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Abstract

Variability provides the ability to adapt and customize a software system’s artifacts for
a particular context or circumstance. Variability enables code reuse, but its mechanisms
are often tangled within a software artifact or scattered over multiple artifacts. This
makes the system harder to maintain for developers, and harder to understand for
users that configure the software.

Feature models provide a centralized source for describing the variability in a software
system. A feature model consists of a hierarchy of features—the common and variable
system characteristics—with constraints between features. Constructing a feature
model, however, is a arduous and time-consuming manual process.

We developed two techniques for feature model synthesis. The first, FEATURE-GRAPH-
EXTRACTION, is an automated algorithm for extracting a feature graph from a proposi-
tional formula in either conjunctive normal form (CNF), or disjunctive normal form
(DNF). A feature graph describes all feature diagrams that are complete with respect to
the input. We evaluated our algorithms against related synthesis algorithms and found
that our CNF variant was significantly faster than the previous comparable technique,
and the DNF algorithm performed similarly to a comparable, but newer technique, with
the exception of several models where our algorithm was faster.

The second, FEATURE-TREE-SYNTHESIS, is a semi-automated technique for building a
feature model given a feature graph. This technique uses both logical constraints and
text to address the most challenging part of feature model synthesis—constructing the
feature hierarchy—by ranking potential parents of a feature with a textual similarity
heuristic. We found that the procedure effectively reduced a modeler’s choices from
thousands, to five or less when synthesizing the Linux and eCos variability models.

Our third contribution is the analysis of Kconfig—a language similar to feature modeling
used to specify the variability model of the Linux kernel. While large feature models
are reportedly used in industry, these models have not been available to the research
community for benchmarking feature model analysis and synthesis techniques. We
compare Kconfig to feature modeling, reverse engineer formal semantics, and translate
12 open-source Kconfig models—including the Linux model with over 6000 features—to
propositional logic.
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Chapter 1

Introduction

Variability provides the ability to adapt and customize a software system’s artifacts
for a particular context or circumstance [VvGBS01]. Variability enables code reuse,
but its mechanisms are often tangled within an artifact or scattered over multiple
artifacts that span the problem space, solution space, or the mapping connecting the
two spaces. Variability-rich software, in particular, pose a challenge for developers and
users. Developers need to understand the impact of a change in order to add new
features or dependencies to existing features. For users that configure the software
system, complex feature interactions can lead to unsatisfied dependencies.

Feature models (FMs), first introduced by Kang et al. [KCH*90], describes features—the
common or variable characteristics of the products in a SPL—as a visual hierarchy with
additional constraints between features. Since feature models were first introduced,
they have been used in a wide variety of tasks such as domain analysis [KCH"90], model
management [Ach11], describing design or implementation constraints in variability-
rich software [CE00], and product configuration. Feature model configurators provides
intuitive graphical interfaces for configuring features and understanding their depen-
dencies (Figure 1.1).

Figure 1.2 shows a feature model of a mobile phone product line. Features are
represented as rectangles and may be optional—denoted by an empty circle at the top—
or mandatory—denoted by a filled circle. An edge from one feature to another denotes a
dependency, where a solid line denotes the feature hierarchy, and a dashed line with an
arrow is a cross-tree implies edge. Cross-tree excludes edges can also exist in the diagram,
but are not shown in this particular example. Constraints between sibling features
can also be specified as part of a feature group. An xor-group, shown with a clear arc,
denotes that exactly one member of the group must be selected if its parent is selected.
or-groups, shown with a filled arc, where one or more members must be selected, and
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Processor 4G

’ ARM ’ ’ OMAP ’ Snapdragon [« ---------

Figure 1.2: Feature model of a model phone product line

{ Phone, Processor, ARM, Camera },

{ Phone, Processor, ARM, Camera, NFC },

{ Phone, Processor, OMAP, Camera },

{ Phone, Processor, Snapdragon, Camera, 4G },

Figure 1.3: Subset of legal configurations of the mobile phone feature model

MUTEX-groups, where zero or one members must be selected, also exist, but are not
shown in the figure. The graphical components—i.e., the feature hierarchy, feature
groups, and cross-tree edges—form the feature diagram. A feature model consists of the
feature diagram and an additional cross-tree formula to describe constraints that could
not be represented in the diagram. The configuration semantics of a feature model is a
set of legal configurations defined by the satisfying assignments for its translation to
propositional logic [Bat05]. For example, a subset of the legal configurations for the
feature model in Figure 1.2 is the set of configurations in Figure 1.3.

Since their introduction, feature models have become widely used in literature and
in industry. At the time of writing, the SPLOT model repository contained over 250
feature models gathered from academia, or contributed by industry! [MBC09]. While
these models originate from different sources, the models are all small in size, with the
largest model having 280 features®. Large feature models with hundreds, and even
thousands of features exist in industry. However, these model are not available to the
research community [MBC09, BSRC10]. Open source, variability rich projects, such
as the Linux or eCos kernels have large, explicitly defined variability models. Linux
uses the Kconfig language to specify its variability model and eCos has the Component
Definition Language (CDL). These language are quite similar to feature modeling and

thttp://splot-research.org
2As of December 9, 2012
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Existing System (Pre-SPL)

Product Relation Pattern Matching

Transition Scenario Identified

Variability Analysis <

v

Feature Model Synthesis
(Model Building)

Feature-Oriented System (SPL)

Figure 1.4: Steps for software migration to SPLs (adapted from [Beu06])

their models can be interpreted as feature models [SSSPS07, SLB*10, BSL*10b]. We
derived a mapping from Kconfig concepts to feature modeling and identified unique
concepts of Kconfig [SLB*10, BSL*10b]. We reverse engineered formal semantics for
the Kconfig language [SB10] and used the semantics to translate a Kconfig model to
propositional logic. We describe our research on the Kconfig language in Chapter 4.

Figure 1.4 is a workflow by Beuche for migrating a software system to a SPL archi-
tecture [BeuO6]. In the figure, product relation pattern matching is the process of
identifying the relation between the products in the envisioned product line. This
process involves identifying shared software assets, similarities between user-facing
features, and whether the existing system used any form of systematic variability man-
agement between products. Next, a transition scenario that describes the goal of the
migration process is identified. For example, one scenario involves merging separate
products into a product line. Another scenario involves improving reuse between
software assets in an existing product line. Chapter 3 describes several feature model
synthesis scenarios that we gathered from literature and from industry experience
reports [SCW12]. Variability analysis identifies features and variability in the project



Chapter 1 Introduction

Feature Model Synthesis

Features,
Valid Configurations, ——p Feature Model
and Structural Information*

Variability

Analysis

e.g., feature location,
dependency mining

Re-Engineering
Software Artifacts

Existing System Feature-Oriented System
! optional information used to guide feature hierarchy construction.

Figure 1.5: Abstract steps in a feature-oriented re-engineering of a software system

artifacts. The last step of the process is feature model synthesis, the focus of this thesis.
Feature model synthesis involves the construction and design of a feature model using
the features and variability data identified in the previous steps of the workflow. In
Beuche’s original slides [Beu06], he describe the variability analysis and model building
stages as iterative and incremental. In this dissertation, we address a one-way, batch
process for feature model synthesis. We leave the incremental synthesis process as
future work.

We elaborate on the variability analysis and feature model synthesis stages in Figure 1.5.
Variability analysis is performed by a domain export to identify features and variability in
a system with automated tooling such as feature identification and location [DRGP11].
Valid configurations can be identified with either dependency mining [BSL*10a, Kis10],
or extracting configurations from variants [RPK11]. The analysis stage also involves
identifying structural information for the synthesis technique if needed. In our synthesis
technique, we use supplemental feature descriptions to rank potential parents of a
features (Chapter 6). We give other examples of analysis techniques for extracting the
needed synthesis input in Chapter 3. In the feature model synthesis step, a domain
expert constructs and designs a feature model given the identified features, valid
configurations, and any supplemental information. This step is tool-assisted, since it
requires user input to build and design a model. After a feature model is constructed,
the remaining software artifacts in the project, such as the build system or source code,
is adapted to use the synthesized feature model as its source for variability. In this
thesis, we address the middle step in this process: feature model synthesis.
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STACK enables the stack(9) facility. .. stack(9) will also be compiled in
automatically if DDB(4) is compiled into the kernel.

(a) Documentation with a dependency between STACK and DDB

#ifdef DDB

#ifndef KDB

#terror KDB must be enabled for DDB to work!
#endif

#endif

(b) Code snippet with a dependency between DDB and KDB

# Debugging for use in -current

options KDB # Enable kernel debugger support.
options DDB # Support DDB.

options GDB # Support remote GDB.

nooption NATIVE
options MCLSHIFT=12

(c) Snippet of a hardware configuration for i386 XEN support

Figure 1.6: Snippets of a FreeBSD variable artifacts
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0os OSs
net staging net staging
{ OS, staging } X
{ 08, staging, net } %L o
i dstf e------
{ OS, staging, net, dst } implies
(a) A set of configurations (b) AFM (c) Another FM

Figure 1.7: Two feature models with the same set of legal configurations [SLBT11]

Next, we will describe a concrete scenario involving feature model synthesis. The
FreeBSD kernel is a system without a feature model and could benefit from a feature-
oriented re-engineering. Variability is scattered over a mixture of variable artifacts and
instances. Features and dependencies are described in an ad-hoc manner—features
are scattered in documentation and dependencies are hidden in code and feature
configurations for different hardware architectures and devices. Figure 1.6a is a
snippet from documentation in FreeBSD describing a dependency between two features:
STACK and DDB. Dependencies involving the DDB feature is not localized to just
documentation; a dependency between DDB and KDB also exists in the FreeBSD source
code (Figure 1.6b). A configuration in FreeBSD is simply a list of features and their
values (Figure 1.6¢). A user looking to understand the dependencies of the DDB feature
would have to examine configuration templates, feature documentation, and source
code. FreeBSD is a system that would benefit from an explicit representation of features
and their dependencies.

Re-engineering the variability of a software system is just one scenario involving feature
model synthesis. Feature models can also be synthesized for domain analysis from
requirements, drive configuration of existing and future products from code variants,
or as part of a model management operation such as a model merge from a set of other
feature models [SCW12]. We elaborate on these scenarios in Chapter 3.

Feature models provide an intuitive graphical notation for describing a set of legal
configurations. However, given a set of configurations, there could be many different
feature models that describe these configurations. For example, Figures 1.7b and
1.7c both describe the same set of configurations in Figure 1.7a. Other models could
describe more configurations (Figure 1.8a), or less configurations (Figure 1.8b). Even
though the feature model in Figure 1.8a describes more configurations than the input,
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(O] OS
0S /\' :
net staging net staging
\. £ O
net| |dst| |staging dst
(a) More configurations (b) Less configurations (c) Arbitrary configurations

Figure 1.8: Feature models that describe different configurations from Figure 1.7

this model could very well describe best what the modeler intended. For example,
synthesis scenarios involving domain analysis from requirements, or synthesizing a
feature model from individual variants to describe a product line require a feature
model that is more general than the input configurations. Our feature model synthesis
algorithms ensure that the synthesized feature model that is weaker than the input
configurations. In other words, the configurations in the synthesized feature model are
a superset of the configurations in the input, making the model complete with respect
to the input configurations. Additional constraints can be added in the stage following
feature model synthesis.

We developed an efficient, automated algorithm called Feature Graph Extraction (FGE)
that recovers a feature model that is complete with respect to the input configurations.
FGE takes an input propositional formula, and extracts a special feature graph that
describes all possible feature diagrams that are complete with respect to the input
configurations, or sound with respect to the input dependencies [ACSW12, CW07].
Our algorithm is capable of synthesizing a feature graph from a set of features, a
set of dependencies expressed as a formula in conjunctive normal form (CNF), or
as a set of configurations expressed as a formula in disjunctive normal form (DNF).
FGE acts as an intermediate step in a larger feature model synthesis scenario. For
example, the resulting feature graph can be used as input to an interactive feature
model building tool [JKWO08] or as part of a feature model merge or projection op-
eration [Ach11]. We use FGE as the basis of our own semi-automated feature model
synthesis technique [SLB*11]. We describe FGE in Chapter 5.

The feature graph recovered by FGE represents a set of feature diagrams and is not a
valid feature diagram on its own. A distinct feature tree and a set of feature groups
have to be selected from the feature graph for it be a valid feature model. If we look at
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the two feature models in Figures 1.7b and 1.7c again, both feature models describe the
same set of input configurations. However, the two feature models differ in their feature
hierarchies. The feature hierarchy and arrangement of feature groups reflect the domain
semantics of the feature model [SLB*11]. As an example, let’s assume that selecting
the net feature enables networking support, dst enables distributed storage support, and
that subfeatures of staging describes experimental features. If dst is an experimental
feature, placing the feature under staging is more appropriate (Figure 1.7c). However,
if dst is a stable feature, then placing it under net is more appropriate (Figure 1.7b).
In this example, the appropriate feature hierarchy is determined by the meaning, or
domain semantics of its features.

Determining the location of a feature in the feature hierarchy becomes a significant
challenge when synthesizing a feature model with thousands of features. We developed
a semi-automated technique to identify relevant parents for a feature by using logical
dependencies and a textual similarity heuristic [SLBT11]. We use this technique to
reverse engineer a feature model for a portion of the FreeBSD kernel and evaluated the
effectiveness of our technique by comparing the results of our heuristic with reference
feature models extracted from the Linux, eCos, and a portion of the FreeBSD kernel.
We discuss this technique in Chapter 6.

Our FM synthesis techniques assumes features, and valid feature combinations ex-
pressed as a set of dependencies or configurations as input. Other FM synthesis tech-
niques exist that use different inputs, from requirements documents [ASB*08, NEO8b]
to semi-structured product descriptions [ACP"12]. We discuss related FM synthesis
techniques in Chapter 7.

1.1 Thesis Statement

We synthesize large-scale feature models with thousands of features by using SAT-based
reasoning on propositional formulas and suggest a feature hierarchy by combining
logical reasoning with textual similarity heuristics.

We establish this thesis by evaluating our synthesis algorithms against comparable
algorithms on input derived from generated and real-world feature models. We evaluate
our textual similarity heuristic on input derived from the Linux, eCos, and FreeBSD
kernels.
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1.2 Contributions

This thesis claims the following contributions:

* We collected feature model synthesis scenarios from literature and industry
experience reports. We classify and show the workflows of the individual scenarios
and derive an abstract workflow and requirements for feature model synthesis
algorithms [SCW12]. Chapter 3 presents the scenarios and requirements for
feature model synthesis algorithms.

* We analyzed the Kconfig variability modeling language and derived formal seman-
tics [SB10], and a mapping from Kconfig to feature modeling [SLB*10, BSL*10b].
The Kconfig language developed specifically for Linux to specify its variability
model. This model has over 6000 features and provides the largest benchmark
for feature model analysis and synthesis tools. The Kconfig analysis tools con-
tributed to the analysis of the evolution of Linux over 21 releases from v2.6.12 to
v2.6.32 [LSB*10], and extracted models from 11 open-source projects that use
Kconfig [BSL*12]. We discuss the Kconfig language in Chapter 4.

* We introduce the automated FEATURE-GRAPH-EXTRACTION algorithm [SRAT13,
ACSW12] in Chapter 5. Given input as a set of features, and a propositional
formula in either conjunctive normal form (CNF) or disjunctive normal form
(DNF), this algorithm recovers a graph that describes all feature diagrams that
entails the input. Our evaluation found that the CNF variant perform 10 to
1000 faster than a previous BDD-based algorithm [CWO07] and could handle
much larger input, including input derived from the Linux kernel. The DNF
variant was comparable to a formal concept analysis-based algorithm by Ryssel et
al. [RPK11].

* In Chapter 6, we describe our semi-automated FEATURE-TREE-SYNTHESIS algo-
rithm [SLB*11]. This algorithm takes a set of features, dependencies, and feature
descriptions to present potential parents for feature to help a modeler build
the feature hierarchy. Given a feature, FEATURE-TREE-SYNTHESIS creates a list
containing the implied features ranked by their textual similarity, and a second
list containing all features ranked by their textual similarity for situations where
input dependencies may be missing. This algorithm was the first to use both
logical dependencies and textual similarity heuristics for feature model synthesis.
Our evaluation found that given a feature, the algorithm identified the correct
parent for 76% of features in the Linux variability model and 79% of features
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from the eCos variability models, and the correct parent appeared in the top 3%
to 6% of all features.
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1.4 Thesis Organization

In this chapter, we described the motivation behind feature model synthesis and pre-
sented an overview of our work. Chapter 2 describes feature models in detail, and
provides background on variability modeling and software product lines. Chapter 3
discusses feature model synthesis scenarios and derives requirements for synthesis tech-
niques from the scenarios. Chapter 4 discusses the Kconfig language—the variability
modeling language developed and used by the Linux kernel—and compares the prop-
erties of 12 Kconfig models against a set of 267 published feature models. Chapter 5
describes the first synthesis algorithm, FEATURE-GRAPH-EXTRACTION, that given a set
of features and dependencies, extracts a special feature graph describing all feature
diagrams that are sound with respect to the input dependencies. Chapter 6 describes a
semi-automated algorithm that takes a feature graph and recovers a distinct feature
model. Chapter 7 discusses related synthesis techniques, and Chapter 8 concludes with
ideas for future work.
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Background

Large software systems such as operating systems, automotive software, or embedded
systems, contain significant variability. This variability is often scattered over multiple
artifacts such as optional requirements, high level features, or low level run-time
options. Variability in code often takes the form of code fragments annotated with a
condition. A variability model makes the variability in a software system explicit.

Feature modeling is one form of variability modeling. Feature modeling was first
introduced in 1990 as part of the feature-oriented domain analysis (FODA) [KCH"90].
Since then, feature modeling has become popular due to its ability to codify the critical
information for reuse (e.g., variation points and variants), simplicity, understandability;,
and practicality [Kan10]. We discuss feature models in depth in Section 2.1.

Feature models are not the only form of variability modeling. For example, the popu-
larity of variability modeling has led the Object Management Group (OMG) to work
towards a standard called the Common Variability Language (CVL) [Obj12]. Other vari-
ability modeling languages include decision modeling [DGR11] and Clafer [BCW10].
The open-source community has developed the Kconfig [Zc] and Component Definition
Languages (CDL) [BVOO]. We discuss CVL, decision modeling and other variability
modeling languages in the following section. We defer the discussion of the Kconfig
language to Chapter 4.

Chapter Organization Section 2.1 introduces feature models and discusses their
configuration semantics, domain semantics, and tool support. We briefly discuss ex-
tended feature models, e.g., feature attributes, and non-propositional feature models.
In Section 2.2, we discuss variability modeling languages other than feature modeling.
These include decision models, the Common Variability Language (CVL), Clafer, and
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pm
cpu_freq
\\\impli(ej/P\
acpi_system cpu_hotplug | | performance | | powersave
: N N +
: excludes :
| _______ |
implies

powersave A acpi — cpu_hotplug

Figure 2.1: Power management feature model [SLB*11]

the Component Definition Language (CDL). Sections 2.3 and 2.4 describe how fea-
ture modeling fits into Software Product Lines (SPLs) and Feature-Oriented Software
Development (FOSD).

2.1 Feature Modeling

Feature modeling was introduced by Kang et al. as part of feature-oriented domain
analysis (FODA) [KCH*90]. A feature model (FM) consists of features arranged in (i)
a feature diagram, and (ii) additional constraints between features. A feature is some
property that is relevant to some stakeholder [CEOOQ].

The feature diagram is a visual hierarchy of features. A feature may have subfeatures,
i.e., a parent feature may have one or more children features. The topmost feature is
called the root feature and represents the concept described in the feature model. All
other features are either solitary or grouped. Solitary features can be optional—where
the feature may or may not be selected if its parent is selected, or mandatory—where
the feature must be selected if its parent is selected. Grouped features belong to feature
groups that is either a MUTEX-, OR-, Or XOR-group. A MUTEX-group requires that either
one or none of the grouped features are selected. A or-group requires that at least
one of the grouped features are selected. An xoR-group requires exactly one grouped
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feature be selected. Additional cross-tree constraints in the form of implies and excludes
edges can shown in the feature diagram. Arbitrary constraints can be added in a
cross-tree formula shown below the feature diagram. The feature diagram along with
the cross-tree formula form a feature model.

Figure 2.1 is a feature model of a power management subsystem. In this model, pm is
the root feature. Features acpi and cpu_freq are optional features of pm. acpi_system
is a mandatory feature. Features performance and powersave belong in an xoRr-group.
MUTEX- and oRr-groups are not shown in this feature diagram. There are implies edges
from cpu_hotplug to acpi, and cpu_hotplug to powersave, and an excludes edge between
cpu_hotplug and performance. An additional cross-tree formula is shown below the
diagram.

Definition 2.1. A feature diagram is a tuple FD = (F,E,(E,,, E;,E,),(G,,G,,G,,))
where:

e F is a finite set of features,

* E C F x F is a set of directed child-parent edges;

* E, CE is aset of mandatory edges,

* E; C((F xF)—E)is a set of implies edges,

* E, C 27 is a set of undirected excludes edges where |e| =2 for all e € E, ;

* G,,G,, G, are sets that contain non-overlapping subsets of E that partici-
pate in OR-, XOR-, O MUTEX-groups respectively—each set in any of G, G,,
and G,, is disjoint from any other set in G,, G,, and G,,.

The following well-formedness constraints must hold in FD:

1. (F,E) is a rooted tree connecting all features in F.
2. All edges in a group share the same parent, so if g € G; for i € {o, x, m}

and if (fy, f>), (fs, fa) € g, then f, = f,.

3. Sets E, E;, E, are pairwise disjoint.

Based on the definition above, features not having a mandatory edge are considered
optional features. Feature groups in the diagram are also restricted to only or-, XOR-,
and muTex-groups. The original feature diagram notation introduced in FODA included
only xor-groups with (1..1) cardinality [KCH*90]. Czarnecki and Eisenecker extended
the feature diagram to include or-groups with (1..n) cardinality [CE00]. While there
are feature diagram notations that allow arbitrary (m..n) group cardinalities [SHTBO7],
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we found that these group cardinalities were very uncommon in practice—in a dataset
of 267 feature models contained in a feature model repository [MBCO09], none of the
models had feature groups with (m..n) cardinalities.

Definition 2.2. A feature model, FM = (FD, ¢ ), where FD is the feature diagram
and ¢ is a propositional formula over F.

Feature models have been used to drive product derivation [AC04], domain analy-
sis [KCH'90, ASB*08], model management, and describe design and implementation
constraints in a software system. At its core, feature models describe variability as a
set of legal configurations. In the following section, we define the configuration and
domain semantics of a feature model.

2.1.1 Configuration Semantics

The configuration semantics of a feature model is a set of legal configurations—sets
of selected features that respect the dependencies entailed by the diagram and the
cross-tree constraints. The configuration semantics can be specified via translation to
logic [BatO5]. We decompose the configuration semantics of a feature diagram by their
graphical components in Table 2.1 and by using the formal definition in Definition 2.1
as follows:

Root Feature The root feature must be present in all configurations forming the
following propositional constraint:

r where r is the root of the tree (F, E) (2.1)

Child-Parent Implications The feature hierarchy is represented as implications
from a child feature to a parent feature. Given a child feature f, (e.g., powersave)
and a parent feature f, (e.g., cpu_freq), the following constraints are added:

/\ (c—p) (2.2)

(c,p)EE

Mandatory Features The set of edges in E,, represent mandatory features—features
that must be selected if its parent is selected. Mandatory features add the following
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Feature diagram syntax = Propositional translation

c is an optional subfeature of p

(c—p)

¢ is a mandatory subfeature of p

<]
{c1,¢5,...,Ci} are an xor-group of p
(c1V...Vcg—=p) A
(p—=cV...Vc) A

/\ (c; = —¢;)

ij=1.k
i#j

{c1,¢q,...,C,} are an or-group of p

(c—=p)A(p—c)

(cqV...Vce—p) A
(p—ciV...Vcy)

{cq,¢5,...,C,} are a MUTEX-group of p
V...V —p) A

G

ij=1.k
i#j

f has an implies edge to k  f and k share an excludes edge

k f
(f = k) o (f — k)
}mplies excludes

Table 2.1: Concrete syntax of feature diagrams and the mapping to propositional logic
(adapted from [K&s10], [ACSW12], [Ber12])
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constraint, in addition to the child-parent implications above:

A (-0 (2.3)

(c,p)EE,

Implies Edges An implies edge in E; naturally adds an implication to the set of
constraints:

A F—-k 2.4)

(f,k)EE;

Excludes Edges An excludes edge describe a mutual exclusion between two fea-
tures. Excludes edges contribute the following constraints:

N =k (2.5)

(frk)EE,

Feature Groups G,,G,,G,, sets contains sets of non-overlapping edges that define
the oR-, XOR-, MUTEX-groups respectively. Feature groups contribute two kinds
of constraints: a requirement that at least one of the group members must be
present, and mutual exclusions between group members. or-groups have the
former constraint, MUTEX-groups have the latter constraint, and xor-groups have
both. Feature groups contribute the following constraints:

/\ p—c V-V (2.6)

{(C1,P) ~~~~~ (Ck:p)}eGoUGx

/\ /\ ¢ — ¢ 2.7)

{(c1,p)e s (P )YEGRUG,  \ i,j€{1,....k} where i#]

Definition 2.3. The function p(-) translates a feature diagram or a feature model
to propositional logic, interpreting features as variable names. For a feature dia-
gram FD = (F,E,(E,, E;, E,),(G,, G,,G,,)), we define the configuration semantics
as:
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(acpi — acpi_system A pm)
A (acpi_system — acpi)

A (cpu_freq — pm)

A (cpu_freq — powersave V performance)
A (cpu_hotplug — powersave)

A (cpu_hotplug — —performance)

A (cpu_hotplug — acpi A cpu_freq)

A (powersave — —performance)

A (powersave — cpu_freq)

A (performance — cpu_freq)

A (powersave A acpi — cpu_hotplug)

Figure 2.2: Propositional translation of the feature model in Figure 2.1

p(FD) = rA root feature

A (c—p)A child-parent implications
(c.p)EE

/\ (f —=k) A mandatory and implies edges

(f.k)erl
/\ (f =—k) A excludes edges (2.8)
(f.lex
/\ (p—= (V- Ve))A feature groups
{(Cl7p) ~~~~~ (Ck’p)}
€G,UG,
/\ /\ (c; — _'Cj)
{(c1,p),-.(ck,p)} 1,jEfl,... .k}
€G,,UG, i#]

where r is the root feature of the tree formed by the features and edges of (F, E).

Definition 2.4. Given FM = (FD, ¢ ), the configuration semantics of a feature
model, FM, is defined as p(FM) = p(FD) A ¢.
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Applying the propositional translation, p(-), to the feature model in Figure 2.1 results
in the formula in Figure 2.2. Any satisfying variable assignment to this formula is a
legal configuration.

2.1.2 Domain Semantics

Feature models describe a set of legal configurations with its configuration semantics.
A second semantics, the domain semantics (called ontological semantics in [SLBT11]),
describe the domain in the structure of the model. The domain semantics describes
the meaning of the features and is reflected in a model’s hierarchy and feature group
arrangement.

As we saw earlier in Figure 1.7, two feature models can describe the same configurations,
but have different hierarchies. The different hierarchies convey a different domain
semantics. The feature hierarchy is not the only part of a feature model that affects its
domain semantics—the feature groups and cross-tree constraints also have an effect. For
example, the feature models in Figure 2.3 all describe the same three configurations:

{cpu_governor, powersave},
{cpu_governor, powersave, cpu_hotplug},
{cpu_governor, performance}.

The features powersave and performance are both CPU governors, and cpu_hotplug
controls whether the CPU can be enabled or disabled dynamically. If we examine the
feature models in Figure 2.3, the models all have the same configuration semantics, but
different domain semantics. In Figure 2.3a, powersave and performance are grouped
together and an excludes edge exists between performance and cpu_hotplug. The
features are grouped differently in the feature model in Figure 2.3b. Between the
feature diagrams in Figures 2.3a and 2.3b, the arrangement of features in Figure 2.3b
matches the domain relations of the features better.

Between Figures 2.3b and 2.3c, the feature grouping and hierarchy are the same,
however, the cross-tree constraints are different. How cross-tree constraints are repre-
sented in the feature model also impact the domain semantics of the model. Finally, in
Figure 2.3d, the bi-implies edge (i.e., a shorthand for two implies edges) is redundant
in terms of the configuration semantics—the edge may be removed without affecting
the modeled set of configurations. However, the model builder may want to include
this bi-implies edge to make the relation between powersave and cpu_hotplug exist.
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cpu_governor

powersave performance cpu_hotplug

V2
oy N

excludes

(a) powersave and performance are in a feature group

cpu_governor

B

powersave performance | | cpu_hotplug

bi-implies

(b) performance and cpu_hotplug are in a feature group

cpu_governor

o

powersave performance cpu_hotplug
a2 X X T
| |
| |
! excludes |
implies

(c) Same hierarchy and feature groups as b, but with different cross-tree constraints

cpu_governor

powersave performance cpu_hotplug

bi-implies

(d) Redundant cross-tree constraint

Figure 2.3: Feature models that describe the same configurations, but have different
domain semantics
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The domain semantics are reflected in the hierarchy, feature groupings, and cross-tree
constraints.

2.1.3 Tool Support

As feature models grow in size and complexity, tool support and automated analysis
become a necessity [BPSP04]. Feature modeling tools include graphical configu-
rators and automated analysis such as dead feature detection, valid configuration
enumeration [BSRC10], fix generation [XHSC12], choice propagation and model com-
pletion [WSB*08]. Feature models have support for staged configuration [CHEO5b],
conflict resolution strategies [NE10], and support for different perspectives and collab-
oration for configuration [Hub12].

Examples of feature modeling tools are the FaMa-FW framework and the FAMILIAR
domain-specific language. FaMa-FW is a framework for the automated analysis of
feature models [TBRC"08]. It supports multiple reasoners, such as BDDs, SAT solvers,
or constraint satisfaction problem solvers. FaMa-FW supports operations such as calcu-
lating the legal configurations, error detection and explanation. Acher et al. developed
FAMILIAR—a domain specific language for reasoning on feature models [Ach11]. FA-
MILIAR supports operations such as feature configuration, detecting dead features,
and counting or enumerating legal configurations. The key feature of FAMILIAR is
its support for composing feature models. It integrates our feature model synthesis
algorithm (Chapter 5) to perform operations between propositional logic and feature
models. We discuss how our synthesis algorithm is used for feature model composition
as one of the scenarios in Chapter 3.

TVL (Text-based Variability Language) is a language for specifying feature models
with a C-like syntax [BCFH10]. TVL offers modularity mechanisms and goes beyond
propositional feature models to supports feature cardinalities and attributes. Reasoning
on feature models with feature cardinalities and attributes is beyond propositional
logic and requires a reasoner such as a constraint satisfaction problem (CSP) solver,
model checker, or a satisfiability modulo theories (SMT) solver. We discuss feature
cardinalities and attributes in the following section. GUIDSL is another textual feature
modeling language that is part of the AHEAD tool suite [Bat05, Bat04].

Pure-systems’ pure::variants’ and BigLever Software’s Gears® are two commercial

thttp:/ /www.pure-systems.com/
2http:/ /www.biglever.com/solution/product.html
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feature modeling tools. Both pure::variants and Gears go beyond feature modeling and
support other aspects of a software product line workflow. For example, these tools are
capable of managing configurations (i.e., variants) and support integration with other
software artifacts such as requirements and build systems. We give an introduction to
software product lines in Section 2.3.

In the open-source community, the Kconfig and Component Definition Languages (CDL)
share many similar concepts with feature modeling, such as a feature hierarchy and
feature groups [SSSPS07, SLB*10]. Both tools have a graphical configurator. However,
unlike feature modeling tools that use reasoners (e.g., BDDs or SAT solvers), Kconfig
and CDL tools rely on an imperative implementation for performing configuration
validation and conflict resolution. We describe our study on the Kconfig language in
Chapter 4. For details on the CDL language, refer to Berger’s dissertation [Ber12] and
related work [BSL*10b, BSL*12].

2.1.4 Extended Feature Models

Since feature models were first introduced by Kang et al. [KCH'90], feature mod-
els have been extended with feature attributes [KCH"90, BSRC10], group cardinal-
ities [RBSP02], feature cardinalities [CHEO5a], or probabilities [CSWO08, She08].
Schobbens et al. derive a new feature diagram notation—varied feature diagram
(VFD)—that integrate various feature model extensions into a single feature diagram
structure and providing a formal semantics [SHTB07]. We discuss several of these
feature modeling extensions in this section.

Feature Attributes Figure 2.4 shows a feature model of the Journaling Flash File
System, inspired by the Linux variability model. In this model, Debug Level is a
mandatory feature with an integer attribute. A cross-tree constraint restricts this
attribute to the values: 0, 1 or 2. While a standardized notation for feature attributes in
feature models does not exist, an attribute consists of at least a name, a domain (e.g.,
integer, real, string), and a value [BSRC10]. The notation in Figure 2.4 is derived from
the original feature model notation from FODA [KCH"90]. Benavides et al. propose an
alternative notation where attributes are attached to features with a separate box and
line [BMACO5]. An advantage of their notation is that a feature can have more than
one attribute, whereas the notation in Figure 2.4 allows a feature to have at most one
attribute.
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Misc. File Systems

5

Journalling Flash File System (JFFS2)

/\

Debug Level: Int Compress Data

Support ZLIB Default Compression

T

None | | Priority | | Size

Support ZLIB — ZLIB Inflate
JFFS2 — CRC AMTD
0 < Debug Level <2

Figure 2.4: A feature model of the Journalling Flash File System (JFFS2) with a feature
attribute [BSLT10b, BSLT12]
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Group Cardinalities Riebisch et al. propose group cardinalities [RBSP02] on feature
models, where arbitrary multiplicities for features can be specified. For example,
Riebisch present a notation for optional alternative features (i.e., what we refer to as
a MUTEX-group) and feature groups with [m..n] cardinality. We do not handle [m..n]
feature groups in our synthesis algorithms. However, our algorithms can be extended to
detect these groups since their semantics can be described with propositional logic.

Feature Cardinalities Czarnecki et al. introduced cardinality-based feature models
where a feature and its subfeatures can be cloned [CHEO5a]. A feature cardinality is
a restriction on the number of times a feature and its subfeatures can be reproduced.
In a cardinality-based feature model, an optional feature is a special case of a feature
with a feature cardinality of [0..1], and a mandatory feature has a cardinality of [1..1].
Czarnecki et al. formalize cardinality-based feature models by translating it to a context-
free grammar [CHEO5a]. Feature cardinalities share similarities with concept and class
modeling. The Clafer language (Section 2.2.3) combines feature modeling with class
modeling. We do not consider feature cardinalities since our algorithms reason on
propositional logic.

Probabilistic Feature Models In our previous work, we introduced probabilistic fea-
ture models—feature models with support for soft constraints [CSWO08, She08]. A soft
constraint is one that should be satisfied by most, but not necessarily all configurations.
A probabilistic FM models a distribution of configurations. The legal configurations of a
probabilistic feature model can be represented as a Bayesian network [CSWO08]. In this
thesis, we do not consider synthesizing probabilistic feature models. Our previous work
described a technique based on association rule mining to synthesize propositional
logic [She08]. We discuss other probabilistic synthesis techniques in our chapter on
related work in Chapter 7.

2.2 Other Variability Modeling Languages

A variability model makes variability in a software system explicit. The model provides
a centralized artifact for describing domain analysis [KCH*90, ASB*08], driving con-
figuration [CE0O0], or describing variability across multiple models [BCW10, Ach11].
Feature modeling is only one of many different variability languages. In this section,
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Figure 2.5: VSpec tree in CVL (adapted from [Obj12])

we briefly describe three other variability modeling languages: decision modeling, the
Common Variability Modeling language (CVL), and concept modeling.

2.2.1 Decision Modeling

Decision models contain “a set of decisions that are adequate to distinguish among the
members of an application engineering product family and to guide adaptation of applica-
tion engineering work product” [Sof93, CGR*12]. Decisions describe the variation points
in a product line and define the set of choices available at a certain point in time when
deriving a product [DGR11]. As a result, derivation is a key application of decision
modeling [CGR*12]. This differs from feature modeling, where feature models are also
used to describe a domain. The DOPLER (Decision-Oriented Product Line Engineering
for Effective Reuse) tool was developed by Dhungana et al. to support domain-specific
definition of dependencies between model elements [DGR0O7, DGR11].

Czarnecki et al. compared feature modeling and decision modeling along ten dimen-
sions [CGR*12]. Unlike feature modeling, decision models do not have a hierarchy.
Instead, decisions are usually described as a list or in a table notation. Decisions in
DOPLER can have a visibility condition that determines which decisions are visible
during derivation [CGR*12]. Visibility conditions do not affect legal configurations. A
hierarchy of decisions is derived from dependencies in visibility conditions.
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Printer
HighSpeed?
EmergencyPower?
threshold: int
[HighSpeed && threshold > 100 => EmergencyPower]

Figure 2.6: Clafer model of the Printer from Figure 2.5

2.2.2 Common Variability Language (CVL)

The Common Variability Language (CVL) is an upcoming OMG standard for defining
and resolving variability [Obj12]. Variation points are defined on a base model that
can be any Meta Object Facility (MOF) model [ObjO6]. The basic unit of variability in
CVL is a variability specification (VSpec). VSpecs are arranged in a tree forming a CVL
model such as the one in Figure 2.5. The rounded rectangles are choices that requires
a yes or no decision, the ellipse is a variable requiring a value of a specified type, and
the parallelogram represents propositional constraints (i.e., the constraint involving
HighSpeed and threshold). A dashed edge represents an optional choice, while a solid
edge represents a non-choice (i.e., the choice must always be yes). A variation point is
bound to exactly one VSpec. The concrete syntax of VSpec trees is similar to feature
models [Obj12]. However, a VSpec is more closely related to a decision in decision
modeling than a feature in that it represents a variation point and not necessarily a
program feature [CGR"12].

2.2.3 Concept Modeling

Clafer is a lightweight modeling language with first-class support for feature model-
ing [BCW10]. Clafer provides a uniform representation of meta-modeling and feature
modeling allowing the user to mix both feature and class models together in the same
Clafer model. Clafer can act as a common language connecting different specialized
variability modeling or meta-modeling languages. Figure 2.6 shows the Clafer model in
feature modeling notation for the Printer meta-model from Figure 2.5. In Clafer, inden-
tation is used to specify hierarchical nesting. The question mark indicates an optional
feature or class. Clafer models translate to relational logic, and can be reasoned using
a constraint solver for relational logic, such as KodKod [Tor09, TJ09].
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Problem Solution
Space ' Space

Mapping

Figure 2.7: The problem space, mapping and solution space in SPLs (adapted from
[Cza04])

2.2.4 Component Definition Language (CDL)

Variability modeling languages have also been developed outside of academic research.
The Kconfig and Component Definition Language (CDL) were developed by the open-
source community to support the variability modeling of the Linux and eCos operation
system kernels respectively. We discuss the Kconfig language in Chapter 4.

CDL is used to specify the variability model in the eCos operating system®. In CDL,
features are organized in a tree similar to feature modeling. Features in CDL have a
state and an optional data value that acts like an attribute in feature modeling. A child
feature can only be selected if its parent is selected. However, CDL allows features to
be placed under a parent different from the one that it was syntactically declared by
using the parent keyword. Configuration and visibility constraints are specified with the
active_if and calculated clauses. We described the relation between feature modeling,
CDL, and the Kconfig language in [BSL*10b, BSL*12]. Berger expands on CDL in his
dissertation [Ber12].

2.3 Software Product Lines

Variability models are widely used in the development of software product lines, where
they are used to describe static (compile-time) and dynamic (runtime) variability [CEOQO,
SV06]. Software Product Lines (SPLs) enable systematic reuse of code across a family
of related products with common and variable product characteristics [CNO1]. Product

3http://ecos.sourceware.or
P 8
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line engineering, also called systems-family engineering, seeks to exploit commonalities
in a given problem domain while managing the variabilities among them in a systematic
way [Cza04, WL99, CNO1]. Product line engineering separates the development
process into two parts: domain engineering and application engineering [Cza04].
Domain engineering involves domain analysis, where commonalities and variabilities
between system family members are identified. Reusable assets (e.g., domain models,
reusable code components) are designed and implemented for realizing systematic
reuse in the family members. Application engineering involves constructing concrete
applications using the reusable assets developed in the domain engineering phase.

Software artifacts can be classified into the problem space, solution space, or the
mapping (Figure 2.7). The problem space describes domain-specific abstractions that
are common or variable across the family members. The solution space consists of
implementation-specific abstractions. Solution space artifacts specify variability using
either a compositional (i.e., features as modules) or an annotative approach (e.g.,
C preprocessor using #ifdef directives, Java annotations) [KAKO8]. The mapping
between the problem and solution spaces creates a specialized implementation given a
specification from the problem space [Cza04].

Feature models are a core artifact of a feature-oriented software product line. Feature
models are problem space artifacts that describes domain abstractions as features and
their constraints. In the solution space, the solution space could consists code with
annotated variability (e.g., C preprocessor with #ifdef conditions). The mapping
could consists of a build system that invokes the C preprocessor (CPP) using values set
through a FM configurator.

2.4 Feature-Oriented Software Development

Feature-Oriented Software Development (FOSD) is a paradigm for synthesizing pro-
grams for software product lines and domain engineering [AK09]. FOSD favors the
systematic application of the feature concept to all phases of the software life cy-
cle [AK09]. FOSD treats features as a first-class entity. Examples of tools include
GenVoca and AHEAD tool suite which support FOSD and features as first-class entities
through mixin modules [Bat04].

FOSD has four distinct phases: domain analysis, domain design and specification,
domain implementation, and product configuration and generation [AK09]. The
domain analysis stage determines the features and dependencies that make up the
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software system. Features are typically represented as a feature model. The design
and implementation phases involve creating the implementation in the form of feature
artifacts. A user configures and generates a variant in the configuration and generation
phase respectively.

Feature implementations need to be specified in solution space artifacts. Specifying
features can be separated into two approaches: compositional and annotative. Com-
positional approaches assume artifacts are decomposed by features and rely on a
merging algorithm to compose artifacts to create a final implementation. Annotative
approaches rely on conditional annotations placed within artifacts to separate feature
implementations.

Feature model synthesis is useful for migrating an existing system to one that uses
FOSD. Once features are identified, our synthesis algorithms can be used to construct a
feature model.
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Scenarios and Requirements

FMs were first introduced for domain analysis as part of the feature-oriented domain
analysis (FODA) [KCH"90]. Since then, feature models have been used for model
management [Ach11], and describing design or implementation constraints [CE0O].
The increasing uses of feature modeling have also led to an increasing number of
scenarios requiring feature models synthesis. In this section, we introduce an abstract
workflow for feature model synthesis, and describe each scenario as concrete instances
of this workflow. We begin by giving a breakdown of software artifacts containing
variability, then describe each scenario according to their input artifacts.

Chapter Organization In Section 3.1, we give an overview of the abstract feature
model synthesis workflow and describe concrete workflows involving the two algorithms
that we describe in this thesis. Section 3.2 describes the criteria used to classify the
synthesis scenarios and Section 3.3 describes the scenarios. Finally, Section 3.4 extracts
requirements from the scenarios for feature model synthesis techniques.

Publications Portions of the chapter were published in [SCW12].

3.1 Overview of Feature Model Synthesis

We begin by presenting an abstract workflow for feature model synthesis in Figure 3.1.
This workflow consists of two stages: variability analysis and feature model synthesis.
Variability analysis is responsible for analyzing the input artifacts and deriving the
needed input for feature model synthesis. Feature model synthesis is responsible for
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Figure 3.1: Variability analysis and feature model synthesis

creating a feature model given the derived input. We describe the stages in detail
below.

Variability Analysis Variability analysis is responsible for recovering the abstract input
that consists of (1) a set of features; and (2) valid feature combinations, represented as
feature dependencies or configurations; and (3) any supplemental information used
to help with the tree or group recovery. Whether dependencies or configurations are
recovered depends on the type of input artifacts (Table 3.1). For example, dependen-
cies can be recovered from a variable artifact, while a set of configurations is more
appropriately recovered from a set of variants.

We separate the input artifacts of a variability-rich software project into the six cate-
gories in Table 3.1. The input artifacts are classified in terms of their level of abstraction
by the columns. The rows describe whether the artifact is a variable artifact where vari-
ability is symbolically represented in the artifact, or enumerated as a a set of instances.
We borrow terminology from the Common Variability Language (CVL) to distinguish an
artifact’s level of abstraction [Obj12]. An artifact that is a variability abstraction is at a
high level of abstraction and contains concepts such as features [KCH*90]—properties
that are relevant to some stakeholder [CEOO]—or decision [SRG11]. An artifact is a
variability realization if it describes how variability is realized or implemented in the
system.

Different input artifacts require different forms of variability analysis. For exam-
ple, given a set of requirements documents, where each document realizes a single
variant [WCR09, NE08a], the analysis would involve analyzing each requirements
document to extract features that are described in each. In another example, extracting
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variability from source code requires a form of code analysis such as TypeChef for C
preprocessor annotated code [Kds10]. Berger et al. developed analyses for analyzing
FreeBSD configuration templates and mining dependencies from its build system and
documentation [BSL*10a]. A set of feature configurations could also be used directly
as input to the algorithm, e.g., hardware configurations in FreeBSD. Our work focuses
solely on feature model synthesis and relies on existing work to perform the variability
analysis stage.

Feature Model Synthesis The stage following variability analysis, feature model
synthesis, is responsible for building a feature model given the extracted abstract
input. We decompose feature model synthesis into three stages (Figure 3.3): (1) DAG
hierarchy recovery, (2) group and cross-tree constraint (CTC) recovery, and (3) tree
hierarchy selection. DAG hierarchy recovery takes a set of features and a formula, and
recovers a DAG that describe all hierarchies that imply the input formula. Group and
CTC recovery identifies all feature groups and cross-tree constraints (CTCs) given the
propositional formula, DAG and an optional tree hierarchy. Both the DAG hierarchy
recovery, and the Group and CTC recovery stages are fully automated; no user input
is required. Finally, since the hierarchy of feature models is a tree, the tree hierarchy
selection stage selects a single tree from the set of possible trees from the DAG. Both DAG
hierarchy and group and CTC recovery are fully automated steps; only tree hierarchy
selection may need user input.

The tree hierarchy selection stage selects a distinct tree hierarchy from the possible
hierarchies that describe the same set of configurations. We demonstrate why this stage
is needed with the input in Figure 3.2a. The input describe three legal configurations
as a disjunctive normal form (DNF) formula. The feature diagrams in Figure 3.2b and
Figure 3.2c both describe the same input configurations. However, the meaning of the
features are different depending on the selected hierarchy. In Figure 3.2b, dst, which

Variability Abstraction-Realization Variability Realization
Abstraction Interface
Variable Feature model VPs and feature-to-VP Configurable platform
Artifacts mapping requirements, models, code, etc.
Instances Feature VP configurations Variants
conﬁgurations requirements, models, code, etc.

Table 3.1: Breakdown of artifacts in variability-rich software
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Figure 3.2: Different feature diagrams, and a feature graph, with the same configuration
semantics describing the same set of configurations

stands for distributed storage, is a subfeature of net where mature, tested networking
features as placed. In Figure 3.2c, dst is a subfeature of staging, where features that are
experimental or untested are placed. The meaning of dst is altered depending on the
selected hierarchy. In general, some form of additional input is required to derive a tree
hierarchy from the DAG in the tree hierarchy selection stage. For example, a modeler
can use a tool-assisted approach that suggests parents based feature descriptions and
dependencies to determine which features and dependencies to place in the hierarchy.

Finally, the last step consists of recovering feature groups (i.e., MUTEX-, OR-, OT XOR-
groups) and cross-tree constraint (CTC).

We describe two workflows for feature model synthesis that correspond to our two
algorithms in this thesis. The first workflow with late hierarchy selection (Figure 3.3a),
describes the FEATURE-GRAPH-EXTRACTION algorithm (Chapter 5). In this algorithm,
we synthesize a feature graph that describes all possible feature diagrams that are
implied by the input. The input is specified as dependencies as a formula in conjunctive
normal form (CNF), or as a set of configurations as a formula in disjunctive normal
form (DNF). The resulting feature graph can be used as a structure for other tools, like
the interactive model builder by Janota et al. [JKWO08]. The early hierarchy selection
workflow (Figure 3.3b), selects a feature tree prior to recovering feature groups and
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Figure 3.3: Abstract workflows for feature model synthesis
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cross-tree constraints. Early hierarchy selection reduces the search space for feature
groups—the most computationally complex part of feature model synthesis—and
is particularly useful for scenarios involving complex constraints and thousands of
features, e.g., reverse-engineering a feature model for an operating system kernel.
FEATURE-TREE-SYNTHESIS (Chapter 6) is our algorithm for the tree hierarchy selection
stage that uses supplement feature descriptions and a textual similarity measure to
rank and suggest potential parents for a feature. The algorithms in this thesis address
all three components of feature model synthesis.

3.2 Scenario Criteria

Before we describe the scenarios, we first introduce the criteria used to classify the
synthesis scenarios.

Input Artifacts Variability can come from many different input sources in a software
project such as the categories that we showed in Table 3.1. The input could be
variable artifacts (i.e. artifacts with variability), such as a feature model, or a
requirements document, or code with variation points (VPs). The other input
types are feature configurations (i.e. sets of selected features) or variants (i.e.
artifacts with resolved variability), such a requirements document or code for a
particular product.

Precision of Configuration Analysis The variability analysis stage is responsible for
recovering the abstract input, i.e., features, valid feature configurations, and
any supplemental information, needed by the synthesis algorithm. This criterion
classifies the precision of recovering feature configurations from the input artifacts.
We assume that the full set of features is recovered by the variability analysis
prior to feature model synthesis.

We classify a scenario’s analysis precision according to the four categories in
Figure 3.4. A sound and complete, or exact recovery is one that is able to recover
the exact set of configurations present in the input artifacts. A complete recovery is
one that does not lose any configurations present in the input artifacts. Conversely,
a sound recovery is one that does not add new configurations compared to what
is the input.

Thiim et al. classified edits on a feature model into four categories: refactoring,
specialization, refactoring, and arbitrary edit [TBK09]. A refactoring is equivalent
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Configs represented by the input

Complete recovery
(over approximation) 7

Sound recovery
(under approximation)

Sound and complete
(exact) recovery / /

Arbitrary recovery

Figure 3.4: Property of a transformation step

to a sound and complete recovery in our terminology. Specialization is the same
as a sound recovery and a generalization is the same as a complete recovery.
Finally, an arbitrary edit is the same as an arbitrary recovery. Thiim’s terminology
is specific to feature model edits, while our terminology is used to describe
the precision of both configuration analysis and the feature model synthesis
algorithm.

Required Synthesis Precision A feature model synthesis algorithm takes the abstract
input recovered in the analysis stage and returns a feature model that describe
the input. Different scenarios call for different synthesis precisions. For example,
constructing a feature model to drive derivation could require an exact synthesis
so that the resulting model describes exactly the input configurations. On the
other hand, domain analysis may require a complete synthesis procedure to
generalize the input configurations to better reflect the entire domain being
modeled.

The classification of the required synthesis precision is based on the precision
of the abstract input in Figure 3.4. For example, an exact recovery is one that
synthesizes a feature that describes exactly the configurations in the abstract
input.

Note that our definition of soundness and completeness is based on the set of
configurations described in the model. There is a duality between configurations
and dependencies such that a sound technique in terms of configurations is
complete in terms of the set of dependencies and vice versa. In this dissertation, we
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primarily use the definition of sound and completeness with respect to the set of
configurations.

Size We classify the size of a scenario based on its description and examples that we
found in literature. In our classification, a small scenario has several hundred
features. A medium scenario has roughly a thousand features, and a large sce-
nario has several thousand features. We base this categorization on existing
models found in literature and feature model repositories. The models in the
SPLOT model repository have a median of 20 features and at most 290 features’.
BigLever and pure-systems have reported that models in industry are typically
in the range of hundreds of features. In the systems domain, we collected a set
of 13 feature models with a median of 1600 features [BSL*12]. The smallest
model in this collection was ToyBox with 71 features. The largest model was
the Linux x86 kernel model (v2.6.32) with 6320 features. The FreeBSD kernel
(v8.0.0) has 1203 features [SLB*11]. Finally, feature models with 5,000-10,000
features have been generated for testing feature model analysis tools on large-
scale models [MWCO09]. However, these numbers may change as more feature
models become available to researchers in the future.

3.3 Scenarios

3.3.1 Scenario 1: Synthesis From a Configurable Platform

We begin describing our scenarios with synthesizing a feature model from a configurable
platform consisting of variability-rich assets with variation points (VPs). The platform
could be of different artifact types, such as requirements, models, or code, with each
artifact containing VPs. We distinguish two cases based on the type of the input artifacts
below.

Scenario 1a: Configurable platform (code) The input to this scenario is a config-
urable platform of code with VPs. For example, the FreeBSD kernel with 1203 features,
is such a platform where the implementation is given in C with VPs defined using
#ifdef preprocessor statements. The first stage in this scenario is to identify VPs and
dependencies in the code using static analysis (Figure 3.5a). These VPs are fine-grained

'based on the 232 models from http://www.splot-research.org as of August 5, 2012
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Scn. Input Artifacts Form*  Configuration Required Size
Analysis Synthesis
Precision Precision
1a. Platform (code) D Complete Sound Med-Large
1b. Platform (requirements) N Exact’ Arbitrary Small
2a. Variants (models) C Exact Exact Small-Med
2b. Variants (requirements) C Exact’ Complete N/A
2c. Variants (code) C Exact Complete Small-Med
2d. Variants (VP configs) C Exact Complete Small
3. Feature models D Sound Exact Medium
4a. Platform / Variants (descriptions) M Exact Exact Small
4b. Platform / Variants (requirements) M Exact’ Arbitrary Small
4c. Platform / Variants (product FMs) M Exact Exact Small

*Abstract Input Form. C is configurations, D is dependencies, M is product FMs, and
N is natural language text.
Analysis performed manually.

Table 3.2: Scenario summary

and are closely related to the solution space and need to undergo a further feature
abstraction step. While static analysis is typically automatic, it is not guaranteed to find
all dependencies between VPs. As a result, the recovery of valid feature combinations
is complete but unsound (i.e., an over-approximation of the configurations allowed by
the platform). A sound synthesis is needed to compensate for the over-approximated
abstract input. In other words, additional dependencies may need to be introduced
during the synthesis. We summarized the properties of this scenario in Table 3.2. This
scenario motivates our previous work on reverse engineering FMs [SLBT11].

Scenario 1b: Configurable platform (requirements) In this scenario, the input is a
requirements document containing variability, i.e., optional requirements, that describes
a product line. Niu et al. [NEO8b] and Weston et al. [WCR09] both use this scenario
to motivate their synthesis techniques. In Figure 3.5b, we show the workflow for this
scenario. Requirements are first identified by a domain expert with the help of natural
language analysis. Both Niu and Weston treat a feature as a group of requirements
and use clustering to build the feature tree. For each cluster, an abstract feature is
introduced with the clustered requirements as sub-features. This approach leads to
the variability analysis and feature synthesis stages being intertwined. User input is
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needed in this stage to name abstract features or adjust properties of the clustering
algorithm. This scenario also matches the experience described to us by an industry
partner in the automotive sector, but in their case, the requirements clustering and
feature model building were performed manually. Niu extracted 22 features from two
sample applications [NEO8b]. Weston used requirements documents describing a Smart
Home with 87 requirements in total [WCR09].

3.3.2 Scenario 2: Synthesis from Variants

The second group of scenarios uses a set of variants where variability in each artifact is
resolved. We identified four different kinds of artifacts containing variability among
each variant.

Scenario 2a: Variants (models) In this case, the variants used as input for feature
model synthesis are a set of related models. In this scenario’s workflow (Figure 3.5c),
the first step is to compare the variants and extract a set of VPs and VP configs. Rubin
and Chechik describe a variability analysis for identifying similarities between model
instances by comparing and matching model elements [RC10, RC12]. Ryssel et al. also
described an algorithm that uses model matching and difference to identify VPs and
abstract the model variants into a set of VP configurations [RPK12]. Since the input
artifacts are in the solution space, VPs are at a much finer granularity than features and
must undergo a feature abstraction step. In terms of the synthesis precision, Ryssel’s
scenario required that the feature model describe the exact configurations as the input
input [RPK11]. For the size of this scenario, Ryssel’s technique was evaluated on two
case studies [RPK12]. The first case study involved a set of related models with 14
features across 17 variants [RPK12]. The second case study had 415 features over 49
variants.

Scenario 2b: Variants (requirements) This case was described to us by an industry
partner and uses a set of requirements, each describing a specific variant as input.
The workflow is identical to Scenario 2a. The requirements are compared and VPs
are identified between each document. Each requirements document represents a
VP configuration. The goal of variability analysis is to describe the precise set of
configurations (i.e., products) making the variability analysis exact. However, the
resulting feature model is intended for domain analysis in this scenario, thus requiring
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a complete synthesis that allows the modeler to generalize the feature model to describe
the domain.

Scenario 2c¢: Variants (code) In this scenario at Danfoss drives described in an
experience report by Jepsen et al. [JDB07], code variants developed using a clone-and-
own approach are used as input. The developers first compared and merged the code
variants into a single codebase by placing conditional compiler flags on code fragments
based on the products that contain the fragment. Each conditional fragment is a VP A
VP configuration consists of all included code fragments for a product. These VPs were
then abstracted to features and a feature model is synthesized from the resulting set of
features and configurations. Similar to Scenario 2b, the synthesis is intended to allow
more configurations making it complete.

Scenario 2d: Variants (VP configs) This case uses a set of VPs and VP configurations
directly as input where each configuration represents a product in the product line.
This scenario was described to us by an industry partner in the automotive sector. The
company wanted to build a feature model that described their existing product line and
supported instantiation of future products. The input configurations are exact, however,
complete synthesis is required to support additional configurations in the synthesized
feature model.

3.3.3 Scenario 3: Feature Model Operations

Scenarios 1 and 2 involved synthesizing a feature model from software artifacts con-
taining variability. In this scenario, feature models themselves are used as input to
feature model synthesis. Acher describes model management operations on feature
models that include merge, difference, or projection [Ach11]. Similarly, Fahrenberg et
al. discuss use cases for a semantic difference between models using feature models as
an example [FLW11].

Figure 3.5e depicts the workflow for faeture models operations as described by
Acher [Ach11]. The analysis stage consists of translating the input feature models to
propositional logic based on their configuration semantics [Bat05]. The operation is
performed on the propositional formulas and used as input to a feature model syn-
thesis technique [CWO07]. The input formula describes the set of configurations from
the input models, modulo the operations semantics, making the analysis step sound.
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In this scenario, the feature model operations are automated. Unlike the previous
scenarios where user input is required for the synthesis stage, Acher uses heuristics
for automatically determining the resulting feature tree based on the input feature
models [Ach11].

3.3.4 Scenario 4: Feature Model Merge Workflows

Our last set of scenarios synthesize an individual feature that describe each prod-
uct, then rely on a merge algorithm to create the final feature model describing all
products.

Scenario 4a: FM merge-based (product descriptions) In this scenario described
by Acher et al. [ACP*12], semi-structured product descriptions are used as input. The
product descriptions are similar to feature configurations, however, product descriptions
can contain variability. For example, a product could support one or more storage
methods, or exactly one operating system. Each product description is transformed
into a product feature model that describes the specific description and its variability.
The resulting set of product feature models are then merged to create a featur emodel
describing variability in all products. Acher used product descriptions ranging from 9
to 190 features as input [ACP*12].

Scenario 4b: FM merge-based (requirements) In this case, a set of requirements
documents, each describing a single product, is used as input. Alves et al. [ASB*08]
applied clustering to build a feature model describing each document, then merged
these individual models to create a feature model describing all documents. Chen et
al. also applied clustering to synthesize an individual feature model for each require-
ments document where each document describes a single variant [CZZMO05]. The
individual feature models are merged in a subsequent step. Alves’ scenario used two
requirements document as input. One had 23 requirements while the other had 59
requirements [ASB*08]. In terms of the scenario’s size, Chen used requirements from
two sample applications where one application had 21 requirements [CZZMO5].

Scenario 4c: FM merge-based (supplier-specific FMs) Hartmann et al. described
a scenario where a software product line has several suppliers for its components
where suppliers may overlap in terms of their functionality [HTMO09]. Each supplier
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models the variability in their component as a feature model. These feature models are
then merged to form a so called supplier independent feature model—a feature model
describing the product line across all suppliers. In this scenario, the variability analysis
is exact since the exact configuration semantics of the input supplier feature models are
maintained. Similarly, the synthesis of the supplier independent feature models must
maintain the exact configurations described by the input supplier feature models.

3.4 Discussion and Requirements for Feature Model
Synthesis

We summarized the properties of the scenarios in Table 3.2. Based on these properties,
we derive requirements for feature model synthesis algorithms and describe each of
these requirements below:

Variability Analysis Different input artifacts require different variability analysis
techniques. Analysis for a variable artifact is significantly different compared to analysis
for a set of instances—even for the same artifact type. For example, a configurable
platform consisting of preprocessor annotated C code requires a different variability
analysis compared to a set of variants, each implemented as individual program variants.
Examples of variability analysis tools include TypeChef by Kistner et al. [Kas10].
TypeChef is a parser and type checker that can analyze a configurable of C preprocessor
annotated code. Analyzing individual program variants would require a code difference
tool to identify VPs.

Synthesis Input Form While the types of software artifacts containing variability is
very large, the forms of input for a synthesis algorithm is considerably less. In Scenarios
1 and 2, these artifacts abstract to either dependencies or a set of configurations.
Scenario 3, operates on feature models that are translated to a propositional formula
for synthesis. A propositional formula can be considered as dependencies (i.e., a
formula in CNE or a BDD) or a set of configurations (i.e., a formula in DNF) depending
on its form. From the scenarios, we identified four input forms for FM synthesis
techniques:

Configurations A configuration consists of a enumeration of features present in a
single instance of the software system. For example, the input artifacts to the
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scenarios in Scenario 2 are a set of variants and naturally translate to a set of
configurations.

Dependencies Dependencies are a symbol representation of a set of configurations.
In Scenario 1a, a configurable platform such as FreeBSD does not have a pre-
determined portfolio of products. Instead, instances of the platform are derived
by a user based on configuration templates. Any configuration that satisfies
the dependencies described in the platform (i.e., in code or documentation)
are valid configurations. As a result, the set of valid configurations can quickly
grow to be very large as the number of VPs or features grows in the platform.
Using dependencies as input for feature model synthesis provides a compact,
symbolic representation of the set of valid configurations. Scenario 3 also
requires dependencies as input to synthesis. In feature model operations, the
feature models are first translated to dependencies through their configuration
semantics [Bat05] and an operation is applied on the dependencies to create a
modified formula. This formula is used as input to the synthesis algorithm.

Natural Language Requirements Requirements make a natural source of variabil-
ity in a software system. The scenarios involving requirements often combined
both the variability and analysis stages (e.g., Figure 3.5b) since the synthesis
techniques relied on clustering to both identify features, as well as construct the
feature hierarchy. When a set of requirements for variants were used as input,
the variability analysis and synthesis stages were separate (Scenario 2b). In this
scenario, the synthesis algorithm can relies not on the natural language text, but
rather on the extract VPs between the requirements document. As a result, the
synthesis a algorithm can simply consider a set of configurations as input.

Product FMs The last input form consists of a set of individual feature models,
where each feature model represents a single product in a product line. Scenarios
that first synthesize a feature model for each product require two synthesis stages.
The first stage synthesizes a feature model describing an individual product
using properties specific to the input artifact. For example, Acher’s approach
relies on a specification and heuristics to build a feature model from a product
description [ACP"12]. Chen et al. apply clustering on manually constructed
requirements resource graphs (RRGs) to create feature models [CZZMO5].

Hierarchy Selection Given a set of valid feature combinations, there is more than one
possible feature hierarchy. Figure 3.6 shows two feature models that describe the same
configurations but with different hierarchies. To address this problem, some synthesis
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implies

Figure 3.6: Another example of two feature models with the same configurations

techniques recover a directed acyclic graph (DAG) that represents all possible feature
hierarchies given the abstract input [ACSW12, CSW08, CW07, DGH"11, RPK11].

Techniques have also been proposed to select a distinct feature tree. Our own semi-
automated technique uses a textual similarity measure to identify relevant parents
given a feature [SLB*11] (Chapter 6). Janota et al. developed an interactive model
building tool that used a set of dependencies and a recovered DAG as input to restrict
the possible model editing operations so that the resulting feature model was entailed
by the input [JBO8]. The two techniques that we mentioned are both semi-automated
approaches. Hierarchy selection can be made automatic by using heuristics to select the
hierarchy. For feature model operations (Scenario 3), Acher determines a feature tree
automatically by using heuristics based on the input FMs [Ach11]. Acher et al. combines
both heuristics and a manual specification for deriving the hierarchy from product
descriptions (Scenario 4) [ACP*12]. Clustering techniques build hierarchy by grouping
related requirements under abstract features [ASB*08, CZZMO05, NEO8b, WCRO09].

Synthesis Precision The precision of a synthesis technique is dependant upon the
precision of the analysis step and the expected use of the FM. For example, in Scenario
1a, the abstracted feature combinations is complete, or an over approximation. As a
result, a sound synthesis technique is needed to add additional constraints to remove
unwanted configurations. However, the abstracted feature combinations in Scenario
2b are exact, but require a complete synthesis to remove unwanted constraints and
support additional configurations. Our previous work [ACSW12, CW07] and Ryssel’s
approach [RPK11] derives an exact FM describing the input. We later extended
our approach with a feature similarity heuristic to deal with complete, but unsound
input [SLBT11]. The interactive model building tool by Janota et al. support building
FMs that are complete with respect to the input. Clustering techniques are not focused
on maintaining a set of input feature combinations, but are geared towards exploratory
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activities such as domain analysis. As a result, we classified the required synthesis
precision as arbitrary, since constraints can be added or removed during FM synthesis.

Scalability The input form affects the scalability of a synthesis technique. Techniques
that use dependencies as input are more scalable than techniques that use a set of
configurations since dependencies represent a set of configurations symbolically. Other
factors that affect a synthesis technique’s scalability is the required amount of user
interaction. Techniques requiring significant user interaction become intractable as the
size of the models grow. However, user interaction can be replaced by using heuristics
to automate the process and is largely dependent on the supplemental information
extracted from the input artifacts (e.g. hierarchy data). Finally, the reasoning technique
can affect a synthesis technique’s scalability. We found that our SAT-based implemen-
tation significantly improved upon our BDD-based approach [ACSW12]. Ryssel et al.
use a FCA-based approach [RPK11]. An evaluation comparing the different reasoning
techniques is planned for future work.

Probabilistic Feature Models A special case involves synthesizing a probabilistic FM
from configurations. A probabilistic model provides soft constraints that are valid in
most configurations, but not necessarily all [CSWO08]. Our previous work recovered a
probabilistic FM describing framework usage in a set of framework applications [ She08].
Dumitru et al. recover a probabilistic FM to for a recommender system that provides
features for domain analysis [DGH*11]. Fukuda et al. build a probabilistic model
to identify trends in a product transaction database [FAY11]. We proposed a tech-
nique for building a probabilistic FM by using association rule mining on a dataset of
configurations [CSWO08].

3.5 Scenario Conclusions

Different scenarios impose different requirements on a feature model synthesis work-
flow. For example, scenarios involving domain analysis may require a natural language
analysis tool to extract variability from requirements, and a synthesis algorithm that
constructs a feature diagram that is weaker, or complete, with respect to the input
configurations. Synthesizing a feature model from source code on the other hand,
would require a variability-aware static analysis tool, and a sound synthesis capable of
handling the dependencies that were not identified by the analysis. Other considera-
tions for synthesis algorithms include the size of the input and whether a probabilistic
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model is needed. The scenarios and requirements that we derived could be used to
encourage research on new synthesis techniques and promote new applications and
improvements to existing synthesis techniques.
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Real World Variability Models

Variability modeling and supporting tools have grown in popularity over the years. How-
ever, realistic benchmarks for evaluating variability modeling tools have generally been
inaccessible with the growing interest from both tool vendors and researchers [SRC09].
While some variability models are already available, e.g., SPLOT model repository’,
very few of them originate from realistic processes; most are small examples from re-
search publications, or outcomes of student run case studies. Given the lack of realistic
large-scale models, many tool builders have resorted to using randomly generated
models [WSB*08, TBRCT08, MWC09, BSRC10].

This chapter describes our research on realistic variability models extracted from
open-source projects. We focused our study on the variability model of the Linux
kernel and its variability modeling language called Kconfig. Kconfig was developed
specifically for supporting the variability modeling and configuration of Linux. The
Kconfig language share so many similarities with feature modeling that a Kconfig model
can be interpreted as a feature model [SSSPS07]. Our study includes a total of 12
variability models specified with the Kconfig language and compare their properties
against a set of 267 feature models gathered from the SPLOT model repository.

Chapter Organization In Section 4.1, we introduce the Kconfig language and its
concepts. We present the abstract syntax for the Kconfig language in Section 4.2 and
describe its mapping to feature modeling concepts in Section 4.3. In Section 4.4, we
compare models properties of the variability models of the Linux kernel and 11 other
projects with those of the models gathered from the SPLOT model repository. The
formal semantics of Kconfig are available in Appendix A for those interested.

Lwww.splot-research.org
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Publications Our first publication involving the Kconfig language was a study of the
Linux variability model [SLB*10]. In [BSL*10b], we compared variability modeling
concepts, semantics, usage and tools in Kconfig, CDL and feature modeling using Linux
and eCos operating system kernels as the study subjects. We expanded on this study
in [BSL*12], to include 12 Kconfig models, variants of the eCos model, and 267 SPLOT
models. The Kconfig semantics were published as a technical note [SB10].

External Contributions The qualitative study in Section 4.4.6 was performed by
Rafael Lotufo and published in [SLB*10]. The study of the Kconfig language and
the Linux variability model has material from [BSL*10b] and [BSL*12]. The Kcon-
fig semantics [SB10] in Appendix A were developed collaboratively with Thorsten
Berger.

4.1 Kconfig Language

The Linux kernel originally used the Configuration Menu Language (CML) as its config-
uration language until v2.5.45 in 2002, where it was replaced with Kconfig (referred
to as LinuxKernelConf at the time) [Wik12]. The Kconfig language is supported by
several configurators. The ‘menuconfig’ tool is terminal interface for configuring a
Kconfig model, the ‘nconfig’ tool that replaces the menuconfig tool using the ncurses®
framework, and the ‘xconfig’ is a graphical configurator written using the Qt framework.
The structure of a Kconfig model closely resembles a feature model in that configuration
options are nested to form a hierarchy. We describe the features of the Kconfig language
next.

Feature Kinds There are four types of nodes in a Kconfig tree: menu, menuconfig,
config, choice. Menuconfigs and configs declare symbols that appear in a configuration.
Choices and menus are grouping constructs that do not appear in a configuration. A
Kconfig configuration is simply a list of key-value pairs, where symbols can be undefined
if the corresponding config is unselected. We discuss the four feature kinds using the
Kconfig snippet in Figure 4.1:

Zhttps://www.gnu.org/software /ncurses/
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menuconfig MISC_FILESYSTEMS
bool "Miscellaneous filesystems"

if MISC_FILESYSTEMS

config JFFS2_FS
tristate "Journalling Flash File System" if MTD
select CRC32 if MTD

config JFFS2_FS_DEBUG
int "JFFS2 Debug level (O=quiet, 2=noisy)"
depends on JFFS2_FS
default 0
range 0 2
--- help ---
Debug verbosity of

config JFFS2_FS_WRITEBUFFER
bool

depends on JFFS2_FS
default HAS_IOMEM

config JFFS2_COMPRESS
bool "Advanced compression options for JFFS2"
depends on JFFS2_FS

config JFFS2_ZLIB

bool "Compress w/zlib..." if JFFS2_COMPRESS
depends on JFFS2_FS

select ZLIB_INFLATE

default y

choice

prompt "Default compression" if JFFS2_COMPRESS
default JFFS2_CMODE_PRIORITY

depends on JFFS2_FS

config JFFS2_CMODE_NONE
bool "no compression"

config JFFS2_CMODE_PRIORITY
bool "priority"

config JFFS2_CMODE_SIZE
bool "size (EXPERIMENTAL)"
endchoice
endif

Figure 4.1: Kconfig excerpt adapted from [BSL*10b]

52



Chapter 4 Real World Variability Models

configs Configs declare a unique symbol used to represent individual configura-
tion options. Configs are the basic symbols in a Kconfig model and can hold
a Boolean, tristate (i.e., three-valued), integer, hexadecimal, or string value.
JFFS2_FS at Line 7 in Figure 4.1 is a tristate config in our snippet. Nesting
between configs are shown as a tree-view with indentation in the graphical config-
urator. See Figure 4.2 for the graphical rendering of the Kconfig snippet.

menus Menus are used purely for lexically grouping features in the configurator.
Menus do not declare a symbol, and thus, do not appear in a configuration.

menuconfigs Menuconfigs have the same appearance as menus in the graphical
configurator, however, menuconfigs also declare a symbol and can hold a value
just like configs. MISC_FILESYSTEMS is a menuconfig and all features within the
following if condition (Line 5) are children of MISC_FILESYSTEMS.

choices Choices are similar to feature groups in feature modeling where they
are used to impose grouping constraints on its children, called choice members.
Choices can be of Boolean or tristate type. A Boolean choice allows at most one
choice member to be selected, and a tristate choice allows more more than one
choice menmber to be selected. By default, a choice requires that at least one child
be selected, however, choices can be made optional with the optional keyword.
Choice members are declared as configs. Default compression in Line 39 is an
example of a choice grouping.

Feature Representation In Kconfig, a configuration assigns a single value to each
feature. A special empty value is used to denote the absence of a feature. There are
five types that restrict the valid values of configuration options in Kconfig: bool, tristate,
int, hex, and string.

The bool type has two possible values, y and n, internally represented by the numbers
2 and 0; 0 denotes feature absence, while 2 means that the feature’s implementation
is compiled statically into the kernel. The tristate type is an extension of bool with an
additional m value, represented internally by 1. The m value denotes that the feature
should be compiled as a dynamically loadable module. For example, JFFS2_ZLIB has
type bool and JFFS2_FS is tristate. Kconfig supports two integer types: int (decimal)
and hex (hexadecimal). Both types also allow an empty value, which is used to encode
the absence of the numeric feature. The type string is ambiguous when handling the
empty string: a string feature with the empty value can be seen as a present feature with
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File  Edit Option Help
Option
2 Miscellaneous filesystems
ournalling Flash File System
-({0) JFFS2 Debug level {0=quiet, 2=noisy) (NEW)
#[JJFFS2_FS_WRITEBUFFER
i--|:|;|3\d\u'a.nced compression options for JFFS2 (NEW)

Journalling Flash File System (JFFs2_Fs)

There is no help available for this option.

Symbal: JFFS2_F5 [=y]

Type : tristate

Prompt: Journalling Flash File System

Defined at test/thesis. Kconfig:4

Depends on: MISC_FILESYSTEMS [=y] && MTD [=y]
Location:

-> Miscellaneous filesystems (MISC_FILESYSTEMS [=y])
Selects: CRC32 [=y]

Figure 4.2: xconfig rendering of the Kconfig snippet in Figure 4.1

that value or an absent feature; the two cases are indistinguishable when examining a
Kconfig configuration.

Hierarchy Configuration options in Kconfig are organized into a hierarchy similar to
feature modeling. In feature modeling, the hierarchy imposes a configuration constraint
where a child feature implies the presence of its parent feature. In Kconfig, the parent-
child implication is not enforced—a child feature can be selected when its parent is not.
Furthermore, a symbol can appear in multiple places in the hierarchy, but are ultimately
the same feature and share the same values. These properties leads to a separation
between a Kconfig model’s syntactic hierarchy (as it appears in the configurator) and
the configuration semantics—constraints imposed on the set of configurations.

Each node in Kconfig has an associated prompt condition that controls its visibility. The
visibility condition specifies when a feature is visible in the configurator and can be
changed by a user. A visibility condition that evaluates to m or y causes a feature to
be visible in the configurator. Furthermore, the visibility conditions of features is used
to determine the syntactic hierarchy of a Kconfig model. In terms of the configuration
semantics, the visibility condition imposes an upper bound on the allowed values of the
feature.
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Operator Kconfig Evaluation

no n O
mod m 1
yes y 2
and A && B min(A,B)
or A || B max(AB)
not 1A 2-A
equals A = B if (toString(A) = toString(B)) 2
else 0

Figure 4.3: Evaluating operators and literals in the three-valued logic of Kconfig

The hierarchy rendered by the xconfig configurator for the Kconfig snippet in Figure 4.1
is shown in Figure 4.2. The MISC_FILESYSTEMS feature is at the top of the hierarchy
because of the enclosing if condition over all other features. Features that follow
JFFS2_FS depend on JFFS2_FS making it their parent. The JFFS2_ZLIB feature has
a specific prompt condition, i.e., visibility condition, that causes it to be nested under
JFFS2_COMPRESS; however, JFFS2_ZLIB does not depend on JFFS2_COMPRESS
according to its configuration semantics. In other words, JFFS2_ZLIB can be selected
even if JFFS2_COMPRESS is deselected, thus, violating the parent-child constraint
seen in feature modeling.

Constraints and Expression Language Kconfig uses a three-valued logic for ex-
pressing and evaluating expressions. At its core, Kconfig has three literals: n (no),
m (module), y (yes). There are five operators: and, or, not, equals, and not equals.
Figure 4.3 shows the rules for evaluating these operators. The equals operator has a
unique property in that it uses the string value of its arguments. For example, the literal

({3}

y and the string “y” would be equal in Kconfig.

A symbol can declare the following constraints: prompts, defaults, select clauses, or
valid ranges for int or hex symbols. Each constraint may have a condition to describe
when the constraint is active. The prompt condition controls when a symbol is visible
and changeable by the user in the configurator. As a result, the prompt condition
determines the visibility condition of the config.

A default condition is used to set a default value for a symbol. Under most circumstances,
a default enforces a soft constraint—a suggestion for the user that can be overridden
and does not enforce a constraint on the set of valid configurations. However, a default
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can interact with prompt conditions creating a hard configuration constraint. This
situation occurs if a symbol’s prompt condition evaluates to false; the value of the
symbol cannot be changed, and the symbol takes the value of the first active default.

A select clause enforces the selection of another symbol if the current symbol is also
selected. Select clauses stem from the imperative nature of the Kconfig configurators.

The depends on clause is syntactic sugar for applying a condition across all constraints
in a symbol’s declaration. For example, in line 14, the depends on statement adds
JFFS2_FS as a dependency to the prompt, default and range.

4.2 Abstract Syntax

Now that we have introduced the concrete syntax, we derive an abstract syntax to
describe the core concepts of Kconfig. Kconfig models consists of a set of configs nodes
and a set of choices nodes. Let Kconfig denote the set of all possible models in the
Kconfig language:

Kconfig = P(Configs) x P(Choices) 4.1)

A single Kconfig model is denoted by m € Kconfig. Configs are the main components of
a Kconfig model. In the abstract syntax, Configs consists of both config and menuconfig
nodes from the concrete syntax. We omit menus from the abstract syntax since they
are used purely for grouping features in the configurator. Constraints declared on
menus can be propagated to its ancestor nodes when translating a Kconfig model in
the concrete syntax to its abstract syntax.

4.2.1 Configs

A config is defined as the tuple:
Configs =Id x Type x KExpr(ld) x Default x x KExpr(ld) x P(Range)

Identifier Type Prompt  Defaults Reverse Ranges

Condition Dependency (4.2)

where,

56



Chapter 4 Real World Variability Models
* |d is the set of possible string identifiers;
* Type = {boolean, tristate, int, hex, string};

* KExpr(ld) is the set of all three-valued expressions over Id in the Kconfig language.
We define the abstract syntax of the expression language in the following section;

* Default = KExpr(ld) x KExpr(ld) denotes defaults. The first KExpr in the default
denotes a default value—the value that the config will take if this default was
active. The second KExpr denotes the condition required for the default to become
active;

* Range = (IntuHex U Id) x (IntuHex U Id) x KExpr(ld) is a triple consisting of a
lower bound, an upper bound and a condition.

The first component of a config is a unique identifier used in expression references
and in configurations. The second component denotes the type of the config. The
third component is the prompt expression—the condition that determines when the
config is visible and changeable by the user. The fourth component is a ordered set of
defaults. Defaults are ordered such that the config takes the value of the first enabled
default. The fifth component is the reverse dependency expression—the disjunction of
the configs and their select conditions in the Kconfig model. For example, the following
snippet in the concrete Kconfig syntax translates to the reverse dependency expression
A && C || B && D for config E:

config A configC ...
bool “Feature A” configD ...
select Eif C configE ...
config B
bool “Feature B”
selectEif D

The last component of a config is a range triple. The range triples only apply to configs
with a numeric type (i.e., int or hex) and defines a lower bound, and upper bound and
a condition when the range constraint is active.
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4.2.2 Choices

The second component of a Kconfig model is a set of choice nodes. A choice is an
abstract construct that defines no symbol in the configuration, however, it imposes
additional constraints on its members. We define choices as a quadruple consisting of a
type where boolean or tristate are the only valid types, a flag indicating whether the
choice is mandatory, a prompt condition, and a set of identifiers indicating its members.
The set Choices is defined as:

Choices = {boolean, tristate} x Bool x KExpr(ld) x P(ld(m)) (4.3)

4.2.3 Identifiers and Expressions

Let Id € P(String) be a set of names identifying a config. For example, JFFS2_FS
in Figure 4.1 is an identifier. Let Const = Tri U String U Hex U Int be the set of values
assignable to configs and available as constants in expressions, where Tri = {0,, 1, 2,}.
Tri is ordered such that 0, < 1, < 2,. The Tri, String, Hex, and Int domains are disjoint
(i.e. mutually exclusive).

Expressions are defined as a set KExpr(ld) over Id generated by the following grammar,
where e € KExpr(ld), iv € IdU Const, ® € {or,and}, © € {=, #}:

e:=eQ®e|note|iveiv|iv 4.4)

4.3 Mapping to Feature Modeling Concepts

Kconfig declares symbols (i.e., configs) that represent features in the software system.
Features are organized in a tree hierarchy in the same way as a feature model. Also
similar to feature groups in feature modeling, features can be grouped in a choice node
such that exactly one group member, or one or more group members must be selected.
Kconfig supports cross-tree constraints just like feature modeling.

Sincero et al. described a mapping from feature modeling concepts to Kconfig [SSSPS07].
In this section, we describe the reverse mapping—a mapping from Kconfig concepts to
feature modeling concepts. Table 4.1 shows the mapping of Kconfig to feature modeling
concepts. We will describe each section of the mapping next.
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Concept Kconfig Feature Modeling
Feature Kinds
Grouping menu, menuconfig, choice feature (non-leaf)
Individual config feature (leaf)

Feature Representation

Composition single value bool. value with opt. attribute
Feature Type

Switch bool, tristate optional

Data int, hex, string integer, string

None menu mandatory

Group Constraints

Mutex [0..1] optional bool. choice MUTEX-group
Or [1..n] mandatory tristate choice ~ OR-group
Xor  [1..1] mandatory Boolean choice  xoRr-group

Feature Constraints

Configuration select cross-tree constraint
Value Restriction range cross-tree constraint?!
Derived Features non-prompt config? rare [DHR10]

Soft Defaults prompt default rare [CEOO]

Visibility Conditions prompt condition rare [DHR10, SJ04]

Expression Operators &&, ||,!, =, 1= not standardized®

Binding Modes three-valued logic rare [CE00, SJ04]

Other

Textual Content prompt, help description

Modularization textual inclusion rarel*

Build Symbols one-to-one mapping unspecified!

Code Mappings no, uses Kbuild unspecified!

1 Not supported by models in the SPLOT model repository

2 Derived features are described in more detail in Section 4.3.3
3 SPLOT models support propositional logic operators

4 [BCFH10, BEGB11, BMB* 10, DGRN10]

Table 4.1: Mapping of concepts between Kconfig and feature modeling (adapted
from [BSLT12])
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menu “Operating System” config PM

prompt “Power management support”
config SCHEDULER

prompt “CPU scheduler” config PM_DEBUG
prompt “Debug support”
endmenu depends on PM
(a) Lexical nesting (b) Nesting using common dependencies

Figure 4.4: Specifying Hierarchy in Kconfig

choice choice choice
prompt “An XOR-group” prompt “A tristate group” prompt “A MUTEX-group”
optional
config A config C
bool “Option A” tristate “Option C” config E
bool “Option E”
config B config D
bool “Option B” tristate “Option D” config F
bool “Option F”
endchoice endchoice
endchoice
(a) xor-group (b) Tristate group (c) MUTEX-group

Figure 4.5: Feature group representation in Kconfig

4.3.1 Hierarchy

The hierarchy in Kconfig is specified using lexical nesting with menus (e.g., Fig-
ure 4.4a) and common dependencies with configs (e.g., Figure 4.4b). In this example,
PM_DEBUG will be nested under PM because of its dependency. Interestingly, the
nesting is determined purely based on syntactic dependencies. If PM_DEBUG had the
dependency of IPM, i.e., it requires that PM is deselected for the config to be selected,

PM_DEBUG would still be nested under PM.

4.3.2 Feature Groups

The Kconfig choice construct is similar to a feature group in feature modeling. We

interpret a choice with boolean members (Figure 4.5a) as an XOr-group since exactly
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—- AN XOR-group

- @ Option A
-3 0ption B
- [=] A tristate group
- 0ption C

- 0ption D
--0O0A MUTEX-group

R M Enable module support

Figure 4.6: Feature group rendering in xconfig configurator

one member must be selected if the choice is active. A choice with tristate members
is or-group (Figure 4.5b). A MUTEX-group is a choice with boolean members and the
optional keyword (Figure 4.5c¢).

Figure 4.6 shows the feature group rendering in the xconfig configurator. The XoR-
group is rendered as radio buttons since one choice must be made. The or-group can
be switched to accept either Boolean or tristate values. When the choice is switched
to accept tristate values, both “Option C” and “Option D” can be selected like a or-
group. The circle in a square box indicates that the config is set to module (m). The
MUTEX-group can be disabled so that no member is selected.

Kconfig has no syntactic structure equivalent to an or-group in feature modeling®. A
tristate choice can be toggled between a tristate or Boolean state. When in the Boolean
state, the choice operates like an xor-group—only one member may be selected.
However, when in the tristate state, zero or more choice members may be selected. In
Figure 4.6, the tristate group is in the tristate state. None of the group members have
to be selected. The user can click on the tristate choice to change it to a Boolean state
requiring either “Option C” or “Option D” to be selected in the figure.

30ur previous publications [SLB*10, BSLT10b] interpreted tristate choices (Figure 4.5b) as or-groups.
We have since identified that tristate choices behave differently than or-groups, where the member
cardinality constraint changes depending on whether it is in a tristate or Boolean state.

61



Chapter 4 Real World Variability Models

config JFFS2_COMPRESS
bool “Advanced compression options”

config JFFS2_ZLIB
bool “Compress w/zlib” if JFFS2_COMPRESS
default y

Figure 4.7: A conditionally derived config in the Linux kernel

4.3.3 Feature Constraints

Cross-tree constraints are realized with specific combinations of the prompt condition
and defaults or reverse dependencies in Kconfig. In most cases, a default provide a
suggested value that can be overridden by the user. However, defaults can interact with
the prompt condition that determines whether the config can be changed by the user. A
config’s prompt condition determines the condition that it is configurable by the user.
Figure 4.7 shows an example of an prompt condition on the JFFS2_ZLIB config.

We categorize configs into three constraint categories based on the interaction between
their prompt and default conditions: (1) configs configs, (2) derived configs, and (3)
conditionally derived configs.

For the following definitions, given a config ¢ € Configs, we define functions prompt(c)
and defaults(c) that retrieve the condition on the respective property for the config
as a set of satisfying assignments. Similarly, function rev_dep(c) retrieves the reverse
dependency of the config as a set of satisfying assignments. For defaults, defaults(c)
is the union of the satisfying assignments of all defaults for the config c. We use set
notation to distinguish operations on the three-value logic of Kconfig compared to the
propositional operations on propositional logic.

Definition 4.1. A derived config is never visible, thus its value is derived from a
default or reverse dependency (which is none are specified, is the value n):

{c | ¢ € Configs A prompt(c) = 0} (4.5)

Definition 4.2. Configured configs are selected (i.e., have a value of y or m) iff the
config is visible, otherwise it must remain deselected (i.e., have a value of n):

{c | c € Configs A prompt(c) # @ A prompt(c) = (defaults(c) Urev_dep(c))}  (4.6)
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Definition 4.3. A conditionally derived config can be in a selected state when the
config is both visible or invisible. For this occur, the config must have a prompt
condition, and there must also be a default condition or reverse dependency that
differs from the prompt condition:

{c | ¢ € Configs A prompt(c) # 0 A prompt(c) # (defaults(c) Urev_dep(c))} (4.7)

The config JFFS2_ZLIB in Figure 4.7 is a conditionally derived config. JFFS2_ZLIB
is visible (i.e., its prompt condition is satisfied) when JFFS2_COMPRESS is selected.
The user is free to select a value for the config in this case. If JFFS2_COMPRESS was
unselected, then JFFS2_ZLIB is invisible and takes on its default value of y since there
is no condition attached to the default.

4.3.4 Feature Descriptions and Code Mappings

Features in Kconfig can declare a short description with a prompt, or a longer de-
scription as help text. We extract the feature names and descriptions for our textual
similarity heuristic in Chapter 6. Each config in Kconfig declares a symbol that di-
rectly corresponds to a C preprocessor symbol. For example, the config JFFS2_FS
in Figure 4.1 generates the build symbol CONFIG_JFFS2_FS with the configured
value. The implementation references this build symbol using C preprocessor #ifdef
statements. The mapping from features to files is specified in the Makefile-based Kbuild
infrastructure for the Linux kernel [BSL*10a].

4.4 Comparison with Available Feature Models

The Kconfig language was originally developed to support variability management and
configuration in the Linux kernel. Since its introduction, other projects have adopted
Kconfig. We gathered a total of 12 Kconfig models, including the Linux variability
model and compared them with the 267 published in the SPLOT model repository.
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4.4.1 Kconfig Models

Our dataset of Kconfig models include 11 projects, including the model from the x86
architecture of Linux v2.6.32 [BSL*12]. We compared their statistics with the models
gathered from the SPLOT model repository. We give a brief description of each Kconfig
project below:

Linux Linux is an open-source operating system kernel. Linux uses the Kconfig
language to specify its variability model used to configure the kernel for com-
pilation. The Kconfig language has been used by Linux since 2002 and was
developed to address the shortcomings of the previous configuration language
used by Linux, CML. The Linux variability model is the largest open source
variability model known to date.

axTLS axTLS is a small library implementing the TLS v1 SSL protocol.

BuildRoot BuildRoot is a set of Makefiles for creating a complete embedded Linux
system.

BusyBox BusyBox combines many UNIX commands into a single executable. Busy-
Box is optimized to reduce size and to operate on devices with limited resources.

CoreBoot CoreBoot is a free, open-source replacement for proprietary BIOS in a
range of computer systems.

EmbToolKit EmbToolKit stands for Embedded Systems ToolKit, and is a tool for
building all necessary tools, including the root filesystem, for an embedded
Linux system.

Fiasco Fiasco is a real-time, microkernel that supports a range of architectures
such as x86, ARM, or PowerPC.

Freetz Freetz is a free, open-source firmware for the AWM FritzBox internet
routers.

ToyBox ToyBox, like BusyBox, combines a set of UNIX commands into a single
executable. ToyBox is a smaller project than BusyBox and was mostly developed
by its creator.

uCLinux uCLinux is a Linux distribution for embedded systems. It contains a
modified version of the Linux kernel designed for microcontrollers and also
included libraries and packages to build a complete system for embedded sys-
tems. uCLinux employs a multi-level configuration process where the first model
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(ucLinux-base) provides architecture and library choices. The second model
is that of the Linux kernel. The choices in the first model determine a default
configuration for The second model. The third model (ucLinux-dist) is used
select software packages to be included in the system distribution.

uClibc uClibc is a C library designed for embedded systems. It is smaller in size
than glibc, and nearly all applications that work on glibc will also work with
uClibec.

4.4.2 SPLOT Models

The SPLOT model repository contains feature models gathered from academic papers
and experience reports, created by users with their online model editor, or contributed
by industry. We gathered a total of 267 models for our dataset. The SPLOT models
range in their domain; there are models that describes electronic shops, video games or
mobile phones. We list the SPLOT models that we analyzed in Appendix B.

4.4.3 Model Structure

In this section, we example properties of the Kconfig models and contrast them with
the properties of the feature models from SPLOT.

Configs Violating Hierarchy Rules In Kconfig, the hierarchy is derived from a combi-
nation of syntactic nesting and common dependencies between configs. Unlike feature
modeling, a child config does not have to imply its parent config. We identified the
configs that violated hierarchy rules in our Kconfig models using a SAT solver with the
propositional translation of the models based on their formal semantics (Appendix A).
Figure 4.8 shows the proportion of configs violating hierarchy rules in the Kconfig
models.

In Linux v.2.6.32, about 6% of configs do not imply their parent. Many of these were
part of a sub-tree of configs under DVB_FE_CUSTOMISE, that stands for “Customise
the frontend modules to build”. Subfeatures of DVB_FE_CUSTOMISE were specific
chipsets that were selected automatically through defaults when selecting support for
digital TV adapters in a separate tree. When DVB_FE_CUSTOMISE was deselected,
the subfeatures were not visible in the configurator. Enabling DVB_FE_CUSTOMISE
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Figure 4.8: Proportion of configs that violate hierarchy rules in the Kconfig models. The
black bar represents configs that do not imply their parents; the grey bar
represents parents with children that are do not imply them.

would make the subfeatures appear in the configurator, enabling the user to fine-tune,
and select the exact chipsets to compile and include in the kernel.

Size Figure 4.9a shows the size of the Kconfig models in our dataset. The Linux model
is by far the largest, with 6320 features, and ToyBox is the smallest with 71 features.
The models have a median of 1119 features, and a mean of 1580. The feature counts
include all nodes in the Kconfig models—configs, menuconfigs, menus, and choices.

The size of the SPLOT models are shown in Figure 4.9b. The models in this dataset
are significantly smaller, with the largest model having 290 features, and the smallest
model having only 9 features. The models have a median of 18 features and a mean of
27. The models in the Kconfig dataset are significantly larger than the feature models
available in the SPLOT model repository. The Linux Kconfig model is also more than 20
times larger than the largest model in the SPLOT repository.

Feature Types For the Kconfig models, we further partitioned the features into five
categories: grouping, grouped, data, boolean, and tristate. Grouping features are
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Figure 4.9: Size of Kconfig and SPLOT models
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Figure 4.10: Feature types in the Kconfig models
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Figure 4.11: Leaf depths for the Kconfig models ordered by model size

menus and choices—features that do not declare a symbol. Grouped features are the
immediate configs beneath a choice node. Data features are string, int, and hex configs.
Boolean and tristate are the respective config types. Figure 4.10a shows the breakdown
of the feature types in the Kconfig models. Linux is the only project that uses tristate
features. The majority of uCLinux-base is choice nodes and grouped configs, while

ucLinux-dist has mainly Boolean configs. CoreBoot has the largest proportion of data
features out of all Kconfig models.

Figure 4.10b shows the growth of the different feature types over 20 versions of the
Linux kernel variability model. We used this data for our analysis of the evoluation
of the Linux kernel [LSB*10]. Tristate features show the most growth, with boolean

features being second. The number of grouping, grouped, and data features stay
relatively constant.

Leaf Depth and Branching Factor Figure 4.11 compares the leaf depths of the
individual Kconfig models. The models are ordered by size—from smallest to largest
where Linux is the largest model. The small X’ indicates the mean leaf depth for a

feature in each model. There appears to be a positive correlation between model size
and leaf depth in the Kconfig models.

Figure 4.12a compares the leaf depth of all features in the Kconfig models against all
features in the SPLOT models. These plots ignore the individual models and consider
all features across all models as a set. The models in Kconfig tend to be deeper than
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Figure 4.12: Structure of the Kconfig and SPLOT models across all features in the
dataset

SPLOT models by their absolute leaf depth, with a median leaf depth of 4 and a mean
of 3.7. The SPLOT models have a median of 2 and a mean leaf depth of 2.7. However,
since the SPLOT models are significantly smaller than Kconfig models, features are
typically nested deeper in SPLOT models relative to the size of the models than the
Kconfig models.

Figure 4.12b contains two plots of the branching factor for features in the Kconfig
and SPLOT models. While the absolute numbers for Kconfig and SPLOT are similar,
the plot with the relative branching factor shows a significant difference between the
two datasets. Features in SPLOT models tend to have more children relative to their
size than features in Kconfig models. There are several outliers in the Kconfig models
however; a single feature in the Freetz model has 2377 children with a total model size
of 3471.

4.4.4 Feature Groups

Figure 4.13 shows the number of feature groups in the Kconfig models. EmbToolkit has
the most groups out of all models, with 111 xor-groups, while ToyBox contained no
feature groups at all. The high number of groups in EmbToolKit could be attributed to
the choices for selecting a specific version of software, e.g., version of the gcc compiler
to use, specific sub-version of the Linux kernel. Relative to the total number of feature
nodes (i.e., configs, menus, and choices), uClinux-base contained the most feature
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Figure 4.13: Feature groups in Kconfig models. The x-axis is ordered by model size, the
black bars are xor-groups, and the grey bars are tristate groups (Linux).
The top plot is the number of groups relative to the number of total
features, and the bottom plot is the absolute number of groups.
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Figure 4.14: Feature groups and CTCR across all features in SPLOT and Kconfig models

groups with 19% of nodes being xor-groups. These feature groups are used to model
the choices for specific chipsets from each manufacturer.

Recall from Figure 4.5 that an xor-group in Kconfig is interpreted as a choice node that
is Boolean and does not have the optional keyword. An or-group is a tristate choice, and
a MUTEX-group contains the optional keyword. In the Linux kernel (v2.6.32), we found
39 instances of xOrR-groups, 2 instances of tristate groups, and no MUTEX-groups. Linux
was the only model with tristate groups since it was the only model that contained
any tristate features. There were no occurrences of MUTEX-groups in any of the Kconfig
models.

Figure 4.14a compares the average xoR- and or-groups per model in the SPLOT and
Kconfig datasets. Since feature groups are actual nodes in the Kconfig models, we also
count the feature groups as nodes in our calculations for this figure. We use a similar
computation for SPLOT models where the percentage of feature groups is calculated

as:
# of feature groups

% of feat = e
b of feature groUps = st 7% of feature groups (“-8)

We see in the figure that SPLOT models have a higher average proportion of xor- and
or-groups than Kconfig models. The result with or-groups is not surprising since only
the Linux model had or-groups, while or-groups are a common structure in feature
modeling.
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Figure 4.15: Proportion of derived and conditionally derived configs in the Kconfig
models. The black bar is for conditionally derived configs, and the grey
bar is for derived configs.

4.4.5 Cross-Tree Constraints

Mendonca et al. found that constraints embedded in a feature model’s hierarchy and in
feature groups were easy to reason with SAT solvers [MWC09]. However, the addition
of cross-tree constraints can cause a model to become difficult for solvers. The cross-tree
constraint ratio (CTCR) is a measure of the complexity of the cross-tree constraints and
is defined as the number of features participating in cross-tree constraints, divided by
the number of total features. We adapt the CTCR to Kconfig by taking the number of
features participating in some constraint divided by the total number of features. A
constraint in Kconfig could be a prompt condition, a default, a select, or a range.

Figure 4.14b compares the CTCRs of the SPLOT models to those of the Kconfig models.
The SPLOT models generally have a lower CTCR than Kconfig models, however, there
are several outliers with high CTCR. These include the Dell Laptop / Notebook feature
model with a CTCR of 80%. This model uses cross-tree constraints to restrict options
depending on the laptop type (e.g., smaller laptops vs. larger laptops). The models
with 100% CTCR contained a trivial cross-tree constraint that enumerated all features,
including the root feature, as a disjunction. These constraints may be used as an
implementation artifact for a reasoner.
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Figure 4.16: Characterization of a small sample of features in the Linux v2.6.28.6
kernel

The higher CTCR in Kconfig models is partially due to Kconfig having more language
constructs that contribute some form of constraints. For example, Kconfig supports
defaults that do not impose a constraint on the configuration space, but instead provide
suggested values. We count these defaults when calculating the CTCR for the Kconfig

models.

In Section 4.3.3, we categorized configs based on their cross-tree constraints. We found
in v2.6.32 of Linux that 12% of configs were unconditionally derived, 4% of configs
were conditionally derived, and the remainder were configured configs. Figure 4.15
show the percentage of configs that are derived and conditionally derived in the Kconfig
models respectively. The remainder of the configs not shown in the figure are user

configured.

4.4.6 Qualitative Characteristics

We performed a manual categorization of 180 randomly selected features to identify the
granularity and types of features in the Linux variability model [LSB*10]. The selected
categories characterize the granularity of features from the user’s perspective—whether
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a feature enables support for a device, or whether the feature is related to another
feature, e.g., related to a driver, protocol, or API.

We categorized features based on the feature descriptions and by querying the web
when needed. We left features with no description in Kconfig uncategorized. Since
the classification is subjective, we cross checked the categories for 18 features with
another author of the paper. We found a discrepancy of only 8% and so believe that
the categorization is sound and relevant. We used the following user-based granularity
categories, from the most course-grained to the most fine-grained:

Menus Features used to group subfeatures, e.g., |I0_SCHEDULERS, which groups
read / write schedulers for block devices;

Support Features that enable support certain devices or protocols, e.g., HID_-
SAMSUNG, which enables support for Samsung’s InfraRed remote control;

Option Features enabling or disabling an ability in another feature, e.g., DASD,
which enables support for direct access storage devices in block devices;

Debug Developer-related features, e.g., BOOT_TRACER, which activates run-time
collection to assist in boot-time optimizations, or MEMSTICK_DEBUG, which
activates additional debugging information for memory stick devices.

The results of the user-based granularity categorization is shown in Figure 4.16a. Out
of the 180 sampled features, 97 of those features were the relatively coarse-grained
support features. There was only a single menu in our sample. We were unable to
categorize 23 features since they were missing feature descriptions. We additionally
categorized the sample into the following feature types:

API features that provide an external programming interface, e.g., CRYPTO_CTR,
which enables the API for a block cipher algorithm;

Driver features that enable support for a device, e.g., SND_ADLIB, which enables
support for AdLib audio cards;

Kernel features that add or remove an low level ability to the kernel, e.g., FAIL-
SLAB, which enables fault-injection capability for kmalloc—a memory allocator
for the kernel;

Protocol features that implement a protocol, e.g., LLC2, which enables support
for PF_LLC sockets;

Subsystem features that enable support for a whole subsystem, e.g., BT, which
enables the Bluetooth subsystem.
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Figure 4.17: Representation of Kconfig’s three values using two Boolean variables

The majority of features in our sample were drivers. We were unable to identify the
type for 25 features.

4.5 Tooling: Linux Variability Analysis Tools

We developed the Linux Variability Analysis Tools (IVAT)* to extract and analyze Kconfig
models. IVAT uses a component written using the Kconfig infrastructure in the Linux
kernel to parse the concrete Kconfig syntax and output an intermediate format as a
protocol buffer®, or as an easier-to-parse plain text file. We use LVAT to gather the
statistics presented in this chapter.

The analysis portion of IVAT parses the intermediate format to an AST that matches the
concrete syntax of Kconfig. The AST could then be transformed to the abstract syntax
of Kconfig described in Section 4.2.

One of the key features of IVAT is the translation of a Kconfig model to a propositional
formula based on the formal semantics in Appendix A. Since a config supports three
values, the translation uses two Boolean variables per config. For a config x, We
show the representation of the three Kconfig values in Figure 4.17 using the Boolean
variables x;, and x,. We disallow the case {x; — 0, x, — 1} by adding this constraint
to the formula. The current translation doe not support string, int, and hex configs and
assumes any constraint involving these configs are satisfied.

We use the propositional translation for the statistics dependent on dependencies and
cross-tree constraints in the chapter, e.g., identifying configs that violate hierarchy
rules. The propositional formula has also been used in other tools, such as TypeChef—
a parser for programs written with the C preprocessor [Kds10]. TypeChef uses the

“http://linux-variability-analysis-tools.googlecode.com
Shttp:/ /protobuf.googlecode.com
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propositional translation of a Kconfig model to identify errors in #ifdef conditions and
prune unreachable alternatives from its parse tree.

4.6 Kconfig Semantics

We also reverse engineered formal semantics in denotational style [Sch86] for the
Kconfig language. We based these semantics first on the Kconfig specification [Zc],
then when in doubt, on how the graphical xconfig configurator performed, and also
examined the source code when needed. The semantics are available in Appendix A.
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Feature Graph Extraction

In this chapter, we introduce the first of our feature model synthesis algorithms called
FEATURE-GRAPH-EXTRACTION (FGE). Given a set of features and a propositional formula,
FGE is an automated algorithm that recovers a feature graph describing all feature
diagrams that is entailed by the input. This algorithm recovers all components of a fea-
ture model: its possible hierarchies, feature cardinalities (i.e., optional and mandatory
features), and possible feature groups. We describe two variants of FGE that operate on
propositional formulas in conjunctive normal form (CNF) and disjunctive normal form
(DNF) called FGe-CNF and FGe-DNF respectively.

The recovered feature graph can be used as an intermediate format for other synthesis
algorithms that derive feature models. For example, the feature graph can be used
as part of an interactive model builder [JKW08], or as part of a feature model merge
operation [Ach11]. We discussed several scenarios involving FGE in Chapter 3. In
Chapter 6, we present our own approach for selecting a distinct feature model by
applying a textual similarity heuristic on feature names and descriptions.

We performed two experiments to evaluate the scalability of FGe-CNF and FGe-DNF
against existing feature model synthesis algorithms with input representative of that
used in practical synthesis scenarios. For FGe-CNF, we compare it to the BDD-based
algorithm introduced by Czarnecki and Wasowski [CWO07] that we call FGe-BDD. FGE-
CNF and FGe-BDD both take the same input and output the same feature graph. For
FGe-DNF, we compare it with the formal concept analysis-based algorithm by Ryssel
et al. [RPK11] that we present as FGe-FCA in this chapter. FGe-FCA takes input in a
similar form as FGe-DNF and outputs the same feature graph. We show that FGe-CNF is
significantly faster than FGe-BDD, while FGe-DNF performs comparably with FGe-FCA,
except in five cases, where FGE-DNF was faster.
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Chapter Organization We begin this chapter by summarizing three feature model
synthesis scenarios that FEATURE-GRAPH-EXTRACTION addresses in Section 5.1. Sec-
tion 5.2 defines the feature model synthesis and the feature graph synthesis problem.
We describe the generic FGE algorithm in Section 5.3. Sections 5.4 and 5.5 describes
FGE-CNF and FGe-DNF respectively. Next, we describe the two algorithms that we use
in our experimental evaluation according to the FGE algorithm. In Section 5.6, we
describe the BDD-based algorithm by Czarnecki and Wasowski and in Section 5.7, we
describe the formal concept analysis-based algorithm by Ryssel et al. [RPK11]. We
describe our experimental evaluation of FGe-CNF against baseline implementations
of the BDD-based algorithm and a formal concept analysis (FCA)-based algorithm in
Section 5.9.

Publications The FGE and the SAT-based variants that operate on CNF and DNF
input was published in [ACSW12]. We submitted an extended journal version of the
paper [SRA'13] with a more extensive evaluation comparing our algorithm with the
FCA-based algorithm by Ryssel et al. [RPK11].

External Contributions FcGEe-BDD is based on the BDD synthesis algorithm by pub-
lished by Czarnecki and Wasowski [CWO07]. FGe-CNF and FGe-DNF were developed
and implemented with Andersen and the algorithms and the initial evaluation appear
in [ACSW12] and her Master’s thesis [And09]. We expand on the evaluation to include
a larger dataset with the Linux variability model and 267 SPLOT feature models. We
also conducted an evaluation comparing FGe-DNF with FGe-FCA, an adaptation of the
synthesis algorithm by Ryssel et al. [RPK11] to the FGE framework. This section was
written by Ryssel for [SRA*13] and adapted for this thesis.

5.1 Motivation and Scenarios

We use three synthesis scenarios from Chapter 3 to motivate our work on the FEATURE-
GRAPH-EXTRACTION algorithm. We summarize the scenarios below.

Scenario 1: Tool-assisted feature model reverse engineering This scenario de-
scribed reverse engineering a feature model from code. Variability rich software, such
as the FreeBSD kernel, can benefit from feature model. The FreeBSD operating system
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kernel is configured prior to compilation to derive variations of the kernel functional-
ity. Unlike the Linux kernel [BSLT10b], the FreeBSD kernel does not have a feature
model that makes configuration easier for users, and variability management easier for
developers.

In this scenario, the source code contains variability. This variability could be as
modules, or annotative with C preprocessor #ifdef statement in FreeBSD. A variabil-
ity analysis, such as a static code analysis, can uncover variation points (VPs) and
dependencies between these. The resulting VPs and dependencies are used as input
to the feature model synthesis algorithm. Dependencies extracted from source code
can be translated to a CNF formula, and FGe-CNF can be used to identify all possible
feature diagrams for the input. FEATURE-GRAPH-EXTRACTION along with FEATURE-TREE-
SynTHESIS (Chapter 6) provide a scalable feature model synthesis infrastructure capable
of synthesizing large feature models with several thousand features.

Scenario 2: Feature model synthesis from product configurations The next sce-
nario involves synthesizing a feature model from a set of variants that describe a
product line. These variants could include code developed with a clone-and-own
approach [JDB07] or as individual model variants. Examples of variant analysis for
this scenario include Rubin and Chechik’s technique for identifying similarities between
model instances by comparing and matching model instances [RC12]. Ryssel et al. also
described an algorithm that used model matching and difference to identify VPs and
abstract the model variants into a set of VP configurations [RPK12]. In this scenario,
features and feature configurations are used as input to FEATURE-GRAPH-EXTRACTION.
Feature configurations are naturally represented as a DNF formula making FGE-DNF
suitable for this scenario.

Scenario 3: Feature model merge operations Our third scenario involves feature
model merge operations as described by Acher [Ach11]. A merge creates a new feature
model that describes the intersection or union of configurations of two or more feature
models. The input models are translated to their propositional formulas [Bat05], then
a propositional merge is performed. The exact configuration semantics depends on
the selected kind of merge. For the hierarchy, Acher applies heuristics for selecting
the hierarchy based on the structures of the input models. These heuristics enable the
automatic selection of a feature tree without further user input. Acher’s feature model
management infrastructure [Ach11] implements the operations using our previous
BDD-based FM synthesis solution [CWO07], which does not scale beyond small FMs,
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with few dozens of features. The FEATURE-GRAPH-EXTRACTION algorithm presented here
can be used to improve the scalability of that infrastructure. The FGe-CNF algorithm in
particular, is a perfect fit for this scenario since the configuration semantics of feature
models translate naturally to a propositional formula in CNE

5.2 Defining the Feature Model and Feature Graph
Synthesis Problem

Before we discuss our synthesis algorithm, we must first define the problem that our
algorithm is addressing. Given a set of features (F) and a propositional formula (¢),
the feature model synthesis problem is defined as synthesizing a feature diagram FD
such that the input formula ¢ entails the configuration semantics of the feature diagram.
We now define the problem using the definition of a feature diagram (Definition 2.1),
where FD = (F,E, (E,,E;,E,), (G,, G, G,,)):

Definition 5.1. The feature model synthesis problem (FMS) is defined as given a
consistent rooted formula ¢ over a set of feature F, synthesize a feature diagram
FD over F, such that ¢ — [FD], and FD is maximal such that (i) no element can
be added to the set of mandatory edges (E,,), implies edges (E;), or excludes edges
(E,), OR-, MUTEX-, and xor-groups (G,, G,,, G,) and (ii) no group can be moved
from G, U G,, to G, without violating ¢ — [FD].

Note that our problem definition includes a condition such that the synthesized diagram
is maximal. This condition is necessary to avoid synthesizing trivial models that are
not useful in any synthesis scenario. For example, a feature diagram where all features
are nested under the root is consistent with any rooted formula such as the one in
Figure 5.1b. The feature diagram in Figure 5.1b is non-maximal with respect to the
input in Figure 5.1a because it is missing an or-group and implies edges from D to B
and C. In an automated synthesis algorithm, maximal feature diagrams are more useful,
since they contain the maximal constraints that are allowed by the feature modeling
notation.

Theorem 5.1. The decision version of FMS is NP-hard.

Proof sketch. We define the decision version of FMS as: for a given consistent rooted
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(BvCvD—A)
AND—-BAC)
ANA—BVC)

(a) Input (b) A non-maximal (¢) A maximal feature
feature diagram diagram

implies

(d) Another maximal (e) Feature graph
feature diagram

Figure 5.1: Maximal feature diagrams and a feature graph
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formula ¢ over the set of features F, is a given feature diagram FD over F actually
maximal such that ¢ — [FD]?

Iff the answer is yes, then for any two variables in F, there is no other binary implications
entailed by ¢ than those that are edges in D. If such implications did exist, then the
model would not be maximal. Thus, for an implication x — y, we check if ) A x A 7y
is satisfiable (disproves x — y) for an arbitrary consistent rooted formula 1. Such a
SAT check is NP-hard. O

The proof reduces the decision version of FMS to checking satisfiability of a propositional
formula or the equality of two propositional formulas—both NP-hard problems.

Even with the concept of maximality, there could be more than one maximal feature
diagram describing a given input. Figures 5.1c and 5.1d are two maximal feature
diagrams. Figure 5.1c is maximal since all possible feature groups and implies edges
are present. In Figure 5.1d, even though D could be a child of C, the diagram is still
maximal since an implies edge takes the place of the hierarchy edge. The definition of
maximality in Definition 5.1 does not require that each feature be as deeply nested as
possible.

As we see from Figures 5.1c and 5.1d, there could still be more than one maximal
feature diagram describing a given set of configurations or dependencies. We introduce
the notion of a feature graph that encapsulates all maximal feature diagrams as a single
structure, defined as:

Definition 5.2. A feature graph is a tuple FG(F, E, E,, (G,, G,,G,,)) where F is a
set of features, E C F x F is a set of directed child-parent edges; E, C27 is a set of
undirected excludes edges, for each ecE,, |e| = 2; sets G,, G,, G,, contain subsets
of E, participating in or-groups, xorR-group and MUTEX-groups respectively. The
following constraints hold in FG:

1. (F,E) is a connected transitively reduced DAG,

2. All edges in a group share the same parent, so if g €G; for i €{o,x,m}

and (f, f2), (f3, f4) €g then f,=f,,

3. E, E, are disjoint (i.e., no hierarchy edge is an exclude edge).

Compared to the definition of a feature diagram (Definition 2.1), a feature graph
relaxes the constraints on the feature hierarchy such that a feature graph forms a DAG
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instead of a tree, and feature groups can overlap. The definition of feature diagram
allows feature groups with (m, n) cardinality; however, we restrict the definition of a
feature graph to only or- (0, n), xor- (1,n), and MmuTEX-groups (0, 1) since only these
cardinalities are supported by our synthesis algorithm. We also seen in our study
of real world feature models (Chapter 4) that most feature groups in practice were
XOR- or ORr-groups. Compared to feature diagrams, implies edges are also missing
from a feature graph—these edges are represented as part of the (F, E) DAG. Finally,
mandatory features are absent in a feature graph since mandatory features co-occur
with their parent in all legal configurations. Mandatory features are represented as a
single node (i.e., an AND-group) in the feature graph. Figure 5.1e shows the feature
graph for the input in Figure 5.1a.

Since feature graphs encapsulate all consistent maximal feature diagrams with respect
to a set of input features and legal configurations, it provides a convenient target
artifact for automated synthesis algorithms. We define the feature graph synthesis
problem as:

Definition 5.3. The feature graph synthesis problem is defined as given a consistent
rooted formula ¢ over a set of feature F, synthesize a feature graph FG over F,
such that ¢ — [FG]], and given a FG, (i) no element can be added to the set of
child-parent edges (E), excludes edges (E,), OR-, MUTEX-, and xor-groups (G,,
G,,, G,) and (ii) no group can be moved from G, U G,, to G,, without violating
¢ — [FG].

The problem definition assumes that the input is given as a set of dependencies or
configurations expressed as a rooted formula ¢ over a set of features F. If a root is
not present in the formula, a new variable r’ and implications f; € F, f; — r’ can be
introduced to ¢. All possible implications from the input are also contained the DAG
formed by the features and edges (F, E). Furthermore, all possible mandatory, implies,
excludes edges, ORr-, XOR-, and MUTEX-groups XoR are captured in the resulting feature
graph. Finally, the last condition is that the set of xoRr-groups is maximal.

5.3 Fge: Feature Graph Extraction Algorithm

We now introduce the pseudocode for the generic FEATURE-GRAPH-EXTRACTION (FGE) in
Figure 5.2. Given a consistent, rooted propositional formula ¢ and a set of features
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FEATURE-GRAPH-EXTRACTION (¢ : formula over F rooted in r, r € F)

> Find and remove all dead features
D={f€F|pAr—f}
¢ =¢[d— 0]4ep

N =

> Compute the implication graph G(V, E)
3 V=F\D
4 E={u,v)eVxV]|pAu—v}

> Compute strongly connected components
5 V/={SCV|SisaSCCof G}

> Make edges between SCCs creating a DAG
E'={(u,v)eV'xV'|u#v and
7 Ju'eu,v' ev. (u,v) € E}

o)}

> Compute the mutex graph M(V, E,)
8 E,={{u,v}CV/ | euv ev.pru — '}

> Compute mutex-groups

9 Gn=U{HUP) -, (foP} [ {f1,--, fid is
10 a maximal clique in M and Vf;.(f;,p) €E’'}

> Compute or-groups
11 G, = {(fi,p),---,(fi,P)} | f{ V---V f is a prime implicate of ¢ A p’ where
12 p’ € p and
13 Viel{l,...,k}. f/ € fin(fi,p) €E'}

> Compute xor-groups
14 G,=G,NG,

15 return FG(V’,E’,E,, (G, \ Gy, Gy, Gy \ Gy))

Figure 5.2: Generic feature graph extraction algorithm, adapted from [ACSW12,
CWO07]
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F, FGE constructs a feature graph as defined in Definition 5.2. This algorithm was
first introduced by Czarnecki and Wasowski and assumed the use of binary decision
diagrams (BDDs) for reasoning [CWO07]. Our contribution is the adaptation of this
algorithm to support reasoning with a SAT solver on input in conjunctive normal form
(Section 5.4) and disjunction normal form (Section 5.5). We begin by describing each
step of the generic FGE algorithm:

Lines 1-2, Dead Features: The first step is the removal of dead features (Lines 1-2).
A dead feature in ¢ is one that is false in all satisfying assignments of ¢. Dead features
do not contribute to the set of legal configurations and can always be added back to
the model after synthesis.

Lines 3-4, Implications: The second step is the construction of the implication graph,
defined below:

Definition 5.4. The implication graph (V,E) of a formula ¢ is a directed graph
where the vertices V are features and an edge (v;,v,) € E exists if ¢ Av; — v,.

Line 5, And Groups: AND-groups are features that always co-occur together in any
satisfying assignment. We find aND-groups by identifying strongly connected compo-
nents (SCCs) in the implication graph. A SCCs is a group of vertices such that there
exists a path from each vertex to all other vertices in the group. We lift the implication
graph to sets of vertices, such that each SCC becomes a single vertex. (V',E’) is an
implication graph such that V' is a set of features from V, and an edge (u,v) € E’ exist
if any feature in u implies a feature in v given ¢. The resulting graph forms a DAG since
implications are transitive and any cycle between features in the original implication
graph is contained in a SCC. Note that from this line onward, a vertex contains a set of
features.

Line 8, Mutual Exclusions: We now move to identifying mutual exclusions by com-
puting the mutex graph, defined as:

Definition 5.5. The mutex graph (V,E) of a formula ¢ is an undirected graph
where vertices V are features and an edge (u,v) € E exists if ¢ Au— —w.

The mutex graph uses the SCCs as vertices and an edge (i.e., mutual exclusion) (u,v)
exists between two vertices if any feature in u excludes a feature in v.
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Line 9, Mutex Groups: We use the mutex graph to compute MUTEX-groups by identify-
ing all maximal cliques in M. Each clique becomes the members of the MUTEX-group
and the common ancestor in the implication graph (V’, E") becomes group’s parent p.

Lines 11-12, Or Groups: We now finds or-groups by computing prime implicates for
each variable p’. An implicate D of a propositional formula ¢ is a clause such that (i) D
itself is not a tautology, and (ii) ¢ — D is a tautology [ACSW12]. D is a prime implicate
iff it is minimal such that no literal can be removed from D without violating (ii).

Line 14, Xor Groups: Having computed both MUTEx-, and Or-groups in the previous
steps, XOR-groups are simply the intersection of both or-groups and MUTEX-groups.
However, computing or-groups is the most computationally complex step of the synthe-
sis algorithm [ACSW12, SRA*13]. All other steps that involve reasoning on ¢ reduce
to computing binary implications. We define an alternative xor-group computation
that does not depend on or-groups next.

Alternative Xor Group Computation: An alternative method of computing XoR-groups is
to check for each MuTEX-group, given the group parent, if at least one group member
must be present in ¢. This is equivalent to checking if ¢ Ap A =f; A+ A—f, is
inconsistent. Using this computation, the set of xor-groups is alternatively defined
as:

G>/< - {{(flﬂp)"'-:(fk,P)} €G, | go/\p’—>f1’\/...vfk/
where p’ € pand Vi € {1,....k},f/ € f;} (5.1)

Consistency Between the Input ¢ and the Produced Feature Graph FgGE produces
a feature graph that is weaker than ¢, i.e., ¢ — [FG] given a FG produced by FGt.
We define the following theorem:

Theorem 5.2. Given an input formula ¢ with no dead variables and equivalent
variables (i.e., variables that would participate in an AND-group), FGE produces a
feature graph FG that is weaker than ¢ in the sense that ¢ — [FG].

Proof. We assume for this proof that there are no dead variables and no equivalent
variables in the input formula . If there exists any dead or equivalent variables, then
FGE produces an isomorphic set of satisfying assignments. We prove that every element
of a feature graph FG = (V',E’,E,,(G,, G,,G,,)) is weaker than ¢.
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The vertices of a feature graph, V’, consists of the set of variables in ¢ (Lines 3
and 5).

Since there are no dead or equivalent variables in ¢, the set of edges, E’ consists
of edges from E with edges between variables in ¢ by construction (Line 6). It is
clear that each edge (u,v) € E satisfies ¢ — (u — v) (Line 4).

Similarly, for the set of excludes edges E,, ¢ — (u — —v) for each undirected
edge {u,v} € E, by construction (Line 8).

For each or-group {(f},p),...,(fr,p)} € G,, f] V...V f! is a prime implicante
of ¢ Ap” where V.., ;f/ € f; (Line 11). This can be rewritten as ¢ — (p’ —

V.. VD

For each MuTEX-group {(f1,p,...,(fio P} € Gy, Vijets.ppring — (fi = 2f))
holds since each MuTEX-group is a clique in the mutex graph that consists of

excludes edges from E, (Line 9). We showed earlier than the set of excludes
edges is entailed by ¢.

Finally, xor-groups consists of feature groups that are both or- and MUTEX-groups
(Line 14). We proved earlier that both the set of or-groups and MUTEx-groups are
entailed by ¢.

Since ¢ entails the semantics of every element of the feature graph FG, then ¢ —
[FG]. O

Furthermore, the feature graph produced by FGE is a maximal, transitively closed
feature graph. We define a maximal feature graph as the following:

Definition 5.6. A feature graph FG over F is maximal such that (i) no element
can be added to the sets of child-parent edges E, excludes edges E,,, and OR-, XOR-,
and MUTEX- groups (G,, G,, G,,) without violating ¢ — [FG]], and (ii) no group
can be moved from G, U G,, to G, without violating the above implication.

Note that the above definition of maximality requires that the child-parent edges be
transitively closed by condition (i). We can now state the following theorem:

Theorem 5.3. FGE produces a maximal feature graph.
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Proof sketch. We sketch a proof that the produced feature graph is maximal by a
contradiction argument. Assume that the feature graph produced by FGE lacks an edge
(u,v) in the set of child-parent edges. We know that ¢ cannot entail u — v, otherwise
the edge would have already been in the set of child-parent edges by Line 4. Thus, any
feature graph containing more edges must not be entailed by ¢. Such a feature graph
would be unsound, contradicting condition (i) in Definition 5.6.

The argument for the remaining components of the feature graph showing that all sets
created by FGE are maximal is structured similarly. O

5.4 Fge-CNF: CNF Formula as Input

We now describe the first implementation-specific variant of the FGe. FGe-CNF assumes
that ¢ is a formula in conjunctive normal form (CNF). A formula in CNF consists of
a conjunction of clauses. A clause is a disjunction of literals. FGEe-CNF is effective
at handling input in the form of dependencies. For example, FGE-CNF is ideal for
Scenarios 1 and 3 that has variable artifacts as input and provide dependencies that
can be naturally represented as a CNF formula. We describe FGe-CNF next based on to
the generic algorithm structure in Figure 5.2. FGe-CNF assumes that ¢ is a formula in
CNF and uses a SAT solver as its reasoner.

Lines 1-2, Dead Features: In FGe-CNF, we detected if a feature f is dead by checking
if p Af is consistent. p A f is a CNF formula, a single SAT call can determine consistency.
If consistent, we can use the model solution provided by the SAT solver to provide
liveness (i.e., not dead) of variables assigned true. No further SAT calls are needed for
these variables proved live. In the worst-case, detecting dead features performs O(|.F|)
SAT calls.

Lines 3-4, Implications: A binary implication between two variables f; and f;, is
detected by proving the consistency of formula of ¢ A f; — f; , or, equivalently, checking
if ¢ A f; A—f; is inconsistent. Thus, one implication edge is detected by one SAT
call. Detecting all implications requires O(|F|?) calls. In practice, like detecting dead
features, a consistent model can be used to disprove all implications between variables
f; and f;, whenever f; is assigned true and f; is assigned false in the model.

Line 8, Mutual Exclusions: Detecting mutual exclusions is done by checking if 9 Af; Af;
is inconsistent. Like above, finding all exclusions requires at most O(|F|?) SAT checks.
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The number of SAT checks can also be decreased by learning about more than one pair
of features from a consistent model.

Lines 11-12, Or Groups: To identify or-groups we need to find prime implicates
of ¢ A p for each p € F. We use the Pig algorithm [JP90, Jac92] to identify prime
implicates. Applying PiG to ¢ A p will identify all prime implicates in the formula
assuming the parent p; however, not all are valid or-groups. We are only interested in
implicates that consists of variables that imply the parent p in the implication graph
since feature groups can only be between a parent and its children, and implicates that
consists of only positive literals.

We can rewrite the formula ¢ A p to eliminate unneeded variables by applying the VEr
algorithm [SP04]. Given a formula ¢, the output of VER(p, x) is a CNF formula v not
containing the variable x, but is equisatisfiable to ¢—) is satisfiable whenever ¢ is
satisfiable. In addition to v being equisatisfiable to ¢, the prime implicates of 1) are
the same as the prime implicates of ¢ over the set of kept variables.

Lines 11-12, Incremental Or Group Computation: The approach outlined above performs
redundant work across each p € F. Given variable p, prime implicates of ¢ A p are
found, followed by prime implicates of ¢ A p’ for a different variable p’. We can reduce
redundant work by first computing the prime implicates of the formula ¢, then reuse
the results to compute ¢ A f and ¢ A f'. [ACSW12, SRA*13] describes the algorithm
for computing or-groups incrementally in detail. The process is inspired by the PIGLET
algorithm that computes prime implicates of ¢ A1) assuming the prime implicates of ¢
are known [Jac92].

Line 14, Xor Groups: xor-groups could be computed just as in Figure 5.2 by checking
set intersection between or- and MUTEx-groups. For the alternative Xor-group computa-
tion, the satisfiability check on a formula ¢ Ap A= f; A---A—f; is naturally performed by
a single SAT call. This check is performed on each muTEx-group, making the alternative
XOR-group computation require O(|G,,|) calls to the SAT solver.

5.5 Fge-DNF: DNF Formula as Input

FGE-DNF assumes that the input, ¢, is a formula in disjunctive normal form (DNF). A
formula is in DNF iff it is a disjunction of terms where a term is a conjunction of literals.
FGE-DNF is a variant of FGE assuming a DNF formula as input. FGe-DNF is applicable to
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Scenario 2 in Chapter 3 where a FM is to be synthesized from a list of existing variants
of a product.

We describe FGe-DNF according to the pseudocode in Figure 5.2. When describing
runtime, we assume that the DNF formula only contains satisfiable terms. A term is
satisfiable if it does not contain a literal and its negation. Unsatisfiable terms can be
removed in linear time. |¢| is the size of the input and refers to the number of terms in
the DNF formula.

Lines 1-2, Dead Features: A variable f is dead iff it is negated in every term of ¢.
This can be checked in linear time in |¢| making this step run in O(|p||F|) time.

Lines 3-4, Implications: Implications are detected by checking if ¢ A f; — f; is
consistent. Since ¢ is in DNE these implications are found by checking if every term in
¢ contains either —f; or f;. Detecting all implications takes O(|¢||F|*) time.

Line 8, Mutual Exclusions: Mutual exclusions are found by checking if p A f; — —f;, or
equivalently, ¢ A f; A f; is consistent. Similar to detecting implications, the satisfiability
can be computed in linear time. This process is repeated for every feature pair, so
detection of exclusions also takes O(|p||F|?) time.

Line 11-12, Or Groups: Identifying or-groups involves identifying prime implicates
of ¢. Detecting prime implicates in ¢ is equivalent to detecting prime implicants of
—p. An implicant C of a propositional formula ¢ is a term such that C is consistent and
C — y is a tautology. C is a prime implicant if it is minimal. If 7t is a prime implicates of
¢, then =7t is a prime implicant of =¢. Using this property, or-groups can be computed
by using a SAT solver to find prime implicants of —¢.

We use a procedure based on Binary Integer Programming (BIP) [Sil97, MFSO97], a
special case of Integer Linear Programming (ILP) that assumes binary domain for
variables (i.e., a variable can be 0 or 1), to compute or-groups. First, given a feature p,
we construct a new formula ﬁcp; with the desired properties to identify or-groups with
parent p:

1. First, negate ¢ to create —¢. Since ¢ is in DNE —¢ becomes a CNF formula.

2. Detecting or-groups for parent p involves detecting prime implicates of ¢ A p.
Since we are working with =g, we detect prime implicants of ~¢ vV —p. We retain
only the clauses in —¢ that contain —p.

3. The members of a valid or-group must share a common parent, namely p. Using
the implication graph (V’, E’), retain only variables that imply the node containing
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p. In other words, retain {f | f € v' A(v',p’) € E' where v € V' and Ip’ € V.p €
p'h

4. Avalid or-group has the constraint p — f;V---V f; where the variables {f, ..., fi}
are positive. Since we are working with =, this constraints translates to prime

implicants containing only negative literals. For each clause C, remove all
variables v € C that are positive.

Now we can use the formula —lapl’) to build the BIP problem used to identify or-groups
for a parent p:

1. Let L be the set of literals in —w; . For each literal | € L, introduce a Boolean
variable x; to the BIP problem. Note that —¢’ only contains negative literals.

2. For each clause [; V--- V[, in —lapl’) add the linear inequality x; +---+x;, >1to
the set of constraints.

3. Since a literal [ and its negation —l cannot both be true in a satisfying assignment,
a constraint of the form x; + x_; < 1 is added for each literal in L. These
constraints are not needed if the process for constructing —mp; outlined above is
used. —wp; has removed all negative variables, and only positive variables remain
in the formula.

4. The objective function is to minimize the number of positive literals: ., x;.
The optimal solutions to this BIP correspond to the prime implicants of =¢ V —p.

We demonstrate the BIP translation using the input DNF formula ¢ in Figure 5.3a.
Computing the feature groups for feature a, we first construct the CNF formula = .
The formula = only includes negated variables in —¢ that imply a based on the
implication graph in Figure 5.3b. The resulting formula is shown in Figure 5.3c. Finally,
the resulting BIP translation is in Figure 5.3d. The optimal solution to this BIP problem
has [, and [ set to 1 and [_4 set to 0. As a result, {b,c} are a feature group with
parent a.

5.6 Fge-BDD: Binary Decision Diagrams as Input

The third FGE variant assumes that the input ¢ is a binary decision diagram (BDD).
BDDs are compact directed acyclic graphs of a Boolean function that provide constant
time SAT and tautology checks. The size of a BDD is dependent on the Boolean function
being represented and the variable ordering. Computing an optimal variable ordering is
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(rA aA bA-cA-d)V

1. r
2. (rA aA bA—cA d)V A (=b) A
3. (rA aA-bA cA—d)V a (mbVv—d) A
4. (rA aA-bA cA d)V /‘ﬁ (=¢) A
5. (rA—aA-bA-cA-d) b ¢ d (mcv-d) A
(a) DNF formula ¢ (b) Implication graph (c¢) CNF formula —mp;
l,=>1
Lo+lg>1
l.>1
I |

(d) BIP problem for —¢;

Figure 5.3: Translation of a DNF formula to a BIP problem for identifying or-groups

a NP-hard problem, however, efficient heuristics for computing the variable ordering in
feature models exists [MWCCO08]. BDDs support logical operations such as conjunction,
disjunction and existential quantification. The BDD-based feature graph extraction
algorithm was introduced by Czarnecki and Wasowski in [CW07]. We present the
algorithm here since we use it as a baseline comparison for our evaluation of FGe-CNF
in Section 5.9.

This description FGe-BDD uses an optimization for computing dead features, implication
and mutex graphs by first computing the valid domains of variables in a BDD. A valid
domain for a variable f given a formula ¢ is the set of valid values for f in any
satisfiable assignment of ¢ [CWO07]. For example, a dead feature is a variable with a
valid domain of only false. The valid domains can be computed in linear time with
respect to the size of the BDD [HJAO07]. We now describe FGe-BDD according to the
generic algorithm in Figure 5.2:

Lines 1-2 Dead Features: Dead features are variables that are always false in all
satisfying assignments of ¢, and are equivalent to variables with valid domains of
only false. Dead features are removed from the input BDD by applying existential
quantification to ¢. Dead feature computation takes O(|¢| + |F|) time where || is the
size of the BDD.

Lines 3-4 Implications: An implication f; — f; exists if ¢ A f; A =f; is inconsistent.
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For each variable f;, we construct a BDD for ¢ A f;, then identify all variables f; that
are true in all satisfying assignments of ¢ A f; by computing valid domains for all
variables. By using the valid domains computation, computing the implication graph
takes O(|F| - |¢| + |F|?) time.

Line 8 Mutual Exclusions: A mutex is found if ¢ A f; A f; is inconsistent. Computing
mutual exclusions is similar to implications, where we first construct BDDs for ¢ A f;.
However, mutual exclusions are detected by identifying f;’s that are false in all satisfying
assignments. This computation can also be done by computing the valid domains for
all variables resulting in a runtime of O(|F| - |¢| + |F|?).

Line 11-12 Or Groups: or-groups with a parent p are found by computing prime
implicates of ¢ A p or equivalently, prime implicants of =¢ A =p. Coudert and Madre
describe two algorithms for computing prime implicants [CM92]—IP1 and IP2. IP2
has a runtime that is polynomial to ||, thus making or-group computation polynomial
to |¢|. However, IP1 has a better runtime on practical applications. We use a modified
version of IP1 that returns only implicants consisting of all negative literals in our
implementation of FGe-BDD.

5.7 Fge-FCA: Formal Concept Analysis-Based

FGE-FCA [RPK11] is an adaptation of the algorithm by Ryssel et al. to the infrastructure
of of FGE. FGE-FCA is based on based on formal concept analysis (FCA) and addresses the
same usage scenarios as FGE-DNF where the input is a set of configurations. FGe-FCA
translates a list of configurations into a feature graph. We present the core steps of
the approach by relating it to the steps of the generic FGE algorithm presented in
Figure 5.2. We present this algorithm here since we use it as a baseline comparison
for our evaluation of FGe-DNF in Section 5.9. This section was written by Ryssel
for [SRAT13] and adapted for this thesis.

We begin by summarizing the concepts of FCA. FCA is a mathematical approach for
identifying a lattice of concepts based on a formal context. A formal context is a triple
(G,M,I), where G is a set of objects, M is a set of attributes and I € G X M is a binary
has-relation relating objects and attributes. In the context of feature models, the set
of objects G represents a set of configurations, and the set of attributes M represents
features. The relation I maps each configuration to the features that are contained in
the configuration. In Figure 5.4a, we express a formal context as a table where the
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Attribute Concept (O,A)

a b c¢c d e Extent O Intent A
1 X X X a 12,3} {ab,c}
2 X X X b {1,2,3,41} {b,c}
3 X X X c 11,2345} {c}
4 X X X d {241} {b,c,d}
5 X e 11,3} {b,c,e}

(a) A formal context expressed as a table  (b) Attributes and their corresponding at-
tribute concepts

2.
/

a e

(c) Implication graph

Figure 5.4: Formal context and its attribute concepts

numbered rows are objects and the lettered columns are attributes. An x in the table
indicates the object having the attribute.

FCA builds a lattice of formal concepts based on the formal context. A formal concept
is a pair (A, B) such that A € G, B € M and every object in A has every attribute in B,
and every object not in A is missing an attribute in B. FCA defines a operator (-)’ that,
given a set of attributes B € M, returns the objects that B share. (-)" applied to a set of
objects A C G, returns the common attributes that share the objects A.

An attribute concept is a special kind of formal concept computed for a single attribute.
Given an attribute m € M, the attribute concept is a pair (A, B) where A is the set of all
objects containing m, and B is the set of all attributes having all objects in A. Formally
defined, the attribute concept is ({m}’, {m}”). Given a concept (0,A), the extent of a
refers to the object component, O, and the intent refers to the attribute component, A.
The attribute concepts for the formal context in Figure 5.4a are shown in Figure 5.4b.
Computing attribute concepts relies on computing the extent (i.e., objects) for each
attribute. Computing the extent for one attribute takes at most |G| time, so computing
attribute concepts takes O(|M||G|) time.
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Now that we defined the basic concepts of FCA, we can describe FGe-FCA according to
the structure of the generic FGE algorithm in Figure 5.2:

Lines 1-2, Dead Features: Dead features are identified by finding attributes that not
contained in any object. In other words, the extent for each dead attribute concept is
empty. This can be computed in O(|M|) time by checking all the computed attribute
concepts.

Line 5, And Groups: In FGe-FCA, aAND-groups can be identified prior to computing the
implication graph by computing the extents for all attribute concepts. If two attribute
concepts have the same extents, then they become part of the same aAND-group.

Lines 3—4, Implications: Given two attributes, u, v € M, an implication u — v holds iff
the extent of u is a subset of the extent of v. Formally, {u}’ € {v}’ . Subsets are checked
for all pairwise combinations of attributes, thus, requiring O(|G|M|?) time. Ryssel
detects implications by comparing the attribute concepts and building an attribute
concept graph [RPK11]. The attribute concept graph is equivalent to an implication
graph. The implication graph for our example is shown in Figure 5.4c.

Line 8, Mutual Exclusions: Two attributes are mutually exclusive iff their extents are
disjoint, i.e., given u,v € M, {u}’' N {v} is empty. Computing mutual exclusions takes
O(|G|IM|?) time.

Line 11-12, Or Groups: An or-group with parent p and members m,, ..., m, is present
if the extent (i.e., configurations) of the parent {p}’ is equal to the union of extents of
its members {m,}' U---U{m,} . Furthermore, or-groups must be minimal, such that no
member m; can be removed without violating the equivalence of {m;} U---U{m,} =

{p}.

Identifying these minimal sets of attribute concepts is a minimal set cover problem and
{m/,...,m/} is a set cover of p’. Similar to the other FGE algorithms, FGE-FCA restricts
the possible set cover candidates to only the children of the parent. Group computation
in FGe-FCA translates to the following set cover problem [SRA*13]:

Find all minimal C € M where U{c}’ = {p} and C are all childrenof p  (5.2)

ceC

For our example, to compute or-groups where b is the parent, we first compute the
extent of the parent b, {b}’ resulting in the set {1, 2, 3,4} (Figure 5.4b). The set cover
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problem is formulated such that we find the minimal set covers C € M where C are all
children of b, and Ucec{c}’ = {1,2,3,4}. In our example, the possible candidates for
C are the children of b: {a,d,e}. Computing the extents for each of these attributes
results in: {a} = {2,3}, {d} = {2,4}, {e} = {1, 3}. Out of these sets, the extents of d
and e are not only a set cover for the extent of the parent b, but also the minimal set
cover. As a result, d and e are a feature group of b.

5.8 Selecting a Feature Diagram from a Feature Graph

The synthesized feature graph describes all feature diagrams that are complete with
respect to the input dependencies. A maximal feature diagram can be extracted
automatically from a feature graph using following procedure:

1. establish the hierarchy by finding a spanning tree over FG and move all the edges
not in the spanning tree to cross-tree implies edges (E;);

2. for each SCC, select a single feature to be the common ancestor of all other
members of the SCC—create mandatory edges (E,,) between the features;

3. select feature groups by greedily selecting non-overlapping subsets from G,, G,,
and G,, to form syntactically correct groups;

4. Remove from E, all edges that participate in selected MUTEX- or XOR-groups.

While this procedure extracts a feature diagram from a feature graph automatically,
the resulting diagram may not describe the expected domain semantics. In Chapter 6,
we describe our semi-automated approach for selecting a hierarchy from a feature
graph (Steps 1 and 2 in the above procedure). Other procedures that derive a feature
diagram from a feature graph include the feature model operations by Acher [Ach11]
and the model editor by Janota et al. [JKW08]. We discuss these related techniques in
Chapter 7.

5.9 Experimental Evaluation

In Section 5.1, we described several synthesis scenarios that operate on large input.
For example, model management operations (e.g., model merge and difference) on
the Linux variability model requires a synthesis algorithm capable of reasoning about
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several thousand features. Another scenario involves reverse engineering a FM from
source code of a large scale, variability-rich project such as FreeBSD. Synthesizing
FMs from such large projects poses a significant scalability challenge for FM synthesis
algorithms. FM synthesis techniques are not only restricted to large scale applications;
they are also used in interactive applications such as a model builder [JKWO08]. The
range of application scenarios for FM synthesis requires understanding the performance
of the algorithms on real world input.

We perform two experiments to evaluate the scalability of FGe-CNF and FGe-DNF against
existing FM synthesis algorithms with input representative of input used in practical FM
synthesis scenarios. We compare the running times of FGE-CNF and FGe-DNF against
baseline implementations using input extracted from real world FMs. We describe our
experiments according to the reporting style outlined by Wohlin [Woh00].

5.9.1 Goal Definition

Objects of Study Our evaluation consists of two experiments to evaluate our two
algorithms: FGe-CNF and FGe-DNF. Both experiments have the same format and only
differ in the comparison algorithms. The two objects of study are the two algorithms
presented in this paper: FGeE-CNF and FGe-DNF.

Purpose The purpose of the experiments is to evaluate the performance of FGE-CNF
and FGe-DNF. Our goal is to evaluate their performance compared to related FM
synthesis algorithms that produce the same output and with the similar inputs. For this
purpose, we use our previous BDD-based algorithm [CWO07] that we call FGe-BDD as
the comparison algorithm for FGe-CNF, and the FCA-based algorithm [RPK11] that we
call FGe-FCA as the comparison for FGE-DNF.

Perspective The perspective is from the point of view of a user of our synthesis
algorithms in one of the FM synthesis scenarios described in Section 5.1.

Quality Focus We use computation time as the quality focus for our evaluation. While
the algorithms are all implemented using a JVM language (i.e., Java or Scala), the
libraries, data structures, and tools used by the algorithms are different. Computation
time is a common metric that we can use to compare the different algorithms. Note
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that we do not evaluate the quality of the produced models since both our algorithms
and the baseline comparisons constructs the same compact representation of all possible
diagrams consistent with the input.

Context The experiment is run on input derived from generated FMs and FMs in
the SPLOT model repository including the Linux variability model [SLB*10]. As we
established in Thm. 5.1, the decision version of the feature model synthesis problem
(FMS) is NP-hard. There exists input that would perform poorly on both FGe-CNF and
FGe-DNF.

Ideally, our evaluation should use input from synthesis scenarios in real software
projects. However, such data for feature model synthesis is not easily accessible.
Instead, we used feature models from the SPLOT model repository. The input was
selected since the input is publicly available and is representative of input used in the
FM synthesis scenarios that we described in Section 5.1. We use the Linux variability
model to approximate input for Scenario 1 where feature model synthesis is used for
tool-assisted reverse engineering. The feature models from the SPLOT model repository
are naturally representative of the feature models used for FM merge operations in
Scenario 3. Feature models also describe a set of legal variants making it suitable for
approximating input for Scenario 2.

Summarized Research Objective Analyze FGe-CNF and FGe-DNF for the purpose of
comparing their performance against related FM synthesis algorithms with respect to
their computation time from the perspective of a user of a FM synthesis scenario in the
context of input derived from generated FMs and FMs from a model repository.

5.9.2 Hypothesis Formulation

Our evaluation compares the computation time for the three components in FGE that
differ across the evaluation algorithms: implication graph computation, mutex graph
computation, and or-group computation. The goal of this evaluation is to show that
the algorithms in this paper, FGE-CNF and FGE-DNF, are faster than their respective
comparison algorithms, FGe-BDD and FGe-FCA. Our null hypothesis is as follows:
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Null Hypothesis, H, For each component of FGE (i.e., implication graph, mutex graph,
and or-group computation), there is no difference in the mean computation times for
FGe-CNF and FGe-BDD. Similarly, there is no different in the mean computation times
for FGe-DNF and FGe-FCA.

5.9.3 Variable Selection

The independent variables are the size and complexity of the constraints in the models
used in the evaluation. The dependent variables are the computation time for each
algorithm.

5.9.4 Selection of Subjects

Our evaluation uses two datasets: a dataset derived from real world FMs in the SPLOT
model repository [MBCO09] that also includes the Linux variability model [SLB*10],
and a second dataset derived from randomly generated FMs.

The real world dataset consists of input derived from 267 FMs and the Linux variability
model.

Figure 5.5a shows the number of features over the models in the SPLOT dataset. The
models have a median of 18 features and an average of 27 features. In Figure 5.5b,
the average leaf depth of the individual models is shown. If we consider all features
across all models, a feature has a median leaf depth of 2 and an average leaf depth
of 2.3. Figure 5.5c is a plot of the mean branching factor for each individual model.
Considering all features across all models, a non-leaf feature has a median of 2 children,
and an average of 3 children. Finally, Figure 5.5d is a plot of the percentage of feature
groups, and grouped features with respect to the total number of features including
feature groups. On the left side of the plot, there are 38 models that contain no feature
groups and thus, no grouped features. There are 38 models that do not contain any
feature groups. The Electronic Shopping model has 40 feature groups—the most in
the dataset. The median number of feature groups is 2 and on average a model has 4
feature groups.

We used the variability model from the x86 architecture in the v2.6.28.6 of the Linux
kernel. This version of the Linux kernel has 5426 features. A non-leaf featuer has a
median of 1 child and on average, 3.65 children. There are 32 feature groups in the
model.
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The generated dataset consists of 20 feature models with cross-tree constraints in 3-CNF
form—clauses that have exactly three literals. Mendonca found that SAT problems
derived from FMs are relatively easy, but SAT problems derived from 3-CNF FMs are
typically harder than SAT problems derived from real world feature models [MWCO09].
There are 10 models with roughly 100 features and another 10 models with roughly
200 features in this dataset. The number of children per parent node varied from
1 to 6. 10% of features appear in cross-tree constraints and features have an equal
probability of being an optional feature, a mandatory feature, or as part of an or-group
Or XOR-group.

For FGe-CNF, the CNF input is derived using the configuration semantics of the feature
models [Bat05] (Formula 2.3). The configuration semantics naturally create a CNF
formula.

For FGe-DNF, we create the DNF input by enumerating the legal configurations of a
model. The number of legal configurations of a feature model can grow exponentially.
As a result, our evaluation of FGeE-DNF includes only the models with 100,000 or less
configurations to limit the size of the input. The real world dataset for FGe-DNF consists
of 199 models with 100,000 or less configurations and excludes the Linux variability
model.

5.9.5 Experiment Design

In this section, we describe our experiment design according to the general design
principles by Wholin [WohO00].

Randomization Randomization in this context refers to randomly assigning models
to the evaluation subjects. We do not apply randomization to our experiments. The
algorithms are evaluated on all models in their respective datasets.

Blocking Our evaluation measures computation time of the algorithms. The algo-
rithms in the evaluation are implemented in Java or Scala: both languages that run
on the Java Virtual Machine (JVM). We apply blocking to measure the construction
of the implication graph, mutex graph, and or-group computation or the alternative
XOR-group computation for input derived from the Linux kernel. The blocking avoids
including overhead associated with loading libraries or purely graph-based operations
that are common across all the algorithms (e.g., AND-group computation).
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We also separated the input into two dataset: one consisting of input derived from
real world models, and the other consisting of input from generated 3-CNF models.
The 3-CNF models are typically harder than SAT problems derived from real world
FMs [MWCO09], so we report their results separate from those of the SPLOT models.

Balancing Our datasets for the two experiments consists of all of the available SPLOT
feature models as of October 18, 2012, the Linux variability model, and input from
generated FMs. Properties of all FMs are not known, but the SPLOT model repository,
along with the Linux variability model is the best known collection of FMs.

Design Type Both experiments are one factor with two treatment types. The factor is
the input derived from the model, and the treatments are FGe-CNF and FGe-BDD for
one experiment, and FGe-DNF and FGe-FCA for the other.

5.9.6 Operation

We executed our algorithms and the two baseline comparisons on an Intel Core 2
Q6600 quad core processor with 3GB of available memory. We repeated the execution
of the algorithms 5 times and present the average of the computation times in our
results.

Fge-CNF Evaluation Both FGe-BDD and FGe-CNF operate on input derived from
dependencies—constraints expressed as propositional formulas and not as a set of
configurations and constructs a feature graph. FGe-BDD was implemented in Java
and uses the JavaBDD 1.0b2 library'. FGe-CNF was implemented using the Scala
programming language [OACT06] with the core SAT4J library®. SAT4J is a widely used
open-source Java interface to SAT solvers that implements the initial Minisat specifi-
cation [ES03]. Using Scala for FGE-CNF was a choice based on language preference
instead of a performance advantage. Both Java and Scala run on the Java Virtual
Machine (JVM). The performance of the PiG algorithm for computing or-groups in
FGE-CNF is heavily dependent on the expense of forward and backward subsumption
and we have implemented the algorithms by Zhang [Zha05].

http://javabdd.sourceforge.net/
2http://sat4j.org/
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For input derived from the Linux variability model, both FGe-BDD and FGe-CNF were
not able to compute or-groups. We were unable to construct a BDD representing the
constraints of the variability model within our memory constraints. FGe-CNF timed
out when computing or-groups. We used the alternative xor-group computation
(Section 5.3) in order to compute xor-groups for FGE-CNF without a dependency on
OR-groups.

Variable ordering affects the performance and space consumption of both SAT solvers
and BDDs. We performed some limited experiments with the variable ordering heuris-
tics for BDDs as proposed by Mendonca [Men09]. However, even with Mendonca’s
heuristics, we were still unable to build a BDD for the input derived from the Linux
kernel. We did not use any specific variable ordering for FGe-CNF.

We measured the computation times for computing the implication graph, mutex graph,
and or-groups. We used JavaBDD 1.0b2 for the BDD-based implementation and set the
timeout to 90 seconds for FGe-BDD. For any computation that timed out on FGe-BDD,
we recorded a time of 90 seconds.

Fge-DNF Evaluation We evaluate FGe-DNF against the formal concept analysis (FCA)-
based approach by Ryssel et al. [RPK11]. We presented the algorithm according to
the structure of the FGE algorithm as FGe-FCA in Section 5.7. Both FGe-DNF and
FGe-FCA constructs an identical feature graph and use a set of configurations as input.
While the inputs and output is the same for FGe-DNF and Fce-FCA, the procedure for
computing feature groups is vastly different. Whereas FGe-DNF identifies feature groups
by translating a DNF formula to a BIP problem, FGe-FCA identifies feature groups by
translating a formal context to a set cover problem. Both BIP and set cover problems
are NP-hard, thus are in the same class of theoretical complexity. However, as often the
case with NP-hard problems, the performance of these algorithms will differ in practical
scenarios.

The approaches for identifying dead features, implications, and mutual exclusions are
essentially equivalent in both FGe-DNF and FGe-FCA. For dead features, both approaches
search for features that appear in no configurations. In FGe-DNF, implications and
mutual exclusions are computed by checking for the presence of a pair of features
across all terms in ¢. FGe-FCA operates on the same principle by checking whether
the configurations of one feature are a subset of another. Since both approaches are
equivalent for these components, we focus the evaluation on the computation of or-
groups where the approaches are quite different. Furthermore, or-group computation
has the highest impact on the performance of the synthesis algorithm.
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FGE-DNF was implemented in Java using the core SAT4J library. Our implementation of
FGE-DNF uses the PriME algorithm to solve the BIP problem for identifying or-groups.
PrIME is an extension by Andersen [And09] of the MiN_PriME algorithm [EPP95].
PrIME incrementally enumerates all prime implicants of a CNF formula. PRIME first
finds a prime implicant using Min_PriME, then adds it as a constraint to find the
next prime implicant. This process repeats until all prime implicants are found. An
advantage of using SAT4J for our implementation is that it natively supports the
cardinality constraints needed for PrRiME. We did not use a specific variable ordering
for FGe-DNF. FGe-FCA was implemented by Ryssel in Java and uses the Colibri library
for operations related to formal concept analysis * and a custom implementation for
calculating minimal set covers needed for feature group computation.

5.9.7 Results: Fge-CNF Evaluation

Implications Computing the implication graph was fast overall, taking less than
400ms for both FGe-BDD and FGe-CNF in 262 of the 264 models in the SPLOT dataset,
leaving only the Electronic Shopping and Printers models. For the Electronic Shopping
model, FGe-BDD took 11.7s compared to 3.3s for FGe-CNF. This model is quite large
with 290 features, thus, constructing the BDD for each feature ¢ A f took considerable
time. The situation with the Printers model is reversed—FGE-BDD was very fast,
computing implications in 22ms while FGe-CNF took roughly 2s. The Printers model is
smaller than Electronic Shopping with 172 features, however, it has many mandatory
features and feature groups. As a result, FGE-BDD was extremely efficient at computing
implications since a large portion of the features imply all other features requiring only
a single BDD to be constructed. We see similar results in Figure 5.6a for the generated
dataset. FGe-BDD was faster for the models with 100 features, however, the results
were similar for the generated models with 200 features. In general, both FGe-BDD and
FGE-CNF were fast at computing implications. Computing implications took 1.7 hours
for the input derived from the Linux kernel variability model.

Mutual Exclusions For the SPLOT dataset, mutual exclusion computation took
roughly the same amount of time as computing implications in both FGe-CNF and
FGe-BDD. Mutual exclusion computation was generally faster for FGe-BDD compared
to FGE-CNF for models that did not timeout. However, on input derived from Linux,

3http://code.google.com/p/colibri-java/
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FGe-BDD FGe-CNF
id # features IG MG OR totall IG MG OR  total®
1 100 78 47 i . 110 328 1.3e5 1.3e5
2 100 63 47 e . 265 328 4875 5562
3 98 31 31 . . 216 328 266 875
4 100 78 63 . 172 406 4.3e4 4.4e4
5 100 110 78 . . 125 344 1.6e6 1.7e6
6 100 63 47 . . 187 344 7.0e4 7.1e4
7 100 62 62 . . 187 312 1.0e5 1.0e5
8 100 63 63 . i 235 375 1.8e5 1.8e5
9 100 15 15 . . 78 328 906 2609
10 100 32 16 . . 110 328 1.4e5 1.4e5
11 200 734 531 . . 1438 2906 1.6e5 1.6€5
12 200 438 328 o . 703 2640 . .
13 200 437 312 e . 1593 2328 8140 1.2¢4
14 200 2297 1719 d . 890 2625 . .
15 200 1766 1422 . . 1500 3343 . .
16 200 969 734 . . 1641 2735 . .
17 200 2062 78 . ° 921 3235 . .
18 200 1281 953 . . 2344 3187 . .
19 199 859 532 . . 735 3125 . .
20 200 1359 1000 . . 922 2469 i i
Linux 5701 o o o o 17h 6.1h - 78Rk

* timeout o out of memory

4 Running times include computation of AND-groups and MUTEX-groups.
b Total run time for Linux includes computation of XOR-groups.

Table 5.1: Running times (in ms) of the FGe-BDD and FGE-CNF on input derived from
randomly generated models and Linux
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Figure 5.7: Running times for group computation in FGe-BDD and FGe-CNF on input
derived from SPLOT models

mutual exclusion computation was roughly 3.5 times slower than implication compu-
tation for FGe-CNF, taking 6.1 hours to compute the entire mutual exclusion graph.
Figure 5.6b shows similar results for the generated dataset where FGe-CNF was slower
than FGe-BDD. One reason for the longer runtime is that our SAT solver is tuned to
prefer models with positive literals when computing satisfiability. Positive literals are
useful as an optimization for implication computation since it can invalidating many
implications with a single model. However, such models are not as useful for mutual
exclusion computation. It is likely that further tuning the SAT solver for mutual exclu-
sion computation could significantly improve its performance. Since we were unable to
create the BDD for Linux, FGE-BDD was unable to compute exclusions.

Group Computation Figure 5.7 shows a breakdown of the group computation run-
times for FGe-BDD and FGe-CNF with non-incremental or-group computation on the
SPLOT dataset. The majority of models for FGe-BDD and FGe-CNF computed groups in
less than 250 milliseconds. FGe-BDD, however, had 31 models that did not complete
computation by the 90 second timeout. FGe-CNF was able to compute or-groups for
all SPLOT models. Overall, FGe-CNF was on average 11 seconds faster than FGe-BDD.
Furthermore, FGE-BDD was unable to compute or-groups for any of the generated
models (Table 5.1). FGe-CNF was able to compute or-groups for 12 of the 20 generated
models.

We now look at the models where FGe-BDD completed group computation, but took
more than one second in Table 5.2. FGe-CNF is the clearly faster here by computing
groups in less than 30ms; FGe-BDD managed a runtime of 98ms at the fastest, and the
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Model Features FGe-BDD (ms) FGE-CNF (ms)

SPL SimulES, PnP 32 98 0
Reference Management Software 31 640 0
Hotel Product Line 55 1113 1
SmartHome vConejero 59 1204 0
Tree Growth Simulator 32 1233 5
Reference Management Software (2) 31 1365 13
Sienna 38 1391 11

SPL SimulES, PnP 53 2115 1
Tablets 38 2343 12

SPL SimulES, PnP (2) 40 2676 3
Database Tool 59 2702 0

Plone Meeting 57 8174 1

HIS 67 9323 1

Tool Analysis 31 9681 2
SPL-Doctor Chat 34 16001 0
AndroidSPL 45 18768 3

Eclipse Platform 29 19000 1

Mobile Media 2 43 19901 1

PFTestl 56 20549 26

Electronic Drum 52 32351 2
Meshing Tool Generator 40 43434 14

Table 5.2: Group computation runtimes for SPLOT models that took more than a second
on FGe-BDD
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Detected
Model Features Groups FGE-CNF (ms)
Agenda 34 1 1
Video Player 71 5 1
J2EE Web Architecture 77 11 2
Video Player 53 9 2
Smart Home v2.2 60 6 3
Smart Home 56 5 3
OW2-FraSCAti-1.4 63 2 3
Database Tools 70 8 3
Reuso - UFRJ - Eclipsel 72 7 4
bCMS System 66 9 4
Web Portal 43 6 5
Consolas de Videojuegos 41 20 6
DS Sample 41 6 11
Model Transformation 88 32 11
Car Selection 72 25 13
Documentation Generation 44 41 15
XText 137 0 25
Coche Ecologico 94 33 55
UP eStructural 97 34 65
Arcade Game PL 61 45 67
Letovanje 43 41 83
E-Science Application 61 48 86
E-Science Application (2) 61 48 234
Thread 44 9 310
Printers 172 46 320
FM Test 168 33 392
Experiment Environment 35 162 8967
Software Stack 37 119 12923
Software Stack (2) 37 119 12997
Electronic Shopping 290 94 42239
Dell Laptop / Notebook Computers 46 323 84939

Table 5.3: Group computation runtimes for FGe-CNF on SPLOT models that timed out
for FGe-BDD (i.e., took more than 90s)
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(a) Nested feature groups (b) Detected feature groups as a feature graph. A
circle represents an xor-group where the arrowhead
indicates the parent and the lines are the group

members.

Figure 5.8: Detected feature groups

slowest model took 43 seconds. Table 5.3 shows the runtimes for group computation
using FGe-CNF for models that resulted in a timeout on FGe-BDD (i.e., took more than
90 seconds). Here, the majority of the models took less than one second to compute
feature groups. For the five models that had longer runtimes, either the number of
features, or the number of detected groups—the number of groups identified by the
FGE algorithm—was high. The slowest model, Dell Laptop / Notebook Computers, had
relatively few features, but a high number of detected feature groups. The second
slowest model, Electronic Shopping, contained a high number of features and also a
relatively high number of detected feature groups.

We demonstrate how some inputs can result in a large number feature groups for FGE
with the feature model in Figure 5.8a. There are two feature groups in this model: one
between features B and C, and another between D and E. If we translate this model
to a propositional formula and use it as input to FGE, three feature groups will be
detected (Figure 5.8b). Two of these feature groups are present in the original model.
FGE detects a new feature group that consists of B, D, and E. Examining the original
FM (Figure 5.8a), an xor-group between B, D, and E is actually present—selecting B
excludes C and consequently D and E. Running Pearson’s product-moment correlation
between the number of detected feature groups and the computation time for FGe-CNF
results in a coefficient of 0.85 with a p-value of < 2.2 x 107!, indicating a very strong
linear correlation between the two variables. FGe-BDD does not have such a strong
correlation between number of detected feature groups and the computation time, with
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Figure 5.9: Distribution of or-group computation times for FGe-DNF and FGe-FCA

coefficient of 0.28 with a p-value of 7.4 x 107°.

5.9.8 Results: Fge-DNF Evaluation

Implications and Mutual Exclusions The run times for computing implication and
mutex graphs were similar in both FGe-DNF and FGe-FCA, however, FGe-FCA was slightly
faster in general. The difference in computation times may be due to differences in
language libraries (i.e., Scala for FGe-DNF vs. Java for FGe-FCA. As we discussed in
Section 5.9.6, both approaches describe the same process for identifying implications
and mutual exclusions so similar computation times was to be expected.

Group Computation The main difference in performance between FGe-DNF and
FGe-FCA lies in the or-group computation. Figure 5.9 shows the result grouped by their
computation times into four ranges. We see that or-group computation was fast for
most models, taking less than 250 ms for both FGe-DNF and FGe-FCA.

In Figure 5.10, the results for the individual models are shown in detail. We limit
models where or-group computation took less than 250ms since the runtime was fast
for both algorithms. For models that took 250ms to 1s (Figure 5.10a), the run times
are similar, with FGe-FCA being slightly faster than FGe-DNF. However, the difference
between the two algorithm was several hundred milliseconds and may be due to the
different languages and frameworks used. For models that took 1s to 30s to compute OR-
groups (Figure 5.10b), FGeE-DNF was noticeably slower than FGe-FCA for most models.
However, for models that took more than 30s, FGe-FCA was significantly slower than
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Figure 5.11: The effect of the number of configurations for or-group computation on
FGe-DNF

FGE-DNF on five models (Figure 5.10c). The models that exhibited slow performance
mostly had a large number of feature groups, or many features that were independent
of one another. Additionally, these groups and features may reside directly under the
root features, or were mandatory with respect to the root. As a result, the input derived
from such models translate to either a large BIP problem in case of FGE-DNF, or a large
set cover problem for FGe-FCA.

Factors Contributing to Or-Group Computation Time

Fge-DNF We found that a high number of configurations contributed to a longer
group computation time for FGe-DNF. We plot the number of configurations against the
OR-group computation time for FGe-DNF in Figure 5.11. Applying Pearson’s product-
moment correlation on configurations and computation time for all models gives a
coefficient of 0.896 with a p-value of 2.2 x 1071°, indicating a strong linear correlation
between the number of configurations and the or-group computation time for FGe-DNF.
If we just examine models that exhibit slower computation times of 250ms or more,
we get a coefficient of 0.853 with 23 degrees of freedom and a p-value of 3.07 x 1078,
indicating a strong linear correlation between the number of configurations and the
OR-group computation time for FGe-DNF.
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Smart Phone

Base OS ‘ Installed Apps ’

%I

Android Windows BlackBerry ’ E-Mail ’ ’ Browser ’ ’ Calendar ’
Phone (O

Figure 5.12: A snippet of the original Smart Phone SPL

Fge-FCA For FGE-FCA, a linear correlation between the number of configurations and
computation time is not as evident. Applying Pearson’s product-moment correlation on
configurations and computation time for all models gives a coefficient of 0.501 with
a p-value of 2.34 x 10~'*. However, if we examine just the models with computation
times of 250ms or greater, the coefficient falls to 0.364 with a p-value of 0.075 and 15
degrees of freedom. This outcome on the slower models is not surprising since there
are 5 models where FGE-FCA exhibits extremely slow performance (Figure 5.10c).

After manually inspecting these models, we found that all of the models that exhibited
slow performance had a large number of feature groups that were mandatory with
respect to root. For example, a snippet of this structure from the Smart Phone model, is
shown in Figure 5.12. The input generated from this model contained a large number of
features that imply the root feature and result in a large search problem for computing
groups for FGe-FCA. Since group computation is potentially exponential, computation
can quickly explode as the number of group members increase. The other models also
shared similar properties and we describe the models below:

SmartPhone-SPL (Configuration of smart phones)
This model has three xor-groups with three or six siblings and two or-groups
with seven siblings each. All this groups reside directly under root. The model
has 23 cross-tree constraints, which amongst others reduce the three xor-groups
effectively to one independent xor-group. Because of this, the configuration
number of 40,640 is quite low (compared to 1.7 x 10° without the cross-tree
constraints). However, the independent xor-group results in a runtime of 33 s
with FGe-FCA compared to 6 s with FGe-DNF.

TV-Series Shirt (Properties of shirts with TV-series logos)
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This model has mainly three xor-groups with three to four siblings, and one
or-group with seven siblings, all directly resided under root. Some cross-tree
constraints reduce the number of configurations to 21,984. Computing or-gruops
on FGE-FCA results ina runtime of 64 s compared to 3 s with FGe-DNF.

DS Sample (Unknown domain)
This model has seven independent xor-groups under root with two to 16 siblings.
This results in 6912 configurations. The independent xor-groups results in a high
runtime of 238 s compared to 0.8 s with FGe-DNF.

AndroidSPL (Properties of Android-OS applications)
This model has four xor-groups (two to four siblings in each) under root and
eight partly nested features. The many options in this model increases the number
of configurations to 36,240. The runtime is 74 s compared to 15s with FGe-DNF.

SPL SimulES, PnP (Educational game for learning software project management)
This model has five xor-groups under root with two or three siblings and nine
options. All these relations are independent to each other resulting in 73,728
configurations. We found that the high number of configurations resulted in a
runtime of 447 s for FGe-FCA compared to 15 s with FGe-DNF. Removing seven of
the options will drop the runtime to 0.5 s for FGe-FCA.

5.9.9 Hypothesis Testing

In this section, we perform the t-test on the computation times for implications, mutual
exclusions, and or-groups on the real world dataset for the two experiments. We test
our null hypothesis that there is no difference between the mean computation times of
the different components between our algorithm (i.e., FGE-DNF or FGe-CNF) and their
respective comparison algorithms.

Fge-CNF vs. Fge-BDD In Table 5.4a, we show the results of the t-test between FGE-
CNF and FGe-BDD for computing implications and or-groups. From the results for
implication and mutual exclusion computation, we can not reject the null hypothesis
for this component. The mean difference between the computation times were however,
very small indicating that there is likely no difference between the two algorithms for
computing these two components on the real world model dataset.
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Degrees of
Component Mean Difference (ms) Freedom t-value p-value
Implications —16 263 —-0.48 0.63
Mutual Exclusions —20 263 —0.88 0.38
Or Groups —10854 263 —6.32 1.13x107°

(a) t-test results for FGe-CNF vs. FGe-BDD

Degrees of
Component Mean Difference (ms) Freedom t-value p-value
Implications 320 198 2.78 0.0059
Mutual Exclusions 166 198 3.28 0.0012
Or Groups —3904 198 —-3.46 0.1214

(b) t-test results for FGE-DNF vs. FGe-FCA

Table 5.4: t-test results for the real world dataset

The results for or-group computation, however, show that we can reject the null
hypothesis with a very low p-value for or-groups. The computation time for groups
is on average almost 11 seconds faster for FGeE-CNF than FGe-BDD. Furthermore, for
the 31 models that timed out for FGe-BDD, our results are generous towards FGE-BDD
since we set a time of 90 seconds if the computation did not complete by that time. The
mean difference between the algorithms is likely larger if we recorded the complete
computation time for FGe-BDD.

Fge-DNF vs. Fge-FCA The results for the t-test in Table 5.4b show that we can reject
the null hypothesis for computing implications and mutual exclusions. However, the
difference is in favor of FGE-FCA where it is on average, it is 320ms faster than FGe-DNF
in computing implications, and 166ms faster for computing mutual exclusions.

The results for group computation are not significant enough to reject the null hypothe-
sis for this component. However, we see that the mean computation time is almost 4
seconds faster on FGE-DNF than FGe-FCA for computing or-groups.
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5.9.10 Threats to Validity

External Threats A potential threat to validity is that this input may not be rep-
resentative of realistic scenarios involving feature model synthesis. In the case of
feature model operations (Scenario 3), the inputs derived from existing feature models
are indeed representative. We partially mitigate this threat by using both randomly
generated input, as well as input derived from real world feature models from the
SPLOT repository to evaluate our algorithms. While this input is not sampled from
real synthesis scenarios, we believe that these inputs are sufficiently different to be
representative of the input used for feature model synthesis.

Internal Threats The input formulas to our algorithms were derived from existing
feature models in a repository. As a result, the constraints in the derived formulas
may mainly consists of feature model constraints. Mendonca et al. found that the SAT-
based analysis of feature models is generally easy, depending on the properties of the
cross-tree constraints [MWCO09]. This threat to validity is mitigated by the distribution
of cross-tree constraints in our SPLOT model dataset. The cross-tree constraint ratio
(CTCR)—-i.e., the number of features participating in cross-tree constraints divided by
the number of features—ranging from 0% to 100%. The dataset consists of input with
varying levels of complexity.

We also used the computation time as the evaluation metric between the algorithms. A
threat to validity exists where the computation time is affected by the overhead of JVM
and library initialization. We mitigate this thread of validity by recording the times
for the computing the individual components of the feature graph (i.e., implication
graph, mutex graph, and or-group computation). The remaining operations of FGE
(e.g., AND-group computation) are independent of FGE algorithms.

5.9.11 Conclusions

We presented two efficient, scalable feature model synthesis algorithms in this chapter:
FGe-CNF and FGe-DNF. We evaluated FGe-CNF against FGe-BDD—a BDD-based imple-
mentation, and evaluated FGe-DNF against FGe-FCA—a FCA-based synthesis technique
by Ryssel et al. [RPK11].

We use two datasets for our evaluation: a dataset with input derived from the Linux
variability model and 267 models gathered from the SPLOT model repository, and a
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dataset of 20 generated feature models with 3-CNF constraints. We use both datasets
for our evaluation on FGe-CNF. We generated configurations for SPLOT models with
less than 100,000 configurations for our evaluation on FGe-DNF. The input from the
generated 3-CNF feature models were more difficult for both FGe-BDD and FGe-CNF.
FGe-BDD timeouted in most cases while FGe-CNF was able to complete computation for
12 of the 20 models. Our evaluation showed that FGe-CNF was significantly faster than
FGe-BDD. FGe-DNF and FGe-FCA were generally comparable for the real world model
dataset. However, there were five models where FGe-DNF was significantly faster than
FGE-FCA. These models had many features that were mandatory with respect to the
root resulting in a large search problem for group computation.

119



Chapter 6

Feature Model Synthesis

In the previous chapter, we introduced the FEATURE-GRAPH-EXTRACTION algorithm for
synthesizing a feature graph given input as a propositional formula. A feature graph
encapsulates all feature diagrams that are entailed by the input formula. However, the
feature graph is not a proper feature model—the hierarchy is a DAG instead of a tree,
and feature groups can overlap.

In this chapter, we describe a semi-automated procedure, called FEATURE-TREE-SYNTHESIS,
that abstractly selects the most suitable feature diagram from the feature graph. In
practice, both FEATURE-TREE-SYNTHESIS and FEATURE-GRAPH-EXTRACTION are intertwined.
FEATURE-TREE-SYNTHESIS supplements FEATURE-GRAPH-EXTRACTION by providing a semi-
automated procedure for determining a distinct feature hierarchy. Our procedure
uses the input dependencies as a guide for the configuration semantics and a textual
similarity measure to approximate the domain semantics. Given a feature, the user
selects its parent given a list of implied features that are ranked by their similarity to
the selected feature. In a practical synthesis scenario, the input dependencies may be
incomplete, i.e., constraints may be missing in the input. Our procedure deals with
incomplete dependencies by providing a second list that ranks features solely using the
textual similarity measure. This algorithm, combined with FEATURE-GRAPH-SYNTHESIS
in Chapter 5, form a complete feature model synthesis algorithm.

Chapter Organization In Section 6.1, we introduce the motivation and context of our
synthesis algorithm. Section 6.2 gives an overview of the procedure with an examples
and in Section 6.3 describes our procedure. Section 6.4 describes the evaluation of our
procedure on the Linux, eCos, and portions of the FreeBSD kernel.

Publications Material from this chapter was published in [SLB*11].
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6.1 Introduction

Variability-rich software systems, such as FreeBSD, do not have a feature model and
could benefit from having one. FreeBSD describes features and dependencies in
an ad-hoc manner—features are scattered in documentation and dependencies are
hidden in code. Such projects would benefit from having an explicit feature model
instead. Unfortunately, constructing a feature model is both time and cost-intensive.
Building the feature hierarchy in particular, requires substantial effort from a modeler.
This task requires the modeler to review feature descriptions and dependencies to
determine which dependencies to model in the hierarchy, and which to defer to cross-
tree constraints. FreeBSD has 1203 features; constructing a feature model for a project
of this size would require tremendous time and effort. Furthermore, the difficulty is
compounded when the modeler lacks a complete set of dependencies. In this case, the
dependencies could be uncovered by examining supplemental data such as feature
names and feature descriptions. This may require the modeler to sift through the text
of potentially hundreds of features in order to determine the correct placement for a
single feature. Even with a complete set of dependencies, selecting the right parent for
a feature is still challenging—a single feature may depend on over a hundred others as
we have observed in the variability models of the Linux and eCos kernels.

We present a tool-supported approach for reverse engineering feature models called
FEATURE-TREE-SYNTHESIS. The key challenge is the construction of the feature diagram.
This task reduces to the selection of a parent for each feature. We present heuristics for
identifying the likely parent candidates for a given feature. Our heuristics significantly
decrease the number of features that a user has to consider from potentially thousands
to only a handful—typically five or less, as shown by our experiments. We also provide
automated procedures for finding feature groups, implies and excludes edges. If the set
of input dependencies are complete, the final feature model is entailed by the input
dependencies.

FEATURE-TREE-SYNTHESIS require a list of feature names, supplementary descriptions,
and a propositional formula describing its dependencies. Feature names and descrip-
tions can be extracted from documentation, preprocessor symbols or code comments.
For our evaluation on the FreeBSD kernel, we extracted the input data by analyz-
ing Makefiles, preprocessor declarations, and documentation, using a combination of
generic and custom extraction tools.

Due to the complexity, size and nature of most software projects, it is likely that
the extracted feature dependencies and descriptions are incomplete. Our heuristics
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accommodate this incompleteness by leveraging two sources of data that complement
one another—when dependencies are incomplete, the feature descriptions are used to
identify parent candidates and vice versa.

We evaluate the effectiveness of our procedures by comparing the results of our heuris-
tics to the reference feature models of the Linux, eCos and FreeBSD kernels. Linux
and eCos both have an existing reference feature model [BSL*10b]. The input depen-
dencies and supplementary feature descriptions were jextracted from the reference
models themselves. For FreeBSD, we manually constructed a reference feature model
for a subset of features after domain analysis. The evaluations show that, for 76% of
features in Linux and 79% in eCos, the correct parent is in the top five parent candidates
returned by our heuristics. In contrast to Linux and eCos, the input set of dependencies
for FreeBSD is incomplete, and thus, we consider two separate results for FreeBSD: (1)
for 84% of the features whose parent dependency is present, the correct parent is in the
top two candidates; (2) for 75% of the remaining features, the correct parent is in the
top or 3% of all 1203 features. Finally, our procedure automatically recovers all feature
groups, as presented in the reference models for Linux and eCos. We assume that the
modeler settled on the same hierarchies as these models in our evaluation. With the
incomplete dependencies of FreeBSD, we were still able to retrieve one of the three
feature groups.

The contribution of this work is twofold. On the practical side, we present heuristics
and procedures for reverse engineering feature models. Although reverse engineering
feature models from logic formulas [CW07] and descriptions [ASBT08, NEO8b] were
considered before in separation, the main contribution of our approach is that it
combines both sources of information together. This combination is desirable since,
as our evaluation shows, the two sources are complementary. Also the procedures of
[CWO07] and [ASB*T08, NE0O8b] are not complete, in the sense that the former cannot
recover parents which are not direct dependencies, while the latter suggests only a
single hierarchy that is unlikely the desired one. We also reverse engineering of large-
scale feature models on input derived from the Linux and eCos kernel showing that
our approach and procedures scale. On the theoretical front, we describe how both
configuration semantics and domain semantics relate to feature hierarchy.
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(a) Dependencies

pm Power management, CPU and ACPI options

acpi Advanced Configuration and Power Interface support

acpi_system Enable your system to shut down using ACPI
cpu_freq CPU frequency scaling

cpu_hotplug Allows turning CPU on and off

powersave This CPU governor uses the lowest frequency

performance This CPU governor uses the highest frequency

(b) Features and descriptions

Figure 6.1: Example input for feature model synthesis
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6.2 Overview

In this section, we demonstrate how our procedures assists a user for synthesizing a
feature model. Figure 6.1 shows a set of dependencies as a formula, feature names,
and descriptions that we use as input data.

Our procedure reduces the synthesis process of building the feature hierarchy, finding
feature groups, and inserting implies and excludes edges in a sound and complete
mannet, to just the first step: building the feature hierarchy. The remaining steps are
automated.

Recall from Figure 3.1 that feature model synthesis takes as input, (1) a set of de-
pendencies or configurations, (2) features, and (3) supplemental information. In the
case of FEATURE-TREE-SYNTHESIS, we use feature names and feature descriptions as
supplemental information.

Feature model synthesis itself can be broken down into three components: DAG
hierarchy recovery, Group and CTC recovery, and tree hierarchy selection. FEATURE-
TREE-SYNTHESIS is a technique that addresses the tree hierarchy selection component.
We follow the early hierarchy selection workflow depicted in Figure 3.3b, where tree
hierarchy selection occurs before group and CTC recovery. This workflow reduces
the search space for feature groups making for a more efficient synthesis procedure.
FEATURE-TREE-SYNTHESIS synthesizes a feature tree by applying heuristics based on the
feature names and descriptions with the assistance of a user. The technique supports
the user in building the feature tree itself by providing suggestions for parents given a
feature.

The DAG hierarchy recovery is done by using the same technique as in FEATURE-GRAPH-
ExTrAcTION (Chapter 5). An implication graph among features is constructed forming
a DAG. This DAG, along with feature descriptions and user input, is used as input
to FEATURE-TREE-SYNTHESIS. The key challenge of building the feature hierarchy is
the selection of a parent for each feature. This process requires an understanding
of meaning of the feature and its relationships with other features. As a result, the
hierarchy building process is inherently interactive and requires the input of a domain
expert. FEATURE-TREE-SYNTHESIS presents two lists of parent candidates that are ordered
such that the most likely parents are placed near the top of the list. The parent
candidate lists reduce the amount of information that a domain expert would have to
process by identifying the most likely parent candidates.
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Selected: cpu_hotplug | CPU frequency

scaling.
1. powersave 1. cpu_L freq
2. acpi 2. powersave
3. acpi_system 3. performance
4. cpu_freq 4. acpi
5. pm 5. acpi_system

Ranked Implied Features Ranked All-Features

Figure 6.2: Mockup of the two parent candidate lists

The first list is the ranked implied features (RIFs)—a sorted list of features that a given
feature implies. Implied features are the primary criteria when deciding a parent—the
semantics of feature models state that a child implies its parent. However, a feature
may imply more than one other feature. This is where a ranking heuristic is applied to
sort the implied features by their similarity to the selected feature, placing the most
likely candidates at the top of the list.

The second list is the ranked all-features (RAFs)—all features sorted by their similarity
to a given feature. The RAFs is a complete ranking, but is typically less accurate than
the RIFs. It can be reviewed in the case the input dependencies are incomplete and the
user cannot find an appropriate parent in the RIFs. In this case, the RAFs is useful for
identifying potential parents where an implication from the selected feature may be
missing due to incompleteness of available dependency information. We describe the
details of the hierarchy building procedure in Section 6.3.1.

As an example, assume that the user is selecting a parent for cpu_hotplug. We would
present its parent candidates as in Figure 6.2. There are five features here that are
implied features of cpu_hotplug with powersave at the top position, and the actual
parent cpu_freq is at the fourth position. If the dependencies are incomplete and the
user cannot find an appropriate parent in the left list, the right list can be reviewed.
Later, we show that the best candidates for parents are typically highly ranked in both
lists.

Once the user decides on a feature hierarchy, feature groups and cross-tree constraints
are recovered. Using the input features and dependencies or configurations, a mutex
graph is computed to identify MUTEX-groups. or-groups are identified directly using
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acpi_system  cpu_hotplug performance powersave

Figure 6.3: A feature hierarchy for the input in Figure 6.1

dependencies or configurations. The feature hierarchy constructed through FEATURE-
TREE-SYNTHESIS is used to reduce the search space for or-groups. XOR-groups are
identified by using the identified MUTEX-groups, and or-groups. Alternatively, like in
FEATURE-GRAPH-EXTRACTION, an additional check using the input dependencies can be
performed to the set of MUTEX-groups to identify XoRrR-groups.

The user reviews the identified feature groups and select the ones that should be
retained in the feature diagram. Any feature groups not retained in the diagram are
kept as part of the cross-tree formula. For example, if we assume that the hierarchy
in Figure 6.3 is chosen, our tooling will detect two feature groups: a MUTEX-group
between cpu_hotplug and performance and an xor-group between performance and
powersave. The user selects one of the groups to keep in the diagram, relegating the
other to the cross-tree formula.

Finally, mandatory features, implies and excludes edges are automatically discovered
and added to the feature diagram. For example, assume that the user decides on the
hierarchy in Figure 6.3 and implication (2) is omitted from the dependencies in Fig-
ure 6.1a. Our procedure can still detect an implies edge from cpu_hotplug — powersave
since it can be derived from implications (1) and (3). Now that the diagram is finished,
further constraints are added to the cross-tree formula to make the resulting feature
model sound—all legal configurations of the feature model are legal configurations with
respect to the input dependencies. All these steps relies on BDDs or SAT-based reasoners
and thus, are independent from the syntactic structure of the dependency constraint.
In fact, any of the FEATURE-GRAPH-EXTRACTION variants in Chapter 5 can be used for
the automated steps in the workflow. The contribution of FEATURE-TREE-SYNTHESIS is a
heuristic-based technique for deriving a single feature tree.

Furthermore, if the user assumes the dependencies are complete, then only the RIFs
needs to be reviewed by the user. The RAFs are no longer needed because all possible
alternatives for parents are contained in the RIFs.

126



Chapter 6 Feature Model Synthesis

Our procedures can be integrated into existing feature model editors, in the style of
the model builder by Janota et al. [JKW08], to equip them with reverse engineering
capabilities and to allow modelers to make parent and group decisions with a graphical
interface. However, we do not advocate any specific user interface design at this point
and leave this to future work.

6.3 Feature Tree Synthesis

FEATURE-TREE-SYNTHESIS assumes three kinds of inputs: a set of feature names F,
feature descriptions D, and feature dependencies ¢. The ordering heuristics for parents
ignore the order of words in the descriptions, so D is defined as a mapping assigning a
multiset of words to each feature in F. A multiset is a pair (X, c¢), where X is a set and
c: X — N; is a mapping from a word to its occurrence in the feature description. Given
a feature f we write D;(f) to refer to the set of words in f’s description and for a
word w € D;(f), D,(f )(w) denotes the number of occurrences of w in f’s description.
Finally, the input is specified as a propositional formula ¢ over F.

6.3.1 Building the Feature Hierarchy
Implication Graph

The basis of the feature hierarchy is an implication graph. We use the FEATURE-
GraPH-EXTRACTION algorithm (FGE) from Chapter 5 to synthesize an implication graph
given the propositional formula ¢ over F. Any one of the FGE variants is capable of
synthesizing an implication graph. In this description of FEATURE-TREE-SYNTHESIS, we
rely on FGE-CNF since it was the most scalable of the FGE algorithms.

An implication graph is initially transitively closed due to the transitivity of implications.
If w — uand u — v then w — v. The transitive reduction of an implication graph is the
subgraph not containing the aforementioned transitive implications, except for cliques.
The transitive reduction can be computed using known algorithms [AGU72, CWO07].
We denote the transitive reduction of a graph G by Gy and edges remaining in Gy as
direct implications. Figure 6.4 shows the transitively reduced subgraph in thick edges.
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Figure 6.4: Implication graph of the dependencies in Figure 6.1 where the transitively
reduced graph consists of the black edges, and the transitively closed graph
consists of both the black edges and the dashed edges

Next, E(G) denotes the set of edges in a graph G. For a feature f write I;(G) to denote
features implied by f (so heads of edges outgoing from f). Then I;(Gg) gives the
directly implied features of f in G.

Identifying Parents

The key mechanism of FEATURE-TREE-SYNTHESIS is its similarity heuristic for ranking
parent candidates. The parent ranking heuristics leverages two complementing forms
of data: dependencies and descriptions. The dependencies describe the configuration
semantics of the resulting feature model and the feature descriptions are used to
approximate its domain semantics.

Given a parent candidate p and the selected feature s, we define the similarity function
6(p,s) to return the sum of the inverse document frequency (IDF) of the words shared
between the descriptions of p and s, weighted by the number of occurrences of each
shared word in p’s description (Equation 6.1):

5(p,s)= Y. idf(w)xDy(p)(w) (6.1)

weD;(p)ND(s)

|7
[{f - weDi(f)}

where idf(w) =log

Essentially, given the selected feature s, this measure ranks features according to the
number of words that they share. The measure uses the IDF to give less weight to
common domain words such as ‘Linux’, ‘eCos’, ‘choose’, or ‘select’. These words are not
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typical stop words according to standard natural language processing tools, but they
also do not contribute to identifying commonalities between two feature descriptions.

We use the similarity function 6 to induce a ranking order on features. Given a selected
feature s we define two strict partial orders: >; and >P. In the first, >, features are
ranked strictly by their description similarity to s:

a > b iff 6(a,s) > 6(b,s) (6.2)

The second partial order >P prioritizes directly implied features of s over all other
implied features. This prioritization is based on our observation that in Linux 88% of
parents in the model are directly implied features. The partial order is defined as:

a <l (Gg) Ab ¢1(Gg) or
a>Pbiff { ael(Gy)Abel(Gr)Aa>;b or (6.3)
a ¢ Is(GR) AD ¢ IS(GR) Na >s b

Finally, we can define the two lists that make the parent candidates: The RIFs ranks
only the implied features of f using the prioritizing order while the RAFs ranks all
features using the non-prioritizing order.

Definition 6.1. Given a feature s and an implication graph G, RIF(s) is the list
created by sorting features in I;,(G) in decreasing order with respect to >P (largest
rank first). RAF(s) is the list of features in F sorted in decreasing order with
respect to >,. The orders are made total by using alphabetical ordering when two
or more features have the same similarity.

Let’s construct the RIFs and RAFs list for the feature in our example: cpu_hotplug. The
first list, RIFs, requires the set of implied features. If we examine the implication graph
for our input (Figure 6.4), we see the directly implied features of cpu_hotplug are: acpi,
acpi_system, powersave. The indirectly implied features are cpu_freq and pm. Applying
our ordering heuristic to these features, we see that cpu_hotplug shares the word cpu
with cpu_freq in their names, and CPU appears in the descriptions of powersave and
pm. Since the RIFs prioritize direct implications, the resulting RIFs ordered list is:

RIF(cpu_hotplug) = (powersave, acpi, acpi_system, cpu_freq, pm)

The RAFs list applies the ordering heuristic to all features in the input. This list includes
the feature performance that was omitted from the RIFs since it is not implied by

129



Chapter 6 Feature Model Synthesis

cpu_hotplug. If we apply the feature similarity measure to this list, we get the following
ordering:

RAF(cpu_hotplug) = (cpu_freq, performance, pm,...)

The user chooses parents for every feature by examining RIFs and RAFs, forming a
set of directed child-parent edges E € F x F. These edges may not form a single tree
when there is no common top-level ancestor. In this scenario, we insert an additional
root feature to join together the forest to form a single tree.

6.3.2 Feature Groups and Cross-Tree Constraints

Once the hierarchy is built, feature groups and cross-tree constraints are detected with
the FEATURE-GRAPH-EXTRACTION algorithm (Chapter 5). In Chapter 5, feature groups
were identified among all implied features since a specific hierarchy is not assumed. We
describe FEATURE-TREE-SYNTHESIS according to the early hierarchy selection workflow
where a hierarchy is first constructed prior to detecting feature groups (Figure 3.3b).
This workflow reduces the search space for identifying groups since only feature groups
among siblings in the feature hierarchy have to be searched. If there are overlapping
feature groups among sibling features, the user will have to select a non-overlapping
subset of groups. We leave heuristics for ranking feature groups to future work.
FEATURE-TREE-SYNTHESIS could also be applied to a feature graph constructed with a
late hierarchy selection workflow (Figure 3.3a)—the disadvantage of this workflow
being that unnecessary feature groups may be computed.

Incomplete Dependencies

FEATURE-TREE-SYNTHESIS considers incomplete dependencies by relying purely on the
textual similarity measure in the form of the RAFs list. In this section, we examine
how incomplete dependencies affect feature group detection. A MUTEx-group with
members fi,..., fi is detected if there exists a clique between f,,..., f; in the mutex
graph. A clique in the mutex graph requires each member to have an exclusion to
every other member. If any exclusions between the members are missing in the case
the dependencies are incomplete, a MUTEX-group with k members will be detected as
one with less than k members.
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XOR-groups, on the other hand, contain two dependencies. First requirement is that an
underlying MUTEX-group exists between the group members. Second, the xor-group
requires an implication from the group’s parent to its members (Equation 2.7). If either
the first dependency is incomplete or if the second dependency is missing, then the
xoRr-group will be detected simply as a MUTEX-group of equal or lesser size.

6.4 Experimental Evaluation

We implemented FEATURE-TREE-SYNTHESIS using FGE-CNF (Chapter 5) to compute the
implication graph, mutex graph, and feature groups. The natural language similarity
measure uses the LingPipe toolkit'. We evaluate our procedures on input from Linux,
eCos and FreeBSD. For Linux and eCos, we extract our input data from their existing
reference feature models [BSL*10b]. This gives us two samples with complete depen-
dencies and descriptions. FreeBSD, on the other hand, does not have a reference feature
model. For this project, we extract data extracted from the FreeBSD codebase manually;,
giving us a sample with incomplete dependencies and partial descriptions. We believe
that FreeBSD is representative of projects that will use our synthesis algorithms for
reverse engineering. Since FreeBSD lacks a reference model, we created one manually
by first performing domain analysis and creating an ontology for a subset of features.
We then extracted a feature model from the ontology.

Our evaluation criterion is to check if for every feature, its parent in the reference feature
model is one of the top parent candidates in the RIFs and RAFs. We consider the parent-
child relations in the reference feature models to be the best choices possible because
these models were built manually over many years by their respective development
communities.

FEATURE-TREE-SYNTHESIS handles incomplete input by relying strictly on the textual
similarity measure. We measure the effect of incomplete dependencies and descriptions
by progressively removing dependencies and descriptions from the Linux and eCos data.
Our evaluation shows that prioritizing direct implications has a significant impact on
the effectiveness of our procedures with incomplete descriptions. Finally, we evaluated
our procedure for recovering feature groups in the presence of complete and incomplete
data.

http://alias-i.com/lingpipe/
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Figure 6.5: Characterization of descriptions, transitive implications (dark grey) and
direct implications (white) for eCos, FreeBSD, the FreeBSD reference model,
and Linux

6.4.1 Input Data Characteristics

The evaluation dataset consists of the x86 variability models of Linux v2.6.28.6 and
i386pc variability model of eCos v3.0. We extract dependencies applying a translation
of their formal semantics to propositional formulas [SB10, BS10]. Feature names and
descriptions were extracted directly from the reference models themselves. We have
placed the translation tools online as open-source projects>.

Figure 6.5 characterizes the input data for the variability models of Linux, eCos, and
FreeBSD. Linux has 5321 features, while eCos has 1245, and as shown in Figure 6.5,
the distribution of number of words are only slightly different. The majority of features
in eCos have 10 to 40 words. Linux, on the other hand, has a large number of features
with no descriptions, while the rest have roughly 20 to 60 words. The distributions
of direct and transitive implications are significantly different. Almost all features in
Linux have from 60 to 80 transitive implications, while in eCos the variation is much

2http://code.google.com/p/linux-variability-analysis-tools
3http://code.google.com/p/variability/wiki/CDLTools
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larger. For direct implications, Linux’s features have from 0 to 10 implications, and
again, eCos has a larger variety.

Unlike Linux and eCos that are configured with a graphical configurator, configuring the
FreeBSD’s kernel involves creating a text file with the selected features, such as devices
and CPU options, and their values. Various boilerplate templates are available to the
user as default configurations. There is no explicit description of legal combinations of
features. For FreeBSD, we extracted features using hand-crafted parsers for analyzing
configuration templates in the codebase. Feature descriptions were extracted in a
semi-structured manner, with heuristics-based fuzzy parsers that identify text patterns.
When possible, we would further spplement the descriptions with manual pages.

Dependencies were extracted from various sources. We manually derived around
100 dependencies that were described in feature descriptions, but the majority of
dependencies were extracted from source code. We examined the codebase to find
statements relevant for extracting feature dependencies. For example, dependencies
between device drivers were specified by FreeBSD-specific preprocessor macros, making
such dependencies easy to extract. However, most constraints had to be extracted by
using a more comprehensive static analysis infrastructure. This infrastructure was built
specifically for this project. The analysis infrastructure derives constraints by analyzing
C source files and exploiting three types of information: #error preprocessor macros
(build error analysis), the location of feature references (feature liveness analysis) and
the definition and use of identifiers (def/use analysis).

From our experience with extracting dependencies from FreeBSD, we learned that part
of the variability analysis can be implemented as an automatic component. However,
there was significant manual work needed to capture project-specific patterns from the
build system. The project-specific component once constructed, can be beneficial for
other applications such as iteratively checking the dependencies of a project against its
feature model as the project evolves. We estimate it took one person, one month of
effort to build our project-specific variability analysis for FreeBSD.

FreeBSD Reference Model

In order to assess the quality of the model synthesized by FEATURE-TREE-SYNTHESIS, we
created a reference feature model of 90 features by manually analyzing the FreeBSD
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kernel artifacts. We started by performing domain analysis on documentation and archi-
tecture to produce an ontology”. The ontology comprises of 192 features with several
domain-specific relationships. The reference feature model was derived by taking the
parts of the ontology that we felt were most developed and correct. The feature hier-
archy was built by traversing generalization and composition relationships [CKKO06].
The resulting feature model mainly covers technical aspects of the kernel, such as
tracing, monitoring and debugging. Structurally, 21% of its features are mandatory;
24% participate in cross-tree constraints; and three xor-groups that bundle 12% of the
features. Creating the ontology and deriving the feature model took about two person
weeks.

Figure 6.5 shows that the number of implications per feature in the FreeBSD reference
model is representative of the implications of all features in FreeBSD. However, the
reference model has a larger proportion of long descriptions (over 10 words) to short
descriptions (less than 10 words) than all features in FreeBSD; in this aspect, it is more
similar to Linux and eCos.

6.4.2 Effectiveness of Parent Heuristics

We evaluate our parent heuristics on complete input with Linux and eCos and on
incomplete input with Linux, eCos and FreeBSD.

For the RIFs, our evaluation criterion is whether the reference parent as defined in the
reference model, appears in the top five positions of our RIFs list. We feel the top five
results are a reasonable number for a user to review and to select the correct choice.
For the RAFs, we calculate the percentage of all features users will need to examine to
have a 75% chance of finding the feature’s parent. This measure the effectiveness of
only the ranking heuristic, in the absence of any dependencies.

Complete Input For each feature, we record the position of the reference parent in
the RIFs list. We found that 76% of features in Linux and 79% of features in eCos have
their reference parent within the top 5 results.

These results show that the heuristics are generally successful at identifying the correct
parent. However, in our evaluation subjects, a significant number of features are at the
root. Since these features have no parent, the RIFs and RAFs are not applicable, thus

“http://code.google.com/p/variability/wiki/FreeBSDOntology
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Figure 6.6: Robustness of RIFs for the prioritizing (black) and non-prioritizing (gray)
orders under complete and incomplete data

skewing the statistics to our disadvantage. The lists do not contain the root because
nesting under root (or on top-level) is qualitatively a different decision than nesting
features anywhere else. Our tools do not guide the reader in any way to nest under
root, but we consider this decision to be much easier to make then detailed nesting of
small granularity features deep in the hierarchy. If we only consider features that are
not children of root, we observe that as many as 90% of them in Linux and 81% in eCos
have their reference parent within the top five results. For this reason, the following
diagrams (Figures 6.6, 6.7) omit top-level features.

Incomplete Input The RAFs list, which ranks all features, is used to identify potential
parents when the RIFs do not contain the proper parent. Common to both the RIFs
and RAFs is our textual similarity heuristic that uses feature names and descriptions of
features—as descriptions shrink in size, so does the effectiveness of our heuristic.

We evaluate the effects of incomplete data and the robustness of our RIFs by randomly
selecting subsets of implications and words from descriptions for Linux and eCos. For
RAFs, we randomly select just words from the descriptions since implications are not
used.
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Figure 6.7: The top RAFs needed for a user to have a 75% chance of finding the
reference parent under complete and incomplete descriptions

Results for the RIFs Figure 6.6 shows how the RIFs performs as we reduce the
number of implications and words of descriptions for the Linux and eCos data. We
created sets of samples where we progressively removed random implications and
words, forming sets with 25%, 50%, 75% and 100% of the original implications and
words from descriptions. We repeated the experiment 10 times for each combination to
assure robustness of results.

The results linearly degrade as we remove dependencies. We observed that larger
descriptions significantly improve results, particularly from 0% to 50% descriptions
where the gain is most significant. The figure also shows the effect of our order where
direct implications are prioritized (in black) over the non-prioritizing variant (grey).
We see that the prioritizing order is more effective than the non-prioritizing variant
overall. Furthermore, the prioritizing order is particularly effective on Linux where the
prioritized results are still relatively high even as the descriptions approach zero. The
prioritizing order is able to compensate for smaller descriptions.

On FreeBSD, we found that 35% of features did not have an implication to their
reference parent in their input dependencies. As a result, these features do not have
their reference parent in their RIFs. For the remaining 65%, the reference parent is
contained in the top 5 results of the RIFs for all features.
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Results for the RAFs Figure 6.7 shows the amount of a project’s total features a user
would need to examine to have a 75% likelihood of finding the reference parent. For
this experiment, we formed datasets containing no descriptions, 25%, 50%, 75% and
100% of randomly selected words from descriptions. We measure the robustness of our
ranking heuristic with respect to the size of descriptions.

With 50% of words remaining in descriptions, the user needs to examine approximately
10% of all features in Linux and eCos to find the correct parent. As descriptions increase
in size, we see that the user needs to examine fewer and fewer features, reaching
only 3% of all features in Linux and 6% in eCos when we have complete descriptions
(100%). FreeBSD has results similar to Linux, with the user needing to examine 3% of
all features to attain a 75% likelihood of finding the reference parent.

6.4.3 Feature Groups

Our technique was able to identify all feature groups except one. One XOR-group was
not found due to the presence of a dead feature in its members. We were unable to
find the or-group since our procedure lacks support for finding such groups.

The reference feature model of eCos had only a single MuTEX-group, 11 xor-groups and
no oRr-groups, with 44 features participating in groups. The MUTEx-group and 10 of the
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xOR-groups were discovered by our procedure. The xor-group that was not detected
was in fact, dead. The group required a package that was not present in the eCos i386
model that we analyzed.

The reference FreeBSD feature model had three xor-groups. We correctly identified
one group in its entirety. Parts of a second group were detected as MUTEX-groups and
a third group was not detected at all due to the incompleteness of our dependency
data. The FreeBSD data was incomplete as we saw in the evaluation for the hierarchy
building—roughly a third of features did not imply their parents of the reference
model.

Incomplete Input Feature groups rely on exclusions in the mutex graph to determine
its type, size and members. Incomplete dependencies affects the detection of feature
groups. Here, we evaluate the effect of incomplete exclusions on the Linux and eCos
data. Figure 6.8 shows the number of feature groups from the respective reference
models that are detected as an XoRr-group, or as a MUTEX-group of equal or smaller size
depending on the completeness of exclusions. We randomly selected exclusions ranging
from O to 100%, with 100% being all present. Each point is an individual sample and
the lines indicate the fitted curve across all the sample points.

As the number of exclusions increase in the input, the number of MUTEX and xOR-groups
detected also increase, with the former growing at a much faster rate. In the presence of
incomplete dependencies, an xor-group may be detected as a MUuTEX-group of equal or
smaller size. An xor-group is only detected when all exclusions among its members are
present. In this sense, the xor-group detection is very susceptible to incomplete input.
We observe this effect at roughly 70% of exclusions in Linux and 50% in eCos—the
number of MUTEX-groups starts a downward trend and the xor-groups begin to grow
at an increasing rate. This means that the input for our procedure should contain at
least about 50% of exclusion dependencies to warrant that group recovery reasonably
distinguishes between the two kinds of groups.

We also observe different curves between the two systems due to their characteristics—
Linux has 30 groups over 526 features while eCos has 12 groups over 44 features. With
the larger number of features participating in groups in Linux, we see it takes more
exclusions in Linux before xor-groups are detected when compared to eCos.
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6.4.4 Threats to Validity
External threats

Our procedures assume that feature names, descriptions, and dependencies can be
extracted from a project. Our evaluation on FreeBSD shows that it is possible to extract
such input from existing software projects. Crafting the project-specific component for
FreeBSD required significant work. However, the effort required for this component
may vary depending on the project.

We evaluated our procedures on the Linux, eCos and FreeBSD projects. While all
three of these projects are in the operating systems domain, the features and their
variability models are of considerable complexity and size, and differ significantly in
their input characteristics. Furthermore, the input to our algorithm is a set of features,
dependencies, and feature descriptions; we believe that with these general inputs, the
procedures can be applied to projects in other domains.

As stated before, feature names in Linux and eCos often reflect the hierarchy of the
reference models. Thus, a potential threat to validity is that we obtain good results for
these systems because the reference hierarchy is re-discovered by our similarity metric
from the feature names. However, we found that our similarity measure performs
similarly well on FreeBSD, even though the system does not come with a feature model
and their feature names follow a different convention.

Internal threats

We evaluate our procedure on FreeBSD using a reference feature model that a colleague,
Thorsten Berger, created. This creates a threat of potential bias, since the author knew
the procedures that were to be evaluated against this model. Also, it is possible that the
reference model is different from what a domain expert would create. To address these
problems, we used an entirely different approach to build the feature model [ CKK06],
that required building an ontology first. The ontology represents the domain in more
detail than a feature model would represent, effectively forcing the modeler to become
an expert in the modeled fragment of the domain. Another threat is that the subset
of features in the reference model may not be representative of the entire system.
We compared both in Figure 6.5, observing that the subset of features had a similar
distribution in its number of implications to the distribution for all features. However,
the features in the subset tend to have longer descriptions than the rest of FreeBSD’s
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features; still, the distribution is similar to that of Linux and eCos. Thus, while applying
our procedures on all features of FreeBSD would likely produce worse results than for
the subset, the results for the subset—in particular, the need to review 3% of RAFs to
have a 75% chance of finding the right parent—are consistent with those for Linux.

We have not run user experiments to evaluate the effort saved by our procedures. Such
experiments involve usability while we focus on the reverse engineering algorithms in
this paper. These evaluations and incorporating our procedures into modeling tools is
future work.

6.5 Conclusions

In this chapter, we introduced the semi-automated FEATURE-TREE-SYNTHESIS algorithm
for constructing a feature hierarchy using both logical dependencies and textual similar-
ity. FEATURE-TREE-SYNTHESIS presents two lists: the Ranked Implied Features (RIFs) and
the Ranked All Features (RAFs). Given a feature, the RIFs ranks its implied features
based on their textual similarity to the selected feature. The RAFs list is used in the
presence of incomplete dependencies by ranking all features in the input by their
textual similarity to the selected feature.

Our evaluation shows that the procedures work well for Linux and eCos where the input
data is complete, and also for FreeBSD, a system with both incomplete descriptions and
dependencies. By leveraging dependencies and descriptions, the RIFs list contains the
correct parent for 76% of features in Linux and 79% in eCos in its first five positions. If
we omit dependencies and rely strictly on our ranking heuristic (RAFs), the user only
needs to examine 3% to 6% of all features to find the parent in most cases. Assuming
the reference hierarchy is selected, all all MuTEX and xoRr-groups for the Linux and eCos
input are recovered.
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Related Synthesis Techniques

This thesis builds on the synthesis work by Czarnecki and Wasowski [CWO07]. Czarnecki
and Wasowski was the first to introduce a synthesis algorithm that uses dependencies as
input and binary decision diagrams (BDDs) for reasoning. We later extended this work
to develop the FEATURE-GRAPH-EXTRACTION framework that allows both dependencies
and configurations as input and uses SAT solvers for reasoning [ACSW12, SRA*13].
Ryssel’s synthesis technique is based on formal concept analysis and translates feature
group recovery to minimal set cover problems [RPK11]. Other synthesis techniques
operate on natural language text and apply clustering such as the techniques by Alves
et al. [ASBT08] and Niu et al. [NEO8b]. In Chapter 6, we described a heuristic-based,
semi-automated procedure for building a feature hierarchy. Related heuristic-based
techniques include the guided model building technique by Janota et al. [JKWO08],
model management operations by Acher [Ach11], and the automatic synthesis algo-
rithm by Haslinger et al. [HLHE13]. We discuss and compare these techniques with
our own in this chapter.

Chapter Organization For the tree recovery stage, some techniques first recover a
directed acyclic graph (DAG) that represents all possible tree hierarchies given the
input; we discuss these techniques in Section 7.1. Section 7.2 discusses techniques
that recover a tree hierarchy directly. A third class of tree recovery techniques, applies
heuristics and user input to select a tree given a DAG recovered using a DAG recovery
technique. We discuss these techniques in Section 7.3.
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Input! Sound? Complete? Technique

(a) DAG Recovery Techniques

Czarnecki (BDD) [Ccwo07] D v Ve Binary decision diagrams
Andersen (CNF) D v v SAT solver, prime implicate
[ACSW12],[SRAT13] computation
Andersen (DNF) C v v SAT solver, prime implicant
[ACSW12],[SRAT13] computation
Ryssel [RPK11] C v v Formal concept analysis,
minimal set covers
Snelting [Sne96] C v v Formal concept analysis
Czarnecki (Prob.) [cswo8], C v e Association rule mining

Dumitru [DGH*11]

(b) Clustering-based Tree Recovery Techniques

Alves [ASB*08], Weston [WCR09] C N/A N/A Hierarchical agglomerative
clustering
Niu [NE08b] C N/A N/A Overlapping clustering
Chen [CcZZMO05] C N/A N/A Weighted graph clustering

(c) Heuristics-based Tree Selection Techniques

She [SLB*11] G X v Text similarity
Janota [JKW08] G X v Guided model editing
Acher (FMSs) [Ach11] G X v Input FM hierarchies
Acher (Products) [ACP*12] G X v User input and heuristics
Haslinger [HLHE13] C V3 V3 Automatic heuristic-based

! Required form of input. C is configurations, D is dependencies, and G is a DAG.

2 Soundness and completeness is defined with respect to ¢ —the maximal DAG consisting of
all binary implications in the input.

3 Haslinger’s technique is sound and complete if the input contains only feature diagram
constraints (e.g., binary implications and exclusions, or- and xoRr-group constraints).

Table 7.1: Summary of related feature model synthesis techniques
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Figure 7.1: Workflows for DAG and Tree Recovery Techniques
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7.1 DAG Recovery Techniques

One of the key challenges of feature model synthesis is selecting a feature tree from
the many possible feature trees that describe the input configurations, ¢. Our FEATURE-
GrAPH-EXTRACTION algorithm recovered a directed acyclic graph (DAG) that describes
all trees derivable from ¢. The maximal DAG is equivalent to the transitively reduced
implication graph of ¢ (Definition 5.4). Given the set of features F, we define ¢ as
the formula created by conjoining all binary implications found in ¢, or equivalently,
conjoining all implications in the implication graph of ¢:

oo = A\ (w—v) (7.1)

{(u,v)e]—'x]—'ltp/\u—w}

Given a DAG or a tree, G(V,E), where V is a set of features and E C V X V, its
semantics are the conjunction of all of its edges as implications, [G] = /\(H,V)GE u—v.
A technique is sound if its recovered DAG, G, satisfies the property [G] — ¢;. A
technique is complete if its DAG, G, satisfies the property ¢, — [G]. All of the DAG
recovery techniques in Table 7.1a are sound and complete. These techniques recover a
DAG that contains all binary implications in the input, ¢. We discuss each technique
below.

Czarnecki and Wasowski [CW07]

Overview Czarnecki and Wasowski developed the first technique for synthesizing a
DAG from a propositional formula represented as a binary decision diagram. A binary
decision diagrams (BDD) is a data structure that efficiently stores, analyzes, and ma-
nipulates propositional formulas [And97]. BDDs can represent arbitrary propositional
formula, i.e., dependencies. We adapt their algorithm to the FEATURE-GRAPH-EXTRACTION
framework as the FGe-BDD variant in Chapter 5. Figure 7.1a shows the workflow for
this algorithm. Mandatory features are identified by detecting strongly connected
components (SCCs) in the recovered DAG, then merged into a single node called an
AND-group. For each feature p, or-groups are found by identifying prime implicants of
—p A —p using the algorithm by Coudert and Madre [CM92].
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Comparison The synthesis algorithms in this thesis are extensions of the algorithms
in [CWO07]. The original algorithm by Czarnecki and Wasowski assumes propositional
formulas are stored as BDDs. The scalability of a BDD is determined by the number of
variables, the variable ordering, and the propositional formula that the BDD represents.
In the worst case, BDDs can grow exponentially with respect to the number of variables.
In our experience, we encountered scalability issues when constructing the formula
for the Linux variability kernel where BDD construction used up availablem memory
(4GB). The algorithms in this thesis adapted the original algorithms to use SAT solvers
and extend support for MUTEX-groups.

Ryssel et al. [RPK11]

Overview The synthesis algorithm by Ryssel et al. was the subject of our evaluation
with FGge- DNF (Section 5.9). We described Ryssel’s technique using the FEATURE-
GraAPH-EXTRACTION framework in Section 5.5 as FGe-FCA. In Ryssel’s technique, the
DAG is recovered as a attribute concept graph by checking subsets of features between
configurations. Ryssel’s DAG recovery is similar to the approach in FGe-DNF. Feature
groups are found by solving minimal set cover problems. The possible set cover
candidates consists of only immediate children of a given parent. Ryssel also addresses
the recovery of complex implications—implications with the form x; A--- A x, = y;.
Ryssel first builds an extended attribute concept graph that includes negated features as
nodes. The complex implications are identified by solving a minimal set cover problem
using the extended attribute concept graph to limit the problem size.

Comparison Ryssel’s technique is comparable to our FGe-DNF algorithm. The process
for building the implication and mutex graphs are identical between Ryssel’s tech-
nique and our own. However, Ryssel’s technique supports the extraction of complex
implications, whereas FGE-DNF does not. Ryssel’s technique for extracting complex
implications can be applied to FGe-DNF since both techniques use input as a set of
configuration.

Snelting [Sne96]

Overview Similar to Ryssel’s technique [RPK11], Snelting uses formal concept analy-
sis to build concept lattices. However, Snelting applies his technique to C code annotated
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with dependencies using #ifdef statements. The concept lattice is equivalent to the
reduced implication graph of our FGE algorithms (Definition 5.4). Snelting derives the
formal context (i.e., configuration table) by making each conditional fragment of C
code that’s enclosed in a #ifdef statement into a configuration. A C preprocessor symbol
is a feature in the table and a conditional fragment contains a feature if the symbol
appears in its #ifdef condition. Negated preprocessor symbols are treated as a separate
feature. Since Snelting’s work was not directed towards feature model synthesis, his
technique does not address feature group or cross-tree constraint recovery.

Comparison Snelting uses the same approach as Ryssel et al. [RPK11] to construct
the concept lattice used to derive the feature hierarchy. Their approach is conceptually
the same as the approach we use to derive the implication graph in FGe-DNF.

Probabilistic techniques—Czarnecki et al. [CSWO08],
Dumitru [DGH"11]

Overview In our previous work, we proposed a technique for synthesizing prob-
abilistic feature models—feature models with support for suggestions via soft con-
straints [CSWO08]. The algorithms use a sample set as input. Unlike a set of configu-
rations, a sample set allows configurations to be repeated multiple times. We detect
association rules in the sample set. An association rule A => B is an expression between
two boolean formulas, A and B with an associated interestingness—a measure of the
quality and strength of the association rule in the input sample set [She08]. The
interestingness measures used by our algorithm was support and confidence [She08].
Support is a measure of statistical significance, and confidence is a measure of the
association rule strength. An association rule with 100% confidence is equivalent to
a Boolean implication. The DAG extracted by the association rule mining consists of
only association rules with 100% confidence, making it equivalent to the maximal DAG.
Feature groups are found by identifying disjunctive association rules, that are in turn,
identified by mining for minimal or-clauses using the algorithm by Zhao et al. [ZZR06].
Zhang and Becker use association rule mining to recover complex association rules
with multiple features in the antecedent and consequent [ZB13]. These complex rules
can be used as cross-tree constraints of a probabilistic feature model and help guide
product configuration.

Dumitru et al. propose a system for recommending product features extracted from
openly available product descriptions [DGH"11]. In their paper, they state that they
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construct a probabilistic feature model using association rule mining. However, details
on the hierarchy and feature groups recovery are missing in the paper.

Comparison Unlike a set of configurations, sample sets allow repeated configurations.
Identifying association rules requires first identifying frequent itemsets—collections of
items that appear more than a minimum specified support threshold. Frequent itemsets
are similar to binary implications, with the added constraint that the items must appear
together a minimum number of times.

7.2 Clustering-Based Tree Recovery Techniques

Clustering is used to identify similar features by comparing the associated feature
text (i.e., names and descriptions) using a measure such as Latent Semantic Analysis
(LSA) [DDF"90] or the Vector Space Model (VSM) [SWY75]. The clustering approaches
identify groups of similar features by comparing the common words between feature
text. We experimented with LSA and VSM as a similarity measure between features,
but found that these techniques were not as efficient as TF-IDF (term frequency-inverse
document frequency) for the short feature names and descriptions in the Linux and
eCos kernels. Unlike using a set of configurations or dependencies as input, there are
many different kinds of relations between features in natural language text, with not
all relations being relevant to a feature model.

Unlike the DAG recovery techniques, clustering-based techniques form a feature hierar-
chy by creating abstract features that group features that are part of the same cluster.
Abstract features are features that are not in the input feature set, and are synthesized
to group related features. Abstract features are particularly useful for domain analysis
since they identify feature groupings that may not have been obvious to the modeler.

Alves et al. [ASB*08] and Weston et al. [WCR09]

Overview Alves and Weston use hierarchical agglomerative clustering to construct
the feature tree from textual requirements (Figure 7.1c). In hierarchical agglomerative
clustering, the feature hierarchy is formed by clustering with progressively lower
similarity thresholds until only a single cluster remains. The parent-child relations are
determined by subset inclusion between the clusters’ features. Once the feature tree
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is built, mandatory features are identified by searching for specific keywords, such as
“optional”, “alternatively”, or “at least one of” [ASB*08].

Comparison Hierarchical agglomerative clustering creates abstract features for each
cluster of features. Our techniques can use clustering to create abstract features that
group related sibling features. A significant difference between our techniques is that
Alves and Weston use the textual content as a source of variability. Our approach does
not extract variability from the textual descriptions; instead, we rely on a separate
logical formula as the source of variability. FEATURE-TREE-SYNTHESIS uses the textual
content to provide recommendations for building the feature hierarchy.

Niu et al. [NEOSb]

Overview Niu describes a user-driven approach based on overlapping clustering for
synthesizing feature models (Figure 7.1d). Niu identifies overlapping clusters between
functional requirements to produce a set of interconnected, crosscutting feature trees.
Their similarity measure is over the set of attributes of abstract requirements called
functional requirements profiles (FRPs). The FRPs and their attributes need to first be
extracted manually from the requirements. The connections between the feature trees
created through overlapping clustering form a DAG, but does not contain all possible
edges to make it complete. Niu relies on manually marking features as mandatory,
otherwise they are considered optional.

Comparison Building functional requirement profiles can be interpreted as part of
the variability analysis stage. Once FRPs are identified, we can translate the FRPs to
sets of configurations and use the FGe-DNF algorithm to synthesize a feature model.
FGE-DNF can automatically identify whether a feature is mandatory or optional.

Chen et al. [CZZMO05]

Overview The synthesis technique by Chen et al. first requires that weighted graphs
describing relations between requirements be built by manually analyzing requirements
documents. The weighted graphs are then clustered to identify similar features and
construct the feature hierarchy. However, unlike the previous two techniques, Chen’s
clustering is based on edge weights instead of textual similarity. Their algorithm
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progressively decreases the similarity threshold and the hierarchy is constructed by
checking subset inclusion between the identified clusters. Chen also relies on the user
for marking features as mandatory.

Comparison Chen’s technique defers part of the hierarchy selection to the variability
analysis stage by relying on manually constructed weighted graphs where the edge
weights determine the hierarchy of the resulting feature model. As a result, their
synthesis stage is fully automatic. Similarly, applying an early hierarchy selection to our
techniques can make the synthesis stage fully automatic. For future work, we can use
concepts from Chen’s approach (e.g., weighted graphs, spanning trees) to automatically
derive a feature hierarchy.

7.3 Tree Selection Techniques

Feature models consists of a feature tree and a set of cross-tree constraints, however,
more than one feature tree can model the same set of configurations. In Section 5.8,
we described an automated algorithm for extracting a single feature tree from a DAG.
However, feature models are artifacts designed to be read and interpreted by humans
and such an automatically selected feature tree is likely to be nonsensical to the modeler.
The tree selection techniques in this section use heuristics and user input to select a
distinct feature tree from an input DAG. User input is needed so the resulting feature
tree matches the expectations of the modeler. Heuristics reduce the effort of the
modeler by identifying likely candidates. The input DAG to these techniques can be
recovered using any of the DAG recovery techniques in Section 7.1. All of these tree
selection techniques are complete—the recovered tree contains a subset of the edges in
the implication graph of .

We compare each technique to FEATURE-TREE-SYNTHESIS that we described on Chapter 6.
FEATURE-TREE-SYNTHESIS is a technique for selecting a feature hierarchy by ranking
potential parents for a feature by a textual similarity measure. Given a feature, the
modeler is presented with two lists of features ranked by their similarity to the selected
feature. The first list rank features that imply the selected feature. By selecting only
features in this list, the resulting feature model is guaranteed to be complete with
respect to the input dependencies. The second list ranks all features in the input by the
similarity. This second list addresses practical settings where the set of dependencies
may be incomplete. For example, static analysis tools may only recover dependencies
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that are can be guaranteed to be sound. The extracted dependencies may be missing
valid dependencies that the static analysis tool could not identify.

Janota et al. [JKWO08]

Overview Janota et al. described an interactive modeling editing tool that produces
only feature models that are complete with respect to a set of features and a set of
input configurations or dependencies. Their tool uses a feature graph (Section 5.2) as
input. Their tool allows model edit operations that are consistent with the constraints
contained in the feature graph. The set of cross-tree constraints are derived by perform-
ing a logical difference between the constraints in the feature diagram and the input
configurations or dependencies.

Comparison Janota proposed a model builder that relies on FEATURE-GRAPH-EXTRACTION
to construct a feature graph. In his work, hierarchy selection is manual with the con-
straint that the model is implied by the input formula. FEATURE-TREE-SYNTHESIS can
supplement Janota’s model builder by providing a ranking of potential parents.

Acher (FM) [Ach11]

Overview This technique by Acher describes automated model management oper-
ations on feature models that include model merges. Acher describes heuristics for
selecting the structure of the resulting merged model based on the structures of the
input models. These heuristics enable the automatic selection of a distinct feature tree
that matches the expectation of the user based on the selected feature model merge
operation. Acher first translate the input models to their propositional formulas [Bat05]
then perform merges the formula with a propositional operation. The resulting formula
is used as input to recover a feature graph by using Czarnecki and Wasowski’s BBD-
based implementation [CWO07]. Acher’s heuristics are applied on the feature graph to
automatically select a feature hierarchy and feature groups. Acher reported that the
synthesis algorithm scaled up to propositional formulas with 2000 features.
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Comparison Acher’s technique exploits the structure of the input models to automat-
ically select a hierarchy. While Acher’s algorithm is automatic, it may not always select
the hierarchy that is expected by the user. For future work, we can use FEATURE-TREE-
SYNTHESIS to supplement his technique by suggesting alternative hierarchies based on
the textual similarity between features.

Acher et al. (Products) [ACP"12]

Overview Acher et al. described an approach for synthesizing feature models by using
heuristics based on semi-structured data (i.e., tabular data). Acher’s technique exploits
structurally similar product descriptions and uses a conversion specification to describe
the transformation of a single semi-structured product description to a feature model.
The individual feature models are then merged to form a final feature model describing
all products in the dataset. The conversion specification is tailored to parse and interpret
the specific structure of the input data. The individual feature models share the same
hierarchy making the final merge relatively simple. Acher et al. rely on their FAMILIAR
domain specific language for performing the merge operations [ACLF11].

Comparison FEATURE-TREE-SYNTHESIS relies on textual similarity to suggest a hier-
archy to the user. Similar to the previous algorithm, Acher’s heuristics exploits the
structure of the data to automatically select a hierarchy. We can use a similar approach
of exploiting the structure of the input to improve our ranking mechanism. For example,
for object-oriented source code, our algorithm can use the fact that methods are nested
within classes, and classes are within packages. We leave this to future work.

Haslinger et al. [HLHE13]

Overview Haslinger et al. describe an automated algorithm that synthesizes a feature
model from a set of configurations. Haslinger’s computation of implication and mutex
graph is similar to that of FGe-DNF (Chapter 5). Haslinger proposes an automated algo-
rithm for extracting a distinct feature tree given the input configurations, implication
graph, and mutex graph.

Their algorithm performs a traversal across all features starting at the root—they call
this a bottom-to-top traversal of the implication graph. Given a feature, XOR-groups
are identified by identifying cliques in the mutex graph between direct children of

151



Chapter 7 Related Synthesis Techniques

the given feature. For the remaining children not in an xor-group, Haslinger detects
whether a feature is a so-called true optional feature—a feature such that there exists
valid configurations in the input where the true optional feature can be selected or
deselected, ignoring any features that imply it. In other words, a true optional feature is
one that does not have a constraint other than the parent-child constraint. At this point
of the algorithm, each child feature is classified into one of three cases: (1) it is a true
optional—the feature is marked as optional in the hierarchy, (2) it is a possible optional,
but is involved in some other global constraints—in this case, the feature is moved up a
level in the hierarchy, or (3) it is involved in constraints among its siblings—it becomes
part of an or-group in the following step of the algorithm. Haslinger’s algorithm is only
capable of handling input with xor- and or-groups, and implies and excludes edges. In
their algorithm, mandatory features are detected as atomic sets that are equivalent to
strongly connected components (SCCs) in our algorithm. The authors do not discuss
how a hierarchy is determined among features in an atomic set.

Comparison Unlike FEATURE-TREE-SYNTHESIS, the algorithm by Haslinger et al. is fully
automatic. However, the trade-off is that the resulting feature model may differ from
the expectation of the user. In their evaluation, the authors state that the synthesized
model may not match the input model, however, the models are equivalent in terms of
their configurations. Furthermore, their technique only works on input that contain
only the identified feature diagram components. In essence, Haslinger’s algorithm can
be seen as heuristics for automatically deriving a specific feature model from a feature
graph. Their algorithm prioritizes the detection of xor-groups, then a special class of
optional features—the true optional features. The remaining features are moved up in
the hierarchy until they are made into a or-group.
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Conclusions

We summarize the contributions of this thesis below:

* Chapter 3 describes several feature model synthesis scenarios and their workflows.
We extracted these from literature and industry experience reports. We found
that the scenarios varied widely in their intended use of feature model synthesis
and the variability was extracted from a wide range of input artifacts. We
derived requirements for synthesis techniques that we address in the algorithms
presented in Chapters 5 and 6. We use these requirements to classify related
synthesis techniques in Chapter 7.

* Chapter 4 describes the Kconfig variability modeling language. This language is
used to specify the variability models of the Linux kernel and other open-source
projects. The features, descriptions, and propositional formulas extracted from the
Kconfig models, including the Linux variability model, make excellent benchmarks
for feature model analysis and synthesis tools. Our work on Kconfig addresses
the need for input derived from large, realistic variability models [BSRC10].

* Chapter 5 describes the automated FEATURE-GRAPH-EXTRACTION algorithm that
recovers a feature graph given features and a propositional formula in conjunctive
normal form (CNF) or disjunctive normal form (DNF). The CNF algorithm is able
to handle much larger input—such as input derived from the Linux variability
model—when compared to the BDD-based synthesis technique by Czarnecki and
Wasowski [CWO07]. Our evaluation showed a 10 to 1000 time improvement over
BDD-based implementation when the BDD-based method did not timeout. We
found that the DNF algorithm was comparable in runtime to the formal concept
analysis-based algorithm by Ryssel et al. [RPK11]. However, there were several
models that timed out with Ryssel’s algorithm, but completed with our algorithm.
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* Chapter 6 describes the semi-automated FEATURE-TREE-SYNTHESIS algorithm. This
algorithm is used to construct a feature hierarchy given features, valid configura-
tions, and supplemental feature descriptions. The algorithm presents two lists:
the Ranked Implied Features (RIFs) ranks the implied features by their textual
similarity to the selected feature. A second list, the Ranked All Features (RAFs),
accounts for incomplete input dependencies by ranking all features irrespective
of their implications by the feature similarity measure. FEATURE-TREE-SYNTHESIS
was the first synthesis algorithm to combine logical dependencies with heuristics
applied to natural language text. Our evaluation showed that the correct parent
was in the top 5 positions of the RIFs list for 76% of features in the input derived
from the Linux variability model, and 79% of features from the eCos variability
model. For the RAFs list, users would have to examine 3% to 6% of all features
to identify the correct parent.

8.1 Future Work

Bottom-Up vs. Top-Down Synthesis The synthesis procedure in Chapter 6 is a
bottom-up procedure. The procedure starts with the individual features and forms a
forest of trees as the procedure progresses. The procedure is completed when a single
tree is formed. However, a bottom-up procedure may not be not the most natural, or
effective way of constructing a feature model. Jepsen et al. reported that developers
applied both a top-down and a bottom-up approach in parallel to re-engineering a
software system to a SPL at Danfoss Drives [JDB0O7]. The top-down approach involved
making a feature model for two products as a form of domain analysis. Requirements,
documentation, VPs, and VP configs were used as input for the top-down approach.

For the bottom-up approach, the developers performed a difference between the
codebases of the two products and inserted #ifdef statements to identify VPs and
their conditions between the products. The authors report that the bottom-up approach
was more effective than the top-down approach. While the feature model constructed
using the top-down approach was correct in terms of the domain, the developers
struggled to define features at the right level of granularity. For future work, we
can integrate our synthesis algorithms to support both at top-down and bottom-up
procedure.
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Abstract Features Abstract features are used for grouping related sub-features. The
feature model synthesis procedures that we describe do not provide any assistance with
creating abstract features. In feature modeling, abstract features are simply represented
as a mandatory feature. Whether a feature is abstract or concrete can be inferred from
the feature name and description, and is determined from whether the feature appears
in the problem-to-solution space mapping.

In the Kconfig language, abstract features take the form of menus. For example, the
menu “CPU Scheduler” in the Linux Kconfig model is an abstract feature that does not
declare a build symbol and is not referenced in the source code. The sub-features of
“CPU Scheduler” are concrete features that implement the actual CPU schedulers.

The synthesis techniques that we describe synthesize feature models that contain exactly
the set of input features. In a software re-engineering scenario where automatic static
analysis is used, these input features are only concrete features that are detected in
the analyzed source code. In other scenarios, any abstract features in the synthesized
feature model will have to be determined in advance to our synthesis procedures, or
added in after synthesis.

We can draw inspiration from the the natural language clustering-based techniques
described in Chapter 7. Alves and Weston use hierarchical agglomerative clustering to
synthesize a hierarchy from a set of input requirements [ASBT08, WCR09]. The input
requirements become the leaves of the model and the clustering algorithm is used to
successively group similar requirements by introducing abstract features.

Incremental Procedure The procedures presented in Chapters 5 and 6 assume a one-
way, batch process for synthesizing a feature model. In a practical setting, synthesizing
a feature model is likely an iterative, and incremental procedure. Beuche’s workflow
for a feature-oriented software re-engineering depicts the variability analysis and
model building stages as incremental processes (Figure 1.4) [Beu06]. An incremental
procedure is also useful for comparing and updating feature models with merging
from other software artifacts (e.g., code changes). An incremental synthesis procedure
would involve incremental analysis and editing tools as well.

Handling Unsound or Incomplete Input Feature model synthesis is one part of a
larger re-engineering workflow. The correctness of a synthesized feature model is
dependent upon the correctness of the tools used to extract the needed input. For
example, when we synthesized a feature model for a portion of the FreeBSD kernel
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(Chapter 6), the set of input features and dependencies were extracted from source
code, the build system, and documentation using a custom-built tool for analysis. The
correctness of the synthesized feature model is dependent upon the correctness of
the tools used to extract the synthesis input. We addressed incomplete dependencies
in our synthesis technique addressed incomplete dependencies by relying strictly on
the feature similarity measure. As part of future work, we could investigate other
techniques for handling incomplete or unsound input. Developing these tools would
likely involve developing an incremental synthesis procedure as well.

8.2 Summary

Variability is a software system’s ability to adapt and customize for a particular con-
text [vGBSO01]. Unfortunately, variability is often tangled within an artifact and scat-
tered over multiple artifacts. Furthermore, ad-hoc techniques for handling variability
can lead to build-time errors or undetected run-time errors. Variability can be sys-
tematically handled with product line engineering—a development methodology that
strives to exploit commonalities for a problem domain while managing variability in
a systematic way [Cza04, WL99]. Software product lines, a form of systems family
engineering, systematically enables the reuse of code across a family of related prod-
ucts with command and variable product characteristics [CNO1]. Software product
lines advocate the use of explicitly defined variability models, such as feature models.
Feature models provide an explicit, centralized source for representing variability in a
software system. However, current techniques for building feature models rely entirely
on manual analysis and construction by a domain modeler. This process is difficult and
time-consuming. Automated tooling for feature models synthesis would greatly reduce
the effort and time required to construct a feature model.

Our work on feature model synthesis addresses the need for automated tooling with
two algorithms. The first, FEATURE-GRAPH-EXTRACTION, is an automated procedure for
synthesizing a feature graph that represents all complete feature diagrams for a given
input as a propositional formula in CNF or DNE The configuration semantics of all
feature diagrams that are derivable from the extracted feature graph are implied by the
input formula. The CNF-based algorithm was 10 to 1000 times faster than the previous
BDD-based algorithm and could handle input that was significantly larger, such as the
Linux variability model. The DNF-based algorithm was comparable to the FCA-based
algorithm by Ryssel et al. [RPK11].
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The second algorithm, FEATURE-TREE-SYNTHESIS, is a semi-automated procedure for
selecting a feature hierarchy given a feature graph and supplemental descriptive text.
Our evaluation showed that our algorithm works well for input derived from Linux
and eCos where the data is complete, and also for FreeBSD, a system with incomplete
descriptions and dependencies.

Our third contribution is the analysis of the Kconfig language. While large feature
models have been reportedly used in industry, the research community has suffered from
a lack of large, realistic benchmarks for feature model analysis tools [MBC09, BSRC10].
We built the Linux Variability Analysis Tools (LVAT) to analyze Kconfig models and
translate the models to a propositional formula for analysis and synthesis tools. We
used IVAT to extract a propositional formula for the Linux Kconfig model with over 6000
features. This formula represents the largest realistic variability model available to the
research community to-date and we used it to evaluate both FEATURE-GRAPH-EXTRACTION
and FEATURE-TREE-SYNTHESIS algorithms.
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Appendix A

Kconfig Semantics

In this appendix, we present the formal semantics of Kconfig using denotational
semantics [Sch86]. We first define an abstract syntax for Kconfig, then it’s semantics
domain, followed by valuation functions. The semantic domains the sets that are used
as value spaces in the programming language. Valuation functions map a specification
to directly to its meaning. This work was published as a technical note [SB10].

The semantics are modeled after the Kconfig specification and when the specification
is unclear, the semantics are derived from the behaviour of the configurators such
as xconfig and menuconfig. However, there are specifications that cause unwanted
side effects in the configurator. These corner cases are not modeled in our semantics.
For example, in case of the reverse dependency the documentation explicitly states the
following shortcoming of the configurators:

“select should be used with care. select will force a symbol to a value without
visiting the dependencies. By abusing select you are able to select a symbol
foo even if foo depends on bar that is not set.” [Zc]

A.1 Semantic Domain

A configuration of a Kconfig model is an assignment of values v € Const to config
elements. Thus, the set of all possible configurations is defined as:

Confs = Id — [Const| (A.1)

If ¢ € Confs and x € Id, we write c(x) to refer to the value of identifier x under the
configuration c. Now, we define the semantics of a Kconfig model in terms of sets of
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configurations. Thus, P(Confs) is our semantic domain. We define [[-]]yconsy @s the
function that evaluates a Kconfig model and returns a set of valid configurations:

([ Jkcontig : Kconfig — P(Confs) (A.2)

A.2 Global Functions

We start with the definition of some functions used throughout the semantics. First, we
define an interpretation of tristate values in boolean logic with function bool: Tri — Bool
where Bool = {T, F}:

F iffv=0,

. (A.3)
T iffv=1,vv=2,

bool(v) = {

Moreover, we define a function access : (Id U Const) x Confs — Const that retrieves the
value of either a constant or a symbol. When an identifier has the value of L (to be
defined in Equation A.7), then the access function returns the identifier itself in the
form of a string:

[ iff iv € ConstVv (iveldAc(iv)= L1
access(iv,c)Z{w iff iv onst V (iv c(iv) ) (A4)

c(iv) otherwise

Next, we define the function toStr: Const — String that models the translation of a
constant to a string representation. Let i € Int, h € Hex and s € String, in the following
definition of toStr:

toStr(0,) =“n”  toStr(1,) =“m” toStr(2,) =“y”

A.5
toStr(i)=“"+i toStr(h)=“0x"+h toStr(s)=s (A.5)

where the + operator is string concatenation.

Finally, the function eval: KExpr(ld) — Tri describes the evaluation of a KExpr
in the Kconfig language. We define eval recursively with e;,e, € KExpr(ld) and
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iv,1v,,iv, € IldU Const:

i . 2, iff toStr(access(iv,, c)) = toStr(access(iv,,c))
eval(iv, =iv,,c) = )
0, otherwise
eval(iv, #iv,,c) = 2, —eval(iv, = iv,,c)

eval(notey,c) =2, —eval(ey,c) A6)
eval(e, and e,, c) = min(eval(e,,c),eval(e,,c)) '

eval(e, ore,,c) = max(eval(eq,c),eval(e,,c))
Viy

0, otherwise

iff v;, = access(iv,c) Av;, € Tri

eval(iv,c) = {

A.3 Valuation Functions

Kconfig model. We begin by defining the [[-]]nig- Given a Kconfig model m €
Kconfig, the semantics of a model is the intersection of all denotations across the
model, configs and choices. In other words, the set of valid configurations for a Kconfig
model is those configurations that satisfy all denotations. [[-]]yonig: Kconfig — Confs
is defined:

[[m]] kconfig — ﬂ [[n]]type N [[Tl]] bounds N [[n]]default N [[Tl]] range N ( ﬁ [[n]]choice)

N€Mconfig N€Mchoice

N [[m]] module

N [[m]] undeclared
(A.7)

Type. The first denotation pertains to the constraints imposed by a config’s type. The

type of a config restricts its valid values to those in its respective domain. [[-]],p: Configs —
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Confs is defined:

f{c e Confs | c(n) €Tri\ {1,}}  iff t = boolean

{c € Confs | c(n) € Tri} iff t = tristate
(n,t, , , _)]]type = { {c € Confs | c(n) € String} iff t = string (A.8)
{c € Confs | c(n) € Hex U {*’}} iff t = hex
{ceConfs|c(n) eIntu {“’}} iff t =int

Upper and lower bounds. Next, the bounds denotation models the lower and upper
bounds of a config. The lower bound is determined by the evaluation of a config’s
reverse dependency. Recall that the reverse dependency models the behaviour of the
select statement in the concrete syntax. The upper bound is defined by a config’s
prompt condition. This denotation has no effect on configs of type int, hex, or string
since the the reverse dependency that determines a lower bound is 0, by our well-
formedness rules, and the eval function returns 0, when evaluating a value not in Tri.
(-1 boungs : Configs — Confs is defined:

[[(Tl, _ pros_a rev, _)]]bounds =
{c € Confs | eval(c(n),c) > Lower(c) A (Upper(c) < Lower(c) V eval(c(n),c) < Upper)}
(A.9)

where Lower(c) = eval(rev,c) and Upper(c) = eval(pro,c).

Defaults. Kconfig has support for setting a default expression for a config. The default
expression interacts with the prompt condition that determines when the config is
user-changeable. When the prompt condition is satisfied, then the user is free to set a
value. However, when the prompt condition is not satisfied, the default determine the
config’s value. [[-]]yeraur: Configs — Confs is defined:

[[(Tl, o defs, rev, _)]]default =
{c € Confs | bool(eval(pro,c)) V c(n) = max(eval(default(defs, ¢)), eval(rev,c))}
(A.10)

where def ault: P(Default) x Type x Confs — Const is a function that models the
retrieval of a default. Recall that defs is a list of defaults (and thus ordered). The effect
of a default’s value depends on the type of its defining config. If the config is boolean
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or tristate, then the default value is evaluated to a value in Tri. Otherwise, the default
value must be either an element of Const or Id. Let Nil be the empty list and :: be
the list cons operator. Let ty; € {boolean, tristate} and tg,,, € {int, hex, string}. The
def ault function is defined recursively, so we begin by defining its base cases:

default(Nil, ty;,c) = 0,
) e (A.11)
default(Nil, tgay,c) =

Equation A.11 states that given an empty list of defaults, we return O, if the type is
either boolean or tristate, or the empty string for types int, hex or string. Next, we
define the recursive rule. In the following equation, we decompose the list into its
head and tail components. First, we describe the function for boolean and tristate type
(recall that Bool € Tri):

l if bool [ d
default( (e,cond) :: rest, tr;,c) = eval(e,c) 1 Do ('eva (cond, c))

default(rest, ty;,c) otherwise

(A.12)

Now for the remaining types:
if bool [ d
default( (e, cond) :: rest, tgyyy,¢) = access(e, ) 1 Do (.eva (cond,c))

default(rest, tg,y,c) otherwise

(A.13)

Ranges. Ranges impose a lower and upper bound on the value of int or hex configs.
[[-Trange : Configs — Confs is defined as:

[[n,_, _,_,_,rngs)]liange = {c € Confs | V(I,u,cond) € rngs.
bool(eval(cond,c)) — c(n) > access(l,c) A c(n) < access(u,c)} (A.14)

Choices. A choice restricts the number of members that can be selected (i.e. have a
value greater than 0,). The choice denotation, [[:]] e : Choices — Confs is defined:

[[(boolOrTri,isMand, prompt, mems)]] oice = 1€ € Confs | XorABChoice AMandatory}
(A.15)

where Xor defines the condition that one and only one member may be set to 2,:

Xor = 3dm; € mems. (m; = 2,) — (Ym, € mems \ {m;}. m, =0,) (A.16)
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If the choice is a boolean choice, then the only valid value for its members is 2,. In
combination with Xor, this defines that a boolean choice may have at most one member
with a value not equal to 0, and that member must be set to 2,:

BChoice = bool(eval(prompt,c))A(boolOrTri = boolean) — Im € mems. c(m) = 2,
(A.17)

Finally, if the choice is mandatory and the prompt condition is satisfied, then one
Boolean member can be selected:

Mandatory = (boolOrTri = boolean) — (Im,; € mems. (m; = 2,)) (A.18)

Modules. A special MmoDULES config is used to specify support for modules in the
kernel. Disabling mopuLEs disallows the 1, state for configs and effectively turns all
tristate configs into boolean configs. A special symbol m is used in expressions to
identify a dependency on the MmoDULES feature in the concrete syntax. Configs with a
dependency on m cannot be selected (i.e. must be set to 0,) if MODULES is not selected.
We assume that the special m identifier has been expanded to MoDULES in the abstract
syntax.

[[m]] moque = {¢ € Confs | (c(mopuLES) =0,) — Vi eld. c(i) # 1,} (A.19)

Undeclared symbols. The Kconfig language supports references to symbols that are
not declared in constraints. These undeclared symbols are assigned the special symbol
L in our semantics. The use of this symbol will become apparent in the definition of
the eval function in Section A.2. The [[-]] ngeciared : KcONfig — P(Confs) denotation is
defined as:

[[m]] yndeciared = 1¢ € Confs | Vx € Id \ Id(m). c(x) = L} (A.20)
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SPLOT Models

The following models from the SPLOT model repository were used in the comparison
with Kconfig models in Chapter 4 and in the evaluation of FGe-DNF in Chapter 5:

a
Adams Car

Agencia de Propaganda
Agenda

Agile Simules

Aircraft PL

AllSports Feature Model
AndroidSPL
Applications

Asghar

Assistencia domiciliar
ATM Software
AudioPlayer
AvionFEatures

Basic Text Editor
Bicis_Feature_Model
Bicycle feature model
body comfort system
Car

Car demo

Card Product

Car PL

carpl

Carro

Carro Model

Carros

Car Software System
CCCMS

CD OD Semantic Variability

MKT

Mobile Applications Contents
Mobile Game

Mobile Games

Mobile Media Adriano Lages
MobileMedia_BrunoAquino
MobileMedia_BrunoMartins
Mobile Media Bruno R
MobileMedia_Conejero
Mobile Media

MobileMedia
MobileMedia_Gustavo
MobileMedia_HudsonSilvaBorges
MobileMedia_Marcelo
MobileMedia_Pedro Pires
mobile_media thom

Mobile Media until relase 7
MobileMedia_VitorSales
Mobile Phone

Mobile-Phone

Mobile Phone GF

Mobile phone (lenita)
Mobile Phone, until relase 5
Modelo de Caracteristicas de um Carro
Monitor Engine

Monitor Engine System
mon model

MoviesApp PL
MyFeatureModel
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Cell Phone

Cellphone

CFDP Library

CIMS PL

Coff Feature Model
Connector PL

Construtora

Context Feature Model
Counter Strike Simple Feature Model
CTOS MODEL

daniel souza

DELL Laptop/Notebook Computers
desordem

Diagrama de Experimento
Digital Video_System
Disciplina

Doorlopende reisverzekering
DS Sample

Dummy Car

EC2

Editor de imagem

Ejercicio

ELEC5619 - End User Model
ELEC5619 - Tootawl’s Model
ELPS - ISE

E-Portal

E-Shop

Eshop-uftj

ETRobocon

Example Mobile Phone
Example Product Line Course Using SPLOT
Fabrica de software
FAME-DBMS

FeatureModel1l

FIRE-ALARM

FM1

G10-music player

GMF _Eclipse Reuso UFRJ
GoPhone Inc

Graph

Graph Product Line
GreenHouse_Control_and_Monitoring
GuideAgent

Guitarra

HDD Seagate

Henrique Gomes Nunes

MyFM
NCV_Simulation
Okonomische Merkmale
ordem

Parking lot Manager
PFTestl

PFTest

Phone

Phone sple

PLeTs

Project Portal Suite
prueba

RE

Reference Management Softwares Feature Model

Respaldo de base de datos (Poda)
Rhiscom Process Model
RhiscomProcessModel

rert

SAL

Scheduler

SD Voter pattern feature model
Search Engine PL

sftcam

Sienna

Simaldores de Engenharia de Software
Simnumero

Simple Drawing Tools

Sistema de Informes por movil
Small Graph Product Line
SmartHome- Simplified Sample
SmartHome_vConejero_rl
Smartphone-SPL

SMS a Cobrar _ Resposta paga
SoftwareClassification
Software Engineering Course
Software Stack

SPL SimulES, PnP

Stacja Pogodowa

Stack PL

stcam

StoreFrontSystem

tablets

Tata Cars

Technical Solution Process
Telecommunication_System
Test
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HIS

Homepage based on wiki

i18n

IDE4OCL

iNavBasic

Insurance Policy
Insurance_Product
IntelligentTutoringSystem
ISA11_12 pgr

isolation

ISPW-6

James

JCalc_LPS

Jogo de Engenharia de Software
Jogo de Tiros

JPlug

Key Word In Context index systems
KIModel

Linea de Experimentos

Linha de produtos - SimulES e PnP
Loja Virtual

Lucas - pnp

Mauricio AlfAlrez

MiniRPG

MiniTV

Test Env

test_fm

testISA2012

Text Editor

Text Editor

Thread

Toyota Feature Model
Transmission
TrialADC

TV-Series Shirt
UML-IDE-TOOL

UPL

VeAchlo

Venza

Virtual Office of the Future
VMS

VOD feature model
VODPlayer
VOTE4ME Serveur
WB2

WB

Weather Station

Web Content Delivery
Web Game

178



	Title
	Abstract
	Contents
	List of Tables
	List of Figures
	Introduction
	Thesis Statement
	Contributions
	Publications
	Thesis Organization

	Background
	Feature Modeling
	Configuration Semantics
	Domain Semantics
	Tool Support
	Extended Feature Models

	Other Variability Modeling Languages
	Decision Modeling
	Common Variability Language (CVL)
	Concept Modeling
	Component Definition Language (CDL)

	Software Product Lines
	Feature-Oriented Software Development

	Scenarios and Requirements
	Overview of Feature Model Synthesis
	Scenario Criteria
	Scenarios
	Scenario 1: Synthesis From a Configurable Platform
	Scenario 2: Synthesis from Variants
	Scenario 3: Feature Model Operations
	Scenario 4: Feature Model Merge Workflows

	Discussion and Requirements for Feature Model Synthesis
	Scenario Conclusions

	Real World Variability Models
	Kconfig Language
	Abstract Syntax
	Configs
	Choices
	Identifiers and Expressions

	Mapping to Feature Modeling Concepts
	Hierarchy
	Feature Groups
	Feature Constraints
	Feature Descriptions and Code Mappings

	Comparison with Available Feature Models
	Kconfig Models
	SPLOT Models
	Model Structure
	Feature Groups
	Cross-Tree Constraints
	Qualitative Characteristics

	Tooling: Linux Variability Analysis Tools
	Kconfig Semantics

	Feature Graph Extraction
	Motivation and Scenarios
	Defining the Feature Model and Feature Graph Synthesis Problem
	Fge: Feature Graph Extraction Algorithm
	Fge-CNF: CNF Formula as Input
	Fge-DNF: DNF Formula as Input
	Fge-BDD: Binary Decision Diagrams as Input
	Fge-FCA: Formal Concept Analysis-Based
	Selecting a Feature Diagram from a Feature Graph
	Experimental Evaluation
	Goal Definition
	Hypothesis Formulation
	Variable Selection
	Selection of Subjects
	Experiment Design
	Operation
	Results: Fge-CNF Evaluation
	Results: Fge-DNF Evaluation
	Hypothesis Testing
	Threats to Validity
	Conclusions


	Feature Model Synthesis
	Introduction
	Overview
	Feature Tree Synthesis
	Building the Feature Hierarchy
	Feature Groups and Cross-Tree Constraints

	Experimental Evaluation
	Input Data Characteristics
	Effectiveness of Parent Heuristics
	Feature Groups
	Threats to Validity

	Conclusions

	Related Synthesis Techniques
	DAG Recovery Techniques
	Clustering-Based Tree Recovery Techniques
	Tree Selection Techniques

	Conclusions
	Future Work
	Summary

	Bibliography
	Appendices
	Kconfig Semantics
	Semantic Domain
	Global Functions
	Valuation Functions

	SPLOT Models


