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Abstract

In this thesis we study the subset of quantum operations that can be implemented using
only local quantum operations and classical communication (LOCC). This restricted
paradigm serves as a tool to study not only quantum correlations and other nonlocal
quantum effects, but also resource transformations such as channel capacities.

The mathematical structure of LOCC is complex and difficult to characterize. In
the first part of this thesis we provide a precise description of LOCC and related op-
erational classes in terms of quantum instruments. Our formalism captures both finite
round protocols as well as those that utilize an unbounded number of communication
rounds. This perspective allows us to measure the distance between two LOCC instru-
ments and hence discuss the closure of LOCC in a rigorous way. While the set LOCC
is not topologically closed, we show that the operations that can be implemented using
some fixed number rounds of communication constitute a compact subset of all quan-
tum operations. We also exhibit a subset of LOCC measurements that is closed. Addi-
tionally we establish the existence of an open ball around the completely depolarizing
map consisting entirely of LOCC implementable maps.

In the second part of this thesis we focus on the task of discriminating states from
some known set S by LOCC. Building on the work in the paper Quantum nonlocality
without entanglement, we provide a framework for lower bounding the error probabil-
ity of any LOCC protocol aiming at discriminating the states from S. We apply our
framework to an orthonormal product basis known as the domino states. This gives
an alternative and simplified bound quantifying how well these states can be discrimi-
nated using LOCC. We generalize this result for similar bases in larger dimensions, as
well as the “rotated” domino states, resolving a long-standing open question. These
results give new examples of quantitative gaps between the classes of separable and
LOCC operations.

In the last part of this thesis, we ask what differentiates separable from LOCC op-
erations. Both of these classes play a key role in the study of entanglement. Separable
operations are known to be strictly more powerful than LOCC ones, but no simple ex-
planation of this phenomenon is known. We show that, in the case of bipartite von
Neumann measurements, the ability to interpolate is an operational principle that sep-
arates LOCC from all separable operations.
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Chapter 1

Introduction

1.1 Motivation

The “distant lab” paradigm plays a crucial role in both theoretical and experimental
aspects of quantum information. Here, a multipartite quantum system is distributed
to various parties, and they are restricted to act locally on their respective subsystems
by performing quantum operations. However, in order to enhance their measurement
strategies, the parties are free to communicate any classical data, which includes the
sharing of randomness and previous measurement results. Quantum operations imple-
mented in such a manner are known as LOCC (local operations with classical communi-
cation). We can think of LOCC as a special subset of all physically realizable operations
on the global system. This restricted paradigm serves as a tool to study not only quan-
tum correlations and other nonlocal quantum effects, but also resource transformations
such as channel capacities.

Using LOCC operations to study resource transformation is illustrated in quantum
teleportation [BBC+93]. Two parties, called Alice and Bob, are separated in distant
labs. Equipped with some pre-shared quantum states that characterize their entan-
glement resource, they are able to transmit quantum states from one location to an-
other using LOCC; specifically, the exchange rate is one quantum bit (qubit) transmit-
ted for one entangled bit (ebit) plus two classical bits (cbits) consumed. Via telepor-
tation then, LOCC operations become universal in the sense that Alice and Bob can
implement any physical evolution of their joint system given a sufficient supply of
pre-shared entanglement. Thus, entanglement represents a fundamental resource in
quantum information theory, with LOCC being the class of operations that manipu-
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lates and consumes this resource [BBPS96, Nie99, BPR+00]. Indeed, the class of non-
entangled or separable quantum states are precisely those that can be generated exclu-
sively by the action of LOCC on pure product states [Wer89], and any sensible mea-
sure of entanglement must satisfy the crucial property that it is non-increasing under
LOCC [BDSW96, VPRK97, HHH00, PV07]. In fact, the present day entanglement the-
ory is shaped by the viewing entanglement as a resource that is manipulated by LOCC
[HHHH09].

The intricate structure of LOCC was perhaps first realized over 20 years ago by Peres
and Wootters, who observed that when some classical random variable is encoded into
an ensemble of bipartite product states, the accessible information may be appreciably
reduced if the decoders—played by Alice and Bob—are restricted to LOCC operations
[PW91]. (In fact, results in [PW91] led to the discovery of teleportation.) Several years
later, Massar and Popescu analytically confirmed the spirit of this conjecture by consid-
ering pairs of particles that are polarized in the same randomly chosen direction [MP95].
It was shown that when Alice and Bob are limited to a finite number of classical com-
munication exchanges, their LOCC ability to identify the polarization angle is strictly
less than if they were allowed to make joint measurements on their shared states.

The examples concerning accessible information mentioned above demonstrate that
a gap between the LOCC and globally accessible information exists even in the absence
of entanglement. This finding suggests that nonlocality and entanglement are two dis-
tinct concepts, with the former being more general than the latter. Bennett et al. in
[BDF+99] were able to sharpen this intuition by constructing a set of orthogonal bi-
partite pure product states that demonstrate “nonlocality without entanglement” in the
sense that elements of the set could be perfectly distinguished by so-called separable
operations (SEP) but not by LOCC [BDF+99]. This was also the first demonstration
of a quantitative gap between the classes of LOCC and separable operations. Separa-
ble operations are precisely the class of maps whose Choi matrices are separable, and
consequently SEP inherits the relatively well-understood mathematical structure pos-
sessed by separable states [HHH96, BCH+02]. The fact that SEP and LOCC are distinct
classes means that LOCC lacks this nice mathematical characterization, and its structure
is therefore much more subtle than SEP.

If quantum information is stored in a physical medium that allows easy restriction
of incoming and outgoing quantum information1, then the interaction of several such
systems could be modeled using LOCC framework. In such cases, the fact that not all
global information is accessible via LOCC can be harnessed for cryptographic purposes.

1Most of the current implementations except the photonic qubit meet this requirement.
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Perhaps the best known example is quantum data hiding [TDL01, DLT02, EW02]. Here,
some classical data is encoded into a bipartite state such that Alice and Bob have arbi-
trarily small accessible information when restricted to LOCC, while the data can be per-
fectly retrieved by global measurements. The LOCC model has also enabled construc-
tion of one-time memories (OTMs) [GKR08] that are information-theoretically secure
against certain LOCC adversaries [Liu13]. An OTM is a tamper resistant cryptographic
hardware that does not exist in fully quantum or fully classical setting (see e.g., [Liu13]
for more details).

The LOCC model has also been used in quantum complexity theory. A quantum
multiprover analogue of NP is the class QMA(k) which consists of all languages that
Arthur can decide in polynomial time using k unentangled polynomially-sized quan-
tum proofs provided by Merlins [KMY03]. To understand whether many Merlins can
be more helpful to Arthur, the class QMALOCC(k) was introduced [ABD+08]. Here,
Arthur is only allowed to perform k-party LOCC measurements on the proof provided
by the k Merlins. In [BaCY11] the authors show that the class QMA (see e.g., [Wat12])
coincides with the class of languages that Arthur can decide by measuring the k unen-
tangled proofs with some one-way LOCC measurements.

In this thesis we study the class of LOCC operations and its relation to the class
of separable operations. We provide precise definitions of different classes of LOCC
operations and establish some of their basic topological properties (Chapter 2). Building
on the work of [BDF+99], we investigate separable state discrimination with LOCC and
provide new quantitative gaps between the classes of separable and LOCC operations
(Chapter 4). Finally, we propose an operational principle that sets apart LOCC from
general separable operations (Chapter 5).

1.2 Overview

In this section we explain the organization of the rest of this thesis and state the main
results. See Figure 1.1 for an overview of this thesis.

In Chapter 2 we provide precise definitions of different classes of LOCC in terms
of quantum instruments. Our formalism captures both finite round protocols as well
as those that utilize an unbounded number of communication rounds. Although the
class LOCC is known not to be closed [CCL12a, CCL12b, CLM+12], we show that the
class of instruments that can be implemented using any fixed number of communication
rounds is compact (Theorem 2.21). Additionally, we establish the existence of a ball of

3



1. Introduction

2. LOCC model [CLM+12]

3. State discrimination

4. Framework for bounding nonlocality [CLMO12]

5. Interpolatability distinguishes LOCC from SEP [CLMO13]

Figure 1.1: Overview of the thesis.

LOCC instruments around the maximally depolarizing channel, as well as provide a
lower bound on its radius (Theorem 2.17). The material in Chapter 2 is based on results
from [CLM+12] which is joint work with Eric Chitambar, Debbie Leung, Maris Ozols,
and Andreas Winter.

In Chapter 3 we provide the common background for the results concerning state
discrimination and implementation of von Neumann measurements developed in the
later chapters. Most importantly, we define the state discrimination problem and ex-
plain its relation to that of implementing von Neumann measurements. We also in-
troduce the concept of non-disturbing measurements and describe its relevance for
state discrimination with LOCC. Finally, we prove that asymptotic and finite LOCC
are equally powerful for implementing projective measurements with tensor product
operators (Theorem 3.17). This generalizes a similar result from [KKB11] regarding von
Neumann measurements.

In Chapter 4 we revisit the problem of separable state discrimination with LOCC
from [BDF+99]. We show that any LOCC measurement for discriminating states from a
set S errs with probability

perror ≥
2

27
η2

|S|5 , (1.1)

where η is a constant that depends on S (Theorem 4.7). Intuitively, η measures the
nonlocality of S (see Definition 4.4). We systematically bound η for a large class of prod-
uct bases. This lets us quantify the hardness of LOCC discrimination for the domino
states from [BDF+99] (Corollary 4.15), domino-type states (Corollary 4.17), and rotated
domino states (Corollary 4.19). The material in Chapter 4 is based on results from
[CLMO12], which is joint work with Andrew Childs, Debbie Leung, and Maris Ozols.

We conclude with Chapter 5 where we ask why some separable operations can be
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implemented with LOCC while others cannot. We answer this question for von Neu-
mann measurements. More precisely, we show that a von Neumann measurement can
be interpolated if and only if it can be decomposed into two parts, the first of which can
be implemented by LOCC (Theorem 5.10). This suggests the ability to interpolate as an
operational principle that distinguishes LOCC from all separable operations. The mate-
rial in Chapter 5 is based on results from [CLMO13], which is joint work with Andrew
Childs, Debbie Leung, and Maris Ozols.

1.3 Preliminaries

1.3.1 Notation

The following notation is used in this thesis. Let L(Cn, Cm) be the set of all linear opera-
tors from Cn to Cm and let L(Cn) := L(Cn, Cn). Next, let Herm(Cn) ⊆ L(Cn) be the set
of all Hermitian operators on Cn and let Pos(Cn) ⊆ Herm(Cn) be the set of all positive
semidefinite operators on Cn.

Let ‖M‖max := maxij|Mij| denote the largest entry of M ∈ L(Cn) in absolute value
and spec(M) be the spectrum of M. Finally, for any natural number n, let [n] :=
{1, . . . , n} and let In be the n× n identity matrix.

1.3.2 Quantum operations

We are interested in studying quantum operations, i.e., maps that send quantum states
to quantum states. Any quantum state can be described using its density matrix ρ ∈
L(Cd1) where d1 ∈N. Thus, quantum operations are maps that send elements of L(Cd1)
to elements of L(Cd2) for some d1, d2 ∈ N. Let T(Cd1 , Cd2) be the complex vector space
consisting of the linear operators of the form E : L(Cd1) → L(Cd2). We say that a map
E ∈ T(Cd1 , Cd2) is

• trace-preserving, if Tr(E(ρ)) = Tr(ρ) for all ρ ∈ L(Cd1);

• trace-nonicreasing, if Tr(E(ρ)) ≤ Tr(ρ) for all ρ ∈ L(Cd1);

• completely positive (CP), if for all d3 ∈ N and all ρ ∈ Pos(Cd1 ⊗ Cd3) we have(
E ⊗ I

)
ρ ∈ Pos(Cd2 ⊗Cd3), where I is the identity map on L(Cd3).

A quantum operation (or channel) is any map E ∈ T(Cd1 , Cd2) that is trace-preserving
and completely positive (TCP).
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1.3.3 Quantum measurements

Quantum measurements can be viewed as quantum operations having both classical
and quantum output registers.

A k-outcome (quantum) measurement M on an n-dimensional vector space can be
specified by a set of operators {M1, . . . , Mk} ⊆ L(Cn, Cm) where ∑k

i=1 M†
i Mi = In and m

is finite. We refer to the operators Mi as the measurement operators ofM. The probability
of obtaining outcome i upon measuring state ρ is Tr(M†

i Miρ); the corresponding post-
measurement state is MiρM†

i / Tr(M†
i Miρ).

If we are only interested in the inner products between the post-measurement states,
we can specify the measurementM using its POVM elements {E1, . . . , Ek}, where Ei :=
M†

i Mi for all i ∈ [k]. We refer to the set {E1, . . . , Ek} as the POVM of measurement M.
Such a POVM only specifies the post-measurement states up to an isometry. Since for
state discrimination we are only interested in producing the correct classical outcome,
most of the time we will specify a measurement using its POVM elements rather than its
measurement operators. Sometimes, we use the term POVM measurement to denote the
measurement with only a classical outcome and no quantum post-measurement state.

A projective measurement is a measurement whose measurement operators are or-
thogonal projectors. A von Neumann measurement is a projective measurement whose
measurement operators have rank one. Such measurements correspond naturally to or-
thonormal bases of the appropriate space. Therefore, we can specify a von Neumann
measurement by indicating in which orthonormal basis it measures.

We say that a matrix E ∈ Pos(Cd) is trivial if it is proportional to the identity matrix.
We call a measurement M trivial or an identity measurement, if each of its POVM ele-
ments E ∈ M is trivial. The choice of these terms is motivated by the fact that identity
measurements do not reveal any information about the state being measured. Given
two measurements MA = {Ei}i ⊆ Pos(CdA) and MB = {Fj}j ⊆ Pos(CdB), we use
MA ⊗MB to denote the measurement with POVM elements Ei ⊗ Fj. We use IA and
IB to denote the trivial measurement with exactly one POVM element on Alice and Bob
respectively. For example, IA ⊗MB is the measurement with POVM elements IdA ⊗ Fj.

1.3.4 Contraction diagrams

Contraction diagrams (also known as tensor networks) are a useful graphical tool for
manipulating algebraic expressions. We now give a brief overview of the elements used

6



H1 E H2

Figure 1.2: Application of E ∈ T(H1,H2) to vector spaceH1.

H

H′

(a) Column vector |Φ〉.

H

H′

(b) Row vector 〈Φ|.

Figure 1.3: Graphical representation of row and column vectors corresponding to an unnormal-
ized maximally entangled state.

in later sections. For a more thorough discussion see, for example, [WBC11]. We use the
contraction diagrams mostly for illustrative purposes and none of the presented proofs
depend crucially on them.

Each wire represents some complex vector space; parallel wires are used to represent
tensor product of spaces. Sometimes we use labels to indicate the complex vector space
corresponding to a wire. We depict application of a linear map E ∈ T(H1,H2) to some
complex vector space H by drawing a labeled block on the corresponding wire (see
Figure 1.2). An unnormalized maximally entangled state on complex vector spaceH

|Φ〉 := ∑
i∈[dim(H)]

|i, i〉 (1.2)

and its row version 〈Φ| are represented using right and left angles respectively (see
Figure 1.3). Since

(
〈Φ| ⊗ IH

)(
IH ⊗ |Φ〉

)
= IH, we can also compose the corresponding

graphical representations to form the identity operator. This allows to straighten the
wire with two bends by “pulling at both ends”. We find this operation particularly
convenient (see Figure 1.4 for an example).
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E

E≡

Figure 1.4: An example of straightening a wire with two bends.
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Chapter 2

Local operations and classical
communication model

2.1 Introduction

While LOCC emerges as the natural class of operations in many important quantum
information tasks, its mathematical structure is complex and difficult to characterize.
The goal of the first part of this chapter is to provide a precise description of LOCC
and related operational classes in terms of quantum instruments. Our formalism cap-
tures both finite round protocols as well as those that utilize an unbounded number of
communication rounds.

Using the description from the first part, we continue with the discussion of some
topological properties of the set of LOCC operations. It is known that the set of LOCC
operations is not topologically closed [CCL12a, CCL12b, CLM+12]. In contrast to this,
we show that the LOCC operations that can be implemented using some fixed num-
ber of communication rounds constitute a compact subset of all quantum operations.
Additionally we show that the interior of of LOCC implementable maps is nonempty.
We achieve this by exhibiting a ball of LOCC implementable maps around around the
completely depolarizing map.

This chapter is based on the results obtained in collaboration with Eric Chitambar,
Debbie Leung, Maris Ozols and Andreas Winter [CLM+12]. We start this chapter by
explaining our motivation in Section 2.1.1 and stating our contributions as well as out-
lining the rest of this chapter in Section 2.1.2.
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2.1.1 Motivation

Like all quantum operations, an LOCC operation is a trace-preserving completely posi-
tive map acting on the space of density operators (or by a “quantum instrument” as we
describe below), and the difficulty is in describing the precise structure of these maps.
Part of the challenge stems from the way in which LOCC operations combine the glob-
ally shared classical information at one time with the particular choice of local measure-
ments at a later time. The potentially unrestricted number of rounds of communication
further complicates the analysis. A thorough definition of finite-round LOCC has been
presented in [DHR02], thus formalizing the description given in [BDF+99].

Recently, there has been a renewed wave of interest in LOCC alongside new dis-
coveries concerning asymptotic resources in LOCC processing [Rin04, Chi11, KKB11,
CLM+12]. It has now been shown that when an unbounded number of communication
rounds are allowed, or when a particular task needs only to be accomplished with an
arbitrarily small but nonzero failure rate, more can be accomplished than in the setting
of finite rounds and perfect success rates. Consequently, we can ask whether a task
can be performed by LOCC, and failing that, whether or not it can be approximated by
LOCC, and if so, whether a simple recursive procedure suffices. To make these notions
precise, a definition of LOCC and its topological closure is needed. Here, we aim to
extend the formalisms developed in [BDF+99, DHR02, KKB11] to facilitate an analysis
of asymptotic resources and a characterization of the most general LOCC protocols. In-
deed, we hope that this work will provide a type of “LOCC glossary” for the research
community.

2.1.2 Our contributions

Our first contribution is to provide a precise description of LOCC in terms of quan-
tum instruments.1 This enables us to measure the distance between two LOCC instru-
ments using a metric induced by the diamond norm (see Equation (2.3)). The intro-
duced metric further allows us to rigorously define the class of instruments that can be

1 An alternative characterization of LOCC in terms of physical tasks was described to us privately
by the authors of [KKB11]. Instead of considering how well an LOCC map approximates a target map
(by a distance measure on maps), one can define a success measure for a particular task and study the
achievable values via LOCC. This is particularly useful when the task does not uniquely define a target
map. Here, we define LOCC in terms of quantum instruments, which admits a more precise mathematical
description, and a further optimization over possible target maps can be added if one wishes to focus on
success rates.
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implemented with infinite-round LOCC protocols as well as the more general class of
LOCC-closure (Definition 2.5).

Our second contribution is to establish some topological properties of the classes of
LOCC instruments. In particular, we show that the set of LOCC instruments that require
no more than some fixed number of communication rounds is compact (Theorem 2.21).
We also show that there exists a ball of LOCC instruments around the completely depo-
larizing instrument (Theorem 2.17).

The rest of this chapter is organized as follows. We start with the definition of gen-
eral quantum instruments in Section 2.2.1. We proceed with the definitions of different
classes of LOCC instruments in Section 2.2.2, as well as the related classes of separa-
ble and positive partial transpose-preserving instruments in Section 2.3. In Section 2.4
we discuss the relationships among these classes that follow from previously known
results. In section Section 2.6 we prove Theorem 2.21 and Theorem 2.17. We conclude
in Section 2.7 with a brief summary of results and a discussion of open problems.

2.2 How to define LOCC

2.2.1 Quantum instruments

Throughout this chapter we consider finite dimensional quantum systems. We use H
to denote the associated complex vector space Cd and refer to it as the underlying state
space of the system. Recall from Section 1.3.2 that T(H1,H2) is the complex vector
space consisting of the linear operators of the form E : L(H1)→ L(H2). We now define
quantum instruments as discussed in [DL70].

Definition 2.1. An n-outcome quantum instrument J is a tuple (E1, . . . , En) of completely
positive (CP) maps where Ei ∈ T(H1,H2) and the CP map ∑n

j=1 Ej is trace-preserving.

If we apply the instrument J to a state ρ we obtain outcome j with probability
Tr(Ej(ρ)) and the corresponding post-measurement state is given by Ej(ρ) up to nor-
malization. To develop intuition for the not so commonly used notion of quantum
instruments, we now explain how to think of measurements and completely positive
trace-preserving (TCP) maps in terms of quantum instruments.

Example. Consider a measurementM specified by Kraus operators M1, . . . , Mn, where
∑j∈[n] M†

j Mj = I. Upon measuring ρ with M and obtaining outcome j the resulting
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post-measurement state is MjρM†
j / Tr(M†

j Mjρ). The quantum instrument correspond-
ing to this measurement is (E1, . . . , En) where each CP map Ej(ρ) = MjρM†

j has only
one Kraus operator.

Example. Consider a TCP map N with Kraus operators M1, . . . , Mn, i.e., the action of
N is given by N (ρ) = ∑i∈[n] MiρM†

i where [n] := {1, . . . , n}. The instrument corre-
sponding to this TCP map is (N ) with only one CP map (which is necessarily trace-
preserving).

We use CP[n,H1,H2] ⊆ T(H1,H2)
n to denote the set of instruments with index set

[n] that send quantum states from L(H1) to quantum states in L(H2). If the underlying
state spaces H1 and H2 have been fixed before, we simply write CP[n]. Furthermore, if
the index set is unimportant or implicitly clear from the context we often omit that as
well and simply write CP.

Note that the set of quantum instruments CP[n,H1,H2] is convex, where addition
of two instruments and multiplication by a real scalar is defined componentwise. If
convenient, an instrument J ∈ CP[n,H1,H2] may naturally be viewed as an element of
CP[m,H1,H2] with m ≥ n by padding J with zero maps, i.e., Ej = 0 for j > n.

Let us fix the underlying input and output spaces to be H1 and H2 respectively.
Given an index set [n], we define a quantum-classical (QC) map over [n] as the TCP map
which sends L(H1) to L(H2)⊗ L(Cn) and is of the form

ρ 7→ ∑
j∈[n]
Ej(ρ)⊗ |j〉〈j|, (2.1)

where the vectors |j〉 form the standard basis of Cn. In this way, we see that the set
CP[n,H1,H2] is in a one-to-one correspondence with the set of QC maps over [n]. For
instrument J = (Ej : j ∈ [n]), we denote its corresponding QC map by E [J](·) =
∑j Ej(·)⊗ |j〉〈j|.

We now introduce the concept of coarse graining that allows us to post-process the
classical outcomes of one instrument, to obtain another instrument with a smaller num-
ber of outcomes.

Definition 2.2. (Coarse graining) Let J = (Ej : j ∈ [n]) and L = (Fk : k ∈ [m]) be
quantum instruments with the same underlying input and output spaces and n ≥ m.
We say that L is a coarse graining of J if there exists a partition Λ = (Λ1, . . . , Λm) of the
index set [n] such that

Fk = ∑
j∈Λk

Ej (2.2)
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for all k ∈ [m].

Equivalently, and perhaps more intuitively, one can describe coarse graining by the
action of a coarse graining map f : [n] → [m], which is simply the function f (k) = j
for k ∈ Λj. In this picture we are using the coarse graining map f to post-process the
classical information from the instrument J. Physically, this action corresponds to the
discarding of classical information if the coarse graining is nontrivial. The fully coarse-
grained instrument of J corresponds to the TCP map ∑j Ej, obtained by tracing out the
classical register of E [J]. We say that an instrument (Ej : j ∈ [n]) is fine-grained if each
of the Ej has action of the form ρ 7→ MjρM†

j for some operator Mj. In this way we
see that the most general instrument can be implemented by performing a fine-grained
instrument followed by coarse graining.

We now explain how to measure the distance between two instruments with the
same underlying input and output spacesH1,H2 and the same index set [n]. The space
T(H1,H2) carries a metric, induced by the diamond norm ‖·‖� [KSV02, Wat05b]. We
use this metric and the L1 norm to define a product metric D�(·, ·) on the n-fold product
space T(H1,H2)

n. The distance between two instruments J = (Ej : j ∈ [n]) and L =
(Fj : j ∈ [n]) is given by:

D�(J,L) := ∑
j∈[n]
‖Ej −Fj‖�. (2.3)

Since T(H1,H2)
n is a finite dimensional complex vector space, all metrics defined on it

are equivalent and give the same resulting topology (see e.g., Theorem 8.7 in [BN00]).
Therefore, any later discussed topological properties of the LOCC instruments do not
depend on the specific metric we have chosen here.

We say that a sequence J1, J2, . . . of instruments from CP[n,H1,H2] converges to an
instrument J = (Ej : j ∈ [n]) ∈ CP[n,H1,H2], if

lim
µ→∞

D�(Jµ, J) = 0. (2.4)

Since n is finite and fixed, the above is equivalent to requiring convergence in each
coordinate. That is, for all j ∈ [n] we require that limν→∞‖Eν,j − Ej‖� = 0, where Jµ =
(Eµ,j : j ∈ [n]) for all µ.

We end this section by arguing that the set CP[n,H1,H2] forms a compact subset
of the finite dimensional complex vector space T(H1,H2)

n. First, the set of all trace-
nonincreasing maps N ∈ T(H1,H2) is compact. Next, any n-fold Cartesian product
of compact sets from (T(H1,H2), ‖·‖�) gives a compact set in the product metric space
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(T(H1,H2)
n, D�). Finally, any compact subset of T(H1,H2)

n remains compact if we
restrict it to tuples

(
Ej : j ∈ [n]

)
for which the sum ∑j∈[n] Ej is trace-preserving.

2.2.2 LOCC instruments

To discuss LOCC one has to fix the partition of the space. We do this by specifying the
tensor product structure of the underlying input and output spaces beforehand. When
we later refer to LOCC instruments it is with respect to this previously fixed partition.

For an N-partite quantum system, the underlying state space takes the form H :=
H(1)⊗ · · ·⊗H(N), where party K ∈ [N] holds the system corresponding toH(K). For the
remainder of this section, we fix the underlying input and output spaces to be H1 :=
H(1)

1 ⊗ · · · ⊗ H
(N)
1 and H2 := H(1)

2 ⊗ · · · ⊗ H
(N)
2 , respectively. When convenient, we

indicate which part of the space a map is acting on by specifying the number of the
corresponding party in the superscript. In this way we can, for example, write E (2) ⊗
F (1) instead of F ⊗ E .

Definition 2.3. We say that an instrument L = (F1, . . . ,Fn) ∈ CP[n,H1,H2] is one-way
local (with respect to party K) if each of its CP maps takes the form

Fj =
(⊗

J 6=K

T (J)
j

)
⊗ E (K)

j , (2.5)

where J = (E1 . . . , En) ∈ CP[n,H(K)
1 ,H(K)

2 ] and T (J)
j ∈ T(H(J)

1 ,H(J)
2 ) is some TCP map

(i.e., an instrument with one outcome) for each J 6= K.

Operationally, this one-way local operation consists of party K applying an instru-
ment I = (E1, . . . , En), broadcasting the classical outcome j to all the other parties, and
each party J 6= K applying a TCP map T (J)

j after receiving this information.

Now we formally describe which instruments can be obtained from some given in-
strument J by one round of LOCC.

Definition 2.4. We say that an instrument L is LOCC linked to J = (E1, . . . , En) if there
exists a collection of one-way local instruments {Jj = (F1|j, . . . ,Fm|j) : j ∈ [n]} such
that L is a coarse-graining of the instrument with CP maps Fj′|j ◦ Ej.
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E1 E2 E3

F1|1 F2|1 F1|2 F2|2 F3|2 F1|3 F2|3

(coarse grain over matching shapes)

Coarse-grained instrument:

L = (F1|1 ◦ E1 +F2|2 ◦ E2 +F1|3 ◦ E3,

F2|1 ◦ E1 +F2|2 ◦ E2, F3|2 ◦ E2)

Figure 2.1: The instrument L is LOCC linked to the instrument J = (E1, E2, E3). The conditional
instruments (F1|1,F2|1), (F1|2,F2|2,F3|2) and (F1|3,F2|3) composed with the three CP maps of J
yield the instrument L after coarse graining.

Operationally, we first apply instrument J and then, conditioned on the measure-
ment outcome j, we apply instrument Jj possibly followed by a coarse graining (see
Fig. 2.1). Note that we allow the acting party in the conditional instrument Jj to vary
according to the outcome j of J. Also note that we can assume that the instruments Jj all
have the same number of outcomes, since otherwise we can pad the instruments with
fewer outcomes with 0 maps.

Having introduced the above definitions, we now define different classes of LOCC
instruments.

Definition 2.5. Given a quantum instrument J, we say that:

• J ∈ LOCC1 if J is a coarse-graining of some one way local instrument L;

• J ∈ LOCCr (with r ≥ 2) if it is LOCC linked to some L ∈ LOCCr−1;

• J ∈ LOCCN if J ∈ LOCCr for some r ∈N := {1, 2, . . .};
• J ∈ LOCC if there exists a sequence of LOCCN instruments J1, J2, . . . such that

(i) Jν is LOCC linked to Jν−1,
(ii) each Jν has a coarse-graining J′ν such that the sequence J′1, J′2, . . . converges

to J;

• J ∈ LOCCN if there exists a sequence of LOCCN instruments J1, J2, . . . that con-
verges to J.

Operationally, LOCCr is the set of all instruments that can be implemented by some
r-round LOCC protocol. Here, one round of communication involves one party com-
municating to all the others, and the sequence of communicating parties can depend
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on the intermediate measurement outcomes. The set of instruments that can be imple-
mented by some finite round protocol is then LOCCN. We use the term finite LOCC
to refer to this class of instruments. On the other hand, the so-called infinite round
protocols, or those having an unbounded number of nontrivial communication rounds,
correspond to instruments in LOCC \LOCCN. The full set of LOCC then consists of
both bounded-round protocols as well as unbounded ones [Chi11]. As the notation
suggests, the class LOCCN is the topological closure of LOCCN. If we let LOCC be the
closure of LOCC, then from the chain of inclusions LOCCN ⊆ LOCC ⊆ LOCCN, we
obtain LOCCN = LOCC. Sometimes the class LOCC is referred to as asymptotic LOCC
[KKB11, CLMO12] and we follow this practice in the coming sections.

Both LOCC and LOCCN consist of instruments that can be approximated better and
better with more LOCC rounds. The two sets are distinguished by noting that for any
instrument in LOCC, its approximation in finite rounds can be made tighter by just
continuing for more rounds within a fixed LOCC protocol; whereas for instruments in
LOCCN \ LOCC, different protocols will be needed for different degrees of approxima-
tion. Both LOCC and LOCC are operationally motivated. If it is very expensive to de-
sign the apparatus for implementing an LOCC protocol or it is necessary to control the
precision of approximation in real time, then membership to LOCC is the relevant ques-
tion. On the other hand, if one is willing to commit to a certain precision beforehand or
redesign the physical apparatus to achieve a higher precision, then LOCC becomes the
relevant class of instruments to consider.

Note that according to our definitions, every LOCC instrument is defined with re-
spect to some fixed index set [n]. However, the instruments implemented during inter-
mediate rounds of a protocol might range over different index sets. The requirement
is that the intermediate instruments can each be coarse grained into an n-outcome in-
strument to form a convergent sequence of instruments. This coarse-graining need not
correspond to an actual discarding of information. Indeed, discarding the measurement
record midway through the protocol will typically prohibit the parties from completing
the final LOCC instrument since the choice of measurement in each round depends on
the full measurement history. On the other hand, often there will be an accumulation
of classical data superfluous to the task at hand, and the parties will physically perform
some sort of coarse graining (discarding of information) at the very end of the protocol.

Every instrument belonging to LOCCr, LOCC or LOCC has an associated index set
[n]. Thus, for fixed input and output spaces these operational classes naturally become
subsets of CP[n], and we denote them as LOCCr[n], LOCC[n] and LOCC[n], respec-
tively. If we wish to explicitly specify the partition of the input and output spaces we
write, for example, LOCCr[n,H(1)

1 : · · · : H(N)
1 ,H(1)

2 : · · · : H(N)
2 ].
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2.3 Separable and PPT instruments

To complete the picture from the previous section, we now provide definitions for the
related classes of separable (SEP) and positive partial transpose-preserving (PPT) in-
struments. The PPT states and operations have been well-studied due to their relation
to entanglement. In particular, bipartite entangled states with positive partial transpose
are called bound entangled, because no LOCC protocol can be used to distill entangle-
ment from them [HHH98].

Similar to the previous section we fix the underlying N-partite input and output
spaces to be H1 := H(1)

1 ⊗ · · · ⊗ H
(N)
1 and H2 := H(1)

2 ⊗ · · · ⊗ H
(N)
2 , respectively. As in

the case of LOCC, to discuss SEP and PPT instruments we need to fix some partition of
the space. Let us fix the partition to be H(1)

1 : · · · : H(N)
1 and H(1)

2 : · · · : H(N)
2 for the

spacesH1 andH2, respectively.

An N-partite operator ρ ∈ Pos(H1) is said to be separable if it can be expressed as

ρ = ∑
i

ρ
(1)
i ⊗ · · · ⊗ ρ

(N)
i , (2.6)

where each ρ(K)i ∈ Pos(H(K)
1 ). Likewise, ρ ∈ Pos(H1) is said to possess the PPT property

if the operator obtained by taking the partial transpose in any fixed basis with respect
to any subset of the parties is positive semidefinite. Since conjugation by a unitary does
not change the eigenvalues of a matrix, the PPT property is not affected by the choice
of the basis used to define the transpose map. Note that any separable ρ ∈ Pos(H1) is
necessarily PPT.

Intuitively, we want to define separable and PPT quantum operations to be the class
of operations E that preserve the separability or the PPT property, respectively. How-
ever, as in the case of complete positivity, it is useful to introduce an auxiliary space and
require that the map E ⊗ I also preserves the property in question. In this way, a tensor
product of separable (PPT) maps is always a separable (PPT) map.

Let H′1 := H′(1)1 ⊗ · · · ⊗ H′(N)
1 be a copy of the space H1 and let I be the identity

map on H′1. Further let X (K)
t := H(K)

t ⊗ H′(K)1 for all t ∈ {1, 2} and K ∈ [N]. If we
consider quantum maps of the form E ⊗ I for E ∈ T(H1,H2), then X (K)

1 and X (K)
2 are

the Kth party’s input and output spaces, respectively.

Definition 2.6. Let J = (Ej : j ∈ [n]) ∈ CP[n,H1,H2] be an instrument. We say that
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• J is separable and write J ∈ SEP[n] if each Ej is a separable map [Rai97], meaning
that (Ej⊗I)ρ is separable with respect toX (1)

2 : · · · : X (N)
2 whenever ρ is separable

with respect to X (1)
1 : · · · : X (N)

1 ;

• J is positive partial transpose-preserving and write J ∈ PPT[n] if each Ej is a PPT map
[Rai99, DLT02], meaning that (Ej ⊗ I)ρ is PPT with respect to X (1)

2 : · · · : X (N)
2

whenever ρ is PPT with respect to X (1)
1 : · · · : X (N)

1 .

If we want to explicitly specify the underlying partition of the space we write

J ∈ SEP[n,H(1)
1 : · · · : H(N)

1 ,H(1)
2 : · · · : H(N)

2 ] and (2.7)
J ∈ PPT[n,H(1)

1 : · · · : H(N)
1 ,H(1)

2 : · · · : H(N)
2 ] (2.8)

respectively.

For any two complex vector spacesH1,H′1 of the same dimension, let

|ΦH1:H′1〉 := ∑
t∈[dim(H1)]

|t, t〉 and ΦH1:H′1 := |ΦH1:H′1〉〈ΦH1:H′1 |. (2.9)

When the spaces H1 and H′1 possess the above specified tensor product structure we
have

ΦH1:H′1 =
⊗

K∈[N]

ΦH(K)
1 :H′(K)1

, (2.10)

where ΦH(K)
1 :H′(K)1

∈ Pos(X (K)) and X (K) = H(K)
1 ⊗H′(K)1 Thus, ΦH1:H′1 is both separable

and PPT with respect to the partition X (1)
1 : · · · : X (N)

1 . Now from the definition we see
that the Choi matrix [Jam72, Cho75]

JE = (E ⊗ I)ΦH1:H′1 ∈ Pos(H2 ⊗H′1) (2.11)

of a separable (PPT) map E ∈ CP(H1,H2) is always separable (PPT). In fact, the con-
verse is also true. That is, if the Choi matrix JE of a CP map E is separable (PPT) then
the map E is also separable (PPT) [CDKL01]. Since any PPT operator ρ is separable, the
characterization of separable and PPT maps in terms of their Choi matrices shows that
SEP[n] ⊆ PPT[n].

Both the set of separable operators and that of PPT ones are known to be closed.
The characterization of separable and PPT maps in terms of their Choi matrices allows
us to reach the same conclusion about the sets of trace nonincreasing separable and
PPT maps. Any n-fold Cartesian product of closed sets from (T(H1,H2), ‖·‖�) gives
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a closed set in the product metric space (T(H1,H2)
n, D�). Finally, any closed subset

of T(H1,H2)
n remains closed if we restrict to tuples

(
Ej : j ∈ [n]

)
for which the sum

∑j∈[n] Ej is trace-preserving. Hence, the sets SEP[n] and PPT[n] are closed.

We now characterize separable maps in terms of their Kraus decompositions. If
E ∈ CP(H1,H2) is separable, then so is its Choi matrix JE ∈ Pos(H2 ⊗H′1). Thus, for

an appropriate choice of vectors |v(K)t 〉 ∈ H(K)
2 ⊗H′(K)1 we have

JE = ∑
t
|v(1)t 〉〈v(1)t | ⊗ · · · ⊗ |v(N)

t 〉〈v(N)
t | (2.12)

= ∑
t

⊗
K∈[N]

(
V(K)

t ⊗ IH′(K)1

)
ΦH(K)

1 :H′(K)1

(
V(K)

t ⊗ IH′(K)1

)† (2.13)

= ∑
t

(
V(1)

t ⊗ · · · ⊗V(N)
t ⊗ IH′1

)
ΦH1:H′1

(
V(1)

t ⊗ · · · ⊗V(N)
t ⊗ IH′1

)†, (2.14)

where |v(K)t 〉 = vec
(
V(K)

t
)

and vec : L(H(K)
1 ,H(K)

2 ) → H(K)
2 ⊗H′(K)1 is the row vector-

ization defined via vec(|i〉〈j|) := |i〉|j〉. So we see that any separable map E admits a
Kraus decomposition with tensor product Kraus operators. It also easily follows from
the definition that whenever a decomposition of this form exists, the map E is necessar-
ily separable. This completes the characterization of separable maps in terms of their
Kraus decompositions. We are not aware of any such characterization for PPT maps.

Note that any instrument J ∈ LOCCN[n] can be viewed as a coarse-graining of some
fine-grained instrument L ∈ LOCCN[m], where m ≥ n. Recall that each of the CP maps
Fj of L has only one Kraus operator Mj. By the construction of LOCCN in Definition 2.5
we see that Mj is an N-fold tensor product. So each of the CP maps of L and hence also
of J has a Kraus representation with tensor-product operators. Thus, J ∈ SEP[n] in
particular and LOCCN[n] ⊆ SEP[n] in general. Since the set of separable instruments is
closed, we also have LOCC[n] ⊆ SEP[n]. Combining this with the previously discussed
inclusion SEP[n] ⊆ PPT[n], we get LOCC[n] ⊆ SEP[n] ⊆ PPT[n].

Although the classes of SEP and PPT instruments are more powerful than LOCC
ones, they are still more restrictive than the most general quantum instruments. At
the same time, they admit a simpler mathematical characterization than LOCC, and
this can be used to derive many limitations on LOCC, such as entanglement distillation
[Rai97, Rai01, HHH98] and state discrimination [TDL01, Che04].

We end this section by showing that any separable map E ∈ T(H1,H2) admits a
Kraus representation with no more than (dim(H1)dim(H2))

2 elements each of which
is a tensor product. To prove this, we use Carathéodory’s theorem (see e.g. [Roc96]):
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Theorem 2.7 (Carathéodory). Let S be a subset of Rd for some d ∈ Z+. Then any element
v ∈ conv(S) can be expressed as a convex combination of m ≤ d + 1 vectors v1, . . . , vm ∈ S.

Let us first give a simple lemma bounding the number of terms in a decomposition
certifying the separability of an operator from Pos(H).

Lemma 2.8. Let M ∈ Pos(H), where H = H(1) ⊗ . . . ⊗H(N) and dim(H) = d. If M is
separable with respect to partitionH(1) : · · · : H(N), then it can be expressed as

M = ∑
i∈[m]

M(1)
i ⊗ . . .⊗M(N)

i , (2.15)

for some rank one matrices M(K)
i ∈ Pos(H(K)) and m ≤ rank(M)2.

Proof. Let V be the set of Hermitian operators on H having the same trace as M and
whose column space is contained in that of M. Note that V can be viewed as a real
vector space of dimension rank(M)2 − 1. Next, since M is separable, we can write it as

M = ∑
i∈[t]

λiN(1)
i ⊗ . . .⊗ N(N)

i , (2.16)

for some t ∈ Z+, λi > 0, and some rank one matrices N(K)
i ∈ Pos(H(K)). Let Ni :=

N(1)
i ⊗ . . .⊗ N(N)

i . Without loss of generality, we can assume that Tr(Ni) = Tr(M). In
such a case ∑i∈[T] λi = 1. Moreover, we can argue that the column space of each Ni must
be contained in that of M. If it was not the case, we could find a vector v ∈ Null(M)
that does not belong to Null(Ni). Yet this would contradict Equation (2.16), where we
have expressed M as a positive linear combination of the positive semidefinite matrices
Ni. So Ni ∈ V for all i ∈ [t] and thus M is a convex combination of t elements from V.
Hence, if t > rank(M)2 we can apply Carathéodory’s theorem to reduce the number of
summands in Equation (2.16) and write M as

M = ∑
i∈R

µiN(1)
i ⊗ . . .⊗ N(N)

i , (2.17)

where R ⊆ [t] and |R| ≤ rank(M)2. Finally, absorbing the coefficients µi into the matri-
ces N(1)

i ⊗ . . .⊗ N(N)
i gives an expression of the desired form (2.15).

Having established the above lemma, we are ready to bound the number of opera-
tors in a minimal tensor product Kraus representation of a separable map.
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Corollary 2.9. Consider a CP map E ∈ T(H1,H2) with Choi matrix JE . Let d1 := dim(H1)
and d2 := dim(H2). If E is separable then it admits a Kraus representation of the form

{M(1)
i ⊗ . . .⊗M(N)

i }i∈[m] (2.18)

with m ≤ rank(JE )2 ≤ (d1d2)
2.

Proof. Consider the Choi matrix JE ∈ Pos(H2 ⊗H′1). Since E is separable, so must be
JE . Hence, according to Lemma 2.8, we can express it as

JE = ∑
i∈[m]

J(1)i ⊗ . . .⊗ J(N)
i (2.19)

for some rank one matrices J(N)
i ∈ Pos(H(K)

2 ⊗H′(K)1 ) and m ≤ rank(JE )2. From here,
via a calculation similar to the one in Equations (2.12)–(2.14), we obtain the desired
tensor product Kraus representation with no more than rank(JE )2 operators.

2.4 Relationships between different classes of LOCC

In this section we discuss the known relationships between the different classes of in-
struments introduced in the previous two sections. For a fixed number of parties N ≥ 2
with local dimension at least two, and over a sufficiently large index set [n], the known
relationships can be summarized as follows:

LOCC1 ( LOCCr ( LOCCr+1 ( LOCCN ( LOCC ( LOCC ( SEP ( PPT (2.20)

for any r ≥ 2. Before we explain why the above inclusions are proper, let us prove the
following lemma.

Lemma 2.10. If LOCCr ( LOCCr+k for some k ∈ Z+ then LOCCr ( LOCCr+1.

Proof. Suppose that LOCCr = LOCCr+1, and consider J ∈ LOCCr+k \LOCCr. Then
there exists an implementation of J consuming r + k rounds. Let Jr+1 being the instru-
ment performed during the first r + 1 rounds of this particular implementation. Since
LOCCr = LOCCr+1, we have Jr+1 ∈ LOCCr and so J ∈ LOCCr+k−1. Here, we have
considered n sufficiently large such that both J and Jr+1 are instruments over the same
index set (this can always be done by Theorem 2.20). Repeating this argument k times
gives that J ∈ LOCCr, which is a contradiction.
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We now explain why the inclusions in Equation (2.20) are proper. The operational
advantage of LOCC2 over LOCC1 is well-known, having been observed in entangle-
ment distillation [BDSW96], quantum cryptography [GL03], and state discrimination
[Coh07, OH08]. On the other hand, only a few examples have been proven to demon-
strate the separation between LOCCr and LOCCr+1. For N = 2, Xin and Duan have con-
structed sets containing O(n2) mutually orthogonal pure states in two n-dimensional
systems that require O(n) rounds of LOCC to distinguish perfectly [XD08]. For N ≥ 3,
a stronger separation is shown for random distillation of bipartite entanglement from
a three-qubit state. Here the dimension is fixed, and two extra LOCC rounds can
always increase the probability of success by a quantifiable amount; moreover, cer-
tain distillations only become possible by infinite-round LOCC, thus demonstrating
LOCCN 6= LOCC [Chi11]. By studying the same random distillation problem, one
can show that LOCC 6= LOCC [CCL12a, CCL12b]. For N = 2 and local dimension
two, it has been shown that there exists an instrument J /∈ LOCC that can nevertheless
be approximated to arbitrary precision with instruments from LOCCN [CLM+12]. So
there are instruments that require different protocols to achieve better and better ap-
proximations when more and more LOCC rounds are available, and neither LOCCN

nor LOCC is closed. The difference between LOCCN and SEP has emerged in various
problems such as state discrimination [BDM+99, Coh07, DFXY09] and entanglement
transformations [CD09]. Proving that LOCC 6= SEP is more difficult, but it indeed has
been demonstrated in [BDF+99, KTYI07, CLMO12] for the task of state discrimination,
as well as [CCL11, CCL12a, CCL12b] for random distillation. Finally, the strict inclusion
between PPT and SEP follows from the existence of non-separable states that possess a
positive partial transpose [Hor97].

2.5 Stochastic LOCC

Although LOCC ( SEP, it turns out that it is always possible to implement a separable
instrument with some nonzero probability of success using LOCC. We formalize the no-
tion of probabilistic implementation in the following definition. We use D ∈ T(H1,H2)
to denote the completely depolarizing channel, i.e., the TCP map which acts by D(ρ) =

Tr(ρ)
dim(H2)

IH2 .

Definition 2.11. Let J = (E1, . . . , En) ∈ SEP[n,H1H2] be an instrument. We say that J
can be performed by Stochastic LOCC (SLOCC) if for some p > 0, the instrument

L = (pE1, . . . pEn, (1− p)D) ∈ CP[n + 1,H1,H2] (2.21)
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belongs to the class of LOCC instruments.

The classical outcome “n + 1” indicates a failure in implementing J and it occurs
with probability 1− p. Hence, we are always aware of whether or not we have suc-
ceeded at implementing J. Also, since D ◦ E = D for every TCP map E , there is no loss
of generality in assuming that in the case of failure, we can implement the maximally
depolarizing channel.

It has been shown in [DVC00] that every separable CP map has an SLOCC imple-
mentation. Here we describe a finite LOCC protocol for implementing any separable
instrument, thus providing a lower bound on the success probability p. Our construc-
tion follows from quantum teleportation [BBC+93]. As before let H(1)

1 : · · · : H(N)
1 and

H(1)
2 : · · · : H(N)

2 be the fixed partition of the input and output spaces H1 and H2,
respectively.

Lemma 2.12. Let J = (E1, . . . , En) ∈ CP[n,H1,H2] be a separable N-partite instrument and
let dt := dimHt for t = 1, 2. Then J can be implemented by SLOCC with success probability
of at least 1

d2
1

using a protocol with at most N communication rounds.

Proof. Suppose that N parties wish to measure some shared state ρ ∈ H1 using the
separable instrument J. First, using one round of LOCC, they choose j ∈ [n] with
probability Tr(Ej(I))/d1 and prepare the separable state ρj := 1

Tr(Ej(I)) JEj . Here, JEj is the
Choi matrix of the CP map Ej. Next, each of the parties measure their part of the last
two registers of ρj⊗ ρ ∈ L(H2⊗H′1⊗H1) in a basis containing the canonical maximally
entangled state 1√

d1
|ΦH′(K)1 :H(K)

1
〉 (see Equation (2.9)).

Ej

ρ H1

H′1

H2

Figure 2.2: Contraction diagram of Ej(ρ).

From the diagram in Figure 2.2, we see that

Ej(ρ) = (I ⊗ 〈ΦH′1:H1 |)(JEj ⊗ ρ)(I ⊗ |ΦH′1:H1〉) (2.22)

= Tr
(
Ej(I)

)
d1

(
I ⊗ 1√

d1
〈ΦH′1:H1 |)(ρj ⊗ ρ)(I ⊗ 1√

d1
|ΦH′1:H1〉

)
. (2.23)
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Hence, the probability that all the parties obtain the outcome corresponding to the
canonical maximally entangled state is given by 1

Tr(Ej(I))d1
Tr
(
Ej(ρ)

)
. In this case they

have succeeded at applying CP map Ej to ρ. Overall, the described protocol succeeds at
implementing J with probability 1

d2
1
. It is easy to see that this protocol takes N rounds

of classical communication to broadcast the measurement outcomes of each of the N
parties.

We now give an alternative protocol for implementing a separable instrument J =
(E1, . . . , En). This protocol achieves a success probability of 1

nr2 , where

r := max
i∈[n]

rank(JEi). (2.24)

Therefore, if all of the Choi matrices JEi have low rank, it can outperform the protocol
from Lemma 2.12. In contrast, if at least one of the Choi matrices has full rank, it gives
a success probability of only 1

n(d1d2)2 . We now describe the protocol.

For each j ∈ [n] let {M1
ij ⊗ . . . ⊗ MN

ij }i∈[r2] be the set of operators in some Kraus
representation of Ej with r2 elements. Since we can always increase the number of
operators in a Kraus representation by adding zero operators, the existence of such a
representation follows from Corollary 2.9. For each Kraus operator M1

ij ⊗ . . .⊗MN
ij , we

choose the individual matrices MK
ij so that ‖M1

ij‖∞ = . . . = ‖MN
ij ‖∞. This ensures that

I ≥ (MK
ij )

†MK
ij and thus

MK
ij :=

{
MK

ij ,
√

I − (MK
ij )

†MK
ij
}

(2.25)

is a valid local measurement for each party K. The protocol consists of the parties first
collectively choosing a pair (i, j) ∈ [r2]× [n] uniformly at random. They then take turns
to perform their respective local measurements MK

ij and broadcast their result. If all
parties obtain the outcome corresponding to MK

ij , their implementation is a success and
they coarse grain the classical data (i, j) over the index i. This coarse graining recovers
the CP maps Ej. If at least one party obtains the second outcome, all the parties apply
local maximally depolarizing channels and this is a failure outcome. Coarse graining
over all failure outcomes generates the LOCC instrument( 1

nr2E1, . . . ,
1

nr2En,
nr2 − 1

nr2 D
)

. (2.26)
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Note that in the initial round of the protocol, some fixed party K can first choose the
random pair (i, j) ∈ [r2] × [n], then measure MK

ij and broadcast both the chosen pair
(i, j) and the outcome of the measurement. Hence, the described protocol requires N
rounds of communication.

2.6 Some topological properties

In this section we discuss some topological properties of different classes of LOCC in-
struments. As before, we let H1 be the input and H2 be the the output space. We also
fixH(1)

1 : · · · : H(N)
1 andH(1)

2 : · · · : H(N)
2 to be their respective partitions.

In the coming subsections we consider the instruments that can be implemented us-
ing at most r rounds of communication, i.e., the class LOCCr for some finite r. However,
we first give the following simple observation concerning the other previously intro-
duced classes of LOCC instruments.

Theorem 2.13. For any n ∈ Z+ the sets LOCCN[n], LOCC[n], and LOCC[n] are convex.

Proof. Fix any n ∈ Z+. Given two instruments J1, J2 ∈ LOCC[n] and λ ∈ [0, 1], con-
sider the instrument J := λJ1 + (1− λ)J2. To implement J, one of the parties starts
the LOCC protocol by choosing v = 1 with probability λ and v = 2 with probability
1− λ and broadcasting this choice to the other parties. Upon receiving the value v, the
parties proceed according to some LOCC protocol for implementing Jv. This shows
that LOCC[n] is convex. Since finite LOCC protocols for implementing J1 and J2 yield
a finite LOCC protocol for implementing J, we conclude that LOCCN[n] is also convex.
Finally, since the closure of a convex set is convex, we get that LOCC[n] is convex.

In contrast to the above, LOCC1[n] for n ≥ 2 is not convex. To see this, suppose that
Jv for v ∈ {1, 2} corresponds to the v-th party performing a standard basis measurement
on their state space H(K)

1 . Then for any λ ∈ (0, 1) the instrument λJ1 + (1− λ)J2 /∈
LOCC1[n], since LOCC1 essentially consists of instruments that are one-way local with
respect to some fixed acting party (see Definition 2.5 and Definition 2.3).

2.6.1 A ball of LOCCr instruments

In this section we establish that for any r, n ∈ Z+ the set LOCCr[n] has nonempty inte-
rior within the set of all quantum instruments CP[n]. To prove this, we show that there
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exists a non-empty ball consisting entirely of LOCC instruments around the completely
depolarizing instrument2

D :=
(

1
n
D, . . . ,

1
n
D
)

. (2.27)

Here, D ∈ T(H1,H2) is the completely depolarizing channel as defined in Section 2.5.
Operationally this means that any sufficiently noisy instrument can be implemented
with LOCC. Also, it provides a (probably suboptimal) upper bound for the distance
between any fixed instrument J and the set LOCC.

Our argument will rely on the following result.

Theorem 2.14 (Gurvits and Barnum [GB03]). Let H = H(1) ⊗ · · · ⊗ H(N). If A ∈ L(H)
and ‖A‖2 ≤ RN := 21−N/2, then I + A is a separable operator with respect to the partition
H(1)

1 : · · · : H(N)
1 .

As discussed in Section 2.3, a CP map E ∈ T(H1,H2) is separable if and only if its
Choi matrix JE ∈ L(H2 ⊗H′1) is separable. Using this fact, we can translate the above
theorem into the following statement about separable maps.

Corollary 2.15. Consider an instrument J = (E1, . . . , En) ∈ CP[n]. Then

(1− η)D+ ηJ ∈ SEP[n] (2.28)

for all η ≤ RSEP := RN/(nd1d2 + RN) = (nd1d22
N
2 −1 + 1)−1.

Proof. By the above discussion, it suffices to show that the Choi matrices of the CP maps
of the resulting instrument in Equation (2.28) are all separable. For the completely de-
polarizing map D, we have JD = 1

d2
Id1d2 , where d1 := dim(H1) and d2 := dim(H2).

Hence, the Choi matrix of the jth CP map of the instrument in Equation (2.28) is

(1− η)
Id1d2

nd2
+ η JEj . (2.29)

According to Theorem 2.14 we have that

Id1d2 +
ηnd2

1− η
JEi (2.30)

2Via private communication, we have learned that Marco Piani has independently obtained a similar
result for TCP maps.
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is separable whenever ηnd2
1−η ‖JEi‖2 ≤ RN. Note that ‖JEi‖2 ≤ ‖JEi‖1 = d1. Therefore,

choosing

η ≤ RN

nd1d2 + RN
(2.31)

yields the desired statement.

Combining this corollary with the observation that any separable instrument can be
implemented with stochastic LOCC (see Lemma 2.12) gives the following theorem.

Theorem 2.16. Consider an instrument J = (E1, . . . , En) ∈ CP[n]. Then

(1− γ)D+ γJ ∈ LOCCN[n] (2.32)

for all γ ≤ RSEP
d2

1
=
(
nd3

1d22
N
2 −1 + d2

1
)−1.

Proof. Pick any γ ≤ RSEP/d2
1 and choose η ≤ RSEP and p ≤ 1

d2
1

such that γ = pη. First,

according to Corollary 2.15 the instrument

L := (1− η)D+ ηJ ∈ SEP[n] (2.33)

since η ≤ RSEP. Next, by Lemma 2.12 it follows that there exists an N-round LOCC
protocol that successfully implements L with probability p ≤ 1

d2
1

and depolarizes (fails)

with probability 1− p. By coarse graining the failure outcome into each of the n success
outcomes by equal amounts, we have

(1− p)D+ pL = (1− pη)D+ pηJ = (1− γ)D+ γJ ∈ LOCCN[n], (2.34)

which gives the desired statement.

Having established the above theorem, we are ready to show the existence of an
LOCC ball around the completely depolarizing channel. This is the main result of this
subsection.

Theorem 2.17. Any instrument J = (E1, . . . , En) ∈ CP[n] such that

D�(D, J) ≤ RLOCC :=
RSEP

nd3
1d2

= (n2d4
1d2

22
N
2 −1 + nd3

1d2)
−1 (2.35)

can be implemented by an N-round LOCC protocol.
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Proof. We begin by decomposing each of the CP maps Ei as

Ei = (1− nd2δ)
1
n
D + nd2δFi, (2.36)

where Fi =
1
nD − 1

nd2δ

( 1
nD − Ei

)
∈ T(H1,H2) and δ is to be chosen later. Note that the

map

∑
i∈[n]
Fi = D −

1
nd2δ

(
D − ∑

i∈[n]
Ei

)
(2.37)

is trace-preserving for any δ > 0. Our goal now is to ensure that L := (F1, . . . ,Fn) is
a valid instrument by choosing δ so that all the maps Fi are completely positive. This
will allow us to apply Theorem 2.16, since according to Equation (2.36) instrument J is
a convex combination of D and L.

Considering the Choi matrices

JFi
:=

1
n

JD +
1

nd2δ

(
JEi −

1
n

JD
)

(2.38)

=
1

nd2

(
Id1d2 +

1
δ

(
JEi −

1
n

JD
))

, (2.39)

we see that taking δ := maxi∈[n]‖JEi − 1
n JD‖∞ ensures that L is a valid instrument.

To complete the proof, we only need to show that nd2δ ≤ RSEP/d2
1 as then according

to Theorem 2.16, we can conclude that

J = (1− nd2δ)D+ nd2δL ∈ LOCCN[n] (2.40)

as desired. To achieve this, we will make use of the fact that D�(D, J) ≤ RSEP/(nd3
1d2).
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By definition of the diamond norm and δ we have

D�(D, J) = ∑
i∈[n]

∥∥∥Ei −
1
n
D
∥∥∥
�

(2.41)

= ∑
i∈[n]

max
{∥∥∥((Ei −

1
n
D
)
⊗ IH′1

)
ρ
∥∥∥

1
: ρ ∈ L(H1 ⊗H′1), ‖ρ‖1 ≤ 1

}
(2.42)

≥ ∑
i∈[n]

1
d1

∥∥∥JEi −
1
n

JD
∥∥∥

1
(2.43)

≥ ∑
i∈[n]

1
d1

∥∥∥JEi −
1
n

JD
∥∥∥

∞
(2.44)

≥ δ

d1
. (2.45)

Hence, nd2δ ≤ nd1d2D�(D, J) ≤ RSEP/d2
1 as desired and the proof is complete.

2.6.2 Compactness of LOCCr

Recall from Section 2.4 that the set of LOCC instruments is not closed and hence it
clearly cannot be compact. In this section we show that when restricted to finite round
protocols with a finite number of outcomes, compactness indeed holds. Let us point
out that such a result might not be entirely obvious. It is conceivable that there ex-
ists an instrument for which better approximations using LOCCr[n,H1,H2] instruments
can only be achieved by allowing unbounded number of intermediate outcomes in the
protocols for implementing these instruments. We rule out this possibility, by show-
ing that it is always possible to find a protocol for implementing any instrument from
LOCCr[n,H1,H2] with a bounded number of intermediate outcomes.

Suppose that an instrument J = (E1, . . . , En) ∈ CP[n,H1,H2] can be implemented by
first measuring instrument M = (M1, . . . ,Mt) ∈ CP[t,H1,H3] and then, conditioned
on outcome j ∈ [t], measuring instrument Lj = (F1, . . . ,Fn) ∈ CP[n,H3,H2]. In other
words, Ei = ∑j∈[t] Fi ◦Mj for all i ∈ [n]. For brevity, let us use

(⊕
j∈[t] Lj

)
◦M to denote

the above described implementation. Our goal is to show the measurement in the first
step can always be chosen so that t is not too large. Moreover, this can be achieved by
essentially discarding some of the CP maps of M.

29



Lemma 2.18. Suppose that an instrument J ∈ CP[n,H1,H2] admits an implementation(⊕
j∈[t] Lj

)
◦M, where M = (M1, . . . ,Mt) ∈ CP[t,H3,H2]. Then J also admits an im-

plementation (⊕
j∈T

Lj

)
◦M′, (2.46)

where T ⊆ [t], |T| ≤ (nd1d2d2
3)

2, M′ = (qjMj : j ∈ T) for some qj > 0 and ds = dim(Hs)
for s = 1, 2, 3.

Proof. Recall from Section 2.2.1 that the quantum-classical (QC) map E [J] of an instru-
ment J = (E1, . . . , En) is given by

E [J](·) = ∑
j∈[n]
Ej(·)⊗ |j〉〈j|. (2.47)

From the contraction diagram in Figure 2.3, we see that the Choi matrix of the QC
map E [J] is given by

JE [J] =
(

IH2⊗Hc ⊗ 〈ΦH′3:H3
| ⊗ IH′1

)(
∑

j∈[t]
JE [Lj]

⊗ JMj

)(
IH2⊗Hc ⊗ |ΦH′3:H3

〉 ⊗ IH′1

)
,

(2.48)
whereHc = Cn is the classical register of E [Lj] and |ΦH:H′〉 := ∑s∈[dim(H)] |s, s〉. Let

J := ∑
j∈[t]

JE [Lj]
⊗ JMj = ∑

j∈[t]
λj
(
λ−1

j JE [Lj]
⊗ JMj

)
(2.49)

where λj = Tr
(

JE [Lj]
⊗ JMj

)
/ Tr(J) and ∑j∈[t] λj = 1. So the last expression shows that J

is a convex combination of positive semidefinite matrices with trace Tr(J).

H3 E [Lj]
H2 ⊗Hc

H′3

H1 Mj
H3

H′1
Figure 2.3: Contraction diagram for one of the summands in Equation (2.48).
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Since fixed-trace Hermitian matrices over H can be viewed as a real vector space of
dimension dim(H)2 − 1, we can apply Carathéodory’s theorem to Equation (2.49). As
J ∈ Pos

(
H2 ⊗Hc ⊗H′3 ⊗H3 ⊗H′1

)
, this yields

J = ∑
j∈T

qj JE [Lj]
⊗ JMj = ∑

j∈T
JE [Lj]

⊗ JqjMj (2.50)

for some T ⊆ [t] with |T| ≤ (nd1d2d2
3)

2 and some qj > 0. Since qjMj are all completely
positive, to show that M′ := (qjMj : j ∈ T) is a valid instrument it suffices to check that
M := ∑j∈T qjMj is trace-preserving. To this end we proceed to verify that TrH3(JM) =
Id1 . Using the expressions of J from Equation (2.49) and Equation (2.50) and the fact
that ∑j∈[t]Mj is trace-preserving, we get

TrH3(JM) =TrH3

(
∑
j∈T

JqjMj

)
(2.51)

=
1
d3

TrH2⊗Hc⊗H′3⊗H3

(
∑
j∈T

JE [Lj]
⊗ JqjMj

)
(2.52)

=
1
d3

TrH2⊗Hc⊗H′3⊗H3

(
∑

j∈[t]
JE [Lj]

⊗ JMj

)
(2.53)

=Id1 . (2.54)

Hence, M′ is a valid instrument. Plugging the last expression of J from Equation (2.50)
in Equation (2.48) shows that

(⊕
j∈T Lj

)
◦M′, where M′ = (qjMj : j ∈ T).

The above lemma describes a situation similar to the one encountered at any point
in the execution of an LOCC protocol. However, in the latter case we will be able to
assume that the instrument M acts nontrivially only on the current acting party’s space.
In such a case the bound on the number of CP maps of M′ can be improved as follows:

Corollary 2.19. Suppose that the CP maps of M from Lemma 2.18 all take the form

Mj =
(⊗

L 6=K

IH(L)
1

)
⊗M(K)

j (2.55)

for some fixed party K ∈ [N]. Then |T|, the number of CP maps of M′, can be upper bounded
by
(
nd2d3d(K)1 d(K)3

)2, where d(K)i := dim
(
H(K)

i
)

andHi = H(1)
i ⊗ . . .⊗H(N)

i for i = 1, 2, 3.
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Proof. In this case we can write J from Equation (2.49) in the proof of Lemma 2.18 as

J =
(

∑
j∈[t]

JE [Lj]
⊗ JM(K)

j

)
⊗
(⊗

L 6=K

ΦH(L)
1 :H′(L)

1

)
(2.56)

Applying Carathéodory’s theorem to

∑
j∈[t]

JE [Lj]
⊗ JM(K)

j
∈ Pos

(
H2 ⊗Hc ⊗H′3 ⊗H(K)

3 ⊗H′(K)1

)
(2.57)

allows to reduce the number of summands to at most
(
nd2d3d(K)1 d(K)3

)2. Next, we pro-
ceed similar to the proof of Lemma 2.18 to obtain an implementation

(⊕
j∈T Lj

)
◦M′ of

instrument J, where M′ has at most
(
nd2d3d(K)1 d(K)3

)2 CP maps.

Having established the last corollary, we are ready to show that any instrument from
LOCCr[n,H1,H2] admits an LOCC protocol with bounded number of intermediate
measurement outcomes. Recall from Section 2.2.1 that an instrument J ∈ CP[n,H1,H2]
is said to be fine-grained if each of its CP maps takes the form M(·)M† for some matrix
M ∈ L(H1,H2).

Theorem 2.20. Consider J ∈ LOCCr[n,H1,H2] and let D1 := maxK∈[N] dim
(
H(K)

1
)
. Then

J can be implemented by an r-round LOCC protocol in which all the instruments are fine-
grained. Moreover, the instruments applied in any but the final round have at most (nd2d1D2

1)
2

outcomes while those applied in the final round have at most nd1d2 outcomes.

Proof. A general r-round LOCC instrument can be represented as a tree partitioned
into r levels. Within each level are nodes that correspond to the different one-way local
LOCC instruments performed in that round. The nodes in round l + 1 are specified by
their respective measurement histories (i1i2 . . . il). At each node many parties may ap-
ply a nontrivial TCP map (i.e., instrument with one outcome), but only the acting party
can perform an instrument with more than one outcome, and this party may vary across
different nodes at each level. Some paths of execution can terminate before round r; in
this case “final round” refers to some round l < r.

We now explain how to convert a general protocol into one for which

(i) the instruments applied before the final round act nontrivially only on the acting
party’s space (i.e., other parties apply the identity TCP map I);
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(ii) the instruments applied before the final round are fine-grained and have the same
input and output dimension;

(iii) the instruments applied in the final round have at most n outcomes.

To obtain (i) each of the non-acting parties postpones the application of any nontriv-
ial TCP map to the closest round in future in which that party is the acting party or to
the final round (in the case when the party in question is never the acting party in the
later rounds).

Consider a protocol satisfying (i). To obtain (ii) we first replace the nontrivial local
instruments applied before the final round with their completely fine-grained versions.
This modification can only increase the number of edges leaving a node, but does not
change the total number of rounds. The original instrument can be recovered by suitable
coarse graining at the end. Then, we apply the polar decomposition M = UA where A is
positive semidefinite and U is an isometry. Thus whenever M(·)M† is performed within
the original protocol, it can be replaced with A(·)A† combined with a pre-application
of U in the next level. In other words, if the same party applies Kraus operator N next
in the original protocol, then NU is applied instead. Polar decomposing NU, we obtain
U′A′ where A′ again maps the initial system to itself, and U′ is some other isometry to
be moved to yet the next level. Doing this inductively for all levels yields condition (i)
in which the state lives in the same input system throughout, except for the final round.

To obtain (iii), we recall that the instrument J that we are trying to implement has
only n outcomes. Therefore, if some instrument L from the final round has more than n
outcomes some of them correspond to the same outcome of J. We can coarse grain all
CP maps of L corresponding to the same outcome of J to obtain an instrument L′ with
at most n outcomes.

Let T be the tree corresponding to an r-round LOCC protocol that implements J and
satisfies (i)–(iii). Before the final round at any node m of T the parties apply some fine-
grained instrument M = (M1, ...,Mt) ∈ LOCC1[t,H1,H1] whose outcomes lead to the
children nodes c1, . . . , ct of m. Next, conditioned on outcome j ∈ [t], the parties apply
instrument Lj ∈ LOCCN[n,H1,H2] which corresponds to the subtree of T rooted at
node cj. Thus, we are in a situation described by Lemma 2.18. Moreover, property (iii)
guarantees that M is nontrivial only on the acting party’s space and so we can apply
Corollary 2.19. This allows us to prune tree T at node m by replacing instrument M
with M′ = (qjMj : j ∈ T), where T ⊆ [t], |T| ≤ (nd1d2D2

1)
2 and qj > 0. We apply

Corollary 2.19 to any instrument applied before the final round. This yields an r-round
protocol P that implements J and the instruments applied in any but the final round
have no more than (nd1d2D2

1)
2 outcomes.
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Finally, we fine-grain the n-outcome instruments at the final round of P . Consider
any CP map F of some instrument L from the final round. Note that F is an N-fold
tensor product of local CP maps on each of the parties. From the Choi representation
one sees that any CP map in T(H(K)

1 ,H(K)
2 ) can be represented using at most d(K)1 d(K)2

Kraus operators, where d(K)s = dim
(
H(K)

s
)

for s = 1, 2. Therefore, we can fine-grain
each of the n completely positive maps of L into at most d1d2 maps of the form specified
by the theorem, i.e., ρ 7→ MρM†. This yields a fine-graining L′ of L with at most nd1d2
outcomes as desired.

We are now ready to establish the main result of this subsection.

Theorem 2.21. The set of instruments LOCCr[n,H1,H2] is compact for all positive integers r
and n.

Proof. Consider an instrument J ∈ LOCCr[n,H1,H2] and let P be an r-round LOCC
protocol implementing J from Theorem 2.20. We can specify P using the Choi matrices
of the N-fold tensor product CP maps of the instruments in each round. We can ensure
that all paths of execution in P have length exactly r by inserting intermediate trivial in-
struments (I) ∈ CP[1,H1,H1]. We can also add zero maps to instruments to ensure that
the instruments up to level r− 1 have exactly B := (d1d2D2

1)
2 outcomes, while those in

the level r have exactly C := nd1d2 outcomes. This way, we can specify each instrument
from LOCCr[n,H1,H2] using exactly D := (Br − B)/(B− 1) + Br−1C matrices.

With the above in mind, let S be the set consisting of D-tuples(
J()i1

, J(i1)i2
, . . . , J(i1...ir−1)

ir
: i1, . . . , ir−1 ∈ [B] and ir ∈ [C]

)
, (2.58)

satisfying the following conditions:

1. the matrices J(i1...ir−1)
ir ∈ Pos(H2 ⊗ H′1) and ∑C

ir=1 TrH2

(
J(i1...ir−1)
ir

)
= IH′1 for any

measurement history (i1 . . . ir−1);

2. for any l ∈ [r − 1] and for any measurement history (i1 . . . il−1), the matrices
J(i1...il−1)
il

∈ Pos(H1 ⊗H′1) and ∑B
il=1 TrH1

(
J(i1...il−1)
il

)
= IH′1 .

3. for all l ∈ [r] the matrices J(i1...il−1)
il

are N-fold tensor products;
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The set S consists of D-tuples whose each coordinate belongs to either set S1 or S2,
where

St := {J ∈ Pos(Ht ⊗H′1) is an N-fold tensor product : IH′1 − TrHt(J) ∈ Pos(H′1)}
(2.59)

for t = 1, 2. Both S1 and S2 are closed and bounded. Therefore, S is also bounded. Since
the only other constraints for D-tuples in S are of equality type, the set S is closed. Fi-
nally, as we are working in finite dimensional space, we can conclude that S is compact.

Let f : S → LOCCr[n,H1,H2] be a function that assigns every tuple in S its cor-
responding instrument in LOCCr[n,H1,H2]. Function f is both continuous and sur-
jective. Since continuous functions map compact sets to compact ones, we get that
LOCCr[n,H1,H2] is compact.

2.7 Discussion and open problems

In this chapter we have studied the structure of LOCC operations. In light of recent
findings concerning the nature of asymptotic LOCC processes, we have adopted the
formalism of quantum instruments to precisely characterize the topological closure of
LOCC.

There are a few interesting questions related to this work that deserve additional
investigation. First, all known examples that separate LOCC from LOCC or LOCC from
SEP make use of the classical information obtained from a quantum measurement. For
quantum channels with no classical output register, it is unknown whether the same
separation results hold (although, LOCCN can be separated from SEP by such channels
[CD09]).

On the other hand, one can ask how the operational classes compare if one is only
interested in the classical information extracted from a quantum measurement. While
the state discrimination results take such an approach to separate LOCC from SEP, the
random distillation examples demonstrating LOCCN 6= LOCC 6= LOCC depend cru-
cially on the quantum outputs of the measurement. Thus, it may be possible that finite
and asymptotic LOCC are equally powerful for implementing quantum maps with only
classical output register.

In Section 2.6.1 we discussed an LOCC protocol for probabilistically implementing
any separable instrument. It is not known whether this protocol achieves optimal worst-
case success probability. Understanding which separable instruments are hardest to im-
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plement (in terms of success probability) with LOCC would further our understanding
of the relationship between the two classes.

Finally, using the distance measure between instruments described in Section 2.2.1,
one can meaningfully inquire about the size in separation between operational classes.
When given some instrument in SEP, what is the closest LOCC instrument? Further-
more, is this distance related to the nonlocal resources needed to implement the sepa-
rable instrument? We hope this work stimulates further research into such questions
concerning the structure of LOCC.
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Chapter 3

Bipartite state discrimination with
LOCC

3.1 Introduction

In the previous chapter we were concerned with general LOCC instruments. The rest of
this thesis focuses on the problem of discriminating separable states from some known
set S = {|ψi〉}i using LOCC. To accomplish this task we only need to produce a classical
answer (i.e., the index “i”), hence we are interested in implementing a measurement
rather than a general quantum instrument. In this chapter we provide the common
background for the results concerning state discrimination and implementation of von
Neumann measurements developed in the later chapters. We also discuss the problem
of discriminating states from an orthonormal basis with finite LOCC. Finally, we ask
whether asymptotic LOCC offers any advantage over finite LOCC for implementing
projective measurements.

This chapter is organized as follows. We start by discussing separable and LOCC
measurements and describing the tree structure of an LOCC protocol in Section 3.2.
Then in Section 3.3 we formally define the state discrimination problem and clarify its
relation to that of implementing von Neumann measurements. We continue with a re-
view of previous results on state discrimination with LOCC in Section 3.4. Next, in
Section 3.5 we introduce the concept of non-disturbing measurements and explain their
relevance for state discrimination with LOCC. In Section 3.6 we show that there exists
a polynomial time algorithm for deciding whether states from a basis can be discrimi-
nated with finite LOCC. In Section 3.7 we give a more detailed account of the results on
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state discrimination with asymptotic LOCC presented in [KKB11]. In the later chapters
we use these results, and their interpolation technique in particular, in an essential way.
Finally in Section 3.8 we prove that asymptotic and finite LOCC are equally powerful
for implementing a projective measurement with tensor product operators. This result
generalizes a theorem of [KKB11] reviewed in Section 3.7.

3.2 Separable and LOCC measurements

3.2.1 Separable measurements

In this section we specialize the definition of separable instruments from Chapter 2 for
2-party POVMs.

A POVM {Ei}i∈[n] ⊆ Pos(CdA ⊗ CdB) corresponds to a 2-party instrument J =

(E1, . . . , En), where the CP maps Ei are defined via Ei(ρ) = Tr(Eiρ) for all i ∈ [n]. The
Choi matrix of Ei is given by

JEi =
(
Ei ⊗ I

)
ΦAB:A′B′ = ∑

a,c∈[dA]
b,d∈[dB]

Tr
(

Ei|a, b〉〈c, d|
)
|a, b〉〈c, d| = Ei, (3.1)

where ΦAB:A′B′ is an unnormalized maximally entangled state (see Equation (2.9)). Re-
call from Section 2.3 that an instrument J is separable if and only if the Choi matrices of
all its CP maps Ei are separable. Since JEi = Ei, the POVM {Ei}i∈[n] is separable if and
only if all the Ei are separable, i.e.,

Ei = ∑
j

EA
j ⊗ EB

j (3.2)

for some EA
j ∈ Pos(CdA) and EB

j ∈ Pos(CdB).

3.2.2 LOCC measurements

In this section we specialize the definition of finite LOCC instruments from Chapter 2
for 2-party POVMs. We also describe a general LOCC protocol for implementing such
a POVM.
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LetM be a 2-party measurement with POVM {Ei}i∈[n] ⊆ Pos(CdA ⊗CdA db) and let
J = (Ei : i ∈ [n]) be the instrument corresponding to this POVM. We say that M is
a 2-party LOCC measurement if the instrument J belongs to 2-party LOCCN. In other
words, the measurement statistics of M can be reproduced exactly by some finite 2-
party LOCC protocol P . We will say that such a P implements the measurement M.
It would be more accurate to use the term ”finite LOCC measurement” to refer toM,
however for shortness we have chosen to omit the description “finite”.

As described in Section 2.2.2, if J ∈ LOCCN then it can be implemented by Alice
and Bob taking finitely many turns in applying one-way local instruments and commu-
nicating the outcome to the other party. The instrument applied at round t depends on
the measurement record m = (m1, . . . , mt−1) accumulated during the previous rounds.

We now describe a general LOCC protocol for implementing an n-outcome POVM
{Ei}i∈[n]. Since coarse graining can always be postponed to the end of the protocol,
we can assume that each of the one-way local instruments is completely fine-grained
(see Section 2.2.1 for terminology). Note that the non-acting party can postpone the
application of any nontrivial TCP map to the next round. Therefore, we can assume that
the applied instruments act non-trivially only on the acting party’s space (this might
require extending the protocol by one additional round). Finally, in the case of only two
parties, we can assume that Alice is the acting party in all odd numbered rounds and
Bob is the acting party in all even numbered rounds or vice versa.

Let m = (m1, . . . , mt) be the measurement record after the execution of the first t
rounds of the protocol and let Λ be the empty string, corresponding to no messages
having been sent yet. Also, let Ami(m1, . . . , mi−1) (and Bmi(m1, . . . , mi−1)) be the Kraus
operator of the mith CP map of the instrument Alice (Bob) measures in round i. Then the
Kraus operator that Alice and Bob have implemented at the end of round t is a product
operator Am ⊗ Bm, where1

Am := Amt−1(m1, . . . , mt−2) . . . Am3(m1, m2)Am1(Λ), (3.3)
Bm := Bmt(m1, . . . , mt−1) . . . Bm4(m1, m2, m3)Bm2(m1). (3.4)

Certain measurement records will cause Alice and Bob to terminate the protocol.
Prior to the final coarse-graining, the quantum operation implemented by the LOCC
protocol acts on any state ρ as⊕

m
(Am ⊗ Bm)ρ(Am ⊗ Bm)

† (3.5)

1Here we assume for simplicity that t is even and Alice starts the protocol; in the other cases the
operators Am and Bm can be defined similarly.
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where m ranges over all the terminating measurement records. When the output di-
mensions of Am and Bm are equal for all m, the above expression can be written as

∑
m
|m〉〈m| ⊗ (Am ⊗ Bm)ρ(Am ⊗ Bm)

†. (3.6)

Here the first register stores the classical measurement record and is shared between
the two parties; the last two registers belong to Alice and Bob, respectively. At the
end of the protocol Alice and Bob must output one of the n classical outcomes of M.
Let L(k) be the set of all terminating measurement records corresponding to outcome
k ∈ [n]. Then coarse graining according to the partition

(
L(1), . . . , L(n)

)
corresponds

to measuring the classical register in Equation (3.5) according to this partition. The kth
POVM element of the resulting measurement is

∑
m∈L(k)

A†
m Am ⊗ B†

mBm, (3.7)

which must equal Ek if the LOCC protocol indeed implements measurementM.

3.2.3 Finite and asymptotic LOCC

We consider two scenarios: when a measurement can be performed in a finite number
of rounds or asymptotically.

Definition 3.1. We say that a measurement M can be implemented by finite LOCC, i.e.,
LOCCN, if there exists a finite-round LOCC protocol that, for any input state, produces
the same distribution of measurement outcomes asM.

Definition 3.2. We say that a measurementM can be implemented by asymptotic LOCC,
i.e., LOCC, if there exists a sequence P1,P2, . . . of finite-round LOCC protocols whose
output distributions converge to that ofM.

The exact implementation scenario is not practical since any real-world device is
susceptible to errors due to imperfections in implementation. However, proving that a
certain task cannot be performed asymptotically is considerably harder than showing
that it cannot be done (exactly) by any finite LOCC protocol.
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1

1,1

A1(Λ)⊗ B1(1)

B1(1)

1,2

1,2,1

A1(1, 2)A1(Λ)⊗ B2(1)

A1(1, 2)

1,2,2

A2(1, 2)A1(Λ)⊗ B2(1)

A2(1, 2)

B2(1)

A1(Λ)

2

A2(Λ)⊗ I

A2(Λ)

3

A3(Λ)⊗ I

A3(Λ)

Figure 3.1: An example showing the tree structure of a specific LOCC measurement. In round
one Alice performs a three-outcome measurementA(Λ); in round two, upon receiving message
“1”, Bob performs a two-outcome measurement B(1) and upon receiving message “2” or “3” he
terminates the protocol; in round three, upon receiving message “1”, Alice terminates the pro-
tocol and, upon receiving message “2”, she performs a two-outcome measurement A(1, 2). All
nodes are labeled by the accumulated measurement record. The corresponding measurement
operator is given below each leaf.

3.2.4 LOCC protocol as a tree

We represent an LOCC measurement protocol as a rooted tree (see Figure 3.1). The pro-
tocol begins at the root and proceeds downward along the edges. Each edge represents
a certain measurement outcome obtained at its parent node, and leaves are the nodes
where the protocol terminates. The set of all leaves is partitioned into subsets, each
corresponding to an outcome of the LOCC measurement being implemented.

A path from the root to a leaf is called a branch. There is a one-to-one correspon-
dence between the branches and the possible courses of execution of the LOCC proto-
col. Likewise, there is a one-to-one correspondence between the nodes of the tree and
the accumulated measurement records.

The measurement at node u is the measurement performed by the acting party once
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the protocol has reached node u. In contrast, the measurement operator corresponding to
node u is the measurement operator that has been implemented upon reaching node u.
For example, consider the node (1, 2). The measurement at node (1, 2) is given by the
measurement operators {A1(1, 2), A2(1, 2)}, whereas the measurement operator corre-
sponding to the node (1, 2) is given by A1(Λ)⊗ B2(1) (recall that Λ denotes the empty
string). As another example, the measurement operators corresponding to the leaves
are exactly the measurement operators of the LOCC protocol prior to coarse graining.

3.3 Bipartite state discrimination problem

The task of bipartite state discrimination is central to this thesis. Formally, the problem
is as follows:

Let S = {ρ1, . . . , ρn} ⊆ Pos(CdA ⊗ CdB) be a known set of quantum states. Suppose that
k ∈ [n] is selected uniformly at random and Alice and Bob are given the corresponding parts of
state ρk ∈ S. Their task is to determine the index k with certainty by performing a measurement
on this state.

Sometimes we will be redundant and say that Alice and Bob can discriminate the
states from S with certainty. The case when they must succeed with at least some fixed
probability p is also important, but will not be considered in this thesis.

We will mostly be concerned with situations where S is a set of pure states, i.e., each
ρi = |ψi〉〈ψi| for some |ψi〉 ∈ CdA ⊗ CdB . A case of special interest is when S is an
orthonormal product basis, i.e., each |ψi〉 = |αi〉|βi〉 for some unit vectors |αi〉 ∈ CdA

and |βi〉 ∈ CdB . Such states can be perfectly discriminated by a separable measurement
M with POVM elements

Ei := |αi〉〈αi| ⊗ |βi〉〈βi|. (3.8)

However, this measurement cannot always be implemented by finite [WH02, GV01] or
even asymptotic LOCC [BDF+99]. In such cases we say that S possesses nonlocality
(without entanglement).

We now show that in certain situations there is a close connection between the task
of discriminating states from a set S with LOCC and implementing a certain projective
measurement with LOCC. In these cases the following lemma will allow us to consider
the two tasks interchangeably.

42



Lemma 3.3. Let M = {P1, . . . , Pn} ⊆ Pos(CdA ⊗ CdB) be a projective measurement. Also
let S = {ρ1, . . . , ρn}, where ρi := 1

rank(Pi)
Pi for all i ∈ [n]. An LOCC protocol P implements

measurementM if and only if P can be used to discriminate the states from S with certainty.

Proof. Clearly, given an LOCC protocol P that implements the measurementM, we can
use the measurement outcome to discriminate the states from S with certainty.

To prove the other direction, suppose P can be used to discriminate the states from
S with certainty. Consider any nonzero POVM element E⊗ F that corresponds to some
leaf of the protocol tree of P . Since P discriminates the states from S with certainty,
Tr
(
(E⊗ F)ρ

)
= 0 for all but one of the states ρ ∈ S. Hence, if Tr

(
(E⊗ F)ρi

)
6= 0 then

the column space of E⊗ F is contained in that of ρi (or equivalently, in that of Pi). Let
Λi be the set of POVM elements E⊗ F of P for which Tr

(
(E⊗ F)ρi

)
6= 0. Since POVM

elements must sum to identity, we have

∑
E⊗F∈Λi

E⊗ F = Pi (3.9)

and the protocol P can be used to implementM.

Corollary 3.4. Consider measurement M and set of states S from Lemma 3.3. Then M ∈
LOCC if and only if the states from S can be discriminated with asymptotic LOCC, i.e., LOCC.

Proof. Consider a sequence of measurements M1,M2 . . . that converges to M. Note
that using the outcomes of Mi to discriminate the states from S will give a vanishing
error probability as i tends to ∞. Thus, the states from S can be discriminated with
asymptotic LOCC.

To obtain the other direction, suppose that P1,P2 . . . is a sequence of finite LOCC
protocols that discriminate the states from S with vanishing error. Since the only mea-
surement that discriminates the states from S with certainty isM, the sequence of mea-
surements M′

1,M′
2 . . . implemented by protocols P1,P2 . . . , respectively, must con-

verge toM. So we conclude thatM ∈ LOCC.

In general, there can be more than one measurement that discriminates the states
from S. Hence, even if states from S can be discriminated with finite LOCC, it can
happen that a measurement M that can be used to discriminate these states does not
belong even to the closure of LOCC (i.e., LOCC). For example, consider the set

S :=
{
|ψ〉, |00〉

}
, (3.10)
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where |ψ〉 = |01〉−|10〉√
2

. Clearly, the states from S can be discriminated with finite LOCC.
Now consider the measurement

M :=
{
|ψ〉〈ψ|, I − |ψ〉〈ψ|

}
. (3.11)

AlthoughM can be used to discriminate the states from S, it does not belong to LOCC,
since its POVM elements are not separable. Hence, we see that in general there does not
exist such a convenient connection between the task of state discrimination and that of
measurement implementation as in the special case of Lemma 3.3 and Corollary 3.4.

3.4 Previous results

In this section we review the known results on state discrimination with LOCC. This
problem has been extensively studied in the past decade. We do not intend to give a
comprehensive overview, but rather focus on the results that are relevant to product
state discrimination or deal with asymptotic as opposed to finite LOCC.

The first example of an orthonormal product basis of bipartite quantum states that
cannot be perfectly discriminated by even asymptotic LOCC was given in [BDF+99]. By
considering the so-called domino states authors of [BDF+99] gave a striking illustration
of the difference between the power of LOCC and separable operations. Furthermore,
[BDF+99] quantifies the information deficit of any LOCC protocol for discriminating
these states. This result has been a starting point for many other studies on state dis-
crimination by LOCC, with the ultimate goal of understanding LOCC operations and
how they differ from separable ones. We briefly describe some of the directions that
have been explored. Unless otherwise stated, these results refer to the discrimination of
pure states with finite LOCC.

First consider the problem of discriminating two states without any restrictions on
their dimension. Surprisingly, any two orthogonal (possibly entangled) pure states can
be perfectly discriminated by finite LOCC, even when they are held by more than two
parties [WSHV00]. Furthermore, optimal discrimination of any two multipartite pure
states can be achieved with finite LOCC both in the sense of minimum error proba-
bility [VSPM01] and unambiguous discrimination [CY01, CY02, JCY05]. Recently this
has been generalized to implementing an arbitrary POVM by finite LOCC in any 2-
dimensional subspace [Cro12].

Many authors have considered the problem of perfect state discrimination by fi-
nite LOCC. In particular, the case where one party holds a small-dimensional system
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is well understood. Reference [WH02] characterizes when a set of orthogonal (possibly
entangled) states in C2 ⊗ C2 can be perfectly discriminated by finite LOCC. A simi-
lar characterization for sets of orthogonal product states in C3 ⊗ C3 has been given by
[FS09]. In addition, [WH02] characterizes when a set of orthogonal states in C2 ⊗ Cn

can be perfectly discriminated by finite LOCC when Alice performs the first nontrivial
measurement. It is also known that a generalization of domino states, the so-called θ-
rotated domino states, cannot be perfectly discriminated by finite LOCC (unless θ = 0)
[GV01]. Furthermore, the original domino states have inspired a construction of n-
partite d-dimensional product bases that cannot be perfectly discriminated with finite
LOCC [NC06].

The role of entanglement in perfect state discrimination by LOCC has also been con-
sidered. It is not possible to perfectly discriminate more than two Bell states in C2 ⊗C2

by finite LOCC [GKR+01]. In fact, the same is true for any set of more than n maximally
entangled states in Cn ⊗Cn [Nat05]. Multipartite states from an orthonormal basis can
be perfectly discriminated by finite LOCC only if it is a product basis [HSSH03]. Also,
no basis of the subspace orthogonal to a state with Schmidt rank 3 or greater can be
perfectly discriminated even by asymptotic LOCC [DFXY09]. On the other hand, any
three orthogonal maximally entangled states in C3 ⊗C3 can be perfectly discriminated
by finite LOCC [Nat05]. In fact, if the number of dimensions is not restricted, one can
find arbitrarily large sets of orthogonal maximally entangled states that can be perfectly
discriminated by finite LOCC [Fan04]. Contrary to intuition, states with more entangle-
ment can sometimes be discriminated perfectly with finite LOCC while their less entan-
gled counterparts cannot [HSSH03]. Generally, however, a set of orthogonal multipar-
tite states S ⊆ CD can be perfectly discriminated with finite LOCC only if |S| ≤ D

d(S) ,
where d(S) measures the average entanglement of the states in S [HMM+06].

It is known that local projective measurements are sufficient to discriminate states
from an orthonormal product basis with finite LOCC [DR04, CL04]. Moreover, there is
a polynomial-time algorithm for deciding if states from a given orthonormal product
basis of CdA ⊗ CdB can be perfectly discriminated with finite LOCC [DR04]. The state
discrimination problem for incomplete orthonormal sets (i.e., orthonormal sets of states
that do not span the entire space) seems to be harder to analyze. However, unextendible
product bases might be an exception (although commonly referred to as “bases” these
are in fact incomplete orthonormal sets). It is known that states from an unextendible
product basis cannot be perfectly discriminated by finite LOCC [BDM+99]. In fact, the
same holds for any basis of a subspace spanned by an unextendible product basis in
C2 ⊗C2 ⊗C2 [DXY10]. Curiously, there are only two families of unextendible product
bases in C3 ⊗C3, one of which is closely related to the domino states [DMS+03].
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The problem of state discrimination with asymptotic LOCC has been studied less. It
is known that states from an unextendible orthonormal product set cannot be perfectly
discriminated with LOCC even asymptotically [DR04]. Reference [KKB11] gives a nec-
essary condition for perfect asymptotic LOCC discrimination, and also shows that for
perfectly discriminating states from an orthonormal product basis, asymptotic LOCC
gives no advantage over finite LOCC. The latter result implies that the algorithm from
[DR04] also covers the asymptotic case. On the other hand, even in some very basic in-
stances of state discrimination it remains unclear whether asymptotic LOCC is superior
to finite LOCC (see [DFXY09, KKB11] for specific sets of states).

Another line of study originating from [BDF+99] aims at understanding the differ-
ence between the classes of separable and LOCC operations. To this end, [Coh11] con-
structs an r-round LOCC protocol implementing an arbitrary separable measurement
whenever such a protocol exists. A different approach is to exhibit quantitative gaps
between the two classes. To the best of our knowledge, only two quantitative gaps other
than that of [BDF+99] are known. References [KTYI07, Koa09] demonstrate a gap be-
tween the success probabilities achievable by bipartite separable and LOCC operations
for unambiguously discriminating |00〉 from a fixed rank-2 mixed state. The largest
known difference between the two classes is a gap of 0.125 between the achievable suc-
cess probabilities for tripartite EPR pair distillation [CCL12a, CCL12a]. Moreover, as the
number of parties grows, the gap approaches 0.37 [CCL12a, CCL12b].

At a first glance one might think that the nonlocality without entanglement phe-
nomenon is related to quantum discord. However, the quantum discord value cannot
be used to determine whether states from a given ensemble can be discriminated with
LOCC [BT10].

Finally, if a set of orthogonal (product or entangled) states cannot be perfectly dis-
criminated by LOCC, one can measure their nonlocality by considering how much en-
tanglement is needed to achieve perfect discrimination [Coh08, BBKW09].

3.5 Non-disturbing measurements

In this section we introduce the concept of non-disturbing operators, which is intrinsic
to perfect state discrimination with both finite and asymptotic LOCC.

Definition 3.5. Let S ⊆ Cd be a set of orthogonal states. We say that E ∈ Pos(Cd) is
non-disturbing for S, if

〈ψ|E|φ〉 = 0 (3.12)
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for all distinct |ψ〉, |φ〉 ∈ S. We say that a measurementM is non-disturbing for S if each
of the POVM elements ofM is non-disturbing for S.

The above definition suits the case when we want to discriminate pure states. If S
consists of mixed states, in place of Condition (3.12) we require that

Tr(EρEσ) = 0 (3.13)

for all distinct ρ, σ ∈ S.

To better understand what the condition in Equation (3.12) means for state discrim-
ination, note that two distinct states |ψ〉, |φ〉 ∈ S and a POVM element E satisfy Equa-
tion (3.12) if and only if we are in one the following two situations.

• At least one of the states |ψ〉, |φ〉 never leads to the outcome corresponding to E.

• Each of the states |ψ〉 and |φ〉 can lead to the outcome corresponding to E but the
obtained post-measurement states remain orthogonal.

Note that any measurement protocol that perfectly discriminates the states from S
must consist solely of measurements that are non-disturbing for the current set of states.
In particular, the protocol must start with a measurement that is non-disturbing for S.
Since in finite LOCC protocols each measurement must be local and, without loss of
generality, non-trivial, we obtain the following.

A necessary condition for perfect state discrimination with finite LOCC. The states
from a set S can be perfectly discriminated with finite LOCC only if S admits a non-disturbing
product operator a⊗ b where exactly one of the matrices a, b is the identity matrix.

Showing that the above condition fails is a common approach for establishing that
states from a given set cannot be perfectly discriminated with finite LOCC. It is not
known whether this condition is also necessary for perfect state discrimination with
asymptotic LOCC. However, in Section 3.7.2 we show that the concept of non-disturbing
operators can also be used to formulate a necessary condition for state discrimination
with asymptotic LOCC.

We conclude this section with a simple observation that the existence of a non-
disturbing operator of the form a⊗ I or I ⊗ b implies the existence of a non-disturbing
measurement for the respective party. We first show that any nonnegative linear com-
bination of non-disturbing operators is also non-disturbing.
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Lemma 3.6. Let S ⊆ Pos(Cd) be a set of states and assume that E1, . . . , Ek ∈ Pos(Cd) are
non-disturbing for S. Let c1, . . . , ck be such that the operator

E := ∑
i∈[k]

ciEi (3.14)

is positive semidefinite. Then E is non-disturbing for S.

Proof. For any M, ρ, σ ∈ Pos(Cd)

Tr(MρMσ) = Tr
(
(
√

ρM
√

σ)†(
√

ρM
√

σ)
)
=
∥∥√ρM

√
σ
∥∥2

2. (3.15)

Since ‖A‖2 = 0 implies that A is the zero matrix,
√

ρEi
√

σ must be the zero matrix for
all i ∈ [k]. By definition of E, also

√
ρE
√

σ = 0 must be the zero matrix. This shows that
Tr(EρEσ) = 0 for all ρ, σ ∈ S and hence E is non-disturbing for S.

Since the identity operator is non-disturbing for any set of states S, we obtain the
following corollary.

Corollary 3.7. If a⊗ I ∈ Pos(CdA ⊗ CdB) is nontrivial and non-disturbing for S, then so is
the measurement

{ta, IdA − ta} ⊗ IB, (3.16)

where t > 0 is such that IdA − ta ∈ Pos(CdA).

3.6 Discriminating states from a basis with finite LOCC

The goal of this section is to show that if S is a basis, then it is easy to decide whether the
states from S can be discriminated with finite LOCC. As shown in Lemma 3.3, discrim-
inating the states from an orthonormal basis is equivalent to implementing a measure-
ment in that basis. Since any measurement that can be implemented with LOCC must
be separable, we can restrict our attention to orthonormal product bases. For the re-
mainder of this section, unless specified otherwise, we assume that S is an orthonormal
product basis of CdA ⊗CdB .

Let us start by making a few simple observations about the non-disturbing oper-
ators and measurements admitted by an orthonormal basis S of Cd. First, note that
Equation (3.12) asserts that the matrix E is diagonal in the basis S. Since the states in S
are orthonormal, we arrive at the following.
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Observation 3.8. An operator E ∈ Pos(Cd) is non-disturbing for S if and only if

E = ∑
|ψ〉∈S

λψ|ψ〉〈ψ| (3.17)

for some values of λψ ∈ R.

Consider any operator E ∈ Pos(Cd) that is non-disturbing for S and let Eλ be the
projector onto its λ-eigenspace. From the above observation it is easy to see that Eλ is
also non-disturbing for S. The fact that spec(Eλ) ⊆ {0, 1} leads us to our next observa-
tion:

Observation 3.9. If E ∈ Pos(Cd) is non-disturbing for S then for all λ ∈ spec(E) the projec-
tor onto Eλ can be expressed as

Eλ = ∑
|ψ〉∈T

|ψ〉〈ψ| (3.18)

for some subset T ⊆ S.

Note that the subset T = S if and only if E is trivial (i.e., proportional to the identity
matrix).

Using the above observations, we can relate the existence of nontrivial local mea-
surements that are non-disturbing for S to the existence of a certain kind of subsets of S.

Lemma 3.10. Let S ⊆ CdA ⊗ CdB be an orthonormal basis and d := dAdB. Then S admits a
nontrivial non-disturbing measurement of the formMA⊗IB if and only if there exists a subset
T ( S such that

∑
|ψ〉∈T

|ψ〉〈ψ| = a⊗ I (3.19)

for some a ∈ Pos(CdA). Moreover, if T ( S satisfies the above condition, then the measurement
{a, I − a} ⊗ IB is non-disturbing for S.

Proof. Let MA ⊗ IB be a nontrivial measurement that is non-disturbing for S and let
a⊗ IdB ∈ MA ⊗ IB be a nontrivial operator. Fix some λ ∈ spec(a⊗ IdB) and consider
the projector Eλ = aλ ⊗ IdB 6= Id onto the λ-eigenspace of a⊗ IdB . By Observation 3.9,
we conclude that

aλ ⊗ I = ∑
|ψ〉∈T

|ψ〉〈ψ| (3.20)
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for some subset T ( S.

To prove the other direction, consider a subset T ( S that satisfies Equation (3.19)
for some a ∈ Pos(CdA). Since

(IdA − a)⊗ IdB = Id − (a⊗ IdB) = ∑
|ψ〉∈S\T

|ψ〉〈ψ|, (3.21)

the operator (IdA − a)⊗ IB is non-disturbing for S by Observation 3.8. Therefore, the
projective measurement {a, IdA − a} ⊗ IB is non-disturbing for S and we are done.

The above lemma straightforwardly leads to an algorithm for checking whether S
admits a nontrivial non-disturbing measurement of the form MA ⊗ IB that examines
every subset of S and thus runs in time 2O(|S|). In fact it is not necessary to exhaustively
check all the subsets of S and there exists a polynomial time algorithm. We now present
such an algorithm whose rough outline was first suggested in [DR04]. We later give the
first formal analysis of this algorithm and the first rigorous proof of its correctness.

1 Nondisturbing Alice(S)
2 Pick |α0, β0〉 ∈ S
3 ã := |α0〉〈α0|
4 R := {|α0, β0〉}
5 continue := TRUE
6 while (continue) do
7 continue := FALSE
8 T := S \ R;
9 for each |α, β〉 ∈ T do

10 if
(
〈α|ã|α〉 6= 0

)
then

11 ã := ã + |α〉〈α|
12 R := R ∪ {|α, β〉}
13 continue := TRUE
14 if (R = S) then return FALSE
15 else return R

In the while cycle the set R is expanded by adding any vector |α, β〉 ∈ T that is
non-orthogonal on Alice’s part to some vector from the current set R. To test non-
orthogonality we compute 〈α|ã|α〉 which takes time O(|S|2) as |α〉 ∈ CdA and dA ≤ |S|.
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Since there are at most |S| elements in T ⊆ S, one execution of the while cycle takes
time O(|S|3). Finally, the while cycle gets repeated O(|S|) times and thus Nondisturb-
ing Alice(S) has time complexity O(|S|4).

The above algorithm determines whether S admits a non-disturbing measurement
that Alice can apply to her state space. If the algorithm returns FALSE such a measure-
ment does not exist. If the algorithm returns a subset T, then such measurement can be
constructed easily form the set T. We now prove the correctness of the above algorithm.

Lemma 3.11. Suppose Nondisturbing Alice(S) = T for some T ⊆ S. Then set T satisfies
Condition (3.19) in Lemma 3.10 for some a ∈ Pos(CdA).

Proof. Let a be the projector onto span{|α〉 : |α, β〉 ∈ T}. By the construction of the set
T, we have that 〈α|γ〉 = 0 for all |α, β〉 ∈ T and all |γ, δ〉 ∈ (S \ T). Therefore, we get
that

(a⊗ I)|ψ〉 =
{

0 · |ψ〉 if |ψ〉 ∈ (S \ T)
1 · |ψ〉 if |ψ〉 ∈ T

(3.22)

which implies that
a⊗ I = ∑

|ψ〉∈T
|ψ〉〈ψ|. (3.23)

This means that T satisfies Condition (3.19) in Lemma 3.10 with a ∈ Pos(CdA) defined
above and we are done.

Lemma 3.12. If there exists T ( S satisfying Condition (3.19) in Lemma 3.10 then Nondis-
turbing Alice(S) 6= FALSE.

Proof. Suppose that a subset T ( S satisfies the Condition (3.19) in Lemma 3.10 for some
a ∈ Pos(CdA), i.e.

a⊗ I = ∑
|ψ〉∈T

|ψ〉〈ψ|. (3.24)

Let |ψ0〉 be the vector that is picked in the first step of the algorithm. Without loss of
generality we can assume that |ψ0〉 ∈ T, as otherwise we could replace a with I − a and
T with S \ T.

From Equation (3.24) we see that

0 = 〈γ, δ|(a⊗ I)|γ, δ〉 (3.25)
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for all |γ, δ〉 ∈ (S \ T). Since

∑
|α,β〉∈T

|α〉〈α| = TrB

(
∑
|ψ〉∈T

|ψ〉〈ψ|
)
= TrB (a⊗ I) = dB · a, (3.26)

we can substitute 1
dB

∑|α,β〉∈T |α〉〈α| for a in Equation (3.25) to obtain

0 = 〈γ, δ|
(

∑
|α,β〉∈T

|α〉〈α| ⊗ I

)
|γ, δ〉 = ∑

|α,β〉∈T
|〈γ|α〉|2 (3.27)

for all |γ, δ〉 ∈ (S \ T). Therefore, 〈α|γ〉 = 0 for all |α, β〉 ∈ T and all |γ, δ〉 ∈ (S \ T).
Since the algorithm starts with a subset R = {|ψ0〉} ⊆ T, the condition in Line 10 is
never satisfied for |γ, δ〉 ∈ (S \ T). So it must return some subset of T.

Combining the above two lemmas with Lemma 3.10, we obtain the following theo-
rem relating the result returned by the algorithm.

Theorem 3.13. An orthonormal product basis S admits a nontrivial non-disturbing measure-
ment of the form MA ⊗ IB if and only if Nondisturbing Alice(S) 6= FALSE. Moreover, if
Nondisturbing Alice(S) = T, then

∑
|ψ〉∈T

|ψ〉〈ψ| = a⊗ I (3.28)

and the projective measurement

MT := {a, I − a} ⊗ IB (3.29)

is non-disturbing for S.

Note that by measuring MT from Equation (3.29) we partition the set S into parts
T and S \ T. If the states from S can be discriminated with finite LOCC then so can be
the states from any subset S′ ⊆ S. Therefore, measuringMT as a first step in our finite
LOCC protocol cannot render the set indistinguishable with finite LOCC, if it was not
so to start with.

Similar to Nondisturbing Alice(S), we can define a function Nondisturbing Bob(S)
that determines whether S admits a nontrivial non-disturbing measurement that Bob
can perform on his part of the space. Bearing in mind the observations in the above
paragraph, it is easy to see that the following algorithm determines whether the states
from S can be discriminated with finite LOCC.
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1 Discriminate(S)
2 if (|S| ≤ 1) then return TRUE
3 else
4 A := Nondisturbing Alice(S)
5 B := Nondisturbing Bob(S)
6 if (A 6= FALSE) then
7 return (Discriminate(A) AND Discriminate(S \ A))
8 else if (B 6= FALSE) then
9 return (Discriminate(B) AND Discriminate(S \ B))

10 else return FALSE

Note that each of Nondisturbing Alice(S′) and Nondisturbing Bob(S′) either re-
turn FALSE or a proper subset of S′. Thus, Discriminate(S) will result in at most O(|S|)
recursive calls of Discriminate. Each such call invokes Nondisturbing Alice(S′) and
Nondisturbing Bob(S′) that have time complexity O(|S′|4). Hence, Discriminate(S)
runs in time O(|S|5). Therefore, one can decide in polynomial times whether states
from an orthogonal basis S can be discriminated with finite LOCC.

3.7 Results of Kleinmann, Kampermann and Bruß

The questions concerning state discrimination with asymptotic LOCC are usually much
harder to tackle than their finite LOCC analogues. In this chapter we review the results
reported in the recent work [KKB11], which is a must-read for anybody interested in
state discrimination with asymptotic LOCC. In Section 3.7.1 we discuss a particular
technique for implementing any given measurement as a two-stage process that we use
in later chapters. In Section 3.7.2 we give a necessary condition for perfect discrimina-
tion of states from a set S with asymptotic LOCC. As a corollary to this condition one can
obtain that finite and asymptotic LOCC are equally powerful for perfect discrimination
of the states from a full basis (see Corollary 3.16).

3.7.1 Pseudo-weak measurements

In this section we review a technique of splitting up a measurement into a two-stage
process, where the measurement in the first stage can be made arbitrarily weak (i.e. close
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to an identity measurement). This technique will allow us to construct interpolated
LOCC protocols in Chapter 4 and construct global ε-interpolations of any measurement
in Chapter 5.

Definition 3.14. LetM = {F1, . . . , Fk} ⊆ Pos(Cn) be a measurement. The pseudo-weak
implementation ofM with interpolation parameters c1, . . . , ck ≥ 0 is the measurement
M1 = {E1, . . . , Ek} where

Ei := c (ci I + Fi) (3.30)

and c := (1 + ∑i ci)
−1.

The corresponding recovery measurementsM(i)
2 = {E(i)

1 , . . . , E(i)
k } for i ∈ [k] are then

specified by

E(i)
j :=

{
δij I if ci = 0,

E−
1
2

i c
(
ciFj + δijFj

)
E−

1
2

i otherwise.
(3.31)

The idea is that we can implementM by first measuring the pseudo-weak measure-
mentM1 and then, conditioned on outcome i ∈ [k], performing the recovery measure-
mentM(i)

2 . Moreover, we can adjust the interpolation parameters ci to make the POVM
elements Ei arbitrarily weak (i.e., close to some multiple of the identity operator).

Let us now verify thatM1 andM(i)
2 as defined above are measurements that give us

a two-stage implementation ofM. First, it is easy to see thatM1 is a valid measurement,
as isM(i)

2 when ci = 0. To see this forM(i)
2 with ci > 0, note that the matrix Ei has full

rank and hence the inverse E−
1
2

i is well-defined. Furthermore,

∑
j

E(i)
j = E−

1
2

i c ∑
j

(
ciFj + δijFj

)
E−

1
2

i = E−
1
2

i c (ci I + Fi) E−
1
2

i = E−
1
2

i EiE
− 1

2
i = I. (3.32)

To see that the pseudo-weak measurement followed by appropriate recovery mea-
surement indeed implementsM, let i be the outcome of the pseudo-weak measurement
and j be the outcome of the recovery measurement. Then the corresponding POVM el-
ement of the two-stage measurement process is given by√

EiE
(i)
j

√
Ei = c

(
ci + δij

)
Fj. (3.33)
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E(1)
1 E(1)

2 E(1)
3

E2

E(2)
1 E(2)

2 E(2)
3

E3

E(3)
1 E(3)

2 E(3)
3

Pseudo-weak
measurement M1

Recovery
measurements M(i)

2

Figure 3.2: An example, where a three-outcome measurementM is implemented by first mea-
suring a pseudo-weak measurement M1 = {E1, E2, E3} with positive interpolation parame-
ters and then, conditioned on the outcome i, performing the recovery measurement M(i) =

{E(i)
1 , E(i)

2 , E(i)
3 }. At the end, we perform a coarse graining according to the outcome (color) of

the recovery measurement (i.e., the same color outcomes correspond to the same outcome of the
original measurement).

Since ∑i c
(
ci + δij

)
Fj = Fj, coarse graining according to the outcome j of the recovery

measurementsM(i) implements measurementM. See Figure 3.2 for an illustration.

The above shows that the pseudo-weak measurement followed by an appropriate
recovery measurement reproduces the measurement statistics ofM. In fact we can also
reproduce the post-measurement states. To discuss post-measurement states ofM, we
have to specifyM using the measurement operators. LetM = {M1, . . . , Mk} be such
a specification, where M†

i Mi = Fi. Let us choose the following measurement operators
for the pseudo-weak and recovery measurements respectively:

M1 = {
√

E1, . . . ,
√

Ek} (3.34)

M(i)
2 =

{
U1i

√
E(i)

1 , . . . Uki

√
E(i)

k

}
. (3.35)

where Uij are some isometries to be chosen later. Note that the POVM elements of the
above measurements are the same as in Definition 3.14. From Equation (3.33) we see
that (√

E(i)
j
√

Ei

)†(√
E(i)

j
√

Ei

)
= c

(
ci + δij

)
M†

j Mj. (3.36)

According to polar decomposition, for any two matrices M, N, such that M†M = N†N
there exists an isometry U such that M = UN. Therefore, we can choose the isometries
Uij in Equation (3.35) so that

Uij
√

E(i)
j
√

Ei =
√

c
(
ci + δij

)
Mj (3.37)
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Finally, since ∑i c
(
ci + δij

)
= 1, we conclude that pseudo-weak measurement followed

by an appropriate recovery measurement and coarse graining according to the outcome
of the recovery measurement, reproduces both the measurement statistics and post-
measurement states ofM.

3.7.2 A necessary condition for perfect state discrimination by LOCC

In this section we review a necessary condition for perfect discrimination of states from
some fixed set S with asymptotic LOCC. Currently there are no other such conditions
known except the one we develop in Chapter 4 (see Section 4.5.2 for a comparison of
the two conditions).

Theorem 3.15 (Kleinmann, Kampermann, and Bruß [KKB11]). Consider a set of states
S = {ρ1, . . . , ρn} ⊆ Pos(CdA ⊗CdB) such that

⋂
i ker ρi does not contain any nonzero product

vector. Then S can be discriminated with asymptotic LOCC only if for all χ with 1/n ≤ χ ≤ 1
there exists a positive semidefinite product operator E = a⊗ b satisfying all of the following:

1. ∑ρ∈S Tr(Eρ) = 1,

2. maxρ∈S Tr(Eρ) = χ,

3. Tr(EρEσ) = 0 for all distinct ρ, σ ∈ S.

To prove that a certain set of states S cannot be discriminated using finite LOCC,
a common approach is to show that S does not admit nontrivial non-disturbing (see
Definition 3.5) operators of the form a′ ⊗ I or I ⊗ b′. Note that the last condition in the
above theorem states that a⊗ b is non-disturbing for S. Hence, the states from S cannot
be discriminated with asymptotic LOCC if for some value of χ the set S does not admit
non-disturbing a⊗ b.

The following corollary illustrates the usefulness of the above theorem:

Corollary 3.16 (Kleinmann, Kampermann, and Bruß [KKB11]). If a (product) basis S of
CdA ⊗ CdB can be discriminated using asymptotic LOCC then it can already be discriminated
with finite LOCC.

In general, deciding whether a given set S of states can be discriminated using
asymptotic LOCC can be a daunting task. However, the task becomes easy in the spe-
cial case where S is a basis. This is because we can combine the above corollary with
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the polynomial time algorithm for deciding whether a given basis can be discriminated
with finite LOCC from Section 3.6.

In the next section we will see how to generalize the above corollary to include sets
of mixed product states.

3.8 LOCCN vs LOCC for product state discrimination

As discussed in Chapter 2, the class of quantum operations that can be implemented
with finite LOCC protocols is not closed. However, it could still contain natural sub-
classes of operations that are. Identification of such classes would simplify our under-
standing of the LOCC model, since it is usually much easier to test membership for
closed sets.

By Lemma 3.3, we see that Corollary 3.16 from the previous section implies that the
class of all von Neumann measurements that can be implemented with finite LOCC
is closed. It is hence natural to ask whether a similar result holds for the class of all
projective measurements, or for the class of all POVM measurements if we are more
ambitious. In this section we take the first step towards answering these questions. We
do this by showing that the class of all projective measurements with tensor product
operators that can be implemented with finite LOCC is indeed closed.

Theorem 3.17. LetM = {PA
i ⊗ PB

i }i∈[n] ⊆ Pos(CdA ⊗ CdB) be a projective measurement.
ThenM ∈ LOCC implies thatM ∈ LOCCN.

We can use Lemma 3.3 and Corollary 3.4 to rephrase the above theorem in terms of
state discrimination. When phrased in this way, it becomes clear that this theorem is a
generalization of Corollary 3.16 to sets of tensor product mixed states.

Theorem 3.18. Let S = {ρi := τi ⊗ σi}i∈[n] ⊆ Pos(CdA ⊗CdB) be a set of orthogonal states
such that ∑i ρi has full rank. If the states from S can be discriminated with asymptotic LOCC
then they can be discriminated with finite LOCC.

An essential ingredient for proving this theorem is a construction of a local opera-
tor that is non-disturbing for S. Therefore, we start by better understanding the non-
disturbing operators admitted by sets S from the above theorem.

Let S be a set of states satisfying the conditions of the above theorem. Also let H(i)

be the column space (i.e., the image) of ρi. Recall that given a matrix M, a subspace H
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is said to be M-invariant if M|ψ〉 ∈ H for all |ψ〉 ∈ H. Due to the special form of S, we
can observe the following.

Observation 3.19. An operator M ∈ Pos(CdA ⊗ CdB) is non-disturbing for S if and only if
H(i) is M-invariant for all i ∈ [n].

The following lemma provides us with alternative ways to think of M-invariance.

Lemma 3.20. Let M ∈ Herm(Cd). Also let H ⊆ Cd be a subspace of dimension h and
Q = ∑i∈[h] |vi〉〈i|, where {|vi〉}i∈[h] is some fixed orthonormal basis of H and |i〉 ∈ Ch. Then
the following are equivalent:

1. H is M-invariant;

2. MQ = QX for some square matrix X;

3. H has an orthonormal basis consisting of eigenvectors of M.

Proof. Let us first prove that (1)⇒ (2). IfH is M-invariant, then for all i ∈ [h]

M|vi〉 = ∑
j∈[h]

xji|vj〉 (3.38)

for some xji ∈ C. If we let X := (xij), then

MQ = ∑
i,j∈[h]

xji|vj〉〈i| = ∑
j∈[h]

(
|vj〉 ∑

i∈[h]
〈i|xji

)
= ∑

j∈[h]
|vj〉〈j|X = QX. (3.39)

Next, let us show that (2) ⇒ (3). If MQ = QX, then X = Q†MQ as Q†Q = Ih.
Since M is Hermitian, so is X and we can consider its spectral decomposition X =
∑i∈[h] λi|wi〉〈wi|. Then for all i ∈ [h]

MQ|wi〉 = QX|wi〉 = λiQ|wi〉. (3.40)

Therefore, the vectors Q|wi〉 ∈ H are eigenvectors of M. Finally, for all i, j ∈ [h] we have
〈wi|Q†Q|wj〉 = 〈wi|wj〉 = δij. So the set

{Q|wi〉}i∈[h] (3.41)

is an orthonormal basis ofH consisting of eigenvectors of M.
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Last, we prove that (3)⇒ (1). Let {|ui〉}i∈[h] ⊆ H be a set of orthogonal eigenvectors
of M with corresponding eigenvalues µi. Then any vector u ∈ H can be expressed as
|u〉 = ∑i∈[h] ci|ui〉 for some ci ∈ C. Now we have

M|u〉 = ∑
i∈[h]

µici|ui〉 ∈ H (3.42)

as desired.

We now show that whenever a ⊗ b ∈ Pos(CdA ⊗ CdB) is non-disturbing for S, so
must be a⊗ I and I ⊗ b.

Lemma 3.21. Let a ⊗ b ∈ Pos(CdA ⊗ CdB) and P = PA ⊗ PB ∈ Pos(CdA ⊗ CdB) be a
projector onto a subspaceH = HA ⊗HB. If (a⊗ b)P 6= 0 andH is (a⊗ b)-invariant, thenH
is also (a⊗ I) and (I ⊗ b)-invariant.

Proof. Fix some orthonormal basis {|αi〉}i∈[dimHA]
of HA and let QA = ∑i |αi〉〈i|, where

|i〉 ∈ Crank(PA). Define QB similarly. Then PA = QAQ†
A and PB = QBQ†

B. If H is (a⊗ b)-
invariant, then

(a⊗ b)(QA ⊗QB) = (QA ⊗QB)X (3.43)

for some square matrix X. Note that X is a tensor product, since X = (Q†
AaQA) ⊗

(Q†
BbQB). Since (a⊗ b)P 6= 0 we also have that (a⊗ b)(QA ⊗ QB) 6= 0. Hence, Equa-

tion (3.43) together with the fact that X is a tensor product implies that

aQA = QAXA and bQB = QBXB (3.44)

for some XA and XB such that X = XA ⊗ XB. The above implies that HA is a-invariant
andHB is b-invariant. Since any subspace is invariant under the identity operation, the
desired statement follows.

Having established the above lemma, we now give the proof of the main result of
this section.

Proof of Theorem 3.18. To prove the theorem we use induction on dA + dB. Clearly the
states in S can be discriminated with both finite and asymptotic LOCC if dA + dB ≤
3. We assume that the theorem statement holds for all values dA + dB < m for some
m ∈N.
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Suppose that the n states from S ⊆ Pos(CdA ⊗CdB) with dA + dB ≥ m can be discrim-
inated with asymptotic LOCC. Then according to Theorem 3.15, for every 1/n ≤ χ ≤ 1
there exists a product operator E = a ⊗ b ∈ Pos(CdA ⊗ CdB) satisfying the following
three conditions:

1. ∑ρ∈S Tr(Eρ) = 1,

2. maxρ∈S Tr(Eρ) = χ,

3. Tr(EρEσ) = 0 for all distinct ρ, σ ∈ S.

Note that condition (3) asserts that a⊗ b is non-disturbing for S (see Definition 3.5 and
Equation (3.13)). Our goal is to choose appropriate value of χ and use Lemma 3.21 to
conclude that both a⊗ I and I ⊗ b are non-disturbing for S.

Pick any χ ∈ ( 1
n , 1

n−1) and let a⊗ b be the corresponding operator. Let us now check
that a ⊗ b is nontrivial and satisfies the hypothesis of Lemma 3.21. The range of the
allowed values of χ is chosen so that conditions (1) and (2) together imply that

• a⊗ b is not proportional to the identity matrix (from now on we assume that a is
not proportional to the identity matrix as the other case is similar);

• for all ρ ∈ S we have Eρ 6= 0.

For all i ∈ [n], letH(i) = H(i)
A ⊗H

(i)
B be the column space of ρi and Pi be the the projector

onto it. Then the last item implies that (a⊗ b)Pi 6= 0. Since a⊗ b is non-disturbing for
S, Observation 3.19 lets us conclude that the subspace H(i) is (a ⊗ b)-invariant. Now,
for each i ∈ [n], we can apply Lemma 3.21 for the subspaceH(i) and the matrix a⊗ b to
conclude that the subspacesH(i) are all (a⊗ I)-invariant.

Let aλ be the projector onto the λ-eigenspace of a. Using the equivalence of (1) and (3)
in Lemma 3.20, we get that the subspacesH(i) are (aλ ⊗ I)-invariant for all λ ∈ spec(a).
Hence, the nontrivial local projective measurement

{aλ : λ ∈ spec(a)} ⊗ IB =:MA ⊗ IB (3.45)

is non-disturbing for S.

Suppose we measure the states in S usingMA⊗IB and obtain outcome λ ∈ spec(a).
If we restrict the unnormalized post-measurement states to the column space of aλ ⊗ I,
we have the following set:

Sλ := {(Qλ ⊗ I)†ρi(Qλ ⊗ I)}i∈[n] =
{
(Q†

λτiQλ)⊗ σi

}
i∈[n]
⊆ Crank(aλ) ⊗CdB . (3.46)
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Here,
Qλ := ∑

i∈[rank(aλ)]

|λi〉〈i|, (3.47)

and |i〉 ∈ Crank(aλ) and {|λi〉}i ⊆ CdA is some orthonormal basis of the λ-eigenspace of
a. We now want to use the induction hypothesis to conclude that the states in Sλ can be
discriminated with finite LOCC. To do so, we have to check that Sλ is a set of mutually
orthogonal states that can be discriminated with asymptotic LOCC and that ∑ρ∈Sλ

ρ has
full rank.

First, since ∑i∈[n] ρi is positive semidefinite and has full rank and Qλ has full column
rank, the matrix

∑
ρ∈Sλ

ρ = (Qλ ⊗ I)†

(
∑

i∈[n]
ρi

)
(Qλ ⊗ I) (3.48)

has full rank. Suppose that a sequenceR1,R2, . . . of finite LOCC protocols can be used
to certify that the states in S can be discriminated with asymptotic LOCC. LetR′i be the
finite LOCC protocol in which Alice first embeds her input space Crank(aλ) in CdA by
applying the isometry Qλ and then the two parties proceed with the protocol Ri. After
embedding Alice and Bob have the states (aλ ⊗ I)ρi(aλ ⊗ I) up to normalization. Since
the column space, H(i), of ρi is (aλ ⊗ I)-invariant, the column space of (aλ ⊗ I) is con-
tained inH(i). Therefore, the sequenceR′1,R′2, . . . can be used to certify the asymptotic
distinguishability of the states from Sλ.

aλ1 ⊗ I

P1

aλ2 ⊗ I

P2

aλ3 ⊗ I

P3

Figure 3.3: An example, where a has three distinct eigenvalues λ1, λ2 and λ3. We first perform
the measurementMA ⊗ IB and then, conditioned on the outcome λi, proceed with the protocol
Pi that discriminates the states from Sλi .

SinceMA ⊗ IB is non-disturbing for S, the states in Sλ are mutually orthogonal. Fi-
nally, as rank(aλ) + dB < dA + dB, we can apply the induction hypothesis to conclude
that the states from Sλ can be discriminated by finite LOCC. We are now done since the
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measurement MA ⊗ IB can be combined with the finite LOCC protocols for discrim-
inating the states from Sλ to give a finite LOCC protocol for discriminating the states
in S (See Figure 3.3).

We now slightly extend the result of Theorem 3.18 by lifting the tensor product re-
quirement for one of the states in S.

Corollary 3.22. Let S = {ρi}i∈[n] ⊆ Pos(CdA ⊗ CdB) be a set of orthogonal states such that
∑i ρi has full rank and all the ρi except at most one can be expressed as ρi = σi ⊗ τi. If the states
from S can be discriminated with asymptotic LOCC then they can be discriminated with finite
LOCC.

Proof. Suppose that ρ1 is the state that is not a tensor product. The proof is similar
to that of the previous theorem. The difference is that we cannot use Lemma 3.21 to
conclude thatH(1) is (a⊗ I) invariant because the lemma can only be applied to tensor
product spaces. However, since the orthogonal subspacesH(2), . . . ,H(n) are all (a⊗ I)-
invariant,

⊕
i∈{2,...,n}H(i) =

(
H(1))⊥, and a is Hermitian, we can conclude thatH is also

(a⊗ I)-invariant.

Although Corollary 3.22 is only a slight generalization of Theorem 3.17, it provides
answers to natural questions. For example, let us consider the domino basis, a product
basis of C3 ⊗C3 first introduced by [BDF+99] (see Section 4.4 for explicit definitions of
the states). Let S := {ρi}i∈[8], where ρ8 is the uniform mixture of two fixed domino states
and the remaining ρi correspond to the remaining six domino states. Since the domino
states form an orthogonal product basis, the states ρi for i ∈ [7] are tensor products and
∑i∈[8] ρi has full rank. It is not hard to show that for most choices of the two domino
states comprising ρ8, the states from S cannot be discriminated using finite LOCC. For
such sets S we can apply Corollary 3.22 to show that perfect discrimination cannot be
achieved even with asymptotic LOCC.

The main obstacle in generalizing Theorem 3.17 to all separable projective measure-
ments is the lack of an analogue of Lemma 3.21 for separable projectors P. For example,
consider

P :=
(
|0〉〈0| ⊗ |1〉〈1|

)
+
(
|1〉〈1| ⊗ |−〉〈−|

)
+
(
|−〉〈−| ⊗ |2〉〈2|

)
(3.49)

and a⊗ b := |1〉〈1| ⊗ |−〉〈−|. Let H be the space onto which P projects. Although H is
(a⊗ b)-invariant, it is neither (a⊗ I)- nor (I ⊗ b)-invariant, since (a⊗ I)|−, 2〉 /∈ H and
(I ⊗ b)|0, 1〉 /∈ H.
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Therefore, although Theorem 3.17 makes partial progress, the general question of
whether the set of POVM measurements implementable by LOCCN is closed, remains
wide open.
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Chapter 4

A framework for bounding nonlocality
of state discrimination

4.1 Introduction

In this chapter we study the task of discriminating pure bipartite states from some
known set S by LOCC. Building on the work in the paper Quantum nonlocality without
entanglement [BDF+99], we provide a framework for lower bounding the error proba-
bility of any LOCC protocol aiming at discriminating the states from S. We apply our
framework to an orthonormal product basis known as the domino states and obtain an
alternative and simplified bound on how well these states can be discriminated using
LOCC. We generalize this result for similar bases in larger dimensions, as well as the
“rotated” domino states, resolving a long-standing open question [BDF+99].

This chapter is based on the results obtained in collaboration with Andrew Childs,
Debbie Leung, and Maris Ozols [CLMO12]. We start by explaining our motivation in
Section 4.1.1 and proceed by more formally stating our contributions and explaining the
layout of the rest of this chapter in Section 4.1.2. The material in this chapter relies on
the concepts introduced in Chapter 3. In particular, we analyze LOCC protocols using
their protocol trees as described in Section 3.2.4.
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4.1.1 Motivation

The 1999 paper Quantum nonlocality without entanglement [BDF+99] exhibits an orthonor-
mal basis S ⊆ C3 ⊗C3 of product states, known as domino states, shared between two
separated parties. When the parties are restricted to perform only local quantum opera-
tions and classical communication (LOCC), it is impossible to discriminate the domino
states arbitrarily well [BDF+99]. In such cases we say that perfect discrimination can-
not be achieved with asymptotic LOCC. Moreover, [BDF+99] also quantifies the extent
to which any LOCC protocol falls short of perfect discrimination of the domino states.

This result spurred interest in state discrimination with LOCC. Several alternative
proofs [GV01, WH02, Coh07] of the impossibility of perfect LOCC discrimination of the
domino states were given along with many other results concerning perfect state dis-
crimination (e.g., [BDM+99, WSHV00, GKR+01, GV01, VSPM01, CY01, CY02, WH02,
DMS+03, CL03, HSSH03, HM03, Fan04, GKRS04, Che04, CL04, JCY05, Wat05a, Nat05,
NC06, DFJY07, FS09, DFXY09, DXY10]). However, the problem of asymptotic LOCC
state discrimination has not received much attention since the initial study of nonlocal-
ity without entanglement [BDF+99].

The main motivation for our work is to better understand the phenomenon of quan-
tum nonlocality without entanglement. More concretely, our goals are to

• simplify the original proof,

• render the technique applicable to a wider class of sets of bipartite states,

• exhibit new classes of product bases that cannot be asymptotically (as opposed to
just perfectly) discriminated with LOCC, and

• investigate the possibility of larger gaps between the sets of LOCC and separable
operations.

In particular, we seek to exhibit quantitative gaps between the classes of LOCC and
separable operations. Separable operations often serve as a relaxation of LOCC op-
erations and such gaps show how imprecise this relaxation can be. The rationale be-
hind this relaxation is that separable operations have a clean mathematical description
whereas LOCC operations can be much harder to understand.

There is also an operational motivation to quantify the difference between separable
measurements and those implemented by asymptotic LOCC: the former are precisely
the measurements that cannot generate entangled states, while the latter are those that
do not require entanglement to implement [BDF+99, KTYI07, Koa09]. Thus, a separa-
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ble measurement that cannot be implemented by asymptotic LOCC uses entanglement
irreversibly.

4.1.2 Our contributions

In this chapter, we develop a framework for obtaining quantitative results on the hard-
ness of quantum state discrimination by LOCC. More precisely, we provide a method
for proving a lower bound on the error probability of any LOCC measurement for dis-
criminating states from a given set S. Any strictly positive lower bound implies that the
states from S cannot be even asymptotically discriminated with LOCC.

Our first main contribution (Theorem 4.7) is that any LOCC measurement for dis-

criminating states from a set S errs with probability perror ≥ 2
27

η2

|S|5 , where η is a constant
that depends on S (see Definition 4.4). Intuitively, η measures the nonlocality of S.

Our second main contribution is a systematic method for bounding the nonlocality
constant η for a large class of product bases. Together with the above theorem, this lets
us quantify the hardness of LOCC discrimination for the following bases of product
states:

1. domino states, the original set of nine states in 3× 3 dimensions first considered
in [BDF+99], have perror ≥ 1.9× 10−8;

2. domino-type states, a generalization of domino states to higher dimensions corre-
sponding to tilings of a rectangular dA × dB grid by tiles of size at most two, have
perror ≥ 1/(216D2d5

Ad5
B), where D is a property of the tiling that we call “diame-

ter”;

3. θ-rotated domino states, a 1-parameter family that includes the domino states and
the standard basis as extreme cases, have perror ≥ 2.4× 10−11 sin2 2θ (determining
whether these states can be discriminated perfectly by LOCC and finding a lower
bound on the probability of error were left as open problems in [BDF+99]).

The rest of this chapter is organized as follows. In Section 4.2 we introduce our
general framework for lower bounding the error probability of LOCC measurements,
and in Section 4.2.5 we prove Theorem 4.7. In Section 4.3 we consider the case where
S is a product basis and propose a method for bounding the nonlocality constant η by
another quantity that we call “rigidity.” Our approach is based on a description of sets
of bipartite states in terms of tilings. In Section 4.4 we define the three classes of states
mentioned above and prove a bound on the rigidity of the domino states; bounds on the
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rigidity of the domino-type states and the rotated domino states appear in Appendix A
and B, respectively. Finally, we discuss limitations of our framework in Section 4.5 and
conclude with a discussion of open problems in Section 4.6.

4.2 Framework

In this section we introduce a framework for proving lower bounds on the error proba-
bility of any LOCC measurement for discriminating bipartite states from a given set

S := {|ψ1〉, . . . , |ψn〉} ⊆ CdA ⊗CdB . (4.1)

We make no assumptions about the states |ψi〉. In particular, they need not be product
states or be mutually orthogonal.

From now on, P denotes an arbitrary LOCC protocol for discriminating states from
S. In rough outline our argument proceeds as follows:

1. We modify P so that it can be stopped when a specific amount of information
ε has been obtained (see Section 4.2.1). This is done by terminating the protocol
prematurely and possibly making the last measurement less informative (see Sec-
tion 4.2.2).

2. When the information gain is ε, we lower bound a measure of disturbance (defined
in Section 4.2.3) by ηε for some constant η (see Section 4.2.4).

3. We show that at least two of the possible initial states have become nonorthogonal
at this stage of the protocol, and we infer a lower bound on the error probability
of P (see Section 4.2.5).

Our framework reuses some ideas of the original approach [BDF+99]. However,
instead of mutual information, we quantify how much an LOCC protocol has learned
about the state using error probability. This allows us to replace the long mutual infor-
mation analysis in the original paper with a simple application of Helstrom’s bound.
The idea of relating information gain and disturbance also comes from [BDF+99]. Here,
we analyze this tradeoff using the nonlocality constant (see Definition 4.4) which can
be applied to any set of states. In Section 4.3 we give a method for lower bounding the
nonlocality constant that applies specifically when S is an orthonormal basis of CdA ⊗CdB .
In Section 4.4 we apply this method for the domino states and some other related bases.
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4.2.1 Interpolated LOCC protocol

Consider an arbitrary node in the tree representing the protocol P . Let m be the corre-
sponding measurement record and let A⊗ B denote the Kraus operator that is applied
to the initial state when this node is reached. Note that the output dimensions of oper-
ators A and B could be arbitrary.

The initial state |ψk〉 yields measurement record m with probability

p(m|ψk) := Tr
[
(A⊗ B)†(A⊗ B)|ψk〉〈ψk|

]
= 〈ψk|(a⊗ b)|ψk〉 (4.2)

where a := A† A ∈ Pos(CdA) and b := B†B ∈ Pos(CdB). Note that we need not concern
ourselves with the arbitrary output dimensions of A and B from this point onward. We
use Bayes’s rule and the uniformity of the probabilities p(ψk) to obtain the probability
that the initial state was |ψk〉 conditioned on the measurement record being m:

p(ψk|m) =
p(ψk)p(m|ψk)

∑n
j=1 p(ψj)p(m|ψj)

=
〈ψk|(a⊗ b)|ψk〉

∑n
j=1〈ψj|(a⊗ b)|ψj〉

. (4.3)

At the root, the measurement record m is the empty string and p(ψk|m) = 1
n for all k. As

we proceed toward the leaves, these probabilities fluctuate away from 1
n . For example, if

P discriminates the states perfectly, the distribution reaches a Kronecker delta function.

For a given node m let us define

pmax(m) := max
k∈[n]

p(ψk|m). (4.4)

Let ε := pmax(m) − 1
n . Then ε characterizes the non-uniformity of the distribution

p(ψk|m) and thus the amount of information learned about the input state. The next the-
orem shows that we can modify the protocol P so that it can be stopped when some but
not too much information has been learned. While this idea originates from [BDF+99],
we use a specific result from [KKB11].

Theorem 4.1 (Kleinmann, Kampermann, Bruß [KKB11]). Let P be an LOCC protocol for
discriminating states from a set S of size n. For any ε > 0 there exists an LOCC protocol Pε

that has the same success probability as P , but each branch of Pε has a node m such that either

pmax(m) =
1
n
+ ε or pmax(m) <

1
n
+ ε and m is a leaf of P . (4.5)
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Proof sketch. Fix ε > 0. Then in each branch of P either pmax ≤ 1
n + ε for all nodes

in that branch or there exists a node at which 1
n + ε < pmax. For each branch of the

latter kind we identify the closest node to the root, say u, that has a child for which
1
n + ε < pmax. To obtain the the interpolated protocol Pε, we modify the measurement
at all such vertices u using the technique described in Section 3.7.1. We now outline the
modification procedure.

Let v1, . . . , vm be all the children of u. Also letM = {F1, . . . , Fm} be the measurement
at node u, where Fi leads to node vi. Then for some i ∈ [m] we have that

pmax(u) <
1
n
+ ε < pmax(vi), (4.6)

which means that the measurement outcome corresponding to Fi is too informative. To
rectify this, we break up the measurement M into two steps so that each individual
measurement is less informative.

In the interpolated protocol Pε we replace M with its pseudo-weak implementa-
tion M1 = {E1, . . . , Em} with interpolation parameters c1, . . . , cm to be choosen later
(see Definition 3.14). To ensure equivalence with the original protocol, after measuring
M1 and obtaining outcome i, we perform the recovery measurement M(i)

2 (see Sec-
tion 3.7.1). We represent the outcomes of M1 by new nodes ṽ1, . . . , ṽm while the out-
comes ofM(i)

2 lead to the original nodes v1, . . . , vm (see Figure 4.1). Note thatM is of
the formMA ⊗ IB or IA ⊗MB. As can be seen from Definition 3.14, the measurements
M1 andM(i)

2 also take the same form and can thus be implemented locally.

Let us now explain how to choose the values of the interpolation parameters ci.
Recall from Definition 3.14 that the POVM elements of the pseudo-weak measurement
are given by

Ei = c(ci I + Fi), (4.7)

where c = (1 + ∑i ci)
−1. We set ci = 0 for all i such that 1

n + ε ≥ pmax(vi) in the original
protocol P . We now argue that the remaining ci can be chosen so that pmax(ṽi) =

1
n + ε.

Note that Ei changes continuously from cFi to I as we change ci from 0 to ∞ and keep
the remaining cj fixed. Since pmax is continuous on nonzero operators1, the interpolation
parameter ci can be chosen to achieve any value strictly between pmax(vi) and pmax(u).
Since 1

n + ε lies strictly between the two values, ci can be chosen so that pmax(ṽi) =
1
n + ε.

1 Although pmax takes nodes as its arguments, we can think of it as a function of positive semidefinite
operators. This can be done by identifying any node u, with the POVM element a⊗ b that has resulted
since the start of the protocol upon reaching u.
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Protocol P : u

v1

T1

v2

T2

v3

T3

=⇒

Protocol Pε: u

v1

T1

v2

T2

v3

T3

ṽ1 ṽ2 ṽ3

Figure 4.1: The protocol tree before (left) and after (right) splitting the measurement at node u
into two steps. (The graph on the right has been condensed for clarity, but it can be expanded
into a tree by making a new copy of subtree Ti for each incoming arc in vi.) The amount of
information learned in the first step is controlled by diluting the measurement operators, and the
purpose of the second step is to complete the original measurement. The dotted line corresponds
to the end of stage I (see Definition 4.2).

From Equations (4.3) and (4.4), we see that the value of pmax(m) does not change if
the corresponding POVM element a⊗ b is multiplied by a non-zero constant. Changing
the interpolation parameters cj for j 6= i has exactly this effect on the operator Ei. Hence,
we can independently adjust the interpolation parameters so that pmax(ṽi) =

1
n + ε for

all i for which 1
n + ε < pmax(vi) in the original protocol P .

After replacing the measurement at u with the above described two-stage measure-
ment process, we proceed according to the original protocol as shown in Figure 4.1. As
explained in Section 3.7.1, the above two-stage measurement process reproduces both
the measurement statistics and the post-measurement states of the original measure-
ment. Therefore, the interpolated protocol Pε will have the same success probability as
the original protocol P . Also, the modification procedure has ensured that each branch
of Pε has a node satisfying condition (4.5).

In the context of discriminating states from an orthonormal basis, the possibility of
interpolating a protocol to obtain some but not too much information is what distin-
guishes LOCC measurements from separable ones. In particular, a separable measure-
ment for a set of states that cannot be distinguished by asymptotic LOCC cannot be
divided into two steps, with the first yielding information precisely ε and the second
completing the measurement (see Section 4.2.1 for further details).
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4.2.2 Stopping condition

To control how much information the protocol has learned, we fix some ε > 0 and
stop the execution of Pε when we reach a node m that satisfies the conditions in Equa-
tion (4.5).

Definition 4.2. In any given execution ofPε, we say that stage I is complete at the earliest
point when Equation (4.5) is satisfied.

We choose ε < 1
n(n−1) in our analysis. Operationally, this means that none of the n

states has been eliminated at the end of stage I, since

min
k∈[n]

p(ψk|m) ≥ 1− (n− 1)pmax(m) ≥ 1
n
− (n− 1)ε > 0. (4.8)

This allows us to use Helstrom’s bound to lower bound the probability of error (see
Section 4.2.5). It also ensures that the disturbance measure δS(a⊗ b) introduced in Sec-
tion 4.2.3 is well defined at m. All constraints imposed on the distribution p(ψk|m) are
summarized in Figure 4.2.

1
n

0

ε

(n− 1)ε

k

p(ψk|m)

Figure 4.2: Probability distribution p(ψk|m) at the end of stage I. For all k we have 1
n + ε ≥

p(ψk|m) ≥ 1
n − (n− 1)ε > 0 where the first inequality is tight for some k.

Since the error probability of the protocol Pε is a weighted average of error proba-
bilities of individual branches, it suffices to lower bound these individual error proba-
bilities. For any branch that terminates without a node satisfying

pmax(m) =
1
n
+ ε , (4.9)
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we can put a large lower bound on the error probability. In particular, for the optimal
choice ε = 2

3
1

n(n−1) of Theorem 4.7 with n ≥ 2,

perror(m) ≥ 1− pmax(m) > 1−
(

1
n
+ ε

)
= 1− 1

n
− 2

3
1

n(n− 1)
≥ 1

6
, (4.10)

which is much higher than the lower bound we obtain for other branches. We now
consider the remaining case where stage I ends with a node satisfying Equation (4.9).

4.2.3 Measure of disturbance

Now we show that at least two possible post-measurement states (A⊗ B)|ψi〉 and (A⊗
B)|ψj〉 are nonorthogonal at the end of stage I, and lower bound their overlap quantita-
tively. Assuming that the initial state was |ψi〉 ∈ S, the normalized post-measurement
state at a node with corresponding measurement operator A⊗ B is

|φi〉 :=

(
A⊗ B

)
|ψi〉√

〈ψi|(a⊗ b)|ψi〉
(4.11)

where a := A† A and b := B†B. We are interested in the overlaps 〈φi|φj〉 rather than the
actual post-measurement states. Hence, from now on we use the POVM elements a and
b instead of the measurement operators A and B.

Definition 4.3. The disturbance caused by the operator a ⊗ b on the set of states S is
defined as

δS(a⊗ b) := max
i 6=j
|〈φi|φj〉| = max

i 6=j

|〈ψi|(a⊗ b)|ψj〉|√
〈ψi|(a⊗ b)|ψi〉〈ψj|(a⊗ b)|ψj〉

. (4.12)

We use δS(a ⊗ b) only in the context where a ⊗ b is the operator corresponding to
an end node of stage I. In this case, from Equations (4.8) and (4.3) we get that 0 <

mink∈[n] p(ψk|m) = mink∈[n]
〈ψk|(a⊗b)|ψk〉

∑n
j=1〈ψj|(a⊗b)|ψj〉 . Hence 〈ψi|(a⊗ b)|ψi〉 > 0 for all i ∈ [n], so

δS is well-defined.

Note that δS(a⊗ b) measures the nonorthogonality of the post-measurement states
|φi〉. If the initial states |ψi〉 are orthogonal, δS(a⊗ b) characterizes the disturbance im-
parted to the states at the end of stage I in the branch corresponding to a⊗ b.

72



4.2.4 Disturbance/information gain trade-off

Now we define the nonlocality constant η. It relates the disturbance caused at the end of
stage I, minimized over all branches (see Definition 4.3), to the amount of information
learned, ε.

Definition 4.4. The nonlocality constant η of S is the supremum over all η′ such that

η′ ·
(maxk∈[n]〈ψk|(a⊗ b)|ψk〉

∑j∈[n]〈ψj|(a⊗ b)|ψj〉
− 1

n

)
≤ δS(a⊗ b) (4.13)

for all a ∈ Pos(CdA), b ∈ Pos(CdB) for which 〈ψi|(a⊗ b)|ψi〉 6= 0 for all i ∈ [n].

Equivalently, if Gij := 〈ψi|(a⊗ b)|ψj〉 for i, j ∈ [n] then

η := inf
a,b


maxi 6=j

|Gij|√
GiiGjj

maxk Gkk

∑n
j=1 Gjj

− 1
n

 (4.14)

where the infimum is over all a ∈ Pos(CdA) and b ∈ Pos(CdB) such that Gii 6= 0 for all
i ∈ [n].

The nonlocality constant η depends only on the set of states S and applies to all
branches of the protocol.

When stage I ends, each branch satisfies the condition in Equation (4.9) with some
ε ∈

(
0, 1

n(n−1)

)
. Consider a branch with end node m and corresponding measurement

operator a⊗ b. We now use the shorthand δ to denote δS(a⊗ b), the disturbance caused
in that branch.

Lemma 4.5 (Disturbance/information gain trade-off). For every branch, the amount of in-
formation ε learned at the end of stage I lower bounds the disturbance δ as

η ε ≤ δ (4.15)

where η is the nonlocality constant of S.

Proof. This immediately follows from the definitions of ε and η:

η ε = η

(
max
k∈[n]

p(ψk|m)− 1
n

)
= η

(maxk∈[n]〈ψk|(a⊗ b)|ψk〉
∑n

j=1〈ψj|(a⊗ b)|ψj〉
− 1

n

)
≤ δ (4.16)

where we have used Equations (4.9), (4.3), and (4.13).
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4.2.5 Lower bounding the error probability

In this section we use Lemma 4.5 to lower bound the error probability of any LOCC
measurement for discriminating states from the set S.

Equation (4.15) implies that at the end of stage I, for every branch, there are two
distinct post-measurement states |φi〉 and |φj〉 such that

|〈φi|φj〉| = δ ≥ η ε. (4.17)

As discussed in Section 4.2.2, our choice of ε guarantees that p(ψi|m) and p(ψj|m) are
both strictly positive. Thus we can use the following result to lower bound the error
probability for each branch.

Fact (Helstrom bound [Hel76, p.113]). Suppose we are given state |Φ0〉 with probability q0
and state |Φ1〉 with probability q1 = 1− q0. Any measurement trying to discriminate the two
cases errs with probability at least

Q(q0, q1, δ) :=
1
2

(
1−

√
1− 4q0q1δ2

)
≥ q0q1δ2, (4.18)

where δ := |〈Φ0|Φ1〉| is the overlap between the two states, and the inequality follows from the
fact that 1−

√
1− x2 ≥ 1

2 x2 for x ∈ [0, 1].

As ε increases, the error probability for a specific branch changes in two opposite
ways. On one hand, two post-measurement states |φi〉 and |φj〉 have overlap δ ≥ ηε,
and this lower bound increases with ε. On the other hand, the probabilities of these
two states, p(ψi|m) and p(ψj|m), are lower bounded by a function that decreases with
ε. Balancing these two effects, the choice ε = 2

3
1

n(n−1) gives a lower bound on the error
probability as follows.

Lemma 4.6. Let S be a set of quantum states in CdA ⊗ CdB of size n ≥ 2. For any LOCC
measurement discriminating states drawn uniformly from S, each branch errs with probability

perror ≥
2

27
η2

n5 (4.19)

where η is the nonlocality constant of S.

Proof. At the end of stage I, for each branch, there are two post-measurement states |Φ0〉
and |Φ1〉 with overlap δ. Let p0 and p1 be the posterior probabilities of these states. To
lower bound the error probability of Pε (and thus that of P), we give Alice and Bob
extra power at this point:
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• if the actual input state does not lead to |Φ0〉 or |Φ1〉, we assume that Alice and
Bob succeed with certainty;

• otherwise Alice and Bob are allowed to perform the best joint measurement to
discriminate the states |Φ0〉 and |Φ1〉.

For fixed ε and probabilities p0 and p1, we can lower bound the error probability by the
following expression:

P(p0, p1, ε) := (p0 + p1) ·Q
(

p0
p0+p1

, p1
p0+p1

, δ
)

. (4.20)

Using Equation (4.18) and the inequality δ ≥ η ε from Lemma 4.5, we get that

P(p0, p1, ε) ≥ p0p1

p0 + p1
(η ε)2. (4.21)

Recall that we stop the protocol at a point where we are guaranteed that 0 < ε <
1

n(n−1) and, by Equations (4.8) and (4.9),

1
n
− (n− 1)ε ≤ pi ≤

1
n
+ ε (4.22)

for all i. Given these constraints on p0 and p1, we can choose the ε that maximizes
P(p0, p1, ε) and guarantee that the error probability in the branch of the LOCC protocol
being considered satisfies

perror ≥ max
ε∈
(

0, 1
n(n−1)

) min
p0,p1∈

[
1
n−(n−1)ε, 1

n+ε
] P(p0, p1, ε). (4.23)

From Equation (4.21) we get

perror ≥ max
ε∈
(

0, 1
n(n−1)

) min
p0,p1∈

[
1
n−(n−1)ε, 1

n+ε
] p0p1

p0 + p1
(η ε)2. (4.24)

The minimum is attained when p0 = p1 = 1
n − (n− 1)ε (i.e., the probabilities are equal

and as small as possible), so the problem simplifies to

perror ≥ max
ε∈
(

0, 1
n(n−1)

) 1
2

(
1
n
− (n− 1)ε

)
(η ε)2 ≥ 2

27
η2

n3(n− 1)2 ≥
2

27
η2

n5 (4.25)

where the value
ε =

2
3

1
n(n− 1)

(4.26)

achieves the maximum.
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The lower bound for the error probability for each branch implies the same lower
bound for the LOCC measurement for discriminating states from the set S:

Theorem 4.7. Let S be a set of quantum states in CdA ⊗ CdB of size n ≥ 2. Any LOCC
measurement for discriminating states drawn uniformly from S errs with probability

perror ≥
2

27
η2

n5 (4.27)

where η is the nonlocality constant of S.

Theorem 4.7 shows that any LOCC protocol for discriminating states from S errs
with probability proportional to η2, justifying the name “nonlocality constant.”

4.3 Bounding the nonlocality constant

The framework described in Section 4.2 reduces the problem of bounding the error
probability for discriminating bipartite states by LOCC to the one of bounding the non-
locality constant η (see Theorem 4.7). This reduction holds for any set of pure states S.
In this section we assume that S is an orthonormal basis of CdA ⊗ CdB and provide tools
for bounding the nonlocality constant. In particular, we bound η in terms of another
quantity that we call “rigidity”.

For the remainder of the chapter we represent pure states from CdA ⊗ CdB using
“tiles” in a dA × dB grid. We first introduce some notations related to tilings in Sec-
tion 4.3.1. Then we define rigidity and relate it to the nonlocality constant η in Sec-
tion 4.3.2. Section 4.3.3 provides a tool, the “pair of tiles” lemma, that we use to bound
rigidity for specific sets of states in Section 4.4.

4.3.1 Definitions

Given a fixed orthonormal basis {|i〉 : i ∈ [d]}, define the support of a pure state |ψ〉 ∈ Cd

as
supp |ψ〉 := {i ∈ [d] : 〈i|ψ〉 6= 0}. (4.28)

If |ψ〉 ∈ CdA ⊗ CdB then supp |ψ〉 ⊆ [dA]× [dB]. Consider [dA]× [dB] as a rectangular
grid of size dA × dB. Any region that corresponds to a submatrix of this grid is called
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a tile. More formally, a tile is a subset T ⊆ [dA] × [dB] such that T = R × C for some
R ⊆ [dA] and C ⊆ [dB]. (Note that a tile is not necessarily a contiguous region of the
grid.) We use rows(T) = R and cols(T) = C to denote the rows and columns of this
tile, respectively, and we use |T| to denote the size or the area of T. If |ψ〉 = |α〉|β〉 is a
product state, then supp |ψ〉 = supp |α〉 × supp |β〉 and thus supp |ψ〉 is a tile, which we
call the tile induced by |ψ〉.

We say that an orthonormal set of product states S ⊆ CdA ⊗CdB induces a tiling of a
dA × dB grid if the tiles induced by the states in S are either disjoint or identical. Note
that if S is an orthonormal basis of CdA ⊗ CdB , then a tile of area L is induced by L
states that form a basis of that tile. In a domino-type tiling, every tile has area 1 or 2
and the states inducing the tiles of size 2 are of the form |i ± j〉|k〉 or |k〉|i ± j〉, where
|i± j〉 := (|i〉 ± |j〉)/

√
2.

For a given tiling T of a dA × dB grid let us define the corresponding row graph as
follows: its vertex set is [dA] with two vertices i and j adjacent if and only if there exists
a column c such that (i, c) and (j, c) belong to the same tile. The column graph of a tiling
is defined similarly. We say that a tiling is irreducible if its row graph and its column
graph are both connected. The diameter of a tiling T is the maximum of the diameters of
its row and column graphs. See Figure 4.3 for an example.

Figure 4.3: A domino-type tiling and the corresponding row and column graphs. This tiling is
irreducible and has diameter two.

Without loss of generality we consider only irreducible tilings. Reducible tilings can
be broken down into several smaller components without disturbing the underlying
states. To do this, both parties simply perform a projective measurement with respect
to the subspaces corresponding to the different components of the row and column
graphs.

Note that in general, a tiling is not invariant under local unitaries. In particular, the
irreducibility of the tiling induced by a given set of states is a basis-dependent property.
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The most extreme example of this phenomenon is the case of the standard basis. It
induces a completely reducible tiling that consists only of 1× 1 tiles. However, if both
parties apply a generic local unitary transformation, the resulting tiling consists only of
a single tile of maximal size.

4.3.2 Lower bounding the nonlocality constant using rigidity

In this section we assume that S is an orthonormal basis of CdA ⊗CdB (so in particular,
n = dAdB) and discuss a particular strategy for lower bounding η for such S. We apply
this strategy to several sets of orthonormal product bases in Section 4.4.

We bound η (quantifying a disturbance/information gain tradeoff) by considering a
quantitative property of the set S called rigidity. Intuitively, we call a measurement op-
erator strong if it is far from being proportional to the identity matrix; a set of states S is
rigid if there exists a strong measurement that leaves the set undisturbed. We formalize
this as follows (recall that ‖·‖max denotes the largest entry of a matrix in absolute value):

Definition 4.8. We say that an orthonormal basis S is c-rigid, or c is an upper bound on
the rigidity of S, if c ∈ R is such that∥∥∥ a⊗ b

Tr(a⊗ b)
− I

n

∥∥∥
max
≤ c · δS(a⊗ b), (4.29)

for all a ∈ Pos(CdA), b ∈ Pos(CdB) for which 〈ψi|(a⊗ b)|ψi〉 6= 0 for all i.

When S is rigid, the states can remain unchanged despite application of a strong
measurement. For example, a tensor product basis is not c-rigid for any finite c (i.e.,
such a basis is arbitrarily rigid). In contrast, if c is small, then any strong measurement
disturbs the set S, and Equation (4.29) quantifies how weak a measurement operator
a⊗ b must be for the disturbance δS(a⊗ b) to be small.

We now relate upper bounds on the rigidity of S to lower bounds on its nonlocality
constant:

Lemma 4.9. Let S be an orthonormal basis of CdA ⊗CdB . If S is c-rigid then

η ≥ 1
cL

. (4.30)

where L is the size of the largest tile corresponding to states in S.
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Proof. If S is c-rigid, then for any a ∈ Pos(CdA) and b ∈ Pos(CdB) (such that 〈ψk|(a ⊗
b)|ψk〉 6= 0 for all k ∈ [n]), we have

a⊗ b
Tr(a⊗ b)

− I
n
= cM · δS(a⊗ b) (4.31)

for some Hermitian matrix M ∈ L(CdA ⊗CdB) with ‖M‖max ≤ 1. From this we get

max
k∈[n]
〈ψk|

a⊗ b
Tr(a⊗ b)

|ψk〉 −
1
n
= c max

k∈[n]
〈ψk|M|ψk〉 · δS(a⊗ b) (4.32)

≤ cL · δS(a⊗ b). (4.33)

By the definition of η (Equation (4.13)) and the fact that Tr(a⊗ b) = ∑j∈[n]〈ψj|(a⊗ b)|ψj〉
for any orthonormal basis S, we get the desired inequality.

Putting Lemma 4.9 and Theorem 4.7 together gives the following:

Theorem 4.10. Let S be an orthonormal basis of CdA ⊗ CdB . If S is c-rigid then any LOCC
measurement for discriminating states from S errs with probability

perror ≥
2

27
1

(cL)2n5 (4.34)

where L is the size of the largest tile of S.

4.3.3 The “pair of tiles” lemma

In this section we present a lemma that serves as our main tool for bounding rigidity.

Lemma 4.11. Let U ∈ U(m), V ∈ U(n), and define |ϕi〉 := U|i〉 for i ∈ [m] and |ψj〉 := V|j〉
for j ∈ [n]. Then for any M ∈ L(Cn, Cm) we have

√
mn ·max

i,j
|〈ϕi|M|ψj〉| ≥ max

k,l
|Mkl|. (4.35)

The main idea of the proof is that a unitary change of basis can only increase the
largest entry of a vector by a multiplicative factor depending on the dimension of the
vector.
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Proof. Let us define a mapping vec : L(Cn, Cm)→ Cn ⊗Cm as

vec : |i〉〈j| 7→ |i〉|j〉 (4.36)

for i ∈ [m] and j ∈ [n] and extend it by linearity over C. One can check that vec(AXB) =
(A⊗ BT) vec(X). Using this and basic inequalities between the 2-norm and the ∞-norm,
we get

max
i,j
|〈ϕi|M|ψj〉| =

∥∥∥∥vec
(
∑
i,j
〈ϕi|M|ψj〉|i〉〈j|

)∥∥∥∥
∞

(4.37)

=

∥∥∥∥vec
(
∑
i,j
〈i|U†MV|j〉|i〉〈j|

)∥∥∥∥
∞

(4.38)

=
∥∥vec(U†MV)

∥∥
∞ (4.39)

=
∥∥(U† ⊗VT) vec(M)

∥∥
∞ (4.40)

≥ 1√
mn

∥∥(U† ⊗VT) vec(M)
∥∥

2 (4.41)

=
1√
mn

∥∥vec(M)
∥∥

2 (4.42)

≥ 1√
mn

∥∥vec(M)
∥∥

∞ (4.43)

=
1√
mn

max
k,l
|Mkl|, (4.44)

as desired.

Let us restate Lemma 4.11 using the language of tilings:

Lemma 4.12. Let R1, R2 ⊆ [dA] × [dB] be two arbitrary regions of a dA × dB grid, and
{|ϕi〉}|R1|

i=1 and {|ψj〉}|R2|
j=1 ⊆ CdA ⊗ CdB be their bases (here |ϕi〉 and |ψj〉 need not be prod-

uct states). Then for any matrices a ∈ L(CdA) and b ∈ L(CdB) we have√
|R1| · |R2| max

i,j
|〈ϕi|(a⊗ b)|ψj〉| ≥ max

(r1,c1)∈R1
(r2,c2)∈R2

|ar1r2 | · |bc1c2 |. (4.45)

This follows from Lemma 4.11 by restricting |ϕi〉 and |ψj〉 to regions R1 and R2,
respectively, and choosing M to be a submatrix of a ⊗ b with rows determined by R1
and columns by R2.
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Proof. For t ∈ {1, 2} let us enumerate the cells of region Rt by integers from {1, . . . , |Rt|}
arbitrarily, and let (rt(i), ct(i)) be the coordinates of the ith cell of region Rt. Let

Πt :=
|Rt|
∑
i=1
|i〉〈rt(i), ct(i)| (4.46)

be a linear operator that restricts the space CdA ⊗CdB to region Rt. Then |ϕ′i〉 := Π1|ϕi〉
is the restriction of |ϕi〉 to region R1 and |ψ′i〉 := Π2|ψi〉 is the restriction of |ψi〉 to R2.
Also, let M := Π1(a⊗ b)Π†

2.

Note that for all i ∈ {1, . . . , |R1|} we have Π†
1Π1|ϕi〉 = |ϕi〉 since the support of |ϕi〉

lies entirely within region R1 and Π†
1Π1 is the projection onto R1. Similarly, Π†

2Π2|ψj〉 =
|ψj〉 for all j ∈ {1, . . . , |R2|}. Hence

〈ϕi|(a⊗ b)|ψj〉 = 〈ϕi|Π†
1Π1(a⊗ b)Π†

2Π2|ψj〉 = 〈ϕ′i|M|ψ′j〉 (4.47)

for all i and j. Finally, we apply Lemma 4.11 to {|ϕ′i〉}
|R1|
i=1 , {|ψ′j〉}

|R2|
j=1 , and M:√

|R1| · |R2| max
i,j
|〈ϕi|(a⊗ b)|ψj〉| =

√
|R1| · |R2| max

i,j
|〈ϕ′i|M|ψ′j〉|

≥ max
k,l
|Mkl|

= max
k,l
|〈k|Π1(a⊗ b)Π†

2|l〉|

= max
k,l

∣∣〈r1(k)| a |r2(l)〉
∣∣ · ∣∣〈c1(k)| b |c2(l)〉

∣∣
= max

(r1,c1)∈R1
(r2,c2)∈R2

|ar1r2 | · |bc1c2 |

and the result follows.

When regions R1 and R2 are two distinct tiles from the tiling induced by S, we can
use Lemma 4.12 to get the following result:

Lemma 4.13 (“Pair of tiles” Lemma). Let T1 and T2 be two distinct tiles in the tiling induced
by S, and let a ∈ Pos(CdA) and b ∈ Pos(CdB). Then√

|T1| · |T2| δS(a⊗ b)Tr(a⊗ b) ≥ |ar1r2 | · |bc1c2 | (4.48)

for any rt ∈ rows(Tt) and ct ∈ cols(Tt) where t ∈ {1, 2}.
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Proof. We relax the inequality in Lemma 4.12 by observing that

δS(a⊗ b) ≥ maxi 6=j|〈ψi|(a⊗ b)|ψj〉|
‖a⊗ b‖∞

≥ maxi 6=j|〈ψi|(a⊗ b)|ψj〉|
Tr(a⊗ b)

(4.49)

which easily follows from the definition of δS(a⊗ b) in Equation (4.12).

Note that the tiles T1 and T2 in Lemma 4.13 have to be distinct since the maximization
in the definition of δS(a⊗ b) is performed only over pairs of distinct states. This lemma
will be used later to bound the off-diagonal entries of a⊗ b (see Figure 4.4).

c1 c2

r1

r2

c1 = c2

r1

r2

Figure 4.4: Whenever (r1, c1) and (r2, c2) belong to different tiles (left), Lemma 4.13 can be used
to upper bound the off-diagonal entry ar1r2 · bc1c2 of a⊗ b. When both coordinates correspond to
the same tile (right), this result cannot be applied directly.

4.4 Domino states

In this section we use the framework introduced earlier to give a lower bound on the er-
ror probability of any LOCC measurement for discriminating states from certain bipar-
tite orthonormal product bases known as domino states. This provides an alternative
proof of the quantitative separation between LOCC and separable measurements first
given in [BDF+99] as well as generalizations to states corresponding to other domino-
type tilings and a rotated version of the original domino states.
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|1〉

|1〉

|2〉

|2〉

Bob

Alice 1

2, 3

4, 5
6, 7

8, 9

Figure 4.5: The tiling induced by the states from Equations (4.50)–(4.54).

4.4.1 Definition

The following orthonormal product basis is known as the domino states:

|ψ1〉 = |1〉|1〉, (4.50)
|ψ2〉 = |0〉|0 + 1〉, |ψ3〉 = |0〉|0− 1〉, (4.51)
|ψ4〉 = |2〉|1 + 2〉, |ψ5〉 = |2〉|1− 2〉, (4.52)
|ψ6〉 = |1 + 2〉|0〉, |ψ7〉 = |1− 2〉|0〉, (4.53)
|ψ8〉 = |0 + 1〉|2〉, |ψ9〉 = |0− 1〉|2〉, (4.54)

where |i± j〉 := (|i〉 ± |j〉)/
√

2. In [BDF+99] it was shown that any LOCC protocol for
discriminating these states has information deficit at least 5.31× 10−6 (out of log2 9 ≈
3.17) bits.

In [BDF+99] the authors also consider a family of orthonormal product bases, the
so-called rotated domino states, which are parametrized by four angles 0 ≤ θ1, θ2, θ3, θ4 ≤
π/4 and are defined as follows:

|ψ1〉 = |1〉|1〉, (4.55)
|ψ2〉 = |0〉(cos θ1|0〉+ sin θ1|1〉), |ψ3〉 = |0〉(− sin θ1|0〉+ cos θ1|1〉), (4.56)
|ψ4〉 = |2〉(cos θ2|1〉+ sin θ2|2〉), |ψ5〉 = |2〉(− sin θ2|1〉+ cos θ2|2〉), (4.57)
|ψ6〉 = (cos θ3|1〉+ sin θ3|2〉)|0〉, |ψ7〉 = (− sin θ3|1〉+ cos θ3|2〉)|0〉, (4.58)
|ψ8〉 = (cos θ4|0〉+ sin θ4|1〉)|2〉, |ψ9〉 = (− sin θ4|0〉+ cos θ4|1〉)|2〉. (4.59)

Let S3(θ1, θ2, θ3, θ4) denote the rotated domino basis parametrized as above. Then the
original domino basis is S3 := S3(π/4, π/4, π/4, π/4).
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Reference [BDF+99] shows that states from the domino basis S3 cannot be perfectly
discriminated by asymptotic LOCC and conjectures that the same holds for the rotated
domino basis S3(θ1, θ2, θ3, θ4) for any 0 < θ1, θ2, θ3, θ4 ≤ π/4. In the next section we give
an alternative proof that quantifies the nonlocality of the original domino states S3 and
then adapt the argument to the rotated domino states, thus resolving the conjecture.

4.4.2 Nonlocality of the domino states

To lower bound the nonlocality constant of the domino states S3, we put an upper bound
on their rigidity. In other words, we show that measurement operators that only slightly
disturb these states are weak (approximately proportional to the identity operator). The
key ingredient of the proof is Lemma 4.13 from Section 4.3.

Lemma 4.14. The domino state basis S3 is 4-rigid.

Proof. The claimed result can be restated as follows (see Definition 4.8):∣∣∣∣aiibjj −
1
9

Tr(a⊗ b)
∣∣∣∣ ≤ 4δ Tr(a⊗ b), (4.60)

|aijbkt| ≤ 4δ Tr(a⊗ b), (4.61)

where i, j, k, t ∈ {0, 1, 2} and i 6= j or k 6= t in the second equation. First we prove the
bound for the diagonal elements and then we proceed to bound the off-diagonal ones.

Bounding the diagonal elements:

We start by bounding the differences of the diagonal elements of matrices a and b sepa-
rately. Let us rewrite the definition of δ from Equation (4.12) in the case of product states
|ψi〉 = |αi〉|βi〉:

δ = max
i 6=j

|〈αi|a|αj〉|√
〈αi|a|αi〉〈αj|a|αj〉

· |〈βi|b|β j〉|√
〈βi|b|βi〉〈β j|b|β j〉

. (4.62)
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If we consider the pair of states |ψ2,3〉 = |0〉|0± 1〉, we get

δ ≥ |a00|
|a00|

· |b00 − b01 + b10 − b11|√
(b00 + b01 + b10 + b11)(b00 − b01 − b10 + b11)

(4.63)

=
|b00 − b11 + 2i Im b10|√
(b00 + b11)2 − (b01 + b10)2

(4.64)

≥ |b00 − b11|
|b00 + b11|

(4.65)

≥ |b00 − b11|
Tr(b)

. (4.66)

Note that the cancellation of |a00| is valid since a00 6= 0 by the definition of stage I.
Applying a similar argument to the pairs of states from the other three tiles of size 2, we
get that for any i ∈ {0, 2},

δ Tr(a) ≥ |a11 − aii| and δ Tr(b) ≥ |b11 − bii|. (4.67)

Using these bounds and the triangle inequality, we can bound the difference between
the first and last diagonal elements:

|a00 − a22| ≤ |a00 − a11|+ |a11 − a22| ≤ 2δ Tr(a) (4.68)

and similarly |b00 − b22| ≤ 2δ Tr(b).

Next, we use the bounds on the differences of the diagonal elements of a and b to
bound the differences of the diagonal elements of a ⊗ b. For all i, j, k, t ∈ {0, 1, 2} we
have

|aiibjj − akkbtt| ≤ |aiibjj − akkbjj|+ |akkbjj − akkbtt| (4.69)

= |bjj| · |aii − akk|+ |akk| · |bjj − btt| (4.70)

≤ |bjj| · 2δ Tr(a) + |akk| · 2δ Tr(b) (4.71)

≤ 4δ Tr(a⊗ b). (4.72)

Using this inequality we can obtain the desired bound (4.60) for the diagonal ele-
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ments: for all i, j ∈ {0, 1, 2} we have∣∣∣∣aiibjj −
1
9

Tr(a⊗ b)
∣∣∣∣ =

∣∣∣∣∣∣aiibjj −
1
9 ∑

k,t∈{0,1,2}
akkbtt

∣∣∣∣∣∣ (4.73)

≤ 1
9 ∑

k,t∈{0,1,2}
|aiibjj − akkbtt| (4.74)

≤ 4δ Tr(a⊗ b). (4.75)

Bounding the off-diagonal elements:

From Lemma 4.13 we know that
√
|T1| · |T2| δ Tr(a⊗ b) ≥ |ar1r2 | · |bc1c2 |, where T1 and T2

are two distinct tiles and |Tt| is the area of the tile containing (rt, ct). For (r1, c1) = (1, 1)
and any (r2, c2) 6= (1, 1) we get

√
2δ Tr(a⊗ b) ≥ |ar1r2 | · |bc1c2 |. (4.76)

Similarly, for any (r1, c1) and (r2, c2) that belong to distinct tiles of size two we get

2δ Tr(a⊗ b) ≥ |ar1r2 | · |bc1c2 |. (4.77)

Now it only remains to bound the following four off-diagonal elements (each of which
corresponds to one of the four tiles of size 2):

|a00| · |b01|, |a01| · |b22|, |a22| · |b12|, |a12| · |b00|. (4.78)

To bound |a00| · |b01|, first choose (r2, c2) = (1, 0) and use Equation (4.76):
√

2δ Tr(a⊗ b) ≥ |a11| · |b10| = |a11| · |b01|. (4.79)

Now it only remains to replace a11 by a00. Notice from Equation (4.67) that δ Tr(a) ≥
|a11 − a00| ≥ |a00| − |a11|, so

√
2δ Tr(a⊗ b) ≥ |a11| · |b01| ≥

(
|a00| − δ Tr(a)

)
· |b01| (4.80)

≥ |a00| · |b01| − δ Tr(a⊗ b) (4.81)

where the last inequality holds since |b01| ≤ max{b00, b11} ≤ Tr(b) as b is positive
semidefinite. After rearranging the previous expression we obtain

(1 +
√

2)δ Tr(a⊗ b) ≥ |a00| · |b01|. (4.82)
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By appropriately choosing the value of (r2, c2) and using a similar argument, we get
the same upper bound for the remaining three off-diagonal elements listed in Equa-
tion (4.78). Since the constants obtained in bounds (4.76), (4.77), and (4.82) satisfy
max{

√
2, 2, 1 +

√
2} ≤ 4, we have shown that Equation (4.61) holds for all off-diagonal

elements of a⊗ b.

Combining the above lemma with Equation (4.30) we obtain that the nonlocality
constant for the domino states is η ≥ 1/8. To get an explicit value for the lower bound
on the error probability, we use Theorem 4.10 with n = 9, L = 2, and c = 4.

Corollary 4.15. Any LOCC measurement for discriminating the domino states S3 errs with
probability

perror ≥ 1.9× 10−8. (4.83)

4.4.3 Nonlocality of irreducible domino-type tilings

Lemma 4.14 can be easily generalized to product bases that are similar to domino states
on larger quantum systems. The main ideas of the proof are essentially the same as
in Lemma 4.14, but the argument must be adapted to accommodate tiles in arbitrary
positions. A complete proof can be found in Appendix A.

Lemma 4.16. Let dA, dB ≥ 3 and let S be an orthonormal product basis of CdA ⊗ CdB . If S
induces an irreducible domino-type tiling of diameter D then S is 2D-rigid (see Section 4.3.1 for
terminology).

To bound the error probability, we use Theorem 4.10 with n = dAdB, L = 2, and
c = 2D.

Corollary 4.17. Any LOCC measurement for discriminating states from an orthonormal prod-
uct basis of CdA ⊗ CdB that induces an irreducible domino-type tiling of diameter D errs with
probability

perror ≥
1

216D2(dAdB)5 . (4.84)

87



4.4.4 Nonlocality of the rotated domino states

The following is an analog of Lemma 4.14 for rotated domino states.

Lemma 4.18. The rotated domino basis S3(θ1, θ2, θ3, θ4) is C
sin 2θ -rigid where

C := 6
(

1 + 6
√

2 + 2
√

3(6 +
√

2)
)
≤ 114 (4.85)

and θ := min{θ1, θ2, θ3, θ4}.

The proof appears in Appendix B.

Again, we use Theorem 4.10 to lower bound the error probability. Here the parame-
ters are n = 9, L = 2, and c = 114/ sin(2θ).

Corollary 4.19. Any LOCC measurement for discriminating S3(θ1, θ2, θ3, θ4), the set of rotated
domino states, errs with probability

perror ≥ 2.4× 10−11 sin2(2θ), (4.86)

where θ := min{θ1, θ2, θ3, θ4}.

Note that as θ approaches zero, the rigidity bound tends to infinity and the bound on
the error probability goes to zero. As the original domino basis is transformed contin-
uously to the standard basis, the nonlocality decreases to zero. Moreover, since any or-
thonormal product basis of C3 ⊗C3 is equivalent to S3(θ1, θ2, θ3, θ4) (up to local unitary
transformations) for some angles θi [FS09], Corollary 4.19 effectively covers all product
bases of C3 ⊗C3.

4.5 Limitations of the framework

4.5.1 Dependence of the nonlocality constant on n

Recall that in Theorem 4.7 we established the lower bound perror ≥ 2
27

η2

n5 on the error
probability, where η is the nonlocality constant and n is the number of states. Intu-
itively it seems that it should be possible to prove a stronger lower bound on perror as
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n increases. However, to lower bound perror by a fixed constant in any dimension using
our framework, one would have to prove a lower bound on η that increases with n.

Let us consider the problem of discriminating orthonormal product states. In the
next lemma we show that it is not possible to obtain such strong error bounds using
our framework in its present form. We do this by proving a fixed upper bound on the
nonlocality constant in any dimension.

Lemma 4.20. Let S be a set of orthonormal product states in CdA ⊗ CdB . The nonlocality
constant of S satisfies η ≤ 2.

Proof. Let n = |S| and |ψi〉 = |αi〉|βi〉. Fix some small ε > 0, choose any i ∈ [n], and
define

a = |αi〉〈αi|+ εIdA , b = |βi〉〈βi|+ εIdB . (4.87)

Note that a and b have full rank and are positive semidefinite. We can easily check that

Tr(a) = 1 + εdA, Tr(b) = 1 + εdB, max
k∈[n]
〈ψk|(a⊗ b)|ψk〉 = (1 + ε)2. (4.88)

Using these observations together with the definition of η in Equation (4.13), we get

η

(
(1 + ε)2

(1 + εdA)(1 + εdB)
− 1

n

)
≤ η

(maxk∈[n]〈ψk|(a⊗ b)|ψk〉
∑j∈[n]〈ψj|(a⊗ b)|ψj〉

− 1
n

)
(4.89)

≤ δS(a⊗ b) (4.90)
≤ 1, (4.91)

where the last inequality follows directly from Definition 4.3. As ε → 0, the left-hand
side goes to η(1− 1

n ). We can choose ε arbitrarily small, so η(1− 1
n ) ≤ 1 and η ≤ n

n−1 =

1 + 1
n−1 . Since n ≥ 2, we get η ≤ 2.

Note that from the above proof it follows that as |S| → ∞ the upper bound on η
tends to one.

4.5.2 Comparison to the result of Kleinmann, Kampermann, and Bruß

The main application of the framework introduced in this chapter is to show the im-
possibility of asymptotically discriminating a set of states S with LOCC. We do this by
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showing that the nonlocality constant of S is strictly positive. In other words, the nonlo-
cality constant being zero is a necessary condition for the sates in S to be asymptotically
distinguishable with LOCC. Another necessary condition is given by Theorem 3.15 from
[KKB11] which we stated and discussed in Section 3.7.2.

One should note however that in contrast to the qualitative result of [KKB11], our
framework can be applied to any set of orthogonal pure states (with no restriction on⋂

i ker ρi) and can be used to obtain explicit lower bounds on the error probability. It
is an open question whether our necessary condition (“the nonlocality constant of S is
zero”) or that of the above theorem is also sufficient. The lemma below shows that if
our necessary condition is also sufficient then so is that of [KKB11].

Lemma 4.21. Let S = {|ψi〉}i∈[n] be a set of orthogonal pure states such that
⋂

i ker(|ψi〉〈ψi|)
does not contain any nonzero product vector. If for all χ with 1/n ≤ χ ≤ 1 there exists a
positive semidefinite product operator E satisfying conditions (1)–(3) from Theorem 3.15, then
the nonlocality constant η of S is zero.

Proof. Consider χ ∈
( 1

n , 1
n−1

)
and a positive semidefinite product operator Eχ satis-

fying conditions (1)–(3). Conditions (1) and (2) imply that 〈ψi|Eχ|ψi〉 > 0 thus mak-
ing δS(Eχ) well defined (see Definition 4.3). Moreover, by condition (3) we have that
|〈ψi|Eχ|ψj〉|2 = 0 for all i 6= j. Hence δS(Eχ) = 0 according to Definition 4.3. Finally,
from conditions (1) and (2), we get that

maxi〈ψi|Eχ|ψi〉
∑j〈ψj|Eχ|ψj〉

=
maxi Tr(Eρi)

∑j Tr(Eρj)
= χ. (4.92)

Using these observations we can rewrite Equation (4.13) in the definition of η as

η
(

χ− 1
n

)
≤ 0. (4.93)

Since χ > 1
n it follows from the above inequality that η = 0.

4.6 Discussion and open problems

We have developed a framework for quantifying the hardness of distinguishing sets of
bipartite pure states with LOCC. Using this framework, we proved lower bounds on
the error probability of distinguishing several sets of states, as summarized in Table 4.1.
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Set of states c η perror

Domino states 4
1
8

1.96× 10−8

Domino-type states 2D
1

4D
1

216D2(dAdB)5

θ-rotated domino states
114

sin 2θ

sin 2θ

227
2.41× 10−11 sin2(2θ)

Table 4.1: Rigidity c and lower bounds on the nonlocality constant η and error probability perror
for various states.

This work raises several open problems. While we were able to lower bound the
nonlocality constant η in many cases, it could be useful to develop more generic ap-
proaches to computing or lower bounding this quantity. We are also interested in ap-
plying our method to other sets of states. For example, we would like to apply the
method when S is an incomplete orthonormal set (e.g., the domino basis with the mid-
dle tile omitted) or a product basis with tiles of size larger than two (see Figure 4.6 for
concrete examples of such tilings where no bounds on perror are known) or both (e.g.,
the states called GenTiles in [DMS+03]). It is unknown whether there exists a set S of 2-
qubit states that can be perfectly discriminated with separable operations, but for which
any LOCC protocol has perror(S) > 0 (see [DFXY09] for all possible candidate sets). Fi-
nally, it would be interesting to consider random product bases, since this would tell us
how generic the phenomenon of nonlocality without entanglement is.

Figure 4.6: Tilings corresponding to an incomplete orthonormal set in C3 ⊗C4 (left) and a prod-
uct basis of C5 ⊗ C5 with larger tiles (right). On the right, the tiles of size four are induced by
states of the form |±〉|±〉 and one of the tiles corresponds to the four corners of the grid.
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We discussed some limitations of our framework in Section 4.5, but we would like
to better understand how broadly the framework can be applied. In particular, can
it always be used to obtain a lower bound on perror whenever such a bound exists?
For example, from Section 4.4.4 we know that the answer to this question is “yes” for
orthonormal product bases on two qutrits.

Finally, the gaps between the classes of separable and LOCC operations exhibited
by our framework are rather small (see Table 4.1). One cannot hope to do significantly
better within our framework, as shown in Section 4.5.1. Is this due to limitations of our
framework or because orthonormal product states in general can be discriminated well
by LOCC?

Along these lines, a major open question raised by our work is the following: does
there exist a sequence S1, S2, S3, . . . of sets of orthonormal product states such that

lim
l→∞

pLOCC
error (Sl) = 1?

Existence of such a sequence would give a strong separation between the classes of
separable and LOCC measurements. Note that the local standard basis measurement
followed by guessing gives the correct answer with probability at least 1/Ll, where Ll
is the maximum number of states within a tile in the tiling induced by Sl. Thus for any
such sequence, the value of Ll must grow with l. In particular, the number of states (and
hence the local dimensions) must also grow with l.
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Chapter 5

Interpolability distinguishes LOCC
from separable von Neumann
measurements

5.1 Introduction

In this chapter we ask what determines whether a given separable operation can or can-
not be implemented using LOCC. We show that, in the case of bipartite von Neumann
measurements, the ability to interpolate measurements is an operational principle that
sets apart LOCC from all separable operations.

5.1.1 Motivation

In contrast to the class LOCC, the class of separable operations, which is easily seen to
encompass all LOCC operations, has a succinct and easy-to-use mathematical descrip-
tion. However, unlike LOCC, the class of separable operations does not have a natural
operational interpretation.

Despite known quantitative separations between the two classes [BDF+99, CLMO12,
KTYI07, Koa09, CCL12a, CCL12b, CH13], it is not understood what determines whether
a given separable operation can or cannot be implemented with LOCC. Here, we draw
our intuition from the proof in [BDF+99] and answer the above question for separable
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von Neumann measurements. In [BDF+99], the authors divided any LOCC measure-
ment into two stages but did not distinguish between LOCC and separable measure-
ments in any other way. Here, we show that the possibility to interpolate a measure-
ment to obtain partial information is intrinsic to LOCC but not separable von Neumann
measurements. More precisely, a separable von Neumann measurement can be inter-
polated only if it can be decomposed into two nontrivial steps, the first of which can be
performed by a finite LOCC protocol. Therefore, the ability to interpolate is an opera-
tional principle that sets apart LOCC from separable von Neumann measurements.

5.1.2 Overview

This chapter is organized as follows. We start in Section 5.1.3 with a review of the con-
cepts used in this chapter. In Section 5.2 we define interpolation, the central notion of
this work, and provide a sufficient condition for interpolatability of arbitrary measure-
ments (see Theorem 5.5). Our main result regarding interpolatability of separable and
LOCC measurements is presented in Section 5.3 (see Theorem 5.10). We conclude in
Section 5.4.

For simplicity, we present our results for the bipartite case. However, the same proof
applies to an arbitrary number of parties.

5.1.3 Preliminaries

When discussing measurements, we use the terminology introduced in Section 1.3.3
and Section 3.2. We also employ the notation from Section 2.2.2 for the different classes
of LOCC instruments ( LOCCN, LOCC etc.).

We now give a definition of coarse graining specialized for the case of POVMs. This
definition is in agreement with its more general counterpart from Chapter 2.

Definition 5.1 (Coarse graining). Let M = {E1, . . . , Ek} and M′ = {F1, . . . , Fm} be
two measurements. We say thatM′ is a coarse graining ofM if there exists a partition
(Λ1, . . . , Λm) of [k] such that Fi = ∑j∈Λi

Ej for all i ∈ [m].

Any LOCC protocol P implements a quantum operation of the form

ρ 7→ ∑
m∈Γ
|m〉〈m| ⊗ (Am ⊗ Bm)ρ(A†

m ⊗ B†
m), (5.1)
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where Γ is the set of all terminating classical measurement records and Am ⊗ Bm is the
Kraus operator corresponding to record m (see Section 3.2.2 for more details). We refer
to the operators (A†

m Am)⊗ (B†
mBm) as the POVM elements of the protocol P . We say

that P implements a measurementM = {Ei}i if the set Γ can be partitioned into parts
Γi such that

Ei = ∑
j∈Γi

(A†
j Aj)⊗ (B†

j Bj). (5.2)

Operationally the partition corresponds to classical post-processing after the execution
of P that coarse grains all outcomes in Γi for each i. WhenM is a von Neumann mea-
surement, Ei in Equation (5.2) is rank one for each i. Thus (A†

j Aj)⊗ (B†
j Bj) is propor-

tional to Ei for all j ∈ Γi, and hence Ei is necessarily a tensor product operator. There-
fore, if a von Neumann measurement in basis S can be implemented with LOCC then S
consists only of tensor product vectors. We call such bases product bases.

Since non-orthogonal states can never be perfectly distinguished, to discriminate the
states from an orthogonal set S with certainty one can only apply non-disturbing mea-
surements. Recall from Definition 3.5 that we call a measurementM non-disturbing for
an orthogonal set S, if 〈ψ|E|φ〉 = 0 for all E ∈ M and all distinct |ψ〉, |φ〉 ∈ S.

From Lemma 3.3 we see that the problem of implementing a measurement M in
basis S with finite LOCC is equivalent to the problem of perfectly discriminating the
states from S with finite LOCC. Throughout this chapter, we use the two perspectives
interchangeably.

5.2 Interpolation of measurements

In this section we consider the problem of implementing a von Neumann measurement
in two stages, i.e., as a sequence of two measurements followed by coarse graining. In
addition, we want to control how much progress is made during the first stage.

5.2.1 Progress function

To quantify the progress of the first measurement, we introduce a function that assigns
numerical values to POVM elements. We take its range to be [0, ∞). Each value indicates
how much progress is made when a particular measurement outcome occurs; a larger
value corresponds to more progress.
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Any such progress function must satisfy some operationally-motivated properties.
First, it must be continuous. Second, it must vanish on POVM elements that are non-
informative (i.e., proportional to the identity matrix). Third, as we want to measure
the progress conditioned on having obtained a particular outcome, the progress function
must be scale-invariant (i.e., it remains the same when the POVM element is multiplied
by a positive scalar). Fourth, since coarse graining corresponds to discarding classical
information, the progress achieved by a coarse-grained operator ∑i Ei must not exceed
that of the most informative Ei. We call the last condition quasiconvexity.

Definition 5.2 (Progress function). A continuous function µ : Pos(Cn) \ {0} → [0, ∞)
such that µ(I) = 0, µ(tE) = µ(E) for all t > 0, and µ(E + F) ≤ max{µ(E), µ(F)} for all
E, F ∈ Pos(Cn) \ {0} is called a progress function.

5.2.2 Interpolation

We are interested in measurementsM whose outcome statistics can be reproduced by
a two-stage process: first perform some measurementM1 and then, conditioned on the
outcome i, perform some other measurementM(i)

2 . More formally:

Definition 5.3 (Composition of measurements). Let M1 = {E1, . . . , Ek} and M2 ={
|i〉〈i| ⊗ E(i)

j
}

ij be measurements such that M(i)
2 := {E(i)

j }j is also a measurement for
each i. We say that a measurementM is a composition ofM1 andM2, and writeM =
M2 ◦M1, ifM is a coarse graining (see Definition 5.1) of a POVM with elements{

E
1
2
i E(i)

j E
1
2
i
}

ij. (5.3)

As a shorthand, we denote the second measurementM2 =
⊕

i∈[k]M(i)
2 .

Note that due to coarse graining, the POVM elements in Equation (5.3) that corre-
spond to some POVM element E ∈ M need not all be proportional to E. In such a
case M2 ◦M1 does not reproduce the post-measurement state of M for the outcome
corresponding to E. However, ifM is a von Neumann measurement, then each E ∈ M
is rank one, so the POVM elements in Equation (5.3) that correspond to E must be pro-
portional to E. Therefore, anyM2 ◦M1 that reproduces the measurement statistics of a
von Neumann measurementM also reproduces its post-measurement states.

A progress function together with the ability to compose measurements allows us
to speak of measurement interpolation, a two-stage implementation of a measurement
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where the amount of progress achieved in the first stage can be controlled. In gen-
eral, some measurement outcomes might be more informative than others. In an ε-
interpolation, the progress after the first measurement is at most ε regardless of the
outcome obtained.

Definition 5.4 (ε-interpolation). Let ε ≥ 0. An ε-interpolation of a measurementM with
respect to a progress function µ is a pair of measurementsM1 = {E1, . . . , Ek} andM2
such that

• max
i

µ(Ei) = ε and

• M =M2 ◦M1 whereM2 =
⊕

i∈[k]M(i)
2 for some measurementsM(i)

2 .

The following theorem from [KKB11] (whose idea originates in [BDF+99]) shows
that any measurement can be ε-interpolated. Note that this theorem does not require
the progress function to be quasiconvex.

Theorem 5.5 ([KKB11]). Let µ be any progress function (see Definition 5.2). Then any mea-
surement M = {F1, . . . , Fk} ⊆ Pos(Cn) can be ε-interpolated with respect to µ for any
ε ∈ [0, λ] where λ := maxi µ(Fi).

Proof. Recall from Section 3.7.1 that the pseudo-weak implementation ofM with inter-
polation parameters c1, . . . , ck ≥ 0 is the measurementM1 = {E1, . . . , Ek} where

Ei = c (ci I + Fi) (5.4)

and c := (1 + ∑i ci)
−1. Also recall that the corresponding recovery measurements

M(i)
2 = {E(i)

1 , . . . , E(i)
k } for i ∈ [k] are specified by

E(i)
j :=

{
δij I if ci = 0,

c
(
ci + δij

)
E−

1
2

i FjE
− 1

2
i otherwise.

(5.5)

As explained in Section 3.7.1, performing M1 followed by an appropriate recovery
measurement implements measurement M. In other words, M = M2 ◦M1, where
M2 =

⊕
i∈[k]M(i)

2 .

We now show that the measurementsM1 andM(i)
2 satisfy the two conditions of ε-

interpolation in Definition 5.4. First, note that Ei changes continuously from F̃i := (1 +
∑k 6=i ck)

−1Fi to I as ci changes from 0 to ∞. Since the progress function µ is continuous
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on nonzero operators, the parameter ci can be chosen so that µ(Ei) achieves any value
between µ(F̃i) = µ(Fi) and µ(I) = 0. Hence, for any ε ∈ [0, λ] we can choose ci so
that µ(Ei) = min{ε, µ(Fi)}. Since µ is scale-invariant, changing ci does not affect the
value of µ(Ej) for j 6= i. Hence, µ(Ei) can be adjusted independently for each i and the
parameters ci can be chosen so that maxi µ(Ei) = ε for any ε ∈ [0, λ].

Theorem 5.5 states that any measurement can be ε-interpolated for small enough
ε > 0 when the type of measurement in the interpolation is not restricted. In Theo-
rem 5.10 we will see that this is not the case for interpolation with a restricted type of
measurement.

5.2.3 Interpolation in SEP

When interpolating a separable measurement, we demand that the first-stage measure-
ment M1 is separable, i.e., E = ∑j aj ⊗ bj for all E ∈ M1. Here the coarse graining
over index j can be viewed as giving away the information about j to the environment.
We wish to measure the achieved progress by taking into account all extracted classical
information, even if it is held by the environment. Therefore, when interpolating within
SEP we modify Definition 5.4.

Definition 5.6 (ε-interpolation in SEP). LetM ⊆ Pos(CdA ⊗ CdB) be a separable mea-
surement. Given ε ≤ 0, we say that M can be ε-interpolated in SEP if M admits an
ε-interpolationM2 ◦M1 such that

• the measurementM1 = {E1, . . . , Ek} is separable, and

• max
i

µ̃(Ei) = ε, where µ̃ is obtained by minimizing over all product decomposi-

tions:

µ̃(E) := min
{

max
j

µ(aj ⊗ bj) : E = ∑
j

aj ⊗ bj where

aj ∈ Pos(CdA) \ {0}, bj ∈ Pos(CdB) \ {0}
}

. (5.6)

Note that the minimum in the definition of µ̃ is always achieved: µ is scale invari-
ant and we can use Carathéodory’s theorem to bound the number of terms in the sum
∑j aj ⊗ bj.
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Observe that Definition 5.4 is equivalent to Definition 5.6 without the constraint of
product measurement operators. To see this, suppose we replace aj ⊗ bj with a general
Fj ∈ Pos(CdA ⊗ CdB) in Equation (5.6). Then E = F1 is a valid decomposition of E, so
µ̃(E) ≤ µ(E). On the other hand, µ(E) ≤ µ̃(E) because µ(E) = µ(∑j Fj) ≤ maxj µ(Fj)

by quasiconvexity of µ. Therefore, the requirement maxi µ(Ei) = ε in Definition 5.4 is
equivalent to maxi µ̃(Ei) = ε in Definition 5.6 (without the product constraint).

If M can be ε-interpolated in SEP, then the first-stage measurement M1 can be
chosen to have tensor product POVM elements. This is because any POVM element
E = ∑j aj⊗ bj of the first-stage measurement can be replaced with its fine-grained prod-
uct operators aj ⊗ bj achieving the minimum in the definition of µ̃. This fact is crucial
for the proof of Lemma 5.9.

Finally, observe that an ε-interpolation whose first-stage measurementM1 has only
tensor product operators is an ε-interpolation in SEP. We call such interpolations product
interpolations.

Lemma 5.7. Let M2 ◦M1 be a product ε-interpolation of a separable measurement M ⊆
Pos(CdA ⊗CdB). ThenM2 ◦M1 is an ε-interpolation ofM in SEP.

Proof. LetM1 = {c1⊗ d1, . . . , ck ⊗ dk}. According to Definition 5.4, maxi µ(ci ⊗ di) = ε.
To see that M2 ◦ M1 is also an ε-interpolation of M in SEP, we need to show that
maxi µ̃(ci ⊗ di) = ε. By the quasiconvexity of µ, for any c⊗ d and any decomposition
∑j aj ⊗ bj = c⊗ d, we have µ(c⊗ d) ≤ maxj µ(aj ⊗ bj). Therefore µ(ci ⊗ di) = µ̃(ci ⊗ di)
and the lemma follows.

5.3 Interpolatability distinguishes LOCC from SEP

In this section we prove our main result concerning ε-interpolation of von Neumann
measurements within SEP. Recall from Lemma 3.3 that performing a von Neumann
measurement is equivalent to discriminating states from some orthonormal basis S =
{|ψj〉}j. Note that the POVM elements E for which 〈ψ|E|ψ〉 = 0 for some |ψ〉 ∈ S elim-
inate |ψ〉. We focus on progress functions where the progress in such cases cannot be
arbitrarily small, since intuitively such an outcome represents partial progress towards
discriminating the states from S.

Definition 5.8 (Threshold). A progress function µ (see Definition 5.2) has threshold µ0 >
0 with respect to an orthonormal basis S if for all nonzero E ∈ Pos(Cn) for which
〈ψ|E|ψ〉 = 0 for some |ψ〉 ∈ S, we have µ(E) ≥ µ0.
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As a concrete example, consider the following progress function from Chapter 4.

Example. Let S ⊆ Cn be an orthonormal basis. Consider µ : Pos(Cn)→ [0, ∞) given by

µ(E) :=
max|ψ〉∈S〈ψ|E|ψ〉

Tr(E)
− 1
|S| . (5.7)

The first term in Equation (5.7) is the maximum probability of making a correct guess
if the outcome corresponds to E, so µ measures the deviation of the best guess from a
uniformly random guess. It can be verified that µ satisfies the conditions from Defini-
tion 5.2 and hence is a valid progress function. If 〈ψ|E|ψ〉 = 0 for some |ψ〉 ∈ S, then
the first term is at least 1

n−1 , so µ has threshold µ0 = 1
n(n−1) .

The following lemma shows that if a separable von Neumann measurement M in
basis S can be ε-interpolated in SEP for some small ε, then there exists a nontrivial local
measurement that is non-disturbing for S (see Definition 3.5). Intuitively this means
that some part of the measurement M can be implemented by LOCC (we formalize
this intuition later in Theorem 5.10, our main result).

Lemma 5.9. Let M ∈ SEP be a von Neumann measurement in basis S ⊆ CdA ⊗ CdB and
let µ be a progress function with threshold µ0 with respect to S (see Definition 5.8). IfM can
be ε-interpolated in SEP for some ε ∈ (0, µ0), then there exists a projective measurement L of
the form A⊗ I or I ⊗ B that is non-disturbing for S and achieves progress µ(E) ≥ µ0 for all
E ∈ L.

Proof. Assume that M admits an ε-interpolation in SEP for some ε ∈ (0, µ0). As ex-
plained above, the first-stage measurementM1 = {Ei}i ∈ SEP can be chosen to have
tensor product POVM elements, i.e., each Ei = ai ⊗ bi. Since the measurementM per-
fectly discriminates the states from S, the first-stage measurementM1 in the implemen-
tation ofMmust be non-disturbing, i.e.,

〈ψj|Ei|ψk〉 = 0 (5.8)

for all Ei ∈ M1 and all distinct j, k ∈ [dAdB]. It follows that each Ei is diagonal in the
basis S. Thus, for each i and k there exists λik ≥ 0 such that

Ei|ψk〉 = λik|ψk〉. (5.9)

If any λik = 0, then 〈ψk|Ei|ψk〉 = 0 and hence µ(Ei) ≥ µ0. Yet this contradicts the
interpolation condition requiring that µ(Ei) ≤ ε < µ0. Thus λik > 0 for all i, k.
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Now, using the fact that each Ei = ai ⊗ bi and each |ψk〉 = |αk〉 ⊗ |βk〉 for a product
basis S, we rewrite Equation (5.9) as

(ai ⊗ bi)|αk〉 ⊗ |βk〉 = λik|αk〉 ⊗ |βk〉. (5.10)

Strict positivity of λik implies bi|βk〉 6= 0 and thus

ai|αk〉 = ηik|αk〉, (5.11)

where ηik = λik/‖bi|βk〉‖2 > 0. Thus (ai ⊗ IB)|ψk〉 = ai|αk〉 ⊗ IB|βk〉 = ηik|ψk〉, so

〈ψj|(ai ⊗ IB)|ψk〉 = 0 (5.12)

for all distinct j, k. Thus the matrix ai⊗ IB is diagonal in basis S, and so is each Πi,η ⊗ IB,
where Πi,η is the projector onto the eigenspace of ai with eigenvalue η. Hence

〈ψj|(Πi,η ⊗ IB)|ψk〉 = 0 (5.13)

for all distinct j, k and all η ∈ spec(ai). If Ai := {Πi,η : η ∈ spec(ai)} is the pro-
jective measurement onto the eigenspaces of ai, then the joint measurement Ai ⊗ I is
non-disturbing for S according to Equation (5.13). Note that unless ai = IA, we have
〈ψ|(Πi,η ⊗ IB)|ψ〉 = 0 for some |ψ〉 ∈ S. In this case µ(E) ≥ µ0 for all E ∈ Ai ⊗ I . The
same holds for I ⊗ Bi which can be defined similarly.

It remains to show that for some i at least one of Ai ⊗ I and I ⊗ Bi is nontrivial.
Consider an i such that µ(Ei) = ε. Since ε > 0, ai ⊗ bi is not proportional to the identity
matrix. Thus either ai is not proportional to the identity matrix and hence Ai ⊗ I is
nontrivial, or bi is not proportional to the identity matrix and I ⊗ Bi is nontrivial.

Now we are ready to prove our main theorem, establishing interpolatability as an
operational principle that distinguishes LOCC and separable von Neumann measure-
ments.

Theorem 5.10. LetM ∈ SEP be a von Neumann measurement in basis S ⊆ CdA ⊗CdB and
let µ be a progress function with threshold µ0 with respect to S (see Definition 5.8). ThenM
can be ε-interpolated in SEP for some ε ∈ (0, µ0) if and only if M = M2 ◦M1 for some
M1 ∈ LOCCN that achieves progress µ(E) ≥ µ0 for all E ∈ M1.

Proof. (⇒) Assume thatM can be ε-interpolated for some ε ∈ (0, µ0). Then according
to Lemma 5.9 there exists a local k-outcome measurement A on one of the parties, say
Alice, such that A ⊗ I is non-disturbing for S and achieves progress µ(E) ≥ µ0 for
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all E ∈ A ⊗ I . Let us choose M1 = A ⊗ I and M2 =
⊕

i∈[k]M. Since A ⊗ I is
non-disturbing for S, coarse-graining according to the outcomes ofM2 implements the
original measurementM in basis S. HenceM =M2 ◦M1 whereM1 ∈ LOCCN and
µ(E) ≥ µ0 for all E ∈ M1.

(⇐) Assume that M = M2 ◦M1 for some M1 ∈ LOCCN that achieves progress
µ(E) ≥ µ0 for all E ∈ M1. To obtain the desired ε-interpolation ofM, in an LOCC pro-
tocol for implementingM1 we find the earliest measurement with an outcome achiev-
ing nonzero progress. Interpolating this local measurement for small ε > 0, gives an
ε-interpolation ofM1 in SEP and hence also ofM. We now formalize this idea.

Consider an LOCC protocol for implementingM1. We can naturally represent this
protocol as a rooted tree T , where the nodes in each level correspond to measurements
performed in the corresponding round of the protocol (see Section 3.2.4 for more ex-
planation). We define a subtree T ′ of T recursively as follows (see Figure 5.1 for an
example). First, we include the root of T in T ′. Next, if a vertex v is in T ′ and all chil-
dren of v have zero progress, then we include the children of v in T ′ as well. We obtain
the desired ε-interpolation of M by interpolating the measurement at some leaf v′ of
T ′.

v′

T ′
A

Figure 5.1: An example of a protocol tree T and its corresponding subtree T ′. The boundary
around T ′ is marked by a dashed line. We use black edges and empty nodes to indicate that zero
progress is made at that point of the protocol. Purple edges and solid nodes indicate nonzero
progress. Since the marked node v′ has a child with nonzero progress, we can ε-interpolate the
local measurement at v′ for some nonzero ε.

Since µ(E) > 0 for all E ∈ M1 and µ is quasiconvex, µ must be nonzero at some
leaf of T . By construction, T ′ has some vertex v′ that is a leaf in T ′ but has a child in T
with nonzero progress. Consider the tree obtained from T ′ by adding all the children
of v′ and letM′

1 be the corresponding measurement. Note thatM1 can be expressed as

M1 =M′′
1 ◦M′

1, whereM′′
1 =

⊕
jM(j)

1 and theM(j)
1 are some finite LOCC measure-

ments.
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Assume without loss of generality that Alice is the party performing a local mea-
surement at v′ and denote that measurement by A. In analogy to Equation (5.3), define
a function µ′ on Alice’s space via

µ′(a) := µ
((√

a′a
√

a′
)
⊗ b′

)
, (5.14)

where a′ ⊗ b′ is the POVM element that has been applied upon reaching node v′. Note
that µ′ is a valid progress function as it inherits all the properties required in Defini-
tion 5.2 from µ (e.g., µ′(IA) = µ(a′ ⊗ b′) = 0 by construction). Let λ := maxa∈A µ′(a)
and note that λ > 0 according to our assumption that v′ has children with nonzero
progress.

Now, using Theorem 5.5, we can ε-interpolate A with respect to µ′ for any ε ∈
(0, min{λ, µ0}) ⊆ [0, λ]. Any such ε-interpolation ofAwith respect to µ′ gives a product
ε-interpolation ofM′

1 with respect to µ. SinceM =M2 ◦M1 =M2 ◦M′′
1 ◦M′

1, any
product ε-interpolation ofM′

1 is also a product ε-interpolation ofM. Finally, applying
Lemma 5.7 yields an ε-interpolation ofM in SEP.

To describe the consequences of Theorem 5.10, let us first consider an example.

Example. Let M ⊆ Pos(C4 ⊗ C4) be the von Neumann measurement corresponding
to the product basis shown in Figure 5.2. Let MLOCC ∈ LOCCN be a measurement
implemented by the following two-step protocol (intuitively, it “peels off” the two extra
tiles):

1. Alice performs a two-outcome measurement {I− |3〉〈3|, |3〉〈3|} and sends the out-
come to Bob.

2. If Alice got the first outcome, Bob applies the same measurement; otherwise he
does nothing.

Note thatMLOCC in this example is non-disturbing, so it can be completed by some
measurement M′ to obtain a decomposition M = M′ ◦MLOCC as in Theorem 5.10.
We can specify M′ more precisely by describing the measurement associated to each
outcome of MLOCC. If either of the parties obtains |3〉〈3|, they are left with one of
the two long tiles and the protocol can be easily completed by a local measurement in
an appropriate basis. Otherwise they are left with the problem of discriminating the
domino states. Then no nontrivial non-disturbing local measurement is possible [GV01,
WH02, Coh07], so Alice and Bob cannot proceed any further by using only LOCC. We
call the remaining measurement purely separable since it can be completed using only
separable operations, but no further progress can be made by LOCC without ruining
the orthogonality of the states.
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|0〉
|0〉

|1〉

|1〉

|2〉

|2〉

|3〉

|3〉

Alice

Bob

1

2

3
4

5
6

7

|ψ1〉 = |1〉|1〉
|ψ±2 〉 = |0〉|0± 1〉
|ψ±3 〉 = |2〉|1± 2〉
|ψ±4 〉 = |1± 2〉|0〉
|ψ±5 〉 = |0± 1〉|2〉
|ψi

6〉 = (U3|i〉)|3〉 i ∈ {0, 1, 2}
|ψj

7〉 = |3〉(U4|j〉) j ∈ {0, 1, 2, 3}

Figure 5.2: A product basis corresponding to domino states (dark gray) augmented with two
extra tiles (light gray). A tile of size l represents l states that are supported only on that tile
(see Section 4.3.1 for more details). All 16 states are listed on the right, where |x± y〉 := (|x〉 ±
|y〉)/

√
2. The light gray tiles are generated by unitaries U3 and U4 of size 3 × 3 and 4 × 4,

respectively, that have no zero entries in the computational basis. For concreteness, Un could be
the quantum Fourier transform modulo n.

5.4 Discussion

It is known that all LOCC measurements are separable but that some separable mea-
surements are not even in the closure of LOCC [BDF+99, CLMO12]. Nevertheless, some
separable measurements can be partially implemented by LOCC. Purely separable mea-
surements are those that cannot even be partially implemented by LOCC. The resulting
hierarchy is shown in Figure 5.3.

MLOCC

M◦MLOCC

MSEP

Figure 5.3: Subclasses of separable von Neumann measurements. The innermost region corre-
sponds to LOCC measurements. The shaded region corresponds to measurements that can be
partially implemented by LOCC, i.e., decomposed asM◦MLOCC as in Theorem 5.10. The white
region corresponds to purely separable measurements.
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Our main result (Theorem 5.10) characterizes purely separable measurements as pre-
cisely those for which ε-interpolation in SEP is not possible for any sufficiently small
ε > 0. We conclude that ε-interpolatability in SEP for small ε > 0 is the key feature that
distinguishes LOCCN from purely separable von Neumann measurements. In fact, this
observation can be boosted to LOCC (the closure of LOCC). This follows by combining
Theorem 5.10 with Theorem 3.17.

Our results suggest several open problems. One possible research direction is to ex-
tend our results beyond von Neumann measurements. For example, can one generalize
the notion of a progress function and prove an analogue of Theorem 5.10 for general
POVMs or for the task of discriminating orthonormal states from an incomplete prod-
uct basis?

Taking the idea of interpolation further, it might also be fruitful to find a continuous-
time description of LOCC protocols. Such a description could give a new perspective
on LOCC and a new tool for analyzing it. In particular, is it possible that the optimal
protocol for some task is intrinsically continuous-time?
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Appendix A

Rigidity of domino-type states
(Lemma 4.16)

Lemma 4.16. Let dA, dB ≥ 3 and let S be an orthonormal product basis of CdA ⊗ CdB . If S
induces an irreducible domino-type tiling of diameter D then S is 2D-rigid (see Section 4.3.1 for
terminology).

Proof. We mimic the proof of Lemma 4.14 and make the appropriate generalizations
when necessary. We want to show that∣∣∣∣aiibjj −

1
dAdB

Tr(a⊗ b)
∣∣∣∣ ≤ 2Dδ Tr(a⊗ b), (A.1)

|aijbkt| ≤ 2Dδ Tr(a⊗ b), (A.2)

where i 6= j or k 6= t in the second inequality.

Bounding the diagonal elements:

Using the calculation in Equations (4.63–4.66) we can bound the difference of diagonal
entries of a and b. Whenever there is a 2× 1 tile that connects rows i and j, we get that

|aii − ajj| ≤ δ Tr(a). (A.3)

A similar equation holds for b whenever there is a 1 × 2 tile that connects columns i
and j.
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Since T is irreducible, the row graph of T is connected. Moreover, any two vertices of
this graph are connected by a path of length at most D. We apply the triangle inequality
along this path in the same way as in Equation (4.68). After at most D − 1 repetitions
we get that for any i and j,

|aii − ajj| ≤ Dδ Tr(a). (A.4)

A similar equation holds for b. When we repeat the calculation in Equations (4.69–4.72),
we get that for any i, j, k, t,

|aiibjj − akkbtt| ≤ 2Dδ Tr(a⊗ b). (A.5)

Finally, we repeat the calculation in Equations (4.73–4.75) and get the desired bound
stated in Equation (A.1).

Bounding the off-diagonal elements:

From Lemma 4.13 we get that

2δ Tr(a⊗ b) ≥ |ar1r2 | · |bc1c2 | (A.6)

for all (r1, c1) 6= (r2, c2), except when (r1, c1) and (r2, c2) belong to the same tile of size
two.

Suppose that we want to bound |arr| · |bc1c2 | where (r, c1) and (r, c2) belong to the
same 1× 2 tile. Since T is irreducible, we can find a row r′ such that (r′, c1) and (r′, c2)
belong to different tiles (if {r′} × {c1, c2} is a tile for each r′ then {c1, c2} is a connected
component of the column graph of T, contradicting the irreducibility of T). From Equa-
tion (4.77) we get

2δ Tr(a⊗ b) ≥ |ar′r′ | · |bc1c2 |. (A.7)

According to Equation (A.4), Dδ Tr(a) ≥ |arr − ar′r′ | ≥ |arr| − |ar′r′ |. Using this observa-
tion we repeat the calculation in Equations (4.80–4.81) and obtain

2δ Tr(a⊗ b) ≥ |arr| · |bc1c2 | − Dδ Tr(a⊗ b). (A.8)

After rearranging terms we get

(D + 2)δ Tr(a⊗ b) ≥ |arr| · |bc1c2 |. (A.9)

The same bound also holds for entries corresponding to 2× 1 tiles. Together with Equa-
tion (A.6) this establishes the desired bound in Equation (A.2).
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Note that the above proof uses the assumption that the size of any tile is at most
two in an essential way. Without this assumption, it might not be possible to find a row
r′ such that (r′, c1) and (r′, c2) belong to different tiles when bounding the off-diagonal
element |arr| · |bc1c2 |.
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Appendix B

Rigidity of rotated domino states
(Lemma 4.18)

In this section we establish an analog of Lemma 4.14 for the rotated domino states
S3(θ1, θ2, θ3, θ4). For simplicity we consider only the set S3(θ) := S3(θ, θ, θ, θ) and ob-
tain a bound on the its rigidity in terms of θ. In the more general case one can choose
θ := min{θ1, θ2, θ3, θ4} and use the same bound.

Lemma B.1. For j ∈ {0, 2} we have

|b11 − bjj| ≤
2

sin 2θ

(
δ‖b‖∞ +

∣∣Re bj1
∣∣). (B.1)

The same inequality holds for a.

Proof. We show how to get the bound on b for j = 0. The remaining three cases are
similar.

We use the states |ψ2〉 and |ψ3〉 from Equation (4.56) in the definition of δ in Equa-
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tion (4.62):

δ‖b‖∞ ≥ |〈β2|b|β3〉| (B.2)

=

∣∣∣∣(cos θ sin θ
) (b00 b01

b10 b11

)(− sin θ
cos θ

)∣∣∣∣ (B.3)

=
∣∣∣(b11 − b00) sin θ cos θ − b10 sin2 θ + b01 cos2 θ

∣∣∣ (B.4)

=
∣∣∣(b11 − b00) sin θ cos θ + Re b01(cos2 θ − sin2 θ) + i Im b01

∣∣∣ (B.5)

≥ |b11 − b00

2
sin 2θ + Re b01 cos 2θ| (B.6)

≥ |b11 − b00|
2

sin 2θ − |Re b01|. (B.7)

By rearranging terms we get the desired bound.

Lemma B.2. If a11 ≥ 1
s‖a‖∞ for some s > 0 then for j ∈ {0, 2} we have

|bj1| ≤
√

2sδ‖b‖∞, |b11 − bjj| ≤ 2(1 +
√

2s)
δ

sin 2θ
‖b‖∞. (B.8)

The same statement holds when the roles of a and b are exchanged.

Proof. We show how to get bounds on b for j = 0. The remaining three cases are identi-
cal, except one has to use states from different tiles.

We use Lemma 4.13 with tiles corresponding to states |ψ6,7〉 and |ψ1〉:
√

2δ‖a⊗ b‖∞ ≥ |a11b01| ≥
1
s
‖a‖∞|b01|, (B.9)

where the second inequality follows from our assumption |a11| ≥ 1
s‖a‖∞. By rewriting

this we get the first bound:
|b01| ≤

√
2sδ‖b‖∞. (B.10)

Since |Re b01| ≤ |b01| ≤
√

2sδ‖b‖∞, we get the second bound from Lemma B.1.

Lemma B.3. If a11 ≥ 1
s‖a‖∞ and b11 ≥ 1

s‖b‖∞ for some s > 0 then

‖ a⊗ b
Tr(a⊗ b)

− I
9
‖max ≤ 8(1 +

√
2s)

δ

sin 2θ
. (B.11)
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Proof. We follow the proof of Lemma 4.14 and show the following generalizations of
Equations (4.60) and (4.61):∣∣∣∣aiibjj −

1
9

Tr(a⊗ b)
∣∣∣∣ ≤ 8(1 +

√
2s)

δ

sin 2θ
‖a⊗ b‖∞, (B.12)

|aijbkt| ≤ max{
√

2, 2,
√

2s}δ‖a⊗ b‖∞. (B.13)

Note that the second inequality is stronger than we need, since 1/ sin 2θ ≥ 1.

First, we use Lemma B.2 to upper bound the difference of diagonal entries of a and b.
We use these bounds in the same way as in Lemma 4.14 to upper bound the differences
of diagonal entries of a⊗ b and to get Equation (B.12). Finally, we use Lemma 4.13 to
upper bound most of the off-diagonal entries of a⊗ b and Lemma B.2 to upper bound
the remaining ones. This gives us Equation (B.13).

Bounding the diagonal elements:

From Lemma B.2 we get bounds on |b11 − bii| and |a11 − aii| for i ∈ {0, 2}. Using the
triangle inequality, we get

|aii − ajj| ≤ 4(1 +
√

2s)
δ

sin 2θ
‖a‖∞ (B.14)

for any i, j ∈ {0, 1, 2} (and the same for b). Using the triangle inequality once more we
can bound the difference of any two diagonal entries of a⊗ b:

|aiibjj − akkbtt| ≤ 8(1 +
√

2s)
δ

sin 2θ
‖a⊗ b‖∞. (B.15)

From this we obtain Equation (B.12) in the same way as in Lemma 4.14.

Bounding the off-diagonal elements:

Equation (B.13) can be obtained from Lemma 4.13. For most of the entries the constant
is either

√
2 or 2, depending on the sizes of the tiles. For the remaining four entries,

listed in Equation (4.78), we proceed in a slightly different way. For example, for a00b01
we use Equation (B.10) to see that

|a00| · |b01| ≤ ‖a‖∞ ·
√

2sδ‖b‖∞. (B.16)

A similar strategy works for the remaining three entries.
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Lemma B.4. Fix any s ≥ 3 and let

1
r(s)

:= min{ 1
14

(
1
3
− 1

s

)
,

1
2(1 +

√
2s)

(
1
3
− 1

s

)
}. (B.17)

If δ
sin 2θ ≤ 1

r(s) then a11 ≥ 1
s‖a‖∞ and b11 ≥ 1

s‖b‖∞.

Proof. We get one of the two lower bounds almost for free. We combine this with
Lemma 4.13 and the triangle inequality to get the other lower bound.

If maxi aii = a11 then a11 ≥ 1
3 Tr(a) ≥ 1

3‖a‖∞ ≥ 1
s‖a‖∞ and we are done with a.

Similarly, if maxi bii = b11 then b11 ≥ 1
s‖b‖∞. Thus it only remains to consider the cases

when maxi aii ∈ {a00, a22} and maxi bii ∈ {b00, b22}. By symmetry, it suffices to consider
the case where maxi aii = a22 and maxi bii = b00. The remaining three cases are similar.

Using the tiles that correspond to states |ψ6,7〉 and |ψ4,5〉, we get

2δ‖a⊗ b‖∞ ≥ |a22b01| ≥
1
3
‖a‖∞|b01|. (B.18)

Thus |Re b01| ≤ |b01| ≤ 6δ‖b‖∞ and using Lemma B.1, we get

b00 − b11 ≤ |b11 − b00| (B.19)

≤ 2
sin 2θ

(δ‖b‖∞ + |Re b01|) (B.20)

≤ 14
δ

sin 2θ
‖b‖∞. (B.21)

We assumed that maxi bii = b00, so

1
3
‖b‖∞ ≤ b00 ≤ b11 + 14

δ

sin 2θ
‖b‖∞. (B.22)

By assumption, δ
sin 2θ ≤ 1

r(s) ≤ 1
14

(1
3 − 1

s
)
, so we get the desired bound b11 ≥ 1

s‖b‖∞.

As we have a lower bound on b11, we can use Lemma B.2 and get

|a11 − a22| ≤ 2(1 +
√

2s)
δ

sin 2θ
‖a‖∞. (B.23)

We assumed that maxi aii = a22, so we can rewrite this as

1
3
‖a‖∞ ≤ a22 ≤ a11 + 2(1 +

√
2s)

δ

sin 2θ
‖a‖∞. (B.24)
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By assumption, δ
sin 2θ ≤ 1

r(s) ≤ 1
2(1+

√
2s)

(1
3 − 1

s
)
, so we get the desired bound a11 ≥

1
s‖a‖∞.

Lemma B.5. For any fixed s ≥ 3 we have the following:

• if δ
sin 2θ ≤ 1

r(s) then ‖ a⊗b
Tr(a⊗b) − I

9‖max ≤ 8(1 +
√

2s) δ
sin 2θ ,

• if δ
sin 2θ ≥ 1

r(s) then ‖ a⊗b
Tr(a⊗b) − I

9‖max ≤ r(s) δ
sin 2θ ,

where r(s) is defined in Equation (B.17).

Proof. The first part follows by combining Lemmas B.3 and B.4. To obtain the second
part, notice that all diagonal entries of a⊗b

Tr(a⊗b) are at most 1. Since this matrix is positive
semidefinite, the off-diagonal entries are also at most 1, so the bound follows.

Lemma 4.18. The rotated domino basis S3(θ1, θ2, θ3, θ4) is C
sin 2θ -rigid where

C := 6
(

1 + 6
√

2 + 2
√

3(6 +
√

2)
)
≤ 114 (4.85)

and θ := min{θ1, θ2, θ3, θ4}.

Proof. Let us denote the largest of the two constants in Lemma B.5 by

C(s) :=max{8(1 +
√

2s), r(s)} (B.25)

=max{8(1 +
√

2s), 14
3s

s− 3
, 2(1 +

√
2s)

3s
s− 3

}, (B.26)

where we substituted r(s) from Equation (B.17). We want to make this constant as small
as possible, so the best possible value is

C = min
s≥3

C(s) (B.27)

= min
s≥3

2(1 +
√

2s)
3s

s− 3
(B.28)

= 6
(

1 + 6
√

2 + 2
√

3(6 +
√

2)
)

, (B.29)

where the minimum is reached at s = 3 +
√

9 + 3/
√

2 ≈ 6.33.
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Interpolatability distinguishes LOCC from separable von Neumann mea-
surements. 2013. arXiv:1306.5992. 4, 5

[Coh07] Scott M. Cohen. Local distinguishability with preservation of entangle-
ment. Phys. Rev. A, 75:052313, May 2007. arXiv:quant-ph/0602026,
doi:10.1103/PhysRevA.75.052313. 22, 65, 103

[Coh08] Scott M. Cohen. Understanding entanglement as resource: Locally distin-
guishing unextendible product bases. Phys. Rev. A, 77:012304, Jan 2008.
arXiv:0708.2396, doi:10.1103/PhysRevA.77.012304. 46

[Coh11] Scott M. Cohen. When a quantum measurement can be implemented lo-
cally, and when it cannot. Phys. Rev. A, 84:052322, Nov 2011. arXiv:
0912.1607, doi:10.1103/PhysRevA.84.052322. 46

[Cro12] Sarah Croke. There is no non-local information in a single qubit. In APS
Meeting Abstracts, page 30011, Feb 2012. 44

[CY01] Yi-Xin Chen and Dong Yang. Optimal conclusive discrimination of
two nonorthogonal pure product multipartite states through local opera-
tions. Phys. Rev. A, 64:064303, Nov 2001. doi:10.1103/PhysRevA.64.
064303. 44, 65

[CY02] Yi-Xin Chen and Dong Yang. Optimally conclusive discrimination of
nonorthogonal entangled states by local operations and classical commu-
nications. Phys. Rev. A, 65:022320, Jan 2002. doi:10.1103/PhysRevA.
65.022320. 44, 65

[DFJY07] Runyao Duan, Yuan Feng, Zhengfeng Ji, and Mingsheng Ying. Distinguish-
ing arbitrary multipartite basis unambiguously using local operations and
classical communication. Phys. Rev. Lett., 98:230502, Jun 2007. arXiv:
quant-ph/0612034, doi:10.1103/PhysRevLett.98.230502. 65

[DFXY09] Runyao Duan, Yuan Feng, Yu Xin, and Mingsheng Ying. Distinguisha-
bility of quantum states by separable operations. IEEE Trans. Inf. Theor.,

118

http://arxiv.org/abs/1206.5822
http://arxiv.org/abs/1206.5822
http://arxiv.org/abs/1306.5992
http://arxiv.org/abs/quant-ph/0602026
http://dx.doi.org/10.1103/PhysRevA.75.052313
http://arxiv.org/abs/0708.2396
http://dx.doi.org/10.1103/PhysRevA.77.012304
http://arxiv.org/abs/0912.1607
http://arxiv.org/abs/0912.1607
http://dx.doi.org/10.1103/PhysRevA.84.052322
http://dx.doi.org/10.1103/PhysRevA.64.064303
http://dx.doi.org/10.1103/PhysRevA.64.064303
http://dx.doi.org/10.1103/PhysRevA.65.022320
http://dx.doi.org/10.1103/PhysRevA.65.022320
http://arxiv.org/abs/quant-ph/0612034
http://arxiv.org/abs/quant-ph/0612034
http://dx.doi.org/10.1103/PhysRevLett.98.230502


55:1320–1330, March 2009. arXiv:0705.0795, doi:10.1109/TIT.
2008.2011524. 22, 45, 46, 65, 91

[DHR02] Matthew J. Donald, Michał Horodecki, and Oliver Rudolph. The unique-
ness theorem for entanglement measures. J. Math. Phys., 43:4252–4272,
2002. arXiv:quant-ph/0105017, doi:10.1063/1.1495917. 10

[DL70] E. Brian Davies and John T. Lewis. An operational approach to quan-
tum probability. Comm. Math. Phys., 17(3):239–260, 1970. URL: http:
//projecteuclid.org/euclid.cmp/1103842336, doi:10.1007/
BF01647093. 11

[DLT02] David P. DiVincenzo, Debbie W. Leung, and Barbara M. Terhal. Quan-
tum data hiding. IEEE Trans. Inf. Theory, 48(3):580–598, Mar 2002. arXiv:
quant-ph/0103098, doi:10.1109/18.985948. 3, 18

[DMS+03] David P. DiVincenzo, Tal Mor, Peter W. Shor, John A. Smolin, and
Barbara M. Terhal. Unextendible product bases, uncompletable prod-
uct bases and bound entanglement. Communications in Mathematical
Physics, 238:379–410, 2003. arXiv:quant-ph/9908070, doi:10.1007/
s00220-003-0877-6. 45, 65, 91

[DR04] Sergio De Rinaldis. Distinguishability of complete and unextendible prod-
uct bases. Phys. Rev. A, 70:022309, Aug 2004. arXiv:quant-ph/0304027,
doi:10.1103/PhysRevA.70.022309. 45, 46, 50

[DVC00] Wolfgang Dür, Guifre Vidal, and J. Ignacio Cirac. Three qubits can
be entangled in two inequivalent ways. Phys. Rev. A, 62(6):062314,
Nov 2000. arXiv:quant-ph/0005115, doi:10.1103/PhysRevA.62.
062314. 23

[DXY10] Runyao Duan, Yu Xin, and Mingsheng Ying. Locally indistinguishable
subspaces spanned by three-qubit unextendible product bases. Phys. Rev.
A, 81:032329, Mar 2010. arXiv:0708.3559, doi:10.1103/PhysRevA.
81.032329. 45, 65

[EW02] Tilo Eggeling and Reinhard F. Werner. Hiding classical data in multipar-
tite quantum states. Phys. Rev. Lett., 89(9):097905, Aug 2002. arXiv:
quant-ph/0203004, doi:10.1103/PhysRevLett.89.097905. 3

119

http://arxiv.org/abs/0705.0795
http://dx.doi.org/10.1109/TIT.2008.2011524
http://dx.doi.org/10.1109/TIT.2008.2011524
http://arxiv.org/abs/quant-ph/0105017
http://dx.doi.org/10.1063/1.1495917
http://projecteuclid.org/euclid.cmp/1103842336
http://projecteuclid.org/euclid.cmp/1103842336
http://dx.doi.org/10.1007/BF01647093
http://dx.doi.org/10.1007/BF01647093
http://arxiv.org/abs/quant-ph/0103098
http://arxiv.org/abs/quant-ph/0103098
http://dx.doi.org/10.1109/18.985948
http://arxiv.org/abs/quant-ph/9908070
http://dx.doi.org/10.1007/s00220-003-0877-6
http://dx.doi.org/10.1007/s00220-003-0877-6
http://arxiv.org/abs/quant-ph/0304027
http://dx.doi.org/10.1103/PhysRevA.70.022309
http://arxiv.org/abs/quant-ph/0005115
http://dx.doi.org/10.1103/PhysRevA.62.062314
http://dx.doi.org/10.1103/PhysRevA.62.062314
http://arxiv.org/abs/0708.3559
http://dx.doi.org/10.1103/PhysRevA.81.032329
http://dx.doi.org/10.1103/PhysRevA.81.032329
http://arxiv.org/abs/quant-ph/0203004
http://arxiv.org/abs/quant-ph/0203004
http://dx.doi.org/10.1103/PhysRevLett.89.097905


[Fan04] Heng Fan. Distinguishability and indistinguishability by local operations
and classical communication. Phys. Rev. Lett., 92:177905, Apr 2004. arXiv:
quant-ph/0311026, doi:10.1103/PhysRevLett.92.177905. 45, 65

[FS09] Yuan Feng and Yaoyun Shi. Characterizing locally indistinguishable or-
thogonal product states. IEEE Trans. Inf. Theor., 55:2799–2806, June 2009.
arXiv:0707.3581, doi:10.1109/TIT.2009.2018330. 45, 65, 88

[GB03] Leonid Gurvits and Howard Barnum. Separable balls around the max-
imally mixed multipartite quantum states. Phys. Rev. A, 68(4):042312,
Oct 2003. arXiv:quant-ph/0302102, doi:10.1103/PhysRevA.68.
042312. 26

[GKR+01] Sibasish Ghosh, Guruprasad Kar, Anirban Roy, Aditi Sen(De), and Ujjwal
Sen. Distinguishability of Bell states. Phys. Rev. Lett., 87:277902, Dec
2001. arXiv:quant-ph/0106148, doi:10.1103/PhysRevLett.87.
277902. 45, 65

[GKR08] Shafi Goldwasser, YaelTauman Kalai, and GuyN. Rothblum. One-time pro-
grams. In Advances in Cryptology — CRYPTO 2008, volume 5157 of Lecture
Notes in Computer Science, pages 39–56. Springer Berlin Heidelberg, 2008.
doi:10.1007/978-3-540-85174-5_3. 3

[GKRS04] Sibasish Ghosh, Guruprasad Kar, Anirban Roy, and Debasis Sarkar. Dis-
tinguishability of maximally entangled states. Phys. Rev. A, 70:022304,
Aug 2004. arXiv:quant-ph/0205105, doi:10.1103/PhysRevA.70.
022304. 65

[GL03] Daniel Gottesman and Hoi-Kwong Lo. Proof of security of quantum
key distribution with two-way classical communications. IEEE Trans.
Inf. Theory, 49(2):457–475, Feb 2003. arXiv:quant-ph/0105121, doi:
10.1109/TIT.2002.807289. 22

[GV01] Berry Groisman and Lev Vaidman. Nonlocal variables with product-state
eigenstates. Journal of Physics A: Mathematical and General, 34(35):6881, 2001.
arXiv:quant-ph/0103084, doi:10.1088/0305-4470/34/35/313.
42, 45, 65, 103

[Hel76] Carl W. Helstrom. Quantum Detection and Estimation Theory. Mathematics
in science and engineering. Academic Press, 1976. URL: http://books.
google.ca/books?id=Ne3iT_QLcsMC&pg=PA113. 74

120

http://arxiv.org/abs/quant-ph/0311026
http://arxiv.org/abs/quant-ph/0311026
http://dx.doi.org/10.1103/PhysRevLett.92.177905
http://arxiv.org/abs/0707.3581
http://dx.doi.org/10.1109/TIT.2009.2018330
http://arxiv.org/abs/quant-ph/0302102
http://dx.doi.org/10.1103/PhysRevA.68.042312
http://dx.doi.org/10.1103/PhysRevA.68.042312
http://arxiv.org/abs/quant-ph/0106148
http://dx.doi.org/10.1103/PhysRevLett.87.277902
http://dx.doi.org/10.1103/PhysRevLett.87.277902
http://dx.doi.org/10.1007/978-3-540-85174-5_3
http://arxiv.org/abs/quant-ph/0205105
http://dx.doi.org/10.1103/PhysRevA.70.022304
http://dx.doi.org/10.1103/PhysRevA.70.022304
http://arxiv.org/abs/quant-ph/0105121
http://dx.doi.org/10.1109/TIT.2002.807289
http://dx.doi.org/10.1109/TIT.2002.807289
http://arxiv.org/abs/quant-ph/0103084
http://dx.doi.org/10.1088/0305-4470/34/35/313
http://books.google.ca/books?id=Ne3iT_QLcsMC&pg=PA113
http://books.google.ca/books?id=Ne3iT_QLcsMC&pg=PA113


[HHH96] Michał Horodecki, Paweł Horodecki, and Ryszard Horodecki. Separa-
bility of mixed states: necessary and sufficient conditions. Phys. Lett.
A, 223(1–2):1–8, 1996. arXiv:quant-ph/9605038, doi:10.1016/
S0375-9601(96)00706-2. 2

[HHH98] Michał Horodecki, Paweł Horodecki, and Ryszard Horodecki. Mixed-state
entanglement and distillation: is there a “bound” entanglement in nature?
Phys. Rev. Lett., 80(24):5239–5242, Jun 1998. arXiv:quant-ph/9801069,
doi:10.1103/PhysRevLett.80.5239. 17, 19

[HHH00] Michał Horodecki, Paweł Horodecki, and Ryszard Horodecki. Limits for
entanglement measures. Phys. Rev. Lett., 84(9):2014–2017, Feb 2000. arXiv:
quant-ph/9908065, doi:10.1103/PhysRevLett.84.2014. 2

[HHHH09] Ryszard Horodecki, Paweł Horodecki, Michał Horodecki, and Karol
Horodecki. Quantum entanglement. Rev. Mod. Phys., 81:865–942, Jun 2009.
arXiv:0702225, doi:10.1103/RevModPhys.81.865. 2

[HM03] Mark Hillery and Jihane Mimih. Distinguishing two-qubit states using
local measurements and restricted classical communication. Phys. Rev.
A, 67:042304, Apr 2003. arXiv:quant-ph/0210179, doi:10.1103/
PhysRevA.67.042304. 65

[HMM+06] Masahito Hayashi, Damian Markham, Mio Murao, Masaki Owari, and
Shashank Virmani. Bounds on multipartite entangled orthogonal state dis-
crimination using local operations and classical communication. Phys. Rev.
Lett., 96:040501, Feb 2006. arXiv:quant-ph/0506170, doi:10.1103/
PhysRevLett.96.040501. 45

[Hor97] Paweł Horodecki. Separability criterion and inseparable mixed states with
positive partial transposition. Phys. Lett. A, 232(5):333–339, 1997. arXiv:
quant-ph/9703004, doi:10.1016/S0375-9601(97)00416-7. 22

[HSSH03] Michał Horodecki, Aditi Sen(De), Ujjwal Sen, and Karol Horodecki. Local
indistinguishability: More nonlocality with less entanglement. Phys. Rev.
Lett., 90:047902, Jan 2003. arXiv:quant-ph/0301106, doi:10.1103/
PhysRevLett.90.047902. 45, 65

[Jam72] Andrzej Jamiołkowski. Linear transformations which preserve trace and
positive semidefiniteness of operators. Rep. Math. Phys., 3(4):275–278, Dec
1972. doi:10.1016/0034-4877(72)90011-0. 18

121

http://arxiv.org/abs/quant-ph/9605038
http://dx.doi.org/10.1016/S0375-9601(96)00706-2
http://dx.doi.org/10.1016/S0375-9601(96)00706-2
http://arxiv.org/abs/quant-ph/9801069
http://dx.doi.org/10.1103/PhysRevLett.80.5239
http://arxiv.org/abs/quant-ph/9908065
http://arxiv.org/abs/quant-ph/9908065
http://dx.doi.org/10.1103/PhysRevLett.84.2014
http://arxiv.org/abs/0702225
http://dx.doi.org/10.1103/RevModPhys.81.865
http://arxiv.org/abs/quant-ph/0210179
http://dx.doi.org/10.1103/PhysRevA.67.042304
http://dx.doi.org/10.1103/PhysRevA.67.042304
http://arxiv.org/abs/quant-ph/0506170
http://dx.doi.org/10.1103/PhysRevLett.96.040501
http://dx.doi.org/10.1103/PhysRevLett.96.040501
http://arxiv.org/abs/quant-ph/9703004
http://arxiv.org/abs/quant-ph/9703004
http://dx.doi.org/10.1016/S0375-9601(97)00416-7
http://arxiv.org/abs/quant-ph/0301106
http://dx.doi.org/10.1103/PhysRevLett.90.047902
http://dx.doi.org/10.1103/PhysRevLett.90.047902
http://dx.doi.org/10.1016/0034-4877(72)90011-0


[JCY05] Zhengfeng Ji, Hongen Cao, and Mingsheng Ying. Optimal conclusive dis-
crimination of two states can be achieved locally. Phys. Rev. A, 71:032323,
Mar 2005. arXiv:quant-ph/0407120, doi:10.1103/PhysRevA.71.
032323. 44, 65

[KKB11] Matthias Kleinmann, Hermann Kampermann, and Dagmar Bruß.
Asymptotically perfect discrimination in the local-operation-and-classical-
communication paradigm. Phys. Rev. A, 84:042326, Oct 2011. arXiv:
1105.5132, doi:10.1103/PhysRevA.84.042326. 4, 10, 16, 38, 46, 53,
56, 68, 90, 97

[KMY03] Hirotada Kobayashi, Keiji Matsumoto, and Tomoyuki Yamakami. Quan-
tum Merlin-Arthur proof systems: Are multiple Merlins more helpful to
Arthur? In Algorithms and Computation, volume 2906 of Lecture Notes in
Computer Science, pages 189–198. Springer Berlin Heidelberg, 2003. arXiv:
0306051, doi:10.1007/978-3-540-24587-2_21. 3

[Koa09] Masato Koashi. On the irreversibility of measurements of correlations.
Journal of Physics: Conference Series, 143(1):012007, 2009. doi:10.1088/
1742-6596/143/1/012007. 46, 65, 93

[KSV02] Alexei Yu. Kitaev, Alexander Shen, and Mikhail N. Vyalyi. Classical and
Quantum Computation, volume 47 of Graduate Studies in Mathematics. Amer-
ican Mathematical Society, 2002. URL: http://books.google.com/
books?id=qYHTvHPvmG8C. 13

[KTYI07] Masato Koashi, Fumitaka Takenaga, Takashi Yamamoto, and Nobuyuki
Imoto. Quantum nonlocality without entanglement in a pair of qubits.
2007. arXiv:0709.3196. 22, 46, 65, 93

[Liu13] Yi-Kai Liu. Building one-time memories from isolated qubits. 2013.
arXiv:1304.5007. 3

[MP95] Serge Massar and Sandu Popescu. Optimal extraction of information from
finite quantum ensembles. Phys. Rev. Lett., 74(8):1259–1263, Feb 1995. doi:
10.1103/PhysRevLett.74.1259. 2

[Nat05] Michael Nathanson. Distinguishing bipartitite orthogonal states using
LOCC: Best and worst cases. Journal of Mathematical Physics, 46(6):062103,
2005. arXiv:quant-ph/0411110, doi:10.1063/1.1914731. 45, 65

122

http://arxiv.org/abs/quant-ph/0407120
http://dx.doi.org/10.1103/PhysRevA.71.032323
http://dx.doi.org/10.1103/PhysRevA.71.032323
http://arxiv.org/abs/1105.5132
http://arxiv.org/abs/1105.5132
http://dx.doi.org/10.1103/PhysRevA.84.042326
http://arxiv.org/abs/0306051
http://arxiv.org/abs/0306051
http://dx.doi.org/10.1007/978-3-540-24587-2_21
http://dx.doi.org/10.1088/1742-6596/143/1/012007
http://dx.doi.org/10.1088/1742-6596/143/1/012007
http://books.google.com/books?id=qYHTvHPvmG8C
http://books.google.com/books?id=qYHTvHPvmG8C
http://arxiv.org/abs/0709.3196
http://arxiv.org/abs/1304.5007
http://dx.doi.org/10.1103/PhysRevLett.74.1259
http://dx.doi.org/10.1103/PhysRevLett.74.1259
http://arxiv.org/abs/quant-ph/0411110
http://dx.doi.org/10.1063/1.1914731


[NC06] Julien Niset and Nicolas J. Cerf. Multipartite nonlocality without entan-
glement in many dimensions. Phys. Rev. A, 74:052103, Nov 2006. arXiv:
quant-ph/0606227, doi:10.1103/PhysRevA.74.052103. 45, 65

[Nie99] Michael A. Nielsen. Conditions for a class of entanglement transfor-
mations. Phys. Rev. Lett., 83(2):436–439, Jul 1999. arXiv:quant-ph/
9811053, doi:10.1103/PhysRevLett.83.436. 2

[OH08] Masaki Owari and Masahito Hayashi. Two-way classical communication
remarkably improves local distinguishability. New J. Phys., 10(1):013006,
2008. arXiv:0708.3154, doi:10.1088/1367-2630/10/1/013006.
22

[PV07] Martin B. Plenio and Shashank Virmani. An introduction to en-
tanglement measures. Quant. Inf. Comput., 7(1&2):1–51, Jan 2007.
URL: http://www.rintonpress.com/xqic7/qic-7-12/001-051.
pdf, arXiv:quant-ph/0504163. 2

[PW91] Asher Peres and William K. Wootters. Optimal detection of quantum in-
formation. Phys. Rev. Lett., 66(9):1119–1122, Mar 1991. doi:10.1103/
PhysRevLett.66.1119. 2

[Rai97] Eric M. Rains. Entanglement purification via separable superoperators,
1997. arXiv:quant-ph/9707002. 18, 19

[Rai99] E. M. Rains. Rigorous treatment of distillable entanglement. Phys. Rev.
A, 60(1):173–178, Jul 1999. arXiv:quant-ph/9809078, doi:10.1103/
PhysRevA.60.173. 18

[Rai01] Eric M. Rains. A semidefinite program for distillable entanglement.
IEEE Trans. Inf. Theory, 47(7):2921–2933, Nov 2001. arXiv:quant-ph/
0008047, doi:10.1109/18.959270. 19

[Rin04] Sergio De Rinaldis. Distinguishability of complete and unextendible prod-
uct bases. Phys. Rev. A, 70(2):022309, Aug 2004. arXiv:quant-ph/
0304027, doi:10.1103/PhysRevA.70.022309. 10

[Roc96] R. Tyrell Rockafellar. Convex Analysis. Princeton Mathematical Series.
Princeton University Press, 1996. URL: http://books.google.com/
books?id=1TiOka9bx3sC. 19

123

http://arxiv.org/abs/quant-ph/0606227
http://arxiv.org/abs/quant-ph/0606227
http://dx.doi.org/10.1103/PhysRevA.74.052103
http://arxiv.org/abs/quant-ph/9811053
http://arxiv.org/abs/quant-ph/9811053
http://dx.doi.org/10.1103/PhysRevLett.83.436
http://arxiv.org/abs/0708.3154
http://dx.doi.org/10.1088/1367-2630/10/1/013006
http://www.rintonpress.com/xqic7/qic-7-12/001-051.pdf
http://www.rintonpress.com/xqic7/qic-7-12/001-051.pdf
http://arxiv.org/abs/quant-ph/0504163
http://dx.doi.org/10.1103/PhysRevLett.66.1119
http://dx.doi.org/10.1103/PhysRevLett.66.1119
http://arxiv.org/abs/quant-ph/9707002
http://arxiv.org/abs/quant-ph/9809078
http://dx.doi.org/10.1103/PhysRevA.60.173
http://dx.doi.org/10.1103/PhysRevA.60.173
http://arxiv.org/abs/quant-ph/0008047
http://arxiv.org/abs/quant-ph/0008047
http://dx.doi.org/10.1109/18.959270
http://arxiv.org/abs/quant-ph/0304027
http://arxiv.org/abs/quant-ph/0304027
http://dx.doi.org/10.1103/PhysRevA.70.022309
http://books.google.com/books?id=1TiOka9bx3sC
http://books.google.com/books?id=1TiOka9bx3sC


[TDL01] Barbara M. Terhal, David P. DiVincenzo, and Debbie W. Leung. Hiding
bits in Bell states. Phys. Rev. Lett., 86(25):5807–5810, Jun 2001. arXiv:
quant-ph/0011042, doi:10.1103/PhysRevLett.86.5807. 3, 19

[VPRK97] Vlatko Vedral, Martin B. Plenio, Michael A. Rippin, and Peter L. Knight.
Quantifying entanglement. Phys. Rev. Lett., 78(12):2275–2279, Mar 1997.
arXiv:quant-ph/9702027, doi:10.1103/PhysRevLett.78.2275.
2

[VSPM01] Shashank Virmani, Massimiliano F. Sacchi, Martin B. Plenio, and Damian
Markham. Optimal local discrimination of two multipartite pure states.
Physics Letters A, 288(2):62–68, 2001. arXiv:quant-ph/0102073, doi:
10.1016/S0375-9601(01)00484-4. 44, 65

[Wat05a] John Watrous. Bipartite subspaces having no bases distinguishable by local
operations and classical communication. Phys. Rev. Lett., 95:080505, Aug
2005. arXiv:quant-ph/0411077, doi:10.1103/PhysRevLett.95.
080505. 65

[Wat05b] John Watrous. Notes on super-operator norms induced by Schat-
ten norms. Quant. Inf. Comput., 5(1):58–68, Jan 2005. URL: http:
//www.rintonpress.com/xqic5/qic-5-1/058-068.pdf, arXiv:
quant-ph/0411077. 13

[Wat12] John Watrous. Quantum computational complexity. In Computational Com-
plexity, pages 2361–2387. Springer New York, 2012. arXiv:0804.3401,
doi:10.1007/978-1-4614-1800-9_147. 3

[WBC11] Christopher Wood, Jacob Biamonte, and David Corey. A return to the op-
timal detection of quantum information. 2011. arXiv:1111.6950. 7

[Wer89] Reinhard F. Werner. Quantum states with Einstein-Podolsky-Rosen corre-
lations admitting a hidden-variable model. Phys. Rev. A, 40(8):4277–4281,
Oct 1989. doi:10.1103/PhysRevA.40.4277. 2

[WH02] Jonathan Walgate and Lucien Hardy. Nonlocality, asymmetry, and distin-
guishing bipartite states. Phys. Rev. Lett., 89:147901, Sep 2002. arXiv:
quant-ph/0202034, doi:10.1103/PhysRevLett.89.147901. 42,
45, 65, 103

124

http://arxiv.org/abs/quant-ph/0011042
http://arxiv.org/abs/quant-ph/0011042
http://dx.doi.org/10.1103/PhysRevLett.86.5807
http://arxiv.org/abs/quant-ph/9702027
http://dx.doi.org/10.1103/PhysRevLett.78.2275
http://arxiv.org/abs/quant-ph/0102073
http://dx.doi.org/10.1016/S0375-9601(01)00484-4
http://dx.doi.org/10.1016/S0375-9601(01)00484-4
http://arxiv.org/abs/quant-ph/0411077
http://dx.doi.org/10.1103/PhysRevLett.95.080505
http://dx.doi.org/10.1103/PhysRevLett.95.080505
http://www.rintonpress.com/xqic5/qic-5-1/058-068.pdf
http://www.rintonpress.com/xqic5/qic-5-1/058-068.pdf
http://arxiv.org/abs/quant-ph/0411077
http://arxiv.org/abs/quant-ph/0411077
http://arxiv.org/abs/0804.3401
http://dx.doi.org/10.1007/978-1-4614-1800-9_147
http://arxiv.org/abs/1111.6950
http://dx.doi.org/10.1103/PhysRevA.40.4277
http://arxiv.org/abs/quant-ph/0202034
http://arxiv.org/abs/quant-ph/0202034
http://dx.doi.org/10.1103/PhysRevLett.89.147901


[WSHV00] Jonathan Walgate, Anthony J. Short, Lucien Hardy, and Vlatko Vedral.
Local distinguishability of multipartite orthogonal quantum states. Phys.
Rev. Lett., 85:4972–4975, Dec 2000. arXiv:quant-ph/0007098, doi:
10.1103/PhysRevLett.85.4972. 44, 65

[XD08] Yu Xin and Runyao Duan. Local distinguishability of orthogonal 2 ⊗ 3
pure states. Phys. Rev. A, 77(1):012315, Jan 2008. arXiv:0709.1651, doi:
10.1103/PhysRevA.77.012315. 22

125

http://arxiv.org/abs/quant-ph/0007098
http://dx.doi.org/10.1103/PhysRevLett.85.4972
http://dx.doi.org/10.1103/PhysRevLett.85.4972
http://arxiv.org/abs/0709.1651
http://dx.doi.org/10.1103/PhysRevA.77.012315
http://dx.doi.org/10.1103/PhysRevA.77.012315

	List of Tables
	List of Figures
	Introduction
	Motivation
	Overview
	Preliminaries
	Notation
	Quantum operations
	Quantum measurements
	Contraction diagrams


	Local operations and classical communication model
	Introduction
	Motivation
	Our contributions

	How to define LOCC
	Quantum instruments
	LOCC instruments

	Separable and PPT instruments
	Relationships between different classes of LOCC
	Stochastic LOCC
	Some topological properties
	A ball of LOCCr instruments
	Compactness of LOCCr

	Discussion and open problems

	Bipartite state discrimination with LOCC
	Introduction
	Separable and LOCC measurements
	Separable measurements
	LOCC measurements
	Finite and asymptotic LOCC
	LOCC protocol as a tree

	Bipartite state discrimination problem
	Previous results
	Non-disturbing measurements
	Discriminating states from a basis with finite LOCC
	Results of Kleinmann, Kampermann and Bruß
	Pseudo-weak measurements
	A necessary condition for perfect state discrimination by LOCC

	LOCCN vs LOCC for product state discrimination

	A framework for bounding nonlocality of state discrimination
	Introduction
	Motivation
	Our contributions

	Framework
	Interpolated LOCC protocol
	Stopping condition
	Measure of disturbance
	Disturbance/information gain trade-off
	Lower bounding the error probability

	Bounding the nonlocality constant
	Definitions
	Lower bounding the nonlocality constant using rigidity
	The ``pair of tiles'' lemma

	Domino states
	Definition
	Nonlocality of the domino states
	Nonlocality of irreducible domino-type tilings
	Nonlocality of the rotated domino states

	Limitations of the framework
	Dependence of the nonlocality constant on n
	Comparison to the result of Kleinmann, Kampermann, and Bruß

	Discussion and open problems

	Interpolability distinguishes LOCC from separable von Neumann measurements
	Introduction
	Motivation
	Overview
	Preliminaries

	Interpolation of measurements
	Progress function
	Interpolation
	Interpolation in SEP

	Interpolatability distinguishes LOCC from SEP
	Discussion

	APPENDICES
	Rigidity of domino-type states ([lem:DimBox]Lemma 4.16)
	Rigidity of rotated domino states ([lem:RotBox]Lemma 4.18)
	References

