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Abstract 

As an atomic layer of sp
2
-hybridized carbon atoms closely packed in a honeycomb 

lattice, graphene has been attracting increasing attention since its discovery in 2004 due to its 

extraordinary physicochemical properties. Graphene oxide (GO), a non-stoichiometric 

graphene derivative with the carbon plane abundantly decorated with hydroxyl, epoxide and 

carboxylic groups, can be massively and cost-effectively produced from natural graphite 

following Hummers method. GO has greater aqueous solubility than pristine graphene due to 

its oxygen-functionalities. Various solution-based chemical methods can be applied to GO, 

which has stimulated a new research area called ‘wet chemistry of grahene’. Among them, 

chemical reduction of GO provides a facile route for large-scale synthesis of graphene. 

With abundant oxygen-functionalities in its structure, GO can potentially act as a 

suitable precursor for chemical modifications of graphene through methods used in organic 

chemistry. Special attention should be paid to that the hydroxyl groups in GO belong to 

tertiary alcohols, and steric hindrance should be considered when performing chemical 

modifications. Diethylaminosulfur trifluoride (DAST), a fluorinating reagent, is ineffective in 

fluorinating GO due to the steric hindrance of tertiary hydroxyls. However, DAST is effective 

in reducing GO. The capability of DAST for GO reduction is close to hydrazine, but the 

reduction reaction can be performed at lower temperature for DAST. 

As a two-dimensional (2D) nanomaterial with good aqueous solubility, biocompatibility 

and excellent intrinsic mechanical properties, GO is particularly useful in preparing 3D hybrid 

hydrogel scaffolds for tissue engineering applications. 
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Chapter 1 - Introduction 

1.1 The Discoveries of Graphene as Well as Other Quasi Two Dimensional 

(2D) Materials 

The term graphene was first introduced by Boehm et al. in 1986 and derived from the 

combination of the word ‘graphite’ and the suffix ‘ene’ that refers to polycyclic aromatic 

hydrocarbons (e.g. anthracene, benzene).
1,2

 However, free-standing graphene crystal was not 

discovered until 2004 when Dr. Andre K. Geim and Dr. Konstantin S. Novoselov from the 

University of Manchester successfully peeled off highly ordered pyrolytic graphite (HOPG) 

and obtained single layer graphene crystal using the ‘Scotch Tape’ method.
3
 Afterwards, they 

also obtained other atomic 2D crystals including BN, MoS2, NbSe2 and Bi2Sr2CaCu2Ox using 

the same technique.
4
 The researches on graphene and other 2D materials have intensively 

expanded ever since.
5-8

 The Nobel Prize in Physics 2010 was awarded jointly to Andre Geim 

and Konstantin Novoselov “for groundbreaking experiments regarding the two-dimensional 

material graphene”.
9
 

 

 

 

 

 

Schematic of the structure of graphene is shown in Fig. 1. It can be seen as a single layer 

of sp
2
-hybridized carbon atoms closely packed in a honeycomb crystal lattice. Every carbon 

Fig. 1 Schematic of the structure of graphene.
10
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atom in graphene is covalently bonded to three adjacent carbon atoms. The large π network 

across the molecular chicken wires contributes to its excellent electrical properties. Graphene 

is a building block for other carbon-based materials. It can be wrapped up into 0D fullerene, 

rolled into 1D carbon nanotubes and stacked into 3D graphite.
11

 

Graphene has stimulated tremendous research interests among other 2D materials since 

its advent due to its extraordinary physicochemical properties.
 
Graphene has remarkably high 

charge carrier mobility in excess of 15,000 cm
2
 V

−1
 s

−1
 under ambient conditions,

11
 excellent 

thermal conductivity of ~5000 Wm
-1

K
-1

 at room temperature,
12

 Young’s modulus of 1.0 TPa,
13

 

optical transmittance of 97.7%,
14

 high theoretical specific surface area of 2630 m
2
g

-1
. And 

graphene is chemically stable under ambient conditions. Graphene has a wide range of 

applications including field effect transistors (FETs),
15

 gas sensors,
16

 nanocomposite 

materials
17

 and supercapacitors
18

 due to its excellent physicochemical properties. 

 

1.2 Graphene Synthesis 

1.2.1 Scotch Tape Method (Micromechanical Cleavage of Graphite) 

Scotch Tape method or micromechanical cleavage of graphite led to the discovery of 

graphene in 2004. This method involves repeatedly peeling highly oriented pyrolytic graphite 

(HOPG) using a scotch tape, transferring graphene as well as thick graphite flakes onto a Si 

substrate with a SiO2 layer of a carefully chosen thickness (300 nm), and hunting graphene 

under an optical microscope. Schematic of this method is shown in Fig. 2. An atomic force 

microscopy (AFM) image of a graphene crystal produced by this method is shown in Fig. 3. 
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The thickness of graphene was measured to be 0.4 nm by AFM, which is close to its 

theoretical value of 0.34 nm.
19

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 Schematic of the Scotch-Tape method.
19

 

Step 1 

Step 3 

Step 2 

Step 4 

HOPG flake 
Repeatedly peel HOPG 

300 nm SiO2/Si 

substrate 

Transfer graphene as well as thick graphite 

flakes onto a SiO2/Si substrate 

Hunt graphene under optical microscope 

Fig. 3 AFM image of a graphene crystal obtained by Scotch Tape method. The folded region 

exhibiting a relative height of 4 Å indicates it is single layer. (Adapted with permission from 

ref. 11. © 2007 Nature Publishing Group.) 
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Peeling HOPG with an adhesive tape is a commonly used technique to prepare freshly 

cleaved surfaces for depositing samples in AFM characterization. The peeled graphite flakes 

have a wide range of thicknesses. Breakthrough in getting single layer graphene did not come 

until the use of a Si wafer with a carefully chosen thickness of SiO2 layer which makes 

graphene visible under an optical microscope. Single layer graphene, few layer graphene and 

thicker graphite flakes show different colors on a 300-nm-thick SiO2/Si substrate due to 

feeble interference-like contrasts with respect to an empty substrate.
4
 

This method can provide high quality graphene crystal with lateral size up to 100 μm, 

however, it is laborious and the yield is very low, rendering this method unsuitable for large 

scale production of graphene. 

1.2.2 Epitaxial Growth on Silicon Carbide (SiC) 

Graphitization of silicon carbide by Si sublimation under high temperature and vacuum 

conditions was first reported in the 1960s.
20

 Berger et al. have refined this technique and 

demonstrated that patterned epitaxial graphene grown on single SiC crystal showed electronic 

confinement and coherence, which envisages coherent graphene molecular electronics.
 21, 22

 

Lin et al. reported that FETs fabricated on wafer-scale epitaxial graphene exhibited high 

cutoff frequency of 100 GHz which exceeded Si/metal-oxide semiconductor FETs, 

demonstrating the high potential of epitaxial graphene grown on SiC for electronic 

applications.
15

 

Epitaxial growth on SiC has been one of the leading methods for mass-production of 

graphene. However, growing large graphene domains and sophisticated control over the 
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thickness of the graphene film remain as major challenges so far. The high growth 

temperature (1200 °C~1800 °C), high cost of SiC substrates, ultrahigh vacuum condition 

(UHV) and non-transferability of as-grown graphene films to arbitrary substrates are the 

disadvantages of this method. 

1.2.3 Chemical Vapor Deposition (CVD) on Transition Metals 

The syntheses of graphitic materials (e.g. carbon nanotubes) by chemical vapor 

deposition on transition metals (e.g. Fe, Co, Ni, Cu, Ru, Pd) have a long history. Different 

from using transition metal nanoparticles for growing carbon nanotubes, transition metal thin 

films are normally used for growing graphene films. Large-scale patterned growth of few 

layer graphene films on thin Ni films were realized by Kim et al.
23

 The as-grown graphene 

films could be easily transferred to arbitrary substrates. The transferred graphene films 

showed low sheet resistance of 280 Ω per square at 80% optical transparency. At low 

temperatures, monolayer graphene transferred to SiO2 substrates showed electron mobility 

greater than 3,700 cm
2
 V

-1
 s

-1
 and exhibited the half-integer quantum Hall effect (QHE), 

implying that the quality of CVD-grown graphene on Ni is comparable to graphene obtained 

by mechanically cleavage of graphite. 

However, as the carbon solubility in Ni is relatively high (1.2 at% at 1000 °C), controlled 

growth of exact monolayer graphene is difficult. When carbon species start precipitating out 

from the surfaces of Ni films, multilayer graphene or graphite can be formed along with 

monolayer graphene. Graphene films grown on Ni usually do not possess uniform thicknesses, 

which limits their application in electronics. In order to prevent the formation of multi-layer 
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graphene, fast cooling rate (~10 °C s
-1

), thin Ni films (<300 nm), and/or extremely low 

concentration of carbon source are usually required for growing monolayer graphene.
23-24

 Cu 

has a much lower carbon solubility (less than 0.004 at% at 1000 °C) than Ni, making it a 

better candidate for making strict monolayer graphene by CVD. Li et al.
25

 reported the 

large-area synthesis of high-quality and uniform graphene films on copper foils and 

concluded that graphene growth on Cu is a surface-catalyzed and self-limiting process rather 

than an absorption-precipitation process proposed for Ni. Graphene grown on Cu showed 

electron mobility as high as 4,050 cm
2
 V

-1
 s

-1
 at room temperature. Fig. 4a shows the 

graphene films transferred on a glass substrate grown by CVD Cu. The area of the film is 

~1.2 cm×1.0 cm. Fig 4b shows the optical image of graphene films transferred on a 

285-nm-thick SiO2/Si substrate. Graphene of different layers show different light contrasts 

with the substrate. The films consist of predominantly single layer graphene with a percentage 

of >95%. 

 

 

 

 

 

 

 

 

(a) (b) 

Fig. 4 (a) Graphene films transferred onto a glass substrate, (b) Optical microscope image of 

graphene films transferred onto a 285-nm-thick SiO2/Si substrate. (Adapted with permission 

from ref. 25. © 2009 AAAS.) 
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By using CVD on flexible wrapped-up copper foils, Bae et al. synthesized a 30-inch 

predominantly monolayer graphene film (Fig. 5).
26

 The flexibilities of graphene films and 

copper foils allowed efficient transfer process using a roll-to-roll method. The scalability of 

CVD on Cu for large-scale graphene synthesis was well illustrated in this work. 

 

 

 

 

 

 

 

 

CVD on transition metals (Ni, Cu) can produce high-quality graphene and are suitable 

for large-scale synthesis. However, high temperature heating (normally 1000 °C), low 

pressure growth condition in case Cu is used, and transfer of graphene films to other 

substrates are required, making this method not very cost-effective and facile. 

1.2.4 Chemical Reduction of Graphene Oxide (GO) 

The synthesis of graphite oxide can date back to as early as 1859. British chemist Brodie 

first explored the reaction of graphite with potassium chlorate (KClO3) in fuming nitric acid 

(HNO3), and synthesized “graphitic acid” (graphite oxide) with a net molecular formula of 

C2.19H0.80O1.00 by successive oxidation processes (four reactions).
27

 Later in 1898, 

(a) (b) 

Fig. 5 (a) Copper foil wrapping around a 7.5-inch quartz tube was inserted into an 8-inch quartz 

reactor, (b) a transparent ultralarge-area graphene film (30 inches) transferred on a 35-inch 

polyethylene terephthalate (PET) substrate. (Adapted with permission from ref. 26. © 2010 Nature 

Publishing Group.) 



 

8 

Staudenmaier improved Brodie’s method by adding KClO3 in multiple aliquots in the course 

of the reaction and using concentrated sulfuric acid in addition to nitric acid.
28

 This method 

was more convenient compared with Brodie’s multiple reactions and resulted in graphite 

oxide with a C/O atomic ratio of 2.89:1. In 1958, Hummers and Offeman developed an 

alternate oxidation method to prepare graphite oxide by reacting graphite with potassium 

permanganate (KMnO4) in concentrated sulfuric acid and sodium nitrate (NaNO3).
29

 The 

resulting graphite oxide has a C/O ratio of 2.25:1. 

The structure of graphite oxide: 

The reactions of graphite with oxidants (KClO3 or KMnO4) in concentrated sulfuric acid 

and nitric acid are complicated and the precise reaction pathways are unknown so far. The 

exact chemical structure of graphite oxide is also unknown as a result. However, there are 

some structure models depicting it, e.g. Hofmann model,
30

 Ruess model,
31

 Scholz and Boehm 

model,
32

 Lerf and Klinowski model.
33

 Among them, the Lerf and Klinowski model is the most 

widely accepted. 

 

 

 

 

 

According to the Lerf-Klinowski model, the majority of oxygen-functional groups in 

graphene oxide are epoxide and tertiary hydroxyl groups which are located in the middle of 

the graphene plane, while small amount of carboxylic and/or carbonyl groups are located on 

Fig. 6 Schematic of the structure of graphite oxide. 
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the edges. A schematic of the structure of graphite oxide according to this model is shown in 

Fig. 6. Recently Gao et al. showed evidences for the presences of five- and six- 

membered-ring lactols (not shown in Fig. 6) in graphite oxide by solid state 
13

C nuclear 

magnetic resonance (NMR) characterization.
34

 

Graphite oxide can be easily dispersed in water and exfoliated into single-layered 

graphene oxide by ultrasonication.
35

 The synthesis of graphene oxide from graphite is 

cost-effective and scalable for mass production. While graphene oxide is insulating, its 

deoxygenation by chemical reducing agents can restore the conductivity and produce the 

so-called reduced graphene oxide (rGO) or chemically converted graphene (CCG). A myriad 

of reductants have been developed up to now, including sodium borohydride,
36-37

 

hydrazine,
35,38-39

 hydroquinone,
40

 strong base (KOH or NaOH),
41

 hydriodic acid (HI),
42-43

 

alumina powder,
44

 L-ascorbic acid,
45

 vitamin C,
46

 benzyl alcohol,
47

 zinc/sulfuric acid 

(Zn/H2SO4),
48

 lithium aluminum hydride (LiAlH4).
49

 Among them hydrazine (N2H4) and 

hydriodic acid (HI) are the most commonly used ones. 

 

 

 

 

 

 

Fig. 7 shows the schematic of chemical reduction of graphene oxide for the production 

of graphene aqueous solution. Step 1 is oxidation of graphite (black blocks) to graphite oxide 

Fig. 7 Scheme showing the chemical reduction of graphene oxide to produce aqueous graphene 

solution. (Adapted with permission from ref. 38. © 2008 Nature Publishing Group.) 
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(lighter colored blocks) with larger interlayer distance. Step 2 is exfoliation of graphite oxide 

in water by sonication to obtain graphene oxide colloids that are stabilized by electrostatic 

repulsion. Step 3 is controlled conversion of graphene oxide colloids to conducting graphene 

colloids by hydrazine reduction at pH=10.
38

 

 

 

 

 

 

 

 

 

Photograph of a chemically converted graphene (CCG) film (thickness ~10 μm, diameter 

~38 mm) prepared by vacuum filtration of the resulting graphene colloid is shown in Fig. 8. 

The film exhibited shiny metallic luster with flexibility. The conductivity of the film 

measured by a four-probe method was 7,200 S m
-1

. The highest values reported for C/O 

atomic ratio and conductivity of rGO by hydrazine reduction are ~9.97 and ~7,200 S m
-1

, 

respectively, while those values of rGO by HI reduction are 15. 27 and 30,400 S m
-1

, 

respectively.
38,42

 

The mechanism for graphene oxide reduction by hydrazine is unknown so far. However, 

it is generally accepted that hydrazine reduction leads to the incorporation of a small amount 

of nitrogen (1.0 at%~3.0 at%) into the structure of rGO.
50

 The incorporation of nitrogen is 

Fig. 8 Photograph of a 10-μm-thick chemically converted graphene (CCG) film (diameter ~38 

mm) prepared by vacuum filtration of a CCG colloid. The inset image shows a strip of this 

film is bendable. (Adapted with permission from ref. 38. © 2008 Nature Publishing Group.) 
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probably through the formation of pyrazoline structure at the edges of graphene platelet which 

can evolve into pyrazole structure under thermal annealing, leading to the generation of 

aromatic nitrogen doping as shown in Fig. 9.
51

 

 

 

 

 

 

 

 

 

 

 

The precise mechanism for graphene oxide reduction by HI is also unknown. Possible 

reduction pathways are shown in Fig. 10. Since iodine ion (I
-
) is a well-known strong 

nucleophile, I
-
 can attack the epoxide and hydroxyl groups in graphene oxide and lead to the 

formation of C-I intermediate, in other words, nucleophile substitutions of epoxide and 

hydroxyl groups by iodine. However, iodine is eventually eliminated from the C-I 

intermediate with the formation of new C=C bonds meanwhile as C-I bond is not 

thermodynamically favored. The reduction by HI can be viewed as an iodine-ion-catalyzed 

reaction. 

 

Fig. 9 Schematic illustrating the formation of pyrazole structure at the graphene platelet 

edges by hydrazine reduction. (Adapted with permission from ref. 51. © 2012 Nature 

Publishing Group.) 
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Chemical reduction of graphene oxide for graphene synthesis is a solution-based method 

which is suitable for mass production. It is particularly advantageous over other methods in 

the areas of large-area transparent conductive films (TCFs) for electronics simply by 

spin-coating to deposit ultrathin graphene oxide films first followed by chemical reduction, 

graphene-metal-oxide composites for supercapacitors and lithium ion batteries, and 

graphene-polymer composites.
52-54,17

 Moreover, free-standing graphene film with thickness in 

the range of micrometer can be prepared by vacuum filtration a graphene solution. Last but 

not least, it is facile and cost-effective. The temperature needed for synthesizing and reducing 

graphene oxide is relatively low (<100 °C) which is in stark contrast to the high temperature 

(~1000 °C) needed for the CVD method. 

However, the disadvantage of this method is that the electrical property of rGO is not as 

good as that of graphene obtained by CVD or scotch tape method. The severe oxidation of 

graphite creates many defects in the structure of carbon plane, which cannot be repaired by 

Fig. 10 Schematic showing possible mechanism for graphene oxide reduction by HI. (Adapted 

with permission from ref. 42. © 2010 Nature Publishing Group.) 



 

13 

chemical reduction. The large D band with respect to the G band, the broadening of the G 

band and the disappearance of the 2D band in the Raman spectrum of rGO
42

 reveal that rGO 

has many defects (holes or vacancies) existing in its structure and is different from graphene 

obtained by CVD or scotch tape method. Chemical reduction of graphene oxide can restore 

the π-networks and make it conductive, but cannot repair the defects in graphene oxide. 

1.2.5 Sonication-Assisted Exfoliation of Graphite in Organic Solvents 

Exfoliation of graphite by sonication in organic solvents with or without surfactants was 

first reported by Dai’s group and Coleman’s group in 2008. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11 Schematic showing the sonication-assisted exfoliation of graphite. (a) Intercalating 

graphite with sulfuric acid molecules (teal spheres), (b) inserting TBA (blue spheres), (c) 

sonication of TBA-inserted-sulfuric-acid-intercalated graphite with DSPE-mPEG. A photograph 

of an as-produced DSPE-mPEG/DMF solution of graphene sheets is also shown. (Adapted with 

permission from ref. 55. © 2008 Nature Publishing Group.) 
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Dai’s group obtained high-quality graphene sheets by briefly heating commercial 

expandable graphite at 1,000 °C to exfoliate it first, reintercalating the exfoliated graphite 

with oleum, then inserting tetrabutylammonium hydroxide (TBA) molecules into the 

intercalated graphite, finally sonicating the TBA-inserted-oleum-intercalated graphite with 

1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene-glycol)-5000] 

(DSPE-mPEG). Schematic of the whole process is shown in Fig. 11. The as-produced 

graphene sheet had a resistance of 10-30 kΩ at room temperature which was 1,000 times 

lower than thermally reduced graphene oxide (800 °C in H2 atmosphere) with a resistance of 

20 MPa. And the resistance of as-produced graphene sheet showed only a small drop at low 

temperature indicating its quality was comparable to the peel-off pristine graphene.
55

 

 

 

 

 

 

 

 

 

Coleman’s group exfoliated graphite to sub-five-layer graphene by sonication of graphite 

in organic solvents.
56

 According to their theory, it is possible to exfoliate graphite to graphene 

when the energy cost is balanced by the solvent–graphene interaction for solvents whose 

surface energies match that of graphene. Such organic solvents suitable for graphite 

Fig. 12 (a) Bright-field and (b) dark-field TEM images of monolayer graphene, (c) bright-field 

TEM image of bilayer graphene. Scale bars are all 500 nm. (Adapted with permission from ref. 

56. © 2008 Nature Publishing Group.) 

(a) (b) (c) 
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exfoliation have surface tensions in the region of 40-50 mJ m
-2

, e.g. benzyl benzoate, 

1-methyl-2-pyrrolidinone (NMP), γ-butyrolactone (GBL), N,N- dimethylacetamide (DMA), 

1,3-dimethyl-2-imidaz-olidinone (DMEU). Some typical transmission electron microscopy 

(TEM) images of graphene flakes obtained by sonication of graphite in NMP are shown in 

Fig. 12. A thin graphene film made by vacuum filtration of a graphene NMP solution showed 

a conductivity of ~6,500 S m
-1

 which is close to rGO by hydrazine reduction at pH=10 

(conductivity ~7,200 S m
-1

). 

Sonication-assisted direct exfoliation of graphite in organic solvents is advantageous in 

making high quality graphene sheets which are much less defective than chemically or 

thermally reduced graphene oxide. However, the concentration of as-produced graphene sheet 

in organic solvent is very low (~0.01 mg/mL) which limits its applications. Yet removing the 

organic solvent or surfactant in case that surfactant is used is annoying. Coleman’s group 

pointed out that an air-dried graphene thin film prepared by vacuum filtration of a graphene 

NMP solution contained ~11 wt% residual NMP as determined by X-ray photoelectron 

spectroscopy (XPS), and this value remained unchanged after a subsequent vacuum annealing 

at 400 °C.
56

 

1.2.6 Bottom-Up Synthesis 

Cai et al.
57

 reported the synthesis of atomically precise graphene nanoribbons (GNRs) by 

a bottom-up way. This method involved the use of surface-assisted coupling of molecular 

precursors into linear polyphenylenes and their subsequent cyclodehydrogenation. The reaction 

schemes and some typical scanning tunneling microscopy (STM) images are shown in Fig. 13. The 
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calculated bandgap for an N=7 armchair GNR (Fig. 13a) was 1.6 eV. Moreover, GNR heterojunctions 

could be created by heteromolecular coupling as shown in Fig. 13e. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13 Reaction schemes and STM images of GNRs. (a) Reaction scheme for synthesizing 

armchair GNR from precursor monomer 1. (b) STM image of armchair GNRs. (c) Reaction 

scheme for synthesizing chevron-type GNRs from monomer 2. (d) STM image of 

chevron-type GNRs. (e) Heteromolecular coupling between monomer 2 and 3. (f) STM image 

showing the threefold GNR junction. (Adapted with permission from ref. 57. © 2010 Nature 

Publishing Group.) 

(a) 

(b) 

(c) (d) 

(e) 

(f) 
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The first step during the bottom-up synthesis of GNRs is the thermal sublimation of monomers on 

Au(111) or Ag (111) surfaces which results in some surface-stabilized biradical species, then the 

biradical species diffuse across the surface and undergo radical addition to form linear polymer chains. 

The second step is formation of aromatic GNRs through surface-assisted cyclodehydrogenation.
57

 This 

method can produce GNRs at a modest temperature (<450 °C), however, a suitable technique 

for transferring as-synthesized GNRs onto SiO2 substrates for electronics needs to be 

developed. Yet the electrical properties of as-synthesized GNR are open to doubt. 

Jiang et al.
58

 reported the bottom-up synthesis of graphene films at low temperature 

(220~250 °C) via a radical reaction. Hexabromobenzene (HBB) radicals produced by 

cleavage of C-Br bonds coupled efficiently on Cu (111) to form graphene films. The charge 

carrier mobility of as-synthesized graphene evaluated by field effect transistor was 

1000~4200 cm
2
 V

-1
 s

-1
. The bottom-up synthesis of graphene film via radical coupling 

reaction is a newly-arisen method, and the quality of as-synthesized graphene film regarding 

conductivity, thickness uniformity, graphene domain size are not clear. 

 

1.3 Graphene Derivatives - Fluorinated Graphene 

Recently there are growing research interests in exploring graphene derivatives. In 

addition to graphene oxide which is a nonstoichiometric graphene derivative with mainly 

hydroxyl and epoxide groups randomly distributed on the carbon plane, researchers are 

interested in stoichiometric graphene derivatives which can be viewed as new 

two-dimensional crystals. Such stoichiometric graphene derivatives are expected to possess 
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different electronic properties and may be used as precursors for further chemical 

modifications of graphene. Furthermore, researchers are interested in opening the band gap of 

graphene for electronics by exploring graphene derivatives. 

Elias et al. synthesized graphane (hydrogenated graphene) by reacting graphene with 

atomic hydrogen in a plasma.
59

 Hydrogenation (attaching atomic hydrogen to each of the 

carbon atoms in graphene) changed the hybridization way of carbon from sp
2
 to sp

3
, which 

removed the conducting π-bonds and opened the band gap. Their experimental results showed 

that single layer graphene exhibited standard ambipolar field effect with charge carrier 

mobility of ~14,000 cm
2
 V

-1
 s

-1
 at room temperature and the half integer quantum Hall effect 

at cryogenic temperature, while graphane was insulating with charge carrier mobility 

decreasing to ~10 cm
2
 V

-1
 s

-1
 at liquid-helium temperature and did not exhibit the half integer 

QHE at cryogenic temperature. Graphane was stable at room temperature and could be 

changed back to graphene by annealing in argon at 450 °C indicating that the hydrogenation 

process is reversible. 

 

 

 

 

 

 

 

(a) (b) 

Fig. 14 Schematic showing the crystal structures of (a) graphene and (b) graphane. 

Carbon atoms are blue spheres and hydrogen atoms are red spheres. (Adapted with 

permission from ref. 59. © 2009 AAAS.) 
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Schematic of the crystal structures of graphene and graphane are shown in Fig. 14. 

Graphene possesses a planar structure with a C-C bond length of 0.142 nm while graphane 

possesses a chair-like structure with a longer C-C bond length of 0.153 nm due to the change 

in the hybridization of carbon. 

 

 

 

 

 

 

 

Besides hydrogenated graphene, covalently attaching halogen atoms (F, Cl, Br, I) to the 

carbon plane have also aroused intense research interests. Zheng et al.
60

 synthesized chlorine 

and bromine modified graphite using microwave-sparks-assisted halogenation reactions, and 

obtained monolayer graphene halide by sonication of the resulting chlorinated or brominated 

graphite dimethylformamide (DMF). A schematic for the syntheses of graphene halides is 

shown in Fig. 15. The chlorinated graphene (or graphene chloride) had 21 at% chlorine while 

brominated graphene had 4 at% bromine. They also synthesized laurylamine modified 

graphene by using the substitution reaction between a graphene halide (Cl or Br) and 

laurylamine, which implied that graphene halides are suitable precursors for performing such 

chemical functionalization of graphene.
60

 

 

Fig. 15 Schematic for the syntheses of graphene halides (G-Br and G-Cl) using microwave-sparks- 

assisted halogenation reactions. (Adapted with permission from ref. 60. © 2012 Nature Publishing 

Group.) 
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Fluorination of graphitic materials has a long history. Graphite fluoride was first reported 

in the 1930s.
61

 Graphite fluoride is mainly used as solid lubricant.
62

 The compositions of 

graphite fluoride can be varied from (C2F)n to (CF)n depending on the reaction conditions.
63

 

(CF)n represents the formula of graphite fluoride with saturate fluorine content in which each 

carbon atom is bonded with a fluorine atom. With the advent of graphene, researchers are 

interested in synthesizing fluorinated graphene (FG) and exploring its applications in such 

areas as electronics, optics, and so on. Robinson et al.
64

 obtained a partially fluorinated 

graphene film of C4F composition (i.e. 25 at% fluorine) by fluorination on one side of the 

CVD-grown graphene film with XeF2 gas. The as-prepared C4F film is optically transparent 

with a calculated band gap of 2.93 eV. They also showed that the same fluorination method 

could be used to fluorinate both sides of the graphene film to form perfluorographene (CF) 

which had a calculated band gap of 3.07 eV. 

Nair et al.
65

 synthesized stoichiometric fluorographene or fluorinated graphene (FG) in 

which each carbon atom is attached by a fluorine atom by exposing graphene crystals 

(obtained by scotch tape method) to XeF2. As a two-dimensional (2D) material in the family 

of fluorinated carbon materials, FG is markedly different from other members including 

Teflon which is a fluorinated carbon chain (1D) and graphite fluoride (3D). They showed that 

FG was a high-quality insulator with resistivity >10
12 

Ω and had an optical gap of 3 eV. FG 

inherited the excellent mechanical strength of its parent graphene with a Young’s modulus of 

100 N m
-1

 (0.3 TPa, 3 times less than graphene) and sustaining strains of 15%. FG was 

chemically inert and stable up to 400 °C in air, which was similar to Teflon. FG could be 
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potentially used as an atomically thin insulator or a tunnel barrier in graphene-based 

devices.
65

 

 

 

 

 

 

 

 

 

Models for the structure of FG are shown in Fig. 16. The structure of FG is similar to 

that of graphane. The hybridization way of carbon changes from sp
2
 in graphene to sp

3
 in FG, 

which leads to the change from planar structure in graphene to chair-like structure in FG. 

Zboril et al. reported that quantum-mechanical calculations revealed that FG was the most 

thermodynamically stable among five hypothetical graphene derivatives: graphane, 

fluorinated graphene, chlorinated graphene, brominated graphene and iodinated graphene.
66

 

Recently, Wang et al.
67

 demonstrated that FG could be used to enhance adhesion and 

proliferation of mesenchymal stem cells (MSCs), and that FG exhibited a neuro-inductive 

effect via spontaneous cell polarization. They also showed that large-scale produced and 

patterned FG sheets might be a viable platform for tissue-engineering applications. 

 

 

(a) 

Fig. 16 Models showing the chair-like structure of FG. (a) Ball-and-stick model of FG, big dark 

grey balls represent carbon atoms and small light grey balls represent fluorine atoms. (b) 2D 

unit cell (C2F2) and translation vectors. (Adapted with permission from ref. 66. © 2010 Wiley.) 
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1.4 Diethylaminosulfur Trifluoride (DAST) as a Useful Fluorinating Reagent 

for hydroxyl, Carbonyl/Ketone and Carboxylic Groups 

Currently fluorination of carbon materials is mainly performed by exposing them to XeF2 gas, 

F2 gas or F-based plasma. However, XeF2 is air-sensitive, fluorination with XeF2 needs to be 

performed in a glove box; F2 gas is very reactive and dangerous, fluorination with F2 requires 

special equipment and great care; the use of F-based plasma is also not very facile. Since graphene 

oxide can be synthesized cost-effectively and has many oxygen-containing functionalities in its 

structure, converting these functionalities to C-F bonds (deoxyfluorination) through methods used 

in organic chemistry could be a viable way to synthesize fluorinated graphene. With this idea in 

mind, I did a thorough literature research and found diethylaminosulfur trifluoride (DAST) might 

be a suitable reagent for such purposes. 

Sulfur tetrafluoride (SF4) was reported to be a useful fluorinating reagent for replacing 

oxygen with fluorine in hydroxyl, carbonyl/ketone and carboxylic groups.
68

 However, SF4 is 

gaseous, toxic and corrosive making it hard to handle in organic synthesis. Middleton
69

 first 

reported that aminosulfur fluorides synthesized by substitution(s) of one or two of the fluorine 

atoms in SF4 with dialkylamino groups were also useful fluorinating reagents. Aminosulfur 

fluorides are liquid and thus easier to handle than gaseous SF4. Middleton showed that 

diethylaminosulfur trifluoride (DAST) could convert R-C-OH and R-C=O to R-CF, R-CF2, 

respectively, with high yields of ~70-90%.
69-70

 The chemical structure of DAST is shown in Fig. 

17. Lal et al.
71

 reported that bis(2-methoxyethyl)aminosulfur trifluoride (BAST), a fluorinating 

reagent similar to DAST, could convert R-COOH to R-CF3 by two steps, converting R-COOH to 

R-COF first, then converting R-COF to R-CF3. The yields for both steps were >90%. 
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Since graphene oxide has many hydroxyl groups, minor carbonyl and carboxylic groups, 

DAST may be a useful reagent for replacing them with fluorine to synthesize fluorinated 

graphene. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 17 Chemical structure of DAST. 
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Chapter 2 - Research Objectives, Synthetic Methods and 

Characterization Tools 

2.1 Research Objectives 

①Synthesis and characterization of graphene oxide. ②Fluorination of graphene oxide using 

DAST to synthesize fluorinated graphene. ③Exploring the biological application of graphene 

oxide 

 

2.2 Synthetic Methods 

 

 

 

 

 

 

2.3 Characterization Tools 

2.3.1 Fourier Transform Infrared Spectroscopy (FTIR) 

FTIR stands for Fourier Transform InfraRed spectroscopy, an advanced method of 

infrared spectroscopy which uses the mathematical process-Fourier transform to convert raw 

data to actual spectrum. Infrared spectroscopy is a technique which utilizes the interactions of 

Conc. H2SO4, NaNO3, KMnO4 

35~40 °C 

Ultrasonication 
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infrared light with matter to identify unknown materials. Infrared light can be divided into 

near-infrared (13000-4000 cm
-1

), mid-infrared (4000-400 cm
-1

) and far-infrared (400-10 cm
-1

). 

The mid-infrared region is the most commonly used because the vibrational excitations of 

most organic functional groups (e.g. -CH3, -C=C-, O-C=O) and inorganic ions (e.g. CO3
2-

, 

SO4
2-

, MnO4
-
) are induced by mid-infrared light.

72
  

Infrared light imposed on a molecule does not contain enough energy to cause electronic 

transitions, but can cause vibrational and rotational changes of the molecule. Possible 

vibrational rotational motions of a molecule can be categorized into symmetric/asymmetric 

stretching, scissoring (symmetric in-plane bending), rocking (asymmetric in-plane bending), 

wagging (out of plane bending) and twisting (out of plane bending). The vibration frequency 

of a molecule excited by infrared light can be expressed in equation 1. 

v =
1

2π
 √

k

(
𝑚1𝑚2

𝑚1+𝑚2
)
                   Equation 1 

, where v is the frequency in cm
-1

, k represents the force constant in N cm
-1

, m1 and m2 are the 

masses of two atoms, respectively.
72

 

By passing infrared light through a sample and measuring the transmittance or 

absorbance at each frequency of light, an infrared spectrum is obtained with peaks 

corresponding to the vibrational frequencies of functional groups in the sample. The 

vibrational characteristics of functional groups are unique. Therefore, functional groups in the 

sample can be identified by analyzing the positions and shapes of the peaks in the infrared 

spectrum. 
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Since graphene oxide has many oxygen-functional groups and chemical modification 

can lead to structural changes in these functionalities, FTIR will be a useful technique in 

analyzing the structure of graphene oxide and structural evolutions resulted by modifications. 

2.3.2 Raman Spectroscopy 

The main spectroscopies which deal with molecular vibrations are based on processes of 

infrared absorption and Raman scattering. They are widely used to provide valuable 

information on the chemical structures of substances by analyzing their characteristic spectral 

patterns. The phenomenon of inelastic scattering was first observed experimentally in 1928 by 

Raman and Krishnan. Since then this phenomenon has been referred to as Raman scattering 

and Raman spectroscopy has been developed.  

In infrared spectroscopy, an infrared beam covering a range of frequencies (typically 

400~4,000 cm
-1

) is directed onto the sample, and absorption occurs when the frequency of 

incident radiation matches that of a molecular vibration. By contrast, in Raman spectroscopy, 

a single frequency of radiation (typically 514 nm or 633 nm or 785 nm) is employed and the 

radiation scattered from the molecule is detected. Intense Raman scattering occurs when 

vibrations cause changes in the polarizability of the electron cloud around the molecule, while 

intense infrared absorption occurs when vibrations cause changes in the dipole moment of the 

molecule. Therefore, Raman and infrared spectroscopy are complementary and often used 

together to give a better view of the molecular structure.
73

 

2.3.3 Ultraviolet-Visible Spectroscopy (UV-Vis) 
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Color is an important feature of matter. For example, polytetrafluoroethylene is white, 

conjugated graphitic materials (e.g. graphite, carbon nanotubes) are black, transition metals 

(e.g. Ir, Os) organometallic complexes have various colors depending on the structures of 

ligands. Human eyes act as spectrometers in analyzing the light reflected from the surface of a 

solid or passing through a liquid when differentiating matter by color. Sunlight or white light 

is actually composed of a broad range of radiations in the ultraviolet, visible and infrared 

regions of the electromagnetic spectrum. When white light passes through or is reflected by a 

colored substance, a portion of the light is absorbed by the substance and the color of the 

substance perceived by human eyes is determined by the remaining light which is 

complementary to the absorbed light. For example, a substance appears yellow if it absorbs 

indigo light from 420 to 430 nm, while a substance appears red if it absorbs green light from 

500 to 520 nm.
74

 

 

 

 

 

 

 

 

The electromagnetic spectrum (Fig. 18) is very broad ranging from short wavelengths 

(including cosmic ray, gamma ray) to long wavelengths (including sonic, infrared sonic). The 

ultraviolet (ca. 10-400 nm) and visible radiations (ca. 400 nm-800 nm) constitute only a small 

Fig. 18 The electromagnetic spectrum.
75
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portion of it. However, ultraviolet radiations less than 200 nm are difficult to handle and 

seldom used for structural analysis of matters. The energies of UV-Vis light range from 1.55 

eV to 6.20 eV corresponding to wavelengths of 800 nm and 200 nm, respectively. Such 

energies are sufficient to cause electronic transitions from low energy orbitals to high energy 

orbitals in molecules. When the energy of light matches the gap between two energy levels, 

the light is absorbed and electronic transition or promotion occurs. By passing UV-Vis light 

through a liquid and detecting the intensity differences between transmitted light and incident 

light, a UV-Vis spectrometer can determine the wavelengths at which absorption maxima 

occurs which can be used to identify certain chromophores and conduct quantitative analysis 

of the amount of molecules based on the Beer-Lambert law. 

Under UV-Vis irradiation, π→π* transition in –C=C- bond and n→π* transition in C=O 

bond can take place. Since graphene oxide contains many such bonds, UV-Vis spectroscopy 

will be useful in monitoring the structural changes during chemical reduction or modification. 

2.3.4 Atomic Force Microscopy (AFM) 

Atomic force microscopy (AFM) belongs to the big family of scanning probe 

microscopies (SPMs). AFM was first described in the literature in 1986. It was created as a 

supplement to scanning tunneling microscopy (STM) which can only image conductive 

samples in vacuum. AFM can image samples with high resolution regardless of their 

conductivities under ambient conditions. The first AFM instrument became available by the 

early 1990s.  
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In AFM, a very sharp stylus probe is used to interact with the surface of interest, probing 

the repulsive and attractive forces between the probe and the surface to give high-resolution 

topographic imaging of the surface. AFM can be used in contact and non-contact (tapping) 

mode depending on the properties of the samples and the information to be exacted from it. In 

the former, the probe is in constant contact with the sample, while in the latter, the probe (or 

cantilever) is oscillating. AFM is able to image samples in air or fluid environment rather in 

high vacuum, rendering it particularly useful in imaging polymeric or biological samples in 

their native states.
76

 

AFM is very useful in imaging nano- and micro-sized graphene oxide sheets, providing 

valuable information on sizes, shapes and thicknesses of graphene oxide sheets. 

2.3.5 Scanning Electron Microscopy (SEM) 

Scanning electron microscopy is a type of electron microscopy that images samples by 

scanning it with a focused beam of electrons. The sample’s surface topography and 

composition are attained by collecting various signals produced by interactions between the 

electron beam and atoms of the sample. The first scanning electron microscope was invented 

by M. Ardenne in 1937, and the first commercial SEM instrument was developed in 1965 by 

Cambridge Scientific Instrument Company. 

The most common and important imaging mode of SEM is by detecting secondary 

electrons emitted from the k-shell of the specimen atoms by inelastic scattering interactions 

with beam electrons. Other imaging modes include backscattered electrons, specimen current, 

transmitted electrons, electron-beam-induced current, cathodoluminescence, acoustic 
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thermal-wave microscopy, environmental electron microscopy and imaging with X-rays. The 

resolution of SEM is somewhere between 1 nm and 20 nm. SEM can image both conductive 

and non-conductive samples. For imaging non-conductive samples with conventional SEM, 

coating with conductive materials (e.g. gold, chromium) is required for getting better images. 

However, environmental SEM can directly image non-conductive samples and wet samples, 

making it particularly useful in biological applications.
77

 

2.3.6 X-ray Photoelectron Spectroscopy (XPS) 

X-ray photoelectron spectroscopy, also known as electron spectroscopy for chemical 

analysis (ESCA), is a powerful surface chemical analysis technique which provides such 

information as the elemental composition of the surface (top 1~10 nm), empirical formula of 

pure materials, chemical bonding states of the element in the surface, line-profiling (mapping) 

and depth-profiling of chemical composition uniformity. The first commercial monochromatic 

XPS instrument came into being in 1969.  

Qualitative XPS (element identification) is based on equation 2, where 𝐸𝑏  is the 

binding energy of a core electron with reference to the Fermi level, 𝐸𝐹, ℎ𝜈 is the energy of 

the X-ray being used, 𝐸𝑘𝑖𝑛 is the kinetic energy of the electron, 𝛷𝐴  is the work 

function of the analyzer. The energy of the X-ray is known and the analyzer work function 

is constant, the kinetic energy determines the binding energy and vice versa. Each element has 

a unique set of XPS peaks at characteristic binding energies, which provides direct 

identification of them.
78

 

𝐸𝑏 = ℎ𝜈 − 𝐸𝑘𝑖𝑛 − 𝛷𝐴                  Equation 2 
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An XPS spectrum is usually given by intensity (counts per second) as a function of the 

binding energy. Besides photoelectron core level and valence band peaks, XPS spectra 

contain Auger electron peaks, and may also contain satellite peaks and energy loss peaks. 

Chemical composition analysis (quantification) can be carried out using the low-resolution 

XPS survey spectra with equation 3, where Xi is the molar fraction of element i, Ii or Ij is the 

intensity or area of the XPS peak of element i or j, Si or Sj is the relative sensitivity factor 

(RSF) of element i or j. In brief, to get the atomic percentage of element i, its XPS signal is 

divided by its RSF and normalized over all of the elements detected.
78

 

𝑋𝑖 =

𝐼𝑖
𝑆𝑖

∑  (
𝐼𝑗

𝑆𝑗

𝑛
𝑗=1 )

                       Equation 3 

Chemical bonding states of an element (e.g. C-C, C=C, C-OH, O=C-O) can be obtained 

from its high resolution XPS core-level spectrum. However, XPS can detect all other 

elements except for hydrogen (atomic number Z=1) and helium (Z=2). The binding energies 

of H and He are so small compared with the energy of X-ray thus making the absorption 

efficiency very small. Ultraviolet photoelectron spectroscopy (UPS) is designed for detecting 

H and He. 

Chemical composition and chemical bonding states analyses are very important to the 

research of chemical modification and reduction of graphene oxide, therefore XPS is an 

indispensable tool. 

2.3.7 Four-Probe Method for Measuring Thin Film Conductivity 

Four-probe method, also called Kelvin method, is a technique that measures resistance 

using separate pairs of current-carrying and voltage-sensing probes to make more accurate 
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measurements than traditional two-probe method. In a sheet resistance measurement, several 

resistances need to be considered as shown in Fig. 19a. The probe itself has a probe resistance 

Rp. A probe contact resistance Rcp exists in the interface between the probe tip and the thin 

film. A spreading resistance Rsp arises when the current flows from the probe tip into the thin 

film and spreads out in the thin film. And the thin film to be measured has a sheet resistance 

Rs. Schematic and equivalent circuit of the four-probe technique are shown in Fig. 19b and 

Fig. 19c, respectively. 

 

 

 

 

 

 

 

 

Two outer probes carry the current and two inner probes sense the voltage. Since the 

voltage is measured with a high impedance voltmeter, voltage drops across the parasitic 

resistances (Rp, Rcp, Rsp) of the two inner probes are significantly small and can be neglected. 

The thin film sheet resistance can be calculated via equation 4: 

𝑅𝑠 = 𝐹1 · 𝐹2 · 𝐹3 ·
𝑉

𝐼
                  Equation 4 

, where Rs is the sheet resistance, V is the voltage between the two inner probes, I is the 

current, F1, F2 and F3 are correction factors for collinear probes with equal inter-probe 

Fig. 19 Measurement of thin film sheet resistance by a four-probe method. (Adapted with 

permission from ref. 79. © 2011 InTech.) 
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spacing. F1 corrects for finite sample thickness, F2 corrects for finite lateral sample 

dimensions, and F3 corrects for placement of the probes with finite distances from the sample 

edges. For very thin samples (the thickness is less than half of the inter-probe spacing) with 

the probes being far from the sample edges, F2 and F3 are approximately equal to 1.0, and the 

equation can be simplified as: 

 𝑅𝑠 =
𝜋

𝑙𝑛 2
·

𝑉

𝐼
                     Equation 5 

The thickness of the thin film can be determined using SEM. Then its bulk conductivity can 

be calculated.
79,80

 

The four-probe method can eliminate the measurement errors caused by probe resistance, 

contact resistance and spreading resistance. Therefore it is more accurate than the two-probe 

method. Conductivity measurement is vital to revealing the quality of reduced graphene oxide. 

The four-probe method for measuring thin film conductivity will be very useful for the 

research of chemical reduction of graphene oxide. 
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Chapter 3 - Synthesis, Characterization of Graphene Oxide 

and Preparation of Free-Standing Graphene Oixde Thin 

Films 

3.1 Hummers Method and Modified Hummers Method for Graphene Oxide 

Synthesis 

3.1.1 Reaction Mechanisms - Formation of Graphite Intercalation Compounds 

(GICs) 

Modified Hummers Method: Kovtyukhova et al.
81

 first reported the modified 

Hummers method for graphite oxide synthesis in 1999. Modified Hummers method involves 

an additional pre-oxidation step compared with Hummers method. In Kovtyukhova’s paper, 

he claimed that this pre-oxidation step was necessary to avoid the formation of incompletely 

oxidized graphite-core/graphite oxide-shell particles. Modified Hummers method is now 

widely used for graphite oxide (or graphene oxide) synthesis, yet it is ambiguous regarding 

the differences in yield, size distribution of graphene oxide sheets, chemical structure and 

oxidation degree of graphene oxide compared with Hummers method. Typically in modified 

Hummers method, graphite is pre-oxidized with conc. H2SO4, K2S2O8 and P2O5, then the 

pre-oxidized graphite is further oxidized following Hummers method.  

Hummers method: Hummers method for graphite oxide synthesis was first reported in 

1958.
29

 After the discovery of graphene in 2004, people gradually noticed graphite oxide can 

be exfoliated into single-layered graphene oxide simply by ultrasonication in water. Now 

Hummers method is also widely used for graphene oxide synthesis. Typically in Hummers 
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method, natural graphite flakes (or powders) is oxidized into graphite oxide with conc. H2SO4, 

NaNO3 and KMnO4 at 35 °C. Graphite oxide still possesses a laminar structure with an 

increased interlayer distance of 0.61 nm~1.2 nm compared with graphite which has an 

interlayer distance of 0.34 nm.
81

 

Formation of graphite intercalation compounds (GICs): The first pre-oxidation step in 

modified Hummers method involves the formation of graphite intercalation compounds 

(GICs) as was reported by Tour’s group.
82

 They found that conc. H2SO4 does not 

spontaneously intercalate into graphite, however, in the presence of oxidants (e.g. KMnO4, 

K2S2O8 or (NH4)2S2O8), conc. H2SO4 can intercalate into graphite and lead to the formation of 

graphite intercalation compounds (GICs). By contrast, I found that the intercalation of conc. 

H2SO4 and K2S2O8 into graphite to form GIC can be completed in 15-20 minutes with the 

help of sonication, while the intercalation needs 6-8 h without sonication.
82

 

 

 

 

 

 

 

 

As shown in Fig. 20a, the H2SO4-K2S2O8-graphite intercalation compound has lost its 

luster and possesses a much larger volume compared with its parent graphite. The volume 

expansion is caused by the intercalation of other species (H2SO4-K2S2O8) into the graphite 

(a) G 

2D 

Fig. 20 (a) Photographs and (b) Raman spectra of graphite and H2SO4-K2S2O8-GIC. 

GIC Graphite 

(b) 
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lattice which largely increases the inter-layer distance. Raman spectroscopy was further used 

to characterize the GIC and graphite. Raman measurements were performed with a Horiba 

Jobin Yvon LabRAM HR 800 Raman spectrometer using a 633 nm excitation laser. The 

Raman spectrum of graphite (Fig. 20b, bottom) shows two pronounced peaks: G band at 

~1580 cm
-1

, and 2D band at ~2690 cm
-1

. The Raman spectrum of H2SO4-K2S2O8-GIC (Fig. 

20b, top) shows only one prominent G peak located at 1610 cm
-1

, which is shifted compared 

with that of graphite. Another noteworthy aspect is that the intensity of the G band of GIC is a 

lot higher than that of graphite indicating that intercalation of graphite with other species (or 

heavy doping) can enhance the G band in the Raman spectrum, which is in accordance with 

the literature.
2
 The Raman spectrum of H2SO4-K2S2O8-GIC after being exposed to air for 8 h 

is shown in Fig. 1b, middle. The reappearance of the 2D band indicates the deintercalation of 

GIC when exposed to air. This can be explained by that concentrated H2SO4 from GIC 

adsorbed water vapors from the air when it is exposed which leads to the deintercalation. 

Thus the intercalation of concentrated H2SO4-K2S2O8 with graphite is somewhat reversible. 

 

 

 

 

 

 

Similarly, another concentrated H2SO4-KMnO4-GIC (graphite flakes 1.0 g, KMnO4 3.0 g, 

concentrated H2SO4 10 mL) was prepared with sonication. Again, the intercalation was 

Graphite GIC 

Fig. 21 Photographs of graphite and H2SO4-KMnO4-GIC. 
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accomplished in about 15-20 minutes with the help of sonication, large volume expansion and 

color change were observed as shown in Fig. 21. 

The as-prepared H2SO4-K2S2O8-GIC and H2SO4-KMnO4-GIC may have applications in 

producing high quality graphene (much less oxidized compared with graphene oxide 

synthesized by Hummers method) via liquid-phase exfoliation with the help of sonication
55

 

and MnO2-graphene hybrid material.
83

 

The chemical processes of making graphene oxide in Hummers method involve 

formation of some kind of H2SO4-KMnO4-GIC and meanwhile oxidation on some edges, 

defects, cracks, and/or vacancies of graphite sheets (carboxylic and carbonyl groups are most 

likely formed at this stage), further hydrolysis of the GIC affords more oxygen-functional 

groups attached to the carbon plane (hydroxyl and epoxide groups are most likely formed at 

this stage). Once the oxygen-containing groups are attached to the graphene plane, the van der 

Waals forces between graphene planes are minimized, therefore, the exfoliation of graphite 

(or oxidized graphite) into few-layered graphite or even single-layered graphite (i.e. graphene) 

is possible by mechanical stirring which is used throughout the whole reaction. Sonication of 

few-layered graphite oxide leads to mass production of mono-layered graphene oxide.
84-85

 

It is worth pointing out that the size of graphite oxide sheet which finally determines the 

size of graphene oxide sheet is also largely reduced by the hot gas bubbles produced by 

sonication. Su et al.,
86

 Zhou et al.
87

 and Zhao et al.
88

 reported the synthesis of ultra-large 

graphene oxide sheets with dimensions of hundreds of micrometers which are much larger 

than conventional graphene oxide sheets that have lateral sizes in the range of hundreds of 

nanometers to a few micrometers. In their methods the exfoliation of multi-layered graphite 
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oxide into single-layered graphene oxide is realized by just mechanical stirring or mild 

sonication for a short time period of 5 minutes while in conventional method sonication for 30 

minutes~1 hour is usually used. Therefore, no sonication or mild sonication should be used in 

order to get ultra-large graphene oxide sheets with lateral sizes of hundreds of micrometers. 

3.1.2 Experimental Procedures - Modified Hummers Method  

1. Graphite flakes (3.6 g, Sigma-Aldrich, 100 mesh) were ground with NaCl (30 g) for 

20 minutes. Afterwards, copious water was added to dissolve NaCl, the mixture was filtered 

and washed several times to remove NaCl. The remaining solid was dried at 80 °C for 1.5 h.  

2. Dry graphite powders (~3.0 g) was added into a solution of K2S2O8 (2.5 g), P2O5 (2.5 

g) and concentrated H2SO4 (15 mL, 95-98%). The mixture was kept in an 80 °C oil bath for 4 

h with stirring. After the dark blue mixture was cooled to room temperature naturally, 

deionized water was added, followed by filtration and rinsing with copious water. The solid 

was dried at 60 °C for 1.5 h. 

3. The pre-oxidized graphite was transferred into a 500 mL round-bottom flask, 69 mL 

concentrated H2SO4 was added. The mixture was stirred for 30 minutes and transferred to a 

0 °C ice bath. KMnO4 (15 g) was added slowly with stirring to keep the temperature of the 

mixture below 20 °C.  

4. The mixture was heated for 2 h with stirring in a 35~40 °C water bath. Then it was 

carefully diluted with 140 mL deionized water (violent effervescence occurs with an increase 

in the temperature to 92~98 °C) and continued stirring for 30 minutes. 
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5. Afterwards, the flask was removed from the water bath, and the mixture was 

transferred to a large beaker. 420 mL deionized water was added, followed by 20 mL 30 wt% 

H2O2 (the color of the suspension turned green). The suspension was stirred for 10 minutes, 

repeatedly centrifuged at 11,000 rpm for 10 minutes, and washed with 5% HCl for three times, 

followed by deionized water twice (the precipitate was collected and the supernatant which 

contained large amounts of salts and small light-weighted particles were thrown away each 

time).  

6. The slurry-like precipitate was re-dispersed in 350 mL Milli-Q water and stirred for 15 

minutes. The suspension was treated with bath sonication (operating frequency 33 kHz, power 

60 W) for 30 min. Then the suspension was repeatedly centrifuged at 3,000 rpm for 4~5 times 

to remove any insoluble particles (the supernatant was collected each time). 

7. Afterwards the homogenous brown solution was dialyzed against Milli-Q water for 1 

week and stored for future use. The concentration was determined by filtering 8.0 mL stock 

solution using a 0.02 μm Anodisc membrane filter (Whatman), drying the resulting film in a 

50 °C oven overnight and weighing its mass. The concentration of the solution was about 

2.5~3.5 mg/mL using the preparation method described above. 

Photographs of as-prepared graphene oxide stock solution and diluted ones are shown in 

Fig. 22. Graphene oxide solution is homogeneous with no visible particles, and has a dark 

brown to light yellow color depending on its concentration instead of a black color suggesting 

that the π-conjugation of graphene has drastically changed after oxidation which leads to 

different band structures and transitions under visible light excitation. Graphene oxide 

solution is table for infinite time. The synthesis of graphene oxide by modified Hummers 
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method is mass production as illustrated by the left photograph in Fig. 22 which shows 250 

mL 2.8 mg/mL graphene oxide solution. 

 

 

 

 

 

 

 

3.2 Graphene Oxide Characterization 

3.2.1 FTIR Characterization 

Graphene oxide solid obtained by vacuum filtration was finely ground with KBr, and 

then compressed into thin pellets for FTIR characterization. The FTIR spectrum was collected 

using a Bruker Tensor 37 FTIR spectrometer.  

The characteristic features of the FTIR spectrum of graphene oxide (Fig. 23) are the 

strong and broad band at 3424 cm-1 which can be attributed to the O-H stretching of 

carboxylic, hydroxyl groups and absorbed water, weak bands at 2928 and 2851 cm
-1

 which 

can be attributed to the C-H symmetric and asymmetric stretching of CH2 groups, 1725 cm
-1

 

attributed to the C=O stretching of ketone, carboxylic and/or ester groups, sharp and middle 

strong band at 1628 cm
-1

 attributed to carboxylic groups or the C=C stretching, 1401 cm
-1

 

attributed to the O-H bending of carboxylic, hydroxyl groups and absorbed water, 1227 cm
-1

 

Fig. 22 Photographs showing (left) large-scale synthesis of graphene oxide and 

(right) graphene oxide aqueous solutions of different concentrations. 

3.4 mg/mL 1.0 mg/mL 0.10 mg/mL 

250 mL (2.8 mg/mL) 
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attributed to the C-OH stretching of carboxylic and hydroxyl groups, 1057 cm
-1

 attributed to 

the C-O-C stretching of epoxide and/or ester groups.
34,89-90

 

 

 

 

 

 

 

 

 

3.2.2 UV-Vis Characterization 

 

 

 

 

 

 

 

Diluted graphene oxide aqueous solution was used for UV-vis characterization. The 

measurement was performed with a Thermo Scientific GENESYS 10S UV-Vis 

spectrophotometer. The characteristic features in the UV-vis spectrum of graphene oxide (Fig. 

Fig. 23 FTIR spectrum of graphene oxide. 

Fig. 24 UV-vis spectrum of graphene oxide. 
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24) are the sharp peak at 231 nm which can be attributed to the π→π* transitions of -C=C- 

bonds, the broad and less obvious peak at 294-305 nm which can be attributed to the n→π* 

transitions of -C=O bonds.
91-92

 

3.2.3 AFM Characterization 

SiO2/Si substrates were sonicated in deionized water for 15 minutes and blown dry with 

pure nitrogen gas, followed by the same treatment with acetone. The pre-cleaned substrates 

were further cleaned by oxygen plasma in a glove box. GO sheets were deposited on the 

pre-treated SiO2/Si substrates by spin-coating of a GO H2O-EtOH dispersion (volume ratio of 

H2O to EtOH is 1:9) at 3,000 rpm. As the volatile solvent evaporated away quickly, GO sheets 

stuck to the substrates because of van der Waals force. AFM characterization was performed 

with a Nanoscope MultiMode
TM

 AFM instrument in the taping (non-contacting) mode at a 

scan rate of 1.0 Hz, and a silicon probe with a resonant frequency of 300 kHz was used. Some 

typical AFM images are shown in Fig. 25. GO sheets are of irregular shapes with sizes in the 

range of hundreds of nanometers to a few micrometers. 
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Fig. 25 AFM images showing graphene oxide sheets on SiO2/Si substrates at different resolutions. 

Resolutions of the images are as follows: (a) 20 μm × 20 μm, (b) 8 μm × 8 μm, (c) 4 μm × 4 μm, 

(d) 4 μm × 4 μm, (e) 2 μm × 2 μm, (f) 8 μm × 8 μm. 

(a) (b) 

(c) (d) 

(e) (f) 



 

44 

 

 

     

1 μm 

× × 

× × 

1 μm 

× × 

1 μm 

d = 0.836 nm 

d = 1.016 nm 

d = 1.021 nm 

Fig. 26 (Left) AFM images of graphene oxide sheets and (right) height profiles along the pink 

lines indicated in the AFM images showing the thickness of graphene oxide. 
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Thickness Analysis:  

Height profiles along the pink lines indicated in the AFM images are shown in Fig. 26. 

The red triangle represents the AFM tip. The height is larger when the red triangle is on the 

surface of a GO sheet compared with that when the red triangle is on the substrate. The height 

difference represents the thickness of a GO sheet, which is 0.8~1.1 nm indicating the 

as-synthesized GO is single-layered according to the literature.
35

 Compared with pristine 

graphene (unoxidized) which has a van der Waals thickness of 0.34 nm, GO is thicker due to 

the covalently bonded oxygen-containing groups on both sides of the carbon plane. 

Phase imaging in tapping mode AFM measures the phase shift or lag of an oscillating 

cantilever between driving signal and AC output signal. Phase images can also reveal the 

morphology of the sample. Some typical phase images are shown in Fig. 27 left. These phase 

images evidently show the sheet-like structure of GO. Although these 2D GO sheets seem 

rigid on the SiO2/Si substrates, they might be flexible in solutions as has been suggested by 

Ruoff and co-workers.
90

 3D topological view images of GO sheets on SiO2/Si substrates were 

also obtained (Fig. 27 right). The surfaces of GO sheets are not very flat in these 3D 

topological images, which might be explained by that the functional groups (hydroxyl and 

epoxide) on the carbon plane are different which leads to variations in the thicknesses. 

Another reason might be that the attachment of oxygen-functional groups to the carbon plane 

substantially changes the hybridization ways of carbon (from sp
2
 to sp

3
), which destroys the 

flat structure of conjugate carbon plane. 
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(a) (b) 

(c) (d) 

(g) 

(f) (e) 

(h) 

Fig. 27 AFM phase and 3D topographical images of graphene oxide sheets on SiO2/Si 

substrates. a, c, e, g are phase images, and b, d, f, h are corresponding 3D topographical 

images. 
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3.2.4 Raman Characterization 

A small piece of graphene oxide film obtained by vacuum filtration or natural graphite 

flake (Sigma-Aldrich) was put on a glass slide for Raman Characterization. All Raman 

measurements were performed with a Horiba Jobin Yvon LabRAM HR 800 Raman 

spectrometer using a 633 nm excitation laser. A ×50 objective was used. 

 

 

 

 

 

 

 

 

In the Raman spectrum of graphite, the small D band at ~1317 cm
-1

 arises from the first 

order of zone-boundary phonons and is present only in defected graphite. The small D band 

indicates graphite has few defects. The intensity ratio of D band to G band is widely used to 

quantify the amount of defects in graphitic materials (graphite, graphene, carbon nanotubes). 

The strong G band at ~1562 cm
-1

 is due to the doubly generate zone center E2g mode. The 2D 

band is due to the second order of the zone-boundary phonons and is double of the D band. 

The 2D band of graphite actually consists of two bands, 2D1 of lower intensity at 2625 cm
-1

, 

and 2D2 of higher intensity at 2674 cm
-1

. By contrast, the 2D band of graphene is a single 

sharp peak.
93-94

 

Fig. 28 Raman spectra of graphene oxide and graphite. 
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The Raman spectrum of GO shows two pronounced peaks, the D band at ~1330 cm
-1

, 

and the G band at ~1585 cm
-1

. The broadening of the D band and G band, and the much 

higher intensity ratio of D to G than bulk graphite indicates GO has lots of defects. Notably, 

no 2D band is observed in GO, suggesting the structure of GO is much different from 

graphene or graphite because of the covalent bonding of considerable amount of 

oxygen-containing groups. 

3.2.5 XPS Characterization 

Small pieces of GO solid obtained by vacuum filtration were used for XPS 

characterization. The XPS measurements were performed with a Thermo Scientific 

ESCALAB 250Xi XPS spectrometer in Prof. Tong Leung’s lab (University of Waterloo). 

Dual Al-Kα X-ray (1486.6 eV, 150 W) with flood gun (0.2 mA) was used to solve the 

charging issue since GO is insulating. CasaXPS was used for the deconvolution of XPS 

peaks.  

 

 

 

 

 

 

 

Fig. 29 (a) XPS survey spectrum and (b) C1s spectrum of graphene oxide (red line is the 

experimental data and black lines are the fitted peaks). 

(a) (b) 
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Fig. 29a shows the XPS survey spectrum of as-prepared graphene oxide. Only C 

(binding energy 284.5 eV) and O (binding energy 532.0 eV) were detected with the absences 

of other elements such as S and Mn which are common contaminants, suggesting the 

as-prepared graphene oxide was of high purity. Quantitative analysis based on the XPS survey 

spectrum showed that the atomic percentages of C and O were 66.01% and 33.99%, 

respectively. (The relative or atomic sensitivity factors (RSF or ASF) of C and O are 0.296 

and 0.711, respectively.) The high resolution C1s spectrum of graphene oxide (Fig. 10b) could 

be fitted into three main peaks, C=C (sp
2
)/C–C (sp

3
) at 284.4 eV, C–OH/C–O–C (hydroxyl 

and epoxide) at 286.6 eV, C=O (carbonyl) at 288.3 eV.
36,91

 

 

3.3 Preparation of Free-Standing Graphene Oxide Thin Films (or Papers) 

Free-standing films or papers play an important role in modern technological society. 

They can be used as protective layers, filter membranes for separation applications, 

components in batteries or supercapacitors.
95

 Graphene oxide, the oxidized form of graphene, 

is very hydrophilic due to the covalently-bonded oxygen-containing groups, which suggests 

that graphene oxide is compatible with aqueous-phase processing. Nair et al.
96

 reported that 

submicrometer-thick graphene oxide membranes allow unimpeded permeation of water while 

they are completely impermeable to liquid, vapors and gases including helium. These 

graphene oxide membranes were made by spin-coating of graphene oxide aqueous solutions 

on Cu foils, followed by polymer masking and etching off the underneath copper. Eda et al.
97

 

reported large-area ultrathin (1~5 layer) films of reduced graphene oxide for transparent and 
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flexible electronics. In their method, large-area graphene oxide films on filter membranes 

were first made by vacuum filtration, and then transferred onto plastic substrates, followed by 

chemical and thermal reduction to recover the conductivity. 

While ultrathin graphene oxide films with thicknesses below hundreds of nanometers are 

important to separation technology, transparent and flexible electronics, macroscopic 

free-standing graphene oxide films with thicknesses from a few micrometers to tens of 

micrometers or even higher are expected to find applications in thin film batteries or 

supercapacitors, biomedical areas, mechanically strong and stiff materials with lamellar 

structures.
98-101

 Currently there are two main methods for making macroscopic free-standing 

graphene oxide thin films, one is vacuum filtration or flow-directed assembly, the other is 

self-assembly at the water-air interface. 

3.3.1 Vacuum Filtration 

Dikin et al.
95

 first reported the use of vacuum filtration or flow-directed assembly to 

prepare free-standing graphene oxide thin film or paper. In a typical experiment, 3.0 mL 

graphene oxide solution (concentration 0.93 mg/mL) was filtered using an Anodisc membrane 

filter (diameter 25 mm, pore size 0.02 μm, Whatman), and the film was carefully peeled off 

the filter using a razor blade.  

Fig. 30 shows the digital image of a free-standing graphene oxide film and SEM (Zeiss 

LEO 1550) image of its cross-section. The film is flexible and mechanically strong enough to 

be handled with a tweezer. The thickness of the resulting film is about 6.5 μm. The SEM 

image of the cross-section clearly shows the highly ordered lamellar structure. 
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The mechanism of forming thin films with highly ordered lamellar structure lies in that 

graphene oxide sheets first blocked the pores in the filter membrane, and the sheets come 

close to each other as the water vaporization on the top of the solution also occurs during the 

filtration which makes the solution denser and denser, the interactions between sheets are 

stronger as a result, and the sheets choose to inter-tile with each other. The small amount of 

water molecules between the sheets can also act as a smoothing component to facilitate the 

formation of layered structure. Finally, van der Waals forces and hydrogen bonds hold the 

sheets tightly and mechanically strong graphene oxide thin films with highly ordered lamellar 

structure are formed as a result.
95

 

Ruoff’s group reported that the as-prepared graphene oxide papers have excellent 

mechanical properties with a modulus of ~32 GPa and a tensile strength of ~72.2 MPa, both 

of which values are higher than carbon nanotube thin films.
95

 

3.3.2 Self-Assembly at the Water-Air Interface 

Chen et al.
102

 first reported the method of efficiently making graphene oxide thin films 

(typically a few micrometers to tens of micrometers) by self-assembly of graphene oxide 

(a) (b) 

Fig. 30 (a) Photograph of a graphene oxide thin film, and (b) SEM image showing the 

cross-section of the film 
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sheets at the water-air interface. This method is more efficient than the vacuum filtration 

method. This method usually takes 1~2 hours to make the films while the vacuum filtration 

method usually takes more than 12 hours or even 1~2 days. In a typical experiment, graphene 

oxide solutions with concentrations from 1.0 mg/mL to 3.0 mg/mL were put in polystyrene 

weighing dishes. The solutions were heated in an 80~90 °C oven for 1~2 hours. Then the 

weighing dish was taken out and the small amount of solution under the film was carefully 

poured out. Afterwards the weighing dish was put back into the oven to completely dry the 

film. After the film is dry, it is easy to peel off the weighing dish since graphene oxide is not 

sticky to polystyrene materials. A digital image of a free-standing graphene oxide film 

(diameter 64 mm) prepared in this thesis using this method is shown below. 

 

 

 

 

 

 

 

Schematic of the mechanism for this method is shown in Fig. 31b. When a graphene 

oxide water solution is heated, water vaporizes and lifts up graphene oxide sheets in the 

solution to the water-air interface. Graphene oxide sheets tend to tile on each other at the 

interface due to the effect of surface tension. Then van der Waals forces and strong hydrogen 

bonds hold the sheets tightly. Mechanically strong graphene oxide film is formed as a result. 

Fig. 31 (a) Digital image of a free-standing graphene oxide film prepared in this thesis by 

self-assembly at the water-air interface, (b) schematic of the film formation mechanism.
102

 

(a) (b) 



 

53 

Besides time-saving, another advantage of this method is that large-area graphene oxide 

film can be achieved via this method while the area of graphene oxide film is usually limited 

by the size of filtration apparatus in the vacuum filtration method. However, the mechanical 

properties of graphene oxide thin films prepared by this method are not as good as those 

prepared by the vacuum filtration method. The modulus and tensile strength of the former 

were reported to be ~12.7 GPa, ~67.7 MPa, respectively, both of which are lower than the 

reported values for the latter (32 GPa, 72.2 MPa, respectively).
102

 

 

3.4 Conclusions and Future Aspects 

Graphene oxide, a 2D carbon material decorated with abundant oxygen-containing 

groups (mainly hydroxyl, epoxide and carboxylic groups), can be massively and 

cost-effectively produced by Hummers method. Graphene oxide is a lot more hydrophilic 

than pristine graphene due to the oxygen-functionalities. The concentration of graphene oxide 

in water is >4 mg/mL. The thickness of graphene oxide is between 0.8 and 1.1 nm. Raman 

characterization shows that graphene oxide bears many defects in its structure which are 

created by the severe oxidation during the synthesis process. Graphene oxide sheets produced 

by Hummers method are of irregular shapes with sizes in the range of hundreds of nanometres 

to a few micrometres. Free standing and mechanically strong graphene oxide thin films (or 

papers) can be prepared by vacuum filtration of graphene oxide aqueous solution or 

self-assembly of graphene oxide sheets at the water-air interface. 
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Future aspects lie in gaining further insights into the oxidation process in Hummers 

method and elucidating the chemical structure of graphene oxide. Using solution-based 

chemical methods to decorate graphene sheets with metal or metal oxide nanoparticles for 

energy and sensor applications, to prepare graphene-polymer nanocomposites are also future 

directions. 
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Chapter 4 – Exploring the fluorination of Grpahene Oxide Using 

DAST - Chemical Reduction of Graphene Oxide 

4.1 Experimental Procedures and Observances 

 

 

 

 

 

 

GO thin films (thickness ~6.5 μm) were put in sealed 20 mL glass vials which contain 1 

mL DAST (Matrix Scientific) and 1 mL CH2Cl2 or CHCl3 as solvent. Moisture in the vial was 

not intentionally removed since small amount of HF produced by the reaction of DAST with 

water could facilitate the fluorination reaction.
71

 Another reason was that the amount of 

DAST added for the reaction was excessive, ruling out the scenario that all the DAST reacted 

with moisture and rendered the fluorination fail. The vials were kept at 0 °C, room 

temperature and 50 °C, respectively, for reduction and fluorination. For reactions at 0 °C and 

room temperature, CH2Cl2 was used as solvent and the reaction time was 1 week. For reaction 

at 50 °C, CHCl3 was used as solvent and the reaction time was 17 h. After the reactions were 

complete, the films were carefully taken out of the vials using a tweezer and soaked in 

CH2Cl2 several times, followed by deionized water to wash away by-products adsorbed on the 

films. (Direct contact of DAST with water should be avoided in any case since DAST reacts 

graphene oxide film 

20 mL glass vial 

1 mL DAST +  

1 mL CH2Cl2 or  

CHCl3 

Fig. 32 Schematic of the experimental setup for the reaction of graphene oxide film with DAST. 
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violently with water!) The films were referred to as reduced graphene oxide-rGO (0 °C), rGO 

(R.T.) and rGO (50 °C), respectively. 

Schematic of the experimental setup for the reaction of graphene oxide film with DAST 

is shown in Fig. 32.  

Color Change and Hydrophobicity Change of the Film: 

Color change from brownish in GO to black in rGO were observed after DAST treatment 

(Fig. 33). And rGO (50 °C) film is more lustrous than the other two rGO films. 

 

 

 

 

 

During the washing of rGO films with water, they were observed to be very hydrophobic. 

A comparison of water contact angle between rGO and GO was conducted to verify this. The 

digital image (Fig. 34) was taken immediately after one drop of deionized water was placed 

on each of the films. Obviously rGO (50 °C) was more hydrophobic than GO. 

 

 

  

 

 

 

 rGO (50 °C)  GO 

 DAST 

Fig. 33 Digital images of GO and rGO (50 °C) showing the color change after DAST treatment. 

Fig. 34 Water contact angle comparison of rGO (50 °C) and GO thin films. 

rGO (50 °C) GO 
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4.2 Characterization 

4.2.1 XPS Characterization 

In order to gain insights into the compositional and structural changes of GO by DAST 

treatment, XPS characterization was carried out.  

Small pieces of rGO films were used for XPS characterization. XPS measurements were 

performed with a Thermo Scientific ESCALAB 250Xi XPS spectrometer. Monochromatic 

Al-Kα X-ray (1486.6 eV, 150 W) without flood gun was used.  

 

 

 

 

 

 

 

 C (at%) O (at%) F (at%) C/O 

rGO (50 °C) 86.71 9.73 3.55 8.91 

rGO (R.T.) 81.33 15.20 3.47 5.35 

rGO (0 °C) 74.50 21.95 3.54 3.39 

GO 66.01 33.99 0 1.94 

 

 

Fig. 35 XPS Survey spectra of graphene oxide film and reduced graphene oxide films. 

Table 1 Atomic ratio of GO and rGO determined from XPS survey spectra. 
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Fig. 35 shows the XPS survey spectra of GO and rGO. Quantitative analysis based on 

the XPS survey spectra was performed with CasaXPS, the relative sensitivity factors of C, O, 

F are 0.296, 0.711 and 1.000, respectively. The atomic percentages of GO and rGO are listed 

in table 1. The fluorine content of all rGO samples is ~3.5 at% and does not change much 

with reaction temperatures. However, the oxygen content decreases significantly when the 

reaction temperature is increased from 0 °C to 50 °C. The C/O atomic ratio increases from 

1.94 in GO to 5.35 in rGO (R.T.) and 8.91 in rGO (50 °C). The C/O ratio of 8.91 in rGO 

(50 °C) is slightly higher than the sequential NaBH4 and concentrated H2SO4 reduced GO 

(C/O ratio is 8.57)
34

 and close to the hydrazine reduced GO (C/O ratio is 10.3)
35

, which 

indicates the effective reduction of GO by DAST. 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 36 High resolution XPS C1s spectra of GO and rGO films. 

(d) 

(a) (b) 

(c) 
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High resolution XPS C1s spectra are further used to confirm the reduction and 

fluorination. The C1s spectrum of graphene oxide (Fig. 36a) can be fitted into three peaks, 

C=C (sp
2
)/C–C (sp

3
) at 284.4 eV, C–OH/C–O–C (hydroxyl and epoxide) at 286.6 eV, C=O 

(carbonyl) at 288.3 eV.
36,91

 By contrast, the C1s spectra of rGO can be fitted into five peaks, 

C=C (sp
2
) at 284.4 eV, C–C (sp

3
) at 285.6 eV, C–OH/C–O–C (hydroxyl and epoxide) at 286.6 

eV, C=O (carbonyl) at 288.3 eV, and CF2 at 289.7 eV.
36,103

 The C=C (sp
2
) peaks of rGO (R.T.) 

and rGO (50 °C) are narrower than that of GO. The C–OH/C–O–C and C=O peaks of rGO 

(50 °C) decrease significantly compared with GO suggesting effective reduction. 

 

 

 

 

 

 

 

 

High resolution F1s spectrum of rGO (50 °C) (Fig. 37) can be fitted into a single peak at 

686.9 eV corresponding to covalent C-F bond.
67,103

 

However, the middle part of the film is not reacted as justified by the XPS survey 

spectrum (Fig. 38) on the cross section of rGO (50 °C) film. XPS characterization on the 

cross section of the film was done by shining the X-ray on the cross section and collecting 

resulting data. The chemical composition determined from this survey spectrum is: C 76.22 

Fig. 37 XPS High resolution F1s spectrum of rGO (50 °C). 
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at%, O 22.54 at%, F 1.23 at%. The O/C ratio of the cross section of the film is 0.30 which is 

much higher than that of the surface of the film which is 0.11. This lends support to that the 

middle part of the film is not reacted probably because it cannot be accessed by DAST. 

 

 

 

 

 

 

 

 

4.2.2 FTIR Characterization 

FTIR was used to investigate the chemical changes of GO caused by DAST treatment. 

Small pieces of rGO and GO films were finely ground with KBr and pressed into thin 

pellets for FTIR characterization. The FTIR spectra were collected with a Bruker Tensor 37 

FTIR spectrometer. 

The FTIR spectra of GO and rGO (50 °C) are shown in Fig. 39. After the treatment with 

DAST, the band at 1725 cm
-1

 decreases significantly since most of the C=O groups are 

converted into CF2 groups. The new band at 1580 cm
-1

 may be attributed to the stretching 

vibration of isolated C=C bonds formed by elimination of hydroxyl groups. Another new 

band at 1200 cm
-1 

can be attributed to the stretching of covalent C-F bond which is well 

Fig. 38 XPS survey spectrum on the cross-section of rGO (50 °C) film. 

C1s O1s 

F1s 
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known for graphite fluoride, fluorinated carbon nanotubes and fluorinated graphene.
63,67,104-105

 

This band is weak since the fluorination is limited as revealed by XPS characterization. The 

band at 1100 cm
-1

 is likely due to the stretching of C-O-C group (epoxide) since the reactivity 

of DAST towards epoxide is low according to the literature.
70,106

 Epoxide might account for 

the residual oxygen in rGO (50 °C) as well. The overlapping of C-F stretching with C–O–C 

stretching results in a broad band from 1000 cm
-1

 to 1300 cm
-1

. The fingerprint region from 

1000 to 1750 cm
-1

 of rGO (50 °C) is less evident than that of GO suggesting reduction of GO. 

The persistently strong band at 3442 cm
-1

 of rGO (50 °C) is largely due to the moisture in the 

KBr pellets. 

 

 

 

 

 

 

 

 

4.2.3 Raman Characterization 

Small of pieces of GO and rGO films were placed on glass slides for Raman 

characterization. All Raman spectra were collected with a Horiba Jobin Yvon LabRAM HR 

800 Raman spectrometer using a 633 nm excitation laser and a ×50 objective. 

Fig. 39 FTIR spectra of rGO (50 °C) and GO. 
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The Raman spectra of GO and rGO are shown in Fig. 40, of which the characteristic 

features are the D band at 1330 cm
-1

, and G band at 1587 cm
-1

. D and G positions, intensity 

ratio of ID to IG (ID/IG) are listed in table 2.  

 

 

 

 

 

 

 

 

 

 

 D position G position ID/IG 

rGO (50 °C) 1321 1576 1.63 

rGO (R.T.) 1322 1580 1.46 

rGO (0 °C) 1325 1582 1.24 

GO 1330 1587 1.19 

 

 

The D band and G band of GO are both shifted to lower wavenumbers after reduction by 

DAST. As the G band of graphite is located at 1562 cm
-1

 (Fig. 28), the G band shift from 1587 

cm
-1

 in GO to 1576 cm
-1

 in rGO (50 °C) is expected considering that the structure of rGO is 

more close to graphite or graphene than GO after chemical reduction (the Raman spectra of 

Fig. 40 Raman spectra of GO and rGO. (Excitation wavelength is 633 nm.) 

Table 2 Raman D and G positions, intensity ratio of D to G (ID/IG) of GO and rGO. 
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graphite, GO and rGO were collected using the same Raman spectrometer under same 

conditions in this thesis). Another notable change in the Raman spectra is that the ID/IG ratio 

increases much from 1.19 in GO to 1.63 in rGO (50 °C) indicating that more defects are 

introduced into the carbon plane and/or the size of conjugating graphitic domains is reduced 

after chemical reduction of GO. The increase of ID/IG ratio after chemical reduction by DAST 

is in accordance with the literature data using other reducing reagents including hydrazine and 

HI-AcOH.
42 

4.2.4 Thin Film Conductivity Measured by a Four-Probe Method 

In order to evaluate the effect of DAST reduction on the electrical conductivity, 

four-probe thin film conductivity measurements were carried out. Small rectangular film (size 

12 mm × 5 mm) of GO or rGO (50 °C) was stuck to a four probe stand (spacing ~2.5 mm) 

using silver paste and mounted into a resistivity measurement system for collecting data. 

Slope for Fig. 41a is: 72000 
mV

μA
 = 7.2 × 10

7 
Ω 

Sheet resistance is: Rs = 
π

ln2
 × slope = 4.53 × 7.2 × 10

7
 Ω·□

-1
 = 3.3 × 10

8
 Ω·□

-1 

Thickness of the film is: 6.5 μm 

Resistivity: ρ = Rs × thickness = 3.3 × 10
8
 Ω·□

-1
 × 6.5 × 10

-6
 m = 2.1 × 10

3
 Ω·m 

Conductivity of GO film is: κ = 1/ρ = 4.8 × 10
-4

 S·m
-1

 

Slope for Fig. 41b is: 0.08792 
mV

μA
 = 87.92 Ω 

Sheet resistance is: Rs = 
π

ln2
 × slope = 4.53 × 87.92 Ω·□

-1
 = 398.3 Ω·□

-1 

Thickness of the film is: 6.5 μm  

Resistivity: ρ = Rs × thickness = 398.3 Ω·□
-1

 × 6.5 × 10
-6

 m = 2.6 × 10
-3

 Ω·m 
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Conductivity of rGO (50 °C) film is: κ = 1/ρ = 385 S·m
-1

 

 

 

 

 

 

 

 

 

 

 

 

 

The conductivity of rGO (50 °C) film (385 S·m
-1

) is ~6 orders of magnitude higher than 

that of GO film (4.8 × 10
-4

 S·m
-1

) indicating that DAST is an effective reducing reagent which 

can render GO reattain its electrical conductivity by chemical reduction. Since it is not a 

homogenous reaction and the middle part of the GO film is not reacted, the film sheet 

resistance can be even lower if a homogenous reaction is developed. Also the conductivity of 

rGO film can be much higher than the value (385 S·m
-1

) reported here because of the same 

reason. In other words, the capability of DAST in recovering GO’s electrical conductivity has 

not been fully brought to light to this point. However, the obtained conductivity (385 S·m
-1

) 

of a GO film reduced by immersing in a DAST solution is comparable to that (456 S·m
-1

) of a 

Fig. 41 (a) Schematic of the four probe connection, linear plots of voltage between probe 2 and 3 

versus current for (b) GO film, and (c) rGO (50 °C) film. 

GO or rGO film 

four-probe connection 

1 2 3 4 

(a) 

(b) (c) 
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GO film with the same thickness (~6.5 μm) reduced by exposing to hydrazine vapor.
42

 Both 

of these values are much lower than the value (7200 S·m
-1

) reported for a rGO film prepared 

by a homogeneous reaction with hydrazine
38

 because the middle part of the film is not reacted. 

Considering that the C/O ratio (8.9) of GO reduced by DAST is close to that (10.3) of GO 

reduced by hydrazine and that rGO films prepared using inhomogeneous ways have similar 

conductivities, the capability of DAST in recovering GO’s electrical conductivity should be 

close. Further reduction experiment using DAST in a homogeneous way needs to be 

conducted to justify this. 

 

4.3 Discussions 

The fluorine content of ~3.5 at% in all rGO films is quite out of my expectation, and the 

underlying mechanism is discussed below. The reaction of alcohols with DAST is 

exothermic,
69

 i.e. low temperature is favoured for such reactions. However, from the 

experimental data the fluorine content of all rGO films shows no notable dependence on 

reaction temperature. The fluorination of hydroxyl groups with DAST is likely to be via an 

SN2 mechanism (Fig. 21) in which steric hindrance plays an important role.
71,107

 

 

 

 

 
Fig. 42 Schematic of the SN2 reaction between a hydroxyl group and DAST. 



 

66 

The first step of the SN2 reaction is the elimination of one molecule HF from the 

reactants and formation of an intermediate [R---O---SF2NR2], the second step is F
-
 attacking 

the intermediate from the side opposite to the [O---SF2NR2] group and leaving of the 

[O---SF2NR2] group. The second step is governed by steric hindrance and is the limiting step.     

Since most hydroxyl groups in GO belong to tertiary alcohols according to the 

Lerf-Klinowski model,
33

 the second step in the reaction scheme shown above is unlikely to 

happen due to big steric hindrance, thus making the fluorination of hydroxyl groups by DAST 

fail. However, leaving of the [O---SF2NR2] group can happen if enough energy is provided, 

e.g. elevating reaction temperature. As a result, elimination of hydroxyl groups without 

incorporating fluorine into the graphene structure takes place at high temperature (room 

temperature and 50 °C). The fluorine in all rGO samples is likely to be mostly in the form of 

CF2 considering that the fluorination of carbonyl groups with DAST is easy to happen at 0 °C, 

room temperature and 50 °C.
69

 The fluorine content (~3.5 at%) is low since the amount of 

carbonyl groups in GO available for fluorination is very small according to the 

Lerf-Klinowski model. Due to the low reactivity of DAST towards epoxide groups,
70,106

 these 

groups cannot be effectively removed even at 50 °C and account for the residual oxygen in 

rGO (50 °C). Based on the discussions above, a schematic of the reduction of graphene oxide 

by DAST is shown in Fig. 43. 
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4.4 Conclusions and Future Aspects 

Special care should be given to that the hydroxyl groups in graphene oxide belong to 

tertiary alcohols, and steric hindrance should be considered when performing chemical 

modifications of graphene oxide. DAST is not effective for the fluorination of graphene oxide 

due to steric hindrance. However, it is very effective for the reduction of graphene oxide to 

make electrically conductive graphene. The C/O atomic ratio and conductivity of rGO by 

DAST reduction is comparable to rGO by hydrazine reduction. However, currently the 

method of using DAST for graphene oxide reduction is only limited to the surface of 

graphene oxide films. A solution-phase homogenous reaction route is yet to be developed for 

bulk synthesis of rGO. 

 

 

Fig. 43 Schematic of the reduction of GO by DAST. 
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Chapter 5 – Biological Application of Graphene Oxide - 

Tissue Engineering 

Note: This chapter is mainly adapted from my two co-authored papers (ref. 110 and ref. 111). 

This was a collaboration research with Prof. Ali Khademhosseini (Harvard-MIT Division of 

Health Sciences and Technology), and my contributions in this collaboration were graphene 

oxide synthesis, AFM, FTIR and Raman characterizations. 

5.1 Introduction  

5.1.1 Tissue Engineering 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tissue engineering involves the design and creation of functional substitutes for 

damaged tissues and organs. In principle, cells from a tissue are isolated from a biopsy first, 

cultured in a 2D environment for proliferation, then transferred to a 3D scaffold for tissue 

development. After that the as-grown tissue is tested for biomedical applications. The 

 

Fig. 44 Schematic showing the principle of tissue engineering.
108
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desirable properties of a scaffold include biocompatibility, high porosity and proper pore size 

for accommodation of a large number of cells and transportation of nutrients and metabolites, 

large surface area to volume ratio to interact with cells, mechanical integrity to support a great 

many cells, surface properties that encourage cellular responses (adhesion, growth, 

proliferation, etc.), and biodegradability for neo-tissue growth.
109

 

5.1.2 Gelatin Methacrylate (GelMA) Hydrogel as a Scaffold for Tissue Engineering 

 

 

 

 

 

Gelatin methacrylate (GelMA) is one of the most widely used scaffolds for tissue 

engineering. Schematic of the structure of GelMA is shown in Fig. 45. GelMA is a polymer 

with the gelatin backbone surface-modified with methacrylate groups. The gelatin in GelMA 

is a denatured protein which has good binding with cells and affords good cellular responses. 

GelMA can be cross-linked via vinyl groups to form a hydrogel under UV light irradiation 

with an appropriate initiator. 

 

5.2 Hybrid Hydrogel of GelMA and Graphene Oxide Through Non-Covalent 

Interaction 

Fig. 45 Schematic of the structure of gelatin methacrylate (GelMA). 
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Graphene oxide (GO) was incorporated into GelMA through non-covalent interaction for 

the creation of cell-laden GO-based hydrogels. Cellular responses in such a 3D hybrid 

scaffold were investigated. 

 

 

 

 

 

 

 

 

 

Optical images of as-prepared GelMA and GO-GelMA hydrogel pellets are shown in Fig. 

46a. The homogeneous brown colour of GO-GelMA pellet indicated the homogeneous 

dispersion of GO in the hybrid hydrogel. AFM characterization (Fig. 46b and Fig. 46c) 

showed that uncoated GO had a thickness of 1.6 ± 0.1 nm indicating it was sub-bilayer since 

single layer GO has a thickness of 0.8~1.2 nm. By contrast, GelMA coated GO was thicker 

with a typical thickness of 3.9 ± 0.1 nm. Fluorescence image (Fig. 46d) of GO coated with 

fluorescein-isothiocyanate-(FITC)-labeled GelMA showed planar structures with a 

homogeneous green colour indicating the successful incorporation of GO into GelMA. The 

size of such a sheet-like structure was >100 μm, which was much larger than that of a single 

Fig. 46 (a) Optical images of GelMA and GO-GelMA hydrogels. (b-c) AFM images of GO and 

GelMA coated GO. Insets show the height profiles along the white lines. (d) Fluorescence image 

showing GO sheets coated with FITC-conjugated GelMA. (Adapted with permission from ref. 110.) 
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GO sheet (hundreds of nanometres to a few micrometres). This could be explained by that the 

GelMA-coated GO sheets were cross-linked to form larger planar structures. 

 

 

 

 

 

 

 

 

 

 

 

 

The mechanical, porosity and degradation characteristics of GO-GelMA hydrogels are 

shown in Fig. 47. The compressive modulus for 5% GelMA was ranging from 5 to 9 kPa, 

while it had a wider range (4~24 kPa) for GO incorporated GelMA. Incorporation of GO into 

GelMA did not change the favourable porous structure of GelMA as shown in the SEM 

images of GelMA and GO-GelMA (Fig. 47b-c). Also incorporation of GO did not change the 

degradation trend of GelMA hydrogel as shown in Fig. 47d. However, after 24 hours of 

collagenase digestion, SEM characterization (Fig. 47e-f) showed that degraded GelMA and 

GO-GelMA had different morphologies. Degraded GelMA still possessed an ordered structure 

Fig. 47 Mechanical, porosity, and degradation characteristics of GelMA and GO-GelMA hydrogels. 

(a) Compressive moduli, (b-c) SEM images of GelMA and GO-GelMA hydrogels before degradation. 

(d) Degradation profiles of GelMA and GO-GelMA hydrogels when exposed to collagenase. (e-f) 

SEM images of GelMA and GO-GelMA after degradation with collagenase for 24 h. In the inset of 

(f), yellow arrow indicates a folded GO sheet. (Adapted with permission from ref. 110.) 
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with increased pore size while degraded GO-GelMA had a collapsed and disordered structure. 

The arrow in the inset of Fig. 47f points to a wrinkled sheet-like structure which is likely to be 

remaining GO sheet. 

    

 

 

 

 

 

 

 

Raman characterization was carried out to investigate whether collagenase digestion 

could cause structural changes to GO. As shown in Fig. 48, the Raman spectra of GO-GelMA 

before and after degradation showed similar D band (1330 cm
-1

) and G band (1580 cm
-1

), 

which are characteristic bands of GO. No obvious changes in the positions of D and G bands 

or D to G ratio were observed. Therefore, collagenase digestion did not affect the structure of 

GO. In other words, GO could not be degraded. 

Maintaining normal cellular behaviour in a 3D microenvironment is an important 

criterion for a scaffold in tissue engineering. Different cell-laden hydrogel microstructures 

containing NIH-3T3 fibroblasts were fabricated using established microfabrication methods. 

Fig. 49 shows the fluorescence images of cells in GelMA and GO-GelMA hydrogel 

microarrays, star-shaped microstructure and microchannel. The fibroblasts encapsulated in 

Fig. 48 Raman spectra of GelMA and GO-GelMA before and after degradation. 

(Adapted with permission from ref. 110.) 
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microarrays of GO-GelMA (Fig. 49b) and GelMA (Fig. 49c) hydrogel displayed similar 

spreading pattern and morphology, and cells in star-shaped GO-GelMA hydrogel (Fig. 49d) 

exhibited uniform elongation and spreading. These results demonstrated that GO is 

biocompatible and that cells maintain normal behaviours in 3D GO-GelMA hydrogel 

microenvironments. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Creating multi-layer constructs is important to mimicking stratified native tissues such as 

skins and blood vessels. A Multi-layer structure could be fabricated using the method 

illustrated in Fig. 50a. Fig. 50b-d show the white light and fluorescence images of as-prepared 

different bilayer structures. The Live/Dead assay where the green colour represented live cells 

d e 

Fig. 49 Cellular behaviors of NIH-3T3 fibroblasts in 3D GelMA and GO-GelMA hydrogel 

microenvironments. Fluorescence images of cells in GO-GelMA hydrogel (a-b) microarrays, (d) 

star-shaped microstructure and (e) microchannel are shown. (Adapted with permission from ref. 

110.) 
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and the red colour represented dead cells showed that the number of dead cells in the 

GO-GelMA layer was less than that in the pure GelMA layer, which indicated the protection 

role of GO. This might be explained by that GO could absorb free harmful radicals for cell 

growth which were produced in the UV-light induced hydrogel formation process. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In summary, tuneable mechanical strength without deterioration in the porosity and 

degradation property were attained by incorporation of GO into the GelMA hydrogel. 

Introducing the nanoscale planar structure of GO into the polymeric GelMA matrices could 

encourage cellular responses such as adhesion, spreading, proliferation and so on due to the 

Fig. 50 (a) Fabrication and (b-d) characterization of multi-layer cell-laden microconstructs. 

(Adapted with permission from ref. 110.) 
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strong interactions between cells and nanomaterials. GO could protect cells from free harmful 

radicals produced in the UV-light induced hydrogel formation. 

 

5.3 Incorporation of Graphene Oxide into GelMA Hydrogel through covalent 

bonding 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Graphene oxide was chemically modified with methacrylate groups first to prepare 

methacrylic graphene oxide (MeGO) by treating GO with 3-(trimethoxysilyl)propyl 

Fig. 51 (a) Schematic of the surface functionalization of graphene oxide (GO) with methacrylate 

groups via silanization to prepare methacrylic graphene oxide (MeGO). (b) Elastic moduli and 

(c) ultimate stress values of GO-GelMA and MeGO-GelMA hydrogels. (Adapted with 

permission from ref. 111.) 

(a) 

(b) (c) 
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methacrylate through a silanization reaction (Fig. 51a). Then the MeGO-GelMA hydrogel was 

fabricated by UV light irradiation with an appropriate initiator. Modification of GO with 

methacrylate groups increased its solubility in 8 wt% GelMA. The maximum solubility of 

MeGO in 8 wt% GelMA is 3.0 mg/mL compared with 0.8 mg/mL for GO. 

The mechanical properties of GO-GelMA and MeGO-GelMA hydrogels were evaluated. 

Elastic moduli (Fig. 51b) and ultimate stress values (Fig. 51c) of MeGO-GelMA hydrogel 

were similar to those of GO-GelMA hydrogel up to 1.6 mg/mL. However, the elastic modulus 

and ultimate stress of GO-GelMA hydrogel at 3.0 mg/mL decreased significantly compared 

with MeGO-GelMA hydrogel. This was in agreement with that a large number of GO 

agglomerates in the GelMA polymer solution at 3.0 mg/mL due to the limited solubility of 

GO prevented proper hydrogel formation. As a result, these agglomerates within the 

hydrogels acted as structural defects and led to deterioration in the mechanical strength. 

In summary, covalent incorporation of GO into GelMA hydrogel were achieved by 

chemical modification of GO with methacrylate groups. Covalent incorporation of GO into 

GelMA hydrogel affords higher mechanical strength at high concentration of GO than the 

non-covalent incorporation. Four times increase in elastic modulus and six times increase in 

ultimate stress were seen for the covalent incorporation than the non-covalent incorporation. 

 

5.4 Conclusions and Future Aspects 

To conclude, as a two-dimensional flexible sheet-like macromolecule, graphene oxide 

can be incorporated into GelMA hydrogel either by covalent or non-covalent methods to 
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manipulate the mechanical properties of the resulting hybrid hydrogel. Graphene 

oxide-GelMA hybrid hydrogel preserves the favourable porosity of GelMA hydrogel and 

exhibits enhanced cell proliferation due to the strong interactions between nanomaterials and 

cells. Graphene oxide has been demonstrated to be biocompatible and capable of protecting 

cells from harmful radicals produced in the process of UV-light induced hydrogel formation. 

Covalent incorporation of graphene oxide into GelMA hydrogel affords higher mechanical 

strength than the non-covalent incorporation at high concentration of GO. 

Future aspects lie in incorporating conductive graphene instead of insulating graphene 

oxide into hydrogel for specific tissue engineering applications. Both the high conductivity 

and excellent mechanical strength of graphene can be exploited to make tissues which require 

both of these two properties. Since the influences of nanodiamonds (zero-dimension), carbon 

nanotubes (one-dimension) and graphene (two-dimension) on the hydrogel properties are not 

the same with each of them has pros and cons, incorporation of multi-components of carbon 

nanomaterials into hydrogels can also be a viable choice for making tissues with the desired 

properties. 
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