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Abstract

Observers are used in the monitoring and control of dynamical systems to deduce the
values of unmeasured states. Designing an observer requires having an accurate model
of the plant — if the model parameters are characterized imprecisely, the observer may
not provide reliable estimates. An interval observer, which comprises an upper and lower
observer, bounds the plant’s states from above and below, given the range of values of the
imprecisely characterized parameters, i.e., it defines an interval in which the plant’s states
must lie at any given instant.

We propose a linear programming-based method of interval observer design for two
cases: 1) only the initial conditions of the plant are uncertain; 2) the dynamical parameters
are also uncertain. In the former, we optimize the transient performance of the interval
observers, in the sense that the volume enclosed by the interval is minimized. In the latter,
we optimize the steady state performance of the interval observers, in the sense that the
norm of the width of the interval is minimized at steady state.

Interval observers are typically designed to characterize the widest interval that bounds
the states. This thesis proposes an interval observer design method that utilizes additional,
but still-incomplete information, that enables the designer to identify tighter bounds on
the uncertain parameters under certain operating conditions. The number of bounds that
can be refined defines a class of systems. The definition of this class is independent of the
specific parameters whose bounds are refined.

Applying robust optimization techniques, under a cardinality constrained model of
uncertainty, we design a single observer for an entire class of systems. These observers
guarantee a minimum level of performance with respect to the aforementioned metrics,
as we optimize the worst-case performance over a given class of systems. The robust
formulation allows the designer to tune the level of uncertainty in the model. If many of
the uncertain parameter bounds can be refined, the nominal performance of the observer
can be improved, however, if few or none of the parameter bounds can be refined, the
nominal performance of the observer can be designed to be more conservative.
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Chapter 1

Introduction

1.1 Motivation

Suppose that you are a chemist who wishes to perform a large number of similar exper-
iments, e.g., for system identification [1], [2], or in vitro testing of a new drug. Suppose
that there is some base value, or perhaps a range of values, that is common to each ex-
periment, e.g., the biomass of a particular bacterium, or the concentrations of particular
chemical species. In each experiment, you will change certain parameters, specifically, the
initial conditions, e.g., chemical species concentrations. In other words, there is a baseline
set of maxima and minima for the initial conditions of your experiments, but in specific
instances of the experiment, you vary specific parameters beyond the baseline extrema,
but still within another set of known bounds that you have defined.

Now suppose that you have deployed an autonomous robot in an unknown environment.
The robot depends on its sensor readings for its operation. But suppose some of its sensors
sustain damage [3], making their readings unreliable. Rather than being able to trust the
original sensor measurements, there is now a range of true state values given a reading
from a damaged sensor. The body of the robot could also sustain damage [4], thereby
modifying its dynamical parameters. If it is infeasible to access the robot for repair, the
control systems of the robot must take into account the change in dynamics. If the robot is
still serviceable, there must be some range of values in which the new dynamical parameters
must lie, even if the new values are not known precisely.

Lastly, consider the following example, which we revisit later in this thesis.
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Example 1.1.1. Consider the dynamical system

ẋ = Ax

y = Cx,
(1.1)

where A ∈ R2×2, C ∈ R1×2, x ∈ R2, and y ∈ R.

We wish to generate estimates of the state x =
[
x1 x2

]>
for the system (1.1). Specif-

ically, we seek a range of estimates that contains the true state value at any given time
t ≥ 0. Suppose that we have identified an interval that is guaranteed to contain the initial
conditions x(0), [

−2
−1

]
≤ x(0) ≤

[
2
2

]
.

But under certain operating conditions, we can refine the upper and lower bounds on the
initial conditions of particular states,

x1(0) ≥ 0, x1(0) ≤ 1.5
x2(0) ≥ 0, x2(0) ≤ 0.5,

where it is possible that only a subset of upper and lower bounds may be refined. Con-
sequently, depending on the situation, there are multiple possible intervals that might be
certain to contain x(0).

Suppose also that the coefficients of the state matrix A are uncertain. As with the
initial conditions, we know an interval in which each coefficient must lie,[

−3.3 −1.1
0.9 −4.4

]
≤ A ≤

[
−2.7 −0.9
1.1 −3.6

]
,

and tighter upper and lower bounds on particular coefficients under certain circumstances,

A11 ≥ −3.1, A11 ≤ −2.9
A21 ≥ 0.99, A21 ≤ 1.01
A12 ≥ −1.05, A12 ≤ −0.95
A22 ≥ −4.1, A22 ≤ −3.9.

As with the initial conditions, not every upper or lower bound on a particular coefficient
of A may be refined in every situation.

These parameter bounds can be used to dynamically characterize upper and lower
bounds on the state x at any given time t ≥ 0. By using the refined bounds on the
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uncertain parameters, when applicable, we can generate improved bounds on the states.
However, note the combinatorial nature of the upper and lower parameter bounds; as we
discuss later, a system of small dimensions admits a relatively large number of parameter
bound combinations. We propose a method of observer design such that a single observer
will exhibit optimal performance, with respect to particular objectives, for all systems in
the class defined by the number of unrefined parameter bounds.

4

In each of these scenarios, the dynamical parameters of the system are uncertain, but
lie within a known interval. Whether by design, or exposure to deleterious environmental
conditions, these intervals can change in predictable ways, i.e., they are perturbed by a
priori known amounts. The problem we address is the design of interval observers whose
upper and lower estimates are guaranteed to bound the true states, if at most k of the
plant’s initial conditions and dynamical parameters have been perturbed. We wish to
design these observers such that the size of the interval between the upper and lower
observers, as measured by specific norms, is optimal. The optimality of these interval
observers does not depend on which specific k coefficients are perturbed.

1.2 Interval Observers

Given a plant to be monitored or controlled, it is not always possible to directly measure
all of its states. An observer is a dynamical system that uses an internal model of the
plant, and the measured outputs, to generate state estimates. A classic observer (e.g.,
Luenberger, high-gain) generates a single dynamical estimate for each plant state. The
difference between the observer’s estimates and the plant’s states is called the estimation
error. Ideally, the norm of the estimation error tends to zero as time tends to infinity.
However, the limit of the estimation error is dependent upon the accuracy of the plant
model. If the plant model is imprecise, or if it is characterized by uncertain parameters,
the classic observer may generate unreliable estimates.

An interval observer is a pair of observers whose dynamics and initial conditions are
defined such that their trajectories characterize upper and lower bounds on the state values
at any given instant. The upper observer is designed using values of the uncertain param-
eters such that its estimates bound the true states from above at any given instant. The
lower observer is designed using values of the uncertain parameters such that its estimates
bound the true states from below at any given instant. The interval between the upper
and lower observers is guaranteed to contain the true state values. Ideally, the distance

3



between the upper and lower observers converges to zero asymptotically, but the form of
the uncertain dynamics may preclude this.

Interval observers are useful in situations where the plant dynamics are highly uncertain,
or sensor readings are unreliable. Despite having access to only the basic structure of
the plant’s dynamics, and imprecise parameter values, an interval observer characterizes
bounds on the values of the plant’s states. Classic observers may be augmented with an
interval observer to bound its state estimates, or to monitor its convergence [5].

The bounded observation problem was first addressed using recursive methods in [6];
a time-varying ellipsoid was used to identify a set in the state space that is guaranteed to
contain the plant’s states. Bounding ellipsoids were also used in [7]. Set-based state esti-
mate bounding for uncertain systems was extended to parallelotopes in [8] and zonotopes
in [9]. Dynamical interval observers were first described in [10], wherein they were designed
for a monotone system, specifically a wastewater management treatment model. Interval
observer theory was extended to non-monotone systems in [11]. Necessary and sufficient
conditions for the existence of a class of interval observers for a class of non-monotone
systems were identified in [12], [13] in terms of linear constraints; the observers proposed
therein are optimal with respect to various norms of the difference between estimates of the
upper and lower observers. The work of [12], [13] was extended to positive linear systems
with time-varying delays in [14]. The theory in [12] was also extended to systems with
uncertain outputs in [15]. Necessary and sufficient conditions were identified in [16] for the
existence of a class of interval observers for continuous and discrete-time positive linear
systems, described in terms of linear matrix inequalities. It was shown in [5] that, using
a time-varying change of coordinates, a class of interval observers can be constructed for
any 2-dimensional, stable, detectable system.

Interval observers have seen much success in in the area of biological processes, par-
ticularly wastewater management systems [17], [18], [19], [11], [20]. They have also been
applied to population dynamics [18], algae cultures [21], robotics [22], circuits [15], fault-
detection [23], pharmacokinetics [13], and localization of autonomous underwater vehi-
cles [24]. They have also been used for feedback control [25], [26].

1.3 Robust Optimization

Constrained optimization problems involve the minimization, or maximization, of an ob-
jective function subject to constraints, which define a set of feasible solutions. It is assumed
in the construction and solution of constrained optimization problems that the parame-
ters are known; there is no possibility of variation, unless somehow explicitly accounted
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for in the model. However, even relatively small parametric perturbations can result in
far-from-optimal, or even highly infeasible solutions [27], as illustrated in [28].

The goal of robust optimization is to generate solutions that, under a particular model
of uncertainty, are deterministically feasible. A problem is made robust against a particular
model of uncertainty, at the expense of increased nominal cost, in exchange for guaranteed
feasibility under what is called the budget of uncertainty [27]. As this thesis uses only LPs,
we limit this survey to robust linear optimization models of uncertainty.

An ellipsoidal uncertainty model [29], [30] considers elementwise perturbations in the
coefficients of the nominal problem. The budget of uncertainty under this model is the norm
of the vector comprising the elementwise coefficient perturbations. The robust problem
under the ellipsoidal model is not linear, but a second order cone program. A special case
of the ellipsoidal model of uncertainty is polyhedral uncertainty [27]. Under this model of
uncertainty, the perturbations of the coefficients are bounded by linear constraints, effecting
a combinatorial set of admissible perturbed coefficients. The budget of uncertainty under
the polyhedral model is the elementwise bounds on the perturbed coefficients. An attractive
property of the polyhedral model of uncertainty is that an LP’s robust formulation is linear.

The norm model of uncertainty [31] characterizes the perturbed coefficients in terms
of norms of the vector comprising the elementwise perturbations of the constraint matrix.
The budget of uncertainty under this model is the upper bound of this norm. Depending
on the norm used, the robust problem is either a second order cone program, or a linear
program.

Lastly, the model of uncertainty used in this thesis is cardinality constrained uncer-
tainty [32], [33]. Under this model of uncertainty, the solution is guaranteed to be feasible
if no more than k parameters are subjected to bounded perturbations. The budget of
uncertainty is the number of coefficients protected against perturbation.

Robust optimization techniques have seen varied application, including antenna de-
sign [34], truss topology design [35], constrained stochastic linear-quadratic control [36],
circuit design [37], [38], wireless channel power control [39], and portfolio optimization [40].
The reader is referred to [27] for a comprehensive review of the robust optimization liter-
ature.

1.4 Proposed Approach

In [12], necessary and sufficient conditions for the existence of a class of interval observers
for a particular class of systems are identified and expressed as linear constraints. Two
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cases are examined: 1) no model uncertainty; 2) model uncertainty. These constraints are
used to define linear programs (LPs) used to design optimal interval observers. In the case
of no model uncertainty, the cost function of the LP is the `1-norm of the difference between
the upper and lower estimates, and is a function of the difference between the upper and
lower bounds on the initial conditions; in the case of model uncertainty, the cost represents
an upper bound on the `1-norm of the steady state supremum of the difference between
the upper and lower estimates, and is a function of the difference between the maximum
and minimum values of the uncertain dynamical parameters.

We propose a method of interval observer design that leverages additional, but still-
incomplete, information about these uncertain parameters. We assume that for each uncer-
tain parameter, that there are four bounds: a loose upper and lower bound, called the outer
bounds, and a tight upper and lower bound, called the inner bounds. The outer bounds
are guaranteed to contain the uncertain parameter under all circumstances, but the inner
bounds only contain the known parameter under particular, but known, circumstances.
It is possible for one of the bounds to be tight and one to be loose, e.g., the parameter
may be known to lie between the inner lower bound and the outer upper bound. For a
given k, we assume that k bounds are outer bounds, one bound lies between its inner and
outer bound, if and only if k is nonintegral, and all others are outer bounds; we refer to a
combination of k such bounds as a bound set.

In the design phase, we do not know which bounds will be inner bounds, we know only k.
However, at implementation, the bound set is known. Applying the robust optimization
method under a model of cardinality constrained uncertainty proposed in [41], to the
linear programming-based interval observer design method of [12], we design the observer
such that the maximum of the aforementioned norms over all bound sets defined by k
is minimized, i.e., a single optimal interval observer is designed for an entire class of
systems. Since we know the bound set at implementation, we can choose appropriate
initial conditions and dynamics for the interval observer — without redesigning — such
that the observer is an interval observer.

The benefit of optimizing over smaller bound sets is that it yields a lower cost, thereby
improving performance of the interval observer. If only the initial conditions are uncertain,
using a less-conservative model of uncertainty reduces the `1-norm of the difference between
the upper and lower estimates. If the system’s dynamics are uncertain, using a less-
conservative model reduces the `1-norm of the steady state supremum of the difference
between the upper and lower estimates. A benefit of using the robust framework of [41]
is that only a single optimization must be performed for a class of perturbations, rather
than for each combination of perturbations within that class. As is characterized later in
this thesis, this circumvents the issue of combinatorial explosion of bound sets.
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1.5 Notation and Terminology

Given a matrix M ∈ Rm×n, the notation Mij denotes the element of M in the ith row and
the jth column, and Mj denotes the jth column of M . Given a vector v ∈ Rn, vj denotes
the jth element of v. Given a vector v ∈ Rn, diag(v) ∈ Rn×n is the matrix whose (i, i)th
element is vi, and all off-diagonal elements are 0. Given a matrix M ∈ Rm×n, let M> ∈
Rn×m be its transpose, and for M ∈ Rn×n, let M−> be the transpose of its inverse; for real
matrices, (M>)−1 = (M−1)>. Given two vectors v1 ∈ Rm and v2 ∈ Rn, define the column

vector col(v1, v2) :=
[
v>1 v>2

]> ∈ Rm+n; the col function extends to an arbitrary number
of arguments. When applied to a matrix M ∈ Rm×n, col(M) := col(M1, . . . ,Mn) ∈ Rmn.
The vector 1n ∈ Rn is the column vector of 1s. The vector 0n ∈ Rn is the column vector of
0s, and the matrix 0m×n ∈ Rm×n is the matrix of 0s. The matrix I ∈ Rn×n is the identity
matrix of contextually appropriate dimensions.

The Kronecker delta is defined as

δij =

{
0, if i 6= j

1, if i = j.

The binomial coefficient is defined as(
n

k

)
:=

n!

k!(n− k)!
,

and is pronounced “n choose k”. The multinomial coefficient is defined as(
n

k1, . . . , km

)
:=

n!∏m
i=1 ki!

,

and is pronounced “n choose k1, . . . , km”. Given a scalar k ∈ R, its floor bkc ∈ Z is the
value of k rounded down to the nearest integer, and its ceiling dke ∈ Z is the value of k
rounded up to the nearest integer.

A matrix M ∈ Rn×n is said to be Hurwitz if the real part of each of its eigenvalues
is negative. A matrix M ∈ Rn×n is said to be Metzler if all its off-diagonal elements are
nonnegative, i.e., Mij ≥ 0 for all i 6= j, i, j ∈ {1, . . . , n}.

Given a matrix M ∈ Rn×n and a locally Lipschitz function g : Rn × R → Rn, the
dynamical system ẋ(t) = Mx(t) + g(x, t) is said to be positive if x(0) ≥ 0 implies x(t) ≥ 0
for all t ≥ 0. This is true if M is Metzler and g(x, t) ≥ 0 for all t ≥ 0.
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When applied to vectors or matrices, the relations >,<,≥,≤ are taken elementwise.
Given matrices A ∈ Rm×n and B ∈ Rm×n, the relation A � B is defined as A ≥ B, with
Aij > Bij for at least one pair (i, j); the relation A � B is defined as A ≤ B, with Aij < Bij

for at least one pair (i, j). Given a scalar c ∈ R, vector v ∈ Rn, or matrix M ∈ Rm×n, the
operator | · | is the elementwise absolute value. Given a set S, its cardinality is denoted by
|S|. Denote by P(S) the power set of S, i.e., P(S) := {S ′ | S ′ ⊆ S}, and by Pk(S) the set
{S ′ | S ′ ⊆ S, |S ′| ≤ k} ⊆ P(S); for convenience, for k ≤ 0, we define Pk(S) := ∅.

1.6 Contributions

The main contributions of this thesis are:

1. An interval observer design procedure for systems whose only uncertain parameters
are their initial conditions.

2. An interval observer design procedure for systems with uncertain dynamical param-
eters and initial conditions.

3. A method of associating multiple distinct perturbations with individual parameters
in a robust cardinality constrained linear program of the form proposed in [41].

1.7 Outline

In Chapter 2, we provide an overview of the robust optimization method of [41]. In
Chapter 3, we provide an overview the linear programming-based interval observer design
method of [12]. In Chapter 4, we delineate the proposed robust formulation of the interval
observer in the case where only the initial conditions of the plant are uncertain. In Chap-
ter 5, we delineate the proposed robust formulation of the interval observer in the case
where the dynamics of the plant are characterized by uncertain parameters, in addition
to uncertain initial conditions. In Chapters 4 and 5, the performance of the proposed ob-
servers is characterized. In Chapter 6, we conclude the thesis and identify areas of future
research.
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Chapter 2

Cardinality Constrained Robust
Optimization

In [41], a method is proposed for protecting against varying numbers of perturbed coeffi-
cients, given an LP of the form

Problem 1:
minimize: c>q

subject to: Eq ≤ b

l ≤ q ≤ u,

where E ∈ Rm×n, b ∈ Rm, and q, l, u, c ∈ Rn.

All uncertainty is assumed to be in the constraint coefficient matrix E and cost coeffi-
cient vector c. The vectors b, l, and u are assumed to be known. Uncertainty in b can be
modelled by augmenting q and E [41, Section 2].

The set J0 contains the indices of the uncertain cost coefficients, and the set Ji, i ∈
{1, . . . ,m} contains the indices of the uncertain coefficients in the ith constraint. If j ∈ J0,
then the jth element of the cost vector lies in the interval [cj, cj + dj], where the cost
perturbation term dj ≥ 0 for all j. Similarly, if j ∈ Ji, i ∈ {1, . . . ,m}, then the jth

coefficient of the ith constraint lies in the interval [Eij−Êij, Eij +Êij], where the constraint

coefficient perturbation term Êij ≥ 0 for all i, j. The values of dj and Êij are known for
all i, j. The protection levels Γ0 ∈ Z≥0 and Γi ∈ R≥0, i ∈ {1, . . . ,m}, specify the number
of perturbations to be protected against in the cost and ith constraints, respectively. The
vector Γ := col(Γ0,Γ1, . . . ,Γm) specifies only the cardinalities of the sets of protected
coefficients, it does not specify individual coefficients to be protected.
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Example 2.0.1. Consider an LP with the form of Problem 1, with the uncertain cost
coefficient vector and constraint coefficient matrix[

1
1

]
≤ c ≤

[
1

1.2

] [
0.9 2
−1 2

]
≤ E ≤

[
1.1 2
−0.5 3

]
.

Given the range of possible values of the cost and constraint coefficients, we take the
nominal coefficients to be

c =

[
1
1

]
E =

[
1 2

−0.75 2.5

]
,

and the coefficient perturbations to be

d =

[
0

0.2

]
Ê =

[
0.1 0
0.25 0.5

]
.

A coefficient is uncertain if its perturbation is nonzero. For example, d1 = 0, so it is not
uncertain, whereas d2 = 0.2, so it is uncertain. The sets of indices of uncertain cost and
constraint coefficients are

J0 = {2}
J1 = {1}
J2 = {1, 2}.

4
The robust formulation of Problem 1, as developed in [41], is given in Problem 2.

Problem 2:

minimize: c>q + max
{S0|S0⊆J0,|S0|≤Γ0}

{∑
j∈S0

dj|qj|

}

subject to:
n∑

j=1

Eijqj + max
{Si∪{ti}|Si⊆Ji,|Si|≤bΓic,ti∈Ji\Si}

{∑
j∈Si

Êij|qj|+
(
Γi − bΓic

)
Êiti |qti |

}
≤ bi

l ≤ q ≤ u, i ∈ {1, . . . ,m}

The cost of Problem 1 has been augmented with

Ω0(q,Γ0) := max
{S0|S0⊆J0,|S0|≤Γ0}

{∑
j∈S0

dj|qj|

}
. (2.1)
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The set S0 ⊆ J0 in (2.1) contains the indices of perturbed cost coefficients. Maximizing
over S0 identifies the set of coefficients which, when perturbed, result in the greatest cost
for a given solution q. By augmenting the cost with Ω0, minimizing the cost yields an
optimal solution q∗ that minimizes the maximum cost over the class of perturbed cost
functions defined by Γ0.

Similarly, the constraints Eq ≤ b of Problem 1 have been augmented with

Ωi(q,Γi) := max
{Si∪{ti}|Si⊆Ji,|Si|≤bΓic,ti∈Ji\Si}

{∑
j∈Si

Êij|qj|+
(
Γi − bΓic

)
Êiti |qti |

}
, (2.2)

where i ∈ {1, . . . ,m}. If qj > 0, then Eij will be perturbed in the positive direction, if
qj < 0, then Eij will be perturbed in the negative direction. Notice that Ωi is nonnegative
for i ∈ {0, . . . ,m}. The set of indices Si ∪ {ti} identifies the bΓic constraint coefficients

Eij to be perturbed by Êij, j ∈ Si, and the constraint coefficient Eiti to be perturbed by(
Γi−bΓic

)
Êiti , that maximizes the increase in

∑
j Eijqj. This has the following implication

for feasibility.

Proposition 2.0.1. Any feasible solution to Problem 2 for given Γi, i ∈ {1, . . . ,m}, is
also a feasible solution for any Γ′i ≤ Γi, i ∈ {1, . . . ,m}.

Proof. By construction, a constraint perturbation (2.2) increases the left-hand side of con-
straints of the form

∑
j Eijqj ≤ bi. Therefore, as Γi increases, thereby increasing the

magnitude of Ωi(q,Γi), solutions that satisfy constraint i with insufficient slack become in-
feasible. Conversely, as Γi decreases, the left-hand side of

∑
j Eijqj ≤ bi decreases, thereby

expanding the set of feasible solutions. Consequently, for fixed E, Ê, b, l, u, the set of
feasible solutions to Problem 2 using the protection levels Γ′i ≤ Γi, i ∈ {1, . . . ,m} is a
superset of the feasible solutions to Problem 2 using the constraint protection levels Γi,
i ∈ {1, . . . ,m}.

Note that Problem 1 is equivalent to Problem 2 when Ωi = 0, i ∈ {0, . . . ,m}, which
is achieved by setting Γi = 0 for all i, as this yields Si = ∅ for all i and

(
Γi − bΓic

)
= 0,

i ∈ {1, . . . ,m}.

Example 2.0.2. Consider the LP described in Example 2.0.1. Suppose the constraint
protection levels are Γ1 = 0 and Γ2 = 1. The robust solution is deterministically feasible
for the perturbed constraint matrices[

1 2
−0.75 2.5

] [
1 2
−1 2.5

] [
1 2

−0.75 3

]
,
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since 0 elements in the first row have been perturbed and at most 1 element in the second
row has been perturbed. However, the robust solution will not necessarily be feasible for
the perturbed constraint matrices[

1.1 2
−0.75 2.5

] [
1 2
−1 3

]
.

In the first matrix, 1 > Γ1 element has been perturbed in the first row, and in the second
matrix, 2 > Γ2 elements have been perturbed in the second row. Setting Γ1 = |J1| = 1 and
Γ2 = |J2| = 2 would ensure that the robust solution is feasible for all possible perturbed
coefficient matrices.

4
Problem 2 has the following equivalent linear formulation [41, Theorem 1].

Problem 3:

minimize: c>q + ζ0Γ0 +
∑
j∈J0

p0j

subject to:
∑
j

Eijqj + ζiΓi +
∑
j∈Ji

pij ≤ bi ∀ i 6= 0

ζ0 + p0j ≥ djyj ∀ j ∈ J0

ζi + pij ≥ Êijyj ∀ i 6= 0, j ∈ Ji
pij ≥ 0 ∀ i, j ∈ Ji
yj ≥ 0 ∀ j
ζi ≥ 0 ∀ i
− yj ≤ qj ≤ yj ∀ j
lj ≤ qj ≤ uj ∀ j,

where, qj, ζ0, p0j, ζi, pij, yj ∈ R, i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}, are decision variables.

Optimizing over the new decision variables ζ0 and p0j, and ζi and pij, i 6= 0, is equivalent
to selecting the sets S0 and Si, i 6= 0, respectively, in Problem 2 [41, Proof of Theorem
1]. The vector of new decision variables y in Problem 3, and its associated constraints, are
the linear equivalent of taking the absolute values of the elements of q in the perturbation
terms (2.1) and (2.2).

When exclusively uncertain cost coefficients are considered, the variables ζi and pij for
i 6= 0 may be eliminated, as they pertain only to uncertainty of constraint coefficients. For
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indices associated with nonnegative decision variables, i.e., j ∈ {j′ | lj′ ≥ 0}, there is no
need to take the absolute value of qj when computing the perturbation terms (2.1), (2.2).
Since the vector of decision variables y and its associated constraints are the linear equiv-
alent of the absolute value operation, we may eliminate yj and the constraints yj ≥ 0, and

replace yj with qj in the constraints ζ0 + p0j ≥ dyj and ζi + pij ≥ Êyj, for j ∈ {j′ | lj′ ≥ 0}.

2.1 Cardinalities

One of the advantages of the robust formulation of [41], is that a single optimization is
needed for a class of perturbations. In this section, we characterize the cardinalities of
admissible perturbation sets.

Proposition 2.1.1. For a fixed J0 and Γ0, the number of combinations of indices of
perturbed cost coefficients S0 is

Γ0∑
k=0

(
|J0|
k

)
.

Proof. The set of possible S0 contains all S0 that contain k indices of perturbed coefficients,
k ∈ {0, . . . ,Γ0}. For a fixed k, the number of combinations is |J0| choose k. Therefore, the
number of possible S0 is the sum of |J0| choose k, k ∈ {0, . . . ,Γ0}.

Proposition 2.1.2. For fixed Ji and Γi, i ∈ {1, . . . ,m}, the number of combinations of
indices of perturbed constraint coefficients is

m∏
i=1


bΓic∑
k=0

(
|Ji|
k

)
+
(
1− δdΓiebΓic

)( |Ji|
bΓic, 1

) .

Proof. For a fixed i, the set of possible constraint perturbations contains all Si that contain
bkc indices of maximally perturbed coefficients, k ∈

{
0, . . . , bΓic

}
. For a fixed k, the

number of combinations of strictly maximal perturbations is |Ji| choose bkc. Therefore,
the number of possible Si is the sum of Ji choose k, k ∈

{
0, . . . , bΓic

}
.

By construction of the constraint perturbation term (2.2), no coefficient will be partially
perturbed unless the maximum number of coefficients have been maximally perturbed, i.e.,
bΓic coefficients have been maximally perturbed, and at most one coefficient will be par-
tially perturbed. There are therefore |Ji| choose bkc, 1 combinations of dΓie perturbations
for nonintegral Γi. If dΓie = bΓic, i.e., for integral Γi, there are no such combinations.
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The number of index combinations for an individual constraint is the sum of the number
of combinations of indices of strictly maximal perturbations and the number of combina-
tions of indices of dΓie perturbations. By the product rule of counting, the number of
combinations across all constraints is equal to the product of the numbers of index combi-
nations over all m constraints.

Example 2.1.1. Consider the following nominal coefficients and perturbations,

c =

[
1
1

]
d =

[
1
1

]
E =

[
1 1

]
Ê =

[
1 1

]
,

which gives us J0 = {1, 2} and J1 = {1, 2}. We take Γ0 = Γ1 = 2.

By Proposition 2.1.1, there are four combinations of the indices of cost perturbations,

S0 ∈
{
∅, {1}, {2}, {1, 2}

}
,

hence, the perturbed cost vector can take any value in the set{[
1
1

]
,

[
1
2

]
,

[
2
1

]
,

[
2
2

]}
.

By Proposition 2.1.2, there are four combinations of the indices of constraint perturba-
tions,

S1 ∈
{
∅, {1}, {2}, {1, 2}

}
.

However, unlike the cost coefficient perturbations, the constraint coefficient perturbation
corresponding to E1j, j ∈ S1, may be positive or negative, depending on the sign of the
decision variable qj. There are therefore two perturbed coefficient values we must consider
for each j ∈ S1. The perturbed constraint coefficient matrix can take any value in the set{ [

0 0
]
,
[
0 1

]
,
[
0 2

]
,
[
1 0

]
,
[
1 1

]
,
[
1 2

]
,
[
2 0

]
,
[
2 1

]
,
[
2 2

] }
.

We see that even for n = 2, m = 1, there is a relatively large number of potential
instances of an uncertain problem. In this example, there are four possible cost vectors,
and nine possible constraint matrices, yielding a total of 36 problem instances.

4
Example 2.1.1 illustrates the potential computational benefit of the robust formulation

of [41]: a single solution is generated, which is optimal over the entire class of perturbed
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problem instances defined by Γ, in the sense that the highest cost over this class for this
fixed solution is minimized.

To illustrate the rapid growth in the number of problem instances to consider as n
increases and Γ is varied, we list the number of admissible cost vectors and constraint
matrices in Table 2.1. We assume that |Ji| = n, for all i, and that all Γi, i 6= 0, are equal.

Table 2.1: Number of combinations of indices of cost and constraint coefficients for various
problem dimensions and protection levels.

n m Γ0 Γi

∣∣{Possible S0}
∣∣ ∣∣{Possible

⋃
i 6=0 Si ∪ {ti}

}∣∣
2 2

2
2

4
16

2 3
64

1.5 125
3 3

3
3

8
512

3 4
4096

2.5 10000
4 4

4
4

16
65536

4 5
1048576

3.5 2476099
5 5

5
5

32
33554432

5 6
1073741824

4.5 2176782336

2.2 Equality Constraints

The LPs used to design the interval observers in [12] contain equality constraints, which
are incompatible with the stipulated form of constraints in Problem 1. We characterize
the effect of the protection process of [41] on strict equality constraints with uncertain
coefficients.

Proposition 2.2.1. Given a problem of the form of Problem 2, if there is an equality
constraint with at least one uncertain coefficient and a nonzero protection level, i.e., Ji 6= ∅
and Γi > 0, where constraint i is an equality constraint, then Problem 2 is infeasible.
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Proof. An equality constraint can be formulated as two inequality constraints,

∑
j

Eijqj = bi =⇒

{∑
j Eijqj ≤ bi∑
j Eijqj ≥ bi

=⇒

{ ∑
j Eijqj ≤ bi

−
∑

j Eijqj ≤ −bi.
(2.3)

Denoting the index of the second constraint by i′, the robust formulation of (2.3) is∑
j

Eijqj + Ωi(q,Γi) ≤ bi

−
∑
j

Eijqj + Ωi′(q,Γi′) ≤ −bi.

Summing these constraints, we have

Ωi(q,Γi) + Ωi′(q,Γi′) ≤ 0. (2.4)

Since Ωi ≥ 0, with equality holding if and only if Γi = 0, inequality (2.4) is satisfied if
and only if Γi = Γi′ = 0. Therefore, equality constraints with uncertain coefficients render
Problem 2 infeasible for any nonzero protection level.

This issue is addressed in our treatment of interval observers.

2.3 Multiple Distinct Perturbations to Individual

Cost Coefficients

Problem 2 protects against Γ0 cost coefficient perturbations. However, this method is
based on the assumption that the perturbing of a particular cost coefficient is binary,
i.e., it is either maximally perturbed, or it is not perturbed. As we shall discuss in our
treatment of interval observers, there can be multiple possible perturbations for a particular
cost coefficient, each having a distinct physical interpretation. We propose a method
of modifying Problem 2 such that individual cost coefficients may be protected against
multiple distinct perturbations. We present this process for the case where there are two
distinct perturbations, but this process can be extended to an arbitrary number of distinct
perturbations.

Define the vector of dummy variables q′ ∈ Rn to be a copy of the decision variable
vector q. Define d0, d′ ∈ Rn

≥0 to be the vectors of cost coefficient perturbations associated
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with q and q′, respectively, in the augmented problem. Define the stacked decision variable
vector Q := col(q, q′) ∈ R2n, and the stacked perturbation vector D := col(d0, d′) ∈ R2n

≥0.
We stipulate that

d0 + d′ = d, (2.5)

which implies that, for j ∈ {1, . . . , n}, Dj +Dj+n = dj, and impose the constraint

q′ = q, (2.6)

which implies Qj+n = Qj.

Replacing q with Q, and d with D in the cost perturbation term (2.1), yields the
objective

minimize: c>q + max
{S0|S0⊆J0,|S0|≤Γ0}

{∑
j∈S0

DjQj

}
.

Note that introducing the decision variable q′ implicitly extends the cost vector c to c′ :=
col(c,0n), i.e., the dummy variables q′ are nominally unweighted, but their associated cost
coefficients can be perturbed. This change in the cost coefficient vector changes the set of
indices of uncertain cost coefficients from J0 ⊆ {1, . . . , n} to J ′0 ⊆ {1, . . . , 2n}.
Proposition 2.3.1. For a fixed k ∈ J0,

{
k, (k + n)

}
∩ J ′0 6= ∅, perturbing the cost co-

efficients c′k and c′k+n by Dk and Dk+n, respectively, is equivalent to perturbing the cost
coefficient ck by dk in Problem 2.

Proof. Both Problem 2 and the augmented problem have an unperturbed cost of c>q. We
therefore need only show that the perturbations are equal, i.e.,

dkqk = DkQk +Dk+nQk+n.

By the definitions of D and Q, and applying (2.5) and (2.6), we have

DkQk +Dk+nQk+n = d0
kqk + d′kq

′
k

= (d0
k + d′k)qk

= dkqk.

Proposition 2.3.2. If Γ0 = Γ′0 = 0, or Γ0 = |J0|, Γ′0 = |J ′0|, then the augmented problem
yields the same optimal solution as Problem 2.
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Proof. Since the cost perturbation term (2.1) is 0 for a protection level Γ0 = Γ′0 = 0, the
costs of Problem 2 and the augmented problem are c>q, proving the claim for Γ0 = Γ′0 = 0.

For Γ0 = |J0|, Γ′0 = |J ′0|, all uncertain cost coefficients are perturbed. The cost of
Problem 2 is perturbed by ∑

j∈J0

dj|qj|, (2.7)

and the cost of the augmented problem is perturbed by∑
j∈J ′

0

Dj|Qj|. (2.8)

Applying Proposition 2.3.1 for all k ∈ J0, we have that (2.7) and (2.8) are equal, thereby
proving the claim.
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Chapter 3

Interval Observers

We propose a method of interval observer design, based on that of [12], for systems of the
form

ẋ = Ax+ ξ(x, t)

y = Cx,
(3.1)

where x ∈ Rn is the state vector, A ∈ Rn×n is uncertain but bounded, the nonlinear
function ξ : Rn × R→ Rn is uncertain but bounded, y ∈ Rp is the output, and C ∈ Rp×n.
We make the following assumptions regarding the boundedness of A and ξ.

Assumption 1. Given a system of the form (3.1), there exist known matrices A, A ∈ Rn×n,
such that A ≤ A ≤ A.

Assumption 2. Given a system of the form (3.1), there exist known constants ξ, ξ ∈ Rn,

such that ξ ≤ ξ(x, t) ≤ ξ, for all t ≥ 0 and all x ∈ Rn.

An interval observer comprises an upper observer, whose estimates x̂u bound the true
states x from above, and a lower observer, whose estimates x̂l bound the true states from
below:

for all t ≥ 0, x̂l(t) ≤ x(t) ≤ x̂u(t). (3.2)

We refer to (3.2) as the interval property, and for it to be satisfied, the upper estimation
error eu := x̂u − x and the lower estimation error el := x− x̂l must satisfy positivity.

Summing eu and el, we obtain (x̂u−x) + (x− x̂l) = x̂u− x̂l, i.e., the difference between
the upper and lower state estimates. This value is called the interval error and we denote
it by e := x̂u− x̂l. If e(t) ≥ 0 for all t ≥ 0, then x̂u(t) ≥ x̂l(t) for all t ≥ 0, i.e., the positivity
of the interval error e ensures that x̂u is always above x̂l. Positivity of the interval error
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is a necessary, but not sufficient, condition to satisfy the interval property. The observer
pair must also be initialized such that x̂u(0) and x̂l(0) satisfy (3.2). We therefore make the
following assumption.

Assumption 3. Given a system of the form (3.1), there exist known constants x0, x0 ∈ Rn,
such that x0 ≤ x(0) ≤ x0.

If the evolution of e is governed by positive dynamics, Assumption 3 means we can
always set x̂u,l(0) :=

(
x̂u(0), x̂l(0)

)
such that the pair x̂u,l := (x̂u, x̂l) satisfies the interval

property with respect to the true state x. An interval observer is said to be conver-
gent if limt→∞ e(t) exists and is bounded, and is said to be asymptotically convergent if
limt→∞ e(t) = 0.

A special case of system (3.1) of interest is when there is no model uncertainty,

ẋ(t) = Ax(t) + ξ(y, t)

y(t) = Cx(t),
(3.3)

i.e., A = A and ξ is only a function of the output and time, i.e., ξ(x, t) ≡ ξ(y, t). We call
this the known model (KM) case; only the initial conditions x(0) of (3.3) are uncertain.
In the general case of (3.1), called the uncertain model (UM) case, the initial conditions
x(0), state matrix A, and the instantaneous values of the nonlinearity ξ are uncertain, but
bounded. In both the KM and UM cases, we assume existence and uniqueness of solutions
for x(t) for all t ≥ 0.

3.1 Known Model Interval Observers

A known model interval observer (KMIO) is constructed for systems of the form (3.3), and
has the dynamics [12]

˙̂xu = Ax̂u + ξ(y, t) + L(y − Cx̂u)

˙̂xl = Ax̂l + ξ(y, t) + L(y − Cx̂l),
(3.4)

initialized at
x̂u(0) = x0

x̂l(0) = x0,
(3.5)

where L ∈ Rn×p is the observer gain matrix. An asymptotically convergent interval ob-
server of the form (3.4) exists if and only if there exist λ ∈ Rn and β ∈ R that satisfy the
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following constraints [12, Theorem 3.1]:

(A− LC)>λ < 0n

(A− LC)> + βI ≥ 0n×n

λ > 0n.

(3.6)

The first and second constraints ensure that (A−LC) is Hurwitz and Metzler, respectively.
The quantity βI is added in the Metzler constraint because only the off-diagonal elements
of a matrix must be nonnegative to satisfy the Metzler property.

Linear programming is used to generate optimal L matrices for the interval observer
dynamics (3.4). But there are three issues we must address first: 1) a linear cost function
must be identified; 2) the constraints (3.6) contain strict inequalities, which are not per-
mitted in linear programming, as the feasible set of an LP must be closed, to ensure that
the extrema are well-defined; 3) the constraints are not linear in L.

If the constraints (3.6) are satisfied, the `1-norm of the interval error is [12, Section
II.B]

‖e‖1 :=

∥∥∥∥∫ ∞
0

e(t)dt

∥∥∥∥
1

= −
(
x̂u(0)− x̂l(0)

)>
(A− LC)−>1n. (3.7)

The function (3.7) is not linear in L, however, modifying the Hurwitz constraints in (3.6)
to be strictly equal to −1n, instead of strictly less than 0n, yields

(A− LC)>λ = −1n.

Solving for λ and substituting into (3.7) yields the function

‖e‖1 =
(
x̂u(0)− x̂l(0)

)>
λ, (3.8)

which is linear in λ.

Introducing the matrix Z ∈ Rp×n, we define

L := diag(λ)−1Z>. (3.9)

Substituting this definition of L into the modified version of (3.6) yields the constraints

A>λ− C>Z1n = −1n

A>diag(λ)− C>Z + βI ≥ 0n×n,

which are linear in λ, Z, and β.
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Lastly, at implementation, the constraint λ > 0n is replaced with λ ≥ ε1n, where
ε ∈ R>0 is an arbitrarily small constant.

System (3.4) with initial conditions (3.5), is an asymptotically convergent interval ob-
server for (3.3), if and only if Problem 4 is feasible. The gain matrix L, defined in (3.9), is
computed using an optimal solution to Problem 4:

Problem 4:
minimize:

(
x̂u(0)− x̂l(0)

)>
λ

subject to: A>λ− C>Z1n = −1n

A>diag(λ)− C>Z + βI ≥ 0n×n

λ > 0n.

3.2 Uncertain Model Interval Observers

An uncertain model interval observer (UMIO) is constructed for systems of the general
form (3.1), and has the dynamics [12]

˙̂xu = Ax̂u + L(y − Cx̂u)− (A− A)φ(x̂u) + ξ

˙̂xl = Ax̂l + L(y − Cx̂l)− (A− A)ψ(x̂l) + ξ

x̂u(0) = x0

x̂l(0) = x0,

(3.10)

where ψ : Rn → Rn
≥0 and φ : Rn → Rn

≤0 are defined as

ψ(x) =
1

2

(
x+ |x|

)
φ(x) =

1

2

(
x− |x|

)
.

The function ψ retains the positive elements of x and maps the negative elements to 0,
and φ retains the negative elements of x and maps the positive elements to 0.

A convergent interval observer of the form (3.10) exists if and only if there exist λ ∈ Rn

and β ∈ R that satisfy the following constraints [12, Theorem 4.2]:

(A− LC)>λ < 0n

(A− LC)> + βI ≥ 0n×n

λ > 0n.
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The first and second constraints ensure that
(
A−LC

)
is Hurwitz for all A ≤ A and Metzler

for all A ≥ A, respectively.

We make the following assumption, which is needed to optimize a particular objective;
it is not necessary or sufficient for the existence of the interval observers we discuss.

Assumption 4. Given a system of the form (3.1) that satisfies Assumptions 1 and 2, there
exists a constant κ1 ∈ Rn

>0 such that κ ≥ | supt≥0 x(t)|.

Invoking Assumption 4, the `1-norm of the steady state supremum of the interval error
is bounded above by [12, Theorem 4.2]

‖ē‖1 := lim sup
t→∞

‖e(t)‖1 ≤ −
[
2(A− A)κ + ξ − ξ

]>
(A− LC)−>1n. (3.11)

Following an analogous process to that of Section 3.1, we obtain the linear cost function

‖ē‖1 ≤
[
2(A− A)κ + ξ − ξ

]>
λ, (3.12)

and the linear constraints in Problem 5. System (3.10) is a convergent interval observer
for (3.1), if and only if Problem 5 is feasible. The gain matrix L, as defined in (3.9), is
computed using an optimal solution to Problem 5:

Problem 5:
minimize:

[
2(A− A)κ + ξ − ξ

]>
λ

subject to: A
>
λ− C>Z1n = −1n

A>diag(λ)− C>Z + βI ≥ 0n×n

λ > 0n

1Pronounced “kappa”.
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Chapter 4

Robust Known Model Interval
Observers

Problem 4 is used to generate an L that minimizes the `1-norm of the interval error of the
KMIO (3.4). By (3.8), ‖e‖1 is directly proportional to the difference between the initial
conditions of the upper and lower observers. Therefore, initializing the upper and lower
observers closer together effects a smaller ‖e‖1. We assume that under particular operating
conditions, tighter upper and lower initial conditions, x̂u(0) and x̂l(0), respectively, may
be chosen such that x̂l(0) ≤ x(0) ≤ x̂u(0), which is required to satisfy the interval prop-
erty (3.2). By casting Problem 4 in the framework of Problem 2, we develop a tunably
robust known model interval observer (RKMIO).

4.1 Robust Formulation of the Known Model Interval

Observer Problem

Define the constants x↑0, x↓0 ∈ Rn such that x0 ≤ x↑0 ≤ x↓0 ≤ x0 and (x↓0 − x
↑
0) � (x0 − x0).

As discussed, using these tighter initial conditions, i.e., setting x̂u,l(0) = (x↑0, x
↓
0), causes

an elementwise reduction in the cost vector, which reduces the attainable optimal ‖e‖1.
Define the notation

∆x0 := x0 − x↓0 ≥ 0

∆x0 := x↑0 − x0 ≥ 0.

We wish to treat perturbations of the upper and lower bounds of the initial conditions
separately, allowing for a larger class of uncertainty than merely perturbations in the
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size of the interval. Using the method developed in Section 2.3, set Q := col(λ, λ′) and
D := col(∆x0,∆x0). We do not duplicate the unweighted decision variables Z or β.

Perturbations of the cost coefficients corresponding to λ are interpreted as upward
perturbations of x↓0, and perturbations of the cost coefficients corresponding to λ′ are
interpreted as downward perturbations of x↑0. For consistency of notation with Problem 2,
we retain the symbol d to represent the redefined cost coefficient perturbation vector D,
and for clarity, we use the symbol Λ instead of Q. We also forgo the ′ notation. Lastly,
since λ > 0n, we omit the absolute value operation in the cost perturbation term (2.1).
We propose the following robust formulation of Problem 4.

Problem 6:

minimize: (x↓0 − x
↑
0)>λ+ max

{S0|S0⊆J0,|S0|≤Γ0}

{∑
j∈S0

djΛj

}
subject to: A>λ− C>Z1n = −1n

A>diag(λ)− C>Z + βI ≥ 0n×n

λ > 0n

λ′ = λ,

Remark 4.1.1 (Computational Complexity of the Robust Known Model Problem). The
original KM problem, Problem 4, has n + pn + 1 decision variables. Introducing the
dummy variables λ′ increases the number of decision variables to 2n+ pn+ 1. The linear
robust formulation, Problem 3, is used to implement the robust KM problem, Problem 6,
which introduces the decision variables ζ0 and p0j for all j ∈ J0. There is therefore a total
of
(
2n+ pn+ 2 + |J0|

)
decision variables, where |J0| ≤ 2n, and we assume p ≤ n.

There exist algorithms that can solve LPs in O
(

N3

lnN
U
)

time in the worst case [42],
where N is the number of decision variables and U is the bit length of the binary encoding

of the vectors c, b, and matrix E. Therefore, Problem 6 can be solved in O
(

(pn)3

lnn
U
)

time.

Perturbing all elements of (x↓0 − x↑0) by setting Γ0 = |J0|, recovers the cost vector
(x0 − x0) of Problem 4. Further, there is exactly one possible perturbed cost vector for
Γ0 = |J0|, therefore, we must verify that the optimal costs of Problems 4 and 6 are equal.

Proposition 4.1.2. If Γ0 = |J0|, then Problem 6 and Problem 4 are equivalent.

Proof. Setting Γ0 = |J0| results in Problem 6 optimizing over all uncertain cost coefficients,
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i.e., S0 = J0. (
x↓0 − x

↑
0

)>
λ+ ∆x>0 λ+ ∆x>0 λ

′

=
(
x↓0 + ∆x0

)>
λ−

(
x↑0 −∆x0

)>
λ

=
(
x0 − x0

)>
λ

Since the cost function and constraints are equivalent, the problems are equivalent.

Given the pairs (x↓0, x
↑
0), (x0, x0) ∈ Rn×Rn, a set of indices of uncertain cost coefficients

J0, and a set of indices of perturbed cost coefficients S0, we generate a pair of initial
conditions x̂u,l(0) ∈ Rn × Rn via the mapping

Ψ : PΓ0(J0)→ Rn × Rn

S0 7→
(
x̂u(0), x̂l(0)

)
,

(4.1)

where

x̂ui (0) =

{
x0i if i ≤ n, i ∈ S0

x↓0i otherwise,

x̂li(0) =

{
x0i if i ≤ n, (i+ n) ∈ S0

x↑0i otherwise.

A pair of initial conditions
(
x̂u(0), x̂l(0)

)
∈ Rn × Rn defines a set in Rn by{

x ∈ Rn : x̂l(0) ≤ x ≤ x̂u(0)
}
. (4.2)

A generic 2-dimensional example of these sets is illustrated in Figure 4.1. The possible
values of x1(0) and x2(0) are on the horizontal and vertical axes, respectively. The outer-
most box encapsulates the interval defined by (x0, x0) guaranteed to contain x(0), and the
solid inner box denotes the inner interval defined by (x↓0, x

↑
0). The boxes extending from

the solid inner box represent individual perturbations. For example, the rightmost box
represents the perturbation of x↓01 to x01. If both elements are perturbed in the positive,
or negative, direction, the set (4.2) includes the white regions bordered by both boxes
representing individual perturbations. For example, if x↓01 is perturbed to x01 and x↓02 is
perturbed to x02, i.e., (x↓0, x

↑
0) is perturbed to (x0, x

↑
0), the set (4.2) comprises the solid

inner box, the rightmost box, the topmost box, and the top-right white box. To satisfy the
interval property (3.2), the observer’s initial conditions x̂u,l(0) must be chosen such that
the set (4.2) contains all possible x(0).

Further, for a fixed cost protection level Γ0, we generate the set of initial conditions
effected by perturbing at most Γ0 elementwise boundaries of the interval (4.2) defined by
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Figure 4.1: A 2-dimensional example of the intervals defined by the pair (x↓0, x
↑
0), (x0, x0) ∈

R2 × R2.

the pair (x↑0, x
↓
0), via the mapping

X : PΓ0(J0)× Z≥0 → Rn × Rn

(J0,Γ0) 7→
{
x̂u,l(0) |

(
∃ S0 ∈ PΓ0(J0)

)(
Ψ(S0) = x̂u,l(0)

)}
.

Problem 6 generates an L that minimizes the maximum ‖e‖1 of the interval observer (4.3),
over all initial conditions x̂u,l(0) ∈ X (J0,Γ0) for a fixed Γ0.

4.2 Optimality

Since Problems 4 and 6 have the same constraints, they admit the same set of feasible
observer gain matrices FL

KM ⊂ Rn×p. Define the set LRKM(J0,Γ0) ⊂ FL
KM to be the set of

all matrices L constructed using optimal solutions to the robust KM problem, Problem 6,
for a given J0 and Γ0. Similarly, define the set LKM ⊂ FL

KM to be the set of all matrices
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L constructed using optimal solutions to the original KM problem, Problem 4, using the
cost vector induced by the initial conditions (x0, x0).

We propose the following RKMIO,

˙̂xl = Ax̂l + ξ(y, t) + L(y − Cx̂l)
˙̂xu = Ax̂u + ξ(y, t) + L(y − Cx̂u)

x̂u,l(0) ∈ X (J0,Γ0),

(4.3)

where L ∈ LRKM(J0,Γ0).

Define the mapping

e`1 : Rn×p ×X (J0, |J0|)→ R≥0(
L, x̂u,l(0)

)
7→ −

(
x̂u(0)− x̂l(0)

)>
(A− LC)−>1n.

(4.4)

By (3.7), the mapping (4.4) gives the `1-norm of an interval observer with dynamics (3.4),
initialized at x̂u,l(0).

Theorem 4.2.1. Given a system of the form (3.3), constants x0 ≤ x↑0 ≤ x↓0 ≤ x0, such that
x0 � x0 and x0 ≤ x(0) ≤ x0, indices of uncertain cost coefficients J0, and cost protection
level Γ0 < |J0|, the proposed RKMIO (4.3) effects a smaller ‖e‖1 than the KMIO (3.4)
initialized at (x0, x0), and a maximum ‖e‖1 over the set of initial conditions X (J0,Γ0) no
greater than that of (3.4), i.e.,

max
x̂u,l(0)∈X (J0,Γ0)

e`1
(
LRKM , x̂

u,l(0)
)
≤ max

x̂u,l(0)∈X (J0,Γ0)
e`1
(
LKM , x̂

u,l(0)
)
< e`1

(
LKM , (x0, x0)

)
.

(4.5)

Proof. By (3.7), for a fixed L, choosing initial conditions ˜̂xu,l0 := (˜̂xu0 ,
˜̂xl0) such that (˜̂xu0 −

˜̂xl0) �
(
x̂u(0)− x̂l(0)

)
, effects a smaller ‖e‖1. Since (x0, x0) /∈ X (J0,Γ0) for any Γ0 < |J0|,

we have(
∀ Γ0 < |J0|

)(
˜̂xu,l0 ∈ X (J0,Γ0)

)(
x̂u,l(0) = (x0, x0)

)
=⇒

(
e`1(L,

˜̂xu,l0 ) < e`1
(
L, (x0, x0)

))
.

(4.6)
Therefore, initializing the KMIO (3.4) at x̂u,l(0) ∈ X (J0,Γ0), Γ0 < |J0|, effects a smaller
‖e‖1 than initializing at (x0, x0).

By construction, the optimal cost of Problem 6 is equal to

max
x̂u,l(0)∈X (J0,Γ0)

e`1
(
L, x̂u,l(0)

)
,
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i.e., the maximum ‖e‖1 over all initial conditions x̂u,l(0) ∈ X (J0,Γ0). Since Problems 4
and 6 admit the same set of feasible L matrices, by the optimality of L ∈ LRKM , there
exists no L ∈ LKM that effects a smaller maximum ‖e‖1 over the set of initial conditions
X (J0,Γ0). Combining this with (4.6), we verify (4.5).

Theorem 4.2.1 signifies that the ‖e‖1 of the RKMIO (4.3) for any Γ0 < |J0|, is strictly
less than that of the KMIO (3.4) initialized at (x0, x0), and no greater than that of the
KMIO initialized in X (J0,Γ0).

4.3 Implementation

In this section, we delineate and illustrate the design process of the proposed RKMIO (4.3).

1. Identify x0, x0, x
↓
0, x
↑
0.

2. Set Γ0 to the smallest value such that each possible initial condition x(0) is contained
in at least one of the sets (4.2) defined by an initial conditions pair x̂u,l(0) ∈ X (J0,Γ0).

3. Using c := (x↓0 − x
↑
0) and d := col

(
(x0 − x↓0), (x↑0 − x0)

)
, solve Problem 6 using the

constraint λ ≥ ε1n, where ε ∈ R>0 is an arbitrarily small constant.

4. Using the optimal λ and Z, construct the observer gain matrix L := diag(λ)−1Z>.

5. Initialize the RKMIO (4.3) in the elementwise smallest interval (4.2) induced by
x̂u,l(0) ∈ X (J0,Γ0) such that x̂l(0) ≤ x(0) ≤ x̂u(0), for all possible x(0).

The single resultant RKMIO with gain matrix L, is optimal in the sense that the
maximum ‖e‖1 over all initial conditions x̂u,l(0) ∈ X (J0,Γ0) is minimized, and is optimal
in this sense for any initial conditions in X (J0,Γ0). By stipulating that x̂u,l(0) be chosen
such that the set (4.2) contains x(0), we ensure the interval property (3.2); by setting Γ0

as small as is possible while ensuring the interval property, we minimize the attainable
optimum cost.

For the class of systems defined by a fixed Γ0, we perform only a single optimization,
i.e., design a single interval observer, whereas the original KMIO (3.4) of [12], is optimal
only for a single x̂u,l(0), and would need to be optimized for each set of initial conditions
in X (J0,Γ0). This is advantageous in situations where the initial conditions of the plant
are guaranteed to lie within some range, but under certain circumstances, this range can
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be refined. For example, as discussed in the Introduction, when performing many similar
experiments, but deliberately varying the initial conditions in specific iterations. Or when
reinitializing an autonomous robot after it has sustained damage, and its current states
are uncertain.

Example 4.3.1. To illustrate the proposed approach, we construct and implement an
RKMIO for the system (1.1), whose state space model is

A =

[
−3 −1
1 −4

]
C =

[
1 −1

]
.

We take the constants x0, x0, x
↓
0, x
↑
0 to be

x0 =

[
2
2

]
x↓0 =

[
1.5
0.5

]
x↑0 =

[
0
0

]
x0 =

[
−2
−1

]
, (4.7)

which define the intervals (4.2) illustrated in Figure 4.2, and the cost and perturbation
vectors

c = (x↓0 − x
↑
0)

=
[
1.5 0.5

]>
,

d = col
(
(x0 − x↓0), (x↑0 − x0)

)
=
[
0.5 1.5 2 1

]>
.

The indices of uncertain cost coefficients are those corresponding to nonzero elements of d,

J0 = {1, 2, 3, 4}.

Setting ε = 10−6, we construct Problem 6 in the linear robust formulation of Problem 3

minimize: c>λ+ ζ0Γ0 +
∑
j∈J0

p0j

subject to: A>λ− C>Z12 = −12

A>diag(λ)− C>Z + βI ≥ 0

ζ0 + p0j ≥ djΛj ∀ j ∈ J0

p0j ≥ 0 ∀ j ∈ J0

ζ0 ≥ 0

λ ≥ 10−612

λ′ = λ.
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Figure 4.2: Initial conditions intervals defined by (4.7) in Example 4.3.1.

The KMIO of [12] is initialized at x̂u,l(0) = (x0, x0). We compare the maximum ‖e‖1

over the set of initial conditions X (J0,Γ0) of the proposed RKMIO (4.3), to the ‖e‖1

effected by the KMIO of [12]. The maximum ‖e‖1 of the RKMIO over the initial conditions
X (J0,Γ0), the matrix L, and the percent reduction in ‖e‖1, i.e.,

100

(
1−

maxx̂u,l(0)∈X (J0,Γ0) e`1
(
LRKM , x̂

u,l(0)
)

e`1
(
LKM , (x0, x0)

) )
,

are presented in Table 4.1 for Γ0 ∈ {1, 2, 3, 4}. Recall that for Γ0 = |J0| = 4, the KMIO
and RKMIO are equivalent. Plots of the trial Γ0 = 1 are presented in Figures 4.3 and 4.4.

The data in Table 4.1 show that the reduction in ‖e‖1 is potentially significant, ranging
from 9.00% to 48.0%. However, a reduction in ‖e‖1 would also occur by initializing the
KMIO of [12] using tighter initial conditions. For comparison, we identify the greatest ‖e‖1

effected by initializing the KMIO of [12] in the sets X (J0,Γ0), Γ0 ∈ {1, 2, 3}, and compute
the percent reduction in the maximum ‖e‖1 effected by using the RKMIO instead of the
KMIO, i.e.,

100

(
1−

maxx̂u,l(0)∈X (J0,Γ0) e`1
(
LRKM , x̂

u,l(0)
)

maxx̂u,l(0)∈X (J0,Γ0) e`1
(
LKM , x̂u,l(0)

) ) .
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Figure 4.3: The estimates of x1 of the proposed RKMIO x̂ and the original KMIO x̂?.
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Figure 4.4: The estimates of x2 of the proposed RKMIO x̂ and the original KMIO x̂?.
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Table 4.1: Solutions for various Γ0.
Γ0 ‖e‖1 L % Reduction

1 1.04 [ 4.13 −1.35 ]> 48.0

2 1.50 [ 5.13 −0.564 ]> 25.0

3 1.82 [ 2.37 −4.23 ]> 9.00

4 2.00 [ 3.10 −1.11 ]>

Table 4.2: Worst-case comparisons.
Γ0 ‖e‖1 x̂u,l(0) % Reduction

1 1.10 [ 1.5 0.5 ]> × [ −2 0 ]> 5.45

2 1.56 [ 1.5 2 ]> × [ −2 0 ]> 3.85

3 1.86 [ 1.5 2 ]> × [ −2 −1 ]> 2.15

We see in Table 4.2 that the reduction in the maximum ‖e‖1 over the set of initial
conditions X (J0,Γ0) is modest, ranging from 2.15% to 5.45%. As expected, the reduction
is inversely proportional to Γ0. In Figures 4.5 and 4.6, we see that even though the RKMIO
effects a smaller ‖e‖1, its instantaneous upper and lower estimates are not necessarily
better than those of the KMIO; the RKMIO’s upper estimate x̂u is above the KMIO’s
upper estimate x̂u? for the entire simulation, but this is offset by the improvement in the
RKMIO’s lower estimate x̂l.

4
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Figure 4.5: The estimates of x1 of the proposed RKMIO x̂ and the original KMIO x̂? using
the worst-case KMIO initial conditions for Γ0 = 2.
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Figure 4.6: The estimates of x2 of the proposed RKMIO x̂ and the original KMIO x̂? using
the worst-case KMIO initial conditions for Γ0 = 2.

34



4.4 Experimental Validation of Approach

We conduct a Monte Carlo analysis to characterize the reduction in ‖e‖1 effected by using
the proposed RKMIO (4.3), instead of the original KMIO (3.4) of [12] initialized at (x0, x0).

The parameters x0, x0, x
↓
0, x
↑
0 ∈ Rn, A ∈ Rn×n, and C ∈ Rp×n are generated as uniform

random variables, such that
‖x0 − x0‖1 = 1

x↓0 − x
↑
0 ≥

2

n3
1n,

(4.8)

and
Aij ∈ [0, 1] i, j ∈ {1, . . . , n}, i 6= j

Aii ∈
[
− (n− 1), 0

]
i ∈ {1, . . . , n}

C ∈ [0, 1]p×n.

(4.9)

The constraints (4.8) provide consistency in the size of the initial condition intervals (4.2)
across trials. The ranges defined for the elements of A in (4.9) effect a bias toward positivity
and stability.

Ten thousand trials are conducted for each combination of n ∈ {1, . . . , 5} and p,Γ0 ∈
{1, . . . , n − 1}. In each trial, Problems 6 and 4 are solved for the same parameters. The
absolute differences between the `1-norms of the interval errors of the proposed and the
original KMIOs are recorded, as well as the relative difference,

1−
maxx̂u,l(0)∈X (J0,Γ0) e`1

(
LRKM , x̂

u,l(0)
)

e`1
(
LKM , (x0, x0)

) .

The arithmetic means µ and standard deviations σ of these values are presented in the
following tables.

Table 4.3: Empirical results for n = 2.
n = 2 Absolute Relative
p Γ0 µ σ µ σ
1 1 0.16 0.23 0.11 0.059

In Tables 4.3, 4.4, 4.5, and 4.6, we see that the greatest mean reductions in ‖e‖1 for
each n are approximately 11% − 29%. As expected, the reduction in ‖e‖1 is inversely
proportional to Γ0, as Problems 4 and 6 are equivalent for Γ0 = n, and Γ0 = 0 does not
perturb the initial conditions from (x↓0, x

↑
0). The data suggest that the reduction in ‖e‖1
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Table 4.4: Empirical results for n = 3.
n = 3 Absolute Relative
p Γ0 µ σ µ σ

1
1 0.68 6.6 0.21 0.086
2 0.30 3.2 0.11 0.060

2
1 0.12 0.30 0.17 0.091
2 0.040 0.043 0.068 0.055

Table 4.5: Empirical results for n = 4.
n = 4 Absolute Relative
p Γ0 µ σ µ σ

1
1 1.5 20 0.26 0.092
2 0.72 8.6 0.16 0.072
3 0.41 4.5 0.095 0.052

2
1 0.32 1.9 0.25 0.094
2 0.14 0.29 0.14 0.071
3 0.090 0.89 0.086 0.052

3
1 0.080 0.69 0.20 0.10
2 0.029 0.033 0.084 0.066
3 0.011 0.016 0.033 0.035

correlates positively with n and negatively with p. These relationships make the proposed
RKMIO (4.3) increasingly attractive as the number of states increases, and as the number
of outputs decreases, i.e., as the system becomes more complex and as less information is
available. The negative correlation with p can be interpreted as the robust formulation
compensating for the reduction in the number of measurements. A practical implication
is that the robust formulation can be used to justify using fewer sensors. However, for
many combinations of n, p, and Γ0, the standard deviation is greater than the mean. This
suggests that the reduction is highly dependent upon the specific plant being observed.
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Table 4.6: Empirical results for n = 5.
n = 5 Absolute Relative
p Γ0 µ σ µ σ

1

1 1.9 14 0.29 0.093
2 1.2 9.8 0.19 0.076
3 0.74 6.0 0.13 0.060
4 0.51 5.3 0.085 0.046

2

1 0.68 7.8 0.29 0.093
2 0.45 11 0.19 0.076
3 0.28 6.6 0.13 0.059
4 0.16 3.8 0.081 0.045

3

1 0.17 0.22 0.28 0.095
2 0.10 0.097 0.18 0.079
3 0.063 0.058 0.11 0.060
4 0.038 0.035 0.068 0.045

4

1 0.049 0.046 0.22 0.11
2 0.022 0.024 0.099 0.073
3 0.0092 0.013 0.041 0.042
4 0.0026 0.0068 0.010 0.022
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Chapter 5

Robust Uncertain Model Interval
Observers

Problem 5 is used to generate an L that minimizes the upper bound on the `1-norm of the
steady state supremum of the interval error. The cost of Problem 5 is proportional to the
difference between the elementwise upper and lower bounds on the state matrix (3.12). By
using tighter upper and lower bounds on the state matrix, we reduce the upper bound on
‖ē‖1. We assume that under particular operating conditions, the upper and lower state
matrices Au,l := (Au, Al) ∈ Rn×n × Rn×n may be chosen such that Al ≤ A ≤ Au. By
casting Problem 5 in the framework of Problem 2, we develop a tunably robust uncertain
model interval observer (RUMIO).

5.1 Robust Formulation of the Uncertain Model In-

terval Observer Problem

Define the matrices A↑, A
↓ ∈ Rn×n such that A ≤ A↑ ≤ A

↓ ≤ A and (A
↓−A↑) � (A−A).

As discussed, using Au,l such that A ≤ Al ≤ A↑ and A
↓ ≤ Au ≤ A, causes an elementwise

reduction in the cost vector, which reduces the attainable optimal upper bound on ‖ē‖1.
Recall that to satisfy the interval property, Au,l must also satisfy Al ≤ A ≤ Au. Define the
notation

∆A := A− A↓ ≥ 0n×n

∆A := A↑ − A ≥ 0n×n.
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To treat perturbations of the upper and lower bounds of the state matrix separately,
thereby allowing for a larger class of uncertainty than merely perturbations in the width
of the interval, we apply the method developed in Section 2.3. We set Q := col(λ, λ) and
D := col(2∆Aκ, 2∆Aκ). We do not duplicate the unweighted decision variables Z or β.

We wish to allow for perturbations to individual elements of the state matrices A
↓

and A↑. This requires further duplication of the decision variable λ, such that there is

exactly one decision variable corresponding to each element of A
↓

and A↑. We introduce

the dummy variables λ
(i)
, λ(i) ∈ Rn, i ∈ {1, . . . , n}, where the superscript (i) is used rather

than repeated ′ notation. We redefine the stacked decision vector Q as

Q′ := col
(
λ

(1)
, . . . , λ

(n)
, λ(1), . . . , λ(n)

)
∈ R2n2

,

and the cost coefficient perturbation vector as

D′ := col
(
2∆Adiag(κ), 2∆Adiag(κ)

)
∈ R2n2

. (5.1)

Introducing the decision variables λ
(i)

and λ(i) changes the sets of indices of uncertain
coefficients from Ji ⊆ {1, . . . , 2n} to J ′i ⊆ {1, . . . , 2n2}, i ∈ {0, . . . , n2 + n}. Note that the
maximum cardinality of J ′i is equal to the maximum cardinality of Ji, i ∈ {1, . . . , n2 + n},
as the number of decision variables appearing in each constraint remains the same. Since
perturbations to the cost and constraint coefficients have the same physical interpretation,
we ensure that the same number of coefficients are perturbed in the cost as in the con-
straints, by stipulating that the cost protection level be equal to the sum of the ceilings of
the constraint protection levels, i.e.,

Γ0 =
∑
i 6=0

dΓie. (5.2)

Perturbations to the coefficients corresponding to λ are interpreted as upward pertur-

bations of A
↓
, and perturbations to the coefficients corresponding to λ are interpreted as

downward perturbations of A↑. For consistency of notation with Problem 2, we retain the
symbol d to represent the redefined cost coefficient perturbation vector D′, and for clarity,
we use the symbol Λ instead of Q′; we also forgo the ′ notation. Lastly, since λ > 0n, we
omit the absolute values from the cost and constraint perturbation terms (2.1), (2.2).

By Proposition 2.2.1, an equality constraint with uncertain coefficients cannot be made
robust. We therefore propose the following robust formulation of Problem 5, where the
equality relation in the Hurwitz constraint is instead a nonstrict inequality.
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Problem 7:

minimize:
[
2(A

↓ − A↑)κ + ξ − ξ
]>
λ+ max

{S0|S0⊆J0,|S0|≤Γ0}

{∑
j∈S0

djΛj

}
subject to: A

↓>
i λ

(i) − C>i Z1n

+ max
{Si∪{ti}|Si⊆Ji,|Si|≤bΓic,ti∈Ji\Si}

{∑
k∈Si

∆Akiλ
(i)

k +
(
Γi − bΓic

)
∆Atiiλ

(i)

ti

}
≤ −1

− (A↑jiλ
(i)
j − C>i Zj + δijβ)

+ max
{Sr∪{tr}|Sr⊆Jr,|Sr|≤bΓrc,tr∈Jr\Sr}

{∑
k∈Sr

∆Akiλ
(i)
k +

(
Γr − bΓrc

)
∆Atriλ

(i)
tr

}
≤ 0

λ > 0n

λ
(i)

= λ

λ(i) = λ i, j ∈ {1, . . . , n}, r = ni+ j.

Remark 5.1.1 (Computational Complexity of the Robust Uncertain Model Problem). The
original UM problem, Problem 5, has n + pn + 1 decision variables and m = n2 + n

constraints. Introducing the dummy variables λ
(i)

and λ(i), i ∈ {1, . . . , n}, increases the
number of decision variables to 2n2 + pn + 1. The linear robust formulation, Problem 3,
is used to implement the robust UM problem, Problem 7, which introduces the decision
variables ζi, and pij for all i ∈ {0, . . . ,m}, j ∈ Ji. There is therefore a total of N =(
3n2 + pn + n + 1 +

∑m
i=0 |Ji|

)
decision variables, where |J0| ≤ 2n2, |Ji| ≤ n for the n

Hurwitz constraints, |Ji| ≤ 1 for the n2 Metzler constraints, and we assume p ≤ n.

There exist algorithms that can solve LPs in O
(

N3

lnN
U
)

time in the worst case [42], where
U is the bit length of the binary encoding of the vectors c, b, and matrix E. Therefore,

Problem 7 can be solved in O
(

n6

lnn
U
)

time.

Denote by Γ := col(Γ1, . . . ,Γn2+n) the vector of constraint protection levels. De-
note by J := {J0, . . . , Jn2+n} the set of sets of indices of uncertain coefficients, and by
|J | := col

(
|J0|, . . . , |Jn2+n|

)
the vector of cardinalities of the members of J . Denote

by J := {J1, . . . , Jn2+n} the set of indices of uncertain constraint coefficients, and by
|J| := col

(
|J1|, . . . , |Jn2+n|

)
the vector of cardinalities of the members of J.

Perturbing all coefficients by setting Γ = |J | recovers the cost and constraint coefficients
of Problem 5. We verify that the optimal costs of Problems 7 and 5 are equal.

40



Definition 5.1.2. Given an instance of Problem 7 and an instance of Problem 5, if the
optimal costs of both problems are equal, and if there exists an injective mapping from an
optimal triple (Λ, Z, β) of Problem 7 to an optimal triple (λ′, Z ′, β′) of Problem 5, we say
that Problem 7 recovers Problem 5.

Proposition 5.1.3. If Γ = |J | and Problem 5 is feasible, then Problem 7 recovers Prob-
lem 5.

To prove Proposition 5.1.3, we first prove that if Γ = |J |, then Problem 7 has the same
cost function and constraints as Problem 5, except the Hurwitz constraint is a nonstrict
inequality. Using several intermediary results, we prove that if Γ = |J | and Problem 5
is feasible, then the Hurwitz inequality constraint in Problem 7 is always satisfied with
equality, thereby rendering Problem 7 and 5 equivalent.

Lemma 5.1.4. If Γ = |J |, then Problem 7 has the same cost function and constraints as
Problem 5, except the Hurwitz constraint of Problem 7 is a nonstrict inequality.

Proof. Setting Γ0 = |J0| results in Problem 7 optimizing over all uncertain cost coefficients,
i.e., S0 = J0,[

2(A
↓ − A↑)κ + ξ − ξ

]>
λ+

∑
j∈J0

{
[2κj∆A

>
j ]λ

(j)
}

+
∑
j∈J0

{
[2κj∆A

>
j ]λ(j)

}
=
[
2(A

↓ − A↑)κ + ξ − ξ
]>
λ+

∑
j∈J0

{
[2κj∆A

>
j ]λ
}

+
∑
j∈J0

{
[2κj∆A

>
j ]λ
}

=
[
2(A

↓ − A↑)κ + ξ − ξ
]>
λ+ 2

∑
j∈J0

{
κj(∆Aj + ∆Aj)

>
}
λ

=
[
2(A

↓ − A↑)κ + ξ − ξ
]>
λ+

[
2(∆Aj + ∆Aj)κ

]>
λ

=
[
2(A− A)κ + ξ − ξ

]>
λ

The cost function of Problem 7 for Γ0 = |J0| is therefore equivalent to the cost function of
Problem 5.

Setting Γ = |J| results in Problem 7 satisfying feasibility over all admissible constraint
coefficient perturbations, i.e., Si = Ji, i ∈ {1, . . . , n2 + n}. We first examine the Hurwitz
constraint:

A
↓>
i λ

(i) − C>i Z1n ≤ −1 i ∈ {1, . . . , n}
⇒ A

↓>
i λ− C>i Z1n ≤ −1 i ∈ {1, . . . , n}

⇒ A
>
λ− C>Z1n ≤ −1n,
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which has the same coefficients as the Hurwitz constraint of Problem 5, but is a nonstrict
inequality.

We next examine the Metzler constraint:

−(A↑jiλ
(i)
j − C>i Zj + δijβ) + ∆Ajiλ

(i)
j ≤ 0 i, j ∈ {1, . . . , n}

⇒ −(A↑jiλj − C>i Zj + δijβ) + ∆Ajiλj ≤ 0 i, j ∈ {1, . . . , n}
⇒ Ajiλj − C>i Zj + δijβ ≥ 0 i, j ∈ {1, . . . , n}
⇒ A>λ− C>Z + βI ≥ 0n×n,

which is equivalent to the Metzler constraint of Problem 5.

Lemma 5.1.5. Using a nonstrict inequality relation in the Hurwitz constraint of Problem 7
instead of equality, as in Problem 5, results in

lim sup
t→∞

‖e(t)‖1 ≤
[
2(A− A)κ + ξ − ξ

]>
λ0 ≤

[
2(A− A)κ + ξ − ξ

]>
λ, (5.3)

where λ0 is the λ in the original equality constraint.

Proof. Consider the two equations

λ = −(A− LC)−>1n

λ′ = −(A− LC)−>α1n,

where α := diag(α1, α2, . . . , αn), αi ≥ 1, i ∈ {1, . . . , n}. Since (A − LC)> is Hurwitz
and Metzler by construction, we have that −(A − LC)−> is nonnegative [43], and since
α1n ≥ 1n, we have λ′ ≥ λ, with equality holding if and only if α = I. Since α is arbitrary,
it follows that λ = −(A − LC)−>α1n is equivalent to λ ≤ −(A − LC)−>1n. Replacing λ
with λ′ in the expression for the upper bound on ‖ē‖1 (3.12) yields (5.3).

Next, we prove that all feasible solutions to Problem 5 are feasible solutions to prob-
lem Problem 7, and, consequently, if Problem 5 is feasible, then any optimal solution to
Problem 7 will satisfy its Hurwitz constraint with equality.

Corollary 5.1.6. The set of feasible solutions to Problem 7 is a superset of the feasible
solutions to Problem 5.

Proof. By Lemma 5.1.4, if Γ = |J |, then Problem 5 can be viewed as an instance of
Problem 7, where the Hurwitz constraint is a nonstrict inequality, instead of an equality.
If a constraint

∑
j Eijqj = bi is feasible, then the constraint

∑
j Eijqj ≤ bi can be feasibly
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satisfied with equality. Therefore, if Γ = |J | and Problem 5 is feasible, then Problem 7 is
also feasible, and its Hurwitz constraint can be feasibly satisfied with equality. Therefore,
by Proposition 2.0.1, the set of feasible solutions to Problem 7 is a superset of the feasible
solutions to Problem 5 for any Γ � |J|.

Lemma 5.1.7. If Problem 5 is feasible, then the Hurwitz constraint in Problem 7 is always
satisfied with equality.

Proof. By Corollary 5.1.6, if Problem 5 is feasible, then satisfying the Hurwitz constraint
in Problem 7 is feasible. By Lemma 5.1.5, satisfying the Hurwitz constraint with inequality
will effect a greater cost than when satisfied with equality. Therefore, satisfying the Hurwitz
constraint with equality is always optimal.

We can now prove Proposition 5.1.3.

Proof of Proposition 5.1.3. By Lemma 5.1.4, if Γ = |J |, then Problem 7 is equivalent to
Problem 5, where the Hurwitz constraint is a nonstrict inequality instead of an equal-
ity. By Lemma 5.1.7, the Hurwitz constraint is always satisfied with equality. There-
fore, the two problems have the same optimal cost. It follows from the analysis in
the proof of Lemma 5.1.4 and the definition of Λ, that the isomorphism (Λ, Z, β) 7→(
col(Λ1, . . . ,Λn), Z, β

)
satisfies Definition 5.1.2.

Problem 2 allows for positive and negative perturbations to the constraint coefficients,
but due to the form of Problem 7, each type of constraint, i.e., Hurwitz and Metzler, and

therefore the elements of A
↓

and A↑, respectively, will only be perturbed in one direction.

Proposition 5.1.8. In Problem 7, perturbations to the elements of A
↓

will be strictly
positive, and perturbations to the elements of A↑ will be strictly negative.

Proof. Since λ is positive, all constraint coefficient perturbations will be in the positive

direction. In the Hurwitz constraints, whose coefficients are the elements of A
↓
, a perturbed

coefficient of λ has the value (A
↓
ij + ∆Aij) = Aij.

Notice that in the Metzler constraint, we have reversed the direction of the inequality
to comply with the form of Problem 3. In the Metzler constraints, whose coefficients are
the elements of A↑, a perturbed coefficient of λ has the value (−A↑ij + ∆Aij) = −Aij.
Reverting the direction of the inequality to that of Problem 5, the perturbed constraint
coefficient of λ is Aij.
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Define the set of all admissible sets of indices of uncertain constraint coefficients

J :=
n2+n⋃
k=1

{
PΓk

(Jk)
}

=
{{
PΓ1(J1)

}
, . . . ,

{
PΓn2+n

(Jn2+n)
}}
.

Given the pairs (A
↓
, A↑), (A,A) ∈ Rn×n × Rn×n, a set of sets of indices of uncertain

constraint coefficients J, and a set of sets of indices of perturbed constraint coefficients
S :=

{
{S1 ∪ {t1} ⊆ J1}, . . . , {Sn2+n ∪ {tn2+n} ⊆ Jn2+n}

}
, we generate a pair (Au, Al) ∈

Rn×n × Rn×n via the mapping

Ξ : J → Rn×n × Rn×n

S 7→ (Au, Al)
(5.4)

where

Au
ji =


Aji if i ≤ n, j ∈ Si

A
↓
ji +

(
bΓic − Γi

)
∆Aji if i ≤ n, j ∈ {ti}

A
↓
ji otherwise,

Al
ji =


Aji if i, j ≤ n, j ∈ Sni+j

A↑ji − Γi∆Aji if i, j ≤ n, j ∈ {tni+j}
A↑ji otherwise.

A pair Au,l defines a set in Rn×n by

{A ∈ Rn×n : Al ≤ A ≤ Au}. (5.5)

A generic example of these sets for n = 2, illustrated as contiguous columns constituting
a polygon, is presented in Figure 5.1. Each column represents the possible values of an
element of A. The entire region represents the interval defined by (A,A), and the solid

inner polygon represents the interval defined by (A
↓
, A↑). The upper and lower boundaries

on the entire region represent the elements of A and A, respectively, corresponding to the
element represented by each column. Similarly, the upper and lower boundaries of the

solid inner polygon represent the elements of A
↓

and A↑, respectively, corresponding to the
element represented by each column. The boxes extending from the inner solid polygon

in each column represent perturbations to a single element of A
↓

or A↑. For example, the
bottom-left box, in the A11 column, represents the perturbation of A↑11 to A11. To satisfy
the interval property (3.2), the state matrices used to construct the interval observer Au,l

must be chosen such that the set (5.5) contains all possible A.
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Figure 5.1: An example of the intervals defined by the pairs (A
↓
, A↑), (A,A) ∈ Rn×n×Rn×n

for n = 2.

Further, given constraint protection levels Γ, using (5.4) we define the mapping

A : J × Rn2+n
≥0 → Rn×n × Rn×n

(J,Γ) 7→
{
Au,l | (∃ S ∈ J )

(
Ξ(S) = Au,l

)}
.

(5.6)

The set (5.6) comprises all pairs of upper and lower state matrices effected by perturbing

no more than Γ elements of the boundaries of the interval induced by the pair (A↑, A
↓
) as

defined by (5.5). Problem 7 generates an L that minimizes the maximum upper bound on
‖ē‖1 over all state matrix pairs Au,l ∈ A(J,Γ) for a fixed Γ.

5.2 Optimality

Define FL
UM ,FL

RUM (J,Γ) ⊂ Rn×p to be the sets of all feasible observer gain matrices for
the original UM problem, Problem 5, and the proposed robust UM problem, Problem 7,
respectively. By Corollary 5.1.6, any feasible solution to Problem 7 is also a feasible solution
to Problem 5, i.e., FL

RUM (J,Γ) ⊇ FL
UM . Define the set LRUM (J,Γ) ⊂ FL

RUM (J,Γ) to be the
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set of all matrices L constructed using optimal solutions to Problem 7 for a given J and
Γ. Similarly, define the set LUM ⊂ FL

UM to be the set of all matrices L constructed using
optimal solutions to Problem 5.

We propose the following robust uncertain model interval observer (RUMIO), whose
gain matrix (3.9) is constructed using an optimal solution to Problem 7 for a given J and
Γ.

˙̂xl = Aux̂l + L(y − Cx̂l)− (Au − Al)ψ(x̂l) + ξ

˙̂xu = Aux̂u + L(y − Cx̂u)− (Au − Al)φ(x̂u) + ξ

x̂u,l(0) = (x0, x0)

Au,l ∈ A(J,Γ).

(5.7)

Define the mapping

ē`1 : Rn×p ×A
(
J, |J|

)
→ R≥0

(L,Au,l) 7→ −
[
2(Au − Al)κ + ξ − ξ

]>
(Au − LC)−>1n.

(5.8)

By (3.11), the mapping (5.8) upper bounds ‖ē‖1 of an interval observer with dynamics (5.7),
constructed with the state matrix pair Au,l.

Proposition 5.2.1. The optimal cost of Problem 7 is no less than the tightest bound (3.12)
on ‖ē‖1 of the RUMIO (5.7).

Proof. Given the optimal state matrix pair (Au, Al) constructed using the mapping (5.4),
by construction of (3.12), the optimal cost is equal to the tightest bound (3.12) if and only
if the optimal perturbed cost vector is equal to[

2(Au − Al)κ + ξ − ξ
]
. (5.9)

Since we stipulate in (5.2) that Γ0 =
∑

i 6=0dΓie, exactly as many cost coefficients will be
perturbed as constraint coefficients, so (5.9) is always a feasible perturbed cost vector. By

construction, Problem 7 perturbs
[
2(A

↓ − A↑)κ + ξ − ξ
]

such that the maximum cost is
minimized. Therefore, the optimal cost cannot be less than the bound (3.12), as this would
violate optimality. However, if (5.9) does not effect the greatest maximum cost, then (5.9)
will not be the optimal perturbed cost vector.

Theorem 5.2.2. Given a system of the form (3.1), with matrices A ≤ A↑ ≤ A
↓ ≤ A,

such that A � A and A ≤ A ≤ A, indices of uncertain cost coefficients J0, indices of
uncertain constraint coefficients J, cost protection level Γ0 < |J0|, and constraint protection
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levels Γ � |J|, the proposed RUMIO (5.7) effects a smaller upper bound on ‖ē‖1 than the
UMIO (3.10), and a maximum upper bound on ‖ē‖1 over the set of state matrices A(J,Γ)
no greater than that if it were constructed instead using LUM ∈ LUM , i.e.,

max
Au,l∈A(J,Γ)

ē`1(LRUM , A
u,l) ≤ max

Au,l∈A(J,Γ)
ē`1
(
LUM , A

u,l
)
< ē`1

(
LUM , (A,A)

)
. (5.10)

Proof. By (3.11), for a fixed L, choosing any state matrices Ãu,l := (Ãu, Ãl) such that

(Ãu−Ãl) � (Au−Al), necessarily reduces the upper bound on ‖ē‖1. Since (A,A) /∈ A(J,Γ)
for any Γ � |J|, we have(
∀ Γ0 < |J0|

)(
∀ Γ � |J|

)(
Ãu,l ∈ A(J,Γ)

)
=⇒

(
ē`1(L, Ã

u,l) < ē`1(L,
(
A,A)

))
. (5.11)

Therefore, constructing the observer (3.10) with state matrices Au,l ∈ A(J,Γ), Γ � |J|,
instead of (A,A), effects a smaller upper bound on ‖ē‖1.

By Proposition 5.2.1, the optimal cost of Problem 7 is no less than

max
Au,l∈A(J,Γ)

ē`1(L,A
u,l),

i.e., the maximum upper bound on the `1-norm of the steady state supremum of the interval
error over all state matrix pairs Au,l ∈ A(J,Γ). By Corollary 5.1.6, the set of feasible L
matrices admitted by Problem 7 is a superset of the feasible L matrices admitted by
Problem 5, and by the optimality of L ∈ LRUM , we have that there exists no L ∈ LUM

that effects a smaller maximum upper bound on ‖ē‖1 over the set of state matrix pairs
A(J,Γ). Combining this with (5.11), we verify (5.10).

5.3 Implementation

In this section, we delineate and illustrate the design process of the proposed RUMIO (5.7).

1. Identify x0, x0, A, A, A
↓
, A↑, κ.

2. Set Γ to the elementwise smallest value such that each possible state matrix A is
contained in at least one of the sets (5.5) defined by a state matrix pair Au,l ∈ A(J,Γ).

3. Using c :=
[
2(A

↓ − A↑)κ + ξ − ξ
]

and d as defined in (5.1), solve Problem 7 using
the constraint λ ≥ ε1n, where ε ∈ R>0 is an arbitrarily small constant.
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4. Using the optimal λ and Z, construct the observer gain matrix L := diag(λ)−1Z>.

5. Construct the RUMIO (5.7) with the pair Au,l ∈ A(J,Γ) that induces the elementwise
smallest interval (5.5) such that Al ≤ A ≤ Au, for all possible A.

The single resultant RUMIO with gain matrix L, is optimal in the sense that the
maximum ‖ē‖1 over all state matrix pairs Au,l ∈ A(J,Γ) is minimized, and is optimal in
this sense for any state matrix pair in A(J,Γ). By stipulating that Au,l be chosen such
that the set (5.5) contains A, we ensure the interval property (3.2); by setting Γ as small
as is possible while ensuring the interval property, we minimize the attainable optimum
cost.

For the class of systems defined by a fixed Γ, we perform only a single optimization,
i.e., design a single interval observer. This is advantageous in situations where the dynam-
ical parameters of the plant are guaranteed to lie within some range, but under certain
circumstances, this range can be refined. For example, in wireless networks where the
dynamics, i.e., the load, changes more frequently than optimization can be performed, but
the load can be identified [44]. A RUMIO (5.7) could be designed for each Γ, and as
the load changes, the corresponding L and Au,l would become active. Only a handful of
such interval observers would need to be designed, a priori, but would be optimal for po-
tentially billions of possible dynamics, as characterized in Proposition 2.1.2. The original
UMIO (3.10) of [12], is optimal only for a single Au,l, and would need to be optimized for
each state matrix pair in A(J,Γ).

Example 5.3.1. To illustrate the proposed approach, we construct and implement a RU-
MIO for a system based on that in [12, Section IV.C],

A =

−2.5 0.2 1
0.1 −0.5 1
0 0.3 −0.8

 ξ = 0.5 sin(x2
1)13

C =
[
1 1 0

]
.

We take the constants x0, x0, ξ, ξ, κ ∈ R3 to be

x0 =

−0.5
2.5
1.5

 x0 =

−1.5
1.5
0.5

 ξ =

1
1
1

 ξ =

−1
−1
−1

 κ =

1.7
6

2.6

 ,

48



and the matrices A,A,A
↓
, A↑ ∈ R3×3 to be

A =

−2.48 0.22 1.02
0.12 −0.48 1.02

0 0.32 −0.78

 A
↓

=

−2.49 0.21 1.01
0.11 −0.49 1.01

0 0.31 −0.79


A↑ =

−2.51 0.19 0.99
0.09 −0.51 0.99

0 0.29 −0.81

 A =

−2.52 0.18 0.98
0.08 −0.52 0.98

0 0.28 −0.82

 ,
which define the cost and perturbation vectors1

c = 2(A
↓ − A↑)κ + ξ − ξ

=
[
2.412 2.412 2.344

]> d = col
(
2∆Adiag(κ), 2∆Adiag(κ)

)
.

The indices of uncertain cost coefficients are those corresponding to nonzero elements of d,

J0 = {1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18},

and the indices of uncertain constraint coefficients are those corresponding to nonzero
elements of the constraint coefficient perturbation matrix2,

Ê :=


∆A

>
1 01×3 01×3 01×9

01×3 ∆A
>
2 01×3 01×9

01×3 01×3 ∆A
>
3 01×9

09×3 09×3 09×3 diag
(
col(∆A)

)
 ,

which yields
J1 = {1, 2}
J2 = {4, 5, 6}
J3 = {7, 8, 9}
J6 = ∅
Ji = {6 + i} i ∈ {4, . . . , 12} \ {6}.

1Refer to Appendix A.1 for the computed d.
2Refer to Appendix A.2 for the computed Ê.
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Setting ε = 10−6, we construct Problem 7 in the linear robust formulation of Problem 3:

minimize:
[
2(A

↓ − A↑)κ + ξ − ξ
]>
λ+ ζ0Γ0 +

∑
j∈J0

p0j

subject to: A
↓>
i λ

(i) − C>i Z13 + ζiΓi +
∑
j∈Ji

pij ≤ −1 ∀ i 6= 0

− (A↑jiλ
(i)
j − C>i Zj + δijβ) + ζiΓr +

∑
j∈Jr

prj ≤ 0 ∀ i, j 6= 0, r = 3i+ j

ζ0 + p0j ≥ djΛj ∀ j ∈ J0

ζi + pij ≥ ÊijΛj ∀ i 6= 0, j ∈ Ji
pij ≥ 0 ∀ i, j ∈ Ji
ζi ≥ 0 ∀ i
λ ≥ 10−613

λ
(i)

= λ ∀ i 6= 0

λ(i) = λ ∀ i 6= 0.

The UMIO of [12] is constructed with Au,l = (A,A). We compare the maximum upper
bound on ‖ē‖1 over the set of state matrix pairs A(J,Γ) effected by the proposed RU-
MIO (5.7), i.e., the cost of Problem 7, to that effected by the original UMIO (3.10). The
maximum upper bound on ‖ē‖1 over the state matrix pairs A(J,Γ), the matrix L, and the
percent reduction in the upper bound on ‖ē‖1 are presented in Table 5.1 for various Γ.
For ease of exposition, define the scalar parameters ΓH ,ΓM ∈ Z≥0. The protection levels
for the Hurwitz constraints, i.e., Γi, i ∈ {1, 2, 3}, are all set to min(ΓH , |Ji|), e.g., ΓH = 3
effects Γ1 = 3, Γ2 = 3, and Γ3 = 2; the protection levels for the Metzler constraints, i.e., Γi,
i ∈ {4, . . . , 12}, are all set to min(ΓM , |Ji|), e.g., ΓM = 1 effects Γi = 1, i ∈ {4, . . . , 12}\{6},
and Γ6 = 0. Recall that Γ = |J | yields the same solution as Problem 5. Plots of the trial
ΓH ,ΓM = 1 are presented in Figures 5.2, 5.3, and 5.4.

The reduction in the upper bound on ‖ē‖1 ranges from modest to significant. The
lowest reduction is 0.613% and the greatest reduction is 22.6%. The reduction in ‖ē‖1 is
similarly variable, ranging from 0.673% to 21.5%, and the data suggest that it is correlated
with the reduction in the upper bound on ‖ē‖1. The reduction in ‖ē‖1 seems roughly
proportional to the reduction in cost.

A reduction in the upper bound on ‖ē‖1 would also occur by constructing the UMIO
of [12] with tighter upper and lower state matrices. For comparison, we identify the
greatest upper bound on ‖ē‖1 effected by constructing the UMIO of [12] with Au,l effected
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Figure 5.2: The estimates of x1 of the proposed RUMIO x̂ and the original UMIO x̂?.
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Figure 5.3: The estimates of x2 of the proposed RUMIO x̂ and the original UMIO x̂?.
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Table 5.1: Solutions for various Γ.
ΓH ΓM Cost ‖ē‖1 L % Cost Reduction % ‖ē‖1 Reduction

0 1 63.1 46.6 [ 0.18 0.08 0 ]> 22.6 21.5

1
0 63.6 49.7 [ 0.19 0.09 0 ]> 22.0 16.3

1 73.4 53.6 [ 0.18 0.08 0 ]> 9.94 9.76

2
0 72.5 54.3 [ 0.19 0.09 0 ]> 11.0 8.59

1 81.0 59.0 [ 0.18 0.08 0 ]> 0.613 0.673

3
0 73.9 54.6 [ 0.19 0.09 0 ]> 2.70 8.08

1 81.5 59.4 [ 0.18 0.08 0 ]>

by perturbing Γ0 bounds of (A
↓
, A↑), as this is the class of systems which Problem 7

minimizes over, as discussed in Proposition 5.2.1. We compute the percent reduction in
the maximum upper bound on ‖ē‖1 effected by using the RUMIO instead of the UMIO.

Table 5.2: Worst-case comparisons.

ΓH ΓM Γ0 Cost ‖ē‖1 Au Al % Cost
Reduction

% ‖ē‖1
Reduction

0 1
8 80.4 58.2

[−2.49 0.21 1.01
0.11 −0.48 1.02
0 0.32 −0.78

] [−2.51 0.19 0.99
0.09 −0.52 0.98
0 0.28 −0.82

] 21.5 19.9
3 0 8.08 6.19

1

0 3 76.0 50.6
[−2.49 0.21 1.01

0.11 −0.49 1.01
0 0.32 −0.79

] [−2.51 0.19 0.99
0.09 −0.52 0.99
0 0.28 −0.81

]
16.3 1.78

1 11 81.3 59.2
[−2.49 0.22 1.01

0.12 −0.48 1.02
0 0.32 −0.78

] [−2.51 0.19 0.99
0.08 −0.52 0.98
0 0.28 −0.82

]
9.72 9.46

2

0 6 79.2 56.3
[−2.49 0.21 1.01

0.11 −0.48 1.01
0 0.32 −0.78

] [−2.51 0.19 0.99
0.09 −0.52 0.99
0 0.28 −0.82

]
8.46 3.55

1 14 81.4 59.3
[−2.49 0.22 1.02

0.12 −0.48 1.02
0 0.32 −0.78

] [−2.51 0.18 0.98
0.08 −0.52 0.98
0 0.28 −0.82

]
0.491 0.506

We see in Table 5.2 that the reduction in the maximum upper bound on ‖ē‖1 is modest
to significant, ranging from 0.491% to 21.5%. We see a similar trend in the reduction of
the actual ‖ē‖1, ranging from 0.506% to 19.9%. In Figures 5.5, 5.6, and 5.7, we see that,
unlike the RKMIO in Example 4.3.1, the RUMIO in the trial ΓH = 1, ΓM = 0, Γ0 = 3,
does generate better estimates than the UMIO for all t.

4
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Figure 5.4: The estimates of x3 of the proposed RUMIO x̂ and the original UMIO x̂?.
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Figure 5.5: The estimates of x1 of the proposed RUMIO x̂ and the original UMIO x̂? using
the worst-case UMIO initial conditions for ΓH = 1, ΓM = 0, Γ0 = 3.
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Figure 5.6: The estimates of x2 of the proposed RUMIO x̂ and the original UMIO x̂? using
the worst-case UMIO initial conditions for ΓH = 1, ΓM = 0, Γ0 = 3.
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Figure 5.7: The estimates of x3 of the proposed RUMIO x̂ and the original UMIO x̂? using
the worst-case UMIO initial conditions for ΓH = 1, ΓM = 0, Γ0 = 3.
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5.4 Experimental Validation of Approach

We conduct a Monte Carlo analysis to characterize the reduction in the upper bound on
‖ē‖1 effected by using the proposed RUMIO (5.7), instead of the UMIO (3.10) of [12].

The initial conditions x(0) ∈ Rn are generated as uniform random variables on the
interval x(0) ∈ [−n, n]n, and the constants x0, x0 ∈ Rn are defined as

x0 = x(0) +
1

2n
1n

x0 = x(0)− 1

2n
1n,

which guarantees ‖x0−x0‖1 = 1, providing consistency in the width of the initial condition
intervals (4.2) across trials.

The elements of the matrices A,A,A
↓
, A↑ ∈ Rn×n are seeded by the uniform random

variables on the intervals

Ãij ∈ [0, 1] i, j ∈ {1, . . . , n}, i 6= j

Ãii ∈
[
− 2n,−n

]
i ∈ {1, . . . , n}.

(5.12)

The seed matrix Ã ∈ Rn×n is modified to generate the state matrices such that

‖A− A‖1 = 1

A
↓ − A↑ ≥ 2

n3
1n×n.

(5.13)

The ranges defined for the elements of Ã in (5.12) ensure the Hurwitz property, and al-
though we do not simulate a specific dynamical system, we make the assumption that ξ
is such that the solutions of ẋ = Ax + ξ(x, t) are bounded, which is sufficient to satisfy
Assumption 4. The constraints (5.13) provide consistency in the sizes of the state ma-
trix intervals (5.5) across trials. The matrix C ∈ Rp×n is generated as a uniform random
variable on the interval

C ∈ [0, 1]p×n.

We take the constants ξ, ξ,κ ∈ Rn to be

ξ = 0.11n

ξ = −0.11n

κ = 2max(|x0|, |x0|),
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where max is taken elementwise.

Define the constant Γ? ∈ Z≥0. The protection levels for the Hurwitz constraints are set
to Γi = min

(
Γ?, |Ji|

)
, i ∈ {1, . . . , n}, and a randomly populated set I ⊆ {n+1, . . . , n2 +n}

of cardinality nΓ?, contains the indices of the Metzler constraints that have their protection
levels set to 1, i.e.,

I ⊆ {n+ 1, . . . , n2 + n}
|I| = nΓ?

Γi =

{
1 if i ∈ I
0 if i ∈ {n+ 1, . . . , n2 + n} \ I.

This causes nΓ? elements of A
↓
, and nΓ? elements of A↑, to be perturbed in each trial.

The cost protection level is set to Γ0 =
∑

i 6=0 Γi.

Five thousand trials are conducted for each combination of n ∈ {1, . . . , 5} and p,Γ? ∈
{1, . . . , n−1}. In each trial, Problems 7 and 5 are solved for the same parameters, and the
absolute and relative differences between their costs are recorded. The arithmetic means
µ and standard deviations σ of these values are presented in the following tables.

Table 5.3: Empirical results for n = 2.
n = 2 Absolute Relative
p Γ? µ σ µ σ
1 1 0.54 12 0.076 0.062

Table 5.4: Empirical results for n = 3.
n = 3 Absolute Relative
p Γ? µ σ µ σ

1
1 1.2 4.3 0.15 0.080
2 1.1 29 0.045 0.061

2
1 0.32 0.30 0.079 0.047
2 0.053 0.098 0.012 0.018

In Tables 5.3, 5.4, 5.5, and 5.6, we see that the greatest mean reductions in the upper
bound on ‖ē‖1 for each n are approximately 7.6% − 22%. As expected, the reduction in
the upper bound on ‖ē‖1 is inversely proportional to Γ?, as Γ? = n recovers the original

problem, Problem 5, and Γ? = 0 does not perturb the state matrices from (A
↓
, A↑). As in

the KM case, the data suggest that the reduction in the upper bound on ‖ē‖1 correlates
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Table 5.5: Empirical results for n = 4.
n = 4 Absolute Relative
p Γ? µ σ µ σ

1
1 2.5 25 0.19 0.083
2 1.0 9.0 0.082 0.066
3 0.51 5.6 0.029 0.053

2
1 1.1 0.68 0.16 0.056
2 0.42 0.31 0.060 0.032
3 0.12 0.13 0.017 0.015

3
1 0.29 0.29 0.076 0.043
2 0.053 0.085 0.012 0.014
3 0.021 0.042 0.0051 0.0081

Table 5.6: Empirical results for n = 5.
n = 5 Absolute Relative
p Γ? µ σ µ σ

1

1 4.1 58 0.22 0.080
2 1.5 5.6 0.11 0.066
3 0.77 6.5 0.051 0.054
4 0.51 11 0.019 0.045

2

1 1.8 0.83 0.20 0.051
2 0.86 0.48 0.095 0.034
3 0.37 0.33 0.040 0.020
4 0.12 0.13 0.013 0.011

3

1 1.2 0.71 0.17 0.056
2 0.50 0.37 0.068 0.035
3 0.19 0.18 0.025 0.018
4 0.053 0.066 0.0071 0.0075

4

1 0.28 0.28 0.074 0.043
2 0.048 0.083 0.011 0.013
3 0.021 0.036 0.0052 0.0062
4 0.010 0.023 0.0025 0.0044
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positively with n and negatively with p, making the proposed RUMIO (5.7) increasingly
attractive as the number of states increases, and as the number of outputs decreases, i.e.,
as the system becomes more complex and less information is available. The negative corre-
lation with p can be interpreted as the robust formulation compensating for the reduction
in the number of measurements. A practical implication is that the robust formulation can
be used to justify using fewer sensors. As in the KM case, for many combinations of n, p,
and Γ?, the standard deviation is greater than the mean, which suggests that the reduction
is highly dependent upon the specific plant being observed.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this thesis, we applied the robust optimization method of [41] to the linear programming-
based interval observer design procedure of [12]. In Chapter 2 we discussed the cardinality
constrained robust optimization method of [41]. We extended the theory of [41] to allow
for multiple distinct perturbations to individual cost coefficients. In Chapter 3 we delin-
eated the interval observer design procedures of [12]. In Chapter 4 we applied the robust
optimization method, with the multiple-perturbations-extension developed in Chapter 2,
to the KMIO design procedure of [12]. We proved that the `1-norm of the interval er-
ror of the proposed RKMIO is strictly less than that of the original KMIO, albeit by an
indeterminate amount. We empirically characterized the reduction in the `1-norm of the
interval error using a Monte Carlo analysis. In Chapter 5 we applied the robust optimiza-
tion method of [41], with the multiple-perturbations-extension developed in Chapter 2, to
the UMIO design procedure of [12]. We proved that the `1-norm of the steady state supre-
mum of the interval error of the proposed RUMIO is strictly less than that of the original
UMIO, albeit by an indeterminate amount. We empirically characterized the reduction in
the upper bound on the `1-norm of the steady state supremum of the interval error using
a Monte Carlo analysis.

The Monte Carlo analyses in Chapters 4 and 5 suggest that the cost reduction effected
by the proposed robust formulations correlate positively with the number of states, and
negatively with the number of outputs. The proposed RKMIO and RUMIO are therefore
increasingly attractive as the plant is more complex, and as as fewer measurements are
available. A practical implication is that the robust formulations compensate for the
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lack of measurements, thereby justifying the use of fewer sensors. However, the standard
deviations of the reduction in cost effected by using the robust formulations is relatively
high. This suggests that the reduction is highly dependent upon the specific plant being
observed.

6.2 Future Work

An important goal of future work is to identify analytic lower bounds on the reduction in the
`1-norm of the interval error, and upper bound on the `1-norm of the steady state supremum
of the interval error, when using the proposed RKMIO and RUMIO, respectively, over the
KMIO and UMIO of [12]. Also, an objective function should be identified that enables
simultaneous optimization of transient and steady state performance. Identifying such
an objective function could allow for the unification of the KM and UM cases, as the
constraints in both cases are already equivalent. As discussed in Chapter 5, the cost
of the proposed UM problem is conservative, as the cost and constraint perturbations
may be mismatched; future research should identify a method of coupling the perturbing
of coefficients that correspond to the same dynamical parameters. The proposed robust
design procedures should also be extended to uncertainty in the outputs. The RKMIO
and RUMIO design procedures are described in terms of the underlying LPs; it would
be useful to develop a framework that allows the process to be described in terms of the
dynamical system being observed. It would also be useful to identify the class of systems
for which these interval observers can be constructed, in terms of more intuitive dynamical
properties, rather than linear constraints.
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Appendix A

Robust Unknown Model Interval
Observer Example Constants

A.1 Cost Coefficient Perturbations Vector

d = [0.034 0.034 0 0.12 0.12 0.12 0.052 0.052 0.052 · · ·
0.034 0.034 0 0.12 0.12 0.12 0.052 0.052 0.052]>

A.2 Constraint Coefficient Perturbations Matrix

Ê =

0.01 0.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0.01 0.01 0.01 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0.01 0.01 0.01 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0.01 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0.01 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0.01 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0.01 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.01 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.01 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.01 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.01
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