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Abstract

Academia and industry expend much effort to predict software defects. Researchers proposed
many defect prediction algorithms and metrics. While previous defect prediction techniques of-
ten take the author of the code into consideration, none of these techniques build a separate
prediction model for each developer. Different developers have different coding styles, commit
frequencies, and experience levels, which would result in different defect patterns. When the de-
fects of different developers are combined, such differences are obscured, hurting the prediction
performance.

This thesis proposes two techniques to improve defect prediction performance: personalized
defect prediction and confidence-based hybrid defect prediction. Personalized defect prediction
builds a separate prediction model for each developer to predict software defects. Confidence-
based hybrid defect prediction combines different models by picking the prediction from the
model with the highest confidence. As a proof of concept, we apply the two techniques to classify
defects at the file change level. We implement the state-of-the-art change classification as the
baseline and compare with the personalized defect prediction approach. Confidence-based defect
prediction combines these two models. We evaluate on six large and popular software projects
written in C and Java—the Linux kernel, PostgreSQL, Xorg, Eclipse, Lucene and Jackrabbit.
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Chapter 1

Introduction

Academia and industry have spent a great effort in predicting software defects [5, 19, 21, 23, 31,
43, 44, 45, 71, 72]. These prior studies made significant advances in defect prediction using var-
ious features such as code complexity, code locations, the amount of in-house testing, historical
data, and socio-technical networks.

This thesis summarizes our experience in improving change classification performance. We
propose a novel technique, personalized change classification (PCC), which builds a separate
model for each developer. We also propose an enhancement, confidence-based hybrid change
classification (PCC+), which combines personalized change classification and traditional change
classification.

This thesis can also serve as a guide on how to improve experiment performance. This thesis
demonstrates the effect of different classification algorithms, adding or removing features, and
the number of training instances. Although prior work all argue briefly about why they set up the
data set in a certain way, none of them fully demonstrate the effect of different setups.

In this thesis, we will use the following terminology. A commit is a transaction unit in a
source code management system, e.g., Git. A change contains the modifications to one file in a
commit. A classifier and a classification algorithm both refer to a machine learning algorithm,
e.g., linear regression. We use these two terms interchangeably. A classifier learns from the
features, which quantitatively describe the changes. The property to be predicted is called label.
In this thesis, we use binary labels, i.e., clean and buggy. Clean means the code is correct. Buggy
means the code contains bugs. The process of learning patterns from a data set is called training.
The data set used in training is called the training set, whose labels are given to the classifier.
After training, the classifier produces a model. One can use the model to predict on future data.
The data set used to evaluate the model is called the test set. The test set’s labels are not given
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to the classifier. We compare the prediction results against the true labels to evaluate the model.
Defect prediction refers to the technique that collects features about some subjects, learns using
classified data and predicts on unclassified data. Change classification refers to the change-level
defect prediction as described by Kim et al. [31].

1.1 Personalized Change Classification

While many of the previous defect prediction studies take the author of the code into consid-
eration, none of these studies build separate prediction models for individual developers. They
combine all developers’ changes to build a single prediction model.

Different developers have different coding styles, commit frequencies, and experience levels,
all of which cause different defect patterns [53]. For example, based on our inspection of the
Linux kernel’s mainline repository from 2005 to 2010, 48.0% of one developer’s changes related
to for loops are buggy while the percentage is only 13.3% for another developer. When the
defects of different developers are combined, such differences are obscured, hurting prediction
performance. Therefore, it is desirable to build personalized defect prediction models. Anal-
ogously, search engines such as Google use personalized search to capture the different search
patterns to provide improved search experience [18].

In this thesis, we propose personalized defect prediction—building separate prediction mod-
els for individual developers to predict software defects. As a proof of concept, we apply our
personalized defect prediction idea to change classification [31], which we call personalized
change classification (PCC). Change classification predicts defects at the change level. In the
rest of this thesis, we refer to the approach that builds a single change classification model for all
developers as the traditional change classification (CC) approach.

1.2 Confidence-based Hybrid Change Classification

Many classification algorithms, such as ADTree [16], produce models that can provide a con-
fidence measure for each prediction result. We can use the confidence measure to compare the
confidence of different predictions on the same change. For example, the confidence measure
of model A predicting on one change is 0.8. It means that we are confident about model A’s
prediction to a level of 0.8. On the other hand, if the confidence measure of model B predicting
the same change is 0.9, it is wise to follow model B’s prediction.
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Based on the above observation, we propose PCC+ to further improve prediction perfor-
mance. PCC+ augments PCC with other models, e.g., CC, by picking the prediction result from
the model with the highest confidence for each change. Similar to PCC, PCC+ is also capable of
producing developer-specific models.

1.3 Multivariate Adaptive Regression Splines (MARS)

Similar to PCC, a recent study by Bettenburg et al. [5] breaks data into clusters and builds sep-
arate prediction models for different clusters. Bettenburg et al. applies Multivariate Adaptive
Regression Splines (MARS) [17] to defect prediction, which is a global model approach that
takes local considerations into account. In contrast to our approach that groups data by devel-
opers, MARS groups data to minimize the fitting error. Bettenburg et al. [5] shows that MARS
outperforms the traditional global model approach of building a single classification model from
the entire data set. Therefore, we compare our personalized classification models against MARS
models in addition to comparing our personalized classification models against the traditional
global models. This work is further discussed in the next chapter, Related Work.

1.4 Metrics and Results

To evaluate the proposed approaches, we use two widely used metrics: Cost Effectiveness [3, 58,
59] and F1-score [31, 59]. Rahman et al. [59] pointed out that cost effectiveness is a suitable
measure for evaluating the performance of defect predictions in cost sensitive scenarios. The
cost effectiveness evaluates the classification performance given the same cost, which is typi-
cally measured by the lines of code (LOC) to inspect. For example, when a team can afford to
inspect only 20% lines of code before a deadline, it is crucial to inspect the 20% that can help the
developers discover the most number of bugs. In this thesis, we use the same cost effectiveness
measure from Rahman et al. [59] with a small variation: the number of bugs that can be discov-
ered by inspecting 20% LOC (NofB20). Both Rahman’s and our measures use the same cost
effectiveness graph. Rahman’s measure considers the area under the curve for the percentage of
LOC from 0 to 20%. While Rahman’s measure can ensure a high average between 0 and 20%,
our measure is much easier to interpret. If PCC improves NofB20 by 100 compared to CC, it
means that PCC can help the developers identify 100 more bugs by inspecting the top 20% LOC
identified by PCC instead of the top 20% LOC identified by CC. We also present cost effective-
ness graphs so that developers can view the number of bugs that can be discovered by inspecting
percentages of LOC other than 20%. In addition, we evaluate the approaches on the standard
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F1-score, which is also widely used in defect prediction [31, 59]. F1-score is an appropriate
performance measure when there are enough resources to inspect all predicted buggy changes,
e.g., code inspection. If a change is predicted buggy, the developers can put more testing and
verification effort into this change. A higher F1-score can help capture more bugs and reducing
the time wasted on inspecting true clean changes.

We evaluate the proposed techniques on six large and popular projects written in C and Java:
the Linux kernel, PostgreSQL, Xorg, Eclipse, Lucene and Jackrabbit. PCC improves NofB20 by
up to 155 and 187 where CC and MARS can discover 55 and 20, respectively. PCC also improves
F1-score by 0.01–0.06 and 0.01–0.13 compared to CC and MARS, respectively. Statistical tests
show that the above improvements are all statistically significant. In addition, we show that the
improvements are not limited to a specific experimental setup, i.e., the classification algorithm
and the number of changes in the training set.

1.5 Contributions

In summary, this thesis makes the following contributions:

• We propose the personalized change classification (PCC) to improve the traditional change
classification (CC).

• We propose PCC+, which combines PCC and CC, to further improve prediction perfor-
mance.

• Our evaluation demonstrates that PCC and PCC+ outperform CC and MARS in terms of
both cost effectiveness and F1-score.

• We demonstrate the effect of several experimental setup parameters.
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Chapter 2

Related Work

To the best of our knowledge, we are the first to build a separate model for each individual
developer for defect prediction. In this section, we focus on discussing other differences and
connections between this thesis and the previous work.

Many studies [19, 21, 23, 31, 40, 43, 44, 45, 58, 72] analyze the effects of code complexity,
process metrics, code locations, the amount of in-house testing, historical data, socio-technical
networks, etc., to build prediction models and predict software defects. Kim et al. [31] use sup-
port vector machine (SVM) as the classifier; bag-of-words, complexity metrics and metadata as
the features to predict defects. Recently, Shivaji et al. [62] improve this work by applying feature
selection algorithms. Ostrand et al. [53] use negative binomial regression as the classifier; var-
ious metadata and developer-specific metrics as features to predict defects. Rahman et al. [58]
compare the effect of code metrics and process metrics. Lumpe et al. [40] investigate the im-
portance of activity-centric static code metrics. These studies advanced the state of art of defect
prediction. However, none of them builds personalized models although some of them have taken
the developers as an important feature. We notice the importance of the difference between the
developers, and improve the change classification performance by building personalized models.

The personalized idea has great success in other fields. For example, Google’s personalized
search can enhance search results by leveraging the user’s search history [18]. Facebook and
MySpace’s personalized advertisement deployment can predict the user’s interests by analyzing
the user’s profile [66]. We introduce the personalized idea to the change classification field. Our
results show that the personalized approach can improve change classification performance.

Bettenburg et al. [5] compares the performance of three models: a local model that consists
of several linear models, a single global linear model and a global model that has local consid-
erations, MARS. These three models are learned from the same data set. The local model first
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clusters the data set based on Euclidean distance, and then runs linear regression on each cluster.
The global model runs linear regression on the whole data set. MARS is a technique that clusters
the data set to minimize the overall fitting error, while running linear regression in each cluster.
Bettenburg et al. find that MARS is better than both the global model and the local model. Com-
pared to the global model, MARS divides data into clusters and fit one linear model for each
cluster, which can describe non-linear relationships more accurately than a single linear model.
Compared to the local model, MARS’s clustering strategy is to minimize global fitting error. The
local model clusters the data set based on Euclidean distance, which may still not be accurately
described by local linear models. Although MARS can group data into clusters to minimize
fitting error, it does not group data by developer. We instead propose a developer-specific local
model approach that utilizes domain specific knowledge and outperforms MARS. Chapter 4 fur-
ther discusses the differences between our personalized approach and MARS.. Furthermore, we
propose a hybrid technique that can take advantage of different models.

Matsumoto et al. [41] find that developer-related metrics are good distinguishing factors for
defect prediction. Specifically, the modules that are touched by more developers contain more
bugs. Rahman and Devanbu [57] find that a developer’s experience on one file is more important
than the developer’s general experience on the project. Posnett et al. [55] introduce focus met-
rics and find that more focused developers introduce fewer bugs. These papers propose several
developer related features that have strong correlation with the probability of being buggy. In
addition to traditional features [31], such as meta-data and bag-of-words, we use a new type of
features—characteristic vector [27]. In the future, we may add these developer related features
to improve our defect prediction.

Rahman et al. [59] argue that defect prediction should also consider the cost effectiveness
metrics. They show that two predictions can be statistically indistinguishable by looking at the
F1-score, but statistically different by looking at the cost effectiveness metrics. The F1-score
and cost effectiveness metric emphasize different aspects. A discussion about the difference is
in Chapter 8. Herzig et al. [24] show that misclassified bug reports have a great impact on defect
prediction. They manually labeled some bug reports and show that using manually labeled data
and automatically labeled data can yield significantly different top error-prone file lists. This
thesis follows these learned lessons. In addition to the standard F1-score, we report the number
of bugs that can be discovered by examining 20% of code, a.k.a, NofB20. Two test subjects in
this thesis use manually labeled data from the work of Herzig et al. [24].
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Chapter 3

Change Classification (CC)

This section gives a brief overview of the traditional change classification technique (CC) and
our adaptation of this traditional change classification technique..

The traditional change classification has the following steps:

1. Label each change clean or buggy by mining the project’s revision history [14, 63] (Sec-
tion 3.1).

2. Extract features, such as bag-of-words, from the changes (Section 3.2). To improve classi-
fication performance, we add a new type of features—characteristic vectors—to the tradi-
tional change classification for the first time. Characteristic vectors can capture some more
information about the syntactic structures of the change compared to bag-of-words.

3. Use a classification algorithm to build a model from the labelled changes based on the
extracted features (Section 3.3). Since MARS [17] has been shown as a superior classifi-
cation algorithm [5], we use it as another baseline.

4. Predict new changes as buggy or clean using the model.

3.1 Buggy Change Labelling

We adopt the same definition of change as prior work [31]. Compared to defect prediction at
the other levels, e.g., the file level, defect prediction at the change level is more precise. For a

7



predicted buggy change, the developer needs to examine only one change instead of the entire
file to address the defect.

To label each change as buggy or clean, we follow the method used by previous works [14,
63]. We first identify bug-fixing changes—changes that fix bugs–by searching the commit logs
for the word “fix”. The lines that the bug-fixing changes modified are assumed to be the location
of a bug. This approach has a precision of 75–88% in identifying bug-fixing commits in our data
set (Section 8.3).

Modern source-code management systems provide an annotate functionality such as git
blame, which annotates each line with the most recent change that modified that line. The
changes that introduced those buggy lines are bug-introducing changes (also referred to as buggy
changes).

In addition to the method described above, we also pick two projects from the work of Herzig
et al. [24], who manually verified the bug reports to distinguish real bugs from feature enhance-
ments. If a bug report contains a real bug, its associated changes are bug-fixing changes. These
two projects have high quality commit messages that contain bug report IDs. Instead of search-
ing for the word “fix”, we search for the bug IDs of the real bugs in the commit messages
while labeling bug-fixing changes [63]. This approach has a precision of 91–95% in identifying
bug-fixing commits in these two projects (Section 8.3). We then use the same method to label
bug-introducing changes.

3.2 Feature Extraction

Features are attributes extracted from a change which describe the characteristics of the source
code, such as LOC.

We use three classes of features: 1) characteristic vectors, 2) bag-of-words, and 3) meta-data.
This thesis does not intend to find the best feature combination; instead it compares per-
sonalized prediction models against traditional prediction models, using the same features
for both models. We briefly study the effect of different classes of features. The results are in
Section 7.4.

3.2.1 Characteristic Vector

Inspired by the Deckard tool [27], we use characteristic vectors as features. Characteristic vectors
represent the syntactic structure by counting the numbers of each node type in the Abstract
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/ / Sum up p o s i t i v e e n t r i e s
f o r ( i n t i = 0 ; i < a r r a y . l e n g t h ; ++ i ) {

f o r ( i n t j = 0 ; j < a r r a y [ i ] . l e n g t h ; ++ j ) {
i f ( a r r a y [ i ] [ j ] > 0) sum += a r r a y [ i ] [ j ] ;

}
}

Figure 3.1: The characteristic vector for the above code segment contains one if statement,
two for loops and zero while loops.

Syntax Tree (AST). Bag-of-words (see Section 3.2.2) and characteristic vectors have different
abstraction levels. Although bag-of-words can capture keywords, such as if and while, it
cannot capture abstract syntactic structures, such as the number of statements.

Suppose we are using if, for, and while node types for characteristic vectors. The code
shown in Figure 3.1 has a characteristic vector of (1, 2, 0). The characteristic vectors can be
calculated by recursively summing these vectors while traversing the AST. Depending on the
syntax definition, the AST might have different representations of the syntax, but the basic idea
remains the same. For each change, we automatically generate two characteristic vectors: one
for the source code file before the change and one for the source code file after the change.
After getting the characteristic vectors for the file before the change and the file after the change,
we subtract the two characteristic vectors to obtain the difference. For example, for a change
that removes one for loop, the difference is (0, -1, 0). We use the difference between the
two characteristic vectors and the characteristic vector of the file after the change as two sets of
characteristic vector features.

3.2.2 Bag-of-Words

Defects that are caused by calling a wrong function, such as malloc instead of calloc, can-
not be represented by characteristic vectors, because characteristic vectors ignore the identifier
names. To address this issue, we add the bag-of-words (BOW) [60] vectors as features. It
converts a string to a word vector of individual words, where each entry of the vector is the
corresponding occurrence of each word.

We use a Weka [20] filter with the Snowball [1] stemmer to convert text strings to word
vectors. We process both the commit message and the source code to obtain the word vector for
each change.
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3.2.3 Meta-Data

In addition to characteristic vectors and bag-of-words features, we also use meta-data features.
We collect developer, commit hour (0, 1, 2, ..., 23), commit day (Sunday, Monday, ..., Saturday),
cumulative change count, cumulative buggy change count, source code file/path names, and file
age in days in a way similar to that of Kim et al. [31]. Since the developer is a feature in CC,
PCC does not take advantage of the extra knowledge of the developer information.

3.3 Classification and MARS

Given the labels (buggy or clean) and the features extracted from the source code files, clas-
sification algorithms can build models and predict new buggy changes. We use off-the-shelf
classification algorithms from Weka [20].

Since PCC and CC are two different approaches to organize data sets for defect predic-
tion, and neither is tied to any specific classification algorithm, we compare PCC and CC us-
ing three widely used [8, 39, 58, 71, 73] classification algorithms: Alternating Decision Tree
(ADTree) [16], Naive Bayes [28] and Logistic Regression [37]. This thesis does not intend to
find the best-fitting classifiers or models, but to compare PCC models against CC models using
the same classification algorithms.

In addition to CC, we use Multivariate Adaptive Regression Splines (MARS) as another
baseline for the following reasons. First, similar to our personalized defect prediction approach,
MARS builds separate models for different groups of data to improve the classification perfor-
mance. Second, MARS performs better than both global models and local models in defect
prediction [5].

We use the MARS implementation in the off-the-shelf machine learning framework Or-
ange [12]. The underlying MARS implementation is the same as used by Bettenburg et al. [5].
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Chapter 4

Personalized Change Classification (PCC)

Different developers have different experience levels, different coding styles, and different com-
mit patterns, resulting in different buggy change patterns [53]. This chapter describes Personal-
ized Change Classification (PCC).

Figure 4.1 shows differences in buggy change patterns of four Linux kernel developers in
the mainline repository from 2005 to 2010. Specifically, it shows the buggy rates (percentage
of buggy changes) of four syntactic structures for each developer. The syntactic structures are
modulo operators (%), for loops, bit-wise or operators (|), and continue statements. The
x-axis presents different developers and the y-axis indicates the buggy rate for each syntactic
structure. The last group “total” shows the sum of all four developers’ changes. Each bar shows
the ratio of a developer’s buggy changes regarding one syntactic structure to the developer’s
changes regarding the same syntactic structure. For example, 48% of developer c’s 320 changes
adding or removing for loops are buggy.

We observe that these developers have different buggy change patterns: (1) while devel-
oper b’s modulo operators (%) are much buggier than developer c’s, developer b’s other syntactic
structures are cleaner than developer c’s; (2) developer a’s buggy rate is consistently lower than
that of the other developers; and (3) the buggy rates of the same syntactic structure for differ-
ent developers are different. These different patterns cannot be observed if we sum the four
developers’ changes as shown by “total”.

Given such differences in developers’ buggy changes, a prediction model built from a devel-
oper’s changes alone can be more suitable for predicting the changes from the same developer.
Therefore, we build a separate prediction model for each developer. PCC follows exactly the
same steps as CC except that PCC groups changes by developers and builds a separate model
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Figure 4.1: Buggy rates (percentages of buggy changes) of different syntactic structures of four
Linux kernel developers. The syntactic structures are modulo operators (%), for loops, bit-
wise or operators (|), and continue statements. Developers have different buggy change
patterns, which cannot be observed if we combine different developers’ changes (“total”).

for each developer. Given a new unlabelled change, the final model first checks the author of the
change, and then uses this developer’s model to predict this change.

Note that the idea behind PCC is not adding the feature—developer—as an advantage
over CC, but instead building separate models for different developers. In fact, the developer
is a meta-data feature used in our implementation of CC. PCC’s main advantage over CC is that
each developer’s model can be better tailored for this developer to capture the developer’s unique
buggy change patterns.

Compared to MARS, Our personalized change prediction approach is different in two as-
pects: (1) while MARS partitions data to minimize fitting errors, our PCC approach chooses to
partition data by developers, based on our observation that different developers have different
development behaviors and patterns; and (2) while a MARS model is a global model that takes
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local considerations into account, our PCC model is a local model, because the individual model
for each developer is learned from a subset of the data. In summary, our PCC approach is a
specialized local model approach that utilizes domain specific knowledge.
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Chapter 5

Combining CC and PCC (PCC+)

To further improve classification performance, we take advantage of both PCC and CC. We
propose two enhancements which combine PCC and CC— weighted PCC and PCC+.

Firstly, a PCC model for a single developer may overlook common bug patterns across de-
velopers, which can be learned from the other developers within the project. We enhance the
PCC models by adding the changes from the other developers to a developer’s model. We call
this approach weighted PCC. We use the same process as PCC except that we use different train-
ing sets. Recall that in PCC, all changes in one developer’s training set are collected from this
developer’s changes. In weighted PCC, we collect half of the changes from one developer, and
the other half from all other developers. Note that this is different from CC because the weight
(i.e., number of changes) of one developer’s changes in the training set is higher in the weighted
PCC approach.

Secondly, we automatically pick the prediction with the highest confidence among CC, PCC,
and weighted PCC. We refer to this approach as PCC+. Many classification algorithms, such
as ADTree [16], can provide a confidence measure. The confidence measure tells us how sure
the model is about a prediction. The flow diagram of PCC+ is shown in Figure 5.1. For PCC+,
we predict each change using these models (CC, PCC, and weighted PCC) independently, and
pick the prediction with the highest confidence for each change as the final prediction. An alter-
native approach to PCC+ is majority voting. We choose the confidence-based approach because
majority voting is likely to yield an incorrect prediction when the majority is not confident.
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Figure 5.1: The flow diagram of PCC+. First, CC, PCC and weighted PCC predict the changes
and pass the confidences to the meta classifier. Then, the meta-classifier picks the highest confi-
dence. Last, the converter converts the highest confidence to a prediction (buggy or clean).
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Chapter 6

Experimental Setup

6.1 Research Questions

We design our experiments to investigate the following research questions (RQs):

RQ1. How much do PCC and PCC+ improve the classification performance over CC and
MARS?

First, we compare PCC with the previous approaches, namely CC and MARS. We find that
PCC outperforms both CC and MARS in terms of both NofB20 and F1 (Section 7.1). Sec-
ond, we investigate whether PCC+ can further improve classification performance. We find that
it is feasible to combine prediction models based on the confidence measure to further im-
prove classification performance (Section 7.2).

RQ2. Is PCC’s performance gain over CC generalizable to other experimental setups?

We investigate whether the improvement of PCC is only specific to the experimental setup
in our evaluation. First, we investigate if the performance improvement of PCC over CC is
generalizable to other classification algorithms. We evaluate PCC and CC on three classification
algorithms. We find that PCC significantly outperforms CC with all evaluated classification
algorithms (Section 7.3).

Second, we investigate the effect of the number of training instances. Since each PCC model
learns from a training set that is smaller than that of CC, PCC may not yield a good performance
with few changes per developer in smaller projects while CC may still perform well. We investi-
gate how many training instances are enough for PCC to yield a better performance than CC. In
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Table 6.1: Evaluated projects. The numbers in this table include only C/Java code. aXserver
subrepository. bEclipse JDT Core subrepository.

Project Language LOC
First Last # % of

Commit Commit of Buggy
Date Date Changes Changes

Linux C 7.3M 2005-04-16 2010-11-21 429K 14.0%
PostgreSQL C 289K 1996-07-09 2011-01-25 89K 23.6%
Xorga C 1.1M 1999-11-19 2012-06-28 46K 12.9%
Eclipseb Java 1.5M 2001-06-05 2012-07-24 73K 16.9%
Lucene Java 828K 2010-03-17 2013-01-16 76K 9.4%
Jackrabbit Java 589K 2004-09-13 2013-01-14 61K 23.6%

general, PCC models learned from 80 training instances or more per developer can yield a
better performance than CC (Section 7.3).

RQ3. What is the difference between using different combinations of feature classes?

There are three feature classes, i.e., bag-of-words, characteristic vectors and meta-data. We
investigate the effect of using different combinations of feature classes. We find that the differ-
ence between different feature classes are too small to justify the cost (Section 7.4).

6.2 Test Subjects

We choose six open-source projects: the Linux kernel, PostgreSQL, Xorg, Eclipse, Lucene and
Jackrabbit. These projects have enough change history to build and evaluate PCC, and they
are commonly used in the literature [13, 14, 24, 31, 71]. For Lucene and Jackrabbit, we use
manually verified bug reports from Herzig et al. [24] for labeling bug-fixing changes, and the
keyword searching approach [63] for the others.

Table 6.1 shows detailed project information. The lines of code (LOC) and the number of
changes in Table 6.1 include only source code (C and Java) files1 and their changes because we
want to focus on classifying source code file changes. Our subjects vary from 289K to 7.3M in
terms of LOC and from 46K to 429K in terms of the number of changes. They are large and
typical open source projects covering operating system, database management system and core
applications.

1We include files with these extensions: .java, .c, .cpp, .cc, .cp, .cxx, .c++, .h, .hpp, .hh, .hp, .hxx and .h++.
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Table 6.2: The setup of the data set, showing start gaps, start dates, end dates and the buggy rate
in the data sets. The buggy rate is the overall buggy rate for both PCC and CC since they use
exactly the same data sets.

Project Start Gap Start Date End Date
% of

Buggy
Changes

Linux Three Years 2008-01-23 2008-07-15 21.0%
PostgreSQL Two Years 1998-07-08 2010-02-14 40.9%
Xorg Three Years 2003-07-02 2009-07-24 23.1%
Eclipse Three Years 2004-06-07 2006-01-24 23.0%
Lucene Six Months 2010-09-17 2011-06-30 31.0%
Jackrabbit Three Years 2007-09-13 2009-09-15 46.4%

Although these projects are written in C and Java, PCC is not limited to any particular pro-
gramming language. With appropriate feature extraction, PCC could classify changes in any
language [31].

6.3 Data Set Setup

We use the entire revision histories to label buggy changes as described in Section 3.1. After
labeling buggy changes, we choose changes from a certain period for the following reasons.
First, there are too many changes, and often classification algorithms such as MARS do not scale
to a large number of instances. In addition, as shown in previous work [14, 11, 32], the average
bug life time varies from one year to three years depending on the project. Therefore, the latest
changes are often labelled clean even if they are actually buggy simply because the bugs in these
changes have not been discovered and fixed. To ensure that we have all necessary fixes to label
the buggy changes, we exclude the changes in the last three years. Third, there is also a concern
that the change patterns may not be stable at the beginning of the histories [31, 22]. For this
reason, we exclude the changes at the beginning of the histories.

Table 6.2 shows start gaps, start dates and the average buggy rates of the data sets. The start
and end dates are the dates of the first and last commits in the data sets. The start gaps are three
years for most of the projects. Lucene and PostgreSQL are two special cases with different start
gaps. Since Lucene has a relatively short history (three years), the start gap is six months, and
we do not remove any history at the end. PostgreSQL has less than five core developers. The
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required time span to collect enough changes for a non-core developer is long. To collect enough
changes, we choose a two-year start gap for PostgreSQL, and we remove the last year of history.

We set our data sets to perform a fair comparison between PCC and the baselines, i.e., CC
and MARS. There are a few key requirements for the experimental setup: 1) we use a mixed data
set for the baselines, but developer-specific data sets for PCC; 2) we combine the training sets of
PCC to use as the training sets of CC; and 3) we keep the test data the same between PCC and
the baselines. With these goals in mind, we select the ten developers from each project who have
the most commits. They are the most prolific developers and can represent the majority of each
project. We then pick the same number of changes from each of the developers to prevent any
developer’s performance from dominating. Furthermore, we use 10-fold cross-validation [46] to
reduce the bias on the training set selection. This technique is widely used in the literature [5,
31, 33, 58]. PCC is personalized, so we run cross validation on the changes of one developer at
a time. For the baselines, we run cross validation on all changes together.

In summary, we first list the developers in each project ordered by their total number of com-
mits in descending order. From the list, we select the top ten developers. For each developer, we
collect 100 consecutive changes starting after the start gaps, totaling 1,000 changes per project.
Each 100 changes are used for PCC for each developer. The 1,000 changes together are used for
CC and MARS.

6.4 Classification and Tuning

We design our tuning strategy carefully to simulate real world scenarios. The key problem is that
the golden labels of the test set are unknown in practice. We cannot use the golden labels to tune
parameters. Therefore, we need to tune the parameters on labeled data set before performing
predictions in practice. The goal becomes finding one set of parameters that is appropriate for
these experiments in general. Specifically, we tune on some randomly picked changes, and then
use the same parameter for all models and all projects. We tune the parameters to maximize F1
since it is a standard metric.

In our experiments, we use four classification algorithms, including MARS. We tune each
classification algorithm separately. The implementations of our Logistic Regression and Naive
Bayes have no tunable parameters [20], so they are not tuned. ADTree has one parameter, the
number of boosting iterations [20], so we use a linear search. MARS has several parameters
that take arbitrary values, e.g., maximum degree, fast k, and penalty for hinges in the GCV
computation [12]. Since each run of MARS can take hours, it is infeasible to explore the search
space exhaustively. Instead, we tune one parameter first using a linear search, fix its value, tune
the next parameter, and so on.
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6.5 Measures

We use two performance measures for our evaluation: Cost effectiveness and F1. Different mea-
sures are useful in different scenarios. Cost effectiveness is useful when there are only resources
to inspect a limited amount of code, e.g., before a deadline. F1 is useful when there is enough
resource to inspect all predicted buggy changes, e.g., code review. A detailed discussion is in
Chapter 8.

Cost Effectiveness: Cost effectiveness is a widely used metric for defect prediction [59, 58, 3].
As the name suggests, cost effectiveness aims at maximizing benefits by spending the same
amount of cost. In this thesis, the cost is the amount of code to inspect, and the benefit is the
number of bugs that can be discovered. If we inspect all predicted buggy changes, the percentage
of bugs that we catch is the recall. In some situation, e.g., under deadline pressure, we cannot
inspect all predicted buggy changes, instead we can inspect perhaps only 20% of committed
LOC. It is desirable to catch as many bugs as possible while minimizing LOC to inspect. In this
situation, the cost effectiveness metric is a more appropriate measure.

Although our prediction is binary (i.e., a change is either buggy or clean), there can be mul-
tiple bugs in a change. It is more appropriate to consider that we can capture multiple bugs after
we inspect a change. We borrow the idea from the previous work [52, 59], but adopt it to the
change level. Recall the technique that we use to label buggy changes: we use git blame
on the bug-fixing changes. One bug-introducing change can be git blamed by multiple bug-
fixing changes. We use the number of bug-fixing changes that git blames a bug-introducing
change as the number of bugs in this bug-introducing change, which are discovered by inspecting
this bug-introducing change.

To evaluate the cost effectiveness, we rank the changes by the probability of being buggy,
similar to previous work [58, 59]. We simulate the inspection process by looking at the changes
sorted by their rankings. As we inspect the changes, we accumulate the inspected LOC and the
discovered bugs. We plot the cost effectiveness graph with the accumulated inspected LOC on
the x-axis and the accumulated discovered bugs on the y-axis. Although not restricted to any
percentage, we use the number of bugs captured by inspecting 20% of committed LOC, i.e.,
NofB20, as a quantitative measure similar to previous work [59]. Since different projects have
different numbers of bugs, we also normalize NofB20 as a percentage of the total number of
bugs, i.e., PofB20. We use NofB20 and PofB20 as the quantitative metrics of cost effectiveness
and use the cost effectiveness graph to show the general trend across different percentages of
LOC.

F1: F1 is a standard and widely used [31, 71, 72] measure for classification algorithms, which is
the harmonic mean of precision and recall. Precision represents among all the predicted buggy
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changes, how many are truly buggy. Recall represents among all the actual buggy changes, how
many the classifier identifies. Precision and recall are calculated from numbers of true positives
(TP), false positives (FP), false negatives (FN) and true negatives (TN). If the actual label is
buggy and the classifier says buggy, it is a true positive. If the actual label is clean but the
classifier says buggy, it is a false positive. If the actual label is buggy but the classifier says
clean, it is a false negative. If the actual label is clean and the classifier says clean, it is a true
negative. Precision P is calculated by P = TP/(TP + FP ), and recall R is calculated by
R = TP/(TP + FN).

There is a trade-off between precision and recall. Usually, we can sacrifice one to improve
the other, which makes it difficult to compare different prediction models using the precision
alone or the recall alone.

6.6 Statistical Tests

Statistical tests can help us understand whether there is a statistically significant difference be-
tween two results that we want to compare2. For example, in RQ1, we want to compare the
F1s of PCC and CC in each test subject. We first repeat each experiment several times to ob-
tain several samples for each test subject. We then apply the Wilcoxon signed-rank test on the
samples in each test subject and across subjects. The Wilcoxon signed-rank test does not require
the underlying data to follow any distribution, can be applied on pairs of data, and is able to
compare the difference against zero. At the 95% confidence level, p-values that are smaller than
0.05 indicates that the F1/NofB20/PofB20 differences between PCC and CC are statistically sig-
nificant. p-values that are 0.05 or larger indicates that we find no evidence that the differences
are statistically significant.

2We consult frequently with the statistical consulting service provided by the University of Waterloo, who mon-
itors the experiments and ensures that we utilize the proper statistical tests correctly.
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Chapter 7

Experimental Results

7.1 PCC Versus CC

In this section, we compare PCC against CC and MARS. We evaluate the three approaches using
the setups introduced in Chapter 6, and measure cost effectiveness, precision, recall, F1, NofB20
and PofB20 as described in Section 6.5. In addition, we use statistical tests to check if result
differences are statistically significant as described in Section 6.6.

Table 7.1 presents the overall classification performance of CC, MARS and PCC. The values
in parentheses show the improvements of F1, NofB20 and PofB20 against CC. The “Average”
row contains the arithmetic means of the improvements between PCC and CC across all projects.
The statistically significant improvements are bolded. We use ADTree in RQ1 since decision tree
is widely used in the literature [8, 58].

Cost Effectiveness: Table 7.1 shows that PCC improves CC by 19–155 in terms of NofB20 and
by 0.03–0.21 in terms of PofB20. All improvements are statistically significant.

NofB20 represents the number of bugs that can be discovered by examining the top 20%
LOC. For example, the ranking of CC can help the developers identify 55 bugs for PostgreSQL.
On the other hand, the ranking of PCC can help identify 210 bugs, which is 155 more bugs than
those of CC. PofB20 represents the same information but normalized to the number of bugs in
the data set of a project. For example, PofB20 improvement on PostgreSQL is 0.21 means that
the 155 bugs are 21% of all the bugs in PostgreSQL’s data set.

The cost effectiveness graphs are in Figure 7.1. As shown in the figure, PCC is better than
CC for a wide range of LOC choices other than 20%. For example, PCC and CC of Lucene
diverge when the percentage of LOC is at about 5% and converge around 60%.
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Table 7.1: Results of evaluated projects. The values in parentheses show the F1, NofB20 and
PofB20 differences against CC. The “Average” row contains the average improvement of PCC
over CC across all projects. Statistically significant improvements are bolded.

Project Method P R F1 NofB20 PofB20

Linux

CC 0.59 0.49 0.54 160 0.51
MARS 0.46 0.39 0.42 121 0.39
PCC 0.61 0.50 0.55(+0.01) 179(+19) 0.57(+0.06)
PCC+ 0.62 0.49 0.55(+0.01) 172(+12) 0.55(+0.04)

PostgreSQL

CC 0.65 0.58 0.61 55 0.08
MARS 0.60 0.55 0.57 76 0.11
PCC 0.63 0.58 0.60(−0.01) 210(+155) 0.29(+0.21)
PCC+ 0.66 0.59 0.63(+0.02) 175(+120) 0.24(+0.16)

Xorg

CC 0.69 0.62 0.65 96 0.23
MARS 0.65 0.52 0.57 152 0.37
PCC 0.69 0.66 0.67(+0.02) 159(+63) 0.39(+0.16)
PCC+ 0.73 0.66 0.69(+0.04) 161(+65) 0.39(+0.16)

Eclipse

CC 0.59 0.48 0.53 116 0.20
MARS 0.55 0.43 0.48 20 0.03
PCC 0.63 0.55 0.59(+0.06) 207(+91) 0.36(+0.16)
PCC+ 0.68 0.56 0.61(+0.08) 200(+84) 0.35(+0.15)

Lucene

CC 0.58 0.46 0.51 176 0.28
MARS 0.51 0.41 0.45 131 0.21
PCC 0.60 0.53 0.56(+0.05) 254(+78) 0.40(+0.12)
PCC+ 0.64 0.54 0.59(+0.08) 258(+82) 0.41(+0.13)

Jackrabbit

CC 0.72 0.72 0.72 411 0.37
MARS 0.72 0.70 0.71 411 0.37
PCC 0.72 0.72 0.72(+0.00) 449(+38) 0.40(+0.03)
PCC+ 0.74 0.74 0.74(+0.02) 459(+48) 0.41(+0.04)

Average (+0.03) (+74) (+0.12)

F1: As shown in Table 7.1, PCC improves CC by up to 0.06 on F1. For example, CC’s F1
on Eclipse is 0.53. PCC’s F1 on the same data set (Eclipse) is 0.59, which indicates that PCC
improves the F1 by 0.06. The associated p-value is <0.01, which indicates that the improvement
is statistically significant. Although the improvement on PostgreSQL is negative, the associated
p-values indicates that the difference is not statistically significant. We find no evidence that PCC
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Figure 7.1: Cost effectiveness graphs that show the percentage of bugs that can be discovered
by inspecting different percentages of LOC. PCC is better than CC for a wide range of LOC
choices.

and CC perform differently predicting PostgreSQL in terms of F1. Unlike the other test subjects,
the PostgreSQL community requires the author field to reflect the committer. Since we do not
have the information of the actual author, PCC’s advantage may not show, which could affect the
performance of PostgreSQL (Section 8.3). As shown in the “Average” row, PCC outperforms
CC on average across all test subjects.

Overall, these promising results indicate that PCC can capture developers’ different defect
patterns by building personalized prediction models. The difference in defect patterns can be
blurred when the changes from different developers are mixed together, which is a limitation of
CC.
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We have shown that PCC’s F1 is higher than CC’s. In addition, PCC has comparable or
higher precision than CC for all projects. Some developers may prefer precision while others
prefer recall. To address this issue, we can trade recall for precision and vice versa by simply
tuning the classification algorithm parameters. Kim et al. [31] showed the trade-off between
precision and recall.

MARS: In addition, we evaluate MARS on the same data sets for comparison. As shown in
Table 7.1, PCC clearly outperforms MARS for all subjects in terms of both NofB20 and F1. For
example, the F1 of Eclipse changes predicted by PCC is 0.59, while the F1 is only 0.48 when
predicted by MARS on the same data set.

MARS’s local consideration does not explicitly distinguish developers. Our result shows that
PCC, a local model which utilizes domain specific knowledge, outperforms a global model with
local consideration.

�
�

�
PCC outperforms both CC and MARS.

7.2 Combining PCC and CC

In this section, we compare PCC+ to CC and PCC. We use the same setup and subjects as
Section 7.1.

PCC+ is a meta-classifier that picks the most confident result among CC, PCC and weighted
PCC as described in Chapter 5. Recall that we use ADTree in RQ1. According to Freund et
al. [16], an ADTree-based classifier can provide a confidence measure. For each change, we
predict using the three models, i.e., CC, PCC and weighted PCC. PCC+ picks the result that has
the highest confidence.

As shown in Table 7.1, PCC+ can further improve on PCC in many cases. For example,
CC’s F1 on Eclipse is 0.53. PCC improves CC by 0.06. PCC+ has a bigger improvement, 0.08.
Interestingly, PCC+’s improvement on Jackrabbit’s F1 is statistically significant, while PCC’s is
not. Compared to PCC, we observe that PCC+ is more likely to yield a statistically significant
improvement and the improvement is often bigger.

�
�

�
�

Combining models based on the confidence measure can provide further
improvements.
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Table 7.2: F1 and NofB20 for different classifiers. The delta between CC and PCC are shown
in the “Delta” row. The “Average” row contains the average delta between PCC and CC across
all projects for each classification algorithm. For simplicity, the p-values are not shown. Instead,
statistically significant deltas are bolded.

Project Approach
F1 NofB20

ADTree N. B. L. R. ADTree N. B. L. R.

Linux
CC 0.54 0.39 0.39 160 138 102
PCC 0.55 0.40 0.49 179 147 137
Delta +0.01 +0.01 +0.10 +19 +9 +35

PostgreSQL
CC 0.61 0.51 0.56 55 89 46
PCC 0.60 0.52 0.56 210 113 56
Delta −0.01 +0.01 +0.00 +155 +24 +10

Xorg
CC 0.65 0.55 0.63 96 84 52
PCC 0.67 0.60 0.65 159 101 29
Delta +0.02 +0.05 +0.02 +63 +17 −23

Eclipse
CC 0.53 0.43 0.53 116 65 54
PCC 0.59 0.47 0.51 207 108 55
Delta +0.06 +0.04 −0.02 +91 +43 +1

Lucene
CC 0.51 0.42 0.44 176 152 30
PCC 0.56 0.45 0.50 254 139 200
Delta +0.05 +0.03 +0.06 +78 −13 +170

Jackrabbit
CC 0.72 0.56 0.72 411 420 261
PCC 0.72 0.66 0.68 449 414 370
Delta +0.00 +0.10 −0.04 +38 −6 +109

Average Delta +0.03 +0.04 +0.02 +74 +12 +50

7.3 Generalizability of PCC’s Improvement

In this section, we study the effect of different classification algorithms and different sizes of
training sets.

Different Classification Algorithms: We deploy three classification algorithms to check if PCC
outperforms CC with other classification algorithms. We conduct this experiment using the same
data sets in Section 7.1, but we vary the classification algorithm from just ADTree.
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Table 7.2 shows the results of PCC and CC using various classifiers. The columns show
the project name, the approach, the CC and PCC results with ADTree classifiers taken from Ta-
ble 7.1, and the results with other classifiers—Naive Bayes and Logistic Regression. The results
demonstrate that PCC outperforms CC for all classifiers, even though the performance of differ-
ent classifiers varies. As shown in the “Average” row, the improvement of PCC is statistically
significant for every classification algorithm. In other words, the benefit of grouping changes by
developer (PCC) is not limited to a specific classification algorithm.

�
�

�
�

PCC outperforms CC, and this advantage is not limited one specific classification
algorithm.
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Figure 7.2: F1 versus number of training changes for all test subjects. X-axis is the number of
training changes for CC, and 1/10 of it is the number of training changes per developer for PCC.
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Figure 7.3: PofB20 versus number of training changes for all test subjects. X-axis is the number
of training changes for CC, and 1/10 of it is the number of training changes per developer for
PCC.

Number of Training Instances: Both CC and PCC learn from training instances. Unfortu-
nately, it is sometimes challenging to collect enough training instances. Since PCC learns from
developer specific changes, it may be more challenging to collect enough training instances for
each developer. Therefore, it is important to understand the relationship between the number of
instances in a training set and the classification performance.

For this experiment, we use the same data sets and the same parameters as Section 7.1.
For each iteration in 10-fold cross validation, we keep the same test set, but we select different
numbers of instances from the training set. For example, we take one fold as a test set. Instead
of taking the other nine folds as the training set, we gradually reduce the size of the training set.
Using the reduced training sets, we build CC and PCC classifiers. For each project, we use an
increment of 100 from 100 to 900 training instances. Then we test CC and PCC on the same test
set.
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Figure 7.4: NofB20 versus number of training changes for all test subjects. X-axis is the number
of training changes for CC, and 1/10 of it is the number of training changes per developer for
PCC.

Figure 7.2, 7.3 and 7.4 shows the relationships between the number of training instances
versus F1, PofB20 and NofB20, respectively. The results show that there is an overall trend of
F1, PofB20 and NofB20 increasing with the number of the training instances.

We can compare PCC and CC results by comparing the corresponding lines in Figure 7.2,
7.3 and 7.4. Although PCC outperforms CC in general, the results that show PCC and CC are
very close to each other at the beginning, and then diverge. Although not shown due to space
constraints, different projects generally diverge at different points before 80 training instances
per developer. When there are fewer training instances, the advantage of PCC does not show,
because there are not enough training instances to build an accurate classification model, while
CC has enough instances since CC has 10 times more training instances than each PCC model.
Overall, our data show that it is generally worthwhile to use PCC for better performance when
there are 80 or more training instances per developer in the project.
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Table 7.3: The effect of different classes of features on F1. M represents meta-data features.
B represents bag-of-words features. C represents characteristic vector features. The values in
parentheses show the deltas against the predictions using only meta-data features. For simplicity,
the p-values are not shown. Instead, statistically significant deltas are bolded.

Project Approach
F1

M MB MC MBC

Linux
CC 0.56 0.52(−0.04) 0.55(−0.01) 0.54(−0.02)
PCC 0.58 0.56(−0.02) 0.58(+0.00) 0.55(−0.03)

PostgreSQL
CC 0.62 0.61(−0.01) 0.61(−0.01) 0.61(−0.01)
PCC 0.61 0.60(−0.01) 0.62(+0.01) 0.60(−0.01)

Xorg
CC 0.65 0.65(+0.00) 0.63(−0.03) 0.65(+0.00)
PCC 0.66 0.67(+0.01) 0.66(+0.00) 0.67(+0.01)

Eclipse
CC 0.54 0.55(+0.01) 0.54(+0.00) 0.53(−0.01)
PCC 0.57 0.59(+0.02) 0.58(+0.01) 0.59(+0.02)

Lucene
CC 0.53 0.51(−0.02) 0.51(−0.02) 0.51(−0.02)
PCC 0.60 0.57(−0.03) 0.59(−0.01) 0.56(−0.04)

Jackrabbit
CC 0.71 0.72(+0.01) 0.70(−0.01) 0.72(+0.01)
PCC 0.74 0.72(−0.02) 0.71(−0.03) 0.72(−0.02)

Average
CC - (−0.01) (−0.01) (−0.01)
PCC - (−0.01) (−0.01) (−0.01)

�
�

�
�

In general, PCC outperforms CC when there are 80 or more training instances per
developer.

7.4 Effect of Different Features

There are three feature classes, i.e., bag-of-words, characteristic vectors and meta-data. Except
for meta-data, bag-of-words and characteristic vectors have thousands of features. If a feature
class does not statistically significantly improve the performance, it is unreasonable to include
this feature class. We instigate the effect of bag-of-words and characteristic vectors. We conduct
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Table 7.4: The effect of different classes of features on NofB20. M represents meta-data features.
B represents bag-of-words features. C represents characteristic vector features. The values in
parentheses show the deltas against the predictions using only meta-data features. For simplicity,
the p-values are not shown. Instead, statistically significant deltas are bolded.

Project Approach
NofB20

M MB MC MBC

Linux
CC 162 154(−8) 167(+5) 160(−2)
PCC 189 179(−10) 191(+2) 179(−10)

PostgreSQL
CC 53 66(+13) 105(+52) 55(+2)
PCC 208 226(+18) 211(+3) 210(+2)

Xorg
CC 111 107(−4) 109(−2) 96(−15)
PCC 140 158(+18) 146(+6) 159(+19)

Eclipse
CC 136 99(−37) 128(−8) 116(−20)
PCC 167 157(−10) 195(+28) 207(+40)

Lucene
CC 144 172(+28) 152(+8) 176(+32)
PCC 256 255(−1) 265(+9) 254(−2)

Jackrabbit
CC 392 382(−10) 386(−6) 411(+19)
PCC 456 431(−25) 466(+10) 449(−7)

Average
CC - (−2) (+10) (+7)
PCC - (−3) (+9) (+3)

this experiment using the same settings in Section 7.1, but we use different feature combinations.
Since there are only around 10 meta-data features, their cost is nearly free. We assume the
presence of meta-data features.

The impact on F1 and NofB20 is shown in Table 7.3 and Table 7.4. The columns show the
project name, the approach, the F1 and NofB20 with different feature combinations. The dif-
ference against the predictions using only meta-data features is shown in brackets. We apply
statistical tests on the differences. The statistically significant differences are bolded. For exam-
ple, the Linux kernel predicted using meta-data and bag-of-words features by CC is 0.52, which
is 0.04 lower than the predictions using only meta-data. This difference is statistically significant.

Although the performance in different projects varies, the average row on the bottom surpris-
ingly show that different feature classs have little impact on F1. All feature class combinations
are 0.01 lower than the corresponding prediction using only meta-data features. Although most
of these differences are in fact statistically significant, the difference is so small (0.01) that we
can safely ignore it. The impact on NofB20 is very similar. Out of six comparisons, only one is
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statistically significant, and the difference is much smaller than the difference between PCC and
CC.

This result is very interesting and unintuitive. There are several implications. First, this
result suggests that it is better to use only meta-data features with ADTree. In terms of running
time, the classifiers run faster with less features. In terms of classification performance, ADTree
is the best-performing classification algorithm (Section 7.3), and different feature classs have
almost no impact on ADTree’s performance. Bag-of-words and characteristic vector sometimes
do improve the performance, but the improvement is so small that cannot justify the cost. Second,
some features could confuse the classification algorithms. Intuitively, more features should yield
better performance. However, our result show that it is important to understand the features
before adding them. One possible research direction is feature selection.

�
�

�
Different feature classes have very little impact on classification performance.

32



Chapter 8

Discussion and Future Work

8.1 Cost Effectiveness vs. F1

As shown in our experiments, the Linux kernel and PostgreSQL have statistically significant
cost effectiveness improvements while their F1 improvements are not statistically significant.
We want to understand why these two metrics can yield different results. Since PCC builds one
model for each developer separately, it is easier for bug patterns to stand out than with CC. PCC
should yield predictions with higher confidence on average. This is confirmed by the confidence
values in our experiments. The top ranked changes in PCC have higher confidence values than
those of CC. Since the prediction given by the model with a higher confidence is more likely to
be correct, the top ranked changes in PCC are more accurate than those of CC. In other words,
PCC can have a higher cost effectiveness than CC while the difference in F1 is small.

Cost effectiveness is more relevant when there are limited resources to inspect a portion of
code. Imagine a scenario that the deadline is approaching, and developers do not have enough
time to inspect all predicted buggy changes. We rank changes according to the likelihood of a
change being buggy. Developers can inspect the changes in the ranked order. An increase in
cost effectiveness can help developers find more bugs in such a scenario. For example, PCC
improves NofB20 by up to 155 compared to CC. It means that developers can discover up to 155
more bugs using the rankings provided by PCC.

On the other hand, F1 is useful in scenarios when there are enough resources to inspect
all predicted buggy changes, e.g., code review. An increase in precision can reduce time that
developers spend on inspecting true clean changes. An increase in recall can help developers
capture more bugs. An increase in F1 suggests an increase in precision and recall. As shown by
Kim et al. [31], we can sacrifice precision for recall and vice versa.
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( dev1 ) ‘& ’ < −0.5: 0 .815
( dev2 ) ‘& ’ < −2.5: 0 .480
( dev3 ) ‘& ’ < −0.5: −0.315

Figure 8.1: These three ADTree nodes are from three developers’ trees. The first node means
that the weight of a change being buggy increases by 0.815 if developer dev1 removes any bit-
wise and operator in this change. A change is predicted buggy if the weight is positive.

8.2 Interpretation of Defect Prediction Results

Although being useful in the build process, developers often ignore predictions that are not ex-
plained [38]. The good news is, defect prediction techniques can be improved to provide ex-
planations, e.g., which features lead to a buggy prediction. For example, an ADTree model is
a tree that shows step by step how it makes predictions based on the features [16]. Figure 8.1
shows three ADTree nodes from three developers’ trees. This figure shows how the bit-wise and
operator can affect the decision process in three developers’ models. For each change, we find
how many bit-wise and operators the change adds or removes. For example, “−1” represents re-
moving one bit-wise and operator. We compare the modifications against a threshold. “<−0.5”
means to check if the change removes more than 0.5 bit-wise and operators. In summary, if
developer dev2 removes more than 2.5 bit-wise and operators in a change, the weight of this
change being buggy increases by 0.815. We traverse the tree by visiting the node at each level
that matches the change. The change is predicted buggy if the sum of the weights along the path
is positive. Developers dev1 and dev2 are more likely to produce buggy changes if they remove
bit-wise and operators. In contrast, developer dev3 is more likely to produce clean changes if
she removes bit-wise and operators. These examples confirm that there are subtle differences
between developers and the classification algorithms can catch such differences.

8.3 Threats to Validity

Subjects are all open source projects: We collect experimental data sets (Table 6.2) from only
six open source projects to evaluate PCC. Therefore, these projects might not be representative of
closed source projects. We do not intend to draw general conclusions about all software projects.
While we believe that our personalization approach is widely applicable, its performance may
vary in closed source projects and other projects that are not evaluated by this study.
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Our bug data contains noise: Since we follow the traditional change classification techniques [31]
to identify bug-fixing changes, our data inevitably include noise, as Bird et al. pointed out [6].
For this reason, we carefully select our subjects to have high quality commit logs. In addition,
we use two projects that have manually verified bug reports, Lucene and Jackrabbit [24]. For all
subjects, we manually check the noise level. We randomly sample 200 bug-fixing commits from
each project and manually verify whether they are indeed bug fixes. We find that the precision
and recall are reasonable: the precision and recall are 0.87 and 0.73 for the Linux kernel, and
0.86 and 0.71 for PostgreSQL [14]; the precision and recall are 0.75 and 0.64 for Xorg, 0.78 and
0.93 for Eclipse, 0.91 and 0.93 for Lucene, and 0.95 and 0.87 for Jackrabbit. These noise levels
(up to 30%) should be acceptable [33]. However, this noise may affect our experimental results
even though we use the same data sets for PCC, CC, and MARS. In the future, we can reduce
the noise levels through advanced techniques [34, 67].

In addition, the developer information may be inaccurate for PostgreSQL. The PostgreSQL
community is currently requiring that both the author field and the committer fields reflect the
committer [56]. For this reason, we do not have the actual author information for many commits,
which may hurt our results. In the future, we may analyze PostgreSQL’s commit messages
and mailing lists to extract the author information to potentially improve PCC’s performance on
PostgreSQL. In addition, it may be interesting to compare author-specific change classification
with committer-specific change classification.

Developer and change selection might affect our results: For PCC, we select the ten most
committed developers per project, and use 100 changes per developer as our data sets (Table 6.2).
Note that we used the same data sets for PCC, CC and MARS. We select these top developers
because there are too many inactive developers in open source projects who committed only a
few changes. Removing these inactive developers from experiments is a common practice in
the literature [2, 26, 42, 54]. We select the same number of changes per developer since some
developers have too many changes. For example, one developer in PostgreSQL committed about
41% of the entire changes in the project history. We do not want a large number of changes
from a few developers to dominate the classification results. These selections might affect our
experimental results; alternative ways of selecting developers and changes remain as our future
work.
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Chapter 9

Conclusions

We propose personalized defect prediction, and apply it to change classification as a proof of con-
cept. In addition, we propose PCC+ to further improve performance by combining models based
on confidence measures. Our empirical evaluation of PCC on six open source projects shows
that our personalized change classification outperforms the traditional change classification [31]
and MARS [5]. We also find that the advantage of PCC is not bounded to any classification
algorithm. In general, PCC outperforms CC when there are more than 80 training instances per
developer.

Our personalized idea could be applied to recommendation systems [25, 47, 68] and other
types of predictions, such as top crashes [30], quality attributes [36], bug-fixing commits [65],
vulnerabilities [61], bug location and number of bugs [52]. Since each developer may have differ-
ent software development behaviors, personalized systems can effectively learn from a developer
and provide useful information for the developer.
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