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Abstract

This thesis describes experimental generation, manipulation and measurement of quan-

tum information using photon pairs emitted in bulk crystals. Multi-photon sources engi-

neered during the course of this thesis have proven to be ideal for original contributions in

the field of optical quantum information.

In the first part of this dissertation, we study nonlocality, bound entanglement and

measurement-based quantum computing using entangled resources produced by our source.

First, we produced and characterised three-photon GHZ polarisation states. We then ex-

perimentally violate the long-standing Svetlichny’s inequality with a value of 4.51± 0.14,

which is greater than the classical bound by 3.6 standard deviations. Our results agree with

the predictions of quantum mechanics, rule out nonlocal hidden-variable theories and cer-

tify the genuine tripartite entanglement achievable by our source. Second, with four-photon

polarisation states, we demonstrate bound entanglement in Smolin states and realize all

of their conceptually important characteristics. Our results highlight the difficulties to

achieve the critical condition of undistillability without completely losing entanglement.

We conclude the first part by simulating, for the first time, valence-bond solid states and

use them as a resource for measurement-based quantum computing. Affleck-Kennedy-Lieb-

Tasaki states are produced with 87% fidelity and single-qubit quantum logic gates reach

an average fidelity of 92 % over all input states and rotations.

In the second part of this dissertation, we explore controlled waveform manipulation at

the single-photon level. Specifically, we shrink the spectral bandwidth of a single photon

from 1740 GHz to 43 GHz and demonstrate tunability over a range 70 times that band-

width. The results are a considerable addition to the field of quantum frequency conversion

and have genuine potential for technological applications.

iii



Acknowledgements

There are many colleagues and friends I should thank for having made my graduate

studies an unforgettable experience. First, thanks to Kevin Resch and the Quantum Optics

and Quantum Information Group at the Institute for Quantum Computing (IQC). I could

not have chosen a better environment to start my career. Specifically, thanks to Rainer

Kaltenbaek, Deny Hamel, Kent Fisher, John Donohue, Mike Mazurek, Robert Prevedel,

Krister Shalm, Logan Wright, Megan Agnew, Lydia Vermeyden and Madeleine Bonsma

for the good time in the lab, for all our valuable discussions, and for your help any time it

was needed. I also acknowledge help, advice and fruitful collaborations with Marco Piani,

Norbert Lütkenhaus, Alessandro Fedrizzi, Bei Zeng, Rolf Horn, Aimee Heinrichs, Catherine

Holloway, Juan Miguel Arrazola, Oleg Gittsovich, Martin Laforest, Osama Moussa, Piotr

Kolenderski and Chris Erven with everyone from the “GHZ experiment”.

I thank Raymond Laflamme, Michele Mosca and all the supporting staff and members of

IQC for making this institute a world-class facility to study and control the weirdness of

quantum mechanics. Thanks to Matt Cooper, Steve Weiss and Vito Logiudice for their

technical support, advice and pleasant discussions. I also appreciate the support from the

Department of Physics, especially from Judy McDonnell for her administrative assistance

during all my graduate studies.

I made a lot of close friends in Waterloo and I particularly thank Troy, Oleg, Kasia, Peter,

Jean-Luc, Florian, Audrey, Agnes, Ansis, Yuval, Kasia S., Aharon, Claire, Tomas JOC,

Robert K., Laura, Jacek, Barbara, Diana, Irina, Josef, Anastasia, Yoah, Johan, Mada and

Alex for their good company. I will carry your friendship with me anywhere I am. I also

thank all my family for their support and understanding that each step I make away from

them also brings me closer to my final goals.

I am sincerely grateful to financial help from the Natural Sciences and Engineering Research

Council of Canada (NSERC), the Department of Physics & Astronomy, IQC and the

Ontario Graduate Scholarship Program (OGS).

A very special thank you to Florian Ong for his useful comments on this thesis, and to the

members of my committee for their time and support: Kevin Resch, Donna Strickland,

Thomas Jennewein, Dayan Ban and Paul Kwiat.

iv



Table of Contents

List of Tables viii

List of Figures ix

List of Abbreviations xi

1 Overview 1

1.1 Quantum information science . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Nonlocality and Bell’s inequalities . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 The mysterious bound entanglement . . . . . . . . . . . . . . . . . . . . . 8

1.4 Optical quantum information . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.5 Quantum frequency conversion . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Related background 15

2.1 Coupled equations for three-wave mixing . . . . . . . . . . . . . . . . . . . 15

2.1.1 Optical frequency conversion . . . . . . . . . . . . . . . . . . . . . . 17

2.1.2 Phase matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Polarisation control and visualisation of photonic qubits . . . . . . . . . . . 20

2.2.1 Polarisation devices . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

v



2.2.2 Bloch sphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3 On dispersion of wave packets . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3.1 Single-mode optical fibers for positive dispersion . . . . . . . . . . . 26

2.3.2 Diffraction gratings for negative dispersion . . . . . . . . . . . . . . 27

2.4 Single-photon detection with silicon avalanche photodiodes . . . . . . . . . 29

I Multi-photon entanglement 30

3 Exploring genuine quantum nonlocality through Svetlichny’s inequality 31

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4 Experimental bound entanglement 45

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2.1 An entanglement witness for the Smolin state . . . . . . . . . . . . 48

4.3 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Appendix A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

vi



5 Quantum computing with a simulated valence-bond solid 60

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.3 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Appendix B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

II Single-Photon Waveform Manipulation 78

6 Spectral compression of single photons with chirped-pulse upconversion 79

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.3 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Appendix C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

7 Conclusion and Outlook 102

List of publications 109

References 111

vii



List of Tables

2.1 Wave plate angles to transform |H〉 to a specific output state. . . . . . . . 23

2.2 Sellmeier coefficient for fused-silica. From Table 5.5-1 in Ref. [1] . . . . . . 27

3.1 Experimentally measured counts for Svetlichny’s test . . . . . . . . . . . . 41

4.1 Counts for the Smolin states’ entanglement witness measurement . . . . . 58

4.2 QST counts for “unlocked” entanglement . . . . . . . . . . . . . . . . . . . 59

5.1 Analyzer parameters for qutrit measurements used for tomography. . . . . 68

5.2 Qutrit measurement bases and Pauli corrections . . . . . . . . . . . . . . . 69

5.3 Analyzer parameters for qutrit measurements used for rotation gates. . . . 70

5.4 Single-qubit logic gate fidelities . . . . . . . . . . . . . . . . . . . . . . . . 74

5.5 Table of tomography results. . . . . . . . . . . . . . . . . . . . . . . . . . . 77

viii



List of Figures

1.1 Schematic illustration of a Bell experiment . . . . . . . . . . . . . . . . . . 7

1.2 Local vs Nonlocal hidden-variable models . . . . . . . . . . . . . . . . . . . 8

1.3 Bound entangled states cannot be distilled . . . . . . . . . . . . . . . . . . 9

1.4 Models for universal quantum computing . . . . . . . . . . . . . . . . . . . 12

1.5 A simplified quantum network . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1 Optical frequency conversion . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2 Rotated frame of a retarder . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3 Bloch sphere representation of qubit states . . . . . . . . . . . . . . . . . . 24

2.4 A dispersive medium broadens a pulse of light . . . . . . . . . . . . . . . . 25

2.5 Parallel gratings device for negative dispersion . . . . . . . . . . . . . . . . 28

3.1 Schematic illustration of a Bell experiment . . . . . . . . . . . . . . . . . . 34

3.2 Experimental setup for the study of Svetlichny’s model. . . . . . . . . . . . 38

3.3 Reconstructed three-photon density matrix of our GHZ state. . . . . . . . 42

3.4 Measured correlations and Svetlichny parameter . . . . . . . . . . . . . . . 43

4.1 Experimental setup to generate four-photon Smolin states . . . . . . . . . 50

4.2 Experimental tests for bound entanglement . . . . . . . . . . . . . . . . . . 53

ix



4.3 Experimentally measured density matrix of a noisy Smolin state . . . . . . 54

4.4 Unlocking of entanglement from a bound entangled state . . . . . . . . . . 56

5.1 Representation of the AKLT state as a chain of spin-1
2

singlet states . . . . 63

5.2 Experimental setup to study the AKLT model. . . . . . . . . . . . . . . . . 65

5.3 Tomographic reconstruction of our photonic AKLT state . . . . . . . . . . 71

5.4 Measurement results for single-qubit rotations. . . . . . . . . . . . . . . . . 73

6.1 Single-photon bandwidth compression scheme . . . . . . . . . . . . . . . . 82

6.2 Single-photon spectra before and after compression . . . . . . . . . . . . . 86

6.3 Single photon wavelength tunability . . . . . . . . . . . . . . . . . . . . . . 87

6.4 Temporal correlations with the idler photon . . . . . . . . . . . . . . . . . 89

6.5 Predicted bandwidth compression and tunability of a single photon. . . . . 94

6.6 Important path lengths in experimental setup. . . . . . . . . . . . . . . . . 97

6.7 Effect of laser repetition rates on the center wavelength . . . . . . . . . . . 98

6.8 Lok-to-Clock feature unable. . . . . . . . . . . . . . . . . . . . . . . . . . . 100

7.1 Metamorphosis of our multi-partite photonic qubits source. . . . . . . . . . 103

7.2 2D AKLT state on honeycomb lattice . . . . . . . . . . . . . . . . . . . . . 106

x



List of Abbreviations

xi



Symbol Synonym Definition

|A〉 |−〉, | − 45◦〉 Anti-diagonally polarised photon

|D〉 |+〉, |45◦〉 Diagonally polarised photon

|H〉 Horizontally polarised photon

|V 〉 Vertically polarised photon

|L〉 | 	〉 Left-circular polarised photon

|R〉 | �〉 Right-circular polarised photon

AKLT Affleck-Kennedy-Lieb-Tasaki

APD Avalanche photodiode

BBO β-Barium-Borate

Bell states |φ±〉, |ψ±〉 1√
2

(|HH〉 ± |V V 〉), 1√
2

(|HV 〉 ± |V H〉)
BiBO Bismuth-Borate

BS Beam-splitter

CHSH Clauser-Horne-Shimony-Holt

FWHM Full-width at half maximum

GHZ Greenberger-Horne-Zeilinger

HOM Hong-Ou-Mandel

HWP λ/2 Half-wave plate

LCR Liquid crystal retarder

LHV Local hidden-variable

LOCC Local operations and classical communication

X, Y, Z σx, σy, σz Pauli matrices

PBS Polarising beam-splitter

PMT Photomultiplier tube

PPT Positive under partial transposition

QM Quantum mechanics

QST Quantum state tomography

QWP λ/4 Quarter-wave plate

RMS Root mean square

SFG Sum-frequency generation

SPDC Spontaneous parametric downconversion

xii



Chapter 1

Overview

One Source to create them all, One Source to study them

One Source to publish them all, and in this thesis bind them

From the Lab of IQC where the Shadows lie

In this thesis, we discuss the experimental generation and manipulation of correlated

photon pairs from spontaneous parametric downconversion (SPDC), in bulk crystals. We

control photonic quantum states to experimentally explore diverse topics at the heart of

quantum information science. First, we encode information onto multi-photon polarisa-

tion states, to investigate nonlocal realistic models and demonstrate the first violation

of Svetlichny’s inequality. Second, we produce and characterise Smolin bound-entangled

states, a family of “noisy” quantum states, which entanglement cannot be purified, but

yet attractive for some communication tasks. Third, using four-photon polarisation states

and linear optical elements, we demonstrate elementary measurement-based information

processing gates with a simulated valence-bond solid, an entangled resource state distinct

from the orthodox cluster states. Finally, we successfully tailor the waveform of a single

photon by converting its energy and manipulating its spectral bandwidth. Our SPDC

source of photonic states is ideal to study those topics central to quantum information:

nonlocality, entanglement, quantum computation and communication.
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Multi-partite 

entanglement between 

photonic qubits 
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inequality 

Chapter 4: 
Experimental bound 

entanglement 

Chapter 5: 
Measurement-based 

quantum computing 

beyond cluster states 

Chapter 6: 
Frequency conversion and 

bandwidth compression of 

single photons 

1.1 Quantum information science

Quantum information science [2, 3, 4, 5] deals with processing and exchanging information

by fully taking advantage of the laws of quantum mechanics. This is a new paradigm

predicted to revolutionize the way we process information. The main research areas in

this field include quantum computing, quantum simulation, quantum communication and

metrology.

A quantum computer is a device performing quantum information processing. In anal-

ogy with the “bits” of today’s (classical) computers, quantum bits, or qubits, are the

fundamental bricks of quantum computing. Unlike classical bits whose value is either 0

or 1, qubits can be placed in a superposition of these two states. A systematic series of

gates on qubits in a superposition can run calculations in parallel, increasing the compu-

tation speed of quantum computers exponentially. It has been shown theoretically that

such computers could in consequence solve certain problems more efficiently than their

2



classical counterpart. For example, public key cryptosystems rely on the difficulty of find-

ing the prime factors of an integer, for which no efficient algorithm exists on a classical

computer [2]. Using the laws of quantum mechanics, Peter Shor proposed a fast quantum

algorithm [6] for factoring that could jeopardize everyday’s encrypted transactions if im-

plemented. Another efficient algorithm is from Lov Grover, who showed how a quantum

computer could speed up a search conducted through an unstructured data base [7]. Sem-

inal works from Shor and Glover are examples of algorithms which stimulated research in

quantum computing. Another major application of quantum computers is the possibility

to efficiently simulate other quantum systems [8], something that classical computers can’t

do efficiently in many interesting and important cases [2].

While the theory of computing with quantum systems predicts higher communication

and computation power, its physical implementation remains a formidable challenge. Some

requirements, known as the DiVincenzo criteria, were proposed for implementing quantum

computation [9]. The physical system should be scalable with well characterized qubits,

which can be initialized to any state. It should also be possible to apply a set of universal

gates [10], acting upon the physical system faster than decoherence times [11]. Finally, it

should be possible to interact with any specific qubit, a crucial step to measure the result

of a computation. Several physical systems are close to fulfill those requirements. Among

the most promising implementations of a quantum computer stand trapped ions [12], NV

centers in diamond [13], phosphorus-doped silicon [14], superconducting circuits [15] and

optical implementations [16].

Communication using the laws of quantum mechanics is an important branch of quan-

tum information science. The protocols are relatively less involved than the computation

part, and use “flying qubits”, which generally consist of photons. It is possible to trans-

mit two classical bits of information, while transmitting only one quantum bit with the

superdense coding protocol [17, 18, 19] or to teleport a quantum bit between two remote

locations [20, 21]. Quantum cryptography is a noticeable application of quantum informa-

tion. Quantum key distribution (QKD) is the most mature technology, and commercially

available. This technology allows one to distribute a sequence of qubits (photons) to con-

struct a secret key [22] over a public channel, whose secrecy is guaranteed by fundamental

rules of quantum mechanics [23].
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1.2 Nonlocality and Bell’s inequalities

In quantum mechanics (QM), we represent the state of a quantum system with a unit ket

vector, |ψ〉, in a vector space. A qubit, for example, is the most basic quantum mechanical

system: a state represented by |0〉, |1〉 or in a superposition of |0〉 and |1〉. A system can

be composed of more than one particle (qubit). For a particle in a state |ψA〉 and another

in the state |ψB〉, the separable bi-partite system is described by

|ψAB〉 = |ψA〉 ⊗ |ψB〉, (1.1)

where ⊗ designates the tensor product. For example, if |ψAB〉 = 1
2
(|0A〉 ⊗ |0B〉 + |0A〉 ⊗

|1B〉+ |1A〉 ⊗ |0B〉+ |1A〉 ⊗ |1B〉), then it is clear that |ψA〉 = 1√
2
(|0〉+ |1〉) = |ψB〉. What

does it mean if the state is described by

|ψAB〉 =
1√
2

(|0A〉 ⊗ |1B〉 − |1A〉 ⊗ |0B〉)1? (1.2)

Such state cannot be factorized in a form |ψA〉 ⊗ |ψB〉, for any |ψA〉 and |ψB〉. In general,

when a composite quantum state has no factorable representation, it is said to be entangled.

The concept of nonlocality was introduced before the advent of quantum information

science. It finds its roots in the existence of entangled states. Consequences of such states

in the quantum world led Einstein, Podolsky and Rosen (EPR) [24], in 1935, to criticise

the (in)completeness of QM. Here is how one could summarize the EPR argument of

incompleteness of QM 2.

Let’s consider two distant particles, A and B, jointly described by the entangled state

in Eq. 1.2, and an observable σz, with eigenstates |0〉 and |1〉 and corresponding eigenvalues

+1 and −1, i.e., σ̂z|0〉 = |0〉 and σ̂z|1〉 = −|1〉. In QM, an observable (σz) is a physical

quantity that can be measured3 and represented by an Hermitian matrix operator, here

σ̂z. The possible measurement results of an observable are the eigenvalues of this operator.

1This state is called the Singlet state.
2Our simplified description is not exactly the same as the original EPR’s but contains the essence of

their main arguments and follows the interpretation of Redhead [25].
3For example position, momentum, angular momentum, spin, polarisation, etc, ...
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We choose to measure σAz on system A and get one of two outcomes. If the outcome

was +1 the joint state is reduced to |0A〉 ⊗ |1B〉, or to |1A〉 ⊗ |0B〉 if the outcome was

-1. The state of system B is then perfectly known (with probability 1) to an observer,

with an eigenvalue given by λBz , corresponding to +1 or -1 depending on the outcome of

A. According to EPR, the state of system B, the element of reality, exists and has a

sharp value. From their locality principle, all elements of reality belonging to one system

should not be affected by measurements made on another system, especially at a distance.

Because what is done on system A cannot affect the state on B, this sharp value λBz can

be brought back in time, when the system was still in the singlet state |ψAB〉 of Eq. 1.2;

by the EPR locality principle, λBz exists at that time. The Copenhagen complementary

interpretation of QM tells us that if a system is not in an eigenstate of an observable, then

the value of that observable is undefined, or even “meaningless” [26]. Since |ψAB〉 is not

an eigenstate of σBz , this contradicts the sharp value from the locality argument. In fact,

for the singlet state, the state of B is inherently random. According to EPR, fixing this

paradox by relaxing their locality principle would be unphysical and therefore, QM has to

be incomplete.

How do we “complete” QM then? One alternative is to use the realist interpretation

of QM that incorporates hidden variables. In this view, all observables, in all states, have

sharp values waiting to be revealed. When supplemented with the locality principle, and

considering two distant particles, realism and locality (the local hidden-variable (LHV)

model) imply Bell’s inequality. In response to EPR, the first inequality [27] from measur-

able correlation coefficients was derived by John Bell in 1964. However, the “most famous”

Bell’s inequality is from 1969 by John Clauser, Michael Horne, Abner Shimony and Richard

Holt (CHSH), which can be tested experimentally [28]. We assume a source emitting pairs

of particles travelling in opposite directions towards their measurement station, A and B,

respectively. The setup is illustrated in Fig. 1.1. The source emits two entangled sin-

gle photons travelling in opposite directions, and each measurement device measures the

polarisation-projection along any direction, for example the horizontal-vertical “direction”.

There are two directions (measurement settings) for A (a, a′) and two for B (b,b′) and

the outcome of the nth single measurement (an, a
′
n, bn, b

′
n) for each is restricted to ±1. We

5



can form the expression

Γn = anbn + anb
′
n + a′nbn − a′nb′n. (1.3)

If we rearrange Eq. 1.3 into

an(bn + b′n) + a′n(bn − b′n) (1.4)

it is easy to see that the value of Γn can only be +2 or −2, because if bn + b′n = 2, then

bn−b′n = 0 and vice-versa. What is more subtle though, is that there is a crucial assumption

(and essential ingredient for our derivation) when going from Eq. 1.3 to Eq. 1.4: we assume

that the (sharp) value of an (or a′n) is the same whether bn or b′n is measured. In other

words, we assume that the settings of B do not affect an. This is the locality assumption,

and the sharp value of each term in Eq 1.3 is assuming realism.

Correlation coefficients are defined by considering N events (an event is the source

producing one pair followed by a polarisation-measurement on both sides), and calculating

the average value of Γ ∣∣∣∣∣ 1

N

N∑
n=1

Γn

∣∣∣∣∣ =

∣∣∣∣∣ 1

N

N∑
n=1

anbn + . . .

∣∣∣∣∣ (1.5)

Since Γn = ±2, we have that LHS≤ 2, and each term in the RHS is a correlation coefficient,

e.g.

c(a,b) = lim
N→∞

1

N

N∑
n=1

anbn. (1.6)

The inequality given by

|c(a,b) + c(a,b′) + c(a′,b)− c(a′,b′)| ≤ 2

is the CHSH-Bell inequality. If we now specify the state being produced each time by the

source, for example singlet states, it can be shown that with a suitable set of measurement

settings, quantum mechanics predicts a violation of Eq 1.7. The list of reported experiments

in conflict with CHSH-Bell inequalities is extensive (see for example Ref. [29, 30, 31, 32,

33]), and one should conclude that local-hidden variable models are inadequate to describe

the correlations present in nature (modulo loopholes present in all experiments to date).

Extending LHV models to three particles also lead to Bell inequalities, again in contra-

diction with QM [34]. However, when more than two particles are involved, the concept

6



B A 

a 
a' b' 

b 
(+1,-1) (+1,-1) 

Source 

Figure 1.1: Schematic illustration of a Bell experiment. The source emits two

particles towards station A and B. Measurements parallel to a and a′, (b and b′) reveals

the state of the particles, ±1. The experiment is repeated N times and correlations between

measurement outcomes are inserted onto Bell’s inequality.

of nonlocality is not as simple, because a violation of a three-body Bell-type inequality,

for example Mermin’s inequality [34], fails to capture the idea of true, or genuine multi-

partite nonlocality. The observed correlations between measurement outcomes could be

explained by a hybrid model for which only two particles are nonlocally correlated but not

with the third one, illustrated in Fig. 1.2b. The study of multi-partite nonlocality was

initiated by Svetlichny [35] in 1987, and his work triggered fundamental questions about

the role played by nonlocality in quantum information science [36]. In Chapter 3, we cover

the generation of three-body polarisation-entangled states and offer the first experimental

violation of Svetlichny’s original inequality.
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Figure 1.2: Local vs Nonlocal hidden-variable models. a, LHV models assume a

predetermined value of each measurement outcome, on every particle. It also assumes that

each outcome is independent of any other measurement settings on remote particles. b,

Svetlichny’s model is a nonlocal hidden-variable model. A subset of two qubits is nonlocally

correlated and one qubit is classically correlated with the rest; outcomes on the bipartite

subsystem and on the single one are statistically independent from each other. Both models

can be experimentally tested.

1.3 The mysterious bound entanglement

Entanglement is a resource for quantum information processing that our source is capable

of generating. It is a basis for quantum cryptography, quantum teleportation and quantum

computation. Shared entangled resources allow, for example, two parties A and B to obtain

a key for encrypted communication [37] or for teleporting information [20] from one side to

another. However, entangled pure states (describing complete knowledge about the system)

may have been polluted by the environment, while distributing the quantum resource.

Imperfect correlations will harm any protocol and the resulting states are generally a

mixture of pure states described by a density matrix :

ρAB =
∑
k

pk|ψk〉〈ψk| (1.7)

where pk is the probability of the system to be in the pure state |ψk〉. There exists

distillation algorithms [38] that allow multiple copies of ρAB to reverse the process of
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noise, via local operations and classical communication (LOCC) between A and B, and

retrieve entanglement in its pure form. Entangled states which cannot be distilled into

pure entanglement, as depicted in Fig. 1.3, are called bound entangled [39].

… 

AB 

A 

B 

|AB 

LOCC 

Figure 1.3: Bound entangled states cannot be distilled. For bound entangled states,

multiple copies of ρAB shared between A and B cannot lead to a pure entangled state

|ψAB〉 via LOCC.

Understanding bound entanglement is “one of the deepest problem in quantum infor-

mation theory and the key to unraveling several mysteries of entanglement” [40]. Our

objective in Chapter 4, is to promote bound entangled states from just a curious mathe-

matical construction to an achievable one through experiments. Successful generation and

characterisation of bound entangled states shared between four photonic qubits demon-

strate the higher degrees of control over our source and highlight once more the role of

photonic qubits to reveal mysteries.

1.4 Optical quantum information

Most of optical quantum computation and quantum communication protocols rely on

single-photon, and single-photon sources, for which the probability of a multiple-photon

emission should be low relative to the probability of a single-photon emission [41]. There
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exists different methods for generating flying qubits and real-world sources are not per-

fect [42]. Single-photon sources can be defined as deterministic, with photons emitted

on-demand, or probabilistic. Examples of the former includes single neutral atoms, single

ions, single molecules, quantum dots and color centers in diamonds [41]. In the ideal case,

those quantized individual system, when triggered, produce one and only one photon into a

desired mode with unit efficiency. The ideal single photon source, however, does not exists

yet [16]. Probabilistic sources can be more advantageous, since they allow the generation

of correlated pairs of photons and can always be used as a deterministic source by herald-

ing techniques. In contrast with the triggered single photon source, pairs are generated

randomly, Poisson-distributed, and multiple pairs can be produced at each pump pulse.

For any type of sources, even if ideal, they are nondeterministic in practice due to the

imperfect collection efficiency of the photons produced [16].

One of the most common sources of photon pairs today relies on spontaneous parametric

downconversion (SPDC). The emission of photon pairs is caused by a pump laser interacting

with a material with a χ(2) optical nonlinearity. Once photon pairs are generated from

SPDC, information encoding is not limited to polarisation, but can also rely on different

degrees of freedom, for example time bin, or path encoding [43]. Other photon sources,

including photon pairs generation in waveguides, four-wave mixing in fibers, or other unique

techniques are discussed in Ref. [41].

Single photons are so far the best media to encode and transmit quantum information

for quantum communication protocols: they travel at the speed of light, interact weakly

with their environment, and can be manipulated with linear optics. SPDC sources were

used to demonstrate quantum key distribution with the polarisation degree of freedom [22]

or with time bins [44]. Communication over several kilometers in free-space was demon-

strated [45] and the door is now open to operations between ground and satellites in low

earth orbit [46]. Single photons can also be transmitted over long distances inside optical

fiber [47], but since loss increase with distance, the use of quantum repeaters become es-

sential. The role of quantum repeater protocols is to reduce loss and decoherence during

transmission of quantum states over long distances. A quantum repeater typically con-

sists of quantum memories, for example atomic ensembles [48], and relies on entanglement

swapping [49]. Detectors also play a key role in optical quantum communication, especially
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for the reliability of quantum key distribution protocols and long distance communication.

For a comprehensive review on single-photon detectors see Ref. [41].

In section 1.1 we mentioned possible physical architectures for quantum information

processing, mostly in solid-state devices. Optical approaches to quantum computation are

also attractive due to the weak interaction of photons with the environment and straightfor-

ward manipulations with linear optical elements. An important breakthrough from Knill,

Laflamme and Milburn (KLM) showed that quantum computation with only linear optical

elements was possible, and efficient [50]. Quantum computation with the KLM scheme is

modeled with the quantum circuit model, for which qubits are initialized and subjected to

a sequence of quantum logic gates, and finally measured. This is illustrated in Fig 1.4a and

common to most of physical implementations. Measurement-based quantum computation

(MBQC) is a different model for which computation is executed with projective measure-

ments on highly entangled resource states, the cluster states [51]. MBQC on cluster states

represents an appealing alternative approach with advantages [52] over the linear optical

quantum computing [43]. The general scheme is illustrated in Fig. 1.4b. Cluster states

were experimentally generated using photonic qubits, and successful measurement-based

computation demonstrated [53, 54].

One very appealing candidate for quantum computer uses a quantum state first de-

scribed by Affleck, Kennedy, Lieb, and Tasaki (AKLT), and found by cooling down the

right solid-state system to its ground state. By addressing the individual spin-systems in

the solid, it has been shown theoretically that quantum information could be encoded, ma-

nipulated and extracted. Similarly to cluster states, AKLT states rely on the measurement-

based model (also called one-way model) for computation (sketched in Fig. 1.4b). AKLT is

a one-dimensional chain of qutrits (three-level) which encodes one logical qubit. In Chap-

ter 5 we devised the means to construct the AKLT state by using our source of photonic

qubits. Since the system is optics, rather than solid-state, our approach uses linear optical

components rather than cooling. Our implementation is an example of how a quantum

system, e.g. a solid state, can be simulated with another, here an entangled multi-partite

photonic state.
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R2 
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… 

… 

b 

In. Readout Readout In. 

M1 

M2 M3 

Figure 1.4: Models for universal quantum computing. a, In the circuit model, com-

putation proceeds by first initializing (In.) independent qubits and dynamically altering

their states via unitary single-qubit gates (Ri) and gates between the qubits (U). After com-

putation, i.e. concatenation of all one-qubit and two-qubit gates, the result is extracted by

performing appropriate measurements on the final state (readout). b, In the measurement-

based scheme, information processing follows by single-qubit projective measurements (Mi)

and also involves coupling interactions. The main difference with the circuit model is that

each wire (horizontal line) is initially in an highly entangled state and encodes one logical

qubit. For computation to be universal, wires must be coupled at the right moment.

1.5 Quantum frequency conversion

Quantum frequency conversion (QFC) is the quantum version of optical frequency conver-

sion [55]. It relies on nonlinear interactions to convert the carrier frequency of quantum

states of light, while maintaining its quantum characteristics. It was first proposed [56] and

experimentally demonstrated [57] by Prem Kumar and colleagues. QFC has technological

importance for different applications but here we frame our discussion in the context of

quantum information transfer among different media for communication, detection and

storage.

Quantum information processing and communication systems of the future will most

likely be composed of different types of physical architecture [58]. Such an hybrid network
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(see Fig. 1.5) could be made of photonic quantum emitters, waveguides and processors

or quantum memories. Each computational node absorbs and emits photons (holding the

quantum information) at its own frequency and spectral bandwidth. For example, the

properties of photons emitted from a SPDC source can be very different from the natural

resonant frequency and line shape of a quantum memory, or from the optimal frequency

for transmission into optical fibers, for which the lowest attenuation is in the infrared

(∼ 1.5 µm). The different operating frequencies make the nodes incompatible with each

other, and information can be lost. Single photon detectors are also better at visible

wavelengths [59].

Quantum 

optical 

waveform 

converter 

(QOWC) 

Broadband 

photon source 

Optical 

fiber 

WC WC 

Quantum memory 

or processor 

ω1 

ω2 

ω3 

Figure 1.5: A simplified quantum network. In this example, a network is composed of a

broadband single photon source, an optical fiber and a quantum memory. Each architecture

(the nodes) operates at different central frequencies, ωi. Waveform converters (WC) match

the spectral properties and temporal shape between each node to avoid excessive loss.

Quantum communication within the network can be greatly improved by converting

single photons from one central frequency to another and tailoring their waveform. The

idea of improving detection efficiency by converting infrared light to visible through sum-

frequency generation in χ(2) media has been experimentally observed [60, 61]. Other ex-

periments followed using waveguides [62] or pump-resonant cavity [63] to improve con-

version efficiencies. Cascaded upconversion schemes also exist to convert light form in-

frared to the green band in a two-step upconversion [64]. The first experiment showing

successful entanglement-preserving (time-bin) frequency conversion was by Tanzilli and

colleagues [65]. Difference-frequency mixing [66] is also attractive for visible-to-telecom
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quantum frequency conversions [67, 68, 69]. Four-wave-mixing in χ(3) media can lead to

a frequency translation of a smaller amplitude [70], in contrast with the large frequency

shifts offered by sum-frequency and difference-frequency generations in χ(2) media.

This is an exciting field, and many physicists are currently working to manipulate

coherent wavepacket states of single photons [71]. Only recently, control over the waveform

of single photons, in addition to frequency conversion, was considered. In Ref. [72, 73] the

temporal shape of a single-photon is modulated and the pulse duration is reduced, through

modulation of a broadband pump. In Chapter 6, we propose and demonstrate a quantum

frequency conversion technique complementary to what has been done before, which aims

at shrinking the spectral bandwidth of a single photon in a tunable way.
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Chapter 2

Related background

This chapter addresses some concepts dealt with in the rest of the thesis.

2.1 Coupled equations for three-wave mixing

Nonlinear optical processes occur in media when the response to an incident electric field

is not linear. This topic is covered in many textbooks [74, 55, 1]. The dependence of

polarisation of a dielectric upon electric field E(t) may be expressed as a Taylor series [55]

P = P0 + ε0
[
χ(1)E + χ(2)E2 + χ(3)E3 + . . .

]
, (2.1)

where χ(i) is the susceptibility, treated classically here. A quantum treatment of nonlinear

optics can be found in Ref. [75]. χ(1) belongs to the linear regime, while for the following

treatments, we will be interested in the second order term, χ(2). Note that in Eq. 2.1, we

have ignored vectors and will also neglect the detailed expression of χ(2), which is a tensor

of rank 3.

A wave equation can be derived from Maxwell’s equations

∇×∇× E = −µ0ε0
∂2

∂t2
E − µ0

∂2

∂t2
P (2.2)
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with P given by Eq. 2.1 (P0 = 0), ε0 the permittivity of free space and µ0 = 1/(ε0c
2).

A vector identity and physically motivated assumptions leads to a simplified form of the

wave equation. For a dielectric, isotropic and homogeneous medium, and also assuming

plane waves traveling along z-direction, Eq. 2.2 becomes [55]

∂2

∂z2
E =

ε(1)

c

∂2

∂t2
E +

1

c2

∂2

∂t2
PNL. (2.3)

Here, ε(1) = ε0(1 + χ(1)) and PNL = χ(2)E2 + χ(3)E3 + . . ..

The general case for three-wave mixing has three individual fields of frequency ω1, ω2

and ω3 and for simplicity we assume they are continuous waves

E(z, t) =
3∑

n=1

En(z)e−iωnt + c.c. (2.4)

PNL(z, t) =
3∑

n=1

PNL
n (z)e−iωnt + c.c. (2.5)

Substituting the last two expressions into Eq. 2.3, taking the time derivative and equating

terms with the same e−iωnt dependence leads to

∂2

∂z2
En(z) +

ω2
nε

(1)

c2
En(z) = −ω

2
n

c2
PNL
n . (2.6)

For plane waves, En(z) = Ane
iknz + c.c., with An a slowly varying function, which brings

Eq. 2.5 to

E(z, t) =
3∑

n=1

An(z)ei(knz−ωnt) + c.c. (2.7)

Note that ki = ωi
c

√
ε(1).

We now derive the coupled wave equations for sum-frequency generation between three

plane waves, with frequency ω1, ω2 and ω3 = ω1 +ω2. The resultant field in the medium is

E(z, t) = A1e
i(k1z−ω1t) + A2e

i(k2z−ω2t) + A3e
i(k3z−ω3t). (2.8)

To find the first coupled equation for radiation at ω3, we use PNL(ω3, t) = P3(z)e−iω3t,

where

P3(z) = 2χ(2)(ω3, ω1, ω2)A1(z)A2(z)ei(k1+k2)z. (2.9)
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We substitute the expressions for E3(z), P3(z) into Eq. 2.6 and invoke the slowly varying

envelope approximation to find

∂

∂z
A3 =

iω2
3

k3c2
χ(2)(ω3, ω1, ω2)A1(z)A2(z)ei∆kz (2.10)

= iC3A1A2e
i∆kz. (2.11)

For the last expression, we have defined the wave vector mismatch ∆k = k1 + k2 − k3 and

C3 =
ω2
3χ

(2)

k3c2
is a real constant if we restrict our calculations to frequencies for which the

loss are negligible.

If we repeat the previous steps, we can also find two more equations for ω1 & ω2 and

we finally have our set of three coupled wave equations:

∂

∂z
A1 = iC1A3A

∗
2e
−i∆kz (2.12)

∂

∂z
A2 = iC2A3A

∗
1e
−i∆kz (2.13)

∂

∂z
A3 = iC3A1A2e

i∆kz. (2.14)

2.1.1 Optical frequency conversion

1 The coupled wave equation of the previous section can be used to study the frequency

up-converter illustrated in Fig. 2.1. A wave of frequency ω1 (signal) is converted into a

wave of higher frequency ω3 = ω1 + ω2 by use of a large amplitude field at ω2.

1A simple derivation can be found on page 912 of [1] but we will be using the more general approach

of Ref. [55]
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Figure 2.1: Optical frequency conversion.

We assume a strong input at ω2 such that its amplitude does not change appreciably

within the interaction. The fields at ω1 and ω3 are weak. We incorporate A2 into constants

κ1 = iC1A
∗
2 and κ3 = iC3A2. The three coupled equations become two:

δ

δz
A1 = κ1A3e

−i∆kz (2.15)

δ

δz
A3 = κ3A1e

i∆kz. (2.16)

The general solutions are derived in section 2.6 of Ref. [55] and correspond to

A1(z) =
A1(0)e−i(∆kz/2)

g′

[
i
∆k

2
sin (g′z) + g′ cos (g′z)

]
(2.17)

A3(z) =
κ3A1(0)

g′
ei∆kz/2 sin (g′z) (2.18)

for g′ =
√(

∆k
2

)2 − κ1κ3. The intensity of the upconverted signal is

|A3(z)|2 =
|A1(0)|2|κ3|2 sin2 (g′z)

(g′)2
(2.19)

=
|A1(0)|2|κ3|2(
∆k
2

)2 − κ1κ3

sin2

z
√(

∆k

2

)2

− κ1κ3

 (2.20)

and reaches its maximum at ∆k = 0. The conversion efficiency corresponds to |A3(z)|2/|A1(0)|2.
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Our expression in Eq. 2.20 predicts a decrease in the efficiency of the sum-frequency

generation process as ∆k increases. To satisfy the condition ∆k = 0 is not possible in every

material because of dispersion: the refractive index varies with frequency. This is easier to

see with second-harmonic generation (ω1 = ω2), but let’s assume that ω1 < ω2 < ω3 and

ω1 + ω2 = ω3. ∆k = 0 then implies

n(ω3)ω3 = n(ω1)ω1 + n(ω2)ω2

n(ω3)ω1 + n(ω3)ω2 = n(ω1)ω1 + n(ω2)ω2

ω1 [n(ω3)− n(ω1)]︸ ︷︷ ︸
>0

= ω2 [n(ω2)− n(ω3)]︸ ︷︷ ︸
<0

(2.21)

Equation 2.21 cannot possess a solution, since the two sides have opposite signs.

2.1.2 Phase matching

Phase matching (achieving ∆k ∼= 0) can be attained by making use of a material displaying

birefringence; a property of non-isotropic materials having an index of refraction dependent

on the input field polarisation direction. Two types of phase matching processes are usually

considered. In general, Type-I phase matching has the two lowest frequencies having the

same polarisation and the higher frequency is orthogonal to them. For Type-II phase

matching, the two lowest frequencies have orthogonal polarisation direction to each other

while the highest frequency is parallel to one of them. Birefringent crystals are chosen and

cut at different angles, depending on the required phase matching. Furthermore, the phase

mismatch can be adjusted by angle-tuning or temperature control [55].

When laser pulses are used instead, there are more considerations to take into account,

even for a perfect initial phase matching. In general, group velocity mismatch will cause the

pulses to lag with respect to each other along the interaction and decreases the frequency-

mixing efficiency. Spatial walk-off is also a problem in the case of short pulses or continuous

waves, for which each ray propagates at an angle relative to the phase velocity (Ch 15,

Ref. [76]).

19



2.2 Polarisation control and visualisation of photonic

qubits

For each single photon traveling in some direction, there are two polarisation modes. For

convenience in this thesis, our basis (two orthogonal modes) consists of the horizontally-

polarized (H) and vertically-polarized modes (V). Any pure polarisation state |ψi〉 can

thus be described as α|H〉 + β|V 〉, with |H〉 being a single photon in polarisation mode

H, and α and β are complex probability amplitudes satisfying |α|2 + |β|2 = 1. Also, the

probability that the photon is observed in the H (V) mode is |α|2 (|β|2).

A projector corresponds to P (|ψi〉) ≡ |ψi〉〈ψi| and a generic photonic qubit state can

also be specified by its density matrix: a convex combination ρ ≡ {pi, P (|ψi〉)} of projec-

tors. A quantum state is said to be pure if trρ2 = 1 and also satisfies ρ2 = ρ. When a state

is not pure, i.e., trρ2 < 1, it is mixed.

A description of the polarisation in terms of a normalized Jones vector in the H/V basis

is handy. We define the most common linear and circular polarisation states encountered

in this thesis:

|H〉 =

(
1

0

)
|V 〉 =

(
0

1

)
(2.22)

|D〉 =
1√
2

(
1

1

)
|A〉 =

1√
2

(
1

−1

)
(2.23)

|R〉 =
1√
2

(
1

i

)
|L〉 =

1√
2

(
1

−i

)
(2.24)

Note that 2.22, 2.23 and 2.24 are eigenstates of Pauli σz, σx and σy, respectively, defined

as

σx ≡

(
0 1

1 0

)
σy ≡

(
0 −i
i 0

)
σz ≡

(
1 0

0 −1

)
. (2.25)

We also have that 〈H|V 〉 = 〈D|A〉 = 〈R|L〉 = 0.
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2.2.1 Polarisation devices

After transmission through a transparent linear optical system, an output photonic qubit

state, |ψf〉, is related to an input state |ψi〉 through a transformation (Jones) matrix, T :

|ψf〉 = T |ψi〉. (2.26)

Wave retarders (wave plates) are made from birefringent materials and transform the

polarisation state of light. They are represented by the matrix

T =

(
1 0

0 e−iΓ

)
(2.27)

with the fast axis along x -direction, illustrated in Fig. 2.2, and Γ is a real number. The

velocities of the two polarisation modes differ so that transmission through the plate im-

parts a relative phase shift Γ to these modes. This phase shift depends on the wavelength,

material and the thickness of the crystal (d):

Γ = 2π(ne − no)d/λ0. (2.28)

For a specific material, quartz for example, varying the thickness of the wave plate leads

to two special cases: Γ = π/2 for a quarter-wave plate (QWP) and Γ = π for the half-wave

plate (HWP).
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Figure 2.2: Rotated frame of a retarder The x -axis is initially along the horizontal-mode

of the incident light. After rotation, the fast axis makes an angle θ with the horizontal.

Retarders are usually inserted at normal incidence in the photon path, with their fast

axis along the horizontal-mode, and manually rotated as illustrated in Fig. 2.2. The general

matrix representation of a rotated wave plate by an angle θ with respect to horizontal is

given by

T ′ =

(
cos2 (θ) + e−iΓ sin2 (θ)

(
1− e−iΓ

)
cos (θ) sin (θ)(

1− e−iΓ
)

cos (θ) sin (θ) sin2 (θ) + e−iΓ cos2 (θ)

)
. (2.29)

For QWP and HWP, we find

QWP (θ) =

(
cos2 (θ)− i sin2 (θ) (1 + i) cos (θ) sin (θ)

(1 + i) cos (θ) sin (θ) sin2 (θ)− i cos2 (θ)

)
(2.30)

HWP (θ′) =

(
cos2 (θ′)− sin2 (θ′) 2 cos (θ′) sin (θ′)

2 cos (θ′) sin (θ′) sin2 (θ′)− cos2 (θ′)

)
(2.31)

As an exercise, we find that photonic qubit states in Eq. 2.22–2.24 can be generated from

|H〉 with cascaded wave plates:

|k〉 = HWP (θ′)QWP (θ)|H〉. (2.32)

22



Table 2.1: Wave plate angles to transform |H〉 to a specific output state.

Output |k〉 θ′(HWP) θ(QWP)

|H〉 0 0

|V 〉 π/4 0

|D〉 π/8 0

|A〉 −π/8 0

|R〉 π/8 −π/4
|L〉 −π/8 π/4

Table 2.1 gives the set of angles of the QWP-HWP pair for given outputs.

Polarizing beam splitter (PBS) cubes are also important optical devices in this thesis.

They are used for state preparation or projective measurements. They operate such that

an input state of the form α|H〉 + β|V 〉 is transmitted (reflected) through the PBS with

probability |α|2 (|β|2) with the output state corresponding to |H〉 (|V 〉).

2.2.2 Bloch sphere

The Bloch sphere, illustrated in Fig. 2.3, is a visual representation of photonic qubits. This

representation becomes natural when the general pure state is provided by

|ψi〉 = cos (θ/2)|H〉+ eiφ sin (θ/2)|V 〉, (2.33)

where 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π. This parametrization respects the normalization

constraint, | cos (θ/2)|2 + |eiφ sin (θ/2)|2 = 1. A general linear transformation of a state

maps (θ, φ) 7→ (θ− α, φ− β). Parameters θ and φ are spherical coordinates, and specify a

point ~s (sin θ cosφ, sin θ sinφ, cos θ) on the unit sphere, along the respective axes (x̂, ŷ, ẑ),

and known as a Bloch vector. Note that our basis |H〉/|V 〉 corresponds to the poles of the

sphere. In fact, all orthogonal quantum states are antipodal in this representation. Pure

qubit states lie on the periphery, while mixed states lie in the interior. The maximally

mixed state, 1
2
I is found at the center of the sphere and corresponds to an evenly weighted

linear combination of any two orthogonal pure states.
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Figure 2.3: Bloch sphere representation of photonic qubit states. Any qubit state

can be represented on a unit radius sphere, with major coordinate axes x̂, ŷ and ẑ. Pure

states (|ψi〉) lie on the surface and mixed states in the interior. Orthogonal states are

antipodal.

The density matrix of a qubit state can be represented generally as

ρ =
1

2

(
I +

3∑
µ=1

sµσµ

)
(2.34)

where {σ1, σ2, σ3 : 1 = x, 2 = y, 3 = z} are the Pauli operators and I is the identity matrix.

sµ(µ = 1, 2, 3) is the component of the Bloch vector ~s and corresponds to the eigenvalue

of Pauli operator σµ, for a given state ρ. For example, if ρ = |ψi〉〈ψi| with |ψi〉 given by

Eq. 2.33, we find

sx = tr(ρσx) = 2 cos (θ/2) sin (θ/2) cosφ (2.35)

sy = tr(ρσy) = 2 cos (θ/2) sin (θ/2) sinφ (2.36)

sz = tr(ρσz) = cos2 (θ/2)− sin2 (θ/2) (2.37)
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If the state is pure, |~s|=1, and if the state is mixed, 0 ≤ |~s| < 1.

2.3 On dispersion of wave packets

A pulse of light is a wave packet, a superposition of many monochromatic waves. While

each wave travels at its own phase velocity, the peak of the packet travels with the group

velocity. A dispersive medium is characterized by a wavelength-dependent refractive index

n = n(λ). The dependence of n on wavelength can be quantified with the Sellmeier

equation, generally of the form

n2 ∼= 1 +
∑
i

Ai
λ2

λ2 −B2
i

. (2.38)

Parameters Ai and Bi for common materials are usually provided in tables. Because the

speed of light in the media is c/n(λ), each frequency (wavelength) components of a short

pulse of light experiences a different time delay, as illustrated in Fig. 2.4.

Dispersive 

medium 0 t 0 t 

B R 

Figure 2.4: A dispersive medium broadens a pulse of light. When a pulse of light

propagates through a dispersive medium, each frequency component travels at a different

speed, causing the pulse to broaden in time. The shorter wavelengths (B) lag behind the

longer wavelengths (R) in this example.

We model propagation through a transparent linear media in the frequency domain,

because the pulse spectrum is left unchanged and only the phase factor is affected by the

propagation. Let us define the pulse spectrum, with spectral amplitude f(ν) and centered

at the average frequency ν0

E(ν) = f(ν)eiφ(ν). (2.39)
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For propagation in the +z direction, φ(ν) = β(ν)z, where the wave number β(ν) =

2πn(ν)ν/c. In terms of angular frequency (ω = 2πν = 2πc/λ), β(ω) = n(ω)ω/c. We

may expand the phase function in Eq. 2.39 in a Taylor series centered at frequency ν0.

Retaining only the first three terms,

β(ν)z ' β0 + β1(ν − ν0) +
1

2!
β2(ν − ν0)2, (2.40)

where β0 = φ(ν0), β1 = 2πz dβ
dω
|ω0 and β2 = (2π)2z d

2β
dω2 |ω0 . In most practical cases of interest

in this thesis, we can neglect the constant phase term β0 and the second term β1, for which

β1z represents the group delay that can be accounted for in a retarded frame of reference.

The second derivative of β(ω), d
2β(ω)
dω2 is the group velocity dispersion (GVD) parameter and

causes pulse distortion. For the materials considered here, this distortion is assumed to be

well-behaved and the quadratic frequency dependence of the spectral phase will result in

a chirp.

2.3.1 Single-mode optical fibers for positive dispersion

Distortion of wave packets in optical fibers is governed by several types of dispersion2.

However, for wavelengths lower than 1.3 µm (in silica glass) material dispersion is the

dominant source. If we consider short-length fiber and weak optical powers, we can neglect

polarisation-mode dispersion and nonlinear effects, generally leading to additional pulse

distortions. Here we look at how a single-mode fiber, made of fused-silica, introduces

positive second order dispersion (chirp).

For fused-silica, the Sellmeier equation in Eq. 2.38 has parameters Ai and Bi given

in Table 2.2. A pulse propagates through the fiber at the group velocity, given by vg =(
dβ(ω)
dω

)−1

= c/ng, with ng =
(
n(λ)− λdn

dλ

)
the group index.

For a given fiber length, L, the second-order dispersion term β2 in Eq. 2.40 is usually

expressed in terms of wavelength

β2 = (2π)2d
2β(ω)

dω2
L =

2πλ

c2
λ2d

2n

dλ2
L, (2.41)

2See for example Ref. [1], Chapter 9.

26



Table 2.2: Sellmeier coefficient for fused-silica. From Table 5.5-1 in Ref. [1]

A1 0.696166 B1 0.068404

A2 0.407943 B2 0.116241

A3 0.897479 B3 9.896161

where we have used the chain rule d2

dω2 = λ2

(2πc)2

(
λ2 d2

dλ2
+ 2λ d

dλ

)
. β2 is positive at wave-

lengths shorter than 1,276 nm and the medium is said to exhibit normal dispersion.

It is also common to define a dispersion coefficient Dλ,

Dλ = −λ
c

d2n

dλ2
. (2.42)

Using this coefficient, one has a good estimate of the temporal spread of the packet inside

the fiber

στ = |Dλ|σλL, (2.43)

where σλ is the pulse spectral width and L the fiber length. For example, using coefficients

in Table 2.2 for fused-silica, Dλ = −101 ps/(nm·km) at λ = 811 nm, and for a 4-nm

spectral width and a 34-meter long fiber, the expected temporal spread is στ ∼= 13.75 ps.

2.3.2 Diffraction gratings for negative dispersion

Diffraction gratings introduce angular dispersion to incident pulses [77], causing a group ve-

locity dispersion similar to a transparent linear medium. Here we consider grating pairs [78]

to introduce negative second order dispersion. The device is illustrated in Fig. 2.5, con-

sisting of two parallel and identical diffraction gratings. The dispersion introduced by this

pair of gratings is derived in section 2.5.6 of Ref [77].
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Figure 2.5: Parallel gratings device for negative dispersion. Two diffraction gratings

with grating constant d have a normal separation b. Light coming in is reflected on a mirror

prism and arrives on the first grating at angle α with the normal. First-order diffracted

light makes an angle α′ with the normal and reaches the second grating, bounces off a

mirror slightly tilted such that the light diffracts on each grating once more, and leaves the

setup on top of the prism. This arrangement does not introduce net angular dispersion.

The grating equation, for the first order diffraction in Fig. 2.5, is given by

sinα′ =
λ

d
− sinα, (2.44)

where d is the distance between the grooves, α is the angle of incidence on the first grating

and α′ is the diffraction angle of light at wavelength λ. Angles are measured relative to

the normal, and here, the signs of α and α′ are the same. The littrow angle is found at

α′ = α.

In terms of the central wavelength λ, the second-order dispersion applied by the pair

of gratings is obtained [77] with

β2 = (2π)2d
2β(ω)

dω2
L = −(2π)2 λ

πc2

(
λ

d

)2
L

cos2 (α′)
. (2.45)
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In Eq. 2.45, the angle α′ is found using the grating equation, and L = b/ cosα′ is the

distance between the gratings along the ray at λ. A pulse propagating twice between the

gratings of Fig. 2.5 can therefore be considered as having traversed a linear medium of

length L with a negative dispersion. The advantage of this device is that the dispersion

can be tuned by changing the grating separation L.

2.4 Single-photon detection with silicon avalanche pho-

todiodes

Single-photon detectors are very sensitive devices capable of registering energy of the order

of 10−19 J in the visible. They play an important role in optical quantum information

science, the major driver for their development. There are several emerging single-photon

detector technologies [59], but most of them are currently at an early stage of development

and require sophisticated cooling technology.

In this thesis we relied on more mature semiconductor-based detectors, such as the sil-

icon single-photon avalanche photodiode (SAPD). This is an avalanche photodiode (APD)

with a p-n or p-i-n junction [41] and biased such that the arrival of a single photon in

the absorption region generates an avalanche gain in a multiplication region [41], creating

a large current pulse that can be measured. The incident optical power converted to the

output signal current is a function of the intrinsic response of the APD, the gain depending

on the reverse voltage and the wavelength of incident radiation. The typical spectral range

of SAPD is from 400 nm to 1060 nm, where the longer wavelength corresponds to the

bandgap energy of the semiconductor (∼ 1.12 eV).

Although those photon counting modules don’t have the ability to resolve photon num-

ber, they are nevertheless widely used for quantum optics experiments. Their sensitivity

over the visible spectral range has high efficiency, from 60-35% for 650-830 nm. They also

have low dark counts (∼500 counts/s), small jitter time (∼400 ps), and low dead time of

50 ns and they are electronically cooled and temperature controlled in a single practical

module.
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Multi-photon entanglement
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Chapter 3

Exploring genuine quantum

nonlocality through Svetlichny’s

inequality

Most of the material in this Chapter is published1 in the following:

Reference: J. Lavoie, R. Kaltenbaek and K. J. Resch, Experimental violation of Svetlichny’s

inequality, New J. Phys., 11 073051 (2009)

Contributions: K.J.R conceived the study and designed the experiment with R.K. I built

the setup, performed the experiments and collected data. I analysed data with R.K. and

wrote and edited the paper with my coauthors.

1No copyrights from the journal is required to include the article (all or part) in this thesis.
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3.1 Introduction

Quantum mechanics cannot be described by local hidden-variable (LHV) theories. This

is the conclusion of Bell’s seminal work, in which he derived a strict limit to the strength

of correlations achievable by all LHV models that is violated by quantum predictions [27].

Bell’s original inequality did not allow for imperfections and thus it was not accessible to

experimental tests. Clauser, Horne, Shimony and Holt (CHSH) addressed this issue and

developed the CHSH inequality [28], which allowed for tests in actual experiments. Since

then a growing number of experiments have been reported (for examples, see [79, 80, 81, 29,

82, 83, 84, 85, 30, 31, 33, 86, 87, 88, 32, 89]), and the overwhelming experimental evidence

from these tests is in favour of quantum mechanics, ruling out LHV theories. It should

be noted that, while no loophole-free Bell test has been performed, the most significant

potential loopholes, relating to detection efficiency and space-like separation of the choices

of measurements settings, have both separately been closed [29, 31, 33].

Both Bell’s inequality and the CHSH inequality were formulated for testing the corre-

lations between just two particles. For more than two particles, Greenberger, Horne and

Zeilinger (GHZ) showed [90] that a contradiction between LHV theories and quantum me-

chanics can be seen directly in perfect correlations, as opposed to statistically in imperfect

ones. Soon thereafter Bell-type inequalities for more than two particles were developed

[34, 91, 92, 93, 94, 95, 96, 97, 98]. Quantum predictions can violate such inequalities by

an amount increasing exponentially with the particle number [34, 91, 93, 94, 95, 97].

All of the aforementioned inequalities are based on the assumption that local realism ap-

plies to each individual particle. Two-particle inequalities have been developed which are in

conflict with quantum mechanics although they allow restricted, but physically motivated,

nonlocal correlations [99]. These inequalities have recently been violated experimentally

[100].

Svetlichny showed that even if one allows unrestricted nonlocal correlations between

any two of the constituent particles in a three-particle setting one can still find inequalities

violated by quantum mechanical predictions [35]. The correlations allowed by Svetlichny’s

model are strong enough to maximally violate three-partite inequalities, such as Mermin’s

[101], which assume local realism for all particles involved. A violation of such inequalities

32



therefore can only rule out LHV theories, while a violation of Svetlichny’s inequality di-

rectly rules out a whole class of nonlocal hidden-variable theories [102, 101, 103, 104, 105].

Svetlichny’s work has since been generalized to the case of N particles [106, 107, 108].

Experimental tests have been performed confirming the violation of the Mermin in-

equality [109], the Mermin-Ardehali-Belinskii-Klyshko (MABK) inequality [110], and the

cluster state inequality developed by Scarani et. al. [111]. For an even number of particles

only, a sufficiently large violation of the MABK inequality also rules out partially non-

local hidden-variable models [107]. The violation of the MABK inequality in [110] thus

confirmed genuine four-particle entanglement and non-locality. The original Svetlichny

inequality, however, remains untested.

In this chapter, we begin with a brief theoretical description of Svetlichny’s inequal-

ity. We then describe how we experimentally produced high-fidelity three-photon GHZ

states and characterized them via quantum state tomography (QST) [112]. Using these

states, modulo standard loopholes [29, 31, 33], we demonstrate a convincing violation of

Svetlichny’s inequality.

3.2 Theory

The two assumptions resulting in Bell-type inequalities are locality and realism as they

were introduced by Einstein, Podolsky and Rosen [24]. We first review a straightforward

method to derive the CHSH inequality from these two assumptions following an argument

described by Peres [113].

Pairs of particles are distributed to two distant parties, A and B as shown in Fig. 3.1.

Party A (B) can choose between two measurement settings a and a′ (b and b′). For each

measurement setting, two outcomes, +1 or −1, are possible. Realism assumes that the

measurement outcomes are predetermined by some properties of the system investigated.

These properties are known as hidden variables because they are not necessarily accessi-

ble to observation. The additional assumption of locality requires that the measurement

outcomes on side A are independent of the measurement setting on side B, and vice versa.
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Figure 3.1: Schematic illustration of a Bell experiment. The source S emits two

particles towards station A and B. Measurements parallel to a and a′, (b and b′) reveals

the state of the particles, ±1.

Thus for any given pair of particles the measurement outcomes have predetermined values

a = ±1 and a′ = ±1 on side A and b = ±1 and b′ = ±1 on side B.

We can form the expressions

S2 ≡ ab+ ab′ + a′b− a′b′

S ′2 ≡ a′b′ + a′b+ ab′ − ab. (3.1)

These expressions identically satisfy the relations:

S2 ≡ a(b+ b′) + a′(b− b′) = ±2

S ′2 ≡ a′(b′ + b) + a(b′ − b) = ±2 (3.2)

where this last form allows us to verify the equality; since b and b′ must have either the

same sign or opposite sign, only one term in each equation is non-vanishing and has a value

±2. If, for example, S2 is averaged over many trials, the absolute value must be smaller or

equal to 2, which results in the CHSH inequality [28]:

|E(a,b) + E(a,b′) + E(a′,b)− E(a′,b′)| ≤ 2, (3.3)

where the correlation, E(a,b), is the ensemble average 〈ab〉 over the product of measure-

ment outcomes a and b for measurement settings a and b, respectively.
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This argument can be extended to three particles [107]. We will denote the particles as

well as the measurement outcomes as a, b and c, the measurement settings as a, b, c. The

outcome of each measurement can be +1 or −1. If we assume local realism for each of the

three particles, then for a given set of three particles the measurement outcomes a, b and

c as well as their primed counterparts will have predetermined values ±1. Using (3.2) we

find that the following identity must hold:

S3 ≡ S2(c+ c′) + S ′2(c− c′) = 2 (a′bc+ ab′c+ abc′ − a′b′c′) = ±4. (3.4)

Dividing this expression by two, and averaging over many trials yields Mermin’s inequality

[34] for three particles:

|E(a′,b, c) + E(a,b′, c) + E(a,b, c′)− E(a′,b′, c′)| ≤ 2, (3.5)

where E(a,b, c) = 〈abc〉.

Now assume that we allow arbitrary (nonlocal) correlations between just two of the

particles, say a and b, while we still assume local realism with respect to the third particle,

c. In this case we cannot factorize S2 as we did in (3.2) because outcomes for particle

a might nonlocally depend on the outcomes and/or measurement settings for particle b.

However, we can still write

S̃2 = (ab) + (ab′) + (a′b)− (a′b′)

S̃ ′2 = (a′b′) + (a′b) + (ab′)− (ab), (3.6)

where the parentheses are meant as a reminder that these quantities should be regarded

as separate and independent quantities. Each of these quantities as well as c and c′ must

take predetermined values ±1 because we assume local realism with respect to the third

particle. This model is strong enough to violate, and reach the algebraic maximum of

Mermin’s inequality (since S̃2 can be ±4). Thus no experimental violation of Mermin’s

inequality can rule out this restricted nonlocal hidden-variable model.

With this in mind let us slightly modify our argument to derive Svetlichny’s inequality.

Because S̃2 and S̃ ′2 are functions of the same four quantities, they are not independent.

For example, whenever one of the two quantities reaches its algebraic maximum ±4, the

other one will be 0. As a result the following identity holds:
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S̃2c− S̃ ′2c′ = (ab) c+ (ab) c′ + (ab′) c− (ab′) c′ + (a′b) c− (a′b) c′ − (a′b′) c− (a′b′) c′

= ±4,±2, 0. (3.7)

Averaging over many trials yields the Svetlichny inequality:

Sv ≡ |E(a,b, c) + E(a,b, c′) + E(a,b′, c)− E(a,b′, c′)+

E(a′,b, c)− E(a′,b, c′)− E(a′,b′, c)− E(a′,b′, c′)| ≤ 4, (3.8)

where we refer to Sv as the Svetlichny parameter. It is remarkable that, although we

started out by allowing nonlocal correlations between particles a and b while c is local, one

gets an expression identical to (3.8) if b and c are nonlocally correlated while a is local,

or if a and c are nonlocally correlated while b is local. Every hidden-variable model that

allows for nonlocal correlations between any two particles but not between all three can be

seen as a probabilistic combination of models where the partition of the particles between

nonlocal and local is made one or the other way. All of these models fulfill the Svetlichny

inequality [103].

It was shown by Svetlichny that his inequality can be violated by quantum predic-

tions, and that the maximum violation can be achieved with GHZ states. Assume we

have a polarisation-entangled GHZ state |ψ〉 = 1√
2

(|HHV 〉+ |V V H〉), and let our mea-

surement settings all be in the xy-plane of the Bloch sphere, i.e. we can write the cor-

responding states we project on as 1√
2

(
|H〉+ eiφ|V 〉

)
. For example, the measurement

settings a and a′ for particle a correspond to projective measurements on the states

|A(±)〉 = 1√
2

(
|H〉 ± eiφa|V 〉

)
and |A′(±)〉 = 1√

2

(
|H〉 ± eiφ′a |V 〉

)
, respectively. Here, the

± corresponds to the state the particle is projected on if the outcome of the measurement

is ±1. For particles b and c we choose an analogous notation. Then the quantum prediction

for the left-hand side of (3.8) is

|cos (φa + φb − φc) + cos (φa + φb − φ′c) + cos (φa + φ′b − φc)−
cos (φa + φ′b − φ′c) + cos (φ′a + φb − φc)− cos (φ′a + φb − φ′c)−
cos (φ′a + φ′b − φc)− cos (φ′a + φ′b − φ′c)| . (3.9)
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With a suitable choice of angles, such as:

φa =
3π

4
, φ′a =

π

4
, φb =

π

2
, φ′b = 0, φc = 0, φ′c =

π

2
, (3.10)

this results in Sv = 4
√

2 > 4, which is the maximum violation of Svetlichny’s inequality

achievable with quantum mechanics [103].

Since any hidden-variable model describing a three-particle state where only two parti-

cles are nonlocally correlated has to fulfill the Svetlichny inequality, its violation explicitly

rules out this type of nonlocal hidden-variable theory.

3.3 Experiment

Our experiment uses a pulsed Ti:Sapphire laser (repetition rate 80 MHz, 2.5 W avg. power,

790 nm center wavelength, 9 nm FWHM bandwidth). We frequency double the near-

infrared beam, producing 700 mW average power near 395 nm with a FWHM bandwidth

of 1.8 nm. This upconverted beam is focused on a pair of orthogonally-oriented β-Barium-

Borate (BBO) nonlinear crystals [114] cut for type-I noncollinear degenerate spontaneous

parametric down-conversion (SPDC) with an external half opening angle of 3◦. The pump

polarisation is set to diagonal, |D〉 = 1√
2
(|H〉 + |V 〉), such that each pump photon can

produce a photon pair either in the first or the second BBO crystal. To compensate for

temporal distinguishablity between the pairs created in the first and the second crystal

the pump passes through a 1mm α-BBO crystal, a 2mm quartz crystal, and a 0.5mm

quartz crystal, all cut for maximum birefringence. To compensate the 75 µm spatial walk-

off between the horizontally and vertically polarized SPDC photons observed in one of the

output modes, we insert a 0.75 mm thick Bismuth-Borate (BiBO) crystal cut at θ = 152.6◦

and φ = 0◦. For these cut angles the crystal compensates the transverse walk-off without

introducing additional time walk-off. The photons are subsequently coupled into single-

mode fibres. We label the two corresponding spatial output modes as 1 and 2, see Fig. 3.2a.

Fiber polarisation controllers ensure that in mode 1 states in the H/V basis remain un-

changed while in mode 2 we flip the polarisation, i.e., |H〉 ↔ |V 〉. With this configuration

we achieve a two-photon coincidence rate of 43 kHz and single rates of about 240 kHz and
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Figure 3.2: Experimental setup. a, Schematic of our type-I SPDC source. A 45◦ polar-

ized, pulsed UV beam pumps a pair of orthogonally oriented BBO crystals cut for type-I

phase matching. Temporal walk-off between the pairs created in the first and in the second

crystal is compensated by α-BBO and quartz crystals before the SPDC crystals. Spatial

walk-off, which occurred in mode 1, was compensated by a BiBO crystal. The phase be-

tween horizontal and vertical photons was adjusted by tilting a λ/4 plate in mode 2. All

photons pass through 3 nm FWHM bandwidth filters around 790 nm and are coupled into

single-mode fibres corresponding to the spatial modes 1 and 2. b, The interferometer used

to project on a three-photon GHZ state. Using fibre polarisation controllers, the polarisa-

tion in mode 2 is rotated such that we map |H〉 → |V 〉 and |V 〉 → |H〉, while in mode 1, H

and V are preserved. Inside the interferometer the four photons from a double-pair emission

can be split up into four separate spatial modes and result in a four-fold coincidence event

between the detectors T , Da, Db, and Dc. In this case the three photons in the modes a,

b, and c will be projected on the three-photon GHZ state 1√
2

(|HaHbVc〉+ |VaVbHc〉) given

that the photons detected by Da and Db are indistinguishable.
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270 kHz for modes 1 and 2, respectively. The measured contrast of the pairs is 75 : 1

in the H/V basis and 61 : 1 in the D/A basis when the source is adjusted to produce

|φ+〉 = 1√
2

(|HH〉+ |V V 〉) states.

Following the approach in [115] we use the double-pair emission of the SPDC source

to produce 3-photon GHZ correlations in the interferometer shown in Fig. 3.2b. A four-

fold coincidence detection in the four outputs of the interferometer indicates the successful

generation of the GHZ state. To lowest significant order, a four-fold coincidence can only

occur if two photons enter the interferometer via the spatial mode 1, and their two partner

photons enter it via mode 2. The two photons in input mode 1 impinge on a polarizing

beam splitter (PBS). In order for a four-fold coincidence event to occur one of them must

be |H〉 and the other |V 〉. The |V 〉-photon is reflected at the PBS. Its detection by detector

T serves as a trigger event. The |H〉-photon passes through the PBS in mode 1, and a λ/2

plate oriented at 22◦ rotates the polarisation from |H〉 to |D〉. The two photons in mode

2 are split at the beam splitter (BS) with probability 1/2. Only in this case a four-fold

coincidence can occur. The transmitted photon and the |D〉 polarized photon in mode 1

are overlapped on a PBS. A coincidence detection event in the two output modes of the

PBS can only occur if both photons are transmitted or both are reflected. If these two

possibilities are indistinguishable, Hong-Ou-Mandel (HOM) interference will occur [116].

In the reflected mode of the BS we compensate for a phase shift due to birefringence in

the BS by tilting a λ/4 plate.

A four-fold coincidence detection in the interferometer outputs can only occur if the

trigger photon is |V 〉, and if the other three photons in the modes a, b and c (see Fig. 3.2b

are either |HaHbVc〉 or |VaVbHc〉. By tilting a λ/4 plate in output mode a we adjust the

relative phase between these contributions such that a four-fold coincidence event signals

a GHZ state of the form 1√
2

(|HaHbVc〉+ |VaVbHc〉).

Given this state, quantum mechanics predicts a maximum violation of Svetlichny’s

inequality if we choose measurements of the form |H〉 + eiφ|V 〉 with the angles given in

(3.10). Particles a, b and c are identified with photons in the interferometer output modes

a, b and c, respectively. To test Svetlichny’s inequality each of the photons has to be

measured in two measurement bases, and for each basis there are two possible outcomes,

+1 and −1. For each outcome we have to set the polarisation analyzer in the respective
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mode such that a photon detected after passing through the analyzer corresponds to that

outcome.

The Svetlichny parameter, Sv, of Eq. 3.8 consists of 8 correlations, each of which can

be constructed from 8 three-photon polarisation measurements2 for a total of 64 measure-

ments. Each polarisation analyzer consists of a λ/2-plate followed by a λ/4-plate and

then a PBS. The photons passing the PBSs are detected with single-mode fibre-coupled

single-photon counting modules; the coincidence window is 10 ns.

We fully characterize the state produced by our setup with QST. Because all the mea-

surement settings for the Svetlichny inequality lie in the xy-plane of the Bloch sphere these

alone are not tomographically complete. Instead of performing an additional run apart

from the measurements of the Svetlichny settings, we add two additional projective mea-

surements (|H〉 and |V 〉) for each of the particles, resulting in a total of 216 three-photon

polarisation measurements. Our set of measurements is now actually tomographically

overcomplete, which has been shown to produce better estimates of quantum states [117].

3.4 Results

In our setup the maximum four-fold coincidence rates of 7× 10−2 Hz and 8× 10−2 Hz were

achieved for the correlations |HaHbVc〉 and |VaVbHc〉, respectively. To get statistically sig-

nificant counts we integrated over 27 min per measurement. In order to reduce the negative

effects of misalignment of the setup over time we realized this integration by counting for

60 s for each of the 216 measurements, then repeating the full cycle of measurements 27

times. The resulting counts are given in table 3.1.

We applied the maximum likelihood technique [118] to reconstruct the density matrix

of our state. Its real and the imaginary part are shown in Fig. 3.3. The fidelity F = 〈ψ|ρ|ψ〉
of the density matrix with the GHZ state 1√

2
(|HHV 〉+ |V V H〉) is 0.84± 0.01. The errors

of quantities derived from the reconstructed density matrix were calculated via a Monte

2E.g., E(a,b, c) = (N++++N+−−+N−+−+N−−+)−(N−−−+N−+++N+−++N++−)∑
N , where Nijk is the number

of counts for settings a, b and c with outcomes i,j and k, respectively.
∑
N is the sum of all counts in

the numerator.
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Settings for Settings for a
b c |A(+)〉 |A(−)〉 |A′(+)〉 |A′(−)〉 |H〉 |V 〉

|B(+)〉 |C(+)〉 12 56 20 69 53 35
|C(−)〉 52 19 47 18 38 32
|C ′(+)〉 12 50 43 13 31 35
|C ′(−)〉 48 16 14 56 31 23
|H〉 34 39 32 44 4 71
|V 〉 35 26 30 29 62 8

|B(−)〉 |C(+)〉 70 16 76 12 36 35
|C(−)〉 12 53 12 46 39 33
|C ′(+)〉 49 8 17 59 37 44
|C ′(−)〉 22 40 75 19 39 30
|H〉 47 37 28 33 4 75
|V 〉 32 24 47 34 54 4

|B′(+)〉 |C(+)〉 19 69 57 16 40 31
|C(−)〉 51 17 6 63 25 40
|C ′(+)〉 48 13 47 12 26 37
|C ′(−)〉 15 62 18 56 34 28
|H〉 32 38 34 39 4 68
|V 〉 44 34 36 40 53 4

|B′(−)〉 |C(+)〉 68 18 17 62 34 36
|C(−)〉 19 54 45 11 33 29
|C ′(+)〉 18 48 17 54 42 33
|C ′(−)〉 55 13 62 29 32 31
|H〉 26 25 39 42 1 51
|V 〉 47 35 44 29 63 10

|H〉 |C(+)〉 42 40 39 52 77 6
|C(−)〉 31 22 31 32 52 4
|C ′(+)〉 40 37 38 35 53 1
|C ′(−)〉 41 30 36 38 65 5
|H〉 2 3 5 5 8 5
|V 〉 79 66 72 67 119 5

|V 〉 |C(+)〉 39 46 32 43 3 72
|C(−)〉 35 36 29 39 2 44
|C ′(+)〉 25 42 33 43 7 59
|C ′(−)〉 32 43 30 31 6 62
|H〉 62 68 54 69 3 131
|V 〉 4 7 3 6 3 1

Table 3.1: Experimentally-measured counts. Four-fold coincidences for the 216

measurements performed for QST. A subset of 64 measured counts were used to test

Svetlichny’s inequality; these counts are shown in boldface type. We cycled through all

of the measurements 27 times, counting for 60 s for each measurement. The four-fold

coincidences given are the result of integrating over all of these cycles.
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Figure 3.3: Reconstructed three-photon density matrix. Real part (left) and imagi-

nary part (right) of the density matrix. The state was reconstructed from a tomographically

overcomplete set of 216 measurements. For each measurement the four-fold coincidence

counts were integrated over 27 min, see table 3.1. The fidelity of the reconstructed density

matrix with the GHZ state 1√
2
(|HHV 〉+ |V V H〉) is (84± 1)%.
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Figure 3.4: Measured correlations and Svetlichny parameter. a, Measured corre-

lations for the eight combinations of measurement settings for the three particles. Each

correlation is constructed from 8 four-fold coincidence measurements. The count rates for

each of these measurements are given in table 3.1. b, These correlations yield a Svetlichny

parameter of 4.51±0.14, which clearly violates the bound (dashed line) of 4 of the Svetlichny

inequality. The quantum mechanical limit is 4
√

2. Even higher values (pattern-filled re-

gion) can be reached by allowing arbitrarily strong nonlocal correlations.

Carlo simulation, where we used each of the measured counts as the mean of a Poissonian

distribution. According to these distributions we generated random counts and ran the

maximum likelihood algorithm. This procedure was repeated 400 times, and we report the

standard deviation and mean for quantities derived from these reconstructed states.

The 64 measurements that quantum mechanics predicts to violate Svetlichny inequality

are among the 216 measured. After integrating over all cycles we get a Svetlichny parameter

of Sv = 4.51 ± 0.14; the eight measured correlations are shown in Fig. 3.4. This value

violates the Svetlichny inequality by 3.6 standard deviations. It is in good agreement with

the value, SQMv = 4.48 ± 0.11, predicted by quantum mechanics given the reconstructed

density matrix.
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3.5 Conclusion

We used the double-pair emission from a pulsed type-I SPDC source and projected the

photons onto a GHZ state using a linear optical interferometer. We fully characterized the

generated state and reconstructed the density matrix applying the maximum likelihood

technique [118] using an overcomplete set of measurements. From the reconstructed density

matrix, we found that our state matched the target GHZ state with a fidelity of (84±1)%.

We experimentally demonstrated the violation of the original Svetlichny inequality for

a three-particle GHZ state with a value of 4.51 ± 0.14, which is greater than 4 by 3.6

standard deviations. This value is in good agreement with that predicted by quantum

mechanics from our reconstructed density matrix, 4.48 ± 0.11. By violating Svetlichny’s

long-standing inequality, we have shown that the correlations exhibited by three particles

cannot be described by hidden-variable theories with at most two-particle nonlocality.

Important extensions could include space-like separation between detectors with ran-

domly switched measurements, comparable to what was done by Weihs et al. [31]. Studying

quantum correlations over large distance could also incorporate device-independent cryp-

tography [36], a practical application of quantum nonlocality.
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Chapter 4

Experimental bound entanglement

Most of the material in this Chapter is published1 in the following:

Reference: J. Lavoie, R. Kaltenbaek, M. Piani, and K. J. Resch, Experimental Bound

Entanglement in a Four-Photon State, Phys. Rev. Lett. 105, 130501 (2010). “Copyright

(2010) by the American Physical Society.”

Contributions: M. P. proposed the experiment and provided theoretical support. R. K.,

K. J. R and I designed the experiment. I built the setup and collected data. R. K. and I

analysed the final data. I wrote the first draft of the manuscript with M. P. All authors

discussed the results and commented on the manuscript at all stages.

1No copyrights from the journal is required to include the article (all or part) in this thesis.
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4.1 Introduction

Entanglement [119, 120] enables powerful new quantum technologies [121, 20, 18, 21, 122,

2], but in real-world implementations, entangled states are subject to decoherence and

preparation errors. Entanglement distillation [123, 124] can often counteract these effects

by converting imperfectly entangled states into a smaller number of maximally entangled

states. States that are entangled but cannot be distilled are called bound entangled [125].

Any experimental realization of bound entangled states requires a convincing demonstra-

tion of their defining properties: entanglement and undistillability.

Bound entangled states are important for several reasons. First, they represent irre-

versibility in entanglement manipulation: they require the consumption of pure entangle-

ment to be created via local operations and classical communication (LOCC), but no pure

entanglement can be distilled from them via LOCC [125, 126, 127, 128]. Second, they con-

stitute a challenge to develop better entanglement criteria, as there is no standard efficient

way to detect their entanglement [129, 120]. Third, they are central to recent breakthroughs

regarding quantum channel capacities [130]. Fourth, despite not being distillable, they still

constitute a resource for quantum teleportation [131], quantum cryptography [132, 133],

and channel discrimination [134]. Thus, bound entanglement is crucial for developing a

more complete picture of the role of entanglement in quantum information.

A recent work reported the production of a pseudo-bound entangled state in liquid-

state NMR [135]. They demonstrate sufficient control over their system to implement

the transformations that lead to bound entanglement. Yet, they would need to start

in a highly pure, rather than a highly mixed state, to generate bound, as opposed to

pseudo-bound, entanglement. Optical systems on the other hand can produce highly pure

states. In Ref [136], the authors claimed an optical demonstration of a Smolin bound-

entangled state. Their data showed that their state was entangled. They reconstructed

their state using quantum state tomography and applied the PPT test for distillability

and argued that the eigenvalues are all positive or consistent with zero. However, their

results show five negative eigenvalues over all three partial transpositions with a minimum

of −0.02±0.02 (see also the note added in [135]). Since the central point in the PPT test is

that the minimum eigenvalue has to be non-negative, their claim of demonstrating bound
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entanglement is not supported by their data.

In this chapter, we consider a family of four-qubit Smolin states [137], focusing on a

regime where the bound entanglement is experimentally robust. We encode the state into

the polarisation of four photons and show that our state exhibits both entanglement and

undistillability. Then we demonstrate a key feature of Smolin states: the entanglement in

our state, although bound, can be unlocked.

4.2 Theory

One of the most elegant and striking examples of bound entanglement is the four-party

Smolin state [137],

ρS =
1

4

3∑
µ=0

|Ψµ〉〈Ψµ|AB ⊗ |Ψµ〉〈Ψµ|CD, (4.1)

where the subscripts label the parties, and |Ψµ〉 are the two-qubit Bell states. One may

understand the Smolin state in the following way: A and B share one of four possible

Bell states, and C and D share the same state, but each Bell state is equally likely and

unknown. The Smolin state is entangled in the sense that it does not admit a fully-

separable decomposition of the form
∑

k pkρ
k
A ⊗ ηkB ⊗ τ kC ⊗ ξkD, with pk probabilities and

ρk, ηk, τ k, ξk states. But it is evident from Eq. (4.1) that the Smolin state is separable (or

unentangled) in the (AB) : (CD) bipartite cut since it can be written in a biseparable

form ρ =
∑

k pkρ
k
AB ⊗ τ kCD. Because the state is symmetric with respect to the exchange

of any two parties [137, 138], it is separable with respect to all three two-two bipartite

cuts (AB) : (CD), (AC) : (BD), and (AD) : (BC). Following the arguments in [137],

one concludes that no entanglement can be distilled between any two parties, and this

excludes also the distillation of three- and four-partite entanglement. Thus, the Smolin

state is, by definition, bound entangled. To prove that an experimentally prepared Smolin

state is undistillable, it is sufficient to show that all eigenvalues remain positive under

partial transposition (PPT) across all two-two bipartite cuts [125].

In any attempt to generate perfect Smolin states, the PPT property will be very sen-

sitive to imperfections in the state preparation and counting statistics in the experimental
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data. The main reason is that the partial transpose of the density matrix of a perfect Smolin

state is not full-rank. Introducing a source of white noise leads to a full-rank matrix, whose

PPT property is more robust and thus better suited for experimental demonstration. By

varying the proportion of white noise one generates the family of noisy Smolin states

ρS(p) = (1− p)ρS + p
I
16
, (4.2)

where 0 ≤ p ≤ 1 parameterizes the amount of noise, and I is the identity matrix. These

states are bound entangled for 0 ≤ p < 2/3, and fully separable for 2/3 ≤ p ≤ 1 [138].

Entanglement can be ascertained by the use of an entanglement witness, an observable W
such that tr(Wτ) < 0 for some entangled state τ , while tr(Wρ) ≥ 0 for all separable states

ρ. A suitable witness for these states is W = I −
∑3

i=1 σ
⊗4
i like in [136], where σ1, σ2 and

σ3 are the three Pauli matrices X, Y, Z.

4.2.1 An entanglement witness for the Smolin state

We consider an entanglement witness W such that a negative expectation value 〈W〉 =

tr(ρW) < 0 is sufficient to exclude that the prepared state ρ is in the set S of mixed states

that are a convex combination of pure states with one party disentangled from the others,

e.g. |α〉A ⊗ |φ〉BCD. In such a convex combination, the disentangled party may differ from

pure state to pure state. Of course, S is a superset of the set of completely separable

states.

The witness readsW = I−
∑3

i=1 σ
⊗4
i . There are a number of ways to single outW as an

appropriate witness; e.g., in [136] the derivation was based on the stabilizer formalism [139]

and numerical optimization. Here we present a derivation that is completely analytical and

uses the geometric approach of [140].

It will be sufficient to prove that the state ρS(2/3), which is fully separable [138], is the

closest to ρS in the set S. Here, closeness is defined with respect to the Hilbert-Schmidt

norm ‖X‖HS =
√

tr(X†X). To this aim, using Proposition 5.1 in [140], one derives that it
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is sufficient to check that maxτ∈S tr(ρSτ) ≤ 1/8. We have

max
τ∈S

tr(ρSτ) = max
|α〉A|φ〉BCD

tr(ρS|α〉〈α|A ⊗ |φ〉〈φ|BCD)

= max
|α〉A|φ〉BCD

tr(ρΓA
S (|α〉〈α|)TA ⊗ |φ〉〈φ|BCD)

=
1

8

[
1− 4 min

|α〉A|φ〉BCD
tr(ρS|α〉〈α|A ⊗ |φ〉〈φ|BCD)

]
=

1

8
, (4.3)

where ρΓA
S denotes the partial transpose of ρS with respect to A. The first equality comes

from the symmetry of ρS and the convexity of S, so that it is sufficient to consider pure

states |α〉A|φ〉BCD in the maximization; the second equality from the identity tr(XY ) =

tr(XΓAY ΓA); the third equality from ρΓA = 1
8
(σ2⊗ σ⊗3

0 )1
8

(I − 4ρS) (σ2⊗ σ⊗3
0 ) and the fact

that σ2(|α〉〈α|)TAσ2 is also a pure state. Finally, the minimum in the third line is easily

seen to vanish.

Having established that ρS(2/3) is the nearest state to ρS in S, according to Theorem

6.1 in [140] one can construct a witness for ρS as W̃ = c0I + ρS(2/3) − ρS, with c0 =

tr(ρS(2/3)(ρS − ρS(2/3)) = 1/24, so that W̃ ∝ I −
∑3

i=1 σ
⊗4
i = W . As ρS(2/3) has full

rank, Theorem 6.1 in [140] also assures thatW is optimal, i.e., there is no witnessW ′ that

detects all the states detected by W and some more.

4.3 Experiment

Smolin states can be prepared in the following way. Two sources of entangled pairs produce

a state of the form |φ+〉AB ⊗ |φ+〉CD, where |φ±〉 = 1√
2

(|00〉 ± |11〉). One then applies

randomly, but with equal weight, one of the rotations σµ, µ = 0, . . . , 3, with σ0 the identity,

simultaneously to both entangled pairs, i.e., σµA|φ+〉AB⊗σµC |φ+〉CD. Different levels of white

noise can be created by choosing a probability, p, where the rotations are applied in an

uncorrelated fashion.

In our experiment, we take this approach to generate a four-photon Smolin state of

the form in Eq. (4.2). As shown in Fig. 4.1a, we use two SPDC sources, each producing
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Figure 4.1: Experimental setup to generate four-photon Smolin states. a, We

generate a family of Smolin states by randomly applying unitaries, using two pairs of liquid-

crystal variable phase retarders (LCRs), to the initial |φ+〉AB ⊗ |φ+〉CD state produced by

two SPDC sources. For each party A, B, C and D, the polarisation is analyzed with

the usual HWP-QWP-PBS. Birefringent crystals (T, T’, and c) are used to compensate

temporal and transverse walk-off in the sources. b, A two-photon interferometer is used

to project onto |φ−〉AC for entanglement unlocking between parties B and D. The delay

∆τ is adjusted for optimum two-photon interference [141] and the QWP is used to set the

phase.
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polarisation entangled photon pairs in the Bell state |φ+〉 = 1√
2

(|HH〉+ |V V 〉). Both

sources are pumped by the second harmonic (average power 830 mW, centre wavelength

395 nm) of a femtosecond Ti:Sapphire laser. Each SPDC source consists of a pair of

type-I phase-matched, orthogonally oriented, 1 mm-thick BBO crystals [142, 143]. For the

temporal and spatial walk-off compensations, see Section 5.3. The photons are coupled

into single-mode fibers after passing through a 3 nm bandwidth filter centered at 790 nm.

The phase of the entangled states can be set using QWPs in modes 2 and 4. The average

singles rate produced is 250 kHz with an average coincidence rate of 36 kHz, when each

analyzer is set to |H〉.

We implement the unitaries, σµ, via a pair of liquid-crystal variable phase retarders

(LCRs) [144] in each of the two sources. In each pair, one LCR can be set to the identity

or X and the other to the identity or Z, their combination allowing to apply any Pauli

operation. The state of the LCRs is set by a computer using a pseudo-random number

generator operating at a rate of 10 Hz.

The polarisation of each qubit is analyzed, as shown in Fig. 4.1, by monitoring both

output modes of the PBS. For QST we use the over-complete set of 64 = 1296 settings of the

analyzers, and we record 16 four-fold coincidence counts simultaneously for 5 s. During the

run, each projective measurement occurs 16 times; we sum the counts measured for these

occurrences together, averaging out effects of different coupling and detector efficiencies.

We repeat this run 10 times, randomizing the order of the measurement settings in each

loop and summing the resulting counts. From these counts we can reconstruct our density

matrix using an iterative maximum-likelihood algorithm [145].

4.4 Results

In order to test whether our prepared state is bound entangled, we directly measure the

entanglement witness and determine if the reconstructed density matrix is PPT. Fig. 4.2

shows the measured witness values and minimum partial-transpose (PT) eigenvalue as

a function of the amount of white noise, p. The minimum PT eigenvalue denotes the

minimum of all eigenvalues of the partially transposed density matrix with respect to all
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two-two bipartite cuts. When no white noise (i.e., p = 0) is added to our Smolin state, only

one of these conditions is fulfilled: the state is entangled with a witness value of −1.269±
0.006 but the minimum PT eigenvalue is negative with a value −0.0273 ± 0.0006. The

minimum PT eigenvalue is calculated from the maximum likelihood density matrix, and

the error bars are estimated from Monte-Carlo simulations with 500 iterations each. For

each iteration, we randomly vary the counts measured according to a Poisson distribution

centred on the measured number of counts and use it for tomography. The magnitude

of the negative eigenvalue for p = 0 is similar to that presented in [136]. As we increase

the noise probability, the witness expectation value and the minimum PT eigenvalue also

increase. Our state is bound entangled in the region where the witness is negative while

the minimum PT eigenvalue is non-negative, approximately from p = 0.42 to p = 0.56.
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Figure 4.2: Experimental tests for bound entanglement. We measured the expec-

tation value for the entanglement witness (blue diamonds, right axis) and the minimum

PT eigenvalue (red circles, left axis) for various levels of white noise. The lines are best

fits to the data and the error bars correspond to one standard deviation as determined by

Monte-Carlo simulation. Each eigenvalue shown is the smallest among all those calculated

from the set of bipartite cuts (AB) : (CD), (AC) : (BD), and (AD) : (BC). Using our

experimental data, we find that our family of generated Smolin states is entangled within

the shaded region and PPT in the hatched region. In the overlapping region, the states

are both entangled and PPT, i.e. bound entangled. Our state without additional noise

is entangled but definitely not PPT, with a negative minimum PT eigenvalue similar to

Ref. [136]. Our experimental results show that a substantial amount of noise is required

to turn this value firmly positive and reach bound entanglement.
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Figure 4.3: Experimentally measured density matrix of a noisy Smolin state. The

reconstructed density matrix (real part on the left, imaginary part on the right) for a noise

level of p = 0.49. The fidelity with the target state is (96.83 ± 0.05)%, and the measured

witness and smallest PT eigenvalue are −0.159± 0.008 and 0.0069± 0.0008, respectively.

From these values we see that this state is both entangled and PPT, i.e. bound entangled.

In particular, for p = 0.49 the measured value for the witness is −0.159±0.008 and the

minimum PT eigenvalue is 0.0069± 0.0008. These values satisfy both conditions required

for bound entanglement by a wide margin. In Fig. 4.3, we show the real and imaginary

part of the reconstructed density matrix for p = 0.49. The fidelity [146] with the target

state ρS(p) is (96.83 ± 0.05)%. We provide the directly measured tomographic counts for

p = 0.49 in Appendix A.

Although the entanglement of a Smolin state (Eq. (4.1)) is undistillable using only

LOCC, this is not the case when joint operations between any two parties are allowed [137].

In particular, by performing a Bell-state measurement, two parties, e.g. A and B, can find

out which Bell pair they share. They can communicate that information to C and D, who

will share the same Bell state. This is referred to as entanglement unlocking. In the case of

the family of Smolin states described in Eq. (4.2) a Bell measurement on any two parties

will lead to the preparation of a Werner state [147] in the other two: (1−p)|Ψµ〉〈Ψµ|CD+pI
4
.
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The resulting Werner state will be entangled for p < 2
3
, i.e. as long as the Smolin state is

entangled.

To demonstrate entanglement unlocking, we keep the noise level at p = 0.49, immedi-

ately after obtaining the results above, and we feed the photons of parties A and C, i.e.,

one from each source, through single-mode fibres into the Bell-state measurement depicted

in Fig. 4.1b. After passing through the first PBS in the interferometer, both photons are

projected on the state |+〉 using HWPs and PBSs. The time delay ∆τ is set such that

two-photon interference occurs [141]. A coincidence detection event between detectors D1

and D2 performs a projective measurement of modes A and C onto the Bell state |φ−〉.
An over-complete set of two-qubit tomography measurements is performed on the qubits

of parties B and D, yielding the counts reported in Table 4.2 of Appendix A. For each

tomography run we record all 4 four-fold coincidences for 60 s per setting; we perform 20

loops with a randomized setting order for each loop. The reconstructed density matrix

(see Fig. 4.4) has a fidelity of (99.45±0.05)% with the one expected from the experimental

bound entangled state, assuming a perfect Bell-state measurement. Its tangle is positive,

0.00105 ± 0.00046, and the minimum eigenvalue of the partially transposed state is neg-

ative, −0.0160 ± 0.0035; this confirms that we have successfully unlocked entanglement

between parties B and D.
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Figure 4.4: Unlocking of entanglement from a bound entangled state. By perform-

ing a joint measurement on the qubits of parties A and C, specifically by projecting them

on the state |φ−〉AC using the Bell-state measurement shown in Fig. 4.1b, entanglement

is unlocked between parties B and D. Here, we use our bound-entangled Smolin state

with noise level p = 0.49. We reconstruct the density matrix of B and D (real part on

the left, imaginary part on the right), given a successful Bell-state measurement on A and

C. This state is entangled with a negative minimum PT eigenvalue of −0.0160 ± 0.0035

and a tangle of 0.00105± 0.00046, experimentally demonstrating entanglement unlocking.

We achieve a fidelity of (99.45 ± 0.05)% with the state expected, given the reconstructed

four-qubit density matrix of Fig.4.3.

4.5 Conclusion

We demonstrated experimental bound entanglement, for the first time convincingly sat-

isfying its two defining criteria: entanglement and undistillability. To achieve the latter

property, we added sufficient white noise to clearly fulfill the PPT criterion while still main-

taining non-separability. Without additional noise, our Smolin state is non-PPT by an

amount that is relatively small, but statistically significant, and we must add a substantial

amount of noise—almost 50%—to turn it PPT. Clearly, it is difficult to achieve the critical

PPT condition without completely losing entanglement in experimentally produced Smolin

states. Once we achieved the preparation of bound entanglement, we demonstrated en-
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tanglement unlocking, realizing all of the conceptually important characteristics of Smolin

states. Our results open the door to applications of bound entanglement in experimental

quantum information science.
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Appendix A

Measured Counts for Entanglement Witness

states counts states counts states counts

|H,H,H,H〉 3834 |+,+,+,+〉 3687 |R,R,R,R〉 3810

|H,H,H, V 〉 1983 |+,+,+,−〉 1751 |R,R,R,L〉 1833

|H,H, V,H〉 1760 |+,+,−,+〉 1801 |R,R,L,R〉 1813

|H,H, V, V 〉 4344 |+,+,−,−〉 3863 |R,R,L, L〉 3825

|H,V,H,H〉 1531 |+,−,+,+〉 1658 |R,L,R,R〉 1801

|H,V,H, V 〉 4050 |+,−,+,−〉 4125 |R,L,R,L〉 4021

|H,V, V,H〉 3627 |+,−,−,+〉 4276 |R,L,L,R〉 4029

|H,V, V, V 〉 1641 |+,−,−,−〉 1738 |R,L,L, L〉 1742

|V,H,H,H〉 1500 |−,+,+,+〉 1524 |L,R,R,R〉 1711

|V,H,H, V 〉 4174 |−,+,+,−〉 3891 |L,R,R,L〉 3745

|V,H, V,H〉 3608 |−,+,−,+〉 4023 |L,R,L,R〉 3954

|V,H, V, V 〉 1617 |−,+,−,−〉 1608 |L,R,L, L〉 1842

|V, V,H,H〉 3737 |−,−,+,+〉 4094 |L,L,R,R〉 3845

|V, V,H, V 〉 1909 |−,−,+,−〉 1754 |L,L,R, L〉 1905

|V, V, V,H〉 1709 |−,−,−,+〉 1843 |L,L, L,R〉 1963

|V, V, V, V 〉 4217 |−,−,−,−〉 3990 |L,L, L, L〉 3970

exp. values 〈σ⊗4
z 〉 = 0.3966± 0.0075 〈σ⊗4

x 〉 = 0.4005± 0.0043 〈σ⊗4
y 〉 = 0.3621± 0.0043

Table 4.1: Counts for the measurement of the entanglement witness. The counts

are four-fold coincidences measured to determine the expectation value of the entanglement

witness, 〈W〉 = 1−
∑3

i=1

〈
σ⊗4
i

〉
, for a noise level of p = 0.49. We integrated over 60 s (6 s

in each of the ten loops) per measurement setting. Because we use all PBS outputs, the

effective measurement time is 16× 60 s = 960 s per setting.
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Photon D

|H〉 |V 〉 |+〉 |−〉 |R〉 |L〉

P
h
ot

on
B

|H〉 4547 1736 3195 3053 3142 3026

|V 〉 2274 4626 3463 3544 3539 3464

|+〉 3244 3039 1935 4188 3208 3117

|−〉 3261 3185 4277 2098 3385 3325

|R〉 3560 3207 3282 3183 4310 2283

|L〉 3266 3308 3062 3176 2204 4230

Table 4.2: QST counts for unlocked entanglement. We project the qubits of parties

A and C on |φ−〉 and perform an over-complete set of tomography measurements on the

qubits of parties B and D. Each row corresponds to a fixed setting for B, and each column

to a fixed setting of D. All counts are four-fold coincidence events. We repeated the set

of 36 measurements 20 times, and for each measurement setting we integrated over 60 s.

Taking into account the additional factor of 4 due to our use of all PBS outcomes, this

results in an overall measurement time of 4× 20× 60 s = 4800 s per setting.
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Chapter 5

Quantum computing with a

simulated valence-bond solid

Most of the material in this Chapter is published1 in the following:

Reference: R. Kaltenbaek∗, J. Lavoie∗, B. Zeng, S. D. Bartlett and K. J. Resch, Optical

one-way quantum computing with a simulated valence-bond solid, Nature Physics 6, 850-

854 (2010) (* contributed equally)

Contributions: B.Z. and S.D.B. proposed the experiment and provided theoretical sup-

port. R. K., K. J. R and I designed the experiment. I built the setup with R. K and I

carried out the experiment including preliminary data analysis. R. K. analysed the final

data. I wrote and edited the paper with my coauthors.

1No copyrights from the journal is required to include the article (all or part) in this thesis.
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5.1 Introduction

In the standard circuit model of quantum computation [148], information is carried by

qubits. The computation proceeds dynamically via unitary single-qubit logic gates and

multiple-qubit entangling gates. Apart from these entangling gates the qubits are fully

isolated from each other. Computations in the one-way model, on the other hand, are

performed via single-qubit measurements on a strongly-correlated, i.e., entangled, resource

state [51]. The one-way model has led to some of the highest estimated error thresh-

olds for fault-tolerant quantum computation [149, 150], and to a series of experimental

demonstrations of quantum logic gates [53, 54, 151, 152, 153, 154], wherein the technical

requirements can be much simpler than for the circuit model. This is particularly true of

optical implementations, where the resource requirements for one-way quantum computing

are significantly lower [155], and the predicted error thresholds significantly higher [156],

than for any other approach to quantum computation.

Because qubits in the one-way model are not isolated but rather interact strongly with

each other, this approach lends itself more naturally for implementations in condensed-

matter systems. But, out of the vast variety of strongly-coupled quantum many-body

systems, can we find one that has a ground state we can use as a resource for quantum

computing? That seems unlikely if this ground state is to be the cluster state, because

the cluster state is not the ground state of a strongly-coupled many-body system with

a Hamiltonian consisting of two-body interactions [157, 158]. As a result, the search for

alternative resource states has attracted a lot of interest recently. Although up to now

little is known about the requirements potential resource states for the one-way model

have to meet, and although most states are in fact useless for this task [159], a handful

of alternative states have been identified [160, 161, 162, 163, 164]. All of these states

can be described in the framework of matrix product states or projected entangled pair

states [160, 161, 162, 165].

A promising candidate is the ground state of a spin model studied by Affleck, Kennedy,

Lieb, and Tasaki (AKLT) [166]. This valence-bond-solid state (see Figure 5.1a) appears

as the unique gapped ground state of a rotationally-invariant nearest-neighbour two-body

Hamiltonian on a spin-1 chain. The AKLT state possesses diverging localisable entangle-
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ment length [167] and, remarkably, can serve as a resource for one-way quantum computa-

tion [160, 162, 163, 168]. Because the Hamiltonian is frustration free, i.e. the ground state

minimises the energy of each local term of the Hamiltonian, measurements in the course

of the computation leave the remaining particles in their ground state. Operations leaving

the computational subspace are penalised by the energy gap protecting the AKLT state.

Universal quantum computation can be achieved via dynamical coupling of several AKLT

states, where each can be regarded as ‘quantum computational wires’ [160, 162, 163, 168].

These properties render the AKLT state an attractive alternative to cluster states as a

more natural resource for quantum computing in condensed-matter systems.

In this chapter we show how to prepare an AKLT state, a resource for measurement-

based quantum computing, using linear optics. We also demonstrate its use to implement

single-qubit quantum logic gates.

5.2 Theory

A detailed discussion of theoretical aspects of simulating AKLT states with quantum optics

and their use in one-way quantum computation is given in Ref. [169]. Here we will focus

on a simple AKLT state for a qubit-qutrit-qubit system given by

|ψAKLT 〉 =
1√
6
|H, 1, V 〉+

1√
6
|V, 1, H〉 − 1√

3
|H, 2, H〉 − 1√

3
|V, 0, V 〉. (5.1)

In our case, the qutrit states |0〉, |1〉, |2〉 correspond to the biphoton states 1√
2
a†Ha

†
H |vac〉,

a†Ha
†
V |vac〉, 1√

2
a†V a

†
V |vac〉, respectively. Here, |vac〉 is the vacuum state, and a†H and a†V are

photon creation operators.

Quantum computation with AKLT states is different from computing with cluster states

in a number of ways. The elementary physical units are spin-1 systems (qutrits) instead of

spin-1
2

systems (qubits), although it is still qubits that are encoded as ‘logical’ information.

Adaptive measurements allow the performance of non-Pauli operations, including Clifford

gates. Single-qubit rotations can be performed around any Cartesian axis. These opera-

tions are probabilistic, rather than deterministic, and succeed with probability 2
3
. When
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... 

Singlet Qutrit  Qubit 

a b 

... 

Projection 

... ... 

... 

Figure 5.1: AKLT states. a, The AKLT state [166] is a valence-bond solid and can

be represented by a chain of spin-1
2

singlet states where adjoining qubits of neighbouring

pairs are projected on the triplet subspace, i.e. the subspace symmetric with respect to

swapping of the two qubits. At either end of the chain a boundary qubit remains, ensuring

that the ground state is non-degenerate. b, One can simulate an AKLT state with a chain

of sources producing singlet states and projecting pairs of particles on the triplet subspace.

an operation fails, it performs a heralded logical-identity operation, i.e. a teleportation of

the logical information along the chain. The operation can then be reattempted on the

next qutrit until it succeeds. Combinations of such rotations allow the implementation of

arbitrary single-qubit quantum logic gates.

Although a number of one-dimensional spin chains are well-described by the AKLT

Hamiltonian, most prominently Ni(C2H8N2)2NO2(ClO4) (NENP) [170], up to now ex-

perimental techniques do not allow the single-spin measurements necessary for one-way

quantum computation. Yet, one of the fundamental and most appealing motivations for

quantum computing, is the possibility to simulate aspects of quantum systems that can-

not directly be studied [171]. Because the AKLT state is a valence-bond solid state (see
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Figure 5.1a), we can simulate it via a chain of spin-1
2

singlet states, for example polarisation-

entangled photon pairs, where adjoining particles of neighbouring pairs are projected on the

symmetric triplet subspace; see Figure 5.1b. While this approach does not allow to analyse

the dynamics of the corresponding solid-state system, it allows the direct production of

the AKLT state, and to use it for one-way quantum computation.

5.3 Experiment

Source

The light source is a Ti:Sapphire femtosecond laser, centred at 790 nm with 10 nm FWHM

bandwidth, 2.9 W average output power and 80 MHz repetition rate. Second-harmonic

generation in a 2 mm thick BiBO crystal yields a beam of 780 mW power, centred around

395 nm, with 1.5 nm FWHM bandwidth. The entangled photon pairs are generated using

two separate type-I SPDC sources [142], also described in Section 3.3. Each source consists

of a pair of 1 mm thick BBO crystals, their optical axes oriented perpendicular to each

other. Longitudinal walk off in the SPDC crystals is compensated using 2.5 mm of quartz

and 1 mm of α-BBO crystal before the first SPDC source, and a 2 mm α-BBO and a

1 mm quartz crystal before the second2. Additional transverse walk-off is compensated

by placing 1 mm thick BiBO crystals cut at θ = 152.6◦ and φ = 0◦ in modes 2 and 3

(see Figure 5.2a). All photons pass through 3-nm bandwidth filters. The phases in the

setup and the polarisation rotation in the single-mode fibres are set such that the sources

produce singlet states in modes 1 & 2 and 3 & 4. In modes 1 & 2 we measure a fidelity of

(96.9± 0.5)% with the ideal singlet state |ψ−〉 ≡ 1√
2
(|HV 〉− |V H〉). For the second source

the fidelity is (96.9± 0.6)%.

We had single count rates around 200 kHz in the qubit analyzers 1 and 2 (see Fig-

ure 5.2a), and single count rates of 80 kHz in the detectors D5 and D6 in the qutrit

2In principle, no compensation would be necessary between the two sandwiched crystals. We had the

second source oriented at 90 degrees relative to the first to minimize transverse walk-off, and therefore, we

had to double the longitudinal compensation.
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Figure 5.2: Experimental Setup. a, Two type-I SPDC sources are used to generate

polarisation-entangled pairs. Longitudinal and transverse walk-off are compensated with

birefringent crystals T1, T2 and C. All photons are coupled into single-mode fibers. Polar-

isation rotation in the fibres is compensated with polarisation controllers, and the phase is

adjusted by tilting QWP‘s. Photons in modes 2 and 3 are fed into a 50:50 BS. Detecting

two photons in one of the BS outputs projects these photons on the symmetric qutrit sub-

space and can be treated as a qutrit. b, Each qubit analyzer consists of a HWP, QWP, PBS

and two detectors, monitoring both outputs of the polarising BS. c, In the qutrit analyzer

the biphoton forming the qutrit is probabilistically split up using a BS. Phases introduced

at the BS are compensated by tilted QWPs. A combination of QWPs and HWPs allows

to project the qutrit onto a state of our choice. A successful projection corresponds to a

coincidence event between detectors D5 and D6.
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analyzer (see Figure 5.2c). The two-fold coincidence count rate for the first source was

7.4 kHz between qubit analyzer 1 and D5 in the qutrit analyzer. For the second source the

two-fold coincidence count rate was 5.9 kHz between qubit analyzer 2 and D5 in the qutrit

analyzer.

Interferometer and Qutrit Projection

One photon of each pair is measured directly at the source, using polarisation analyz-

ers. The modes for both measurement outcomes are coupled into single-mode fibres and

monitored via single-photon detectors (Perkin-Elmer, SPCM-4Q4C). The two remaining

photons are coupled into single-mode fibres and sent to a quantum interferometer and

analyzer setup. The input modes of the interferometer are overlapped at a 50:50 BS. If

the input photons are set to have the same polarisation, HOM interference [141] occurs.

Postselecting on four-fold events with one photon in mode 1, one in mode 4 and two pho-

tons in the output mode of the BS indicated in Fig. 5.2a, we observe constructive HOM

interference with a visibility of 95.7± 3.7%.

It will depend on the biphoton state in modes 2 and 3 whether the two photons leave

through the same or different BS outputs [18]. In particular, coincidence detection events

between two different BS outputs only occur for the two-photon singlet state. By post-

selecting on a biphoton excitation in one output mode of the BS, the biphoton is retroac-

tively projected onto a symmetric subspace and can be described as a qutrit [172]. This

is identical to the symmetrisation needed to generate an AKLT state [166] (see Fig. 5.1).

We measure this qutrit using the analyzer outlined in Fig. 5.2c.

The analyzer works by probabilistically splitting up the biphoton at a BS, and by

performing a qubit projective measurement on each of the output modes of the BS. We

project on a given qutrit state by projecting the two photons on corresponding qubit

states. In particular, the photon in mode m = 5, 6 of the qutrit analyzer is projected on

state |ψm〉 = cosαm|H〉+ eiχm sinαm|V 〉. A successful projective measurement of a qutrit

corresponds to a coincidence event between detectors D5 and D6. To calculate which qutrit

state such a coincidence event signals we can propagate our two-qubit state |ψ5〉 ⊗ |ψ6〉
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back through the BS, neglecting the unused port. The (unnormalised) two-photon state

then becomes:

1

2

[
cosα5 cosα6a

†
Ha
†
H +

(
eiχ5 cosα6 sinα5 + eiχ6 cosα5 sinα6

)
a†Ha

†
V + ei(χ5+χ6) sinα5 sinα6a

†
V a
†
V

]
|vac〉.

(5.2)

In our qutrit basis we can write this as:

1√
2

cosα5 cosα6|0〉+
1

2

(
eiχ5 cosα6 sinα5 + eiχ6 cosα5 sinα6

)
|1〉+

1√
2

ei(χ5+χ6) sinα5 sinα6|2〉. (5.3)

In general, the success probability of this projective qutrit measurement depends on

the qutrit state. For example, to project onto the biphoton state a†Ha
†
H |vac〉, we set both

analyzers to |H〉. Given that the biphoton is in the correct state, a coincidence will occur

with probability 1
2

because of the probabilistic splitting of the photons at the BS. As a

second example, a projection on the biphoton state a†Ha
†
V |vac〉, we choose |ψ5〉 = |H〉 and

|ψ6〉 = |V 〉. If the biphoton is in the right state, the success probability will only be 1
4

because the photons can be split in four possible ways, and only one leads to a coincidence

event.

We perform QST on our qubit-qutrit-qubit state using a maximum likelihood tech-

nique [173, 174]. The set of measurements for the two qubits was |H〉, |V 〉, |+〉, |−〉, |R〉,
and |L〉. In Table 5.1 we list the set of qutrit measurements as well as the corresponding

parameters αm and χm for the settings of the qubit measurements in the qutrit analyzer.

The table also shows the probability with which each of the projections succeeds given that

the biphoton is in the corresponding qutrit state.

To demonstrate the use of AKLT states for quantum computation, we realise single-

qubit rotations around the x̂, ŷ and ẑ axis of the Bloch sphere. We begin the computation

by projecting the first boundary qubit (in mode 1) onto some qubit state |ψ1〉. By doing

so, we effectively prepare the logical state |ψ⊥2 〉, where 〈ψ|ψ⊥〉 = 0. Rotations Rx(θ), Ry(θ)

or Rz(θ) of the logical state by an angle θ around the respective coordinate axis, require

a projection of the qutrit onto one of the corresponding states given in Table 5.2. For

more details, Table 5.3 also lists the parameters αm and χm of Eq. 5.3. We denote the

three outcomes of each qutrit basis as ‘plus’, ‘minus’ and ‘id’. Each is expected to occur
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|0〉 |1〉 |2〉 |0〉+|1〉√
2

|0〉−|1〉√
2

|1〉+|2〉√
2

|1〉−|2〉√
2

|2〉+|0〉√
2

|2〉−|0〉√
2

|0〉+i|1〉√
2

|0〉−i|1〉√
2

|1〉+i|2〉√
2

|1〉−i|2〉√
2

|2〉+i|0〉√
2

|2〉−i|0〉√
2

α5 0 0 π
2

0 0 π
2

π
2

−π
4

π 0 0 π
2

π
2

−π
4

−π
4

χ5 0 0 0 0 0 0 0 π
2

−π
4

0 0 0 0 π
4

−π
4

α6 0 π
2

π
2

ξ ξ η η π
4

0 ξ ξ η η π
4

π
4

χ6 0 0 0 0 π 0 π π
2

π
4

π
2

−π
2

π
2

−π
2

π
4

−π
4

p 1
2

1
4

1
2

1
3

1
3

1
3

1
3

1
4

1
4

1
3

1
3

1
3

1
3

1
4

1
4

Table 5.1: Analyzer parameters for qutrit measurements used for QST. Each

qutrit measurement is implemented by splitting the biphoton probabilistically at a beam

splitter and projecting the two photons (m = 5, 6) on |ψm〉 = cosαm|H〉+ eiχm sinαm|V 〉.
For brevity, we use the definitions ξ = arccos( 1√

3
) and η = arccos(

√
2
3
), and p denotes the

success probability for a given qutrit projection. These success probabilities are taken into

account by our QST algorithm.

with probability 1/3. Up to a known Pauli error [51, 162, 163], which can be corrected as

indicated in Table 5.2, the outcomes ‘plus’ and ‘minus’ signal a successful rotation, and

the outcome ‘id’ signals the logical identity, i.e., a rotation by 0◦. As a result, a successful

rotation is achieved with probability 2/3. For θ = 0, every outcome heralds the logical

identity [169]. This can be used to teleport logical information along the wire, for example

to a position where the wire is coupled to another, or to the read-out position.
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Rot.
plus minus id

state corr. state corr. state corr.

Rx(θ) cos θ
2
|y〉+ i sin θ

2
|z〉 XZ i sin θ

2
|y〉+ cos θ

2
|z〉 Z |x〉 X

Ry(θ) cos θ
2
|z〉+ sin θ

2
|x〉 Z − sin θ

2
|z〉+ cos θ

2
|x〉 X |y〉 XZ

Rz(θ) cos θ
2
|x〉+ i sin θ

2
|y〉 X i sin θ

2
|x〉+ cos θ

2
|y〉 XZ |z〉 Z

Table 5.2: Qutrit measurement bases and Pauli corrections. Single-qubit rotations

are realised by a projective measurement in a corresponding qutrit basis that has three

possible outcomes: ‘plus’, ‘minus’ and ‘id’. The qutrit states |x〉, |y〉, and |z〉 are defined

as 1
2

(
a†Ha

†
H − a

†
V a
†
V

)
|vac〉, 1

2

(
a†Ha

†
H + a†V a

†
V

)
|vac〉, and a†Ha

†
V |vac〉, respectively, and X,

XZ = iY , and Z indicate the Pauli correction that has to be applied to the read-out qubit

depending on measurement outcome and measurement basis.

To prepare our logical input state, we project the first qubit on one of a set of states:

|H〉, |V 〉, |±〉, |h±〉, |m±〉. Here, |±〉 ≡ (|H〉 ± |V 〉)/
√

2, |h±〉 are the eigenstates of

the Hadamard operator, and |m+〉 ≡ cos( ξ
2
)|H〉 + ei

π
4 sin( ξ

2
)|V 〉, |m−〉 ≡ sin( ξ

2
)|H〉 −

ei
π
4 cos( ξ

2
)|V 〉 are the ‘magic states’ [150] with ξ = arccos( 1√

3
) and 〈m−|m+〉 = 0. For

each axis of rotation we choose 10 angles θ =
{

0, π
8
, π

4
, 3π

8
, π

2
, 3π

4
, π, 5π

4
, 3π

2
, 7π

4

}
and project

the qutrit on the corresponding state (see Table 5.2) for the ‘plus’ and ‘minus’ outcomes.

We project on the ‘id’ outcome once for every input state and rotation axis. Finally,

while monitoring four-fold events, we reconstruct the density matrix of the computational

outcome by performing QST on the last qubit.

5.4 Results

Here, we experimentally demonstrate the generation of photonic AKLT states and their

application for one-way quantum computation. We produced two singlet states, |ψ−〉 =

(|HV 〉 − |V H〉)/
√

2, in four distinct spatial modes and from these two singlets we created

an AKLT state consisting of two boundary spin-1/2 systems and one spin-1 system. To
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Rot.
plus minus id

α5 χ5 α6 χ6 α5 χ5 α6 χ6 α5 χ5 α6 χ6

Rx(θ)
θ−π

4
π
2

3π−θ
4
−π

2
θ
4

π
2

π
2
− θ

4
−π

2
π
4

π 3π
4
−π

Ry(θ)
θ
4

π π
2

+ θ
4
−π π−θ

4
0 3π−θ

4
0 π

4
π
2

π
4
−π

2

Rz(θ)
−π
4
− θ

2
π
4
− θ

2
−π
4

π−θ
2

π
4

π−θ
2

0 π
2

π
2
−π

2

Table 5.3: Analyzer parameters for qutrit measurements used for rotation gates.

In the qutrit analyzer, one photon is projected on |ψ5〉, the second one on |ψ6〉. Each qutrit

measurement has three possible outcomes, ‘plus’, ‘minus’ and ‘id’ corresponding to three

different sets of parameters for the qutrit analyzer. We provide the settings for rotations

around each of the Cartesian axes.

verify the faithful production of the AKLT state in our experiment, we perform QST on the

qubit-qutrit-qubit system (as described in Section 5.3) and reconstruct the density matrix

shown in Figure 5.3. The fidelity3 with the ideal AKLT state is (87.1± 0.4)%, calculated

with a Monte-Carlo simulation with 420 iterations on the observed counts.

3F (ρ, σ) =
(

Tr
√√

σρ
√
σ
)2

for the fidelity between two quantum states [146].

70



Figure 5.3: Tomographic reconstruction of our photonic AKLT state. a, real and

b, imaginary part of the reconstructed density matrix. The fidelity with the ideal AKLT

state is (87.1± 0.4)%.

Figure 5.4 shows measurement results for single-qubit rotations of the logical input

state |H〉 (i.e. projecting the first qubit on |V 〉) around the three rotation axes. The plots

in Figure 5.4(a-c) show the coordinates of the rotated Bloch vectors as compared with
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the theoretical expectation. In Table 5.4 we list the fidelities for rotations of |H〉 as well

as the averaged fidelities for all logical input states prepared. The probabilities for the

three qutrit measurements, averaged over all input states, rotations and rotation angles,

are measured to be 0.34 ± 0.03, 0.30 ± 0.05, and 0.36 ± 0.04 for the ‘plus’, the ‘minus’,

and the ‘id’ outcome, respectively. This is in good agreement with the expected value of
1
3

for each outcome. An average of the output fidelities achieved over all input states and

all rotations performed yields a value of (92± 4)%, demonstrating the high quality of our

single-qubit quantum logic gates using a photonic AKLT state. A detailed list of all results

can be found in the Supplementary Information of our published work [175].
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a

b

c

d

e

f

Figure 5.4: Measurement results for single-qubit rotations.. (a)-(c) show the coordinates of

the Bloch vectors of the reconstructed output density matrices for rotations of a logical input state |H〉 around the x̂, ŷ and ẑ

axes, respectively. Note that the results shown are for the ‘plus’ outcome of the qutrit measurement, and that we have applied

the necessary Pauli corrections to the reconstructed density matrices for all plots shown in the figure. Error bars are standard

deviations calculated from Monte-Carlo simulations. Solid and dashed lines indicate the theoretical expectations given the

ideal AKLT state and the tomographically-reconstruced AKLT state (see Figure 5.3), respectively. For the rotation angles

0, π
4

, and π
2

, panels (d)-(f) show the Bloch vectors of the measured (and Pauli corrected) density matrices corresponding to

the Bloch coordinates shown in (a)-(c).
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gate fidelities for logical input |H〉

outcomes
Rx Ry Rz

ρth ρexp ρth ρexp ρth ρexp

plus 0.91± 0.04 0.96± 0.02 0.90± 0.05 0.98± 0.02 0.90± 0.03 0.96± 0.02

minus 0.93± 0.03 0.95± 0.03 0.91± 0.03 0.98± 0.01 0.92± 0.04 0.96± 0.02

id 0.90± 0.03 0.97± 0.02 0.93± 0.02 0.993± 0.006 0.97± 0.02 0.98± 0.02

gate fidelities averaged over all input states

outcomes
Rx Ry Rz

ρth ρexp ρth ρexp ρth ρexp

all 0.92± 0.04 0.96± 0.02 0.91± 0.04 0.97± 0.01 0.92± 0.04 0.96± 0.02

Table 5.4: Single-qubit logic gate fidelities. We compare the experimentally deter-

mined output density matrices with the ones expected, on the one hand, given an ideal

AKLT state, ρth, and, on the other hand, given the AKLT state measured in our setup,

ρexp. The upper part of the table shows the fidelities for a logical input state |H〉. For

the ‘plus’ and ‘minus’ outcomes the fidelities are averaged over all rotation angles, for the

‘id’ outcome we performed one measurement per rotation axis. The lower part shows the

corresponding fidelities averaged over all logical input states prepared (see text) and over

all three qutrit measurement outcomes.

5.5 Conclusion

We have experimentally demonstrated a one-way quantum-computation scheme harnessing

a novel resource, the AKLT state, and used it to implement a circuit realising single-

qubit rotations around any coordinate axis. Quantum computation using AKLT instead

of cluster states promises to combine the inherent advantages of the one-way model with

resources that occur naturally in physical systems. Our scheme for creating AKLT states

uses entangled states and linear optics similar in requirements to optical implementations

using cluster states [155]. In contrast to some other optical implementations of quantum
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logic gates for one-way quantum computation [53, 54], our scheme does not require phase

stability and achieves significantly higher experimental fidelities. Our implementation of

a valence-bond-solid state is a realisation of a projected entangled pair state [165]. Such

states offer a promising framework for understanding the properties of entangled states

that make them useful computational resources [160, 161, 162, 164]. Generalisations of the

presented approach might allow to simulate other classes of alternative resource states with

linear optics and to study their potential for quantum computing. Future challenges will be

to find efficient methods of coupling quantum wires, to study solid-state compounds with

ground states that can be used as computational resources, and to implement techniques

to address such systems on a single-particle level. Ideally, this and related research will

lead to implementations in solid-state architectures, allowing to tap the power of one-way

quantum computation while taking full advantage of the appealing characteristics of novel

resource states like AKLT.
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Appendix B

QST of AKLT states

All measured counts correspond to four-fold coincidence detection events between one

detector in each of the two qubit analyzers and the two detectors D1 and D2 in the qutrit

analyzer (see Fig. 5.2). Table 5.5 lists the four-fold coincidence counts measured for all

tomographical settings. For each setting of the analyzer waveplates we integrated over

60 s. Because we monitored both outputs in each of the two qubit analyzers and averaged

over any unbalance between the two analyzer outputs, we have to measure 4 combinations

of settings per projective measurement. This results in 240 s overall measurement time

per projective measurement. In order to reduce the effect of slow drifts in the setup, we

performed the full set of measurements twice, in each case randomly ordering the settings,

resulting in a measurement time of 480 s per setting in Table 5.5.
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|0〉 |1〉 |2〉 |0〉+|1〉√
2

|0〉−|1〉√
2

|1〉+|2〉√
2

|1〉−|2〉√
2

|2〉+|0〉√
2

|2〉−|0〉√
2

|0〉+i|1〉√
2

|0〉−i|1〉√
2

|1〉+i|2〉√
2

|1〉−i|2〉√
2

|2〉+i|0〉√
2

|2〉−i|0〉√
2

|H〉

|H〉 3 8 595 7 7 239 191 158 128 7 10 181 198 154 153

|V 〉 27 195 27 132 107 110 151 26 22 141 113 147 110 18 22

|+〉 8 80 327 63 68 26 296 90 86 75 57 171 176 100 93

|−〉 9 120 321 82 74 384 24 88 67 101 78 212 160 81 86

|R〉 12 90 251 78 61 171 158 95 69 80 61 17 306 109 71

|L〉 10 111 297 72 62 165 170 62 110 84 74 366 22 88 101

|V 〉

|H〉 17 127 17 86 78 77 126 14 12 65 98 71 80 12 11

|V 〉 539 3 0 141 202 5 4 153 145 177 154 3 4 128 141

|+〉 256 79 8 9 277 43 53 83 77 146 150 54 44 60 76

|−〉 317 68 4 204 22 45 52 102 66 166 152 34 53 93 46

|R〉 329 61 5 140 129 34 57 62 87 23 218 46 48 90 89

|L〉 299 71 8 113 122 45 52 82 61 239 19 62 41 84 59

|+〉

|H〉 5 68 328 46 40 30 238 58 85 31 58 113 160 58 85

|V 〉 283 108 11 13 319 55 96 80 43 156 160 70 67 70 61

|+〉 127 173 193 18 231 5 292 117 21 138 162 144 155 69 120

|−〉 141 34 168 34 85 84 42 6 140 79 52 52 56 71 83

|R〉 126 85 139 23 171 51 156 74 84 52 184 21 192 14 151

|L〉 122 88 205 27 180 41 162 75 84 160 49 166 35 149 20

|−〉

|H〉 8 64 320 80 54 282 23 67 66 52 68 149 151 66 79

|V 〉 315 87 15 303 16 67 43 61 99 198 147 77 57 80 101

|+〉 154 18 173 67 50 54 56 14 136 67 49 68 58 66 95

|−〉 166 174 169 273 8 286 15 167 14 181 159 139 130 75 89

|R〉 189 87 148 166 23 171 26 80 93 56 159 30 164 157 11

|L〉 154 89 167 152 26 179 32 79 92 196 39 204 45 20 125

|R〉

|H〉 10 58 270 41 42 167 139 77 84 39 45 34 300 96 80

|V 〉 298 85 5 161 119 59 71 98 68 19 239 76 65 73 60

|+〉 116 68 169 32 140 26 181 67 99 12 153 52 201 9 127

|−〉 159 93 140 161 57 182 34 94 71 24 192 55 168 182 8

|R〉 135 126 183 172 128 156 149 12 137 8 255 15 296 87 89

|L〉 116 22 192 57 46 93 68 162 18 35 66 96 62 57 113

|L〉

|H〉 9 63 229 60 37 142 134 97 66 56 53 267 24 47 71

|V 〉 340 73 6 165 183 58 67 84 86 329 20 86 45 99 63

|+〉 144 85 167 36 194 36 214 100 72 182 46 191 37 143 13

|−〉 195 101 128 167 49 139 30 97 80 221 23 172 37 20 148

|R〉 180 13 142 61 75 57 71 166 8 100 43 45 62 68 93

|L〉 133 152 172 149 124 150 163 10 131 271 14 306 15 82 82

Table 5.5: Table of tomography results. We performed a tomographically-overcomplete

set of measurements on our qubit-qutrit-qubit state. The states in the first column indicate

the measurement settings for the first qubit, the state in the second column indicate the

settings for the other qubit, and the states in the top row denote the qutrit measurement

settings. All counts given are raw four-fold coincidence events integrated over 480s.
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Chapter 6

Spectral compression of single

photons with chirped-pulse

upconversion

Most of the material in this Chapter is published1 in the following:

Reference: J. Lavoie, J. M. Donohue, L. G. Wright, A. Fedrizzi and K. J. Resch, Spectral

compression of single photons, Nature Photonics 7, 363-366 (2013)

Contributions: A.F. and K.J.R. conceived the idea for the study. K.J.R., A.F. and I

designed the experiment. I performed the experiments, analysed the data and wrote the

first draft of the paper. J.M.D. and L.G.W. contributed to building the experimental setup

and in taking data. All authors contributed to writing the manuscript.

1No copyrights from the journal is required to include the article (all or part) in this thesis.
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6.1 Introduction

Coherent photonic interfaces are paramount for future quantum technologies. In quantum

networks [176] for example, photon pairs at 1550 nm—optimum for low-loss transmission—

distribute entanglement between network nodes consisting of quantum memories. SPDC

sources are widespread for producing entangled photon pairs [41], and typically yield spec-

tral bandwidths of 300 GHz. The most efficient quantum memories [177] however typ-

ically operate in the near visible wavelength regime near 800 nm with narrower band-

widths on the order of 10 MHz. This dilemma has partly been addressed through centre-

frequency conversion [178] of single photons using nonlinear optical processes in crys-

tals [179, 180, 181, 182, 72], photonic crystal fibres [183] and Rubidium vapor [184].

This conversion process can be highly efficient [181, 185] and can conserve quantum coher-

ence [178, 180, 184, 182, 72, 183]. Some quantum memory schemes [186] offer very limited

control over the spectrum of reemitted photons through varying parameters of the control

laser [187].

Nonlinear optics has much more potential for manipulating and controlling the spec-

trum of single photons. Sum-frequency generation (SFG) is a nonlinear optical process

in which a pair of optical fields of frequencies ν1 and ν2 create a third field with fre-

quency ν3 = ν1 + ν2 [55]. When the driving fields are transform-limited laser pulses and

the acceptance bandwidth of the material is sufficiently large, the bandwidth of the SFG

is larger than that of the input fields. Repeating this process with shaped, rather than

transform-limited pulses, can drastically alter the spectrum of the SFG signal. Specifi-

cally, oppositely-chirped laser pulses in SFG and equally-chirped laser pulses in difference-

frequency generation lead to narrow output spectra [188, 189, 190]. It was recently pro-

posed theoretically to employ SFG between a chirped classical pulse and a single photon to

enable compression of the photon pulse in time [73]; interaction of a short laser pulse with

the emission from a quantum dot achieves [72] similar results through temporal gating.

In this chapter, we exploit pulse chirping of a classical laser and a single photon to

compress the bandwidth of the single photon, from 1740 GHz to 43 GHz, which is nearing

the bandwidth regime of some quantum memories [191, 192]. We also demonstrate tunabil-

ity over a range 70 times that bandwidth. When combined with shaped pulses, nonlinear
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optics in the quantum regime promises a new level of control over single photons [73, 193].

6.2 Theory

Our scheme, depicted in Fig. 6.1a, uses SFG between a chirped single photon and an

oppositely chirped intense laser pulse. The photon is chirped such that its frequency,

centered at ν0,P , increases in time, while the strong pulse centred at ν0,L is anti -chirped

such that its frequency decreases linearly in time. When the photon and pulse arrive at

the crystal simultaneously, a red-shifted frequency component (ν0,P − δ) will meet a blue-

shifted component (ν0,L + δ) with the same detuning δ and as a consequence, all frequency

components will sum to a narrow frequency centered on ν0,SFG = ν0,P + ν0,L.

A light pulse can be described by the frequency-dependent electric field, E(ν) =

U(ν)eiφ(ν), where U(ν) and φ(ν) define the amplitude and phase, respectively. A lin-

ear chirp results when a transform-limited pulse is subject to a quadratic phase, φ(ν) ∼
1
2
β2(ν − ν0)2, with ν0 the central frequency and β2 is the second order dispersion term. A

chirp increases the pulse duration and causes its instantaneous frequency to vary linearly

in time ν(t) = dφ(t)
dt

= ν0 ± 2π
β2
t. When the chirped single photon (P) and anti-chirped

strong laser pulse (L) have a relative time delay at the nonlinear crystal, τ , the expected

upconverted frequency is

ν0,SFG(τ) = ν0,P + ν0,L +
2π

|β2|
τ , (6.1)

where we assume the pulses have equal and opposite chirp, ±|β2|. We consider the large

chirp limit, where each pulse is stretched many times its transform-limited duration, i.e.,

|β2|2∆ν4 � 1, where ∆ν is the width (FWHM) of the spectral intensity distribution. We

show in Appendix C (from Eq. 6.20) that the expected intensity bandwidth (FWHM) of

the upconverted single photon is

∆νTHSFG ≈
4 ln 2

|β2|

√
1

∆ν2
P

+
1

∆ν2
L

, (6.2)

with ∆νL and ∆νP the bandwidths of the strong laser pulse and single photon, respectively.

Our technique thus compresses the spectral bandwidth of the photon by a factor inversely
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Figure 6.1: Single-photon bandwidth compression scheme. a, A broad-bandwidth

single photon (P) with a linear frequency chirp is converted into a narrow-band photon of

a higher frequency via sum-frequency generation (SFG) with a strong laser pulse (L) of

opposite chirp, in a nonlinear crystal (NL). b, Experimental setup. Photon P is generated

via SPDC in a BBO crystal (Type-I, 1 mm) and sent through 34 m of optical fiber (SMF)

to introduce a linear chirp via group velocity dispersion [77]. The strong laser pulse is anti-

chirped after a double-pass between two diffraction gratings (DG, 1200 lines/mm) [77].

The spectrally narrowed photon is generated in a 1 mm thick BiBO crystal and detected

with a photomultiplier tube (PMT) or sent to a spectrometer. For alignment purposes,

the single photons can be substituted by a weak coherent state (W), split off from the laser

beam using a half-wave plate and a polarizing beam-splitter.
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proportional to the chirp parameter |β2|. By adjusting the delay between the pulses, the

central frequency ν0,SFG(τ) of the upconverted photons can be tuned over some frequency

range, approximately
√

∆ν2
P + ∆ν2

L (see Section D1, Appendix C), limited by the spectra

of the initial single photon and laser pulse2.

6.3 Experiment

The experimental setup is shown in Fig. 6.1b. Our laser (Spectra Physics Tsunami HP) has

a 790 nm central wavelength, 10.5 nm spectral bandwidth (FWHM), 80 MHz repetition

rate, and 2.5 W average power. The laser repetition rate is stabilized by a feedback system

(Lok-to-clock) which is important for the present experiment (see Appendix C, Section

C3). Second-harmonic generation in a 2 mm thick BiBO crystal yields a beam of 830 mW,

centred at 394.2 nm with 1.3 nm bandwidth, which generates the broadband and non-

collinear photon pairs. In the signal-photon path, the interference filter IF1 shown in

Fig 6.1b, with a nominal bandwidth of 5 nm (FWHM) centered around 811 nm, is inserted

to keep its central frequency separated from that of the laser beam at 790 nm, to separate

the spectrum of the second-harmonic background from our signal. Due to the energy

conservation of SPDC, an interference filter, IF2, centered around 770 nm and nominal

bandwidth of 3 nm is inserted in the path of the idler-photon.

We first optimize the setup with a weak coherent state (W), split off from the strong

laser pulse using a HWP and PBS. An interference filter (IF3) is inserted in its path and the

transmitted spectrum has a measured bandwidth of 3.85±0.03 nm (∆νW = 1760±10 GHz)

centered at 810.49± 0.01 nm, closely matched to IF1.

The strong laser pulse was re-collimated with a set of lenses before being “anti-chirped”

in a grating-based setup [78], with normal separation of 38 cm between the gratings,

carefully adjusted to minimize the spectral width of the upconverted light. The bandpass

filter IF4 highly attenuates any power in the tail of the laser spectrum above 800 nm to

further suppress second-harmonic background. After the filter, the pulse has a measured

bandwidth of 9.86 ± 0.05 nm (∆νL = 4770 ± 20 GHz) centered at 787.62 ± 0.02 nm. We

2Here we neglected phase mismatch that will further reduce the range if not compensated.
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used an achromatic doublet with a 75 mm focal length in the upconversion setup, and

the conversion efficiency was optimized by fine tuning the relative delay between the two

inputs, the spatial overlap at the crystal, and the phase matching by angle tuning. A

14.5 nm bandpass filter IF5 with central wavelength at 405 nm is placed in the SFG beam

to reduce background.

The weak beam is finally replaced by the single photons, with the same optical path

length. We used a spectrometer (Acton SP-2750A) with a 1200 lines/mm diffraction grat-

ings blazed for 400 nm and entrance opening of 20 µm with a resolution of 60 GHz. We

use the spectrograph, free-running mode with a back-illuminated CCD camera (PIXIS:

2048B).

6.4 Results

We first measure the spectrum of the signal photons at the source, after the interference

filter IF1, using a fiber-coupled spectrometer and find a width ∆νP = 1740 ± 50 GHz

(FWHM) centered around 811.11 ± 0.01 nm, see Fig. 6.2. The photons are then sent

through an optical fiber with positive dispersion and superposed with the anti-chirped

strong laser pulse at the nonlinear crystal for SFG.

The upconverted light is coupled into a single-mode fiber and sent to the spectrometer.

As shown in Fig. 6.2, we observe significant spectral compression. The measured bandwidth

is ∆νM = 74±4 GHz centered at 399.7 nm. Taking the resolution of our spectrometer into

account, ∆νR = 60±4 GHz, the actual width of the upconverted photon after deconvolution

is ∆νEXPSFG =
√

∆ν2
M −∆ν2

R = 43± 9 GHz (see Appendix C, Section D2, for more details).

This agrees closely with theory, ∆νTHSFG = 32.9 ± 0.9 GHz from equation (6.2), using the

expected chirp parameter |β2| = (51.6±0.6)×106 fs2 given by the geometry of our grating-

based stretcher. We have therefore achieved a compression ratio of 40:1 in the single photon

frequency bandwidth. Similar measurements were made after replacing the single photons

by a weak coherent state (W), shown in Fig. 6.1b. The corresponding measured spectral

width of the upconverted light was 67 ± 4 GHz, or 30 ± 12 GHz after deconvolution,

showing similar performance with a classical chirped pulse with the same characteristics
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as the signal photons.

Figure 6.2 also shows the spectrum predicted by theory which would result from upcon-

version of the signal photon using the same pump laser without any chirp. The conversion

in this case actually broadens the spectral bandwidth of the original photon by a factor

of 3, increasing the bandwidth gap between flying broadband photons and narrowband

quantum memories, which further highlights the importance of our scheme.

The central wavelength of the narrowband upconverted photons can be tuned by con-

trolling the relative delay, τ , between the photon and the laser pulse, see Eq. 6.1. The SFG

spectrum was measured as a function of the delay of the single photon, with fitted central

wavelengths shown in Fig. 6.3. The data shows that the wavelength depends linearly on

the delay as expected. The linear fit gives a slope of −0.0640 ± 0.0005 nm/ps in good

agreement with −0.0648± 0.0008 predicted from Eq. 6.1 and |β2| = (51.6± 0.6)× 106 fs2.

If the weak coherent state is used instead of single photons, we observe the same behaviour

in the spectrum of the upconverted light, and the data are also shown in Fig. 6.3. The

lower SFG signal for single photons required longer integration times than for the coherent

states; to reduce the effects of drift in experimental parameters all of the data in Fig. 6.3

was taken within a day. For the single photons, we focused on those delays demonstrating

the widest possible tuning range. From the slope, we can extract the chirp parameter of

|β2| = (52.4 ± 0.4) × 106 fs2, in agreement with expectations based on the parameters of

the stretcher.

Photons from SPDC are created in pairs and are strongly correlated in time; we ex-

pect these correlations are preserved through spectral compression. We first measured

coincidence counts between single photon detectors placed in the source as a function of

a time delay between the counts. Figure 6.4a shows the coincidence counts versus delay,

without background substraction. The peak around zero delay corresponds to a rate of

160,000 s−1, within a 3 ns coincidence window. The histogram also contains side peaks

from accidental coincidences with a separation of 12.5 ns matching the laser repetition

rate. After propagating through the single-mode fibre, the signal photons are upconverted

and detected with a single-photon counting photomultiplier (PMT). Figure 6.4b clearly

shows that the coincidence rate observed at zero-delay between the upconverted and idler

photons exceed the accidentals, preserving the strong timing correlation associated with
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Figure 6.2: Single-photon spectra in wavelength (top) and relative frequency

(bottom). The signal photons at the source (shown in red) have an initial bandwidth

of 1740 GHz centred at 811 nm after transmission through an interference filter. Once

the quadratic phase is applied and the photons are upconverted, the photon bandwidth

reduces to 74 ± 4 GHz centred at 399.70 nm (blue curve). The spectra are shown as

normalised spectral intensities and for the upconverted signal case, correspond to the av-

erage of six consecutive scans of 20 minutes acquisition time. We subtracted background

counts determined by a supplementary scan with the signal photon path blocked. The blue

dashed curve shows the theoretical spectrum of photons upconverted without our chirping

technique but otherwise identical conditions. The spectrometer resolution is 60± 4 GHz.
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Figure 6.3: Wavelength tunability. The centre wavelength of the upconverted light

can be tuned by controling the relative delay between the input pulses at the nonlinear

crystal. The blue circles represent the centre wavelength of the upconverted single photon,

covering a range of 3 nm. The upconverted light from the weak coherent state behaves the

same way and is plotted with the black squares. The lines are linear fits yielding slopes of

−0.0640± 0.0005 nm/ps and −0.0641± 0.0001 nm/ps for the single photons and the weak

pulses, respectively. The vertical offset between the two curves (∼ 0.2 nm) comes from a

slight difference in the delay between the weak coherent state and the single photons at

the crystal and a difference in their central wavelength. The error bars are smaller than

the data points.
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individual photon pairs. If we instead upconvert the weak coherent state, which shares the

spectral and temporal properties of the signal photon, all observed peaks in Fig. 6.4c have

the same height, as expected for a pulsed, but temporally uncorrelated source.

6.5 Conclusion

The efficiency of the upconversion process in our experiment is 0.06% with 300 mW of

average power for the strong beam. Higher efficiencies could be achieved with the use

of periodically poled crystals and higher pump powers [181, 185]. One doesn’t require

100% conversion efficiency to achieve a net gain. Ignoring the shift in centre frequency,

one has an advantage over a narrow bandwidth filter once the efficiency is greater than

about 100%/R, where R is the ratio of the initial to final bandwidth, which in our case is

40, for an efficiency of just 2.5%. The amount of negative dispersion achievable limits the

maximum compression; with realistic parameters [194] and our spectra, one could reach

compression down to ∼1 GHz.

Future work will explore the case when the single photon is entangled with another. It

is expected that polarisation entanglement could be preserved by employing polarisation-

insensitive upconversion [182]. Our technique could serve as a coherent interface between

time-bin and frequency encodings of quantum information due to the delay-dependent

central frequency, allowing the conversion of time-bin entanglement to colour entangle-

ment [195]. It also enables ultrafast timing measurements with slow detectors [41] by

converting different pulse arrival times to different frequencies which could more easily be

distinguished. With our experimental parameters, one could distinguish time bins with

separation as short as 0.6 ps over a 40 ps range. Future work will investigate nonlinear

interactions with more complex shaped pulses for manipulating single photons; for exam-

ple, coherent superpositions of chirped pulses with different delays would allow ultrafast

single-photon time-bin measurements. The application of shaped pulse nonlinear optics is

a promising and unexplored regime at the quantum level.
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Figure 6.4: Temporal correlations with the idler photon. a, The signal and idler from

SPDC are produced in pairs, strongly correlated in time with a total measured coincidence

rate of 160, 000 s−1 around zero delay. b, The upconverted single photon maintains the

strong timing correlation expected from individual photon pairs, and a coincidence rate of

50 s−1 is detected. c, If the weak coherent state is upconverted instead, the histogram shows

equal height peaks as expected for pulsed, but uncorrelated events. For each histogram,

the optical path length difference with the idler is accounted for in post-processing and the

abscissa is a variable electronic delay. An additional electronic delay box, with an observed

asymmetric temporal jitter, was used on the idler side only, causing the asymmetry in b)

and c). Error bars, 1 s.d. too small at this scale.

89



Appendix C

C1. Theory

We model the creation of upconverted single photons through the interaction Hamiltonian,

H, of a three-wave χ(2) non-linear process. We assume that frequency bandwidths are

narrow and perfect phasematching (~kP + ~kL − ~kSFG = 0) is achieved (P= single photon,

L= Laser). Ignoring constants, our Hamiltonian is given by

H ∝
∫∫∫

dν1dν2dν3â
(P )
ν1
â(L)
ν2
â†(SFG)
ν3

δ(ν1 + ν2 − ν3) + h.c. (6.3)

and describes the process in which two photons at frequencies ν1 and ν2 are absorbed by

a dielectric medium and give rise to a new photon at the sum-frequency ν3 = ν1 + ν2.

Our initial three-mode state |ψ0〉 contains a single photon

|1〉P =

∫
dν1fP (ν1)eiφP (ν1)|1ν1〉, (6.4)

a large amplitude coherent state

|α〉L =

∫
dν2fL(ν2)eiφL(ν2)|αν2〉 (6.5)

and an output signal, initially vacuum |0〉SFG. The amplitudes f(νi) and phases φ(νi) will

be defined shortly.

We assumed no frequency correlations between the single photon P and an idler, a

lossless and non dispersive medium, and an interaction length much longer than the optical

wavelengths. The first nontrivial term in the initial state evolution is found to be

|ψ(2)
f 〉 ∝

∫∫
dν3dν1fP (ν1)fL(ν3 − ν1)ei(φP (ν1)+φL(ν3−ν1))|1ν3〉. (6.6)

From this expression, the electric field amplitude E(ν3) is thus proportional to

E(ν3) ∝
∫
dν1fP (ν1)fL(ν3 − ν1)ei(φP (ν1)+φL(ν3−ν1)). (6.7)
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Notice that Eq. 6.7 represents the convolution of two input pulses, in frequency domain.

This is analogous to the classical derivation of sum-frequency generation, for which the

product of the fields in time leads to the convolution in frequency domain [55]. Thus, the

same spectral properties are expected if both inputs are coherent states.

To analyse the field intensity |E(ν3)|2 of the upconverted photons, we now specify the

phases and amplitudes. For both the coherent state and single-photon, the frequency

distribution of the field amplitude is assumed to be Gaussian,

f(νi) ∝ exp

[
−(νi − ν0,i)

2

2σ2
i

]
, (6.8)

with central frequency ν0,i and spectral variance σ2
i . The phase terms, φ(νi), are given by

φ(νi) = β0 + β1(νi − ν0) +
β2

2!
(νi − ν0)2 + . . . . (6.9)

We choose this form to take into account the propagation of the initial Gaussian pulse in

a uniform dispersive medium and neglect the higher order terms in the Taylor expansion.

This medium corresponds to an optical fiber for the photons, and a grating-based stretcher

for the coherent states. β0 is a constant phase shift, β1 describes a time delay and the most

important term, β2, is the second-order dispersion that broadens the pulses temporally,

and causes a linear chirp of the frequencies.

Inserting Eq. 6.8 and 6.9 into Eq. 6.7 and after integration, we find the SFG field

intensity

|E(ν3)|2 ∝ exp

−ν23σ2
1 +

(
ν23 +

((
β1,P − β1,L

)
+ β2,P ν3

)2
σ4
1

)
σ2
2 +

(
−
(
β1,P − β1,L

)
+ β2,L ν3

)2
σ2
1σ

4
2

2σ2
1σ

2
2 + σ4

2 + σ4
1

(
1 +

(
β2,L + β2,P

)2
σ4
2

)
. (6.10)

To simplify this expression, we have set ν0,i → 0; we are mainly interested in the spectral

width and the relative frequency shift of the SFG around ν0,P +ν0,L and keep the expression

normalised.

We make two more simplifications. i) Define a relative time delay between the input

pulses by replacing (β1,P−β1,L)→ 2πτ . ii) It is physically motivated to set β2,L → |β2| and

β2,P → −|β2| since we made sure the opposite second order dispersions were well balanced

during the experiment. Equation 6.10 simplifies to
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|E(ν3)|2 ∝ exp

[
−ν

2
3 + σ2

1σ
2
2 (|β2|ν3 + 2πτ)2

σ2
1 + σ2

2

]
. (6.11)

The exponent is a quadratic expression of the form ax2 + bx + c and can be transformed

into a(x + d)2 + e, with d = b
2a

and e = c − b2

4a
. This allow us to express the spectral

intensity as

|E(ν3)|2 ∝ e
− (ν3−δν(τ))

2

σ23 e
− τ

2

ξ2 (6.12)

with a delay dependent frequency shift given by

δν(τ) =
4π|β2|σ2

1σ
2
2

2(1 + |β2|2σ2
1σ

2
2)
τ, (6.13)

a spectral variance

σ2
3 =

(σ2
1 + σ2

2)

1 + |β2|2σ2
1σ

2
2

, (6.14)

and a correlation range (or delay range)

ξ2 =
(σ2

1 + σ2
2)(1 + |β2|2σ2

1σ
2
2)

4π2σ2
1σ

2
2

(6.15)

which bounds the tunable SFG range as the delay τ varies. We want to compare the cases

i) without and ii) with dispersion |β2|.

i) No dispersion [ND], |β2| → 0

If we neglect the second order dispersion, i.e., no chirp is applied to the pulses, Eqs. (6.13–

6.15) become

δν(τ)[ND] → 0 (6.16)

σ2
3[ND] → σ2

1 + σ2
2 (6.17)

ξ2[ND] → 1

(2π)2

(
1

σ2
1

+
1

σ2
2

)
. (6.18)

We retrieve familiar expressions of the autocorrelation signal.
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ii) With dispersion, and |β2|2σ2
1σ

2
2 � 1

In this case and with the “large chirp” approximation, |β2|2σ2
1σ

2
2 � 1, the parameters in

Eq. 6.12 are

δν(τ) → 2π

|β2|
τ (6.19)

σ2
3 →

1

|β2|2

(
1

σ2
1

+
1

σ2
2

)
(6.20)

ξ2 →
(
|β2|
2π

)2

(σ2
1 + σ2

2). (6.21)

From Eq. 6.20, we see that for fixed spectral widths, the SFG width σ3 is inversely

proportional to the dispersion (chirp) amplitude |β2|. Equation 6.19 gives us the rate of

frequency shift versus delay, ∆δν
∆τ

= 2π
|β2| and we also find that (∆τ)2 ≡ ξ2 =

(
|β2|
2π

)2

∆δν.

Inserting the latter into Eq. 6.21 gives
(
|β2|
2π

)2

∆δν =
(
|β2|
2π

)2

(σ2
1 + σ2

2). The frequency is

thus restricted to a range equal to the variance σ2
3(ND), Eq. 6.14, when no dispersions are

involved.

Figure 6.5 summarizes the results of this section; FWHM (∆x) and variance (σ2) of a

variable x are related by a constant, such that ∆x(FWHM)= 2
√

ln 2
√
σ2.
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a 

b 

Figure 6.5: Predicted bandwidth compression and tunability of a single photon.

a, SFG spectral intensity |E(ν3)|2 is plotted in function of its frequency ν3. The initial

center frequency is around ν0,L + ν0,P with a FWHM ∆ν3 = 2
√

ln 2
√
σ2

3. A delay τ ′

between the input pulses, shown in b, leads to a frequency shift of − 2π
|β2|τ

′. Because of

the limited physical overlap of the pulses, this shift is bounded and has a FWHM of

∆δν3 = 2
√

ln 2
√
σ2

3(ND) around the center frequency.
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C2. Error estimation for the spectral widths

We estimated the uncertainties in the bandwidth of the SFG for the single photon and weak

coherent state in the following way. We characterized the resolution of our spectrometer

using a narrow-band diode laser (Toptica Bluemode) with 5 MHz of spectral width centered

at a wavelength 404 nm. Using a fit to a Gaussian function, we measure the spectrometer

resolution to be (0.033 ± 0.002) nm at the diode laser wavelength, where the uncertainty

is the estimated error on the fit. We measured the bandwidth for several input intensities

and found that the measured bandwidth had some intensity dependence at low power; this

is the dominant source of error in the bandwidth. Using the expression ∆ν = c
λ2

∆λ we

determine the resolution to be ∆νR = (60± 4) GHz.

We measured the spectrum of the upconverted single photons 6 times, fit each to a

Gaussian function, and found the width, 74±1 GHz (see Fig. 6.2), where the uncertainty is

the standard deviation in the widths from the fits. To include the spectrometer resolution

we add ±4 GHz in quadrature to obtain the reported result, ∆νM = 74 ± 4 GHz. To

deconvolve the spectrometer resolution from this result for comparison with theory, we

assume Gaussian spectra and use the relation, ∆νReal =
√

∆ν2
M −∆ν2

R = 43 GHz and

Gaussian error propagation gives an uncertainty of 9 GHz.

We apply the same method for the weak coherent state. The measured width was

fitted using one spectrum only, with a value of 67.2±0.4 GHz. Including the spectrometer

resolution gives ∆νWCS
M = 67± 4 GHz, and deconvolution yields ∆νWCS

Real = 30± 12 GHz.

C3. Laser repetition rate stabilization

Our experiment requires that two short pulses of light, one from the single photon and

the other from the strong laser, overlap in space and time at the nonlinear up-conversion

crystal. Temporal jitter between the pulses will lead to broadening of the second harmonic

spectrum since the central frequency of the light is dependent on their relative delay. In

many scenarios, perfectly time-synchronized pulses are created by splitting a single laser

pulse on a beamsplitter. This is common to many types of interferometry or pump-probe

techniques. In these cases, the signal is insensitive to changes in the repetition rate of the
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laser and one need only consider small changes in the relative path lengths. However, this

is not the case here, as the single photon (or weak coherent state) and strong classical laser

beam originate from different laser pulses.

Our experimental setup is shown in Fig. 6.6. The optical delay for the down-conversion

path is t1 measured from the beamsplitter (BS1) through the down-conversion to the end of

the 2 m fiber. This delay was carefully matched to that experienced by the weak coherent

state which we also label as t1. The additional delay t′1 corresponds to the one taken by

either the single photon or the weak coherent state through the 32 m of single mode fiber,

up to the nonlinear crystal. The optical delay for the strong classical pulse is t2 measured

from the same beamsplitter, through the grating-based stretcher and to the nonlinear

crystal. The time delay between subsequent pulses is 1/R, where R is the repetition rate

of the laser, in our case 80 MHz. To this second path, we add the extra delay n/R to

account for the fact that the light arriving at the nonlinear crystal from path 2 originated

n pulses later than that from path 1. Thus, the timing difference, ∆t is

∆t = t2 + n/R− t1 − t′1. (6.22)

Thus the relative time delay between either the single photon and the strong classical pulse

or the weak coherent state and the strong classical pulse depends on both the repetition

rate and the number of pulses separating them.

Experiment 1

We measured the spectral line of the sum-frequency generated from the weak coherent state

and the strong laser pulse, as the repetition rate was manually detuned from 80 MHz. The

results from our experiment are shown in Fig. 6.7. The data is well fit by a straight line

with slope 0.1188± 0.0004 nm/kHz.

To find the expected frequency change for a given variation in the repetition rate, we

start by finding the expected change in the time delay with respect to the repetition rate

d(∆t)

dR
= − n

R2
. (6.23)
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t2 + n/R

...

n pulses

t1

t1

BS1

Figure 6.6: Simplified version of the experimental setup. The path length from

the first pulse to the nonlinear crystal (SFG) has an optical delay of t1 + t′1: t1 is the

path length of the single photons including the path length of the first pulse from the

beamsplitter (BS1) to the SPDC crystal and t′1 includes the optical path length inside the

long fiber and the free-space path to the upconversion crystal. This delay is equal to that

experienced by the weak coherent state to the nonlinear crystal. The delay for the optical

path from the beamsplitter to the upconversion crystal through the grating-based setup is

t2, but since the relevant pulse originates later than that which creates the down-converted

photon, we have to add an additional contribution n/R where n is the number of pulses

later and R is the repetition rate of the laser.
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Figure 6.7: Centre wavelength of the SFG as a function of the laser repetition

rate. The single photon was replaced by the weak coherent state to perform this experi-

ment. The error bars are smaller than the data points.
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Recall that the chirped pulses are created by applying a quadratic frequency dependent

phase, φ(ν) = 1
2
|β2|(ν − ν0)2. The chirp rate, the rate of change of the instantaneous

frequency with time, is 2π/|β2|. Thus we expect that a change in time of ∆t will cause a

change in the frequency dν = 2π
|β2|d∆t. We can then convert Eq. 6.23 to

dν

dR
= − 2πn

|β2|R2
(6.24)

dλ

dR
=

(
λ2

c

)
2πn

|β2|R2
. (6.25)

Substituting λ = 400 nm, |β2| = 52.4× 106 fs2, R = 80 MHz gives

dλ

dR
∼ 0.01n

nm

kHz
. (6.26)

We expect this to become significant in our experiment when the change in wavelength

approaches that of the linewidth of our single photon, 0.04 nm. For n = 12, this occurs

when ∆R = 300 Hz. With the repetition rate stabilization feature on our Spectra Physics

Tsunami (Lok-to-Clock), this is limited to ∆R < 10Hz and does not constitute a significant

source of spectral broadening.

To estimate n in our experiment, we use the slope of the center wavelength versus the

relative delay, and the one of the center wavelength in function of the repetition rate. From

Fig. 6.3, we have dλ
dt′1

= (−0.0641±0.0001) nm/ps = dλ
dt3

, where t3 = t2 +n/R. Additionally,

we have that dλ
dR

= (0.1188± 0.0004) nm/kHz from the slope of Fig. 6.7. Using the chain

rule for d
dR

= dt3
dR

d
dt3

, we find dλ
dR

= − dλ
dt3

n
R2 and hence

n =

(
dλ

dt3

)−1(
dλ

dR

)
R2 = 11.9± 0.1. (6.27)

As expected from the lengths in our experiment, the strong laser pulse arriving at the

nonlinear crystal from path 2 originates 12 pulses later than the single photon from path

one.

Experiment 2

Throughout the experiments described in this chapter, we employed the repetition rate

locking feature on our Ti:Sapphire laser to maintain a constant repetition rate. We took
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Figure 6.8: Lok-to-Clock feature off. The filled triangles correspond to the case when

the locking feature is on, and the empty triangles when the feature is not activated. Each

scan is 10 minutes long. The shift in the central position in the case without the Lok-to-

Clock is caused by a 50 Hz detuning. The error bars are smaller than the data points.
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two sets of data, one with stabilization on, the other with it off. The results are shown in

Fig. 6.8. For each set, we measured the peak position of the upconverted weak coherent

state, with a 10 min. acquisition time and repeated five times. The data show that the

center wavelength drifts significantly without stabilization.
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Chapter 7

Conclusion and Outlook

This dissertation was divided in two parts. In the first one, I described the use of a multi-

partite source of photonic qubits for the study of quantum nonlocality, bound entanglement

and one-way quantum computing. The second part focused on a novel interface for quan-

tum frequency conversion and waveform manipulation of single photons using chirped-pulse

upconversion.

Photonic qubits are versatile resources for quantum information processing, but de-

signing and aligning efficient SPDC sources is challenging. Important figures of merit are

the fidelity with a target state, and rates at which such states are produced. Throughout

this dissertation, SPDC sources have been put together in different arrangements and with

a constant aim at improving alignments and collection efficiencies. Figure 7.1 summa-

rizes different architectures that we have used with similar pump power (∼800 mW). Each

panel shows the two-fold rates, with qubits in their required polarisation states, and the

detected four-fold rates of the final target quantum states, with indicated fidelity. Photons

were spectrally filtered directly at the source, within 3 nm of bandwidth. Although the

nonlinear crystals remained the same (1 mm BBO, Type-I phase matching), coincidence

rates kept increasing. Improvement of rates between GHZ-1, GHZ-2 and GHZ-3 is a result

of refined collection efficiencies, careful transverse walk-off compensations and optimized

layout.

Our first use of the multi-partite source of photonic qubits, described in Chapter 3, was
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Figure 7.1: Metamorphosis of our multi-partite photonic qubits source. Paramet-

ric downconversion in bulk crystals is a reliable source of photonic qubits, as demonstrated

in this thesis. Entangled states of different nature are generated using pairs of BBO crys-

tals (SPDC). For the violation of Svetlichny’s inequality in Chapter 3, GHZ states (GHZ-1)

were produced from double pair emissions and an interferometer. Smolin bound entangled

states were created from two separated Bell states, and local unitaries. AKLT states also

started with Bell states, but an interferometer projected qubits onto a qutrit subspace.

GHZ states were produced at much higher rates (15 Hz for GHZ-2 and 40 Hz for GHZ-3)

using two separated sources. For each configuration, two-fold rates are given without po-

larisation analyzers, and with the pump in its final polarisation state. Four-folds are final

and represent the rate at which the target state is detected.
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in producing three-partite GHZ states of the form 1√
2

(|HHV 〉+ |V V H〉). Double pair

emissions from one sandwich-BBO were sent to an interferometer to produce the state.

We estimated the density matrix through QST and found (84 ± 1)% overlap with the

target state. By analyzing a set of correlations between measurement outcomes, we ex-

perimentally demonstrated violation of the original Svetlichny’s inequality by 3.6 standard

deviations, with a value of 4.51± 0.14. Violation of the inequality rules out a description

in terms of hidden variable theories with at most two-particle nonlocality and confirms

genuine nonlocality and true entanglement.

Our next subject covered in Chapter 4 involved generating Smolin bound entangled

states. Another pair of BBO crystals was included to generate photonic states in four

distinct spatial modes. We started with a state of the form |φ+〉AB⊗|φ+〉CD and applied a

set of unitaries to A and B in a random fashion to generate the bound entanglement and

demonstrate entanglement unlocking. The challenge was to satisfy both conditions that de-

fine bound entangled states: entanglement and nondistillability. We used an entanglement

witness to certify entanglement and a separability test under bi-partite cuts for the latter.

A level of white noise was adjusted to browse an entire family of Smolin states. Without

additional noise, our state was entangled but contained negative PT eigenvalues, also en-

countered in the first attempts to generate experimental bound entanglement [136, 196].

We turned all PT eigenvalues firmly positive by adding a substantial amount of noise

(∼ 50%), while preserving entanglement in Smolin states. We have therefore experimen-

tally verified the existence of bound entangled states with photonic qubits. In parallel

and shortly after our experiment, bound entangled states were prepared using trapped

ions [197] and continuous variables [198]. All of the above demonstrations elevate bound

entanglement beyond being just a mathematical curiosity. Bound entangled states are a

resource for private key sharing [199] that has yet to be demonstrated experimentally [40].

Chapter 5 covered our experimental simulation of AKLT states and their viability for

measurement-based quantum computation. Photonic qubits with high purity were essential

to generate qutrits via quantum interference on a beam-splitter and led to successful Qubit-

Qutrit-Qubit photonic states with fidelity of 87%. To implement single-qubit quantum logic

gates, we prepared several input states and operated around the main axes of the Bloch

sphere with high (92± 4)% average fidelity. Previous to our work, no resource states other
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than cluster states had been implemented experimentally, to demonstrate measurement-

based quantum computation. Shortly after, quantum computing was also demonstrated in

four- and six-qubit entangled states, not in the cluster-state category [200].

While information processing in solid-state AKLT states is not yet achievable, one

could explore added complexity to the computational AKLT chain by adding qutrits to

our photonic states. For universal computation, however, it would also require additional

wires and means to efficiently couple them. For example, one could “attach” independent

wires with entangling gates, such as optical C-NOT gates [201]. On the other hand, ex-

panding AKLT chains with inclusion of entangling gates reduces the success probability

by a fair amount. Although such a scheme is possible, it would be extremely inefficient

to work with, for practical reasons. A different approach was recently proposed to extend

the 1D AKLT chain to two dimensions [202, 203, 204]. 2D AKLT state on an honeycomb

lattice is composed of spin-3/2 particles and was shown to a be universal resource state

for measurement-based quantum computing [205]. Its simplest valence-bond construction

is depicted in Fig. 7.2, and would constitute an important experimental achievement if re-

alised with photonic qubits. The projection (P : shown as a circle) onto a four-dimensional

symmetric subspace is given by [205]

P = |0〉〈000|+ |1〉〈111|+ |2〉〈W |+ |3〉〈W ′|, (7.1)

where |W 〉 = 1√
3

(|001〉+ |010〉+ |100〉) and |W ′〉 = 1√
3

(|110〉+ |101〉+ |011〉). In addition

to a successful projection onto the four-dimensional subspace, a set of measurements would

have to be implemented for information processing.
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P 

Figure 7.2: 2D AKLT state on honeycomb lattice. A single site of the AKLT state

on the honeycomb lattice is shown [205]. Projection (P ) locates one spin 3/2 particle

with dimension d = 4. This valence-bond solid representation could be constructed with

photonic qubits (dark circles), paired in singlet states (edges).

To summarize, in the first part of this thesis, we have encoded quantum bits into

the polarisation degrees of freedom of single photons. The multi-photon states generated

shared quantum correlations, namely entanglement, which is a fundamental feature of

quantum information science. With systematic actions on our prepared quantum states,

mainly in the form of projective measurements, we were able to quantify the strength of

those correlations, prove the existence of bound entanglement in nature, and demonstrate

operations central to measurement-based quantum computing.

The second part of this thesis introduced a novel interface for quantum frequency

conversion and waveform manipulation of single photons using chirped-pulse upconversion.

In Chapter 6, single photons were produced by our source, chirped and upconverted inside

a nonlinear crystal with the help of an oppositely-chirped strong laser pulse. We were

able to compress the bandwidth of the single photon from 1740 GHz to 43 GHz. We

demonstrated a tunability of the upconverted signal central frequency over 70 times the

measured bandwidth, or by 130 times if taking into account the finite resolution of our

spectrometer. We brought the fascinating process of classical chirped-pulse upconversion to

the quantum regime, and contributed to the ongoing field of quantum frequency conversion

and waveform manipulation at the single photon level.

The main challenge encountered for this experiment was to eliminate noise background.
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One major source of noise is SHG from the strong laser beam which generates light that

overlap spectrally with the upconverted signal bandwidth. Non-collinear upconversion

configuration and choosing the signal photon wavelength longer than the laser pulse wave-

length was effective at reducing the noise. Cutting the spectral tail of the strong beam

above 800 nm further decreased stray light at 400 nm. Finally, residual light from the

strong beam and signal were separated from the SFG by dichroic mirrors and a bandpass

optical filter was used to remove all left-over second-harmonic radiations of the strong

laser beam. We obtained very low noise count rates of 100 counts/sec as measured with

the PMT.

Two additional features were not demonstrated but should be included in future direc-

tions. The first one consists of polarisation-independent upconversion detection [206, 182].

For example, one could use a pair of nonlinear crystals similar to our down-conversion

scheme, a linear double-pass configuration [207] or a Sagnac interferometer [208]. Sec-

ondly, although we have shown that our interface conserved strong temporal correlations

characteristic to SPDC, further investigation of the statistical properties of the upconverted

photon would reveal its true single-photon nature. For example, one could measure the sec-

ond order correlation function of the upconverted signal in a “triggered experiment” [209],

by measuring the anticorrelation between detections occurring on both output of a beam

splitter.

With viable improvements to the setup presented in Chapter 6, higher conversion effi-

ciencies would be attainable. The efficiency of the upconversion process in our experiment

is 0.06% with 300 mW of average power for the strong beam. Low efficiency is mainly due

to the decrease in peak power after dispersion. One major achievement would be to “beat

the filter”, by showing an overall conversion efficiency higher than what a passive filter

would do, neglecting frequency conversion. One achieves a net gain once the efficiency is

greater than about ηF×100%, where ηF is the ratio of the final to initial bandwidth. In our

case, the target efficiency would be just over 2.5%. Significantly higher efficiency could be

achieved with the use of crystals with periodic poling [210], for quasi-phase-matching, and

higher pump powers. However, this is practically hard to implement, especially because of

the low power threshold of poled crystals and their narrow acceptance bandwidth.

An interesting alternative approach could combine chirp-pulse upconversion with dif-
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ference frequency generation (DFG) [190]. DFG was recently used to convert 910 nm

single photons emitted from a quantum dot to 1,560 nm telecommunication band using a

PPLN waveguide and a pulsed pump source at 2,200 nm [211]. This technique has not

been exploited yet for spectral compression at the single photon level. For the proposed

chirped-pulse DFG scheme (potentially all-fiber), both the signal photon and strong laser

beam would undergo positive dispersion in long optical fibers, avoiding limitations of a

grating-based system. Laser power might have to be lower to avoid nonlinear effects in

the fiber, but one could compensate with the high conversion efficiency possible with inte-

grated nonlinear waveguides [212]. If bulk crystals are used instead, one could amplify the

laser intensity after dispersion, a technique commonly used in chirped pulse amplification

systems [213]. Integrated optics or the use of poled material might introduce new sources

of noise [214], not encounter in this thesis.

Whereas the primary interest of our chirp-pulse upconversion technique has been to-

wards translating the central frequency of single photons to a tunable higher frequency,

while narrowing spectral bandwidth, the results obtained here suggest a number of poten-

tial future directions. For example, tunability from one single wavepacket and a dynamic

delay (see Fig. 6.3) could be replaced by a chain of wavepackets, with fix delays, to increase

the transmission bandwidth of quantum communication systems. Each wavepacket could

hold information in the form of amplitude modulations, angular momentum or polarisa-

tion states of light. Ignoring spectrometer resolution and given our measured parameters

(σP , σL, and |β2|), one could compact 155 wavepackets within a range of just 42 ps and

engender the same number of distinguishable spectral peaks. Such an approach will open

the door to temporal multiplexing and wavelength demultiplexing of quantum states of

light.
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[129] Gühne, O. & Tóth, G. Entanglement detection. Physics Reports 474, 1 – 75 (2009).

[130] Smith, G. & Yard, J. Quantum Communication with Zero-Capacity Channels. Sci-

ence 321, 1812–1815 (2008).

121



[131] Masanes, L. All Bipartite Entangled States Are Useful for Information Processing.

Phys. Rev. Lett. 96, 150501 (2006).

[132] Horodecki, K. et al. Secure Key from Bound Entanglement. Phys. Rev. Lett. 94,

160502 (2005).

[133] Horodecki, K. et al. Low-Dimensional Bound Entanglement With One-Way Dis-

tillable Cryptography Key. In IEEE Transactions on Information Theory, vol. 54,

2621–2625 (2008).

[134] Piani, M. & Watrous, J. All Entangled States are Useful for Channel Discrimination.

Phys. Rev. Lett. 102, 250501 (2009).

[135] Kampermann, H. et al. Experimental generation of pseudo-bound-entanglement.

Phys. Rev. A 81, 040304(R) (2010).

[136] Amselem, E. & Bourennane, M. Experimental four-qubit bound entanglement. Nat.

Phys. 5, 748–752 (2009).

[137] Smolin, J. A. Four-party unlockable bound entangled state. Phys. Rev. A 63, 032306

(2001).

[138] Augusiak, R. & Horodecki, P. Bound entanglement maximally violating Bell inequal-

ities: Quantum entanglement is not fully equivalent to cryptographic security. Phys.

Rev. A 74, 010305 (2006).
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