847.27
536 19,33,61,84,144,145 0.69 || 600000 | 603751 | 2852.19
537 1,33,84,144,145,146 0.7 600000 | 603751 | 2856.61
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Iter | X; Z; LB UB Time
1041 | 21,33,36,61,84,145 0.72 || 600000 | 603751 | 5046.53
1042 | 33,84,87,122,144,145 | 0.77 || 600000 | 603751 | 5051.01
1043 | 33,84,131,134,144,145 | 0.76 || 600000 | 603751 | 5055.2
1044 | 33,84,89,97,144,145 0.77 || 600000 | 603751 | 5060.24
1045 | 33,84,108,133,144,145 | 0.8 600000 | 603751 | 5065.73
1046 | 1,29,33,61,84,145 0.72 || 600000 | 603751 | 5071.4
1047 | 31,33,84,122,144,145 | 0.77 || 600000 | 603751 | 5076.52
1048 | 33,84,122,133,144,145 | 0.77 || 600000 | 603751 | 5080.98
1049 | 33,60,66,84,144,145 0.76 || 600000 | 603751 | 5086.33
1050 | 33,50,84,131,144,145 | 0.77 || 600000 | 603751 | 5091.67
1051 | 33,54,84,142,144,145 | 0.77 || 600000 | 603751 | 5096.02
1052 | 33,65,84,134,144,145 | 0.77 || 600000 | 603751 | 5100
1053 | 1,33,84,118,144,145 0.77 || 600000 | 603751 | 5104.81
1054 | 33,84,131,135,144,145 | 0.77 || 600000 | 603751 | 5109.83
1055 | 33,84,89,131,144,145 | 0.77 || 600000 | 603751 | 5114.12
1056 | 33,60,84,133,144,145 | 0.78 || 600000 | 603751 | 5118.95
1057 | 33,54,84,132,144,145 | 0.76 || 600000 | 603751 | 5122.96
1058 | 33,54,57,84,144,145 0.77 || 600000 | 603751 | 5127.2
1059 | 33,84,131,133,144,145 | 0.78 || 600000 | 603751 | 5132.71
1060 | 33,50,84,122,144,145 | 0.77 || 600000 | 603751 | 5137.18
1061 | 33,57,84,121,144,145 | 0.78 || 600000 | 603751 | 5142.03
1062 | 33,84,111,134,144,145 | 0.77 || 600000 | 603751 | 5147.09
1063 | 31,33,60,84,144,145 0.78 || 600000 | 603751 | 5151.22
1064 | 33,60,84,89,144,145 0.77 || 600000 | 603751 | 5155.73
1065 | 33,57,84,131,144,145 | 0.77 || 600000 | 603751 | 5160.79
1066 | 33,84,122,132,144,145 | 0.76 || 600000 | 603751 | 5166.75
1067 | 33,57,84,122,144,145 | 0.77 || 600000 | 603751 | 5171.7
1068 | 33,60,84,132,144,145 | 0.76 || 600000 | 603751 | 5176.68
1069 | 33,84,111,133,144,145 | 0.78 || 600000 | 603751 | 5182.09
1070 | 33,50,65,84,144,145 0.77 || 600000 | 603751 | 5187.54
1071 | 33,65,84,135,144,145 | 0.77 || 600000 | 603751 | 5192.71
1072 | 33,65,84,89,144,145 0.77 || 600000 | 603751 | 5198.66
1073 | 33,39,84,144,145,146 | 0.62 || 603751 | 603751 | 5203.06
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Table A.12: Results for Daskin Approximate 150_v2
J =150,1 = 150, A = 58.1970, h, = 50, h; = 50 for every j,p = 150
ez = 500, p = 0.5,7 = 1.5,C; = 5 for every j

Iter | X; Z; LB UB Time
0 33,84,102,121,144,145 | 0.77 || 600000 | 604652 | 597.12
1 33,84,96,102,144,145 | 0.75 || 600000 | 604506 | 598.17
2 77,84,96,102,144,145 | 0.77 || 600000 | 604506 | 601.04
3 33,73,84,102,144,145 | 0.75 || 600000 | 604506 | 604.99
4 29,39,61,77,84,145 0.65 || 600000 | 603938 | 607.52
5 33,39,84,102,144,145 | 0.68 || 600000 | 603938 | 609.09
6 39,77,84,102,144,145 | 0.7 600000 | 603938 | 610.57
7 77,84,96,144,145,146 | 0.72 || 600000 | 603938 | 611.89
8 33,39,84,133,144,145 | 0.7 600000 | 603938 | 614.93
9 77,84,96,132,144,145 | 0.78 || 600000 | 603938 | 616.04
10 30,39,84,129,144,145 | 0.68 || 600000 | 603938 | 618.79
11 10,29,39,61,78,145 0.67 || 600000 | 603938 | 621.32
12 33,61,73,84,144,145 0.7 600000 | 603938 | 623.32
13 30,39,61,84,144,145 0.63 || 600000 | 603802 | 625.58
14 29,48,61,84,145,149 0.69 || 600000 | 603802 | 627.99
15 33,48.84,102,144,145 | 0.68 || 600000 | 603802 | 629.52
16 33,84,102,104,144,145 | 0.79 || 600000 | 603802 | 631.04
17 33,36,84,102,144,145 | 0.77 || 600000 | 603802 | 632.95
18 33,84,102,125,144,145 | 0.78 || 600000 | 603802 | 633.97
19 29,61,77,84,96,145 0.73 || 600000 | 603802 | 635.34
20 61,77,84,96,144,145 0.72 || 600000 | 603802 | 636.59
21 33,84,102,111,144,145 | 0.76 || 600000 | 603802 | 638.11
22 12,77,84,102,144,145 | 0.78 || 600000 | 603802 | 639.45
23 33,84,102,108,144,145 | 0.78 || 600000 | 603802 | 640.97
24 61,77,84,91,96,145 0.73 || 600000 | 603802 | 642.53
25 33,84,102,131,144,145 | 0.76 || 600000 | 603802 | 644.06
26 33,54,84,102,144,145 | 0.75 || 600000 | 603802 | 645.58
27 77,84,90,96,145,146 0.73 || 600000 | 603802 | 647
28 21,77,84,96,145,146 0.73 || 600000 | 603802 | 648.39
29 29,77,84,96,145,146 0.73 || 600000 | 603802 | 649.89
30 1,33,84,102,144,145 0.76 || 600000 | 603802 | 651.53
31 77,84,91,96,145,146 0.73 || 600000 | 603802 | 653.09
32 33,39,61,84,90,145 0.63 || 600000 | 603802 | 655.78
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Iter | X; Z; LB UB Time
501 | 33,61,84,103,144,145 | 0.67 || 600000 | 603751 | 1964.02
502 | 21,33,61,81,84,145 0.72 || 600000 | 603751 | 1965.78
503 | 39,57,78,84,144,145 0.72 || 600000 | 603751 | 1968.65
504 12,33,61,84,144,145 0.7 600000 | 603751 | 1972.4
505 | 29,33,61,81,84,145 0.72 || 600000 | 603751 | 1973.83
506 | 33,84,91,131,145,146 | 0.71 || 600000 | 603751 | 1975.6
507 | 30,48,84,144,145,146 | 0.65 || 600000 | 603751 | 1978.48
508 | 21,30,48,84,145,146 0.66 || 600000 | 603751 | 1981.2
509 | 33,84,90,103,145,146 | 0.68 || 600000 | 603751 | 1983.71
510 | 33,84,90,98,145,146 0.73 || 600000 | 603751 | 1986.23
511 33,84,87,104,144,145 | 0.8 600000 | 603751 | 1988.69
512 | 33,61,81,84,90,145 0.71 || 600000 | 603751 | 1989.9
513 | 2,33,84,136,144,145 0.79 || 600000 | 603751 | 1992.42
514 | 2,33,84,121,144,145 0.79 || 600000 | 603751 | 1995.32
515 | 2,33,84,111,144,145 0.78 || 600000 | 603751 | 1997.76
516 | 33,84,91,104,145,146 | 0.74 || 600000 | 603751 | 2000.24
517 | 33,84,87,98,144,145 0.79 || 600000 | 603751 | 2002.65
518 1,33,84,144,145,146 0.7 600000 | 603751 | 2005.3
519 | 33,84,90,125,145,146 | 0.73 || 600000 | 603751 | 2006.95
520 | 33,84,91,121,145,146 | 0.73 || 600000 | 603751 | 2009.87
521 | 33,50,84,136,144,145 | 0.79 || 600000 | 603751 | 2012.8
522 | 33,84,89,96,144,145 0.76 || 600000 | 603751 | 2015.27
523 | 33,73,84,91,145,146 0.71 || 600000 | 603751 | 2018.52
524 | 33,84,103,133,144,145 | 0.75 || 600000 | 603751 | 2020.79
525 | 33,84,103,144,145,146 | 0.67 || 600000 | 603751 | 2023.94
526 | 33,84,103,135,144,145 | 0.74 || 600000 | 603751 | 2026.23
527 | 6,33,73,84,144,145 0.75 || 600000 | 603751 | 2028.69
9528 | 33,84,103,129,144,145 | 0.73 || 600000 | 603751 | 2031.52
529 | 33,73,84,90,145,146 0.71 || 600000 | 603751 | 2034.18
530 | 39,84,112,133,144,145 | 0.73 || 600000 | 603751 | 2037.08
531 | 33,84,98,129,144,145 | 0.77 || 600000 | 603751 | 2039.93
532 | 33,65,84,144,145,146 | 0.7 600000 | 603751 | 2043.24
533 | 33,84,97,129,144,145 | 0.75 || 600000 | 603751 | 2046.11
534 | 6,33,84,131,144,145 0.75 || 600000 | 603751 | 2048.89
531 33,84,98,129,144,145 | 0.77 || 600000 | 603751 | 2039.93
532 | 33,65,84,144,145,146 | 0.7 600000 | 603751 | 2043.24
533 | 33,84,97,129,144,145 | 0.75 || 600000 | 603751 | 2046.11
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Iter | X; Z; LB UB Time

1041 | 33,65,84,134,144,145 | 0.77 || 600000 | 603751 | 3672.98
1042 | 5,29,33,61,84,145 0.71 || 600000 | 603751 | 3676.33
1043 | 33,84,125,134,144,145 | 0.78 || 600000 | 603751 | 3679.47
1044 | 33,84,121,135,144,145 | 0.78 || 600000 | 603751 | 3682.55
1045 | 33,84,122,134,144,145 | 0.76 || 600000 | 603751 | 3686.23
1046 | 33,50,84,122,144,145 | 0.77 || 600000 | 603751 | 3689.37
1047 | 33,54,61,84,91,145 0.71 || 600000 | 603751 | 3693.03
1048 | 33,36,84,142,144,145 | 0.78 || 600000 | 603751 | 3696.98
1049 | 33,65,84,133,144,145 | 0.78 || 600000 | 603751 | 3700.65
1050 | 33,84,122,142,144,145 | 0.77 || 600000 | 603751 | 3704.71
1051 | 33,66,84,111,144,145 | 0.77 || 600000 | 603751 | 3708.41
1052 | 33,36,84,118,144,145 | 0.78 || 600000 | 603751 | 3711.38
1053 | 31,33,65,84,144,145 0.78 || 600000 | 603751 | 3715.05
1054 | 33,84,118,131,144,145 | 0.77 || 600000 | 603751 | 3718.01
1055 | 33,50,84,97,144,145 0.77 || 600000 | 603751 | 3721.13
1056 | 33,84,97,135,144,145 | 0.77 || 600000 | 603751 | 3724.86
1057 | 33,60,84,142,144,145 | 0.77 || 600000 | 603751 | 3728.24
1058 | 33,84,122,132,144,145 | 0.76 || 600000 | 603751 | 3731.85
1059 | 31,33,84,97,144,145 0.77 || 600000 | 603751 | 3735.22
1060 | 33,84,131,134,144,145 | 0.76 || 600000 | 603751 | 3738.23
1061 | 33,84,111,118,144,145 | 0.78 || 600000 | 603751 | 3741.26
1062 | 31,33,54,84,144,145 0.77 || 600000 | 603751 | 3744.74
1063 | 33,54,84,142,144,145 | 0.77 || 600000 | 603751 | 3747.59
1064 | 33,66,84,125,144,145 | 0.78 || 600000 | 603751 | 3750.85
1065 | 1,33,61,84,91,145 0.72 || 600000 | 603751 | 3754.36
1066 | 1,29,33,61,84,145 0.72 || 600000 | 603751 | 3757.83
1067 | 33,84,111,134,144,145 | 0.77 || 600000 | 603751 | 3761.09
1068 | 33,84,118,121,144,145 | 0.79 || 600000 | 603751 | 3764.36
1069 | 29,33,36,61,84,145 0.72 || 600000 | 603751 | 3767.83
1070 | 31,33,60,84,144,145 0.78 || 600000 | 603751 | 3770.95
1071 | 33,66,84,97,144,145 0.75 || 600000 | 603751 | 3774.78
1072 | 33,84,121,132,144,145 | 0.78 || 600000 | 603751 | 3778.28
1073 | 33,39,84,144,145,146 | 0.62 || 603751 | 603751 | 3782.29
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Appendix B

Bombardier Results

Table B.1: Results for BBD Metric 20_v1
J=20,1=121,A=17.44
gz = 40, p = 0.9, 7 = 0.025, C; = 10 for every j

Tter Xj Zj SO fg BO W() Sj Ej [_] Wj LB UB Time
0 12 | 5723 | 8 | 2.87 | 3.87|0.22| 10|04 | 2.5 |0.02| 50000 | 116911 | 0.64
1 10 | 57.23 | 8 | 2.87 | 387 |0.22 |10 | 04 | 25| 0.02 | 50000 | 116911 | 0.98
2 3 | 5723 | 8 | 2.87|3.87|022]|10] 04|25 |0.02] 50000 | 116911 | 1.35
3 7 | 5723 | 8 | 2873870221004 25002 50000 | 116911 | 1.67
4 11 | 5723 | 8 | 2.87|3.87|022|10 |04 |25 |0.02| 73346 | 116911 2
5 4 | 5723 | 8 | 287|387 (0.22|10 |04 ]25]|0.02| 8012 | 116911 | 2.35
6 14 | 5723 | 8 | 2.87|3.87|022]|10 |04 |25 |0.02| 94168 | 116911 | 2.7
7 16 | 5723 | 8 | 2.87 | 3.87 | 0.22 | 10 | 0.4 | 2.5 | 0.02 | 94168 | 116911 | 3.06
8 15 | 5723 | 8 | 2.87|3.87 02210 |04 |25 |0.02| 94168 | 116911 | 3.42
9 13 5723 | 8 | 287 | 387|022 | 10| 04 | 25| 0.02 | 94168 | 116911 | 3.78
10 | 18 | 5723 | 8 | 2.87 | 3.87 022 |10 |04 | 25| 0.02 | 94168 | 116911 | 4.13
11 | 17 | 5723 | 8 | 287 | 3.87 | 0.22 | 10 | 0.4 | 2.5 | 0.02 | 94168 | 116911 | 4.47
12 | 19 | 5723 | 8 | 2.87|3.87 022 |10 |04 | 25| 0.02 | 94168 | 116911 | 4.78
13 | 20 | 5723 | 8 | 287 | 387|022 |10 |04 | 25| 0.02| 100000 | 116911 | 5.07
14 | 9 | 5723 | 8 | 287|387 02210 |04 | 25| 0.02| 113206 | 116911 | 5.38
15 | 12 | 5723 | 8 | 2.87 | 387|022 |10 | 04| 25| 0.02 | 116911 | 116911 | 5.68
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Table B.2: Results for BBD Approximate 20_v1
J=20,1=121,\=17.44
ez = 40, p = 0.9,7 = 0.025, C; = 10 for every j

Iter Xj Zj So IO Bo WO Sj Bj Ij Wj LB UB Time

0 12 1 59.88 | 10 | 4.14 | 3.14 | 0.18 | 10 | 0.09 | 2.92 | 0.005 | 50000 | 124626 | 0.68

1 10 | 59.88 | 10 | 4.14 | 3.14 | 0.18 | 10 | 0.09 | 2.92 | 0.005 | 50000 | 124626 | 1.05

2 3 [ 5988 | 10| 4.14 | 3.14 | 0.18 | 10 | 0.09 | 2.92 | 0.005 | 50000 | 124626 | 1.46

3 7 | 59.88 | 10 | 4.14 | 3.14 | 0.18 | 10 | 0.09 | 2.92 | 0.005 | 50000 | 124626 | 1.81

4 11 | 59.88 | 10 | 4.14 | 3.14 | 0.18 | 10 | 0.09 | 2.92 | 0.005 | 73346 | 124626 | 2.14

5 4 | 59.838 | 10| 4.14 | 3.14 | 0.18 | 10 | 0.09 | 2.92 | 0.005 | 85012 | 124626 | 2.49

6 14 | 59.88 | 10 | 4.14 | 3.14 | 0.18 | 10 | 0.09 | 2.92 | 0.005 | 94168 | 124626 | 2.84

7 16 | 59.88 | 10 | 4.14 | 3.14 | 0.18 | 10 | 0.09 | 2.92 | 0.005 | 94168 | 124626 | 3.19

8 15 | 59.88 | 10 | 4.14 | 3.14 | 0.18 | 10 | 0.09 | 2.92 | 0.005 | 94168 | 124626 | 3.55

9 13 [ 59.88 | 10 | 4.14 | 3.14 | 0.18 | 10 | 0.09 | 2.92 | 0.005 | 94168 | 124626 | 3.96

10 18 | 59.88 | 10 | 4.14 | 3.14 | 0.18 | 10 | 0.09 | 2.92 | 0.005 | 94168 | 124626 | 4.33

11 17 1 59.88 | 10 | 4.14 | 3.14 | 0.18 | 10 | 0.09 | 2.92 | 0.005 | 94168 | 124626 | 4.72

12 19 | 59.88 | 10 | 4.14 | 3.14 | 0.18 | 10 | 0.09 | 2.92 | 0.005 | 94168 | 124626 | 5.08

13 | 20 | 59.88 | 10 | 4.14 | 3.14 | 0.18 | 10 | 0.09 | 2.92 | 0.005 | 100000 | 124626 5.4

14 9 | 59.88 | 10 | 4.14 | 3.14 | 0.18 | 10 | 0.09 | 2.92 | 0.005 | 113206 | 124626 | 5.74

15 12 | 59.88 | 10 | 4.14 | 3.14 | 0.18 | 10 | 0.09 | 2.92 | 0.005 | 124626 | 124626 | 6.04
Table B.3: Results for BBD Metric 20_v2
J=20,1=121,A=17.44
gz = 25, p = 0.5,7 = 0.01,C; = 5 for every j

Iter | X; Z; So|Io | By |Wo |S;|B; ||I; |W; |LB UB Time
0 10,12, - - - - - - - - 100000 | 900000 || 0.65
1 7,12, - - - - - - - - - 100000 | 900000 || 1.12
2 3,12, - - - - - - - - - 100000 | 900000 || 1.54
3 10,11, 35.42 || 3 2.13 1 0.13 || 0.01 | 8 0.17 || 4.02 | 0.02 | 123346 | 190998 || 3.19
4 | 412, |- - - - - - ] ; 135012 | 190998 || 4.71
5 12,19, 29.52 || 1 0.5 0.5 0.031]9 0.14 || 4.61 | 0.02 | 144168 | 190998 || 5.41
6 12,14, - - - - - - - - - 144168 | 190998 || 6.75
7 12,17, - - - - - - - - - 144168 | 190998 || 8.09
8 12,18 - - - - - - - - - 144168 | 190998 || 9.26
9 10,16, 35.44 | 3 2.13 1 0.13 || 0.01 | 8 0.17 || 4.02 | 0.02 | 144168 | 190998 || 14.41
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Table B.3 — Continued

Iter Xj Zj SO I() B(] WO Sj Bj Ij Wj LB UB Time
10 | 3,13, - - - - - - - - - 144168 | 190998 || 18.72
11 10,13, | - - - - - - - - - 144168 | 190998 || 22.79
12 7,13, - - - - - - - - - 144168 | 190998 || 27.94
13 | 3,16, - - - - - - - - - 144168 | 190998 || 37.5
14 10,15, | 3544 || 3 | 2.13 | 0.13 || 0.01 | 8 | 0.17 || 4.02 | 0.02 | 144168 | 190998 || 38.07
15 7,10,12 | - - - - - - - - - 150000 | 190998 || 46.09
16 | 3,10,12 | - - - - - - - - - 150000 | 190998 || 57.99
17 | 3,712 | - - - - - - - - - 150000 | 190998 || 67.65
18 | 4,11, 3544 |3 | 2.13|0.13 || 0.01 | 8 | 0.17 || 4.02 | 0.02 | 158358 | 190998 || 81.11
19 | 7,9, - - - - - - - - - 163206 | 190998 || 116.05
20 | 3,9, - - - - - - - - - 163206 | 190998 || 176.3
21 9,10, - - - - - - - - - 163206 | 190998 || 221.64
22 11,14, | 34.54 || 2 1.2510.25 || 0.01 | 9 | 0.12 || 4.85 | 0.01 | 167514 | 190998 | 233.41
23 | 2,3, - - - - - - - - 168663 | 190998 || 274.42
24 | 2,10, - - - - - - - - - 168663 | 190998 || 282.34
25 2,7, - - - - - - - - - 168663 | 190998 || 310.97
26 | 3,11,12 | 3535 (|0 | O 1 0.06 | 11 | 0.16 || 6.14 | 0.02 | 173346 | 190998 || 341.43
27 | 711,12 | 3524 || 0 | O 1 0.06 | 11 | 0.16 || 6.13 | 0.03 | 173346 | 190998 || 369.68
28 1 3,7,11 | 4556 || 3 | 2.13 | 0.13 || 0.01 | 10 | 0.14 || 5.99 | 0.02 | 173346 | 190998 || 415.23
29 1,10, 3544 113 | 2.13|0.13 || 0.01 | 8 | 0.17 || 4.02 | 0.02 | 175653 | 190998 || 460.14
30 | 6,12, - - - - - - - - - 177611 | 190998 || 490.73
31 4,16, 3544 |3 | 2.13|0.13 || 0.01 | 8 | 0.17 || 4.02 | 0.02 | 179180 | 190998 || 521.02
32 | 4,13, - - - - - - - - - 179180 | 190998 || 561.56
33 | 4,15, 3544 || 3 | 2.13|0.13 || 0.01 | 8 | 0.17 || 4.02 | 0.02 | 179180 | 190998 || 569.62
34 14,712 |- - - - - - - - 185012 | 190998 || 578.44
35 | 34,12 | - - - - - - - - - 185012 | 190998 || 615.39
36 | 4,10,12 | - - - - - - - - - 185012 | 190998 || 659.26
37 14,16, | 3544 || 3 | 2.13 | 0.13 | 0.01 | 8 | 0.17 || 4.02 | 0.02 | 188336 | 190998 || 676.49
38 13,19, (29521 |05 | 0.5 0.0319 |0.14 || 4.61 | 0.02 | 188336 | 190998 || 687.57
39 13,18, | - - - - - - - - - 188336 | 190998 || 698.56
40 13,17, | - - - - - - - - - 188336 | 190998 || 738.21
41 14,15, | 3544 (|3 | 213 |0.13 | 0.01 | 8 | 0.17 || 4.02 | 0.02 | 188336 | 190998 || 802.98
42 13,14, | - - - - - - - - - 188336 | 190998 || 831.47
43 10,11 3542 |3 |2.13|0.13 || 0.01 | 8 | 0.17 || 4.02 | 0.02 | 190998 | 190998 || 863.06
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Table B.4: Results for BBD Approximate 20_v2

J=20,1=121,\=17.44

Aoz = 25, p = 0.5,7 = 0.01,C; = 5 for every j

Tter Xj Zj SO I_() Bg WO Sj Bj ]TJ Wj LB UB Time
0 10,12, | 0 0 |0 0 0 0 |0 0 0 100000 | 900000 || 0.87

1 7,12, 0 0 |0 0 0 0 |0 0 0 100000 | 900000 || 1.34

2 3,12, 0 0 |0 0 0 0 |0 0 0 100000 | 900000 || 1.73

3 10,11, 3523 || 3 |2.13|0.13 | 0.01 |8 |0.15 4 0.02 | 123346 | 190447 || 3.29

4 4,12, 0 0 |0 0 0 0 |0 0 0 135012 | 190447 || 4.68

5 12,19, 12423 |0 |0 1 0.06 | 9 | 0.14 || 4.11 | 0.02 | 144168 | 190259 || 5.54

6 12,14, | 0 0 |0 0 0 0 |0 0 0 144168 | 190259 || 6.81

7 10,16, | 35.3 3 1213]0131(/001 |8 |0.15 | 4 0.02 | 144168 | 190259 || 10.08
8 12,18, | 0 0 |0 0 0 0 |0 0 0 144168 | 190259 || 11.33
9 12,17, | 0 0 |0 0 0 0 |0 0 0 144168 | 190259 || 12.43
10 10,13, | 0 0 |0 0 0 0 |0 0 0 144168 | 190259 || 17.44
11 7,13, 0 0 |0 0 0 0 |0 0 0 144168 | 190259 || 19.72
12 | 3,16, 0 0 |0 0 0 0 |0 0 0 144168 | 190259 || 26.38
13 | 10,15, | 35.3 3 12130130018 |0.15 1 4 0.02 | 144168 | 190259 || 27.69
14 | 3,13, 0 0 |0 0 0 0 |0 0 0 144168 | 190259 || 31.25
15 | 7,10,12 | 0 0 |0 0 0 0 |0 0 0 150000 | 190259 || 40.37
16 | 3,10,12 | O 0 |0 0 0 0 |0 0 0 150000 | 190259 || 46.69
17 | 3,712 |0 0 |0 0 0 0 |0 0 0 150000 | 190259 || 49.49
18 | 4,11, 3529 |3 21301310018 |0.15 | 4 0.02 | 158358 | 190259 || 60.99
19 | 3,9, 0 0 |0 0 0 0 |0 0 0 163206 | 190259 || 70.25
20 | 7,9, 0 0 |0 0 0 0 |0 0 0 163206 | 190259 || 83.97
21 9,10, 0 0 |0 0 0 0 |0 0 0 163206 | 190259 || 109
22 11,14, | 34.61 || 2 1.25 1 0.25 || 0.01 | 9 | 0.12 || 4.85 | 0.01 | 167514 | 190259 || 117.03
23 | 2,10, 0 0 |0 0 0 0 |0 0 0 168663 | 190259 || 139.09
24 | 2,3, 0 0 |0 0 0 0 |0 0 0 168663 | 190259 || 155.39
25 | 2,7, 0 0 |0 0 0 0 |0 0 0 168663 | 190259 || 169.11
26 | 711,12 13337 |0 |O 1 0.06 | 11 | 0.06 || 6.04 | 0.01 | 173346 | 190259 || 193.61
27 1 3,11,12 | 4431 || 2 | 1.25 | 0.25 || 0.01 | 11 | 0.07 || 6.8 | 0.01 | 173346 | 190259 || 227.89
28 | 3,711 | 4542 |3 |213|0.13 | 0.01 | 10 | 0.13 || 5.98 | 0.01 | 173346 | 190259 || 260.38
29 1,10, 35.3 3 121301310018 |0.15 | 4 0.02 | 175653 | 190259 || 278.1
30 | 6,12, 0 0 |0 0 0 0 |0 0 0 177611 | 190259 || 291.32
31 | 4,13, 0 0 |0 0 0 0 |0 0 0 179180 | 190259 || 315.9
32 | 4,15, 35.3 3 12130131} 001|8 |015 ]| 4 0.02 | 179180 | 190259 || 327.7
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Table B.4 — Continued

Iter | X; Z; S, | I By Wo | S; | B I; 5 | LB UB Time

33 | 4,16, 353 |[3 [213]013(001]8 [0.15] 4 0.02 | 179180 | 190259 || 336.12
34 3412 |0 0 |0 0 0 0 |0 0 0 185012 | 190259 || 349.41
35 [4,712 |0 0 |0 0 0 0 |0 0 0 185012 | 190259 || 372.96
36 |4,10,12 | 0 0 |0 0 0 0 |0 0 0 185012 | 190259 || 392.33
37 (13,19, | 24230 |0 1 0.06 | 9 |0.14 || 4.11 | 0.02 | 188336 | 190259 || 416.32
38 | 13,14, |0 0 [0 0 0 0 |0 0 0 188336 | 190259 || 461.38
39 |14,16, 353 |3 |[213]0.13(001|8 |0.15 | 4 0.02 | 188336 | 190259 || 469.5

40 | 13,18, |0 0 |0 0 0 0 |0 0 0 188336 | 190259 || 498.5

41 | 13,17, |0 0 |0 0 0 0 |0 0 0 188336 | 190259 || 543.39
42 | 14,15, 353 |3 | 213|013 0.01 |8 |0.15 | 4 0.02 | 188336 | 190259 || 551.29
43 112,19 [ 24230 |0 1 0.06 | 9 |0.14 || 4.11 | 0.02 | 190259 | 190259 | 562.77
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