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Abstract

A general methodology is described in which policyholder behaviour is decoupled
from the pricing of a variable annuity based on the cost of hedging it, yielding two
sequences of weakly coupled systems of partial differential equations (PDEs): the
pricing and utility systems. The utility systems are used to generate policyholder
withdrawal behaviour, which is in turn fed into the pricing systems as a means to
determine the cost of hedging the contract. This approach allows us to incorporate
the effects of utility-based pricing and factors such as taxation. As a case study,
we consider the Guaranteed Lifelong Withdrawal and Death Benefits (GLWDB)
contract. The pricing and utility systems for the GLWDB are derived under the
assumption that the underlying asset follows a Markov regime-switching process.
An implicit PDE method is used to solve both systems in tandem. We show that
for a large class of utility functions, the two systems preserve homogeneity, allowing
us to decrease the dimensionality of solutions. We also show that the associated
control for the GLWDB is bang-bang, under which the work required to compute
the optimal strategy is significantly reduced. We extend this result to provide the
reader with sufficient conditions for a bang-bang control for a general variable an-
nuity with a countable number of events (e.g. discontinuous withdrawals). Homo-
geneity and bang-bangness yield significant reductions in complexity and allow us
to rapidly generate numerical solutions. Results are presented which demonstrate
the sensitivity of the hedging expense to various parameters. The costly nature of
the death benefit is documented. It is also shown that for a typical contract, the
fee required to fund the cost of hedging calculated under the assumption that the
policyholder withdraws at the contract rate is an appropriate approximation to the
fee calculated assuming optimal consumption.
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Introduction

Variable annuities are tax-deferred, unit-linked insurance products. These products
are a class of insurance vehicles that provide the buyer with particular guarantees
without requiring them to sacrifice full control over the funds invested. These funds
are often invested in a collective investment vehicle such as a mutual fund. The
writer charges a premium that is deducted (over the entirety of the contract) as a
proportional amount of the investment account. We term this proportion the rider.
Note that unlike a vanilla option, this premium is not received up-front.

We propose a method for pricing such contracts when the value of the underlying
investment follows a Markovian regime-switching process. Regime-switching was
introduced by Hamilton (1989), while its application to long-term guarantees was
popularized by Hardy (2001) who demonstrated its effectiveness by fitting to the
S&P 500 and the Toronto Stock Exchange 300 indices. Regime switching has thus
been suggested as a sensible model for pricing variable annuities (Siu 2005, Lin
et al. 2009, Belanger et al. 2009, Yuen and Yang 2010, Ngai and Sherris 2011, Jin
et al. 2011) due to their long-term nature. An alternative to this model is stochastic
volatility (Hull and White 1987). However, it could be argued that due to the long-
term nature of these guarantees, it is more useful to choose a model which allows for
incorporation of a long term economic perspective. A regime-switching process has
parameters which are economically meaningful, and it is straightforward to adjust
these parameters to incorporate economic views. This is perhaps more difficult for a
stochastic volatility model, which is typically calibrated to short term option prices.
Furthermore, the adoption of stochastic volatility requires an additional dimension
in the corresponding partial differential equation (PDE) while the regime-switching
model adds complexity proportional to the number of regimes considered, and as
a result is computationally less intensive. Moreover, it is straightforward (in the
regime-switching framework) to allow for different levels of the risk-free interest rate
across regimes. The alternative of incorporating an additional stochastic interest
rate factor would add an extra dimension to the PDE, with the associated costs of
complexity.

We demonstrate our methodology by considering a specific variable annuity:
the Guaranteed Lifelong Withdrawal and Death Benefits (GLWDB) contract. The
GLWDB is a response to a general reduction in availability of defined benefit pen-
sion plans, allowing the buyer to replicate the security of such a plan via a substi-
tute. The GLWDB is bootstrapped via a lump sum payment to an insurer, S (0),
which is invested in risky assets. We term this the investment account. Associated
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with the GLWDB contract are the guaranteed withdrawal benefit account and the
guaranteed death benefit account, hereafter referred to as the withdrawal and death
benefits for brevity. We also refer to these as the auxiliary accounts. Both auxiliary
accounts are initially set to S (0). At a finite set of withdrawal dates, the policy-
holder is entitled to withdraw a predetermined fraction of the withdrawal benefit
(or any lesser amount), even if the investment account diminishes to zero. This
predetermined fraction is referred to as the contract withdrawal rate. If the policy-
holder wishes to withdraw in excess of the contract withdrawal rate, they can do so
upon the payment of a penalty. Typical GLWDB contracts include penalty rates
that are decreasing functions of time. Upon death, the policyholder’s estate re-
ceives the maximum of the investment account and death benefit. These contracts
are often bundled with ratchets (step-ups), a contract feature that periodically in-
creases one or more of the auxiliary accounts to the investment account, provided
that the investment account has grown larger than the respective auxiliary account.
Moreover, bonus (roll-up) provisions are also often present, in which the withdrawal
benefit is increased if the policyholder does not withdraw on a given withdrawal
date.

This contract can be considered as part of a greater family of insurance vehicles
offering guaranteed benefits that have emerged as a result of a recent trend away
from defined benefits (Perkins 2011). Our approach can easily be extended to
include features present in an arbitrary member of this family. There exists a
maturing body of work on pricing these contracts. Bauer et al. (2008) introduces
a general framework for pricing various products in this family. Monte Carlo and
numerical integration are employed, and loss-maximizing (from the perspective of
the insurer) withdrawal strategies are considered. Holz et al. (2007) compute the
rider of Guaranteed Lifelong Withdrawal Benefit (GLWB) contracts via a Monte
Carlo method. Milevsky and Salisbury (2006) employ a numerical PDE approach
to the Guaranteed Minimum Withdrawal Benefits (GMWB) contract. Shah and
Bertsimas (2008) introduce a GLWB model with stochastic volatility and consider
static strategies. Kling et al. (2009) provide an extension of the variable annuity
model under stochastic volatility. Piscopo and Haberman (2011) consider a model
with stochastic mortality risk.

In the general area of financial derivatives, the traditional approach is to assume
that the policyholder acts so as to maximize the value of owning the contract. The
no-arbitrage price of the contract is then calculated as the cost to the writer of
the contract of establishing a self-financing hedging strategy that is guaranteed
to produce at least enough cash to pay off any future liabilities resulting from
the policyholder’s future decisions with respect to the contract (in the context
of the assumed pricing model). Since derivative payoffs are a zero sum game,
this is equivalent to establishing a price on the basis of assuming a worst case
scenario to the contract writer. We will refer to the assumption of such behaviour
by policyholders here as loss-maximizing strategies, as they represent worst case
outcomes for the insurer. Such strategies produce an upper bound on the fair price
of the contract, but it is far from clear that policyholders actually behave in this
manner. Instead, for any of a number of reasons, a policyholder may deviate from
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the loss-maximizing strategy.
In order to account for this, we provide a new approach here in which we de-

couple policyholder withdrawal behaviour from the contract pricing equations, and
generate said behaviour by considering a policyholder’s utility. This general ap-
proach is applicable to any contract involving policyholder behaviour, and results
in two sequences of weakly coupled systems of PDEs. In the context of GLWDBs,
this allows for the easy modeling of complex phenomena such as risk aversion and
taxation. Solving the PDEs backwards in time allows us to employ the Bellman
principle to ensure that the policyholder is able to maximize their utility. Since
our approach incorporates this added generality, we will generally avoid the use of
the term “no-arbitrage” below, and instead refer to the cost of hedging. Of course,
under the specific case of loss-maximizing behaviour by the policyholder, our cost
of hedging coincides with the traditional no-arbitrage price.

In §1, we introduce a sequence of systems of regime-switching PDEs used to
determine the hedging costs of the GLWDB contract. In §2, we introduce a se-
quence of systems of regime-switching PDEs used to model a policyholder’s utility
and describe how these systems are used alongside those introduced in §1 to deter-
mine the cost of hedging the guarantee assuming optimal consumption. In §3, we
discuss theoretical results and our numerical methodology, with a particular focus
on various methods used to reduce the computational cost of the pricing procedure.
In §4, we present results under both the assumption that the policyholder behaves
as to maximize the value of the guarantee (i.e. the loss-maximizing strategy) and
the assumption that the policyholder behaves so as to maximize their utility. We
summarize our contributions below.

• We model the long term behaviour of the underlying stock index (or mutual
fund) by a Markovian regime-switching process.

• We introduce a general methodology that allows for the decoupling of policy-
holder behaviour from the cost of hedging the contract.

– This approach yields two sequences of weakly coupled systems of PDEs:
the pricing and utility systems.

– This approach abandons the arguably flawed notion of a policyholder
acting only so as to maximize the value of a guarantee.

• We present the pricing and utility systems for the GLWDB contract.

• We show sufficient conditions for the homogeneity of the systems. This result
is computationally relevant, as it is used to reduce the dimensionality of the
systems.

• In general, the set of possible actions a policyholder can perform at a with-
drawal time is (uncountably) infinite. Hence, approximating the optimal ac-
tion requires a linear search over a discretization of this space. We show
sufficient conditions under which a general variable annuity admits a bang-
bang strategy (i.e. the set of optimal actions is countable). In particular, for
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the GLWDB, we show that the set of optimal choices is finite with cardinality
three. Using this fact, we are able to reduce the work per linear search to a
constant amount.

• We find that assuming optimal consumption yields a hedging cost fee that is
very close to the fee calculated by assuming that the policyholder follows the
static strategy of always withdrawing at the contract rate. This is a result of
particular practical importance as it suggests that policyholders will generally
withdraw at the contract rate. This substantiates pricing contracts under this
otherwise seemingly näıve assumption.

• We demonstrate sensitivity to various parameters and we consider the adop-
tion of exotic fee structures in which the proportional fee applies not just to
the investment account but rather to the greater of this account and one or
more of the auxiliary accounts.

• We find that the inclusion of a death benefit is often expensive. This may
account for the failure to properly hedge this guarantee and the subsequent
withdrawal of contracts including ratcheting death benefits from the Canadian
market.

4



Chapter 1

Hedging costs

We begin by considering a basic model for pricing GLWDBs under which poli-
cyholder withdrawal behaviour is determined solely as to maximize the value of
the guarantee (i.e. the loss-maximizing strategy). We extend previous work by
Forsyth and Vetzal (2012) via the introduction of a death benefit. For simplic-
ity, we first consider the single-regime case and subsequently extend this model to
include regime-switching.

1.1 Pricing PDE

LetM (t) be defined as the instantaneous rate of mortality per unit interval. That
is, ∫ t+∆t

t

M (s) ds

is the fraction of original owners of the contract who perish in the interval (t, t+ ∆t).
The fraction of owners still alive at time t is

R (t) = 1−
∫ t

0

M (s) ds,

where t = 0 is the time at which the contract is purchased. Mortality tables are
almost exclusively available in terms of integer ages. In light of this, let

x0 = insured’s age at contract inception

ypx = the probability that someone aged x will survive to age x+ y

yqx = 1 − ypx

x0 + T = age beyond which survival is assumed impossible

We take
M (t) = tpx0 · 1qx0+t,

which is piecewise constant over [0,∞).

5



Remark 1.1.1 (Diversifiable mortality risk). We price GLWDB contracts under
the assumption that there are a large number of insuree’s aged x0, allowing us to
diversify mortality risk. This assumption is ubiquitous in the literature.

Let S (t) be the amount in the investment account of any policyholder of the
GLWDB contract who is still alive at time t. Let W (t) and D (t) be the withdrawal
and death benefits at time t. Assume that the underlying value of the investment
account is described by

dS = (µ− α)Sdt+ σSdZ

where Z is a Wiener process. The constant α determines the fee structure of the
contract. α includes both the deduction required to hedge and manage the contract.
This is expressed as

α = αR + αM

where αR, the rider, is the rate at which deductions from the investment account
occur to create the premium for the option and αM is the management rate, the
rate used to determine the fee charged to manage the contract. If we suppose that
αM is fixed, the pricing problem becomes one of finding αR such that the insurer’s
position is hedged. Such a value of αR is termed the hedging cost rider. S tracks
the index Ŝ which follows

dŜ = µŜdt+ σŜdZ.

It is assumed that the insurer is unable to short S for fiduciary reasons.

Remark 1.1.2 (Fee structure). Some contracts charge fees as a fraction of the
guarantee account balance W (t) or even max (S (t) ,W (t)) instead. We consider
the effect of more exotic fee structures in a subsequent section.

We proceed by a hedging argument ubiquitous in the literature (Windcliff et al.
2001, Chen et al. 2008, Belanger et al. 2009). Let U (S,W,D, t) be the no-arbitrage
value of funding the withdrawal and death benefits at time t years after purchase
for investment account value S, withdrawal benefit W , and death benefit D. The
value of U is adjusted to account for the effects of mortality. We assume that this
contract was purchased at time zero by a buyer aged x0. Recall that time T
corresponds to the time at which all buyers have passed away. The insurer has no
obligations at time T and hence

U (S,W,D, T ) = 0. (1.1.1)

The writer creates a replicating portfolio Π by shorting one contract and taking a
position of x units in the index Ŝ. That is,

Π (S,W,D, t) = −U (S,W,D, t) + xŜ (t) .

The contractually specified times at which withdrawals and ratchets occur are re-
ferred to as event times, gathered in the set T = {t1, t2, . . . , tN−1} and ordered
by

0 = t1 < t2 < . . . < tN−1 < tN = T.
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Note that time zero (but not tN = T ) is also referred to as an event time even
though it bears no withdrawals or ratchets.

Following standard portfolio dynamics arguments (see, e.g. Forsyth and Vetzal
2012) and noting that between event times dU is a function solely of S and t, we
can use Itô’s lemma (§A.2) to yield

dΠ = −
[(

1

2
σ2S2∂

2U

∂S2
+ (µ− α)S

∂U

∂S
+
∂U

∂t

)
dt+ σS

∂U

∂S
dZ

]
+

x
[
µŜdt+ σŜdZ

]
+R (t)αRSdt−M (t) [0 ∨ (D − S)] dt,

where a∨ b = max (a, b). The term R (t)αRSdt represents the fees collected by the
hedger, while M (t) [0 ∨ (D − S)] dt represents the surplus generated by the death
benefit as paid out to the estates of deceased policyholders. Taking

x =
S

Ŝ

∂U

∂S

yields

dΠ =

(
−1

2
σ2S2∂

2U

∂S2
+ αS

∂U

∂S
− ∂U

∂t
+R (t)αRS −M (t) [0 ∨ (D − S)]

)
dt.

(1.1.2)
As this increment is deterministic, by the principle of no-arbitrage (§A.1), the
corresponding portfolio process must grow at the risk-free rate. That is,

dΠ = rΠdt = r

(
−U +

S

Ŝ

∂U

∂S
Ŝ

)
dt. (1.1.3)

Substituting (1.1.3) into (1.1.2),

1

2
σ2S2∂

2U

∂S2
+(r − α)S

∂U

∂S
+
∂U

∂t
−rU−R (t)αRS+M (t) [0 ∨ (D − S)] = 0. (1.1.4)

Let
V (S,W,D, t) = U (S,W,D, t) +R (t)S (1.1.5)

be the value of the entire contract at time t. Substituting into (1.1.4), we arrive at

1

2
σ2S2∂

2V

∂S2
(r − α)S

∂V

∂S
+
∂V

∂t
− rV +R (t)αMS +M (t) (S ∨D) = 0. (1.1.6)

Remark 1.1.3 (Notation). Let R>0 = {x ∈ R | x > 0}. As to reduce clutter, we
abuse notation slightly by writing V (x, t) with

x = 〈x1, x2, x3〉 ∈ R3
>0

to mean V (x1, x2, x3, t). We use the forms V (x, t) and V (S,W,D, t) interchange-
ably in this work.
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To summarize, let Ω = R3
>0 and ΩA = Ω × A where A is an arbitrary set.

Further let

L = (r − α)S
∂

∂S
+

1

2
σ2S2 ∂

2

∂S2
− r

and
g (S,W,D, t) = −R (t)αMS −M (t) (S ∨D) 6 0. (1.1.7)

Let (·) denote an arbitrary point in Ω. We are interested in functions V solving the
sequence of PDEs parameterized by n,

LV +
∂V

∂t
= g on Ω(tn,tn+1)

V (·, tn+1) given. (1.1.8)

Note that the boundary conditions at S = 0, W = 0 and D = 0 are obtained
by substituting the corresponding value of S, W or D into (1.1.6), as captured by
(1.1.8). By (1.1.1) and (1.1.5), when n = N , the Cauchy data to the above problem
becomes V (·, tN = T ) = 0. When n < N , the construction of the Cauchy data is
outlined in §1.3.

1.2 Regime-switching

We extend the formulation to include a regime-switching framework in which shifts
between states are controlled by a continuous-time Markov chain. Letting

S = {1, 2, . . . ,M}

be the state-space consisting of M regimes, we assume that in regime i ∈ S, the
underlying investment account evolves according to

dS = (µi − α)S + σiSdZ +
M∑
j=1

S (Ji→j − 1) dXi→j (1.2.1)

where

dXi→j =

{
1 with probability δi,j + qi→jdt

0 with probability 1− (δi,j + qi→jdt)

and

δi,j =

{
1 if i = j

0 otherwise
.

Here, qi→j is the objective (P measure) rate of transition from regime i to j whenever
i 6= j and

qi→i = −
M∑
j=1
j 6=i

qi→j.
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Ji→j > 0 is the jump intensity from regime i to j. We take Ji→i = 1 for all i so that
jumps in the underlying are not experienced unless there is a change in regime.
Let Vi (S,W,D, t) (equivalently, Vi (x, t)) be the no-arbitrage value of holding a
GLWDB in regime i at time t years after purchase with investment account value
S, withdrawal benefit W and death benefit D. Denote by V the vector consisting
of functions V1, V2, . . ., VM . Following a combination of the hedging arguments in
§1.1 and §B, we arrive at the sequence of systems (parameterized by n),

LiVi +
M∑
j=1
j 6=i

[
qQi→jVj (Ji→jS,W,D, t)

]
+
∂Vi
∂t

= g on Ω(tn,tn+1) ∀i ∈ S

V (·, tn+1) given (1.2.2)

where

Li =
1

2
σ2
i S

2 ∂
2

∂S2
+
(
ri − α− ρQi

)
S
∂

∂S
−
(
ri − qQi→i

)
. (1.2.3)

qQi→j is the risk-neutral rate of transition from regime i to j whenever i 6= j and

qQi→i = −
M∑
j=1
j 6=i

qQi→j.

Furthermore, ρQi is defined as

ρQi =
M∑
j=1
j 6=i

[
qQi→j (Ji→j − 1)

]
=

M∑
j=1

[
qQi→jJi→j

]
.

For each n, (1.2.2) is referred to as a pricing system. This system is said to be
weakly coupled to capture the fact it is coupled only in the terms which are not
differentiated.

1.3 Events

At an event time, the policyholder is able to perform one of a number of actions
based on the status of their contract and the observed regime. The set of all such
actions is termed the control set, and denoted C. In general, the control set need
not be constant.

Across event times, V is not necessarily continuous as a function of time. We
restrict V to the space of functions that are càglàd in time so that the limits

V (x, t) = lim
s↑t

V (x, s)

and
V
(
x, t+

)
= lim

s↓t
V (x, s)
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Figure 1.3.1: A one dimensional càglàd function.

exist, since the policyholder’s actions are predictable (see Cont and Tankov (2004)
for further discussion). Whenever t is an event time, V (x, t) and V (x, t+) can be
regarded as the price of the contract “immediately before” and “immediately after”
the event, respectively. An example of a càglàd function is shown in Figure 1.3.1.

1.3.1 Withdrawals

Let TW ⊂ T be the set of withdrawal times. Suppose that the policyholder performs
action λ ∈ C at the point 〈x, t, i〉 ∈ Ω× TW × S. We take

• λ = 0 to indicate that the policyholder does not withdraw anything.

• λ ∈ (0, 1] to indicate a nonzero withdrawal less than or equal to the con-
tract withdrawal amount, the maximum amount one can withdraw without
incurring a penalty.

• λ ∈ (1, 2] to indicate withdrawal at more than the contract withdrawal
amount.

In light of this, we take the control set for the GLWDB problem to be C = [0, 2].
In particular, λ = 2 is referred to as a full surrender, as it corresponds to the
scenario in which the policyholder withdraws the entirety of the investment account,
while λ ∈ (1, 2) is referred to as a partial surrender. We describe a withdrawal by
considering the three cases enumerated above separately.

Bonus (λ = 0)

If the policyholder chooses not to withdraw, the withdrawal benefit is amplified
by 1 + B (t), where B (t) is the bonus rate available at t under regime i. By the
principle of no-arbitrage,

Vi (S,W,D, t) = Vi
(
S, W (1 +B (t)) , D, t+

)
. (1.3.1)

Withdrawal not exceeding the contract rate (λ ∈ (0, 1])

We assume that the contract withdrawal amount is of the form G (t)W , where G (t),
the contract withdrawal rate at time t, is specified by the contract. We express this
type of withdrawal as

Vi (S,W,D, t) = Vi
(
(S − λG (t)W ) ∨ 0, W, (D − λG (t)W ) ∨ 0, t+

)
+R (t)λG (t)W. (1.3.2)
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Note that the cash flow λG (t)W is adjusted to account only for the fraction of
policyholders still alive at time t, R (t).

Partial or full surrender (λ ∈ (1, 2])

If the policyholder performs a surrender, the amount withdrawn is

w = G (t)W + (λ− 1)κ (t)S ′

where
S ′ = (S −G (t)W ) ∨ 0

is the state of the investment account after a withdrawal at the contract with-
drawal rate and (1− κ (t)) ∈ [0, 1] is the penalty rate incurred at t for withdrawing
above the contract withdrawal rate. For a typical contract, the penalty rate is
monotonically decreasing in time. We express this type of withdrawal as

Vi (S,W,D, t) = Vi
(
(2− λ)S ′, (2− λ)W, (2− λ) (D −G (t)W ) ∨ 0, t+

)
+R (t)w.

(1.3.3)

1.3.2 Ratchets

Let TR ⊂ T be the set of ratchet times. At a ratchet time t ∈ TR, the withdrawal
benefit is increased to the value of the investment account, provided that the in-
vestment account has grown larger than the withdrawal benefit. We express this
by

Vi (S,W,D, t) = Vi
(
S, S ∨W, D, t+

)
. (1.3.4)

We also explore the possibility of contracts including a ratcheting death benefit.
That is, we sometimes instead consider

Vi (S,W,D, t) = Vi
(
S, S ∨W, S ∨D, t+

)
.

Note that a ratchet is not controlled by the policyholder, and hence their action at
the point 〈x, t, i〉 ∈ Ω × TR × S can be, w.l.o.g., taken to be an arbitrary member
of C.

1.3.3 Notation

Although equations (1.3.1), (1.3.2), (1.3.3) and (1.3.4) are an intuitive description
of the evolution of a GLWDB contract across event times, we seek a more compact
representation in order to simplify subsequent analyses. Suppose the policyholder
performs action λ ∈ C at the point 〈x, t, i〉 ∈ Ω× T × S. We can parameterize an
event occurring at this point by writing it in the form

Vi (x, t) = Vi
(
f (x, t, λ) , t+

)
+R (t) f (x, t, λ) (1.3.5)

where f : Ω × T × C → Ω and f : Ω × T × C → R>0. Here, f represents cash flow
from the writer, while f represents the contract parameters (i.e. the state of the
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investment account, and withdrawal and death benefits) after a withdrawal. We
can summarize (1.3.1), (1.3.2), (1.3.3) and (1.3.4) by letting

f (x, t, λ) =



〈x1, x2 (1 +B (t)) , x3〉 if t ∈ TW , λ = 0

〈(x1 − λG (t)x2) ∨ 0, x2, (x3 − λG (t)x2) ∨ 0〉 if t ∈ TW , λ ∈ (0, 1]

(2− λ) f (x, t, 1) if t ∈ TW , λ ∈ (1, 2]

〈x1, x1 ∨ x2, x3〉 if t ∈ TR
x if t = t1 = 0

(1.3.6)
and

f (x, t, λ) =


λG (t)x2 if t ∈ TW , λ ∈ (0, 1]

G (t)x2 + (λ− 1)κ (t) ((x1 −G (t)x2) ∨ 0) if t ∈ TW , λ ∈ (1, 2]

0 otherwise

.

(1.3.7)
Although these functions may seem unwieldly, the form (1.3.5) will prove useful in
characterizing properties of the relevant solution in §3. For completeness, (1.3.6)
and (1.3.7) include the special case of event time t1 = 0, at which no ratchets or
withdrawals are prescribed to occur.

Remark 1.3.1 (Simultaneous events). We have, up until now, assumed that with-
drawals and ratchets occur at separate times. In practice, this is not the case.
Naturally, without a particular order, the pricing problem is not well-posed: the
contract is ambiguous. If a withdrawal and a ratchet are prescribed to occur, we
assume that the withdrawal occurs before the ratchet. As we are solving for the price
of the contract backwards in time in order to apply Bellman’s principle of optimal-
ity, these events are applied in reverse order. For example, when a withdrawal at
the contract rate and a ratchet occur at t ∈ T , we have

Vi (x, t) = Vi
(
(x1 −G (t) (x1 ∨ x2)) ∨ 0, x1 ∨ x2, (x3 −G (t) (x1 ∨ x2)) ∨ 0, t+

)
+R (t)G (t) (x1 ∨ x2) .

W.l.o.g., we ignore this detail in subsequent analyses. The general theory developed
in §3 applies regardless.

1.4 Loss-maximizing strategies

Definition 1.4.1 (Partial strategy). A partial strategy γni : Ω → C, describes a
policyholder’s actions at event time tn under regime i. That is, for each x ∈ Ω,
there is a corresponding action λ = γni (x) ∈ C.

Definition 1.4.2 (Strategy). A (full) strategy consists of a partial strategy for each
event-regime pair (e.g.

〈
γ1

1 , γ
2
1 , . . . , γ

N
1 , γ

1
2 , . . . , γ

N
M

〉
).
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Remark 1.4.3 (Abstract strategy). We stress that we have not yet made any
assumptions about policyholder behaviour and chosen instead to abstract it through
the notion of a strategy. The decoupling of policyholder behaviour from the pricing
equation is the guiding philosophy of this work, and allows us to model complex
phenomena directly affecting the policyholder. The robustness of this approach is
made concrete via the model developed in §2, which considers the effects of taxation
and nonlinear utility functions on policyholder behaviour.

Definition 1.4.4 (Loss-maximizing partial strategy). Let

Γni (x) = arg max
λ∈[0,2]

[
Vi
(
f (x, tn, λ) , t+n

)
+R (tn) f (x, tn, λ)

]
.

A partial strategy γni is loss-maximizing whenever

γni (x) ∈ Γni (x) ∀x ∈ Ω. (1.4.1)

A (full) strategy is said to be loss-maximizing when each of its partial strategies are
so too.

If the writer is interested in computing the cost of a contract in the worst-case
scenario, the underlying strategy should be taken to be loss-maximizing. Under
a loss-maximizing strategy, the policyholder maximizes the cost of hedging the
guarantee, thus maximizing the losses of the writer. Using the hedging cost rider
computed under this assumption ensures the writer can, at least in theory, hedge
a short position in the contract with no risk.

Remark 1.4.5 (An unfortunate choice of terms). A loss-maximizing strategy is
often referred to as an optimal strategy in the literature. The adoption of the term
optimal is an arguably unfortunate one, as an optimal strategy is not necessarily
“optimal” for the policyholder. We stress that an optimal strategy (as typically
referred to in the literature) is simply one that maximizes losses for the writer, and
use instead the term “loss-maximizing” in order to avoid confusion.
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Chapter 2

Optimal consumption

Using a loss-maximizing strategy yields the largest hedging cost rider. Any other
strategy will, by definition, yield a smaller rider. Using the rider generated by a loss-
maximizing strategy ensures the writer can, at least in theory, hedge a short position
in the contract with no risk. However, insurers are often interested in using a less
conservative method for pricing contracts so as to decrease the hedging cost rider
while minimizing their exposure. We now extend the framework introduced in §1 to
strategies based on optimal consumption from the perspective of the policyholder.
As usual, we first consider the single-regime case and subsequently provide the
extension to include regime-switching.

2.1 Utility PDE

Let V (S,W,D, t) (equivalently, V (x, t)) be the mortality-adjusted utility of holding
a GLWDB contract at time t years after purchase with investment account value
S, withdrawal benefit W and death benefit D. Recall that the investment account
evolves according to

dS = (µ− α)Sdt+ σSdZ.

As usual, between event times, dV is a function solely of S and t so that by Itô’s
lemma,

dV =

(
1

2
σ2S2∂

2V

∂S2
+ (µ− α)S

∂V

∂S
+
∂V

∂t
+M (t)uB (S ∨D)

)
dt+ σS

∂V

∂S
dZ

(2.1.1)
where uB (x) is the bequest utility, the utility received from bequeathing x. The
expectation of dV is

E
[
dV
]

=

(
1

2
σ2S2∂

2V

∂S2
+ (µ− α)S

∂V

∂S
+
∂V

∂t
+M (t)uB (S ∨D)

)
dt.

Note that the Wiener term in (2.1.1) vanishes due to the martingale property of
the Itô integral. Introducing rate of time preference β and assuming that

E
[
dV
]

= βV dt,
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we express the evolution of a policyholder’s utility by

1

2
σ2S2∂

2V

∂S2
+ (µ− α)S

∂V

∂S
+
∂V

∂t
− βV +M (t)uB (S ∨D) = 0. (2.1.2)

Note that (2.1.2) depends on the real-world drift µ as opposed to the risk-free rate
r. We represent the worthlessness of holding a GLWDB after all death benefits
have been paid by

V (S,W,D, T ) = 0. (2.1.3)

The drift-diffusion form (2.1.2) is often referred to as additive utility, a form of
stochastic differential utility (Duffie and Epstein 1992).

Remark 2.1.1 (Kreps-Porteus utility). We note that an arguably more robust
model is that of Kreps-Porteus utility (Kreps and Porteus 1978), another form
of stochastic differential utility. Kreps-Porteus utility allows for the decoupling of
policyholder substitution preferences and risk-aversion. We leave its incorporation
into the GLWDB model to the interested reader.

2.2 Regime-switching

Assuming that the underlying mutual fund evolves according to the regime-
switching process introduced in (1.2.1), we use arguments similar to those in §2.1
to derive a system of expected utility PDEs under regime-switching. It should be
noted that in this section, qi→j denotes the objective (P measure) rate of transition
from regime i to j whenever i 6= j and

qi→i = −
M∑
j=1
j 6=i

qi→j.

This should not be confused with the risk-neutral rates of transition denoted qQi→j.

Let V i (S,W,D, t) (equivalently, V i (x, t)) be the mortality-adjusted utility of
holding a GLWDB contract in regime i at time t years after purchase with in-
vestment account value S, withdrawal benefit W and death benefit D. As usual,
between event times, the utility is independent of W and D so that

dV i =

(
1

2
σ2
i S

2∂
2V i

∂S2
+ (µi − α)S

∂V i

∂S
+
∂V i

∂t
+M (t)uBi (S ∨D)

)
dt

+ σiS
∂V i

∂S
dZ +

M∑
j=1

∆V i→jdXi→j

where
∆V i→j = V j (Ji→jS, t)− V i (S, t) .
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We have used the symbol uBi instead of the usual uB to stress that the bequest
utility can, in general, be regime-dependent. The expectation of dV i is

E
[
dV i

]
=

(
1

2
σ2
i S

2∂
2V i

∂S2
+ (µi − α)S

∂V i

∂S
+
∂V i

∂t

+M (t)uBi (S ∨D) +
M∑
j=1
j 6=i

∆V i→jqi→j

)
dt.

Introducing rate of time preference βi and assuming that

E
[
dV i

]
= βiV idt,

yields

0 =
1

2
σ2
i S

2∂
2V i

∂S2
+ (µi − α)S

∂V i

∂S
+
∂V i

∂t
− (βi − qi→i)V i

+
M∑
j=1
j 6=i

[
qi→jV j (Ji→jS,W,D, t)

]
+M (t)uBi (S ∨D) .

In light of this, let

Li =
1

2
σ2
i S

2 ∂
2

∂S2
+ (µi − α)S

∂

∂S
− (βi − qi→i)

and
gi (S,W,D, t) = −M (t)uBi (S ∨D) . (2.2.1)

We are interested in solutions to the sequence of systems (parameterized by n)

∂V i

∂t
+ LiV i +

M∑
j=1
j 6=i

[
qi→jV j (Ji→jS,W,D, t)

]
= gi on Ω(tn,tn+1) ∀i ∈ S

V (·, tn+1) given. (2.2.2)

For each n, (2.2.2) is referred to as a utility system.

2.3 Events

Suppose the policyholder performs action λ ∈ C at the point 〈x, t, i〉 ∈ Ω× T × S.
As before, we parameterize an event occurring at t ∈ T by writing it in the form

V i (x, t) = V i

(
f (x, t, λ) , t+

)
+R (t)uCi (f (x, t, λ)) (2.3.1)

where f and f are defined by (1.3.6) and (1.3.7). Although similar to (1.3.5),
(2.3.1) differs in that cash flows are transformed by the consumption utility, uCi .
Specifically, uCi (x) is the utility gained from consuming x units of the numéraire
under regime i.
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2.4 Consumption-optimal strategies

Definition 2.4.1 (Consumption-optimal partial strategy). Let

Γ
n

i (x) = arg max
λ∈[0,2]

[
V i

(
f (x, tn, λ) , t+n

)
+R (tn)uCi (f (x, tn, λ))

]
. (2.4.1)

A partial strategy γni is consumption-optimal whenever

γni (x) ∈ Γ
n

i (x) ∀x ∈ Ω. (2.4.2)

A (full) strategy is said to be consumption-optimal when each of its partial strategies
are so too.

Unlike a loss-maximizing strategy, the policyholder chooses λ in (2.4.1) to max-
imize their utility. It should be noted that we are not interested in the value of the
numerical solution to the utility system but rather in the behaviour generated by
it. Instead of adopting a loss-maximizing strategy as introduced in §1.4, we “feed”
a strategy generated by the policyholder’s utility into the pricing system. Given
Cauchy data at time tn+1,

1. Solve V (·, t+n ) using (1.2.2) and Cauchy data V (·, tn+1).

2. Solve V (·, t+n ) using (2.2.2) and Cauchy data V (·, tn+1).

3. For each regime i,

(a) Determine a consumption-optimal partial strategy γni using V i (·, t+n ) and
Definition 2.4.1. In doing so, determine V i (·, tn) as in (2.3.1).

(b) Use γni and Vi (·, t+n ) to determine Vi (·, tn) as in (1.3.5).

The propagation of information in this procedure is depicted in Figure 2.4.1.

Remark 2.4.2 (Ensuring uniqueness). Between event times, we find solutions to
the systems (1.2.2) and (2.2.2) as described in steps 1 and 2. It is well-known
that without additional assumptions on the rate of growth of solutions, classical
solutions to parabolic systems are not necessarily unique (Friedman 1964). The
term “solve” in these steps should hence be read “solve with sufficient regularity to
ensure uniqueness.”

At an event time, step 3a requires determining a consumption-optimal partial
strategy γni . The expression (2.4.2) suggests that this strategy need not be unique,
prompting us to seek a way to break ties between consumption-optimal partial strate-
gies. We take c : 2C → C to be any (F (tn)-measurable; see §A.1) choice function
on the power set of C, 2C. If condition (2.4.2) is substituted for

γni (x) = c
(
Γ
n

i (x)
)
∀x ∈ Ω,

it is easy to show that uniqueness is maintained. Otherwise, a solution to the price
of the contract need not be unique.
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V(·, tn+1) V(·, t+n ) V(·, tn)

V(·, tn+1) V(·, t+n )

γn1 , γn2 , . . ., γnM

V(·, tn)

. . .

. . .

Figure 2.4.1: A graph depicting the propagation of information in the pricing
procedure.

Intuitively, the introduction of a choice function corresponds to a policyholder
preferring one action over another, even though the observed utility of both actions
are equivalent. For example, a choice function c that selects the smallest element
(e.g. c ({0, 1, 2}) = 0) corresponds to a policyholder that is “marginally surrender-
averse”.

2.5 Utility functions

The model introduced above is parameterized by our particular choices for the
utility functions uBi and uCi . For any utility function u : R>0 → R, we require that
u be twice-differentiable on (0,∞) with u′ (x) > 0 for all x. The classical notion
of equivalence states that two functions u1 and u2 are equivalent if there exist a
and b > 0 such that u1 (x) = a + bu2 (x) for all x (i.e. equivalent under affine
transformations). We write u1 ∼ u2 to denote this equivalence.

Given a particular utility function u, the Arrow-Pratt measure of absolute risk-
aversion (Arrow 1971, Pratt 1964) is defined to be

A (x;u) = −u
′′ (x)

u′ (x)
.

The Arrow-Pratt measure of relative risk-aversion is defined to be

R (x;u) = xA (x;u) .

Naturally, for any two utility functions u1, u2 with u1 ∼ u2, A (x;u1) = A (x;u2) for
all x. Although the concavity of a utility function does not alone fully characterize
its behaviour, the sign of u′′ (x) does hold some meaning. Concavity (convexity)
captures a policyholder’s unwillingness (willingness) to accept small, actuarially
neutral risks.

Several notable cases of utility functions are special cases of the general family
of hyperbolic absolute risk-aversion (HARA) functions (Merton 1970). For ease
of exposition, we present these notable cases separately before summarizing with
HARA preferences.
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2.5.1 Actuarially risk-neutral utility

We refer to a utility function u as (actuarially) risk-neutral (RN) when u′ (x) is
constant for all x. In particular, when modeling risk-neutral utility, we often con-
sider

uRN (x) = x.

2.5.2 Constant absolute risk-aversion

We refer to a utility function u as exhibiting constant absolute risk-aversion
(CARA) whenever A (x;u) is constant. In particular, when modeling CARA pref-
erences, we often consider

uCARA (x; a) = 1− e−ax

for a > 0 with A (x;uCARA) = a.

2.5.3 Constant relative risk-aversion

We refer to a utility function u as exhibiting constant relative risk-aversion (CRRA)
whenever R (x;u) is constant. In particular, when modeling CRRA preferences, we
often consider

(1− p)

(
ax

1−p

)p
− 1

p
, (2.5.1)

for a > 0 and p < 1. Setting a = 1− p yields the more familiar form[
(1− p) x

p − 1

p

]
∼
[
xp − 1

p

]
∼
[
xp

p

]
,

often termed the power utility function or power law utility. It should be noted
that some authors also refer to the form (2.5.1) by this name. Note that

lim
p→0

(1− p)

(
ax

1−p

)p
− 1

p
= ln (ax) ,

yielding logarithmic utility. We summarize this by defining

uCRRA (x; a, p) =

{
(1− p) ( ax

1−p)
p
−1

p
if p ∈ (−∞, 0) ∪ (0, 1)

ln (ax) if p = 0

with R (x;uCRRA) = 1− p.
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a b p limuHARA limAHARA limRHARA Qualitative Name

1 −∞ 1− e−ax a ax Exponential

1− p 0 (−∞,0)
∪(0,1) (1− p) xp−1

p
(1− p) /x 1− p Power Law

1 0 0 ln (x) 1/x 1 Logarithmic

1 ax 0 0 Risk-Neutral

Table 2.5.1: Notable parameterizations of the HARA family with their cor-
responding measures of absolute and relative risk-aversion. We use the symbol
“lim” to denote that some of these quantities are acquired in the limit of particu-
lar values of p (we assume the limit w.r.t. p is taken after substitutions in a and
b are made).

2.5.4 Hyperbolic absolute risk-aversion

We refer to a utility function u as exhibiting hyperbolic absolute risk-aversion
(HARA) whenever the measure of absolute risk-aversion has the form

A (x;u) =

(
x

1− p
+
b

a

)−1

.

All functions exhibiting this risk-aversion can be expressed as

uHARA (x; a, b, p) =
1− p
p

((
ax

1− p
+ b

)p
− 1

)
up to equivalence. This is a fairly flexible and general class of utility functions
that can be parameterized so that marginal utility is finite at a consumption level of
zero. This is potentially of interest in our context since it allows for the possibility
that the policyholder will decide to not withdraw any amount at a withdrawal
date. Otherwise, with infinite marginal utility at a consumption level of zero, the
policyholder will always withdraw some positive amount.

We require a > 0. A (x;u) > 0 along with a > 0 produces the requirement

ax

1− p
+ b > 0.

Table 2.5.1 lists various notable parameterizations of the HARA family.
Let

uHARA (x; a, b, p) =
1− p
p

(
ax

1− p
+ b

)p
and note that uHARA ∼ uHARA as long as p 6= 0 (equivalence for p = 1 is understood
in the limiting sense). We have chosen to first introduce the reader to the arguably
more convenient form uHARA as the limiting case for p → 0 yields the familiar
logarithmic utility (Table 2.5.1), whereas uHARA does not have a two-sided limit
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as p → 0. The form uHARA is, however, more common in the literature. For the
remainder of this work, we consider

uCi (x) = uHARA (x; ai, bi, pi)

for all regimes i ∈ S.

2.5.5 Proportional consumption on death

We refer to taking a policyholder’s bequest utility as a proportion of the utility
gained from consumption as proportional consumption on death. For the remainder
of this work, we consider

uBi (x) = hiu
C
i (x)

for all regimes i ∈ S. Here, hi is used to amplify (or attenuate) utility gained from
bequeathing, and is hence termed the policyholder’s bequest motive.
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Chapter 3

Theory and numerical
considerations

We outline our assumptions for this chapter below.

Definition 3.0.1 (Discontinuity ofM). DefineMε for ε > 0 to be continuous with
Mε → M as ε → 0. We define gε as the function resulting from the substitution
of Mε for M appearing in g (1.1.7). That is,

gε (x, t) = −R (t)αMx1 −Mε (t) (x1 ∨ x3) .

To simplify analysis in ensuring the existence and uniqueness of classical solutions
to the pricing problem, we substitute gε for g. We define gεi similarly, and substitute
gεi for gi (2.2.1). Specifically,

gεi (x, t) = −Mε (t)uBi (x1 ∨ x3) .

Assumption 3.0.2 (Bounded and continuous coefficients). σ2
i > 0, ri, α, ρQi , qQi→j,

µi, βi, qi→j are bounded, continuous functions of t (independent of S, W and D).

Assumption 3.0.3 (Unit jumps). We restrict our attention to the case of a regime-
switching model with unit jumps (i.e. Ji→j = 1).

Remark 3.0.4. The assumption of unit jumps is a fairly strong one; we believe
that all of the results below hold under much weaker assumptions. The purpose of
this assumption is primarily to allow the use of existing work in the development of
the Green’s function for use between event times (namely, by the parametrix method
of Levi (1907)).

Assumption 3.0.5 (Classical solutions). V and V are twice differentiable in the
investment account S, and once in time t, except possibly at any time t ∈ T .

Assumption 3.0.6 (Bounded solutions). For all W,D ∈ R>0 there exist positive
constants L and ` s.t.

|V (ex,W,D, t)| 6 Le`x
2

for all times t ∈ (0, T ] (|·| denotes any Lp norm). This bound is used to ensure
uniqueness. We assume an identical bound on V.
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We refer to the equations (1.3.5), (1.3.6), (1.3.7) and (2.3.1) extensively in this
chapter; they are repeated below for convenience.

Vi (x, t) = Vi
(
f (x, t, λ) , t+

)
+R (t) f (x, t, λ) (1.3.5)

f (x, t, λ) =



〈x1, x2 (1 +B (t)) , x3〉 if t ∈ TW , λ = 0

〈(x1 − λG (t)x2) ∨ 0, x2, (x3 − λG (t)x2) ∨ 0〉 if t ∈ TW , λ ∈ (0, 1]

(2− λ) f (x, t, 1) if t ∈ TW , λ ∈ (1, 2]

〈x1, x1 ∨ x2, x3〉 if t ∈ TR
x if t = t1 = 0

(1.3.6)

f (x, t, λ) =


λG (t)x2 if t ∈ TW , λ ∈ (0, 1]

G (t)x2 + (λ− 1)κ (t) ((x1 −G (t)x2) ∨ 0) if t ∈ TW , λ ∈ (1, 2]

0 otherwise

(1.3.7)

V i (x, t) = V i

(
f (x, t, λ) , t+

)
+R (t)uCi (f (x, t, λ)) (2.3.1)

3.1 Homogeneity

Definition 3.1.1 (Cone). A cone is a subset of a vector space closed under multi-
plication by positive scalars (e.g. Ω). Note that the positivity requirement suggests
that this definition is sensible only when the corresponding scalar field is ordered.

Definition 3.1.2 (Homogeneous function). A function s : X → Y between two
cones is said to be homogeneous of order k ∈ Z if for all η > 0 and x ∈ X,

ηks (x) = s (ηx) .

We say V is homogeneous if for each i ∈ S, Vi is homogeneous.

Theorem 3.1.3 (Price homogeneity under loss-maximizing strategy). Suppose that
a loss-maximizing (full) strategy is employed by the policyholder. Then, V (x, t) is
homogeneous of order 1 in x.

This fact is established via a series of lemmas. Namely, we show that if
V (x, tn+1) is homogeneous in x, so too is V (x, t+n ) (Lemma 3.1.4). That is, the
system composed of the operators L1, L2, . . ., LM preserves homogeneity. Then, we
show that if V (x, t+n ) is homogeneous in x, so too is V (x, tn) (Lemma 3.1.5). That
is, homogeneity is preserved across event times under a loss-maximizing strategy.
Noting that V (x, tN = T ) = 0 is trivially homogeneous, the desired result follows
by induction.
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Lemma 3.1.4 (Pricing system homogeneity between event times). Suppose that
for some n with 1 6 n < N , V (x, tn+1) is homogeneous of order 1 in x. Then, for
all t ∈ (tn, tn+1], V (x, t) is homogeneous of order 1 in x.

Proof. Let u (y, τ) = V (ey,W,D, tn+1 − τ) and ∆ = tn+1− tn. By mapping S → 0
to y → −∞, we are able to consider operators that are uniformly elliptic on R
instead of those defined by (1.2.3), which are degenerate on the boundary S = 0 ∈
R>0. Specifically, we have that u satisfies

L′iui +
M∑
j=1
j 6=i

[
qQi→juj

]
− ∂ui
∂τ

= gε (ey,W,D, tn+1 − τ) on R× (0,∆) ∀i ∈ S, (3.1.1)

where each L′i is uniformly elliptic. Denote by 1 an M × 1 vector of ones. Then,
Assumption 3.0.6 allows us to write u as

u (y, τ) =

∫
R
F (y′ − y, τ, 0) u (y′, 0) dy′

−
∫ ∆

0

∫
R
F (y′ − y, τ, τ ′)

(
gε
(
ey
′
,W,D, tn+1 − τ ′

)
1
)
dy′dτ ′,

where F is the Green’s function depending on y and y′ through y′− y alone (Fried-
man 1964). Hence, for S > 0,

V (S,W,D, t) =

∫
R
F (y′ − logS, τ, 0) V

(
ey
′
,W,D, tn+1

)
dy′

−
∫ ∆

0

∫
R
F (y′ − logS, τ, τ ′)

(
gε
(
ey
′
,W,D, tn+1 − τ ′

)
1
)
dy′dτ ′.

The substitution y′ = log (SS ′) yields

V (S,W,D, t) =

∫ ∞
0

F (logS ′, τ, 0) V (SS ′,W,D, tn+1)
1

S ′
dS ′

−
∫ ∆

0

∫ ∞
0

F (logS ′, τ, τ ′) (gε (SS ′,W,D, tn+1 − τ ′) 1)
1

S ′
dS ′dτ ′.

(3.1.2)

Since V (x, tn+1) and gε (x, tn+1 − τ ′) are homogeneous of degree 1 in x, the homo-
geneity of V (x, t) in x on (R>0 \ ∂R>0)×R2

>0× (tn, tn+1] follows. By the presumed
continuity of V, we can extend this to Ω(tn,tn+1].

Lemma 3.1.5 (Loss-maximizing partial strategy preserves homogeneity). Suppose
that for some regime i ∈ S and for some n with 1 6 n < N , Vi (x, t

+
n ) is homoge-

neous of order 1 in x and that the policyholder employs a loss-maximizing partial
strategy γni . Then, Vi (x, tn) is homogeneous of order 1 in x.
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Proof. First, note that f and f ((1.3.6) and (1.3.7)) are homogeneous of order 1 in
x. Let η > 0. By Definition 1.4.4, and the homogeneity of Vi (x, t

+
n ), f and f ,

γni (x) ∈ Γni (x)

= arg max
λ∈C

[
Vi
(
f ( x, tn, λ) , t+n

)
+R (tn) f ( x, tn, λ)

]
= arg max

λ∈C
η
[
Vi
(
f ( x, tn, λ) , t+n

)
+R (tn) f ( x, tn, λ)

]
= arg max

λ∈C

[
Vi
(
f (ηx, tn, λ) , t+n

)
+R (tn) f (ηx, tn, λ)

]
= Γni (ηx) 3 γni (ηx) . (3.1.3)

Now, using (1.3.5), (3.1.3), and the homogeneity of Vi (x, t
+
n ), f and f ,

ηVi (x, tn) = η
[
Vi
(
f ( x, tn, γ

n
i ( x)) , t+n

)
+R (tn) f ( x, tn, γ

n
i ( x))

]
=
[
Vi
(
f (ηx, tn, γ

n
i ( x)) , t+n

)
+R (tn) f (ηx, tn, γ

n
i ( x))

=
[
Vi
(
f (ηx, tn, γ

n
i (ηx)) , t+n

)
+R (tn) f (ηx, tn, γ

n
i (ηx))

=
[
Vi (ηx, tn) .

The homogeneity of the price under a loss-maximizing strategy allows us to
reduce the dimensionality of the problem. By Theorem 3.1.3,

V (S,W,D, t) =
1

η
V (ηS, ηW, ηD, t) .

Suppose W 6= 0. Choosing η = W ?

W
with W ? 6= 0 yields

V (S,W,D, t) =
W

W ?
V

(
W ?

W
S,W ?,

W ?

W
D, t

)
, (3.1.4)

which reveals that we need only solve the problem for two values of the withdrawal
benefit: W ? and zero. We refer to this reduction in dimensionality as a similarity
reduction.

Assumption 3.1.6 (Choice function). Throughout the rest of §3.1, we assume that
the choice function c : 2C → C is used to break ties in the policyholder’s withdrawal
strategy (Remark 2.4.2).

Theorem 3.1.7 (Utility homogeneity under consumption-optimal strategy). Sup-
pose that a consumption-optimal (full) strategy is employed by the policyholder, and
that for all regimes i ∈ S, uBi and uCi are homogeneous of order p. Then, V (x, t)
V (x, t) are homogeneous of orders 1 and p, respectively, in x.

As with Theorem 3.1.3, this fact is established via a series of lemmas. Recall
that if V (x, tn+1) is homogeneous of order 1 in x, so too is V (x, t+n ) (Lemma
3.1.4). Similarly, we establish that if V (x, tn+1) is homogeneous of order p in x,
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so too is V (x, t+n ) (Lemma 3.1.8). Then, we show that if V (x, t+n ) and V (x, t+n )
are homogeneous of orders 1 and p, respectively, in x, so too are V (x, tn) and
V (x, tn) (Lemma 3.1.9). Noting that V (x, tN = T ) = V (x, tN = T ) = 0 are
trivially homogeneous, the desired result follows by induction.

Lemma 3.1.8 (Utility system homogeneity between event times). Suppose that for
some p and n with 1 6 n < N , V (x, tn+1) is homogeneous of order p in x and uBi
is homogeneous of order p. Then, for all t ∈ (tn, tn+1], V (x, t) is homogeneous of
order p in x.

Proof sketch. The proof of this is almost identical to that of Lemma 3.1.4. Con-
structing the analogue to (3.1.2) for the utility system and noting that V (x, tn+1)
and gεi (x, tn+1 − τ ′) are homogeneous of order p in x, the desired result follows.

Lemma 3.1.9 (Consumption-optimal partial strategy preserves homogeneity).
Suppose that for some regime i ∈ S and for some n with 1 6 n < N , Vi (x, t

+
n ) and

V i (x, t
+
n ) are homogeneous of orders 1 and p, respectively, in x. Further suppose

that uCi is homogeneous of order p and that the policyholder employs a consumption-
optimal partial strategy γni . Then, Vi (x, tn) and V i (x, tn) are homogeneous of or-
ders 1 and p, respectively, in x.

Proof. Recall that f and f ((1.3.6) and (1.3.7)) are homogeneous of order 1 in
x. Let η > 0. Using choice function c (Remark 2.4.2), and the homogeneity of
V i (x, t

+
n ) and uCi ,

γni (x) = c
(
Γ
n

i (x)
)

= c

(
arg max

λ∈C

[
V i

(
f ( x, tn, λ) , t+n

)
+R (tn)uCi (f ( x, tn, λ))

])
= c

(
arg max

λ∈C
ηp
[
V i

(
f ( x, tn, λ) , t+n

)
+R (tn)uCi (f ( x, tn, λ))

])
= c

(
arg max

λ∈C

[
V i

(
f (ηx, tn, λ) , t+n

)
+R (tn)uCi (f (ηx, tn, λ))

])
= c

(
Γ
n

i (ηx)
)

= γni (ηx) .

Now, using (1.3.5) and the homogeneity of Vi (x, t
+
n ),

ηVi (x, tn) = η
[
Vi
(
f ( x, tn, γ

n
i ( x)) , t+n

)
+R (tn) f ( x, tn, γ

n
i ( x))

]
=
[
Vi
(
f (ηx, tn, γ

n
i (ηx)) , t+n

)
+R (tn) f (ηx, tn, γ

n
i (ηx))

=
[
Vi (ηx, tn) .

Likewise, using (2.3.1), and the homogeneity of V i (x, t
+
n ) and uCi ,

ηpV i (x, tn) = ηp
[
V i

(
f ( x, tn, γ

n
i ( x)) , t+n

)
+R (tn)uCi (f ( x, tn, γ

n
i ( x)))

]
=

[
V i

(
f (ηx, tn, γ

n
i (ηx)) , t+n

)
+R (tn)uCi (f (ηx, tn, γ

n
i (ηx)))

=
[
V i (ηx, tn) .
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Remark 3.1.10. Note that the above results on the homogeneity of the utility apply
to any utility functions uBi and uCi satisfying the theorems’ antecedents (provided
they are bounded and continuous), not just those that are a part of the HARA
family.

Corollary 3.1.11 (Power law homogeneity). For all regimes i ∈ S, take bi = 0 and
pi = p for some constant p 6= 0. Suppose that a consumption-optimal (full) strategy
is employed by the policyholder. Then, V (x, t) and V (x, t) are homogeneous of
order 1 and p, respectively, in x.

Proof. This follows directly from Theorem 3.1.7 and the fact that uHARA (x; a, b, p)
is homogeneous of order p in x and b. That is, for all η > 0,

uHARA (ηx; a, ηb, p) = ηpuHARA (x; a, b, p) .

This encompasses a large family of actuarially relevant functions, namely the
power law (a.k.a. isoelastic) utility functions. Under power law utility, we can once
again reduce the dimensionality of the problem. In general, when the conditions
of Theorem 3.1.7 hold,

V (S,W,D, t) =
1

ηp
V (ηS, ηW, ηD, t) .

Suppose W 6= 0. Choosing η = W ?

W
with W ? 6= 0 yields

V (S,W,D, t) =

(
W

W ?

)p
V

(
W ?

W
S,W ?,

W ?

W
D, t

)
,

along with (3.1.4). This reveals that we need only solve the problem for two values
of the withdrawal benefit: W ? and 0.

3.2 Control set discretization

At an event time tn ∈ T under regime i ∈ S, the action γni (x) needs to be deter-
mined for each point x in our spatial discretization. Recall that the control set is
C = [0, 2]. We discretize this domain using the points

0 = λ1 < λ2 < . . . < λP = 2.

In general, in order to ensure convergence, we compute a series of approximate
solutions and let maxi [λi+1 − λi]→ 0 (see §3.4). We approximate a loss-maximizing
partial strategy by taking

γni (x) ∈ arg max
λ∈{λ1,λ2,...,λP }

[
Vi
(
f (x, tn, λ) , t+n

)
+R (tn) f (x, tn, λ)

]
.

27



Similarly, we approximate a consumption-optimal partial strategy by taking

γni (x) ∈ arg max
λ∈{λ1,λ2,...,λP }

[
V i

(
f (x, tn, λ) , t+n

)
+R (tn)uCi (f (x, tn, λ))

]
.

A linear search over {λ1, λ2, . . . , λP} is used to obtain the maximum. Linear in-
terpolation is used to poll values of Vi (f (x, tn, λ) , t+n ) (or V i (f (x, tn, λ) , t+n )) as
f (x, t, λ) is not constrained to lie on a grid point. We subsequently show that a
solution to the pricing problem under a loss-maximizing strategy is convex and
monotone. Linear interpolation preserves these qualities.

3.2.1 Bang-bangness

A partial strategy is said to be bang-bang when its range is a countable set. We
demonstrate that there exists a loss-maximizing strategy composed of partial strate-
gies γni satisfying

γni (x) ∈ {0, 1, 2} ∀x ∈ Ω. (3.2.1)

This means that for a GLWDB, a policyholder behaving as to maximizing losses for
the writer (up to equivalence of loss-maximizing strategies) will only ever perform a
nonwithdrawal, a withdrawal at exactly the contract rate, or a full surrender. Since
the plane {x ∈ Ω | x3 = 0} (corresponding to a death benefit of zero) is a subset
of Ω, a GLWDB contract without death benefits (referred to as a GLWB) is bang-
bang everywhere. The GLWB is observed to be bang-bang by Forsyth and Vetzal
(2012). We generalize our findings in §3.2.2 to provide the reader with sufficient
conditions for an arbitrary contract to be bang-bang.

W.r.t. the GLWDB, this allows us to “reduce” the control set [0, 2] to the set
{0, 1, 2}. This reduction is computationally relevant, as it allows us to take λ0 = 0,
λ1 = 1 and λ2 = 2 as a control set discretization, resulting in a constant amount
of work per linear search. Related bang-bangness results are obtained by Dai et al.
(2008), Huang and Kwok (2013) for Guaranteed Minimum Withdrawal Benefit
(GMWB) contracts. The GMWB problem formulated in these works assumes con-
tinuous withdrawals, resulting in a Hamilton-Jacobi-Bellman equation. Hence, the
methods used to establish the bang-bangness therein are inherently different from
those found here.

Definition 3.2.1 (Convex function). A function s : X → R defined on a convex
set X in a vector space is said to be convex if for all θ ∈ (0, 1) and x,y ∈ X,

s (θx + (1− θ) y) 6 θs (x) + (1− θ) s (y) .

If −s is convex, s is said to be concave. We say V is convex if for each i ∈ S, Vi
is convex.

Definition 3.2.2 (Monotone function). A function s : X → Y defined on partially
ordered sets X and Y is monotone (monotone decreasing) if for all x, y ∈ X,
s (x) 6 s (y) (s (x) > s (y)) whenever x 6 y. We say V is monotone (monotone
decreasing) if for each i ∈ S, Vi is monotone (monotone decreasing).
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Lemma 3.2.4

Theorem 3.2.3

Lemma 3.2.5

Lemma 3.2.7 Lemma 3.2.6

Figure 3.2.1: A guide for the proof of Theorem 3.2.3. An edge from A to B
indicates that the result B depends on the result A.

Theorem 3.2.3 (Bang-bangness). There exists a loss-maximizing strategy com-
posed of partial strategies γni satisfying (3.2.1).

As usual, this result is established via a series of lemmas. We show that if
V (x, tn+1) is convex and monotone in x, so too is V (x, t+n ) (Lemma 3.2.4). Then,
we show that if V (x, t+n ) is convex and monotone in x, for each regime i, there
exists a loss-maximizing partial strategy γni satisfying (3.2.1) (Lemma 3.2.5) and
that V (x, tn) is convex and monotone in x (Lemmas 3.2.6 and 3.2.7). Noting that
V (x, tN = T ) = 0 is trivially convex and monotone in x, the desired result follows
by induction. Figure 3.2.3 serves as a pictorial guide for this process.

Lemma 3.2.4 (Pricing system convexity and monotonicity between event times).
Suppose that for some n with 1 6 n < N , V (x, tn+1) is convex and monotone in
x. Then, for all t ∈ (tn, tn+1], V (x, t) is convex and monotone in x.

Proof. As before, a change of variables affords us (3.1.2). Since F > 0 almost
everywhere (Garroni and Menaldi 1992), and V (x, tn+1) and −gε (x, tn+1 − τ ′) are
convex and monotone in x, the convexity and monotonicity of V (x, t) in x on
(R>0 \ ∂R>0) × R2

>0 × (tn, tn+1] follows. By the presumed continuity of V, we can
extend this to Ω(tn,tn+1].

Lemma 3.2.5 (Bang-bangness for a convex and monotone contract). Suppose that
for some regime i ∈ S and for some n with 1 6 n < N , Vi (x, t

+
n ) is convex and

monotone in x. Then, there exists a loss-maximizing partial strategy γni satisfying
(3.2.1).

Proof. W.l.o.g., we need only consider withdrawal times TW since ratchets and the
event occurring at time zero are not controlled by the policyholder. In light of this,
consider the point 〈x, tn, i〉 ∈ Ω× TW × S. Let

vλ = Vi
(
f (x, tn, λ) , t+n

)
be the contract value “immediately after” the withdrawal time tn assuming the
policyholder performs action λ.
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Suppose that {0, 1}∩Γni (x) = ∅ and (0, 1)∩Γni (x) 6= ∅ (i.e. no loss-maximizing
partial strategy γni exists with γni (x) indicating nonwithdrawal or withdrawal at
exactly the contract rate, but a loss-maximizing partial strategy γni does exist with
γni (x) indicating nonzero withdrawal at strictly below the contract rate). Then, by
(1.3.5), (1.3.7) and Definition 1.4.4, there exists λ ∈ (0, 1) s.t.

vλ +R (tn) f (x, tn, λ) > v0 +R (tn) f (x, tn, 0) (3.2.2)

and
vλ +R (tn) f (x, tn, λ) > v1 +R (tn) f (x, tn, 1) . (3.2.3)

Furthermore, (1.3.6) suggests that

λf (x, tn, 1) + (1− λ) f (x, tn, 0)

= λ 〈(x1 −G (tn)x2) ∨ 0, x2, (x3 −G (tn)x2) ∨ 0〉+ (1− λ) 〈x1, x2 (1 +B (tn)) , x3〉
> λ 〈(x1 −G (tn)x2) ∨ 0, x2, (x3 −G (tn)x2) ∨ 0〉+ (1− λ) 〈x1, x2, x3〉
= 〈λ (x1 −G (tn)x2) ∨ 0 + (1− λ)x1, x2, λ (x3 −G (tn)x2) ∨ 0 + (1− λ)x3〉 .

(3.2.4)

Let
x+

1 = λ (x1 −G (t)x2) ∨ 0 + (1− λ)x1,

corresponding to the first element in (3.2.4). If x1 −G (tn)x2 > 0,

x+
1 = λ (x1 −G (tn)x2) + (1− λ)x1 = x1 − λG (tn)x2 > (x1 − λG (tn)x2) ∨ 0.

If, however, x1 −G (tn)x2 < 0, then (1− λ)x1 > x1 − λG (tn)x2. This along with
(1− λ)x1 > 0 yields

x+
1 = (1− λ)x1 > (x1 − λG (tn)x2) ∨ 0. (3.2.5)

An identical argument can be carried out to show that

x+
3 = (1− λ)x3 + λ (x3 −G (tn)x2) ∨ 0 > (x3 − λG (tn)x2) ∨ 0. (3.2.6)

Recalling that

f (x, tn, λ) = 〈(x1 − λG (tn)x2) ∨ 0, x2, (x3 − λG (tn)x2) ∨ 0〉 ,

we conclude that by (3.2.4), (3.2.5) and (3.2.6),

f (x, tn, λ) 6 λf (x, tn, 1) + (1− λ) f (x, tn, 0) . (3.2.7)

From (1.3.7), it is trivial to deduce

f (x, tn, λ) 6 λf (x, tn, 1) + (1− λ) f (x, tn, 0) , (3.2.8)

as the above holds with equality. (3.2.2) implies that

R (tn) f (x, tn, λ) > v0 − vλ +R (tn) f (x, tn, 0) . (3.2.9)
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Multiplying (3.2.8) by R (tn) > 0 yields

R (tn) (λf (x, tn, 1) + (1− λ) f (x, tn, 0)) > R (tn) f (x, tn, λ) . (3.2.10)

Combining (3.2.9) and (3.2.10) yields

R (tn) (f (x, tn, 1)− f (x, tn, 0)) >
v0 − vλ
λ

. (3.2.11)

Similarly, (3.2.3) along with (3.2.10) imply that

vλ − v1

(1− λ)
> R (tn) (f (x, tn, 1)− f (x, tn, 0)) . (3.2.12)

Combining (3.2.11) and (3.2.12) yields

vλ − v1

(1− λ)
>
v0 − vλ
λ

.

Rearranging terms,
vλ > λv1 + (1− λ) v0.

By (3.2.7) along with the presumed convexity and monotonicity of Vi (x, t
+
n ),

vλ > λv1 + (1− λ) v0.

= λVi
(
f (x, tn, 1) , t+n

)
+ (1− λ)Vi

(
f (x, tn, 0) , t+n

)
> Vi

(
λf (x, tn, 1) + (1− λ) f (x, tn, 0) , t+n

)
> Vi

(
f (x, tn, λ) , t+n

)
= vλ,

a contradiction.
Now, suppose that {1, 2} ∩ Γni (x) = ∅ and (1, 2) ∩ Γni (x) 6= ∅ (i.e. no loss-

maximizing partial strategy γni exists with γni (x) indicating withdrawal at exactly
the contract rate or full surrender, but a loss-maximizing partial strategy γni does
exist with γni (x) indicating partial surrender). Then, by (1.3.5), (1.3.7) and Defi-
nition 1.4.4, there exists λ ∈ (1, 2),

vλ +R (tn) f (x, tn, λ) > v1 +R (tn) f (x, tn, 1) (3.2.13)

and
vλ +R (tn) f (x, tn, λ) > v2 +R (tn) f (x, tn, 2) . (3.2.14)

Let θ = λ− 1 ∈ (0, 1). It is trivial to show that

f (x, tn, λ) 6 θf (x, tn, 2) + (1− θ) f (x, tn, 1) , (3.2.15)

and
f (x, tn, λ) 6 θf (x, tn, 2) + (1− θ) f (x, tn, 1) (3.2.16)

as both statements hold true with equality. As before, we use (3.2.13), (3.2.14) and
(3.2.16) to arrive at

vλ > θv2 + (1− θ) v1.
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Using (3.2.15) along with the presumed convexity and monotonicity of Vi (x, t
+
n ),

vλ > θv2 + (1− θ) v1

= θVi
(
f (x, tn, 2) , t+n

)
+ (1− θ)Vi

(
f (x, tn, 1) , t+n

)
> Vi

(
θf (x, tn, 2) + (1− θ) f (x, tn, 1) , t+n

)
> Vi

(
f (x, tn, λ) , t+n

)
= vλ,

a contradiction.

Lemma 3.2.6 (Loss-maximizing partial strategy preserves convexity). Suppose
that for some regime i ∈ S and for some n with 1 6 n < N , Vi (x, t

+
n ) is convex and

monotone in x and that the policyholder employs a loss-maximizing partial strategy
γni . Then Vi (x, tn) is convex in x.

Proof. First, note that for fixed t and λ, f and f can be written as compositions
of functions convex in x, and hence we conclude that f and f are convex in x. Let
z = θx + (1− θ) y. By the convexity of f ,

f (z, tn, γ
n
i (z)) 6 θf (x, tn, γ

n
i (z)) + (1− θ) f (x, tn, γ

n
i (z)) . (3.2.17)

By (3.2.17), the convexity of f and the optimality of a loss-maximizing partial
strategy (Definition 1.4.4),

Vi (z, tn) = Vi
(
f (z, tn, γ

n
i (z)) , t+n

)
+R (tn) f (z, tn, γ

n
i (z))

6 Vi
(
θf (x, tn, γ

n
i (z)) + (1− θ) f (x, tn, γ

n
i (z)) , t+n

)
+R (tn) f (θx + (1− θ) y, tn, γ

n
i (z))

6 θ
[
Vi
(
f (x, tn, γ

n
i (z)) , t+n

)
+R (tn) f (x, tn, γ

n
i (z))

]
+ (1− θ)

[
Vi
(
f (y, tn, γ

n
i (z)) , t+n

)
+R (tn) f (y, tn, γ

n
i (z))

]
6 θ

[
Vi
(
f (x, tn, γ

n
i (x)) , t+n

)
+R (tn) f (x, tn, γ

n
i (x))

]
+ (1− θ)

[
Vi
(
f (x, tn, γ

n
i (y)) , t+n

)
+R (tn) f (y, tn, γ

n
i (y))

]
= θVi (x, tn) + (1− θ)Vi (y, tn) .

Lemma 3.2.7 (Loss-maximizing partial strategy preserves monotonicity). Suppose
that for some regime i ∈ S and for some n with 1 6 n < N , Vi (x, t

+
n ) is convex and

monotone in x and that the policyholder employs a loss-maximizing partial strategy
γni . Then, Vi (x, tn) is monotone in x.

Proof. Let x > y. By (1.3.5) and the optimality of a loss-maximizing partial
strategy (Definition 1.4.4),

Vi (x, tn) = Vi
(
f (x, tn, γ

n
i (x)) , t+n

)
+R (tn) f (x, tn, γ

n
i (x))

> Vi
(
f (x, tn, λ) , t+n

)
+R (tn) f (x, tn, λ) ∀λ ∈ C. (3.2.18)
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By Lemma 3.2.5, it is sufficient to consider the cases γni (y) = 0, γni (y) = 1 and
γni (y) = 2. For each case, by (3.2.18), we need only find λ s.t.

Vi (y, tn) = Vi
(
f (y, tn, γ

n
i (y)) , t+n

)
+R (tn) f (y, tn, γ

n
i (y))

6 Vi
(
f (x, tn, λ) , t+n

)
+R (tn) f (x, tn, λ) .

When tn ∈ TR (i.e. tn corresponds to a ratchet) or tn = t1 = 0, the result is trivial
since the policyholder has no control over the contract. Hence, we consider the case
of tn ∈ TW (i.e. tn is a withdrawal time).

1. Suppose γni (y) = 0. Take λ = 0 to get f (x, tn, 0) = f (y, tn, 0) = 0 and
f (x, tn, 0) > f (y, tn, 0).

2. Suppose γni (y) = 1. Take λ = y2/x2 to get f (x, tn, λ) = f (y, tn, γ
n
i (y)) and

f (x, tn, λ) > f (y, tn, γ
n
i (y)).

3. Suppose γni (y) = 2. If y1 6 G (tn) y2, we have f (y, tn, 1) = f (y, tn, 2) =
G (tn) y2 and f (y, tn, 1) > f (y, tn, 2) and hence we can once again take λ =
y2/x2 to arrive at a contradiction. Therefore, we can safely assume y1 >
G (tn) y2 so that

f (y, tn, 2) = (1− κ (tn))G (tn) y2 + κ (tn) y1 6 y1.

This inequality is not strict to account for the case of κ (tn) = 1.

(a) Suppose x1 > G (tn)x2. Take λ = 2 to get f (x, tn, 2) =
(1− κ (tn))G (tn)x2 + κ (tn)x1 > f (y, tn, 2) and f (x, tn, 2) =
f (y, tn, 2) = 0.

(b) Suppose x1 6 G (tn)x2. Take λ = 1 to get f (x, tn, 1) = G (tn)x2 >
x1 > y1 > f (y, tn, 2) and f (x, tn, 1) > f (y, tn, 2).

The bang-bang property relies heavily on the convexity of the contract. Figure
3.2.2 illustrates the convexity of a single-regime contract under a loss-maximizing
partial strategy. Unlike loss-maximizing partial strategies, for arbitrary utility func-
tions, consumption-optimal partial strategies will not, in general, be bang-bang.

We believe that the above result can be generalized to the case of a local volatil-
ity model. This is conjectured below.

Conjecture 3.2.8 (Bang-bangness under local volatility). Relax Assumption 3.0.2
to allow σi to depend on S, with σi Hölder continuous in S. There exists a loss-
maximizing strategy composed of partial strategies γni satisfying (3.2.1).

For relevant work regarding the convexity preservation properties of options
written on assets following geometric Brownian motion, we refer the reader to a
work by Bergman et al. (1996) (see also Janson and Tysk (2004) for a more general
result applicable to parabolic operators).
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Figure 3.2.2: A typical contract for fixed withdrawal and death benefits across
an event time under a loss-maximizing partial strategy.

3.2.2 Generalization

We now extend the above result to a general variable annuity, a function of one or
more possibly correlated assets evolving according to geometric Brownian motion
(e.g. the investment account in a GLWDB) and a “state variable” that does not
contribute to the price of the variable annuity between events (e.g. the state of
the withdrawal and death benefits in a GLWDB). We assume each asset is in R>0,
while the state variable is in a partially ordered convex set. Assuming a countable
number of events between which we can write the solution in a form analogous to
(3.1.2), monotonicity and convexity (concavity) are preserved between events. It
then remains to check conditions at event times in order to ensure that

(a) Monotonicity is preserved.

(b) Convexity (concavity) is preserved.

(c) The bang-bang property holds.

We outline a set of conditions which ensure that (a-c) hold.
Let S = {1, 2, . . . ,M} and Ω = Ω1 × Ω2 where Ω1 = Rd

>0 and Ω2 is a partially
ordered convex set. Denote a point x ∈ Ω by writing 〈x1, x2, . . . , xd, xd+1〉 where
xd+1 ∈ Ω2. We consider the problem posed on Ω × (0, T ) with a single event
occurring at time zero. The extension to a countable number of events follows by
induction. Let

Li =
d∑

j,k=1

aj,ki xjxk
∂2

∂xj∂xk
+

d∑
j=1

bjixj
∂

∂xj
.

Consider V : Ω× (0, T )→ RM satisfying

LiVi +
M∑
m=1

[ci,mVm] +
∂Vi
∂t

= gi on Ω× (0, T ) ∀i ∈ S (3.2.19)

in the classical sense. That is, for each i, the derivatives ∂Vi/∂xj∂xk for j, k ∈
{1, 2, . . . , d} exist everywhere and ∂Vi/∂t exists everywhere except possibly at time
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zero. Specifically, V is càglàd in time. The coefficients aj,ki , bji and ci,m are bounded,
continuous functions of t (independent of x), and gi = gi (x, t) is bounded and
continuous in x and t. For all i and t, we assume the positive semidefiniteness of the
matrix with aj,ki (t) in the jth row, kth column, so that under the log transformation

u (y1, y2, . . . , yd, yd+1, τ) = V (ey1 , ey2 , . . . , eyd , yd+1, τ − T ) ,

(3.2.19) becomes a relation involving a uniformly elliptic operator. As usual, we
assume a bound strong enough to ensure uniqueness: for all xd+1 ∈ Ω2, there exist
positive constants L and ` s.t.

|V (ex1 , ex2 , . . . , exd , xd+1, t)| 6 Le`(x
2
1+x22+...+x2d) ∀t ∈ (0, T ] .

For all i ∈ S, define λ1
i , λ

2
i , . . . ∈ R via the ordering λ1

i 6 λ2
i 6 . . . , and the sets

Ci and C ′i by
C ′i =

{
λ1
i , λ

2
i , . . .

}
⊂
[
λ1
i , λ

2
i

]
∪
[
λ2
i , λ

3
i

]
∪ . . . = Ci.

Lastly, let fi : Ω× Ci → Ω and fi : Ω× Ci → R.
Let Z>0 = {1, 2, . . . , }. We refer to the following list of propositions in the

statement of the general theory:

(A1i) gi is concave in x.

(A2i) gi is convex in x.

(B1i) gi is monotone decreasing in x.

(B2i) gi is monotone increasing in x.

(C1i) fi is convex in x.

(C2i) fi is concave in x.

(D1i) fi is convex in x.

(D2i) fi is concave in x.

(E1i) For all x ∈ Ω, k ∈ Z>0 and λ ∈
(
λki , λ

k+1
i

)
,

fi (x, λ) 6
λ− λki

λk+1
i − λki

fi
(
x, λk+1

i

)
+

λk+1
i − λ

λk+1
i − λki

fi
(
x, λki

)
(E2i) For all x ∈ Ω, k ∈ Z>0 and λ ∈

(
λki , λ

k+1
i

)
,

fi (x, λ) >
λ− λki

λk+1
i − λki

fi
(
x, λk+1

i

)
+

λk+1
i − λ

λk+1
i − λki

fi
(
x, λki

)
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(F1i) For all x ∈ Ω, k ∈ Z>0 and λ ∈
(
λki , λ

k+1
i

)
,

fi (x, λ) 6
λ− λki

λk+1
i − λki

fi
(
x, λk+1

i

)
.+

λk+1
i − λ

λk+1
i − λki

fi
(
x, λki

)
(F2i) For all x ∈ Ω, k ∈ Z>0 and λ ∈

(
λki , λ

k+1
i

)
,

fi (x, λ) >
λ− λki

λk+1
i − λki

fi
(
x, λk+1

i

)
.+

λk+1
i − λ

λk+1
i − λki

fi
(
x, λki

)
(G1i) For all x > y and λy ∈ C ′i, there exists λx ∈ Ci s.t. fi (x, λx) > fi (y, λy) and

fi (x, λx) > fi (y, λy) .

(G2i) For all x > y and λy ∈ C ′i, there exists λx ∈ Ci s.t. fi (x, λx) 6 fi (y, λy) and
fi (x, λx) > fi (y, λy) .

(G3i) For all x > y and λy ∈ C ′i, there exists λx ∈ Ci s.t. fi (x, λx) > fi (y, λy) and
fi (x, λx) 6 fi (y, λy) .

(G4i) For all x > y and λy ∈ C ′i, there exists λx ∈ Ci s.t. fi (x, λx) 6 fi (y, λy) and
fi (x, λx) 6 fi (y, λy) .

(H1i) Vi (x, T ) is convex in x.

(H2i) Vi (x, T ) is concave in x.

(I1i) Vi (x, T ) is monotone in x.

(I2i) Vi (x, T ) is monotone decreasing in x.

(J1i) For all x ∈ Ω, Vi (x, 0) = supλ∈Ci [Vi (fi (x, λ) , 0+) + fi (x, λ)] .

(J2i) For all x ∈ Ω, Vi (x, 0) = inf λ∈Ci [Vi (fi (x, λ) , 0+) + fi (x, λ)] .

(K1i) Vi (x, 0) is convex in x.

(K2i) Vi (x, 0) is concave in x.

(L1i) Vi (x, 0) is monotone in x.

(L2i) Vi (x, 0) is monotone decreasing in x.

(M1i) For all x ∈ Ω, Vi (x, 0) = supλ∈C′i [Vi (fi (x, λ) , 0+) + fi (x, λ)] .

(M2i) For all x ∈ Ω, Vi (x, 0) = inf λ∈C′i [Vi (fi (x, λ) , 0+) + fi (x, λ)] .

Note that (F1i) simply states that for each x and k, the line segment connecting〈
λki , f

(
x, λki

)〉
to
〈
λk+1
i , f

(
x, λk+1

i

)〉
is contained in the epigraph of f (x, λ) as a

function of λ. Figure 3.2.3 illustrates this. Clearly, if f is piecewise convex in λ on
the intervals of the form

(
λki , λ

k+1
i

)
, then this condition is trivially satisfied. Similar

conclusions can be drawn about (E1i), (E2i), and (F2i). Summarizing,
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Figure 3.2.3: The line segment connecting
〈
λki , f

(
x, λki

)〉
to〈

λk+1
i , f

(
x, λk+1

i

)〉
is contained in the epigraph of the function.

• f is convex in λ on
(
λki , λ

k+1
i

)
for all k ∈ Z>0 ⇒ (E1i)

• f is concave in λ on
(
λki , λ

k+1
i

)
for all k ∈ Z>0 ⇒ (E2i)

• f is convex in λ on
(
λki , λ

k+1
i

)
for all k ∈ Z>0 ⇒ (F1i)

• f is concave in λ on
(
λki , λ

k+1
i

)
for all k ∈ Z>0 ⇒ (F2i)

Theorem 3.2.9 (Bang-bang variable annuities).

(i) If for all i ∈ S, (A1i), (B1i), (C1i), (D1i), (E1i), (F1i), (G1i), (H1i), (I1i)
and (J1i) are satisfied, then, for all i ∈ S, (K1i), (L1i) and (M1i) follow.

(ii) If for all i ∈ S, (A1i), (B2i), (C2i), (D1i), (E2i), (F1i), (G2i), (H1i) (I2i)
and (J1i) are satisfied, then, for all i ∈ S, (K1i), (L2i) and (M1i) follow.

(iii) If for all i ∈ S, (A2i), (B2i), (C1i), (D2i), (E1i), (F2i), (G3i), (H2i), (I2i)
and (J2i) are satisfied, then, for all i ∈ S, (K2i), (L2i) and (M2i) follow.

(iv) If for all i ∈ S, (A2i), (B1i), (C2i), (D2i), (E2i), (F2i), (G4i), (H2i), (I1i)
and (J2i) are satisfied, then, for all i ∈ S, (K2i), (L1i) and (M2i) follow.

Remark 3.2.10 (Controls as functions of time). As mentioned above, a variable
annuity with a countable number of events is handled by applying Theorem 3.2.9
inductively. In this extension, the control sets C1, C2, . . ., CM along with the actions
λ1

1, λ2
1, . . ., λ1

2, . . ., λ1
M , . . . can be taken to be nonconstant in time so long as they

satisfy the antecedents of Theorem 3.2.9 at each event time.

Remark 3.2.11 (Connection to GLWDB). The bang-bang property of the GLWDB
follows from (i) in Theorem 3.2.9.
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3.3 Localized problem and boundary conditions

We approximate the original problem, posed on

〈S,W,D, t〉 ∈ R3
>0 × [0, T ] ,

on the truncated domain

〈S,W,D, t〉 ∈ [0, SMax]×W × [0, DMax]× [0, T ] , (3.3.1)

where W = [0,∞) when a similarity reduction is applied and W = [0,WMax]
otherwise. We clamp regime-switching jumps that drive the underlying above SMax.
Our particular handling of jumps is detailed in §D. No boundary conditions are
needed at S = 0, W = 0, D = 0, W = WMax and D = DMax. It is sufficient to
substitute one of the aforementioned boundary values of S, W or D into (1.2.2)
and (2.2.2) to retrieve the relevant behaviour. At S = SMax, we impose instead
the linearity conditions (Windcliff et al. 2004)

V (SMax,W,D, t) = C (t)SMax and V (SMax,W,D, t) = C (t)SMax (3.3.2)

in an attempt to estimate the true asymptotic behaviour of the contract. The
details of this can be found in §C. Errors introduced by the above approximations
are small in the region of interest, as verified by numerical experiments. At t = T ,
(1.1.1) and (2.1.3) suggest

V (S,W,D, T ) = V (S,W,D, T ) = 0.

We solve numerically using finite differences. The truncated domain (3.3.1) is
discretized using variable-size timestepping (see Johnson (2009) for an expository
treatment) and a rectilinear grid in space. If a similarity reduction is used, the
withdrawal benefit dimension is discretized by the points 0 and W ? = S (0).

We use Crank-Nicolson time-stepping with Rannacher smoothing (Rannacher
1984). We discretize the diffusive term using a second-order centered difference,
while the convective term is discretized using a centered difference only when the
corresponding backward Euler scheme is monotone. Otherwise, an upwind dis-
cretization is employed. The details of our discretization are discussed in §D. The
resulting system is solved using fixed-point iteration. The details of this approach
are available in d’Halluin et al. (2005), Kennedy (2007).

3.4 Determining the hedging cost rider

At contract inception, the withdrawal and death benefits are set to the initial value
of the investment account, S (0). That is, W (0) = S (0) and D (0) = S (0). If
we overload our previous definition of V as parameterized by the rider, αR, the
problem becomes one of determining αR ∈ R s.t.

VI (S (0) ,W (0) , D (0) , 0;αR)−R (0)︸ ︷︷ ︸
1

S (0) = 0 (3.4.1)
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where I is the regime observed at time zero. This is a requirement stating that αR
must be selected so as to compensate the writer for the hedging costs. We term
such a value of αR the hedging cost rider. Equation (3.4.1) is solved numerically
using Newton’s method.

A refinement level E ∈ N refers to a particular discretization of the domain.
We refer to the original grid and control discretization as refinement level 0, and
refinement level E is produced by taking the previous level, E − 1, and inserting a
grid node between each pair of adjacent spatial nodes on the S and D axes. If a
bang-bang withdrawal strategy does not exist, the control axis is refined similarly. If
a similarity reduction is not applicable (e.g. in the case of exotic utility functions)W
is also refined. At refinement level 0, an arbitrary initial guess is used to bootstrap
Newton’s method. At refinement level E > 0, we use the approximation to the
hedging cost rider computed at refinement level E − 1 as the initial guess.
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Chapter 4

Results

We begin by performing experiments under the assumption (i) that the policyholder
behaves so as to maximize the writer’s losses and (ii) that the policyholder always
withdraws at the contract rate. We consider a handful of numerical tests based
on perturbations to the base case data in Table 4.2.1. We subsequently move to
considering consumption-optimal strategies, in which we use the base case data in
Tables 4.2.1 and 4.3.1. Throughout this section, various rates are presented in basis
points (bps).

4.1 Validation

We validate the numerical method against a Monte Carlo formulation of the pricing
problem. Specifically, we determine the hedging cost rider as in §3.4 under the
assumption that the policyholder always withdraws at the contract rate. We refer
to this as the contract rate withdrawal strategy. We use this particular value of the
rider in a Monte Carlo simulation to verify that the writer has indeed hedged their
position properly. The contract rate withdrawal strategy is an example of a static
strategy : given a particular withdrawal time, policyholder behaviour depends only
on observable quantities at that time. Static (also referred to as greedy) strategies
are trivially simulated by a Monte Carlo simulation (§E).

Validation is performed using a set of contract parameters described in Holz
et al. (2007), with the addition of ratcheting and nonratcheting death benefits.
These parameters are replicated in Table 4.1.1. To compare with previous work,
we assume that death benefit payments are processed annually. A formulation
with discrete death benefits is given by Forsyth and Vetzal (2012). Results from
computing the hedging cost rider are shown in Table 4.1.2. The Monte Carlo
method detailed in §E is used to compute the value of the contract at time zero
using computed values of the hedging cost rider. Results from the Monte Carlo
simulations are shown in Table 4.1.3. Under the hedging cost rider, the value of the
contract should be equal to the amount of wealth initially invested, S (0) = 100.
Table 4.1.3 substantiates the validity of our method by showing (nonmonotone)
convergence to S (0).
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Parameter Value

Volatility σ 0.15

Risk-free rate r 0.04

Initial investment S (0) 100

Management rate αM 0

Contract rate G 0.05

Bonus rate B 0

Initial age x0 65

Expiry T 60

Mortality data Pasdika et al. (2005)

Mortality payments Annual

Ratchets Annual

Withdrawals Annual

Strategy Contract rate withdrawal

Time t Penalty 1− κ (t)

1 0.05

2 0.04

3 0.03

4 0.02

5 0.01

> 6 0

Table 4.1.1: Single-regime parameters in Holz et al. (2007).
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Hedging cost rider αM (bps)

Refinement Nonratcheting death benefits Ratcheting death benefits

0 84.3238355810 160.854056408

1 84.4592646554 161.845696720

2 84.5321112997 162.178675089

3 84.5509146820 162.263487810

Table 4.1.2: Hedging cost rider values acquired using the data in Table 4.1.1
with nonratcheting and ratcheting death benefits (under the contract rate with-
drawal strategy).

Ratcheting death benefits Nonratcheting death benefits

Simulations Mean Standard error Mean Standard error

103 98.9105 2.39230 · 10+0 98.8808 2.59831 · 10+0

104 99.7417 7.53455 · 10−1 99.7508 8.18451 · 10−1

105 100.005 2.44526 · 10−1 100.048 2.65138 · 10−1

106 100.024 7.73968 · 10−2 100.034 8.37591 · 10−2

107 100.001 2.43845 · 10−2 99.995 2.63799 · 10−2

Table 4.1.3: Monte Carlo validations (under the contract rate withdrawal strat-
egy) for the nonratcheting death benefit with αR = 84.5509146820 bps and ratch-
eting death benefit with αR = 162.263487810 bps (Table 4.1.2). Standard error
is computed at the 99% confidence level.
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Refinement Hedging cost rider (bps)

0 64.6459730380

1 64.8346526598

2 64.8988278056

3 64.9153982141

4 64.9196165169

5 64.9206819769

6 64.9209497393

Table 4.1.4: Hedging cost rider values acquired using the data in Table 4.1.1
with no death benefits (under the contract rate withdrawal strategy).

This validation experiment reveals some interesting preliminary trends. Specif-
ically, the data suggests that under the contract rate withdrawal strategy, a ratch-
eting death benefit is significantly more valuable than a nonratcheting one. Fur-
thermore, Table 4.1.4, showing the values computed for the contract specified by
Table 4.1.1 without a death benefit (validated against Forsyth and Vetzal (2012)),
suggests that even the nonratcheting death benefit is valuable. Lastly, rates of
convergence are calculated in Table 4.1.5, and suggest that the method achieves
quadratic convergence.

4.2 Loss-maximizing and contract rate with-

drawal

All tests in this section are performed on perturbations to the base case data in
Table 4.2.1. Table 4.2.2 documents wide variation in the hedging cost rider across
different volatility and interest rate parameters for the two regimes considered, and
for the cases with a ratcheting death benefit, with a nonratcheting death benefit,
and without a death benefit. Of course, in any otherwise identical scenario, the loss-
maximizing withdrawal assumption results in a higher rider since this represents
the worst case scenario for the insurer. As we might expect, higher volatility is
associated with an increase in the cost of hedging and thus a higher rider. The
rider is also quite sensitive to the levels of the risk-free interest rate across the
two regimes. The presence of a death benefit results in a notably increased rider,
particularly if this feature is ratcheting.

Withdrawal analysis

We now turn to a brief exploration of loss-maximizing withdrawal strategies by
the policyholder. Figures 4.2.1 and 4.2.2 show these strategies under each regime
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Refinement Absolute error Change in error Ratio of errors

0 2.1819 · 10−2

1 6.8474 · 10−3 V (1) − V (0) = 1.4972 · 10−2

2 1.7553 · 10−3 V (2) − V (1) = 5.0921 · 10−3 V (1)−V (0)

V (2)−V (1) = 2.94

3 4.4048 · 10−4 V (3) − V (2) = 1.3148 · 10−3 V (2)−V (1)

V (3)−V (2) = 3.87

4 1.0578 · 10−4 V (4) − V (3) = 3.3470 · 10−4 V (3)−V (2)

V (4)−V (3) = 3.93

5 2.1245 · 10−5 V (5) − V (6) = 8.4535 · 10−5 V (4)−V (3)

V (5)−V (4) = 3.96

Table 4.1.5: Convergence table. The value of the contract at time zero is com-
puted using the data in Table 4.1.1 with no death benefit and αR = 64.9209497393
(Table 4.1.4). Let V (E) be the numerical solution at the Eth level of refinement.
Since V (6) ≈ 0 (due to our choice of hedging cost rider), we take V (E) to be the
error at each previous level of refinement.

(Table 4.2.1) at t = 1, 2, . . . , 6 assuming that the corresponding hedging cost rider is
charged for hedging the contract and that D = 100. In either regime, if W is much
bigger than S, the strategy always involves withdrawing at the contract rate, but
the strategy in other regions can be quite complex. We note that in the less volatile
regime (Figure 4.2.1), the withdrawal strategy does not involve surrender for t 6 3,
prior to the vanishing of surrender charges at t > 3 (Table 4.2.1). However, in the
more volatile regime (Figure 4.2.2), the policyholder is more willing to surrender
the contract, despite the large penalties at times t = 1 and t = 2. Regardless, both
regimes experience a sudden change in behaviour when surrender charges vanish.
Also note that in this regime, the policyholder’s willingness to surrender (for large
values of S) vanishes at t = 3 in anticipation of the triennial ratchet. Both regimes
experience a large region of nonwithdrawal at t = 3. The complexity of these
loss-maximizing strategies provides some further motivation for our consumption-
based approach, since it may seem implausible that individual policyholders would
actually implement such strategies.

Management rate

Figure 4.2.3 shows the relationship between the hedging cost rider and the man-
agement rate. As is to be expected, the rider grows superlinearly as a function of
the management rate, since the management rate acts as a drag on the investment
account. This confirms the observation in Forsyth and Vetzal (2012) that use of
mutual funds with high management fees as the underlying investment for variable
annuities results in higher costs for the insurer compared to a policy written on
funds with low management fees (e.g. exchange-traded index funds). We also see
that for both the loss-maximizing and contract rate withdrawal strategy, the death
benefit adds significant value to the contract, consistent with the results reported in

44



Parameter Value

Volatility σ1 σ2 0.0832 0.2141

Risk-free rate r1 r2 0.0521 0.0521

Rate of transition qQ1→2 qQ2→1 0.0525 0.1364

Jump magnitude J1→2 J2→1 1 1

Initial regime I 1

Initial investment S (0) 100

Management rate αM 100 bps

Contract rate G 0.05

Bonus rate B 0.05

Initial age x0 65

Expiry time T 60

Mortality data Pasdika et al. (2005)

Mortality payments Continuous

Ratchets Triennial

Withdrawals Annual

Time t Penalty 1− κ (t)

1 0.03

2 0.02

3 0.01

> 4 0

Table 4.2.1: Pricing system base case data with regime-dependent parameters
obtained from O’Sullivan and Moloney (2010) by calibration to FTSE 100 options
in January 2007.
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Figure 4.2.1: Observed loss-maximizing strategies at D = 100 under regime 1.
The hedging cost rider αR ≈ 37 bps is used (Table 4.2.2). The subfigures, from
top-left to bottom-right, correspond to t = 1, 2, . . . , 6.

Figure 4.2.2: Observed loss-maximizing strategies at D = 100 under regime 2.
The hedging cost rider αR ≈ 139 bps is used (Table 4.2.2). The subfigures, from
top-left to bottom-right, correspond to t = 1, 2, . . . , 6.
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Hedging cost rider αR (bps)

Parameters Ratcheting Nonratcheting No

Death Benefit Death Benefit Death Benefit

Base case (Table 4.2.1) 54 48 37 24 27 19

Initial regime = 2 158 113 139 75 86 52

(r1, r2) = (0.04, 0.06) 79 72 62 43 44 33

(r1, r2) = (0.03, 0.07) 124 114 106 76 73 57

(r1, r2) = (0.02, 0.08) 239 212 224 156 129 104

(σ1, σ2) = (0.10, 0.20) 62 56 45 29 31 22

(σ1, σ2) = (0.15, 0.25) 133 123 107 69 70 51

Table 4.2.2: The value of the hedging cost rider for perturbations to the data
in Table 4.2.1. For each perturbation, riders are calculated under the loss-
maximizing (left) and contract rate withdrawal (right) strategies. Values are
reported to the nearest basis point.

Table 4.2.2. Again, the disparity between the ratcheting and nonratcheting death
benefit is even more pronounced.

Alternate fee structure

Some insurers have adopted alternate fee structures that are functions of the aux-
iliary accounts. In general, the risky account evolves according to

dS = (µS − αF (S,W,D)) dt+ σSdZ.

A comparison of the usual fee structure F = S with F = S ∨ W on a contract
without death benefits for various values of the management rate αM under the
loss-maximizing strategy is shown in Figure 4.2.4. We see that for sufficiently small
management rates, the alternate fee structure reduces the hedging cost rider. How-
ever, as the management fee increases, the rider calculated under the alternate fee
structure surpasses its vanilla counterpart. When the management rate is relatively
low, it has a comparatively small impact in terms of decreasing the value of the
investment account and so a limited influence on the value of the guarantee. More-
over, since the total rate (i.e. management rate plus rider) applies to the greater
of the investment account and the guarantee benefit, the size of the rider in such
cases is comparatively small. However, as the management rate increases, the value
of the guarantee rises and eventually a higher rider is needed to fund the cost of
hedging.
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Figure 4.2.3: Sensitivity of hedging cost rider to the management rate.
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Figure 4.2.4: Sensitivity of hedging cost rider to the management rate for dif-
ferent fee structures.
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Parameter Value

Drift rate µ1 µ2 0.1 0.1

Time preference β1 β2 0.032 0.032

HARA scaling a1 a2 1 1

HARA offset b1 b2 0 0

Risk-aversion p1 p2 0.5 0.5

Bequest motive h1 h2 1 1

Rate of transition q1→2 q2→1 0.0525 0.1364

Table 4.3.1: Consumption system base case data with rate of time preference
obtained from Nishiyama and Smetters (2005).

4.3 Consumption-optimal withdrawal

Risk-aversion

Suppose the management rate, αM , is zero. If for all regimes i ∈ S we take the
parameterization shown in Table 4.3.2, the consumption-optimal strategy reduces
to the loss-maximizing strategy (this can be verified by direct substitution). Re-
flecting this, we refer to this parameterization as the degeneracy parameterization.
Since the degeneracy parameterization corresponds to the loss-maximizing strategy,
it is guaranteed to yield the highest possible hedging cost rider. We stress that this
holds only when the management rate is zero, as reiterated in Table 4.3.2. The util-
ity parameters under this parameterization uBi (x) = hiu

C
i (x; ai = 1, bi = 0, pi = 1)

correspond to the case of risk-neutral utility: uBi (x) = uCi (x) = x.
Although the above only holds under the degeneracy parameterization, we ex-

pect to see large hedging cost riders under parameterizations that are close to the
degeneracy parameterization. Figure 4.3.1 shows the effect of simultaneously vary-
ing the regime-dependent drifts µ1 and µ2 and risk-aversion parameters p1 and p2 on
the hedging cost rider for the base case data in Tables 4.2.1 and 4.3.1 for a contract
without death benefits. When µ1 = µ2 = 0.0521 and p1 = p2 = 1, a global maxi-
mum appears on each surface. As expected, the parameterization µ1 = µ2 = 0.0521
and p1 = p2 = 1 is close to the degeneracy parameterization (Tables 4.2.1 and 4.3.1
specify α = 100 bps ≈ 0 and βi = 0.032 ≈ 0.04 = ri), and hence these maxima (27
bps and 84 bps, rounded to the nearest basis point) are very close to the hedging
cost riders for each regime calculated under the loss-maximizing strategy (27 and
86 bps, rounded to the nearest basis point; see Table 4.2.2). Realistically, these
maxima are not of great interest to the insurer as they occur where the drift of the
investment account is equal to the risk-free rate of return. Both surfaces exhibit
a large “plateau” region (i.e. where the gradient is approximately zero) for which
the consumption-optimal hedging cost rider is close to that calculated under the
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Parameter αM µi βi ai bi pi hi

Value 0 ri − ρQi ri 1 0 1 1

Table 4.3.2: Degeneracy parameterization.
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Figure 4.3.1: Effects of varying drift and risk-aversion on the hedging cost
rider.

contract rate withdrawal strategy. This suggests that for a large family of param-
eters, the policyholder withdraws at nearly the contract rate. This can be verified
by comparing the hedging cost rider here for the two regimes with those shown in
Table 4.2.2.

Taxation

It has been suggested by Moenig and Bauer (2011) that a policyholder’s strat-
egy depends on the taxation of their withdrawals. We assume that withdrawals
are taxed on the American last-in first-out (LIFO) basis and that earnings in the
underlying investment account grow on a tax-deferred basis.

This requires the addition of another process Q (t), which is referred to as the
tax base at time t. The tax base denotes what amount of the underlying investment
account is nontaxable. Initially, Q (0) = S (0). Q is piecewise constant between
withdrawals. When a withdrawal of size w is made at time t,

Q (t) = Q
(
t−
)
−
(
w −

[
S
(
t−
)
−Q

(
t−
)]
∨ 0
)
∨ 0︸ ︷︷ ︸

Nontaxable portion of the withdrawal

.

The introduction of the tax base variable introduces an additional dimension for
which the PDEs must be solved. We assume that the policyholder optimizes their
after-tax consumption.

Table 4.3.3 shows the effect of varying the tax rate on the hedging cost rider for
the base case data in Tables 4.2.1 and 4.3.1 for a contract without death benefits.
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0% 10% 20% 30% 40% 50%

Initial regime I = 1 18.0 18.9 19.2 18.7 17.7 16.3

Initial regime I = 2 54.7 55.8 56.3 56.7 57.0 57.2

Table 4.3.3: Sensitivity of the hedging cost rider to the tax rate. Values are
reported to the nearest tenth of a basis point.

Although it is tempting to hypothesize that higher levels of taxation will reduce
the hedging cost rider, Table 4.3.3 suggests that this is not the case. For example,
consider a contract in which the loss-maximizing strategy involves large regions
of surrender. Taxation will generally dissuade the policyholder from surrendering,
and hence it is not obvious that the hedging cost rider is monotonically decreasing
in the tax rate. In general, we find that for typical levels of risk-aversion, taxation
has a small effect on the rider. As the policyholder’s risk-aversion approaches risk-
neutrality, the effects of taxation increase. Even for extreme tax rates of 50%, the
hedging cost rider changes by at most several basis points.
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Conclusion

We have introduced a general methodology that allows for the decoupling of policy-
holder behaviour from the pricing (i.e. determining the cost of hedging) of a variable
annuity. Assuming that the underlying investment follows a regime-switching pro-
cess, this yields two sequences of weakly coupled systems of PDEs: the pricing and
utility systems. When considering strategies contingent on the policyholder’s level
of consumption, the utility systems are used to generate policyholder withdrawal
behaviour, which is in turn fed into the pricing systems as a means to determine
the no-arbitrage value of the contract. Our methodology is general enough to allow
us to consider any withdrawal strategy contingent on either the cost of hedging the
contract or the policyholder’s level of consumption.

We have adopted the GLWDB as a case study. A similarity reduction transforms
our systems of three-dimensional PDEs to systems of two-dimensional PDEs, allow-
ing us to generate numerical solutions with speed. In the absence of a death benefit,
these systems further simplify into systems involving one-dimensional PDEs, which
(for a reasonable number of regimes) can be solved on the order of hundreds of mil-
liseconds on a modern desktop. Under the loss-maximizing strategy assumption,
the control was shown to be bang-bang, allowing us to further optimize the pricing
procedure. A generalization of this result is provided via sufficient conditions for a
bang-bang control in a variable annuity.

Since GLWDB contracts are held over long periods of time, regime-switching
serves as a natural model for the process followed by the underlying asset. This pro-
cess can incorporate stochastic interest rates and volatility in a simple and intuitive
manner. It is also possible to have policyholder preferences which differ between
regimes. Results obtained under various regime-switching processes indicate that
the hedging cost rider is extremely sensitive to the regime-dependent parameters.

We show that the inclusion of a death-benefit yields large riders for typical
contract values under both the loss-maximizing strategy and the static strategy of
always withdrawing at the contract rate. We observe an even more pronounced
disparity between the no-arbitrage rider generated by a contract with nonratchet-
ing death benefits compared to a contract with ratcheting death benefits. These
findings are consistent with the phasing out of products including ratcheting death
benefits from the Canadian market.

We find that for a large family of utility functions, the consumption-optimal
strategy yields a rider that is very close to the rider calculated by assuming that
the policyholder withdraws at the contract rate. This can be understood as substan-
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tiating the otherwise seemingly näıve assumption that the policyholder “generally”
withdraws at the contract rate. Adopting the contract rate withdrawal strategy
renders the pricing problem computationally simple, as this strategy is determinis-
tic and can easily be implemented in either the PDE or an equivalent Monte Carlo
formulation. We also find that for typical levels of risk-aversion, the introduction
of taxation does not affect the hedging cost rider greatly.
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Appendix A

Preliminaries

A.1 Principle of no-arbitrage

As is usual, we assume that the market is free of arbitrage opportunities. For each
t ∈ [0, T ], let 〈Θ,F (t) ,P〉 be a probability space with sample space Θ, σ-algebra
F (t) (F is a filtration) and “relevant” (i.e. objective or equivalent to) measure P.
Suppose Π and Π̂ are two portfolios (adapted to F) with

P
[
Π (t) > Π̂ (t)

]
> 0

and
P
[
Π (t) > Π̂ (t)

]
= 1.

Then it must hold that
Π (s) > Π̂ (s) ∀s 6 t.

This is termed the principle of no-arbitrage.

A.2 Itô’s lemma

Let X be a process evolving according to

dX (t) = µ (t) dt+ σ (t) dZ (t)

where Z is a Wiener process. For any sufficiently smooth f : R2 → R,

df (t,X (t)) =
∂f

∂t
(t,X (t)) +

∂f

∂x
(t,X (t)) dX (t) +

1

2

∂2f

∂x2
(t,X (t)) d [X,X] (t) ,

where [X, Y ] denotes the quadratic variation of X and Y .
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Appendix B

Regime-switching model

B.1 Continuous-time Markov chains

A stochastic process X is said to be a continuous-time Markov chain if it takes on
values from a particular state space,

S = {1, 2, . . . ,M}

and satisfies the Markov property,

P [X (t+ ∆t) = x | F (t)] = P [X (t+ ∆t) = x | X (t)]

where X is adapted to the filtration F , x ∈ S and ∆t is nonnegative.
Let pi→j (t), where i, j ∈ S, be the probability that X (t) = j given X (0) = i.

That is,
pi→j (t) = P [X (t) = j | X (0) = i] .

pi→j is termed the transition probability of X from i to j. We are particularly
interested in the subset of Markov chains that are time-homogeneous. X is time-
homogeneous if

P [X (t+ ∆t) = j | X (t) = i] = P [X (s+ ∆t) = j | X (s) = i]

for all t, s, ∆t, j, and i. If the Markov chain is time-homogeneous, by choosing
s = 0, we get that

P [X (t+ ∆t) = j | X (t) = i] = P [X (∆t) = j | X (0) = i] = pi→j (∆t) .

We henceforth assume the time-homogeneity of the process X.
In particular, we consider the ordinary differential equation

p′i (t) = pi (t)Q

where
pi (t) = 〈pi→1 (t) , pi→2 (t) , . . . , pi→M (t)〉 .
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We would further impose the condition

pi (0) = e†i

where ei is the ith Euclidean basis column vector and † denotes transpose to express
that a transition cannot occur unless some nonzero time has passed. The above
has solutions of the form

pi (t) = e†i exp (Qt)

=

[
I +

∞∑
n=1

(Qt)n

n!

]
i

=
[
I +Qt+O

(
t2
)]
i
. (B.1.1)

In order to familiarize ourselves with the intuition behind (B.1.1), we now con-
sider the analogous discrete process. Let pni→j be the value of the corresponding
discrete process at time n∆t. Define

pni = 〈pni→1, p
n
i→2, . . . , p

n
i→M〉 .

Naturally, pni should satisfy the properties of a probability vector. That is

M∑
j=1

pni→j = 1, pni→j > 0. (B.1.2)

Suppose the discrete process evolves according to

pn+1
i − pni

∆t
= pniQ

pn+1
i = pni (I +Q∆t) .

The operator mapping pni to pn+1
i should preserve the properties of probability

vectors (B.1.2). Summing over the components of pn+1
i yields

1 =
M∑
j=1

pn+1
i→j

=
M∑
j=1

[pni (I +Q∆t)]j

=
M∑
j=1

[pni ]j + ∆t
M∑
j=1

[pniQ]j

= 1 + ∆t
M∑
j=1

[pniQ]j

0 = ∆t

(
pni→1

M∑
k=1

q1→k + pni→2

M∑
k=1

q2→k + . . .+ pni→M

M∑
k=1

qM→k

)
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where we have written [Q]i,j as qi→j. This reveals that
∑M

k=1 qj→k = 0 for all j, as
the above relation must hold for all possible pni . Setting

qj→j = −
M∑
k=1
k 6=j

qj→k

yields

pn+1
i→j = pni→j + (q1→j · pni→1 + q2→j · pni→2 + . . .+ qM→j · pni→M) ∆t

= pni→j +

 M∑
k=1
k 6=j

qk→jpi→k − qj→kpi→j

∆t.

In this form, it is clear that qk→j parameterizes the rate of transition from k to j.
We can exploit the fact that the Markov chains we are interested in are time-

homogeneous. By (B.1.1),

pi→j (∆t) = δi,j + qi→j∆t+O
(
(∆t)2) (B.1.3)

where

δi,j =

{
1 if i = j

0 otherwise
.

Hence, the differential describing the evolution of the continuous-time Markov chain
can be described by

dXi→j (t) =

{
1 with probability δi,j + qi→jdt

0 with probability 1− (δi,j + qi→jdt)

(dropping higher-order terms from (B.1.3)). It is understood that each row of dX (t)
has exactly one nonzero entry (i.e. at most one transition can occur between t and
t+ dt).

B.2 Regime-switching PDEs

Consider the M -regime processes S evolving according to

dS (t) = ai (S (t) , t) dt+ bi (S (t) , t) dZ (t) +
M∑
j=1

S (t) (Ji→j − 1) dXi→j (t)

in which dS describes the increment of S assuming that the regime at time t is i.
We restrict Ji→i = 1 for all i so that jumps in the underlying are not experienced
unless there is a change in regime.

In the relevant literature, it is often mentioned that the introduction of the
regime-switching underlying S yields an incomplete market (Zhou and Yin 2003,
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Elliott et al. 2005), if the hedging portfolio contains only the underlying asset and
the risk-free account. We complete the market by adding M hedging instruments
to the portfolio, making it possible to hedge the contract perfectly. Note that the
assumption of the availability of M instruments is not one that is farfetched; we
need only find M instruments written on the regime-switching underlying S. Often,
it is possible to take S itself as one of these instruments (this scenario is detailed
in §B.3).

We follow the formulation of a regime-switching framework in Kennedy (2007).
Consider a portfolio Π short an option V and with positions in instruments F (1),
F (2), . . ., F (M). We assume that the trading instruments depend only on S (t) and
t. Let B represent the money market process with risk-free rate r. Denote by Vi
and F

(k)
i the values of the option and kth instrument in regime i. Assuming that

regime i is observed at time t,

Π (S (t) , t) = −Vi (S (t) , t) +
M∑
k=1

[
ω(k)F

(k)
i (S (t) , t)

]
+B (t) . (B.2.1)

The increment of the above portfolio can be written as

dΠ (S (t) , t) = −dVi (S (t) , t) +
M∑
k=1

[
ω(k)dF

(k)
i (S (t) , t)

]
+ dB (t) . (B.2.2)

where

dVi = µ̂idt+ σ̂idZ +
M∑
j=1

∆Vi→jdXi→j

µ̂i =
1

2
b2
i

∂2Vi
∂S2

+ ai
∂Vi
∂S

+
∂Vi
∂t

σ̂i = bi
∂Vi
∂S

∆Vi→j = Vj (Ji→jS, t)− Vi (S, t)

and

dF
(k)
i = µ̄

(k)
i dt+ σ̄

(k)
i dZ +

M∑
j=1

∆F
(k)
i→jdXi→j

µ̄
(k)
i =

1

2
b2
i

∂2F
(k)
i

∂S2
+ ai

∂F
(k)
i

∂S
+
∂F

(k)
i

∂t

σ̄
(k)
i = bi

∂F
(k)
i

∂S

∆F
(k)
i→j = F

(k)
j (Ji→jS, t)− F (k)

i (S, t) .
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Substituting these expressions into (B.2.2) yields

dΠ (t) =

[
M∑
k=1

[
ω(k)µ̄

(k)
i

]
+ rB − µ̂i

]
dt+

[
M∑
k=1

[
ω(k)σ̄

(k)
i

]
− σ̂i

]
dZ

+
M∑
j=1

[
M∑
k=1

[
ω(k)∆F

(k)
i→j

]
−∆Vi→j

]
dXi→j.

(B.2.3)

To make the portfolio deterministic, we eliminate Brownian risk by

M∑
k=1

ω(k)σ̄
(k)
i = σ̂i (B.2.4)

and jump risk by
M∑
k=1

ω(k)∆F
(k)
i→j = ∆Vi→j ∀j ∈ S. (B.2.5)

Note that the jump risk equation corresponding to j = i relates a zero change in
the hedging instruments to zero change in the option, so that to eliminate jump
risk, we need only satisfy M − 1 equations.

Given that the portfolio is deterministic, the principle of no-arbitrage requires
rΠdt = dΠ. Using the expressions (B.2.1) and (B.2.3), we write this as

M∑
k=1

ω(k)
(
µ̄

(k)
i − rF

(k)
i

)
= µ̂i − rVi. (B.2.6)

Equations (B.2.4), (B.2.5) and (B.2.6) make for a total of M + 1 equations in M
unknowns. This system has a solution if and only if one of the equations is a linear
combination of the others. We denote by ξi, q

Q
i→1, qQi→2, . . ., qQi→M the weights under

which the linear dependence requirement

ξi

(
M∑
k=1

[
ω(k)σ̄

(k)
i

]
− σ̂i

)
=

M∑
j=1
j 6=i

qQi→j

(
M∑
k=1

[
ω(k)∆F

(k)
i→j

]
− dVi→j

)

+
M∑
k=1

[
ω(k)

(
µ̄(k) − rF (k)

i

)]
− (µ̂i − rVi)

holds true. Rearranging this expression,

0 =
M∑
k=1

ω(k)

ξiσ̄(k)
i −

M∑
j=1
j 6=i

[
qQi,j∆F

(k)
i→j

]
−
(
µ̄i − rF (k)

i

)


− ξiσ̂i +
M∑
j=1
j 6=i

[
qQi→j∆Vi→j

]
+ µ̂i − rVi.
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Since this must hold for any position ω(1), ω(2), . . ., ω(M), we write the above as

ξiσ̄
(k)
i −

M∑
j=1
j 6=i

qQi→j∆F
(k)
i→j =

(
µ̄

(k)
i − rF

(k)
i

)
∀k ∈ S (B.2.7)

and

ξiσ̂i −
M∑
j=1
j 6=i

qQi→j∆Vi→j = µ̂i − rVi. (B.2.8)

This procedure effectively decouples the hedging instruments from the option V .
Resolving the symbols µ̂i and σ̂i in (B.2.8) yields

1

2
b2
i

∂2Vi
∂S2

+ (ai − ξibi)
∂Vi
∂S
− rVi +

M∑
j=1
j 6=i

[
qQi→j∆Vi→j

]
+
∂Vi
∂t

= 0, (B.2.9)

which describes a system of M PDEs: one for each regime. The more familiar form
above reveals ai−ξibi as the risk-neutral drift and the qQi→j terms as the risk-neutral
transition intensities.

We express this more compactly by defining

qQi→i = −
M∑
j=1
j 6=i

qQi→j

and noting that

M∑
j=1
j 6=i

qQi→j∆Vi→j =
M∑
j=1
j 6=i

qQi→jVj (Ji→jS, t)− Vi
M∑
j=1
j 6=i

qQi→j =
M∑
j=1
j 6=i

qQi→jVj (Ji→jS, t) + qQi→iVi

so that (B.2.9) becomes

1

2
b2
i

∂2Vi
∂S2

+ (ai − ξibi)
∂Vi
∂S
−
(
r − qQi→i

)
Vi +

M∑
j=1
j 6=i

[
qQi→jVj (Ji→jS, t)

]
+
∂Vi
∂t

= 0.

(B.2.10)

B.3 Eliminating the market price of risk

It is often possible to eliminate the market price of risk ξibi from (B.2.10) (Kennedy
2007). For example, let

ai (S (t) , t) = (µi − α)S (t)
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and
bi (S (t) , t) = σiS (t) .

Under these parameters, (B.2.10) becomes

1

2
σ2
i S

2∂
2Vi
∂S2

+(µi − α− ξiσi)S
∂Vi
∂S
−
(
r − qQi→i

)
Vi+

M∑
j=1
j 6=i

[
qQi→jVj (Ji→jS, t)

]
+
∂Vi
∂t

= 0.

(B.3.1)
Suppose further that S itself is not tradeable but tracks the tradeable index Ŝ with

dŜ (t) = µiŜ (t) dt+ σiŜ (t) dZ (t) .

Take the 1st instrument, F (1), to be Ŝ so that

µ̄
(1)
i = µiŜ

σ̄
(1)
i = σiŜ

∆F
(1)
i→j = Ŝ (Ji→j − 1) .

Substituting this into (B.2.7) for k = 1 yields

ξiσiŜ −
M∑
j=1
j 6=i

qQi→jŜ (Ji→j − 1) = ξiσiŜ − ρQi Ŝ = µiŜ − rŜ.

More compactly, we write this as

ξiσiŜ =
(
ρQi + µi − r

)
Ŝ (B.3.2)

where

ρQi =
M∑
j=1
j 6=i

qQi→j (Ji→j − 1) =
M∑
j=1

qQi→jJi→j. (B.3.3)

Whenever Ŝ is equal to 0, S is necessarily 0 so that the term associated with the
market price of risk in (B.3.1) also vanishes. We are thus only interested in the
case in which Ŝ 6= 0, under which (B.3.2) states that

ξiσi = ρQi + µi − r.

Substituting the above into (B.3.1),

1

2
σ2
i S

2∂
2Vi
∂S2

+
(
r − α− ρQi

)
S
∂Vi
∂S
−
(
r − qQi→i

)
Vi+

M∑
j=1
j 6=i

[
qQi→jVj (Ji→jS, t)

]
+
∂Vi
∂t

= 0.
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Appendix C

Linearity conditions

C.1 Pricing system

This section is concerned with deriving expressions for the boundary conditions for
the pricing system (1.2.2) at the boundary S = SMax. Recall the linearity condition
(3.3.2),

Vi (SMax,W,D, t) = Ci (t)SMax ∀i ∈ S.
Substituting this into the pricing system (1.2.2),

0 =
(
C ′i (t) +

(
ri − α− ρQi

)
Ci (t)−

(
ri − qQi→i

)
Ci (t)

+
M∑
j=1
j 6=i

[
qQi→jCj (t) Ji→j

]
+R (t)αM +M (t)

(
1 ∨ D

SMax

))
SMax.

Simplifying and dividing by SMax > 0 yields

0 = C ′i (t)−
(
α + ρQi

)
Ci (t) +

M∑
j=1

[
qQi→jCj (t) Ji→j

]
+R (t)αM +M (t)

(
1 ∨ D

SMax

)
.

(C.1.1)
Letting

Ψi = −
(
α + ρQi

)
and

Φi (t) =
M∑
j=1

[
qQi→jCj (t) Ji→j

]
+R (t)αM +M (t)

(
1 ∨ D

SMax

)
we compact the expression for C ′i (t) into

C ′i (t) + ΨiCi (t) = −Φi (t) .

Multiplying by the integrating factor exp (Ψit) and integrating from t to t+ ∆t,

eΨi(t+∆t)
(
Ci (t+ ∆t)− e−Ψi∆tCi (t)

)
= −

∫ t+∆t

t

eΨisΦi (s) ds.
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Approximating the integral by∫ t+∆t

t

eΨisΦi (s) ds ≈ Φi (t)

∫ t+∆t

t

eΨisds

= Φi (t)
eΨi(t+∆t)

(
1− e−Ψi∆t

)
Ψi

we get

Ci (t) ≈ eΨi∆tCi (t+ ∆t) + Φi (t)
eΨi∆t − 1

Ψi

. (C.1.2)

C.1.1 Regime-switching behaviour in the limit

As S → ∞, we expect Ci (t) ↔ Cj (t) for any regimes i and j (the price of the
contract will be independent of the current regime and dominated solely by the
value of the underlying). In light of this, we assume Ci (t) = Cj (t) for all regimes
i and j whenever S = SMax. The above, along with (B.3.3) suggests that

M∑
j=1

[
Cj (t) qQi→jJi→j

]
= Ci (t)

M∑
j=1

[
qQi→jJi→j

]
= Ci (t) ρ

Q
i .

Substituting this expression into (C.1.1) and simplifying,

C ′i (t)− αCi (t) = −
(
R (t)αM +M (t)

(
1 ∨ D

SMax

))
,

which yields the analogous equation to (C.1.2),

Ci (t) ≈ e−α∆tCi (t+ ∆t) +

(
R (t)αM +M (t)

(
1 ∨ D

SMax

))
1− e−α∆t

α
.

We have verified through numerical tests that this approximation produces insignif-
icant error when SMax is sufficiently large.

C.2 Utility system

We now turn our attention to the boundary conditions for the utility system (2.2.2)
at the boundary S = SMax. Recall the linearity condition (3.3.2),

V i (SMax,W,D, t) = Ci (t)SMax ∀i ∈ S

Letting

%i = α + β − µ−
M∑
j=1

[qi→jJi→j]

and following the arguments above,

Ci (t)SMax ≈ e−%i∆tCi (t+ ∆t)SMax +M (t)uB (SMax ∨D)
1− e−%i∆t

%i
.
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Appendix D

Discretization

D.1 Pricing system

This section is concerned with developing a numerical scheme for solving the pric-
ing system (1.2.2) on the truncated domain (3.3.1). We discretize space using a
rectilinear grid with

0 = S1 < S2 < . . . < Sŝ = SMax,

0 = W1 < W2 < . . . < Wˆ̀ = WMax,

and
0 = D1 < D2 < . . . < Dd̂ = DMax.

Recall that we are solving the system from tn to tn−1 (i.e. moving backwards in
time) and hence we use tn − τ k to denote the kth timestep with

0 = τ 1 < τ 2 < . . . < τK = tn − tn−1.

Denote by V n,k
i,s,w,d the numerical solution of (1.2.2) at a particular point in the

discretization. (3.3.1). Specifically,

V n,k
i,s,w,d ≈ Vi

(
Ss,Ww, Dd, tn − τ k

)
.

Numerical approximations to the first and second spatial derivatives are written in
a similar fashion. Specifically,[

∂V

∂S

]n,k
i,s,w,d

≈ ∂Vi
∂S

(
Ss,Ww, Dd, tn − τ k

)
and [

∂2V

∂S2

]n,k
i,s,w,d

≈ ∂2Vi
∂S2

(
Ss,Ww, Dd, tn − τ k

)
.

We solve the PDE (1.2.2) using Crank-Nicolson. To simplify notation, we as-
sume that the coefficients of the PDE do not depend on space or time. The removal
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of this assumption does not alter the derivation below. The Crank-Nicolson scheme
as applied to (1.2.2) can be written as

V n,k+1
i,s,w,d − V

n,k
i,s,w,d

∆τ k
=

1

2

(
Gi,s,w,d

[
V n,k+1

]
+ Gi,s,w,d

[
V n,k

])
where ∆τ k = τ k+1 − τ k and Gi,s,w,d is the discrete spatial operator for regime i,
which we develop in this section. For notational succinctness, let

∆Ss = Ss+1 − Ss−1 and ∆Ss+ 1
2

= Ss+1 − Ss.

the diffusive term in (1.2.2) be approximated using a centred difference, so that[
∂2V

∂S2

]n,k
i,s,w,d

=
V n,k
i,s−1,w,d

∆Ss− 1
2
∆Ss

−
V n,k
i,s,w,d

∆Ss− 1
2
∆Ss+ 1

2

+
V n,k
i,s,+1,w,d

∆Ss+ 1
2
∆Ss

.

Our discretization of the convection term, on the other hand, is contingent on
whether the resulting backward Euler scheme is monotone to achieve higher-order
convergence while preserving monotonicity (Rannacher 1984). In the notation
above, the corresponding backward Euler scheme is

V n,k+1
i,s,w,d − V

n,k
i,s,w,d

∆τ k
= Gi,s,w,d

[
V n,k+1

]
(D.1.1)

Denote the forward difference of the convection term by[−−→
∂V

∂S

]n,k
i,s,w,d

=
V n,k
i,s+1,w,d − V

n,k
i,s,w,d

∆Ss+ 1
2

,

the backward difference by[←−−
∂V

∂S

]n,k
i,s,w,d

=
V n,k
i,s,w,d − V

n,k
i,s−1,w,d

∆Ss+ 1
2

,

and the central difference by[←→
∂V

∂S

]n,k
i,s,w,d

=
V n,k
i,s+1,w,d − V

n,k
i,s−1,w,d

∆Ss+ 1
2

.

We approximate the jump term by linear interpolation. Let

θi→j,s = min (Ji→jSs, Sŝ)

where ŝ indexes the rightmost grid point. (i.e. S1 < S2 < . . . < Sŝ = SMax) Let
ui→j,s be such that

Su 6 θi→j,s 6 Su+1
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where we have suppressed u’s dependence on i, j and s for brevity. Further define

`i→j,s =
Su+1 − θi→j,s
Su+1 − Su

so that a linear approximation to the contract value after a jump occurs is

Vj
(
Ji→jSs,Ww, Dd, tn − τ k

)
≈

{
`i→j,sV

n,k
j,u,w,d + (1− `i→j,s)V k

j,u+1,w,d if Ji→jSs < Sŝ

V k
j,ŝ,w,d otherwise

.

We write G as the sum of two operators, J and K with

Ji,s,w,d
[
V n,k

]
= σ2

i S
2
s

(
V n,k
i,s−1,w,d

∆Ss− 1
2
∆Ss

−
V n,k
i,s,w,d

∆Ss− 1
2
∆Ss+ 1

2

+
V n,k
i,s,+1,w,d

∆Ss+ 1
2
∆Ss

)

+
(
ri − α− ρQi

)
Ss

[
∂V

∂S

]n,k
i,s,w,d

and

Ki,s,w,d
[
V n,k

]
= −

(
ri − qQi→i

)
V n,k
i,s,w,d

+
m−1∑
j=0
j 6=i

[
qQi→j

(
`i→j,sV

n,k
j,u,w,d + (1− `i→j,s)V n,k

j,u+1,w,d

)]
+R

(
tn − τ k

)
αMSs +M

(
tn − τ k

)
(Ss ∨Dd)

Assuming ri − qQi→i > 0, the terms appearing in K do not prohibit the resulting
backward Euler scheme (D.1.1) from being monotone. Therefore, in choosing how
to discretize the convective term, it is sufficient to consider J alone. Rearranging
the terms in G yields

V n,k+1
i,s,w,d − V

n,k
i,s,w,d

∆τ k
= ϕi,s

(
V n,k+1
i,s−1,w,d − V

n,k+1
i,s,w,d

)
+ ψi,s

(
V n,k+1
i,s+1,w,d − V

n,k+1
i,s,w,d

)
+Ki,s,w,d

[
V n,k+1

]
.

In this form, it is clear that the problem of choosing a discretization of the convective
term so that the resulting scheme is monotone is equivalent to that of choosing a
scheme in which ϕi,s and ψi,s are nonnegative. The results of substituting the
various types of discretizations (i.e. forward, backward, central) of the diffusion
term into (1.2.2) are listed in Table D.1.1.

D.2 Utility system

This section is concerned with developing a numerical scheme for solving the utility

system (2.2.2). Denote by V
n,k

i,s,w,d the numerical solution of (2.2.2) at a particular
point in the truncated domain (3.3.1) Specifically,

V
n,k

i,s,w,d ≈ V i

(
Ss,Ww, Dd, tn − τ k

)
.
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ϕi,s ψi,s

Forward
σ2
i S

2
i

∆S
s− 1

2
∆Ss

σ2
i S

2
i

∆Ss∆S
s+1

2

+
(ri−α−ρQi )Ss

∆S
s+1

2

Backward
σ2
i S

2
i

∆S
s− 1

2
∆Ss
− (ri−α−ρQi )Ss

∆S
s− 1

2

σ2
i S

2
i

∆Ss∆S
s+1

2

Central
σ2
i S

2
i

∆S
s− 1

2
∆Ss
− (ri−α−ρQi )Ss

∆Ss

σ2
i S

2
i

∆Ss∆S
s+1

2

+
(ri−α−ρQi )Ss

∆Ss

Table D.1.1: Values for ϕi,s and ψi,s under the various discretizations.

ϕi,s ψi,s

Forward
σ2
i S

2
i

∆S
s− 1

2
∆Ss

σ2
i S

2
i

∆Ss∆S
s+1

2

+ (µi−α)Ss

∆S
s+1

2

Backward
σ2
i S

2
i

∆S
s− 1

2
∆Ss
− (µi−α)Ss

∆S
s− 1

2

σ2
i S

2
i

∆Ss∆S
s+1

2

Central
σ2
i S

2
i

∆S
s− 1

2
∆Ss
− (µi−α)Ss

∆Ss

σ2
i S

2
i

∆Ss∆S
s+1

2

+ (µi−α)Ss

∆Ss

Table D.2.1: Values for φi,s and ψi,s under the various discretizations.

Following arguments similar to those above, the corresponding Crank-Nicolson
scheme for the system (2.2.2) is

V
n,k+1

i,s,w,d − V
n,k

i,s,w,d

∆τ k
=

1

2

(
Gi,s,w,d

[
V
n,k+1

]
+ Gi,s,w,d

[
V
n,k
])

with G being the sum of two operators, J and K, in which K contains all regime-
switching and time-inhomogeneous terms. The corresponding backward Euler
scheme is

V
n,k+1

i,s,w,d − V
n,k

i,s,w,d

∆τ k
= Gi,s,w,d

[
V
n,k+1

]
.

As before, we need only consider J to ensure that the resulting backward Euler
scheme is monotone. The results of substituting the various types of discretizations
(i.e. forward, backward, central) of the diffusion term into (2.2.2) are listed in Table
D.2.1.
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Appendix E

Monte Carlo for the contract rate
withdrawal strategy

For brevity, we present a single-regime algorithm under the assumptions that events
occur yearly and that r, σ and α are constant with αM = 0. Death benefits are
assumed to be paid out annually (Forsyth and Vetzal 2012). Set

V0 = 0, S0 = S (0) 1, W0 = S (0) 1, and D0 = S (0) 1.

where each of the above vectors is in Rm×1 and m is the number of samples. The
amount withdrawn at time n+ 1 is

wn+1 = GWn.

By Itô’s lemma (§A.2), we are able to evolve the investment account according to

Sn+1 =

(
diag

(
exp

(
r − α− 1

2
σ2

)
1 + σzn+1

)
Sn −wn+1

)
∨ 0

where zn+1 is a vector of randomly generated samples from a standard normal
distribution and diag (y) forms the matrix A with Ai.i = yi and Ai,j = 0 whenever
i 6= j. ∨ is understood to be an element-wise operator in this context. If the
withdrawal benefit has a ratchet at time n+ 1, we set

Wn+1 = Sn+1 ∨Wn

and similarly for Dn+1 if a ratcheting death benefit is specified. Lastly, set

Vn+1 = Vn + e−r
[
(R (n+ 1)−R (n))

(
Sn+1 ∨Dn

)
+R (n+ 1) wn+1

]
An approximation to the risk-neutral price is given by the sample mean

(
1†VT

)
/m,

where † denotes transpose. We use an implementation of the Mersenne Twister
(Matsumoto and Nishimura 1998) and the Box-Muller transform (Box and Muller
1958) to generate samples from N (0, 1).
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Appendix F

DAV 2004 R

The mortality table in Pasdika et al. (2005) is reproduced here for the reader’s
convenience in terms of 1qx (the probability that a person aged x will die within
the next year).

x 1qx x 1qx x 1qx x 1qx x 1qx

65 0.008886 66 0.009938 67 0.011253 68 0.012687 69 0.014231

70 0.015887 71 0.017663 72 0.019598 73 0.021698 74 0.023990

75 0.026610 76 0.029533 77 0.032873 78 0.036696 79 0.041106

80 0.046239 81 0.052094 82 0.058742 83 0.066209 84 0.074583

85 0.083899 86 0.094103 87 0.105171 88 0.116929 89 0.129206

90 0.141850 91 0.154860 92 0.168157 93 0.181737 94 0.195567

95 0.209614 96 0.223854 97 0.238280 98 0.252858 99 0.267526

100 0.278816 101 0.293701 102 0.308850 103 0.324261 104 0.339936

105 0.355873 106 0.372069 107 0.388523 108 0.405229 109 0.422180

110 0.439368 111 0.456782 112 0.474411 113 0.492237 114 0.510241

115 0.528401 116 0.546689 117 0.565074 118 0.583517 119 0.601976

120 0.620400 121 1.000000
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