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Abstract 

A technique for real time object tracking in a mobile computing environment and its application to video 

see-through Augmented Reality (AR) has been designed, verified through simulation, and implemented 

and validated on a mobile computing device.  Using position based visual position and orientation (POSE) 

methods and the Extended Kalman Filter (EKF), it is shown how this technique lends itself to be flexible 

to tracking multiple objects and multiple object models using a single monocular camera on different mobile 

computing devices.  Using the monocular camera of the mobile computing device, feature points of the 

object(s) are located through image processing on the display.  The relative position and orientation between 

the device and the object(s) is determined recursively by an EKF process.  Once the relative position and 

orientation is determined for each object, three dimensional AR image(s) are rendered onto the display as 

if the device is looking at the virtual object(s) in the real world.   This application and the framework 

presented could be used in the future to overlay additional informational onto displays in mobile computing 

devices.  Example applications include robotic aided surgery where animations could be overlaid to assist 

the surgeon, in training applications that could aid in operation of equipment or in search and rescue 

operations where critical information such as floor plans and directions could be virtually placed onto the 

display. 

Current approaches in the field of real time object tracking are discussed along with the methods used 

for video see-through AR applications on mobile computing devices. The mathematical framework for the 

real time object tracking and video see-through AR rendering is discussed in detail along with some 

consideration to extension to the handling of multiple AR objects.  A physical implementation for a mobile 

computing device is proposed detailing the algorithmic approach along with design decisions. 

The real time object tracking and video see-through AR system proposed is verified through simulation 

and details around the accuracy, robustness, constraints, and an extension to multiple object tracking are 

presented.  The system is then validated using a ground truth measurement system and the accuracy, 

robustness, and its limitations are reviewed.  A detailed validation analysis is also presented showing the 

feasibility of extending this approach to multiple objects. Finally conclusions from this research are 

presented based on the findings of this work and further areas of study are proposed. 
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Chapter 1  INTRODUCTION 

1.1 Video See-Through Augmented Reality and Position Based Visual POSE 

Estimation for a Mobile Computing Platform  

 

Augmented Reality (AR) has its roots in the mid twentieth century through the work of pioneers such as 

Ivan Sutherland [1], who invented the head-mounted display.  Military flight simulators, film, video games, 

and various other items all collectively advanced the field of AR further but the term AR was not coined 

until the early 1990s by Caudell [2].  The first major paper in the field of AR was published in 1992 by 

Feiner et al [3] and since then, a proliferation of AR applications into various applications including mobile 

computing has occurred. 

With the recent increases in processing power, AR applications are increasingly being developed for 

mobile computing applications.  One such application, called video see-through AR, is to superimpose 

virtual objects on top of the real time viewfinder image captured by the device’s camera.  The AR image 

rendered would be placed in a known position and orientation (POSE) relative to some target object 

captured by the device’s camera.  This particular video see-through AR application would therefore require 

the ability to track the target object by determining its POSE relative to the target object and rendering the 

virtual object onto the display.  One approach for target object tracking would be to use Position Based 

Visual POSE Estimation techniques on a mobile computing platform.   

Visual Servoing techniques came about in the early 1980s [4] and use visual feedback from imaging 

sensors as the primary control mechanism.  There are two major classes of visual servoing controllers as 

first defined by Weiss [5]: Image Based Visual Servoing (IBVS) and Position Based Visual Servoing 

(PBVS).  IBVS control computes control inputs based on features in images and steers the system to a 

location in the 2D image.  In PBVS control, feature points are extracted from the 2D image and the control 

inputs are based on the 3D geometries of the target object and the camera model.  For object tracking and 

POSE estimation applications, both classes of visual servoing are able to handle the case of full 3D motion 

[6] and each control approach has both advantages and disadvantages. Chaumette and Hutchinson provide 

a more thorough treatment of visual servoing techniques in the tutorial papers [7] and [8].   In both 

approaches, however, a priori information is required to complete the relative POSE estimation 

calculations.  
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To implement a video see-through AR application on a mobile computing device, a framework needs 

to be developed that does the following four major steps.  The first step is to initialize the application and 

set up the mobile computing device’s camera to take a stream of images.  In the second step, image 

processing techniques needs to be executed for each image frame to determine the required feature points 

used in the object tracking algorithm.  There are various image processing techniques that can be used to 

extract the feature point locations as detailed by Forsyth and Ponce [9].  Once the feature point locations 

are known, the third step can be run, which is to complete the relative POSE estimation.  For this work, an 

Extended Kalman Filter [6] [10] was used to determine the relative POSE. Finally the fourth step can be 

executed, which comprises of rendering the virtual object onto the device display to give the appearance of 

video see through AR. A high level tutorial for implementation of video see-through AR applications on 

Mobile Phones is presented by Wagner et al in [11] and [12] and by Oui et al in [13] detailing considerations 

such as architecture, image processing, POSE estimation, and AR rendering.    

This thesis will examine and present a video see-through AR application on a mobile computing device 

using a Position Based Visual POSE Estimation approach that is drawn from the PBVS theory.  This work 

will also detail the extendibility and scalability of this position based visual POSE estimation approach to 

tracking multiple objects simultaneously and also different mobile computing devices for an AR 

application.   

 

1.2 Organization 

 

The thesis is organized in the following manner.  The basic problem of video see-through AR applications 

on mobile computing device using the relative position and orientation (POSE) of an object with known 

geometry is discussed in Chapter 2 along with a review of the current work in this field.   Chapter 3 provides 

a further examination of the general relative POSE estimation problem by providing the general 

mathematical framework and provides for a solution based on the Extended Kalman Filter (EKF).   Chapter 

4 discusses the design of an implementation for a mobile computing device based on the approach outlined 

in Chapter 3.  

The design proposed in Chapter 4 is analyzed in a simulation environment in Chapter 5.  Here a set of 

known conditions are used to analyze the performance of the overall system.  The system proposed was 

implemented and validated in Chapter 6 using an optical ground truth measurement system.  A set of 
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physical motions are tested/measured and a comparison of the results from the device to the ground truth 

measurement system is provided.  The technical feasibility of the system is discussed along with a 

comparison of the simulation results.  Finally conclusions and recommendations for future areas of research 

and improvements are detailed in Chapter 7.  
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Chapter 2  BACKGROUND AND RELATED WORK 

The use of video see-through AR real-time tracking applications on mobile computing platforms is a 

relatively recent phenomenon with initial work based on tablet PCs, notebooks or even customized 

hardware [1].  In 1999, the ARToolkit library was presented [14] and it allowed for developers to produce 

computationally inexpensive optical tracking applications, which is important for the mobile computing 

environment.  Initial mobile real-time tracking AR applications were based on a thin client approach due to 

limitations in computing power of the mobile computing device. The AR-PDA project [15] is an example 

of this approach, where the majority of computations were completed on a PC server and the pertinent 

information sent to the Compaq iPAQ 3630 Pocket PC PDA via a WLAN communications link.    

The first self-contained AR System for a mobile phone was presented in 2004 by Möhring et al [16], 

which was based on a marker system.  This system was limited by a slow microprocessor, memory, simple 

graphics, a low frame rate, and poor accuracy.  Around the same time, Wagner et al presented a self-

contained system on a PDA [17], which ported the ARToolkit and also critical OpenGL items needed for 

the AR rendering. In Wagner’s initial application, the camera performance was the bottleneck with a camera 

image video stream of 7-8 frames per second.  In both of the aforementioned cases, markers or fiducials, 

which are added to the scene or image space, were used to aid in the object feature tracking. 

Many mobile computing AR applications today rely on marker or fiducial based tracking since these 

systems can be designed in a manner to optimize detection and tracking [18], which is important given the 

requirement for processing efficiency.  Marker based approaches are used to facilitate both the feature 

extraction from the images and provide for reliable measurements that can be used in the POSE estimation.  

There are numerous applications of marker based real-time object tracking AR applications for mobile 

devices, such as [19] and [20] and the general theory behind marker based tracking is presented in the 

survey by Lepetit and Fua [21].  However the drawbacks of the marker based tracking approach, as noted 

by Schall et al [18], is that these markers obscure parts of the image space and also require the scene to be 

engineered by the addition of markers in order to run the object feature tracking application.  Some work 

has been done to lessen the impact of markers, such as Wagner et al [22], where care is taken to minimize 

the marker design.   

Given the drawbacks to markers, more research is being conducted in the area of markerless tracking, 

which rely on edges and feature points of the object. One of the primary benefits of a markerless approach 

is that the natural images of the scenes can be used without the addition of markers or modification to the 
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environment in question.  As far as can be determined, the first markerless real-time tracking video see-

through AR  application done for a mobile phone was published by Wagner et al in 2007 [23].   Markerless 

tracking relies on features naturally present in the images and often 3D CAD models of objects are used.  

There are various approaches and methods to markerless tracking such as edge based, optical flow based, 

template matching, natural features. The various approaches to complete markerless tracking are outlined 

in the survey by Lepetit and Fua [21].   

One of the prominent and most successful approaches in video see-through AR applications in mobile 

computing is using a modified SIFT/Ferns approach detailed by Wagner [23].    The Scale Invariant Feature 

Transform (SIFT), developed by Lowe [24], is based on an approach of extracting features from images 

and matching against an image feature database.  Its computational cost is minimized by using a cascaded 

set of filtering steps (keypoint localization, feature description, and feature matching) with the most 

computationally expensive operation done only once during the first pass.  The SIFT approach will generate 

a large number of features, which densely cover the image.  For tracking purposes, the SIFT features are 

individually matched in the current image by comparing against the prior image.  From this, a descriptor 

based on gradients that are weighted from their distance to a patch is generated.  Ferns, which classifies 

features for tracking [25], uses statistical learning techniques to model the possible appearance of an image 

under various conditions to detect and match features.  In this approach, close to perfect object/feature 

recognition is not required.  Wagner [23] runs both a modified SIFT and Ferns algorithms concurrently but 

optimizes the algorithm by sharing the first (keypoint detection) and last (POSE estimation) steps along 

with further algorithmic adjustments that due to considerations for mobile phone computational power.  The 

POSE estimation is completed based on the feature point information derived from both the SIFT and Ferns 

steps and is based on a Gauss-Newton iteration scheme.  Wagner has also demonstrated successful real time 

tracking of multiple objects simultaneously [26] using this SIFT/Ferns approach.  Others such as Skrypnyk 

and Lowe [27] use the SIFT features for recognition, tracking, and AR object placement. 

Other descriptor based approaches like the Speeded-Up Robust Features (SURF) algorithm [28] have 

been used in mobile AR Applications.  Descriptor based approaches like SURF can be generally broken 

down into three steps. First a correspondence between two images in time is found and is done by creating 

a map of interest points such as corners. SURF optimizes this detection step by using a Hessian matrix and 

relies on integral images to reduce computational time.  Next a feature descriptor vector that describes the 

neighbourhood for each interest point is created in the description step.   In the SURF method [28], the 

descriptor is constructed by a distribution of Haar-wavelet responses within the interest point 
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neighbourhood.  Finally the matching step is conducted by comparing the descriptor vectors between 

different images.  SURF further optimizes this step by using a 64 dimension descriptor vector instead of 

128 dimensions used in most SIFT applications.   

The SURF algorithm, while potentially more efficient than SIFT, was first implemented by Tackacs et 

al [29] for use in mobile AR application.  However the focus of Tackacs’ work was on detection quality on 

not real time POSE estimation. Ta et al [30] present a modified algorithm called SURFTrac, which is more 

efficient but still does not achieve real time tracking.  Another descriptor approach is the Local Difference 

Binary (LDB) [31] introduced by Yang and Cheng, which was found to be capable of achieving real time 

tracking capabilities for a Mobile AR application.  A good survey of descriptor based approaches is given 

by Mikolajczyk and Schmid [32]. 

An alternate approach by Klein and Murray was to implement a keyframe-based Simultaneous Location 

and Mapping (SLAM) system on a mobile phone [33].  SLAM, as detailed by Durrant-Whyte and Bailey 

[34], is a technique used by devices, robots, and autonomous vehicles in either a known or unknown 

environment  and the SLAM approach updates or creates a map of the environment while simultaneously 

tracking the object’s location. In the modified keyframe-based SLAM approach developed by Klein and 

Murray, which is denoted as Parallel Tracking and Mapping (PTAM), the mobile phone’s position is 

tracked and mapped in an unknown environment and AR images are then superimposed. However the 

performance of this system was constrained by processing power and camera hardware capabilities and 

thus did not achieve real-time tracking capability. Klein and Murray’s work was extended further by 

Verbelen et al [35] by implementing a collaborative and distributed PTAM, where multiple mobile devices 

share or rather divide up components to optimize performance.  

For the markerless methods listed above, the common theme is that large numbers of feature points are 

tracked for descriptors or maps, resulting in a large number of required computations for each frame.  These 

approaches tend to be computationally expensive and may not be able to achieve real-time tracking 

performance when considering the various other services and applications typically running on a mobile 

phone such as the cellular radio, messaging services, etc.  An alternate approach would be to use a minimum 

set of features based on CAD models of known objects.  In such an approach, the image processing would 

identify only objects of interest in the field of view based on the CAD object model library.  The 

initialization or detection phase may possibly be more computationally expensive to identify all objects of 

interest against the CAD object libraries models.  However, the tracking phase would be much more 

computationally efficient, as only a few features would be tracked, i.e. tens versus hundreds to thousands 
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in the approaches detailed above, allowing us to achieve real-time tracking performance when considering 

the various other features already running on the mobile phone environment. 

The methods of position based visual POSE estimation could therefore be applied to a video see-

through mobile computing AR application by creating a CAD object model library for all objects of interest, 

implementation of the position based visual POSE estimation method based on Wilson’s approach in [6] to 

implement the real time tracking or relative POSE estimation, and rendering of AR onto the display.  At 

present, there are no known published works that utilize the position based visual POSE estimation method 

for a video see-through mobile AR Application.  

While other approaches such as Wagner [26] have demonstrated real-time tracking performance, 

applying position based visual POSE estimation methods to a video see-through mobile AR application 

will allow for improved computational efficiency by reducing the number of computations required for 

each time step.  The reduced computational efficiency in the application will allow for multiple objects to 

be tracked simultaneously and also minimize performance impact to the mobile computing device in 

general.  

Therefore the primary contribution of this work is to propose a video see-through AR Application on a 

mobile computing device using the position based visual POSE estimation methods.  The EKF will be used 

to complete real time markerless tracking based on known target object models and a virtual object will be 

rendered on the display.  A framework for extension to multiple object tracking is provided along with the 

framework for implementing on various mobile computing devices.  For the purposes of this work, a 

BlackBerry Dev Alpha A device was used for the implementation.    
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Chapter 3 MODELING AND THEORY 

Implementing a video see-through AR application on a mobile computing device requires the development 

of a real time object tracking framework to first determine the relative POSE between the device and the 

target object and then render a virtual object on the device’s display based on the relative position and 

orientation.  Hence, it is assumed that there is a known target object with features that are well defined and 

a relative 3D motion occurring between the mobile computing device and the target object.  As discussed 

above in Chapter 2, there are various approaches that can be used for real-time object tracking.  The 

methodologies of position based visual POSE estimation lends itself very well to this particular mobile AR 

application, as it operates solely based on the relative position and orientation between the mobile device 

and the target object. 

As most mobile computing devices contain a camera sensor, the camera sensor is the most appropriate 

and logical choice to determine the relative position and orientation between the device and the target 

object.  The mobile computing device’s camera is used to capture a stream of real-time images and for each 

time step the device will locate the target object’s feature points using image processing techniques. Once 

the feature points of the target object have been located, the real time object algorithms based on position 

based visual POSE estimation techniques can be executed providing us with the relative position and 

orientation between the mobile computing device and the target object.   

To render the virtual object, it is assumed that the virtual object is fixed in its position with respect to 

the target object.  Once the relative POSE between the mobile computing device has been calculated and 

the target object, it then becomes a simple matter of calculating the virtual object’s position and rendering 

it on the display.  

In this chapter the model of the system under scope is presented, detailing the mathematical 

formulation.  A method is proposed to solve this POSE estimation problem using recursive estimation 

techniques specifically through the EKF. Finally, a discussion is presented on extending this method to 

rendering multiple virtual objects based on multiple target objects. 
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3.1 Problem 

3.1.1 Coordinate Frame Definition 

 

To implement a real time 3D object tracking method using position based visual POSE estimation, the 

system needs to be defined and described mathematically.  Given a mobile computing device with a camera, 

a coordinate frame is defined as fixed to the camera frame and is denoted as 𝐶.  Similarly for a known target 

object, a coordinate frame can be defined for the object frame and is denoted as 𝑂.  The relative POSE 

between the camera frame 𝐶 and the object frame 𝑂 can be defined through the six element POSE vector 

𝑊 as follows:  

 

𝑊 = [𝑋, 𝑌, 𝑍, ∅, 𝜃, 𝜓]𝑇      (3.1) 

 

 

where 𝑋, 𝑌, 𝑍 give the Cartesian coordinates of the object frame 𝑂 origin expressed in the camera frame C 

and ∅, 𝜃, 𝜓 represent the Euler angles for roll, pitch, and yaw with respect to the camera frame’s 𝑍𝐶 , 𝑌𝐶, 

and 𝑋𝐶 axes respectively.  A right handed coordinate system was selected based on the work of Spong and 

Vidaysagar [36] and a visual representation of the system is presented in Figure 3-1 below and the roll, 

pitch, and yaw angles are graphically depicted in Figure 3-2 below.  

 

𝒁𝒄 

𝑶𝑪 

𝑿𝒄 

𝒀𝒄 

𝑪𝒂𝒎𝒆𝒓𝒂 𝑭𝒓𝒂𝒎𝒆 

𝑶𝒃𝒋𝒆𝒄𝒕 𝑭𝒓𝒂𝒎𝒆 

𝑶𝑶 
𝑿𝑶 

𝒀𝑶 

𝒁𝑶 

𝐖 = [𝐗,𝐘,𝐙,∅,𝛉,𝛙]𝐓 

 

Figure 3-1: Geometric representation of system model detailing both the object frame and the camera frame 

along with the relative POSE vector 𝑊 based on a right handed coordinate system. 
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Figure 3-2: Roll, pitch, and yaw angles defined with respect to the device camera frame 𝐶 with the 

coordinate system based on the right handed coordinate system. 

 

The relative position of the object frame 𝑂 with respect to the camera frame 𝐶 is defined as the vector 

𝑇 = [𝑋, 𝑌, 𝑍]𝑇.  The relative orientation of the object frame 𝑂 with respect to the camera frame 𝐶 is defined 

through the roll ∅, pitch 𝜃, and yaw 𝜓 angles. The relationship can be described through a product of three 

rotation matrices about each of the three coordinate axes, respectively, as follows and is explained further 

in Appendix A.  

 

𝑅𝑂
𝐶 = 𝑅𝑧𝐶(∅)𝑅𝑦𝐶(𝜃)𝑅𝑥𝐶(𝜓)     (3.2) 

 

Thus, the rotation matrix 𝑅𝑂
𝐶 is defined as,   

 

𝑅𝑂
𝐶 = [

𝐶𝜃𝐶𝜓 𝑆∅𝑆𝜃𝐶𝜓 − 𝐶∅𝑆𝜓 𝐶∅𝑆𝜃𝐶𝜓 + 𝑆∅𝑆𝜓
𝐶𝜃𝑆𝜓 𝑆∅𝑆𝜃𝑆𝜓 + 𝐶∅𝐶𝜓 𝐶∅𝑆𝜃𝑆𝜓 − 𝑆∅𝐶𝜓
−𝑆𝜃 𝑆∅𝐶𝜃 𝐶∅𝐶𝜃

] , 𝑤ℎ𝑒𝑟𝑒 𝐶𝜃 = 𝑐𝑜𝑠 𝜃, 𝑆𝜃 = 𝑠𝑖𝑛 𝜃 , 𝑒𝑡𝑐 (3.3) 

 

To solve the relative POSE estimation problem, it is required that the pre-defined number of feature 

points of the target object be located in the mobile computing device’s camera image plane 𝐼 through image 
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processing techniques.  This feature point data in the camera image plane 𝐼 is then used to compute the 

relative POSE vector 𝑊 based on the position based visual POSE estimation techniques.  First, however 

the transformation of a feature point in the object frame 𝑂 to the camera frame 𝐶 needs to be considered 

before the transformation from the camera frame 𝐶 to the camera image plane 𝐼 can be dealt with.   For a 

point 𝑗 in the object frame, its position in the object frame 𝑃𝑗
𝑂 can be defined as follows: 

 

𝑃𝑗
𝑂 = [

𝑥𝑗
𝑂

𝑦𝑗
𝑂

𝑧𝑗
𝑂

]       (3.4) 

 

where 𝑥𝑗
𝑂, 𝑦𝑗

𝑂, and 𝑧𝑗
𝑂 are expressed with respect to the origin of the object frame 𝑂.  The one-to-one 

transformation of a point 𝑗 in object frame 𝑂 to a point 𝑗 in the camera frame 𝐶 can be defined through a 

translation followed by a rotation as follows: 

 

𝑃𝑗
𝐶 = 𝑇 + 𝑅𝑂

𝐶(∅, 𝜃, 𝜓)𝑃𝑗
𝑂     (3.5) 

 

where 𝑃𝑗
𝐶 represents the Cartesian coordinates of the jth feature point location in the camera frame 𝐶.  

Expanding Equation 3.5, the jth feature point location in the camera frame can be written as follows:   

 

𝑥𝑗
𝐶 = 𝑋 + 𝐶∅𝐶𝜃𝑥𝑗

𝑂 + (𝐶∅𝑆𝜃𝑆𝜓 − 𝑆∅𝐶𝜓)𝑦𝑗
𝑂 + (𝐶∅𝑆𝜃𝐶𝜓 + 𝑆∅𝑆𝜓)𝑧𝑗

𝑂  (3.6) 

𝑦𝑗
𝐶 = 𝑌 + 𝑆∅𝐶𝜃𝑥𝑗

𝑂 + (𝑆∅𝑆𝜃𝑆𝜓 + 𝐶∅𝐶𝜓)𝑦𝑗
𝑂 + (𝐶∅𝑆𝜃𝑆𝜓 − 𝑆∅𝐶𝜓)𝑧𝑗

𝑂  (3.7) 

𝑧𝑗
𝐶 = 𝑍 − 𝑆𝜃𝑥𝑗

𝑂 + 𝐶∅𝑆𝜓𝑦𝑗
𝑂 + 𝐶𝜃𝐶𝜓𝑧𝑗

𝑂    (3.8) 

 

The transformation from the object frame to the camera frame can also be expressed using a 

homogenous transformation matrix as follows: 
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[
 
 
 
 
𝑥𝑗
𝐶

𝑦𝑗
𝐶

𝑧𝑗
𝐶

1 ]
 
 
 
 

 = 𝑇𝑂
𝐶

[
 
 
 
 
𝑥𝑗
𝑂

𝑦𝑗
𝑂

𝑧𝑗
𝑂

1 ]
 
 
 
 

      (3.9) 

 

where  

𝑇𝑂
𝐶 = [

𝑅𝑂
𝐶

𝑋
𝑌
𝑍

01𝑥3 1

]      (3.10) 

 

 

3.1.2 Monocular Camera Model 

 

In order to solve the POSE estimation problem for each time step, the feature points need to be located in 

the camera image plane 𝐼 based on a transformation of these same feature points in the camera frame 𝐶.  In 

order to determine the relationship between the camera frame C and the camera image plane 𝐼, an 

appropriate model of the monocular camera sensor is required. For the purposes of this thesis, a pinhole 

camera measurement model was selected, as it typically provides for an acceptable approximation [9].  The 

pinhole model, which approximates the monocular camera sensor, maps 3D points in the camera frame 𝐶 

to 2D points in the camera image plane 𝐼 as shown in Figure 3-3 below. The camera image plane is at a 

directed distance of −𝑓 in the 𝑍𝐶  axis direction from the optical center of the camera frame 𝑂𝐶.  It is noted 

that images in the camera image plane are inverted from the camera frame. 

The camera frame’s origin 𝑂𝐶  represents the camera pinhole and is also by definition the center of 

projection.   The camera image plane’s origin 𝑂𝐼 or image center can be defined by a line that is both 

perpendicular to the camera image plane 𝐼 and a line that also passes through the pinhole, i.e. is assumed to 

lie along the camera frame’s 𝑍𝐶  axis. 
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(𝐱𝐣
𝐂,𝐲𝐣

𝐂, 𝐳𝐣
𝐂) 

𝑪𝒂𝒎𝒆𝒓𝒂 𝑭𝒓𝒂𝒎𝒆 

𝒁𝒄 

𝑶𝑪 

𝑿𝒄 

𝒀𝒄 

  
 

  

 

 

𝑪𝒂𝒎𝒆𝒓𝒂 𝑰𝒎𝒂𝒈𝒆 𝑷𝒍𝒂𝒏𝒆 

𝒇 

𝑿 

𝒀 

𝑶
 

(𝐱𝐣
𝐢,𝐲𝐣

𝐢) 

 

Figure 3-3: The pinhole camera model is used to represent transformation of feature points in camera frame 

to the camera image plane.   

 

Considering the three-dimensional point 𝑃𝑗
𝐶 with coordinates (𝑥𝑗

𝐶 , 𝑦𝑗
𝐶 , 𝑧𝑗

𝐶) in 𝐶, the two-dimensional 

projection onto the camera image plane 𝐼 can be defined as 𝑃𝑗
𝑖 having coordinates (𝑥𝑗

𝑖, 𝑦𝑗
𝑖) in 𝐼.  The point 

𝑃𝑗
𝑖 represents the intersection on the camera image plane 𝐼 of the line from the point 𝑃𝑗

𝐶  through the center 

of projection OC.  The projection of the point j onto the camera image plane from the camera frame is 

defined as: 

 

𝑥𝑗
𝑖 = 

−𝑓𝑥𝑗
𝑐

𝑃𝑋𝑧𝑗
𝑐         (3.11) 

𝑦𝑗
𝑖 = 

−𝑓𝑦𝑗
𝑐

𝑃𝑌𝑧𝑗
𝑐        (3.12) 

 

where 𝑓 is the focal length in meters of the monocular camera sensor and 𝑃𝑋 and 𝑃𝑌 are the inter-pixel 

spacing of the camera along the 𝑋𝑖 and 𝑌𝑖 axes and are in m/pixel.  The three intrinsic camera parameters 

𝑓, 𝑃𝑋, and 𝑃𝑌 can be obtained either through the manufacturer’s data sheet or through camera calibration 

tests.  
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3.1.3 Mathematical Model 

 

In summary, there are the following steps in the system.  First the mobile computing device will capture a 

stream of images using the camera sensor.  For each time step, feature points of a known target object are 

located in the camera image plane.  Additionally for each time step, the six element relative POSE vector 

𝑊 needs to be determined in order to properly render the virtual object.  The transformation of the jth feature 

point from the object frame 𝑂 to the camera image plane 𝐼 can therefore be expressed by combining 

Equations 3.6, 3.7, 3.8, 3.11, and 3.12 to give us the following two expressions as follows, 

  

𝑥𝑗
𝑖 = 

−𝑓(𝑋+𝐶∅𝐶𝜃𝑥𝑗
𝑂+ (𝐶∅𝑆𝜃𝑆𝜓−𝑆∅𝐶𝜓)𝑦𝑗

𝑂+ (𝐶∅𝑆𝜃𝐶𝜓+𝑆∅𝑆𝜓)𝑧𝑗
𝑂)

𝑃𝑋(𝑍−𝑆𝜃𝑥𝑗
𝑂+ 𝐶∅𝑆𝜓𝑦𝑗

𝑂+ 𝐶𝜃𝐶𝜓𝑧𝑗
𝑂)

   (3.13)  

𝑦𝑗
𝑖 = 

−𝑓(𝑌+𝑆∅𝐶𝜃𝑥𝑗
𝑂+ (𝑆∅𝑆𝜃𝑆𝜓+𝐶∅𝐶𝜓)𝑦𝑗

𝑂+ (𝐶∅𝑆𝜃𝑆𝜓−𝑆∅𝐶𝜓)𝑧𝑗
𝑂)

𝑃𝑌(𝑍−𝑆𝜃𝑥𝑗
𝑂+ 𝐶∅𝑆𝜓𝑦𝑗

𝑂+ 𝐶𝜃𝐶𝜓𝑧𝑗
𝑂)

  (3.14)  

 

where 𝑥𝑗
𝑖 and 𝑦𝑗

𝑖  represent the two Cartesian coordinates of the feature points in the camera image plane.  

Figure 3-4 illustrates the mapping of the jth feature point from the object through the camera frame to the 

camera image plane. 

In examining the above equations, it is clear that the six unknown elements of the relative POSE vector 

𝑊 are contained in Equations 3.13 and 3.14.  In order to solve for 𝑊, a minimum of six independent 

equations are required.  This implies that a minimum of three target object feature points are needed.  

However through Euclidean axioms [37], it is known that any two points in a vector space will be collinear.  

Based on the relative position and orientation between the device and the target object, it is assumed that 

there will be cases when these two collinear points lie directly on the principal ray of the camera and will 

be mapped to the same position on the camera image plane, i.e. the second feature point is directly behind 

the first.  In these instances, the solution will be non-unique.  Therefore to obtain a unique solution to this 

problem, a minimum of four object feature points with the constraint that no three feature points are 

collinear are required.   
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𝑿𝑶 

𝑪𝒂𝒎𝒆𝒓𝒂 𝑭𝒓𝒂𝒎𝒆 

𝑶𝒃𝒋𝒆𝒄𝒕 𝑭𝒓𝒂𝒎𝒆 

𝑶𝑶 

𝒀𝑶 

𝒁𝑶 
𝒁𝒄 

𝑶𝑪 

𝑿𝒄 

𝒀𝒄 

   

𝑶  𝑿  

𝒀  

 

𝑷𝒋
𝑶 

𝑪𝒂𝒎𝒆𝒓𝒂 𝑰𝒎𝒂𝒈𝒆 𝑷𝒍𝒂𝒏𝒆 

𝑷𝒋
  

 

Figure 3-4: Graphical depiction of the mapping of the jth feature point from the object frame, through the 

camera frame to the camera image plane. 

 

Once the relative POSE vector 𝑊 has been solved for each time step, rendering the video see-through 

augmented or virtual reality object in the camera frame becomes trivial.  As was stated above, it is assumed 

that the virtual object is located in a fixed position relative to the target object and the virtual object feature 

points can be described in relation to the origin of the object frame.  Figure 3-5 shows an example of a 

virtual object location fixed relative to the object frame.  

The mathematical relationship which describes the transformation of the virtual object into the camera 

image plane can be easily computed using a forward calculation for each of the 𝑀 ≥ 1 virtual object feature 

points.  A description is provided below detailing how the jth point of the virtual object is transformed into 

the camera image plane as follows, 

 

𝑃𝐴𝑅
𝑂

𝑗
=

[
 
 
 
𝑥𝐴𝑅
𝑂

𝑗

𝑦𝐴𝑅
𝑂

𝑗

𝑧𝐴𝑅
𝑂

𝑗]
 
 
 

       (3.15) 
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𝑪𝒂𝒎𝒆𝒓𝒂 𝑭𝒓𝒂𝒎𝒆 
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𝑪𝒂𝒎𝒆𝒓𝒂 𝑰𝒎𝒂𝒈𝒆 𝑷𝒍𝒂𝒏𝒆 

𝑿𝑶 

𝐏𝐀𝐑𝐣
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𝑽 𝒓𝒕𝒖𝒂𝒍 𝑶𝒃𝒋𝒆𝒄𝒕 

𝐏𝐀𝐑𝐣
𝐢  

 

Figure 3-5: Depiction of the fixed distance between the virtual object and target object and transformation 

of virtual object feature points is into the camera image plane. 

 

noting that 𝑥𝐴𝑅
𝑂

𝑗
, 𝑦𝐴𝑅

𝑂
𝑗
, and 𝑧𝐴𝑅

𝑂
𝑗
 are the coordinates of the jth point of the virtual object relative to the origin 

of the target object frame.  The transformation of the jth point of the virtual object to the camera frame can 

be described using the same relationship for transforming target object feature points into the camera frame 

and is shown below: 

 

𝑃𝐴𝑅
𝐶

𝑗
= [

𝑋
𝑌
𝑍
] + 𝑅𝑂

𝐶(∅, 𝜃, 𝜓)𝑃𝐴𝑅
𝑂

𝑗
     (3.16) 

 

where X, Y, Z, ∅, 𝜃, 𝜓 are the six relative POSE parameters to be determined.  Once the coordinates of the 

jth point of the virtual object are transformed in the camera frame, the transformation to the camera image 

plane is as follows: 
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𝑥𝐴𝑅
𝑖

𝑗
= 

−𝑓𝑥𝐴𝑅𝑗
𝑐

𝑃𝑋𝑧𝐴𝑅𝑗
𝑐        (3.17) 

𝑦𝐴𝑅
𝑖

𝑗
= 

−𝑓𝑦𝐴𝑅
𝑐

𝑗

𝑃𝑌𝑥𝐴𝑅
𝑐

𝑗

       (3.18) 

 

where 𝑥𝐴𝑅
𝑖

𝑗
, 𝑦𝐴𝑅

𝑖
𝑗
describe the virtual object’s jth feature point locations in the camera image plane and 𝑓, 

𝑃𝑋 and, 𝑃𝑌 are the focal length and inter-pixel spacing parameters previously defined.  

 

3.2 Recursive Estimation 

 

3.2.1 General Problem 

 

The solution to the above nonlinear photogrammetric Equations 3.13 and 3.14 is both non-trivial and non-

linear.  Additionally the relative POSE vector W is required to be solved at each time step.  It is therefore 

noted that the use of a recursive estimation technique is desired, as this approach lends itself to this nature 

of problem.  Based on the position based visual POSE estimation research work already done in this area 

most notably by Wilson [6], the EKF was selected to solve the relative POSE estimation problem. For the 

system described above, it can be represented by the following nonlinear discrete time state-space system 

[38] as follows,  

 

𝑥𝑘 = 𝐹(𝑥𝑘−1) + 𝜂𝑘      (3.19) 

𝑦𝑘 = 𝐺(𝑥𝑘) + 𝜈𝑘     (3.20)  

 

where 𝑥𝑘 ∈  ℛ
𝑛 is the system state vector at time step 𝑘, yk ∈  ℛ

m is the output measurement vector,  

𝐹(𝑥):ℛn → ℛn is the process model, and 𝐺(𝑥):ℛn → ℛm is the output measurement model, 𝜂𝑘 is the 

disturbance noise vector and of zero mean Gaussian noise with covariance 𝑄𝑘 and  𝜈𝑘 is the measurement 

noise vector also of zero mean Gaussian noise with covariance 𝑅𝑘. Each of the above quantities will be 

discussed in subsequent sections. 
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As per Wilson [6], the optimality for the application of the Kalman Filter method depends on the 

accuracy of the state dynamic and output models and also on the assumptions that the disturbance noise 𝜂𝑘 

and measurement noise 𝜈𝑘 have zero mean Gaussian noise.  If the aforementioned conditions are not met, 

good approximations are needed to achieve a near optimal solution.   

 

3.2.2 Assumptions 

  

The following explicit assumptions are required to implement the video see-through AR application on 

the mobile computing device:  

 

a. It is assumed that the target object is known and a rigid body with a defined number of feature 

points.  The number of feature points 𝑁 is known and their Cartesian coordinates in the object 

frame 𝑂 are known.  

b. The object feature points are distinguishable in the camera image and their perspective projection 

can be measured at each time step using image processing techniques. 

c. The monocular camera of the device is considered to be fixed within the body of the device and 

has an associated coordinate camera frame 𝐶.  

d. It is assumed that the device camera has the ability to focus on an object that is an arbitrarily large 

distance away in the 𝑋, 𝑌, and 𝑍 directions.   

e. It is assumed that the camera has the ability to form images on the image plane for relative pitch  𝜃 

and yaw 𝜓 angles that fall along the camera frame 𝑌𝐶 and 𝑋𝐶 axes respectively.   

f. It is assumed that the image captured on the camera image plane is directly correlated to the image 

rendered on the device’s display. 

g. It is assumed that the disturbance and measurement noise processes can be accurately represented 

by Gaussian distributed zero mean noise with known covariance.  Additionally it is assumed that 

these noise processes are uncorrelated.  
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h. Both the target object and the device are assumed to be independent with respect to their motions 

and it is assumed that the relative 3D motion between the camera of the device and the target object 

is smooth and can be approximated by a constant velocity model. 

i. The virtual object feature points 𝑀 ≥ 1 are known and these virtual object feature points position 

are fixed relative to the object frame 𝑂. 

j. It is assumed that the sampling rate for the discrete time system is constant. 

 

3.2.3 Relative Motion Dynamics 

 

In the physical system, there is a mobile computing device and a target object.  There is no constraint for 

either the device or the object to be fixed in its position and both can experience independent and non-

correlated motions. As a result, the relative motion characteristics between the device and the target object 

are generally unknown.  However, it is assumed that the relative motion is smooth.  Therefore a generic 

constant velocity model was selected to describe the relative motion over one discrete time step [6], as this 

is consistent with the prior research in the field of PBVS and position based visual POSE estimation.  The 

system state Equation 3.19 can be rewritten based on our assumption of the constant velocity model as 

follows,  

 

𝑥𝑘 = 𝑥𝑘−1 + 𝛿𝑘�̇�𝑘−1 + 𝜂𝑘     (3.21)  

 

where 𝛿𝑘 is defined as the change in time between time steps 𝑘  and 𝑘 − 1.  The variable �̇�𝑘−1 represents 

the velocity at this time step and 𝜂𝑘 is a vector of zero mean Gaussian disturbance noise with covariance 

𝑄.  Based on the assumption of a constant velocity process model, the system state vector 𝑥𝑘 can be 

represented by the six POSE parameters and their respective velocities as follows 

 

𝑥𝑘 = [𝑋, 𝑌, 𝑍, ∅, 𝜃, 𝜓, �̇�, �̇�, �̇�, ∅̇, �̇�, �̇�]
𝑇
    (3.22)  
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Equation 3.22 can be further simplified by noting that the first six elements of the system state vector 

𝑥𝑘 represents the position and the second six elements represent the first derivatives/velocities. 

 

𝑥𝑘 = [
𝐼6𝑥6 𝛿𝑘𝐼6𝑥6
06𝑥6 𝐼6𝑥6

] 𝑥𝑘−1 + 𝜂𝑘    (3.23)  

 

where 𝐼6𝑥6 represents the identity matrix and 06𝑥6 represents a 6x6 matrix of zero entries.  Equation 3.24 

therefore allows us to define the state space system matrix 𝐴 as follows and allows us to write the discrete 

time state equation in the traditional form as follows,  

 

𝐴 =  [
𝐼6𝑥6 𝛿𝑘𝐼6𝑥6
06𝑥6 𝐼6𝑥6

]      (3.24)  

𝑥𝑘 =  𝐴𝑥𝑘−1 + 𝜂𝑘      (3.25)  

 

Since the system state vector 𝑥𝑘 will be updated for each time step, it is noted that the velocities will 

also be estimated for each time step.  Additionally, the constant velocity model allows for errors in the 

dynamic model to be included through the disturbance noise 𝜂𝑘, which acts as inputs to the system state 

equations.  Sampling rates will also affect the dynamic model accuracy for each time step.  It follows that 

a smaller time step or higher frequency between samples will decrease the modeling error, as can be seen 

from the following definition of model error for each time step,  

 

𝐷𝑦𝑛𝑎𝑚𝑖𝑐 𝑀𝑜𝑑𝑒𝑙 𝐸𝑟𝑟𝑜𝑟 ∝  𝛿𝑘 ∗ |�̇�𝑎𝑐𝑡𝑢𝑎𝑙 − �̇�𝑚𝑜𝑑𝑒𝑙|    (3.26)  

 

Hence a higher sample rate is generally recommended as it will decrease the error.  Furthermore it 

follows from Equation 3.26 that when the difference between the actual system’s velocity and predicted or 

estimated velocity is large, higher modeling errors will be seen, which are encapsulated in the disturbance 

noise 𝜂𝑘 as per the definition in Equation 3.21. Other relative motion dynamic models such as the constant 
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acceleration model could be selected.  While this could potentially improve the model prediction, it also 

has the effect of increasing model complexity and therefore this approach was not pursued.  

 

3.2.4 Relative POSE Estimation  

 

As noted above, a minimum of 𝑁 ≥ 4 object feature points are required to generate a unique solution 

assuming that no three object feature points are collinear.  Furthermore, it has been shown that performance 

will not be improved significantly for more than six feature points [39] [40].  While additional feature points 

beyond six will result in an improvement to the accuracy solution of the system equations, a balance 

between computational complexity and accuracy is required.  As the focus of this work is to implement a 

real-time system on a mobile computing device with various applications running, the required number of 

feature points for this system was mathematically set as follows, 

 

4 ≤ 𝑁 ≤ 6       (3.27)  

 

In this system, the output measurement vector 𝑦𝑘 represents the feature point locations of the 𝑁 known 

feature points on the camera image plane and can be represented as follows: 

 

𝑦𝑘 = [𝑥1
𝑖
𝑘

𝑦1
𝑖
𝑘

𝑥2
𝑖
𝑘

𝑦2
𝑖
𝑘

… 𝑥𝑁
𝑖
𝑘

𝑦𝑁
𝑖
𝑘]

𝑇
   (3.28)  

 

Based on the mathematical model of this system and specifically Equations 3.11 and 3.12 that define the 

feature point locations in the camera image plane, an expression for the output model 𝐺(𝑥) can be written 

as follows: 

 

 𝐺(𝑥𝑘)  = −𝑓 [
𝑥1
𝑐
𝑘

𝑃𝑋𝑧1
𝑐
𝑘

𝑦1
𝑐
𝑘

𝑃𝑌𝑧1
𝑐
𝑘

𝑥2
𝑐
𝑘

𝑃𝑋𝑧2
𝑐
𝑘

𝑦2
𝑐
𝑘

𝑃𝑌𝑧2
𝑐
𝑘

…
𝑥𝑁
𝑐
𝑘

𝑃𝑋𝑧𝑁
𝑐
𝑘

𝑦𝑁
𝑐
𝑘

𝑃𝑌𝑧𝑁
𝑐
𝑘
]
𝑇

   (3.29)  
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The above expression is noted to be non-linear in the six unknown relative POSE parameters 

[𝑋, 𝑌, 𝑍, ∅, 𝜃, 𝜓]T and needs to be solved at each time step.  In order to solve the relative POSE estimation 

problem for each time step, the Extended Kalman Filter framework was selected [6] given its applicability 

and reliability to problems of this nature.  For this system, the EKF will be used to estimate the states 

recursively at each time step and will be refined or steered to the actual value by comparing the locations 

of the feature point pairs in the camera image plane with an estimate of these feature points. 

The EKF requires an initialization step, which is driven by the physical model of the system and 

discussed further in Chapter 3.2.6.  Once the initialization has been completed, the EKF has two main 

elements that proceeds recursively for each time step in the system.   

The first step is the Prediction Step, which performs an optimal estimate of the system state based on 

the process model of the system dynamics.  Assuming that the current time step is 𝑘, the current state 

estimate 𝑥𝑘,𝑘−1 is calculated using the process model 𝐴 and the estimate of the prior state 𝑥𝑘−1,𝑘−1 at the 

k-1th time step,  

𝑥𝑘,𝑘−1 =  𝐴𝑥𝑘−1,𝑘−1      (3.30) 

 

The estimate covariance 𝑃𝑘,𝑘−1 is determined through the process model 𝐴, the estimate covariance 

𝑃𝑘−1,𝑘−1 (meaning estimate covariance of the k-1th time step using measurements up to the  k-1th time step), 

and the disturbance noise covariance 𝑄𝑘, 

 

𝑃𝑘,𝑘−1 =  𝐴𝑃𝑘−1,𝑘−1𝐴
𝑇 + 𝑄𝑘     (3.31) 

 

The next step is the Estimate Update Step, where measured feature point locations on the camera image 

plane are used to adjust the prediction of the state estimates. The output measurement model G(xk) 

described in Equation 3.24 is linearized about the current state estimate 𝑥𝑘,𝑘−1 resulting in the measurement 

Jacobian 𝐶𝑘, 

 

𝐶𝑘 = 
𝜕𝐺(𝑥)

𝜕𝑋
|
𝑥=�̂�𝑘,𝑘−1

       (3.32) 
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The mathematical derivation and resulting equations of the measurement Jacobian are detailed in the 

Appendix B.  An estimate of the output �̂�𝑘, which in this case represents an estimate of the feature point 

locations on the camera image plane, is then calculated using the measurement Jacobian 𝐶𝑘 and the current 

state estimate 𝑥𝑘,𝑘−1, 

 

�̂�𝑘 = 𝐶𝑘�̂�𝑘,𝑘−1       (3.33) 

 

The Kalman Gain 𝐾 is then calculated using the estimate covariance 𝑃𝑘,𝑘−1 calculated in equation 3.31, 

the measurement Jacobian 𝐶𝑘 determined in equation 3.32, and the measurement noise covariance 𝑅𝑘, 

 

𝐾 = 𝑃𝑘,𝑘−1 𝐶𝑘
𝑇(𝑅𝑘 + 𝐶𝑘𝑃𝑘,𝑘−1𝐶𝑘

𝑇)
−1

    (3.34) 

 

Finally, the state estimate 𝑥𝑘,𝑘 and estimate covariance 𝑃𝑘,𝑘 are updated for the current time step using 

the Kalman Gain 𝐾 and the innovation, which is defined as the difference between the measured output 

𝑦𝑘  and the estimated output �̂�𝑘, and is used to steer the control system to the actual values,  

 

𝑖𝑛𝑛𝑜𝑣𝑎𝑡𝑖𝑜𝑛 =  𝑦𝑘 − �̂�𝑘    (3.35) 

𝑥𝑘,𝑘 =  𝑥𝑘,𝑘−1 + 𝐾(𝑦𝑘 − �̂�𝑘)    (3.36) 

𝑃𝑘,𝑘 = 𝑃𝑘,𝑘−1 − 𝐾𝐶𝑘𝑃𝑘,𝑘−1     (3.37) 

 

3.2.5 System Model 

 

Using the recursive state estimation technique of the EKF detailed above, this system can now be 

mathematically described as a linearized discrete time state space as follows, 
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𝑥𝑘 = 𝐴𝑥𝑘−1 + 𝜂𝑘      (3.38) 

𝑦𝑘 = 𝐶𝑘𝑥𝑘 + 𝜈𝑘     (3.39)  

 

The relative POSE estimation and video see-through AR system model can be described using the following 

process flow and can be graphically represented using the block diagram in Figure 3-6 below: 

 

1. Set up initial conditions including 𝑥1,1,  𝑄𝑘 , 𝑅𝑘 , 𝐴, and 𝑃1,1 and set the time step counter 𝑘=1, where 

𝑥1,1 is the initial state estimate of the relative POSE parameters, 𝑄𝑘  and 𝑅𝑘 are the disturbance and 

measurement noise covariance matrices respectively, and 𝑃1,1 is the initial estimate covariance 

value.   

2. Locate target object initial position on camera image plane through image processing detection 

techniques, noting that target object located will be compared against CAD model object library.  

3. Start Recursive Estimation Loop 

a. Increment step counter, i.e. 𝑘 = 𝑘 + 1 

b. Capture image on camera image plane and through image processing techniques, locate 

each of the N feature points of the known target object, i.e. 𝑥𝑗
𝑖 and 𝑦𝑗

𝑖 that form the measured 

output 𝑦𝑘.    

c. Extended Kalman Filter Prediction Step 

i. Carry out prediction step of EKF to determine new state estimate for 𝑥𝑘,𝑘−1 and 

the estimate covariance 𝑃𝑘,𝑘−1 based on the state estimate and estimate covariance 

of the prior time step. 

d. Extended Kalman Filter Measurement Update Step 

i. Linearization Step for each time step to find the measurement Jacobian 𝐶𝑘 and 

predict the output ŷk based on the state estimate of the current time step 𝑥𝑘,𝑘−1 

ii. Determine the Kalman Gain 𝐾 
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iii. Estimate Update step to refine the state estimate 𝑥𝑘,𝑘 and the estimate covariance 

𝑃𝑘,𝑘 

e. Update the camera image plane feature point locations of virtual object image for each of 

the 𝑀 points of the virtual object, i.e.,  

 

𝑥𝐴𝑅
𝑖

𝑗
= 

−𝑓𝑥𝐴𝑅
𝑐

𝑗

𝑃𝑋𝑧𝐴𝑅
𝑐

𝑗

       (3.40) 

𝑦𝐴𝑅
𝑖

𝑗
= 

−𝑓𝑦𝐴𝑅
𝑐

𝑗

𝑃𝑌𝑥𝐴𝑅
𝑐

𝑗

      (3.41) 

 

f. Render new virtual object on display based on updated virtual object feature point 

locations 

4. End Recursive Estimation Loop 
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𝑸𝒌 

𝒙 𝒌−𝟏,𝒌−𝟏 

𝑷𝒌−𝟏,𝒌−𝟏 

𝐑𝐤 

𝐲𝐤 

�̂�𝐤 
𝐊 

 𝑪𝒂𝒎𝒆𝒓𝒂 𝑴𝒐𝒅𝒆𝒍 

𝐂𝒌 

�̂�𝐤,𝐤 

𝐏𝐤,𝐤 

 𝑪𝒂𝒎𝒆𝒓𝒂 𝑴𝒐𝒅𝒆𝒍 

𝒙 𝒌,𝒌−𝟏 

𝑷𝒌,𝒌−𝟏 

𝐱𝐤 

𝒅𝒆𝒍𝒂𝒚: 
𝟏

𝒛
 

 𝒏𝒏𝒐𝒗𝒂𝒕 𝒐𝒏 
𝑷𝒓𝒐𝒄𝒆𝒔𝒔 𝑴𝒐𝒅𝒆𝒍 

𝐅 

+ 

+ 

− 𝑼𝒑𝒅𝒂𝒕𝒆𝒅 𝑷𝑶𝑺𝑬 𝑬𝒔𝒕 𝒎𝒂𝒕𝒆 

𝑨𝒑𝒑𝒍𝒚 𝒂𝒑𝒑𝒓𝒐𝒑𝒓 𝒂𝒕𝒆 𝒄𝒐𝒏𝒕𝒓𝒐𝒍,  . 𝒆 𝑨𝑹 

  

Figure 3-6: Block Diagram detailing the Relative POSE Estimation System noting that the control 

mechanism is completed through a comparison of the measured output 𝑦𝑘 with the predicted/estimated 

output �̂�𝑘. 

3.2.6 Initialization 

 

Initialization of the EKF is important as incorrect parameter selection can easily result in a divergent 

outcome.  For the EKF, there are four main parameters that require consideration as follows: 

 

a. The initial state estimate x̂1,1 of the relative POSE parameters 

[𝑋, 𝑌, 𝑍, ∅, 𝜃, 𝜓, �̇�, �̇�, �̇�, ∅̇, �̇�, �̇�]
T
   

b. The initial estimate covariance P1,1   

c. The disturbance covariance matrix 𝑄𝑘 

d. The measurement noise covariance matrix Rk   
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For the initial state estimate 𝑥1,1, care must be taken to ensure that the values of the relative POSE 

parameter selected are within the field of view of the system.  For instance, if the initial state estimate is 

chosen such that any of the feature points of the target object are occluded, then convergence of the EKF 

may not be possible.  The field of view of the camera will further constrain the system as it will restrict 

possible values of the roll angle ∅ about 𝑍𝐶 , and the yaw angle 𝜓 about 𝑋𝐶. Furthermore, the initial state 

estimate should be selected such that it is in the neighbourhood of the target object and not occluded.  

Various approaches are proposed in literature such as [40], [41], and [42] to help deal with poor EKF 

initialization.  For the general model, it is assumed that filter initialization occurs in a manner to produce a 

convergent solution.  However the specific method used for initialization in this work will be discussed in 

Chapter 4. 

The estimate covariance 𝑃1,1 represents the confidence on the initial state estimate.  Generally speaking 

if no a priori knowledge of the target object position is available, the value of 𝑃1,1 would be set high 

indicating that the confidence in the estimates are low.  

The disturbance covariance matrix 𝑄𝑘 selection is not simple as it represents the un-modeled system 

dynamics of the constant velocity model.  For example, higher order terms of the relative POSE parameters 

such as acceleration and modeling error are encapsulated within 𝑄𝑘.  The matrix element values of the 

disturbance covariance matrix 𝑄𝑘 are generally selected to be larger for faster motion parameters and lower 

for slower motion parameters.  Experimentation can be used to find a more optimal selection for 𝑄𝑘.  The 

measurement noise covariance matrix 𝑅𝑘 represents the error in the image measurement system, which in 

this case is the camera of the mobile computing device.  The matrix element values of the measurement 

noise covariance matrix 𝑅𝑘 can typically be determined through experimentation and also through insight 

of the physical system intrinsic parameters.  In this system, the measurement noise represents the error of 

the camera sensor in pixels and the measurement noise covariance can be determined through knowledge 

of the physical sensor’s characteristics. 
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3.2.7 Effective Workspace 

 

The concept of the effective workspace between the device and the target object is defined as the area in 

which the mathematical system model defined above can operate.  As illustrated in Figure 3-7, the target 

object is occluded from the device’s camera field of view, as it is physically behind the device.  The 

constraints on the effective workspace can be intuitively determined by examining the system model.   

 

Device

Mobile Computing Device 
Camera Field of View

Target Object

 

Figure 3-7: Illustration of how the target object can be occluded from the device’s camera field of view if 

the relative roll angle ∅ is outside the camera’s effective field of view.   

 

There are no theoretical constraints in the relative 𝑋 and 𝑌 directions as it is assumed that the device 

camera has the ability to form images on an object that is an arbitrarily large distance away. For the relative 

𝑍 POSE parameter, it is known that the device and target object must have a positive distance, i.e. 𝑍 > 0, 

between them otherwise the target object would be physically behind the camera and would be occluded 

from view.  As infinity focus was assumed for the device camera, there is no constraint for positive relative 

𝑍 distances.  This allows us to write the following three constraints for the Cartesian relative POSE 

parameters, 

 

−∞ < 𝑋 < ∞     (3.42) 
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−∞ < 𝑌 < ∞     (3.43) 

0 < 𝑍 < ∞       (3.44) 

 

For the relative POSE angles, constraints in the field of view will occur when the target object is at an 

angle that is greater than the device camera field of view.  For the relative roll angle ∅ about 𝑍, there are 

no occlusions or constraints.  Additionally it was assumed that the camera has the ability to form images 

on the image plane for relative pitch  𝜃 and yaw 𝜓 angles that fall along the camera frame 𝑌𝐶 and 𝑋𝐶 axes 

respectively.  Therefore as the relative pitch angle 𝜃 about 𝑌 and the relative yaw angle 𝜓 about 𝑋 increase 

above ±
π

2
,  the target object will be occluded from the device camera’s field of view.  This allows us to 

write the following three constraints for the Euler angle relative POSE parameters, 

 

−𝜋 < ∅ ≤ 𝜋      (3.45) 

−
𝜋

2
 < 𝜃 <

𝜋

2
       (3.46) 

−
𝜋

2
 < 𝜓 <

𝜋

2
      (3.47) 

 

3.3 Extension to Multiple Target Objects 

 

Next the case for extending the current system model to include multiple target objects is considered.  In 

this instance, a real time object tracking framework is required to be applied to each of the target objects to 

determine the relative POSE between the device and each target object and then render a unique virtual 

object for each target object based on the relative POSE data.  

 

3.3.1 Assumptions Required for Multiple Target Objects 

 

In order to extend the mathematical model and AR Framework to multiple target objects, a few additional 

assumptions are required from what was assumed and considered previously in Chapter 3.2.2: 
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a. It is assumed that there are 𝑚 > 1 target objects, where 𝑚 is a positive integer. 

b. It is assumed that each target object is known and it is a rigid body with a defined number of feature 

points.  The number of feature points for each 𝑘 ∈ {1…𝑚} target objects is defined by a set of 

points, where 4 ≤ 𝑁 ≤ 6, and their Cartesian coordinates in their respective object frames are 

perfectly known.    

c. It is assumed that for each target object that no three feature points are collinear in the object frame. 

d. The object feature points for all 𝑚 target objects are distinguishable in the camera image and their 

perspective projection can be measured at each time step using image processing techniques. 

e. The device and the 𝑚 target objects are assumed to be independent with respect to their relative 

motions.  

f. It is assumed that the relative 3D motion between the camera of the device and each of the target 

objects are smooth and can be approximated by a constant velocity model. 

g. The number of feature points for each 𝑘 ∈ {1…𝑚} virtual objects are known and these virtual 

reality point positions are fixed relative to each of the target object.  

h. It is assumed that the sampling rate for the discrete time system is constant. 

 

3.3.2 Relative POSE Estimation Model for Multiple Target Objects 

 

Extending the mathematical model to account for multiple target objects is trivial, as the procedure outlined 

in Chapter 3.2.5 is repeated for each target object at each time step.  The relative POSE estimation and 

video see-through AR process flow is modified as follows with the pertinent changes detailed in bold-face 

text: 

 

1. For each 1…m target objects set up initial conditions (𝒙 𝟏,𝟏
𝒎 , 𝑸𝒌

𝒎, 𝑹𝒌
𝒎, 𝑨𝒎, and 𝑷𝟏,𝟏

𝒎 )  
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2. For each 1…m target objects, locate target object initial position on camera image plane 

through image processing detection techniques.  It is noted that each of the m target objects 

located will be compared against CAD model object library.  

3. Start Recursive Estimation Loop 

a. Increment step counter, i.e. 𝑘 = 𝑘 + 1 

b. Capture image on camera image plane and through image processing techniques, locate 

each of the feature points for each known target object, i.e. 𝑥𝑗
𝑖 and 𝑦𝑗

𝑖 that form the 

measured output y𝑘
𝑚.    

c. Employ unique object identification techniques to ensure that the feature points are 

properly grouped to their respective objects and none are erroneously categorized to 

a different target object during the object tracking phase.   

d. For each 1…m target objects, complete the following: 

i. Complete the Extended Kalman Filter Prediction Step to determine new state 

estimate for 𝑥𝑘,𝑘−1
𝑚  and the estimate covariance 𝑃𝑘,𝑘−1

𝑚  

ii. Complete the Extended Kalman Filter Measurement Update Step to find the 

measurement Jacobian 𝐶𝑘
𝑚 , predict the output �̂�𝑘

𝑚 based on the state estimate of 

the current time step 𝑥𝑘,𝑘−1
𝑚 , determine the Kalman Gain 𝐾𝑚, and complete the 

Estimate Update step to refine the state estimate 𝑥𝑘,𝑘
𝑚  and the estimate covariance 

𝑃𝑘,𝑘
𝑚 . 

iii. Update the camera image plane feature point locations for each virtual object.  

iv. Render new virtual object positions based on updated virtual object feature point 

locations. 

4. End Recursive Estimation Loop 

 

3.3.3 Considerations for Multiple Target Object Relative POSE Estimation  
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Generally speaking, the same parameters apply for model initialization as in the case of a single object as 

detailed in Chapter 3.2.6.  One additional complication is that field of view of the device camera will play 

a more important role in the ability of the system to track multiple target objects.  Specifically the field of 

view will limit the number of objects that can be physically tracked in real time due to the fact that the 

camera image plane is finite in size.   

As well, care must be taken in the image processing techniques to ensure that unique object 

identification techniques are employed.  This requirement exists in order to ensure that the image processing 

techniques do not erroneously skip to a different target object during the object tracking phase, which could 

lead to an inaccurate result.  There are various approaches available to ensure unique object identification.  

Wagner [26] provides a good summary of various unique object identification approaches such as particle 

filters for motion and appearance estimation [43] [44] [45], or online learning techniques [46] [47] [48].  

For the general model, it is assumed that unique object identification is incorporated into the image 

processing techniques. However, the specific method used for unique object identification will be discussed 

in Chapter 4.  Figure 3-8 provides an example of how the feature points of multiple target objects can be 

simultaneously transformed into the camera image plane and it is noted that no update to the mathematical 

model is required.  
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Figure 3-8:  Depiction of transformation of feature points of multiple target objects into the camera image 

plane.    
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Chapter 4  SYSTEM IMPLEMENTATION 

4.1 Overview and Requirements 

 

The aim of this work is to physically implement a real-time video see-through AR application on a mobile 

computing device.  This requires that object tracking and video see-through AR rendering will occur in a 

manner such that the AR image is smoothly rendered onto the display of the device. It is known that 20 

frames per second represent the minimum requirement for our eyes and brain to receive animations without 

a sense of lag [49]. This requirement gives a bound for the minimum system performance.   Therefore the 

system is required to operate within a minimum of 20 frames per second or more precisely complete the 

required operations within a 50ms period.  Within this 50ms period, it is required to complete the following 

operations at a high level: 

 

a. Complete image processing to locate the feature points of the known target object.  The target 

object has pre-defined and known feature points that are distinguishable by the camera sensor and 

image processing techniques. 

b. Complete relative POSE estimate to determine the six POSE parameters given the feature point 

inputs 

c. Render a video see-through AR image that is overlaid on top of the current image on the view 

finder of the device’s display and is based on a fixed position from the known target object. 

 

This chapter is therefore broken down into an examination of the physical system selected, a discussion 

of the specific design and implementation details determined through the course of this work, an overview 

of the system model derived, extensions to multiple object tracking, and finally the verification and 

validation approaches used to quantify the system.  
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4.2 Physical System Model  

4.2.1 Known Target Object Model: Credit Card 

 

For the known target object model, there are three requirements that will help to guide the selection for this 

thesis.  The first requirement is that the target object is known and it is a rigid body with a defined number 

of feature points that can be extracted from the object.  The number of feature points is defined by a set of 

points where 4 ≤ 𝑁 ≤ 6 such that no three feature points are collinear.  Secondly, it is required that the 

known target object feature points are distinguishable in the camera image plane and their perspective 

projection can be measured at each time step using image processing techniques.  Finally, a target object is 

required to be selected that will allow for repeatability and reproducibility of results.  

A credit card was selected as the known target object model where the corners are defined as the four 

feature points.  This model selection also allows us to minimize computation since the number of feature 

points can be set to 𝑁 = 4.   It is noted that additional feature points will improve accuracy but will also 

increase computational complexity.  The credit card physical dimensions are defined in the ISO 7810 

standard [50] which defines the Physical Characteristics of Credit Card Sizes.   The definition of the target 

object model is shown in Figure 4-1 below and the dimensions used in this research work are provided in 

Table 4-1 below. 

 

Table 4-1: Known Target Object Model Physical Dimensions 

Attribute Dimension (mm) Corresponding Axis in Object Frame 

Length 85.6mm 𝑋𝑂 

Width 55.2mm 𝑌𝑂 
Height 0.76mm 𝑍𝑂 
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Figure 4-1: Known object model frame definition depicting the credit card and the feature point locations 

used in the relative POSE estimation.  

 

4.2.2 Mobile Computing Device: BlackBerry Dev Alpha A 

 

Since BlackBerry and the University of Waterloo contributed to the funding of this research, a device in 

the BlackBerry portfolio was used.  The BlackBerry Dev Alpha A device [51] was selected for the purposes 

of this research due to its processing power (1.5GHz dual core microprocessor) and 8MP auto focus rear 

facing camera.  It was felt that the processing power would be sufficient to implement the EKF, image 

processing, and virtual object rendering in real time and that the camera resolution would be sufficient to 

provide for distinguishable feature points.  The physical or intrinsic parameters of both the display and 

camera of the device impacts the relative POSE estimation and these are discussed below. 

 

4.2.3 Camera Physical Characteristics 

 

The rear facing camera of the device is an 8MP auto focus camera and is an integrated camera module 

containing multiple parts including the camera lens, the CCD sensor, and a small micro motor or Voice 
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Coil Motor (VCM), which is used to adjust the auto focus of the camera effectively changing the focal 

length.   For the purposes of this project implementation, the auto focus is fixed in the software allowing us 

to assume a fixed focal length (𝑓 = 3.32mm), which was obtained through calibration.  Additionally the 

inter-pixel spacing of the camera was known (𝑃𝑋 = 𝑃𝑌 = 1.4𝜇𝑚) and easily obtained through calibration.   

As well, the camera module has several lenses that will cause a level of refraction and distortion [9].  

For the purposes of this project, the physical monocular camera model was modeled using a pinhole camera 

and the modeling error, i.e. distortion, is encapsulated into the camera measurement noise covariance matrix 

𝑅𝑘 parameter of the EKF.   Additionally, it is assumed that the camera CCD sensor captures images with a 

global shutter, i.e. all parts of the image are recorded simultaneously.  However it is known, as per Klein 

and Murray [66], that a CMOS sensor will record images with a rolling shutter such that the left edge of 

the scene will be recorded with some lag after the right edge of the scene resulting in a bias error. 

Furthermore, it is noted that the benefit of using the EKF approach is that it allows for inclusion of 

modeling error into the parameters 𝑄𝑘  and 𝑅𝑘.  In this case the assumptions of the constant velocity model 

and the pinhole camera model can be used and these modeling errors can be effectively encapsulated into 

the disturbance covariance matrix 𝑄𝑘  and the measurement noise covariance matrix 𝑅𝑘 respectively.  

 

4.2.4 Display Physical Characteristics 

 

 The display used in the BlackBerry Dev Alpha A device is based on a standard Liquid Crystal Display 

(LCD) technology comprising of composite pixels and a backlight.  The RGB pixel array has a dimension 

of 760 x 1280 pixels.   The origin of the display is at pixel location (1, 1) and is located in the top left corner 

of the display pixel plane.  The optical center is assumed to be located at the exact center of the display, i.e. 

at display pixel plane location (380, 640). The feature points located through image processing are identified 

with respect to display pixel plane coordinates.    
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Figure 4-2: Device display pixel plane array noting that display origin is located at the top left corner. 

 

4.3 Design 

 

4.3.1 Design Assumptions 

 

The following explicit assumptions are required to implement the AR application on the mobile computing 

device: 

a. All of the assumptions from Chapter 3.2.2 apply unless otherwise noted. 

b. The monocular camera of the device is considered to be fixed within the body of the device and 

has an associated coordinate camera frame C.  

c. It is assumed that the monocular camera of the device can be modeled by the pinhole camera model 

and that the assumptions of global shutter apply. 

d. It is assumed that the optical center of the display pixel plane is directly coupled to the camera 

image plane’s origin 𝑂𝐼 .  

e. It is assumed that the camera sensor contains a different number of pixels than the display pixel 

plane.  Therefore a transformation or mapping is required between the camera image plane and the 

display pixel plane.  
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4.3.2 Sampling Rates and Relative Motion Dynamics 

 

Based on the hardware system design of the BlackBerry Dev Alpha A, the rear facing camera provides an 

image stream of up to 30 frames per second or every 33ms.  Coupled with the requirement for completing 

the entire set of operations (image processing, POSE estimation, video see-through AR updates) within 20 

frames per second or every 50ms, a suitable sampling rate must be selected. 

Given that the BlackBerry Dev Alpha A device is a mobile handset running multiple and often unrelated 

processes/threads, it was felt that fixing the sampling rate somewhere between 33ms to 50ms period could 

potentially impact the performance.  Therefore, it was decided to allow the sampling rate parameter to 

dynamically vary from what is normally a constant parameter.  Noting that a constant velocity model of the 

relative motion dynamics is assumed, it becomes clear that the impact of the dynamic sampling rate causes 

the process model 𝐴 to vary over each time step.   The equation for the relative motion dynamics to account 

for a varying time step can be modified as follows, 

 

𝑥𝑘 = 𝐴𝑘𝑥𝑘−1 + 𝑛𝑘      (4.1) 

 

for the kth time step where 𝑛𝑘 is a vector of zero mean Gaussian disturbance noise with covariance 𝑄𝑘.  To 

consider a dynamic sampling period, the process model 𝐴𝑘is therefore modified as follows: 

 

𝐴𝑘 = [
𝐼6𝑥6 (𝑡𝑘 − 𝑡𝑘−1)𝐼6𝑥6
06𝑥6 𝐼6𝑥6

]      (4.2) 

 

 = [
𝐼6𝑥6 𝛿𝑘𝐼6𝑥6
06𝑥6 𝐼6𝑥6

]      (4.3) 

 

where 𝐼 is the identity matrix and 𝛿𝑘  is the change in sampled time from the k-1th time step 𝑡𝑘−1 to the kth 

time step 𝑡𝑘.   In Chapter 3, 𝛿𝑘 was constant since the sampling rate was constant.  With a varied sampling 

rate 𝛿𝑘 will vary as shown above. 
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4.3.3 Image Processing to Locate the Target Object Feature Points  

 

Image processing will be required to locate the feature points of the known target object.  In this particular 

application the image stream provided to the viewfinder window is processed through the specialized image 

processing hardware and then passed to the microprocessor, where further processing is completed before 

being output to the display [52].  Image processing is then used to locate the target object feature points 

with respect to the display pixel plane. 

In order to complete the required Image Processing operations, to locate the feature points on the display 

pixel plane, OpenCV [53] libraries were used.  As OpenCV is an open source library with a focus on real 

time image processing, it was an ideal selection for inclusion in this project since it contains many of the 

required functions needed such as Gaussian blur, Sobel filter, and morphological operations.  The Image 

Processing and Feature Point Location module developed using the OpenCV library can be broken down 

into two distinct phases: detection and tracking.    

In the detection phase, the entire image is scanned and the required image processing functions are 

performed.  There are two cases where the detection portion of the image processing algorithms is executed.  

Initially at the beginning of the operation where the device has no a priori knowledge of the object and its 

feature point locations in the image and secondly when the image processing component loses track of the 

object. In a real time system, entire image scanning can be a relatively expensive operation and is avoided 

where possible in this implementation.    

In the tracking phase, only a subset region of the image is processed based on the location of the target 

object in the camera image plane and is typically referred to as windowing. Given that a constant velocity 

model is assumed for the relative motion dynamics, the use of windowing is considered as a valid approach 

[5].  It was found during trial runs that the tracking phase can vary from 12ms to 25ms, which is below the 

33ms to 50ms requirement.    

The selection of the credit card as the target object raised some challenges in the extraction of the 

feature points due to the fact that credit card corners are round.  As a result, the image processing algorithm 

approach was to detect the four edges of the target object and then use the line intersections to extrapoloate 

the four object feature points.  In the detection phase, the entire image was scanned whereas in the tracking 

phase a window around the entire target object was created.  One benefit to this algorithmic approach is 

that multiple object tracking is easily handled, as each full target object is windowed separately making 
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unique object identification trivial.  The algorithms for both the Detection and Tracking Phase of the image 

processing module are detailed more fully in Appendix C for reference. 

Overall sources of error in the image processing approach used can be broken down as follows.  The 

first source of error is due to the small difference in the physical object model versus the CAD object library 

where the credit card has rounded corners and the CAD object model assumes a rectangle.  A second source 

of error is due to the camera sensor itself, which includes the typical sensor error along with the error caused 

due to the rolling shutter effect.   

 

4.3.4 Display Pixel Plane to Camera Image Plane Transformation 

 

As previously stated, the image processing techniques will locate the feature points of the target object with 

respect to the display pixel plane.  To solve the relative POSE estimation problem, the feature points are 

required to be located in the camera image plane.  Therefore the required transformation between the display 

pixel plane and the camera image plane needs to be determined. 

As noted in Chapter 3.1.2, the image captured by the camera sensor is inverted from the image that is 

seen in the camera frame.  The image that is rendered to the display is then corrected, i.e. re-inverted, to 

align with the image that is seen in the camera frame.  Furthermore, it is assumed that there is no one-to-

one mapping between the display pixel plane and the camera image plane, as the number of display pixels 

is different from the number of camera sensor pixels.  Therefore, some scaling factor is also required. To 

determine the transformation and mapping from the display pixel plane to the camera image plane, the 

following assumptions are required:  

 

a. Auto focus of the camera module is turned off, allowing us to assume a fixed focal length 𝑓. 

b. The origin of display pixel plane corresponds to the optical center of the camera image plane. 

c. The 𝑥 and 𝑦 axes of the camera image plane are defined in the horizontal direction of the image 

sensor. 

d. Transformation of object feature points through the camera frame to the camera image plane is 

defined by the pinhole camera model described above. 
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The transformation of the feature points from the display pixel plane to the camera image plane can be 

defined through a function ℎ(𝑥, 𝑦):ℛ2 → ℛ2, which is derived as follows: 

 

1. The feature point pair (𝑥𝑗
𝑑 , 𝑦𝑗

𝑑) is obtained through Image Processing techniques and represents the 

feature point location in the display pixel plane.  The feature point pair (𝑥𝑗
𝑑 , 𝑦𝑗

𝑑) is measured with 

respect to the top left corner of the display. 

2. Express the feature point pair with respect to camera image plane coordinate system.  A translation 

is required to represent the feature point pair with respect to the optical center or origin of the 

camera image plane (𝑂𝐶𝑥 , 𝑂𝐶𝑦).  It is assumed that the optical center of the display pixel plane 

(360 pixels, 640 pixels) corresponds to the optical center of the camera image plane. Hence the 

transformation can be initially expressed as follows,   

 

𝑥𝑗
𝑖 = 𝑥𝑗

𝑑 −𝑂𝐶𝑥      (4.4a) 

𝑦𝑗
𝑖 = 𝑦𝑗

𝑑 − 𝑂𝐶𝑦      (4.4b) 

 

3. Invert the feature point pair, i.e. apply the image negation required from display pixel plane to 

camera image plane to correct for the operation performed by the specialized image processing 

hardware. 

4. Scale the feature point pair 𝑥 and 𝑦 coordinates to account for the physical difference in size 

between the display pixel plane and the camera image plane.  The scaling factors 𝑆𝑥 and Sy are 

applied to the negated values in Equations 4.4a and 4.4b as follows, 

 

𝑥𝑗
𝑖 = 𝑆𝑥(−𝑥𝑗

𝑑 + 𝑂𝐶𝑥)      (4.5a) 

y𝑗
𝑖 = Sy(−y𝑗

𝑑 + OCy)      (4.5b) 
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5. Adjust the axes definition to match that of camera image plane.  In this physical system with the 

above noted model definition of a right handed coordinate system, an inversion of the  𝑦 axis 

coordinates is required as follows,   

 

𝑥𝑗
𝑖 = 𝑆𝑥(−𝑥𝑗

𝑑 + 𝑂𝐶𝑥)      (4.6a) 

𝑦𝑗
𝑖 = 𝑆𝑦(𝑦𝑗

𝑑 − 𝑂𝐶𝑦)      (4.6b)  

 

where 𝑥𝑗
𝑖, 𝑦𝑗

𝑖 are the Cartesian coordinates on the camera image plane,  

            x𝑗
𝑑, y𝑗

𝑑 are the Cartesian coordinates on the display pixel plane,  

       𝑂𝐶𝑥, 𝑂𝐶𝑦 are the optical center coordinates of the display pixel plane (360, 640),  

            𝑆𝑥, 𝑆𝑦 are the scaling parameters from the display pixel plane to the camera image plane 
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Figure 4-3: Transformation of feature points from the display pixel plane to the camera image plane. 

 

It is noted that the transformation between the display and the camera sensor can be obtained through 

calibration tests, which require no a priori knowledge of the intrinsic parameters of both the display and the 

camera sensor.  The calibration routine [54] used in this research is detailed in Appendix D.  The scaling 

factor between the display pixel plane and camera image plane was found to be,  

 

𝑆𝑥 = 𝑆𝑦 = 0.7946      (4.7) 
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This results in the following equations, which now gives the full definition for the transformation ℎ 

from the display pixel plane to the camera image plane, 

ℎ(𝑥𝑗
𝑑, 𝑦𝑗

𝑑) =  [
𝑥𝑗
𝑖

𝑦𝑗
𝑖
]      (4.8) 

where  

𝑥𝑗
𝑖 = 0.7946 (−𝑥𝑗

𝑑 + 360)     (4.9a) 

𝑦𝑗
𝑖 = 0.7946 (𝑦𝑗

𝑑 − 640)     (4.9b) 

 

4.3.5 Relative POSE Estimation Initialization  

 

The relative POSE estimation to determine the six POSE parameters 𝑊 = [𝑋, 𝑌, 𝑍, ∅, 𝜃, 𝜓]𝑇 

is based on the definitions and assumptions stated in Chapter 3.   However, there are various elements 

within the EKF that are specific to the physical system and these require further discussion; specifically the 

initial conditions for the initial system state 𝑥1,1 and the initial estimate covariance 𝑃1,1 along with values 

for the measurement noise covariance matrix 𝑅𝑘 and the input dynamic disturbance noise covariance matrix 

𝑄𝑘.   

There are various methods as noted in Chapter 3 that can improve filter initialization.  These approaches 

were not pursued in this design, as the focus was on overall technical feasibility of the proposed system.  

Adding in a filter initialization element such as bootstrapping could be done by adjusting the initialization 

block without impact to the rest of the design and is something to be considered for future enhancements.  

For the case of this design, initial insight, experimentation, and simulation were used to generate a suitable 

set of values for these parameters.  The initial state estimate 𝑥1,1 of the relative POSE parameters was set 

based on the assumption that the target object was located directly in front of the device with a small change 

in yaw.  After some experimentation and trials, the initial state estimate 𝑥1,1 was set for the model as 

follows, 
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𝑥1,1 = [0, 0, 0.5, 0,0,0.3,0,0,0,0,0,0]𝑇             (4.10) 

 

where the first three elements of initial state estimate 𝑥1,1 𝑋, 𝑌, and 𝑍 are dimensioned in meters, the second 

three elements ∅, 𝜃, and 𝜓 are in radians, the next three elements �̇�, �̇�, and �̇� are in meters/second, and the 

final three elements ∅̇, �̇�, and �̇� are in radians/second. 

For the purposes of this work, it is assumed that the video see-through mobile AR application will be 

initialized to be in the neighbourhood of our initial state estimate.  Therefore, our confidence in the initial 

state estimate is higher and as a result, the initial estimate covariance 𝑃1,1 was therefore set to be low.  Trials 

were conducted and the initial estimate covariance was set as follows, 

 

𝑃1,1 = 10−2[𝐼12𝑥12 ]      (4.11) 

 

The disturbance covariance matrix 𝑄𝑘 encapsulates the error in the process model for each of the twelve 

parameters in the system state vector 𝑥𝑘.  For the position elements of the disturbance covariance matrix, it 

was initially assumed that 95% of the time, i.e. 2σ, there would be a position error in the model of 0.5cm 

for the X, Y, and Z directions and 2 for the three Euler angles in one time step (20Hz).  The position-based 

entries of the disturbance covariance matrix 𝑄𝑘 can then be determined by solving for σ2.  Similarly for the 

first derivative or velocity elements, it was assumed that 95% of the time, the velocity error in the model 

was 0.25cm/s for the X, Y, and Z directions and 1/s for the three Euler angles in one time step (20Hz).  As 

with above the velocity-based entries of the disturbance covariance matrix 𝑄𝑘 can be determined by solving 

for σ2.   

The measurement noise covariance matrix 𝑅𝑘 represents the covariance of the measurement error.  It 

was initially assumed that 95% of the time, i.e. 2σ, the measurement error due to noise will be within 4 

display pixels.  Similar to the disturbance covariance matrix, the entries of the measurement noise 

covariance matrix can be determined by solving for σ2.   

Initial simulations and physical experiments were conducted.  In these experiments, controlled motions 

were applied and were used to optimize the values for both the disturbance covariance matrix 𝑄𝑘 and the 

measurement noise covariance matrix 𝑅𝑘, as detailed in equations 4.12 and 4.13.  A further examination of 
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the effects of changing these parameters and suitability of the parameter values is detailed further in Chapter 

5. 

 

𝑄𝑘 = 

[
 
 
 
 
2.25−5𝐼3𝑥3 03𝑥3 03𝑥3 03𝑥3

03𝑥3 0.25
𝜋

180
𝐼3𝑥3 03𝑥3 03𝑥3

03𝑥3
03𝑥3

03𝑥3
03𝑥3

2.44−2𝐼3𝑥3 03𝑥3

03𝑥3
𝜋

180
𝐼3𝑥3 ]

 
 
 
 

   (4.12) 

 

𝑅𝑘 =  4[𝐼8𝑥8]       (4.13) 

 

4.3.6 Virtual Object Image Generation  

 

In order to generate and render the video see-through virtual object in the display pixel plane, the position 

of the each of the virtual object’s 𝑀 ≥ 1 feature points needs to be calculated with respect to the origin of 

the target object frame origin 𝑂𝑂.   This operation can be done using the following three equations 

previously defined in Chapter 3 as follows, 

 

𝑃𝐴𝑅
𝐶

𝑗
= [

𝑋
𝑌
𝑍
] + 𝑅𝑂

𝐶(∅, 𝜃, 𝜓)𝑃𝐴𝑅
𝑂

𝑗
     (4.14) 

𝑥𝐴𝑅
𝑖

𝑗
= 

−𝑓𝑥𝐴𝑅
𝑐

𝑗

𝑃𝑋𝑧𝐴𝑅
𝑐

𝑗

       (4.15) 

𝑦𝐴𝑅
𝑖

𝑗
= 

−𝑓𝑦𝐴𝑅
𝑐

𝑗

𝑃𝑌𝑧𝐴𝑅
𝑐

𝑗

       (4.16) 

 

A fixed offset for the virtual object from the object frame’s origin was considered.  However extension 

to multiple target objects was also considered and field of view or simply fitting all of the target objects and 

their respective virtual objects into the display of the device was felt to be a constraint.  Therefore, the 𝑃𝑂
3 

point coinciding with the object frame origin 𝑂𝑂 was selected so that the virtual object would be overlaid 
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on top of the target object, i.e. credit card.  In order to render the virtual object onto the target object, 

OpenGL [55] libraries were used.  As OpenGL is an open source library with a focus on rendering 2D and 

3D graphics, it was selected for the approach of implementing the video see-through AR object.   

In this project, the video see-through AR image is required to be overlaid on top of the camera video 

viewfinder image stream such that it remains in the fixed position and orientation relative to the target 

object.  However due to implementation specifics of the BlackBerry Dev Alpha A software architecture (no 

writeable buffer exists from the camera service), a second image buffer was required to be created.  This 

implementation approach of creating a second buffer allowed for the Image Processing and relative POSE 

estimation thread to be run separately from the AR Rendering Thread, which meant that the video see-

through AR rendering steps did not count against the time budget of 33ms to 50ms since they were 

completed in parallel.  Communication between these two process threads was handled via messages, which 

will aid in the execution efficiency.  For this thesis, an image of a skeleton was selected as virtual object to 

be rendered and an image is shown in Figure 4-4 below. 

 

 

 

Figure 4-4: Depiction of the skeleton frame AR image rendered onto the credit card object.  
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4.3.7 Effective Workspace 

 

From a physical standpoint, any camera’s field of view will be finite and will typically be conically shaped 

as illustrated in Figure 4-5 below.   Therefore, it is expected that the relative X, Y, and Z POSE parameters 

and the effective workspace would be constrained to a finite distance.  Additionally, for both the relative 

pitch angle 𝜃 about 𝑌 and for the relative yaw angle 𝜓 about 𝑋, the camera’s conical field of view will 

constrain the Effective Workspace.  The constraints on the effective workspace for the relative POSE 

parameters will be unique for each physical system due to the construction, physical properties such as the 

lens, etc. and can be determined experimentally for each physical system.    

However, for the purposes of this thesis, it is assumed that the camera used in the device has the ability 

to form images on the camera image plane, which are an arbitrarily large distance away, i.e. infinity focus.   

Additionally it is assumed that the camera has the ability to form images on the image plane for relative 

pitch  𝜃 and yaw 𝜓 angles that fall along the camera frame 𝑌𝐶 and 𝑋𝐶 axes respectively.  Therefore, the 

effective workspace for this physical system can be defined as per Equations 3.42 through 3.47, which are 

restated below for completeness. 

  
 

  

 

 

𝑪𝒂𝒎𝒆𝒓𝒂 𝑪𝒐𝒏 𝒄𝒂𝒍 𝑭 𝒆𝒍𝒅 𝒐𝒇 𝑽 𝒆𝒘 

 

Figure 4-5: Device camera field of view will be practically constrained to a conical field of view.    



 

 48 

 

−∞ < 𝑋 < ∞     (3.42) 

−∞ < 𝑌 < ∞     (3.43) 

0 < 𝑍 < ∞       (3.44) 

−π < ∅ ≤ 𝜋      (3.45) 

−
π

2
 < 𝜃 <

π

2
       (3.46) 

−
𝜋

2
 < 𝜓 <

𝜋

2
      (3.47) 

 

As the focus of this work was directed towards proof of concept to implementing a video see-through 

mobile AR application using position based visual POSE estimation methods, maximizing the effective 

workspace was not an objective. Therefore the assumptions used above are deemed acceptable noting that 

the effective workspace area in practice is smaller than what is defined.  

4.3.8 System Design Model 

 

Using the knowledge and our model of the physical system along with the EKF, the physical system based 

on the BlackBerry Dev Alpha A device can be mathematically described as a linearized discrete time state 

space with the following definition,  

 

𝑥𝑘 = 𝐴𝑘𝑥𝑘−1 + 𝜂𝑘      (4.17) 

𝑦𝑘 = 𝐶𝑘𝑥𝑘 + 𝜈𝑘     (4.18)  

 

where 𝐴𝑘 is the process model described through a constant velocity model that is updated for each time 

step based on the time increment, 𝐶𝑘 is the measurement Jacobian that is linearized about the current state 

estimate 𝑥𝑘,𝑘−1 for each time step, and 𝜂𝑘, 𝜈𝑘 represents the disturbance and measurement noise vectors 

respectively. 
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Now that the general model has been extended to this physical system, specifically with considerations 

to the varying sample rate and the display to camera transformation, a modified algorithm for the video see-

through AR mobile application for the BlackBerry Dev Alpha A can be written.  The updated system 

algorithm is provided below and can be graphically represented using the block diagram in Figure 4-6 

below with the changes from the generalized model in boldface text. 

 

1. Set up initial conditions including 𝑥1,1, 𝑄𝑘 , 𝑅𝑘 , 𝐴𝑘, and 𝑃1,1 and set the time step counter 𝑘=1 

2. Locate target object initial position on camera image plane through image processing detection 

techniques, noting that the target object located will be compared against CAD model object 

library.  

3. Start Recursive Estimation Loop 

a. Increment step counter, i.e. 𝑘 = 𝑘 + 1 

b. Determine sample rate time increment 𝜹𝒌 between the kth and k-1th time steps 

c. Capture image on camera sensor and through image processing techniques, locate on 

the display pixel plane each of the 𝑵 = 𝟒 feature point pairs of the known target 

object, i.e. 𝒚𝒌
𝒋
= [𝒙𝒋,

𝒅 𝒚𝒋
𝒅],  𝒇𝒐𝒓 𝒋 ∈ {𝟏, 𝟐, 𝟑, 𝟒}. 

d. Using the function 𝒉, transform measured feature point coordinates from display 

pixel plane to camera image plane and form the modified measured output �̃�𝒌 as 

follows, 

 

�̃�𝑘
𝑗
=  ℎ(𝑥𝑗

𝑑, 𝑦𝑗
𝑑) =  [

𝑥𝑗
𝑖

𝑦𝑗
𝑖
]  𝑓𝑜𝑟 𝑗 ∈ {1,2,3,4}  (4.19a) 

�̃�𝑘 = [𝑥1
𝑖 𝑦1

𝑖 ⋯ 𝑥4
𝑖 𝑦4

𝑖]
𝑇

    (4.19b) 

 

e. Update the Process Model 𝑨𝒌 for each time step, 
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𝐴𝑘 = [
𝐼6𝑥6 𝛿𝑘𝐼6𝑥6
06𝑥6 𝐼6𝑥6

]      (4.20) 

 

f. Extended Kalman Filter Prediction Step 

i. Carry out prediction step of EKF to determine new state estimate for 𝑥𝑘,𝑘−1 and 

the estimate covariance 𝑃𝑘,𝑘−1 based on the state estimate and estimate covariance 

of the prior time step, 

 

𝑥𝑘,𝑘−1 = 𝐴𝑘�̂�𝑘−1,𝑘−1      (4.21) 

𝑃𝑘,𝑘−1 = 𝐴𝑘𝑃𝑘−1,𝑘−1𝐴𝑘
𝑇 + 𝑄𝑘     (4.22) 

 

g. Extended Kalman Filter Measurement Update Step 

i. Linearization Step for each time step to find the measurement Jacobian 𝐶𝑘 and 

predict the output �̂�𝑘 based on the state estimate of the current time step 𝑥𝑘,𝑘−1, 

 

𝐶𝑘 = 
𝜕𝐺(𝑥)

𝜕𝑋
|
𝑥=�̂�𝑘,𝑘−1

       (4.23) 

�̂�𝑘 = 𝐶𝑘�̂�𝑘,𝑘−1       (4.24) 

 

ii. Determine the Kalman Gain 𝐾, 

 

𝐾 = 𝑃𝑘,𝑘−1 𝐶𝑘
𝑇(𝑅𝑘 + 𝐶𝑘𝑃𝑘,𝑘−1𝐶𝑘

𝑇)
−1

    (4.25) 

 

iii. Estimate Update step to refine the state estimate 𝒙 𝒌,𝒌 and the estimate 

covariance 𝑷𝒌,𝒌 noting that the modified measured output �̃�𝒌 is included in 

the calculation of the innovation,  
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𝑥𝑘,𝑘 =  𝑥𝑘,𝑘−1 + 𝐾(�̃�𝑘 − �̂�𝑘)    (4.26) 

𝑃𝑘,𝑘 = 𝑃𝑘,𝑘−1 − 𝐾𝐶𝑘𝑃𝑘,𝑘−1     (4.27) 

 

h. Update the camera image plane feature point locations of virtual object image for each of 

the 𝑀 points of the virtual object   

i. Render new virtual object on display based on updated virtual object feature point locations 

4. End Recursive Estimation Loop 

 

   

    ,    

    ,    

 

Figure 4-6: System block diagram detailing the implementation of a video see-through AR system on 

BlackBerry Dev Alpha A device. 
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4.3.9 Implementation Architecture 

 

The design was implemented in C/C++ using the BlackBerry 10 Native Software Development kit.  Version 

control was handled using the open source Tortoise SVN repository [56]. The required OpenCV and 

OpenGL libraries were also included for the implementation.   The architecture of the implementation [57] 

is based on multi-threaded architecture and is shown in Figure 4-7 below. 

Trials were completed on both the image processing and POSE estimation portions of the 

implementation and the image processing module was found to take anywhere between 12ms to 25ms for 

each time step.  The relative POSE estimation module was consistently benchmarked to take approximately 

1ms.  As a separate rendering thread/module is used for the video see-through virtual object, it was executed 

in parallel to the Image Processing and relative POSE estimation portions of the algorithm and constantly 

renders the latest virtual object image based on the current relative POSE data.  As a result, the image 

rendering portion of the system design does not end up impacting the time budget of 50ms.  Therefore it is 

concluded that that the system can operate without a sense of lag for one known target object. 
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Figure 4-7: Software architecture implementation for video see-through mobile AR application. 
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4.4 Design Extension and Scalability 

 

4.4.1 Multiple Objects  

 

Extending the design to operate on multiple known objects requires only minor changes to the overall 

implementation.  Since the software architecture is based on multiple threads, the framework exists to 

simply launch additional state machines that manage the object tracking, relative POSE estimation, and AR 

rendering.  There are two primary challenges for this particular approach.  The first challenge is to ensure 

that the state machines track unique objects and the second challenge is with the increased processing time 

and its impact to the smoothness in the AR rendering. To resolve both challenges, the detection portion of 

the image processing algorithm was modified to scan the entire region of the display for known objects and 

secondly to include comparative logic between all state machines to ensure that each state machine is 

tracking a unique object.   

Additionally the POSE estimation algorithm does not require any changes.  However it is noted that 

different process models 𝐴𝑘 could be used for each target object to reflect that there would likely be 

different relative motion dynamics for each target object.  The procedure outlined above in Chapter 4.3.8 

is identical except for the following notable cases. 

 

1. Initialization, real-time tracking via the EKF, and AR rendering is completed in parallel for each 

1…m target objects.  It is noted that a different process model 𝐴𝑘 can be employed. 

2. Unique object identification techniques need to be employed. 

 

4.4.2 Multiple Known Object Models 

 

In order to extend the video see-through mobile AR design to multiple and unique object models, it is a 

matter of adjusting the image processing module to contain a 3D CAD library of different object models.  

The Detection portion of the image processing module would then need to be updated accordingly to 

properly map the feature points located to a specific 3D object model in the library.  Once the mapping to 
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the different object models is completed during the Detection Phase, the Tracking Phases of the image 

processing module would execute without any required changes.   The algorithmic process flow would not 

require any changes. 

 

 

 

4.4.3 Different Device Models   

 

Finally the POSE estimation and video see-through AR framework can be extended to different mobile 

computing devices or alternate platforms with the assumption that the device contains a display and a 

opposite facing camera to the display.  In order to apply the relative POSE estimation and virtual object 

generation algorithms to a different device, only a select few parameters need to be updated, as shown in 

Table 4-2 below.  It is also noted that all of the above assumptions would still apply and aside from some 

intrinsic parameters, the system model architecture remains unchanged. 

 

Table 4-2: Model Parameters Unique to Device Implementation – BlackBerry Dev Alpha A Specific 

Parameters Shown 

Attribute Variable Device 
Value 

Determination Method 

Camera Focal Length  𝑓 3.32 mm A priori knowledge and/or camera 
calibration 

Camera Inter-pixel Spacing in X  𝑃𝑥 1.4µm/pixel A priori knowledge and/or camera 
calibration 

Camera Inter-pixel Spacing in Y 𝑃𝑦 1.4µm/pixel A priori knowledge and/or camera 
calibration 

Total Display Pixels in X direction  720 pixels Published parameter 

Total Display Pixels in Y direction  1280 pixels Published parameter 

Display Pixel Plane X-Optical 
Center 

 𝑂𝐶𝑥 360 pixels Published parameter 

Display Pixel Plane Y-Optical 
Center  

𝑂𝐶𝑦 640 pixels Published parameter 

Display to Camera Scaling 
Parameter in X, Y 

𝑆𝑥,  𝑆𝑦 0.7946 Experimentation through camera 
calibration routines 

Covariance Matrices 𝑄𝑘 , 𝑅𝑘 See Chapter 
4.3.5 

Optimized through experimentation 
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4.5 Verification and Validation Approaches 

 

Given the above system implementation, a great deal of consideration was made to determine the best way 

to verify and validate the system was to break it down into two basic parts.  The first part in the verification, 

as detailed in Chapter 5, was to investigate the position based visual POSE estimation method in a 

MATLAB based simulation environment to ensure that the algorithm functioned as intended and also to 

explore its robustness.  The next step was to validate the overall video see-through mobile AR system 

implementation using the BlackBerry Dev Alpha A device.  The validation, as detailed in Chapter 6 was 

conducted using a ground truth measurement system that could independently validate the effectiveness 

and accuracy of the system. 
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Chapter 5  SYSTEM VERIFICATION 

 

In order to verify the system and evaluate the position based visual POSE estimation mathematical model 

proposed, simulations were completed in MATLAB assuming a virtual work space defined as the area of 

relative motion between the device and the target object.  Controlled inputs and conditions were used to 

assess the suitability of this model to examine different motion models, the effect of noise, and optimization 

of the parameters.  In this chapter, the verification approach is presented along with the test procedure used.  

Various simulation results are presented including the effect of changing initial conditions, motion models, 

and parameter selection. Finally conclusions are presented to discuss the results and the suitability of the 

proposed design.  

 

5.1 System Verification Approach 

 

In order to verify and evaluate the effectiveness of the position based visual POSE estimation based video 

see-through AR system, known and controlled inputs were used in a MATLAB simulation environment to 

assess the effectiveness of the system.  As noted in Chapter 4, the video see-through AR system with a 

relative motion between a mobile computing device and a target object can be mathematically defined as a 

linearized discrete state space model as follows,  

 

𝑥𝑘 = 𝐴𝑘𝑥𝑘−1 + 𝜂𝑘      (4.17) 

𝑦𝑘 = 𝐶𝑘𝑥𝑘 + 𝜈𝑘     (4.18)  

 

In order to complete an initial verification of the position based visual POSE estimation based system, 

simulations will be used to create or construct a known motion model over time, i.e. 𝑥𝑘
𝑎𝑐𝑡𝑢𝑎𝑙, run the relative 

POSE estimation algorithms detailed in Chapter 4, and complete a comparison between the system’s 

predicted system state 𝑥𝑘 and the truth data 𝑥𝑘
𝑎𝑐𝑡𝑢𝑎𝑙.  Simulations will then be used to show the robustness 

of this mathematical model to different physical motion models such as constant velocity, constant 

acceleration, and arbitrary motions. Effects of noise, sampling rates, and varying initial conditions such as 
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the disturbance covariance matrix 𝑄𝑘 and the measurement noise covariance matrix 𝑅𝑘 will also be 

examined. 

  

5.2 System Verification Setup 

5.2.1 Assumptions 

 

The following assumptions were made when completing the simulation analysis with a known or 

constructed relative motion model x𝑘
𝑎𝑐𝑡𝑢𝑎𝑙 between the device and the target object:  

 

a. It is assumed that the mathematical system model presented in Chapter 4.4.7 is applicable including 

all of the previously stated assumptions. 

b. The target object was selected to be the credit card model with 𝑁 = 4 feature points with the object 

definition as provided per Figure 4-1 and Table 4-1 

c. It is assumed that the relative motion model 𝑥𝑘
𝑎𝑐𝑡𝑢𝑎𝑙 between the device and the target object is 

known precisely, i.e. constructed via simulation. The measurement error 𝜈𝑘 is also known and is 

injected into the system. 

d. It is assumed that the sampling rate of the system is fixed, resulting in a static process model A𝑘 

 

5.2.2 Test Procedure and Initial Conditions 

 

The general approach in the verification is to set both the motion model x𝑘
𝑎𝑐𝑡𝑢𝑎𝑙 and the measurement noise 

𝜈𝑘 so that the measured output 𝑦𝑘 can be calculated.  The position based visual POSE estimation algorithms 

will then be run and both the state 𝑥𝑘 and the output �̂�𝑘we will be estimated.  The percent error in the state 

estimate will then be calculated for each time step to assess the accuracy of the mathematical system model.   

The following test procedure was used in the verification analysis:  
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1. Construct motion model or relative POSE vector  x𝑘
𝑎𝑐𝑡𝑢𝑎𝑙 based on test case, e.g. constant velocity, 

constant acceleration, arbitrary, including the initial actual relative POSE of the target object. The 

initial position was chosen to be relatively far from the initial state estimate 𝑥1,1 to be the following 

noting that the pertinent dimensions of the Cartesian elements are in meters and meters/second and 

the Euler angle elements are in radians and radians/second. 

 

𝑥1
𝑎𝑐𝑡𝑢𝑎𝑙 = [1, 1, 1, 0.1,0.1,0.1,0,0,0,0,0,0]𝑇    (5.1) 

 

2. Set up initial conditions including 𝑥1,1, 𝑄𝑘 , 𝑅𝑘 , 𝐴, 𝛿𝑘, and 𝑃1,1 and set the time step counter 𝑘=1 

a. Where 𝛿𝑘 is the sample period used in the relative POSE estimation.  As the system 

minimum performance requirement is 20Hz, this value will be used in the verification 

analysis, and this gives us the following definition of 𝛿𝑘,   

 

𝛿𝑘 =  50𝑚𝑠                (5.2) 

  

b. Where 𝑥1,1 is the initial state estimate of the relative POSE parameters and is set to the 

following based on the work completed in Chapter 4: 

 

𝑥1,1 = [0, 0, 0.5, 0,0,0.3,0,0,0,0,0,0]𝑇             (4.10) 

 

c. Where 𝑃1,1  is an initial estimate covariance value and is defined as per Equation 4.11. 

d. Where 𝑄𝑘 , 𝑅𝑘 are the disturbance and measurement noise covariance matrices as defined 

by Equations 4.11 and 4.12.  

e. Where the process model 𝐴 is defined assuming a fixed sample rate as per Equation 3.27.  

3. Start Recursive Estimation Loop 

a. Increment step counter, i.e. 𝑘 = 𝑘 + 1 
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b. Based on the constructed motion model or relative POSE vector x𝑘
𝑎𝑐𝑡𝑢𝑎𝑙, calculate the 

actual output 𝑦𝑘 assuming a known or injected level of measurement noise 𝜈𝑘 to locate 

each of the 𝑁 feature point pairs of known target object, i.e. (𝑥𝑗,
𝑖  𝑦𝑗

𝑖) as follows, 

 

𝑥𝑗
𝑖

𝑘
= 𝑆𝑥 ∗

−𝑓(𝑋+𝐶∅𝐶𝜃𝑥𝑗
𝑂+ (𝐶∅𝑆𝜃𝑆𝜓−𝑆∅𝐶𝜓)𝑦𝑗

𝑂+ (𝐶∅𝑆𝜃𝐶𝜓+𝑆∅𝑆𝜓)𝑧𝑗
𝑂)

𝑃𝑋(𝑍−𝑆𝜃𝑥𝑗
𝑂+ 𝐶∅𝑆𝜓𝑦𝑗

𝑂+ 𝐶𝜃𝐶𝜓𝑧𝑗
𝑂)

+ 𝜈𝑘  (5.3)  

𝑦𝑗
𝑖

𝑘
= 𝑆𝑦 ∗

−𝑓(𝑌+𝑆∅𝐶𝜃𝑥𝑗
𝑂+ (𝑆∅𝑆𝜃𝑆𝜓+𝐶∅𝐶𝜓)𝑦𝑗

𝑂+ (𝐶∅𝑆𝜃𝑆𝜓−𝑆∅𝐶𝜓)𝑧𝑗
𝑂)

𝑃𝑌(𝑍−𝑆𝜃𝑥𝑗
𝑂+ 𝐶∅𝑆𝜓𝑦𝑗

𝑂+ 𝐶𝜃𝐶𝜓𝑧𝑗
𝑂)

+ 𝜈𝑘 (5.4)  

 

where 𝜈𝑘 is known and represents the measurement error in pixels on the camera image 

plane and where, 

 

 �̃�𝑘 = [𝑥1
𝑖
𝑘

𝑦1
𝑖
𝑘

⋯ 𝑥4
𝑖
𝑘

𝑦4
𝑖
𝑘]

𝑇
 𝑓𝑜𝑟 𝑗 ∈ {1,2,3,4}   (5.5) 

 

c. Extended Kalman Filter Prediction Step 

i. Carry out prediction step of EKF to determine new state estimate for 𝑥𝑘,𝑘−1 and 

the estimate covariance 𝑃𝑘,𝑘−1 based on the state estimate and estimate covariance 

of the prior time step, 

d. Extended Kalman Filter Measurement Update Step 

i. Linearization Step for each time step to find the measurement Jacobian 𝐶𝑘 and 

predict the output �̂�𝑘 based on the state estimate of the current time step 𝑥𝑘,𝑘−1, 

ii. Determine the Kalman Gain 𝐾, 

iii. Estimate Update step to refine the state estimate 𝑥𝑘,𝑘 and the estimate covariance 

𝑃𝑘,𝑘, 

4. End Recursive Estimation Loop 

5. Calculate the percent error between the constructed motion model 𝑥𝑘
𝑎𝑐𝑡𝑢𝑎𝑙 and the predicted state 

estimates 𝑥𝑘, 
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𝑥_𝑒𝑟𝑟𝑘 =
|𝑥𝑘

𝑎𝑐𝑡𝑢𝑎𝑙− �̂�𝑘,𝑘|

𝑥𝑘
𝑎𝑐𝑡𝑢𝑎𝑙 ∗ 100            (5.5) 

 

6. Plot Results 

 

5.3 Initial Model Verification Using A Constant Velocity Motion Model 

 

5.3.1 Constant Velocity Model 

 

Initial model simulations using a constant velocity (CV) relative motion to represent the actual motion was 

examined first.  This was done to ensure initial confidence in our system implementation.  For the purposes 

of the simulation, the CV model defined in Equation 3.25 can be simplified further, as the time increment 

𝛿𝑘 and velocity �̇�𝑘 are constant and the disturbance noise 𝜂𝑘 is set to 0. This provides us with the following 

expression for the constructed motion model x𝑘
𝑎𝑐𝑡𝑢𝑎𝑙  as follows, 

 

𝑥𝑘
𝑎𝑐𝑡𝑢𝑎𝑙 = 𝑥𝑘−1

𝑎𝑐𝑡𝑢𝑎𝑙 + 𝛿𝑘𝑣𝑘     (5.6)  

 

In selecting a particular motion model, there were several considerations and observations.  First of all, 

care was taken for all simulations to ensure that the relative motion between the device and the target object 

stayed within the constraints of the assumed and previously defined effective workspace of the system 

model, as per Equations 3.42 through 3.47, and that motion occurred on all six relative POSE parameters.  

During simulations, it was observed that the relative error for the Euler angle relative POSE parameters 

went very high for motions that crossed the axis, i.e. angle equal to zero.  This follows naturally from our 

definition of the error in Equation 5.5, due to a divide by zero error, and will be discussed in Chapter 5.3.3.   

One additional consideration was the measurement noise vector 𝜈𝑘, which is taken in relation to the 

camera image measurement.  For the purposes of the initial model simulations, the measurement noise 𝜈𝑘 

was defined in the MATLAB simulation environment as follows, 
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𝑣𝑘 = 𝑠 ∗ randn( )             (5.7) 

 

which represents a Gaussian distributed noise signal where the standard deviation is 𝑠 = 𝜎.  For the case of 

𝑠 = 1, the standard deviation is 𝜎 = 1. This selection means that approximately 95% of the noise values 

lie between ±2 camera image plane pixels.  In other words, this means that a measurement error on the 

camera image plane of approximately ±2 pixels for the case in which the measurement noise has a standard 

deviation 𝜎 = 1 is expected. Given the display to camera transformation ℎ, which is approximately equal 

to 0.8, this translates to noise or error of ±2.5 display plane pixels.  This translates to roughly a 0.7% 

measurement error in the X direction and a 0.4% error in the Y directions given the 720 by 1280 pixel 

dimensions on the display.  

Therefore for the purposes of discussion, the following constant velocity model �̇�𝑘  in Equation 5.8 will 

be examined as the baseline motion model for all comparative analysis unless otherwise specified.  It is 

also noted that the measurement noise vector 𝜈𝑘 with a standard deviation of 𝜎 = 1 will be used.    

 

�̇�𝑘 = [0.1 −0.01 0.02
5𝜋

180

3𝜋

180

1𝜋

180
]
𝑇
    (5.8) 

 

5.3.2 Simulation Test Results 

 

Using the initial conditions x1
𝑎𝑐𝑡𝑢𝑎𝑙 defined in Equation 5.1 and the actual motion model described in 

Equation 5.8 to form the relative POSE vector  x𝑘
𝑎𝑐𝑡𝑢𝑎𝑙, the system model was simulated for a duration of 

25 seconds and the results are shown in Figures 5-1 and 5-2 below.   

As can be seen from the two figures below, the predicted relative POSE estimates using a CV motion 

tracks the actual relative POSE motion quite well with minimal error.  Some high initial levels of overshoot 

were observed.  However the levels were not unreasonable and is to be expected as the EKF algorithm 

initially converges.  System tracking to within 10% of the actual value by 20 time steps (or 1s), which 

indicates a fast level of convergence.  Additionally, choice of initial conditions such as 𝑥1
𝑎𝑐𝑡𝑢𝑎𝑙 and its 
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difference from the initial state estimate 𝑥1,1 will impact how quickly the model converges.  Therefore an 

initial conclusion can be made that the system model functions as expected.  However the system’s 

robustness to other parameters will be explored further below. 

 

 

Figure 5-1: Depiction of the ideal (blue) and predicted relative (red) motion on all six axes for the CV case 

with measurement noise vector 𝜈𝑘 with a standard deviation of σ = 1.    
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Figure 5-2: Depiction of the relative percent error on all six axes for the CV case with measurement noise 

vector 𝜈𝑘 with a standard deviation of 𝜎 = 1.   
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5.3.3 Effect of Changing Initial Position 

 

As noted above, the actual initial position 𝑥1
𝑎𝑐𝑡𝑢𝑎𝑙 and its relative distance to the initial state estimate 𝑥1,1can 

impact the performance.  Using the CV motion model described in Equation 5.8 and the initial conditions 

detailed in Chapter 5.2.2 along with the measurement noise 𝜈𝑘 with a standard deviation of 𝜎 = 1, two 

cases for different values of 𝑥1
𝑎𝑐𝑡𝑢𝑎𝑙 will be detailed below. 

The first case will detail the impact of having the initial state estimate 𝑥1,1 be very close in proximity 

to the actual initial state 𝑥1
𝑎𝑐𝑡𝑢𝑎𝑙.   The following actual initial state was also selected to illustrate the effects 

of a zero value for the relative Y parameter and the results are graphically detailed in Figures 5-3 and 5-4 

below,   

 

𝑥1
𝑎𝑐𝑡𝑢𝑎𝑙 = [0.2, 0.02, 0.55, 0.1,0.1,0.35,0,0,0,0,0,0]𝑇    (5.9) 

 

As can be seen from the two figures below, it is observed that having the initial state estimate x̂1,1 very 

close proximity to the actual initial state 𝑥1
𝑎𝑐𝑡𝑢𝑎𝑙 results in a lower error, as is to be expected.  It is also 

noted that a high relative percent error component exists when a zero value occurred at 2.05s or time step 

41. 

Examining the simulation data for this relative Y zero value point, it is seen that the estimate for the 

relative Y at the zero value point is 2.2*10-5 m versus the actual result of -1.4*10-17 m.  Even though both 

values are small and relatively close to each other, the relative error calculation becomes skewed due to the 

effective divide by zero for this time step caused by the definition of Equation 5.5.  As a result of possible 

divide by zero cases for the relative error calculation, all motion models were chosen to avoid zero values 

for the purposes of presentation.   
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Figure 5-3: Depiction of the ideal (blue) and predicted relative (red) motion on all six axes for the CV case 

with the relative Y parameter containing a zero value point. 
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Figure 5-4: Illustration of how error can be artificially skewed due to zero value points and the definition 

of the relative error calculation.   
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The final case examined was to illustrate the effect of having a large relative distance and orientation 

between the actual initial state 𝑥1
𝑎𝑐𝑡𝑢𝑎𝑙 and initial state estimate 𝑥1,1.  The selected initial state x1

𝑎𝑐𝑡𝑢𝑎𝑙 used 

in the verification is detailed in Equation 5.10 and the resulting plots are shown in Figures 5-5 and 5-6 

below,  

 

𝑥1
𝑎𝑐𝑡𝑢𝑎𝑙 = [10, 10, 10, 1,0.3,0.3,0,0,0,0,0,0]𝑇     (5.10) 

  

As can be seen from the two figures below it is observed that the error is larger and also ±10% 

convergence for the system takes longer in the case for a large gap between the initial actual state 𝑥1
𝑎𝑐𝑡𝑢𝑎𝑙 

and initial state estimate 𝑥1,1.  The initial overshoot is also quite high, but this is also to be expected.  All 

of these results are to be expected.   While the system does not settle or track to within ±10% of the actual 

value due to a higher error in the relative yaw 𝜓 parameter, the system looks to converge or properly track 

around 10-11 seconds, which is a large increase from our prior simulation results shown above.  The relative 

pitch 𝜃 parameter also has a large average error due to the initial overshoot.  Once the relative pitch 

𝜃 parameter settles or converges the error is smaller relative to the relative yaw 𝜓 parameter. 

 Table 5-1 presents the error and setting time observations from these simulations.  It is noted that these 

results are only presented to illustrate the trend of how initial position can impact both the error and 

convergence time.  The results are variable based on many parameters such as noise, initial conditions, 

motion models, etc. Additionally, the outlier data point for the relative Y error zero axis crossing was 

removed as it artificially skewed the data due to how the error calculation is defined.  As is expected, a 

close initial state estimate to the actual initial position will result in lower error and a large difference will 

result in higher error.  Convergence of the system will also be affected by the difference between the initial 

state estimate and the actual initial position.  It is noted that a faster convergence time to within ±10% would 

have occurred if there was no zero axis crossing event for the relative Y parameter. 
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Figure 5-5:  Illustration of the increased convergence time and overshoot caused by large difference 

between initial position 𝑥1
𝑎𝑐𝑡𝑢𝑎𝑙 (blue) and initial state estimate 𝑥1,1 (red).    
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Figure 5-6: Illustration of the increased initial system error caused by large difference between initial 

position 𝑥1
𝑎𝑐𝑡𝑢𝑎𝑙 and the initial state estimate 𝑥1,1.    
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Table 5-1: Impact of Initial Position Estimate and its Proximity from the Actual Initial Position 

 Percent Error Convergence to within +/-
10% 

Initial 
Position 
Estimate 

𝑿 𝒀 𝒁 ∅ 𝜽 𝝍 Average 
Error 

# time steps Total time 
(s) 

Baseline 1.04         1.06     0.84     1.44     3.66     4.19 2.04 20 1 

“close” 0.53 1.49 0.25 0.94 1.44 1.5 1.02 45 2.25 

“far” 7.66     7.6     7.6     5.52    22.19  19.11 11.64 All but yaw 
by 212 

10.6 

 

5.4 Model Verification Using Alternate Motion Models 

 

Now that an initial verification of the system model has been completed, the impact of using alternate 

motion models to derive x𝑘
𝑎𝑐𝑡𝑢𝑎𝑙 will be examined.  The purpose of these alternate motion model 

experiments is to verify the assumption that the relative motion dynamics can be modeled as a CV model 

when the actual relative motion does not behave in a constant velocity fashion.  Two categories of alternate 

motion models were considered: constant acceleration (CA) and an arbitrary motion models.  Various 

motions were simulated and the results are detailed below for discussion. 

First the CA case was examined.  A generic CA motion model can be described through the following 

two equations,  

 

ẋ𝑘
𝑎𝑐𝑡𝑢𝑎𝑙 = ẋ𝑘−1

𝑎𝑐𝑡𝑢𝑎𝑙 + 𝛿𝑘�̈�𝑘     (5.11)  

x𝑘
𝑎𝑐𝑡𝑢𝑎𝑙 = x𝑘−1

𝑎𝑐𝑡𝑢𝑎𝑙 + 𝛿𝑘ẋ𝑘−1
𝑎𝑐𝑡𝑢𝑎𝑙     (5.12)  

 

Various CA models were simulated and the following model of the acceleration �̈�𝑘 is presented for 

discussion since it contains an acceleration factor in all six axes.  As previously, the relative motion was 

kept to the constraints of the effective workspace detailed in Equations 3.42 through 3.47 and the initial 

state 𝑥1
𝑎𝑐𝑡𝑢𝑎𝑙 was defined as per Equation 5.1.  It is assumed that the measurement noise vector 𝜈𝑘 is defined 

as per Equation 5.7 and has a standard deviation of 𝜎 = 1.      
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�̈�𝑘 = [0.1 −0.01 0.01
2𝜋

180

1.05𝜋

180

0.8𝜋

180
]
𝑇
    (5.13) 

 

Simulations were completed based on a relative known CA model and the results are detailed in Figures 

5-7 and 5-8 below.  Examining the two figures below, reasonable tracking performance is seen with an 

initial overshoot that is to be expected as the filter converges.   However, it can be concluded that this 

system, which uses a CV motion model for the relative motion dynamics, is able to properly track or 

estimate the relative POSE of an object when a relative CA motion is experienced.  
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Figure 5-7: Depiction of the ideal (blue) and predicted relative (red) motion on all six axes for the CA 

case with measurement noise vector 𝜈𝑘 with a standard deviation of σ = 1.    
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Figure 5-8: Percent error plot for the CA motion case for all six relative POSE parameters.  
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Next, the case in which the actual relative motion dynamics of the system follows an arbitrary motion 

is examined.  An arbitrary motion model can be described as follows,  

 

x𝑘
𝑎𝑐𝑡𝑢𝑎𝑙 = x𝑘−1

𝑎𝑐𝑡𝑢𝑎𝑙 + 𝛿𝑘�̇�𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦𝑘     (5.14)  

 

where �̇�𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦𝑘
 is arbitrarily determined for each time step.  Various arbitrary motions were simulated 

and the following model is presented for discussion, as it excites possible positive or negative motion on 

all six axes for each time step with the express purpose of showing how this system can react to inflection 

points.  The motion was also chosen such that it falls within the constraints of our effective workspace.  As 

was done previously, it is assumed the measurement noise vector 𝜈𝑘 is defined per Equation 5.7 with a 

standard deviation of 𝜎 = 1 for this verification activity.   The arbitrary motion model �̇�𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦𝑘
 is defined 

as follows in Equation 5.15, noting that the MATLAB rand() function was used, 

 

�̇�𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦𝑘 = 

[
 
 
 
 
 
 
 
 
 𝑟𝑎𝑛𝑑(1) ∗ 0.1 + sin (

𝑘

10
)

0.1 +  𝑟𝑎𝑛𝑑(1) ∗ sin (
𝑘

3
)

cos (𝑟𝑎𝑛𝑑(1) ∗
𝑘

12
)

sin (𝑟𝑎𝑛𝑑(1) ∗
𝑘

15
)

𝑟𝑎𝑛𝑑(1) ∗ 0.15

𝑟𝑎𝑛𝑑(1) ∗ 0.5 ∗ sin (
𝑘

3
) ]
 
 
 
 
 
 
 
 
 

   (5.15) 

 

The simulation results for the above arbitrary motion model are presented in Figures 5-9 and 5-10 

below, noting that reasonable tracking performance is observed.  These results are consistent with the CV 

and CA motions trialed above, noting that the relative error is approximately the same between the three 

different motion models. As well the overshoot in all three cases is quite low.  It should be noted that the 

system does not achieve convergence to within ±10% due to higher errors in the relative yaw 𝜓 parameter. 

However it appears to reach a steady state quite quickly after around three seconds with some amount of 

error. 
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The relative error and convergence time for all three of the motion models are detailed in Table 5-2 

below.  As was the case for Table 5-1, it is noted that this table is used for qualitative purposes as different 

motion models and conditions such as noise levels will yield different results.  However, the trends are 

shown, and these results allow us to conclude that the CV motion model is a suitable selection for the 

process model of the relative motion dynamics. 

 

Table 5-2: Effect of System for Different Motion Models on the System 

 Percent Error Convergence to within 
+/-10% 

Motion 
Model 

𝑿 𝒀 𝒁 ∅ 𝜽 𝝍 Average 
Error 

# time 
steps 

Total time 
(s) 

CV 1.04         1.06     0.84     1.44     3.66     4.19 2.04 20 1 

CA 1.84     1.87     1.42     2.88     6.95     5.27 3.37 20 1 

Arbitrary 2.58 2.7 3.25 2.89 7.8 13.68 5.48 64 for all 
but yaw 

 
Yaw N/A 

3.2 
 
 

NA 
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Figure 5-9: Depiction of the ideal (blue) and predicted relative (red) motion on all six axes for an arbitrary 

motion case with measurement noise vector 𝜈𝑘 with a standard deviation of 𝜎 = 1.    
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Figure 5-10: Percent error plot for the arbitrary motion case for all six relative POSE parameters.  
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5.5 Effects of Measurement Noise 

 

Next the effects of measurement noise on the system model will be examined with the motivation that 

additional measurement noise can be introduced through both the camera sensor and the image processing 

techniques.  As the measurement noise level increases, degradation in the system model performance and 

accuracy is expected.  The baseline CV motion model for x𝑘
𝑎𝑐𝑡𝑢𝑎𝑙 detailed in Equation 5.8 will be used to 

show the effects of noise on this system model.  Table 5-3 provides a reference to the injected noise level 

for the measurement system and how it relates to the physical system in terms of pixel measurement error.  

Figures 5-11 through 5-14 illustrate the effect of increasing noise on the system.  

 

Table 5-3: Relationship of Measurement Noise vk to Measurement Error 

Noise 
𝒗𝒌 

Measurement 
Error in Camera 

Pixels 

Measurement Error 
in Display Pixels 

Measurement 
Error in X 
direction 
(display) 

Measurement Error in Y 
direction (display) 

𝜎 = 1 ±2   ±2.5   0.7%   0.4%  

𝜎 = 4 ±8  ±16 4.4% 2.5% 

𝜎 = 7 ±14 ±28 7.8% 4.4% 

𝜎 = 8 ±16 ±32 8.9% 5% 
 

As is shown in the figures below, the increase in measurement noise will increase the relative error in 

the system model, which is to be expected.   This result can be theoretically verified by restating Equation 

4.26 as follows, 

 

𝑥𝑘,𝑘 =  𝑥𝑘,𝑘−1 + 𝐾(�̃�𝑘 − �̂�𝑘)    (4.26) 

 

Where the modified measured output �̃�𝑘 is comprised of the actual motion, the display to camera 

transformation ℎ, and the measurement noise 𝜈𝑘. The above equation can therefore be expanded to show 

the direct relationship between the measurement noise and the predicted state estimate 𝑥𝑘,𝑘 is as follows,    

 

𝑥𝑘,𝑘 =  𝑥𝑘,𝑘−1 + 𝐾(ℎ ∗ y𝑘
𝑎𝑐𝑡𝑢𝑎𝑙 + 𝜈𝑘 − �̂�𝑘)  (5.17) 
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Figure 5-11: Depiction of the ideal (blue) and predicted relative (red) motion on all six axes for the CV case 

with measurement noise vector 𝜈𝑘 with a standard deviation of σ = 7.    



 

 80 

 

Figure 5-12: Percent error plot for the CV motion case for all six relative POSE parameters having a 

measurement noise vector 𝜈𝑘 with a standard deviation of 𝜎 = 7.   
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 Figure 5-13: Depiction of the ideal (blue) and predicted relative (red) motion on all six axes for the CV 

case with measurement noise vector 𝜈𝑘 with a standard deviation of σ = 8.    



 

 82 

 

 

Figure 5-14: Percent error plot for the CV motion case for all six relative POSE parameters having a 

measurement noise vector 𝜈𝑘 with a standard deviation of 𝜎 = 8.   
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Also it was observed, and is reflected in Figures 5-11 and 5-13, that the initial system overshoot is 

unaffected by the varying noise levels. Additionally, convergence or tracking of the system to ±10% of 

the actual value is affected negatively as the noise increases.  One additional important observation is that 

as the measurement noise increases, it can negatively reduce the effective workspace of the system.  

Reviewing Figure 5-13 it is observed that the system stops tracking the actual relative motion properly for 

the relative Euler angles for the CV motion case with a measurement noise vector 𝜈𝑘 with a standard 

deviation of 𝜎 = 8.  As the relative position and orientation increases, each pixel on the display represents 

a larger physical distance of the target object and the workspace.  The higher level of measurement noise 

therefore has a more pronounced effect on the ability of the system to maintain tracking as is shown by 

Figure 5-13.   It should be noted that the above results are illustrative and the results will vary due to the 

actual relative motion, the noise distribution, and other initial conditions.  Table 5-4 qualitatively shows the 

trend of how the relative error increases as the measurement error increases.   

 

Table 5-4: Impact of Increasing Measurement Noise on the System  

 Percent Error Convergence to 
within +/-10% 

Noise 𝒗𝒌 𝑿 𝒀 𝒁 ∅ 𝜽 𝝍 Average # time 
steps 

Total 
time (s) 

𝜎 = 1 1.04         1.06     0.84     1.44     3.66     4.19 2.04 20 1 

𝜎 = 4 1.87     1.93     1.66     3.72     6.9    12.03 4.68 289 for all 
but yaw 

 
Yaw N/A 

14.45 
 
 

N/A 

𝜎 = 7 2.76     2.85     2.54     6.09    10.47    20.26 7.49 289 for all 
but yaw 

 
Yaw N/A 

14.45 
 
 

N/A 
 

5.6 Effects of Changing the Sampling Rate 

 

As noted in Chapter 3 and in Equation 3.26, a higher sampling rate should reduce the dynamic modeling 

error.  This result is clear, as a reduction in the sample period will reduce the apparent change in the velocity 

between frames.     
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𝐷𝑦𝑛𝑎𝑚𝑖𝑐 𝑀𝑜𝑑𝑒𝑙 𝐸𝑟𝑟𝑜𝑟 ∝  𝛿𝑘 ∗ |�̇�𝑎𝑐𝑡𝑢𝑎𝑙 − �̇�𝑚𝑜𝑑𝑒𝑙|    (3.26)  

 

Also for this physical system, the lower sampling rate of 20Hz is bound due to the requirement for 

smoothness in the rendering as noted in Chapter 4.  The upper bound of the sampling rate is 30Hz due to 

the system limitation of the camera video stream being limited to 30fps.  For the purposes of the verification 

activities, the baseline CV motion model detailed in Equation 5.8 for x𝑘
𝑎𝑐𝑡𝑢𝑎𝑙 will be used to show the 

effects of the two endpoint sampling rates on this system model.   

Various simulations were conducted with the two sampling rates (20Hz, 30Hz) for a couple of cases of 

varying measurement noise vector 𝜈𝑘 and the results are detailed in Table 5-5 below. A clear relationship 

between relative system error and the sampling rate is seen, which matches the theoretical prediction.  As 

the sampling rate increases a decrease in the overall relative error is observed, which is to be expected based 

on the theory.  Convergence to within ±10% is approximately the same with differences accounted for due 

to the random nature of the noise signal causing minor shifts. Table 5-5 qualitatively details the trend of 

how the relative error decreases with an increasing sample rate.  However, it is also seen that the differences 

in error between the two sampling rates are minimal, i.e. less than 1% difference.  This also allows us to 

conclude that the selection of a dynamically varying sample rate between 20Hz to 30Hz is acceptable from 

a system design perspective, as the error incurred from a change in sampling rates is negligible. 

 

Table 5-5: Impact of Different Samplings Rate on the System 

  Percent Error ±10% convergence  

Sampling 
Rate (Hz) 

Noise 
𝒗𝒌 

𝑿 𝒀 𝒁 ∅ 𝜽 𝝍 Avg # time 
steps 

Total 
time 
(s) 

20 𝜎 = 1 1.04         1.06     0.84     1.44     3.66     4.19 2.04 20 1 

30 𝜎 = 1 0.82     0.83     0.69      1.18     3.22     3.65         1.73 22 0.73 

20 𝜎 = 7 2.76     2.85     2.54     6.09    10.47    20.26 7.49 289 for all 
but yaw 

 
Yaw N/A 

14.45 
 
 

N/A 

30 𝜎 = 7 2.54     2.61     2.4     5.22     9.67    17.56     6.67 477 for all 
but yaw 

 
Yaw N/A 

15.9 
 
 

N/A 
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5.7 Impact of Updating 𝑸𝒌 and 𝑹𝒌 

 

Next the effects of varying the measurement noise covariance matrix 𝑅𝑘 and the disturbance covariance 

matrix 𝑄𝑘 will be examined.  As noted previously in Chapter 3, the disturbance covariance matrix 𝑄𝑘 

represents the un-modeled system dynamics of the CV model with larger values of 𝑄𝑘 being used for faster 

motion parameters and conversely smaller values of 𝑄𝑘 selected for slower motion.  This statement is 

theoretically verified through a brief examination of Equations 3.26, which defines the dynamic model 

error, and Equation 4.22, which sets the estimate covariance 𝑃𝑘,𝑘−1,   

 

𝑃𝑘,𝑘−1 = 𝐴𝑘𝑃𝑘−1,𝑘−1𝐴𝑘
𝑇 + 𝑄𝑘     (4.22) 

 

A faster relative motion will have more apparent change in velocity between two subsequent frames, 

and the result is that CV motion model will have larger error in predicting the state estimate.  This implies 

that there would be less confidence in state estimates for cases of fast relative motion.  In order to account 

for these cases of reduced confidence in our state estimate, the estimate covariance 𝑃𝑘,𝑘−1 would therefore 

need to be increased. This increase in the estimate covariance implies that larger entrywise values of 𝑄𝑘 

would be required for faster motions.  Conversely, smaller entrywise values of  𝑄𝑘 are required for slower 

motions.   

The effect of varying the measurement noise covariance matrix 𝑅𝑘 can be predicted through an 

examination of its definition.  Recall that 𝜈𝑘 is defined as the measurement noise vector of zero mean 

Gaussian noise 𝑅𝑘. As the entries of the covariance matrix 𝑅𝑘 increase, the distribution of the measurement 

noise vector 𝜈𝑘 will also widen due to the entrywise increase in 𝑅𝑘. Hence an increase in the error to the 

predicted state estimate 𝑥𝑘,𝑘 is expected.  Conversely as the entries of the covariance matrix 𝑅𝑘 decrease, a 

decrease in error is expected to the predicted state estimate 𝑥𝑘,𝑘. 

Simulations were completed to verify the theoretical effects of changing 𝑅𝑘 and 𝑄𝑘.  Given that that 

the effects of 𝑄𝑘 can vary based on the actual motion, simulations were completed with both the baseline 

CV motion model for x𝑘
𝑎𝑐𝑡𝑢𝑎𝑙 detailed in Equation 5.8 and also the arbitrary motion model as detailed in 

Equations 5.14 and 5.15.   For the initial conditions, the initial actual state x1
𝑎𝑐𝑡𝑢𝑎𝑙 as per Equation 5.1 was 

used, the initial state estimate 𝑥1,1 was defined per Equation 4.10, and the measurement noise vector νk 
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with a standard deviation of 𝜎 = 1 was used.  The baseline values of 𝑅𝑘 and 𝑄𝑘 used are defined as per 

Equations 4.12 and 4.13.  Various combinations were simulated to verify the effects of modifying both 𝑅𝑘 

and 𝑄𝑘 and the following four cases will be detailed for qualitative purposes,   

 

a. 𝑅𝑘  decreased and 𝑄𝑘 unchanged 

b. 𝑅𝑘  increased and 𝑄𝑘 unchanged 

c. 𝑅𝑘  unchanged and 𝑄𝑘 increased 

d. 𝑅𝑘  unchanged and 𝑄𝑘 decreased 

 

Table 5-6 below provides a reference to how the entrywise values of 𝑅𝑘 and 𝑄𝑘 were modified relative 

to the baseline definition listed in Equations 4.12 and 4.13 for each of the four test cases.   

 

Table 5-6: Rk and Qk Modification Table 

 Increase – Multiplication Factor Decrease – Multiplication Factor 

𝑹𝒌 24 2−4 
𝑸𝒌 102 10−2 

 

Various simulation experiments were conducted and some of the results of the various motion cases 

are provided in Figures 5-15 through 5-19 for illustration.  Tables 5-7 and 5-8 summarizes the results noting 

that these results are qualitative only to show trends and will vary based on initial conditions, noise, actual 

motion model, etc.  
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Figure 5-15: Depiction of the ideal (blue) and predicted relative (red) motion on all six axes for the arbitrary 

motion case with an entrywise decrease to 𝑅𝑘 and 𝑄𝑘 unchanged, and a measurement noise vector 𝜈𝑘 with 

a standard deviation of σ = 1. 
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Figure 5-16: Depiction of the ideal (blue) and predicted relative (red) motion on all six axes for the arbitrary 

motion case with an entrywise increase to 𝑅𝑘 and 𝑄𝑘 unchanged, and a measurement noise vector 𝜈𝑘 with 

a standard deviation of σ = 1.  
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Figure 5-17: Depiction of the ideal (blue) and predicted relative (red) motion on all six axes for the arbitrary 

motion case with 𝑅𝑘 unchanged and an entrywise increase to 𝑄𝑘, and a measurement noise vector 𝜈𝑘 with 

a standard deviation of σ = 1. 
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Figure 5-18: Depiction of the ideal (blue) and predicted relative (red) motion on all six axes for the arbitrary 

motion case with 𝑅𝑘 unchanged and an entrywise decrease to 𝑄𝑘, and a measurement noise vector 𝜈𝑘 with 

a standard deviation of σ = 1. 
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Figure 5-19: Depiction of the ideal (blue) and predicted relative (red) motion on all six axes for the CV 

motion case with 𝑅𝑘 unchanged and an entrywise decrease to 𝑄𝑘, and a measurement noise vector 𝜈𝑘 with 

a standard deviation of σ = 1. 
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Table 5-7: Impact of Varying the Qk and Rk Covariance Matrices for the CV Motion Case 

Baseline CV Motion Case 𝑿 𝒀 𝒁 ∅ 𝜽 𝝍 Average 

Total Average Percent Error (%) 1.04 1.06 0.84 1.44 3.66 4.19 2.04 

Peak Absolute Overshoot  (% 
error) 

100 100 50.05 100 363.26 330.64 173.99 

        

𝐑𝐤 decreased, 𝑸𝒌 unchanged 𝑿 𝒀 𝒁 ∅ 𝜽 𝝍 Average 

Total Average Percent Error (%) 0.95     0.97     0.75     2.06     3.98     5.41 2.35 

Peak Absolute Overshoot  (% 
error) 

100 100 50.05 260.2 470.51 360.92 223.69 

        

𝐑𝐤 increased, 𝑸𝒌 unchanged 𝑿 𝒀 𝒁 ∅ 𝜽 𝝍 Average 

Total Average Percent Error (%) 1.19 1.19 1.12 1.76 6.65 6.28 3.03  

Peak Absolute Overshoot  (% 
error) 

100  100  54.36   100  389.3  362.48 184.36 

        

𝐑𝐤 unchanged, 𝑸𝒌 increased 𝑿 𝒀 𝒁 ∅ 𝜽 𝝍 Average 

Total Average Percent Error (%) 1.08 1.1 0.89 3.89 5.82 7.16 3.32 

Peak Absolute Overshoot  (% 
error) 

100  100  54.39   429.4  954.26 330.44 328.08 

        

𝐑𝐤 unchanged, 𝑸𝒌 decreased 𝑿 𝒀 𝒁 ∅ 𝜽 𝝍 Average 

Total Average Percent Error (%) 3 3.02 2.77  6.11 15.06 11.79 6.96 

Peak Absolute Overshoot  (% 
error) 

113.53 115.93 114.1 539.14 1261.7 828.62 495.51  
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Table 5-8: Impact of Varying the Qk and Rk Covariance Matrices for the Arbitrary Motion Case 

Baseline Arbitrary Motion Case 𝑿 𝒀 𝒁 ∅ 𝜽 𝝍 Average 

Total Average Percent Error (%) 2.58 2.7 3.25 2.89 7.8 13.68 5.48 

Peak Absolute Overshoot  (% 
error) 

100 100 52.38 100 338.6 290.84 163.64 

        

𝐑𝐤 decreased, 𝑸𝒌 unchanged 𝑿 𝒀 𝒁 ∅ 𝜽 𝝍 Average 

Total Average Percent Error (%) 1.57 1.81 2.67 3.41 6.24 10.69 4.4 

Peak Absolute Overshoot  (% 
error) 

100 100 52.4 216.9 416.41 316.05 200.29 

        

𝐑𝐤 increased, 𝑸𝒌 unchanged 𝑿 𝒀 𝒁 ∅ 𝜽 𝝍 Average 

Total Average Percent Error (%) 6.66 6.56 6.86 19.67 46.53 725.16 135.24 

Peak Absolute Overshoot  (% 
error) 

100 100 62.91 100 386.95 2216.4 494.37 

        

𝐑𝐤 unchanged, 𝑸𝒌 increased 𝑿 𝒀 𝒁 ∅ 𝜽 𝝍 Average 

Total Average Percent Error (%) 1.54 1.77 2.73 3.98 9.33 11.91 5.21 

Peak Absolute Overshoot  (% 
error) 

100 100 52.38 364.52 859.29 294.48 294.48 

        

𝐑𝐤 unchanged, 𝑸𝒌 decreased 𝑿 𝒀 𝒁 ∅ 𝜽 𝝍 Average 

Total Average Percent Error (%) 6.58 6.53 6.86 6.68 34.99 26.76 14.73 

Peak Absolute Overshoot  (% 
error) 

100 100 68.51 496.65 1234.9 564.1 427.4 

 

As can be seen from the above table and figures, an entrywise increase or decrease to the measurement 

covariance matrix 𝑅𝑘 leads to a direct effect on the relative error as predicted theoretically.  For the case of 

an entrywise decrease to 𝑅𝑘, the average error is only slightly larger than the baseline case for the CV 

motion case, i.e. 2.35% versus 2.04% baseline.  However the error is decreased on the Cartesian elements 

while slightly increased on the Euler angles. For the arbitrary motion case, an overall error reduction is 

observed (4.4% versus 5.48% baseline) with a small increase in error in the baseline arbitrary motion case 

for the roll angle ∅. Since the measurement noise vector 𝜈𝑘 is set to a standard deviation of 𝜎 = 1 and a 

baseline value of 𝑅𝑘 =  4[𝐼8𝑥8], it is postulated that the baseline value of 𝑅𝑘, which represents 95% of the 

error being within 4 display pixels, is close to the noise error floor. Hence entrywise decreases to 𝑅𝑘 from 

the baseline will have minimal impact. 
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For the case of an entrywise increase of the measurement covariance matrix 𝑅𝑘, an increase in error is 

observed for both the CV (2.04% to 3.03%) and arbitrary motion (5.48% to 135.24%) cases.  For the 

arbitrary motion case the increase to 𝑅𝑘 results in a loss of convergence for the three relative Euler angles.  

One additional effect of increasing the elements of the measurement covariance matrix 𝑅𝑘 is that it will 

tend to reduce the value of the Kalman gain 𝐾.  A reduction in the Kalman gain means that the innovation 

and the measured output values 𝑦𝑘 will have a lessened impact on the value for the state estimate 𝑥𝑘,𝑘 and 

that the state process model 𝐴𝑘 will drive 𝑥𝑘,𝑘 as shown in Equations 4.25 and 4.26 below. 

 

𝐾 = 𝑃𝑘,𝑘−1 𝐶𝑘
𝑇(𝑅𝑘 + 𝐶𝑘𝑃𝑘,𝑘−1𝐶𝑘

𝑇)
−1

    (4.25) 

𝑥𝑘,𝑘 =  𝑥𝑘,𝑘−1 + 𝐾(�̃�𝑘 − �̂�𝑘)    (4.26) 

 

For the case when the EKF is tracking a motion that is similar to a constant velocity, the process model 

𝐴𝑘 will be able to suitably predict the state estimate 𝑥𝑘,𝑘 with a reasonable level of error as seen in Table 

5-7 (Rk increased, 𝑄𝑘 unchanged case).  However with the arbitrary motion case, filter convergence may 

be difficult if the changes in relative motion are too large as was seen in Figure 5-16 and reflected 

numerically in Table 5-8 (Rk increased, 𝑄𝑘 unchanged case). 

Next the case for which an entrywise increase to the disturbance covariance matrix 𝑄𝑘 is examined. 

For the “slower” CV motion case, an increase in error is seen when 𝑄𝑘 is increased, i.e. 3.32% versus 2.04% 

baseline.  With the faster” arbitrary motion case, an entrywise increase to 𝑄𝑘 results in a decrease in error, 

which matches the theory, i.e. 5.21% versus 5.48% baseline. Furthermore, for the relative pitch  

𝜃 angle motion an increase in error is observed.  This result is also to be expected as the relative pitch 

motion is smooth and changes more “slowly”.  Additionally, while the peak overshoot is greater than the 

baseline case for both the CV and arbitrary motions, it can be seen through an examination of the figures 

for the arbitrary motion that an entrywise increase to 𝑄𝑘 will result in much better convergence.  This can 

be clearly seen through Figures 5-9 (baseline case), 5-17 (entrywise increase to 𝑄𝑘), and 5-18 (entrywise 

decrease to 𝑄𝑘) where initial tracking performance is much better. 

For an entrywise decrease to the disturbance covariance matrix 𝑄𝑘, an increase in overall error is 

observed for the arbitrary motion case (14.73% versus 5.48% baseline) as expected.  The overall error is 

greater for the “faster” motion of the arbitrary error case, as expected.  For the CV motion case, the overall 
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error also increased (6.96% versus 2.04% baseline).   However, the majority of this error is due to the initial 

convergence phase, as seen in Figure 5-19 above.  Using MATLAB it was found that the average error once 

±10% convergence was attained was less than 1%.  This result is also seen through the higher peak 

overshoot values noted in Table 5-7 above. 

Based on an overall review of the above results, it is seen that the baseline values for 𝑄𝑘 and 𝑅𝑘 provide 

the best balance between overall system error, amount of initial overshoot, and error once convergence to 

within ±10% has been maintained.  

 

5.8 Discussion of Results 

 

Through simulation the effects of changing various parameters in this system were examined and the system 

was verified to be reasonably robust.  First and foremost, it was shown that the CV model is an appropriate 

selection for the relative motion dynamics through its ability to handle multiple actual motion models.  The 

error seen is below 6% for various motion model cases and this performance is deemed acceptable. 

As well, the system was shown to be tolerant to a relatively high amount of noise.  In practice, it is expected 

that the measurement error due to the camera sensor and image processing techniques will be on the order 

of a few pixels and the system demonstrated robustness to tens of pixel measurement noise. Noise levels 

up to σ = 8 can cause loss of convergence tracking for the EKF.  With the 8MP camera used in this design, 

it is unlikely that large errors due to the camera sensor will be observed. However errors due to the image 

processing techniques could vary and this aspect needs to be examined during the validation experiments. 

The simulations have verified the theoretical effects of changing the sample rate, i.e. increasing sample 

rate decreases the overall error.  However these simulations also show us that allowing for a varied sample 

rate between 20Hz and 30Hz will not drastically impact the system error. Less than 1% difference in error 

would be incurred by this changing sampling rate, which is viewed as acceptable.  Therefore the approach 

taken for this system to use a dynamically varied sample rate is also verified.   

Simulations have also shown that the design selection used for both the disturbance noise 𝑄𝑘 and the 

measurement noise covariance matrix 𝑅𝑘 strikes an appropriate balance between error, overshoot, and 

convergence.  While the parameters could be varied to suit the test specific conditions, it is felt that the 

parameters chosen provide the best overall balance and performance.   
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The effects of initial conditions particularly how close in proximity the initial state estimate 𝑥1,1 is to 

the initial actual state 𝑥1
𝑎𝑐𝑡𝑢𝑎𝑙 will dramatically affect the overall performance.  Using a pre-defined initial 

state estimate 𝑥1,1, as is done for this system, will cause higher error and overshoot, and increase the time 

to attain ±10% convergence or tracking if the proximity to the initial starting point is large.  It should be 

noted that most numerical methods will work well provided that the initial starting point is close to the 

solution.  As this design is a proof of concept, more sophisticated initialization techniques were not pursued.  

However, these elements can easily be added to the design as noted in Chapters 3 and 4. 

It is therefore concluded through simulation verification that the defined system and the parameter 

selection used will provide us with reasonable overall performance for tracking the relative position and 

orientation between the device and the target object.  The next step, as detailed in Chapter 6, will be to 

independently validate the physical system implementation using a ground truth measurement system to 

determine the effectiveness and accuracy of the physical system implementation.   
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Chapter 6 SYSTEM VALIDATION 

 

Now that the system has been designed and mathematically verified through simulation, validation is to be 

completed on the physical system to determine the system’s performance and accuracy.  As the video see-

through mobile AR application measures the relative POSE between the BlackBerry Dev Alpha A and a 

target object, an independent measurement system is required to ensure that the relative POSE values 

produced by the BlackBerry device are accurate.  In order to show the accuracy of this video see-through 

AR application, a measurement system with a higher level of precision and accuracy will be used to 

determine the ground truth.  Here ground truth is defined as the set of measurements that are known to be 

much more accurate than the measurements generated by the BlackBerry Dev Alpha A device.   This 

chapter details the validation approach and methods used to compare the ground truth data with the data 

collected by the BlackBerry.  Additionally the results from physical experiments are presented for various 

target object motions along with a discussion of the results.  Finally conclusions of the system validation 

experiments are provided. 

 

6.1 General Approach 

 

In order to validate the relative POSE and video see-through AR system on the BlackBerry Dev Alpha A 

device, a method is required to assess whether the relative POSE estimation computed by the device is 

correct to some small level of measurement uncertainty.  The difficulty lies in the fact that the device 

collects relative POSE data between itself and the target object. Therefore some method is needed to 

independently validate this relative POSE data.  An approach to validate the relative POSE data is to fix 

the position of the device and use a fixed position ground truth measurement system to measure the relative 

3D motion of the target with respect to both the device and the ground truth measurement system.  Then 

through some mathematical transformations, the motion of the target object relative to its starting position 

can be computed for both the device and also from the ground truth measurement system.  A comparative 

analysis of the data can then be completed to validate the implemented physical system. 
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6.1.1 Ground Truth Measurement System Model 

 

As previously noted in Chapter 3, the transformation of the jth feature point in the object frame to the 

device’s camera frame can be expressed by using the following homogeneous matrix transformation, 

 

[
 
 
 
 
𝑥𝑗
𝐶

𝑦𝑗
𝐶

𝑧𝑗
𝐶

1 ]
 
 
 
 

 = 𝑇𝑂
𝐶

[
 
 
 
 
𝑥𝑗
𝑂

𝑦𝑗
𝑂

𝑧𝑗
𝑂

1 ]
 
 
 
 

      (6.1) 

where  

𝑇𝑂
𝐶 =

[
 
 
 
 
𝑅𝑂
𝐶

𝑋𝑂
𝐶

𝑌𝑂
𝐶

𝑍𝑂
𝐶

01𝑥3 1 ]
 
 
 
 

      (6.2) 

 

Before proceeding further, a mathematical model describing the relationship from the object to the 

ground truth measurement system is required.  The relative position of the object frame 𝑂 with respect to 

the ground truth measurement system 𝐺 can be defined as the vector,  

 

𝑃𝐺 = [𝑋𝑂
𝐺 , 𝑌𝑂

𝐺 , 𝑍𝑂
𝐺]

𝑇
      (6.3) 

 

The relative orientation of the object frame 𝑂 with respect to the ground truth measurement system 𝐺 is 

defined through the roll 𝛼, pitch 𝛽, and yaw 𝛾 angles and can be defined through a rotation matrix as 

follows, 

 

𝑅𝑂
𝐺 = 𝑅𝑧𝐶(𝛼)𝑅𝑦𝐶(𝛽)𝑅𝑥𝐶(𝛾)     (6.4) 

where  
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𝑅𝑂
𝐺 = [

𝐶𝛽𝐶𝛾 𝑆𝛼𝑆𝛽𝐶𝛾 − 𝐶𝛼𝑆𝛾 𝐶𝛼𝑆𝛽𝐶𝛾 + 𝑆𝛼𝑆𝛾
𝐶𝛽𝑆𝛾 𝑆𝛼𝑆𝛽𝑆𝛾 + 𝐶𝛼𝐶𝛾 𝐶𝛼𝑆𝛽𝑆𝛾 − 𝑆𝛼𝐶𝛾
−𝑆𝛽 𝑆𝛼𝐶𝛽 𝐶𝛼𝐶𝛽

] , 𝑤ℎ𝑒𝑟𝑒 𝐶𝛼 = 𝑐𝑜𝑠 𝛼, 𝑆𝛼 = 𝑠𝑖𝑛 𝛼 , 𝑒𝑡𝑐 (6.5) 

 

Therefore a transformation of the jth feature point in the object frame 𝑂 with respect to the ground truth 

measurement system frame 𝐺 can be written by the homogeneous transformation matrix as follows,   

 

[
 
 
 
 
𝑥𝑗
𝐺

𝑦𝑗
𝐺

𝑧𝑗
𝐺

1 ]
 
 
 
 

 = 𝑇𝑂
𝐺

[
 
 
 
 
𝑥𝑗
𝑂

𝑦𝑗
𝑂

𝑧𝑗
𝑂

1 ]
 
 
 
 

      (6.6) 

where 𝑇𝑂
𝐺 is defined as follows, 

𝑇𝑂
𝐺 =

[
 
 
 
 
𝑅𝑂
𝐺

𝑋𝑂
𝐺

𝑌𝑂
𝐺

𝑍𝑂
𝐺

01𝑥3 1 ]
 
 
 
 

      (6.7) 

 

6.1.2 Validation Approach 

 

Next the case is considered where the device is in a fixed position.  In this instance, the relative motion 

between the device and the target object is simply the dynamic motion of the target object itself.  The initial 

static position of the target object prior to any motion and its coordinate frame 𝑂 can be used to represent 

an effective world coordinate frame.  Therefore the origin of the object frame 𝑂𝑂 prior to any motion can 

also be defined as the origin of the world frame as follows, 

 

𝑊𝑂 = 𝑂𝑂 , 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡 = 0     (6.7) 

   

Thus, for a dynamic motion of the target object assuming a fixed device position, the motion of the 

target object can also be expressed with respect to the origin of the world coordinate frame origin 𝑊𝑂, i.e. 
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from the target object’s starting point.  The relative POSE to a new location 𝑂𝑘 at time step 𝑘 from the 

world frame origin 𝑊𝑂 can be determined by the expression in Equations 6.8 and 6.9 below,  

 

�̃�𝑂𝑘
𝑊𝑂 = (𝑇𝑊𝑂

𝐶 )
−1
𝑇𝑂𝑘
𝐶 , 𝑓𝑜𝑟 𝑘 = 0 …𝑛 𝑡𝑜𝑡𝑎𝑙 𝑡𝑖𝑚𝑒 𝑠𝑡𝑒𝑝𝑠 (6.8) 

�̅�𝑂𝑘
𝑊𝑂 = (𝑇𝑊𝑂

𝐺 )
−1
𝑇𝑂𝑘
𝐺 , 𝑓𝑜𝑟 𝑘 = 0 …𝑛 𝑡𝑜𝑡𝑎𝑙 𝑡𝑖𝑚𝑒 𝑠𝑡𝑒𝑝𝑠 (6.9) 

 

where the homogenous transformation matrix �̃�𝑂𝑘
𝑊𝑂  represents the relative POSE from the world frame 

origin 𝑊𝑂 to some new location 𝑂𝑘 for the device and the homogenous transformation matrix �̅�𝑂𝑘
𝑊𝑂  

represents the relative POSE from the world frame origin 𝑊𝑂 to some new location 𝑂𝑘 for the ground truth 

measurement system.  As per the definition of the homogenous transformation matrix of 𝑂𝑘 with respect to 

𝑊𝑂,  the homogenous transformation matrix 𝑇𝑂𝑘
𝑊𝑂 , is defined as follows,  

 

𝑇𝑂𝑘
𝑊𝑂 =

[
 
 
 
 
 

𝑅𝑂𝑘
𝑊𝑂

𝑋𝑂𝑘
𝑊𝑂

𝑌𝑂𝑘
𝑊𝑂

𝑍𝑂𝑘
𝑊𝑂

01𝑥3 1 ]
 
 
 
 
 

      (6.10) 

 

where the three Cartesian elements 𝑋𝑂𝑘
𝑊𝑂 , 𝑌𝑂𝑘

𝑊𝑂 , and 𝑍𝑂𝑘
𝑊𝑂  represent the change in position from 𝑊𝑂 to 𝑂𝑘 

with respect to the object frame 𝑂 as defined in Figure 4-1.  Similarly the rotation matrix 𝑅𝑂𝑘
𝑊𝑂  represents 

the ℛ3 space rotation from 𝑊𝑂 to 𝑂𝑘 about the object frame 𝑂 in the 𝑍, 𝑌, and 𝑋 axes order.  

Therefore successive points in the motion of the target object can be represented a vector of these 

homogenous transformation matrices as shown in Equation 6.11,  

 

𝑇𝑂
𝑊𝑂 = [𝑇𝑂1

𝑊𝑂 𝑇𝑂2
𝑊𝑂 … 𝑇𝑂𝑛

𝑊𝑂]     (6.11) 

 

where the first element in the vector represents the change in POSE from 𝑊𝑂 to 𝑂1, the kth element 

represents the change in POSE from 𝑊𝑂 to 𝑂𝑘, etc.  In this manner, a motion model of the target object for 

both of these two independent systems (device and ground truth measurement system) can be constructed.   
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This constructed motion model represents the homogeneous transformation matrix of the target object 

with respect to the world frame origin  𝑊𝑂 for each time step.  The six element relative POSE vector 

𝑊𝑂
𝑊𝑂relative to the world frame origin 𝑊𝑂  for each time step, as defined by Equation 6.12 below, can be 

constructed by decomposing the homogenous transformation matrix to determine the six element POSE 

vectors.  

 

𝑊𝑂
𝑊𝑂 = [𝑊𝑂1

𝑊𝑂 𝑊𝑂2

𝑊𝑂 … 𝑊𝑂𝑛

𝑊𝑂]     (6.12) 

 

where the relative POSE vector generated by the device is defined as, 

 

�̃�𝑂𝑗

𝑊𝑂 = [𝑋𝑂𝑗
𝑊𝑂 𝑌𝑂𝑗

𝑊𝑂 𝑍𝑂𝑗
𝑊𝑂 ∅𝑂𝑗

𝑊𝑂 𝜃𝑂𝑗
𝑊𝑂 𝜓𝑂𝑗

𝑊𝑂
]
𝑇

    (6.13) 

 

and the relative POSE vector generated by the ground truth measurement system is defined as, 

 

�̅�𝑂𝑗

𝑊𝑂 = [𝑋𝑂𝑗
𝑊𝑂 𝑌𝑂𝑗

𝑊𝑂 𝑍𝑂𝑗
𝑊𝑂 α𝑂𝑗

𝑊𝑂 β𝑂𝑗
𝑊𝑂 γ𝑂𝑗

𝑊𝑂
]
𝑇

    (6.14) 

 

A comparison can then be completed between the two relative POSE vectors from the two systems and 

therefore a validation of the results generated by the device can be completed as illustrated in Figure 6-1 

below. 

 



 

 102 

 

 

 

 

 

 

 

 

 

Figure 6-1: Relative motion of the target object from 𝑊𝑂 to 𝑂1 can be expressed through 𝑇𝑂1
𝑊𝑜. 

 

6.2 Test Setup and Procedure 

 

6.2.1 Ground Truth Measurement System 

 

In order to complete the validation activities a suitable ground truth measurement system is required.   There 

are various criteria in selecting the ground truth measurement system and these are listed below:  

 

a. 6DOF real time tracking for multiple markers  

b. Sample rate larger than the device (30 fps)  

c. High level of precision and accuracy 

d. Relatively low system cost 

 

As a result of these criteria, the Natural Point OptiTrack V100:R2 system was selected due to its ability 

to complete real time marker tracking, its frame rate of 100 fps, and its ability to track markers down to 

sub-millimeter movements with repeatable accuracy [58]. 
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6.2.2 Validation Experimental Test Procedure 
 

 

The following test procedure was used to complete the validation experiments to show the effectiveness of 

the system model implementation on the BlackBerry Dev Alpha A device: 

 

a. Mount four OptiTrack markers for each target object as detailed in Figure 6-2 and locate such that 

two markers lie along the 𝑋𝑂 axis of the object frame, two markers lie along the 𝑌𝑂 axis of the 

object frame, and the intersection of these markers occur at the origin of the object frame 𝑂𝑂. 

b. Setup physical test system as shown in Figure 6-3 below noting that BlackBerry Dev Alpha A 

device position is fixed to a tri-pod and OptiTrack cameras are set in static position. 

c. Setup BlackBerry Dev Alpha A device such that feature points and relative POSE are output as 

debug statements to the console of the BlackBerry 10 Native SW Development Kit environment. 

d. Calibrate OptiTrack system using OptiTrack calibration wand. 

e. Commence recording motion on the OptiTrack system and also initiate ImageProc application on 

the BlackBerry Dev Alpha A device.  Recorded motion will be the time increments for each time 

step, and the relative POSE estimates 𝑊 = [𝑋, 𝑌, 𝑍, ∅, 𝜃, 𝜓]𝑇. 

f. With the BlackBerry Dev Alpha A device kept in a static position, move target objects (1 to N) in 

various motions in the workspace. 

g. Stop recording on OptiTrack system and also stop ImageProc application on the BlackBerry Dev 

Alpha A device. 

h. Store OptiTrack recorded data and BlackBerry Dev Alpha A data to files in a readable format for 

MATLAB. 

i. Import data in MATLAB and complete required analytical analysis. 

 

The test equipment used is detailed in Appendix E and the target object models used are provided in 

Appendix F. 
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Figure 6-2: Depiction of OptiTrack markers including a representation of the OptiTrack marker Centroid 

relative to target object and its associated frame. 

 

Table 6-1: OptiTrack Marker Positioning For Object Models 

Target Object Distance Between Markers – X 
direction 

Distance Between Markers – Y 
direction 

Credit Card Model #1 19.6 cm 13.5cm 

Credit Card Model #2 20.7cm 13.1cm 
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𝑾𝒐𝒓𝒌𝒔𝒑𝒂𝒄𝒆 

𝑶𝑻𝟏 

𝑶𝑻𝟐 𝑶𝑻𝟑 

𝑶𝑻𝟒 

𝑪𝒐𝒎𝒑𝒖𝒕𝒆𝒓 

𝑪𝒐𝒎𝒑𝒖𝒕𝒆𝒓 

𝑫𝒆𝒗 𝒄𝒆 

𝑶𝟏 

𝑶𝑵 

 

Figure 6-3: Test setup used in completing the validation experiments.  
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6.3 Procedure for Analysis of Results 

 

6.3.1 Procedure for Device Analysis  

 

Once the relative POSE data is collected from both the device and the ground truth measurement system, 

the data must be converted into the required homogenous transformation matrices.  For the device, this can 

be simply done by reading in the relative POSE data generated by the device for each time step and creating 

the homogeneous transformation matrix �̃�𝑂𝑘
𝑊𝑂  as per Equation 6.8 along with a vector of transformation 

matrices �̃�𝑂
𝑊𝑂  as per Equation 6.11 and the relative POSE vector for the device �̃�𝑂

𝑊𝑂  as per Equations 6.12 

and 6.13.   

 

�̃�𝑂
𝑊𝑂 = [�̃�𝑂1

𝑊𝑂 �̃�𝑂2
𝑊𝑂 … �̃�𝑂𝑛

𝑊𝑂]     (6.15) 

�̃�𝑂
𝑊𝑂 = [�̃�𝑂1

𝑊𝑂 �̃�𝑂2

𝑊𝑂 … �̃�𝑂𝑛

𝑊𝑂]     (6.16) 

 

6.3.2 Procedure for Analysis of Ground Truth Measurement System Data 

 

As noted above, the data collected from the ground truth measurement system is with respect to the Centroid 

OptiTrack markers as shown in Figure 6-2 above.  At each time step, the OptiTrack measurement system 

records the following data: 

 

a. The six degree of freedom relative position and orientation of the OptiTrack markers’ 

Centroid OMC with respect to the OptiTrack world frame.  The Centroid is defined as 

the geometric center of the four OptiTrack markers and is different than the object 

frame origin. It is noted that OptiTrack Centroid 𝑂𝑀𝐶 is at a statically fixed offset from 

the object frame origin 𝑂𝑂 

b. OptiTrack Marker locations  
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In order to compare the relative motion of the object from its initial starting position, a method is 

required to transform the data from the OptiTrack system to construct the required homogeneous 

transformation matrix �̅�𝑂𝑘
𝑊𝑂 .  In order to complete this calculation, the transformation from the object frame 

with respect to the ground truth measurement system frame 𝑇𝑂
𝐺 needs to be determined. 

Different methods for constructing the homogeneous transformation matrix 𝑇𝑂
𝐺 were investigated.  One 

possible approach is to construct the object frame by taking the intersection of the two vectors 𝑂𝑀2𝑂𝑀4
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   and 

𝑂𝑀1𝑂𝑀3
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   created by the marker positions to determine the object frame origin 𝑂𝑂.  The object frame can 

then be constructed by finding the unit vectors 𝑥𝑜, �̂�𝑜, and �̂�𝑜, which can be used to construct the rotation 

matrix of the object frame with respect to the marker Centroid.  The homogenous transformation matrix of 

the object frame with respect to the marker Centroid frame can then be constructed using this rotation matrix 

and the Cartesian offset between the Centroid location 𝑂𝑀𝐶  of the object frame origin 𝑂𝑂.  Therefore, the 

required homogeneous transformation matrix 𝑇𝑂𝑘
𝐺  can be constructed for each time step as follows, 

 

𝑇𝑂𝑘
𝐺 = 𝑇𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑

𝐺
𝑘
𝑇𝑂
𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑    (6.17) 

 

However, some error in the OptiTrack measurements was observed due to the system confusing the 

trackable marker set, resulting in bad correspondences of the data for some of the OptiTrack marker data 

points.  Therefore, another method was pursued to construct the required homogeneous transformation 

matrix 𝑇𝑂
𝐺.  As previously noted, the OptiTrack marker Centroid location 𝑂𝑀𝐶  is statically offset from the 

object frame origin 𝑂𝑂.  Therefore as per the general principal of relativity [59], the object frame origin 

𝑂𝑂, the four OptiTrack markers, and the OptiTrack marker Centroid location 𝑂𝑀𝐶 will all experience the 

same relative motion for any given 3D motion of the target object since they are all statically located within 

a common inertial reference frame.  However, relativity theory also requires that the spatial axes of the 

object and OptiTrack marker Centroid reference frames exactly coincide with each other.   

Therefore, assuming that the spatial axes of the object frame 𝑂 coincides with that of the OptiTrack 

marker Centroid frame, a modified expression for the homogenous transformation matrix 𝑇𝑂
𝐺 for each time 

step 𝑘 can be written as follows, 

 

𝑇𝑂𝑘
𝐺 = 𝑇𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑

𝐺
𝑘
     (6.18) 
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where the homogeneous transformation matrix 𝑇𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑
𝐺

𝑘
 of the Centroid with respect to the ground truth 

measurement system is defined  by Equation 6.19, as follows, 

 

𝑇𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑
𝐺

𝑘
=

[
 
 
 
 
𝑅𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑
𝐺

𝑘

𝑋𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝑘
𝐺

𝑌𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝑘
𝐺

𝑍𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝑘
𝐺

01𝑥3 1 ]
 
 
 
 

    (6.19) 

 

As noted above, the OptiTrack system provides all of the required information at each time step to 

construct the homogenous transformation matrix 𝑇𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑
𝐺

𝑘
, i.e. the six degree of freedom relative position 

and orientation of the OptiTrack markers’ Centroid 𝑂𝑀𝐶 with respect to the OptiTrack world frame. Since 

the required measurements for the ground truth measurement system will not be with respect to the object 

frame origin, a new effective world frame origin is required for just the ground truth measurement system. 

As the target object and its inertial reference frame was held at rest for the initial phase of the motion 

experiments, the world frame origin for the OptiTrack system can be defined as the initial starting position 

of the Centroid marker location,  

 

𝑈𝑂 =  𝑂𝑀𝐶𝑂
, 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡 = 0     (6.20) 

 

The update to the world frame origin reference for the ground truth measurement system therefore 

requires minor updates to the various expressions needed to complete the validation.  An updated expression 

for �̅�𝑂𝑘
𝑊𝑂  based on the ground truth measurement system’s world origin 𝑈𝑂 , i.e. the OptiTrack marker 

Centroid initial static position, can be written as follows, 

 

�̅�𝑂𝑘
𝑈𝑂 = (𝑇𝑈𝑂

𝐺 )
−1
𝑇𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑
𝐺

𝑘
, 𝑓𝑜𝑟 𝑘 = 0 …𝑝 𝑡𝑜𝑡𝑎𝑙 𝑡𝑖𝑚𝑒 𝑠𝑡𝑒𝑝𝑠 (6.21) 

 

Similarly the vector of the homogeneous transformation matrices and the relative POSE vector of the object 

with respect to the ground truth measurement system’s world origin 𝑈𝑂 , can be written as follows, 

 

�̅�𝑂
𝑈𝑂 = [�̅�𝑂1

𝑈𝑂 �̅�𝑂2
𝑈𝑂 … �̅�𝑂𝑝

𝑈𝑂]     (6.22) 
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�̅�𝑂
𝑈𝑂 = [�̅�𝑂1

𝑈𝑂 �̅�𝑂2

𝑈𝑂 … �̅�𝑂𝑝

𝑈𝑂]     (6.23) 

 

It was determined through experimentation that the spatial axes of the object frame 𝑂 and the Centroid 

frame are not exactly aligned.  The relationship between the two frames is shown in Figure 6-4.  A 

correction to the OptiTrack marker Centroid frame, as detailed in Table 6-2 below, was applied so that the 

spatial axes of the object frame and the Centroid frame exactly coincide with each other. Once the spatial 

axes transformation was completed, the homogenous transformation matrix 𝑇𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑
𝐺

𝑘
 of the Centroid with 

respect to the ground truth measurement system can be constructed and no changes to the above expressions 

in Equations 6.19, 6.21, 6.22, and 6.23 are required. 

   

 

  

 

Figure 6-4: Spatial axes frame representation for object frame 𝑂 and OptiTrack Marker Centroid frame 

noting that pitch is negated in OptiTrack system.  
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Table 6-2: Object Frame to Centroid Frame Conversion Summary 

Axis Object Frame OptiTrack Centroid Frame 

𝑋 𝑋 −𝑋 
𝑌 𝑌 −𝑍 
𝑍 𝑍 𝑌 

𝑟𝑜𝑙𝑙 𝑎𝑏𝑜𝑢𝑡 𝑍 (∅) 𝑟𝑜𝑙𝑙 𝑎𝑏𝑜𝑢𝑡 𝑍 (∅) 𝑦𝑎𝑤 
𝑝𝑖𝑡𝑐ℎ 𝑎𝑏𝑜𝑢𝑡 𝑌 (𝜃) 𝑝𝑖𝑡𝑐ℎ 𝑎𝑏𝑜𝑢𝑡 𝑌 (𝜃) 𝑝𝑖𝑡𝑐ℎ 
𝑦𝑎𝑤 𝑎𝑏𝑜𝑢𝑡 𝑋 (𝜓) 𝑦𝑎𝑤 𝑎𝑏𝑜𝑢𝑡 𝑋 (𝜓) −𝑟𝑜𝑙𝑙 

 

6.3.3 Limitations and Assumptions 

 

When completing the analysis between the device and the ground truth measurement system, comparison 

is required between the relative POSE vector for the device (Equation 6.16) and the relative POSE vector 

for the ground truth measurement system (Equation 6.23).  The two equations are restated below for quick 

reference and can be constructed based on the measurement data collected.   

 

�̃�𝑂
𝑊𝑂 = [�̃�𝑂1

𝑊𝑂 �̃�𝑂2

𝑊𝑂 … �̃�𝑂𝑛

𝑊𝑂]     (6.16) 

�̅�𝑂
𝑈𝑂 = [�̅�𝑂1

𝑈𝑂 �̅�𝑂2

𝑈𝑂 … �̅�𝑂𝑝

𝑈𝑂]     (6.23) 

 

There are several additional limitations that arise from the physical system and the experimental test 

setup.  A quick summary of these limitations are listed below. First of all, it is noted that there are a different 

number of time steps for each measurement system, i.e. 𝑛 time steps for the device and 𝑝 time steps for the 

ground truth measurement system.  Secondly, the frame/sampling rate of the device varies between 20Hz 

and 30Hz compared to a 100Hz sampling rate of the OptiTrack system.  Additionally, the two measurement 

systems are not directly coupled and there is no trigger to synchronize the start and end for the two sets of 

measurements, as both systems are manually operated. Finally some error in the OptiTrack measurements 

was observed due to the system confusing the trackable marker set resulting in bad correspondences of the 

data for some data points.  
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To account for the limitation of the two measurement systems not being synchronized, the relative 

POSE vectors �̃�𝑂
𝑊𝑂  and �̅�𝑂

𝑈𝑂  need to be manually aligned.  The data alignment can be completed by 

applying an offset to the device measurement data set.  As the initial and final positions were kept static, 

application of the offset is deemed as a feasible and reasonable approach.  It should be noted that application 

of this manual time offset or shift will induce some level of error to the calculations.  Furthermore, the 

duration recorded also differs for each system.  Once the static time offset is applied to the device relative 

POSE vector data, both the device and ground truth relative POSE vector data sets will be truncated to 

ensure that the same span and duration of data is available for comparison. 

Additionally, as the sampling rates between the device and the OptiTrack systems differ, the data points 

for the relative POSE vectors listed in Equations 6.16 and 6.23 cannot be directly compared.  As the 

frequency of measurements is at least three times higher on the OptiTrack system, a simple interpolation of 

the OptiTrack data will be completed and is assumed to be suitable for comparison.   It is noted that this 

interpolation will be completed after the time offset and truncation is applied. 

For the device, at time step 𝑘, the relative POSE vector of the object from its initial position is �̃�𝑂𝑘

𝑊𝑂 .  

The data at device time step 𝑘 corresponds to some physical measurement time denoted as Ω.  With respect 

to the physical measurement time Ω, locate the OptiTrack relative POSE vector values that correspond to 

the largest time value just less than Ω and the smallest time value just greater than Ω.  For simplicity, these 

two ground truth measurement time steps will be denoted as 𝜏 and 𝜏 + 1 where, 

 

 𝜏 ≤ 𝛺 ≤  𝜏 + 1       (6.24) 

 

The OptiTrack data can then be interpolated through the following definition to create a corresponding 

a target object motion POSE vector �̿�𝑂𝑘

𝑈𝑂  for device time step 𝑘 and also for each 𝑘 ∈ {1…𝑛} device time 

steps as follows, 

 

�̿�𝑂𝑘

𝑈𝑂 = 
�̅�𝑂𝜏

𝑈𝑂+�̅�𝑂𝜏+1

𝑈𝑂

2
, 𝑓𝑜𝑟 𝑡𝑖𝑚𝑒  Ω seconds     (6.25) 

�̿�𝑂
𝑈𝑂 = [�̿�𝑂1

𝑈𝑂 �̿�𝑂2

𝑈𝑂 … �̿�𝑂𝑛

𝑈𝑂]     (6.26) 
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In order to measure the performance of the system, the absolute error can be constructed for each 𝑘 ∈

{1…𝑛} device time steps by directly subtracting the device generated target object motion POSE vector 

from the interpolated target object motion POSE vector of the ground truth measurement system, 

 

𝑊_𝐸𝑟𝑟𝑜𝑟𝑘 = �̿�𝑂𝑘

𝑈𝑂 − �̃�𝑂𝑘

𝑊𝑂               (6.27) 

 

For the case of error in the raw OptiTrack measurements due to the system confusing the trackable 

marker set, these outliers will be manually removed from the raw data set.  While it is unfortunate and not 

desired to adjust the ground truth measurement system data, these outliers create multiplicative error in the 

resulting relative POSE vectors and need to be handled.  As the sampling frequency of the ground truth 

measurement system is at least three times larger than that of the device, removing these outlier data points 

is therefore viewed as acceptable since there is a tolerance to reducing samples without impacting the 

results. 

 

6.4 Experimental Test Results 

  

Physical experiments were conducted keeping both the device and the ground truth measurement system 

static and applying a smooth motion to the target object(s).  Various motions were completed and the 

following five particular cases will be detailed as follows: 

 

a. Single object motion in object frame 𝑍 direction  

b. Single object motion in random direction – case 1 

c. Single object motion in random direction – case 2 

d. Single object motion in random direction – case 3 

e. Two object motion in random directions 
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The experimental results are detailed in Figures 6-5 through 6-16 below and a summary of the results is 

detailed in Tables 6-3 for the single object motion cases and 6-4 below for the two object motion case. 

 

Figure 6-5: Depiction of the target object motion relative to its initial position, as measured by the ground 

truth measurement system �̿�𝑂𝑘

𝑈𝑂  (blue) and the device �̃�𝑂𝑘

𝑊𝑂  (red) for a Z-axis motion case. 
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Figure 6-6: Absolute error calculation 𝑊_𝐸𝑟𝑟𝑜𝑟𝑘 for the Z-axis motion case detailed in Figure 6-5. 
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Figure 6-7: Depiction of the target object motion relative to its initial position, as measured by the ground 

truth measurement system �̿�𝑂𝑘

𝑈𝑂  (blue) and the device �̃�𝑂𝑘

𝑊𝑂  (red) for the first random motion case. 
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Figure 6-8: Absolute error calculation 𝑊_𝐸𝑟𝑟𝑜𝑟𝑘 for the first random motion case detailed in Figure 6-7. 
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Figure 6-9: Depiction of the target object motion relative to its initial position, as measured by the ground 

truth measurement system �̿�𝑂𝑘

𝑈𝑂  (blue) and the device �̃�𝑂𝑘

𝑊𝑂  (red) for a second random motion case. 
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Figure 6-10: Absolute error calculation 𝑊_𝐸𝑟𝑟𝑜𝑟𝑘 for the second random motion case detailed in Figure 6-

9. 
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Figure 6-11: Depiction of the target object motion relative to its initial position, as measured by the ground 

truth measurement system �̿�𝑂𝑘

𝑈𝑂  (blue) and the device �̃�𝑂𝑘

𝑊𝑂  (red) for a third random motion case. 
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Figure 6-12: Absolute error calculation 𝑊_𝐸𝑟𝑟𝑜𝑟𝑘 for the third random motion case detailed in Figure 6-

11. 
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Figure 6-13: Depiction of the first target object motion relative to its initial position, as measured by the 

ground truth measurement system �̿�𝑂𝑘

𝑈𝑂  (blue) and the device �̃�𝑂𝑘

𝑊𝑂  (red) for a two object random motion 

case.  
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Figure 6-14: Absolute error calculation 𝑊_𝐸𝑟𝑟𝑜𝑟𝑘 for the first object in a two object random motion case 

as detailed in Figure 6-13. 
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Figure 6-15: Depiction of the second target object motion relative to its initial position, as measured by the 

ground truth measurement system �̿�𝑂𝑘

𝑈𝑂  (blue) and the device �̃�𝑂𝑘

𝑊𝑂  (red) for a two object random motion 

case.  
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Figure 6-16: Absolute error calculation 𝑊_𝐸𝑟𝑟𝑜𝑟𝑘 for the second object in a two object random motion 

case as detailed in Figure 6-15. 
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Table 6-3: Single Object Motion Validation Experimental Results 

Motion Case Criteria 𝑿  𝒀  𝒁  ∅  𝜽 𝝍  
Z-axis motion 
(1.5s offset) 

Mean Abs Error (mm 
or °) 

6.13    10.61    19.14    1.86     1.29     0.62 

Max Abs Error (mm or 
°) 

14.93 23.01 38.48 8.89 4.48 1.06 

% within 10mm or 5°  60.26 56.41 43.16 99.57 100 100 

% above mean error 47.01 44.88 53.41 45.3 33.77 50 

        

Random motion 
case 1 
(5.4s offset) 

Mean Abs Error (mm 
or °) 

12.3    13.37     7.36     6.01     3.41     0.94 

Max Abs Error (mm or 
°) 

45.81 54.05 51.31 14.95 32.38 8.82 

% within 10mm or 5°  54.64 52.86 79.29 37.67 87.78 96.45 

% above mean error 43.2 42.6 37.87 57.2 16.96 25.05 

        

Random motion 
case 2 
(1.8s offset) 

Mean Abs Error (mm 
or °) 

21.41    19.53    21.58   6.27     9.78     4.03 

Max Abs Error (mm or 
°) 

135.01 177.39 240.56 62.65 55.17 65.16 

% within 10mm or 5°  26.8 35.49 42.88 67.73 49.91 85.58 

% above mean error 32.16 44.36 43.07 26.62 29.21 15.53 

        

Random motion 
case 3 
(3s offset) 

Mean Abs Error (mm 
or °) 

19.14     11.73    14.89     7.17     7.49     5.11 

Max Abs Error (mm or 
°) 

51.53 54.44 101.56 86.92 33.83 15.95 

% within 10mm or 5°  37.65 60.39 49.89 38.63 61.86 63.33 

% above mean error 41.81 32.76 38.39 39.86 23.96 36.19 

        

Average Mean Average Error 
(mm or °) 

14.75 13.81 15.74 5.32 5.49 2.7 
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Table 6-4: Two Object Motion Validation Experimental Results 

Motion Case Criteria 𝑿  𝒀  𝒁  ∅  𝜽 𝝍  
Two Object 
Motion – first 
object  
(1.5s offset) 

Mean Abs Error (mm 
or °) 

14.71 34.60 24.89 4.24 7.70 5.3 

Max Abs Error (mm or 
°) 

53.47 166.23 183.65 14.82 27.01 25.68 

% within 10mm or 5°  45.22 21.31 30.28 63.94 48.80 66.53 

% above mean error 43.82 27.69 25.9 39.64 41.24 28.49 

        

Two Object 
Motion – 
second object 
(1.5s offset) 

Mean Abs Error (mm 
or °) 

33.27 67.39 25.38 5.04 3.64 6.01 

Max Abs Error (mm or 
°) 

60.22 152.67 238.23 12.9 9.27 16.52 

% within 10mm or 5°  25 18.98 37.73 42.82 83.57 54.17 

% above mean error 62.27 58.8 43.75 57.18 53.7 34.26 

        

Average Mean Average Error 
(mm or °) 

23.99 51 25.14 4.64 5.67 5.66 

 

6.5 Discussion of Experimental Results 

 

Validation experiments were completed to examine the effects of various motions. Based on the procedures 

outlined above in Chapter 6.3, the motion depicted in the above figures is of the motion of the target object 

relative to its static initial starting position.  The motions depicted are based on measurements taken by both 

the device and the ground truth measurement system.  

For the single object motion case, the device was generally able to track the motion of the target object, 

as seen in Figures 6-5 through 6-12.  The mean absolute error seen in the Cartesian elements was 

approximately 15mm compared with 4° for the three Euler angles.  For the Z-axis motion case, depicted in 

Figures 6-5 and 6-6 and detailed in Table 6-3, the mean absolute error observed was the smallest of all of 

the test cases.  In this test case, the device was able to track the target object motion relatively well with a 

little higher error seen in the 𝑌 and 𝑍 axes.   

For the first random motion case of a single object, depicted in Figures 6-7 and 6-8, an overall increase 

in error compared with the Z-axis motion case was observed.  More pronounced error is seen in the roll 
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∅ and pitch 𝜃 Euler angles.  For the roll ∅ angle, the mean absolute error is more general, but it is deemed 

acceptable given its low value (6.01°).  For the pitch 𝜃 angle, the mean absolute error appears to be more 

pronounced during cases for “faster” periods of motion occurring around the 5-7s duration.  Examining 

Figure 6-7 further, the error on the pitch 𝜃 angle occurs during a relatively rapid change in motion.   For 

this motion case, the majority of the error was kept to within 10mm or 5°, as seen in Table 6-3 above. 

For the second random motion case of a single object, depicted in Figures 6-9 and 6-10, similar tracking 

results were seen to that of the first random motion case although with larger error.  Larger error was seen 

on all six axes during cases of “faster” periods of motion.  Given that sharper motions were completed in 

this motion case, higher error was seen. Additionally the maximum absolute error calculation is skewed 

due to likely data outliers on all axes for either the device or the OptiTrack system.  With these points 

removed, the maximum absolute error will be reduced across the board. 

For the third random motion case of a single object, depicted in Figures 6-11 and 6-12, generally 

acceptable tracking is seen on four of the six axes with poorer performance on the 𝑋 axis and pitch 𝜃 angle.  

For the 𝑋 axis motion, a general and broad error is seen compared with the pitch 𝜃 angles, which appears 

to lose convergence between 6-10s. It is theorized that the loss of convergence for the pitch 𝜃 angle likely 

skews the relative 𝑋 axis motion result due to the nature of the  (𝑇𝑊𝑂

𝐶 )
−1
𝑇𝑂𝑘
𝐶  calculation for the device. 

Data outliers or spikes on the 𝑍 axis and roll ∅ angle result in a higher skewed maximum absolute error 

calculation. 

Generally speaking, the error observed in the single object motion case is viewed as acceptable with a 

few caveats.  The system model is observed to have some issues dealing with “faster” motions, so an 

examination of the entrywise values of the disturbance covariance matrix 𝑄𝑘 should be completed.  

Specifically the values should be increased to account for “faster” periods of motion.  Additionally, the 

error observed may be due to the use of the constant velocity model for the relative motion dynamics.  Given 

the higher observed error during periods of more rapid and “faster” motion, consideration should be given 

to using a constant acceleration or higher order model for the relative motion dynamics.  One of the stated 

limitations by various authors [21] [61] [62] of the EKF as pertaining to AR applications is that lower order 

motion models, such as the constant velocity model, could see some lag in human motion.   

Another source of the observed error is likely due to the image processing component of the system.   

As noted in Chapter 4, the feature extraction algorithms complete edge detection for each of the four edges 

of the credit card and then extrapolate the intersections of these four lines to determine the four object 
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feature points.  Since the 2D image is more sensitive to changes in the 𝑋, 𝑌, and roll ∅ parameters than it 

is for changes to the depth parameters (𝑍, pitch 𝜃 , and yaw 𝜓) [39], it is likely that a larger error will be 

observed in the extracted feature points due to changes in the relative depth parameters.  Furthermore, as 

the entire credit card is windowed during the tracking phase of the image processing step, the orientation 

of the credit card image in the display pixel plane will affect the processing time required for each time 

step.  For example, when the credit card image in the display pixel plane is relatively aligned with the 𝑋 

and 𝑌 axes of the display pixel plane, then the tracking phase window will take up a smaller portion of the 

overall display.  However, when the credit card image orientation is skewed, a much larger sized tracking 

phase window will be required meaning that more processing time will be required for this case.  Therefore, 

the additional processing time due to a skewed credit card image orientation will result in a larger time step 

between samples causing the dynamic model error to increase further, as defined in Equation 3.26, which 

is restated below for reference. 

 

𝐷𝑦𝑛𝑎𝑚𝑖𝑐 𝑀𝑜𝑑𝑒𝑙 𝐸𝑟𝑟𝑜𝑟 ∝  𝛿𝑘 ∗ |�̇�𝑎𝑐𝑡𝑢𝑎𝑙 − �̇�𝑚𝑜𝑑𝑒𝑙|    (3.26)  

 

Finally the camera sensor and the measurement noise will contribute to further error when completing the 

feature point extraction.  There is some small amount of error due to the sensor and there will be additional 

error due to the assumption of global shutter.  As the physical camera CCD sensor will take images with a 

rolling shutter such that the left edge of the scene will be recorded with some lag after the right edge of the 

scene, some bias error will be introduced.  It is therefore theorized that making adjustments to the 

disturbance covariance matrix 𝑄𝑘, moving to a higher order relative motion dynamics model like a CA 

model, and making improvements to the image processing techniques, including compensation for the 

rolling shutter, should provide for improvements that will alleviate some of the performance issues 

observed. 

Next, the multiple object motion case is examined.  In this test case, the two target objects were moved 

simultaneously in the workspace and the relative motion for each target object with respect to their own 

initial starting position was computed.  The results are shown in Figures 6-13 through 6-16.  Generally 

speaking the results are noticeably worse than in the single object motion cases examined.  Based on a 

visual review of the data, rough tracking results are observed.   However, the mean absolute Cartesian 

element error is much higher (33% average) than the single object case (15% average), as can be seen 
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through a review of Tables 6-3 and 6-4.  The mean absolute Euler angle is around 5°, which is considered 

acceptable and is in line with the results seen for the single object case.   

For both target objects, a higher level of noise and spikes are seen on the device’s measurements and 

is clearly seen in the error plots of Figures 6-14 and 6-16.  From Figures 6-13 and 6-15, noisiness in the 

device’s measurements are concluded to be a contributor to the degraded tracking performance, which 

appears in the absolute mean error calculations (see Table 6-4).  These spikes or outliers also have the effect 

of improperly increasing the absolute maximum peak error measurements. The increased measured 

noisiness on the measurements indicates that an entrywise increase to the measurement covariance matrix 

𝑅𝑘 may be required.  Additionally the image processing techniques would need to be optimized to better 

handle multiple object cases, as the device’s data input quality was much worse in the two object motion 

cases.  Apart from the error due to the image processing algorithms used, it is noted that two separate 

windows for each of the credit cards will be required in the tracking phase, resulting in a larger cycle time 

for the two object case.  This cycle time increase directly correlates to an increase in the dynamic modelling 

error, as per Equation 3.26.  

In addition to the issues noted with the image processing, the other recommendations from the single 

object case also apply to the multiple object case.  Moving to an increased value of the disturbance 

covariance matrix 𝑄𝑘 should help to reduce the error during “faster” periods of motion.  Moving to a 

constant acceleration or higher order model for the relative motion dynamics will aid the system’s 

performance to random relative motions.    

Based on the results from the validation experiments, it is therefore concluded that the video see-

through mobile AR application based on position based visual POSE estimation methods was successfully 

implemented for the single object real-time tracking case.  The tracking performance is concluded to be 

sufficient with a level of error that is tolerable for this proof of concept. To improve overall performance, 

it is recommended that changes be investigated in the values for the disturbance covariance matrix 𝑄𝑘 and 

the measurement covariance matrix 𝑅𝑘.  Moving the process model 𝐴𝑘 to a constant acceleration model 

from a constant velocity model is also recommended, as it will improve the systems performance to “faster” 

motions typically done by humans.  Finally, it is recommended that the image processing techniques be 

further refined to provide better performance for both speed to allow for less error in the multiple object 

case and overall accuracy.  
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Chapter 7 CONCLUSIONS AND FUTURE WORK 

 

7.1 Conclusions 

 

This thesis investigated the design, verification, and validation of a video see-through AR application for a 

mobile computing device using position based visual POSE estimation methods.  In addition, a framework 

was presented that allows extension to multiple objects, multiple object models, and other mobile 

computing platforms. 

The general framework for the video see-through mobile AR application was proposed detailing the 

mathematical system model and the solution using position based visual POSE estimation methods.  

Specifically a solution using the EKF was provided including considerations for the relative motion 

dynamics, initialization, and the effective workspace of this system.  Extension of this framework to 

multiple target objects was given along with considerations to ensure unique object identification in the 

tracking phase. 

The general framework was then applied to a physical system.  The design specifics to implement the 

video see-through mobile AR application on a BlackBerry Dev Alpha A mobile computing device was 

given, including a modified system model due to the physical characteristics of the device’s camera and 

display.  The architecture of the physical system was provided along with details for completing the Image 

Processing using the OpenCV libraries and video see-through AR rendering using the OpenGL libraries.  

Details around extending this system model to multiple objects, multiple object models, and multiple 

mobile computing devices were given. 

To verify the video see-through mobile AR system model based on the position based visual POSE 

estimation methods, a suite of simulations were completed to assess the system models performance.  

Various motions models were applied with varying parameters such as initial position, noise, sampling 

rates, and disturbance and noise covariance values.  The proposed system was verified and concluded to 

have reasonable overall performance given the simulation results along with a conclusion that the 

parameters were suitably selected for this system. 
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To validate the video see-through mobile AR application, an independent ground truth measurement 

system was used.  In these validation experiments, the device and the ground truth measurement system 

were held in a static position and a smooth motion was applied to the target object in 3D space over time.  

The relative position and orientation was measured by both the device and the ground truth measurement 

system and this data was transformed to represent the relative motion of the target object from its initial 

starting point.  The implemented system was concluded to have acceptable performance in the single object 

real-time tracking case.  Multiple objects saw degraded performance, likely due to the image processing 

techniques used.   Overall, it is recommended that changes to the disturbance covariance matrix 𝑄𝑘 and the 

measurement covariance matrix 𝑅𝑘 be examined to improve performance due to “faster” motions and 

higher measurement noise levels seen in the multiple object experiments.  Additionally it is recommended 

that a constant acceleration or higher order model process model be adopted, as it will better respond to the 

more natural and rapid motions generated by humans.  Finally it is recommended that the image processing 

techniques be further refined to provide improved overall accuracy in general and to also increase execution 

speed to allow for less error in the multiple object case. 

 

7.2 Contributions 

 

As noted previously and summarized here, the primary contribution of this research is the first 

implementation of a video see-through mobile AR application using position based visual POSE estimation 

methods for real-time tracking of multiple objects using a single monocular camera.  At the present time, 

all other currently published approaches in this field use large numbers of feature points and tracking 

approaches that are computationally expensive in contrast to the position based visual POSE estimation 

method.  Given that mobile phones often run various other applications and services like the cellular radio, 

WiFi, BlueTooth, etc., minimization of the video see-through mobile AR application’s computational 

complexity is an important consideration to allow for true real-time tracking performance in a mobile 

computing environment when there is a competition for resources.  Additionally this work provides the 

details required to extend this work to multiple object models and also to multiple mobile computing device 

platforms.    
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7.3 Future Work  

 

From the work presented in the prior chapters, there are two major areas where future work can be 

conducted.  The first is in optimization of the system model and the second is to refine the methods used in 

validation. 

There are several areas of system model optimization that can be pursued to improve upon the 

performance and expansion of scope.  The first improvement would be to optimize the image processing of 

the detection and tracking of the target object feature points.  Additional work should be done to improve 

upon the robustness of the measurements, which may require an algorithmic change in the image processing 

techniques.  Investigation should also be pursued to implement a rolling shutter compensation similar to 

what was done by Klein and Murray [66] in the PTAM approach.  Additionally, consideration should be 

given to augmenting the feature point extraction accuracy with a co-operative approach between time steps, 

such as with bundle adjustment [66].  However care should be taken to minimize computational expense, 

as it could affect real-time tracking performance.   

Additionally, the current image processing and feature point detection/identification implementation 

was benchmarked to execute on the order of 12ms to 25ms.  This in contrast to the 1ms needed to complete 

the relative POSE estimation step.  Recall that to ensure real-time tracking implementation, both the image 

processing and relative POSE estimation steps need to complete in less than 50ms to ensure no visible lag 

occurs in the video see-through AR implementation.  It is noted that due to the architecture design, the 

video see-through AR rendering operations can be removed from the execution time budget, as it is done 

in parallel to image processing and POSE estimation.  In reviewing the current execution time budget, it 

appears that the system could only reasonably manage real time parallel tracking of two to three target 

objects before lag is seen by the user.  Therefore further work should be done to optimize the time required 

for the image processing techniques, as it will increase the number of target objects that can be tracked in 

parallel.   

A second area of model improvement and optimization would be to improve the capabilities of object 

detection and tracking. An ideal enhancement would be to include the capability to detect and track 

unknown target objects.  Tribou [60] has done some work in this area and applying these methods would 

improve upon the system model versatility.  Furthermore, the system model should be extended to also 

include a 3D CAD library of various object models.  The target object model of the credit card was selected 
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for this work to allow for reproducibility and repeatability of results.  However, the 3D CAD library should 

be extended to include objects of interest to the application in question, e.g. medical training, etc.  

Additionally the system model should be made more robust with respect to unique object identification 

techniques such as outlined in Chapter 3 and summarized by Wagner [24].    

One final system model optimization would be to enhance the overall model to change the relative 

motion dynamics model to a constant acceleration or higher order model and to update the disturbance 

covariance matrix 𝑄𝑘 and the measurement covariance matrix 𝑅𝑘, as previously stated.  Additionally 

investigation should be done to examine a dynamically varying disturbance covariance matrix 𝑄𝑘 that 

adjusts as the sample rate varies.  Recall that a faster sample rate implies that the CV model will have less 

error in predicting the motion so a smaller value of 𝑄𝑘 would be required.  Therefore as the sample rate 

varies, the disturbance covariance matrix 𝑄𝑘 should be dynamically adjusted lower for faster sample rates 

and higher for slower sample rates.  It is felt that with these areas of model improvements, the items noted 

during the validation experiments would be addressed.   

The second area for further research is to further refine the methods used in validation.  As noted 

previously, one limitation of the current approach is that the device and ground truth measurement system 

are not synchronized in the recording of data.  As a result, a manual time offset needed to be applied in the 

data analysis in order to compare the results, which induces some level of error.  To eliminate this source 

of error, investigation should be done to implement some triggering that would allow the data from both 

the device and ground truth measurement system to be synchronized.  Possible options include using the 

PC to trigger both device and ground truth measurement system applications.   

Another option would be to investigate offline photogrammetric methods for validation. In such an 

approach, experiments could be conducted using just the device and the target object(s).  The video see-

through AR images could then be recorded onto the device along with the relative POSE data and 

downloaded so that offline image analysis and comparison could be performed.  Such an approach would 

eliminate the issues seen due to aligning and synchronizing the data.   

Additionally, work should be completed to relate the absolute position error of the target object from 

its initial starting position to an error value on the device’s display.  As the relative POSE between the 

device and the target object varies, the perception of the scale of the error will shift accordingly.  To 

determine the error with respect to the display for each time step, the position error vector could be added 

to the previously determined relative POSE vector to create an adjusted relative POSE vector.  The object 

feature points can then be transformed into the display pixel plane using the adjusted relative POSE vector 
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and Equations 3.5 and 4.9 for each time step.  From here, a comparison to the extracted feature points could 

easily be completed to determine the error relative to the display. 

In closing, it has been shown that position based visual POSE estimation methods can be successfully 

applied to a video-see through AR real-time tracking application for a mobile computing device.  By 

investigating the improvements noted above, the video see-through mobile AR application using position 

based visual POSE estimation methods would have greater applicability with respect to real-time 

applications that require 3D knowledge of the surrounding environment, such as surgical training, 

equipment assembly and servicing, and search and rescue applications.    
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Appendix A  MATHEMATICAL PRELIMINARIES 

A.1 Rotation Matrices 

 

Matrices, which define in the ℛ3 space rotation with an angle 𝜃 about 𝑋, 𝑌, and 𝑍 axes are described 

below:  

 

𝑅𝑥(𝜃) = [
1 0 0
0 𝑐𝑜𝑠 𝜃 −𝑠𝑖𝑛 𝜃
0 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃

]     (A.1) 

 

𝑅𝑦(𝜃) = [
𝑐𝑜𝑠 𝜃 0 𝑠𝑖𝑛 𝜃
0 1 0

−𝑠𝑖𝑛 𝜃 0 𝑐𝑜𝑠 𝜃
]    (A.2) 

 

𝑅𝑧(𝜃) = [
𝑐𝑜𝑠 𝜃 −𝑠𝑖𝑛 𝜃 0
𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃 0
0 0 1

]     (A.3) 

 

Then by a simple matrix multiplication, the combined rotational matrix can be obtained about the three 

Cartesian axes as follows,  

 

𝑅𝑧𝑦𝑥(∅, 𝜃, 𝜓) = 𝑅𝑧(∅)𝑅𝑦(𝜃)𝑅𝑥(𝜓)    (A.4) 
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Appendix B MEASUREMENT JACOBIAN 

The measurement Jacobian 𝐶𝑘 is linearized about the current state estimate 𝑥𝑘,𝑘−1 for each time step.  It is 

derived as the partial derivative of 𝐺(𝑥𝑘) with respect to the six relative POSE parameters 𝑊 =

[𝑋, 𝑌, 𝑍, ∅, 𝜃, 𝜓],  

 

𝐺(𝑥𝑘)  = −𝑓 [
𝑥1
𝑐
𝑘

𝑃𝑋𝑧1
𝑐
𝑘

𝑦1
𝑐
𝑘

𝑃𝑌𝑧1
𝑐
𝑘

𝑥2
𝑐
𝑘

𝑃𝑋𝑧2
𝑐
𝑘

𝑦2
𝑐
𝑘

𝑃𝑌𝑧2
𝑐
𝑘

…
𝑥𝑁
𝑐
𝑘

𝑃𝑋𝑧𝑁
𝑐
𝑘

𝑦𝑁
𝑐
𝑘

𝑃𝑌𝑧𝑁
𝑐
𝑘
]
𝑇

   (B.1)  

𝐶𝑘 = 
𝜕𝐺(𝑥)

𝜕𝑋
|
𝑥=�̂�𝑘,𝑘−1

       (B.2) 

 

where the measurement Jacobian 𝐶𝑘
𝑗
 is defined for each camera image plane feature point pair as follows, 

 

 

𝐶𝑘
𝑗
= [

𝜕𝑥𝑗
𝑖

𝜕𝑋

𝜕𝑥𝑗
𝑖

𝜕𝑋

𝜕𝑥𝑗
𝑖

𝜕𝑍

𝜕𝑥𝑗
𝑖

𝜕∅

𝜕𝑥𝑗
𝑖

𝜕θ

𝜕𝑥𝑗
𝑖

𝜕ψ

𝜕𝑦𝑗
𝑖

𝜕𝑋

𝜕𝑦𝑗
𝑖

𝜕𝑌

𝜕𝑦𝑗
𝑖

𝜕𝑍

𝜕𝑦𝑗
𝑖

𝜕∅

𝜕𝑦𝑗
𝑖

𝜕θ

𝜕𝑦𝑗
𝑖

𝜕ψ
]
𝑇

 (B.3) 

 

The measurement Jacobian generated in MATLAB can be algebraically simplified further as follows,  

 

[
𝜕𝑥𝑗

𝑖

𝜕𝑋

𝜕𝑥𝑗
𝑖

𝜕𝑌

𝜕𝑥𝑗
𝑖

𝜕𝑍

𝜕𝑥𝑗
𝑖

𝜕∅

𝜕𝑥𝑗
𝑖

𝜕θ

𝜕𝑥𝑗
𝑖

𝜕ψ
]

𝑇

= −
𝑓

𝑃𝑋

1

𝑇13 + 𝑍
∗ 

[1 0 −
𝑥𝑗
𝐶

𝑧𝑗
𝐶 (−𝑆∅𝑇11 + 𝐶∅𝑇12) (𝐶∅𝑇13 +

𝑥𝑗
𝐶

𝑧𝑗
𝐶 𝑇11) (−𝐶∅𝑆θ𝑇12 + 𝑆∅(𝑆θ𝑇11 + 𝐶θ𝑇13) +

𝑥𝑗
𝐶

𝑧𝑗
𝐶 𝐶θ𝑇12)]

𝑇

(B.4) 

 

[
𝜕𝑦𝑗

𝑖

𝜕𝑋

𝜕𝑦𝑗
𝑖

𝜕𝑌

𝜕𝑦𝑗
𝑖

𝜕𝑍

𝜕𝑦𝑗
𝑖

𝜕∅

𝜕𝑦𝑗
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𝑖

𝜕ψ
]

𝑇

= −
𝑓

𝑃𝑌

1

𝑇13 + 𝑍
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[0 1 −
𝑦𝑗
𝐶

𝑧𝑗
𝐶 (𝐶∅𝑇11 + 𝑆∅𝑇12) (𝑆∅𝑇13 +

𝑦𝑗
𝐶

𝑧𝑗
𝐶 𝑇11) (−𝑆∅𝑆θ𝑇12 − 𝐶∅(𝑆θ𝑇11 + 𝐶θ𝑇13) +

𝑦𝑗
𝐶

𝑧𝑗
𝐶 𝐶θ𝑇12)]

𝑇

 (B.5) 
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where 

𝑇11 = [𝐶θ 𝑆θ𝑆ψ 𝑆θ𝐶ψ] [

𝑥𝑗
𝑂

𝑦𝑗
𝑂

𝑧𝑗
𝑂

]     (B.6) 

𝑇12 = [0 −𝐶ψ 𝑆ψ] [

𝑥𝑗
𝑂

𝑦𝑗
𝑂

𝑧𝑗
𝑂

]    (B.7) 

𝑇13 = [−𝑆θ 𝐶θ𝑆ψ 𝐶θ𝐶ψ] [

𝑥𝑗
𝑂

𝑦𝑗
𝑂

𝑧𝑗
𝑂

]   (B.8) 
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Appendix C IMAGE PROCESSING ALGORITHMS 

C.1 Detection Algorithm 

 

1. Down sample the whole image by factor of 4 

2. Find all the edge pixels 

a. Apply 7 by 7 Gaussian smooth kernel 

b. Apply 3 by 3 Sobel kernel, store the result in separate memory 

c. Calculate magnitude of the gradient 

d. Binary threshold at value 10 

3. Apply morphological closing twice to get solid shapes 

4. Find all contours in the binary image 

a. For each contour, apply approximation with distance of 12 

b. If the approximation has 4 vertices, break and assume this contour is the object 

5. Find bounding box of the approximated object, and enlarge the bounding box by 60 pixels on 

each side 

6. The bounding box is the tracking window. 

 

C.2 Tracking Algorithm 

 

1. If detection window is more than 450 by 700, down sample the image 

2. Find line segments 

a. Find the connected components in the detection window 

i. Find all edge pixels 

1. Apply 7 by 7 Gaussian smooth kernel 

2. Apply 3 by 3 Sobel kernel, store the result in separate memory 

3. Calculate magnitude of the gradient 

4. Binary threshold at value 10 

ii. Flood-fill the image from 4 corners 

b. Find contour of each of the connect components, the neighbouring pixels are also 

neighbours in the returned list 
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c. Sort connected components by the distance of the component’s centroid to the center 

of the detection window 

d. For each contour, remove corner pixels 

i. For each pixel, select the two pixels that are 20 positions away from the 

current pixel 

ii. Calculate the area of the triangle formed by the three points 

iii. If area is greater than 100, then the current pixel is sitting on a corner 

e. The remaining pixels form straight line segments. Associate each line segment with the 

originating contour 

f. For each segment, connect the segments that are close together 

g. Remove segments that are too short in comparison to other segments 

3. Fit line equations for each of the line segments 

4. Find feature points from line 

a. Determine a quadrilateral 

i. Starting from an empty set, add batches of lines to the set. Each batch of lines 

belongs to the same contour 

ii. Compute all intersection as lines are added to the set 

iii. Compute the convex polygon formed by the intersections 

iv. Remove convex vertices that are not on the corner using the same method as 

described above 

v. If the convex polygon is not a quadrilateral, continue to process next batch of 

lines 

b. Find black strip within quadrilateral 

i. For each pair of edges, divide each edge into 10 steps 

ii. Connect a line between corresponding step, and sub-sample the image along 

the line 

iii. If more than 85% of the sub-sampled pixels are below 50 in intensity, a black 

strip is found 

iv. If found, copy the vertices of the convex polygon to the feature points in order 

c. Continue fetching lines until no line to fetch   
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Appendix D CAMERA CALIBRATION  

The assumption of a pinhole camera model for the camera used in the device will introduce some level of 

distortion and error.  Fortunately a large amount of this error can be eliminated through calibration and 

additionally the scaling factors Sx and  Sy in the display to camera transformation function ℎ can be 

determined. There are various automated techniques available [63] [64] along with manual methods that 

allow for both the error to be calibrated and for the scaling factor to be determined. In general the techniques 

involve taking images of known input patterns such as chessboards from set distances that allow for the 

required parameters to be accurately determined. 

As the project was implemented using the OpenCV libraries, use of the OpenCV camera calibration 

routines [54] was ideal, as it allowed for the correction the images in real time thereby minimizing both the 

radial and tangential distortion errors [9].  Radial distortion can occur due to a variety of reasons but most 

commonly occur due to the symmetry of the lens and is classified as a barrel or pincushion distortion.  This 

distortion can be corrected using Brown’s distortion model [65] as follows, 

𝑥𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = 𝑥(1 + 𝑘1𝑟
2 + 𝑘2𝑟

4 + 𝑘3𝑟
6 + …+ 𝑘𝑛𝑟

2𝑛), 𝑛 = 1…∞  (D.1) 

 

𝑦𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = 𝑦(1 + 𝑘1𝑟
2 + 𝑘2𝑟

4 + 𝑘3𝑟
6 + …+ 𝑘𝑛𝑟

2𝑛), 𝑛 = 1…∞ (D.2) 

 

where 𝑥 and 𝑦 represent the display pixel plane coordinates, 𝑥𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 and 𝑦𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑  represents the 

corrected output display coordinates, 𝑘𝑛 represents the radial distortion coefficients, and 𝑟 is defined as 

follows: 

𝑟 = √(𝑥 − 𝑥𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑)
2 + (𝑦 − 𝑦𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑)

2   (D.3) 

 

Tangential distortion is caused due to the fact that the lenses are not perfectly parallel to the camera CCD 

sensor and can also be corrected using Brown’s distortion model [62] as follows, 

 

𝑥𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = 𝑥 + (2𝑝1𝑥𝑦 + 𝑝2(𝑟
2 + 2𝑥2))  (D.4) 

𝑦𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = 𝑦 + (2𝑝2𝑥𝑦 + 𝑝1(𝑟
2 + 2𝑦2))  (D.5) 
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where 𝑝1 and 𝑝2 are defined as the tangential distortion coefficients and 𝑟 is defined as above.  This gives 

five distortion parameters, which OpenCV can use in real time to correct the image taken by the camera 

sensor. 

𝐷𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠 = [𝑘1 𝑘2 𝑝1 𝑝2 𝑝3]   (D.6) 

 

Following the calibration routines, 16 pictures of a 6x8 chessboards were taken at various angles. Each 

chessboard space was 2.87cm by 2.87cm.  The pictures were dimensioned 720 by 1280 pixels, which 

correlates to the display pixel plane.  Since the calibration routines are operating on a known target input 

with respect to the display pixel plane image, the scaling factor from the display to camera can also be 

determined.  Using the OpenCV camera calibration tool, the following parameters were determined. 

 

𝐷𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠 = 

[
 
 
 
 
0.24004484937784151
−5.8501954862571743

0
0

41.511647147457438 ]
 
 
 
 
𝑇

  (D.7) 

  

𝑓∗𝑆𝑥

𝑃𝑥
=

𝑓∗𝑆𝑦

𝑃𝑦
= 1884.2751480305226  𝑚/𝑝𝑖𝑥𝑒𝑙   (D.8) 

 

𝑂𝐶𝑥 = 360    (D.9) 

𝑂𝐶𝑦 = 640    (D.10) 

 

 

As there is a priori knowledge of the system; specifically that the camera focal length is fixed and is 

𝑓 = 3.32𝑚𝑚, and the camera inter-pixel spacing parameters 𝑃𝑥 = 𝑃𝑦=1.4𝜇𝑚/𝑝𝑖𝑥𝑒𝑙, this allows us to 

determine the display to camera scaling parameters 𝑆𝑥 and 𝑆𝑦 as follows. 

 

𝑆𝑥 = 𝑆𝑦 = 0.7946    (D.11)   
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Appendix E TEST EQUIPMENT 

 

The following test equipment was required to complete the validation experiments using the device and a 

ground truth measurement system: 

 

a. Natural Point OptiTrack V100:R2 Measurement System, quantity 4 cameras 

b. Vista Attaris Tripod, quantity 5 

c. OptiTrack Calibration Wand 

d. OptiTrack Markers, quantity 8 

e. BlackBerry Dev Alpha Device, BBPIN: 29D7590F  

f. Credit Card Object Models – see appendix E 

g. Computer, quantity 2 

h. Software: OptiTrack Tracking Tools Version 2.5.0 

i. BlackBerry 10 Native SW Development Kit 

j. Tortoise SVN Code Depository 

k. MATLAB 7.1 Student and MATLAB 13 Student SW Packages 
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Appendix F TARGET OBJECT MODELS 

 

The following two figures shown below represent the Known Object Credit Card Models used in the 

validation experiments and are presented here for completeness.  

 

Figure F-1: Known credit card object model used in single object validation experiments.  

 

 

Figure F-2: Known credit card object model used in multiple object validation experiments and was used 

as the second object model. 
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