
Algorithms for the Optimization of
Quantum Circuits

by

Matthew Amy

A thesis
presented to the University of Waterloo

in fulfilment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science - Quantum Information

Waterloo, Ontario, Canada, 2013

c© Matthew Amy 2013

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Waterloo's Institutional Repository

https://core.ac.uk/display/144146813?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

This thesis investigates techniques for the automated optimization of quantum circuits.
In the first part we develop an exponential time algorithm for synthesizing minimal depth
quantum circuits. We combine this with effective heuristics for reducing the search space,
and show how it can be extended to different optimization problems. We then use the
algorithm to compute circuits over the Clifford group and T gate for many of the commonly
used quantum gates, improving upon the former best known circuits in many cases.

In the second part, we present a polynomial time algorithm for the re-synthesis of
CNOT and T gate circuits while reducing the number of phase gates and parallelizing
them. We then describe different methods for expanding this algorithm to optimize circuits
over Clifford and T gates.

iii

Acknowledgements

I would first like to thank my supervisor, Michele Mosca, to whom I’m greatly indebted
to for his teaching and insight. Were it not for him, I would never have gained an appreci-
ation and love for quantum computing. I also wish to thank my reading committee, John
Watrous and Richard Cleve, for their helpful comments and suggestions.

Throughout the course of my graduate studies, I had the pleasure of working with
many excellent quantum computer scientists, and for that I’m extremely grateful. I wish
to thank Dmitri Maslov for his guidance and mentoring, and for motivating me to pursue
projects I would have been too short sighted to pursue otherwise. I would also like to thank
Martin Roetteler, Austin Fowler, Richard Lazarus, and the rest of the TORQUE team for
all their tireless efforts bringing such a far reaching project together; I am indeed indebted
to them for the many stimulating discussions and the motivation for my own research that
this project has provided.

My fellow students Vincent Russo, Adam Paetznick, and Vadym Kliuchnikov have
also provided a wealth of helpful comments and discussions throughout the course of my
research, to which I’m extremely grateful for.

For all the technical support of those listed above, this thesis would not have been
possible without the encouragement of my friends and family. I’m deeply grateful to my
parents, John and Ingrid Amy, whose love and support has helped me through many tough
times, and for encouraging me to pursue a graduate education. I would also like to thank
my good friends Alexandre Laplante, Vincent Launchbury, Parsiad Azimzadeh and Kyle
Robinson, who provided some much needed distractions during times of high stress.

Finally, I wish to thank Rebecca Vasluianu for all of her love and for putting up with
me when I was more than just a little distracted by my work. Her support has meant more
to me than I can begin to describe here.

iv

To Rebecca

v

Table of Contents

List of Tables ix

List of Figures x

1 Introduction 1

1.1 Overview of Thesis . 2

2 Reversible and Quantum Computation 4

2.1 Reversible Computation . 4

2.1.1 Linear functions . 6

2.2 Quantum Computation . 8

2.3 The Quantum Circuit model . 9

2.3.1 Quantum gates . 11

2.3.2 Universal gate sets . 12

2.4 Fault Tolerance . 13

3 Quantum Circuit Optimization 17

3.1 State of the Art . 18

3.1.1 Exhaustive search . 19

3.1.2 Algorithmic synthesis . 20

3.1.3 Local rewriting . 21

3.1.4 Parallelization algorithms . 22

vi

4 Meet-in-the-Middle: a search-based synthesis algorithm 24

4.1 The Meet-in-the-middle algorithm . 25

4.2 Search space reduction . 28

4.3 Extensions . 30

4.3.1 Alternative costs . 30

4.3.2 Ancillas . 32

4.3.3 Approximate synthesis . 33

4.4 Implementation details . 38

4.5 Results . 40

4.5.1 Depth-optimal implementations . 43

4.5.2 T -depth-optimal implementations 46

4.5.3 Exact decomposition of controlled unitaries 47

4.6 Conclusions . 49

4.6.1 Future work . 50

5 Tpar: polynomial-time T -gate optimization 52

5.1 {CNOT, T} circuits . 54

5.2 Matroids . 59

5.2.1 Matroid partitioning . 61

5.3 Towards a universal gate set . 63

5.3.1 Embedded {CNOT, T} optimization 63

5.3.2 Abstract Hadamard gates . 64

5.3.3 Summing over paths . 67

5.4 The Tpar algorithm . 69

5.4.1 Extended {CNOT, T} synthesis . 72

5.5 Results . 74

5.6 Conclusions . 77

5.6.1 Future work . 78

vii

APPENDICES 82

A Complexity of T -count minimization 83

References 84

viii

List of Tables

4.1 Performance figures for Algorithm 1. 41

5.1 Gate count benchmarks. N specifies the number of qubits. xC reports the
number of CNOT gates, xT gives the number of T gates, and xg gives the
number of other gates. x′ denotes the number of gates after optimization by
Tpar on subcircuits without H gates (first row), and on the whole circuit
(second row). 80

5.2 T -depth benchmarks. We report the T -depth after no optimization (origi-
nal), and after optimization with 0 (i.e. Table 5.1), N , or unbounded ancillas. 81

ix

List of Figures

2.1 An example of a classical circuit computing x1 ⊕ x2. 5

2.2 An example of a circuit reversibly computing f and cleaning up ancillas. . 6

2.3 An example of a quantum circuit, implementing the quantum Fourier trans-
form up to permutation of the outputs. 10

2.4 Transversal CNOT between two qubits encoded in a 5-qubit code. 15

4.1 For each V ∈ Si we construct W = V †U and search for W in Sj. 26

4.2 Visualization of a vp-tree partitioning a set of 2D points. 36

4.3 Database generation times for minimal depth two qubit circuits. 42

4.4 Database generation and search times for minimal T -depth single qubit cir-
cuits. 43

4.5 Controlled Paulis. 44

4.6 Logical gate implementations of controlled unitaries without ancillas. . . . 44

4.7 W gate (depth 9). 45

4.8 3-qubit logical gates with no ancillas. 46

4.9 Reduced T -depth implementations utilizing ancillas. 47

4.10 Addition of one ancilla reduces the minimum circuit depth from 7 to 6. . . 47

4.11 Controlled-T gate (depth 19). 48

4.12 Circuit implementing a reversible 1-bit full adder. 48

4.13 Circuit implementing a controlled-H gate (T -depth 1, total depth 9). . . . 49

4.14 Circuit implementing a Toffoli gate (T -depth 3, total depth 9). 49

x

5.1 Implementation of a Λ3(X) gate [1]. 53

5.2 Optimized Clifford + T implementation of a Λ3(X) gate. 53

5.3 {CNOT, T} circuit implementing the doubly controlled Z gate. 56

5.4 A circuit giving a non-optimal (in the T -count) phase expression. 57

5.5 T -depth 1 implementation of Figure 5.4 with one ancilla. 59

5.6 Clifford + T implementation of the Toffoli gate with the target on qubit 3. 65

5.7 Gate update rules. A gate Ui denotes gate U applied to qubit i, CNOT(i,j)

specifies i as the control qubit and j as the target. 70

5.8 6-bit Cuccaro adder without expanding Toffoli gates [2]. 75

5.9 Optimized circuit from Figure 5.8 after expanding Toffolis. T -count was
reduced from 77 to 63 and T -depth was reduced from 33 to 27. 76

5.10 T -depth 1 implementation of the Toffoli gate. 77

5.11 T -depth 2 implementation of the Toffoli gate. 77

5.12 T -depth 3 implementation of the controlled-T gate. 77

5.13 Λ3(X) gate. 78

xi

Chapter 1

Introduction

Circuit optimization, believed to be an intractable problem [3], is an important part of the
design and construction of classical computational devices. The ability to produce smaller,
energy efficient integrated circuits relies heavily on the ability to reduce the logical com-
plexity of the circuit’s functionality, especially with the gradual slowing of improvements to
transistor technology. Accordingly, researchers have developed effective heuristic methods
for minimizing logic in integrated circuits, notably the well-known Quine-McCluskey and
ESPRESSO algorithms [4], the latter of which is used as a standard optimization procedure
in modern logic synthesis tools and VLSI design.

Given the initially limited quantum computational resources available, in order to han-
dle interesting problem sizes it will be even more important to reduce the resources required
to implement a given quantum circuit through similar circuit optimization. In fact, as real-
istic quantum computers will likely require some fault tolerance scheme where the amount
of error correction is proportional to the resources used, the effect of circuit optimizations
becomes even more profound. While current experimental circuits can be optimized by
hand, recent advances in quantum information processing devices (e.g. [5], [6], [7], [8])
and improvements to fault-tolerant thresholds (e.g. [9], [10], [11]) hint at the prospect of
scalable quantum devices. As a result, there is a growing need for quantum circuit opti-
mization tools that can be applied to large quantum circuits, in order to allow the best
possible use of these new computational devices.

Unfortunately, few tools have to this point been developed for the direct purpose of
optimizing quantum circuits. While techniques and recent breakthroughs in reversible
circuit optimizations [12, 13, 14] are applicable to the classical subset of quantum com-
putation, this leaves out a large class of quantum circuits from consideration – moreover,

1

reversible circuits themselves usually require higher level logic (e.g. Toffoli gates) that must
be decomposed to a fault tolerant quantum gate set. Likewise, while there exist synthesis
methods that can be used to optimize circuits, they are limited to single-qubit circuits, or
are otherwise impractical for multi-qubit circuits. Recent developments in quantum circuit
optimization [15, 16, 17] show promise, but the landscape still remains fairly barren.

This thesis makes progress on developing algorithms and techniques for optimizing
quantum circuits themselves, both for large scale and small scale circuit optimization. The
two approaches are complimentary in that small, common operations can be optimized
exactly, while large compound circuits can be further optimized according to less effective
but more efficient methods. In the first part of this thesis, we develop an algorithm
and related techniques for finding exactly optimal circuits in exponential time, leading
to efficient circuits for common quantum operations. In the second part, we build a family
of heuristic polynomial time algorithms for optimization of large quantum circuits.

One pervading theme of this thesis is the optimization of fault-tolerant circuits, circuits
composed of logical gates on encoded groups of qubits. Given the fragile nature of qubits,
the prospects of scalable quantum computing without some systematic way of mitigating
physical errors and noise are bleak – for this reason, we look to fault tolerance to guide opti-
mization. In particular, the notions of T -count and T -depth, motivated by fault tolerance,
inform many of our constructions.

1.1 Overview of Thesis

The thesis is organized as follows. Chapters 2 and 3 provide mathematical preliminaries
and background. In Chapter 2 we briefly describe reversible and quantum computation,
and define the notation and some basic lemmas we will use. Chapter 3 provides a short
survey of the current state of quantum circuit optimization.

Chapters 4 and 5 present original work on the optimization of quantum circuits. Chap-
ter 4 describes a general algorithm for speeding up brute-force optimization of quantum
circuits, as well as search space reductions to make the algorithm more practical. The
algorithm is motivated by the need to compile higher level gates into lower level gate sets
in a depth-optimal way as circuit depth directly affects the run-time, and by extension
the error rates. We then use this algorithm to compute depth-optimal decompositions of
many common quantum gates into the standard fault-tolerant “Clifford + T” gate set. We
also describe how to modify the algorithm to incorporate other cost metrics, ancillas, and
synthesize approximate circuits.

2

In contrast to the algorithm described in Chapter 4, Chapter 5 presents a polynomial-
time quantum circuit optimization algorithm that is shown to scale well to large, practical
quantum circuits. The algorithm re-synthesizes quantum circuits consisting of Clifford
+ T gates while minimizing the number of T gates and placing them in parallel. Such
properties have very recently become common optimization concerns [18, 19, 20, 21], as T
gates require state distillation in the common fault tolerant quantum computing schemes
– in fact, Fowler [22] describes how to perform fault tolerant quantum computation in one
round of measurement per stage of parallel T gates. As a byproduct, we also reduce exact
minimization of T -count to the minimization of polynomial equations in mixed arithmetic.
This algorithm also represents progress towards the automated usage of ancillas in depth
optimizations, as the usage of ancillas comes at effectively no performance cost.

3

Chapter 2

Reversible and Quantum
Computation

In this chapter we detail the notions of reversible and quantum computation that will be
relevant to the material presented in this thesis. We begin with an account of reversible
computation, then extend this to cover quantum computations. As the optimizations
we develop will be designed with fault tolerant circuits in mind, we end off with a brief
discussion of quantum fault tolerance.

2.1 Reversible Computation

Classical computation is typically performed irreversibly – the inputs to a computation
cannot generally be recovered from the outputs, and so the computation cannot be undone
or reversed. It was Landauer who first noticed that this process, in effect destroying
information, results in a dissipation of energy in the form of heat or noise [23]. Classical
computers built from the irreversible NAND gate – defined as the two-input logic gate that
returns 0 if and only if both inputs are 1 – thus waste huge quantities of energy through
the process of constantly discarding information.

We could instead consider a model of classical computation in which computations are
reversible. In particular, we will define a circuit model of classical computation that permits
a straightforward restriction to reversible computations, which we see is equally powerful.
While we are mostly interested in reversible computations as the classical subset of quantum

4

computations, the promise of low-power electronics has led researchers to seriously consider
reversible computing models as an alternative to traditional digital logic.

While we save many details of circuit model for Section 2.3, which defines the more
general quantum circuit model, we describe a few basic notions here. In the classical circuit
model of computation, wires carry bits of information to logic gates, which produce new
bits of information. The state of an individual bit can be represented as a binary value
b ∈ F2, where F2 = {0, 1} is the two element finite field with multiplication and addition
corresponding to logical AND (∧) and exclusive-OR (⊕), respectively – the representation
of F2 as a field is not strictly necessary, but will help to classify types of classical functions.
The state of a system of n bits is then represented by a binary string of length n or
equivalently a vector in Fn2 ; likewise, classical functions map n-bit strings to m-bit strings,
i.e. classical functions are operators f : Fn2 → Fm2 . We typically refer to classical functions
as just functions, and if m = 1 we call f a Boolean function. An individual logic gate
implements a particular function on its input bits, and a circuit threads bits through a
sequence of gates.

∧

∧

∨

x1

x2

⊕

⊕

Figure 2.1: An example of a classical circuit computing x1 ⊕ x2.

We define a set G of classical gates as universal for classical computations if and only if
any classical function f can be computed by a circuit using only gates in G. In particular,
NAND (along with the ability to copy bits) is universal for classical computation. While
we won’t be particularly concerned with universality for classical computation, it will later
play a more significant role in quantum computation.

In restricting our attention to the reversible circuit model, we require that logic gates
implement invertible functions – in other words, classical functions f : Fn2 → Fm2 such that
f−1 exists. As a result, the universal gate NAND no longer applies in the reversible model,
and moreover no (reversible) gate set alone is universal simply by noting that a classical
function f : Fn2 → Fm2 may not be invertible and thus cannot be implemented directly.

We can recover universality by allowing the use of ancillas, bits that can be initialized
to either 0 or 1, as a kind of temporary register. Under this assumption, the reversible

5

Toffoli gate,
TOF (x1, x2, x3) = (x1, x2, x3 ⊕ (x1 ∧ x2)),

is universal, by noting that TOF (x1, x2, 1) = (x1, x2, NAND(x1, x2)) and TOF (x1, 1, 0) =
(x1, 1, x1), i.e. the Toffoli gate can implement both NAND and copy bits. Of course, we
need a way to reclaim the ancillas after a computation is finished, otherwise computations
will continue to grow in space. One option is to erase the partial information contained
in the ancillas – while this solution is suitable for classical computations, discarding such
information can have a profound effect on the output in a quantum computation. Another
option that avoids this problem in the quantum case is to copy the outputs to fresh ancillas,
then uncompute f by applying f † = f−1 to free up the used ancillas.

x1

x2

xn
...

...

...

f f †

|0〉

Figure 2.2: An example of a circuit reversibly computing f and cleaning up ancillas.

The addition of ancillary bits complicates our mathematical formalism to an extent.
While a function f that accepts n primary inputs and N − n ancillary bits (without loss
of generality assume they are initialized to the 0 state) can be described as a classical
function over FN2 , we only really care about its affect on some dimension n subspace V
of FN2 . Though a seemingly inconsequential point, it will allow more precise analysis of
computations using ancillas.

2.1.1 Linear functions

In this thesis, we will be particularly interested in classical functions that are linear over
F2; recall that f : Fn2 → Fm2 is linear if f(x ⊕ y) = f(x) ⊕ f(y) for every x, y ∈ Fn2 . The
controlled-NOT gate

CNOT (x1, x2) = (x1, x1 ⊕ x2),

is an example of a linear reversible gate. As an important result, the set of all linear
reversible functions are those that can be computed by only using CNOT gates [14].

6

Before ending off the discussion of reversible circuits, we turn our attention to classical
functions which are both linear and Boolean, and how such functions can be implemented
reversibly. As linear Boolean functions are linear transformations Fn2 → F2 and are thus
represented by 1 × n matrices over F2, we can see them as (column) vectors in the dual
vector space Fn∗2 of Fn2 . In this view, any state x in Fn2 is also a linear Boolean function
xT , and vice versa, where xT denotes the matrix transpose of x. This viewpoint has the
advantage that we can view states as either vectors or functions, and apply definitions and
theorems from linear algebra to linear Boolean functions, most notably those related to
dimension.

Definition 1. Given a set of linear Boolean functions S ⊆ Fn∗2 , the rank of S, denoted
rank(S) is the dimension of the subspace spanned by the vectors in S.

As we will primarily be concerned with reversible computations, we prove a lemma
relating linear Boolean functions to linear reversible functions.

Lemma 1. Given a subspace V of FN2 and a set of linear Boolean functions
S = {f1, f2 . . . fN} ⊆ V ∗, the linear surjective function f : V → W defined as

f(a1, a2, . . . , aN) = (f1(a1, . . . , aN), . . . , fN(a1, . . . , aN))

is reversible if and only if rank(S) = dim(V).

Proof. Reversibility follows if and only if rank(S) = dim(V) due to a straightforward
application of the rank-nullity theorem; dim(im(f)) + dim(ker(f)) = dim(V). As the
functions in S form the row vectors of f , rank(S) = dim(im(f)) = dim(W) and so f is
one-to-one if and only if rank(S) = dim(V). Thus f is invertible on its image W , i.e., there
exists f−1 : W → V such that ff−1 = f−1f = I.

As a consequence of Lemma 1, we establish criteria on when a set S of linear Boolean
functions can be computed simultaneously over an N -bit state space V – specifically, if
there is a size N superset S ′ of S with dimension dim(V), there is a reversible circuit
with outputs computing S ⊆ S ′. We use this criteria to define the notion of (reversible)
computability on sets of linear Boolean functions – as we will henceforth be concerned
strictly with reversible computations, we omit the qualifier reversible in further discussions.

Definition 2. Given a dimension n subspace V of FN2 , a set S ⊆ V ∗ is (reversibly)
computable over V if there exists a size N superset S ′ of S such that rank(S ′) = n.

7

2.2 Quantum Computation

One of the most remarkable discoveries of the last century has been that quantum me-
chanics can directly be used to govern computations. By encoding information in physical
systems that evolve according to the laws of quantum mechanics, computations, i.e. par-
ticular evolutions of the computer’s state, can make use of quantum mechanical effects
such as superposition and entanglement. In many cases, such effects can be used to solve
problems more efficiently than the best known classical algorithms [25, 26]. For the purpose
of this thesis, we provide an (incomplete) introduction to some of the relevant concepts in
quantum mechanics – a full introduction can be found in any of [27, 28, 24].

Unlike classical computations, where the state of an n-bit system is represented by a
vector in Fn2 , the state of a quantum system is defined as an element of a finite-dimensional
complex vector space1 H. Typically, we consider systems where the dimension of H is 2n

for some n – in this case, we say the system contains n quantum bits or qubits.

We use Dirac notation to refer to quantum states, where a vector in H is written as
|ψ〉. For convenience, we distinguish a particular basis of H called the computational basis,
and denote its elements |x〉 with binary strings x of length n, when the dimension of H is
2n. As in reversible computation, we refer to the dual space of H as H∗, and write vectors
in H∗ as 〈ψ| : H → C. A vector 〈ψ| is obtained by taking the adjoint of |ψ〉, denoted as
|ψ〉† – in the case of a vector (or matrix), the adjoint is obtained by taking its transpose
and the complex conjugate of each entry. The inner product of |ψ〉 and |φ〉 is thus given
by 〈ψ|φ〉 = 〈ψ| · |φ〉 and their outer product is given as |ψ〉〈φ|.

Typically we will refer to systems composed of several subsystems, for instance when
we want to separate data and ancillas. We use the tensor product to combine the state
space of multiple systems, and write H1⊗H2 to denote the tensor product of the systems
H1 and H2. The combined state of systems H1 and H2 in states |ψ1〉 and |ψ2〉 respectively
is likewise written as |ψ1〉 ⊗ |ψ2〉 or just |ψ1〉|ψ2〉. Additionally we use X⊗n to refer to the
tensor product of n copies of X, where X can be anything for which tensor products make
sense.

While we won’t be concerned with measurement, according to the postulates of quan-
tum mechanics we can measure a quantum state |ψ〉 according to some orthonormal basis
{|bi〉}. If |ψ〉 =

∑
i αi|bi〉, then the probability of obtaining outcome bi is |αi|2. This di-

rectly implies the postulate that the states of a quantum system are in fact unit vectors
with respect to the Euclidean norm.

1H is used by convention – we could equivalently use Cd

8

Quantum mechanics also postulates that the evolution of a closed system is unitary,
meaning quantum states must evolve according to unitary operators U : H → H. By
unitary we mean that U is a linear operator on H such that U †U = UU † = I, i.e. U is
invertible with U−1 = U †. Equivalently, U is a linear operator that preserves the Euclidean
norm. We denote U(d) to denote the set of unitary operators on a complex vector space
of dimension d. For instance, the Hadamard gate

H =
1√
2

(
1 1
1 −1

)
is an example of a unitary operator. We also distinguish the set SU(d) of unitaries with
determinant 1, i.e. the unitaries that are unique up to multiples of eiθ, as global phase
does not affect measurement outcomes.

At this point we can view a correspondence between reversible and quantum compu-
tations. As the computational basis consists of all n bit strings, the basis states of a
quantum system can be seen to be the set of classical states on the same number of bits.
We might then consider the relation between reversible functions and unitary operators.
In particular, any unitary U ∈ U(2n) that is a permutation operator in the computational
basis implements some function f : Fn2 → Fn2 ; since U is unitary, we also know that U is
invertible and thus f is a reversible function. Likewise, any classical reversible function
f can be computed on a quantum computer by a permutation U : |x〉 7→ |f(x)〉 where
x ∈ Fn2 , since the (complex conjugate) transpose of a permutation matrix trivially gives its
inverse.

2.3 The Quantum Circuit model

To provide a concrete model for quantum computation, we describe the quantum circuit
model, one of the most prominent models of quantum computation (see [24] for a more
detailed exposition).

The quantum circuit model is analogous to the classical or reversible circuit models,
in that information – in this case, qubits – is carried on wires through gates which trans-
form their state. For a system with n wires, the state space H has dimension 2n, with
computational basis states corresponding to the 2n elements of Fn2 . In accordance with the
postulates of quantum mechanics, quantum gates are unitary operators on subsystems of
H, depending on which qubits the gate is applied to – more accurately, a gate is the tensor
product of a unitary together with the identity operator (I) on the unaffected qubits. If

9

two adjacent gates are applied to non-overlapping sets of qubits, they can be written as a
single tensor product and are said to be applied in parallel: (g1 ⊗ I)(I ⊗ g2) = g1 ⊗ g2.

A circuit on n qubits is a finite sequence i 7→ Ui of gates applied in order from left to
right to subsets of the n qubits, the effect of which is the functional composition Uk · · ·U2U1

of the individual unitary operators corresponding to the gates. We use UC to refer to the
unitary computed by a circuit C so that we can refer to distinct circuits that compute the
same unitary. Though we will mostly ignore measurements, a quantum circuit may also
contain measurement operators over a given basis and wires carrying classical data emitted
from such measurements.

H P T

• H P

• • H

Figure 2.3: An example of a quantum circuit, implementing the quantum Fourier transform
up to permutation of the outputs.

We define the depth of a quantum circuit as the maximum length of a path through the
circuit. By path we mean a path in the directed acyclic graph representing the circuit, with
nodes corresponding to the circuit’s gates and edges corresponding to gate inputs/outputs.
We will often refer to depths of specific gates in a circuit – e.g. T -depth – in which case
we mean the maximum number of that gate in any path. As an example, the maximum
path length in Figure 2.3 is 5.

A quantum circuit is typically expressed over a particular set of gates. We call a set
of quantum gates G a gate set or instruction set, and say that C is a circuit over G if C
is a quantum circuit containing only gates in G; we denote the set of all such circuits 〈G〉.
We also define the closure of G over inversion as G† = G ∪ {g†|g ∈ G} and all n-fold tensor
products of the individual gates2 as Gn. We note that for any G, Gn ⊆ U(2n), and the
notion of circuit depth corresponds to the number of gates in Gn used in the circuit. In
fact, we see that the minimum depth of any circuit over G implementing U ∈ U(2n) is the
minimum number of gates in Gn needed to implement U .

Lemma 2. A unitary U ∈ U(2n) is implemented by a circuit of depth k over G if and only
if U = Uk · · ·U2U1 where U1, U2, . . . , Uk ∈ Gn.

2n-fold tensor products of individual gates are commonly called elementary transformations [28]

10

2.3.1 Quantum gates

We now describe some of the common gates and groups of gates that we will use. For
instance, the Pauli gates,

I =

(
1 0
0 1

)
X =

(
0 1
1 0

)
Y =

(
0 −i
i 0

)
Z =

(
1 0
0 −1

)
,

are commonly used to model error channels and are very important in the construction
and analysis of quantum error correcting codes. We use Pn to refer to the set of n-fold
tensor products of the Pauli gates.

Another important class of gates include the Hadamard (H), controlled-not (CNOT),
and Phase (P) gates,

H =
1√
2

(
1 1
1 −1

)
CNOT =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 P =

(
1 0
0 i

)
.

The Hadamard, CNOT, and Phase gates generate a group of unitaries called the Clifford
group, denoted C. The Clifford group on n qubits is equivalent to the normalizer of the
Pauli group Pn, Cn = {U ∈ U(2n)|UPnU−1 ⊆ Pn}, and as a consequence contains the Pauli
group as well. Remarkably, Gottesman and Knill [29] proved that any circuit composed
of Clifford group gates can be efficiently simulated on a classical computer, and so such
circuits clearly cannot perform all quantum computations.

We will also commonly refer to the previously seen Toffoli (TOF) gate, and the π/8
gate (T):

TOF =

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

T =

(
1 0
0 eiπ/4

)
.

Both the Toffoli and π/8 gates lie outside of the Clifford group, which make them useful
for general quantum computing.

11

We note that each of the above gates are expressed as matrices over the ring Z
[

1√
2
, i
]
,

or equivalently the ring of dyadic fractions Z
[

1
2

]
extended with ω = eiπ/4. Recent results

have shown that any unitary over Z
[

1√
2
, i
]

can in fact be implemented over C∪{T} [30, 31].

The notion of controlled quantum gates will also be important throughout this thesis.
We define a controlled-U gate as Λ(U) : |x〉|ψ〉 7→ |x〉Ux|ψ〉, where x ∈ {0, 1}; in a circuit,
we typically use a solid dot to represent a control with a line to the controlled gate U . We
can write a unitary matrix for a controlled-U gate as Λ(U) = |0〉〈0| ⊗ I + |1〉〈1| ⊗ U :

(|0〉〈0| ⊗ I + |1〉〈1| ⊗ U)|x〉|ψ〉 = 〈0|x〉|0〉 ⊗ |ψ〉+ 〈1|x〉|1〉 ⊗ U |ψ〉 = |x〉Ux|ψ〉.

We can further define Λm recursively as Λ (Λm−1(U)), where m gives the number of controls
on U . The previously shown gates CNOT and TOF are in fact controlled X gates:

CNOT = Λ(X), TOF = Λ2(X).

One important observation about the nature of controlled operations is that if there
exists a circuit over G implementing Λ(g) for each g ∈ G, then for any unitary U imple-
mented by a circuit over G, Λm(U) can also be implemented over G. This is a result of the
following lemma:

Lemma 3. Suppose U = Uk · · ·U2U1 for some unitaries U,U1, U2, . . . , Uk ∈ U(2n). Then

Λ(U) = Λ(Uk) · · ·Λ(U2)Λ(U1).

A simple method for constructing such a circuit then proceeds by replacing every gate
g with a circuit for Λ(g).

2.3.2 Universal gate sets

As in the classical case, we need to know which gate sets can be used to implement the
set of quantum computations, U(2n). An immediate observation is that since there are
uncountably many unitaries on any number of qubits, any gate set that can implement all
quantum computations is necessarily uncountable in size. It turns out that U(2)∪{CNOT}
can implement any quantum computation [1], though constructing such a gate set fault
tolerantly would however be extremely unlikely. Instead we consider the possibility of
approximating some quantum operations.

12

Definition 3. For unitaries U, V ∈ U(2n), U is an ε-approximation of V if ||U − V || ≤ ε
where

||U − V || = max
|ψ〉
||(U − V)|ψ〉|| =

√
〈ψ|(U − V)†(U − V)|ψ〉

is the operator norm.

The operator norm is used as it corresponds closely to the maximum difference in the
probability of obtaining a particular measurement outcome between U |ψ〉 and V |ψ〉. In
general we may want to use different norms to define the error in approximations.

Definition 4. A gate set G is universal for quantum computation if for any unitary U and
ε > 0, there exists a circuit C over G such that UC is an ε-approximation of U .

As a well-known result, Cn along with any unitary U /∈ Cn is universal [32]. Since
{H,P,CNOT} generates the Clifford group up to global phase and P = T 2, the gate set
consisting of {H,CNOT, T} is universal for quantum computing. The set {H,TOF} is
also known to be universal, though it is not as common in fault-tolerant models.

A natural question to ask is how many gates from a universal set are needed to ap-
proximate a given unitary U to a desired accuracy – if the approximation is inefficient,
any advantage of a quantum algorithm could be negated by the overhead for approxima-
tion. Fortunately, it turns out that only an overhead poly-logarithmic in 1/ε is required to
approximate a given unitary, a result known as the Solovay-Kitaev theorem [33].

Theorem 1. (Solovay-Kitaev)

Suppose G is a finite gate set and is universal for single qubit computations. Then for
any single qubit unitary U and ε > 0, there is a circuit over G† with length O(logc(1/ε))
that is an ε-approximation of U , where c is a positive constant.

2.4 Fault Tolerance

The mathematical models previously described have assumed that computations can be
performed exactly and without error. However, these models are idealized abstractions
of physical and particularly imperfect processes. In any realistic device individual gates
and operations may fail without warning or perform the wrong operation. At this point
we have two choices: ignore the errors and hope they don’t accumulate too much, or try
to reduce the number of errors by shielding the information from the imperfect physical
processes.

13

In the classical world, the first approach is widely used, as the error rates on most mod-
ern logic gates are insignificant for most computations of interest. For more fragile classical
processes such as communication over noisy channels and data storage, the information is
commonly protected with error correction. Similarly, quantum processes are very error-
prone and individual qubits decohere even when they are not being manipulated, so it is
hard to imagine large-scale quantum computations without some method for mitigating
these errors.

A common approach is to use an error-correcting code (ECC) to encode the state of a
group of logical qubits into many physical qubits, then perform logical gates directly on the
encoded qubits by encoding the gates in a fault-tolerant manner. For the purposes of this
thesis, we will primarily be concerned with the latter idea, as the construction of encoded
gates informs our gate sets and optimization criteria – for this reason, the description will
be cursory.

Error correcting codes, both classical and quantum, encode the state of a logical k-bit
system in the state of a physical n-bit system by using codewords. The codewords rely on
storing redundant information, so that if one bit fails the remaining bits can be used to
determine the encoded information. In classical error correction, this can be accomplished
by simply repeating the encoded information, though many more efficient codes exist. As
an example, the three bit code encodes a logical 0 state as 000, and the logical 1 state
as 111 – if at most one error occurs on a physical bit, the logical bit can be retrieved by
taking the majority of all three bits.

For quantum error correcting codes, arbitrary quantum states cannot be copied and
repeated to create the encoded state, a consequence of the no-cloning theorem [34]. Instead,
quantum error correcting codes assign codewords to the computational basis states of the
logical system. In this way, classical error correcting codes can double as quantum error
correcting codes, such as the three bit code which, in a quantum system, protects against
one bit flip error. Indeed, a large class of quantum error correcting codes, called CSS codes,
are built by combining classical codes to protect against both bit flip and phase flip errors.

Another common class of quantum error correcting codes, known as stabilizer codes,
define the code space as the set of states that remain unchanged under computations in
some Abelian group S ⊆ Pn. Given S ⊆ Pn, the code space generated by S is the set
T = {|ψ〉 ∈ H |M |ψ〉 = |ψ〉 ∀M ∈ S}, and S is called the stabilizer of T . As an example,
the Steane code is a stabilizer code, with the following stabilizer generators:

I ⊗ I ⊗ I ⊗X ⊗X ⊗X ⊗X, I ⊗ I ⊗ I ⊗ Z ⊗ Z ⊗ Z ⊗ Z,
I ⊗X ⊗X ⊗ I ⊗ I ⊗X ⊗X, I ⊗ Z ⊗ Z ⊗ I ⊗ I ⊗ Z ⊗ Z,
X ⊗ I ⊗X ⊗ I ⊗X ⊗ I ⊗X, Z ⊗ I ⊗ Z ⊗ I ⊗ Z ⊗ I ⊗ Z

 .

14

Additionally, the class of stabilizer codes contains all CSS codes.

As the process of encoding and decoding codewords every time a gate is applied would
defeat the purpose of quantum error correction, logical gates must also be encoded, possibly
by performing some quantum circuit. However, doing so could cause errors by virtue of the
fact that an error on one physical qubit may propagate to errors on other physical qubits.
Consider, for instance, the CNOT gate: CNOT · (X ⊗ I)|x1〉|x2〉 = |¬x1〉|¬x1 ⊕ x2〉 =
(X⊗X) ·CNOT |x1〉|x2〉. The single X error before the CNOT gate becomes two X errors
after; if the error correcting code in use can only correct one Pauli error at a time, the
originally correctable error can no longer be corrected after the CNOT gate is applied.
While errors are generally detected and corrected after every operation, the possibility of
an error occurring between the last error correction and the application of a gate cannot
be ruled out, and so logical gates must avoid the problem of error propagation.

The simplest way to avoid error propagation is to perform logical gates transversally,
which means to apply an encoded U gate, a physical U gate is applied to each qubit in the
physical system (or pairs of equivalent physical qubits in the case of two qubit unitaries).
Errors thus cannot propagate within the same encoded qubit when applying logical gates,
since no two encoding qubits interact with one another. Unfortunately, for an arbitrary
stabilizer code a full universal gate set cannot be built transversally3 [27], and so other
techniques must be used.

Figure 2.4: Transversal CNOT between two qubits encoded in a 5-qubit code.

In the case when a logical U gate cannot be constructed by applying U transversally, a
technique known as gate teleportation [36] is commonly used together with state distillation
[37], a technique for distilling a resource state with high fidelity. As gate teleportation
requires measurement, which is typically much slower than physical gates in quantum
computer implementations, it is already a more costly procedure than transversal gates,

3Codes can be defined that admit a universal transversal gate set [35], but such codes necessarily go
beyond basic stabilizer code theory.

15

both in terms of time and space. When state distillation is added the effect is compounded,
as each round of state distillation typically requires concatenation of error correcting codes
along with complicated logical circuits. These so called “ancilla factories” can require
space-time volume that is orders of magnitude larger than the resources required for a
transversal gate.

It turns out that most of the common CSS codes admit a transversal set of generators
of the Clifford group [38]. While not strictly speaking transversal, the popular surface code
also has an efficient encoded set of Clifford group generators [10]. Together with results
from measurement-based quantum computing showing that any Clifford group circuit can
be parallelized to constant depth [55], in most fault tolerant schemes it follows that Clifford
group operations are extremely fast and space efficient. The non-Clifford operation in a
universal gate set, typically the T gate as it admits reasonable state distillation protocols,
is then the bottleneck in fault tolerant computations. Reducing the number of non-Clifford
operations in a circuit would reduce the number of ancilla states that require preparation,
at the same time reducing the fidelity required of each resource state. Likewise, placing
T -gates in parallel reduces the amount of time spent waiting for gate teleportation, since
multiple T gates can be teleported at the same time. Indeed, Fowler [22] shows how to
perform fault-tolerant computations in time proportional to one round of measurement per
layer of T -gates, and so the T -depth directly affects circuit run-times. For these reasons,
we focus on the topic of T -count and depth optimization for much of this thesis.

16

Chapter 3

Quantum Circuit Optimization

In this section we formally introduce the problem of quantum circuit optimization and
review the state of the art of the field.

The natural intuition is that to optimize a circuit we want to find the best circuit,
according to some criteria, implementing the same functionality. We can formalize this
idea, as below, but given that the intuition is clear we refrain from referring to quantum
circuit optimization in such an abstruse way throughout the remainder of this thesis.

Definition 5. (Quantum Circuit Optimization)

Given a circuit C ∈ 〈G〉 and cost function c : 〈G〉 → R, find some C ′ ∈ 〈G〉 such that
UC′ = UC and for any other circuit C0 ∈ 〈G〉 with UC0 = UC , c(C ′) ≤ c(C0).

A closely related problem is that of quantum circuit synthesis, which is concerned with
constructing a circuit implementing or approximating a given unitary. Again, we provide
a formal definition merely for completeness.

Definition 6. (Quantum Circuit Synthesis)

Given a unitary U ∈ U(2n), gate set G and precision ε ≥ 0, find a circuit C ∈ 〈G〉 such
that ||U − UC || ≤ ε. If ε = 0 then the problem is referred to as exact synthesis.

The reason we are interested is circuit synthesis is that synthesis algorithms can be
designed in such a way as to produce circuits optimal in some cost. Such algorithms can
then be used to optimize a circuit C by synthesizing an optimal circuit for UC , assuming
UC can be computed in reasonable time. Given that most synthesis algorithms work for a

17

few qubits at most, for circuits that can be optimized by such re-synthesis computing UC
should be fast.

Sometimes we want to relax the optimization and synthesis problems. In particular,
we can consider situations where we only need to produce a circuit equivalent up to a
global phase, i.e. we want C ′ such that UC′ = eiθUC for some θ. We can also consider
situations where ancillas may be used to optimize a given cost; in this case we require that
C ′ implements UC′ such that for any |ψ〉 ∈ H, |0〉⊗m ⊗ (UC |ψ〉) = UC′(|0〉⊗m|ψ〉). If the
number of ancillas that are available is unbounded, we denote m =∞.

The most common families of cost functions on quantum circuits involve gate counts
and depth-related costs – in the most basic case, both types of costs have clear motivation in
reducing the circuit time and complexity (also indirectly affecting error rates). A weighted
gate count assigns a weight to each gate in G, with the cost of a circuit equal to the
sum of the cost of each gate. In the case where each gate has weight 1, we just call c
a gate count. One particular weighted gate count that we will be concerned with, called
the T -count and defined as c(T) = 1, c(g) = 0 ∀g 6= T , arises from the consideration of
fault tolerant gate constructions where T gates are expensive procedures. Circuit depth,
defined earlier, is our other main optimization criteria, and we distinguish T -depth (recall:
the maximum number of T gates in a path through the circuit) as an important depth
quantity for optimization.

Another class of quantum circuit optimization problems arises when information about
the physical architecture is included in the circuits. These problems are typically called
placement problems, though in many cases (e.g. 2D nearest neighbour) they can be de-
scribed as circuit optimization problems with additional constraints. In this thesis we do
not consider such problems, though we direct the interested reader to some relevant results
[40, 17, 41].

3.1 State of the Art

We review some of the previous results in quantum circuit optimization. As many quantum
circuits have large sections that are strictly reversible circuits, for instance the reversible
arithmetic in Shor’s factoring algorithm [25], it is useful to lift reversible circuit optimiza-
tions to the quantum domain. Algorithms designed for optimal synthesis are also included
in the discussion, though algorithms not covered here, such as [42], may also relevant from
an optimization point of view in some restricted cases.

18

3.1.1 Exhaustive search

A large class of optimal synthesis algorithms work by exhaustively enumerating all circuits
and returning the lowest cost circuit implementing the desired computation; this technique
is commonly called exhaustive or brute-force searching. This method is particularly popular
in the circuit synthesis community as a way of optimally compiling small commonly used
gates or functions to the target gate set, and in these small instances it can be very effective.

Typical exhaustive search algorithms generate circuits in increasing size or depth, com-
bined with heuristics to reduce the number of candidates to be generated. Such a search
is called a breadth-first search, as the space of circuits over a gate set G can be viewed
as a tree where each branch corresponds to the next gate in the circuit. Breadth-first
searches are thus naturally tuned to optimize size and depth, though they can be used
indirectly to optimize other costs. Such searches also typically involve the computation
of some database of circuits, where the database is computed once and loaded whenever a
new circuit is needed. If the database provides efficient lookups, circuits that are already
in the database can be synthesized efficiently.

This technique has been used extensively in the optimal synthesis of reversible functions.
Shende et al. [43] used a breadth-first search to synthesize all minimal gate count circuits for
reversible functions on 3 bits, over the gate set {X,CNOT, TOF}. Their algorithm builds
databases of optimal circuits up to a maximum gate count, and they devise a recursive
scheme for increasing the search depth where they multiply the target function with some
known permutation and synthesize the resulting function. Maslov and Miller [44] later
expanded on those techniques and adapted them to synthesize all reversible functions on 3
bits over the quantum gate set {X,CNOT,Λ(V),Λ(V †)}. In particular, they reduced the
search space by only storing functions the are unique up to relabeling of the inputs and
outputs. Their approach, however, did not allow control qubits to carry quantum values,
e.g. values resulting from a Λ(V) or Λ(V †) gate, and the resulting circuits are thus not
provably optimal. Golubitsky and Maslov [12] further expanded this technique by removing
inverse functions from the circuit databases, which along with other improvements allowed
them to synthesize all optimal 4 bit reversible functions over {Λi(X)|0 ≤ i ≤ 3}. An
important consideration in these algorithms is the exact representation of functions and
circuits; they typically use compact binary representations of the functions which allow
easy searching over databases and low storage requirements [12].

While breadth-first searches are common in reversible circuit synthesis, the lack of
efficient representations of unitaries make such approaches more difficult. Fowler [45]
avoided this problem by performing the breadth-first search directly, i.e. without the use of
a precomputed database implementing efficient lookup. His algorithm finds optimal gate

19

count ε-approximations of unitaries by performing a breadth first search and keeping track
of the set of unique gate sequences up to a given depth. New circuits are then compared
against the list of unique circuits and the circuit can be removed from consideration if
some subcircuit is not unique. Furthermore, he shows how to skip to the next potentially
unique circuit once such a circuit is found. Despite the expensive process of checking each
subcircuit, the method proved effective for single qubit circuits over C1∪{T, T †}, and until
recently was the primary method for computing optimal gate count circuits.

More recently, Bocharov and Svore [19] developed a depth-optimal canonical form for
single qubit circuits over the gate set {H,T}. They show that databases of canonical
circuits can be built efficiently, compared to the costly procedure of generating each gate
sequence and comparing it with the current database. Such databases are also claimed
to use less memory than databases storing unitaries. While the resulting databases can
be searched for ε-approximations efficiently, O(εk2k) for databases consisting of canonical
circuits with T -count at most k, it requires searching for each element of the double coset
C1UC1 where U is the target unitary. Furthermore, the canonical form applies only to
single-qubit circuits over {H,T}, and thus cannot be used to compute minimal gate count
or minimal depth multi-qubit quantum circuits.

3.1.2 Algorithmic synthesis

In some restricted gate sets and cost metrics, optimal circuits can be synthesized directly,
rather than exhaustively searching for a circuit. We review some of the known techniques
here.

In the reversible circuit domain, SAT solvers have been used to produce optimal gate
count circuits. Hung et al. [13] use multiple-valued logic to synthesize reversible functions
over the gate set {X,CNOT,Λ(V),Λ(V †)} as in [44] – again, control bits are restricted to
Boolean values. The multiple-valued logic synthesis is then performed by bounded model
checking with a SAT solver, a technique where a transition system is encoded in proposi-
tional logic, then paths from an input state to an output state are found by solving SAT
instances for increasing path lengths. Along similar lines, Große et al. [46] formulate the
problem of reversible logic synthesis over {Λi(X)|i ≥ 0} as a sequence Boolean satisfiabil-
ity problems, which are then solved via SAT solvers. As both algorithms require Boolean
satisfiability to be solved, their complexity is effectively no better than exhaustive search –
furthermore, exhaustive search has been shown to be more efficient in both cases [44, 12],
albeit with greater memory usage.

Non-search based synthesis has occasionally been used in quantum computing. In

20

particular, Kliuchnikov et al. [30] describe an algorithm for decomposing an arbitrary

single-qubit unitary over the ring Z
[

1√
2
, i
]

into a circuit over {H,T}. Their method

reduces single-qubit unitary synthesis to computing a circuit preparing a particular state,
then they can recursively reduce the complexity of the state by applying HT k for some
particular choice of k ∈ {0, 1, 2, 3}. Furthermore, they prove that the number of T and H
gates in the resulting circuit is optimal, effectively solving T -count optimization for single
qubit circuits over {H,T}. Giles and Selinger [31] further extended this result to a synthesis

method for multi-qubit unitaries over Z
[

1√
2
, i
]
, though the construction is non-optimal in

terms of either gate counts or depth.

Other examples of synthesis in quantum computing focus on approximating unitaries

outside of the Z
[

1√
2
, i
]

ring. The classic example is the Solovay-Kitaev algorithm [47], a

recursive algorithm that increases the accuracy of each successive approximation Un−1 by
approximating unitaries V , W such that the residue UU †n−1 is equal to the group com-
mutator VWV †W † – furthermore, the unitaries V and W must be balanced, in that they
are both within a particular distance from the identity. While not optimal, the algorithm
produces single-qubit circuits of size O(log3.97(1/ε)), which will be useful for comparing
to more recent methods. Specifically, Selinger [48] proved a worst-case lower bound of
4 log(1/ε) − 9 T gates to implement a single-qubit z-axis rotation over the Clifford group
and T gates, and at the same time developed an algorithm that approximates a single-qubit
z-axis rotation using 4 log(1/ε) + 11 T gates. Kliuchnikov et al. [49] describes another ap-
proximation algorithm that appears to achieve T -count of 3.21 log(1/ε)− 6.93 on average
for ε-approximations of z rotations. Both algorithms proceed by constructing a unitary

over Z
[

1√
2
, i
]

approximating the target unitary, then decomposing the approximation op-

timally using [30]. However, these methods are limited to single-qubit unitaries, and their
usefulness regarding circuit optimization is thus limited to circuits containing arbitrary
single-qubit rotations.

3.1.3 Local rewriting

Very few methods exist for optimizing gate count in large quantum circuits, with the
majority of the previous results being devoted to local optimization techniques. Such
techniques can be loosely categorized as peephole optimizations or template-based opti-
mization, both of which involve the replacement of subcircuits with smaller (in gate count
or depth) equivalent circuits.

The former grew out of compiler terminology where optimizations are performed on

21

just a few lines of code, as if viewed through a “peephole”. In relation to circuit opti-
mization, peephole optimization commonly involves selecting subcircuits then synthesizing
an optimal circuit computing the same function. Such a technique is useful in reversible
circuit optimization, where every function on 4 bits can be synthesized quickly [12]. Prasad
et al. [50] develop the technique of peephole optimization and apply it to large reversible
circuits. Their results show on average 25% reduction in circuit size for random circuits,
and circuits with up to a thousand gates could be optimized quickly.

Templates, while a theoretically similar technique, use circuit identities (e.g. C = C ′)
to transform the circuit, either in a directed way or to replace subcircuits with smaller
equivalent circuits. Miller et al [51] introduced templates for the optimization of reversible
circuits. In their algorithm, they search for a target template within the algorithm by
choosing an initial gate, then use commutation rules to try and construct the remainder
of the template; Maslov et al [52] later expanded on the theory of this technique and
introduced a heuristic modification that produced better results by reducing the number
of control bits.

Template optimization has also had success in being applied to general quantum cir-
cuits, particularly by Maslov et al. [15] to the {X,CNOT,Λ(V),Λ(V †)} gate set – they
show gate count reductions by over 30% on average for circuits with up to 21 qubits. Sedlák
and Plesch [53] also used circuit identities to shift gates as far left as possible, then remove
any gates that cancel. While their experimental results, having been applied to CNOT
and arbitrary single qubit rotations, are superseded by optimal unitary decompositions
[42], they provide further indication for the effectiveness of this method.

3.1.4 Parallelization algorithms

The previously described algorithms have mostly focused on reducing gate counts, and if
they reduced depth, it was mostly a side effect of reducing gate count. However, as in
classical computing when there are many computational resources available it can often
make sense to increase complexity in order to parallelize operations to make use of the
extra resources. We review a few of the algorithms for the parallelization of quantum
circuits in this way.

Moore and Nilsson [54] first defined the notion of QNC, a class of quantum compu-
tations that can be parallelized to poly-logarithmic depth using a polynomial number of
ancillas. While they do not provide an actual algorithm for performing parallelization, they
prove the parallalizeability of a number of gate sets, including {CNOT}, {H} ∪ Λ(P),
and encoding/decoding circuits for stabilizer codes. They also provide a large number

22

of transformation rules that could be used to define a parallelization algorithm. Other
similar results have shown that Clifford group [55] and diagonal unitaries [56] can be par-
allelized to constant depth using measurements, though we will primarily be concerned
with measurement-free circuits.

More recently, transformations to and from the measurement-based quantum comput-
ing model have been used to parallelize quantum circuits. Broadbent and Kashefi [39]
develop an algorithm for the translation of quantum circuits to a pattern (a computation
in the measurement-based model) which adds a number of additional ancillas linear in the
number of gates. The resulting pattern is then optimized by applying rewriting rules of
the measurement calculus (known as standardization and signal shifting), then the final
pattern is transformed back into a circuit. However, the construction requires that the cir-

cuits are written over the gate set

{
Λ(Z), J(α) = 1√

2

(
1 e1α

1 e−iα

)}
which does not appear to

have fault-tolerant implementations in the common schemes, and requires the availability
of ancillas. Dias da Silva et al. [16] later expanded this algorithm with new optimizations,
and a set of rewrite rules for removing the qubits added during the transformation.

23

Chapter 4

Meet-in-the-Middle: a search-based
synthesis algorithm

In this chapter we are primarily concerned with the problem of synthesizing a depth-optimal
quantum circuit over an arbitrary gate set and with arbitrarily many qubits. The material
presented here is largely based on [18].

Quantum algorithms are typically described at a high level of abstraction and feature
many common high-level operations, such as the Toffoli gate or integer multiplication.
On the other hand, fault-tolerant quantum computation requires specifying circuits in
terms of a few encoded operations – the high-level operations then have to be compiled
down to those low-level encoded gates. In the case of common operations like complex
gates, circuits optimizing some particular cost, for instance depth, can be precomputed
and substituted in during the compilation process. In particular, circuit depth determines
both run-time and by extension error rates, hence circuit depth should be the primary
optimization criteria. However, as evidenced in Chapter 3, algorithms performing this kind
of synthesis are lacking in quantum computing; while many methods exist for reversible
computation, depth-optimal synthesis of quantum circuits has only been performed on
single-qubit circuits [45, 19, 30].

To fill this gap, we have developed a practical algorithm for computing depth-optimal
fault tolerant circuits. In particular, we describe an algorithm and heuristics for speeding
up the brute-force search for minimal depth quantum circuits, given a target unitary.
Exhaustive search can in many circumstances be a viable optimization method, particularly
when more efficient methods are either non-existent or fail to produce quality results. When
combined with heuristics for reducing the size of the search space, the brute force search

24

can be an effective tool for solving such problems, especially in small instances when the
best possible result is needed. Such techniques have been used very effectively for reversible
circuit synthesis [43, 44, 12], and have shown better run-times than algorithmic synthesis.

The algorithm, called the meet-in-the-middle algorithm, reduces the time and space
complexity of the brute-force search by roughly a square root. In allowing minimal depth
circuits to be computed using only circuits of at most half the minimal depth, the algorithm
generates just a square root of the circuits that would be generated in a näıve exhaustive
search. Compared to less näıve approaches, our algorithm provides a space-time trade-off
which mitigates the major bottleneck of space consumption in such approaches. Addition-
ally, we show that the meet-in-the-middle algorithm, while designed with depth-optimal
synthesis in mind, is very flexible and can be used to efficiently optimize different criteria
as well. To further improve the performance, we also detail search space reductions that
drastically reduce the number of generated circuits.

The methods developed here were largely designed for exact synthesis of quantum cir-
cuits – recall that exact synthesis produces circuits that implement the target unitary with
no error. As a result, the algorithm is particularly suited for re-synthesis, since an ini-
tial decomposition ensures there exists an optimal circuit implementing the same unitary
over the same basis, and individual subcircuits can be re-synthesized without affecting the
overall accuracy of a circuit. The algorithm can, however, can be modified to synthesize
circuits approximating a target unitary; we later develop such a modification and use it
to achieve faster depth-optimal circuit approximations than previously known multi-qubit
algorithms.

4.1 The Meet-in-the-middle algorithm

In this section we give a high level description of the meet-in-the-middle algorithm for
computing depth-optimal quantum circuits over a gate set G. The algorithm is motivated
by the observation that any circuit of minimal depth can be divided into two circuits (or
in general, any number of sub-circuits), each of which is a minimal depth circuit – this
idea has been used before in reversible circuit synthesis [43, 12]. As a result, a circuit
with minimal depth l can be found by finding its two halves of depth at most dl/2e. We
show below that this problem reduces to finding elements in the intersection of two sets of
unitaries.

Lemma 4. Let Si ⊆ U(2n) be the set of all unitaries implementable in depth i over the
gate set G. Given a unitary U , there exists a circuit over G of depth l implementing U if
and only if S†bl/2cU ∩ Sdl/2e 6= ∅ where S†i = {U †|U ∈ Si}.

25

Proof. Suppose some depth l circuit C implements U . We divide C into two circuits of
depth bl/2c and dl/2e, implementing unitaries V ∈ Sbl/2c andW ∈ Sdl/2e respectively, where

VW = U . Since we know W = V †U ∈ S†bl/2cU , we can observe that W ∈ S†bl/2cU ∩ Sdl/2e,
as required.

Suppose instead S†bl/2cU ∩Sdl/2e 6= ∅. We see that there exists some W ∈ S†bl/2cU ∩Sdl/2e,
and moreover by definition W = V †U for some V † ∈ S†bl/2c. Since W ∈ Sdl/2e, VW = U is

implementable by some circuit of depth bl/2c+dl/2e = l/2, thus completing the proof.

V

W

U

U

U

U

U

†

S Ui
†

jS

Figure 4.1: For each V ∈ Si we construct W = V †U and search for W in Sj.

Using this lemma, we can describe a simple algorithm that determines whether there
exists a circuit over G of depth at most l implementing unitary U , and if so return a
minimum depth circuit implementing U . Given an instruction set G and unitary U , we
repeatedly generate circuits of increasing depth, then use them to search for circuits im-
plementing U with up to twice the depth. Specifically, at each step we generate all depth
i circuits Si by extending the depth i − 1 circuits with one more level of depth, then we
compute the sets S†i−1U and S†iU and see if there are any collisions with Si (Figure 4.1).
By Lemma 4, there exists a circuit of depth 2i − 1 or 2i implementing U if and only if
S†i−1U ∩ Si 6= ∅ or S†iU ∩ Si 6= ∅, respectively, so the algorithm terminates at the smallest
depth less than or equal to l for which there exists a circuit implementing U . In the case
where U can be implemented in depth at most l, the algorithm returns one such circuit of
minimal depth. The algorithm is given as pseudo-code in Algorithm 1.

As this algorithm requires the computation of S†iU , it relies on the ability to quickly
multiply unitaries. While this is not practical for large numbers of qubits, for the small

26

Algorithm 1 Meet-in-the-middle algorithm.

function MITM(G, U , l)
S0 := {I}
i := 1
for i ≤ dl/2e do

Si := GnSi−1

if S†i−1U ∩ Si 6= ∅ then
return any circuit VW s.t.

V ∈ Si−1,W ∈ Si, V †U = W
else if S†iU ∩ Si 6= ∅ then

return any circuit VW s.t.
V,W ∈ Si, V †U = W

end if
i := i+ 1

end for
end function

numbers of qubits we’re interested in matrix multiplication is sufficiently fast.

Furthermore, for this algorithm to be advantageous, we need a way of efficiently find-
ing S†iU ∩ Sj. Fortunately, we can efficiently find the intersection by imposing a strict
lexicographic ordering on unitaries – as a simple example two unitary matrices can be
ordered according to the first element at which they differ. The set Si can then be sorted
with respect to this ordering in O (|Si| log(|Si|)) time, so that searching for an element of
S†i−1U or S†iU takes time O (log(|Si|)) – in practice, we would maintain Si in a sorted data
structure, rather than sort it at search time.

To achieve a (time) complexity bound we can note that |Si| ≤ |Gn|i, so that the ith

iteration thus takes time bounded above by 3|Gn|i log(|Gn|i). Since
∑dl/2e

i=1 |Gn|i log(|Gn|i) ≤∑dl/2e
i=1 |Gn|i log(|Gn|dl/2e) and

∑dl/2e
i=1 |Gn|i ≤ |Gn|dl/2e

(
1 + 1

|Gn|dl/2e−1

)
, we thus see that the

algorithm runs in O
(
|Gn|dl/2e log(|Gn|dl/2e)

)
time. It can also be noted that |Gn| ∈ O(|G|n),

so the run-time is in O
(
|G|dn·l/2e log(|G|dn·l/2e)

)
, rather than O(|G|n·l) as in the case of näıve

searching.

We can achieve better on average by using a hash table instead. By hashing the entries
of the circuit databases a given unitary can be found in time O(1) on average, leading to
an average time complexity of O

(
|Si|
)

to test the emptiness of S†iU ∩ Sj.

27

4.2 Search space reduction

To make the meet-in-the-middle algorithm practical for reasonable sized circuits, effort
must be made to reduce the size of the search space. In this section we describe some
reductions to the search space and how they can be combined with the meet-in-the-middle
algorithm; the technique we use may be called “pruning” the search tree, as our goal is to
remove redundant circuits from the databases Si, in effect removing further branches from
being explored.

We begin by noting that if a given unitary U has an implementation over G with depth i,
then any simultaneous permutation of its input and output qubits can also be implemented
in depth i simply by changing which qubits each individual gate acts on. Likewise, if G
is closed under inversion, i.e. G = G†, then U † also admits a depth i implementation,
as if U = Ui · · ·U2U1 with U1, U2, . . . , Ui ∈ Gn, then U †1 , U

†
2 , . . . , U

†
i ∈ Gn and so U † =

(Ui · · ·U2U1)† = U †1U
†
2 . . . U

†
i is a depth i implementation. These two observations imply

that, given a gate set closed under inversion, we can restrict our attention to unitaries that
are unique up to input/output relabeling and inversion. As we don’t care about global
phase in most cases, we can additionally restrict circuit databases to unitaries that are
unique up to global phase factors.

More formally, we define an equivalence relation ∼ on unitaries where U ∼ V if and
only if U is equal to V up to relabeling of the qubits, inversion, or global phase factors.
This equivalence relation defines the equivalence class of a unitary U ∈ U(2n), denoted
[U], as {V ∈ U(2n)|U ∼ V } – given a gate set closed under inversion, each unitary in a
given equivalence class has the same minimal circuit depth, up to global phase. We then
focus only on equivalence class representatives, rather than unitaries themselves, and in
particular only store a circuit for each representative in a given set Si. To do so, we define
a canonical representative for each unitary equivalence class, then when a new circuit is
generated we find the unitary representative and determine whether a circuit implementing
it is already known.

We can define a canonical representative for each unitary equivalence class by lexi-
cographically ordering unitaries and choosing the smallest unitary as the representative.
Since relabeling of the qubits corresponds to simultaneous row and column permutations
of the unitary matrix and the inverse of a unitary is given by its conjugate transpose, given
an n qubit unitary U , all 2n! permutations and inversions of U can be generated and the
minimum can be found in O(n!) time. For the small instances of n that the meet-in-the-
middle algorithm is designed for, the O(n!) overhead to compute a canonical unitary is
small, while the reducing the search space by a factor of 2n! reduces both space and time
usage significantly.

28

Choosing a canonical unitary up to global phase is more difficult in general. In the case

when the gate set contains only unitaries written over the ring Z
[

1√
2
, i
]
, we can generate

each possible global phase factor in the equivalence class. In particular, eiθ ∈ Z
[

1√
2
, i
]

if

and only if θ = kπ
4
, k ∈ Z [30], so there are only 8 possible global phase factors for any

unitary over Z
[

1√
2
, i
]
. To find a representative, all 8 · 2n! elements of [U] are generated,

and only the lexicographically earliest element is kept.

In practice, computing each phase factor causes a significant performance hit, so we
sought a more efficient way of removing phase equivalences. We instead pick a reference
element for each unitary and use it to define the canonical phase of the unitary – by
convention we choose the first (scanning row by row) non-zero element of a unitary matrix.
We immediately see that if V = eiφU for unitaries V, U , then the reference elements
of V and U must be related by eiφ. For the reference element reiθ of U , we can then
define the canonical unitary as e−iθU , so that the reference of V will be rei(θ+φ), and thus
e−i(θ+φ)V = e−iθU . Conversely, if e−iφV = e−iθU , then V = ei(φ−θ)U and so V is equivalent
to U up to phase.

As a matter of unitary representation, if θ 6= kπ
4
, k ∈ Z, this phase multiple will take

U outside of the ring Z
[

1√
2
, i
]
. As a result, we actually remove the constraint that the

canonical unitary is normalized instead; rather than taking e−iθU as the canonical unitary,

we use re−iθU since re−iθ ∈ Z
[

1√
2
, i
]
. Again we can verify that two unitaries have the same

canonical form if and only if they are equal up to phase: if V = eiφU then re−i(φ+θ)V =
re−iθU , and if r1e

−iφV = r2e
−iθU then

r1 = |r1e
−iφ| · ||V || = ||r1e

−iφV || = ||r2e
−iθU || = |r2e

−iθ| · ||U || = r2,

so V = ei(φ−θ)U . While this is a minor detail, it allows comparisons to be performed sym-
bolically over the ring, avoiding the need for costly, inaccurate floating point computations.

When generating a given Si, for each circuit C in GnSi−1 we compute the canonical rep-
resentative of [UC], then the database of circuits is searched to determine if another circuit
implementing the representative has already been found. Using suitable data structures,
each previous set Sj, 1 ≤ j ≤ i can be searched in O

(
log(|Sj|)

)
time. If no such circuit is

found, we store a circuit implementing the representative of [U].

As a subtle point, if only representatives of equivalence classes in depth i and j are
used for searching, not every equivalence class in depth i + j will be found. Consider
some unitary U = VW where V is a circuit of depth i, and W is a circuit of depth j.

29

If V ′ is the representative of [V] and W ′ is the representative of [W], then in general
(V ′)†VW /∈ [W], so just using class representatives to search will not suffice. However,
V † ∈ [V ′], so W ∈ [V ′]VW , and thus [V ′]U = [W ′]. Practically speaking, this means
that any unitary U = VW is found by computing the canonical representatives of [[V]U],
and so we can search all circuits in minimum depth by storing only equivalence class
representatives.

In some cases an exact implementation with the same global phase is required, par-
ticularly when the circuit may be controlled on another qubit. While we could compute
canonical representatives with respect to qubit relabeling and inversion only, any canonical
phase implementation over G = {H,CNOT, T, T †} can be used to construct the correct
global phase, if it is implementable over G. It suffices to observe (as follows from [30])
that if U is implementable by a circuit over G and a circuit C over G implements eiθU ,
then θ = kπ

4
for some k ∈ Z. Since (HT †T †)3 = e−i

π
4 I, eiθ(HT †T †)3kU = U , so a circuit

implementing U exactly can be generated from C with an additive constant cost.

4.3 Extensions

While useful on its own for computing depth-optimal circuits, the meet-in-the-middle al-
gorithm is also very flexible and can be extended in a number of ways. We describe a few
such extensions in this section.

4.3.1 Alternative costs

While the meet-in-the-middle algorithm is most naturally suited to optimizing depth, it
can also be used to find minimal circuits in other cost metrics. In particular, any cost that
is strictly increasing, i.e. c(C) < c(C ′) for any strict subcircuit C of a circuit C ′, can be
optimized by the meet-in-the-middle algorithm. Since the cost is strictly increasing, given
a solution of cost c, all circuits with cost up to c can be generated and searched using the
meet-in-the-middle technique, finding a better circuit if one exists. In particular, searching
follows Algorithm 1 with the addition of a minimum circuit cost for each database Si,
cmin = minU∈Si c(U). Once a circuit C implementing U is found, if c(C) < (cmin(Si))

2, C
must be a minimal cost circuit.

This method on its own is not particularly useful, as depending on the growth of the
minimum circuit cost the depth required to find or verify a minimal cost circuit may be
intractable to search, e.g. a cost function that assigns one gate a significantly higher cost

30

than the rest. Instead, the search tree should be pruned by removing from the databases
all circuits with cost greater than that of the candidate solution – this method could
potentially be very effective if an initial candidate solution is already known, as in cases
when it is used as a re-synthesis optimization.

In other more specific cases, we can develop specially tuned modifications. Recall that
non-Clifford group gates are typically much more costly in the common fault tolerant
schemes. Given that the Clifford group is finite on any number of qubits, we can directly
optimize the usage of non-Clifford group gates by modifying the initial gate set. The
general procedure follows by generating the entire Clifford group using a set of generators,
then the gate set can be defined as any single non-Clifford gate or any tensor product
of non-Clifford group gates conjugated by the Clifford group, depending on whether the
number of such gates is being optimized or the depth, respectively.

As a specific instance, we demonstrate the optimization of T -depth over the gate set
{H,P, P †, CNOT, T, T †}. The algorithm first generates the Clifford group Cn by generating
all minimal depth circuits over G = {H,P, P †, CNOT}. To perform the meet-in-the-middle
search, we denote T = {T, T †} and set S0 = Cn, then define Si = Cn (Tn \ {I})Si−1. Each
Si thus contains every circuit with T -depth i in analogy to the depth-optimal meet-in-
the-middle algorithm. Searching then proceeds by computing the intersections S†i−1U ∩ Si
to search for T -depth 2i − 1 circuits, and S†iU ∩ Si for T -depth 2i. The full algorithm is
summed up in pseudocode below.

Algorithm 2 Meet-in-the-middle algorithm for T -depth.

function MITM-T (G, U , l)
S0 := {I}
i := 1
while Si−1 6= ∅ do

Si := GnSi−1 \ ∪j<iSj
end while
Cn = ∪j<iSj
return MITM(Cn(Tn \ {I}), U , l)

end function

Searching in this way becomes challenging for high dimensional state spaces, as the size
of the Clifford group grows exponentially in the number of qubits. As an illustration, for
3 qubits the Clifford group has 92,897,280 elements up to global phase [57], which makes
searching using modern computers impractical for more than a couple levels of depth; C4

would not even fit in a computer with a reasonable amount of memory using this method.

31

4.3.2 Ancillas

It is often necessary to add ancillas in order to optimally synthesize a given gate – for
instance, the Λ(T) gate cannot be synthesized over Clifford group and T gates without
using ancillas [30]. The addition of ancillas may also allow lower depth circuits or even
lower gate count circuits to be synthesized, allowing a possible tradeoff between space and
time in quantum computations. As a result, it is important to build optimization tools
that can make use of ancillary qubits. We develop such a method as an extension to the
meet-in-the-middle algorithm – for our purposes, we require that the ancillas are initialized
in the |0〉 state and returned to |0〉, though it may be possible to consider arbitrary ancilla
states as in [1].

Suppose we have U ∈ U(2n) and we want to synthesize some U ′ ∈ U(2N) so that
U ′(|0〉⊗N−n|ψ〉) = |0〉⊗N−n(U |ψ〉). We could näıvely search for I ⊗ U using the meet-in-
the-middle algorithm; however, this over-constrains the problem as U ′ need not act as the
identity operator on any other ancilla state. Furthermore, searching for circuits with N
qubits is exponentially harder than search for circuits with n qubits, while the problem of
searching for circuits with n qubits and N − n ancillas seems comparable.

To address these issues, we note that any unitary U ′ that maps the input |0〉⊗N−n|ψ〉
to |0〉⊗N−n(U |ψ〉) will agree with U on the first 2n rows and columns. We could then
exhaustively search for U in the circuits with unique top left 2n× 2n submatrices to find a
circuit implementing U using ancillas. However, in the case of meet-in-the-middle, many
collisions would be lost, as it may be the case that V ′W ′(|0〉⊗N−n|ψ〉) = |0〉⊗N−n(U |ψ〉)
but V ′(|0〉⊗N−n|ψ〉) 6= |0〉⊗N−n(V |ψ〉), and likewise for W . In other words, the first 2n rows
and columns of V ′ and W ′ is in general not be enough to specify the action of V ′W ′ on
|0〉⊗N−n|ψ〉.

Instead, we note that since |0〉⊗N−n(U |ψ〉) = (I ⊗U)|0〉⊗N−n|ψ〉, we want to find V,W
such that VW (|0〉⊗N−n|ψ〉) = (I ⊗ U)|0〉⊗N−n|ψ〉. Then, clearly V †(I ⊗ U)|0〉⊗N−n|ψ〉 =
W (|0〉⊗N−n|ψ〉), so we can restrict the sets S†{i−1,i}(I ⊗U) and Si to their action on inputs

of the form |0〉⊗N−n|ψ〉 and determine whether their intersection is non-zero. Practically
speaking, this involves comparing the first 2n columns of each possible collision, as V †(I⊗U)
may not return the ancillas to the zero state.

One disadvantage of this algorithm is that qubit permutations can no longer be removed
from the search space, since the entire unitary is require to construct each permutation. As
a result, more circuits need to be generated and searched when using ancillas, though our
experimental results show that it is still easier to search for N qubit circuits with ancillas
than it is to search for circuits on the same number of qubits and no ancillas.

32

4.3.3 Approximate synthesis

As many interesting unitaries cannot be synthesized exactly, we would like to have methods
for finding the best circuit approximating a given unitary. Typically, this circuit will only
need to approximate the desired unitary to accuracy ε in order to achieve the desired error
bound for the total computation. To deal with such situations, we develop an approximate
circuit synthesis algorithm using the meet-in-the-middle algorithm. Unlike the previous
extensions, approximate synthesis is reasonably more involved.

Recall that the approximate synthesis problem involves synthesizing some circuit C
over G so that ||U − UC || ≤ ε for some ε > 0. While we originally defined approximations
using the operator norm, it will be useful to allow other norms to be used where more
specific distance measures are required (e.g. the diamond norm), or where they are easier
to compute (e.g. the Frobenius norm). The techniques we develop apply to all distance
measures defined by the Schatten p-norms,

||U ||p =
(

Tr
((
U †U

)p/2))1/p

,

the key properties being the unitary invariance of Schatten norms, and that they, like all
norms, obey the triangle inequality. We define a distance measure between two unitaries,
d(U, V), as the norm of their difference, ||U − V ||p for some p – such a distance measure
is called a metric. The operator norm, as defined earlier, is equal to the Schatten norm in
the limit as p→∞.

The exact synthesis algorithm relied on Lemma 4 to ensure that a minimal depth circuit
implementing U could be found by looking only at minimal depth circuit halves. To use
the same idea in the approximate synthesis setting, we first derive a similar result.

Lemma 5. Let Si ⊆ U(2n) be the set of all unitaries implementable in depth i over the gate
set G. Given a unitary U and ε ≥ 0, there exists a circuit over G of depth l implementing
some U ′ with d(U,U ′) ≤ ε if and only if d(V †U,W) ≤ ε for some V ∈ Sbl/2c,W ∈ Sdl/2e.

Proof. The lemma is a simple consequence of the unitary invariance of the Schatten p-
norms, along with Lemma 4. In particular,

||U − VW ||p = ||V †U − V †VW ||p = ||V †U −W ||p.

33

Lemma 5 implies a meet-in-the-middle algorithm for approximate synthesis, except
that instead of finding the intersection between S†bl/2cU and Sdl/se, we need to check for

elements in the approximate intersection {(A,B)|A ∈ S†bl/2cU,B ∈ Sdl/2e, d(A,B) ≤ ε}.
Fortunately, this is an instance of the well studied Nearest Neighbour problem, which itself
has applications to many other fields, e.g. image recognition, DNA sequencing and data
compression.

In particular, given a set S with distance measure d : S×S → R, a nearest neighbour of
a query point q ∈ S in database SD ⊆ S is an element p ∈ SD such that ∀r ∈ SD, d(q, p) ≤
d(q, r). We denote the problem of finding such a point NN(q, SD). While it will not affect
the solution in a substantial way, the problem we need to solve is a relaxation to what
we call the bounded near neighbour problem, denoted NN |ε(q, SD): given q, SD and ε > 0,
determine whether there exists p ∈ SD such that d(q, p) ≤ ε.

Given a procedure for computing NN |ε(q, SD) together with Lemma 5 we can mod-
ify the meet-in-the-middle algorithm to return approximating circuits, as shown in Algo-
rithm 3. Using the analysis of Algorithm 1, the algorithm requires O

(
|G|dn·l/2e

)
calls to

the bounded near neighbour procedure.

Algorithm 3 Meet-in-the-middle algorithm

function MITM-approx(G, U , l, ε)

S0 := {I}
i := 1
for i ≤ dl/2e do

Si := GnSi−1

if NN |ε(V †U, Si−1) = W for any V ∈ Si then
return VW

else if NN |ε(V †U, Si) = W for any V ∈ Si then
return VW

end if
i := i+ 1

end for
end function

34

Computing NN |ε(q, SD)

As noted above, the nearest neighbour problem is well studied due to its wide range of
applications. The techniques can be (roughly) divided into those effective in low dimension
spaces, and those effective in high dimension spaces [58]. In the former case projection-
based techniques, which divide and search the space by projecting points onto each di-
mension (e.g. k-d trees and R-trees), can be very effective – in fact, the k-d tree has been
previously used to implement the ε-net in implementations of the Solovay-Kitaev algorithm
[47]. However, these methods scale poorly to situations where the dimension is high, such
as multi-qubit approximate synthesis where unitaries on n qubits have dimension 22n.

For high dimensional data, fewer generic, efficient techniques exist. In some instances,
transformations to reduce the high dimensional data to a lower dimension space are avail-
able (e.g. the discrete Fourier transform), however they are highly specialized for particular
applications and typically don’t provide exact solutions, as is the case for many common
locality sensitive hash functions. However, a class of generic data structures has been
developed for nearest neighbour searches in metric spaces, namely distance-based index
structures, or in the case of distance-based trees, metric trees. The common metric trees
have been shown to be very effective for nearest neighbour searching [58], and as a result
we take this approach.

To efficiently compute NN |ε(q, SD) we use a vantage-point (vp) tree, introduced in [59],
which has been shown to be very effective in high dimension similarity search, notably
image recognition [60]. In analogy to simple binary search trees, which were used to store
and search through circuit databases for exact synthesis, a vantage point tree recursively
splits the database into two subtrees according to each point’s distance to a distinguished
vantage point. Each node in the tree has a unique vantage point p, with points within
distance µ of p placed in one subtree, while those with distance greater than µ are placed
in the other subtree. The radius µ of the partitioning ball can be chosen as the median
distance between p and each point in the tree; if there are not too many points exactly
distance µ from p, we can see that each subtree contains approximately half the points in
the tree.

The advantage for near-neighbour searching can be seen by observing that for a given
subtree SD with vantage point p and radius µ, if our query point q satisfies d(p, q) ≤ µ− ε,
then for any r where d(p, r) > µ,

d(q, r) ≥ |d(p, r)− d(p, q)| > |µ− (µ− ε)| = ε

by the triangle inequality, and thus we only need to search for near neighbours in the
subtree containing those elements less than distance µ from p. A similar identity holds if

35

Figure 4.2: Visualization of a vp-tree partitioning a set of 2D points.

d(p, q) ≥ µ + ε. The obvious drawback is that if µ − ε < d(p, q) ≤ µ + ε, the search must
recurse on both subtrees. The use of the triangle inequality to, in most cases, remove a
large set of points from consideration forms the basis for many metric trees [58].

Algorithm 4 shows how to build a vp-tree on S in O (n log(n)) time, given a distance
oracle. A detailed analysis of the expected search time can be found in [59] – under specific
assumptions regarding the probability distribution of the points, they show that searching
can be performed in expected time O (log(n)). Our experiments show comparable results
in the case of unitary searching.

Remarks

In this section we close off the discussion with a few remarks regarding the choice of norms,
and the combination of approximate meet-in-the-middle with the search space reductions.

One of the main bottlenecks in approximate meet-in-the-middle comes from having to
deal with distance computations, requiring the computationally expensive process of com-
puting Schatten norms. In the worst case the bounded near neighbour search becomes a

36

Algorithm 4 vp-tree construction and searching [59]

function vptree(S)
if S = ∅ then

return empty tree
end if
T.p := p for some p ∈ S
T.µ := medianr∈Sd(p, r)
T.L := VPTREE({r ∈ S|d(p, r) ≤ T.µ})
T.R := VPTREE({r ∈ S|d(p, r) > T.µ})
return T

end function

function NN |ε(q, T)
x := d(T.p, q)
if x ≤ ε then

return T.p
else if x ≤ µ+ ε then

if NN |ε(q, T.L) = p then
return p

end if
else if x > µ− ε then

if NN |ε(q, T.R) = p then
return p

end if
end if
return “not found”

end function

linear search, requiring the distance between every pair of elements in S†iU ×Sj to be com-
puted. Even in the average case, there will still be O(|Si| log(|Sj|)) distance computations

to find elements in the approximate intersection of S†iU and Sj. We thus aim to compute
norms as efficiently as possible. Fortunately, in the case of the Frobenius norm (p = 2),
we obtain a convenient formula that requires only one matrix multiplication, rather than
computation of the singular values:

Lemma 6. For U, V ∈ U(2n), ||U − V ||2 =
√

2 · 22n − 2 · Re(Tr(U †V))

Proof. We see that

||U − V ||2 =
√

Tr ((U † − V †)(U − V))

=
√

Tr (2I − U †V − (U †V)†)

=

√
2 · 22n − Tr(U †V)− (Tr(U †V))†

=
√

2 · 22n − 2 · Re(Tr(U †V)).

37

Approximate meet-in-the-middle also affects the search space reductions used in a non-
trivial way. While circuit databases containing only circuit representatives can still be
generated, our method of choosing representatives is no longer sufficient for searching; it
may be the case that ||U − V ||p ≤ ε but ||U ′ − V ′||p > ε for representatives U ′, V ′ of
[U], [V] respectively. To adapt the search space reductions to cover approximate synthesis,
we must instead generate and search for every element in [[V]U], rather than just its
canonical representative as in the case of exact synthesis.

However, an issue remains with this approach when using the standard Clifford + T

gate set: since U does not necessarily take its elements from the ring Z
[

1√
2
, i
]
, it may be

an arbitrary phase away from any element in our database. We clearly cannot search for
every possible phase multiple in [[V]U], so to find approximations up to a global phase we
need to use a norm invariant under global phase. A reasonable choice would be to define
d(U, V) as ||U ⊗ U † − V ⊗ V †||p for some p. Clearly, d(eiθU, eiφV) = d(U, V) for any θ, φ:

||eiθU⊗(eiθU)†−eiφV ⊗(eiφV)†||p = ||eiθe−iθU⊗U †−eiφe−iφV ⊗V †||p = ||U⊗U †−V ⊗V †||p.

The näıve method of computing this norm would require generating and computing the
singular values of a 22n× 22n matrix, which is a significant disadvantage performance wise.
However, in the case of the Frobenius norm we see that the phase invariant distance can
be computed at no extra cost.

Lemma 7. For U, V ∈ U(2n), ||U ⊗ U † − V ⊗ V †||2 =
√

2 · 24n − 2 · |Tr(U †V)|2

Proof. From Lemma 6 we have ||U⊗U †−V⊗V †||2 =
√

2 · 24n − 2 · Re (Tr ((U †V)⊗ (UV †))).
Since Tr

(
(U †V)⊗ (UV †)

)
= Tr(U †V) Tr(V †U) by basic properties of the trace, we see that

2 · Re
(
Tr
(
(U †V)⊗ (UV †)

))
= 2 ·

∣∣Tr(U †V)
∣∣2 , completing the proof.

The phase-invariant Frobenius norm was previously used in [45] to synthesize approxi-
mate circuits. In both cases, we can see that the Frobenius norm gives an overestimate of
the approximation error as given by the operator norm, since ||U ||p ≥ ||U ||q for any p ≤ q,
and thus can be used to bound the approximation error in the operator norm.

4.4 Implementation details

The meet-in-the-middle algorithm, along with its extensions and search space reductions,
were programmed in the C++ programming language; the implementation is available

38

online at http://code.google.com/p/mitms. In this section we discuss some of the relevant
implementation details for the practical application of these synthesis methods.

It was alluded to earlier that the meet-in-the-middle algorithm offers no speed up over
the näıve algorithm without suitably chosen data structures, as searching for collisions in
unordered sets S†iU and Sj would use O(|Si| · |Sj|) comparisons. However, by imposing a
lexicographic ordering on the generated circuits, they can be searched in time logarithmic
in the size of Sj. In our implementation, we use such an ordering to store each Si as a red-
black tree, a type of balanced binary tree. Balanced binary trees are a common choice for
implementations of ordered sets and mappings in standard libraries, as well as industrial
databases, due to predictable performance and scalability. Since deletions, typically the
most computationally difficult task in a balanced binary tree [61], are never performed in
our implementation, such trees are a natural choice of data structure.

Hash tables were also mentioned as a potential for achieving an average case complexity
of O(|Gn|dl/2e). To test the performance advantage of using hash tables, our code was
adapted to use the hash table implementation in libstd++. While our hash function
generated a very manageable number of key collisions on average – as an illustration, at
most 52 out of 1,316,882 distinct 3-qubit unitaries were mapped to any one hash value –
no significant performance gain was observed in our experiments.

As storage space is typically a bottleneck in breadth-first searches [43], even with the
meet-in-the-middle algorithm, storing unitaries themselves proved infeasible for the cir-
cuits we were interested in. For instance, using the standard universal gate set G =
{H,P, P †, CNOT, T, T †}, there are 252 unique 3-qubit tensor products. if unitaries are

stored as matrices with entries in Z
[

1√
2
, i
]

each 3-qubit unitary requires 1, 280 bytes, and

so all depth 5 circuits on 3 qubits would require more than 1 petabyte of storage space.
Even with the search space reductions, which reduces the number of unitaries stored up
to depth 5 to 37,402,324, over 47 gigabytes would be required to store just the circuit
databases, not including space for maintaining data structures or the relevant circuits.

While it is feasible that the storage space for unitaries over Z
[

1√
2
, i
]

could be reduced by

applying compression, it is still clear that for searches up to meaningful depth, the full
unitary matrices cannot be stored and a space-time trade off must be made.

To make such a trade off, rather than store the generated unitaries, we store circuits
as lists of gates in Gn. Each such gate on n-qubits is represented as n bytes specifying
which gate is acting on each qubit. While this method reduces the storage space required
for unitaries by an order of magnitude, it significantly slows down searching, as each time
a comparison is invoked the unitary implemented by the circuit needs to be computed by
a sequence of matrix multiplications again.

39

http://code.google.com/p/mitms

As a compromise between space efficiency and time complexity, we developed a method
of generating search keys for unitaries that works extremely well in practice. In partic-
ular, an m × m matrix M is stored as a key with each circuit, where for a circuit C
M(i, j) = v†iUCvj. The m vectors {vi} are chosen from C2n using a pseudorandom genera-
tor to generate the individual elements, and in practice m = 1 has been enough to search
interesting depths for up to 4 qubits with extremely few key collisions. Furthermore, while
this method of key generation uses floating point computations there is only one final
round-off for each key, so equal unitaries will produce keys with equal numerical error. For

gate sets that are expressed over the ring Z
[

1√
2
, i
]
, unitaries are computed symbolically,

thus equivalent computed unitaries will always map to the same key. Experiments were

also performed using pseudorandom vectors over Z
[

1√
2
, i
]

to avoid floating point compu-

tations altogether, but they generated far too many key collisions with small key sizes to
be of practical use.

It can also be noted that the problem is in a sense embarrassingly parallel, as long
as each processor has access to the circuit databases. When testing the emptiness of
S†iU ∩ Sj, each processor can search for a particular element of S†iU in parallel. To speed
up our searches we parallelized our code using the pthreads C library to allow concurrent
searching.

As a final point, it was noted earlier that breadth-first circuit synthesis typically involves
the offline computation of circuit databases that are later searched – we include such
functionality in our implementation, as the database generation takes significantly more
time than searching.

4.5 Results

We tested our implementation in Debian Linux on a quad-core, 64-bit Intel Core i5
2.80GHZ processor with 16 GBs of RAM.

The main purpose of our experiments was to find optimal depth decompositions into the
gate set {H,P,CNOT, T}† for 2-5 qubit unitaries, with a secondary optimization criteria
being the gate count. Table 4.1 lists some performance figures for our implementation
– searching times for a given depth i describe the time the computation took to search
through circuits of depth 2i−1 and 2i. As the variance between search times was extremely
minor, one representative search was chosen for each set of data. We found that in cases
when S†jU ∩ Si 6= ∅, collisions are usually reported within a few minutes of searching.

40

Table 4.1: Performance figures for Algorithm 1.

qubits \ depth 1 2 3 4 5 6

database size (#) 14 104 901 6,180 37,878 197,388

2 RAM (KB) 2.092 16.686 146.701 1,013.358 6,249.708 32,766.246

generation time (s) 0.001 0.015 0.155 1.354 10.761 75.301

search time (s) 0.001 0.004 0.033 0.248 1.672 9.321

database size (#) 36 1,110 41,338 1,316,882 36,042,958 -

3 RAM (KB) 5.633 179.657 6,737.931 215,968.485 7,738,582.749 -

generation time (s) 0.012 1.059 40.619 1896.301 73,295.675 -

search time (s) 0.015 0.350 12.619 414.722 11,759.390 -

database size (#) 84 9,984 1,755,677 - - -

4 RAM (KB) 13.460 1,617.082 284,596.043 - - -

generation time (s) 0.570 122.966 18,728.922 - - -

search time (s) 0.603 71.420 12,853.887 - - -

database size (#) 172 79,586 - - - -

5 RAM (KB) 27.956 12,954.420 - - - -

generation time (s) 49.118 20,642.411 - - - -

search time (s) 66.517 32,508.756 - - - -

It can be observed that search time for similar sized databases grows with the number
of qubits – we conjecture that this is a result of the increasing complexity of matrix mul-
tiplication. For this reason, the meet-in-the-middle algorithm currently appears limited in
usefulness beyond 4 qubits.

While tools performing multi-qubit quantum circuit synthesis techniques are not gener-
ally available, we compared our implementation of the meet-in-the-middle algorithm with
an open-source Python implementation [62] of the Solovay-Kitaev algorithm [47]. This
particular implementation was chosen over faster C versions or exact synthesis tools as it
is the only existing tool to our knowledge decomposing multiple qubit operators over the
Clifford + T gate set. Database generation times for two qubit circuits composed with H,
T , T †, and CNOT are shown in Figure 4.3; the meet-in-the-middle implementation shows
a similar but compressed exponential curve.

A decomposition of the controlled-H gate was generated with both the Solovay-Kitaev
and meet-in-the-middle algorithms. While our algorithm produced an exact decomposition
with minimal depth (Figure 4.6a) in under 0.500s, the Solovay-Kitaev algorithm with 4
levels of recursion took over 2 minutes to generate a sequence consisting of over 1000
gates approximating the unitary to an error of 0.340 in the phase-invariant Frobenius
norm. While we stress that the Solovay-Kitaev algorithm is not designed to factor unitaries

41

0 2 4 6 8 10 12
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Solovay-Kitaev Meet-in-the-middle

Depth

T
im

e
 (

s)

Figure 4.3: Database generation times for minimal depth two qubit circuits.

exactly over a gate set, this experiment serves to illustrate both the efficiency of our
implementation, as well as the limitations of current quantum circuit synthesis tools.

We also compared our approximate synthesis algorithm (Algorithm 3) against Fowler’s
algorithm [45]. While Fowler’s algorithm is no longer the best known method of optimal
approximate single-qubit synthesis [19, 30], we chose it as a benchmark since it is the
only algorithm to our knowledge that applies to multi-qubit depth-optimal approximate
synthesis. Unfortunately, only a single-qubit implementation over the gate set C1∪{T, T †}
is available, so we could not compare the two algorithms on multi-qubit synthesis, though
it seems reasonable to believe that the behaviour would be similar in the multi-qubit case.
Again, this serves to illustrate that our algorithm fills a gap in the current set of quantum
circuit optimization tools.

Figure 4.4a shows the comparative times both implementations take to build up a
database of the unique circuits by brute force enumeration with increasing T -depth. Both
curves show the same exponential growth, though the meet-in-the-middle technique is
noticeably compressed, providing good evidence that storing only one circuit from each
equivalence class permits databases to be built with greater depth. Figure 4.4b shows
the subsequent time required to search each level of T -depth; for the meet-in-the-middle
algorithm, the total time to generate the next database then search is also shown. The dips
in total time are the result of using a modified version of the Algorithm 3 that searches
for T -depth optimal circuits. Instead of increasing the T -depth by 1 with every iteration

42

0 2 4 6 8 10 12 14 16 18 20
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

Fowler method Meet-in-the-middle

T-Depth

T
im

e
 (

s)

(a) Database generation times.

0 5 10 15 20 25 30 35 40
0

2000

4000

6000

8000

10000

12000

14000

16000

Fowler – database size 10193 Fowler – database size 458705

MITM – search times MITM – total time

T-depth

T
im

e
 (

s)

(b) Search times.

Figure 4.4: Database generation and search times for minimal T -depth single qubit circuits.

as in Algorithm 2, we either add a layer of Clifford group gates or T gates, with a layer
of T gates taking significantly less time. At the ith iteration, we then search for circuits
of T -depth i. Additionally, two different size databases were used to generate data for
Fowler’s method, one containing 10,193 unique circuits and one containing 458,705.

While better approximate synthesis methods exist for single-qubit circuits, Figure 4.4b
gives strong evidence to its increased scalability over Fowler’s algorithm for multiple qubits.
With the meet-in-the-middle technique, significantly greater T -depths could be searched
in less time even without precomputing circuit databases. If databases are precomputed,
search times appear insignificant compared to Fowler’s method. Furthermore, increasing
the database size from 10,193 to 458,705 did not improve search times, while with Algo-
rithm 3, increasing the size of circuit databases allows for greater T -depth to be searched.

4.5.1 Depth-optimal implementations

One of the main results of this work has been depth-optimized circuits over the gate set
{H,P,CNOT, T}† for many of the common logical quantum gates, with reductions of up
to a third of the previous best known circuit depth. While the optimizations provide great
advantages to the eventual implementation of algorithms using such gates, these circuits
also give the first lower bounds for the depth of many quantum gates in the Clifford + T
gate set. We also report the T -depth of optimized circuits, and later use Algorithm 2 to
optimize T -depth directly.

43

Minimal depth implementations of the singly controlled versions of H, P , and V =
√
X = 1

2

(
1 + i 1− i
1− i 1 + i

)
were computed (Figure 4.6), along with the controlled-Z and -Y

for completeness (Figure 4.5).

(a) Controlled-X (depth 1).

≡

(b) Controlled-Y (depth 3).

≡

(c) Controlled-Z (depth 3).

Figure 4.5: Controlled Paulis.

≡

(a) Controlled-H (depth 7).

≡

(b) Controlled-P (depth 4).

≡

(c) Controlled-V (depth 5).

Figure 4.6: Logical gate implementations of controlled unitaries without ancillas.

We also optimally decompose (Figure 4.7) the 2-qubit gate

W =

1 0 0 0
0 1√

2
1√
2

0

0 1√
2
−1√

2
0

0 0 0 1

which has found use in at least one interesting quantum algorithm [63].

Some 3-qubit unitaries with minimal depth implementations found include the well-
known Toffoli gate (Figure 4.8a), Fredkin gate (Figure 4.8e, defined as the controlled-
SWAP), quantum OR (Figure 4.8c, defined as the unitary mapping |a〉|b〉|c〉 7→ |a〉|b〉|c⊕

44

≡

Figure 4.7: W gate (depth 9).

a ∨ b〉), and Peres gate [64] (Figure 4.8). It should be noted our circuit reduces the total
depth of the Toffoli gate from 12 [27] to 8.

Searches were also performed for each of the above n-qubit gates using up to 4 − n
ancillas – these searches were performed up to the maximum depth for the total number
of qubits, as seen in Table 1. None of the logical gates tested were found to admit circuits
with shorter depth or fewer T gates, though circuits for controlled-P and -V gates were
found with smaller T -depth (Figure 4.9). Additionally, a circuit was found that did have
reduced minimal depth when decomposed using an ancilla (Figure 4.10), together with
the reduced T -depth circuits providing clear motivation for the use of ancillas to optimize
circuit execution time.

Among other gates attempted were the 3-qubit quantum Fourier transform, which was
proven to have no circuit in our instruction set with depth at most 10, and the 4-qubit
Toffoli gate Λ3(X) and a 1-bit full adder, with no circuits of depth at most 6. Additionally,
both the controlled-T and controlled- 4

√
X gates were proven to have no implementations

of depths at most 10 or 6 using one or two ancillas, respectively.

We did however optimize a known circuit implementing the controlled-T gate, as well as
one implementing a 1-bit full adder using our algorithm. Specifically, we generated a circuit
for Λ(T) using the decomposition FREDKIN · (I ⊗ I ⊗ T) · FREDKIN , and a circuit
for the 1-bit adder by using the implementation found in [65], substituting the circuit in
Figure 4.8d for the Peres gate. Then we performed a peep-hole optimization by taking
small subcircuits and replacing them with shorter, lower gate count circuits synthesized
using our algorithm. The circuit for the controlled-T gate, shown in Figure 4.11, reduces
the number of T gates from 15 to 9, CNOT gates from 16 to 12, and T -depth from 9
to 5, while the 1-bit adder circuit (Figure 4.12) reduces the number of T gates from 14
to 8, CNOT gates from 12 to 10, H gates from 4 to 2, and T -depth from 8 to 2. These
results provide strong evidence for the effectiveness of peephole re-synthesis as a full-scale
optimization tool.

45

≡

(a) Toffoli gate (depth 8).

≡

(b) Toffoli gate, one negative control (depth 8).

≡

(c) Quantum OR gate (depth 8).

≡

(d) Peres gate (depth 8).

≡

(e) Fredkin gate (depth 10).

Figure 4.8: 3-qubit logical gates with no ancillas.

4.5.2 T -depth-optimal implementations

Experiments were also performed to find circuits with minimum T -depth, using Algo-
rithm 2. The bottleneck in this case is the sheer size of the Clifford group which is difficult
to generate itself, much less use in exhaustive searching. For 2 qubits, generation of the
11,520 unique Clifford group elements (up to phase) required approximately 1 second of
computing time and less than 2 seconds to search for a unitary up to 1 T -stage, or 2
T -stages and ending in a non-Clifford operation. In practice, this was enough to find mini-
mum T -depth implementations of the 2-qubit gates in question. By contrast, generation of
the 92,897,280 unique 3-qubit Clifford group elements required almost 4 days to compute.

46

≡

(a) Λ(P) (T -depth 1, total depth 5).

≡

(b) Λ(V) (T -depth 1, total depth 5).

Figure 4.9: Reduced T -depth implementations utilizing ancillas.

≡

Figure 4.10: Addition of one ancilla reduces the minimum circuit depth from 7 to 6.

The minimal T -depth controlled-H gate (Figure 4.13) required less than one second
to compute, after generating the Clifford group. Minimal T -depth circuits for other 2-
qubit logical gates were not found to decrease the number of T -stages compared to the
minimal depth circuits, and thus the circuits shown for controlled-P , controlled-V , and W
are optimal both in circuit depth and T -depth. As a result, allowing the use of ancillas
can strictly decrease the minimum T -depth required to implement a given unitary, since
implementations of the controlled-P and -V gates with ancillas were found with lower
T -depth.

While no Toffoli implementation has yet been found with provably minimal T -depth
and zero ancilla, a circuit with T -depth 3 implementing the Toffoli gate (Figure 4.14) has
been found using our main algorithm; as the Toffoli appears to require a minimum of 7 T
gates to implement, we conjecture this is minimal. Furthermore, it reduces the number of
T -stages from 5 [27] to 3, providing an approximate 40% speed-up in fault tolerant schemes
where Clifford group gates have negligible cost compared to the T gate.

We return to the question of parallelizing T gates in more detail in Chapter 5.

4.5.3 Exact decomposition of controlled unitaries

Recall that the controlled version of any circuit can be generated by replacing each individ-
ual gate with a controlled version of that gate, with the control qubit of the entire circuit

47

≡

Figure 4.11: Controlled-T gate (depth 19).

≡

Figure 4.12: Circuit implementing a reversible 1-bit full adder.

functioning as the control qubit of each gate [24]. The minimal-depth circuits computed
in Section 4.5 allow us to establish the following result, bounding the number of gates in
the controlled version of any circuit over {H,P,CNOT, T}†.

Theorem 2. Let the gate cost of a circuit be given by a vector x = [xH , xP , xC , xT]t,
where xH denotes the number of H gates, xP denotes the number of P -gates or P †-gates,
xC denotes the number of CNOT gates, and xT denotes the number of T -gates or T †-
gates. Suppose U can be implemented to error ε ≥ 0 by a circuit over G† where G =
{H,P,CNOT, T} with gate cost of x. Then Λ(U) can be implemented to error at most ε
over G† by a circuit of gate cost Ax, where

A =

2 0 2 4
2 0 0 2
1 2 6 12
2 3 7 9

 .
The circuit for controlled-U uses exactly one ancilla qubit if one or more T -gates are present
in the decomposition of U , and no ancilla qubits otherwise. Furthermore, controlled-U can
be implemented in a T -depth of at most xH + 2xP + 3xC + 5xT .

Proof: Assume that U admits an ε-approximation over G with associated cost vector
x = [xH , xP , xC , xT]t. As shown in Section 4.5, for each gate H, P , CNOT , T , the
corresponding singly controlled gate can be implemented exactly over G. Specifically,

48

≡

Figure 4.13: Circuit implementing a controlled-H gate (T -depth 1, total depth 9).

≡

Figure 4.14: Circuit implementing a Toffoli gate (T -depth 3, total depth 9).

we obtain from Figure 4.6 for each controlled-H gate a cost of [2, 2, 1, 2] and for each
controlled-P gate a cost of [0, 0, 2, 3]. From Figures 4.8 and 4.11 we obtain costs for each
controlled-CNOT and each controlled-T gate of [2, 0, 6, 7] and [4, 2, 12, 9], respectively.
Since the total cost is linear in the costs of the gates, we obtain that claimed total cost of
Ax. The approximation error ε is unchanged as compared to U since no further errors are
introduced in the factorization. Finally, the claimed bound for the overall T -depth holds
since the T -depths of each H, P , CNOT , and T gates can be upper bounded by 1, 2, 3,
and 5, respectively, where here we used the T -depth 3 circuit in Figure 4.14 to derive an
upper bound for the Toffoli gate. �

4.6 Conclusions

In this chapter, we have developed a simple algorithm for finding a minimal depth quantum
circuit implementing a given unitary U in a specific gate set. The primary focus was to find
exact circuits with either minimal depth or minimal T -depth, though we also developed
extensions to optimize over ancillas and to compute optimal approximating circuits. Our
computations have found minimal depth Clifford + T circuits for many important logical
gates, in some cases providing significant speed-up over previously known or algorithmically
generated circuits.

The experimental results show that search-based circuit synthesis can very effective in
the optimization of small multi-qubit quantum circuits, as arises when compiling high level
quantum gates to a lower level fault tolerant gate set. For instance, our implementation

49

can find any optimal 3-qubit circuit up to depth 8 over {H,P,CNOT, T}† in approximately
400 seconds, which no previously existing techniques could accomplish. Similarly, our ap-
proximate synthesis procedure performs much faster than the only previous depth-optimal
multi-qubit approximate synthesis algorithm.

Compared to reversible synthesis where search-based techniques are prominent, our
performance is slower, it appears that quantum circuit synthesis is a much more difficult
problem. The best search-based reversible synthesis results [12] considered 4 bit Boolean
functions, which admit a representation via 64 bits that also allows common operations such
as permutation and inversion to be carried out by bitwise operations. While we use similar

bit twiddling techniques for algebra in the ring Z
[

1√
2
, i
]
, a 4-qubit unitary over Z

[
1√
2
, i
]

requires specification of the entire unitary, a 16 by 16 matrix where each element can be
represented by 5 integers. Without any kind of compression and using 32 bit integers, a
single unitary would require 40, 960 bits of memory, a blowup by a factor of 640 compared
to reversible functions. To compose circuits, expensive matrix multiplication needs to
be performed, and even permutations or inversions need to examine each element of the
matrix, adding significant complexity over the bitwise operations for reversible functions.
As a result it would appear that unitary synthesis is a more complex problem.

As an additional point regarding this algorithm, we stress that space-time trade-offs
were made to allow searches of reasonable depth to be performed. By storing only the
circuits, not entire unitaries, we achieved a significant reduction in memory usage, reducing
the minimum space to store an n-qubit unitary from 4n× 5× 4 bytes to as few as n bytes.
While permutation and inversion is cheap for these circuit descriptions, a circuit of depth
d needs d matrix multiplications to compute the corresponding unitary, a major obstacle
to performance. To alleviate this time penalty, circuit keys were introduced, storing only
a small matrix of complex numbers so that unitaries are only generated when generating
a new key, or if a key collision is found.

4.6.1 Future work

One possible direction of future work is to use the algorithms developed here to create better
optimization or synthesis algorithms. While this method performs well for small unitaries,
it remains exponential in the size of the instruction set and, by extension, depth, so it
is unlikely to be useful for optimizing large circuits. Instead, databases generated using
these techniques could be used to implement template-based algorithms, and moreover
the algorithm could be used to implement effective peep-hole optimizations. Other more

50

scalable approaches to large-scale circuit optimization may also make use of some of the
ideas presented here, if not necessarily the entire algorithm itself.

Along similar lines, our advantage over brute force searching could be used to speed up
the Solovay-Kitaev algorithm. While methods exist for the optimal approximate synthesis
of single qubit circuits, Solovay-Kitaev still remains the best method for the direct synthesis
of approximate multi-qubit circuits. Unfortunately, the algorithm scales poorly to multiple
qubits, due to the difficulty of computing and search through the initial ε-net. It’s possible
that by using our approximate synthesis procedure to implement the ε-net, multi-qubit
Solovay-Kitaev could be a viable option for computing multi-qubit approximate circuits.

Other areas of future work could focus on improving these methods and implemen-
tations. In particular, there may be methods to store unitaries over particular gate sets
efficiently, which would open up the option to store unitaries themselves, decreasing com-
putation time. Better search space reductions may also be possible, particularly in the
case of T -depth optimal searching, as the number of T -depth 1 circuits is significantly less
than |Cn|2|Tn|.

51

Chapter 5

Tpar: polynomial-time T -gate
optimization

While the last chapter focused on quantum circuit optimization by the synthesis of min-
imal depth circuits, the technique was exponential in the number of qubits and circuit
depth, making it impractical for large scale depth optimizations. Moreover, to optimize
T -count and depth, the entire Clifford group – with size exponential the number of qubits
squared [57] – was repeated at each iteration of the algorithm, making it difficult for more
than 2 qubits. In this chapter, we instead consider the problem of scalable, approximate
optimization of T -count and depth. This chapter is largely based on material presented in
[66].

The advantages of optimizing for T -count and depth have been discussed earlier in this
thesis, as well as numerous recent papers [18, 19, 22, 20]. In [18] and independently in [20]
it was shown that different classes of circuits can be parallelized to T -depth 1 by adding
ancilla qubits, which Figures 4.9a and 4.9b further demonstrate. However, these results
focus on the optimization of small circuits and lower bounds on T -depth for restricted
classes of circuits using unbounded ancillas. Moreover, they do not consider the question
of optimizing T -count, which has a profound impact on circuit size.

To address these issues, we developed a re-synthesis circuit optimization algorithm that
optimizes T -count and depth, which we call Tpar. The algorithm relies on the generation
of a sum over paths-style representation [67, 68] of the target quantum circuit, expressed
using Clifford and T gates. By calculating a circuit’s sum over paths, we can cancel a large
number of redundant T gates, then synthesize a new circuit applying the remaining T gates
in parallel stages. Furthermore, the algorithm runs in time polynomial in the number of

52

T gates and qubits, and can efficiently utilize ancillas to further parallelize T gates.

A motivating example

To motivate the need for large-scale automated T -gate optimizations we begin with a
simple example. Consider an implementation of the 4-bit Toffoli gate Λ3(X), shown in
Figure 5.1.

Figure 5.1: Implementation of a Λ3(X) gate [1].

If we replace two Toffolis with the implementation in Figure 4.14, and the other two
with its inverse, we can remove 10 T gates by canceling identities and commuting T
gates through the controls of CNOT gates. Furthermore, we can trivially parallelize the
remaining T gates to give a total T -depth of 10 (Figure 5.2).

↓

Figure 5.2: Optimized Clifford + T implementation of a Λ3(X) gate.

This small example clearly shows that remarkable reductions in T -count and T -depth
can be made in full circuits, particularly those composed of Toffoli gates. However, the
optimizations were performed by hand and are not practical for large circuits, so we would
like an automated way to perform such optimizations. As described the optimizations are
not particularly machine-amenable, given that they relied on the circuits used to implement

53

the Toffolis, followed by a sequence of applications of commutation rules and identities.
While it’s reasonable to think a computer could produce the same output with a simulated
annealing type approach, this approach will have difficulty on larger circuits where phase
gates may be far apart.

We can in fact do better by instead characterizing the circuit as a set of conditional
phase factors and functions on the computational basis states. The theoretical advantage
of such an approach is that redundant rotations would be immediately obvious from the
fact that they have the same conditions. Furthermore, it would bypass dealing with circuit
identities to move gates, instead allowing synthesis to schedule gates directly. Our algo-
rithm takes this approach, allowing us to reproduce and go beyond the T -count and depth
optimizations in Figure 5.2.

The construction of such an algorithm relies on the linearity of quantum mechanics to
view circuits, gates or unitaries as functions mapping computational basis states (i.e. clas-
sical states Fn2) to some superposition of classical states with complex coefficients. Similar
constructions [67, 68] have been connected with Feynman’s sum over paths formulation
of quantum mechanics [69] and used to deal with complexity-theoretic problems, though
our motivation behind such a representation is based in the practical reconstruction of
quantum circuits.

We begin by characterizing circuits composed of CNOT and T gates, which as we
show can be re-synthesized with optimal T -depth under the assumption that no “simpler”
sum of paths implements the same unitary. Afterwards, we consider different methods for
extending the re-synthesis to cover the universal Clifford + T gate set.

5.1 {CNOT, T} circuits

We first consider circuits over the gate set {CNOT, T, P = T 2, Z = T 4, T † = T 7, P † = T 6},
as they have a particular property that will be crucial to synthesizing low T -depth circuits.
We usually omit the extraneous gates and refer to this gate set by its generating set
{CNOT, T}. It can be observed that since CNOT |xy〉 = |x(y ⊕ x)〉 and T |x〉 = eiπ/4|x〉, a
{CNOT, T} circuit can be described as a linear reversible function on the inputs, with an
added phase that is some factor of ω = eiπ/4. Furthermore, as the T gates are orthogonal
to the CNOT gates (in the sense that one applies to state-space, and the other applies
to phase-space), each qubit is always in a state described by some linear Boolean function
(i.e. an XOR) of the input variables; likewise, each T gate adds a factor of ω conditioned
on a linear Boolean function. We can then tell exactly when T gates can be removed or
replaced with a P or Z gate just by looking at the phase factors they add.

54

Stated more precisely,

Lemma 8. A unitary U ∈ U(2n) is exactly implementable by an n-qubit circuit over
{CNOT, T} if and only if

U |x1x2 . . . xn〉 = ωf(x1,x2,...,xn)|g(x1, x2, . . . , xn)〉

where f(x1, x2, . . . , xn) =
∑

i ci · fi(x1, x2, . . . , xn) for some linear reversible function g ∈
Fn2 → Fn2 and linear Boolean functions f1, f2, ..., fk ∈ Fn∗2 with coefficients c1, c2, ..., ck ∈ Z8.

Proof. The forward direction can be observed by writing the circuit implementing U as
an alternating product of CNOT and T circuits. Each CNOT circuit computes a linear
reversible function f on the inputs, while a following T gate on the ith qubit adds a global
phase factor of ωf

i(x1,x2,...,xn) where f i denotes the linear Boolean function corresponding
to the ith output of f . If multiple T gates act on the same linear Boolean function, the
multiplicity of the function in the phase is equal to the number of T gates acting on it.
The overall effect of the circuit on the state is then a linear reversible function, completing
the proof.

The reverse direction is equally simple by noting that for any linear Boolean function
fi on n inputs, fi is an output of some linear reversible function on n inputs, and thus can
be computed using only CNOT gates [14]. By applying ci T gates to the qubit with state
|fi(a1, a2, ..., an)〉 then uncomputing, the input state is recovered, with an added phase of
ωci·fi(a1,a2,...,an). This process can be repeated for each fi. It then suffices to observe that
g can be computed with CNOT gates, thus U can be implemented with CNOT and T
gates.

As an illustration, consider the circuit in Figure 5.3, implementing a doubly controlled
Pauli-Z gate Λ2(Z) over {CNOT, T} – recall that the doubly-controlled Z gate implements
the transformation Λ2(Z) : |x1x2x3〉 7→ (−1)x1∧x2∧x3|x1x2x3〉. We can track the effect of
each CNOT gate on the state of the qubits (annotated in the circuit); when a T or T †

gate is applied, we record the state of the relevant qubit in a phase factor. As a result, the
circuit implements the following transformation:

Λ2(Z) : |x1x2x3〉 7→ ωx1+x2+x3−(x1⊕x2)−(x1⊕x3)−(x2⊕x3)+(x1⊕x2⊕x3)|x1x2x3〉.

In fact, since 2 · (x ∧ y) = x+ y − x⊕ y [20], we see that

ωx1+x2+x3−(x1⊕x2)−(x1⊕x3)−(x2⊕x3)+(x1⊕x2⊕x3) = ω4·(x1∧x2∧x3)

55

x1 T †
x1 ⊕ x3

T
x1 ⊕ x2 ⊕ x3

T †
x1 ⊕ x2

T
x1

x1

x2 T † • • • • x2

x3 •
x2 ⊕ x3

T
x3

• T † x3

Figure 5.3: {CNOT, T} circuit implementing the doubly controlled Z gate.

as expected.

As a result, we can fully characterize any unitary U ∈ U(2n) implementable by a
{CNOT, T} circuit with a set S ⊆ Z8 × Fn∗2 of linear Boolean functions together with
coefficients1 in Z8, and a (linear, reversible) output function g : Fn2 → Fn2 , with the in-
terpretation U〈S,g〉 : |x1, x2, ..., xn〉 7→ ω

∑
(c,f)∈S c·f(x1,x2,...,xn)|g(x1, x2, ..., xn)〉. In a sense all

paths are simple in a {CNOT, T} circuit since they do not introduce path variables [67],
thus allowing the phase of the output state to only depend on the inputs of the circuit – we
will later integrate it with operations that generate path variables, which will complicate
re-synthesis.

Once such a characterization has been computed, it is clear from the proof of Lemma 8
that given S and g a circuit can be synthesized implementing U〈S,g〉 – however, the method
described may end up with worse T -depth than the original circuit.

We can instead recall from Section 2.1 that if a set2 A ⊆ Fn∗2 is computable, we can
construct a linear reversible function with |A| of the outputs corresponding to the elements
of A. The set S of linear Boolean functions can thus be partitioned into computable
subsets, and a circuit can be synthesized by taking each partition A ⊆ S, computing
a (reversible) superset of A with a stage of CNOT gates, computing the relevant phase
factors ω

∑
(c,f)∈A c·f(x1,x2,...,xn), and finally uncomputing. As each fi ∈ A is one of the outputs

of the CNOT stage, the phase computations can be performed in parallel with at most
|A| T gates – under the assumption that P, P † and Z are implemented directly as logical
gates, this stage will have T -depth at most 1 since at most 1 T gate is required to apply a
given phase factor.

As a trivial consequence, any unitary U implementable over {CNOT, T} can be imple-
mented in T -depth k where k is the minimum number of sets partitioning ST = {(c, f) ∈
S|c ≡ 1 mod 2} into computable subsets – we don’t include phases where c ≡ 0 mod 2 as

1When referring to properties (and functions) pertaining to sets of linear Boolean functions, we will
automatically lift these to properties defined on pairs of linear Boolean functions and coefficients.

2Recall the definition of Fn∗
2 as the dual space of Fn

2 , Fn
2 → F2.

56

they can be applied without using T gates. While we haven’t described how to find such
partition yet, we digress for a moment and examine the effectiveness of such a method.

Given the set S we can observe that T -depth k is minimal, since any T -stage corresponds
to a subset of ST which must be reversibly computable. Likewise, the number of T gates,
given by |ST |, is also minimal with respect to the particular set of linear Boolean functions
used. However, there may in general be some other equivalent expression of the phase
using fewer T gates. Specifically, given S and g, there may be some set S ′ ⊆ Z8×Fn∗2 such
that

∑
(c,f)∈S c · f(x1, x2, . . . , xn) =

∑
(c,f)∈S′ c · f(x1, x2, . . . , xn) for all x1, x2, . . . , xn ∈ F2,

implying that U〈S,g〉 = U〈S′,g〉. If
∑

(c,f)∈S′ c mod 2 <
∑

(c,f)∈S c mod 2, synthesizing
U〈S′,g〉 will give a circuit with fewer T gates and possibly lower T -depth.

Consider, for example, the circuit in Figure 5.4 which has the effect

U : |x1x2x3〉 7→ ωx1+(x1⊕x2)+x2+(x2⊕x3)|x1x2x3〉.

Since there are 4 functions and only 3 qubits, a minimal partitioning of this set has at least
2 partitions. However, we can note that x1 + (x1 ⊕ x2) + x2 + (x2 ⊕ x3) = 2 · x1 + (x1 ⊕
x2) + (x1 ⊕ x3), which requires only 2 T gates to implement. We conjecture that finding
an expression of the phase

∑
(c,f)∈S c · f(x1, x2, . . . , xn) minimizing

∑
(c,f)∈S c mod 2 is

NP-hard (see Appendix A).

x1 • T • x1

x2

x1 ⊕ x2
T

x2
• T • x2

x3

x2 ⊕ x3
T

x3
x3

Figure 5.4: A circuit giving a non-optimal (in the T -count) phase expression.

For the remainder of this chapter we will not separate S into those phase factors that
require a T gate and those that don’t to avoid over complicating the presentation.

To return to the topic of synthesis, we first need an efficient method to determine
whether a subset A of S is computable. In fact, by Definition 2, we know a set of linear
Boolean functions A is computed by a linear reversible function on Fn2 if and only if there
exists some superset A′ of A such that |A′| = n and rank (A′) = n. In particular, we see
that such a superset exists if and only if A is linearly independent, which can be efficiently
tested. Notably, the T -depth is then given by a minimal partitioning of S into linearly
independent sets.

The more interesting case is when the input state space is some subspace V of FN2 with
dimension n, which occurs when the circuit contains ancilla qubits, or if some qubits have

57

linearly dependent input states, e.g. |x1x2(x1 ⊕ x2)〉. For any set A = {f1, f2, ..., fk}, we
can recall that A is computable over V if and only if we can add linear Boolean functions
fk+1, . . . , fn to A so that rank ({f1, f2, . . . , fn}) = n. For A to be computable, the remaining
N −k functions must thus be able to make up the difference between rank(A) and n. This
condition is formalized in the following lemma:

Lemma 9. Given a subspace V of FN2 with dimension n and set of linear Boolean functions
A ⊆ V ∗, there exists a superset A′ of A with cardinality N such that rank (A′) = n if and
only if

n− rank (A) ≤ N − |A|. (5.1)

Proof. The proof of Lemma 9 follows from basic linear algebra. Suppose there exists a
superset A′ of A with cardinality N and rank(A′) = n. Then A′ \ A contains at least
n − rank(A) linearly independent linear Boolean functions, and so |A′ \ A| = N − |A| ≥
n− rank(A).

Suppose instead that n− rank(A) ≤ N − |A|. Then any maximal linearly independent
subset of A can be extended to a basis of V by adding n−rank(A) linear Boolean functions
(i.e., vectors in V ∗). As a result there exists a rank n superset A′ of A with cardinality
|A′| = |A| + n − rank(A) ≤ N , which suffices to show that a rank n superset exists with
cardinality N .

We can note that inequality (5.1) implies |A| = rank(A), i.e., A is linearly independent,
when N = n.

To illustrate these points, consider again the circuit in Figure 5.4. Recall that we can
describe the computed unitary, with 3 inputs and no ancillas (N = n = 3), by

U : |x1x2x3〉 7→ ωx1+(x1⊕x2)+x2+(x2⊕x3)|x1x2x3〉.

The T -stages in Figure 5.4 correspond to the partition {{x1, x1 ⊕ x2}, {x2, x2 ⊕ x3}}. While
this partition is already minimal in size, we could instead synthesize a circuit using the par-
tition {{x1, x1 ⊕ x2, x2 ⊕ x3}, {x2}}, since rank({x1, x1⊕x2, x2⊕x3}) = 3 and there exists
a size 3 superset {x1, x2, x3} ⊃ {x2} with rank 3. Conversely, {{x1, x1 ⊕ x2, x2}, {x2 ⊕ x3}}
cannot be synthesized, as rank({x1, x1 ⊕ x2, x2}) = 2, or more intuitively since the trans-
formation |x1x2x3〉 7→ |x1(x1 ⊕ x2)x2〉 is irreversible.

If instead we wanted to add an ancilla when re-synthesizing Figure 5.4, we could write
the circuit in T -depth 1. We already know that |x1x2x3〉 7→ |x1(x1 ⊕ x2)(x2 ⊕ x3)〉 is a
reversible transformation, so |x1x2x3〉|0〉 7→ |x1(x1 ⊕ x2)(x2 ⊕ x3)〉|0〉 is reversible as well.

58

We can then compute x2 into the ancilla with two CNOT gates, since 0⊕x1⊕(x1⊕x2) = x2,
and thus apply all 4 T gates at the same time. To connect this intuitive idea with the
condition (5.1), we observe that N = 4, n = 3 since the input |x1x2x3〉|0〉 spans a space of
dimension 3, and rank({x1, x1 ⊕ x2, x2 ⊕ x3, x2}) = 3, so

n− rank({x1, x1 ⊕ x2, x2 ⊕ x3, x2}) = 0 ≤ 0 = N − |{x1, x1 ⊕ x2, x2 ⊕ x3, x2}|.

Figure 5.5 shows a circuit computing U in T -depth 1.

x1 • •
x1

T • • x1

x2 • •
x1 ⊕ x2

T • • x2

x3

x2 ⊕ x3
T x3

0
x2

T 0

Figure 5.5: T -depth 1 implementation of Figure 5.4 with one ancilla.

5.2 Matroids

We now turn our attention to the problem of determining a minimal partition of a set of
linear Boolean functions into computable sets.

While if we want to find a minimal partition with ancillas we can’t easily phrase the
problem as partitioning vectors into linearly independent sets, we are able to phrase the
problem as an instance of the more general matroid partitioning problem. To do so, we
first introduce the concept of a matroid, an algebraic structure that generalizes the idea of
linear independence in vector spaces.

Definition 7. A finite matroid is a pair (S, I) where S is a finite set and I is a set of
subsets of S such that

1. ∅ ∈ I.

2. For all A,B ⊂ S, if A ∈ I and B ⊂ A, then B ∈ I.

3. For all A,B ∈ I, if |A| > |B|, then there exists some a ∈ A such that B ∪ {a} ∈ I.

59

As we have a condition that behaves like linear independence in the case when the circuit
has no ancillas, it is natural to think that the inequality (5.1) may define an independence
relation. It turns out that a set of linear Boolean functions, together with an independence
relation defined by the equality (5.1), forms a matroid:

Lemma 10. For any subspace V of FN2 with dimension n and set of linear Boolean func-
tions S = {f1, f2, . . . , fk} ⊆ V ∗, let I denote the set

{A ⊆ S|n− rank (A) ≤ N − |A|}.

The pair (S, I) is a finite matroid.

Proof. We verify that (S, I) satisfies all three conditions of Definition 7.

1. n− rank(∅) ≤ N − |∅| is trivially true since n ≤ N . Thus ∅ ∈ I.

2. Suppose A,B ⊂ S, where A ∈ I and B ⊂ A. Clearly rank(B) ≥ rank(A)−(|A|−|B|),
so rank(A)− rank(B) ≤ |A| − |B|. Since n− rank(A) ≤ N − |A| we see that

n ≤ N + rank(A)− |A| ≤ n+ rank(B)− |B|

and thus n− rank(B) ≤ N − |B|.

3. Suppose A,B ∈ I and |A| > |B|. If rank(A) ≤ rank(B), then

n− rank(B) ≤ n− rank(A) ≤ N − |A| < N − |B|

and thus n− rank(B ∪ {s}) ≤ N − |B ∪ {s}| for any s ∈ A.

Otherwise, rank(A) > rank(B) and we can let A′ and B′ be maximal linearly indepen-
dent subsets of A and B, respectively. Since A′ 6⊆ span(B′), for any s ∈ A\ span(B′),
B′ ∪ {s} is linearly independent. Then

n− rank(B′ ∪ {s}) = n− rank(B ∪ {s})
= n− rank(B)− 1

≤ N − |B| − 1

= N − |B ∪ {s}|.

60

5.2.1 Matroid partitioning

The matroid partitioning problem can be defined as follows

Definition 8. (Matroid partitioning)

Given a matroid (S, I), find a partition {A1, A2, . . . , Ak} of S such that Ai ∈ I for each
1 ≤ i ≤ k and for any other partition {A′1, A′2, . . . , A′k′} into independent subsets, k′ ≥ k.

Of particular interest is the fact that matroid partitioning can be solved in polynomial
time, given an independence oracle for the matroid [70]. As a consequence of Lemmas 9
and 10, we see that the problem of finding a minimal partition of a set of linear Boolean
functions into computable sets is reducible to the matroid partitioning problem, and thus
can be solved in polynomial time given an independence oracle. Since the condition in
Lemma 9 can be checked for a given subset A by using Gaussian elimination to compute
the matrix rank, we thus see that a minimal partition of S into computable subsets can
be computed in polynomial time. Specifically, the independence test requires at most3,4

O(N3) time. The rest of this section describes an algorithm for computing a minimal
partition.

The algorithm we use for solving the matroid partitioning problem is based on an
algorithm due to Edmonds [70]. Given a matroid (S, I) and a minimal (matroid) partition
P of S ′ ⊂ S, we take an element s ∈ S \ S ′ not already partitioned and construct a
minimal partition of S ′ ∪ {s}. To create the new partition, we construct a directed graph
Gs containing a vertex u for every u ∈ S ′ ∪ {s} as well as a vertex ⊥p for every subset
p ∈ P . The edges of Gs represent changes to the partition that are invariant under the
property of each subset being independent. In particular, for any u, v ∈ S ′ ∪ {s} there
is a directed edge v → u in Gs if and only if u is contained in some subset p ∈ P and
(p \ {u}) ∪ {v} ∈ I, i.e. v can be added to p if we remove u. Additionally, given a subset
p ∈ P and element u ∈ S ′ ∪ {s}, there exists an edge u → ⊥p if and only if p ∪ {u} ∈ I.
A path from s to ⊥p for some subset p gives a set of updates to P that produce a valid
partition P ′ of S ′ ∪ {s}. Likewise, if there is no such path, there is no partition of size |P |
partitioning S ′ ∪ {s} [70], and so a new subset {s} is added to P .

Rather than generating the graph Gs explicitly for each element s, we try to construct
a path from s to some ⊥p breadth-first (Algorithm 5). It is well known that the time

3We can reduce this to O(n2N) in practice by storing vectors in V ∗ as length dim(V) = n vectors. The
O(N3) bound is used for simplicity.

4Gaussian elimination cannot generally be bounded this way, as the representation of individual ele-
ments may grow exponentially as rows get added together. Since our arithmetic is performed over the
finite field F2, we avoid this exponential blowup in the size of individual elements.

61

complexity of breadth-first search is O(|E|+|V |) for a graph with edge set E and vertices V .
We can note that there are |S ′|+|P |+1 vertices and at most |S ′|2+|P |·(|S ′|+1)+(|S ′|+|P |)
edges in Gs, as well as the fact that |P | ≤ |S ′|. Since each edge requires a single test for
independence in O(N3) time, the breadth first search requires time in O(|S ′|2 ·N3 + |S ′|).

Algorithm 5 Matroid partitioning algorithm

function Partition(s, P, (S, I))
/* I denotes the independence oracle, P is a minimal partition */
Create path queue Q, Q.enqueue(s→ ∅)
Unmark each element of S, mark s
while Q non-empty do

t := Q.dequeue()
for each A ∈ P do

Set A′ := A ∪ {head(t)}
if A′ ∈ I then

Set A := A′

for each u→ v in path t do
Replace u with v in its current partition

end for
else

for each unmarked u ∈ A do
if A′ \ {u} ∈ I then

Q.enqueue(u→ t)
Mark u

end if
end for

end if
end for

end while
If no path was found, set P := P ∪ {s}

end function

Algorithm 5 details the algorithm for adding an element s to a partition P of matroid
(S, I) – the full algorithm follows by iteratively adding each element of the ground set to
the initially empty partition, and correctness follows from the property that if P is minimal
for (S, I), then the new partition P ′ is minimal for (S ∪ {s}, I).

Since adding a single element to a partition of i elements takes O ((2i)2 ·N3 + 2i) time,

62

and
∑|S|

i i2 = |S|3
3

+ |S|2
2

+ |S|
6

, we see that Algorithm 5 can be used to partition the full set
S of linear Boolean functions in O(|S|3 ·N3) time.

5.3 Towards a universal gate set

In the previous sections we described (in pieces) a method for re-synthesizing {CNOT, T}
circuits while removing redundant T -gates and parallelizing the remaining ones. Specif-
ically, given a circuit we can compute 〈S, g〉 and a new circuit computing U〈S,g〉 can be
synthesized by first partitioning S into computable subsets using Algorithm 5, then com-
pleting each subset by adding elements to make them reversible. Many efficient algorithms
exist [71, 14, 40] that can decompose the resulting linear reversible function into CNOT
gates – in our implementation we use a Gaussian elimination algorithm – so that each
subset can be computed, followed by a layer of T gates to apply the phase factors, then
uncomputed. To complete the procedure, we synthesize another linear reversible circuit
computing g.

However, the usefulness of such an algorithm on its own is marred by the fact that
{CNOT, T} circuits are an extremely restricted class of quantum circuits – in particular,
they do not create superpositions or interference between basis states. To apply the opti-
mization procedure to interesting quantum circuits, we have to extend these ideas to deal
with a universal gate set; this section details the different approaches we developed.

5.3.1 Embedded {CNOT, T} optimization

The most straightforward and obvious way of applying {CNOT, T} re-synthesis to a uni-
versal gate set is to optimize only subcircuits. For instance, an optimization procedure
could traverse a circuit, gather the largest volume {CNOT, T} subcircuit that hasn’t yet
been optimized, then replace it with the re-synthesized circuit. However, finding the largest
volume {CNOT, T} subcircuit is a non-trivial problem on its own, and each iteration would
generally require traversing the whole circuit again, which we would like to avoid.

A slight relaxation to make such an algorithm more practical is to take a greedy ap-
proach. In this approach, subcircuits are greedily constructed by traversing the circuit and
repeatedly adding {CNOT, T} gates to the current subcircuit until a non-{CNOT, T}
gate occurs. The most glaring drawback is that T gates cannot commute across subcircuit
boundaries, removing a great deal of optimization potential. For instance, the optimiza-
tions in the motivating example (Figure 5.1) are no longer available, since Hadamard gates

63

separate the individual {CNOT, T} circuits corresponding to doubly controlled-Z gates –
as the Λ2(Z) gates already have minimal T -depth and count, this effectively removes any
possibility of optimization.

Given this drawback, it is perhaps surprising that our experimental results in Section 5.5
show very good performance on many arithmetic circuits. In fact, this method works very
well in circuits where nearby Toffolis do not mix control bits with target bits, since the
Hadamards can be pushed outwards in these cases. Moreover, a great deal of T gate
reductions are available when adjacent Toffolis share controls and/or targets. As a result,
embedding {CNOT, T} re-synthesis in general quantum circuits can be very effective under
certain conditions.

5.3.2 Abstract Hadamard gates

Motivated by the drawbacks of the embedded re-synthesis approach, we can consider ways
to optimize directly over a universal gate set, specifically by extending the previous tech-
niques to include Hadamard gates.

As in {CNOT, T} re-synthesis, the goal is to describe the phase factors in the output
as (linear Boolean) functions of an arbitrary input basis state. A new circuit can then
be synthesized applying those phase factors as parallel as possible. In the embedding of
{CNOT, T} re-synthesis into a universal gate set, each {CNOT, T} subcircuit is inter-
preted as having a completely new input state, so the state space of any two subcircuits
is disjoint. We can do better by more accurately tracking the state space of different
{CNOT, T} subcircuits, which would potentially allow phase factors to cancel and com-
mute between them. To do so we need to know how the state space changes after application
of a Hadamard gate.

We can observe that a Hadamard gate has the effect

H : |x〉 7→ 1√
2

∑
x′∈F2

(−1)x·x
′|x′〉.

We call x′ a path variable, which represents two possible paths in the final state. Since
we only want the effect of the Hadamard gate on the basis state, we drop the extraneous
information5 and describe its action as

H ′ : |x〉 7→ |x′〉, x′ ∈ F2.

5The phase and magnitude are implicitly recovered in the synthesis procedure, so we do not need to
keep track of it.

64

In effect, a Hadamard gate destroys the qubit’s previous state and produces a new arbitrary
state. All the non-Hadamard phase factors in a {H,CNOT, T} circuit with N qubits and
k Hadamard gates can then be described by c · f(x1, x2, ..., xN+k) for some linear Boolean
function f and c ∈ Z8.

As an illustration, the Toffoli gate implementation in Figure 5.6 given the initial input
|x1x2x3〉 generates two free variables x4, x5, shown in the figure. The total phase given by
the T gates can then be described as

ωx1+x2+x4+7·x1⊕x2+7·x1⊕x4+7·x2⊕x4+x1⊕x2⊕x4 .

The output state is then described as |x1x2x5〉. Furthermore, the state space before the
first H, for example, is spanned by {x1, x2, x3}, so the phases conditioned on x1, x2, and
7 · x1 ⊕ x2 could be applied before the first Hadamard when re-synthesizing, while all the
other phases require x4 and thus must be applied before the second Hadamard gate.

x1 T • • T † • x1

x2 T • T † T † • x2

x3 H
x4

T • T • H
x5

x5

Figure 5.6: Clifford + T implementation of the Toffoli gate with the target on qubit 3.

As noted before, the abstraction H ′ is only used to more accurately describe the state
space of different sub-circuits, which are then individually re-synthesized; the difference
from embedded {CNOT, T} optimization is that all phase factors are known at the same
time, so T gates in separate subcircuits can be combined and/or assigned to different
subcircuits to further minimize T -depth. Specifically, after each Hadamard gate the state
space will be some subspace V of FN+k

2 , which is distinct from the subspace after any other
Hadamard gate. Each function f(x1, x2, ..., xN+k) can then be computed in a subcircuit
with state space V if and only if f ∈ V ∗. The synthesis procedure can then decide in which
subcircuit to apply each phase factor, in order to achieve efficient T -depth.

One approach to parsing out phase factors is to use the greedy nature of Algorithm 5 to
maintain a partition of those phase factors in S that are currently in the state space of the
circuit. We can iterate through the subcircuits, and for each one, partition any elements of
S that are not already partitioned and are in the state space of the subcircuit – this step
relies on the fact that Algorithm 5 is greedy to avoid having to partition everything again
from scratch. As some of the partitioned functions may not be in the state space after the

65

next Hadamard gate, we then assign the phase factors in any partition block containing
such a function to the current subcircuit and remove that block from the partition.

The process of removing partitions and partitioning new elements requires a closer
look to ensure that the partition is actually a minimal matroid partition at every step.
Fortunately, it is straightforward to observe that any subset P ′ of a minimal matroid
partition P is also minimal for the remaining elements – if there existed a partition P0 of
the elements in P ′ such that |P0| < |P ′|, then P0 ∪ P \ P ′ is a partition of the elements in
P into fewer sets.

One problem arises in that the dimension of the state space may increase in the next
subcircuit (e.g. if the Hadamard is applied to an ancilla qubit). In this case, the indepen-
dence condition (5.1) of the matroid changes, and previous partitions may now be invalid
under the new inequality. However, as a trivial consequence of the fact that the dimension
increases by at most 1, a partition that is no longer independent can be modified to satisfy
it by removing exactly one element. Furthermore, if all partitions are modified to satisfy
the new independence condition in this way, the new partition is minimal.

Lemma 11. Given a subspace V of FN2 with dimension n < N and a set of linear Boolean
functions S ⊆ V ∗, let Ii = {A ⊆ S|i− rank (A) ≤ N − |A|}.

If P is some minimal partition of (S, In), then the partition P ′ defined by removing
one linearly dependent element from every A ∈ P if A /∈ In+1 is a minimal partition of
(S ′, In+1), where S ′ = ∪A∈PA is the set of elements partitioned by P ′.

Proof. Suppose there exists some partition P0 of (S ′, In+1) with |P0| < |P ′|.

We first see that one element of S \ S ′ can be added to any A ∈ P0 to give a set
in In. In particular, consider any A ∈ P0. Since n + 1 − rank(A) ≤ N − |A| we see
n−rank(A) ≤ N−|A|−1 = N−|A∪{s}|6 for any s ∈ S\S ′. Thus for any A ∈ P0, s ∈ S\S ′
we have A ∪ {s} ∈ In.

Next we note that for any T ⊆ S there exists a partition of (T, In) with size at most
|T | − 1. This is a simple result of the fact that n < N , as any subset A ⊆ T of size 2 has
rank at least 1, so n− rank(A) ≤ n− 1 ≤ N − 2 = N −|A|. Additionally, any size 1 subset
of T is trivially independent under In.

Thus since we can add one element to every partition in P0, and we can partition the
remaining |S \ S ′| − |P0| elements into at most |S \ S ′| − |P0| − 1 partitions, we see that

6We also note that N − |A ∪ {s}| ≥ 0 as required, since any subset of S has rank at most n, i.e.
∀A ∈ In+1, n + 1− rank(A) > 0 and thus |A| < N .

66

there exists a partition of (S, Im) with size at most |P0|+ (|S \S ′|− |P0|− 1) = |S \S ′|− 1.
Since |S \ S ′| − 1 < |P | we obtain a contradiction.

5.3.3 Summing over paths

The last section implied a representation of {H,CNOT, T} circuits using linear Boolean
functions with k free variables over FN+k

2 , but the Hadamard gates were left in place and
only their effect on the state space was tracked. We can instead re-synthesize the entire
circuit by fully describing the effect of a Hadamard gate,

H : |x〉 7→ 1√
2

∑
x′∈F2

ω4·x·x′ |x′〉,

leading to a complete algebraic representation of the circuit.

Lemma 12. If unitary U ∈ U(2N) is exactly implementable by an N-qubit circuit over
{H,CNOT, T} with k H gates then for any computational basis state x1x2...xN ,

U : |x1x2...xN〉 7→
1√
2k

∑
xN+1...xN+k∈Fk2

ωp(x1,x2,...,xN+k)|y1y2...yN〉

where yi = hi(x1, x2, . . . , xN+k) for some linear Boolean functions hi, and

p(x1, x2, ..., xN+k) =
∑
i

ci · fi(x1, x2, ..., xN+k) + 4 ·
k∑
i=1

xN+i · gi(x1, x2, ..., xN+k)

for some linear Boolean functions fi, gi and coefficients ci ∈ Z8.

Proof. Follows from the effect of each gate on the computational basis states.

Lemma 12 tells us that we can represent the unitary computed by a circuit over
{H,CNOT, T} just with a polynomial p(x1, x2, ...,N+k) in mixed arithmetic over Z2 and
Z8, and a set of linear Boolean functions for the outputs y1, y2, ..., yN . A similar sum over
paths representation of this gate set was briefly discussed in [67] as a reduction from eval-
uating quantum circuits to counting solutions to the polynomials. It’s worth noting that
unlike Lemma 8, the converse is not true – some polynomials will not correspond to a
unitary transformation, as some are not even reversible. We leave testing of unitarity for
a given expression of the type in Lemma 12 as an open question.

67

As in the last section, the synthesis procedure will have to make a “tour” through the
various subspaces of FN+k

2 by applying Hadamard gates to instantiate the path variables
and pick up the phase factor ω4·xN+i·gi(x1,x2,...,xN+k). The difference is that the path is not
fixed ahead of time, and so the synthesis procedure will need to reconstruct a sequence of
Hadamard gates so that the circuit can transition through the state spaces and pick up each
phase factor. In doing so, it’s possible that an ordering that allows more parallelization
may be chosen. We deal with the problem of choosing such a path in this section.

More precisely, we want to synthesize a {H,CNOT} skeleton of a full circuit imple-
menting U , specifically the unitary

U0 : |x1x2...xN〉 7→
1√
2k

∑
xN+1...xN+k∈Fk2

(−1)
∑k
i=1 xN+i·gi(x1,x2,...,xN+k)|y1y2...yN〉.

Once such a circuit is constructed we can add in the necessary phase factors between
the Hadamard gates using the same method as in Section 5.3.2. Additionally, we assume
that we are re-synthesizing a circuit, i.e. the polynomial p(x1, x2, ..., xN+k) and outputs
y1, y2, ..., yN were generated from a real circuit. We leave open the question of synthesis
for arbitrary polynomial representations.

We begin by describing how to reconstruct the path from the original circuit, work-
ing backwards from the output state. Let Vi ⊆ FN+k

2 be the state space of the original
circuit after the ith Hadamard gate. Since xN+i ∈ Vi, we can choose a basis for Vi with
respect to the standard basis of FN+k

2 as Bi ∪ {xN+i}, where no vector in Bi contains
xN+i. Furthermore, Bi ∪ {gi(x1, x2, ..., xN+k)} also forms a basis of Vi−1. Given N qubits
in states {b1, b2, ..., bN} forming a basis of Vi, we can then synthesize a circuit transform-
ing the state space from Vi−1 to Vi and picking up the correct phase: we first synthesize
V : |b1b2...bN−1〉 7→

∣∣xN+ib
′
1...b

′
N−1

〉
, where each of b′1, b

′
2, ..., b

′
N does not contain xN+i in

the standard basis, and then implement V †(H ⊗ I⊗N−1), which has the effect∣∣gi(x1, x2, ..., xN+k)b
′
1...b

′
N−1

〉
7→ 1√

2

∑
xN+i∈F2

(−1)xN+i·gi(x1,x2,...,xN+k)|b1b2...bN〉.

As the outputs {y1, y2, ..., yN} form a basis of Vk, we can thus synthesize a circuit imple-
menting U ′ by iteratively synthesizing circuits transforming Vi−1 to Vi.

At the moment the only advantage of this synthesis method is that the circuit can
be more concisely represented using p(x1, x2, .., xN+k) and set of output functions with no
impact on the quality of the re-synthesized circuit. However, this method could also be
used to parallelize or otherwise commute Hadamards as needed. Specifically, the method

68

works because the state space after every Hadamard contains at least one elementary vector
xN+i, and so we could create a basis diagonal in xN+i allowing a circuit to be synthesized
generating xN+i. If the state space contains more than one such elementary vector, we
could instead choose a basis that is diagonal in more than one path variable, and thus
apply Hadamard gates in parallel. Care is still needed, as there may be phase factors
that can only be computed between the Hadamard gates, but the flexibility to parallelize
Hadamard gates could potentially lead to lower T -depths and lower total depths.

5.4 The Tpar algorithm

Up until now we’ve described the general ideas behind some T -gate optimization algorithms
– in this section we present a concrete algorithm, Tpar, for optimizing T -count and depth
in Clifford + T circuits, based on the representation described in Section 5.3.2. A version
of the algorithm optimizing just {CNOT, T} subcircuits, as described in Section 5.3.1, can
be constructed by applying Tpar to subcircuits between Hadamard gates.

Recall that in the computational basis, the input space of a circuit with N qubits, N−n
ancillas and k Hadamard gates is a dimension n subspace V of FN+k

2 . We required that all
ancillas are initialized in state |0〉. We represent the state of a qubit as a linear Boolean
function f defined on FN+k

2 , or more succinctly as a vector in the dual space of FN+k
2 ,

F(N+k)∗
2 . In contrast to previous discussions we also maintain a Boolean value b specifying

the parity of the qubit, so that the full state is given by b⊕ f(x1, x2, ..., xN+k) – as we will
see, the parity corresponds to bit flips on the qubit.

Given a Clifford + T circuit C, written over G = {X, Y, Z, P, P †, H, CNOT, T, T †},
we compute an abstraction 〈S,Q,H〉 of C where S = {(c, f)|c ∈ Z8, f ∈ F2 × F(N+k)∗

2 }
represents the terms in the exponent of ω = ei

π
4 as linear Boolean functions with a parity

bit and multiplicity, Q = (g1, g2, ..., gN), gi ∈ F2 × F(N+k)∗
2 tracks the current state of each

qubit, and H = (h1, h2, ...hk) gives a list of Hadamard gates, where each Hadamard gate
hi stores the input and output states, hi.QI and hi.QO respectively. We define the initial
state for the circuit as Q0 = ((0, x1), (0, x2), ..., (0, xn), (0, 0),), i.e. the first n qubits
have initial states |x1〉, |x2〉, ..., |xn〉 and the remainder are initialized as |0〉. To compute
〈S,Q,H〉 we begin with 〈∅, Q0, ∅〉 and apply the updates shown in Figure 5.7 sequentially
for each gate in the circuit.

We define S] T as the union of S and T where any f such that (c1, f) ∈ S, (c2, f) ∈ T
is assigned coefficient c1 + c2 mod 8. In this way phases applied to the same state are
added, potentially reducing the total number of T gates. Furthermore, we can note that

69

update(Xi, 〈S,Q,H〉) = 〈S,Q|gi:=¬gi , H〉
update(Zi, 〈S,Q,H〉) = 〈S] {(4, gi)}, Q,H〉
update(Yi, 〈S,Q,H〉) = 〈S] {(4, gi), (2,0)}, Q|gi:=¬gi , H〉
update(Pi, 〈S,Q,H〉) = 〈S] {(2, gi)}, Q,H〉
update(P †i , 〈S,Q,H〉) = 〈S] {(6, gi)}, Q,H〉

update(Hi, 〈S,Q, (h1, h2, ..., hi)〉) = 〈S,Q′, (h1, h2, ..., hi, {QI = Q,QO = Q′})〉
where Q′ = Q|gi:=a|H|

update(CNOT(i,j), 〈S,Q,H〉) = 〈S,Q|gj :=gi⊕gj , H〉
update(Ti, 〈S,Q,H〉) = 〈S] {(1, gi)}, Q,H〉
update(T †i , 〈S,Q,H〉) = 〈S] {(7, gi)}, Q,H〉

Figure 5.7: Gate update rules. A gate Ui denotes gate U applied to qubit i, CNOT(i,j)

specifies i as the control qubit and j as the target.

bit flips on a state gi = (b, f) which naturally correspond to a negation of the state
b⊕ f(x1, x2, ..., xN+k) can be associated with the parity:

¬(b⊕ f(x1, x2, ..., xN+k)) = 1⊕ b⊕ f(x1, x2, ..., xN+k) = ¬b⊕ f(x1, x2, ..., xN+k).

So to apply a bit flip ¬gi, we change the parity of the qubit rather than allowing negative
occurrences of variables in linear Boolean functions.

The Tpar algorithm (Algorithm 6) proceeds as follows: after computing 〈S,Q,H〉, we
iterate through the Hadamard gates in H, updating a partition P of the functions of S
that are computable in the current subcircuit. In particular, we divide S into SP and S−P ,
where SP are the already partitioned elements and S−P are those not already partitioned.
For a given hi = (QI , OO), we check whether f ∈ span(QI) for every (c, f) ∈ S−P , and if
so partition (c, f) using Algorithm 5 with the independence relation7

A ⊆ S ∈ I if and only if rank(QI)− rank(A) ≤ N − |A|.

After partitioning, we update SP and S−P accordingly.

7As before we implicitly lift the definition of rank for sets of linear Boolean functions to sets of linear
Boolean functions with parity and coefficient.

70

Algorithm 6 T-parallelization algorithm

function Tpar(Clifford + T circuit C)
Circuit:= ∅
Compute 〈S,Q,H〉 for C
Set SP := S; S−P := ∅; P := ∅
for each 1 ≤ i ≤ k do

I := {A ⊆ S| rank(hi.QI)− rank(A) ≤ N − |A|}
for each (c, f) ∈ S−P do

if f ∈ span(hi.QI) then
P :=Partition((c, f), P, (SP , I))
SP := SP ∪ {(c, f)}; S−P := S−P \ {(c, f)}

end if
end for
for each A ∈ P do

if i = k or ∃(c, f) ∈ A such that f /∈ span(hi.QO) then
Append(Circuit, Synthesize(A, hi.QI , hi.QI))
P := P \ A

else if rank(hi.QO)− rank(A) > N − |A| then
Choose (c, f) ∈ A such that rank(A) = rank(A \ {(c, f)})
A := A \ {(c, f)}; SP := SP \ {(c, f)}; S−P := S−P ∪ {(c, f)}

end if
end for
Append(Circuit, Synthesize(∅, hi.QI , hi.QO))

end for
return Circuit

end function

We note that as per Section 5.2, the complexity of this step can be loosely bounded by
O (|S−P | · (N + k)3 + |S|3 · (N + k)3). The actual run-time will be lower as the matrices
on which we perform Gaussian elimination have dimension n + k × N , though we omit a
tighter analysis as the algorithm is heuristic in nature.

We next divide P into Pfrozen and Pfloat, where

Pfrozen = {A ∈ P |f /∈ span(QO) for some (c, f) ∈ A}
Pfloat = P \ Pfrozen.

This step requires time in O (|SP | · (N + k)3). The names float and frozen imply that

71

the partitions can either float to the next subcircuit, or must be frozen in the current
one.

Once we have our partition Pfrozen, we construct a circuit computing the relevant phase
factors by taking each set A ∈ P , synthesizing a CNOT circuit computing A, applying
the necessary phase rotations, then uncomputing A. The general synthesis procedure is
defined in Algorithm 7 and we defer discussion of the procedure for the moment, but for
the purpose of analyzing complexity we claim that such a procedure takes O(|S| · (N +k)3)
time.

Finally, for every A ∈ Pfloat, we check whether A is an independent set under the new
independence relation

A ⊆ S ∈ I if and only if rank(QO)− rank(A) ≤ N − |A|.

If A /∈ I, we remove a linearly dependent element from A and update SP and S−P accord-
ingly. As |Pfloat| ≤ |S| this requires an additional O (|S| · (N + k)3) operations.

The entire algorithm, shown in Algorithm 6, thus runs in time

O
(
|C| ·N + k · |S|3 · (N + k)3

)
.

As |C| ·N is in most cases negligible compared to the k · |S|3(N + k)3 factor, we can leave
it out and describe the run-time as simply O (k · |S|3 · (N + k)3) . Moreover, it should be
noted that if no repartitioning is done, the run-time is bounded by O (|S|3 · (N + k)3) , as
each element is partitioned exactly once, rather than the worst case of k times in general.

5.4.1 Extended {CNOT, T} synthesis

As mentioned above, the Tpar algorithm relies on a procedure to synthesize a circuit
applying a (computable) set of phase factors A ⊆ S; we give pseudocode for a general
procedure in Algorithm 7. Given input and output states for the qubits, QI and QO

respectively, SYNTHESIZE(A,QI , QO) returns a circuit implementing

U : |QI〉 7→ ω
∑

(c,(b,f))∈A c·b⊕f(x1,x2,...,xN+k)|QO〉.

The synthesis proceeds by first addingN−|A| linear Boolean functions so that the resulting
set A′ has rank equal to rank(QI) – this can be accomplished by using row operations to
reduce A to a subset of QI , then adding the missing vectors. Next we synthesize a circuit
computing A′ by reducing QI and A′ to the same basis using Gaussian elimination in

72

Algorithm 7 Extended {CNOT, T} synthesis

function Synthesize(A,QI , QO)
/* Synthesize a {CNOT,X, T} circuit with inputs QI , outputs QO, and phases A */
Compute A′ ⊇ A s.t. rank(A′) = rank(QI), |A′| = n+m
Synthesize {CNOT,X} circuit C1 computing |QI〉 7→ |A′〉
Synthesize {Z, P, T} circuit C2 computing |A′〉 7→ ω

∑
(c,b,f)∈A′ c·b⊕f(x1,x2,...,xN+k)|A′〉

Synthesize {CNOT,X,H} circuit C3 computing |A′〉 7→ |QO〉
Return C1C2C3

end function

O((N + k)3) time, where addition of two rows corresponds to the application of a CNOT
gate, and parity changes correspond to X gates. The circuit reducing QI to the basis
is applied forwards, while the circuit reducing A′ is applied in reverse, giving a circuit
mapping |QI〉 7→ |A′〉. The phase factors are applied by constructing a combination of
T, P and Z gates, corresponding to the relevant coefficients, then a similar process of
Gaussian elimination is used to compute |A′〉 7→ |QO〉. In the case when QO produces a
new variable, the required Hadamard gate is also applied.

As |A| ≤ |S| we see that this step has time complexity O(|S| · (N + k)3), and assuming
the target fault tolerant architecture admits logical P and Pauli-Z gates, the T -depth of
the resulting circuit is given by |A|.

This synthesis algorithm brings up an important practical issue. Our Gaussian elimina-
tion based implementation produces circuits that are non-optimal in terms of the number
of gates or depth, resulting in a potential increase in the number of CNOT gates. While
our focus was on the optimization of T gates, there exist algorithms, [40, 14], that produce
more efficient circuits for linear reversible functions. Specifically, [14] provides an algo-
rithm to synthesize linear reversible circuits with Θ(n2/ log(n)) gates, and [40] reports an
O(n)-depth algorithm. More recently, [72] described an optimization procedure for linear
reversible circuits that could be used to produce better circuits. In practical implementa-
tions, one of these methods should be used instead of Gaussian elimination.

73

5.5 Results

We implemented8 Algorithm 6 in C++ and applied it to optimize various quantum, specif-
ically arithmetic, circuits from the literature. Individual circuits were written in the stan-
dard fault-tolerant universal gate set G = {X, Y, Z,H, P, CNOT, T}, using the decompo-
sitions found in Chapter 4 where applicable. In particular, as most arithmetic circuits
are dominated by Toffoli gates, we used a T -depth 3 implementation of the Toffoli gate
(Figure 4.14).

Our first implementation included only {CNOT, T} re-synthesis, which we applied
to Clifford + T circuits by optimizing only {CNOT, T} subcircuits as described in Sec-
tion 5.3.1. For comparison between the two approaches, we ran experiments where Tpar
was run only on subcircuits between Hadamard gates, as well as experiments using Tpar
to optimize the whole circuit.

Results are reported in Tables 5.1 and 5.2. They were generated in Debian Linux
running on a quad-core 64-bit Intel Core i5 2.80GHZ processor and 16 GB RAM. Table 5.1
gives gate counts for the circuits. Table 5.2 focuses on T -depth using either 0, N , or ∞
ancillas9 where N denotes the original number of qubits. The T -depth for each circuit
before optimization was computed by parallelizing the T -gates and Toffoli gates by hand,
and writing each group of parallel Toffoli gates in T -depth 3. As an example of a non-trivial
circuit, we show the initial (Figure 5.8) and Tpar optimized (Figure 5.9) circuits for the
6-bit Cuccaro adder [2].

The benchmarks (Tables 5.1 and 5.2) show that when applying Tpar to {CNOT, T}
subcircuits, the performance is strongly affected by the structure of the original circuit.
In particular, the algorithm optimizes circuits where adjacent Toffoli gates share either
controls or targets, in which case the {CNOT, T} sub-circuits within the Toffolis can be
combined. Each of the GF(2m) multipliers shares this structure. In fact, the Tpar algo-
rithm with or without Hadamard gates can parallelize any GF(2m) multiplication circuit
to T -depth 2 using sufficient ancillas, by noting that each such circuit can be written in
two {CNOT, T} stages. Those circuits that mix controls and targets between adjacent
Toffoli gates are less affected by the optimization, e.g., CSUM-MUX9, as the {CNOT, T}
sub-circuits are separated by H gates.

By contrast, when Tpar is used to optimize the whole circuit, all the tested benchmarks
have significant reductions in terms of both T -count and depth. While the addition of

8The implementation is available at http://code.google.com/p/tpar/.
9N was chosen as an arbitrary non-constant number of ancilla qubits to illustrate the trade off between

ancillas and T -depth.

74

http://code.google.com/p/tpar/

Figure 5.8: 6-bit Cuccaro adder without expanding Toffoli gates [2].

Hadamards makes the algorithm more complex, the running time is not significantly slower
on any of the tested benchmarks, and T reduction and parallelization is better in all cases,
providing strong evidence that abstracting Hadamard gates is a more effective way of
dealing with universal gate sets – in fact, running time was reduced by more than 50%
in the large benchmarks. The results themselves show that there are great opportunities
for reducing T -count and depth in circuits, with average reductions of 40.7% and 57.8%
respectively for the tested benchmarks. Combined with the fact that the algorithm scales
favourably to large circuits, Tpar is an effective algorithm for the large-scale optimization
of fault tolerant circuits.

We also tested our algorithm’s ability to make use of ancillas to optimize T -depth
(Table 5.2). For each of the benchmark circuits, we applied our algorithm with an added
N ancillas, where the original circuit contained N qubits. We also report the minimum
T -depth achievable for each circuit using our algorithm. It can be noted that our algorithm
usually decreases in running time when ancillas are added, due to the reduced number of
partitions and thus faster matroid partitioning. Specifically, when there are many ancillas,
for the majority of the time when an item s is partitioned it can be directly added to
one of the partitions in time O(|P | · (N + k)3). As a result, the algorithm is very flexible
and capable of exploiting ancillas to reduce T -depth. Furthermore, our experimental data
illustrates a great potential for space-time trade-off in quantum circuits.

As a final remark, we note that our algorithm reproduces many of the previous re-

75

Figure 5.9: Optimized circuit from Figure 5.8 after expanding Toffolis. T -count was re-
duced from 77 to 63 and T -depth was reduced from 33 to 27.

76

sults regarding the optimization of T -depth. In particular, Figure 5.10 shows the circuit
produced by running Tpar on an implementation of the Toffoli gate. The circuit mirrors
the T -depth 1 Toffoli reported in [20]. Moreover, the full range of T -depths possible with
different numbers of ancillas can be observed, as in Figure 5.11.

Figure 5.10: T -depth 1 implementation of the Toffoli gate.

Figure 5.11: T -depth 2 implementation of the Toffoli gate.

We can further observe that other gates as computed in Chapter 4 can be parallelized
by adding ancillas and applying Tpar – for instance, the T -depth 1 controlled-P and -V
gates, as well as the controlled-T gate as shown in Figure 5.12. The Λ3(X) gate used in
the motivating example (Figure 5.1) can also be reduced to T -count 16 and T -depth 8
(Figure 5.13), achieving lower T -count and -depth than the manual optimizations.

Figure 5.12: T -depth 3 implementation of the controlled-T gate.

5.6 Conclusions

We have described a closely related class of algorithms for re-synthesizing Clifford + T cir-
cuits with reduced T -count and depth. These algorithms use representations of circuits by

77

Figure 5.13: Λ3(X) gate.

sets of linear Boolean functions, which allows T gates to be combined and then parallelized
by using Matroid theory to partition the functions into invertible subsets. The main algo-
rithm, Tpar, has run-time cubic in the number of T gates, qubits, and Hadamard gates,
though our experiments show that the algorithm is sufficiently fast for practical circuit
sizes.

Our benchmarks (Tables 5.1 and 5.2) show that large gains can be made in reducing
the T -count and depth of quantum circuits. In some cases, T -count was reduced by 65.7%,
while T -depth could be reduced by up to 86.7%. Furthermore, the benchmarks illustrate
that ancillas can be used to parallelize T gates further, and given the run-times reported
the algorithm can be seen to provide substantial flexibility in exploring the trade-off be-
tween ancilla usage and T -depth. While the benchmarks demonstrated were all arithmetic
or otherwise reversible operations, such operations typically require the majority of the
resources in circuits for real quantum algorithms anyway.

5.6.1 Future work

As a major consequence of the Tpar algorithm, reducing the number of Z8 terms in the
mixed arithmetic polynomials describing the phase corresponds directly to reducing the
T -complexity of circuits. In fact, for circuits not containing Hadamard gates, Tpar returns
a circuit of minimal T -count and depth if the phase function cannot be reduced. A natural
avenue for future work is then to develop methods for optimizing such polynomials for T -
count and depth – we conjectured that finding the exact optimal expression is intractable,
though in practice there may be good heuristics or approximation algorithms.

Sum over path style representations may also prove useful in optimizing circuits over
other gate sets, or optimizing circuits for different costs. They provide a very succinct and
computationally efficient way of representing the action of a quantum circuit, as opposed
to quantum circuits or unitary matrices, neither of which reveal as much of the alge-
braic structure of a computation. In particular, these representations appear particularly
amenable to circuit synthesis, and so an interesting problem would be to consider the gen-
eration of the polynomial equations directly from unitaries, for instance those over the ring

78

Z
[

1√
2
, i
]
. Combined with Tpar, multi-qubit unitaries could then be directly synthesized

with optimized T gates.

Finally, it may be useful to consider more advanced strategies for assigning phase gates
to regions of the circuit. As an example, it can be shown that Λm(X) for m > 3 can be
implemented in T -depth 2(m − 1) if partial results are not uncomputed – however, our
algorithm produces circuits with T -depth 2(m−1)+1 as a result of the heuristic used. An
effective area of further research would be to develop heuristics for generating partitions
that result in better distributions of phase gates between Hadamard separated regions.

79

Benchmark N xC xT xg Time (s) x′C x′T x′g T -count reduction (%)

Mod 54 [73] 5 32 28 9 0.001 48 22 10 21.4
0.001 40 16 13 42.9

VBE-Adder3 [74] 10 80 70 20 0.001 94 40 15 42.9
0.002 80 24 23 65.7

CSLA-MUX3 [75] 15 90 70 20 0.002 189 64 23 8.6
0.003 219 62 21 11.4

CSUM-MUX9 [75] 30 196 196 84 0.011 242 112 172 42.9
0.018 222 110 152 43.9

QCLA-Com7 [76] 24 215 203 73 0.004 340 185 53 8.9
0.012 282 95 168 53.2

QCLA-Mod7 [76] 26 441 413 132 0.012 777 361 102 12.6
0.025 717 249 230 39.7

QCLA-Adder10 [76] 36 273 238 86 0.010 450 218 52 8.4
0.038 482 162 73 31.9

Adder8 [77] 24 466 399 126 0.010 792 315 134 21.1
0.016 646 215 230 46.1

RC-Adder6 [2] 14 104 77 30 0.002 161 77 30 0.0
0.004 167 63 61 18.2

Mod-Red21 [78] 11 121 119 58 0.004 230 119 53 0.0
0.005 192 73 110 38.7

Mod-Mult55 [78] 9 55 49 36 0.001 100 47 19 4.1
0.002 104 37 53 24.5

Λ3(X) [1] 5 28 28 8 0.001 48 28 6 0.0
0.001 38 16 12 42.9

Λ4(X) [1] 7 56 56 16 0.002 96 56 10 0.0
0.002 72 28 23 50.0

Λ5(X) [1] 9 84 84 24 0.002 144 84 14 0.0
0.002 106 40 34 52.4

Λ10(X) [1] 19 224 224 64 0.005 384 224 34 0.0
0.007 276 100 89 55.4

GF(24)-Mult [79] 12 115 112 32 0.004 262 76 29 32.1
0.005 245 68 27 39.3

GF(25)-Mult [79] 15 179 175 50 0.012 490 115 40 34.3
0.009 452 111 36 36.6

GF(26)-Mult [79] 18 257 252 72 0.027 830 162 49 35.7
0.020 759 150 43 40.5

GF(27)-Mult [79] 21 349 343 98 0.048 1143 217 56 36.7
0.044 1060 217 36 36.7

GF(28)-Mult [79] 24 468 448 128 0.111 1773 280 60 37.5
0.078 1591 264 40 41.1

GF(29)-Mult [79] 27 575 567 162 0.235 2184 351 64 38.1
0.143 1886 351 44 38.1

GF(210)-Mult [79] 30 709 700 200 0.420 3022 430 71 38.6
0.279 2402 410 69 41.4

GF(216)-Mult [79] 48 1856 1792 512 8.353 8994 1072 122 40.2
4.257 8657 1040 82 42.0

GF(232)-Mult [79] 96 7291 7168 2048 770.369 49230 4192 246 41.5
370.400 41796 4128 166 42.4

GF(264)-Mult [79] 192 28860 28672 8192 92236.729 273977 16576 494 42.2
43979.598 214941 16448 334 42.6

Average 21.9
40.7

Maximum 42.9
65.7

Table 5.1: Gate count benchmarks. N specifies the number of qubits. xC reports the
number of CNOT gates, xT gives the number of T gates, and xg gives the number of other
gates. x′ denotes the number of gates after optimization by Tpar on subcircuits without
H gates (first row), and on the whole circuit (second row).

80

Benchmark T -depth T -depth Red. Time T -depth Red. Time T -depth Red.
original 0 ancilla (%) (s) N ancilla (%) (s) ∞ ancilla (%)

Mod 54 [73] 12 9 25.0 0.001 4 66.7 0.001 3 75.0
7 41.7 0.001 4 66.7 0.001 3 75.0

VBE-Adder3 [74] 24 15 37.5 0.001 5 79.2 0.001 5 79.2
11 54.2 0.001 5 79.2 0.001 5 79.2

CSLA-MUX3 [75] 21 10 52.4 0.001 4 81.0 0.001 4 81.0
7 66.7 0.003 4 81.0 0.003 4 81.0

CSUM-MUX9 [75] 18 12 33.3 0.004 5 72.2 0.004 3 83.3
12 33.3 0.010 5 72.2 0.01 3 83.3

QCLA-Com7 [76] 27 21 22.2 0.004 9 66.7 0.004 7 74.1
14 48.1 0.009 7 74.1 0.008 7 74.1

QCLA-Mod7 [76] 57 42 26.3 0.007 16 71.9 0.007 14 75.4
30 47.4 0.020 15 73.7 0.019 14 75.4

QCLA-Adder10 [76] 24 17 29.2 0.005 7 70.8 0.004 6 75.0
12 50.0 0.017 7 70.8 0.016 6 75.0

Adder8 [77] 69 44 36.2 0.007 16 76.8 0.007 15 78.3
33 52.2 0.015 16 76.8 0.014 15 78.3

RC-Adder6 [2] 33 33 0.0 0.002 11 66.7 0.002 11 66.7
27 18.2 0.003 11 66.7 0.003 11 66.7

Mod-Red21 [78] 48 40 16.7 0.003 15 68.8 0.006 15 68.8
30 37.5 0.004 15 68.8 0.005 15 68.8

Mod-Mult55 [78] 15 9 40.0 0.001 4 73.3 0.002 4 73.3
9 40.0 0.002 4 73.3 0.002 4 73.3

Λ3(X) [1] 12 12 0.0 0.001 4 66.7 0.001 4 66.7
9 25.0 0.001 4 66.7 0.001 4 66.7

Λ4(X) [1] 24 24 0.0 0.001 8 66.7 0.002 8 66.7
17 29.2 0.001 8 66.7 0.001 8 66.7

Λ5(X) [1] 36 36 0.0 0.002 12 66.7 0.003 12 66.7
25 30.6 0.002 12 66.7 0.002 12 66.7

Λ10(X) [1] 96 96 0.0 0.004 32 66.7 0.013 32 66.7
65 32.3 0.006 32 66.7 0.01 32 66.7

GF(24)-Mult [79] 36 9 75.0 0.002 5 86.1 0.002 2 94.4
7 80.6 0.003 4 88.9 0.003 2 94.4

GF(25)-Mult [79] 48 10 79.2 0.004 5 89.6 0.002 2 95.8
9 81.3 0.006 5 89.6 0.005 2 95.8

GF(26)-Mult [79] 60 11 81.7 0.011 6 90.0 0.003 2 96.7
11 81.7 0.011 5 91.7 0.007 2 96.7

GF(27)-Mult [79] 72 13 81.9 0.029 7 90.3 0.004 2 97.2
12 83.3 0.028 7 90.3 0.011 2 97.2

GF(28)-Mult [79] 84 15 82.1 0.049 7 91.7 0.005 2 97.6
13 84.5 0.041 7 91.7 0.014 2 97.6

GF(29)-Mult [79] 96 16 83.3 0.114 8 91.7 0.007 2 97.9
15 84.4 0.085 7 92.7 0.028 3 96.9

GF(210)-Mult [79] 108 18 83.3 0.311 9 91.7 0.008 2 98.1
17 84.3 0.216 8 92.6 0.038 2 98.1

GF(216)-Mult [79] 180 27 85.0 7.681 13 92.8 0.025 2 98.9
24 86.7 2.715 12 93.3 0.18 2 98.9

GF(232)-Mult [79] 372 51 86.3 1340.412 24 93.5 0.186 2 99.5
51 86.3 266.300 24 93.5 2.678 2 99.5

GF(264)-Mult [79] 756 101 86.6 268472.634 46 93.9 2.573 2 99.7
104 86.2 46950.853 48 93.7 87.604 2 99.7

Average 45.7 78.9 82.9
57.8 79.5 82.9

Maximum 86.6 93.9 99.7
86.7 93.9 99.7

Table 5.2: T -depth benchmarks. We report the T -depth after no optimization (original),
and after optimization with 0 (i.e. Table 5.1), N , or unbounded ancillas.

81

APPENDICES

82

Appendix A

Complexity of T -count minimization

This thesis has largely been concerned with the problem of minimizing T -count in quantum
circuits. In this section we formalize a conjecture made earlier regarding the complexity of
a T -count minimization problem.

In Chapter 5 it was mentioned that the {CNOT, T} circuit re-synthesis algorithm
doesn’t necessarily find the minimal T -count (and by extension, T -depth) to implement a
given unitary using CNOT and T (†), P (†), or Z gates. Finding an expression of the circuit’s
phase as a polynomial over Z2 and Z8 minimizing the number of odd coefficients was shown
to be equivalent to minimizing T -count. Here we formally state the conjecture that this
problem is NP-hard.

Conjecture 1. For a sequence (ak)k∈{0,1}n , ak ∈ Z8, define the polynomial p(ak)(x1, x2, ..., xn)
as

p(ak)(x1, x2, ..., xn) =
∑

k∈{0,1}n
ak · (xk11 ⊕ xk22 ⊕ · · · ⊕ xknn).

Given a sequence (ak)k∈{0,1}n , ak ∈ Z8, the problem of finding some sequence (bk)k∈{0,1}n , bk ∈
Z8 such that p(ak)(x1, x2, ..., xn) = p(bk)(x1, x2, ..., xn) for all x1, x2, ..., xn ∈ {0, 1} minimiz-
ing

∑
k∈{0,1}n(bk mod 2) is NP-hard.

We describe the phase polynomial in slightly different, more general terms here – partic-
ularly, each term xk11 ⊕xk22 ⊕· · ·⊕xknn is a linear Boolean function of the inputs x1, x2, ..., xn.
The connection to minimization of T -count, described in Chapter 5, is in the minimization∑

k∈{0,1}n(bk mod 2), as each odd coefficient in the phase requires one T gate to imple-

ment. Since every polynomial of the form p(ak)(x1, x2, ..., xn) defines the global phase for
some {CNOT, T} circuit, the two minimization problems are informally equivalent.

83

References

[1] A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor,
T. Sleator, J. A. Smolin, and H. Weinfurter, “Elementary gates for quantum com-
putation,” Phys. Rev. A, vol. 52, pp. 3457–3467, Nov 1995, quant-ph/9503016.

[2] S. A. Cuccaro, T. G. Draper, S. A. Kutin, and D. Petrie Moulton, “A new quantum
ripple-carry addition circuit,” ArXiv e-prints, Oct. 2004, quant-ph/0410184.

[3] V. Kabanets and J.-Y. Cai, “Circuit minimization problem,” in Proceedings of the
thirty-second annual ACM symposium on Theory of computing, STOC ’00, (New York,
NY, USA), pp. 73–79, ACM, 2000.

[4] R. K. Brayton, A. L. Sangiovanni-Vincentelli, C. T. McMullen, and G. D. Hachtel,
Logic Minimization Algorithms for VLSI Synthesis. Norwell, MA, USA: Kluwer Aca-
demic Publishers, 1984.

[5] J. W. Britton, B. C. Sawyer, A. C. Keith, C.-C. J. Wang, J. K. Freericks, H. Uys,
M. J. Biercuk, and J. J. Bollinger, “Engineered two-dimensional ising interactions in a
trapped-ion quantum simulator with hundreds of spins,” Nature, no. 7395, p. 489492,
2012.

[6] K. R. Brown, A. C. Wilson, Y. Colombe, C. Ospelkaus, A. M. Meier, E. Knill,
D. Leibfried, and D. J. Wineland, “Single-qubit-gate error below 10−4 in a trapped
ion,” Phys. Rev. A, vol. 84, p. 030303, Sep 2011, arXiv:1104.2552.

[7] J. M. Chow, J. M. Gambetta, A. D. Córcoles, S. T. Merkel, J. A. Smolin, C. Rigetti,
S. Poletto, G. A. Keefe, M. B. Rothwell, J. R. Rozen, M. B. Ketchen, and M. Steffen,
“Universal quantum gate set approaching fault-tolerant thresholds with superconduct-
ing qubits,” Phys. Rev. Lett., vol. 109, p. 060501, Aug 2012, arXiv:1202.5344.

84

http://arxiv.org/abs/quant-ph/9503016
http://arxiv.org/abs/quant-ph/0410184
http://arxiv.org/abs/arXiv:1104.2552
http://arxiv.org/abs/arXiv:1202.5344

[8] C. Rigetti, J. M. Gambetta, S. Poletto, B. L. T. Plourde, J. M. Chow, A. D. Córcoles,
J. A. Smolin, S. T. Merkel, J. R. Rozen, G. A. Keefe, M. B. Rothwell, M. B. Ketchen,
and M. Steffen, “Superconducting qubit in a waveguide cavity with a coherence time
approaching 0.1 ms,” Phys. Rev. B, vol. 86, p. 100506, Sep 2012, arXiv:1202.5533.

[9] H. Bombin, R. S. Andrist, M. Ohzeki, H. G. Katzgraber, and M. A. Martin-Delgado,
“Strong resilience of topological codes to depolarization,” Phys. Rev. X, vol. 2,
p. 021004, Apr 2012, arXiv:1202.1852.

[10] A. G. Fowler, A. M. Stephens, and P. Groszkowski, “High-threshold universal quan-
tum computation on the surface code,” Phys. Rev. A, vol. 80, p. 052312, Nov 2009,
arXiv:0803.0272.

[11] A. G. Fowler, A. C. Whiteside, and L. C. L. Hollenberg, “Towards practical classical
processing for the surface code,” Phys. Rev. Lett., vol. 108, p. 180501, May 2012,
arXiv:1110.5133.

[12] O. Golubitsky and D. Maslov, “A study of optimal 4-bit reversible toffoli circuits and
their synthesis,” Computers, IEEE Transactions on, vol. 61, no. 9, pp. 1341–1353,
2012, arXiv:1103.2686.

[13] W. N. N. Hung, X. Song, G. Yang, J. Yang, and M. Perkowski, “Optimal synthesis
of multiple output boolean functions using a set of quantum gates by symbolic reach-
ability analysis,” Computer-Aided Design of Integrated Circuits and Systems, IEEE
Transactions on, vol. 25, no. 9, pp. 1652–1663, 2006.

[14] K. N. Patel, I. L. Markov, and J. P. Hayes, “Optimal synthesis of linear reversible
circuits,” Quantum Info. Comput., vol. 8, pp. 282–294, Mar. 2008, quant-ph/0302002.

[15] D. Maslov, G. W. Dueck, D. M. Miller, and C. Negrevergne, “Quantum circuit sim-
plification and level compaction,” Trans. Comp.-Aided Des. Integ. Cir. Sys., vol. 27,
pp. 436–444, Mar. 2008, quant-ph/0604001.

[16] R. Dias da Silva, E. Pius, and E. Kashefi, “Global quantum circuit optimization,”
ArXiv e-prints, Jan. 2013, arXiv:1301.0351.

[17] A. Paetznick and A. G. Fowler, “Quantum circuit optimization by topological com-
paction in the surface code,” ArXiv e-prints, Apr. 2013, arXiv:1304.2807.

85

http://arxiv.org/abs/arXiv:1202.5533
http://arxiv.org/abs/arXiv:1202.1852
http://arxiv.org/abs/arXiv:0803.0272
http://arxiv.org/abs/arXiv:1110.5133
http://arxiv.org/abs/arXiv:1103.2686
http://arxiv.org/abs/quant-ph/0302002
http://arxiv.org/abs/quant-ph/0604001
http://arxiv.org/abs/arXiv:1301.0351
http://arxiv.org/abs/arXiv:1304.2807

[18] M. Amy, D. Maslov, M. Mosca, and M. Roetteler, “A meet-in-the-middle algorithm
for fast synthesis of depth-optimal quantum circuits,” Computer-Aided Design of In-
tegrated Circuits and Systems, IEEE Transactions on, vol. 32, no. 6, pp. 818–830,
2013, arXiv:1206.0758.

[19] A. Bocharov and K. M. Svore, “Resource-optimal single-qubit quantum circuits,”
Phys. Rev. Lett., vol. 109, p. 190501, Nov 2012, arXiv:1206.3223.

[20] P. Selinger, “Quantum circuits of T -depth one,” Phys. Rev. A, vol. 87, p. 042302, Apr
2013, arXiv:1210.0974.

[21] C. Jones, “Low-overhead constructions for the fault-tolerant toffoli gate,” Phys. Rev.
A, vol. 87, p. 022328, Feb 2013, arXiv:1212.5069.

[22] A. G. Fowler, “Time-optimal quantum computation,” ArXiv e-prints, Oct. 2012,
arXiv:1210.4626 [quant-ph].

[23] R. Landauer, “Information is physical,” in Physics and Computation, 1992. PhysComp
’92., Workshop on, pp. 1–4, 1992.

[24] P. Kaye, R. Laflamme, and M. Mosca, An Introduction to Quantum Computing. Ox-
ford University Press, 2007.

[25] P. Shor, “Algorithms for quantum computation: discrete logarithms and factoring,”
in Foundations of Computer Science, 1994 Proceedings., 35th Annual Symposium on,
pp. 124–134, 1994, quant-ph/9508027v2.

[26] S. Lloyd, “Universal quantum simulators,” Science, vol. 273, no. 5278, pp. 1073–1078,
1996.

[27] M. Nielsen and I. Chuang, Quantum Computation and Quantum Information. Cam-
bridge Series on Information and the Natural Sciences, Cambridge University Press,
2000.

[28] A. Y. Kitaev, A. H. Shen, and M. N. Vyalyi, Classsical and Quantum Computation.
Graduate studies in mathematics, v. 47, American mathematical society, 2002.

[29] D. Gottesman, “The heisenberg representation of quantum computers,” in Inter-
national Conference on Group Theoretic Methods in Physics, p. 9807006, 1998,
quant-ph/9807006v1.

86

http://arxiv.org/abs/arXiv:1206.0758
http://arxiv.org/abs/arXiv:1206.3223
http://arxiv.org/abs/arXiv:1210.0974
http://arxiv.org/abs/arXiv:1212.5069
http://arxiv.org/abs/arXiv:1210.4626
http://arxiv.org/abs/quant-ph/9508027v2
http://arxiv.org/abs/quant-ph/9807006v1

[30] V. Kliuchnikov, D. Maslov, and M. Mosca, “Fast and efficient exact synthesis of single
qubit unitaries generated by Clifford and T gates,” Quantum Info. Comput., vol. 13,
pp. 607–630, July 2013, arXiv:1206.5236.

[31] B. Giles and P. Selinger, “Exact synthesis of multiqubit Clifford+T circuits,” Phys.
Rev. A, vol. 87, p. 032332, Mar 2013, arXiv:1212.0506.

[32] D. P. DiVincenzo, “Two-bit gates are universal for quantum computation,” Phys. Rev.
A, vol. 51, pp. 1015–1022, Feb 1995, cond-mat/9407022.

[33] A. Y. Kitaev, “Quantum computations: algorithms and error correction,” Russian
Mathematical Surveys, vol. 52, pp. 1191–1249, Dec. 1997.

[34] W. K. Wootters and W. H. Zurek, “A single quantum cannot be cloned,” Nature,
vol. 299, p. 802, Oct. 1982.

[35] A. Paetznick and B. W. Reichardt, “Universal fault-tolerant quantum computa-
tion with only transversal gates and error correction,” ArXiv e-prints, Apr. 2013,
arXiv:1304.3709.

[36] D. Gottesman and I. L. Chuang, “Quantum teleportation is a universal computational
primitive,” Nature, no. 6760, p. 390393, 1999, quant-ph/9908010.

[37] S. Bravyi and A. Kitaev, “Universal quantum computation with ideal clifford gates
and noisy ancillas,” Phys. Rev. A, vol. 71, p. 022316, Feb 2005, quant-ph/0403025.

[38] D. Gottesman, “Theory of fault-tolerant quantum computation,” Phys. Rev. A,
vol. 57, pp. 127–137, Jan 1998, quant-ph/9702029.

[39] A. Broadbent and E. Kashefi, “Parallelizing quantum circuits,” Theor. Comput. Sci.,
vol. 410, pp. 2489–2510, June 2009, arXiv:0704.1736.

[40] D. Maslov, “Linear depth stabilizer and quantum fourier transformation circuits with
no auxiliary qubits in finite-neighbor quantum architectures,” Phys. Rev. A, vol. 76,
p. 052310, Nov 2007, quant-ph/0703211.

[41] M. Saeedi, R. Wille, and R. Drechsler, “Synthesis of quantum circuits for linear nearest
neighbor architectures,” Quantum Information Processing, vol. 10, no. 3, pp. 355–377,
2011, arXiv:1110.6412.

87

http://arxiv.org/abs/arXiv:1206.5236
http://arxiv.org/abs/arXiv:1212.0506
http://arxiv.org/abs/cond-mat/9407022
http://arxiv.org/abs/arXiv:1304.3709
http://arxiv.org/abs/quant-ph/9908010
http://arxiv.org/abs/quant-ph/0403025
http://arxiv.org/abs/quant-ph/9702029
http://arxiv.org/abs/arXiv:0704.1736
http://arxiv.org/abs/quant-ph/0703211
http://arxiv.org/abs/arXiv:1110.6412

[42] M. Möttönen, J. J. Vartiainen, V. Bergholm, and M. M. Salomaa, “Quantum cir-
cuits for general multiqubit gates,” Phys. Rev. Lett., vol. 93, p. 130502, Sep 2004,
quant-ph/0404089.

[43] V. Shende, A. Prasad, I. Markov, and J. Hayes, “Synthesis of reversible logic circuits,”
Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on,
vol. 22, no. 6, pp. 710–722, 2003, quant-ph/0207001.

[44] D. Maslov and D. Miller, “Comparison of the cost metrics through investigation of the
relation between optimal NCV and optimal NCT three-qubit reversible circuits,” Com-
puters Digital Techniques, IET, vol. 1, no. 2, pp. 98–104, 2007, quant-ph/0511008.

[45] A. G. Fowler, “Constructing arbitrary Steane code single logical qubit fault-tolerant
gates,” Quantum Info. Comput., vol. 11, pp. 867–873, Sept. 2011, quant-ph/0411206.

[46] D. Grosse, R. Wille, G. Dueck, and R. Drechsler, “Exact multiple-control toffoli net-
work synthesis with SAT techniques,” Computer-Aided Design of Integrated Circuits
and Systems, IEEE Transactions on, vol. 28, no. 5, pp. 703–715, 2009.

[47] C. M. Dawson and M. A. Nielsen, “The Solovay-Kitaev algorithm,” Quantum Info.
Comput., vol. 6, pp. 81–95, Jan. 2006, quant-ph/0505030.

[48] P. Selinger, “Efficient Clifford+T approximation of single-qubit operators,” ArXiv
e-prints, Dec. 2012, arXiv:1212.6253.

[49] V. Kliuchnikov, D. Maslov, and M. Mosca, “Practical approximation of single-qubit
unitaries by single-qubit quantum Clifford and T circuits,” ArXiv e-prints, Dec. 2012,
arXiv:1212.6964.

[50] A. K. Prasad, V. V. Shende, I. L. Markov, J. P. Hayes, and K. N. Patel, “Data struc-
tures and algorithms for simplifying reversible circuits,” J. Emerg. Technol. Comput.
Syst., vol. 2, pp. 277–293, Oct. 2006.

[51] D. Miller, D. Maslov, and G. Dueck, “A transformation based algorithm for reversible
logic synthesis,” in Design Automation Conference, 2003. Proceedings, pp. 318–323,
2003.

[52] D. Maslov, G. Dueck, and D. Miller, “Toffoli network synthesis with templates,”
Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on,
vol. 24, no. 6, pp. 807–817, 2005.

88

http://arxiv.org/abs/quant-ph/0404089
http://arxiv.org/abs/quant-ph/0207001
http://arxiv.org/abs/quant-ph/0511008
http://arxiv.org/abs/quant-ph/0411206
http://arxiv.org/abs/quant-ph/0505030
http://arxiv.org/abs/arXiv:1212.6253
http://arxiv.org/abs/arXiv:1212.6964

[53] M. Sedlk and M. Plesch, “Towards optimization of quantum circuits,” Central Euro-
pean Journal of Physics, vol. 6, no. 1, pp. 128–134, 2008, quant-ph/0607123.

[54] C. Moore and M. Nilsson, “Parallel quantum computation and quantum codes,” SIAM
J. Comput., vol. 31, pp. 799–815, Mar. 2002, quant-ph/9808027.

[55] R. Raussendorf and H. J. Briegel, “Computational model underlying the one-way
quantum computer,” Quantum Info. Comput., vol. 2, pp. 443–486, Oct. 2002,
quant-ph/0108067.

[56] D. E. Browne and H. J. Briegel, “One-way quantum computation - a tutorial intro-
duction,” ArXiv e-prints, Mar. 2006, quant-ph/0603226.

[57] S. Aaronson and D. Gottesman, “Improved simulation of stabilizer circuits,” Phys.
Rev. A, vol. 70, p. 052328, Nov 2004, quant-ph/0406196.

[58] T. Bozkaya and M. Ozsoyoglu, “Indexing large metric spaces for similarity search
queries,” ACM Trans. Database Syst., vol. 24, pp. 361–404, Sept. 1999.

[59] P. N. Yianilos, “Data structures and algorithms for nearest neighbor search in gen-
eral metric spaces,” in Proceedings of the fourth annual ACM-SIAM Symposium on
Discrete algorithms, SODA ’93, (Philadelphia, PA, USA), pp. 311–321, Society for
Industrial and Applied Mathematics, 1993.

[60] N. Kumar, L. Zhang, and S. Nayar, “What is a good nearest neighbors algorithm for
finding similar patches in images?,” in Computer Vision ECCV 2008 (D. Forsyth,
P. Torr, and A. Zisserman, eds.), vol. 5303 of Lecture Notes in Computer Science,
pp. 364–378, Springer Berlin Heidelberg, 2008.

[61] S. Sen and R. E. Tarjan, “Deletion without rebalancing in balanced binary trees,”
in Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Al-
gorithms, SODA ’10, (Philadelphia, PA, USA), pp. 1490–1499, Society for Industrial
and Applied Mathematics, 2010.

[62] P. Pham, “Quantum compiler,” 2011.

[63] A. M. Childs, R. Cleve, E. Deotto, E. Farhi, S. Gutmann, and D. A. Spielman,
“Exponential algorithmic speedup by a quantum walk,” in Proceedings of the thirty-
fifth annual ACM symposium on Theory of computing, STOC ’03, (New York, NY,
USA), pp. 59–68, ACM, 2003, quant-ph/0209131.

89

http://arxiv.org/abs/quant-ph/0607123
http://arxiv.org/abs/quant-ph/9808027
http://arxiv.org/abs/quant-ph/0108067
http://arxiv.org/abs/quant-ph/0603226
http://arxiv.org/abs/quant-ph/0406196
http://arxiv.org/abs/quant-ph/0209131

[64] A. Peres, “Reversible logic and quantum computers,” Phys. Rev. A, vol. 32, pp. 3266–
3276, Dec 1985.

[65] R. P. Feynman, “Quantum mechanical computers,” Foundations of Physics, vol. 16,
no. 6, pp. 507–531, 1986.

[66] M. Amy, D. Maslov, and M. Mosca, “Polynomial-time T -depth optimization
of Clifford+T circuits via matroid partitioning,” ArXiv e-prints, Mar. 2013,
arXiv:1303.2042.

[67] C. M. Dawson, A. P. Hines, D. Mortimer, H. L. Haselgrove, M. A. Nielsen, and T. J.
Osborne, “Quantum computing and polynomial equations over the finite field Z2,”
Quantum Info. Comput., vol. 5, pp. 102–112, Mar. 2005, quant-ph/0408129.

[68] T. Rudolph, “Simple encoding of a quantum circuit amplitude as a matrix permanent,”
Phys. Rev. A, vol. 80, p. 054302, Nov 2009, arXiv:0909.3005.

[69] R. P. Feynman and A. R. Hibbs, Quantum mechanics and path integrals. International
series in pure and applied physics, McGraw-Hill, 1965.

[70] J. Edmonds, “Minimum partition of a matroid into independent subsets,” JournaB1l
of Research of the National Bureau of Standards, vol. 69B, pp. 67–72, Jan. 1965.

[71] T. Beth and M. Roetteler, “Quantum algorithms: Applicable algebra and quantum
physics,” in Quantum Information, vol. 173 of Springer Tracts in Modern Physics,
pp. 96–150, Springer Berlin Heidelberg, 2001.

[72] V. Kliuchnikov and D. Maslov, “Optimization of Clifford circuits,” ArXiv e-prints,
May 2013, arXiv:1305.0810.

[73] D. Maslov, “Reversible logic synthesis benchmarks page,” 2011.

[74] V. Vedral, A. Barenco, and A. Ekert, “Quantum networks for elementary arithmetic
operations,” Phys. Rev. A, vol. 54, pp. 147–153, Jul 1996, quant-ph/9511018.

[75] R. Van Meter and K. M. Itoh, “Fast quantum modular exponentiation,” Phys. Rev.
A, vol. 71, p. 052320, May 2005, quant-ph/0408006.

[76] T. G. Draper, S. A. Kutin, E. M. Rains, and K. M. Svore, “A logarithmic-depth
quantum carry-lookahead adder,” Quantum Info. Comput., vol. 6, pp. 351–369, July
2006, quant-ph/0406142.

90

http://arxiv.org/abs/arXiv:1303.2042
http://arxiv.org/abs/quant-ph/0408129
http://arxiv.org/abs/arXiv:0909.3005
http://arxiv.org/abs/arXiv:1305.0810
http://arxiv.org/abs/quant-ph/9511018
http://arxiv.org/abs/quant-ph/0408006
http://arxiv.org/abs/quant-ph/0406142

[77] Y. Takahashi, S. Tani, and N. Kunihiro, “Quantum addition circuits and unbounded
fan-out,” Quantum Info. Comput., vol. 10, pp. 872–890, Sept. 2010, arXiv:0910.2530.

[78] I. L. Markov and M. Saeedi, “Constant-optimized quantum circuits for modular mul-
tiplication and exponentiation,” Quantum Info. Comput., vol. 12, pp. 361–394, May
2012, arXiv:1202.6614.

[79] D. Maslov, J. Mathew, D. Cheung, and D. K. Pradhan, “An O(m2)-depth quantum
algorithm for the elliptic curve discrete logarithm problem over GF(2m),” Quantum
Info. Comput., vol. 9, pp. 610–621, July 2009, arXiv:0710.1093.

[80] P. Aliferis, D. Gottesman, and J. Preskill, “Quantum accuracy threshold for con-
catenated distance-3 codes,” Quantum Info. Comput., vol. 6, pp. 97–165, Mar. 2006,
quant-ph/0504218.

[81] A. Parent, J. Parker, M. Burns, and D. Maslov, “QCViewer: a tool for displaying,
editing, and simulating quantum circuits,” 2013.

[82] X. Zhou, D. W. Leung, and I. L. Chuang, “Methodology for quantum logic gate
construction,” Phys. Rev. A, vol. 62, p. 052316, Oct 2000, quant-ph/0002039.

91

http://arxiv.org/abs/arXiv:0910.2530
http://arxiv.org/abs/arXiv:1202.6614
http://arxiv.org/abs/arXiv:0710.1093
http://arxiv.org/abs/quant-ph/0504218
http://arxiv.org/abs/quant-ph/0002039

	List of Tables
	List of Figures
	Introduction
	Overview of Thesis

	Reversible and Quantum Computation
	Reversible Computation
	Linear functions

	Quantum Computation
	The Quantum Circuit model
	Quantum gates
	Universal gate sets

	Fault Tolerance

	Quantum Circuit Optimization
	State of the Art
	Exhaustive search
	Algorithmic synthesis
	Local rewriting
	Parallelization algorithms

	Meet-in-the-Middle: a search-based synthesis algorithm
	The Meet-in-the-middle algorithm
	Search space reduction
	Extensions
	Alternative costs
	Ancillas
	Approximate synthesis

	Implementation details
	Results
	Depth-optimal implementations
	T-depth-optimal implementations
	Exact decomposition of controlled unitaries

	Conclusions
	Future work

	Tpar: polynomial-time T-gate optimization
	{CNOT, T} circuits
	Matroids
	Matroid partitioning

	Towards a universal gate set
	Embedded {CNOT, T} optimization
	Abstract Hadamard gates
	Summing over paths

	The Tpar algorithm
	Extended {CNOT, T} synthesis

	Results
	Conclusions
	Future work

	APPENDICES
	Complexity of T-count minimization
	References

