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Abstract

The study of combinatorial patterns of words has raised great interest since the early 20th
century. In this thesis we primarily study two combinatorial patterns. The first pattern is
“abelian k-th power free” and the second one is “representability of a set of words of equal
length”.

In Chapter 1 we give a brief introduction to these two combinatorial patterns. In Section
2.1 we present a proof that the language of non-abelian squares is not context-free using
Odgen’s Lemma. In Section 2.2 we present a more elegant proof for this quadratic case by
applying a characterization theorem for the bounded context-free languages. Strengthening
the technique applied in Section 2.2, we prove in Section 2.3 that the language of non-
abelian cubes is not context-free.

In Chapter 3 we study the representability of a set of words of a fixed length. A set S of
words of length n is representable if there exists some word w such that the set of length-n
factors of w equals S. In Section 3.1 we give a lower bound and an upper bound for the
number of representable sets of words of fixed length. In Section 3.2 we give a lower bound
l(n) such that if a set S of words of length n is representable, then there exists a word w,
with |w| < l(n), such that the set of factors of w equals S. We study a variation of these
problems in Section 3.3: we fix a length t, and try to evaluate the number of sets of words
of length n such that there exists some word w of length t such that the set of length-n
factors of w equals S. We give a closed-form formula in the case where n ≤ t < 2n.

Finally in Chapter 4, we present some open problems which are related to these two
combinatorial patterns.
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Chapter 1

Introduction

1.1 Combinatorial patterns

This thesis focuses primarily on combinatorial patterns. The study of combinatorial pat-
terns has raised a lot of interest for quite some time. For instance, in the 20th century,
much research has been done on the existence of infinite words over a given alphabet avoid-
ing certain patterns. Thue [21] gave the first example of an infinite word avoiding square
over an alphabet of size 3. Later, various results avoiding k-th powers were achieved.
Most of the k-th power-free words are generated by iterating a particular morphism which
preserves k-th power-freeness.

In 1961, Erdős [7] introduced the notion of abelian square (see Section 1.2). Erdős
asked if there exists an infinite word over a given alphabet containing no abelian square
as a factor. It is easy to check that there exists no such infinite word over an alphabet of
size 3. Keränen [13] constructed a morphism on an alphabet of 4 symbols which preserves
abelian square-freeness. Using this morphism, Keränen proved that abelian squares are
avoidable with an alphabet size of 4.

Richmond and Shallit [17] gave an asymptotic estimate for the number of abelian
squares of a fixed length over a given alphabet size. They showed that the number of
abelian squares of length 2n over an alphabet of size k is asymptotically k2n+ k

2 (4πn)
1−k

2 .
Blanchet-Sadri and Fox [1] considered abelian primitive partial words. They counted the
number of abelian primitive words of a fixed length over a given alphabet size.

We study the context-freeness of the language of non-abelian squares, non-abelian
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cubes, etc. We show in Section 2.1 that the language of non-abelian squares is not context-
free. We present a much more elegant proof in Section 2.2 for the quadratic case by applying
characterizations of bounded context-free languages (defined in Section 1.3). Finally, we
consider the cubic case in Section 2.3, and prove that the language of non-abelian cubes
is not context-free. We conjecture that the language of non-abelian k-th powers is not
context-free.

Another combinatorial pattern we study is the representable sets of words of equal
length. Representable sets have been studied in both algorithmic aspects and combinatorial
aspects. Algorithmic aspects of related problems have been discussed under the name
“shortest common superstring” and “representing words”. A common superstring of a set
of words S is a word containing each word in S as a factor. For example, the word 001100
is a common superstring of the set of words {0011, 110, 100}. An instance of the “shortest
common superstring” problem is a given set S of words. The object of the problem is
to find a shortest common superstring of S. Discussions on this topic include complexity
class membership of variants of related problems (e.g., P and NP) and approximation
algorithms. For example, Gallant, Maier, and Storer [9] proved that the decision version
of the “shortest common superstring” problem is NP-complete; namely, given a set S of
words and an integer K, deciding if there exists a common superstring w of S with |w| < K
is NP-complete. After this complexity result had been achieved, researchers turned their
attention to approximation algorithms. The first known approximation algorithm was
given by Li [14], which achieved an approximation ratio of log n. The first constant-bound
algorithm, in terms of the approximation ratio, was found in 1991 [3]; while the best known
algorithm was presented by Sweedyk [18], with an approximation ratio of 2.5.

Recently, Blanchet-Sadri and Simmons [2] studied the representability of sets by finite
partial words, which are sequences containing holes that match all symbols. Formally,
given an alphabet Σ, a partial word is a set of symbols in Σ ∪ {�}, where � /∈ Σ. A full
word, in contrast, is an ordinary word which contains no �. A full word f is compatible
with a partial word p if f [i] = p[i] for every position i such that p[i] 6= �. For example, the
full word ‘elephant’ is compatible with the partial word ‘ele�ha�t’. The set of length-n
factors of w is defined to be the set of full words of length n that are compatible with
w. Blanchet-Sadri and Simmons showed that whether a given set of words of equal length
equals the set of length-n factors of some partial word can be decided in polynomial time.
In particular, they gave an upper bound for the length of representing (partial) word for a
given set of words.

Our contribution on this topic basically lies in the combinatorial aspect of the problem.
We consider the following problems respectively in Chapter 3: for how many different sets
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S of words of length n can we find a word wS such that the set of length-n factors of wS
equals S? For any set S of words of length n, if such a wS exists, how long a word do we
need to represent it? For how many sets S of words of length n can we find a word w of
length t such that the set of length-n factors of w equals S? For the first problem, we give
a lower and upper bound in the binary case. For the second problem, we give a weaker
upper bound and some experimental data. For the third problem, we give a closed-form
formula in the case where n ≤ t < 2n; in particular, we give a characterization of those
distinct words having the same subset of length-n factors.

Finally, in Chapter 4 we give some open problems that are related to the two combi-
natorial patterns we study.

1.2 Words

An alphabet Σ is a non-empty finite set of symbols. The elements of Σ are referred to as
symbols or letters. We let Σ∗ denote the set of all finite words over the alphabet Σ. A finite
word over an alphabet Σ is a sequence of symbols in Σ. The length of a finite word w is
the number of symbols in w. The empty word, of which the length equals 0, is denoted by
ε.

A (right-)infinite word over an alphabet Σ is usually defined as a map from N+ to Σ.
The set of all infinite words over the alphabet Σ is denoted by Σω.

Let w, x, y, z be finite words (possibly empty). If w = xyz, then we say that y is a factor
of w. Let Fn(w) denote the set of length-n factors of an ordinary (non-circular) word w,
and let Cn(w) denote the set of length-n factors of w where w is interpreted circularly. For
example, if w = 0001, then F2(w) = {00, 01}; while if the word w = 0001 is interpreted
circularly, then C2(w) = {00, 01, 10}.

A factor of an infinite word w is a finite word y such that there exists a finite word x
and an infinite word z such that w = xyz. We let Fn(w) denote the set of length-n factors
of w.

For convenience, we let w[i] denote the i’th letter of a finite word w and w[i..j] denote
the factor of w with length j− i+ 1 that starts with the i’th letter of w. Thus w = w[1..n]
where n = |w|.
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A finite word w is a square if it is of the form xx for some non-empty word x. A word
is square-free if it contains no square as factor. For example, the word abcdabcd is a
square; while the word abcdcdba is not a square, but it is not square-free since it contains
the square cdcd as a factor. It is quite easy to check that any word contains at least 4
symbols constructed from a binary alphabet contains a square.

In general, we say that a finite word w is a k-th power if it is of the form xk for some
non-empty word x. A word is k-th power-free if it contains no k-th power as a factor. A
word is primitive if it is not a k-th power for any k > 1. For example, the set of words
{anbn : n ≥ 1} are all primitive.

A word w is an abelian square if it is of the form w1w2 where w2 is a permutation of
w1. For example, the English word reappear is an abelian square as it can be factorized
as two parts reap and pear, the second part being a permutation of the first part. It is
quite obvious that a square word w is also an abelian square.

In general, a word w is an abelian k-th power if there exists a partition w = w1w2 · · ·wk
such that each wi is a permutation of w1 for 2 ≤ i ≤ k. An instance of an abelian 4-th
power is the word a4 = 010001100100, where a4 can be decomposed into four factors of
length 3, each containing two 0’s and one 1. If a word is not an abelian k-th power, we
say that w is a non-abelian k-th power. A word w is an abelian primitive word if it is a
non-abelian k-th power for all k > 1. For instance, the words 0n1n for n ≥ 1 are abelian
primitive words. The word 0011(01)n−2 is an abelian primitive word if and only if n is
prime; we will give a proof for this in Lemma 2.0.1. By applying this lemma, Domaratzki
and Rampersad [6] proved that the language of abelian primitive words is not context-free.
They also gave a linear-time algorithm deciding whether a word is abelian primitive.

1.3 Context-free languages

A context-free language is a language accepted by some pushdown automata or generated
by some context-free grammar. The set of context-free languages is closed under union,
reversal, concatenation, Kleene star, as well as morphism and inverse morphism. These
closure properties are widely used to prove certain languages are context-free or noncontext-
free. The closure properties we use intensively in this thesis are stated as follows:

Proposition 1.3.1. If L is context-free and R is regular, then L ∩R is context-free.
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Proposition 1.3.2. If L is context-free and T is a finite-state transducer then T (L) is
context-free.

These two closure properties are widely used to prove that certain languages are not
context-free. For example, we consider the language

L = {w : w contains the same number of 0’s and 1’s}.

We let R = 0∗1∗ be a regular language. The intersection L∩R = {0n1n : n ≥ 0} is known
to be noncontext-free. Thus we conclude that the language L is also noncontext-free by
applying Lemma 1.3.1.

Ogden’s lemma [16] is an extension of the pumping lemma. It states that

Theorem 1.3.3. If a language L is context-free, then there exists a positive integer n,
such that for all z ∈ L with |z| > n, if n or more symbols of z are marked arbitrarily, there
exists a decomposition z = uvwxy such that

1. vx has at least one marked symbol;

2. vwx has at most n marked symbols;

3. uviwxiy ∈ L for all i ≥ 0.

Applying Ogden’s lemma, we show in Chapter 2 that the language of non-abelian
squares is not context-free. A few months after we found the first proof, we simplified the
proof by using characterization theorems on the class of bounded context-free languages.

In general, a language L is bounded if there exists non-empty words w1, w2, . . . , wm such
that L ⊆ w∗1w

∗
2 · · ·w∗m. The words w1, w2, . . . , wm are said to be the corresponding words

of a bounded language L.

A nice characterization of the class of bounded context-free languages was given by
Ginsburg [10]. Unlike the pumping lemma and Ogden’s lemma, which give necessary
conditions for a language to be regular or context-free, Ginsburg’s characterization theorem
gives a necessary and sufficient condition for the class of bounded context-free languages.
Before presenting this beautiful theorem, we first introduce some definitions.

Let Σ = {a1, a2, . . . , am} be an ordered alphabet. The Parikh map is a function ψ :
Σ∗ → Nm such that ψ(w) = (c1, c2, . . . , cm), where ci is the number of occurrences of ai in
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w. For example, suppose Σ = {0, 1, 2}. We have ψ(02121) = (1, 2, 2). For a language L,
we let ψ(L) = {ψ(w) : w ∈ L}.

We say that two vectors x = (x1, x2, . . . , xm) and y = (y1, y2, . . . , ym) ∈ Nm are inter-
leaved if there exist indices 1 ≤ ix < jx < iy < jy ≤ k such that xix , xjx , yiy , yjy are all
positive. For example, the two vectors (1, 0, 1, 0) and (0, 1, 0, 1) are interleaved since we
can take such ix = 1, iy = 2, jx = 3 and jy = 4.

Let S ⊆ Nm be a set of vectors. We say that S is stratified if every vector in S has at
most two nonzero coordinates, and no pair of vectors in S is interleaved.

Let X = {v + Au : u ∈ Nm} ⊆ Nk be a linear set with m ≥ 0, v ∈ Nk and A ∈ Nk×m.
We say that X has stratified periods or X is stratified if the column set of A is stratified.

For example, the linear set X1 = {v1 + A1u1 : u1 ∈ N2} where A1 =

 1 0
3 0
2 1

 is

not stratified since the first column (1, 3, 2) contains 3 nonzero entries. The linear set

X2 = {v2 + A2u2 : u2 ∈ N2} where A1 =


1 0
0 1
1 0
0 1

 is not stratified as well, since the two

columns of A2 are interleaved, as explained in a previous example.

With these definitions, the characterization theorem is stated as follows [10]:

Theorem 1.3.4. A bounded language L is context-free if and only if the set

E(L) = {(e1, e2, . . . , em) ∈ Nm : we11 w
e2
2 · · ·wemm ∈ L},

where w1, w2 · · ·wm are the corresponding words of L, is a finite union of linear sets with
stratified periods.

We use this theorem in our proof for the non-context-freeness of the language of non-
abelian cubes. Another useful theorem [12] characterizes the class of DLI (defined by
linear inequality) context-free languages.

Let m denote the cyclical ordered set {1, 2, . . . ,m}. Then the set

E(Θ, δ, ε) =
⋂
I∈Θ

{(e1, e2, . . . , em) ∈ Nm : ε(I)
∑
i∈I

δiei ≥ 0}

is a DLI-set where
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1. Θ is a set of subsets of m. Θ is considered as a multi-set.

2. For any 1 ≤ i ≤ m, δi ∈ {−1, 0, 1}.

3. For any I ∈ Θ, ε(I) ∈ {−1, 1}.

A bounded language is a DLI language if the set

E(L) = {(e1, e2, . . . , el) ∈ N : we11 w
e2
2 · · ·wemm ∈ L}

is a DLI-set.

DLI languages are often used as examples or counterexamples for context-free lan-
guages. In such a case we have to decide whether a given DLI language is context-free.
The following theorem [12] gives a necessary and sufficient condition for a DLI-set to be
stratified semilinear.

Theorem 1.3.5. The DLI-set

E(Θ, δ, ε) =
⋂
I∈Θ

{(e1, e2, . . . , em) ∈ Nm : ε(I)
∑
i∈I

δiei ≥ 0}

is stratified semilinear if and only if for every e ∈ E there is a hypergraph H, having the
following properties:

1. The vertices of H are the vertices of a convex m-polygon, indexed by the numbers
1, 2, . . . ,m according to their cyclical order.

2. The edges of H are one- or two-element subsets of the vertex set V (H) of H.

3. If {i, j} is a two-element edge of H, then δi = −δj.

4. The edge f is forbidden if there exists I ∈ Θ such that f ∩ I = {i} and ε(I) = −δi.
Hypergraph H does not contain any forbidden edge.

5. The edges of H are non-crossing.

6. The degree of each vertex i is ei.

As an example, Kászonyi proved the language {0a1b2c : a ≤ b ≤ c} is not context-free
by applying Theorem 1.3.5. Here we do not go into details explaining this theorem. The
reader is referred to Kászonyi’s paper [12] if details are needed. Theorem 10 in his paper
is the original statement of this theorem. The example provided is from Example 1 in his
paper.
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1.4 Representable sets

Let Σ denote the alphabet. We say that a finite word w witnesses (resp., circularly wit-
nesses) a subset S of Σn if Fn(w) = S (resp., Cn(w) = S). A subset S of Σn is representable
(resp., circularly representable) if there exists a non-empty finite word (resp., circular word)
that witnesses S. For example, the set {0, 1}2 is a representable set of order 2 since the
set of all length-2 factors of w = 00110 (interpreted non-circularly) equals {0, 1}2. The set
{00, 11} is not representable since any word w containing both 0 and 1 must contain either
01 or 10 as a length-2 factor. Let Rn denote the set of all non-empty representable subsets
of Σn, and let R̊n denote the set of all non-empty circularly representable subsets of Σn.

Let sw(S) (resp., scw(S)) denote the length of the shortest non-circular witness (resp.,
circular witness) for S. For example, we consider the set S = {010, 101}. We have
sw(S) = 4 since the shortest non-circular witness is 0101, of which the length equals 4;
scw(S) = 3 since 010 circularly witnesses S. Let µn (resp., νn) denote the maximum length
of the shortest non-circular (resp., circular) witness over all representable subsets of Σn.

A de Bruijn word bn of order n over the alphabet Σ is a shortest circular witness for
the set Σn. It is known [5] that the length of a de Bruijn word of order n over Σ is 2n. For
example, one instance of b2 is 0011 and two instances of b3 are 00010111 and 11101000.
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Chapter 2

Non-abelian k-th Powers

At the DLT conference in Milan, Italy, Maxime Crochemore asked if the language of non-
abelian squares is context-free. We answered his question in an arxiv note [19].

We study the context-freeness of the language of non-abelian k-th power words in this
chapter. Given an alphabet Σ, let LAP denote the set of abelian primitive words over Σ;
let LNAS denote the set of non-abelian squares over Σ; and let LNAC denote the set of
non-abelian cubes over Σ.

By Lemma 1.3.1, we see that if LAP ∩{0, 1}∗ (respectively, LNAS ∩{0, 1}∗ and LNAC ∩
{0, 1}∗) is not context-free, then LAP (respectively, LNAS and LNAC) is not context-free.
Thus, without loss of generality, we let the alphabet Σ = {0, 1} in this chapter.

We start with the simplest one, i.e., the language LAP . In order to prove that LAP
is not context-free, Domaratzki and Rampersad [6] defined the regular language RAP =
0011(01)∗.

Lemma 2.0.1. Let n > 1 be an integer and xn = 0011(01)n−2. Then xn ∈ LAP iff n is
prime.

Proof. The length of x is 2n. The word x has exactly n 0’s and n 1’s. We first consider
the case where n < 5. We have x2 = 0011 ∈ LAP , x3 = 001101 ∈ LAP , and x4 = 00110101
is an abelian square. Now it suffices to consider the case where n ≥ 5.

If xn /∈ LAP , then there exists k ≥ 2 such that xn is an abelian k-th power. If k = 2,
then n is even; otherwise the first half or the second half of w contain a different number
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of 0’s or 1’s. It follows that p is not a prime number. If k > 2, then the length of xn is
divisible by k, which implies that n is not a prime number.

If n ≥ 5 is not a prime number, then there exist p, q ≥ 2 such that n = pq. Note that
xn = 0011(01)q−2((01)q)p−1. Thus it is easy to see that xn is an abelian q-th power. Thus
xn /∈ LAP .

Theorem 2.0.2. The set LAP is not context-free.

Proof. Let M = LAP ∩ RAP . By Lemma 2.0.1, we obtain that M = {0011(01)p−2 :
p is prime}. The language M is easily seen to be not context-free by applying the pumping
lemma. Hence LAP is not context-free since the intersection of LAP and RAP is not context-
free.

2.1 Binary case: A first proof

The binary case, in which we consider the set of non-abelian squares, however, is not that
simple. Our proof in the binary case basically uses the same idea as applied in the proof
for the primitive case, i.e., construct a certain regular language R and prove that the
intersection LNAS ∩R is not context-free. Much of the content of this section comes from
my arxiv note [19].

Let wi = 10i−1 for all i > 1. We define RNAS = w∗4w3w
∗
2w3w

∗
3. We begin with a few

lemmas.

Lemma 2.1.1. The word wn4w3w
n!+n
2 w3w

2(n!+n)
3 ∈ LNAS ∩ (Σ2)

∗ ∩RNAS.

Proof. Suppose z = wn4w3w
n!+n
2 w3w

2(n!+n)
3 . Clearly z ∈ (Σ2)

∗ ∩ RNAS. Suppose m is the
total number of 1’s in z. Then m = 3n!+4n+2. However, the number of 1’s in the second
half of z is 4n!

3
+ 2n+ 1, which is not equal to m

2
. Hence z is not an abelian square. Thus

z ∈ LNAS.

Let w = 0s010s1 · · · 10sk be a word over Σ. We let alt(w) denote the number of oc-
currences of two consecutive blocks of 0’s in w containing a different number of symbols.
Formally, we define

alt(w) = |{1 ≤ i < k : si 6= si+1}|.

We define alt(·) over a language K as follows: alt(K) = maxw∈K alt(w).
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For example, we consider the regular language K = 0∗1∗0∗1∗. We see that alt(K) ≤ 4
since there are at most 4 blocks of consecutive 0’s and 1’s. Also, we have k = 0110001111 ∈
K and alt(k) = 4. It follows that alt(K) = 4.

We say that a sequence of non-negative integers (ak)
n
k=1 is uneven if n > 1 and there

exists i ∈ [1, n] such that ai 6= ai+1. Here an+1 = a1. Otherwise, it is even.

Suppose w is a word that contains a 1. Then w is called uneven if the sequence
(s1 + sk+1, s2, . . . , sk) is uneven, where w = 0s110s21 · · · 0sk10sk+1 . Otherwise, it is called
even.

Suppose w is an even word and of the form 0s110s21 · · · 0sk10sk+1 . Now we consider what
w looks like. Since w is even, we get that s1+sk+1 = s2 = · · · = sk. Then w = 0s1(0s+t1)k0t

for some s, t, k ≥ 0. We have the following lemmas:

Lemma 2.1.2. If w is an uneven word, then alt(wk) ≥ k − 1.

Proof. Suppose w = 0s110s21 · · · 0sk10sk+1 . Then

wk = 0s1(10s2 · · · 10sk10sk+1+s1)k−110s2 · · · 10sk10sk+1 .

Since w is uneven, we get alt(10s2 · · · 10sk10sk+1+s1) ≥ 1. It follows that alt(wk) ≥ k−1.

Theorem 2.1.3. The intersection LNAS ∩ (Σ2)
∗ ∩RNAS is not context-free.

Proof. (By Ogden’s Lemma) Let T denote the language LNAS ∩ (Σ2)
∗ ∩ RNAS. For any

n > 4, let z = wn4w3w
n!+n
2 w3w

2(n!+n)
3 . By Lemma 2.1.1 we see that z ∈ T . Mark the first 4n

bits of z, that is, the bits corresponding to wn4 . Let m(s) denote the number of bits marked
in s. Now we show by contradiction that no decomposition z = u0v0w0x0y0 satisfies all the
following three conditions:

1. condition A: m(v0x0) > 0;

2. condition B: m(v0w0x0) ≤ n;

3. condition C: ∀i ≥ 0, u0v
i
0w0x

i
0y0 ∈ T .

We first mark z with different colors. Mark the bits corresponding to wn4 red. Mark the
next 3 bits corresponding to w3 blue. Mark the bits corresponding to wn!+n

2 green. Mark

the bits corresponding to w3w
2(n!+n)
3 black. Define a new function m(color, x) as the number

11



of bits in x colored color. Note that m(x) in our former definition is the same as m(red, x).
Here is a picture of how z is colored:

w4w4 · · ·w4︸ ︷︷ ︸
red

w3︸︷︷︸
blue

w2 · · ·w2︸ ︷︷ ︸
green

w3w3 · · ·w3︸ ︷︷ ︸
black

.

Now we list all possible cases.

(i) Either v or x is the empty word. Without loss of generality, suppose x is empty.

(1) v ∈ 0+.

(2) v contains a 1 and v is uneven.

(3) v contains a 1 and v is even.

(ii) Both v and x are non-empty words.

(1) v ∈ 0+ or x ∈ 0+.

(2) Both v and x contain a 1; v is uneven or x is uneven.

(3) Both v and x contain a 1 and are even.

(a) m(red, v) = 0, which means that wn4 precedes v in z.

(b) m(red, v) > 0.

(i) m(red, x) > 0.

(ii) m(red, x) = 0 and m(green, x) > 0

• m(blue, x) = 3.

• m(blue, x) = 2.

• m(blue, x) = 1.

• m(blue, x) = 0 and m(green, x) > 1.

• m(blue, x) = 0 and m(green, x) = 1.

(iii) m(red, x) = m(green, x) = 0 and m(black, x) > 0

Suppose there exists a decomposition z = uvwxy satisfying the above three conditions
simultaneously.

Case i: First we consider the case when either v or x is empty. Without loss of generality,
suppose x is empty. Then v cannot be empty, since vx is non-empty.

12



Case i.1: Suppose v = 0k for some k ∈ N+. Then we select i = 4. Since there are more
than 3 successive 0’s in v4, this is also true for uv4wx4y. However, no word in T contains
more than 3 successive 0’s. Hence we get a contradiction.

Case i.2: Suppose v contains a 1 and is uneven. We pick i = 6. Then alt(v6) ≥ 5 >
alt(R) = 4 by Lemma 2.1.2. So uv6wx6y 6∈ T , which violates condition C.

Case i.3: Now we consider when v is even. In this case v can be written in the form
0k1(0k+s1)p0s for some k, s, p ∈ N. Then it follows that m(green, v) = 0 and k + s = 3 by
the following argument. Suppose m(green, v) > 0. Then m(blue, v) = 3. That is to say,
the w3 between the occurrences of w4’s and w2’s lies in v. Then v must be of the form
r101001r2 for some words r1 and r2. It follows that k+s = 2, since v is even. Now we select
i = 2. Then uv2wx2y = wn4w

l
3w

n!+n
2 w3w

2(n!+n)
3 for some l > 1, which violates condition

C. Now suppose k + s 6= 3. Then we pick i = 2. It follows that uv2wx2y is of the form
wl4w

2+2p
k+s+1w

j
4w3w

n!+n
2 w3w

2(n!+n)
3 6∈ T , which violates condition C again. Now let i = n!

1+p
. It

follows that zi = uviwxiy = wn!+n
4 w3w

n!+n
2 w3w

2(n!+n)
3 = (wn!+n

4 w3w
n!+n
2 )(w3w

2(n!+n)
3 ) is an

abelian square, a contradiction.

Case ii: Both v and x are non-empty. In this case, we first show that both v and x
contain a 1. Then, we show v and x are even. Finally we rule out all subcases under the
condition v and x are even.

Case ii.1: Suppose v = 0k or x = 0l for some k, l ∈ N+. By a similar analysis in Case
i.i, we get that this case violates condition C.

Case ii.2: Suppose v is uneven. By a similar analysis in Case i.ii, we see that this case
violates condition C. The same applies to the case when x is uneven.

Case ii.3: Now it remains to consider when v and x are even. Suppose v = 0k1(0k+s1)p0s

for some k, s, p ∈ N, and x = 0c1(0c+d1)e0d for some c, d, e ∈ N.

Case ii.3.a: First of all we consider the case when m(red, v) = 0. Then m(red, x) = 0
since x precedes v in z. It follows that m(red, vx) = 0, which violates condition A.

Case ii.3.b: Now we turn to the case when m(red, v) > 0. By the same argument in
Case i.iii, we get that m(green, v) = 0 and k + s = 3. Note that p < n, for otherwise the
condition m(green, v) = 0 cannot be satisfied. Now we consider the following subcases:

Case ii.3.b.i: If m(red, x) > 0, then m(green, x) = 0 and c+ d = 3. After selecting i =
n!

2+p+e
, we get that zi = uviwxiy = wn!+n

4 w3w
n!+n
2 w3w

2(n!+n)
3 = (wn!+n

4 w3w
n!+n
2 )(w3w

2(n!+n)
3 )

is an abelian square, which violates condition C again.
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Case ii.3.b.ii: If m(red, x) = 0 and m(green, x) > 0, then m(blue, x) < 3, for otherwise
x cannot be even. There are again four subcases here.

1. The first subcase is m(blue, x) = 2. Then x is in the form 001r1, where r1 is any word.
We see that (a) r1 = ε or (b) r1 = 0, for otherwise x cannot be even. (a) If r1 = ε, then

x = 001. We pick i = 2. It follows that uv2wx2y = wn+2p+2
4 w2

3w
n!+n
2 w3w

2(n!+n)
3 6∈ T ,

which violates condition C. (b) If r1 = 0, then x = 0010. We pick i = 2. It follows

that uv2wx2y = wn+2p+2
4 w3w4w

n!+n
2 w3w

2(n!+n)
3 6∈ T , which also violates condition C.

2. The second case is m(blue, x) = 1. Here is a picture.

z = w4w4 · · ·w410 0w2 · · ·︸ ︷︷ ︸
x

· · ·w2w3 · · ·w3

Thus (a) x = 010 or (b) x = (01)l for some l > 0. (a) If x = 010, then we pick i = 2.

It follows that uv2wx2y = wn+2p+2
4 w2

3w
n!+n
2 w3w

2(n!+n)
3 6∈ T . (b) Otherwise x = (01)l

for some l > 0. After picking i = n!
1+p

, we get

zi = wn!+n
4 w3w

n!+n+ ln!
1+p

2 w3w
2(n!+n)
3

= (wn!+n
4 w3w

n!+n
2 )w

ln!
1+p

2 (w3w
2(n!+n)
3 )

= (wn!+n
4 w3w

n!+n
2 w

ln!
2(1+p)

2 )(w
ln!

2(1+p)

2 w3w
2(n!+n)
3 ).

Note that ln!
2(1+p)

is an integer since n > 4. Therefore zi is an abelian square. Hence
zi 6∈ T , a contradiction.

3. The third case is m(blue, x) = 0 and m(green, x) > 1. Similarly x must be of the
form (01)l or (10)l for some l ∈ N+, since x is even. We pick i = n!

1+p
and find the

same result as in the second case.

4. The last case is exactly when m(blue, x) = 0 and m(green, x) = 1. Then x has to
be the first or the last letter of the substring wn!+n

2 of z, since x cannot be a single 0
or 1 (there are no successive 1’s in elements of R). Moreover, we find that x cannot
be the first letter of wn!+n

2 , since m(blue, x) = 0. It follows that x is the trailing 0 of
wn!+n

2 . Under this circumstance, we find that x = 0(100)e10, since x is even. Now

14



we select i = n!
1+p

. It follows that

zi = uviwxiy

= wn!+n
4 w3w

n!+n
2 w3w

2(n!+n)+
(1+e)n!

1+p

3

= (wn!+n
4 w3w

n!+n
2 )w

(1+e)n!
1+p

3 (w3w
2(n!+n)
3 )

= (wn!+n
4 w3w

n!+n
2 w

(1+e)n!
2(1+p)

3 )(w
(1+e)n!
2(1+p)

3 w3w
2(n!+n)
3 ).

Note that (1+e)n!
2(1+p)

is an integer since n > 4. Thus zi is an abelian square. Therefore
zi 6∈ T , a contradiction.

Case ii.3.b.iii: The last possible subcase is when m(red, x) = 0 and m(green, x) = 0
and m(black, x) > 0. In this case, we get that c + d = 2. Now we pick i = n!

1+p
. It follows

that

zi = uviwxiy

= wn!+n
4 w3w

n!+n
2 w3w

2(n!+n)+
(1+e)n!

1+p

3

= (wn!+n
4 w3w

n!+n
2 )w

(1+e)n!
1+p

3 (w3w
2(n!+n)
3 )

= (wn!+n
4 w3w

n!+n
2 w

(1+e)n!
2(1+p)

3 )(w
(1+e)n!
2(1+p)

3 w3w
2(n!+n)
3 ).

Note that (1+e)n!
2(1+p)

is an integer since n > 4. Thus zi is an abelian square. Therefore zi 6∈ T ,
a contradiction again.

With the above discussion, we claim that no decomposition of z can satisfy all three
conditions simultaneously. Thus T is not context-free.

With Theorem 2.1.3, it follows that

Corollary. The language LNAS is not context-free.

As the readers may notice, Theorem 2.1.3 contains quite a lot of case analysis. Also,
the regular language RNAS is not easily extended to a proof of the general case, i.e., there
is no trivial way to construct a similar regular language to show that the language of non-
abelian k-th powers is not context-free. In the next section, we construct another regular
language R2 and prove that LNAS ∩R2 in not context-free.
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2.2 Binary case: A more elegant proof

In our effort to generalize the proof in Section 2.1, we tried many regular languages. One
of these regular languages which seems promising is

R2 = (00)∗(11)∗(00)∗(11)∗.

We have the following lemma:

Lemma 2.2.1. The word w = 02a12b02c12d is an abelian square if and only if ((a = c)∧(b ≥
d)) ∨ ((a ≤ c) ∧ (b = d)).

Proof. If w is an abelian square, two possible factorizations for w are w = w1w2 and
w = w3w4 where w1 = 02a1b1 and w2 = 1b202c12d; w3 = 02a12b0c1 and w4 = 0c212d. For the
first case we have a = c and b1 = b2 + 2d. Thus 2b ≥ 2b2 + 2d ≥ 2d; it follows that b ≥ d
and a = c. By symmetry, we have b = d and a ≤ c for the second case. The result follows
immediately.

Luke Schaeffer (Personal communication, July 2012) showed that the language

P = {0a1b2c3d : a > c or b > d or (a < c and b < d)}

is not context-free. He applied the fundamental characterization theorem on the class of
bounded context-free languages. Here we use Schaeffer’s technique to prove that LNAS∩R2

is not context-free. We begin with a definition of dimension of discrete sets.

Given a set X ⊆ Nk, we define a point counting function φX(R) : N→ N where

φX(R) = |{x ∈ X : ||x||1 ≤ R}|.

Here ||.||1 is the L1 norm.

We say that X has dimension d (dimX = d) if φX(R) ∈ Θ(Rd). Note that this
dimension is not well defined for all subsets of Nk.

Proposition 2.2.2. The dimension of Nk is k.

16



Proof. Let

A = {(x1, x2, . . . , xk) :
k∑
i=1

xi ≤ R},

B = {(x1, x2, . . . , xk) : xi ≤ R for 1 ≤ i ≤ k},

C = {(x1, x2, . . . , xk) : xi ≤
R

k
for 1 ≤ i ≤ k}.

Clearly C ⊆ A ⊆ B. Thus we have

φNk(R) = |A| ≤ |B| = Rk

and

φNk(R) = |A| ≥ |C| = Rk 1

kk
.

It follows that dim(Nk) = k.

Proposition 2.2.3. Let X, Y be subsets of Nk such that dimX and dimY exist. Then

1. If X ⊆ Y , then dimX ≤ dimY ;

2. dimX ∪ Y = max{dimX, dimY }.

3. dim
⋃
iXi = maxi{dimXi}.

Proof. If X ⊆ Y , then for any R > 0, we have φX(R) ≤ φY (R). Thus dimX ≤ dimY .

For the union, we have φX∪Y (R) ≤ φX(R) + φY (R) ≤ 2 max{φX(R), φY (R)}. Thus
dimX ∪ Y ≤ max{dimX, dimY }. Also, we have dimX ≤ dimX ∪ Y since X ⊆ X ∪ Y .
Similarly, dimY ≤ dimX ∪ Y . Thus dimX ∪ Y = max{dimX, dimY }.

The third statement follows immediately from the second one.

Lemma 2.2.4. Let X = {v + Au : u ∈ Nm} be a linear set with m ≥ 0, v ∈ Nk and
A ∈ Nk×m. If A has rank m, then dimX = m.

Proof. Since A has full rank, then the map u→ Au is injective. It follows that

φX(R) = |{v + Au : u ∈ Nm such that ||v + Au||1 ≤ R}|
= |{u ∈ Nm : ||v + Au||1 ≤ R}|.
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The triangle inequality gives us

||Au||1 − ||v||1 ≤ ||v + Au||1 ≤ ||Au||1 + ||v||1.

Let X ′ denote the set {Au : u ∈ Nm}. We have

φX′(R− ||v||1) ≤ φX(R) ≤ φX′(R + ||v||1).

The matrix norm inequality gives us

||Au||1 ≤ ||A||1||u||1.

On the other hand, let aij denote the element of A located in the i-th row and j-th column.
Every column of A is nonzero; thus

||Au||1 =
m∑
i=1

ui

k∑
j=1

aji ≥
m∑
i=1

ui = ||u||1.

This gives us

φNm(
R

||A||1
) = |{u : ||A||1|u|1 ≤ R}|

≤ |{u : ||Au||1 ≤ R}| = φX′(R)

≤ |{u : |u|1 ≤ R}| = φNm(R).

Thus we have
Rm

||A||1m
≤ φX′(R) ≤ Rm.

Thus
(R− ||v||1)m

||A||1m
≤ φX(R) ≤ (R + ||v||1)m.

It follows immediately that dimX = m.

Lemma 2.2.5. Let A ∈ Nn×n be a square, nonsingular matrix. There exists a permutation
σ ∈ Sn such that A1σ(1), A2σ(2), . . . , Anσ(n) are all nonzero.

Proof. The square matrix A is nonsingular; thus det(A) = Σσ∈Sn
∏n

i=1Aiσi 6= 0. Thus∏n
i=1 Aiσi is nonzero for some σ ∈ Sn. It follows that Aiσi are all nonzero for 1 ≤ i ≤ n.

18



Lemma 2.2.6. Let l be an even number. Let Y denote the set

{(2a, 2b, 2c, 2d) ∈ N4 : a < c and d < b}.

Then Y ∩ (lN)4 has dimension 4.

Proof. We can show that Y ∩ (lN)4 = {v + Au : u ∈ N4}, where

A = l


1 0 0 0
0 1 1 0
1 0 0 1
0 1 0 0


and

v =


0
2
2
0

 .

Since A is non-singular, Y ∩ (lN)4 has dimension 4.

Theorem 2.2.7. The intersection LNAS ∩R2 is not context-free.

Proof. We let M denote the intersection LNAS ∩ R2. Lemma 2.2.1 says that the word
02a12b02c12d is an abelian square if and only if the condition C = ((a = c)∧ (b ≥ d))∨ ((a ≤
c) ∧ (b = d)) holds. Thus, we have M = {02a12b02c12d : C holds}, where C is the negation
of C.

Suppose M is context-free. By Theorem 1.3.4, ϕ(M) = {(2a, 2b, 2c, 2d) : C holds} is a
finite union of linear sets with stratified periods, say

⋃
iXi, where Xi = {vi + Aiu : u ∈

Nmi}. Let Y denote the set {(2a, 2b, 2c, 2d) ∈ N4 : a < c and d < b}. Let T : N4 → N2 be
a map such that T ((a, b, c, d)) = (a − c, d − b). Choose l a natural number such that l is
divisible by both entries of T (w) for each column w of Ai, for all i.

Clearly Y ⊆ ϕ(M). Thus Y ∩(lN)4 ⊆ ϕ(M). By Lemma 2.2.6, Y ∩(lN)4 has dimension
4. We have

Y ∩ (lN)4 = Y ∩ (lN)4 ∩ ϕ(M)

= Y ∩ (lN)4 ∩
⋃
i

Xi

=
⋃
i

((lN)4 ∩Xi).
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Following Proposition 2.2.3, we see that there exists some Xi such that Y ∩ (lN)4 ∩Xi has
dimension 4. For convenience, we denote this Xi by X, and the corresponding Ai (resp.,
vi) by A (resp., v).

By Lemma 2.2.5, there are four columns w1, w2, w3, w4 of A such that the ith entry of
wi is positive, for all i. For convenience, suppose wi = (ai, bi, ci, di) and T (wi) = (xi, yi).

We claim that x1 > 0 or y4 > 0; otherwise, we have x1 = a1−c1 ≤ 0 and y4 = d4−b4 ≤ 0.
It follows that 0 < a1 ≤ c and 0 < b4 ≤ d4. Thus, w1 and w4 are interleaved, contradicting
the fact that the periods of A form a stratified set. Thus, x1 > 0 or y4 > 0. Since the two
cases are very similar, we assume x1 > 0 and omit the other case.

Let z = (a, b, c, d) be any element of Y ∩ (lN)4 ∩ ϕ(M) and let T (z) = (x, y). We have
two cases, depending on whether y1 > 0.

1. If y1 ≤ 0 then let z1 = z + λ1w1, where λ1 = − x
x1

. We claim that λ1 > 0 since
x = a − c < 0 and x1 > 0. Also, λ1 ∈ Z since x = a − c is divisible by l and l is
divisible by x1. Thus we have z1 ∈ X since z ∈ X and we add λ1 ∈ N copies of w1,
a period of X. On the other hand, we have

T (z1) = (x+ λ1x1, y + λ1y1) = (0, ŷ),

where ŷ = y + λ1y1 < 0. Hence, z1 /∈ ϕ(M), and thus z1 /∈ X, which leads to a
contradiction.

2. If y1 > 0, we define z1 as in the previous case. We also define z2 = z + λ2w1, where
λ2 = − y

y1
. Similarly, we can prove that λ2 ∈ N+. Thus we have

T (z1) = (x+ λ1x1, y + λ1y1) = (0, ŷ),

T (z2) = (x+ λ2x2, y + λ2y1) = (x̂, 0),

where x̂ = x + λ2x1 = xy1−yx1

y1
and ŷ = y + λ1y1 = yx1−xy1

x1
. It follows that x̂ŷ =

− (yx1−xy1)2

x1y1
≤ 0, and thus x̂ ≤ 0 or ŷ ≤ 0; thus z1 /∈ X or z2 /∈ X. This is a

contradiction.

In both cases, we reach a contradiction. So M is not context-free.

It follows immediately that
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Corollary. The language LNAS is not context-free.

We achieved this elegant proof for the noncontext-freeness of LNAS by applying Scha-
effer’s idea. Unfortunately, we are still not able to generalize this proof to show that the
language of non-abelian k-th powers is not context-free. However, by strengthening Scha-
effer’s idea, we obtain some lemmas and prove that the language of non-abelian cubes is
not context-free.

2.3 Cubic case: A generalization

In this section we strengthen Schaeffer’s technique and prove that the language of non-
abelian cubes is not context-free. We begin with the definition of plane.

Let p ∈ N3. Let n ∈ Z3 be a nonzero vector. A plane P (p, n) is a set of points
s ∈ N3, such that every point s ∈ P (p, n) satisfies the condition (s − p) · n = 0. For
example, P ({0, 0, 0}, {0, 0, 1}) gives the set of points satisfying the equation z = 0. Let
P+(p, n) = {s ∈ Nk : (s− p) · n > 0}. That is, P+ is the set of points above the plane P .

Proposition 2.3.1. Let n ∈ Z3 such that exactly one entry of n is negative. Let p ∈ N3.
Then dim(P (p, n)) = 2.

Proof. For one direction, we prove that dim(P ) ≥ 2. Let p = (p1, p2, . . . , pk) and n =
(n1, n2, . . . , nk). Without loss of generality, suppose n1 < 0 and n2, n3 ≥ 0. Fix any
R > 2(p1 + p2 + p3). Let L = 2n2n3 − n1n2 − n1n3. Clearly L > 0. Let B denote the set
{x ∈ N3 : (x− p) · n = 0 and ||x||1 ≤ R}.

We claim that for any x2 ∈ {p2 − an1n3 : a ∈ [1, R
2L

]}, x3 ∈ {p3 − an1n2 : a ∈ [1, R
2L

]},
there exists a x1 ∈ N, such that (x1, x2, x3) ∈ B. For any such x2, x3, i.e., x2 = p2 −
a2n1n3, x3 = p3 − a3n1n2, where a2, a3 ∈ [1, R

2L
], we let x1 = p1 + (a2 + a3)n2n3. It is easy

to verify that (x1, x2, x3) ∈ B. Thus, we have φP (R) = |B| ≥ R2

4L2 . Thus dim(P ) ≥ 2.

For the other direction we prove dim(P ) ≤ 2. We fix any x1, x2 ∈ N3 such that
x1 + x2 ≤ R. There exists at most one x3 such that (x1, x2, x3) ∈ B. Thus, we have
φP (R) = |B| ≤ φN2(R). Thus dim(P ) ≤ 2.

Finally we conclude from these two directions that dim(P ) = 2.
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Lemma 2.3.2. Let P1 = P (v1, n1) and P2 = P (v2, n2) be two planes. Let X =
⋃
iXi

where X1, X2, . . . , Xk are linear sets such that

1. The set P+
1 ∩ P+

2 ⊆ X.

2. The plane P1 ∩X = ∅.

3. The plane P2 ∩X = ∅.

Let T1 be a set of points p such that (p− v1) · n1 is divisible by w · n1 for every column
of Xi, for all i. Similarly, let T2 be a set of points p such that (p − v2) · n2 is divisible by
w · n2 for every column of Xi, for all i.

Then for any Xi = {vi +Aiu : u ∈ Nmi} with Xi∩P+
1 ∩P+

2 ∩T1∩T2 6= ∅, every column
w of Ai satisfies the conditions w · n1 ≥ 0 and w · n2 ≥ 0.

Proof. We give a proof for the first condition, i.e., for any Xi = {vi +Aiu : u ∈ Nmi} with
Xi ∩ S ∩ T 6= ∅, every column w of Ai satisfies the condition w · n1 ≥ 0. The proof for the
second condition is omitted since it is quite similar to the first one. For convenience, we
let T = T1 ∩ T2 and S = P+

1 ∩ P+
2 .

Suppose there exists some Xi with Xi ∩ S ∩ T 6= ∅ such that some column w of Ai
satisfies the condition w · n1 < 0. We pick any z ∈ Xi ∩ S ∩ T . Let z′ = z + λw, where
λ = − (z−v1)·n1

w·n1
. We first claim that λ > 0. This is because w · n1 < 0 and (z − v1) · n1 > 0

since z ∈ P+
1 . We also observe that (z − v1) · n1 is divisible by w · n1 since z ∈ T1. Thus

z ∈ N+. It follows that z′ ∈ Xi. However, we can show that (z′−v1) ·n1 = 0, which implies
that z′ ∈ P1. This leads to a contradiction since P1 ∩Xi = ∅. Thus, we conclude that for
every Xi with Xi ∩ S ∩ T 6= ∅, every column w of Ai satisfies the condition w · n1 ≥ 0.

Let R3 = 0∗1∗0∗1∗0∗ be a regular language. Again, we try to prove that LNAC ∩ R3

is not context-free. Since R3 is a bounded language, we will show that the Parikh set of
LNAC ∩ R3 is not a finite union of linear sets with stratified periods. For convenience, let
M = LNAC ∩R3.

Lemma 2.3.3. The word w = 0a1b0c1d0e is an abelian cube if and only if one of the
conditions C1, C2, C3 is satisfied, where

C1 : (a = c = e) ∧ (b ≤ 2d) ∧ (d ≤ 2b)

C2 : (a ≤ c) ∧ (2a = c+ e) ∧ (b = 2d)

C3 : (e ≤ c) ∧ (a+ c = 2e) ∧ (d = 2b)

22



Here we omit the proof and just list the three possible factorizations of w as an abelian
cube. The three possible factorizations (which correspond to the above three conditions
respectively) are:

0a1b1 · 1b20c1d1 · 1d20e

0a1b1 · 1b20c1 · 1c21d0e

0a1b0c1 · 0c21d1 · 1d20e

.

Let M ′ denote the language {0a1c2e : C ′ holds.}, where C ′ is the condition (a = c =
e) ∨ ((a ≤ c) ∧ (2a = c+ e)) ∨ ((e ≤ c) ∧ (a+ c = 2e)) and C ′ is the negation of C ′.

Lemma 2.3.4. If LNAC is context-free, then M ′ is context-free.

Proof. If LNAC is context-free, so is M by Proposition 1.3.1. Then, we construct a finite-
state transducer converting M to M ′. This transducer removes all 1’s in the input, and
converts each 0 to 1 (resp., 2) in the second (resp., third) block of 0. By Proposition 1.3.2,
M ′ is context-free.

With Lemma 2.3.4, it suffices to show that M ′ is not context-free. We tried to apply
Schaeffer’s idea to prove M ′ is not context-free; however, it doesn’t thoroughly solve the
problem. Schaeffer’s technique finds certain linear set (X as in Theorem 2.2.7) and on the
other hand shows this set is not linear, which leads to a contradiction. We alter Schaeffer’s
technique by showing directly that M ′ cannot be a finite union of linear sets with stratified
periods.

Theorem 2.3.5. The language M ′ is not context-free.

Proof. Suppose M ′ is context-free. By Theorem 1.3.4, ϕ(M ′) is a finite union of linear sets
with stratified periods, say

⋃
iXi, where Xi = {vi+Aiu : u ∈ Nmi}. Let P1 = P (0, n1) and

P2 = P (0, n2) be two planes, where 0 denotes {0, 0, 0}, n1 = {1, 1,−2} and n2 = {−2, 1, 1}.
Let S+ = P+

1 ∩ P+
2 . It is easy to verify that the following three conditions hold:

1. S+ ⊆ ϕ(M ′).

2. P1 ∩ ϕ(M ′) = ∅.

3. P2 ∩ ϕ(M ′) = ∅.
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Choose l a natural number such that if w is a column of Ai (for any i) then both w ·n1

and w · n2 divides l. Let T = (lN)3. By Lemma 2.3.2, for any Xi with Xi ∩ S+ ∩ T 6= ∅,
every column w of Xi satisfies the condition w · n1 ≥ 0 and w · n2 ≥ 0.

Choose any v ∈ S+ which minimizes v · n1. We name this v by v̂. Note that v̂ exists
since every v ∈ P1 satisfies that v · n1 > 0.

Let P ′ = P (v̂, n1) be a plane. Let W = P ′ ∩ P+
2 ∩ T . Clearly W ⊆ S+. By slightly

altering Proposition 2.3.1, we can see that dim(W ) = 2. We also observe that

dim(W ∩ ϕ(M ′)) = dim(W ∩
⋃
i

Xi)

= dim(
⋃
i

(W ∩Xi))

By Proposition 2.2.3, there exists some Xi such that dim(W ∩ Xi) = dim(W ) = 2.
Then dim(P ′ ∩Xi) = 2. Let x ∈ P ′ ∩Xi. We have (x− v̂) · n1 = 0 and there exists u ∈ N3

such that x = Aiu+vi. Hence, (Aiu+vi− v̂) ·n1 = 0, which implies (Aiu) ·n1 = v̂ ·n−v1 ·n.
By the definition of v̂ we immediately get that v̂ · n− v1 · n ≤ 0; thus

(Aiu) · n1 ≤ 0.

On the other hand, let a1, a2, · · · , ak be the column vectors of Ai. Then (Aiu) · n1 =
k∑
j=1

ujaj · n1. Since every column a of Xi satisfies the condition a · n1 ≥ 0, we obtain the

inequality
(Aiu) · n1 ≥ 0.

Thus we have
k∑
j=1

ujaj ·n1 = 0. It follows that for any 1 ≤ j ≤ k if aj ·n1 6= 0, then uj = 0.

Let I denote the set of columns vectors aj of Ai such that aj · n1 = 0. Let a = (b, c, d)
be any element in I. Then b + c = 2d. Since the column vectors of Ai form a stratified
linear set, at least one of b, c, d is zero. If b = 0, then c = 2d and a = s(0, 2, 1) for some
s > 0. If c = 0, then b = 2d; thus a · n2 = −2b+ c+ d < 0, which leads to a contradiction.
The element d cannot vanish since otherwise a vanishes. Thus, for any j ∈ I we have
aj = sj(0, 2, 1) for some sj > 0.

Now we consider dim(P ′ ∩Xi). It is easy to see that

P ′ ∩Xi = {Au+ vi : uj = 0 for j /∈ I}.
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Thus, we can show that any x ∈ P ′ ∩ Xi can be written in the form vi + s(0, 2, 1) for
some s > 0. It follows immediately that dim(P ′ ∩Xi) ≤ 1 which contradicts the fact that
dim(P ′ ∩Xi) = 2.

Finally, we obtain that M ′ is not context-free.

By Theorem 2.3.5, M ′ is not context-free. So LNAC ∩R3 is not context-free. Thus,

Corollary. LNAC is not context-free.
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Chapter 3

Representable sets of words of equal
length

This chapter primarily discusses representability of set of words of equal length. We focus
on the binary alphabet in this chapter. Let Σ = {0, 1}. Recall that R̊n is the number
of circularly representable subsets of Σn. Much of the content of this chapter is taken
verbatim from our paper [20]

3.1 Bounds on the size of R̊n

In this section, we give lower and upper bounds on the size of R̊n, both of which are of the
form α2n . Our lower bound has α =

√
2 while our upper bound has α = 4

√
10. Note that

our lower bound also works for the size of Rn, since every circularly representable subset
is also representable.

3.1.1 Lower bound

Our argument for the lower bound derives from constructing a set of circularly representable
subsets.

Proposition 3.1.1. Let bn be any de Bruijn word of order n. Then |Cn+1(bn)| = 2n.

Proof. Every de Bruijn word of order n is of length 2n; thus there are 2n length-(n + 1)
factors of bn (considered circularly). These length-(n+ 1) factors are pairwise distinct, for
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if w ∈ Σn+1 appears more than once as a factor of bn, then w[1..n] appears more than once
as a factor of bn. However, every length-n factor appears only once in bn, a contradiction.
Hence |Cn+1(bn)| = 2n.

Lemma 3.1.2. Given a de Bruijn word bn, let Y denote the set Σn+1\Cn+1(bn). For
any y ∈ Y , the set {y} ∪ Cn+1(bn) is circularly witnessed by a word w for which both the
length-2n prefix and the length-2n suffix equal bn.

Proof. We construct such a witness for {y} ∪ Cn+1(bn).

Let w = bnbnbnbn. Let y1 = y[1..n] and y2 = y[2..n + 1]. Let i1 denote the index
of the first occurrence of y1 in w; namely, the index i1 is the minimal integer such that
y1 = w[i1..i1 + n − 1]. Let i2 denote the index of the last occurrence of y2 in w; namely,
the index i2 is the maximal integer such that y2 = w[i2..i2 + n− 1].

We argue that the first occurrence of y1 does not overlap the last occurrence of y2.
We have i1 ≤ 2n, since every possible factor of length n appears in the circular word bn.
Similarly, we obtain i2 > 3 · 2n − n. Thus we have

i1 + n− 1− i2 < −2 · 2n + 2n− 1 < 0,

and hence the first occurrence of y1 does not overlap the last occurrence of y2.

Now consider the circular word

wy = bnbnw[1..i1 − 1]w[i1..i1 + n− 1]w[i2 + n− 1]w[i2 + n..2n+2]bnbn.

We argue that wy is a witness for {y} ∪ Cn+1(bn). For one direction, every element of
{y} ∪ Cn+1(bn) appears as a length-(n + 1) factor of wy. This is a consequence of the
following two facts:

1. bnbn witnesses Cn+1(bn).

2. w[i1..i1 + n− 1]w[i2 + n− 1] = y[1..n]y[n+ 1] = y.

For the other direction, we can see that all factors of length n + 1 in wy are elements of
{y}∪Cn+1(bn) by inspection. Note that the length-2n prefix and the length-2n suffix of wy
both equal bn. Hence we conclude that there exists a word for which the prefix and the
suffix equal bn and this circular word circularly witnesses {y} ∪ Cn+1(bn).
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As an example, we let n = 2. One of the de Bruijn words of order 2 is b2 = 0011.
We have C3(b2) = {001, 011, 110, 100}. Thus Y = {000, 010, 101, 111}. Let y = 010. The
following circular word demonstrates that the set {y} ∪ Cn+1(bn) is representable:

w010 = (00110011︸ ︷︷ ︸
b2b2

)( 0︸︷︷︸
w[1..i1−1]

)( 01︸︷︷︸
w[i1..i1+n−1]=y1

)( 0︸︷︷︸
w[i2+n−1]

)( 011︸︷︷︸
w[i2+n..2n+2]

)(00110011︸ ︷︷ ︸
b2b2

).

Proposition 3.1.3. Given a de Bruijn word bn, let Y denote the set Σn+1\Cn+1(bn). For
any subset S ⊆ Y , the set S ∪ Cn+1(bn) is a circularly representable subset of Σn+1.

Proof. We have proved this proposition for the case where |S| = 1 by Lemma 3.1.2. Now we
turn to the general case. Let S = {s1, s2, . . . , sm}. By Lemma 3.1.2, for each 1 ≤ i ≤ m,
there exists a circular word wi that witnesses {si} ∪ Cn+1(bn) and both the prefix and
the suffix of wi equal bn. We argue that the circular word wS = w1w2 · · ·wm witnesses
S ∪ Cn+1(bn).

First, for any 1 ≤ i ≤ m, si appears in wi and thus in wS. Moreover, every element
of Cn+1(bn) appears in the prefix of wS: bnbn. Thus, it suffices to show that every length-
(n + 1) factor of wS is a member of S ∪ Cn+1(bn). This is shown by the fact that for any
1 ≤ i < m, both the suffix of wi and the prefix of wi+1 equal bn, which implies that the
concatenation of ti and ti+1 does not produce any new factor of length n+ 1 in wS.

Thus, we conclude that for any subset S of Y , there exists a witness for the set S ∪
Cn+1(bn).

Corollary. A lower bound for the size of R̊n+1 is 22n =
√

2
2n+1

.

3.1.2 Upper bound

An obvious upper bound for |R̊n| is 22n , since R̊n ⊆ 2Σn , where |2Σn | = 22n . In this section,
we will show that a tighter upper bound is α2n , where α = 4

√
10.

Let S ⊆ Σn+1 and T ⊆ Σn. We say that S is incident on T if there exists a circular word
w such that w witnesses both S and T . For example, we fix n = 3. Let w = 0110. Then w is
a witness for the set S = {0110, 1100, 1001, 0011} ∈ R̊4 and T = {011, 110, 100, 001} ∈ R̊3.
It follows that S is incident on T . Note that w′ = 01100110 is also a witness for S, and a
witness for T as well.

In fact we can argue that if S is incident on T , then every word that witnesses S also
witnesses T .
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Proposition 3.1.4. Every set S ∈ R̊n+1 is incident on exactly one set in R̊n.

Proof. Let

T = {t ∈ Σn : ∃w ∈ S such that t is a length-n prefix or suffix of w}.

Then a word w which witnesses S also witnesses T . Thus S is incident on T . Moreover,
if S is incident on T and T ′, then every witness of S must also witness T and T ′. Thus
we have T = T ′. So we conclude that every set S ∈ R̊n+1 is incident on exactly one set in
R̊n.

Now we give a partition of R̊n+1. Let

R̊n+1[T ] = {S ∈ R̊n+1 : S is incident on T}.

Proposition 3.1.4 implies that {R̊n+1[T ]}T⊆Σn is a pairwise disjoint partition of the set R̊n+1.

Namely, (1) for every T1 6= T2, we have R̊n+1[T1] ∩ R̊n+1[T2] = ∅ and (2)
⋃
T∈R̊n R̊n+1[T ] =

R̊n+1.

Thus we have |R̊n+1| =
∑

T⊆Σn |R̊n+1[T ]|. So to give an upper bound for |R̊n+1|, it

suffices to give a upper bound for the size of R̊n+1[T ].

Let x be a word of length n. We say that Px = {0x, 1x} is a pair of order n w.r.t. x,
that Sx = {0x, 1x, x0, x1} is a skeleton of order n w.r.t. x, and Nx = {0x0, 0x1, 1x0, 1x1}
is a net of order n w.r.t. x. We also say that a set S contains Px (resp., Sx and Nx) if
Px ⊆ S (resp., Sx ⊆ S and Nx ⊆ S).

For any T ⊆ Σn, let σ(T ) denote the number of skeletons of order n − 1 in T and let
ρ(T ) denote the number of pairs of order n− 1 in T . We have the following proposition:

Proposition 3.1.5. For any T ⊆ Σn, we have |R̊n+1[T ]| ≤ 7σ(T ).

Before giving the proof for Proposition 3.1.5, we introduce another definition.

We say that a set R is feasible for a set T ⊆ Σn if there exists S ∈ R̊n+1[T ] such that
R ⊆ S.

We observe that Σn+1 =
⋃
x∈Σn−1 Nx and thus any subset S ⊆ Σn+1 is a disjoint union of

subsets of nets of order n−1. Formally, for any subset S ⊆ Σn+1, we have S =
⋃
x∈Σn−1 Rx,

where Rx ⊆ Nx.
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Proof of Proposition 3.1.5. Let Fx denote the set of feasible subsets (for T ) of the net Nx.
If S ∈ Rn+1[T ], then S is a disjoint union of feasible subsets (for T ) of nets. Thus we have
|Rn+1[T ]| ≤

∏
x∈Σn |Fx|. In order to prove this proposition, it now suffices to show that for

any x ∈ Σn−1, the following condition holds.

• if Sx ⊆ T , then |Fx| ≤ 7;

• otherwise |Fx| ≤ 1.

For any x ∈ Σn−1, we consider all the possible feasible subsets of Nx. Let F denote any
feasible subset of Nx.

• For the first case where Sx ⊆ T , we have the following properties:

1. Either 0x0 ∈ F or 0x1 ∈ F since 0x ∈ T ;

2. Either 1x0 ∈ F or 1x1 ∈ F since 1x ∈ T ;

3. Either 0x0 ∈ F or 1x0 ∈ F since x0 ∈ T ;

4. Either 0x1 ∈ F or 1x1 ∈ F since x1 ∈ T .

Hence we have at most 7 possible feasible subsets of Nx which are listed as follows:
{0x0, 1x1}, {0x0, 0x1,1x1}, {0x0, 1x0, 1x1}, {0x0, 0x1, 1x0, 1x1}, {0x0, 0x1, 1x0},
{0x1, 1x0}, {0x1, 1x0, 1x1}. Thus |Fx| ≤ 7.

• For the second case where Sx 6⊆ T , we argue that |Fx| ≤ 1. Without loss of generality,
suppose 0x 6∈ T . It follows that:

1. 0x0 and 0x1 cannot occur in F since 0x 6∈ T ;

2. 1x0 ∈ F if and only if x0 ∈ T ;

3. 1x1 ∈ F if and only if x1 ∈ T ;

Hence, F is fixed. It follows that |Fx| ≤ 1.

By finishing the argument on the above two cases, we conclude that |R̊n+1[T ]| ≤ 7σ(T ).

Now, we are close to the core part. Instead of computing the number of skeletons,
which is quite complex, we consider the number of pairs.
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Proposition 3.1.6. The size of the set |R̊n+1| is bounded by 102n−1
.

Proof. Let Lk,i denote the number of subsets T ∈ R̊n, such that |T | = k and ρ(T ) = i.
There are in total 2n−1 pairs in Σn, and we first choose i pairs from them. Then, we
choose the other k − 2i elements which do not form any pair from the remaining 2n − 2i
elements (which forms 2n−1−i pairs); it is equivalent to pick k−2i pairs from the remaining
2n−1 − i pairs and randomly choose one element from each selected pair. Thus, we have

Lk,i =

(
2n−1

i

)(
2n−1 − i
k − 2i

)
2k−2i.

Note that k ≥ 2i since a set of k elements can contain at most bk
2
c pairs and the term

Lk,i vanishes when k − 2i > 2n−1 − i. Thus we have

|R̊n+1| =
∑
T⊆Σn

|R̊n+1[T ]| ≤
2n∑
k=0

b k
2
c∑

i=0

Lk,i7
i.

The inequality holds since we count the number of pairs instead of the number of skeletons
and the number of pairs is always greater than or equal to the number of skeletons. Then
we can see that

|R̊n+1| ≤
2n∑
k=0

b k
2
c∑

i=0

(
2n−1

i

)(
2n−1 − i
k − 2i

)
2k−2i7i ≤

2n−1∑
i=0

(
2n−1

i

)
7i

2n∑
k=2i

(
2n−1 − i
k − 2i

)
2k−2i

by writing Lk,i in closed form. Note that

2n∑
k=2i

(
2n−1 − i
k − 2i

)
2k−2i =

2n−2i∑
k=0

(
2n−1 − i

k

)
2k =

2n−1−i∑
k=0

(
2n−1 − i

k

)
2k = 32n−1−i.

So we have

|R̊n+1| ≤
2n−1∑
i=0

(
2n−1

i

)
7i32n−1−i = 102n−1

.

Proposition 3.1.6 directly implies the upper bound we claimed in the beginning of this
section.
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3.2 Shortest witness

Recall that µn (resp., νn) is the maximum length of the shortest non-circular witness (resp.,
circular witness) over all subsets of Σn. The quantities of µn and νn are of interest since
we can enumerate all sequences of length less than or equal to µn (resp., νn) in order to
list all the representable (resp., circularly representable) subsets of Σn. In this section we
obtain an upper bound on µn and νn.

We need the following result of Hamidoune [11, Prop. 2.1]. Since the result is little-
known and has apparently not appeared in English, we give the proof here. By a Hamilto-
nian walk we mean a closed walk, possibly repeating vertices and edges, that visits every
vertex.

Proposition 3.2.1. Let G = (V,E) be a directed graph on n vertices. If G is strongly
connected (that is, if there is a directed path from every vertex to every vertex), then there
is a Hamiltonian walk of length at most b(n + 1)2/4c. Furthermore, this bound is best
possible.

Proof. Let L be a longest simple path in G. (A simple path does not repeat edges or
vertices.) Let V − L = {vi : 1 ≤ i ≤ k}. Let v0 be the last vertex in L and vk+1 be the
first vertex in L. Let Li be a simple path from vi to vi+1. Then a Hamiltonian walk W is
obtained by following the edges in L0, L1, . . . , Lk, and then those in L. So the number of
edges in W is at most (k + 2)|L| = |L|(n+ 1− |L|). But it is easy to see that r(n+ 1− r)
is maximized when r = dn/2e, so r(n+ 1− r) = b(n+ 1)2/4c, as claimed.

To see that this bound is best possible, consider a graph where there is a directed
chain of bn/2c vertices, where the last vertex has a directed edge to dn/2e other vertices,
and each of those vertices have a single directed edge back to the start of the chain. The
shortest walk covering all the vertices traverses the chain, then an edge to one of the other
vertices, then a single edge back, and repeats this dn/2e times. The total length is then
(bn/2c+ 1)dn/2e = b(n+ 1)2/4c. So the bound is tight.

From this we immediately get

Proposition 3.2.2. An upper bound for µn and νn is 22n−2 + 2n−1.

3.3 Fixed-length witnesses

Restriction on the length of a witness leads us to another interesting problem. Let T (t, n)
denote the number of subsets of {0, 1}n witnessed by some word of length t ≥ n. Is there
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any characterization of T (t, n)? We focus on ordinary (non-circular) words for this question
and derive a closed-form formula for T (t, n) in the case where n ≤ t < 2n.

In order to compute T (t, n), we consider the number of words that witness the same
subset of Σn. Suppose S ⊆ Σn. Let Ct(S) denote the number of words of length t that
witness S. Then we have

T (t, n) = 2t −
∑
S⊆Σn

Ct(S)>1

(Ct(S)− 1).

It suffices to characterize what subsets S satisfy Ct(S) > 1 and to determine Ct(S).

For t < 2n, we have such a characterization by Theorem 3.3.1 below. Before stating
the theorem, we first introduce some notation.

Let w be a word. Let Pref(w) denote the set of prefixes of w. A period p of w is a
positive integer such that w can be factorized as

w = sks′, with |s| = p, s′ ∈ Pref(s), and k ≥ 1.

Let π(w) denote the minimal period of w.

The root of a word w is the prefix of w with length π(w). Let r(w) denote the root
of w. Two words w and w′ are conjugate if there exist u, v ∈ Σ∗ such that w = uv and
w′ = vu; w and w′ are root-conjugate if their roots r(w) and r(w′) are conjugate.

The following theorem is crucial for our work and of independent interest.

Theorem 3.3.1. Let t, n, k be such that t = n + k, n ≥ k + 1, and k ≥ 0. Let w and
w′ be distinct words of length t over an arbitrary alphabet. Then Fn(w) = Fn(w′) iff
π(w) = π(w′) ≤ k + 1 and w,w′ are root-conjugate.

One direction is easy: if w and w′ are root-conjugate with period p ≤ k+ 1, then there
are p places to begin, and considering consecutive factors of length n+ p− 1 gives exactly
p distinct length-n factors.

For the other direction, we need three lemmas.

Lemma 3.3.2. (Fine-Wilf theorem [8, Theorem 1]) Let w1, w2 be two words. If w1 and
w2 have a common prefix of length π(w1) + π(w2)− 1, then r(w1) = r(w2).

Lemma 3.3.3. For any w ∈ Σ+, if there exists a factorization w = xyz such that xy = yz
and x, y, z ∈ Σ+, then w is periodic with π(w) ≤ |x|.
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Proof. By the Lyndon-Schützenberger theorem [15, Lemma 2], there exist u ∈ Σ+, v ∈ Σ∗

and an integer e ≥ 0 such that x = uv, y = (uv)eu, z = vu. Thus w = (uv)e+2u. Thus w is
periodic with π(w) ≤ |x|.

Lemma 3.3.4. Let t, n, k be integers such that t = n+ k, n ≥ k + 1, and k ≥ 0. Let w be
a word of length t with π(w) ≤ k + 1. If w′ is any word such that Fn(w) = Fn(w′), then w
and w′ are root-conjugate.

Carpi and de Luca proved a stronger proposition [4, Proposition 6.2] which directly
implies this lemma. We first introduce some relevant notation from that paper.

A factor s of a word w is said to be right-special in w if there exist two distinct symbols
a and b such that sa and sb are factors of w. Let Rw denote the minimal length m such
that there exists no factor of length m that is right-special.

A factor s of a word w is said to be right-extendable (resp., left-extendable) in w if
there exists a symbol a such that sa is a factor of w (resp., as is a factor of w). Let
Kw and Hw denote the length of the shortest factor which is not right-extendable (resp.,
left-extendable).

A word is semiperiodic if Rw < Hw.

proof of Lemma 3.3.4. Carpi and de Luca proved [4, Lemma 3.2] that π(w) > Rw. Also,
we have Hw ≥ π(w) since the length-(π(w) − 1) prefix of w is left-extendable. Thus w is
semiperiodic. Moreover we have Fn(w) = Fn(w′) where n ≥ k+ 1 ≥ π(w) ≥ 1 +Rw. Then
we can apply [4, Proposition 6.2] to prove this lemma.

proof of Theorem 3.3.1. We give a proof for Theorem 3.3.1 by induction on k.

The base case is when k = 0. In this case t = n and thus Fn(w) = {w} and Fn(w′) =
{w′}. Thus w = w′, contradicting the fact that w and w′ are distinct.

Now we deal with the induction step. We assume the result holds for k − 1 and we
prove it for k. For convenience, we let pi(w) denote the length-i prefix of the word w; let
si(w) denote the length-i suffix of the word w.

We first consider the case where Hw < n. We have pn(w) ∈ Fn(w) = Fn(w′). If
pn(w) 6= pn(w′), then there exists a ∈ Σ such that apn−1(w) ∈ Fn(w′). Thus we have
apn−1(w) ∈ Fn(w) which leads to the contradiction that Hw ≥ |apn−1(w)| = n. Hence
pn(w) = pn(w′).

Now let s = w[2..t] and s′ = w′[2..t]. Clearly |s| = |s′| = t−1. The prefix pn(w) appears
only once as a factor of w, otherwise pn−1(w) is left-extendable in w which contradicts the
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fact that Hw < n. Thus we have Fn(s) = Fn(w)\{pn(w)}. Similarly we have Fn(s′) =
Fn(w′)\{pn(w)}. Thus Fn(s) = Fn(s′). Let k′ = k− 1. We have t− 1 = n+ k− 1 = n+ k′

and n ≥ k + 1 > k′ + 1. By induction, we have either

Case 1: s = s′; or

Case 2: s and s′ are root-conjugate and π(s) = π(s′) = ρ, where ρ ≤ k′ + 1 = k.

In Case 1, it follows that w = w′, contradicting the fact that w,w′ are distinct. In Case
2, we prove that s = s′ by showing that their roots are identical. Suppose s and s′ have a
common prefix of length d. We have d ≥ n − 1, since w and w′ have a common prefix of
length at least n. If d ≥ ρ, then the root of s is identical to the root of s′. Otherwise, we
have the chain of inequalities k ≥ ρ ≥ d+ 1 ≥ n ≥ k+ 1, which is trivially a contradiction.
Thus neither Case 1 nor Case 2 can occur and we are done with the case where Hw < n.

Similarly we can prove the induction step when Kw < n. Thus it suffices to consider
the case where Hw ≥ n and Kw ≥ n. We first claim π(w) ≤ k+ 1. There are several cases
to settle:

• The first case is when pn−1(w) = sn−1(w) and the occurrence of pn−1(w) and sn−1(w)
do not overlap; namely we have w = pn−1(w)Lpn−1(w), where L ∈ Σ∗. We have the
inequality n+ k = t = |w| = 2|pn−1(w)|+ |L| = 2(n− 1) + |L|. Thus |L| = k+ 2−n.
Hence π(w) ≤ |pn−1(w)L| = n− 1 + k + 2− n = k + 1.

• The second case is when pn−1(w) = sn−1(w) and these occurrences overlap. Formally
we put it as follows: there exist x, y, z ∈ Σ+, such that pn−1(w) = xy = yz and
w = xyz. It follows that π(w) ≤ |x| ≤ k + 1 by Lemma 3.3.3.

• The last case is when pn−1(w) 6= sn−1(w). Let ip denote the index of the last occur-
rence of pn−1(w); namely ip = sup{i ≥ 1 : pn−1(w) = w[i..i + n − 2]}. Note that ip
exists since pn−1(w) is left-extendable and ip ≤ t − n + 2 since pn−1(w) 6= sn−1(w).
We argue that w1 = w[1..ip + n− 2] is periodic with π(w1) ≤ ip − 1 ≤ k. If the first
occurrence of pn−1(w) (the prefix of w) overlaps the last occurrence of pn−1(w), then
by Lemma 3.3.3, we see that w1 is periodic with π(w1) ≤ ip − 1 ≤ k. Otherwise, we
have 2(n − 1) ≤ |w1| ≤ t − 1; thus k = n − 1 and |w1| = 2(n − 1). Then we have
w1 = pn−1(w)pn−1(w), where w1 is periodic with π(w1) ≤ n − 1 = ip − 1 = k. For
both cases, we have w1 is periodic with π(w1) ≤ ip − 1 ≤ k.

Similarly we let iq denote the index of the first occurrence of sn−1(w) and w2 = w[iq..t].
We have 1 < iq ≤ t−n+ 2 and π(w2) ≤ t−n+ 2− iq. The factors w1 and w2 overlap
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for at least |w1| + |w2| − t ≥ π(w1) + π(w2) − 1 symbols. Let D denote the overlap
of w1 and w2. We have |D| ≥ π(w1) + π(w2)− 1. Also π(w1) is a period of D since
|D| ≥ π(w1) and D can be factorized as

D = dld′, where d is conjugate to the root of w1, d
′ ∈ Pref(d), and l ≥ 1.

By Lemma 3.3.2, the overlap D has the same root as w2. Since root-conjugacy is an
equivalence relation, we have w1 and w2 are root-conjugate. Let l1 denote the length
of the root of w1. We argue that w is periodic with π(w) ≤ l1 ≤ k + 1 by the fact
that l1 is also a period of w. It suffices to show that w[l1 + i] = w[i] for 1 ≤ i ≤ t− l1.
For the case where 1 ≤ i ≤ |w1| − l1, we have w[i+ l1] = w1[i+ l1] = w1[i] = w[i]; for
the other case where |w1| − l1 < i ≤ t− l1, we have w[i + l1] = w2[i + l1 − iq + 1] =
w2[i− iq + 1] = w[i]. Thus, we see that w is periodic with π(w) ≤ k + 1.

Finally by Lemma 3.3.4, we get that w and w′ are root-conjugate and their periods
π(w) = π(w′) ≤ k + 1. By all cases, we finish the induction and complete the proof of
Theorem 3.3.1.

The following corollary gives T (t, n) when t < 2n.

Corollary. For n ≤ t < 2n, we have T (t, n) = 2t −
t−n+1∑
k=1

k−1
k

∑
d|k
µ(k

d
)2d, where µ(·) is the

Möbius function.

Proof. Let k = t − n. We have n ≥ t − n + 1 = k + 1. By Theorem 3.3.1, we know that
for any set S ⊆ Σn, Ct(S) > 1 if and only if there exists a word w that witnesses S with
π(w) ≤ k + 1. In this case we have Ct(S) = π(w); that is, the set of words that witness S
is the same as the set of the words that are root-conjugate to w. Thus each S such that
Ct(S) > 1 corresponds to a set of root-conjugate words, which can be represented by their
lexicographically least roots (the Lyndon words).

Thus we have

T (t, n) = 2t −
∑
S⊆Σn

Ct(S)>1

(Ct(S)− 1) = 2t −
∑

w is a Lyndon word
π(w)≤k+1

(π(w)− 1)

= 2t −
k+1∑
i=1

(i− 1) · L(i),

where k = t− n and L(i) = 1
i

∑
d|i
µ( i

d
)2d is the number of Lyndon words of length i.
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3.4 Numerical results

To finish this chapter, we give some tables listing several numerical results.

It is not feasible to enumerate every single word to verify whether a subset is circularly
representable (or non-circularly representable). For this reason, we exploit ideas from graph
theory.

Formally, we define Gn = (Vn, En), where

Vn = {(S, u, v) : S ⊆ Σn and u, v ∈ Σn} and

En = {((S, u, v), (S ∪ {x}, u, x)) : S ⊆ Σn, u, v, x ∈ Σn, and v[2..n] = x[1..n− 1]}.

We say that a node (S, u, v) is valid if S is witnessed by a non-circular word w for which
the length-n prefix is u and the length-n suffix is v.

We use a breadth-first search strategy to compute all the possible valid nodes in Gn.
Let I denote a subset of nodes {({u}, u, u) : u ∈ Σn} in Gn. Nodes in Gn that are connected
to any node in I can be proven valid by induction. Thus, a breadth-first search begins
with the subset I and enumerates all nodes that are connected to nodes in I.

The relation between valid nodes in Gn and non-empty representable subsets of Σn is
that any subset S ⊆ Σn is representable if and only if there exist u, v ∈ Σn such that
(S, u, v) is valid. This relation can be proved by induction. Similarly, any subset S ⊆ Σn

is circularly representable if and only if there exists u ∈ Σn such that (S, u, u) is valid and
the minimum distance d between (S, u, u) and nodes in I satisfies the inequality d ≥ n−1.

With the above properties, we can enumerate all the possible non-empty representable
(or circularly representable) subsets of order n. Our results are shown in the Table 3.1.
The last two columns give words w of length νn (resp., µn) for which no shorter word
witnesses Cn(w) (resp., Fn(w)).

We present some numerical results for T (t, n) in Table 3.2 and Table 3.3. The numbers
in bold follow from Corollary 3.3.
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n |R̊n| |Rn| νn µn longest circ. witness longest witness
1 3 3 2 2 01 01
2 6 14 4 5 0011 00110
3 27 121 9 10 000100111 0001011100
4 973 5921 24 24 000010001011100011101111 000010010101100101101111

5 2466131 20020315 82 77 — —

Table 3.1: Numerical results on representable subsets

H
HHH

HHn
t

1 2 3 4 5 6 7 8

1 2 3 3 3 3 3 3 3
2 4 7 11 12 12 12 12
3 8 15 27 48 72 94
4 16 31 59 114 216
5 32 63 123 242
6 64 127 251
7 128 255
8 256

Table 3.2: Numerical results on T (t, n)

HH
HHHHn

t
9 10 11 12 13 14 15 16

1 3 3 3 3 3 3 3 3
2 12 12 12 12 12 12 12 12
3 100 103 101 103 101 103 101 103
4 391 677 1087 1621 2246 2928 3595 4235
5 474 933 1795 3421 6399 11682 20704 35914
6 498 986 1965 3899 7709 15171 29710 57726
7 507 1010 2010 4013 8001 15969 31789 63256
8 511 1019 2034 4058 8109 16193 32367 64671

Table 3.3: Numerical results on T (t, n)
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Chapter 4

Open problems

We present some open problems that are related to these two combinatorial patterns in
this chapter.

1. Is the language of non-abelian k-th powers context-free?

In this thesis, we prove that the language of non-abelian squares and non-abelian
cubes are not context-free. It remains to consider the case where k ≥ 4.

Theorems about bounded context-free languages may help solve this problem. To be
more precise, a promising method is to construct a bounded regular language R, and
prove that the intersection of R with the target language is not bounded context-
free. Some really interesting constructions of R are: w∗2w

∗
4w
∗
1w
∗
3 and w∗2w

∗
1w
∗
4w
∗
3,

where wi = 10i−1.

2. Does the limit lim
n→∞

|R̊n|
1

2n exist?

3. Find better bounds for µn and νn.

4. Derive a formula for T (t, n) where t = 2n.

It is easy to see that Theorem 3.3.1 fails for n < k + 1. Indeed, it is possible to have
Fn(x) = Fn(y) in this case, and yet π(x) 6= π(y). For example, take n = k − 1 so
that t = 2k − 1, and consider x = 0k10k−2 and y = 0k−110k−1. Then Fn(x) = Fn(y)
but π(x) = k + 1 and π(y) = k.

The remaining case is n = k, so that t = 2k. We conjecture that if x and y are distinct
binary words of length 2n with Fn(x) = Fn(y) then π(x) = π(y) and furthermore
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x and y are root-conjugate. However, it is possible in this case that π(x) > n + 1.
Furthermore it seems that if π(x) > n + 1, then x = uv01vu and y = uv10vRu (or
vice versa) for some nonempty words u, v where u is the longest palindrome prefix of
uv and π(x) = t− |v|.
As an example, consider x = 010110, y = 011010. Then

F3(x) = F3(y) = {010, 011, 101, 110}

but π(x) = π(y) = 5. Here u = 0, v = 1.
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