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Abstract

Industrial demands for more efficient machine tool systems have been significantly in-
creased. In order to obtain high performance machine tool systems, researchers are focused
on enhancing functioning of various components of machine tool systems. Feed drives are
important component of the most of machine tool systems such as computer numerical
control (CNC) machines for achieving desirable performance. An essential research stream
of current interest aiming enhancement of feed drive performance is construction of control
methods that help to decrease tool positioning errors in the system. An effective approach
for mitigation or reduction of positioning errors is modeling, identifying, and compensat-
ing friction in appropriate manner. In addition, accurate modeling of feed drive systems is
essential in elimination of these positioning errors. In this thesis, the precision control of
feed drives is studied using several different control methods. Firstly, the feed drive type
that has common use in machine tools is chosen to be main focus for this research, namely
ball screw drive. Different dynamic models of ball screw drive are shown in detail. In
addition, some of the nonlinearities that affect ball screw dynamics such as friction affects
are discussed. Friction modeling needs to be performed realistically and accurately in order
to design an effective compensator to cancel friction effects. In general, the friction models
are divided into two categories; classic (static) and dynamic friction models. In this the-
sis, we present details of these models and derive linear parametrization of the key ones.
Based on the derived linear parametric models, we design a least-squares on-line friction
estimator and adaptive friction compensation scheme. The performance of these designs
are verified via simulation and real-time experimental tests. Noting that the parameters of
the base rigid body model, i.e., inertia and viscosity constants, need to be known precisely
for effective high precision control tasks, including the aforementioned adaptive schemes.
The second part of the thesis focuses on off-line identification of these key base model
parameters. In this part, we present a real-life case study on identification of plant and
built-in controller parameters and a simulator design based on this identification for a
grinding CNC machine used in a gear manufacturing company.
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Chapter 1

Introduction

Computer numerical control (CNC) systems are widely used in various industrial branches
such as manufacturing, automotive, and aerospace industries. CNC systems typically con-
sists of mechanical, CNC unit and power electronic. Some of the components of mechanical
unit are beds, columns and feed drive systems [1]. In general, there are two types of feed
drive systems used for motion delivery purposes; direct(linear) drives and ball screw drives.
The significantly growing demand for improving existing precision of materials has drawn
many researchers attention into the field of precision control of feed drives. Dynamic mod-
eling holds a crucial place during examining precision of feed drive systems and it can be
constructed in different ways ranging from simple rigid body dynamic to more complicated
models. Simple rigid body model includes Coulomb friction, affects of inertia and viscous
friction. More complicated models are built by covering different internal and external
interferences such as cutting forces, torque ripples, and nonlinear friction forces.

Friction has nonlinear affects in machine tools. It, in all drive systems, affects position-
ing of end-effectors and tools and cause tracking errors. Well established friction models
and compensator design based on these models will reduce such errors. In order to in-
vestigate characteristics of friction effects, feed drive motion is divided into two regimes;
namely pre sliding and sliding regimes. Friction is a function of displacement in preslid-
ing regime and function of velocity in sliding regime. While some of the friction models
show sliding regime characteristics only, some of them demonstrate both regime behaviors.
Generally, classical models [2], [3] , which are in the form of combination of Coulomb,
viscous and static friction effects, represent the behavior only in the sliding regime. On
the other hand, most of the more recently developed dynamical models characterize both
regimes [4], [5], [6]. In Chapter 2, friction phenomena are investigated and mostly used fric-
tion models are given. Some of the advantages and disadvantages of these friction models
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are discussed.

Compensating friction force and reducing tracking errors due to friction are important
components of an effective high precision feed drive control design. In order to reduce
friction effects, classical feedback controllers such as P,PI and PID controller or more com-
plicated dither, sliding mode controllers are used [7]. These controllers generally do not
require a precise and detailed plant model, however, they can reduce friction effects up
to some limited work range. Therefore, in addition to such control techniques, different
model based compensating techniques are proposed in the literature and used with feed-
back controllers [3], [8], [9]. In many studies, model based friction identification methods
are performed off-line by processing experimental data. Such data allow identification of
friction force parameters for limited motion time. However, friction force parameters can
change through time. Online estimation of friction parameters is used in order to over-
come this problem [10], [11]. In Chapter 3, we derive linear parametric forms of the two
widely used friction models, construct adaptive friction compensation scheme, and design
a least-squares on-line friction estimator. Afterwards, we implement these designs in the
both real-time experiments and simulations.

For various control tasks such as above mentioned adaptive method, identifying rigid
body model parameters, i.e., viscous damping constant and inertia affects accurately is
a crucial step. In Chapter 4, identification of these parameters are discussed. Practical
real-life case study on finding rigid body model parameters for grinding machine in a gear
manufacturing company is also explained.

In Chapter 5, our results are summarized and discussed qualitatively. The near future
research plans following this work are also presented.
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Chapter 2

Background

2.1 Precision Control of Manufacturing Automation

Systems

In order to build high performance computer numerical control (CNC) systems, accurate
identification and modeling of feed drives is an important step [3]. High fidelity of the
feed drive model used in control design enhances the accuracy and disturbance rejection
performance of the design [12]. Dynamic modeling of feed drives typically involves inclusion
of different nonlinear effects such as vibration and friction. More simplistic feed drive
models include Coulomb friction, inertia and viscous damping effects [13]. In this chapter,
the base models that are commonly used for ball screw driven systems are presented.
Moreover, friction phenomena and some of the friction models that are used in literature
are reviewed.

2.1.1 The Base Linear Model of Ball Screw Drives

In the ball screw drive, flexibilities arise from screw-nut interaction, screw shaft and bear-
ings. In order to obtain high precision dynamic tracking, flexibilities of these sources need
to be taken into account. In addition to appropriate physical structural design in ball
screw drive system, the negative effects of such flexibilities can be avoided via accurate
mathematical modeling and adaptive cancellation as well [14]. As it will be explained
below, rigid body model is used to identify low frequency range behavior of the system.
Beyond certain frequency range, there occur structural vibrations. Flexible drive models
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Figure 2.1: Ball screw setup.

that include flexibilities are found useful for identifying and compensating these structural
vibrations. However, for ease of control design, rigid body model is taken into account in
this study.

Flexible Drive Model: Consider the physical model diagram of the ball-screw drive
depicted in Figure 2.2 and the flexible model scheme in Figure 2.3. Here, we model the
disturbance due to rotating discrepancies as a friction force d1 = Ff . Rotational friction
disturbance is caused by encoder, support ball bearings, nut assembly, and the motor’s
internal bearings [12]. It should be noted that linear guideways friction is annihilated
because of the air bushing use, represented by d2. x1 and x2 represent the ball screw
rotational and table linear displacements. The equivalent control signal is u. In addition,
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Figure 2.2: Ball screw drive model representation [13].

b1 represents the viscous friction in the rotary bearings and b2 shows the viscous friction
in the linear guideways. c is the damping coefficient and k is the total stiffness of the ball
screw drive system. Total stiffness is combination of the fixed bearing, the nut, and the
torsional-axial stiffnesses of the screw. Rotational and translational inertias are represented
by m1 and m2, respectively. The equations of motion can be written as

m1ẍ1 = −b1ẋ1 + k(x2 − x1) + c(ẋ2 − ẋ1) + u+ d1

m2ẍ2 = −b2ẋ2 + k(x1 − x2) + c(ẋ1 − ẋ2) + d2
(2.1)

Figure 2.3: Flexible model scheme: with flexibilities.
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Figure 2.4: Rigid body scheme: without flexibilities.

Rigid Body Model:

Rigid body model derived considering the total inertia as sum of rotational and transla-
tional inertia components (m1+m2 = m). Normally, basic rigid body model is combination
of Coulomb friction, viscous damping and inertia effects. Denoting the general friction force
by Ff , from the Newton’s second law of motion, the equation of motion is

mÿ = −bẏ − Ff + u (2.2)

The corresponding space equations can be written as

ẋ1 = rgx2

ẋ2 = (−b/m)x2 + (1/m)F

where x1 and x2 represent the linear displacement (y) and the angular velocity (w), re-
spectively. b is the viscous friction coefficient and m is the mass of the system. F = u−Ff

represents the total force that applied to the plant (Figure 2.4).

2.1.2 Nonlinear Friction Models

The main source of disturbance, causing positioning errors during motion, is friction for
the axis control applications. Especially, in the sharp corners or circular arc quadrants, the
friction based disturbance causes some tracking error jumps during the motion reversals.
Accurate identification of friction characteristic helps to reduce these positioning errors.
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Friction characteristic can be better described by considering different regimes: (i)
static friction or pre sliding regime, (ii) boundary lubrication regime, (iii) partial fluid
lubrication regime and (iv) full fluid lubrication or sliding regime [2].

(i) Static friction or pre sliding regime: In this regime, static friction between
contacts acts like a spring. There is displacement until breakaway occurs. After that,
junctions break and sliding begins (Figure 2.5).

Figure 2.5: Presliding regime [2].

(ii) Boundary lubrication regime: In this regime, fluid film is not formed because
of the low velocity and in some parts lubrication occurs (Figure 2.6).

Figure 2.6: Boundary lubrication [2].

(iii) Partial fluid lubrication regime: Higher velocity causes thicker fluid film. If
the asperity’s height is thicker than film, there will be partial fluid lubrication. While
partial fluid lubrication increases, solid-solid contact and friction reduces (Figure 2.7).
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Figure 2.7: Partial fluid lubrication [2].

iv) Full fluid lubrication or sliding regime: There is no solid-solid contact and
sliding occurs (Figure 2.8).

Figure 2.8: Full fluid lubrication [2].

As mentioned, there are different friction behaviors in different regimes, changing from
pre sliding to sliding regimes. In order show these changes, friction can be modeled in
various forms such as algebraic equations or hybrid models [3]. Complete friction model-
ing by describing all the physical and material/surface properties has not been achieved
yet. There exist research works focused on developing physically motivated models with
sufficient friction identification and compensation based on experimental data [15].

There are different kinds of friction models described in the literature. The survey of
Armstrong et. al. is the first atttempt to unify different friction models in one study [2].
In this survey, the author gives some classical (static) friction model descriptions and
dynamical models. In general, friction force is a function of velocity and the applied force
for static friction models. On the other hand, for the dynamic friction models, friction
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force is a function of displacement. In this section, some of the friction models will be
explained.

2.1.2.1 Classical (Static) Friction Models

This type of friction is generally written as a combination of Coulomb, viscous, static and
Stribeck frictions. General name of this type of friction is called classical or static friction
models in the literature. As can be seen from Figure 2.9, each type of friction feature
has different characteristic while velocity changes. Figure 2.9.b shows the characteristic
of viscous friction plus Coulomb friction. Figure 2.9.c shows the Stribeck effect: During
the boundary lubrication, friction force decreases while velocity increases and then friction
force starts increasing as velocity gets larger. In this type of friction model, during pre
sliding regime, there is no specified friction force around zero velocity. This is the main
drawback of the static friction model. In addition, different forms of classical models are
used in the literature [3], [7], [8].

Simple friction force that is combination of viscous and Coulomb friction forces can be
formulated as [11]

Ff =

{
F+
C + Fvv v ≥ 0,
F−C + Fvv v < 0.

(2.3)

Here, F+
C , F−C represent the Coulomb friction forces and Fv is viscous friction term. v is

the velocity.

General formulation of static friction proposed by Amstrong et. al. is [2]:

Ff =


F (v) if v 6= 0
Fe if v = 0 and |Fe| < FS

FSsgn(Fe) if v = 0 and |Fe| ≥ FS

(2.4)

F (v) = FC + (FS − FC)e−|v/vS |
δS + Fvv (2.5)

Here, F (v) is an arbitrary function and identification of F (v) can be done by measuring
the friction force for different constant velocities [3]. Fe is an external force applied to the
system and FS is the static force. In addition, vS is the Stribeck velocity and δS is the
shape factor for Stribeck velocity. Another model that is presented in [3] is the following

Ff =

{
F+
S e
−v/v+S1 + F+

C (1− e−v/v+S2) + Fvv v ≥ 0

F−S e
−v/v−S1 + F−C (1− e−v/v−S2) + Fvv v < 0

(2.6)
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Figure 2.9: Examples of static friction models. a)Coulomb friction, b)Coulomb+viscous
friction, c)Static+Coulomb+viscous, d)Static+Coulomb+viscous+stribeck friction.

Here, v+S1, v
−
S1, v

+
S2 and v+S2 represent the velocity constants that determine velocity

spacing between different friction regions. Value of these terms depend on viscosity and
temperature of the working place.

However, as mentioned, detecting friction force around zero velocity is still a challenge.
There has been several studies to overcome this problem. Karnopp proposed a model
that tries to handle this drawback and simulates another nonlinear friction phenomenon,
namely stick-slip friction [16]. Stick slip is a jerky motion that occurs during high sliding
velocity for small friction force. For example, wipers of the cars, when the window glass
is partially wet, go through a stick slip motion. This friction feature is not desirable for
precise machine tools [7]. In order to model this effect and handle the friction force problem
around zero velocity, Karnopp defined zero velocity tolerance |v| < ε for some small ε > 0.
In this region, friction force is defined as a function of other forces in the system as opposed
to function of velocity for sliding regime. A disadvantage of Karnopp model is that the
external force is not exact and the model is strongly coupled with the rest of the system [7].
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2.1.2.2 Dynamic Models

Various dynamic friction models were proposed in the literature, aiming to enhance the
static ones. Some widely used ones of these models will be presented below.

The Dahl Model

This model was proposed for dynamical system for both rolling and sliding friction
simulations. The Dahl model only relates with pre sliding regime. During experimentation
of ball bearings behavior, the author first observes that as a result of small displacements
in the rest position, an elastic restoring force arises on the balls. Then, he focuses on
strength features of solid materials and concludes that bearing and solid frictions behave
similarly. While examining stress-strain curve of solid materials, he sees that stress-strain
characteristic can be used for friction force-displacement relationship. He then proposes
basic equations for this relationship in [17]. This model’s mathematical equations were
further discussed in [18]. The general formulation is given as

dFf

dx
= σ

∣∣∣∣1− Ff

FC

sgn(v)

∣∣∣∣isgn(1− Ff

FC

sgn(v)

)
, (2.7)

where σ is the initial stiffness at velocity reversal, FC is the Coulomb friction force, which
equals to static friction force, v is velocity, and i is the model exponent parameter that
defines hysteresis shape.

The Dahl model also represents rate independence property, which means that the
speed of the input values (in this case input is displacement) between extremum points
do not affect the branching. In other words, time effects between two extremum points
are negligible [19]. This feature has an important role in the use of the theory of the
hysteresis operators [9], [20]. In addition, this model is an important study for describing
the position dependent hysteresis loops. Yet, it does not include Stribeck effect and break
away force [7]. This model is further discussed and used by other researchers in original
and modified forms [21], [22], [23].

The LuGre Model

Since Dahl friction model does not cover Stribeck effect, there has been several studies
to overcome this problem. One of them is the LuGre model, a dynamic friction model,
incorporating the static friction features with Stribeck effect [4]. In this model, the idea is
to represent surface contact by fictitious bristles in the macroscopic level, as demonstrated
in Figure 2.10.
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Figure 2.10: The bristle model [34].

The LuGre model mainly focuses on the fictitious bristles and considers average deflec-
tion z of these bristles. The time derivative of this average deflection is modeled as

dz

dt
= v − |v|

g(v)
z, (2.8)

where v is the velocity of the sliding surface and g(v) represents the Stribeck friction,
i.e.,

σ0g(v) = FC + (FS − FC)e−|v/vS |
2

(2.9)

where σ0 is the stiffness coefficient and the velocity constant vS determines the veloc-
ity spacing between different friction regions. FS and FC is coulomb and static friction,
respectively.

The friction force is given by

Ff = σ0z + σ1
dz

dt
(2.10)

where σ1 is the viscous damping coefficient. Including viscous friction, (2.10) becomes

Ff = σ0z + σ1
dz

dt
+ σ2v, (2.11)

where σ2 is the viscous friction coefficient.

Although LuGre model includes friction phenomena such as friction lag, break away
force, etc., the model does not include hysteresis effects with nonlocal memory. In the
hysteresis with nonlocal memory, the future friction force values do not only depend on
the present values of displacement or friction force but depend on past extremum values
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Figure 2.11: Lugre model simulation results [5].

Figure 2.12: Experimental results of Lugre model [5].

of friction force as well [19]. Furthermore, Swevers states that the LuGre model has
a deficiency due to the fact that it is not capable of attune itself for arbitrary force-
displacement transition curves. Typical simulation and experimental results of the LuGre
model are shown in Figures 2.11 and 2.12.
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The Leuven Model

As mentioned above, the main drawback for LuGre model is not capturing hysteresis
with nonlocal memory. Swevers developed the Leuven model to deal with this problem
and included various friction features in one formulation [5]. There are two main equations
for the friction force, which depend on the state z-the average deflection of the bristles:

Ff = Fh(z) + σ1
dz

dt
+ σ2v, (2.12)

dz

dt
=

(
1− sgn

(
Fd

s(v)− Fb

)∣∣∣∣ Fd

s(v)− Fb

∣∣∣∣n), (2.13)

where Fh(z) = Fb + Fd(z) represents the hysteresis friction force, σ1 and σ2 are micro-
viscous damping and the viscous friction coefficients. Current transition curve friction
force is given by Fd, and Fb represents the friction force at the beginning of the transition
curve. Stribeck velocity term is represented by s(v).

Lampaert et. al. is made some modifications to the Leuven model in [24]. Firstly,
there occurs a problem because Fb equals to the former value of Fh(z) in each transition
cycle. Therefore, this does not make any change in the equation Fh(z) = Fb + Fd(z). This
problem is handled by replacing Fd(z)/(s(v)− Fb) with Fh(z)/s(v) and (2.13) becomes

dz

dt
=

(
1− sgn

(
Fd

s(v)− Fb

)∣∣∣∣Fh(z)

s(v)

∣∣∣∣n) (2.14)

In a couple of velocity reversals, there occurs more than one hysteresis loops, each of them
called stack. The Leuven model does not take stack size into consideration. Second modi-
fication was made by choosing stack size in advance to prevent stack overflow. Lampaert
et. al. proposed the following Maxwell slip model for the hysteresis force.

Generalized Maxwell Slip (GMS) Model

The so called generalized Maxwell slip model was proposed in [6]. This friction model
includes three main friction phenomena namely, the hysteresis with nonlocal memory, the
Stribeck curve for constant velocities, and the frictional lag. Figure 2.13 demonstrates the
general Maxwell slip model with N elementary units. There is one common input z for
both stick and slip regimes. The model is based on two main equations for sliding and pre
sliding regimes.
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Figure 2.13: Maxwell slip model [8].

For each unit, when the unit is sticking, the state equation is

dFi

dt
= kiv. (2.15)

Sticking continues until Fi reaches Wi = αis(v), where Fi is the friction output, Wi is the
maximum elementary Coulomb force, αi and ki represent the normalized sustainable max-
imum friction force of each unit during sticking and an elementary stiffness, respectively.
When the element is slipping, the state equation is given by

dFi

dt
= sign(v)C

(
αi −

Fi

s(v)

)
(2.16)

where s(v) is a Stribeck function.

s(v) = sgn(v)(FC + (FS − FC)e−|v/vS |
δ

)

where FS and FC are static and Coulomb friction forces. vS is the velocity constant. C
is the constant parameter which represents the rate at which the friction force follows the
Stribeck effect in sliding. The overall friction force is proposed as the summation of the
outputs of all elementary state models plus viscous term σ.

Ff (v) =
N∑
i=1

Fi(v) + σv(t) (2.17)
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2.2 Offline System Identification and Feedforward Com-

pensation Design

2.2.1 System Identification of Multi Axis Dynamics

For feed drive systems, identification of axis dynamics and decreasing some positioning er-
rors with optimal performance have attracted a lot of researchers. In order to accomplish
desired performance before examining friction identification, feed drive system parame-
ters like inertia and viscous damping coefficients need to be identified because inaccurate
identification of these parameters cause problem in the rest of controller design.

Different kinds of parameter identification techniques are discussed in the literature [8],
[3]. Erkorkmaz [3] used simple least square algorithm to capture feed drive parameters.
In this procedure, piecewise constant current commands are used to excite the system.
In addition, the reference signal is selected such that it originates large signal for high
acceleration and long signal for high velocities in order to identify inertia and viscous
damping parameters properly. It should be noted that the author uses simple friction
model for identification purposes; F+

C for v > 0 and F−C for v < 0. Because of the
Coulomb friction’s amplitude dependency, the pulse’s amplitude is also selected to vary in
time [3], [12]. One other approach is to collect frequency domain measurements from the
system of interest and fit the tuned inertia and viscous friction parameters to match with
the measurements [8], [13].

2.2.2 Offline compensation of friction

In the literature, different friction compensation techniques have been proposed. Some of
the compensation methods used in the literature are classical PD, PID controllers, dither,
impusive, and joint torque control etc. [7]. In the following paragraph, mainly used mainly
used compensation techniques are discussed.

The general block diagram for feedforward friction compensation technique is given
in the Figure 2.14. In order to conduct feedforward compensation approach accurately,
friction model parameters needs to be as close as possible to their actual values. Offline
friction parameter identification techniques were used in the literature for designing friction
model parameters realistically. Kalman filter [25] and inverse-model based observers [8], for
example, are used to obtain friction force by using disturbance observation. The friction
parameters are designed according to disturbance observation by considering the friction

16



as the only source of disturbance in the system. After this procedure, parameters identified
using disturbance observation is used in feed-forward compensator process.

Figure 2.14: General ball-screw drive motion control scheme with feedforward friction
compensation.

2.3 Online Parameter Estimation and Adaptive Feed-

back Control Design

Online parameter estimation is the second way of performing friction compensation. Gen-
erally, as in the Section 2.2, the friction models are nonlinear. Thus, this makes adaptive
compensation challenging. In order to use robust identification techniques like recursive
least square algorithm or adaptive model reference control, system needs to be either sim-
plified in parameters or partially known.

In practical cases for adaptive control, the system is generally assumed to be partially
known that is because of ease of online estimation design. Canudas and Astrom [11] use
DC motor with permanent magnet for experimental purpose. The authors use the simple
classical model that includes viscous and Coulomb friction features and defines friction
force equation as

Ff = sgn(w)(Fc + Fvw) (2.18)

Here w is the angular velocity of the DC motor. Fv avd Fc are viscous and coulomb
friction, respectively. Recursive least square algorithm is used to estimate the parameters of
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Figure 2.15: General adaptive motion control scheme, with online friction estimation and
compensation.

friction model below (Figure 2.15). In the experimental analysis of the model, they compare
offline and online methods. As expected, adaptive compensation gives less tracking error
than offline methods.

Using classical friction model, adaptive control technique is also used for robotic manip-
ulator during for velocities [26]. The author overcomes stability issues caused by adaptive
controller to modify overall system transfer function and add a dither noise to the input
torque. In order to estimate unknown parameters, he uses a weighted least square algo-
rithm. Results are considerable during adaptive estimation, but still more realistic model
needs to be used. Furthermore, for different systems, some of the other adaptive laws used
to identify static friction model parameters [10], [27].
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Chapter 3

A New Least-Squares Based
Adaptive Control Scheme

Online parameter identification (PI) algorithms process the past and current measurements
of signals and generate an estimate of unknown plant parameters at each time. There is a
wide range of adaptive laws for online PI with different convergence features [28]. In this
chapter, we propose a least-squares based adaptive law for common static friction models
for ball screw drive system, and then develop an adaptive motion control scheme based on
this adaptive law.

3.1 Least-Squares Based On-Line Identification

There are in general three main steps to build on-line PI algorithms; forming a parametric
model (PM), designing an adaptive algorithm, and establishing conditions to guarantee
that the parameter estimates converge to their actual values. For the PM construction
step, we consider two types of generic static friction models are given in equations (2.3)
and (2.6) and the following equations will be constructed according to these types of static
friction models. Taking into account steps that given above, the least square algorithm
can be designed.

Consider the plant model

(m/rg)ÿ + (b/rg)ẏ = F = u− Ff

where m is the mass and b is the viscous friction coefficients for rigid body motion. rg
is the rotation to linear conversion factor. y and ẏ are linear displacement and velocity,
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respectively. w = ẏ/rg refers to angular velocity. Ff represents the friction force and F is
the net force that is applied to the plant.

Transfer function of the plant from F to y is

Gp(s) =
rg
s

1

ms+ b

Mass and viscous friction coefficients (m,b) are assumed to be precisely obtained via an
off-line identification process, example of which is given in Chapter 4. It should be noted
that because of the air bearings, viscous daming is very small and is not taken into account.
In addition, y and w are measurable signals.

3.1.1 Static Friction Model 1

We first construct an online PI algorithm based on Equation (2.3).

Step 1.Parametric model:
y and w are known signals, we can express (2.3) in the static PM (SPM) form.

zw = θ∗Tφw, (3.1)

Here, zw and φw are available for measurements.

zw =
1

Λ(s)
[u]− ms+ b

Λ(s)
[w] (3.2)

In order to avoid differentiation, the signals can be filtered with a stable filter of relative
degree one, e.g., 1/Λ(s) with Λ(s) = s+λ = s+ 5, which is a stable polynomial. Unknown
parameters can be expressed as

θ∗ = [F−C , F
+
C , FV ]T

F−C ,F+
C are Coulomb friction parameters that need to be identified for negative and positive

directions of motion. FV , viscous friction term, is opposite to the direction of motion.

φw =
1

Λ(s)
[σ−(w), σ+(w), σo(w)w]T
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In order to avoid the direction misinterpretations, threshold term ψ = 0.01 is used. In
the case of ψ = 0, estimation slows down or gives unbounded results.

σo(w) =

{
1 |w| ≥ ψ
0 |w| < ψ

σ−(w) =

{
1 w < −ψ
0 w ≥ −ψ

σ+(w) =

{
0 w < ψ
1 w ≥ ψ

Step 2.Parameter Identification Algorithm

Estimation Model

ẑw = θTφw (3.3)

where θ(t) is the estimate of θ∗ at time t.

Estimation Error:

εw = zw − ẑw = zw − θTφw (3.4)

According to below adaptive law, at each time t, θ(t) adjusts it self and ε gets smaller
and smaller through the time. Afterwards, the unknown parameters converge their actual
values.

Adaptive Law:

Using recursive least square algorithm with forgetting factor,

θ̇ = Pεwφw, θ(0) = θ0

Ṗ = βP − Pφwφ
T
wP, P (0) = P0

(3.5)

Here, P is the covariance matrix and β is the forgetting factor.

Step 3.Stability and Parameter Convergence

If φ is persistently exciting (PE), the recursive least square algorithm with forgetting
factor (3.4) guarantees that P, P−1 ∈ L∞ and that θ(t)→ θ∗ as t→∞. The convergence
of θ(t) → θ∗ is exponentially when β > 0 [28]. Despite of the fact that φ needs to be PE
for convergence condition, it should be noted that this condition might not hold for all
systems. Therefore, parameters may converge to their actual value without PE condition.
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3.1.2 Static Friction Model 2

In the Equation (2.6), Stribeck velocity constants are assumed to be known parameters.
Real values of these constants are taken from [3]. The other unknown friction model
parameters are given in the following equations. For the estimation purpose, the actual
values of these parameters in [3] are used. The purpose is to generate online estimates for
friction force parameters.

Step 1.Parametric model:

Since y and w are known signals, we can express SPM [28] as

zw = θ∗Tφw,

Here, zw and φw are available for measurements.

zw =
1

Λ(s)
[u]− ms+ b

Λ(s)
[w]

In order to avoid differentiation, the signals can be filtered with a stable filter of relative
degree one, e.g., 1/Λ(s) with Λ(s) = s+ λ = s+ 5, which is a stable polynomial.

θ∗ = [F−S , F
−
C , F

+
S , F

+
C , FV ]T

F−S ,F−C are static and Coulomb friction parameters that need to be identified for negative
direction of motion. On the other hand, F+

S ,F+
C are parameters for positive direction of

motion. FV , viscous friction term, is opposite to the direction of motion. Since this term
is assumed to be inversely proportional to the velocity in the equation, it can be identical
for both direction.

φw =
1

Λ(s)
[g−(w)f−1 (w), g−(w)f−2 (w), g+(w)f+

1 (w), g+(w)f+
2 (w), go(w)w]T

Here,

f+
1 (w) = e−w/v+S1

f+
2 (w) = 1− e−w/v+S2

f−1 (w) = e−w/v−S1

f−2 (w) = 1− e−w/v−S2
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vS1 and vS2 can take different values for different systems. This term is assumed to be
available. Therefore, above functions become known parameters for different directions.
In addition, in order to avoid the direction misinterpretations, threshold term ψ = 0.01 is
used. In the case of ψ = 0, estimation slows down or gives different results.

go(w) =

{
1 |w| ≥ ψ
0 |w| < ψ

g−(w) =

{
1 w < −ψ
0 w ≥ −ψ

g+(w) =

{
0 w < ψ
1 w ≥ ψ

Here, according to velocity value, unknown parameters converge either their actual val-
ues.

Step 2.Parameter Identification Algorithm

Parameter identification algorithms are also going to be the same as equations (3.3),
(3.4) and (3.5).

Step 3.Stability and Parameter Convergence

In order to guarantee convergence, φ needs to be PE. Conditions that are given above
also holds for this type of friction model.

3.2 The Adaptive Control Scheme

In this section friction estimation results are given. The general adaptive control scheme
is given in Figure 3.1. By giving net force (F ) and rotary feedback signal (w), estimation
of friction force (F̂f ) is identified. Since the friction force is opposite to the direction of
motion, estimated friction force is added to the closed loop system.
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Figure 3.1: Adaptive control scheme.

3.2.1 Nominal Controller

In industrial automation, various servo controllers ranging from simple PID to more com-
plex loop structures are used. The purpose of using servo controllers is to stabilize the
motion and end-effectors to have to track reference positions accurately, i.e., have the
tracking errors at tolerably small levels. In this study, two types of controllers are designed
to be incorporated with the PI algorithms presented in Section 3.1. Firstly, a backstepping
controller is proposed in order to show adaptive identification effect in perfect tracking
condition. Secondly, a more classical P-PI controller is designed for two types of classical
friction models.

3.2.1.1 Backstepping Controller

We rewrite the system equations in state-space form as

ẋ1 = rgx2, (3.6)

ẋ2 = (−b/m)x2 + (rg/m)u, (3.7)

x1 = y, x2 = w

We want to design a controller that helps the output signal x1 = y to follow reference
signal r, i.e. it is desired to satisfy e1 = x1− r → 0 asymptotically. This would be satisfied
if we have the dynamics

ė1 = −Ke1
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where K > 0 is some feedback constant. To investigate further, rewrite (3.6) as

ė1 = −Ke1 + e2 (3.8)

where

e2 = ė1 +Ke1 = ẋ1 − ṙ +Ke1 = rgx2 − ṙ +Ke1 (3.9)

It is also desired to have e2 diminishing asymptotically. The dynamic for e2 is derived from
(3.7)-(3.9) as

ė2 = Kė1 + rgẋ2 − r̈ = −K2e1 +Ke2 − r̈ − (brg/m)x2 + (rg/m)u (3.10)

Denoting,

v = −r̈ − (brg/m)x2 + (rg/m)u, (3.11)

the derivative of e2 becomes

ė2 = −K2e1 +Ke2 + v. (3.12)

Consider the Lyapunov function

V =
1

2
(e21 + γe22) (3.13)

where γ > 0. Taking derivative of Lyapunov function, we obtain,

V̇ = e1ė1 + γe2ė2

Subtracting ė1 and ė2 with equations (3.6)-(3.8), we get,

V̇ = −Ke21 + e1e2 − γK2e1e2 + γKe22 + γe2v (3.14)

Let γ = 1
K2 . Then,

V̇ = −Ke21 +
1

K
e22 +

1

K2
e2v

Choosing

v = −2Ke2 (3.15)
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yields

V̇ = −Ke21 −
1

K
e22 (3.16)

which implies asymptotic stability for all K > 0. Hence, to obtain (3.16), we choose the
control signal based on (3.11) and (3.15) as

u =
−2Km

rg
e2 +

b

rg
x2 +

m

rg
r̈

= −2Km(x2 −
ṙ

rg
+K(x1 − r)) +

b

rg
x2 +

m

rg
r̈

= (−2K2m)x1 + (−2Km+
b

rg
)x2 + (2K2m)r +

2Km

rg
ṙ +

m

rg
r̈

In our later implementation work, we have chosen K = 1 for simplicity.

3.2.1.2 P-PI Controller

The general representation of P-PI controller is given in Figure 3.3. The general idea for
this type of controller is to put velocity loop inside the position loop. Two generated
signals are used for controller inputs; namely angular velocity and linear displacement
signals. Friction and some modeling errors can cause positioning errors during motion
of machine tools. Especially, during change of motion direction, such errors might cause
direction misinterpretation and instability issues. In order to overcome this problem, speed
feedforward term is used. In other words, this term is added up to velocity loop to ensure
that feedback controller follows reference signal properly. Table 3.1 represents gains that
are used for P-PI controller.

Table 3.1: Parameters for simulation.
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Figure 3.2: P-PI controller scheme

3.3 Simulations and Experiments

This section presents the results of simulation and experimental testing of the adaptive
control with feedback controllers. In the first part, backstepping controller simulation
results are discussed. Afterwards, P-PI controller analysis is explained for two types of
friction models given in the equations (2.3) and (2.6). In addition, off-line experimental
results will be given for static friction model 2.

3.3.1 Adaptive Backstepping Control Scheme

Backstepping simulation results are given in Figure 3.3 and 3.4. Simulations are repeated
for two different scenarios; firstly, when the plant is affected by friction force and adaptive
estimation algorithms are disabled. Secondly, the adaptive control is activated and on-line
compensation affects are examined.

When the friction is added to the feed drive dynamics, friction affect leads to 2 mm
tracking error (Figure 3.3.b). In addition, in the Figure 3.4, adaptive control results can
be seen. There is over 1.8 mm tracking error for 2 seconds. After 2 seconds, these errors
decrease through time and reach around zero.

As it is demonstrated in the Figure 3.5, friction parameters converge their actual values
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(b) Tracking error.

Figure 3.3: Non-adaptive backstepping control of the ball-screw drive system without
friction compensation.
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(b) Tracking error.

Figure 3.4: Adaptive backstepping control of the ball-screw drive system with friction
compensation.

after 48 seconds. Since friction changes with velocity, friction versus velocity graph is also
constructed (Figure 3.6). From this graph, it can be seen that convergence is successful.
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Figure 3.5: Parameter estimation results for adaptive backstepping control scheme.

3.3.2 Adaptive P-PI Control Scheme

In this section, firstly, friction model that’s adaptive control law is given in the Section
3.1.1 will be used in the simulations with P-PI controller. Afterwards, simulation and
experimental results for the friction model that is given in Equation 2.6 is going to be
explained.
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Figure 3.6: On-line identification results at the end of adaptive backstepping control run.

3.3.2.1 Static Friction Model-1

Simulation Results:

Figure 3.7 and 3.8 shows the reference and output signal results. As it is shown, there
is 0.003 mm tracking error when there is feedback controller and friction applied to the
dynamics (Figure 3.7.b). On the other hand, when adaptive control is enabled, tracking
error goes to zero after 30 seconds (Figure 3.8.b). Convergence results are given in the
Figure 3.9.
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(b) Tracking error.

Figure 3.7: Non-adaptive PPI control results with static friction model 1.
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Figure 3.8: Adaptive PPI control scheme results with static friction model 1

Experimental Results:

Control signal, rotary feedback signal, and output signals are collected from ball screw
drive setup. Rotary feed back signal (angular velocity) and control signals are given esti-
mation block as input signals. Reference vs ouput signals and tracking error that obtained
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Figure 3.9: Parameter estimation results for adaptive PPI control scheme with static fric-
tion model 1.
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Figure 3.10: On-line parameter identification results at the end of adaptive PPI control
run with static friction model 1.

from experimental setup given in Figure 3.11. During adaptive compensation, for static
friction model 1, it is observed that affects of friction is eliminated after 30 seconds (Figure
3.12).
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Figure 3.11: Experimentally obtained signals.
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Figure 3.12: Parameter estimation results for adaptive PPI control scheme with static
friction model 1: experimental.
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3.3.2.2 Static Friction Model 2

For two different scenarios, as mentioned in Section 3.3.1, simulation results are discussed.
Sine wave, which has 0.5 amplitude and 1 Hertz frequency, is used as a reference signal. As
it illustrated in 3.13.b, there is 0.002 mm tracking error when friction added to the plant.
After adaptive control is added to feed drive model, tracking errors go to almost zero after
28 seconds (Figure 3.14). As it can be seen from Figure 3.15, parameters converge their
actual values after 40 seconds. Friction change with velocity is also given in Figure 3.16.
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Figure 3.13: Non-adaptive PPI control scheme results with static friction model 2.
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Figure 3.14: Adaptive PPI control scheme results with static friction model 2.
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Figure 3.15: Parameter estimation results for adaptive P-PI control scheme with static
friction model 2.
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Figure 3.16: On-line parameter identification results at the end of adaptive PPI control
run with static friction model 2.
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Chapter 4

A Practical Case Study: ODG
Grinding Machine

As mentioned in Chapter 2, rigid body construction is easiest way to model feed drive
systems. Rigid body models, in general, are combination of inertia affects, viscous damping
and friction force. In construction of rigid body model, first step is to identify inertia
effects and viscous damping constant. This model can be further detailed considering high
frequency flexible modes and nonlinear friction effects, which were summarized in Chapter
2. Chapter 3 had focused on on-line estimation of these latter terms and their adaptive
compensation based on the produced estimates, for the cases where the based rigid body
model parameters, i.e., inertia and viscosity constant, of the system are available. In this
chapter, we focus on off-line identification of these model parameters; we present a real-life
industrial case study where such off-line identification is a key problem. This case study
was performed as part of an NSERC Engage project with a local manufacturing company,
ODG - Ontario Drive & Gear Ltd.

4.1 Motivation and General Problem Definition

ODG is a company that manufactures various types of gears, including marine gears,
mining gears, and automotive gears. The company also produces high quality products
such as transmissions for various vehicles, power transmission couplings, wind turbines,
and conveyor systems. In company, there are different CNC systems such as turning,
milling, grinding, and gear shaping machines that allow ODG to achieve optimal precision
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of manufactured products (Figure 4.1). During this machining procedures, grinding has a
crucial role for gaining fine finish and dimension accuracy. Through this Engage project,
main goal is to investigate possible methods of analyzing and predicting accuracy at high
speeds during grinding process and developing a high fidelity simulation tool for ODG
system.

Figure 4.1: Different CNC operations [36].

Typical CNC components are power units, CNC units and mechanical units. Mechani-
cal units consists of feed drive mechanisms. In general, feed drive systems have workpiece,
the nut, the ball lead screw etc. The CNC unit has a speed and position sensors, as well as
computer unit. The operator gives numerical control (NC) codes to the CNC unit. After
processing CNC data, the data is transmitted to the motor with discrete time signals. Mo-
tor moves commanded drive and sensors measure velocity and position commands. The
CNC unit periodically commits this procedure and feed drive system remain in desired
speed and position [1]. Diagram of the grinding machine is given in Figure 4.2. The ring
loader takes workpieces from the pallet system and transports these machined workpieces
to the workpiece axis. Then, the workpiece is clamped between the workpiece axis and the
tailstock. After alignment of workpiece, the infeed axis, the feed axis, and the tool swivel
axis move to the machining position and NC program starts sending signals for grinding.
The grinding machine is controlled with Siemens 840D controller [37].

Furthermore, there are two kinds of grinding in ODG; form and worm grindings. Main
focus on this project was for form grinding. Despite the fact that the form grinding gives
high quality gears, it takes 10-15 times more time than worm grinding. If some grinding
errors would be decreased by decreasing time with higher speeds, this is going to reduce
operational cost.

However, through grinding procedure, dressing of grinding wheel is an important part
in order to achieve optimum performance in grinding [30]. During grinding process, it is
realized that 20% of the time is spent on dressing cycle. Hence, in this practice case study,
the main focus is contributed on dressing cycle during form grinding. During this process,
infeed axis (x-axis) and tool shift axis (y-axis) operate together to obtain desired profile
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Figure 4.2: Grinding machine diagram [37].

of grinding wheel. Therefore, for these two axes, the rigid body dynamics that includes
inertia and viscous friction parameters are identified and the servo controller of the each
axis is constructed (Figure 4.3).
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Figure 4.3: Project overview.

4.2 2 Axis Control Structure

Overall controller structure for Siemens controller 840D is given below. In this structure, it
should be noted that current controller loop is not taken into consideration. Only position
and velocity controller structures are identified. X and Y axes are driven by ball screw

Figure 4.4: General Siemens controller scheme [29].

drives. X axis is in radial direction with respect to the workpiece. Y axis moves axially
by means of the tool shift axis (Figure 4.2). During dressing cycle, infeed and tool shift
axes move toward positive and negative direction to form grinding wheel. The rigid body
dynamic modeling is the easiest way to represent effect of inertia, viscous and Coulomb
type friction terms. More advanced modeling which including vibrations, more complicated
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Figure 4.5: Dynamic model representation of X and Y axes.

nonlinear friction effect, motor torque ripples etc. would help to represent the behavior and
predict the response more precisely. In this study, we prefer using the rigid body modeling
for a couple of reasons: (1) As mentioned, the simplified rigid body model captures the
major components of the dynamics for typical operation conditions of the CNC machines
(e.g., at ODG) during manufacturing processes. (2) We need a simplified model as opposed
to a complicated one for parametric modeling, identification, and simulation purposes. (3)
Production of more detailed models and reliable incorporation of them with identification
and control schemes require a longer time span than that of the aforementioned NSERC
Engage project and this thesis study; they are beyond the scope of the project and thesis
as well. The linear dynamic model of the Figure 4.5 apply to both of X and Y axes. In this
widely used dynamic model, it should be noted that the feedforward speed compensation
term is not taken into consideration for this study.

4.3 Frequency Domain Analysis and Offline Identifi-

cation

In this section, our studies on open loop and closed loop identification of the key rigid
body model parameters and the built-in controller parameters of the grinding machine
of interest are presented. In the first part of the section, inertia and viscous damping
coefficient’s identification will be given. Afterwards, PI velocity loop identification by using
frequency domain measurements and position control loop gain identification using time
measurements will be described. As it is demonstrated in Figure 4.5, in the closed loop,
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low pass and bandstop (notch) filters are used. Equation of this filters and explanations
will be discussed at the end of this section.

4.3.1 Open Loop Identification of Plant

Open loop frequency response data was collected. The collected data refers to as a mea-
sured quantity speed actual value/torque actual value as it can be seen from Figure 4.6.
Then, the equivalent inertia and viscous friction coefficients were identified. Normally, the
both axes motor inertia is J = 0.0048 kgm2. Yet, the equivalent inertia of the system is
generally 2 to 4 times greater than motor inertia. The reason is that in addition to the
motor mass, there are also the other components of the ballscrew drive such as table and
ballscrew mass that effects the overall inertia with respect to the motor shaft.

Figure 4.6: Open loop scheme.

As demonstrated in the Figure 4.7 and 4.8, there is no reasonable match between
identified and experimental models until 100 Hz for both X and Y axes. This may be
because of the friction effect. In addition, the viscous friction coefficient is not taken into
account since it’s affect is too small. After this point, the results seem to be matched. From
350 Hz to 1000 Hz, there is vibration in the system and since rigid body gives reasonable
results for low frequencies, this is taken as an expected outcome.

4.3.2 Closed Loop Identification

4.3.2.1 Closed Loop Identification of Velocity Loop

In this section, closed loop response of experimental data is analyzed. A lot of controller
structures are used in the manufacturing industry in order to avoid stability issues and
get the desired dynamic performance. One of them is to plug a velocity loop within the
position loop, as it can be seen from Figure 4.5. This overall system called P-PI control.
This controller is used for two reasons; it is simple to implement and easy to tune for
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Figure 4.7: X axis open loop response.

complicated systems. This controller is also built in controller structure in the grinding
machine digital controller.

As a first step of identifying velocity (PI) controller, controller transfer function is
derived by using open and velocity closed loop transfer functions. Controller transfer
function is (Figure 4.9),

Gc = GvGf

where Gv is velocity(PI) controller transfer function and Gf is filter’s transfer function.
For the velocity loop, if we call overall velocity loop transfer function Gcv, we can find Gc

as,
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Figure 4.8: Y axis open loop response.

Gcv =
GcGp

1 +GcGp

→ Gc =
Gcv

Gp −GcvGp

To identify Gcv and Gp, velocity closed loop and open loop experimental responses
are considered. Using this point of view, controller experimental response can be found,
which we are going to call this estimated controller response. In the Figure 4.10 and 4.11,
mathematically derived model (Gp) and estimated controller frequency analysis can be
seen. Estimated response is constructed in order to check if controller gains are chosen
properly. There is a reasonable match between both frequency responses. It should be
noted that grinding machine manufacturer also provided a actuator amplification factor
(fa) that needs to be taken into account inside the closed loop. This factor’s mathematical
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Figure 4.9: Illustration of transfer functions.

Figure 4.10: Controller identification for Y axis.

expression also given below.

nmotor =
rmn

rmdhg
[rpm]

Here, nmotor refers to motor speed. rmn and rmd are number of motor and spindle revolution,
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Figure 4.11: Controller identification for X axis.

respectively. In addition, hg represents the lead screw pitch length.

fa =
nmotor14.8

CiKt

where Ci is motor maximum current and Kt is torque current ratio.

4.3.2.2 Closed loop filters

As a first step of system control, it is expected to do some changes in the system it
self such as adding damping or stiffness to the structure to obtain desired dynamics. In
addition, adjusting the controller gains and getting sufficient design might be restricted
to some specified limits. Therefore, adding the system filters would be the best way of
achieving satisfactory design because it has simple structure and effective performance [31].
In general, bandstop filters are used when some disrupted frequencies are pretty strong, or
high attenuation is needed at particular frequencies. On the other hand, low pass filters
are used to alleviate the signal when there is a higher frequencies than cutoff frequency.
In the grinding machine, for Y axis, four second order low pass and four bandstop (notch)
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filters are used. On the other hand, there are two low pass filters and four notch filters
available for X axis. The transfer function of the filters are given below.

Low pass filter structure;

Glp =
w2

lp

s2 + 2ζwlp + w2
lp

(4.1)

Table 4.1: Low pass filter specifications for X axis.

Table 4.2: Low pass filter specifications for Y axis.

Here, ζ is damping ratio and wlp is natural frequency for low pass filter. Parameter
values of low pass filters are given in Table 4.1 and 4.2.

Bandstop (Notch) filter transfer function;

Gbs =
s2/(2πfz)

2 + s(2πfbz/(2πfz)
2) + 1

s2/(2πfn)2 + s(2πfbn/(2πfn)2) + 1

=
s2/(2πfz)

2 + s(2Dz/(2πfz)) + 1

s2/(2πfn)2 + s(2Dn/(2πfn)) + 1

(4.2)

Here, Dz and Dn are numerator and denominator dampings, respectively. fz represents
the blocking frequency and fn = (MD1222)fz refers to bandstop natural frequency, where
(MD1222) (percent) is used to decrease the amplitude for frequencies above the blocking fre-
quency. fbz = 2Dzfz is numerator bandwidth and fbn = 2Dnfn is denominator bandwidth.
Parameter values of band stop filters are given in Table 4.3 and 4.4.

In conclusion, the closed loop response of velocity loop for X and Y axes is given in the
Figure 4.12 and 4.13. Blue colored signal is constructed by using open loop experimental
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Table 4.3: Bandstop filter specifications for X axis.

Table 4.4: Bandstop filter specifications for Y axis.

Figure 4.12: Closed loop response for X axis.

and mathematically derived PI controller, which is called estimated response. This is done
in order to check if controller gains are tuned properly. Mathematically modeled and
simulated response is given with green colour. Experimental response of velocity closed
loop dynamis is also illustrated with red colour. As it demonstrated, because of the rigid
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Figure 4.13: Closed loop response for Y axis.

body dynamics, there is almost perfect match for low frequencies. After 350 Hz, there
is notably difference between modeled and experimentally obtained responses. This is
because of resonances and unmodeled dynamics.

4.3.2.3 Closed Loop Identification of Position Loop

In order to find closed loop gain (Kp1) and finalize the mathematical model of overall
transfer function, time measurements are used. Figure 4.14 and 4.15 are the reference
trajectories for X and Y axes. However, it should be noted that while analyzing simulation
in virtual environment such as matlab, noisy signals sometimes might cause misinterpre-
tation of the analysis. In order to overcome this problem and get rid of some part of noisy
measurements, reference and output trajectories are passed through 6th order butterworth
filter. In addition, 500 Hz cutoff frequency and 1500 Hz nyquist frequency, which is half of
the sampling rate are used for this filter. Obtaining of time measurements will be explained
in detail in section 4.4.

Figure 4.14 and 4.15 are reference signals that applied to the each axis. X and Y axes
go back to their original started position after 20 seconds. Filtered actual signals from
experimental setup for X and Y axes are given in the Figure 4 16. As expected, there
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Figure 4.14: X axis reference signal.

Figure 4.15: Y axis reference signal.

are more noise than reference signals. Tracking error for X axis is over 0.002 inches, but

50



there are peaks during turning the corners. On the other hand, for Y axis, tracking error
goes 0.005 inches after 2 seconds and there are also some peaks in the corners of the signal
(Figure 4.17).

(a) X axis actual. (b) Y axis actual.

Figure 4.16: Actual signals.

Figure 4.18 shows the Y vs X axes position experimental measurement result. Dressing
cycle takes around 20 seconds. In three periodic movements of X and Y axes, dressing
procedure is completed. At the end of the cycle, dressing wheel is formed as desired. This
result is constructed by considering one dressing cycle of the movement during grinding.

Simulation Results: In order to find position control gain (Kp1), simulation output
signals are compared with experimental measurement outputs given in Figure 4.16. Figure
4.19 and 4.20 show the output signals obtained from simulations. Tracking errors are
close to experimentally obtained signal’s tracking (Figure 4.17, 4.19 and 4.20). Figure 4.21
illustrates actual signal from experiment and output signal from simulation. Signals are
tuned to be as close as possible to each other in order to find proportional gain.
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(a) X axis tracking error. (b) Y axis tracking error.

Figure 4.17: Tracking errors of X and Y axes.

Figure 4.18: Trajectory during dressing cycle.
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Figure 4.19: Y axis simulation.
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Figure 4.20: X axis simulation.
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4.4 A High-Fidelity Simulation Tool for ODG System

In order to construct mathematical model of each axis dynamic, time measurements are
needed as it mentioned above. Time measurements are collected by using Siemens digital
to analog converter (DAC). The device for collecting time measurements is built and im-
plemented by Ivan Chan. Measurement results are also investigated with the Cooperation
of this Coop student in University of Waterloo.

In Siemens 840D, there are three channels available for giving preselected signals, which
is ranging from 0 [V] to +5 [V]. Sampling rate was also over 3 kHz. However, here, voltage
unit corresponds to physical units while looking at the signals. For example, 1 V = 5
mm means the axis is placed 5 mm from original position. Henceforth, all voltage units
are first converted to their actual units. In addition, there were some restrictions during
obtaining the output signals. Since signal was restricted between 0 and 5 V, all signals are
reconstructed. Rebuilt and reconstructed signals can be seen in Figure 4.22.

(a) Signal without reconstruction. (b) Signal with reconstruction.

Figure 4.22: Signals from DAC.

4.4.1 Data Acquisition Unit (DAU)

Data acquisition unit is used in order to convert the analog output signals from ODG
grinder machine into the digital signals. These signals are helped us to collect data and

55



further implement on a computer. For this purpose, National Instrument NI USB-6210
data acquisition unit is used. DAU unit allows us to download data from five controllers
at the same time and each controller contains three DAC channels. National Instrument
data acquisition unit is also capable of interacting with .NET programming languages such
as C#. Data acquisition software is constructed in C# to obtain signal from DAC unit
(Figure 4.20). Data is collected and saved as .csv format and exported to Matlab.

Figure 4.23: Data Acquisition unit C# interface.

4.4.2 Machine Modeling and Simulation

As can be seen from Figure 4.24, frequency analysis of each axis is conducted by collecting
measurements from grinding machine as mentioned in Section 4.3. After identification of
closed loop system, X and Y axes position set points and actual position signals were col-
lected. It should be noted that these data collection processes are repeated until achieving
satisfactory design. After sending collected data files as .csv format, dynamic models of
each axis is built in Simulink as mentioned above. Simulink output signals are compared
with actual signals from grinding machine. Dressing wheel form is found as in Figure 4.25
after designing Matlab models for each axis. Afterwards, this wheel shape is used in 3D
simulation software to see the gear errors (Figure 4.26).
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Figure 4.24: Overall work scheme.

Figure 4.25: Dressing Wheel.
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Figure 4.26: 3D simulation of form grinding.
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Chapter 5

Discussions and Conclusions

In Chapter 3, based two widely used classical (static) friction models, a least squares on-
line friction estimator and an adaptive friction compensation scheme have been designed.
The performance of the developed on-line estimator and adaptive control scheme have been
evaluated via simulation and experimental tests. In adaptive control design, two different
feedback approaches have been used; (i) a new backstepping control design based on con-
structive Lyapunov analysis and (ii) a classic P-PI control approach. In both simulations
and experimental tests, it has been observed that on-line parameter estimation algorithms
and adaptive control schemes have achieved desired performance, diminishing most of the
friction effects.

During simulation and experimentation, some of the parameters of the classical friction
models that can change for different systems were assumed to be available. For the cases
where these parameters are unavailable, the designed adaptive control laws and on-line
estimation methods can be modified as a future work. Furthermore, as discussed in Chapter
2, most of the dynamic models are nonlinear in parameter. It is therefore challenging to fit
dynamical models into SPM form. For further work, using more detailed friction models
such as the Lueven or the Maxwell slip models and then developing on-line estimation and
adaptive law algorithms is expected to increase friction compensation performance. Hence,
most of the undesired friction effects can be eliminated from the system of interest, using
dynamical friction models. In addition, the tracking errors due to friction can be further
reduced following a direct adaptive control approach.

In Chapter 4, practical case study for finding rigid body model parameters (inertia and
viscosity constants) and the parameters of the built-in controller are explained. Real-time
experimental measurements have been collected from grinding machine in Ontario Drive
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& Gear company. Rigid body model designs have been constructed based on dressing
cycle during grinding machining procedure, noting that the cycle takes 20% of the process
time for grinding. Dynamic model designs have been constructed for two axes that are
active during dressing, namely X and Y axes. X and Y axis dynamic systems have been
identified, including rigid body plant, velocity and position controllers, and low pass and
band stop (notch) filters within the built-in controllers. Velocity loop identification has
been performed based in frequency domain, and the position loop has been identified using
time measurements of the two axes. Finally, 3D model of the CNC grinding machine has
been developed integrating using experimentally developed dynamic model of two axes.

For the practical case study, identifying feed drive dynamic parameters, finding con-
trollers, and constructing mathematical model is just the first step of analyzing and en-
hancing the system. For future work, different friction models are planned to be used in
the axis dynamics. Various compensation techniques can be built for further works for
grinding machine. Rigid body model can be improved by taking into account external
forces, torque ripples to the system. In addition, since there are resonances in the system
for high frequencies, modeling these vibrations will allow us to get closer results to the
actual system dynamics. In addition, 3D model simulations of the grinding machine have
been obtained by constructing dressing wheel shape with Matlab based analysis. X and Y
axis dynamics identification and simulation can be improved and dressing cycle time can
be reduced without sacrificing precision of dressing wheel by constructing a more detailed
virtual CNC machine, and correlating X and Y axes dynamics with this virtual design.
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