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Abstract 
 

Modeling of chemical engineering systems often necessitates using non-linear models. These 

models can range in complexity, from a simple analytical equation to a system of differential 

equations. Regardless of what type of model is being utilized, determining parameter estimates is 

essential in everyday chemical engineering practice. One promising approach to non-linear 

regression is a technique called Markov Chain Monte Carlo (MCMC).This method produces 

reliable parameter estimates and generates joint confidence regions (JCRs) with correct shape 

and correct probability content. Despite these advantages, its application in chemical engineering 

literature has been limited. Therefore, in this project, MCMC methods were applied to a variety 

of chemical engineering models. The objectives of this research is to (1) illustrate how to 

implement MCMC methods in complex non-linear models (2) show the advantages of using 

MCMC techniques over classical regression approaches and (3) provide practical guidelines on 

how to reduce the computational time.      

MCMC methods were first applied to the biological oxygen demand (BOD) problem. In this case 

study, an implementation procedure was outlined using specific examples from the BOD 

problem. The results from the study illustrated the importance of estimating the pure error 

variance as a parameter rather than fixing its value based on the mean square error. In addition, a 

comparison was carried out between the MCMC results and the results obtained from using 

classical regression approaches. The findings show that although similar point estimates are 

obtained, JCRs generated from approximation methods cannot model the parameter uncertainty 

adequately.  

Markov Chain Monte Carlo techniques were then applied in estimating reactivity ratios in the 

Mayo-Lewis model, Meyer-Lowry model, the direct numerical integration model and the triad 

fraction multiresponse model. The implementation steps for each of these models were discussed 

in detail and the results from this research were once again compared to previously used 

approximation methods. Once again, the conclusion drawn from this work showed that MCMC 

methods must be employed in order to obtain JCRs with the correct shape and correct probability 

content.  
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MCMC methods were also applied in estimating kinetic parameter used in the solid oxide fuel 

cell study. More specifically, the kinetics of the water-gas shift reaction, which is used in 

generating hydrogen for the fuel cell, was studied. The results from this case study showed how 

the MCMC output can be analyzed in order to diagnose parameter observability and correlation. 

A significant portion of the model needed to be reduced due to these issues of observability and 

correlation. Point estimates and JCRs were then generated using the reduced model and 

diagnostic checks were carried out in order to ensure the model was able to capture the data 

adequately.  

A few select parameters in the Waterloo Polymer Simulator were estimated using the MCMC 

algorithm. Previous studies have shown that accurate parameter estimates and JCRs could not be 

obtained using classical regression approaches. However, when MCMC techniques were applied 

to the same problem, reliable parameter estimates and correct shape and correct probability 

content confidence regions were observed. This case study offers a strong argument as to why 

classical regression approaches should be replaced by MCMC techniques.  

Finally, a very brief overview of the computational times for each non-linear model used in this 

research was provided. In addition, a serial farming approach was proposed and a significant 

decrease in computational time was observed when this procedure was implemented.  

 

 

 

 

 

 

 

 

 

 

 



 
 

v 
 

Acknowledgements 

First and foremost, I would like to express my sincere gratitude to my supervisor Professor Tom 

Duever for his continuous support and guidance during my entire Master’s program. In addition 

to the great deal of technical knowledge I have acquired under his supervision, I have also 

learned how to communicate efficiently, how to conduct myself professionally, and how to 

approach any challenge with fortitude and determination. I would also like to thank Professor 

Park Reilly, for his assistance during my Master’s studies. My time as a student has been a very 

rewarding experience in large part due to friendly and professional demeanour of both these 

Professors.  

I would also like to extend my thanks the readers of my thesis, Professor Alexander Penlidis and 

Professor Luis Ricardez Sandoval.  

I would also like to thank my colleagues, Samira Masoumi, Niousha Kazemi and Yuncheng Du 

for helpful discussions and to all my friends at Waterloo for making my time here a very 

enjoyable experience.  

Finally, I would like express my deepest gratitude to my parents and my sister who have always 

been there for me. As I move on to the next chapter of my life, it is comforting to know that, 

regardless of wherever life takes me, I will always have a loving family to lean on.   

  

 

 

 

 

 

 



 
 

vi 
 

Table of Contents 
 

List of Figures ................................................................................................................................. x 

List of Tables ............................................................................................................................... xiii 

Nomenclature ............................................................................................................................... xiv 

Chapter 1: Introduction, Research Objectives and Outline ............................................................ 1 

1.1 Introduction ........................................................................................................................... 1 

1.2 Motivation and Research Objectives..................................................................................... 2 

1.3 Thesis Outline ....................................................................................................................... 3 

Chapter 2: Literature Review and Background .............................................................................. 4 

2.1 Bayesian Statistics ................................................................................................................. 4 

2.1.1 Prior Distribution ............................................................................................................ 5 

2.1.2 Likelihood Function ....................................................................................................... 6 

2.2 Parameter Estimation Methods ............................................................................................. 7 

2.2.1 Nonlinear Least Squares Method ................................................................................... 7 

2.2.2 Determinant Criterion ..................................................................................................... 8 

2.2.3 Error in Variables Model .............................................................................................. 11 

2.2.4 Limitations of Classical Parameter Estimation Techniques ......................................... 13 

2.3 Joint Confidence Regions ................................................................................................... 13 

2.3.1 Application of Linear Regression Theory .................................................................... 13 

2.3.2 Exact Shape Joint Confidence Region.......................................................................... 15 

2.3.3 Joint Confidence Region Limitations ........................................................................... 15 

2.4 Introduction to Markov Chain Monte Carlo ....................................................................... 15 

2.4.1 Monte Carlo .................................................................................................................. 16 

2.4.2 Markov Chain ............................................................................................................... 17 

2.5 Markov Chain Monte Carlo Techniques ............................................................................. 19 

2.5.1 Metropolis-Hastings Algorithm .................................................................................... 19 

2.5.2 Single-component Metropolis-Hastings ....................................................................... 23 

2.5.3 Random-Walk Metropolis-Hastings ............................................................................. 24 

2.5.4 Independence Sampler .................................................................................................. 24 

2.5.5 Adaptive MCMC .......................................................................................................... 25 



 
 

vii 
 

2.5.6 The Gibbs Sampler ....................................................................................................... 26 

2.6 Implementation of MCMC .................................................................................................. 29 

2.6.1 Tuning of Proposal Distribution ................................................................................... 29 

2.6.2 Starting Value ............................................................................................................... 29 

2.6.3 Burn-In Period .............................................................................................................. 30 

2.6.4 Convergence Diagnostics ............................................................................................. 31 

Chapter 3: Biological Oxygen Demand ........................................................................................ 32 

3.1 Introduction ......................................................................................................................... 32 

3.2 Implementation of MCMC techniques for the BOD problem ............................................ 34 

3.2.1 Development of the Posterior Distribution Function ................................................... 34 

3.2.2 Selection of MCMC Algorithm and Block Strategies .................................................. 34 

3.2.3 Selection of Proposal Distribution ................................................................................ 36 

3.2.4 Selection of Initial Values and Burn-in Period ............................................................. 36 

3.2.5 MCMC Algorithm Steps .............................................................................................. 38 

3.2.6 Tuning ........................................................................................................................... 38 

3.3 BOD Problem Results ......................................................................................................... 40 

3.3.1 Issue with the Error Variance ....................................................................................... 41 

3.3.2 Parameter Estimates and Joint Confidence Regions .................................................... 46 

3.4 BOD Problem Using the Differential Form ........................................................................ 48 

3.5 Summary ............................................................................................................................. 50 

Chapter 4: Reactivity Ratio Estimation ........................................................................................ 51 

4.1 Introduction ......................................................................................................................... 51 

4.2 Copolymer Composition Data ............................................................................................. 52 

4.2.1 Error Structure .............................................................................................................. 54 

4.2.2 Mayo-Lewis Model ...................................................................................................... 54 

4.2.3 Meyer-Lowry Model .................................................................................................... 60 

4.2.4 Direct Numerical Integration Model ............................................................................ 64 

4.3 Triad Fraction Data ............................................................................................................. 66 

4.3.1 Parameter Estimation in Multi-response Cases ............................................................ 67 

4.3.2 Decoupled Data ............................................................................................................ 71 

4.4 Summary ............................................................................................................................. 72 



 
 

viii 
 

Chapter 5: Parameter Estimation in Water-Gas Shift Reverse Reaction ...................................... 73 

5. 1 Introduction ........................................................................................................................ 73 

5.2 Water Gas Shift Reaction Kinetic Model ............................................................................ 74 

5.3 Model Simplification........................................................................................................... 76 

5.3.1 Issue of Observability ................................................................................................... 76 

5.3.2 Issue of correlation between parameters ...................................................................... 81 

5.4 Reverse Water-Gas Shift Reaction Results ......................................................................... 83 

5.4.1 Point Estimate and Joint Confidence Regions .............................................................. 83 

5.4.2 Model Validation .......................................................................................................... 86 

5.5 Summary ............................................................................................................................. 87 

Chapter 6: Parameter Estimation in Waterloo Polymer Simulator Program ................................ 89 

6. 1 Introduction ........................................................................................................................ 89 

6. 2 Waterloo Polymer Simulator Theory ................................................................................. 90 

6.2.1 Polymerization Reaction Kinetics ................................................................................ 90 

6.2.2 Mole Balances .............................................................................................................. 92 

6.2.3 Diffusion-control kinetics ............................................................................................. 92 

6.2.4 Molecular Weight ......................................................................................................... 93 

6. 3 Conditions for the Parameter Estimation Protocol ............................................................. 94 

6.3.1 Parameters and Response Variables ............................................................................. 94 

6.3.2 Operating Conditions .................................................................................................... 95 

6.3.3 Experimental Simulation .............................................................................................. 98 

6. 4 Results ................................................................................................................................ 99 

6.4.1 Parameter Point Estimates Results ............................................................................. 100 

6.4.2 Joint Confidence Regions ........................................................................................... 103 

6. 5 Summary .......................................................................................................................... 106 

Chapter 7: Computational Issues in Applying MCMC Techniques ........................................... 107 

7. 1 Introduction and Motivation ............................................................................................ 107 

7. 2 Computation Time............................................................................................................ 107 

7. 3 Methods for Reducing Computational Time .................................................................... 108 

7.3.1 Serial Farming on Sharcnet ........................................................................................ 108 

7.3.2 Other Guidelines for Reducing Computational Time ................................................. 111 



 
 

ix 
 

Chapter 8: Conclusion and Recommended Future Steps ............................................................ 113 

8.1 Concluding Remarks ......................................................................................................... 113 

8.2 Future Work ...................................................................................................................... 115 

8.2.1 Design of Experiments ............................................................................................... 115 

8.2.2 Computational Feasibility Study ................................................................................ 116 

8.2.3 Parallel Computing ..................................................................................................... 116 

8.2.4 Adaptive Metropolis-Hastings .................................................................................... 117 

8.2.5 Application of MCMC Methods using Experimental Data ........................................ 117 

8.2.6 Application of MCMC Methods in Model Discrimination ........................................ 117 

8.2.7 MCMC Software Program.......................................................................................... 117 

Appendix A: Experimental Data Used in the Solid Oxide Fuel Cell Case Study ...................... 119 

Bibliography ............................................................................................................................... 124 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

x 
 

List of Figures 
 

Figure 2-1: A flowchart describing the Metropolis-Hastings algorithm.......................................21 

Figure 2-2: A flowchart describing the Gibbs Sampler.................................................................28 

Figure 3-1: A flowchart describing how Markov Chain Monte Carlo methods can be 

implemented.................................................................................................................................. 33 

 Figure 3-2: The Markov chain for the first 1000 cycles when an initial guess of 35 and 3 were 

used for parameters 1 and 2 respectively.......................................................................................37  

Figure 3-3: The Markov chain for the first 3000 cycles, where acceptance rates of 68.9% and 

88.2% were observed for parameters 1 and 2 respectively............................................................39 

Figure 3-4: The Markov chain for the first 3000 cycles where acceptance rates of 8.1% and 6.4% 

were observed for parameters 1 and 2 respectively.......................................................................40 

Figure 3-5: The MCMC output for the two parameters in the BOD problem. The parameter 

values sampled at each iteration is shown below for the first 2,000,000 cycles............................42 

Figure 3-6: Values proportional to the density of the posterior obtained using parameter 1 values 

from 0.15 to 6 and a fixed parameter 2 value of 19.16..................................................................42 

Figure 3-7: The MCMC output for the two model parameters in the BOD problem and the error 

variance..........................................................................................................................................44 

Figure 3-8: Values proportional to the density of the posterior obtained using parameter 1 values 

from 0.15 to 1.2 and a fixed parameter 2 value of 19.16...............................................................45 

Figure 3-9: Parameter estimates and 95% joint confidence regions obtained using an elliptical 

approximation and Markov Chain Monte Carlo techniques..........................................................47 

Figure 3-10: 95% joint confidence regions obtained using an exact shape approximation and 

Markov Chain Monte Carlo techniques.........................................................................................48 

Figure 3-11: 95% joint confidence regions obtained using the differential and analytical forms of 

the BOD model..............................................................................................................................50 

Figure 4-1: The MCMC output for the two reactivity ratios in the Mayo-Lewis equation using an 

initial guess of 1.5 and 2 was used for parameters 1 and 2 respectively.......................................57 

Figure 4-2: Point estimates and 95% joint confidence regions for the reactivity ratios using the 

Mayo-Lewis Model in copolymerization of DBI/MMA. The data was analyzed using MCMC, 

elliptical approximation and exact shape approximation...............................................................58 



 
 

xi 
 

Figure 4-3: The Mayo-Lewis plot for the copolymerization of DBI/MMA, using the final molar 

composition FDBI, and the initial monomer feed composition fDBI................................................59 

Figure 4-4: Point estimates and 95% joint confidence regions for the reactivity ratios using the 

Meyer-Lowry Model in copolymerization of DBI/MMA. The data was analyzed using both 

MCMC and approximation techniques..........................................................................................63 

Figure 4-5: Point estimates and 95% joint confidence regions for the reactivity ratios using the 

direct numerical integration in copolymerization of DBI/MMA. The data was analyzed using 

both MCMC and approximation techniques..................................................................................66 

Figure 4-6: 95% joint confidence regions for the reactivity ratios using the multiresponse triad 

fraction model in copolymerization of STY/MMA. The data was analyzed using both MCMC 

and exact shape approximation techniques....................................................................................70 

Figure 4-7: 95% joint confidence regions for the reactivity ratios analyzed using coupled and 

decoupled data...............................................................................................................................71 

Figure 5-1: The MCMC time series for the parameters     
 and KCO..........................................77 

Figure 5-2: The gradient plots for parameters k, KS,     
, KCO, and      as a function of the 

catalyst weight using data points at 1023K....................................................................................79 

Figure 5-3: The gradient plots for parameters      and KCO as a function of the catalyst weight 

using data points at 1073K. These two parameters become observable at the highest 

temperature....................................................................................................................................80 

Figure 5-4: MCMC output values for parameters k, KS and      at a temperature of 1073K......81 

Figure 5-5: The gradient plots for parameters k, KL and KH2O as a function of the catalyst weight 

using data points at 1023K. The reparameterized model shown in equation 5-15 was 

applied............................................................................................................................................82 

Figure 5-6: A 95% joint confidence region for parameters         and         .......................85 

Figure 5-7: A 95% joint confidence region for parameters   , and     ....................................85 

Figure 5-8: A plot of the residuals as a function of the experimental number..............................86 

Figure 5-9: A plot of predicted values compared with experimentally observed values...............87 

Figure 6-1: The plot of conversion as a function of time for the homopolymerization of styrene at 

65ºC................................................................................................................................................96 

Figure 6-2: Gradient values for the parameter αm as a function of time using conversion as the 

response variable............................................................................................................................97 



 
 

xii 
 

Figure 6-3: Gradient values for the parameter BBm as a function of time using conversion as the 

response variable............................................................................................................................97 

Figure 6-4: The MCMC output values for parameters αm, BBm, and Tgp...................................100 

Figure 6-5: The MCMC output values for parameter αm when an initial guess of 1.05 x 10
-3 

free 

volume units/K (top plot) and an initial guess of 9.5 x 10
-4 

free volume units/K (bottom plot) 

were used.....................................................................................................................................102 

Figure 6-6: The MCMC output values for parameter BBm L/mol min per free volume unit when 

an initial guess of 0.5 L/mol min per free volume unit
 
(top plot) and an initial guess of 2 (bottom 

plot) were used.............................................................................................................................102 

Figure 6-7: The MCMC output values for parameter Tgp when an initial guess of 370 º K
 
(top 

plot) and an initial guess of 390 º K (bottom plot) were used.....................................................103 

Figure 6-8: Joint confidence region for parameters αm and BBm obtained using the exact shape 

approximation (Polic, 2001). The star represents the parameter point estimate..........................104 

Figure 6-9: Joint confidence region for parameters αm and BBm obtained using the MCMC 

algorithm. The plus sign represents the parameter point estimate...............................................104 

Figure 6-10: Joint confidence region for parameters αm and Tgp obtained using the exact shape 

approximation (Polic, 2001). The star represents the parameter point estimate..........................105 

Figure 6-11: Joint confidence region for parameters αm and Tgp obtained using the MCMC 

algorithm. The plus sign represents the parameter point estimate...............................................105 

Figure 7-1: The serial farming output for parameter one carried out on ten CPUs using the direct 

numerical integration model........................................................................................................110 

Figure 7-2: The MCMC output when the ten cycles have been combined to produce 100,000 

runs...............................................................................................................................................110 

 

 

 

 

 

 

 



 
 

xiii 
 

List of Tables 
 

Table 1-1: The four case studies and the different non-linear models corresponding to each case 

study.................................................................................................................................................2 

Table 3-1: Possible values for the current and candidate samples.................................................43 

Table 3-2: The point estimates for parameters in the BOD problem using the Gauss-Newton and 

MCMC optimization techniques....................................................................................................46  

Table 4-1: Experimental data for DBI/MMA copolymerization at low conversion level (Madruga 

and Fernandez-Garcia, 1994).........................................................................................................53 

Table 4-2: The point estimates for parameters in the Mayo-Lewis model obtained using an 

optimization algorithm and MCMC techniques............................................................................58 

Table 4-3: The point estimates for parameters in the Meyer-Lowry model obtained using an 

optimization algorithm and MCMC techniques............................................................................62 

Table 4-4: The C
13 

NMR data used in the triad fraction model Burke et al. (1997)......................68 

Table 5-1: The parameters estimates and their respective error obtained from MCMC analysis 

using all four temperature points. A mean temperature value of T= 998K was used as the 

reference temperature ....................................................................................................................84 

Table 6-1: The response variables with the corresponding units and error applied in this case 

study...............................................................................................................................................95 

Table 6-2: The reaction times when each parameter becomes observable....................................98 

Table 6-3: The simulated experimental data that was used in this case study ..............................99 

Table 6-4: The results obtained when an optimization algorithm was applied using different 

starting values (Polic, 2001)........................................................................................................101 

Table 7-1: The time required to complete 100,000 cycles for various non-linear models using 

both desktop computer and a computer cluster with 10 CPUs…………………………............111 

Table A-1: The experimental data obtained by Mazni Ismail in studying the solid oxide fuel 

cell................................................................................................................................................119 

 

 

 



 
 

xiv 
 

Nomenclature 
  

    ...........................................................................................Triad fraction of monomer i, j and k  

   ....................................................................................Glass-transition effect model parameter 

cd
2

 .............................................................Scaling factor used in the adaptive proposal distribution  

D...............................................................................................Vector of data with n observations  

D( . ).....................................................................................Used to represent any density function  

  ..........................................................................................................................Activation energy  

    .......................................................................................Expected value of the random variable 

       
  ...............................................................................................................Non-linear model 

   .....................................................................................................Feed composition of monomer  

f1...................................................................................................... Fraction of unreacted monomer  

  ...........................................................................................Instantaneous copolymer composition  

  
 ............................................Cumulative mole fraction of monomer 1 incorporated into polymer  

        ..................The molar flow rates of different species used in the solid oxide fuel cell study 

    .......................................................................................................................Initiator efficiency  

  ...................................................................................Standard enthalpy change for the reaction 

 .............................................................................................................................................Initiator  

      ................................................................................................................Likelihood function 

 .................................................Reaction rate constant used in the solid oxide fuel cell case study  

kd...................................................................................... Rate constant of initiator decomposition  

  ...............................................................................................................Propagation rate constant 

KL..................... Lumped reaction equilibrium constant used in the solid oxide fuel cell case study 

  ...........................................................................................................Particular monomer species 

  ...............................................................................................Number average molecular weight 

  ................................................................................................Weight average molecular weight 

N.............................................................................................. Number of experimental data points  

NI......................................................................................................Number of moles of initiator  

Np...........................................................................................  Number of experimental data points 

~N(μ, σ
2
)...............................................Normally distributed with a mean of μ and a variance of σ

2 



 
 

xv 
 

p................................................................................................ Number of parameters in the model 

  ......................................................................................................Transition or stochastic matrix 

   .................................................................Transitional probability of going from state i to state j 

        ...........................................................Partial pressure of a particular species used in the SOFC  

      ...............................................................................................Posterior distribution function 

    ........................................................................................................................Prior distribution 

      .........................................................................Probability of the data given the parameters 

       ...............................................................................................................Proposal distribution  

  ,   ...................................................................... Reactivity ratio for monomer 1 and monomer 2  

     .............................................................................Reaction rate for the water gas shift reaction  

R.....................................................................................................................................Gas constant 

  ………………………………………………………………………………………...….Rate of initiation  

    
  .....................................................Free radical chain of length m and ending with monomer i 

  ...................................................................................................................... Rate of propagation 

Rt ……………………………Variance-covariance matrix used in the adaptive proposal distribution  

  ........................................................................................................................Rate of termination  

  …………………………………………………Estimate of the variance of the random variable       

T.................................................................................................................................... Temperature 

   .............................................................................Glass transition temperature of the monomer  

t..................................................................................................................................................Time  

vij.........................................Matrix that contains the product of deviations of the responses i and j       

 ……………………………………………………………………………..Jacobian of the model  

      ...........................................................................................................Volume of the monomer 

   ……………………………………………………………….......Free volume of the monomer  

   
 .......................................................................................Free volume constant for the monomer  

  ………………………………………………………………………....Volume of the monomer 

  ……………………………………………………………….The total volume of the reaction mixture  

W ................................................................Catalyst weight used in the solid oxide fuel cell study 

  .......................................................................................................................Independent variable  

 …………………………………………………………….................Vector of random variables 



 
 

xvi 
 

  
  ....................................................................................Chi-square distribution with n degrees of freedom 

Xn ....................................................................Molar conversion used in reactivity ratio estimation  

Xw .....................................................................Mass conversion used in reactivity ratio estimation 

         .........................................Conversion of a particular species used in the SOFC case study   

yi ............................................................................................................................Model response 

z ..........................................................................................................................Model residual  

  ................................................................................Significance level for the confidence interval 

      ……………………………………………………………………....Transition probability 

  .....................................................................................................Thermal expansion coefficient 

 …………………………………………………………..................Parameter in the linear model 

  ..........................................................................................................................Measurement error   

   ..................................................................................................Parameter in the nonlinear model  

  ............................................................................................................True value of the parameter  

    ..................................................................Target probability distribution of a random variable  

σ
2
 ...................................................................................................Variance of the random variable  

σuv ....................................................Variance-covariance matrix used in the determinant criterion  

  ............................................................................................................Variance-covariance matrix  

*..........................................................................................................................Signifies true value 

 

 

 

 

 

 

 



 
 

1 
 

Chapter 1: Introduction, Research Objectives and Outline 

1.1 Introduction   

Non-linear models are frequently encountered throughout chemical engineering applications. As 

our knowledge of various chemical processes deepens, the models used to describe them can 

become increasingly complex. These models may be governed by a set of algebraic and/or 

differential equations, and they may consist of multiple inputs and responses. Therefore accurate 

fitting of experimental data to these models is essential in many areas of chemical engineering.   

There are numerous methods that have been employed when estimating parameters in non-linear 

models. One commonly used technique is to linearize the non-linear model in order to utilize the 

simplicity of linear least squares. These simplifications however, can be problematic since they 

produce unreliable parameter point estimates and inaccurate parameter uncertainty (Watts, 

1994). Classical parameter estimation techniques such as non-linear least squares and maximum 

likelihood have also been applied to non-linear models. However, one limitation in using such 

methods is that they often involve optimization algorithms that converge to a local minimum 

instead of the desired global minimum. In addition, capturing parameter uncertainty involves 

applying formulas derived from linear regression theory, resulting in approximate confidence 

regions. These limitations can be addressed by implementing Markov Chain Monte Carlo 

(MCMC) methods. 

 MCMC techniques represent a robust and efficient way to calculate parameter estimates and 

determine parameter uncertainty. The algorithm uses “Markov chains” to generate samples from 

the desired probability distribution function. While optimization algorithms attempt to find the 

mode of the probability distribution, MCMC methods provide parameter estimates by calculating 

the average of these generated samples. Therefore, reliable parameter estimates can be obtained 

even in the presence of multiple local optima. The samples generated from the MCMC algorithm 

can also be used in constructing joint confidence regions (JCRs). Since the MCMC samples 

originate from the actual probability distribution function, the joint confidence regions obtained 

from MCMC techniques will converge to its exact shape and exact probability content. 
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1.2 Motivation and Research Objectives  

There are three primary objectives for this research. First, although MCMC methods offer a 

surprisingly simple and effective approach for solving non-linear regression problems, its 

application in chemical engineering literature is still rare. Implementation of MCMC methods in 

non-linear models might prove to be intimidating for users with little or no knowledge in 

statistics. Therefore the MCMC algorithm will be applied in several chemical engineering 

problems including multiresponse models, error in variables models, and models governed by a 

set of differential equations (Table 1-1). Implementation steps can then be provided for carrying 

out MCMC techniques in these complex non-linear models. In addition, diagnosis of parameter 

observability and correlation will be discussed from an MCMC perceptive.  

The second objective of this research is to illustrate the advantages of using MCMC techniques 

as opposed to the classical non-linear regression approaches discussed in Section 1.1. Specific 

case studies will be chosen in order to show how these limitations can be resolved using Markov 

Chain Monte Carlo methods.  

Finally, the MCMC algorithm can become computationally intensive, especially when the model 

requires solving differential equations. This research will explore running MCMC code on 

multiple processors as a means of reducing computation time and will provide general guidelines 

on how to decrease CPU time when applying MCMC algorithms.  

Table 1-1: The four case studies and the different non-linear models corresponding to each case 

study 

Case Study 
Analytical 

Equation 

Implicit 

Equation 

Differential 

Equation 

System of 

Differential 

Equations 

Error in 

Variables 

Model 

Multi-

Response 

Model 

BOD Problem √  √    

Reactivity Ratio √ √ √  √ √ 

SOFC    √   

WatPoly    √  √ 
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1.3 Thesis Outline 

Chapter 2 will highlight the important theory and equations used in this research. More 

specifically, it will examine Bayesian statistics, discuss the classical approaches for determining 

parameter estimates and joint confidence regions, and provide a brief overview of the essential 

topics in Markov Chain Monte Carlo theory.  

Chapter 3 will apply MCMC methods to the biological oxygen demand problem. The main 

objective of this chapter is to illustrate the MCMC implementation steps using specific examples 

from the case study. In addition, approximation JCRs will be compared with correct probability 

JCRs obtained using MCMC methods.  

Chapter 4 involves the estimation of reactivity ratios using MCMC techniques. This chapter will 

discuss the additional implementation steps that are required when differential equation models, 

implicit equation models and multiple response models are present. Also, JCRs obtained using 

approximation methods will be compared to MCMC JCRs. The purpose of this comparison is to 

determine whether approximation methods are appropriate for capturing parameter uncertainty or 

if MCMC methods needed.  

Chapter 5 entails the estimation of kinetic parameters in the water gas shift reaction used in solid 

oxide fuel cells. Implementation issues such as parameter observability and correlation will be 

discussed and parameter point estimates and JCRs will be presented  

Chapter 6 involves estimating parameters in the Waterloo Polymer Simulator model. The sum of 

squares surface for this particular case study has been found to contain multiple local optima. As 

a result, optimization techniques were not able to provide reliable parameter estimates. In 

addition, inaccurate joint confidence regions were obtained. Therefore, MCMC techniques were 

implemented in this case study in order to determine whether these limitations can be overcome.   

Chapter 7 will examine the MCMC computational times for the different case studies and will 

present a serial farming computing approach for decreasing the computational time.  

Finally, Chapter 8 will present the conclusions of this research and discuss possible future work.  
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Chapter 2: Literature Review and Background 

This chapter will provide a review of the theoretical background applied in this research. It will 

first introduce a Bayesian approach to solving regression problems. This will be followed by a 

discussion on the parameter estimation procedure in different nonlinear models. In addition, the 

classical approaches for determining joint confidence regions will be examined. Finally, Markov 

Chain Monte Carlo (MCMC) methods will be reviewed, and implementation issues will be 

addressed.    

2.1 Bayesian Statistics  

A Bayesian approach to parameter estimation is convenient from an engineering perspective 

since it allows one to incorporate prior knowledge about the parameters. In many engineering 

applications, prior knowledge or available data can be used to generate prior information about 

the parameters. Therefore, if new data is collected, the Bayesian framework can be used to 

update the current knowledge using the newly collected data. This updating method can be 

carried out as more and more data become available in the future.  

To understand how the Bayesian approach is used in parameter estimation, let   represent the 

vector with k unknown parameters and D represents the vector of data with n observations.   

                (2-1) 

              ) (2-2) 

The posterior probability distribution        can then be written based on Bayes’ theorem.  

        
          

              
 (2-3) 

where      represents the prior parameter distribution,        represents the probability of the 

data given the parameters,               is the normalization factor, and        is the 

posterior distribution. The proof for the above equation can be found in Bard (1974). 

The term in the denominator of equation 2-3,              , is used to ensure that the 

posterior distribution function integrates to unity (Box and Tiao, 1992).  This term can be 

dropped since it is a constant and the equation can be simplified to:  
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                     (2-4) 

In regression problems, the parameters are always unknown and the data is known. Therefore, 

       can be written as a function of the parameters, and is referred to as the likelihood 

function. The likelihood function can be written as        and therefore equation 2-4 becomes:  

                     (2-5) 

From the above equation, it can be seen why Bayes’ theorem is appealing from an engineering 

standpoint. It allows us to combine our previous knowledge with the new knowledge obtained 

from the data. As more experiments are conducted, the information about the parameters can be 

continuously updated using this approach.    

Although the Bayesian approach contains numerous advantages in parameter estimation of non-

linear models, their application to engineering problems often require solving the problem 

numerically. In many engineering applications, when complex likelihood functions are 

encountered, the integration can become complicated and an analytical expression cannot be 

attained. This is why Markov Chain Monte Carlo (MCMC) is advantageous from a Bayesian 

standpoint; it is a numerical method for integrating complex, high dimensional functions.   

To complete the review on Bayesian methodology, the following two sections will explore the 

prior and likelihood functions in more detail.  

2.1.1 Prior Distribution 

The prior distribution can be thought of as the researcher’s “belief” about the parameters before 

the experiment is conducted (Lee, 2004). A variety of priors are available depending on how 

much prior knowledge is present. In situations where a significant amount of prior information is 

available, an informative prior distribution can be used.  On the other hand, if there is little or no 

knowledge on the model parameters, an uninformative prior can be applied.  

Two commonly applied uninformative priors are the uniform prior distribution and Jeffery’s 

prior (Jeffery, 1961). The uniform prior is a simple distribution, where all the parameters are 

assumed to be equally likely. Uniform priors can be improper if the parameter, θ, has a range 

between -∞ < θ < ∞. They are improper because the probability distribution cannot integrate to 

one due to the unlimited range of the parameters. Improper priors can be problematic in a 
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Bayesian approach since they might lead to an improper posterior distribution function. 

Therefore, a “locally uniform prior” can be applied. The parameter, θ, in this situation has 

limited range.  

         (2-6) 

The problem with uniform priors is that they are not invariant to transformations. To resolve this 

issue, Jeffery proposed Jeffery’s prior in 1961. Jeffery’s prior, shown in equation 2-7, is a non-

informative prior that is invariant to transformations.  

               (2-7) 

where the term      represents the Fischer information matrix of the parameter. 

           
 

   
               (2-8) 

2.1.2 Likelihood Function  

The experimental data is introduced into the regression methodology through the likelihood term 

in Bayes’ theorem. The equation is derived based on the assumptions about the measurement 

error. In order to illustrate how the likelihood function can be developed, consider a single 

response non-linear example.  

           
       (2-9) 

where yi is the measurement obtained at the i
th

 run,    is a vector with the value of the 

independent variables at the i
th

 run,    is a vector of unknown parameters where the     

superscript * refers to the “true” values of the parameters,    is the measurement error at the ith 

run and         is the model expressed as a function of the input variable and the parameters. 

The measurement error is often assumed to be normally distributed with a mean of zero and a 

variance of   
 .    

           
   (2-10) 

Based on the normality assumption and the given model, the measurement, y, will also be 

normally distributed as follows: 
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   (2-11) 

The responses are assumed to be independent from trial to trial, and therefore the joint density 

for the observations will be the product of the individual densities. The likelihood function can 

therefore be expressed as:  

         
 

          
      

 

    
 
               

 
 

   

  (2-12) 

It should be noted that equation 2-12 is for a single response, non-linear model, where error in 

only the dependent variable is considered. The steps shown above can be easily extended for the 

development of the likelihood function in error in variables models and multiresponse models. 

The likelihoods for these two cases will be discussed in sections 2.2.2 and 2.2.3.   

2.2 Parameter Estimation Methods 

This section will explore the commonly applied parameter estimation techniques for single 

response and multiresponse cases. The non-linear least squares method will be first discussed for 

the single response case, where negligible error in the independent variables is assumed. The 

model will be extended to multiple responses, where the determinant criterion can be applied. 

Finally, error in the independent variables will be incorporated using the error in variables model 

approach. This method provides a general regression framework which can be used to tackle any 

type of regression problem.  

2.2.1 Nonlinear Least Squares Method  

Parameter estimation in non-linear models with a single response can be carried out using the 

nonlinear least squares (NLLS) method.  

The NLLS method is based on the likelihood equation shown in equation 2-12. One method of 

obtaining parameter estimates is to maximize the likelihood function. By examining the function, 

it is evident that minimizing the term inside the exponential will maximize the likelihood value. 

Therefore the objective of NLLS is to minimize the sum of squared residuals as shown below:  
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 (2-13) 

The optimal parameter values are those that minimize the difference between the measured and 

predicted values. This makes intuitive sense since we want to select parameter values that 

minimize the difference between the model and the experiment.  

The above equation represents an optimization problem for which a variety of optimization 

techniques can be implemented. One of the simplest methods is the Gauss-Newton technique that 

uses an initial guess and an iterative algorithm based on a linear approximation (Bates and Watts, 

1988). This method does have its drawback however, since the convergence of the algorithm can 

depend upon the initial guess. More complex optimization algorithms can also be applied 

including the simplex method, simulated annealing and genetic algorithm. However, as the 

models become more complex, some of these optimization methods may converge to a local 

minimum instead of the desired global minimum.  

Non-linear least squares method makes two assumptions about the measurement error. First, it is 

assumed that the error in the measurement is independent and identically distributed. Time series 

analysis needs to be conducted if there is correlation between the errors in the independent 

variable. Second, it is assumed that the error in the independent variables is negligible. If this 

assumption cannot be met, an error in variables approach must be taken.           

2.2.2 Determinant Criterion  

The non-linear least squares method is applied when dealing with models that have only one 

response. However, in many chemical engineering problems, there might be more than one 

dependent variable that can be measured. For example, the classic problem introduced by Box 

and Draper (1965), considers a chemical reaction where  

          

After a certain period, there will be a certain amount of reagent A remaining, and some 

concentration of products B and C. Measuring the concentration of all three products is valuable 

since there is more information available in the data. Therefore considering multiple responses 
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leads to a smaller joint confidence region and more precision in the parameters (Box and Draper, 

1965).   

A well-known method for parameter estimation in multiple response models is the weighted least 

squares. This method uses weights that correspond to the response measurement error. A more 

detailed explanation for the method can be found in Seber and Wild (1989). However, a 

limitation with weighted least squares is that the measurement error needs to be known. The 

determinant criterion, proposed by Box and Draper (1965), can be used to overcome this 

limitation since the criterion does not require knowledge of the variance-covariance matrix of the 

responses.  

To illustrate the determinant criteria, consider the multiresponse model shown below: 

                     (2-14) 

where,                i = 1,2,...,k with k being the number of responses            

    u =1,2,...,n with n being the number of experimental trials  

    yui is the measurement for the i
th 

response and the u
th

 trial 

       is the vector of independent variables at the u
th

 trial 

      is the vector of unknown parameters  

        is the measurement error for the i
th 

response and at the u
th

 trial 

 

A Bayesian approach can be used for parameter estimation in the multiresponse case. However, 

before the likelihood function can be written, assumptions about the error must be made. Similar 

to the NLLS method, it will be assumed that the measurement errors are independent from trial 

to trial, and that the error in the independent variables is negligible. The error for the responses at 

each trial is assumed to be given by a fixed variance-covariance matrix.  

     

          

          

    
          

         (2-15) 
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The diagonal elements in the matrix represent the error variances for the different responses, and 

the off-diagonals elements represent the error covariances.  

Development of the likelihood function first requires the following term     to be defined.  

                                     

 

   

 (2-16) 

    represents the ij
th

 term of a matrix V, that contains the product of deviations of all the 

responses i and j. Using the notation given in equations 2-16 and 2-15, the likelihood function 

can then be written as:   

                 
 
 
        

 
 
      

 

 
        

 

   

 

   

       (2-17) 

The next step in using a Bayesian approach is to specify the prior distribution for the parameters 

and the variance-covariance matrix. Box and Draper assumed a uniform prior for the parameters 

and a Jeffery’s prior (1961) for the variance-covariance matrix.  

          (2-18) 

               
   
 

 
 (2-19) 

The posterior distribution can then be expressed as being proportional to the product of the prior 

and likelihood functions. As mentioned before, the elements in the variance-covariance matrix 

represents nuisance parameters and they can be integrated out. The final form of the posterior 

distribution is shown below: 

             
 
 
 
 (2-20) 

where,          
 
 
    

  

 (2-21) 

One major limitation of the determinant criterion is that poor parameter estimates can occur if 

the number of trials is too small (Oxby et al., 2003). To resolve this issue, Oxby proposes the 

Multivariate Weighted Least Squares (MWLS) criterion. This method uses an iterative 

algorithm, where the model parameters are updated in the first step, and a matrix of weights are 

updated in the second step. The updating sequence is continued until the convergence criterion is 
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met. The disadvantage of using the MWLS criterion is that it can be more computationally 

intensive.  

In addition to the techniques discussed above, there are numerous other methods for parameter 

estimation in multiresponse models. Conceição and Portugal (2012) provided a comparison of 

the determinant criterion to other parameter estimation techniques from a chemical engineering 

standpoint. Stewart et al. (1992) also presented a comprehensive review on multiresponse 

estimation techniques for variety of scenarios.   

2.2.3 Error in Variables Model 

In the previous two sections, the nonlinear least squares method and the Box-Draper criterion 

were used for single response and multiresponse models respectively. However, both techniques 

are built on the assumption that the error in the independent variable is negligible. This 

assumption can however, lead to erroneous results in certain problems. For example, in 

copolymerization systems, the initial monomer feed fraction and conversion are measured 

independent variables which contain a good deal of uncertainty. Therefore, taking these errors 

into account using an error in variables (EVM) model can produce more reliable parameter 

estimates.  

The EVM model has been applied for parameter estimation in a variety of chemical engineering 

problems. For example, Duever et al. (1987) and Sutton and Macgregor (1977) applied EVM for 

determining parameter estimates in thermodynamic models. Kim et al. (1991) used this approach 

for finding parameters in a laboratory water—gas-shift reactor. Finally, considerable work has 

been done in the field of reactivity ratio estimation using EVM models (Rossignoli and Duever, 

1995 and Kazemi et al., 2013)  

The EVM regression framework can be set-up by letting    represent the vector of 

measurements, which can be decomposed into a vector of true values    and an error term   . The 

equation is shown below: 

            (2-22) 
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As discussed in section 2.1.2, development of the likelihood function first requires an assumption 

about the distribution of the error term. For the case studies encountered in this work, the error 

will be assumed to be normally distributed with a mean vector of zero and a variance-covariance 

matrix  . In cases where the normality assumption does not hold, experimental studies to 

determine the nature of the error structure or the application of an appropriate transformation 

would be required.  

The model, expressed as a function of the measurements and parameters, can then be written as 

follows:  

        
     (2-23) 

It is important to note that equation 2-23 makes no assumptions about the number of responses. 

It simply treats all measurements with uncertainty. Therefore the EVM method can be extended 

to solving linear and non-linear models with single or multiple responses. 

Assuming that the errors between trials are independent, the posterior distribution function for   

is: 

               
 

 
         

            

 

   

  (2-24) 

This posterior distribution function was obtained by combining the likelihood function with a 

prior distribution. 

One method of estimating the values of model parameters is to apply an optimization algorithm, 

where the posterior distribution function is maximized with respect to the parameters. 

Implementation of the optimization algorithm can be challenging since the posterior distribution 

is highly dimensional due to the large number of parameters involved. Therefore a number of 

optimization techniques have been proposed for the EVM framework.  

Reilly and Patino-Leal (1981) presented a nested-iterative algorithm that uses a Bayesian 

approach. The algorithm updates the true values    in the inner iteration while the parameters are 

held constant. The parameters are then updated in an outer iteration. Other optimization 

procedures have been proposed by Schwetlick and Tiller (1985) and Valkó  and Vajda (1987), 
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where the values for    and    are estimated in two separate steps. Finally, Kim et al. (1990) used 

non-linear programming methods in problems where the model is highly non-linear.   

2.2.4 Limitations of Classical Parameter Estimation Techniques 

The proposed techniques for solving non-linear problems in the previous three sections have 

been based on optimization algorithms. These optimization problems can become complex when 

high dimensional probability distributions are involved. Another problem with these algorithms 

is that they often converge to a local optimum rather than a global optimum. MCMC techniques 

provide an alternate approach for finding parameter estimates. This work will examine if some of 

the limitations of classical approaches can be overcome using MCMC methods.      

2.3 Joint Confidence Regions  

This section will provide a brief overview on how to generate joint confidence regions (JCRs) 

that complement the parameter estimates. Two different methods for producing joint confidence 

regions will be explained and their limitations will be discussed.     

2.3.1 Application of Linear Regression Theory  

Consider a linear model expressed in vector notation as shown in equation 2-25.   

        (2-25) 

where y is the vector of measurements, X is the data matrix,    is a vector of unknown 

parameters, and    is the normally distributed measurement error. For a model with p number of 

parameters and n experimental trials, the joint confidence region at a confidence level of   is 

given by:    

                                   (2-26) 

It should be noted that the terms                    and    follow a    distribution with p 

and n – p degrees of freedom respectively. Since these terms appear as a ratio in equation 2-26, 

the ratio of two   distributions is an F distribution with the corresponding degrees of freedom. 

The term    represents an estimate of the measurement error. In the absence of replicate runs, the 

value of    is normally approximated using the mean residual sum of squared error as shown 

below: 



 
 

14 
 

     
               

   
 (2-27) 

The construction of JCRs becomes more challenging when the model is non-linear. One method 

of determining JCRs in these types of models is to simply extend the linear regression theory to 

the non-linear case.  

To illustrate how this technique is developed, suppose we have the following non-linear model.   

                 (2-28) 

This model can be linearized using a Taylor series expansion, and it can be simplified using 

vector notation.  

             +   (2-29) 

where,       
        

   
 (2-30) 

                  (2-31) 

The matrix, V, represents the Jacobian of the model          with respect to the parameters. 

Notice that equation 2-29 is analogous to the linear equation shown in 2-25. Therefore, the joint 

confidence region for the non-linear problem can be developed by replacing the X data matrix in 

the linear example with the Jacobian.   

                                    (2-32) 

Although, implementation of this equation 2-32 is fairly straightforward, this method does have 

one major limitation. This limitation arises from the fact that while equation 2-32 is in the form 

of an ellipse, the sum of squares surface for non-linear models is seldom elliptical. Therefore the 

generated joint confidence region will be approximate in shape and probability content. The 

extent of the approximation depends on the curvature present in the sum of squares surface. 

Bates and Watts (1988) proposed profile-t plots in an attempt to test whether the “elliptical 

approximation” is valid or not. In situations where an elliptical shape is inadequate, the exact 

shape JCRs must be used.  
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2.3.2 Exact Shape Joint Confidence Region  

The exact shape JCR method uses the correct sum of squares surface for generating the joint 

confidence regions for the parameters (Beale, 1960).  

                             (2-33) 

where,                                        (2-34) 

Since this technique utilizes the actual sum of squares surface, the shape of the joint confidence 

region will be exact. However, notice that the right side of equation 2-33 is derived from linear 

regression theory. Therefore, although the JCRs will have the correct shape, the probability 

content will be approximate.  

2.3.3 Joint Confidence Region Limitations 

The two techniques discussed in this section only provide approximate confidence regions. The 

elliptical approach (section 2.3.2) produces JCRs with approximate shape and probability, while 

the exact shape JCRs (section 2.3.3) have approximate probability content. Therefore to obtain 

accurate JCRs, Markov Chain Monte Carlo methods must be utilized. Since MCMC samples are 

generated from the actual posterior distribution function, the shape and probability content of the 

confidence regions will be no longer approximate. This research work will examine the 

effectiveness of MCMC methods for producing JCRs in comparison to classical approaches.  

2.4 Introduction to Markov Chain Monte Carlo   

Markov Chain Monte Carlo techniques have been used in the simulation of stochastic systems as 

well as in the estimation of integrals. For applications in studying physical processes, Monte 

Carlo methods can be used to propagate the uncertainty in the inputs into uncertainty in the 

outputs. This is accomplished by generating samples from probability distribution function of the 

input variables and subsequently calculating the output values. Calculating moments of the 

output distribution such as the expected value and variance can provide insights into the 

properties of the physical system (Robert and Casella, 1999).  

Monte Carlo methods are also useful method for estimating integrals in situations where a 

closed-form analytical solution cannot be attained. This is often the case in Bayesian methods, 

where the problem is multidimensional and integration is not possible. Integrals are also 
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encountered when finding the marginal distribution of a random variable or taking its expected 

value. MCMC is advantageous in these situations since it provides a numerical approximation 

when an analytical solution is not feasible.   

The term Markov Chain Monte Carlo is comprised of two parts: Markov chain and Monte Carlo. 

The following two sections will explain what each of these terms represent and how they work 

together in the parameter estimation procedure.  

2.4.1 Monte Carlo  

Suppose you have a vector of random variables, X, and a probability distribution function for the 

random variables, π(X). If f(X) is our function of interest, then the expected value of the function 

can be determined by using the equation below: 

          
           

       
 (2-35) 

If a Bayesian approach is being applied, then π (X) refers to the posterior probability distribution. 

One problem with finding the expected values is that the probability distribution is often only 

known up to the constant of normalization. This means that the denominator term,        , is 

unknown. Therefore a numerical approximation needs to be utilized in order to evaluate the 

expected value. This approximation is referred to as Monte Carlo integration and the equation is 

shown below:    

         
 

 
   

 

   

    (2-36) 

In this equation, Xi represents the samples drawn from the probability distribution, π (X), and n 

represents the total number of samples. As n becomes larger, the approximation becomes more 

accurate.  

The equation shown above is for the general case, where the expected value is calculated for 

some function of interest, f(X). In non-linear regression, the parameter estimate can be found by 

calculating the expected value of the random variable i.e. E(X). The same approach can be 

applied, where n number of samples are drawn from the probability distribution function. The 

population mean of X can be estimated by the sample mean.  
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 (2-37) 

From equation 2-37, it is evident that Monte Carlo integration is a simpler approach since it 

allows us to estimate         or      without doing complicated integration. However, 

application of Monte Carlo methods requires samples to be generated from the desired (target) 

distribution at the correct frequency. This can be problematic if the distribution is non-standard; 

that is, if the distribution is difficult to sample from. The solution is to use Markov chains, which 

allows one to draw samples from any type of distribution. The next section will examine Markov 

chains and some of their unique properties.  

2.4.2 Markov Chain  

 The term Markov chain refers to a sequence of random variables, {X0, X1, X2,...}, where the 

probability of the next sample depends only on the current sample. The Markov chain property 

can be summarized as a mathematical expression shown below: 

                               (2-38) 

The probability            is known as the transition kernel of the chain and is independent of 

time.   This probability is normally expressed in the form of a matrix called the “transition or 

stochastic” matrix.    

     

 
 
 
 
          

          

    
           

 
 
 

 (2-39) 

The terms in the matrix correspond to the transitional probability of going from state i to state j. 

Mathematically, it can be expressed as:  

                      (2-40) 

In order to fully comprehend how Markov chains work, three important properties must be 

defined (Gilks et al., 1996). First the chain must be irreducible. This means that regardless of the 

starting state of the Markov chain, it can reach any other state after a certain number of 

iterations. The second property of a Markov chain is that it must be aperiodic. This means that if 

the Markov chain is at a certain state, it will only return to that state at irregular intervals. This 
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stops the Markov chain from following a periodic motion. Finally, the chain must have a unique 

stationary (or invariant) distribution π(.). This ensures that if we draw a sample from the 

probability distribution π(.), then all subsequent samples will be from the same distribution . The 

property of stationary implies the following (Gilks et al., 1996).  

            

 

       (2-41) 

Now that the three essential property of a Markov chain have been defined, the Ergodic theorem 

will be considered. The theorem says that if a Markov chain follows these three requirements, 

then the following statements hold true (Gilks et al., 1996)  

1.                                 (2-42) 

  2. 
 

 
   

 

   

                     (2-43) 

The first statement says that after a significant amount of time (as t    ), the distribution of the 

Markov chain will converge to a probability distribution        Therefore if       is our 

distribution of interest, then based on the Ergodic theorem, we will start drawing samples from 

our target distribution  

The second statement ensures that, after a sufficient amount of time, the sample mean will 

converge to the population mean. It should be noted that both these statements refers to an 

asymptotic convergence. The theorem does not inform us about the number of iteration that are 

required. Therefore implementation of Markov Chain Monte Carlo methods is an important step 

in the parameter estimation procedure and it will be further discussed in section 2.6.   

The final issue that will be addressed in this section is how to construct a Markov chain where 

the chain’s stationary distribution π(.), is our desired (target) probability distribution. This is 

normally accomplished using the property of reversibility (also known as the detailed balance). 

A Markov chain is said to be reversible if the following condition is met:    

                                          (2-44) 
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The condition for stationarity shown in equation 2-41 can be obtained after some simplification 

of equation 2-44.  

The reversibility property is important for MCMC methods because if the MCMC algorithm can 

be shown to follow the detailed balance equation, then π (.) is the unique stationary distribution 

for the chain (Brooks, 1998). Therefore the third property of an ergodic Markov chain is 

satisfied. The following sections will provide a more comprehensive explanation of how to 

construct Markov chain with these specific properties.   

2.5 Markov Chain Monte Carlo Techniques   

2.5.1 Metropolis-Hastings Algorithm  

The Metropolis-Hastings (MH) algorithm was first proposed by Metropolis and Rosenbluth 

(1953), where the method was applied in the simulation of molecular systems. The algorithm 

was later generalized by Hastings (1970) as a method of sampling from any probability 

distribution.  A comprehensive review of the Metropolis-Hastings routine has been written by 

Chibs and Greenberg (1995).  

The Metropolis-Hastings algorithm has been extensively applied when using a Bayesian 

methodology since the posterior distribution function only needs to be known up to a constant. 

The procedure first requires an initial guess from the user, which will be used as the starting 

value for the Markov chain. Now suppose that Xt represents the current state of the Markov chain 

for t ≥ 0. A candidate sample Y can then be sampled from an arbitrary proposal distribution 

q(.|Xt).  The proposal distribution should be a probability distribution that is easy to draw 

samples from. For example, the proposal can be a multivariate normal distribution that is 

centered at the current state Xt, and has a tunable covariance matrix.  The candidate sample can 

be either accepted or rejected based on the following criterion.  

              
           

            
  (2-45) 

The term min in the above equation represents the minimum value between 1 and the ratio 

           

            
 . If the ratio is greater than 1, the candidate samples will always be accepted. 

Otherwise, the sample will be accepted with the probability        . Accepting the candidate 
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point means that the next state becomes the proposed sample i.e. Xt+1 = Y. Otherwise, the chain 

does not move and Xt+1 = Xt.  

It should be noted that since the density terms in equation 2-45 appear as a ratio, the 

proportionality constant can be cancelled from both terms. Therefore the posterior distribution 

function only needs to be known up to the normalization constant.  

When a symmetric proposal distribution is used in the MH algorithm, it can be shown that:  

                   (2-46) 

This allows for simplification of equation 2-45 into: 

              
    

    
  (2-47) 

Equation 2-47 represents the original equation used by Metropolis et al (1953). A flowchart of 

the algorithm is shown in Figure 2-1, where Xo and N represent the values for the initial guess 

and number of iterations respectively. 
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Figure 2-1: A flowchart describing the Metropolis-Hastings algorithm.  
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Finally, it can be shown that the Metropolis-Hastings algorithm follows the detailed balance 

equation. The algorithm can either accept the candidate sample or reject it. Let us consider these 

two cases.  

Case 1: Xt+1 = Y (The candidate sample was accepted)  

The probability of accepting the candidate sample (Y) is:  

                       
    

     
  (2-48) 

Recall that the detailed balance equation is given by:  

                             (2-49) 

Let us consider the left side of equation 2-49. To prove that the Markov chain obtained from the 

MH algorithm satisfies the detailed balance, we can substitute the value for         into 

equation 2-49. The following expression is then obtained.  

                                     
    

      
  (2-50) 

                                                (2-51) 

The same steps can be now applied to the right side of equation 2-49, and the following equation 

can be determined.  

                                        (2-52) 

Since the proposal distribution is symmetric, equations 2-51 and 2-52 are equal and therefore we 

can conclude that the Markov chain for case 1 follows the detailed balance.   

Case 2: Xt+1 = Xt (The candidate sample was rejected)  

In this case, the chain has not moved and therefore, the next state remains the same as the current 

state. It is easy to see that since both states are the same, equation 2-49 will always be satisfied.  

Therefore, since the reversibility condition is met in both cases, we can conclude that the MH 

algorithm satisfies the detailed balance. 
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 Recall from section 2.2.4 that if the Markov chain is found to be reversible, then it has a 

stationary distribution. This means that the stationary distribution of the Markov chain obtained 

from the MH algorithm is our target distribution.  

2.5.2 Single-component Metropolis-Hastings 

The original Metropolis-Hastings algorithm updates the entire vector of random variables using 

one acceptance/rejection criterion. Sampling all the random variables at once can be problematic 

when a larger number of parameters are present. In these situations, it is more convenient to 

update each element individually. This is referred to as single-component Metropolis-Hastings.  

Suppose we have a vector of random variables that can be divided into r elements. 

                 (2-53) 

Now suppose that we want to sample element i at iteration t+1. We can define a vector that 

contains all the elements but i.   

                            (2-54) 

A candidate value can be generated using the following proposal distribution:   

           (2-55) 

This candidate can be either accepted or rejected based on the Metropolis-Hastings criterion as 

shown in equation 2-56.   

                    
                     

                     
  (2-56) 

Although in certain situations, single component sampling can speed up the convergence of the 

Markov chain, it should be noted that this method is more demanding computational. The density 

values for each component must be calculated; therefore computational time becomes an issue 

when the calculations require solving a system of differential equations.  

The other issue that needs to be addressed is how to decide on which components to sample 

individually and which ones to sample as a block. Gilks et al. (1996) noted that blocking highly 

correlated samples together could lead to fast convergence. However, tuning of the proposal 

distribution is more effective when the parameters are sampled individually. This idea of 
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blocking will be explored in greater detail through the different chemical engineering case 

studies presented in this research.   

2.5.3 Random-Walk Metropolis-Hastings 

The random-walk Metropolis-Hastings (RWMH) algorithm is a special case of the original MH. 

The difference between these two algorithms lies in how the candidate sample is proposed. 

Implementation of the RWMH involves proposing a new value, Y, based on the following 

equation:  

       (2-57) 

The z term in equation 2-57 represents a random perturbation that can be generated using a 

normal distribution. The terms in the above equation become vectors when parameters are 

estimated as a block. Other distributions such as the uniform distribution, t-distribution or 

triangular distribution can be applied if a normal distribution is deemed insufficient. Based on 

equation 2-57, the proposal distribution for the RWMH is of the form:  

                (2-58) 

The idea behind the algorithm is to explore the posterior distribution function in a step-like 

manner. Therefore, the size of the perturbation, z, is an important factor that affects the rate of 

convergence of the Markov chain. Taking steps that are too small will lead to the chain getting 

stuck at certain regions. On the other hand, steps that are too large will result in the chain moving 

far out into the tails of the distribution. Tuning of the proposal distribution is explained in greater 

detail on section 2.6.1.  

2.5.4 Independence Sampler 

The candidate sample in the Metropolis-Hastings algorithm can be drawn from a probability 

distribution that does not depend on the current state of the Markov chain. In other words,  

              (2-59) 

This type of proposal distribution was first suggested by Tierney (1994) and the algorithm is 

referred to as the independence sampler. For this particular proposal, the acceptance criterion 

becomes:  
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  (2-60) 

Since the proposal distribution does not take into account the current state of the Markov chain, 

the proposal should closely resemble the target distribution,       Therefore, implementation of 

this algorithm is only recommended if a good understanding of the posterior distribution is 

available. It has also been suggested by Gilks et al. (1996) and later verified by Jarner and 

Roberts (2007), that proposal distributions with a heavier tail are better suited when the 

independence sampler is applied.  

2.5.5 Adaptive MCMC 

The MCMC techniques described in the above sections all require some form of tuning. This can 

become problematic if the MCMC simulation is computationally intensive. Therefore it would 

be ideal if the algorithm can tune itself without any input from the user. This can be 

accomplished using an adaptive proposal, where the proposal distribution is changed based on 

the previous history of the Markov chain.  

Haario et al. (1999), proposed an algorithm that uses an adaptive proposal distribution. The 

variance-covariance matrix of the proposal distribution will change throughout the MCMC 

routine based on a fixed number of previous states. This adaptive proposal distribution is shown 

below: 

                        
      (2-61) 

Where d represents the number of dimension or parameter, cd, represents the scaling factor, and 

Rt is the variance-covariance matrix based on a set number of previous trials. The scaling factor, 

cd, is often set to be         based on the work by Gelman et al. (1996).  

The number of states considered when constructing the variance-covariance matrix, Rt, is 

controlled by the user. The covariance matrix can be computed using equations 2-62 and 2-63.  

     
 

   
      (2-62) 

where,           (2-63) 

If we assume that we are using H number of previous states, then K is an H by d matrix, where 

each row corresponds to one sample point.  
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It must be emphasized that although the adaptive proposal can achieve convergence, it is not 

fully egordic (Haario et al., 1999). Therefore the adaptive proposal is often used to reduce the 

size of the burn-in period. The original Metropolis-Hastings or random walk Metropolis-

Hastings algorithm can be implemented once the burn-in period ends.   

If application of the adaptive proposal is found to be unsatisfactory, adaptive Metropolis-

Hastings (Haario et al., 2001), can be utilized. This algorithm uses a Gaussian distribution whose 

mean is the current state and, whose covariance matrix is updated using all the previous states. 

Although the generated Markov chain is non-Markovian due to the adaptive nature of the 

algorithm, it was shown to be ergodic under certain conditions (Roberts and Rosenthal, 2007).  

2.5.6 The Gibbs Sampler  

The Gibbs sampler is a special case of the Metropolis-Hastings algorithm, where all the 

candidate samples are accepted. The main advantage of using the Gibbs sampler is that little or 

no tuning is required for the Markov chain to converge. However, the algorithm requires fully 

conditional probability distributions to be specified for all the parameters. This can be 

problematic when the conditional distributions are non-standard and cannot be easily sampled 

from. One method of overcoming this complication is to use a conjugate prior (Lee, 2004). When 

a conjugate prior is combined with the likelihood, it will produce a standard posterior 

distribution that is easy to generate samples from. In situations where the application of 

conjugate priors is believed to be unsatisfactory, rejection and resampling methods can be 

utilized. These methods are discussed further by Smith (1991) and Smith and Roberts (1993).    

The Gibbs sampler was named by Geman and Geman in 1984, who applied the algorithm to an 

image restoration problem. Since its proposal, it has been applied in a wide variety of disciplines. 

For example, it is frequently used in genetic research for finding specific repeating sequences in 

DNA and amino acids (Thijs et al., 2002 and Lawrence et al., 1993). Application of the sampler 

in medical research is also prevalent as shown by Gilks et al. (1993) and Scurrah et al. (2003). It 

has even been used for modeling hydrological data as shown by Kottegoda et al. (2007). Finally, 

Jitjareonchai et al. (2006) applied the Gibbs sampler to chemical engineering problems.  

To illustrate the sampling method, first suppose that the vector of random variables  , can be 

partitioned into r elements as shown below:  

http://www.sciencedirect.com.proxy.queensu.ca/science/article/pii/S0022169407001618
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              (2-64) 

At time t, the current state of   can be expressed as: 

        
      

   (2-65) 

and by extension, the next state will be: 

          
        

     (2-66) 

Given the joint posterior density function, π( ), the Gibbs algorithm works by updating the 

elements of   one at a time. The value of the first element X
t+1

1 will be obtained by sampling 

from the following fully conditional distribution:  

     
      

      
   (2-67) 

The fully conditional distribution of a parameter can be found by inputting the current values of 

all other parameters into the joint probability distribution function. In a similar fashion, the value 

of X
t+1

2 is obtained by drawing samples from: 

     
      

      
      

   (2-68) 

This approach can be continued until all the parameters have been sampled. This algorithm has 

been summarized in the flowchart below (Figure 2-2), where Xo and N represent the values for 

the initial guess and number of iterations respectively. For more details on the Gibbs sampler, a 

comprehensive review has been conducted by Roberts and Smith (1994).   
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Figure 2-2: A flowchart describing the Gibbs Sampler. 
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2.6 Implementation of MCMC 

2.6.1 Tuning of Proposal Distribution  

The selection of the correct proposal distribution q(.|.), is an essential factor in the convergence 

of the Markov chain (Gelman et al. 1996, Roberts et al. 1997 and Gilks et al. 1996). The closer 

the proposal is to the target distribution, the faster the Markov chain will enter its stationary 

distribution. However, since the shape and size of our target distribution is often unknown, the 

chosen proposal distribution must be tuned in order to better resemble our distribution of interest.  

Although the Metropolis-Hastings algorithm will converge for a variety of different proposal 

distributions, the most commonly used distribution is the normal. In situation where parameters 

are sampled as a block, a multivariate normal distribution is utilized. The distribution is usually 

centered at the current state of the Markov chain and has a fixed variance-covariance matrix  . 

Similarly, when the parameters are update individually, a univariate normal with a fixed standard 

deviation can be applied.  

The efficiency of mixing in a Markov chain is related to the acceptance rate as explained by 

Roberts and Rosenthal (2001). Therefore tuning of the proposal distribution is often based on the 

acceptance rate of the Markov Chain Monte Carlo algorithm. The term “acceptance rate” refers 

to the percent of accepted samples in the MCMC algorithm. Roberts et al. (1997) showed that in 

the random walk Metropolis- Hastings algorithm, the optimal acceptance rate is 23.4%. This rate 

can be obtained by tuning the elements of the variance-covariance matrix (also known as the 

scaling factors) of the proposal distribution.  

In general, a high acceptance rate indicates that points at the tails of the distribution are not being 

sampled. Therefore increasing the scaling factors will lower the acceptance rate. In a similar 

fashion, if a low acceptance rate is detected, the variance of the proposal must be decreased. This 

tuning routine can be conducted iteratively in order to achieve good mixing within the chain.  

2.6.2 Starting Value  

All MCMC algorithms require an initial guess to start the Markov chain. Once the chain enters 

its stationary distribution, the MCMC sampling will be independent of the starting value. 

However, the speed at which the chain is able to achieve equilibrium depends on how close the 
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initial guess is to the true value of the parameter. Using an initial guess that is well below or 

above the true value will require a long Markov chain, and this will result in a high 

computational cost.   

Determining suitable start points for the Markov chain is an important part in the implementation 

of MCMC techniques. If available, prior knowledge about the parameters can be used to provide 

a reliable guess. In the absence of prior information, a maximum likelihood estimate can be used 

as an initial guess. Another method, proposed by Gelman and Rubin (1992), involves using a 

number of different starting values and running several chains in parallel. These “well dispersed” 

starting values were obtained by using a mode-finding algorithm that located regions of high 

density. The starting values were then generated by sampling from these regions. Brooks (1998), 

also recommended applying a simulated annealing technique proposed by Brooks and Morgan 

(1994), to generate different starting points for the MCMC algorithm.   

2.6.3 Burn-In Period 

The period before the Markov chain enters its stationary distribution is referred to as the burn-in 

period. The samples in the burn-in period do not belong to the actual posterior distribution; 

therefore they must be removed before any statistical inferences can be made. If we assume that 

the Markov chain enters the stationary distribution at the m
th

 iteration, then equation 2-69 can be 

used in calculating the expected value.  

      
 

   
   

 

     

 (2-69) 

Determining the length of the burn-in period is often subjective since it is difficult to determine 

exactly when the Markov chain has entered its stationary distribution. It has been suggested by 

Geyer in 1992 that the burn-in period should be between 1% and 2% of the total chain, given that 

the chain is sufficiently long. However, since the burn-in period is depended on the initial guess, 

a poor guess can result in a burn-in that is greater than 2% of the chain. A more effective method 

is to simply plot the Markov chain time series and visually determine when the chain has reached 

equilibrium. This can be difficult for users with little to no experience using MCMC methods. 

Therefore, this work will provide examples from different case studies to show how the burn-in 

periods can be estimated.  
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2.6.4 Convergence Diagnostics  

In implementing Markov Chain Monte Carlo techniques, one question that often arises is when 

to stop the Markov chain. Ideally, a Markov chain is said to be converged if the samples have 

been drawn from the entire space of the posterior distribution. The difficulty in detecting 

convergence lies in the fact that since we do not know the exact shape of our target distribution, 

it is difficult to determine whether or not more samples are required. The rest of this section will 

provide a brief literature review on different methods used in convergence diagnostics. 

One of the problems of using one long chain is that the sampling algorithm might not explore the 

entire surface of the posterior distribution (Brooks, 1998). Therefore although the Markov chain 

appears to have converged, it might have missed certain regions in the posterior distribution. 

This can be overcome by running multiple chains in parallel each with a different starting value. 

Comparison of the different Markov chains can then provide a better understanding of 

convergence.  

Although quantitatively determining whether or not the chain has converged is challenging, 

numerous diagnostic techniques have proposed in literature. Raftery and Lewis (1992) used 2-

state Markov chain theory to determine the convergence of one long Markov chain. Gelamn and 

Rubin (1992) proposed a convergence diagnostic tool based on the analysis of variance in several 

Markov chains. Finally, cumulative sum path plots have been used as a convergence diagnostic 

tool by Yu and Mykland (1997). For a more detailed review of the different convergence 

diagnostic techniques, please refer to Cowles and Carlin (1996).  
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Chapter 3: Biological Oxygen Demand 

3.1 Introduction  

The first case study examined in this work is the biological oxygen demand (BOD) problem 

reported by Bates and Watts (1988). BOD is a measure of the amount of dissolved oxygen 

required by aerobic biological organisms to break down organic materials in water. The 

experimental data consists of BOD measurements at seven different times. The oxygen demand 

can be modeled as a function of time, and it is often expressed as an exponential decay. 

                     (3-1) 

where   and    are the parameters, x represents the time in days, and        is the BOD, 

measured in mg/L. The BOD model can also be written in the form of a differential equation.   

 
         

  
       

     (3-2) 

The purpose of studying the BOD problem is three fold.   

1. This chapter will first explore the different steps used in implementing MCMC 

techniques in nonlinear models (Figure 3-1). The various implementation factors will be 

discussed using specific examples from the BOD case study. The steps presented in this 

chapter will provide a general framework for implementing MCMC methods in more 

complex models discussed in the subsequent chapters.   

2. Another reason for considering the BOD problem is that it has already been studied by 

Bates and Watts (1988), where classical regression approaches were applied for 

determining parameter point estimates and joint confidence regions. By applying Markov 

Chain Monte Carlo techniques, this chapter will provide a comparison between the two 

approaches  

3. Finally, the BOD problem can be expressed as both an algebraic equation (3-1) and a 

differential equation (3-2).  Therefore the implementation steps as well as the regression 

results from both models can be compared.  
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Figure 3-1: A flowchart describing how Markov Chain Monte Carlo methods can be 

implemented 
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3.2 Implementation of MCMC techniques for the BOD problem   

This section will discuss how each of the steps presented in Figure 3-1 can be implemented using 

examples from the BOD problem. It should be noted that only the analytical form of the BOD 

problem will be considered here.  

3.2.1 Development of the Posterior Distribution Function  

The first step in using MCMC methods is to set-up the posterior distribution function for the 

parameters. Assuming that the measurement error follows a normal distribution, the likelihood 

function can be developed as described in section 2.1.2.   

            
 

          
      

 

    
 
                  

 
 

   

  (3-3) 

Since no prior parameter knowledge was available, a uniform prior distribution was used. The 

posterior distribution can then be expressed as:   

             
 

   
      

 

    
 
                  

 
 

   

  (3-4) 

The posterior distribution contains two model parameters and a pure error variance that needs to 

be estimated. Ideally, replicate runs should be used in obtaining an estimate for the pure error 

variance. However, in the absence of replicate runs, a value for the variance can be obtained by 

treating it as a parameter. The issue of how to correctly estimate the variance will be discussed 

further in section 3.3.1.    

3.2.2 Selection of MCMC Algorithm and Block Strategies  

A variety of different MCMC algorithm are available as described in section 2.5 and deciding on 

which algorithm to use can be daunting for users with little MCMC experience. Therefore this 

section will explain how to choose the best MCMC technique and illustrate the selection 

procedure using the BOD example.   

The first step in the selection process is to determine whether or not the conditional probability 

density function of the parameters can be expressed as a well-known standard distribution. If this 

is possible, the Gibbs sampler technique should be implemented. The advantage of using the 
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Gibbs sampler is that it requires no tuning on the part of the user. In the BOD example, the 

conditional probability distribution for the variance parameter can be expressed as the following 

Chi-Square distribution:   

 
  

  
     

  (3-5) 

                       
 

 

   

 (3-6) 

The conditional distribution for the other two model parameters could not be expressed as a 

standard distribution and therefore other MCMC techniques were considered.  

The next most efficient MCMC algorithm, after the Gibbs sampler, is the random walk 

Metropolis-Hastings or the original Metropolis-Hastings. Both algorithms have the same 

implementation difficulty and efficiency as shown by Jitjareonchai (2006). The Metropolis-

Hastings algorithm was chosen for the BOD example, although applying the RWMH would have 

produced similar results since the two algorithms differ only in their proposal distributions.  

The next step is to decide whether to sample the parameters individually or as a block. It is 

recommended that initially, the parameters be estimated individually. The reason for this is that 

tuning of the MCMC algorithm becomes difficult if the parameters are sampled together since 

only one acceptance rate is observed for all the parameters. By considering the parameters 

individually, an acceptance rate for each parameter can be obtained, and the scaling factors can 

be tuned accordingly. For this reason, the two parameters in the BOD problem were sampled 

separately.       

In non-linear models where the tuning of the MH algorithm becomes difficult, an adaptive 

MCMC technique can be applied. The algorithm will “adapt” based on the previous values of the 

Markov chain. The adaptive MCMC method was not considered for the BOD problem since the 

MH algorithm provided adequate results. 

To summarize the results so far, the variance can be sampled using the Gibbs sampler, while the 

other two parameters in the model can be obtained using the single component MH algorithm.  

Once the appropriate MCMC techniques have been selected, the next step is to choose an initial 

guess.  
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3.2.3 Selection of Proposal Distribution     

The next step in the implementation procedure, as shown in Figure 3-1, is to select the correct 

proposal distribution and the corresponding scaling factors. As explained in the previous chapter, 

using a proposal distribution that is similar in shape and size to the target distribution is essential 

in obtaining good convergence. When little knowledge of the target distribution is known, it is 

recommended that a multivariate or univariate normal distribution be selected as the proposal 

distribution.  Since single component MH was chosen in section 3.2.2, a univariate normal 

distribution was utilized.  

                             
   (3-7) 

                             
   (3-8) 

The normal distribution is centered at the current value of the parameter and has a tunable 

variance. The steps involved in tuning will be discussed further in section 3.2.6. The next section 

will examine in detail the specific steps in the proposed MCMC algorithm.   

3.2.4 Selection of Initial Values and Burn-in Period   

The length of the burn-in period is determined by how close the initial guess is to the actual 

parameter value. As discussed in section 2.6.2, the initial guess can either be estimated from 

previous knowledge or determined using the techniques reviewed by Brooks (1998). In many 

estimation problems, even a poor initial guess can lead to a quick convergence of the Markov 

chain to its stationary distribution. Consider the figure below, where an initial guesses of 35 and 

3 were used for parameter 1 and 2, respectively. The plot represents a discrete time series, where 

the values of parameters 1 and 2 at each cycle are shown. This visual representation of the 

Markov chain is often helpful in determining when the chain enters its stationary phase.    
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Figure 3-2: The Markov chain for the first 1000 cycles when an initial guess of 35 and 3 were 

used for parameters 1 and 2 respectively in the BOD model. The line represents the time when 

the burn-in period ends and the stationary distribution begins.   

A time series is stationary if its mean value does not change over time. Therefore by visual 

inspection, it appears that the Markov chain has entered its stationary distribution after the first 

100-200 cycles. That is, the mean of the time series after this period does not appear to change 

with time. Therefore the burn-in period in this problem is only the first 100-200 cycles. After this 

period, the Markov chain does not depend on the initial value. The samples from the burn-in 

period can be removed and the remaining samples can be used to calculate the mean and joint 

confidence regions.  

Although the Markov chain reached equilibrium quickly for the BOD problem, the mixing of the 

chain might be more challenging in other non-linear problems. If a large burn-in period is 

observed, changing the initial guess can often improve the convergence. One strategy is to 

simply start the Markov chain where the previous one ended. Although poor initial guesses can 

sometimes lead to a Markov chain that is non-stationary, it should be noted that optimization 

algorithms also require a suitable initial guess. Therefore, the problem of obtaining a good initial 

guess is present regardless of what regression methodology is being applied.  
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3.2.5 MCMC Algorithm Steps     

In the algorithm selection process, the Gibbs sampler and Metropolis-Hastings algorithm were 

proposed in estimating the variance and the model parameters, respectively. The main steps in 

the sampling procedure are described below:  

1. Calculate the sum of squared error using equation 3-6 and the initial values of the other 

two parameters         and       .   

2.  Draw a sample from the Chi-Square distribution with n degrees of freedom. In this 

particular example, n = 6 since six experimental runs were carried out. 

3. Determine the value for       
  by rearranging equation 3-5.  

   
   

 

  
 
 (3-9) 

4. Generate a candidate value for parameter 1,   
 , in the BOD model using the proposal 

distribution described in section 3.2.4. The candidate is accepted or rejected based on the 

following criterion.  

     
                      

         
    

               
  

                      
  

  (3-10) 

5. Generate another candidate value for parameter 2,   
 , in a similar fashion as the previous 

step. Again the candidate is either accepted or rejected based on the following criterion.  

     
                      

         
    

               
  

                      
  

  (3-11) 

6. Return to step 1 and continue iteration until the Markov chain converges to its stationary 

distribution.  

3.2.6 Tuning  

The tuning of the proposal distribution is an important step in obtaining reliable parameter 

estimates and joint confidence regions. The standard deviation of the proposal needs to be 

adjusted until a good acceptance rate is obtained. Roberts (1997) showed that an acceptance rate 

around 23% produces the most efficient Markov chain. In practice however, it is very difficult to 

obtain exactly 23%, especially when the algorithm is computationally intensive. Jitjareonchai 
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(2006) found that acceptance rates between 20% - 50% are sufficient in obtaining good mixing 

in the MCMC process. Therefore the acceptance rates for all the case studies considered in this 

research will be optimized so they fall within this range.  

To gain a better understanding of the tuning process, let us consider two cases where high and 

low acceptance rates were observed. The Markov chain for the two model parameters in the 

BOD problem will be used to exemplify the relationship between acceptance rates and efficiency 

of the Markov chain. Figure 3-3 shows how the MCMC process behaves when a high acceptance 

rate is used. The proposal distribution applied in this case produced acceptance rates of 68.9% 

and 88.2% for parameter 1 and 2, respectively. Examining Figure 3-3, it is clear that the Markov 

chain is not stationary since the values for both parameters move up and down throughout the 

iterations.  This type of behaviour indicates that the values at the tails of the distribution are not 

being proposed. This will lead to a large number of samples being accepted since the candidate 

samples are close to the center of the target distribution. To lower the acceptance rate, the 

variance of the proposal distribution must be increased.  

 

Figure 3-3: The Markov chain for the first 3000 cycles, where acceptance rates of 68.9% and 

88.2% were observed for parameters 1 and 2 respectively.  

The second case that will be considered is how the Markov chain behaves when a low 

acceptance rate is observed. The Markov chain movement shown in Figure 3-4 occurs when a 

small number of samples are accepted. The proposal distribution used in this case produced 
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acceptance rates of 8.1% and 6.4% for parameters 1 and 2, respectively. In Figure 3-4, there are a 

few places where the Markov chain has not moved because extreme candidate values were being 

proposed. Therefore decreasing the variance will lead to an increase in the acceptance rate.     

 

Figure 3-4: The Markov chain for the first 3000 cycles where acceptance rates of 8.1% and 6.4% 

were observed for parameters 1 and 2 respectively.  

Therefore, convergence of the Markov chain can be diagnosed in all case studies by determining 

the acceptance rates and visually inspecting the Markov chain plots. If either of these methods 

indicate poor mixing of the Markov chain, the tuning parameters should be changed accordingly. 

Other convergence diagnostic techniques, such as the method proposed by Raftery and Lewis 

(1992), can be applied if the methods presented above are determined to be inadequate.   

The tuning process is the last step in implementing Markov Chain Monte Carlo techniques. Once 

convergence is reached, the samples from the MCMC process can be used to generate parameter 

point estimates and joint confidence regions.  

3.3 BOD Problem Results    

The results obtained from implementing the MCMC algorithm in the BOD problem will be 

presented in this section. It will first explore the issue of estimating the pure error variance and 

discuss limitations of estimating the variance using the mean squared error. Parameter point 
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estimates and JCRs will then be generated from the MCMC samples and a comparison of the 

MCMC results with the classical regression approaches will be presented.  

3.3.1 Issue with the Error Variance  

The results from the BOD problem illustrate the importance of correctly estimating the error 

variance when using an MCMC approach. In the absence of replicate runs, the error variance can 

be determined from the mean squared error (MSE) or it can be estimated as a parameter in the 

regression problem. The problem in using the former approach to estimate the error is that in a 

non-linear model, the mean squared error is not an unbiased estimator of the pure error variance. 

Therefore, a more precise estimate of the pure error can be attained by treating the variance as a 

parameter. The limitations of using the MSE will be exemplified using the BOD case study.  

Using the parameter estimates from Bates and Watts (1988), the mean squared error was found 

to be 6.484 with 4 degrees of freedom. The MCMC protocol shown in Figure 3-1 was then 

implemented using the MSE as an estimate for   
 . However, upon using this fixed value for the 

measurement error, convergence of the Markov chain could not be achieved.  

Recall from section 3.2.6 that convergence can be diagnosed using both the acceptance rates and 

the Markov chain time series plots. For this particular problem, acceptance rates of 66% and 

95% were observed for parameters 1 and 2 respectively. The acceptance rates in these results are 

much higher than the acceptable range of 20-50%. Normally, if a high acceptance rate is 

observed, the variance of the proposal can be increased to lower the rate. However, in this 

particular problem, changing the scaling factors was found to have minimal effect on the 

acceptance rate.  

The Markov chain time series was also generated for the purposes of convergence diagnostics 

(Figure 3-5). It can be seen from the graph that parameter 1 values are gradually increasing after 

the first 1,000,000 runs, while unrealistic values of parameter 2 are being sampled in the initial 

stages of the Markov chain. This erratic movement indicates that the chain has not converged to 

its stationary distribution. Although several different proposal distributions and scaling factors 

were applied, the mixing of the Markov chain did not improve. 
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Figure 3-5: The MCMC output for the two parameters in the BOD problem. The parameter 

values sampled at each iteration is shown above for the first 2,000,000 cycles.  

To understand why the Markov chain did not converge to its stationary distribution when using 

the mean squared error, consider Figure 3-6 shown below. The value for parameter 2 was held 

constant at 19.16, while parameter 1 was varied from 0.15 to 6. Using this range and a variance 

of 6.484, the value proportional to the density of the posterior distribution was determined and 

plotted as a function of parameter 1. It can be seen from Figure 3-6, that the distribution of 

parameter 1 at a parameter 2 value of 19.16 has a very long tail. Therefore one possible 

explanation for the lack of convergence in the MCMC algorithm is that the Markov chain is 

becoming stuck in the tail of the distribution.  

 

Figure 3-6: Values proportional to the density of the posterior obtained using parameter 1 values 

from 0.15 to 6 and a fixed parameter 2 value of 19.16. The pure error variance was estimated 

using the MSE.  
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In order to explain why the Markov chain is becoming stuck in the tail of the posterior 

distribution, consider Table 3-1. The table shows six sample MCMC iterations starting from a 

parameter 1 value of 3. Candidate samples are then proposed and the transition probabilities α, is 

calculated by dividing the density at the proposed sample by the density at the current sample. 

Notice that the transition probabilities for every iteration is higher than 0.9. This is because the 

density at the current value is close to the density at the proposed value. A high transitional 

probability means that a large number of candidate samples will be accepted, and this can cause 

the Markov chain to move further and further into the tail of the distribution. This is one possible 

reason for the gradual increase in parameter 1 observed in Figure 3-5.  

Table 3-1: Possible values for the current and candidate samples 

Iteration 

Current Value 

of the Markov 

chain 

Proposed 

Value 

Density of 

Posterior at 

Current 

Value 

Density of 

Posterior at 

Proposed 

Value 

Transitional 

Probability 

α 

1 3.00 3.12 0.0941 0.0915 0.973 

2 3.12 3.20 0.0915 0.0900 0.983 

3 3.20 3.32 0.0900 0.0880 0.978 

4 3.32 3.50 0.0880 0.0854 0.971 

5 3.50 4.50 0.0854 0.0778 0.910 

6 4.50 6.00 0.0778 0.0778 0.958 

 

Now consider the second approach for estimating the pure error, where the error variance is 

treated as a parameter. The MCMC algorithm was be implemented as described in section 3.2 

and the Markov chain for parameter 1, parameter 2 and the error variance is shown in Figure 3-7.  

Examination of the time series reveals that the mean value for all three parameters remains 

constant throughout. Therefore it appears that the Markov chain has converged to its stationary 

distribution. Acceptance rates of 30% and 35% were obtained for parameter 1 and 2, 

respectively, again indicating good mixing of the Markov chain.  
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Figure 3-7: The MCMC output for the two model parameters in the BOD problem and the error 

variance.  

The samples for the variance were generated using the Gibbs sampler and after taking the 

average of these MCMC samples, a variance estimate of 2.34 was obtained. Comparison to the 

MSE approach reveals a much smaller variance. The difference in variance has a large impact of 

the broadness of the posterior distribution as illustrated in Figure 3-8.  
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Figure 3-8: Values proportional to the density of the posterior obtained using parameter 1 values 

from 0.15 to 1.2 and a fixed parameter 2 value of 19.16. The pure error variance was estimated 

by treating the variance as a parameter.  

The above figure was constructed using the same methodology as Figure 3-5, only the new 

variance value of 2.34 was used. It can be seen that the long broad tail that was present in the 

Figure 3-5 is no longer an issue. Therefore by estimating the variance using the MCMC protocol, 

more reliable results were obtained.  

There are two key take-away points from these results presented so far in this section. First, 

using the MSE to determine the pure error variance was found to give unpredictable results. 

Estimating the variance along with the other two parameters is a better approach since 

uncertainty in the model parameters are taken into consideration in the estimation procedure. 

Therefore, the results shown in this work illustrate the importance of treating the variance as a 

parameter to be estimated rather than fixing its value based on the mean squared error. Second, 

the findings from this work indicate that when the variance is large and the posterior distribution 

has a large tail, MCMC algorithms can sometimes have difficulty in achieving convergence. In 

these situations, the density values for the current state and the candidate samples will be close to 

each other and therefore high acceptance rates are often encountered. To prevent the Markov 

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.01

0.02

0.03

0.04

Parameter 1

P
ro

p
o

rt
io

n
a

l 
to

 D
e

n
s
it
y



 
 

46 
 

chain from becoming stuck in the tails of the distribution, a carefully designed adaptive proposal 

distribution might have to be implemented.  

3.3.2 Parameter Estimates and Joint Confidence Regions   

The parameter point estimates can be determined by taking the average of the MCMC samples. 

A comparison of these results with the Gauss-Newton optimization used by Bates and Watts is 

shown in Table 3-2.  

Table 3-2: The point estimates for parameters in the BOD problem using the Gauss-Newton and 

MCMC optimization techniques. The variance for the Gauss-Newton optimization is based on 

the MSE 

 

Gauss-Newton 

Optimization 

Estimate 

MCMC 

Estimate 

Parameter 1 19.157 19.17 

Parameter 2 0.5511 0.5942 

Variance 6.484* 2.34 

 

From Table 3-2, it can be seen that both regression methods produce similar parameter estimates 

for parameter 1 and 2. The slight difference in the values could be due to the fact that MCMC 

estimates are based on taking the expected value while the Gauss-Newton optimization attempts 

to find the mode of the posterior distribution.  

In addition to the parameter values, joint confidence regions can also be constructed for 

parameters 1 and 2. These regions represent all the possible values for parameter 1 and 2 at a 

fixed confidence level. The size of the JCRs represents the precision in the parameter estimates 

while rotation away from the y-axis indicates correlation between the parameters.  

The first step in generating JCRs is to use the samples obtained from the MCMC algorithm to 

create a 3-dimensional histogram. This histogram for a 2 parameter model presents the actual 

posterior distribution function of the parameters. Therefore a contouring algorithm can be 

applied to the histogram in order to construct the 95% confidence region.   
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One of the objectives of this research is to compare the Markov Chain Monte Carlo JCRs with 

the JCRs obtained from the approximation techniques discussed in section 2.3. First let us 

consider the confidence region from the elliptical approximation, where linear regression theory 

is used. This problem was studied by Bates and Wates (1988) and the elliptical JCR is shown in 

Figure 3-9.   

 

Figure 3-9: Parameter estimates and 95% joint confidence regions obtained using an elliptical 

approximation and Markov Chain Monte Carlo techniques.  

The correct size and shape of the joint confidence region is represented by the MCMC curve in 

Figure 3-9. Comparison of the two methods in Figure 3-9 reveals two major limitations of using 

the elliptical approximation. First, the approximate JCR in Figure 3-9 has a much larger 

confidence region when compared to the MCMC approach. The region also contains unrealistic 

parameter 2 values below zero.  Therefore the results indicate that applying linear regression 

theory to the BOD problem will result in an overestimation of the parameter uncertainty. Second, 

since the model is highly non-linear, the elliptical approach is not able to adequately capture the 

shape of the JCR. The true shape of the confidence region, as shown by the MCMC plot, cannot 

be modeled by using an ellipse. Therefore, an MCMC approach needs to be utilized in the BOD 

problem in order to attain correct shape and probability content JCRs.     
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Since Figure 3-9 indicates that the shape of the JCR is non-elliptical, the exact shape method 

from section 2.3.2 was applied. When using this method, a root finding algorithm needs to be 

used to determine the confidence region. The exact shape JCR plot along with the MCMC JCR is 

depicted in Figure 3-10.    

 

Figure 3-10: 95% joint confidence regions obtained using an exact shape approximation and 

Markov Chain Monte Carlo techniques.  

Using the exact shape method, the correct shape of the JCR is observed in Figure 3-10. However 

notice that the confidence region does not close at the top or at the bottom. Complex numbers 

were encountered when the root finding algorithm was implemented in these regions. Therefore 

comparison of the two plots reveals that the exact shape JCRs do not have the correct probability 

content. This example serves to further exemplify the advantage of using MCMC techniques in 

non-linear models.  

3.4 BOD Problem Using the Differential Form  

The BOD problem represents an interesting case, where the model can be expressed in both the 

analytical and differential form. The differential equations encountered in subsequent chapters 
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will not have a closed form solution. Therefore, the BOD problem represents a unique 

opportunity to compare the computational time and implementation steps for both forms of the 

model.  

3.4.1 Implementation   

Implementation of the differential form of the BOD problem can be accomplished using the 

same algorithm shown in section 3.2.5. The only difference is that calculating the posterior 

density function in equations 3-10 and 3-11 now require solving the differential equation. The 

posterior density in the BOD problem can be calculated using the following steps.  

1.  Determine a time step for solving the differential equation numerically. Although a small 

time step will produce a more accurate result, it will also require greater computational 

time. Therefore careful selection of the step size is an essential part of the implementation 

process.  

2. There are a variety of methods available for solving differential equations numerically. In 

this research, since all coding was accomplished using Matlab software, the Matlab  

built-in function ODE 45 was utilized. The built in function uses a Runge-Kutta 

algorithm with a variable time step for efficient computation. 

3.  Using ODE 45, the predicted BOD value,        , can be determined for each 

experimental run in the data. The density is then calculated based on the following 

equation.  

             
 

   
      

 

    
 
             

 

 

   

  (3-12) 

The parameter point estimates and joint confidence regions obtained using both form of the BOD 

model are shown in Figure 3-11.  
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Figure 3-11: 95% joint confidence regions obtained using the differential and analytical forms of 

the BOD model.   

The JCRs and point estimates obtained when using the differential form of the model are almost 

the same as the results found from using the analytical equation. Therefore, the proposed 

algorithm for solving models with differential equations is valid, and the algorithm will be 

applied in the following chapters.   

3.5 Summary 

A MCMC implementation methodology was present in this chapter using specific examples from 

the BOD case study. The chapter focused on choosing the proper MCMC technique, selecting 

the approximate starting values, properly detecting convergence of the Markov chain and 

correctly tuning the MCMC algorithm. In addition, the results also showed that the pure error 

variance needs to be estimated as a parameter in order to obtain correct results. Once the MCMC 

algorithm was implemented successfully, the results were then compared with approximation 

techniques. It was found that both approximation methods of constructing JCRs yielded incorrect 

results. Therefore MCMC methods must be used in these non-linear models. Finally, good 

agreement was observed between the analytical and differential forms of BOD model.   
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Chapter 4: Reactivity Ratio Estimation  

4.1 Introduction  

Polymerization processes represent an important approach to the production of a wide variety of 

industrially important materials. It is of practical importance to study these systems in order to 

produce polymeric materials with the desired properties. Investigation of these systems is also 

essential to the control and safe and efficient operation of polymerization reactors. Modeling 

these reactions, however, requires knowledge of polymerization parameters such as reactivity 

ratios. To define reactivity ratios, first let us consider the reaction below. 
 

     
     

   
         

  (4-1) 

where    denotes monomer j,     
  represents a propagating copolymer radical with n monomer 

units and the last unit containing monomer i. For a copolymer system, i and j can take on values 

of 1 and 2. Using the four propagating rate constant, the reactivity ratios can be defined as shown 

below.   

      
   

   
 (4-2) 

      
   

   
 (4-3) 

Although a significant number of studies have been carried out for reactivity ratio estimation in 

copolymerization systems, these studies fail to accurately capture the uncertainty in the 

parameters. The confidence regions presented in these studies are often approximate in shape and 

probability content as seen in Chapter 3. The failure of these methods to accurately capture the 

uncertainty depends upon the non-linearity of the model and the design of the data.  The joint 

confidence regions developed using MCMC methods therefore can improve upon parameter 

uncertainty estimates and can provide insights into how accurate the approximation techniques 

are.  

Reactivity ratios can be determined using either copolymer composition data or triad fraction 

data. When copolymer composition data is available at low conversion, the Mayo-Lewis model 

is applied. For higher conversion, the Meyer Lowry model and the direct numerical integration 



 
 

52 
 

scheme are applied. On the other hand, when triad fraction data is available, a multiresponse 

estimation scheme must be utilized. In this chapter, reactivity ratios and joint confidence regions 

will be estimated in the four options listed above. In doing so, the following two objectives will 

be addressed:  

1. The MCMC implementation framework provided in chapter 3 will be applied to the four 

cases listed above. Regression analysis in these cases involves solving implicit equations, 

differential equations and dealing with multiple responses. Therefore this chapter 

presents an opportunity to explore in detail, the required MCMC implementation steps 

for these different aspects in non-linear models.  

2.  The parameter estimates and joint confidence regions obtained using the MCMC 

methodology will be compared to the approximation methods discussed in section 2.3.  

The comparison will provide a better understanding of whether or not the approximate 

joint confidence region can adequately capture parameter uncertainty. When these 

approximations fail, MCMC methods must be used. Therefore, the case studies will 

attempt to illustrate the advantage of using MCMC techniques when analyzing non-linear 

models in chemical engineering problems.  

4.2 Copolymer Composition Data  

The copolymer composition data used in this work was taken from Madruga and Fernandez-

Garcia (1994), who studied the free radical copolymerization of di-n-butyl itaconate (DBI) and 

methyl methacrylate (MMA). This system was previously studied by Kazemi et al. (2011) and 

comparison of their results with the MCMC results will be provided. The free radical 

copolymerization was carried out in benzene at 50ºC and at low conversion levels. Sixteen 

experimental trials were conducted at various monomer feed composition f10, and conversion 

levels Xw, and the output copolymer composition     , was measured.  
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Table 4-1: Experimental data for DBI/MMA copolymerization at low conversion level (Madruga 

and Fernandez-Garcia, 1994) 

Feed composition 

f10  

Conversion Xw 

(wt%)   

Copolymer 

composition     

0.035 6.46 0.025 

0.064 6.04 0.043 

0.065 8.05 0.056 

0.199 5.34 0.165 

0.301 5.09 0.246 

0.301 5.97 0.259 

0.499 3.61 0.377 

0.453 8.77 0.382 

0.491 3.86 0.411 

0.547 4.18 0.459 

0.599 3.17 0.512 

0.698 4.47 0.623 

0.798 4.64 0.732 

0.301 4.82 0.272 

0.492 4.05 0.416 

0.7 4.75 0.628 

Although the initial monomer feed and conversion levels represent the independent variable, the 

error associated with them cannot be neglected. Therefore an error in variables (EVM) model 

was applied to the Mayo-Lewis model, the Meyer Lowry model and the direct numerical 

integration model. The data set shown in Table 4-1 will be used for all three models. The 

following sections will discuss the implementation steps and present the MCMC results from 

each of the three models. 
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4.2.1 Error Structure  

Prior to setting up the EVM model, assumptions regarding the error structure for both the 

independent and dependent variables must be established. It is assumed that all measurements 

are independent, and that the error for all variables is normally distributed. Determining the 

magnitude of the error often necessitate running replicate experiments. When replicates are not 

present, literature sources or past experience can provide a guideline for the magnitude of the 

errors. For this particular case study, the error will be assumed to be multiplicative at levels of 

±1, ±1, and ±5 for variables f10, Xn, and   
  respectively.   

         
        

  (4-1) 

       
       

  (4-2) 

   
     

  
      

  (4-3) 

The asterisk represents the true values of the variables and   is the error term for each variable. 

In order to express the above equations in a more convenient form, the natural logarithm can be 

taken of both sides. At low error levels, the term ln(1+    can be approximated by    and the 

above equations can be simplified to:  

                
       

 (4-4) 

              
      

 (4-5) 

      
        

  
     

 (4-6) 

4.2.2 Mayo-Lewis Model   

The Mayo-Lewis model, shown in equation 4-7, provides a relationship between the true values 

of the instantaneous copolymer composition, the unreacted monomer composition, and the 

reactivity ratios (Mayo and Lewis, 1944). The model assumes that the monomer composition 

does not change with conversion. Therefore the model is only valid at low conversion levels 

since compositional drift can occur as the polymerization reaction progresses.  
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 (4-7) 

The implementation protocol described in Chapter 3 can now be applied to the Mayo-Lewis 

model. Error in both the unreacted monomer composition f1, and the instantaneous copolymer 

composition F1, will be considered. The posterior distribution function can then be developed by 

combining the EVM likelihood function shown in Chapter 2, equation 2-24, with a uniform 

prior.  

 

      
     

             
 

  
   

  

 
 

  

    
   

 
  

               
  

  
 

  

   

  
               

  

  
 

 

  

(4-8) 

where   
  and   

  represent the true values of the measurements that need to be estimated. Since 

the reactivity ratios are of primary interest, equation 4-7 can be substituted for   
  in equation 4-8. 

            
                

 

  
   

  

 
 

  

   

 
 
 

 
 

   

 
  

                
  

  
 

  

   

 

 

 
 

             
     

      
      

   

     
        

      
          

   

  

 

 
 

 

 
 
 

 
 

 

(4-9) 

The regression approach involves estimating 16   
  parameters and two reactivity ratio 

parameters.  This can be accomplished using the Metropolis-Hastings algorithm. When 

considering what blocking scheme to use, recall from Chapter 2 that correlated parameters 

should be estimated simultaneously. Therefore, the parameters   
    can be sampled as one block, 

and the reactivity ratios can be sampled as another block. The Markov chain can be generated by 

following the procedure below.    

1. Generate 16 values for   
  using a multivariate normal distribution, where the mean is the 

current state of the Markov chain. The elements of the covariance matrix of the proposal 

distribution are tuned based on the acceptance rate.  

2. Accept or reject all 16 values of   
  based on the following acceptance criterion:  



 
 

56 
 

     
         

              
    

         

        
        

  (4-10) 

Note R in the above equation represents the values of r1 and r2.  

3. Generate values for r1 and r2 using a multivariate normal distribution. Again the 

distribution should be centered at the current value of the Markov chain.  

4. Accept or reject both r1 and r2 values based on the following criterion:  

            
              

           
  

              
  

  (4-11) 

5. Return to step 1 and continue the MCMC cycle until convergence is achieved.  

Note that in the subsequent sections when the EVM variable    is introduced, steps 1 and 2 are 

repeated for this additional variable. 

Acceptance rates of 22 % and 33% were observed indicating that the Markov chain appears to 

have successfully converged to its stationary distribution. Another method of checking 

convergence is to start at extreme initial values and see if the chain settles down. As shown in 

Figure 4-1 below, even when an initial guess of 1.5 and 2 was used for the two reactivity ratios, 

the Markov chain quickly reached equilibrium.  
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Figure 4-1: The MCMC output for the two reactivity ratios in the Mayo-Lewis equation using an 

initial guess of 1.5 and 2 was used for parameters 1 and 2 respectively. The first 500 cycles 

represents the burn-in period that occurs due to the initial guess.  

After executing the sampling procedure for 1,000,000 cycles, the average of the samples was 

taken in order to determine the reactivity ratios. Table 4-2 shows the MCMC results along with 

the optimization estimates from Kazemi et al. (2011). There is excellent agreement between the 

two methods, indicating reliable parameter estimates can be attained using both methods. 
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Table 4-2: The point estimates for parameters in the Mayo-Lewis model obtained using an 

optimization algorithm and MCMC techniques.  

 

Optimization 

Estimate 

MCMC 

Estimate 

r1 0.7098 0.695 

r2 1.313 1.3114 

The samples can also be used in generating the 95% joint confidence region, which can be 

compared with the elliptical approximation and the exact shape approximation. The findings are 

summarized in Figure 4-2.   

 

Figure 4-2: Point estimates and 95% joint confidence regions for the reactivity ratios using the 

Mayo-Lewis Model in copolymerization of DBI/MMA. The data was analyzed using MCMC, 

elliptical approximation and exact shape approximation.  

First let us compare the exact shape JCR with the results from the MCMC algorithm. From 

examining Figure 4-2, it is evident that the two JCRs are identical. This suggests that in this case 

study, the exact shape JCR can accurately capture the uncertainty in the parameters. This is not 
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surprising since, in previous case studies (Rossignoli and Duever, 1995), the Mayo-Lewis model 

has been found to not possess a high degree of non-linearity.   

Comparison of MCMC results with the elliptical approximation shows that, although both 

methods provide JCRs with similar shape, the linear regression approach overestimates the 

uncertainty in the reactivity ratios. When using the approximate JCRs, a significant region in the 

r1 and r2 space is being considered as possible values for the parameters, when it should be 

excluded based on a confidence level of 95%.  The deviation between the two methods translates 

to a significant difference in the uncertainty in the Mayo-Lewis plot. In Figure 4-3, the middle 

curve represents the Mayo-Lewis plot obtained using the reactivity ratio point estimates. The 

other curves to the right and left of this line indicate the upper and lower limits for each method, 

obtained by taking lowest and highest points in both JCRs.  

 

Figure 4-3: The Mayo-Lewis plot for the copolymerization of DBI/MMA, using the final molar 

composition FDBI, and the initial monomer feed composition fDBI.  

Comparison of the dashed and dotted lines in Figure 4-3 demonstrates considerable differences 

between the two approaches. This is especially true at higher mole fraction of DBI. This example 
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demonstrates the importance of accurately capturing uncertainty in non-linear models, and 

provides strong motivation for applying MCMC methods instead of approximation techniques.    

4.2.3 Meyer-Lowry Model   

As previously mentioned, the Mayo-Lewis model can only provide accurate results if the data is 

obtained at low conversion levels. In order to use a larger conversion range in the polymerization 

reaction, the Mayo-Lewis equation was integrated by Meyer and Lowry (1965). The analytical 

integration of the equation assumes that the reactivity ratios remain constant throughout the 

polymerization reaction. The solution is referred to as the Meyer-Lowry Model and is shown in 

Equation 4-12. 

 

  
     

   
     

 
  

 

   
      

  
 

 

 
     

     
     

 
  

 

      
       

  
 

 

  
      

       
  

     
      

    

 
  

 
 

 

 

(4-12) 

where,    
  

       
    

  
       

     
       

              
     

       

          
 

In Equation 4-12, the variables   
 ,   , and     represent the cumulative copolymer composition, 

molar conversion, and the initial monomer mole fraction, respectively. The assumption of 

negligible compositional drift is no longer an issue since the Meyer-Lowry model take into 

account the conversion of the polymerization reaction. This model can therefore be applied to 

data obtained at low to moderate conversion levels.  

There are three EVM variables that must be taken into account when applying the Meyer-Lowry 

model to estimate reactivity ratios. Using the same approach as in section 4.2.2, the posterior 

distribution function can be expressed as:  
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(4-13) 

Note that the expression      
      

         is used since the Meyer-Lowry model is in the form of 

an implicit equation; therefore, an analytical expression for   
  cannot be obtained. This requires 

the implementation of a root finding algorithm in order to find the value of   
   at the particular 

experimental trial.   

Finding parameter estimates in the Meyer-Lowry model once again necessitates using the MH 

algorithm. The same implementation steps that were carried out in the Mayo-Lewis model can be 

applied here, with two key differences. First, there is an additional EVM variable   ; therefore 

another multivariate normal distribution must be used to generate 16 samples for the conversion. 

The acceptance criterion can then be set up using the current values of the other parameters. 

Second, there is a significant difference in how the posterior density values are calculated in the 

Meyer Lowry model. Unlike the Mayo-Lewis model, where the parameter values can be simply 

substituted into the posterior density function, the Meyer Lowry model is in the form of an 

implicit equation. Therefore parameter estimation using this model requires the implementation 

of the following additional steps to calculate the posterior density.  

1. Equation 4-12 must be rearranged as shown in equation 4-14.  

         
       

   

         
 

 

 
             

   

             
 

 

  
             

             
   

 

 

   (4-14) 

 

2. The parameter values for   ,    ,     and    can be substituted into equation 4-14 so that 

the equation is only a function of   
 . Remember that the values of    and      are being 

estimated in the EVM approach; therefore they represent the accepted parameter values 

from the previous MCMC cycle.  
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3. The Matlab built-in function fzero can then be applied for finding the value of   
  at each 

experimental condition. The experimentally observed value of   
  can be used as an initial 

guess in the root finding algorithm.  

4. Once the predicted value of   
  is calculated at each experimental run, the posterior 

density can be found by using equation 4-13.   

Using the proposed Metropolis-Hastings algorithm and the low conversion data shown in Table 

4-1, 100,000 samples were generated for the parameters. Successful tuning of the proposal 

distribution was accomplished by using the methodology discussed in Chapter 3. The 

convergence of the Markov chain was diagnosed using acceptance rates and Markov chain time 

series plots. Once successful convergence of the chain was established, the reactivity ratio 

estimates and confidence regions can be estimated using the MCMC samples. The results are 

summarized in Table 4-3 and Figure 4-4.    

Table 4-3: The point estimates for parameters in the Meyer-Lowry model obtained using an 

optimization algorithm and MCMC techniques.  

 

Optimization 

Estimate 

MCMC 

Estimate 

r1 0.7129 0.6793 

r2 1.310 1.3195 

Note that in Table 4-3 that there is a small difference between the optimization estimate and the 

MCMC value. The discrepancy between the two methods arises from the fact that MCMC 

parameter estimates involves calculating the expected value while optimization estimates are 

based on finding the mode of the distribution. Therefore if the posterior distribution is not 

symmetric, then the two methods can produce different results.  



 
 

63 
 

 

Figure 4-4: Point estimates and 95% joint confidence regions for the reactivity ratios using the 

Meyer-Lowry Model in copolymerization of DBI/MMA. The data was analyzed using both 

MCMC and approximation techniques.  

The MCMC JCR shown in Figure 4-4 indicates a confidence region whose shape is non-

elliptical. This is to be expected since the Meyer-Lowry model is highly non-linear. The non-

linear shape could be an artifact of the analytical integration of the Mayo-Lewis model. 

Comparison of the elliptical approximation with the MCMC results shows that the shape of the 

posterior distribution in this particular problem, cannot be modeled using an approximation 

technique. In addition, the actual 95% confidence region as shown by the MCMC plot is larger 

than the region estimated by the elliptical approximation. Therefore, MCMC analysis must be 

utilized in order to obtain correct shape and probability content JCRs.  

The exact shape of the posterior distribution can be captured using the actual sum of squares 

surface. However, the distance travelled along the z-axis for the 95% confidence level is based 

on linear regression theory. Therefore although using the sum of squares surfaces provides JCRs 

with exact shape, the probability content will be approximate. This is evident in Figure 4-4, 

where the exact shape JCR overestimates the uncertainty in reactivity ratios. Although the exact 
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shape method is better than the elliptical approximation, the results show that MCMC techniques 

must be implemented in order to obtain the most accurate results.   

4.2.4 Direct Numerical Integration Model 

A more robust approach to modeling copolymer composition data is to perform a numerical 

integration. The Skeist equation (Eq. 4-15) shows the relationship between the cumulative 

copolymer composition   
 , the fraction of unreacted monomer   , and molar conversion   .  

   
   

            

  
 (4-15) 

In order to use Equation 4-15, the value of unreacted monomer    must be first determined. As 

the reaction progresses, the conversion increases and the fraction of unreacted monomer can be 

expressed as a differential equation.   

 
   
   

  
     

    
 (4-16) 

   represents the instantaneous copolymer composition that can be expressed using the Mayo-

Lewis equation. 

Again a posterior distribution function can be developed using the EVM likelihood function and 

a uniform prior. 

 

             
      

                
 

  
   

   
  

 
 

     
   

 
  

                  
  

  
 

  

   

  
                

  

  
 

 

   
                        

      
         

 

  
 

 

  

(4-17) 

The term      
      

         refers to the predicted value of   
  obtained after performing a 

numerical integration.  

One of the limitations in using an optimization technique is that since the variables    and     

are required for carrying out the numerical integration, they cannot be treated as EVM variables.  
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This is not an issue when MCMC methods are applied since the values for     and     are 

estimated separately from the reactivity ratios. Again the implementation of the direct numerical 

integration model is analogous to the Meyer Lowry model. The only difference lies in the extra 

numerical integration step, as discussed below.  

1. First, the integration limits and the initial conditions must be specified. In this case study, 

the integration occurs from a conversion level of 0% to a conversion value of   .  The 

initial condition for the numerical integration is the feed monomer fraction    . Note that 

   and     represent parameters that are being estimated in the MCMC iteration. 

2. The ordinary differential equation can then be integrated using any numerical integration 

technique, and the value of    that corresponds to the conversion     can be determined.  

3. The fraction of unreacted monomer   , can then be used to calculate the cumulative 

copolymer composition   
 , using Equation 4-15.  

4. The value of   
  can be substituted into Equation 4-17 in order to calculate the density.  

The Metropolis-Hastings algorithm was successfully implemented in the direct numerical 

integration model. The MCMC samples were used to determine parameter point estimates and 

construct joint confidence regions. Examining Figure 4-5, the MCMC joint confidence region 

appears to be elliptical in shape. Therefore, the shape of the joint confidence region is captured 

sufficiently by using an elliptical approximation. The probability content for both approximation 

techniques is also consistent with the MCMC results. 

Although for this particular model, there was good agreement between all three approaches, this 

should not be seen as a reason for implementing approximation methods in non-linear models. 

Depending on the model structure and the degree of non-linearity in the model, the JCRs 

obtained using approximation techniques might or might not provide an accurate representation 

of the true uncertainty. However, when Markov Chain Monte Carlo techniques are applied, we 

can be assured that the uncertainty is correctly characterized.    
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Figure 4-5: Point estimates and 95% joint confidence regions for the reactivity ratios using the 

direct numerical integration in copolymerization of DBI/MMA. The data was analyzed using 

both MCMC and approximation techniques.  

4.3 Triad Fraction Data  

The previous section involved estimating reactivity ratios using copolymer composition data. It 

can be advantageous, however, to determine reactivity ratios using triad fraction data since six 

different triad fractions can be measured for each run. Recall that when multiple response 

variables are used, more information is available in the experimental data for the purpose of 

parameter estimation.  Therefore, there will be greater precision in the parameter estimates. 

Another advantage of using triad fraction data is that the measurements offer substantial insights 

into the microstructure of the polymer, which relates to the properties of the polymer.     

The focus of this section will be the implementation of MCMC techniques in order to estimate 

reactivity ratio using triad fraction data. The copolymerization of styrene and methyl 

methacrylate, previously studied by Burke etl al. (1997), will be used as a case study. The 

problem was also investigated by Jitjareonchai (2006), and this current work will revisit some of 

Jitjareonchai’s research in this area.  
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The aim of this case study is to (1) illustrate how MCMC techniques can be implemented for 

multiresponse models, (2) compare the results from MCMC methods with those obtained from 

using an exact shape approximation, and (3) show how the correlation between parameters 

present in the triad fraction model is an artifact of the regression methodology.    

4.3.1 Parameter Estimation in Multi-response Cases 

The triad fraction refers to the sequence of three consecutive monomer units in the copolymer 

chain. These triad fractions are symbolized using     , where i, j and k represent monomer 1 or 

2. Although there are 8 different monomer combinations that are possible, only six fractions can 

be measured experimentally. This is because the fractions are measured using carbon 13 (C
13

) 

Nuclear Magnetic Resonance (NMR) and fractions      and      as well as fractions      and 

     appear in this same region in the C
13

 NMR spectrum. Therefore, these response variables 

are indistinguishable from each other.  The relationship between the triad fraction and the 

reactivity ratios can be expressed in equation 4-18.   

       
  

   
 

  
   

              
                

  
   

 

  
   

              
  

(4-18)            
        

  
   

              
                    

       

  
   

              
  

       
  

 

  
   

              
                

  
 

  
   

              
  

Calculating the values of the triad fractions involves analysis of the carbon 13 NMR spectrum. 

The relationship between the normalized peak areas and the triad fractions were established for 

the copolymerization of styrene and methyl methacrylate by Aerdts et al. (1993). This linear 

relationship is expressed in the equations below.  
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  (4-20) 

where X, Y and Z represent the normalized peak areas for monomer 1 centered fractions and A, 

B+C and D represent the area for monomer 2 centered fractions. The values for the parameters 
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     and      have been estimated to be 0.44 and 0.23 respectively by Aerdts et al. (1993). The 

C
13

 NMR used in this case study is shown below:     

Table 4-4: The C
13 

NMR data used in the triad fraction model by Burke et al. (1997) 

Trial # f1 X Y Z A B+C D 

1 0.2123 0.1748 0.5483 0.2770 0.0991 0.6836 0.2173 

2 0.2249 0.2029 0.5376 0.2595 0.0832 0.7137 0.2032 

3 0.3926 0.1695 0.6058 0.2248 0.0879 0.7820 0.1301 

4 0.3972 0.1556 0.5333 0.3111 0.1159 0.7501 0.1340 

5 0.5169 0.1186 0.6242 0.2571 0.1121 0.8175 0.0705 

6 0.5170 0.1203 0.6097 0.2700 0.1126 0.7794 0.1080 

7 0.7913 0.0459 0.7473 0.2068 0.1333 0.7815 0.0852 

8 0.7919 0.0576 0.7653 0.1772 0.1598 0.7408 0.0994 

Since the peak areas are based on a normalization, it can be shown that X + Y + Z = 1 and A + 

B+ C +D = 1. Therefore monomer 1 and monomer 2 centered triad fractions will each sum up to 

one. Relationships in the variables can be problematic in parameter estimation and is referred to 

as collinearity. To avoid this issue, Burke et al. (1997) recommended removing peaks X and D 

from the regression analysis. Using matrix algebra and the NMR peak areas, the triad fraction 

values can be estimated.  

The posterior density function developed by Box and Draper (1965) can be used to determine the 

parameter estimates for the triad fraction model. Similar to the copolymer composition models, 

the fully conditional distribution of the parameters could not be determined and therefore 

applying the Gibbs sampler technique could not be justified. Therefore the Metropolis-Hastings 

algorithm was once again chosen for analyzing the multiresponse model. It is recommended that 

the reactivity ratios be sampled separately since there should not be any correlation between the 

parameters. The Metropolis-Hastings algorithm shown in Figure 2-1 and the tuning steps shown 

in Figure 3-1 can be applied to this case study as exemplified using the BOD example. The only 
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difference lies in how the density values are calculated, and this step will be explored in greater 

detail below.  

1. Using the sample reactivity ratio values from the MCMC simulation, determine the 

predicted values for the four responses     ,         ,         , and      by applying 

equation 4-16.  

2. Create a 4 by 1 vector z by taking the difference between the observed value and the 

predicted value from step 1.  

                (4-21) 

3. Using the vector in equation 4-21, evaluate     
 . This quantity will represent an i by j 

matrix, where the ij
th

 element will contain the product of deviations of the responses i and 

j.  

4. Repeat steps 1 to 3 for each of the experimental runs and sum the values as shown in 

equation 4-22.    

         
 

 

   

 (4-22) 

5. Finally, the density of the candidate or current value can be determined by equation 4-23.  

            
 
 
 
 (4-23) 

where the solid line brackets represents the determinant of the matrix.  

Note that the normalization constant is not required in the current procedure. This is because the 

acceptance criterion in the Metropolis-Hastings algorithm appears as a ratio; therefore, the 

normalization constant will cancel out.  

The procedure outlined above was carried out for 1,000,000 cycles and the parameter values 

obtained were used to construct the 95% joint confidence region. To generate the confidence 

region for the exact shape approximation, the single response method described in section 2.3.2 

can be extended to the multiresponse case:  
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                           (4-24) 

where      is calculated using the estimated parameter values.  

Careful examination of Figure 4-6 below reveals that, although the shape is correct, the 

approximate joint confidence region overestimates the uncertainty in the reactivity ratios. 

Therefore the results from this case study provide further incentive to apply MCMC methods in 

these highly non-linear models. 

Figure 4-6: 95% joint confidence regions for the reactivity ratios using the multiresponse triad 

fraction model in copolymerization of STY/MMA. The data was analyzed using both MCMC 

and exact shape approximation techniques   

Another interesting point to note from Figure 4-6 is that both methods show a confidence region 

with distorted elliptical shape. This tilting of the JCR away from the y-axis signifies correlation 

between the two reactivity ratios. Examination of Equation 4-16 however, reveals that monomer 

1 center triad fractions are only related to the    values. The same is true for the parameter   . 

Therefore, it appears that the correlation shown in Figure 4-6 is an artifact of the multiresponse 

model. The section below will attempt to estimate the two reactivity ratios separately.   
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4.3.2 Decoupled Data   

In the previous section, all four responses were used in the MCMC protocol. However, to 

remove the correlation shown in Figure 4-6, the estimation problem was carried out separately 

for parameters 1 and 2. The following two equations were applied to estimate     

       
  

   
 

  
   

              
                        

        

  
   

              
  (4-25) 

The value for    was obtained using the monomer 2 center triad fractions.   

           
       

  
   

              
                    

  
 

  
   

              
  (4-26) 

Using this approach, a marginal distribution can be determined for the two parameters. The joint 

confidence region can then be generated by combining the marginal distributions, and the plots 

are displayed in Figure 4-7.  

 

Figure 4-7: 95% joint confidence regions for the reactivity ratios analyzed using coupled and 

decoupled data.  

Comparison of the two plots in Figure 4-7 shows that the newly acquired JCR contains no 

correlation between the parameters. Therefore it appears that the correlation present in Figure 4-6 

was a result of the experimental data or triad fraction model structure. The small number of 
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experimental runs could be one possible reason for correlation observed between the reactivity 

ratios. This case study shows that by applying Markov Chain Monte Carlo techniques, the 

correlation can be detected and removed.  

4.4 Summary 

Reactivity ratios were estimated in four different non-linear models by successfully executing the 

Metropolis-Hastings algorithm. The MCMC implementation methodology presented in Chapter 

3 was extended for these particular models and additional implementation steps were briefly 

described. The obtained MCMC results were the compared with two different approximation 

methods: the elliptical approximation and the exact shape approximation.  

The following conclusions were drawn by comparing the MCMC results with the finding 

obtained from applying the elliptical approximation.   

 The elliptical approximation overestimates the uncertainty in the Mayo-Lewis model and 

underestimates the uncertainty in the Meyer-Lowry model.  

 In addition, it generates JCRs with incorrect shape as seen in the Meyer-Lowry example.  

 The direct numerical integration approach, however, produced JCRs that were similar in 

size and probability content to the MCMC confidence regions.  

A comparison was also made between the MCMC approach and the exact shape approximation.     

 The exact shape approximation accurately captures the uncertainty in the Mayo-Lewis 

model and the direct numerical integration model.  

 Although it produces the correct shape in all the four models, it slightly overestimates the 

uncertainty in the Meyer-Lowry model and the triad fraction multiresponse model.  

 Finally, by using an MCMC approach and estimating the values of the reactivity ratios 

separately, model induced correlation can be removed in the triad fraction model and 

correct shape, correct probability JCRs can be obtained.  

The results show that in some models, approximation methods are accurate while in other 

models, they fail to adequately model the parameter uncertainty. Therefore in order to ensure that 

the parameter uncertainty is always captured accurately, MCMC methods need to be utilized.  
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Chapter 5: Parameter Estimation in Water-Gas Shift 

Reverse Reaction 

5. 1 Introduction 

The solid oxide fuel cell (SOFC) is a promising new technology for producing clean electricity 

efficiently. It uses a solid oxide electrolyte in order to convert chemical energy into electric 

energy. These fuel cells are known to have high efficiency, long durability and low emissions; 

therefore, they represent an alternative energy source to fossil fuels. Although this technology 

shows potential, a significant amount of research is still required before SOFC can be 

implemented in every day processes. An essential part of SOFC research is estimating 

parameters that can be used in modeling these fuel cells. Therefore, the aim of this chapter is to 

apply MCMC techniques in order to estimate SOFC model parameters.  

 The reaction of hydrogen and oxygen produces a significant amount of energy with water as its 

only by-product.  

              (5-1) 

One of the challenges of developing efficient fuel cells is finding a suitable source for generating 

hydrogen.  The hydrogen used in the SOFC can be produced using a process known as methane 

steam reforming (MSR). The chemical reaction is shown below:   

                   (5-2) 

The methane steam reforming step can be represented as a two-step process.  

Methane reforming                 (5-3) 

Water-gas shift reaction                (5-4) 

Estimating the parameters in the water-gas shift (WGS) reaction will be the primary focus of this 

work. The research is in collaboration with Professor Eric Croiset and his student Mazni Ismail, 

who are interested in finding kinetic parameter values in the WGS reaction. They initially 

applied an optimization algorithm to determine the kinetic parameters. However, the parameter 

estimates were found to depend considerably on the value of the initial guess; that is, changing 

the initial value was found to change the parameter estimate. In addition, parameter joint 
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confidence regions could not be determined accurately using an approximation method. In light 

of these limitations, the Metropolis-Hastings algorithm was applied to this problem in order to 

obtain reliable parameter estimates and generate correct shape and correct probability content 

JCRs. During the estimation procedure, model simplification was required due to issues of 

parameter observability and correlation. This chapter will discuss how to detect these problems 

in the MCMC output and examine how these problems can be resolved.  

5.2 Water Gas Shift Reaction Kinetic Model  

The methane steam reforming experiments were conducted by Mazni using a catalytic fix-bed 

reactor. Although the reaction of interest is the WGS reaction, the reverse reaction was studied 

because of safety concerns and ease of operation. The experiment consists of changing the 

catalyst weight, the reaction temperature and the mole fraction of reagents and determining the 

conversion of carbon dioxide. Since the focus of this research is in the parameter estimation 

stage, the specific experimental details will be omitted.  

The kinetic model for the reverse gas shift reaction can be expressed by a system of ordinary 

differential equations shown below. The equations are derived using a mass balance around the 

fixed-bed reactor.  

H2 mole balance 
    

  
       (5-5) 

CO2 mole balance 
     

  
       (5-6) 

H2O mole balance 
     

  
      (5-7) 

CO mole balance 
    

  
      (5-8) 

where   represents the catalyst weight,      represents the rate of the WGS reaction and    
, 

    
,      and     represent the molar flow rates of hydrogen, carbon dioxide, water and carbon 

monoxide respectively. An expression for the reaction constant     , can be derived by breaking 

the reverse WGS reaction into its elementary reactions. The final expression is shown in 

equation 5-9.  
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(5-9) 

In the above equation, k,     
, KCO, KS, and      represent parameters while Kp, is the 

equilibrium constant for the overall reaction that can be calculated from Perry’s Handbook. The 

lowercase k is used to represent a rate constant while the uppercase K is used to denote an 

equilibrium constant.  

In order to obtain parameter point estimates and generate joint confidence regions, the 

measurement error from the experiment must be quantified. This was accomplished through 

replicate runs, which provided a standard deviation of    = 0.01198 for the conversion of carbon 

dioxide in the catalytic reactor. Assuming that the error follows a normal distribution, the 

likelihood function can now be developed. The rate and equilibrium constants at each 

temperature can be estimated using the posterior distribution function given below:  

         
                  

 

  
 
 

 
 

     
   

 
  

    
     

 

  
 

  

   

  (5-10) 

In equation, 5-10, the term     
is the experimentally observed conversion of carbon dioxide 

while     

  represents the conversion obtained from the model. Since the MCMC algorithm 

necessitates the calculation of the posterior density, the value of      

  must be determined at 

each MCMC iteration. This involves integrating equations 5-5 to 5-8 simultaneously up to the 

catalyst weight. The integration will yield the CO2 flow rate out of the reactor, which can then be 

used in determining the conversion of carbon dioxide in the reaction. 

     
 

                

       
 

(5-11) 

Rather than estimating the rate and equilibrium constants at each individual temperature, the 

following two equations provide a relationship between the kinetic constants and the 

temperature.  
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    (5-13) 

where         is the rate constant at the reference temperature,          is the equilibrium 

constant at the reference temperature,    is the activation energy and    is the standard enthalpy 

change for the reaction.  Estimation of these parameters requires using the entire data set and 

replacing the rate and equilibrium constants in equation 5-9 with equations 5-12 and 5-13. Note 

that a reference temperature of 998K was used in the MCMC methodology since it represents the 

midpoint value of the four temperatures.   

5.3 Model Simplification  

The proposed rate expression shown in equation 5-9 required significant simplification due to 

observability issues. Observability problems are often encountered in non-linear models and 

properly dealing with this issue is an essential part of the parameter estimation protocol. 

Therefore this chapter will illustrate how to detect parameters that cannot be estimated accurately 

when Marko Chain Monte Carlo techniques are applied.  

5.3.1 Issue of Observability  

First, consider what happens when one tries to estimate all the parameters in the kinetic model. 

To simplify the regression methodology, the rate and equilibrium constants at a single 

temperature of 1023K will be estimated. This entails determining values for k,     
, KCO, KS, and 

KH2O. The following Markov chain time series plot was obtained after implementing the single 

component Metropolis-Hastings algorithm. Note that only the time series for     
 and KCO are 

shown.  
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Figure 5-1: The MCMC time series for the parameters     
 and KCO  

Figure 5-1 shows poor convergence of the Markov chain to its stationary distribution since the 

mean value of the samples varies throughout the time series. An acceptance rate higher than 70% 

was also observed for the two parameters. To understand the reason for poor mixing in the 

Markov chain, a sensitivity analysis was carried out. This analysis provides information on 

whether or not parameters in the given model can be estimated under the current experimental 

conditions. 

One method of measuring the sensitivity of a parameter is to calculate and plot the gradient 

(equation 5-14) as a function of the independent variable.  

           
        

      

        (5-14) 

where          represents the change in the response variable and     is the perturbation in the 

parameters.  

The gradient values can therefore be determined by perturbing one of the parameters and 

determining the corresponding change in the response variable. The gradient can be normalized 

by dividing it by the standard deviation so that any bias present in the measurement error can be 

removed. In addition, comparing the gradient values of different parameters might not be 
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adequate since parameter values can differ by several orders of magnitude. This can be rectified 

by multiplying the gradient values by 10% of the parameter values (Polic et al., 2004).  

This method does have one limitation in that the parameter values must be known prior to 

calculating the gradient. Therefore, non-linear least squares method must be first applied to 

generate initial parameter estimates. Even though prior parameter estimates are required, 

gradient plots are still useful in providing valuable information about parameter observability.  

The gradient plots can be generated at each individual temperature using equation 5-14. A 

similar trend was observed for temperatures between 923K and1023K; therefore, for brevity, 

only the gradient plots at a temperature of 1023K are shown (Figure 5-2). At temperatures 

between 923K and1023K, the gradient values for parameters k, KS, and      were found to be 

several orders of magnitude higher than the gradient values for parameters     
 and KCO.  

Parameters with higher gradient values can be estimated with greater precision. Therefore the 

sensitivity analysis seems to indicate that for temperatures between 923K and 1023K, only 

parameters k, KS, and      can be estimated accurately.  
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Figure 5-2: The gradient plots for parameters k, KS,     
, KCO, and      as a function of the catalyst 

weight using data points at 1023K.  
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The parameters      and KCO can be removed and the rate expression can be simplified as shown 

in equation 5-15. 

      

      
 

       

     

 

   
        

     

          
  

(5-15) 

Based on the results from the sensitivity analysis, it appears that the poor mixing in the Markov 

chain, that was visible in Figure 5-1, is related to parameter observability. Perturbing the 

parameter KCO2 and KCO produced little change in the response variable. The poor sensitivity in 

these parameters translates into a high transitional probability for the Markov chain due to the 

fact that when the transition probability is calculated, the density at the current value will be 

similar to the density at the proposed value. The high transitional probability could be the reason 

for the high acceptance rate that was observed for parameters KCO2 and KCO. The results in this 

case study illustrate how the issue of observability can be detected from examining the MCMC 

output. A high acceptance rate that persists even after tuning the algorithm could be an indication 

of poor observability in the parameters.  

It should be noted that the parameters      and KCO do become significant at 1073K as shown in 

Figure 5-3. However, since these parameters were found to be negligible between the 

temperatures of 923K to 1023K, their inclusion in the rate expression cannot be justified.  

            

Figure 5-3: The gradient plots for parameters      and KCO as a function of the catalyst weight 

using data points at 1073K. These two parameters become observable at the highest temperature.              

0.015 0.02 0.025 0.03 0.035
-0.3

-0.28

-0.26

-0.24

-0.22

-0.2

Catalyst Weight

G
r
a
d

ie
n

t 
o

f 
K

C
O

0.015 0.02 0.025 0.03 0.035
-0.0195

-0.019

-0.0185

-0.018

-0.0175

Catalyst Weight

G
r
a
d

ie
n

t 
o

f 
K

C
O

2



 
 

81 
 

5.3.2 Issue of correlation between parameters 

After the sensitivity analysis was conducted, the Metropolis-Hastings algorithm was applied 

using the simplified rate expression given by equation 5-15. Once again, after analyzing the 

MCMC output, it became evident that the Markov chain for parameters KS and      was not 

able to converge to the desired distribution. As shown in Figure 5-4, the sampled MCMC values 

for these two parameters are not stationary. The Markov chain for the rate constant k, however, 

appears to have converged since the mean is constant throughout the MCMC cycle. The 

acceptance rates for KS and      were around 80% further indicating a lack of convergence.  

 

Figure 5-4: MCMC output values for parameters k, KS and      at a temperature of 1073K.  

Since the sensitivity analysis showed reasonably high gradient values for these parameters, we 

know that observability is not the issue. Rather, the convergence problem lies in the high degree 

of correlation between these two parameters. Closer inspection of Figure 5-4 reveals that the 

values for KS and      move up and down simultaneously. This correlation is a consequence of 

the rate expression shown in equation 5-15, where KS and      appear as a ratio.  Both 

parameters cannot be estimated together because there are multiple values for each parameter 

that will result in the same ratio. Therefore the model needs to be reparameterized and the ratio 

of the two equilibrium constants (written as KL) must be estimated.      
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(5-16) 

Although reparameterization of the model involved removing the parameter      from second 

term in the denominator, the parameter still appears in the third term. Therefore, it is important to 

verify that the parameter     , is still observable by conducting a sensitivity analysis. The 

generated gradient plots are shown in the Figure 5-5. 

   

 

Figure 5-5: The gradient plots for parameters k, KL and KH2O as a function of the catalyst weight 

using data points at 1023K. The reparameterized model shown in equation 5-15 was applied.             

The gradient values obtained from these plots suggest that the parameter      is no longer 

observable. Since the parameter could not be estimated under the current experimental 

conditions, it was dropped and the final simplified model is shown below:   
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(5-17) 

The results from this section demonstrate how to diagnose observability and correlation issues 

properly through analysis of the MCMC output. Observability limitations are often characterized 

by high acceptance rates and non-stationary Markov chain behaviour. These conditions are also 

inherent when there is correlation between two parameters. Correlation must therefore, be 

detected by inspecting the Markov chain time series in order to observe whether the parameters 

are moving up and down simultaneously. Once it has been established which parameters can be 

estimated, the MCMC protocol outlined in Chapter 3 can be implemented.  

5.4 Reverse Water-Gas Shift Reaction Results  

5.4.1 Point Estimate and Joint Confidence Regions   

Although the model simplification procedure considered the rate and equilibrium constants at 

each individual temperature, it is more convenient to estimate the activation energy, standard 

enthalpy of change and reference temperature parameters. These parameters can then be applied 

to calculate rate and equilibrium constants at any temperature. The simplified model shown in 

equation 5-17 can be used, only this time, the values for k and KL can be expressed in term of the 
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    (5-18) 

The Metropolis-Hastings algorithm was executed for 100,000 cycles in order to get a good 

estimate of the sample mean. The parameters   , and      were sampled as one block while the 

reference parameters were sampled in another block. The initial guess for the MCMC algorithm 

was based on the optimization results that were obtained by Mazni. Analysis of the MCMC 

output yielded acceptance rates of 22% for the energy parameters and 38% for the reference 

temperature constants. These acceptance rates are close to the ideal acceptance rate of 23% and 
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therefore it appears that for the simplified model, the Markov chain has converged to the target 

distribution.  

Parameter point estimates and the standard deviation for all four parameters are also shown in 

Table 5-1. The estimates were obtained by taking the mean of the samples obtained in MCMC 

analysis and the error was quantified using the standard deviation of the samples. 

Table 5-1: The parameters estimates and their respective error obtained from MCMC analysis 

using all four temperature points. A midpoint temperature value of T= 998K was used as the 

reference temperature  

Parameters Estimate 
Standard 

Deviation 

         (molmin
-1

g
-1

atm
-1

) 0.3466 0.0279 

        33.3474 2.9818 

   (J/mol) 106830 12341 

     (J/mol) -63661 13386 

 

The MCMC samples can be used to generate joint confidence region with correct shape and 

correct probability content (Figures 5-6 and 5-7). Note that the slightly ragged lines and the small 

islands shown on the joint confidence region are an artifact of the contouring program. 
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Figure 5-6: A 95% joint confidence region for parameters         and         . The plus sign 

in the middle of the confidence region represents the sample mean.  

 

Figure 5-7: A 95% joint confidence region for parameters   , and     . The plus sign in the 

middle of the confidence region represents the sample mean.  
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This case study once again exemplifies the advantage of applying MCMC techniques in non-

linear model. While the optimization algorithm was found to depend highly on the initial guess, 

MCMC methods provided reliable parameter estimates. In addition, accurate joint confidence 

regions were also attained as shown in Figures 5-6 and 5-7. Therefore, the results further 

strengths the argument that Markov Chain Monte Carlo represents a robust and efficient 

approach to parameter estimation in non-linear models.  

5.4.2 Model Validation    

Once the parameters are estimated, graphical diagnostic checks can be implemented to verify 

that the model is able to accurately fit the data.  First, the residuals were plotted at each 

experimental run. Ideally, the residual values should be randomly scattered around a mean of 

zero. Any visible trends in these plots indicate that the model was not able to effectively capture 

all of the uncertainty.  

 

Figure 5-8: A plot of the residuals as a function of the experimental number   

Examination of the residual plot reveals that the residuals are randomly distributed about zero 

with no visible trend. This indicates that the simplified rate expression is able to model the data 

accurately. To examine how the predicted values compare with the experimental observations, 

consider Figure 5-9 below.    
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Figure 5-9: A plot of predicted values compared with experimentally observed values  

The plot shows that the predicted values using the parameter estimates give similar results when 

compared to the experimental data. Therefore, it is evident that the model is able to provide an 

accurate prediction of the observed experimental data. It is hoped that the finding from this work 

can be used to further advance the research in solid oxide fuel cells.   

5.5 Summary 

The following conclusions can be made from the Solid Oxide Fuel Cell case study:  

1. Non-stationary behaviour of a Markov chain coupled with a high acceptance rate can be 

an indication of poor parameter observability. In these situations, gradient plots must be 

generated and the appropriate parameters must be removed.   

2. Correlation between the parameters can be diagnosed by analyzing the Markov chain 

time series and visually determining whether the two time series follow the same trend. 

Reparameterization of the model might be required before a regression approach can be 

implemented.   
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3. Parameter point estimates and exact JCRs can be attained using the MCMC 

methodology. The relative simplicity of the estimation methodology as well as the 

reliability of the parameter estimates illustrates why applying MCMC methods in non-

linear models is advantageous.  

4. The predicted model output was shown to closely resemble the experimentally observed 

values. Therefore the parameters estimated in this research can be applied in future Solid 

Oxide Fuel Cell studies.  
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Chapter 6: Parameter Estimation in Waterloo Polymer 

Simulator Program 

6. 1 Introduction 

The Waterloo Polymer Simulator Program (Watpoly for short), is a comprehensive mechanistic 

reactor model for multi-component polymerization. It has been developed in the Department of 

Chemical Engineering at the University of Waterloo, by the group of Professor A. Penlidis’ (Gao 

and Penlidis, 1996, 1998 and 2000, and Jung, 2008). The polymerization simulation can be 

carried out in bulk or in solution and the reactor configuration can be batch, semi-batch or 

continuous. In addition to the polymerization model, the Watpoly program also includes a 

database of polymerization physico-chemical properties and kinetic parameters. The aim of this 

work is to estimate a few select parameters in the database using the Markov Chain Monte Carlo 

approach.  

In the parameter estimation protocol, the first step is to obtain polymerization data. Comparison 

of the model prediction results with experimental findings has shown that the Watpoly program 

has strong prediction capabilities (Gao and Penlidis, 1996, 1998 and 2000, and Jung, 2008). 

Therefore, the experimental data used in this case study will be simulated using the program. An 

appropriate error term will be added to each of the response variables in order to replicate a 

laboratory experiment. After a sufficient number of experiments have been conducted, the 

Watpoly program can be applied again, this time in conjunction with the MCMC algorithm. 

Parameter point estimates and joint confidence regions can then be presented.     

Parameter estimation in the Watpoly program was previously explored by Polic et al. (2004). An 

optimization algorithm was applied in determining parameter estimates while exact shape JCRs 

were generated to capture the parameter uncertainty. Implementation of the optimization 

algorithm however, proved to be difficult since local optima were encountered during the 

estimation procedure. In addition, the confidence regions obtained using the exact shape 

approximation technique failed to capture the parameter uncertainty adequately. Therefore the 

central motivation behind this chapter is to determine whether these limitations can be rectified 

using an MCMC approach. This chapter will provide a brief overview of the polymerization 
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models, discuss the polymerization conditions and finally compare the results from Polic’s work 

with the MCMC results.  

6. 2 Waterloo Polymer Simulator Theory  

Explanation of all the equations utilized in the Watpoly program is beyond the scope of this 

thesis. Therefore, the following section will explore only the important steps and equations used 

in the simulator. In addition, modeling equations that pertain specifically to the parameters and 

response variables used in this case study will be highlighted. For a more comprehensive 

understanding and description of the Watpoly program, refer to Jung (2008).  

6.2.1 Polymerization Reaction Kinetics 

Free radical polymerization reactions can be divided into three main steps: initiation, propagation 

and termination. Each of these steps will be explained briefly and the important equations will be 

presented.  

Initiation:  

The initiation step can be split into two separate reactions. First, the initiator   decomposed to 

form two primary radical fragments    
  (Equation 6-1).  

   
  
       

  (6-1) 

These primary radicals can then react with the monomer   , to form a radical     
  that is the 

length of one monomer (Equation 6-2). The notation i is in reference to the monomer type at the 

end of the chain, while the number 1 refers to the length of the chain. This same notation will be 

applied in subsequent equations.  

    
     

   
       

  
(6-2) 

Using equation 6-1, the rate of initiation can be written as:  

                 (6-3) 

where      is the initiator efficiency,    is the rate constant of initiator decomposition and [I] is 

the concentration of initiator. The equation above can only be applied in the case of a 



 
 

91 
 

homopolymerization. When multiple monomers are being used, the pseudo decomposition rate 

constant and pseudo initiator efficiency must be utilized.  

Propagation  

In modeling the propagation step, the “terminal” model will be considered. This model assumes 

that the reaction rate is only influenced by the monomer unit at the end of the propagating chain. 

The polymer grows by the addition of monomer units to the end of the polymer chain as shown 

below:  

     
     

    
          

  
(6-4) 

The rate of polymerization is one of the response variables used in the case study and it can be 

calculated using the following equation:  

              
(6-5) 

where [M] is the total concentration of monomer, kp is the propagation rate constant and      is 

the total concentration of radicals. Note that the pseudo propagation rate constant must be used if 

more than one monomer species is present. The total radical concentration represents another 

unknown whose equation can be determined by applying the steady-state hypothesis.  

       
      

  
     

(6-6) 

Termination 

There are two main termination reactions. The radical chain can either combine to form a single 

new dead polymer chain (Equation 6-7) or it can form two different polymer chains (Equation 6-

8).  

     
       

    
        

(6-7) 

     
       

    
           

(6-8) 
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The termination rate expression can be derived for a homopolymer system based on the above 

equations.  

        
    

(6-9) 

Although equations 6-7 and 6-8 represent the major sources of termination, a polymer chain can 

also be formed by transfer of the radical to the monomer, chain transfer agent, solvent or 

inhibitor. For the purposes of this work, these radical transfer equations will be omitted.  

6.2.2 Mole Balances 

Modeling of any polymerization process requires mole balance around the monomer (equation 6-

10) and polymer species (equation 6-11), as shown below:  

 
   

  
              

(6-10) 

 
   

  
               

(6-11) 

where, Ni represents moles of species i, Fi,in is the molar flow rate into the reactor, Rpi is the rate 

of consumption of monomer and VT is the volume of the reaction mixture. The index i is in 

reference to monomer type. The above equation can be easily simplified for a batch process by 

setting the inflow rate to zero. The conversion of the polymerization, one of the response 

variables used in this case study, can then be estimated using the molar balances and equation 6-

12. Examination of the plot of conversion as a function of time can yield valuable information 

about how quickly the reaction progresses.  

    
 

   
 

(6-12) 

6.2.3 Diffusion-control kinetics  

Diffusional limitations can occur in a polymerization reaction, especially at middle to high 

conversion levels. In order to address this issue, the free-volume approach has been applied in 

the Watpoly program.  The equation for the free volume of the monomer is given by:  
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(6-13) 

where    
  is the free volume of monomer at the glass transition temperature,    is the thermal 

expansion coefficient,     is the glass transition temperature of the monomer,   is the reaction 

temperature,    is the volume of the monomer and    is the total reaction volume. Note that    

is a parameter that will be estimated in this case study.  

The propagation reaction can become diffusion-controlled if the total free volume is less than a 

critical free volume. Therefore the following relationship can be applied to take this effect into 

account.  

 
              

 

   
  

 

      
   

(6-14) 

where parameters     and        correspond to the free volume and critical free volume 

respectively, while     is the glass-transition effect model parameter. Note that     will be 

one of the parameters estimated in this case study.  Although the equations have been omitted 

from this report, the Watpoly program considers diffusion limitations in the termination, transfer 

reaction and initiation efficiency rate constants.  

6.2.4 Molecular Weight  

Since the weight and number average molecular weights are two of the responses used in this 

case study, a brief overview on how to calculate these parameters will be provided below. The 

zeroth, first and second moments of the polymer distribution for linear chains are shown below 

(Polic et al., 2004):  

  

  

     

  
 

 

  

   

  
     

 

 
  

(6-15) 

  

  

     

  
 

 

  

   

  
  

(6-16) 

  

  

    

  
 

 

  

   

  
   

     

       
  

(6-17) 
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where 
  

       
                

 
  

   

  

  
(6-18) 

 
  

          
   

 
  

   

  

 
(6-19) 

The cumulative number and weight average molecular weights can then be determined by:  

 
  
       

    

  
  

(6-20) 

 
  
        

    

  
 

(6-21) 

6. 3 Conditions for the Parameter Estimation Protocol  

Recall that the primary objective of this chapter is to determine whether the limitations 

encountered in Polic’s thesis can be resolved using an MCMC approach.  Therefore, the 

parameters and response variables used in this case study will be identical to those reported in 

Polic’s thesis. The experimental conditions for the Watpoly simulation were changed slightly 

from Polic’s work due to computational issues. The following section will discuss these CPU 

time limitations and provide a general overview of the conditions used in the entire parameter 

estimation procedure.  

6.3.1 Parameters and Response Variables  

The MCMC algorithm will be applied to the homopolymerization of styrene in order to estimate 

three parameters within the Watpoly model. These three parameters, which have been described 

briefly in the theory section, are summarized below:  

1. αm  = The thermal expansion coefficient for the monomer (free volume units/K)  

2. BBm = Rate of decrease of kP (L/mol min per free volume unit) 

3. Tgp  = Glass transition temperature of the polymer (K) 
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The response variables used in estimating these three parameters are shown in Table 6-1. Note 

that the error terms in Table 6-1 are based on the values reported by Polic (2001). The error 

values have been corrected accordingly for the decrease in conversion (Penlidis, 2013).  

Table 6-1: The response variables with the corresponding units and error applied in this case 

study.  

Response Units Error 

Conversion ----- 0.025 

Number Average  

Molecular Weight (Mn) 
g/mol 4000 

Weight Average  

Molecular Weight (Mw) 
g/mol 4000 

Rate of Polymerization mol/L/min 0.001 

Radical Concentration mol/L 25% 

6.3.2 Operating Conditions   

Once the parameters and response variables are selected, the operating conditions for the 

polymerization must be determined. The homopolymerization of styrene will be carried out 

isothermally at a temperature of 65
º
C. Since the temperature is constant, the only independent 

variable is the reaction time. Plotting the conversion as a function of time can offer significant 

insights into how quickly the reaction is progressing. Consider Figure 6-1, where the solid line is 

used to represent the conversion curve obtained by Polic (2001). The conversion only starts to 

plateau after 950 minutes. A longer reaction time will result in a more computationally intensive 

MCMC algorithm since the numerical integration algorithm needs to be carried out for a much 

longer time. Therefore the rate of polymerization was increased in our case study (conversion 

curve shown by the dashed lines) by increasing the initiator concentration of AIBN to 0.28 

mol/L.  
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Figure 6-1: The plot of conversion as a function of time for the homopolymerization of styrene at 

65ºC 

Examination of Figure 6-1 reveals that between 280 minutes and 330 minutes, the conversion for 

the dashed curve rises sharply before plateauing. This steep increase can be attributed to an effect 

known as auto-acceleration. Auto-acceleration occurs at a conversion level when an increase in 

the reaction viscosity hinders the termination of the radical chains. This increases radical 

concentration leading to the increase in the reaction rate depicted in Figure 6-1. It should be 

noted that since both curves follow the same trend, comparison of the results from Polic’s work 

with the results from the current work can be justified.  

Ideally, experimental designs such as the D-optimality criterion should be applied in selecting 

the optimal experimental conditions. However, since the focus of this research is in the 

parameter estimation stage, the experimental runs will be chosen based on simple gradient plots.  

Although gradient plots can be generated for all five responses, for the sake of brevity, only the 

gradient values from the conversion response will be presented in this case study. The plots for 

parameters αm and BBm are shown in Figures 6-2 and 6-3. The gradient plot for Tgp was omitted 

since the gradient plot produced a similar trend as the gradient for parameter αm.  
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Figure 6-2: Gradient values for the parameter αm as a function of time using conversion as the 

response variable 

 

Figure 6-3: Gradient values for the parameter BBm as a function of time using conversion as the 

response variable 

Inspection of the αm gradient plot (Figure 6-2) reveals that the largest gradient values are found 

when the reaction time is between 290 to 310 minutes, while the gradient values are close to zero 

for the reaction times before 290 minutes. It is not surprising that the parameter becomes 

observable in the auto-acceleration region, since αm is used in diffusion-kinetic calculations. In a 

similar way, the parameter BBm becomes observable at high conversion levels since the 

propagation rate constant is diffusion-controlled in this region. High gradient values were 
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observed for parameter BBm after a reaction time of 310 minutes. Since both parameters become 

observable at different regions in the conversion plot (αm becomes observable between 290 to 

310 minutes, while BBm can be estimated using reaction time after 310 minutes), the two time 

intervals can be combined as shown in Table 6-2. Each interval was divided into 10 reaction 

times.   

Table 6-2: The reaction times when each parameter becomes observable  

 Time  

Parameter αm  290, 292, 294, 296, 298, 300, 302, 304, 306, 308, 

Parameter BBm  316, 318, 320, 322, 324, 326, 328, 330, 332, 334 

6.3.3 Experimental Simulation    

Once the parameters, response variables and experimental conditions have been established, the 

experimental data can be simulated. First the error terms for each response variable can be 

generated using the error magnitudes shown in Table 6-1 and by assuming that the error follows 

a normal distribution. Next the polymerization conditions described in section 6.3.2 and the 

Watpoly program can be used to determine the true values. The measurements can then be 

simulated by combining the true values from the Watpoly program with the error terms as shown 

below:   

                    (6-22) 

where i is the response, u is the experimental trial, yui is the simulated measurement for the i
th 

response and the u
th

 trial,           is the true value obtained from the Watpoly program and     

is the measurement error for the i
th 

response and at the u
th

 trial.  
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Table 6-3: The simulated experimental data that was used in this case study  

Run 
Time 

(min) 
Conversion 

Number 

Average  

Molecular 

Weight  

(g/mol) 

Weight 

Average  

Molecular 

Weight 

(g/mol) 

Polymerization  

Rate 

(mol/L/min) 

Radical 

Concentrat

ion (mol/L 

1 290 0.777 1.59E+04 3.10E+04 2.30E-06 6.28E-02 

2 292 0.772 2.23E+04 2.74E+04 2.00E-06 7.17E-02 

3 294 0.798 1.96E+04 3.25E+04 4.59E-06 8.62E-02 

4 296 0.845 2.04E+04 3.28E+04 6.26E-06 1.13E-01 

5 298 0.914 2.15E+04 3.79E+04 3.16E-06 8.49E-02 

6 300 0.858 1.87E+04 4.00E+04 3.60E-06 6.88E-02 

7 302 0.857 1.96E+04 4.81E+04 2.89E-06 5.67E-02 

8 304 0.897 2.07E+04 5.87E+04 3.14E-06 4.42E-02 

9 306 0.869 1.84E+04 6.47E+04 2.82E-06 3.13E-02 

10 308 0.882 2.41E+04 6.98E+04 2.12E-06 1.72E-02 

11 316 0.906 2.21E+04 7.57E+04 1.68E-06 1.48E-03 

12 318 0.883 1.86E+04 7.53E+04 2.49E-06 1.78E-03 

13 320 0.877 2.23E+04 7.60E+04 3.45E-06 1.87E-03 

14 322 0.889 2.17E+04 7.62E+04 2.26E-06 2.06E-03 

15 324 0.920 2.01E+04 7.43E+04 3.48E-06 3.29E-04 

16 326 0.890 2.07E+04 7.38E+04 5.31E-07 1.10E-03 

17 328 0.885 1.85E+04 7.43E+04 2.54E-06 1.08E-03 

18 330 0.961 2.00E+04 7.58E+04 2.44E-06 3.95E-04 

19 332 0.879 2.10E+04 7.79E+04 2.29E-06 1.49E-03 

20 334 0.872 2.34E+04 8.01E+04 2.09E-06 1.13E-03 

 

6. 4 Results  

The Metropolis-Hastings algorithm was applied to the simulated experimental data shown in 

Table 6-3 in order to estimate the parameter values for αm, BBm and Tgp. All three parameters 

were sampled as one block because the algorithm is computationally intensive. Since the 

implementation steps for a multiresponse model have already been described in the triad fraction 
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case study, for the sake of conciseness, these steps will be omitted here. The only difference in 

these two case studies lies in how the predicted response variables are calculated. In this case 

study, the Watpoly program was used in determining the predicted response variables. Finally, 

the tuning procedure described in Chapter 3 was implemented to obtain a fully converged 

Markov chain.   

6.4.1 Parameter Point Estimates Results  

Due to the long CPU times, the MH algorithm could only be executed for 72,000 cycles. The 

MCMC output for the three parameters is shown below.      

 

Figure 6-4: The MCMC output values for parameters αm, BBm, and Tgp  

The stationary behavior of the Markov chain time series signifies convergence of the Markov 

chain to its stationary distribution. In addition, an acceptance rate of 22% was achieved 

providing further evidence that the Markov chain has fully converged. Taking the average of the 

samples shown in Figure 6-4, parameter values for αm, BBm, and Tgp were estimated to be 

9.9968e-004 free volume units/K, 0.9829 L/mol min per free volume unit, and 377.97º K 

respectively. Note that all the samples were used in calculating the average since a burn-in period 

is not observed for the times series shown above. 

Previous studies have shown that the actual sum of squares surface for this particular case study 

contains numerous local optima.  Consider Table 6-4, which shows the optimization results 
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obtained by Polic (2001) using different starting values. The final parameter estimate was found 

to depend on where the optimization algorithm was started. Polic argued that the reason for 

obtaining different parameter estimates is due to the presence of local optima.    

Table 6-4: The results obtained when an optimization algorithm was applied using different 

starting values (Polic, 2001).   

 
Parameter Initial Values Final Values 

Simulation 1 

αm (free volume units/K) 0.001 0.001001 

BBm (L/mol min per free volume unit) 1.00 1.02 

Tgp (º K) 383.15 383.49 

Simulation 2 

αm (free volume units/K) 0.0015 0.00102 

BBm (L/mol min per free volume unit) 1.5 1.147 

Tgp (º K) 400 390.23 

Simulation 3 

αm (free volume units/K) 0.001 0.00102 

BBm (L/mol min per free volume unit) 1.5 1.542 

Tgp (º K) 390 396.94 

Simulation 4 

αm (free volume units/K) 0.0015 0.00107 

BBm (L/mol min per free volume unit) 0.5 0.536 

Tgp (º K) 350 418.71 

 

The stationary behavior of the Markov chain, depicted in Figure 6-4, indicates that despite the 

occurrence of local optima in the sum of squares surface, the MCMC algorithm can still provide 

reliable parameter estimates once the chain enters its stationary distribution. However, it will be 

interesting to observe whether or not the Markov chain will move towards the mean value when 

different initial guesses are used. That is, will the presence of local optima influence the 

convergence of the Markov chain when the chain is started away from its mean value? To 

answer this question, initial guesses above and below the actual parameter values were used. The 

starting values of 1.05 x 10
-3 

free volume units/K and 9.5 x 10
-4

 free volume units/K were used 

for αm, 0.5 L/mol min per free volume unit and 2 L/mol min per free volume unit for BBM and 

370 º K and 390 º K for Tgp. The Markov chain for each parameter is shown in the Figures 6-5 to 

6-7. 
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Figure 6-5: The MCMC output values for parameter αm when an initial guess of 1.05 x 10
-3 

free 

volume units/K (top plot) and an initial guess of 9.5 x 10
-4 

free volume units/K (bottom plot) 

were used.   

 

Figure 6-6: The MCMC output values for parameter BBm L/mol min per free volume unit when 

an initial guess of 0.5 L/mol min per free volume unit
 
(top plot) and an initial guess of 2 (bottom 

plot) were used.  
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Figure 6-7: The MCMC output values for parameter Tgp when an initial guess of 370 º K
 
(top 

plot) and an initial guess of 390 º K (bottom plot) were used.  

Figures 6-5 to 6-7 show that regardless of where the Markov chain is started, it quickly moves 

towards its mean value. The speed at which the chain enters its stationary distribution is found to 

vary from parameter to parameter. When 370 º K is used as an initial guess for Tgp , the chain 

reaches its mean value of 380 º K in only 70 cycles. On the other hand, the Markov chain for 

parameter αm requires 2300 cycles for reaching its mean value of 1x10
-3

. Although the length of 

the burn-in period was found to vary among the parameters, the Markov chain for all the 

parameters reached its mean value in a reasonable time. Therefore, the results presented above 

illustrate the advantage of applying MCMC methods in non-linear models. While the 

optimization algorithm was limited by the presence of local optima, MCMC techniques produced 

accurate parameter estimates.  

6.4.2 Joint Confidence Regions 

Recall that in Chapter 4, the exact shape JCRs were found to be in fairly good agreement with 

the results obtained from the MCMC methodology. It will be interesting to see if this 

approximation method is still accurate in this particular case study, where a more complex non-

linear model is being applied.  To provide a comparison, joint confidence regions were 

constructed for parameters αm and BBm and for parameters αm and Tgp. 
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Figure 6-8: Joint confidence region for parameters αm and BBm obtained using the exact shape 

approximation (Polic, 2001). The star represents the parameter point estimate. 

 

Figure 6-9: Joint confidence region for parameters αm and BBm obtained using the MCMC 

algorithm. The plus sign represents the parameter point estimate.   
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Figure 6-10: Joint confidence region for parameters αm and Tgp obtained using the exact shape 

approximation (Polic, 2001). The star represents the parameter point estimate. 

 

 

Figure 6-11: Joint confidence region for parameters αm and Tgp obtained using the MCMC 

algorithm. The plus sign represents the parameter point estimate.   
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approximation JCR (Figure 6-8) does not come to a close at large BBm values.  As a result, a 

significant portion of the αm and BBm is being considered when it should be rejected based on a 

95% confidence level. In addition, the approximation method was not able to adequately capture 

the shape of the confidence region. Similar problems are encountered when the JCRs between αm 

and Tgp are compared. Figures 6-10 and 6-11 are similar in that they both indicate high 

correlation between the two parameters. However, once again, the approximate JCR does not 

come to a close at the top portion of Figure 6-10 resulting in an incorrect confidence region. The 

results of this case study demonstrate the fact that even exact shape approximations might not be 

adequate when complex non-linear models are being utilized. MCMC methods must be applied 

in these situations in order to obtained precise results.  

6. 5 Summary 

The primary purpose of this case study was to determine whether or not MCMC techniques can 

address some of the limitations encountered when classical regression approaches are used. The 

results showed that even when local optima were present, reliable parameter point estimates can 

be obtained. In addition, while the exact shape approximation yielded incorrect shape and 

probability content JCRs, MCMC methods were found to provide accurate uncertainty regions. 

Therefore, it can be concluded that when dealing with complex non-linear models, MCMC 

techniques are the only viable option for parameter estimation.  
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Chapter 7: Computational Issues in Applying MCMC 

Techniques 

7. 1 Introduction and Motivation  

Executing MCMC algorithms require a large computational effort, especially when differential 

or implicit equations are involved. This computational cost could be one possible reason for the 

limited application of MCMC techniques in chemical engineering problems. Therefore, in order 

to motivate future research in this field, this chapter will briefly examine computation times for a 

wide variety of models and provide guidlelines for reducing CPU time.  

7. 2 Computation Time  

In order to better understand the feasibility of implementing MCMC techniques in non-linear 

models, a summary of the computational times for each model is provided in Table 7-1.  The 

algorithms were executed on a 2.13 GHz Intel Core 2 processor. The values in Table 7-1 

represents the time that is required to complete 100,000 cycles. This is the minimum number of 

cycles that is required in order to obtain reliable parameter estimates and produce smooth JCRs. 

It should be noted that if the number of cycles is increased ten times, the time will also be 

increased tenfold.      

Using results presented in Table 7-1, the following conclusions can be made:  

1. Computational time is not an issue when MCMC techniques are applied to explicit 

analytical equations. The MCMC algorithms for the analytical BOD model and the 

Mayo-Lewis model were completed in a much shorter time when compared to the other 

non-linear models.  

2. When MCMC methods are implemented in implicit equation models, the computational 

time is found to increase significantly since each iteration requires the execution of a root 

finding algorithm.    

3. The largest CPU times were observed in the differential equation models. Recall that 

solving these types of models involves numerical integration of the differential equation 

at each MCMC cycle. Even small increases in computation time for one cycle can have a 

drastic impact on the overall time.      
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4. It must be noted that there are significant differences in computational times among the 

various differential equation models. These differences are based on the number of times 

each differential equation is solved in one MCMC cycle. For the BOD problem, since 

time is the only dependent variable, the differential equation only needs to be solved 

twice per MCMC cycle (once to find the density of the current sample and once again to 

find the density of the proposed sample). The direct numerical integration model 

however, needs to be solved 32 times for each experimental run since each trial has a 

different differential equation. Therefore the model structure as well as the number of 

experimental runs has a large impact on how quickly the algorithm is executed.  

The results presented above can provide a rough time scale for chemical engineers who are 

interested in applying MCMC techniques to computationally intensive non-linear models.  

7. 3 Methods for Reducing Computational Time 

7.3.1 Serial Farming on Sharcnet 

Running the MCMC algorithm on multiple processors can decrease the computational time 

significantly. This can be accomplished using the SHARCNET computer cluster. SHARCNET is 

a network of high performance computers that are available for researchers in Canada who need 

to run computationally intensive jobs. There are two approaches that can be utilized in running 

MCMC code on multiple CPUs. The first method involves creating Matlab code that can be run 

in parallel on multiple processors. However, since parallelization of MCMC algorithm can be 

quite challenging, this method will not be explored in this work. Some suggestions will be 

provided in Section 8.2 on how this can be accomplished for future research. The second 

technique involves using a process known as “serial farming”. Serial farming entails running the 

same sequential code multiple times on different CPUs. It differs from parallel computing in that 

there is no communication between the CPUs. The following five steps can be used to run serial 

farming algorithms.  This procedure will be illustrated using the direct numerical integration 

model.  

1. Run the MCMC algorithm for 3,000 - 5,000 cycles on the desktop CPU. This is to 

determine whether or not the Markov chain is converging to its stationary distribution. If 

convergence has not yet been achieved, use the tuning methodology provided in Chapter 
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3. Remove any observed burn-in period and take the average of the MCMC samples, 

which will be the initial guess used in the serial farming approach.  

2. Log on to SHARCNET and transfer all the required files to the computer cluster. 

Compile the Matlab code to an executable file on Sharcnet so that it can be run multiple 

times without a license. When using Matlab in carrying out the MCMC algorithm, it is 

important to specifically assign the seed for the random number generator. Otherwise, all 

the different MCMC chain will have the exact same values.  

3. Determine the number of iterations and evenly divide these iterations among the different 

CPUs. For the direction numerical integration example ten CPUs will be used and the 

100,000 cycles will be divided into 10,000 cycles for each CPU.  

4. Submit the ten serial jobs to the computer cluster using the specific documentation 

provided by Sharcnet (Hu, 2013). The output for the direction numerical integration 

example is shown in Figure 7-1. Note that since the burn-in period was removed in step 

1, the ten MCMC chain are stationary at all times.  

5. Generate one long chain by combining the ten smaller chains together. This is illustrated 

in Figure 7-2. The long chain can now be used to obtain a more precise estimate of the 

MCMC sample mean and smoother curves for the JCRs.  

When using this serial farming approach with 10 CPUs, the direct integrated model was carried 

out in only 0.8361 hours. This is an approximate decrease of 96% when compared to the results 

from using 1 CPU. Therefore this approach represents a computationally efficient way to run 

MCMC algorithms. The computational effort of running MCMC algorithm on 1 desktop 

computer is compared with the time required to run the code on a computer cluster with 10 CPUs 

in Table 7-1.      
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Figure 7-1: The serial farming output for parameter one carried out on ten CPUs using the direct 

numerical integration model.  

 

Figure 7-2: The MCMC output when the ten cycles have been combined to produce 100,000 runs  
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Table 7-1: The time required to complete 100,000 cycles for various non-linear models using 

both desktop computer and a computer cluster with 10 CPUs.  

Model Type of Model 
Required time with 

1 CPU (hours) 

Sharcnet time 

with 10 CPUs 

(hours) 

Biological Oxygen 

Demand 

Analytical Explicit 

Equation 
0.011 0.019 

Differential Equation 0.833 0.078 

Mayo Lewis Model Analytical Equation 0.022 0.0056 

Meyer Lowry Model Implicit Explicit Equation 10.8 0.333 

Direct Numerical 

Integration 
Differential Equation 21.3 0.836 

Solid Oxide Fuel Cell 
System of Differential 

Equations 
153 2.85 

Waterloo Polymer 

Simulator 

System of Differential 

Equations 
486 76 

 

7.3.2 Other Guidelines for Reducing Computational Time  

In addition to the serial farming approach, the following suggestions can help reduce the MCMC 

computational time.  

1. If Matlab is being used in executing the program, it is very important to pre-define the 

size of all the large variables. For example, if a Matlab variable is being used to store all 

the MCMC samples, then defining its size at the beginning of the MCMC algorithm can 

drastically reduce the computational time. Another way to create an efficient Matlab 

program is to replace loops with vector calculation whenever possible. Vectorizing the 

code will result in a faster algorithm.  

2. The computational time can also be decreased by using Matlab Coder to convert the 

Matlab code to a C/C++ code. The code can be executed faster in the C/C++ 

environment.  

3.  The step size used in solving the differential equation has a drastic impact on how 

quickly the algorithm runs. Although a small step size is better, using a step size too 

small might not lead to any significant improvements in the final results. Therefore, it is 
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recommended that a preliminary study be carried out in order to determine the maximum 

step size that can be used before accuracy in the parameter estimation procedure is 

compromised. 

4. Selection of the blocking scheme has a considerable impact on the computational time. 

Each parameter or block of parameters requires the calculation of two density values (one 

value for the candidate sample and the other for the current sample). This means that if 

three parameters or blocks are used, then the computational intensity will increase three-

fold. Therefore sampling the parameters as one block is recommended in these situations. 

It should be noted that it can be difficult to tune multiple parameters when only one 

acceptance rate is produced. One method of tackling this issue is to select one parameter 

and fix all the other parameters. The tuning of the proposal for that particular parameter 

can now be carried out. Once a suitable acceptance rate is achieved, the same approach 

can be applied to the other parameters. After the appropriate scaling values for each of 

the parameters have been obtained, the parameters can now be estimated simultaneously.    
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Chapter 8: Conclusion and Recommended Future Steps 

8.1 Concluding Remarks 

This research work was motivated by the fact that although Markov Chain Monte Carlo methods 

have been well established, it has not been applied extensively in chemical engineering literature. 

Therefore, this work involved application of MCMC methodology in widely-used chemical 

engineering models.  In doing so, the three objectives that were described in Chapter 1 have been 

addressed.  

The first objective of this research was to discuss the implementation issues that can arise when 

executing MCMC technique in various chemical engineering models .A summary of the results 

is provided below:  

 An MCMC implementation procedure was presented in the biological oxygen demand 

case study and each step was illustrated using specific BOD examples. The procedure 

addressed the following issues: (1) how to select the proper MCMC algorithm, (2) the 

influence of the starting value, (3) how to tune the scaling factors in the proposal 

distribution, and (4) how to properly diagnosis whether or not the Markov chain has 

converged.  

 The results from the BOD case study illustrates the importance of estimating the pure 

error variance as a parameter instead of assigning it a value based on the mean squared 

error. In addition, the results also show that the tuning of the proposal distribution can 

become complicated if the posterior probability distribution has a heavy tail.  

 Parameter estimation of reactivity ratios involved analysis of various non-linear models. 

The implementation procedure that was provided in Chapter 3 was then extended to 

implicit equation models, differential equation models and multi-response models. Again 

specific examples from the case study were used to exemplify these procedural steps.   

 The results from the solid oxide fuel cell case study show how parameter observability 

and correlation can be detected from the analysis of the MCMC output. High acceptance 

rates that are observed in conjunction with a non-stationary Markov chain could be an 

indication of parameter observability.  Parameter correlation, on the other hand, can be 

identified when the parameters in the time series follow the same trend.  
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 The MCMC implementation results as well as the MCMC protocol proposed in this 

research can now be used as a guideline for chemical engineers who are interested in 

applying these techniques in non-linear models. 

After successful execution of the Markov Chain Monte Carlo techniques, the generated samples 

were used to determine parameter estimates and produce joint confidence regions. Comparison 

of these results with the findings obtained from classical regression approaches yielded the 

following conclusions:   

 In the BOD case study, both approximation methods failed to accurately capture the 

parameter uncertainty. The elliptical approximation overestimated the parameter 

uncertainty while the exact shape region generated an open shaped joint confidence 

region.   

 The elliptical approximation was found to overestimate the uncertainty in the Mayo-

Lewis model and underestimate the uncertainty in the Meyer-Lowry model. Although the 

exact shape method was suitable for modeling parameter uncertainty in the Mayo-Lewis 

model, it also produced incorrect probability content JCRs in the Meyer-Lowry model. 

Therefore accurately capturing the parameter uncertainty in these models necessitates the 

use of MCMC techniques.  

 The JCRs obtained from the triad fraction case study revealed a significant amount of 

model-induced correlation. Individually estimating the parameter using MCMC methods 

resulted in exact shape exact probability content JCRs with no correlation.  

 The findings from the solid oxide fuel cell case study illustrates the fact that reliable 

parameter point estimates and accurate JCRs can only be obtained if a MCMC approach 

is being utilized.  

 Finally, MCMC methods were applied in estimating a few select parameters in the 

Watpoly simulator. Due to the presence of local optima, optimization methods yielded 

inconsistent parameter estimates. In addition, open shaped JCRs were obtained when an 

exact shape approximation was utilized. These limitations were remedied by applying 

MCMC techniques.  
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The above results provide a strong argument for why MCMC techniques should be applied in all 

non-linear models. For one, using an optimization algorithm might prove to be inadequate if 

local optima are present. Second, the results from this research shows that approximate methods 

for constructing JCRs can lead to erroneous results. Therefore MCMC techniques present an 

accurate regression framework for determining parameter estimation in any non-linear models.  

One of the major limitations of using MCMC techniques is its computational time. Although this 

issue has been helped by the advances in computer technology and parallel programming, the 

CPU time can still become an issue. Therefore the third objective of this study was to explore the 

feasibility on implementing MCMC methods in various non-linear models. Based on the results, 

the following conclusions can be drawn.  

 Computational time is not an issue when MCMC methods are applied for parameter 

estimation in analytical models. 

 Computation times for various differential equations models have been provided in 

Chapter 7. The computational cost of the algorithm is influenced by the blocking 

scheme, the applied time step and the number of experimental runs. 

 A serial farming approach was presented as a means for reducing CPU time. In addition, 

practical guidelines on how to generate computationally efficient code have been 

provided.  

To summarize, this research illustrated why MCMC methods are beneficial in parameter 

estimation, addressed specific implementation issues, and provided guidelines for improving 

computational speed. It is expected that the results from this work will initiate future 

implementation of MCMC techniques in chemical engineering practices.  

8.2 Future Work 

8.2.1 Design of Experiments 

Recall that in Chapter 6, the optimal polymerization conditions were determined based on the 

gradient plot. A more appropriate technique is to select the optimal conditions using 

experimental design. One approach that has widely being applied in the design of experiments is 

the D-optimality criterion, where the hyper-volume of the linearized joint confidence region is 
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minimized. However, the criterion does have two major limitations: (1) it is only valid if the sum 

of squares surface is linear in the neighborhood of the initial guess and (2) reliable results might 

not be attained if local optima are present as shown by Polic (2001). Since Markov Chain Monte 

Carlo methods can be used in generating the actual shape of the posterior distribution function, 

more accurate results should be obtained. Therefore it is recommended that MCMC techniques 

be applied in order to investigate whether or not these limitations can be addressed. In particular, 

the BOD problem can be used as an initial case study. The currently used data set only consists 

of seven data points that do not cover the entire time span. Therefore, MCMC methods can be 

applied in determining additional data points for this problem.    

8.2.2 Computational Feasibility Study 

The computational limitations of solving differential equations were only examined very briefly 

in this research. It is therefore recommended that a more comprehensive study be conducted on 

how to decrease the computational time. This study should first examine how the integration step 

size in the differential equations influences the MCMC results. Work on model simplification 

and reduction can also be carried out in these differential equation models in order to create a 

more efficient MCMC algorithm. Finally, the Matlab Coder software can be used in order to 

generate C/C++ code. Research should be conducted to determine how much the computational 

speed improves when the algorithm is executed in a C/C++ environment.  

8.2.3 Parallel Computing 

In order to run an MCMC algorithm in parallel using multiple processors, each of the MCMC 

cycles must be independent from each other. Since Markov chains require the value of the 

previous iteration in order to determine a new sample, executing the MCMC algorithms in 

parallel can be challenging. There is currently a significant amount of research being conducted 

in parallelizing MCMC code. One possible technique of parallelizing the MCMC algorithm has 

been proposed by Campillo et al. (2009), who developed an algorithm that runs N multiple 

interactive chains. In the proposed method, each individual chain is used to generate samples for 

all other chains. Therefore, parallelizing the N interacting chains in each MCMC cycle will result 

in a faster mixing in the Markov algorithm.   
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8.2.4 Adaptive Metropolis-Hastings 

In the BOD example, poor convergence was observed when the Metropolis-Hastings algorithm 

was applied to a posterior distribution with a heavy tail. Successfully mixing of the Markov 

chain in these non-symmetric distributions requires a carefully designed proposal distribution. 

This can be accomplished using an adaptive Metropolis-Hastings algorithm. Therefore further 

research can be conducted on implementing the adaptive Metropolis-Hastings algorithm to 

chemical engineering problems. In particular, the algorithm should be applied to highly non-

symmetric distributions similar to the one encounter in the BOD example.   

8.2.5 Application of MCMC Methods using Experimental Data 

With the exception of the solid oxide fuel cell study, the experimental data for all other case 

studies were obtained from either computational simulation or literature sources. Therefore, the 

next step is to now conduct actual laboratory experiments and apply MCMC methods to various 

chemical engineering models. For example, the reactivity ratio in terpolymerization systems can 

be estimating using this approach. Experimental design can be incorporated in the estimation 

methodology in order to gain the maximum amount of information and replicate runs can be 

carried out so that an accurate estimate of the pure error is known.  

8.2.6 Application of MCMC Methods in Model Discrimination  

This research work has focus solely on applying MCMC methods in regression analysis. 

However, Markov Chain Monte Carlo can also be utilized in order to discriminate between rival 

models. Although Masoumi et. al (2012) has proposed an efficient and reliable approach to 

discriminating between candidate models, no experimental runs were carried out in their 

research. Therefore the next step would be to apply MCMC methods in order to discriminate 

between rival models using actual experimental data.  

8.2.7 MCMC Software Program 

One long term goal is to create a user-friendly program that can apply MCMC methods to any 

non-linear model. The program will ask the user to input the experimental data, the model 

structure, assumptions about the measurement error, prior knowledge and other MCMC related 

options. It will then carry out the MCMC methodology, generating point estimates and joint 

confidence regions. The software program should also have the following properties: (a) an 
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option to run parallel on a computer cluster (b) automatic tuning of the MCMC algorithm based 

on the acceptance rates, and (c) be able to successfully diagnose convergence of the Markov 

chain.  
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Appendix A: Experimental Data Used in the Solid Oxide Fuel 

Cell Case Study 
 

Table A-1: The experimental data obtained by Mazni Ismail in studying the solid oxide fuel cell  

 T (K) 
W.cat 

(g) 

Mol fraction CO2 

Conversion 

 
x,H2 x,CO2 x,CO x,H2O x,N2 

1 1073 0.01522 0.59 0.08 0.00 0.00 0.33 0.40249 

2 1073 0.01844 0.52 0.15 0.00 0.00 0.33 0.26430 

3 1073 0.02327 0.42 0.25 0.00 0.00 0.33 0.17986 

4 1073 0.02714 0.33 0.33 0.00 0.00 0.33 0.16635 

5 1073 0.02549 0.40 0.35 0.00 0.00 0.25 0.18208 

6 1073 0.02291 0.40 0.20 0.00 0.00 0.40 0.21635 

7 1073 0.02119 0.40 0.10 0.00 0.00 0.50 0.29685 

8 1073 0.01997 0.40 0.03 0.00 0.00 0.56 0.48553 

9 1073 0.02655 0.32 0.28 0.00 0.00 0.40 0.17485 

10 1073 0.03274 0.10 0.28 0.00 0.00 0.62 0.10270 

11 1073 0.03004 0.20 0.28 0.00 0.00 0.52 0.08402 

12 1073 0.03127 0.20 0.35 0.00 0.00 0.45 0.07707 

13 1073 0.02907 0.15 0.15 0.00 0.00 0.70 0.16452 

14 1073 0.02636 0.20 0.07 0.00 0.00 0.73 0.35823 

15 1073 0.02759 0.20 0.14 0.00 0.00 0.66 0.20048 

16 1073 0.02863 0.20 0.20 0.00 0.00 0.60 0.19211 

17 1073 0.03232 0.07 0.20 0.00 0.00 0.73 0.11472 

18 1073 0.03033 0.14 0.20 0.00 0.00 0.66 0.12673 

19 1073 0.02634 0.28 0.20 0.00 0.00 0.52 0.21353 

20 1073 0.02435 0.35 0.20 0.00 0.00 0.45 0.21242 
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21 1073 0.03179 0.07 0.19 0.02 0.00 0.71 0.10746 

22 1073 0.02756 0.20 0.20 0.03 0.00 0.57 0.17919 

23 1073 0.02649 0.20 0.20 0.07 0.00 0.53 0.22406 

24 1073 0.02541 0.20 0.20 0.10 0.00 0.50 0.23685 

25 1073 0.03033 0.14 0.20 0.00 0.03 0.66 0.09925 

26 1073 0.02863 0.20 0.20 0.00 0.03 0.60 0.10399 

27 1073 0.02634 0.28 0.20 0.00 0.03 0.52 0.14488 

28 1073 0.02541 0.20 0.20 0.10 0.03 0.50 0.09734 

29 1023 0.01522 0.59 0.08 0.00 0.00 0.33 0.31695 

30 1023 0.01844 0.52 0.15 0.00 0.00 0.33 0.19234 

31 1023 0.02327 0.42 0.25 0.00 0.00 0.33 0.12687 

32 1023 0.02714 0.33 0.33 0.00 0.00 0.33 0.10596 

33 1023 0.02549 0.40 0.35 0.00 0.00 0.25 0.12664 

34 1023 0.02291 0.40 0.20 0.00 0.00 0.40 0.13078 

35 1023 0.02119 0.40 0.10 0.00 0.00 0.50 0.18973 

36 1023 0.01997 0.40 0.03 0.00 0.00 0.56 0.32052 

37 1023 0.02655 0.32 0.28 0.00 0.00 0.40 0.11040 

38 1023 0.03274 0.10 0.28 0.00 0.00 0.62 0.05519 

39 1023 0.03004 0.20 0.28 0.00 0.00 0.52 0.04199 

40 1023 0.03127 0.20 0.35 0.00 0.00 0.45 0.04017 

41 1023 0.02907 0.15 0.15 0.00 0.00 0.70 0.08020 

42 1023 0.02636 0.20 0.07 0.00 0.00 0.73 0.23165 

43 1023 0.02759 0.20 0.14 0.00 0.00 0.66 0.12837 

44 1023 0.02863 0.20 0.20 0.00 0.00 0.60 0.12875 

45 1023 0.03232 0.07 0.20 0.00 0.00 0.73 0.07767 

46 1023 0.03033 0.14 0.20 0.00 0.00 0.66 0.09868 
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47 1023 0.02634 0.28 0.20 0.00 0.00 0.52 0.15222 

48 1023 0.02435 0.35 0.20 0.00 0.00 0.45 0.13029 

49 1023 0.03179 0.07 0.19 0.02 0.00 0.71 0.07381 

50 1023 0.02756 0.20 0.20 0.03 0.00 0.57 0.13083 

51 1023 0.02649 0.20 0.20 0.07 0.00 0.53 0.16591 

52 1023 0.02541 0.20 0.20 0.10 0.00 0.50 0.17752 

53 1023 0.03033 0.14 0.20 0.00 0.03 0.66 0.05439 

54 1023 0.02863 0.20 0.20 0.00 0.03 0.60 0.08111 

55 1023 0.02634 0.28 0.20 0.00 0.03 0.52 0.08238 

56 1023 0.02541 0.20 0.20 0.10 0.03 0.50 0.04841 

57 973 0.01522 0.59 0.08 0.00 0.00 0.33 0.20966 

58 973 0.01844 0.52 0.15 0.00 0.00 0.33 0.11552 

59 973 0.02327 0.42 0.25 0.00 0.00 0.33 0.07293 

60 973 0.02714 0.33 0.33 0.00 0.00 0.33 0.07712 

61 973 0.02549 0.40 0.35 0.00 0.00 0.25 0.09566 

62 973 0.02291 0.40 0.20 0.00 0.00 0.40 0.08155 

63 973 0.02119 0.40 0.10 0.00 0.00 0.50 0.11915 

64 973 0.01997 0.40 0.03 0.00 0.00 0.56 0.17482 

65 973 0.02655 0.32 0.28 0.00 0.00 0.40 0.06813 

66 973 0.03274 0.10 0.28 0.00 0.00 0.62 0.02729 

67 973 0.03004 0.20 0.28 0.00 0.00 0.52 0.02166 

68 973 0.03127 0.20 0.35 0.00 0.00 0.45 0.00828 

69 973 0.02907 0.15 0.15 0.00 0.00 0.70 0.02603 

70 973 0.02636 0.20 0.07 0.00 0.00 0.73 0.15403 

71 973 0.02759 0.20 0.14 0.00 0.00 0.66 0.08306 

72 973 0.02863 0.20 0.20 0.00 0.00 0.60 0.08916 
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73 973 0.03232 0.07 0.20 0.00 0.00 0.73 0.05488 

74 973 0.03033 0.14 0.20 0.00 0.00 0.66 0.06659 

75 973 0.02634 0.28 0.20 0.00 0.00 0.52 0.09928 

76 973 0.02435 0.35 0.20 0.00 0.00 0.45 0.08450 

77 973 0.03179 0.07 0.19 0.02 0.00 0.71 0.05442 

78 973 0.02756 0.20 0.20 0.03 0.00 0.57 0.09210 

79 973 0.02649 0.20 0.20 0.07 0.00 0.53 0.11808 

80 973 0.02541 0.20 0.20 0.10 0.00 0.50 0.12794 

81 973 0.03033 0.14 0.20 0.00 0.03 0.66 0.04438 

82 973 0.02863 0.20 0.20 0.00 0.03 0.60 0.00000 

83 973 0.02634 0.28 0.20 0.00 0.03 0.52 0.05803 

84 973 0.02541 0.20 0.20 0.10 0.03 0.50 0.00665 

85 923 0.01522 0.59 0.08 0.00 0.00 0.33 0.14287 

86 923 0.01844 0.52 0.15 0.00 0.00 0.33 0.06950 

87 923 0.02327 0.42 0.25 0.00 0.00 0.33 0.04224 

88 923 0.02714 0.33 0.33 0.00 0.00 0.33 0.05738 

89 923 0.02549 0.40 0.35 0.00 0.00 0.25 0.07775 

90 923 0.02291 0.40 0.20 0.00 0.00 0.40 0.05520 

91 923 0.02119 0.40 0.10 0.00 0.00 0.50 0.08075 

92 923 0.01997 0.40 0.03 0.00 0.00 0.56 0.09817 

93 923 0.02655 0.32 0.28 0.00 0.00 0.40 0.04251 

94 923 0.03274 0.10 0.28 0.00 0.00 0.62 0.00976 

95 923 0.03004 0.20 0.28 0.00 0.00 0.52 0.00753 

96 923 0.03127 0.20 0.35 0.00 0.00 0.45 0.00000 

97 923 0.02907 0.15 0.15 0.00 0.00 0.70 0.01855 

98 923 0.02636 0.20 0.07 0.00 0.00 0.73 0.10955 
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99 923 0.02759 0.20 0.14 0.00 0.00 0.66 0.05670 

100 923 0.02863 0.20 0.20 0.00 0.00 0.60 0.06155 

101 923 0.03232 0.07 0.20 0.00 0.00 0.73 0.04119 

102 923 0.03033 0.14 0.20 0.00 0.00 0.66 0.04835 

103 923 0.02634 0.28 0.20 0.00 0.00 0.52 0.06777 

104 923 0.02435 0.35 0.20 0.00 0.00 0.45 0.05456 

105 923 0.03179 0.07 0.19 0.02 0.00 0.71 0.04223 

106 923 0.02756 0.20 0.20 0.03 0.00 0.57 0.07197 

107 923 0.02649 0.20 0.20 0.07 0.00 0.53 0.10124 

108 923 0.02541 0.20 0.20 0.10 0.00 0.50 0.14036 

109 923 0.03033 0.14 0.20 0.00 0.03 0.66 0.03446 

110 923 0.02863 0.20 0.20 0.00 0.03 0.60 0.03764 

111 923 0.02634 0.28 0.20 0.00 0.03 0.52 0.03051 

112 923 0.02541 0.20 0.20 0.10 0.03 0.50 0.01488 
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