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Abstract

The main theme of this thesis is studying classes of structures with respect to various

measurements of complexity. We will briefly discuss the notion of computable dimension,

while the breadth of the paper will focus on calculating the Turing ordinal and the back-

and-forth ordinal of various classes, along with an exploration of how these two ordinals

are related in general.

Computable structure theorists study which computable dimensions can be realized

by structures from a given class. Using a structural characterization of the computably

categorical equivalence structures due to Calvert, Cenzer, Harizanov and Morozov, we

prove that the only possible computable dimension of an equivalence structure is 1 or ω.

In 1994, Jockusch and Soare introduced the notion of the Turing ordinal of a class of

structures. It was unknown whether every computable ordinal was the Turing ordinal of

some class. Following the work of Ash, Jocksuch and Knight, we show that the answer is

yes, but, as one might expect, the axiomatizations of these classes are complex. In 2009,

Montalbán defined the back-and-forth ordinal of a class using the back-and-forth relations.

Montalbán, following a result of Knight, showed that if the back-and-forth ordinal is n+1,

then the Turing ordinal is at least n. We will prove a theorem stated by Knight that

extends the previous result to all computable ordinals and show that if the back-and-forth

ordinal is α (infinite) then the Turing ordinal is at least α.

It is conjectured at present that if a class of structures is relatively nice then the Turing

ordinal and the back-and-forth ordinal of the class differ by at most 1. We will present

many examples of classes having axiomatizations of varying complexities that support this

conjecture; however, we will show that this result does not hold for arbitrary Borel classes.

In particular, we will prove that there is a Borel class with infinite Turing ordinal but finite

back-and-forth ordinal and show that, for each positive integer d, there exists a Borel class

of structures such that the Turing ordinal and the back-and-forth ordinal of the class are

both finite and differ by at least d.
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Chapter 1

Introduction

The main theme of this thesis is assigning complexity to classes of structures using various

measurements. Chapter 2 will discuss the notion of computable dimension, while Chapters

3-7 will focus on the Turing ordinal and the back-and-forth ordinal.

Computable structure theorists study which computable dimensions can be realized

by structures from a given class. When there is a structural characterization of the com-

putably categorical structures of a class, we generally expect the only possible computable

dimensions to be 1 and ω. In Chapter 2, using such a characterization of Calvert, Cenzer,

Harizanov and Morozov of the computably categorical equivalence structures, we prove

that the only possible computable dimension of an equivalence structure is 1 or ω.

In Chapter 3, we will discuss a measurement called the back-and-forth ordinal, defined

by Montalbán in 2009. This is defined to be the first ordinal α such that there are uncount-

ably many infinitary Σα types realized by tuples from structures in the class. Montalbán,

following Knight, discovered the relationship between the back-and-forth ordinal of a class

and the ease of coding non-trivial information into structures in the class. In the last

section, we will explain why the result of Montalbán cannot be improved.

The results from Chapter 3 suggest a connection between the back-and-forth ordinal

and a computability-theoretic measurement, introduced by Jockusch and Soare in 1994,

called the Turing ordinal. Roughly speaking, this ordinal measures how difficult it is to

code information into jumps of structures in a given class. Montalbán shows that if the

back-and-forth ordinal is n+ 1, then the Turing ordinal is at least n. A result of Knight’s

can be generalized to extend this bound to transfinite levels. For completeness, we present

a proof of this generalization that uses forcing. It will follow that if the back-and-forth

ordinal is α and infinite, then the Turing ordinal is at least α. At the time the back-and-
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forth ordinal was introduced, all classes where both ordinals were known actually had the

back-and-forth ordinal equal to the successor of the Turing ordinal (in the finite case) or

equal to the Turing ordinal (in the infinite case). In this Chapter, we will show that this

is not the case in general.

In Chapter 5, we calculate the back-and-forth ordinal of a family of classes of linear

orderings, defined by Downey and Jockusch, and observe that they follow the same pattern

as discussed above. In 2009, it was unknown whether or not every computable ordinal was

the Turing ordinal of some class of structures. In Chapter 6, following the work of Ash,

Jockusch and Knight, we show that the answer is yes. We also calculate the back-and-forth

ordinals of the classes for all successor ordinals α ≤ ω + 2 and show that the two ordinals

are off by at most 1 in each case.

In the final chapter, we will complete the analysis for the class corresponding to α = ω

and show that there exist Borel classes where the ordinals are finite and arbitrarily far

apart. More precisely, for each positive integer d, we will define a Borel class of structures

such that the Turing ordinal and the back-and-forth ordinal of the class are both finite and

differ by at least d.

Before we begin, we will introduce the relevant notation that will appear throughout the

paper, and review the main concepts needed from computability theory and computable

structure theory.

1.1 Notation and Background

For computability theory, we will follow the notational conventions from [29].

Definition 1.1.1. (i) Let {ϕe}e∈ω be an effective listing of all partial computable functions,

and hence We := dom(ϕe) denotes the eth computably enumerable (c.e.) set.

(ii) Let {ΦX
e }e∈ω be an effective listing of all Turing functionals and hence {WA

e }e∈ω is an

effective listing of all the sets the are computably enumerable relative to (c.e. in) A.

Definition 1.1.2. Fix any computable bijection from ω×ω to ω which we will denote by

〈·, ·〉. This is called a pairing function. Let 〈x, y, z〉 denote 〈〈x, y〉, z〉, and in general, the

nth pairing function is denoted by 〈x1, x2, . . . , xn〉 = 〈. . . 〈〈x1, x2〉, x3〉, . . . , xn〉 where 〈·, ·〉
is the fixed pairing function.

For computable structure theory, we will follow [2].
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Definition 1.1.3. A formal structure, A, consists of a domain along with some basic

functions and relations on that domain. Structures will always have domain ω or, if finite,

an initial segment of ω.

Taking the domain of a structure to be a subset of the natural numbers allows us to

study the complexity of the structure as follows: Let A be a structure, in a language L,

and let A denote the domain of A. An (L ∪ A)-sentence is a sentence in the language

L where we allow parameters from A. Every language will be countable (and effectively

presented) and hence we can fix an enumeration of all (L∪A)-sentences, say {ψi}i∈ω. We

will associate the sentence ψi with its index i ∈ ω.

Definition 1.1.4. The atomic diagram of A, denoted by D(A), is the set of atomic and

negated atomic (L ∪ A)-sentences true in A.

We say that a structure is computable if its atomic diagram is computable. Observe

that this definition is equivalent to all of the basic functions and relations of the structure

being computable. One natural way to assign a degree to a structure that is not necessarily

computable is to let the degree of A be the Turing degree of the set D(A). It not hard to

see that different isomorphic copies of a structure can have different degrees in this sense.

In fact, there need not be any relationship between the degrees of D(A) and D(B) even if

A ∼= B. For example, if we let A be the natural numbers as a linear ordering, then for any

Turing degree d, there is a structure B ∼= A such that D(B) is of degree d. Therefore, in

order to assign a degree to an isomorphism class of a structure, we consider the following

invariant notion of degree.

Definition 1.1.5. Let A be a structure.

(1) We define the degree spectrum of A to be Spec(A) = {deg(D(B)) : B ∼= A}, the

collection of Turing degrees of all presentations of A.

(2) We say that A has degree d if d is the least member of Spec(A).

We say that a structure A is trivial if there is a finite tuple ~a in A such that any

permutation of the domain of A that fixes the tuple ~a is an automorphism of A. A result

of Knight shows that the degree spectrum of a trivial structure is a singleton, while the

degree spectrum of a non-trivial structure is upward closed [21]. Therefore if a (non-trivial)

structure has degree d, then its spectrum forms an upper cone in the Turing degrees and

hence the degree d reflects the information that is contained in this isomorphism class.
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Even if the spectrum is not an upper cone, then we can still attempt to assign a

complexity to the structure. Perhaps there is information contained in the jump of the

structure, or even some iterated jump. Recall that by iterating the jump operator we

can define the nth jump of an arbitrary set X, denoted by X(n). Jockusch suggested the

following family of measures which generalizes Definition 1.1.5 to nth jump degrees for all

n ≥ 0.

Definition 1.1.6 (Jockusch). Let A be a structure.

(1) The nth jump degree spectrum of A is defined as Spec(n)(A) = {deg(D(B))(n) : B ∼= A}.

(2) We say that A has nth jump degree d if d is the least member of Spec(n)(A).

We can define corresponding spectra for all computable ordinals as well. For a full

treatment of computable ordinals and the hyperarithmetical hierarchy, see [2]. We will

provide a brief summary here, for our purposes.

A computable ordinal is an ordinal which is isomorphic to some computable well-

ordering. Clearly, all computable ordinals are countable and it can be shown that the

computable ordinals form an initial segment of the ordinals. The first noncomputable or-

dinal is denoted by ωCK1 . For an effective treatment of ordinals, we need to attach “names”

(more precisely natural numbers) to as many ordinals as possible, in some “useful” way.

As there are uncountably many ordinals, we cannot assign names to the entire collection.

Definition 1.1.7. Kleene’s O is a system of notations for ordinals consisting of a set of

natural numbers, O, a function, | · |O, that maps each number a ∈ O to an ordinal and a

strict partial order, <O, on O with the following properties:

(1) 1 ∈ O and |1|O = 0.

(2) If a ∈ O is a notation for an ordinal α then 2a ∈ O and |2a|O = α + 1. In the partial

ordering we define b <O 2a if b <O a or b = a.

(3) Given a limit ordinal γ, the notations for γ in O are numbers of the form 3 · 5e such

that ϕe is a total computable function with range contained in O and such that

ϕe(0) <O ϕe(1) <O ϕe(2) <O . . .

and γ is the least upper bound of the sequence of ordinals |ϕe(n)|. In the partial

ordering, we define b <O 3 · 5e if there exists an n such that b <O ϕe(n).
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It is known that the computable ordinals are precisely the ordinals having at least one

notation in Kleene’s O. As one might expect, the set O is extremely complicated and the

notations are not unique in general. Every finite ordinal has a unique notation in O while,

for any infinite ordinal, if it has one notation in O then it has infinitely many. Now we can

iterate the jump operator through all the computable ordinals.

Definition 1.1.8. For a ∈ O, define the set H(a) by transfinite recursion as follows:

(1) H(1) = ∅,

(2) H(2a) = H(a)′,

(3) H(3 · 5e)={〈u, v〉 : u <O 3 · 5e & v ∈ H(u)}={〈u, v〉 : ∃n (u ≤O ϕe(n) & v ∈ H(u))}.

Spector showed that, for every computable ordinal α, the Turing degree of H(a), where

a is any notation for α, is independent of the choice of a [2]. The Turing degree of H(a) is

denoted by 0(α). For n ∈ ω, a set X ⊆ ω is Σ0
n if and only if X is c.e. relative to 0(n−1), and

for a computable ordinal α ≥ ω, X is Σ0
α if and only if X is c.e. in H(a) for some a ∈ O

such that |a|O = α, and hence c.e. in H(a) for all such notations a.

We can also relativize the hierarchy to any set X ⊆ ω as follows:

Definition 1.1.9. For a ∈ O, let

(1) H(1)(X) = X,

(2) H(2a)(X) = (H(a)(X))′,

(3) H(3 · 5e)(X)={〈u, v〉 : ∃n (u ≤O ϕe(n) & v ∈ H(u)(X))}.

In this paper we will be working with Lω1,ω formulas over various finite languages L.

The “ω1” parameter indicates that we are permitted to take conjunctions and disjunctions

over countable sets of formulas; the “ω” parameter indicates that formulas are only allowed

finitely many nested quantifiers. All formulas are first order. We will call Lω1,ω formulas

infinitary formulas, and call a formula finitary when we are restricting ourselves to finite

conjunctions and disjunctions. We do not have a prenex normal form for infinitary formu-

las, but we say that such a formula is in normal form if it is Σα or Πα for some countable

ordinal α as defined below by transfinite induction.
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Definition 1.1.10. The Σ0 and Π0 formulas are the finitary quantifier free formulas. For

any ordinal α > 0, a Σα formula is a countable disjunction of formulas of the form ∃~uϕ
where ϕ is Πβ for some β < α. Similarly a Πα formula is a countable conjunction of

formulas of the form ∀~uϕ where ϕ is Σβ for some β < α. Every Lω1,ω formula is equivalent

to a formula of this form.

On many occasions, we will be restricting ourselves to a subcollection of the above

formulas, called the computable infinitary formulas. Informally, these are Lω1,ω formulas

in which all disjunctions and conjunctions are taken over c.e. sets of formulas. In a formal

treatment, the computable infinitary formulas are defined in terms of ordinal notations.

We will write Σc
α and Πc

α to denote the computable Σα and Πα formulas respectively.
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Chapter 2

Computable Dimension

2.1 Introduction

In mathematics, we often classify structures up to isomorphism; however, two isomorphic

structures can exhibit vastly different computability theoretic behaviour. As such, when

studying the effective properties of structures, we identify two structures if and only if they

are computably isomorphic, that is isomorphic via a computable function. It is of interest

to study how many “different” computable presentations there are of a given computable

structure. The computable dimension of a computable structure A is defined to be the

number of computable presentations of A up to computable isomorphism. It is clear that

the computable dimension of a computable structure is at least 1 and, as there are at most

countably many computable presentations of any structure, the computable dimension of

any structure is bounded above by ω. Structures of computable dimension 1 are called

computably categorical.

There are many familiar examples of classes of structures that admit only computably

categorical structures or structures of full computable dimension, ω. In other words, if we

can find two distinct computable copies of a structure, up to computable isomorphism,

then we are guaranteed to find infinitely many. The following theorem is a collection of

known results due to Goncharov ([12]); Goncharov and Dzgoev ([13]); Goncharov, Lempp

and Solomon ([15]); Laroche ([23]); Metakides and Nerode ([26]); Nurtazin ([30]); and

Remmel ([32] and [31]).

Theorem 2.1.1. Computable structures in the following classes have computable dimen-

sion 1 or ω: Linear orders, Boolean algebras, abelian groups, algebraically closed fields,

real closed fields.
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It is known that, for each 0 < n ≤ ω, there exists a structure with computable di-

mension n. Moreover, there are classes of structures that admit all possible computable

dimensions. The next theorem, compiling results of Goncharov ([11]); Goncharov, Molokov

and Romanovskii ([14]); Hirschfeldt, Khoussainov, Shore and Slinko ([17]); and Kudinov

([22]), presents the known classes with this property.

Theorem 2.1.2. For each 0 < n ≤ ω, there are computable structures in the following

classes with computable dimension n: graphs, lattices, partial orders, nilpotent groups,

integral domains.

The results in this Chapter will show that the class of equivalence structures fall into the

former category, in other words, the only possible computable dimension of an equivalence

structure is 1 or ω.

2.2 Computably categorical equivalence structures

Definition 2.2.1. An equivalence structure, A, consists of a domain A and a binary

equivalence relation E on that domain, i.e. a relation that is reflexive, symmetric, and

transitive.

Calvert, Cenzer, Harizanov and Morozov (in [3]) give a complete structural character-

ization of the computably categorical equivalence structures. We will use this description

to prove that any equivalence structure that is not computably categorical has computable

dimension ω.

Theorem 2.2.2 ([3]). A computable equivalence structure A is computably categorical if

and only if one of the following holds:

(i) A has finitely many finite equivalence classes, or

(ii) A has finitely many infinite classes, there is a uniform bound on the size of all finite

classes, and at most one k < ω such that A has infinitely many classes of size k.

From the above theorem, if a computable equivalence structure is not computably

categorical then it satisfies at least one of the following properties:

8



(1) There is no bound on the sizes of finite classes.

(2) There exist k1 < k2 ≤ ω such that there are infinitely many classes of size k1 and

infinitely many classes of size k2.

By generalizing Corollary 3.15 from [3], one can show that if a computable equivalence

structure satisfies property (1) then it cannot have finite computable dimension. The

general argument from [3] is as follows: For every total function ϕe : ω → {0, 1}, let

(Ce,≡Ce) be the structure with m ≡Ce n if and only if ϕe(〈m,n〉) = 1. It is not hard to

see that the set {e : Ce is an equivalence structure} is a Π0
2 set. The authors show that, if

A is a computably categorical equivalence structure, then the set {e : Ce ∼= A} is a Σ0
3 set.

We can generalize this easily to show that the same is true if A has any finite computable

dimension. Suppose that A has computable dimension 1 ≤ n < ω and suppose that

A1, . . . ,An are n computable copies of A that are pairwise non-computably isomorphic.

Then we have Ce ∼= A if and only if Ce is computably isomorphic to Ai for some 1 ≤ i ≤ n.

More precisely, we have the Σ0
3 defnition

Ce ∼= A ⇐⇒
n∨
i=1

(∃a)
[
a ∈ Tot and (∀m)(∀n)

(
m ≡ce n↔ ϕa(m) ≡Ai ϕa(n)

)]
where Tot is the Π0

2-complete set consisting of the indices of all total computable functions.

The authors show (in Theorems 3.9, 3.11 and 3.13) that if A satisfies property (1) then

the set {e : Ce ∼= A} is either Π0
3-complete, D0

3-complete (where D0
3 is the difference of Σ0

3

sets), or Π0
4-complete. As this would contradict the Σ0

3 definition above, such a structure

A cannot have finite computable dimension.

The proof that structures satisfying property (2) are not computably categorical does

not generalize. Given A satisfying (2), the authors in [3] built two copies of A, say B
and C, such that the set of elements which are members of equivalence classes of size k1

is computable in B and not computable in C. In the next section, we will provide a new

proof that the computable dimension of an equivalence structure satisfying property (2) is

at least 2, and this new method will generalize to show that, in fact, any structure of this

kind must have computable dimension ω.

2.3 Computable dimension of equivalence structures

For this section, let A be a computable equivalence structure consisting of infinitely many

equivalence classes of size k1 and infinitely many classes of size k2 where k1 < k2 ≤ ω.

9



From now on, for any 0 ≤ n ≤ ω, we will call an equivalence class of size n an n-class. We

will begin by showing that the computable dimension of A is at least 2, and then extend

this construction to build an infinite family of computable copies of A that each lie in a

distinct computable isomorphism class.

Proposition 2.3.1. Let A be a computable equivalence structure with infinitely many k1-

classes and k2-classes for 1 ≤ k1 < k2 ≤ ω. Then the computable dimension of A is at

least 2.

We will build two computable copies, B and C, ofA that are not computably isomorphic.

We will build the structures B and C in stages such that B = ∪sBs and C = ∪sCs. The

structure B will be computable as if n enters B at stage s, we will determine (once and for

all) whether or not n ≡B m for each m ∈ Bs (and similarly for C). To ensure that B and

C are not computably isomorphic, we will meet the following requirements for each e ∈ ω:

Re: If ϕe is a bijection between B and C then ϕe sends a member of a k1-class in B to a

k2-class in C.

Basic module: In each of B and C, we will copy the structure A in stages (using the odd

numbers) and, in addition, introduce extra classes of size k1 (using the even numbers) in

order to diagonalize against any possible computable isomorphism. We will attach a k1-

class in B to ϕe, say ~bϕe , that will witness Re being met. If ϕe is an isomorphism between

B and C then it must send ~bϕe to a k1-class in C. As soon as ϕe selects such a k1-class, say

~ce, we will grow ~ce to a k2-class. As we will have infinitely many k1-classes in the portion of

C that is copying A along with infinitely many auxiliary k1-classes, ϕe can select a k1-class

from either category. We will deal with each type separately.

All requirements: We will label all auxiliary k1-classes that appear in C. At stage s we

will ensure that there are s auxiliary k1-classes, all labeled. We will achieve this by adding

a new k1-class each time we grow a labeled k1-class to be of size k2.

If ϕe selects a (labeled) auxiliary k1-class, then we will act following our priority argu-

ment (that will be explained in the construction). If ϕe selects a k1-class ~c in the portion

of C that is copying the structure A (let ~a be the pre-image of ~c in A), then we grow ~c

into a k2-class to meet Re, and introduce k1 new odd numbers into C to (re)copy ~a. Note

that if ~a truly is a k1-class, then we may infinitely often change the image of ~a in C, but A
and C will still be isomorphic. If ~a is actually part of a class of size > k1 then we will only

change the isomorphism on ~a finitely often.
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Now we proceed to the construction. In this construction we will assume that we have

k1 < k2 < ω such that there are infinitely many classes both of size k1 and of size k2.

Following this construction we will explain how to amend the procedure in the case where

k2 = ω.

Construction 1:

As A is a computable structure, we can fix a computable sequence of finite structures

{As}s∈ω such that As ⊆ As+1 and limsAs = A. Let ≡B and ≡C denote the equivalence

relations, in the structures B and C respectively, that we are building. When defining the

relation on Bs, we will write ≡B instead of ≡Bs as we will never redefine any equivalence

made at any stage s. We will define two auxiliary functions, fB and fC, that will be copying

A into B and C in stages. At every stage s, the function fBs (respectively fCs ) will be an

embedding of As into Bs (respectively Cs).

Stage 0: Let A0 = ∅. Define B0 and C0 as follows: Define the first k1 even numbers to

be a k1-class in both B0 and C0. Label the k1-class in B0 by ~bϕ0,0, attaching the class to

requirement R0 and label the k1-class in C0 by ~c0,0. (In general, we can grow ~ce,s,~ce+1,s, . . .

on behalf of Re.) Let fB0 : A0 ↪→ B0 and fC0 : A0 ↪→ C0 be empty maps.

Stage s+1: At the end of stage s we have defined ~bϕi,s and ~cj,s for all i, j ≤ s.

1. Check whether the following holds for any e ≤ s:

• ϕe,s+1 is 1-1.

• For all x, y ∈ Bs if ϕe,s+1(x)↓∈ Cs and ϕe,s+1(y)↓∈ Cs then x ≡B y ⇔ ϕe(x) ≡C
ϕe(y).

• ϕe,s+1(~bϕe,s)↓= ~c and ~c is a k1-class in Cs.

2. If so, find the least such e. There are three cases:

(A) ~c = ~ci0,s for some i0 < e: In this case, due to our prioriy argument, we need to

redefine the k1-class in B that will witness Re being met. Find the least k1 even

numbers not yet in Bs, declare them to be a new k1-class in B, and label this

class as ~bϕe,s+1. Finally let ~bϕi,s+1
= ~bϕi,s for all i 6= e and ~ci,s+1 = ~ci,s for all i.

(B) ~c = ~ci0,s for some e ≤ i0 ≤ s: In this case, we are permitted to grow the k1-class,

~ci0,s, to a k2-class in order to meet Re. Find the least (k2−k1) even numbers not
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yet in Cs and add them to the equivalence class, ~c. Now ~c is part of a k2-class in

C. Next, we introduce a new k1-class to replace the one that we grew. Use the

first k1 even numbers not yet in Cs, and declare them to be a new k1-class in C
labeled ~ci0,s+1. Finally let ~bϕi,s+1

= ~bϕi,s for all i and ~ci,s+1 = ~ci,s for all i 6= i0.

(C) ~c = fCs (~a) for some ~a ∈ As: If we are not in case (A) or (B), then the k1-class

~c is necessarily copying A. Here again, we are allowed to grow the k1-class to

meet Re. Find the least (k2 − k1) even numbers not yet in Cs and add them to

the current equivalence class ~c. Now ~c is included in a k2-class in C. Finally, we

need to redefine the map fC on the preimage of ~c. Let ~d be the least k1 odd

numbers not yet in Cs and declare ~d to be a k1-class in C. Define fCs+1(~a) = ~d.

Finally let ~bϕi,s+1
= ~bϕi,s for all i and ~ci,s+1 = ~ci,s for all i.

If no such e exists, let ~bϕi,s+1
= ~bϕi,s and ~ci,s+1 = ~ci,s for all i.

For all a ∈ As, except members of the tuple ~a from Step 2(C), let fCs+1(a) = fCs (a).

3. For any x ∈ As+1−As, let b be the least odd number not yet in B, declare b to be in

Bs+1, and define fBs+1(x) = b. Define all equivalences and non-equivalences necessary

involving b so that

fBs+1 : As+1 ↪→ Bs+1.

Follow the same procedure in C.

4. Define a new k1-class, labeled ~bϕs+1,s+1, in Bs+1 for requirement Rs+1, and a new

k1-class, labeled ~cs+1,s+1, in Cs+1 (using the first available even numbers).

End Construction

Verification:

It is clear from the construction that both B and C are computable, and that each require-

ment grows at most one tuple.

Lemma 2.3.2. Each Re is met.

Proof. First, the k1-class with priority i, namely ~ci, is redefined at most finitely many

times. For each i ∈ ω, ~ci is only redefined if some requirement Re with e < i wants to grow

the class. Each of these finitely many requirements grows at most one k1-class and hence

~ci is redefined finitely often.
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Suppose for a contradiction that Re is not met. Then in particular, ϕe is a bijection.

From the construction, the witness ~bϕe is redefined if and only if ϕe “selects” ~ci for some

i < e. As each ~ci is changed finitely many times and ϕe is a bijection, there must be some

first stage s after which ϕe no longer selects a k1-class that Re is not permitted to grow.

At this stage, the final witness, say ~b, is chosen. As ϕe is an isomorphism, it must send ~b

to a k1-tuple, say ~c, in C. By assumption, we are permitted to grow ~c on behalf of Re, and

so we act in either Step 2(B) or 2(C) by growing ~c to a k2-tuple. This is a contradiction

and so Re is met.

Lemma 2.3.3. C ∼= A ∼= B.

Proof. Justifying that B ∼= A is easier so we will start with this case of C. Let

SA := {n : n is not in a class of size k1 or k2 in A}

and

SC := {n : n is not in a class of size k1 or k2 in C}.

We claim lims f
C
s is an isomorphism from A �SA to C �SC . We can see this as follows: Let

~n be a class consisting of elements from SA and let s be the first stage where all members

of ~n appear in As. Then we will define fCs (ni) := mi, where ~m is a class of size |~n| in Cs,
by the end of stage s. We only grow classes of size k1 in C on behalf of requirements, so

the class ~m will never be selected by a requirement, nor will it grow at any later stage. So

~m ∈ SC. Moreover, we have fCt (ni) := mi for all t ≥ s.

Let m ∈ SC. If m is even, then m must lie in a class of size k1 or k2 in C, so we

must have m odd. Therefore, m was introduced in step 2(C) or step 3 of the construction.

Suppose that m first appears at stage s.

Case 1: m was introduced in step 2(C).

We define fCs (a) := m where a ∈ ~a, a k1-class in As, and m ∈ ~m, a k1-class in Cs.
As m cannot be a member of a k1-class in C, we know that the class containing m must

gain an element at a later stage. If ~a truly is a k1-class in A then the only way m can

gain an element is if some requirement selects ~m and we grow ~m to a k2-class that remains

a k2-class in the final structure C. This cannot happen as m ∈ SC. So we can conclude

that fCt (a) := m for all t ≥ s and that ~a is part of a class of size strictly larger than k1.

As ~a grows, we will introduce elements in C to match and the function f will send the

equivalence class of ~a to the equivalence of ~m which will be of equal size.

13



Case 2: m was introduced in step 3.

This time, we define fCs (a) := m because a enters A at stage s. The class of m grows

(if necessary) as the class of a grows and the function f is defined accordingly. If a is

a member of a class of size < k1 then the argument is easy. If the class containing a

ever reaches k1 elements (and hence the class containing m reaches k1 elements) then the

argument proceeds as in Case 1.

So we have an isomorphism between the A � SA and C � SC. Observe that there are

infinitely many k1-classes and k2-classes in C. In the construction, we replace every k1-class

that happens to be grown with a new k1-class and, as A has infinitely many k2-classes, we

will have infinitely many k2-classes appearing in the portion of C that copies A. It follows

that A ∼= C.

Proving that A ∼= B is much easier. The function fB is never redefined on any a ∈ A,

and at the end of each stage s, the map fBs is an embedding of A into B. The map

fB = ∪sfBs , when restricted to SA, is an isomorpism between A �SA and A �SB . It is clear

that there are infinitely many k1-classes and k2-classes in B and hence we have A ∼= B.

Note 2.3.4. In the case where k2 = ω: Instead of growing a certain k1-class, ~c, to size k2

we will “declare” this class to be of size k2 = ω and, at the end of each later stage s, add

an element to each “declared k2-class” to ensure that in the limit, these classes are infinite.

The rest of the construction remains unchanged.

Now we will use the idea in Construction 1 to tackle our main theorem.

Theorem 2.3.5. Let A be a computable equivalence structure with infinitely many k1-

classes and k2-classes for 1 ≤ k1 < k2 ≤ ω. Then the computable dimension of A is

ω.

Again, we will assume in our construction that we have k1 < k2 < ω, but we can amend

the construction as in Note 2.3.4 to deal with the case where k2 = ω.

We will build an infinite sequence {Al}l∈ω of computable copies of A that are not

computably isomorphic. This time we will meet the following requirements:

Re = R〈i,l,m〉 : ϕi is not an isomorphism between Al and Am

for all triples 〈i, l,m〉 with l < m.
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Construction 2

We will reveal the computable structure A in stages and build each copy Al in stages. We

will denote the approximations of A and Al at stage s by As and Asl respectively. We will

also build a sequence of auxiliary functions {fl}l∈ω, in stages, such that, at each stage s,

f sl is an embedding of As into Asl .

Remark 2.3.6. During the construction, every k1-class, say ~c, in some Al at stage s will

be labeled in one of three ways. Either ~c is currently attached to a requirement R〈i,l,m〉 for

some i,m ∈ ω and is labeled ~b〈i,l,m〉,s, or ~c was previously attached to some requirement

R〈i,l,m〉 (and has since been abandoned) and is labeled ~b〈i,l,m〉,t for some t < s, or ~c was

introduced to copy part of A and hence is in the image of the function f sl .

Stage 0: Let A0 = ∅. Define the first k1 even numbers to be a k1-class in A0
l for each

l ∈ ω. Label the k1-class in A0
l as ~b〈0,l,l+1〉,0. Note that every k1-class is labeled as in the

above remark. The maps f 0
l : A0 ↪→ A0

l for all l are all empty.

Stage s+1: At the end of stage s, for each l ∈ ω, we have defined tuples ~b〈i,l,m〉,s in Asl for

all 〈i, l, l+ k〉 satisfying i, k ≤ s. The tuple ~b〈i,l,m〉,s is the k1-class in Asl currently attached

to requirement 〈i, l,m〉.

1. Check whether the following holds for any e = 〈i, l,m〉:

• ϕi,s+1 is 1-1.

• For all x, y ∈ Asl , if ϕi,s+1(x)↓= z ∈ Asm and ϕi,s+1(y)↓= w ∈ Asm then

x ≡Al y ⇔ z ≡Am w.

• ϕi,s+1(~b〈i,l,m〉,s)↓= ~c and ~c is a k1-class in Asm.

2. If so, find the least such e = 〈i, l,m〉. There are three cases:

(A) ~c = ~b〈j,m,n〉,s where 〈j,m, n〉 < 〈i, l,m〉: In this case, we need to redefine the

witness ~b〈i,l,m〉 as we are not permitted to grow the k1-class ~b〈j,m,n〉. Find the

least k1 even numbers not yet in Asl and declare them to form a k1-class in Al
labeled ~b〈i,l,m〉,s+1.

Let ~be,s+1 = ~be,s for all e 6= 〈i, l,m〉.
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(B) ~c = ~b〈j,m,n〉,s where 〈i, l,m〉 ≤ 〈j,m, n〉: In this case we can go ahead and grow

the k1-class ~b〈j,m,n〉 on behalf of R〈i,l,m〉. Find the least k2 − k1 even numbers

not yet in Asm and add them to the current equivalence class ~b〈j,m,n〉,s. Now the

current witness ~b〈j,m,n〉,s is part of a k2-class in Am. Next, we introduce a new

k1-class as a new witness for R〈j,m,n〉. Find the least k1 even numbers not yet in

Asm and declare them to be a new k1-class in Am labeled ~b〈j,m,n〉,s+1.

Let ~be,s+1 = ~be,s for all e 6= 〈j,m, n〉.

(C) ~c is not equal to ~b〈j,m,n〉,s for any j, n ∈ ω: In this case, we are allowed to grow

the k1-class ~c on behalf of R〈i,l,m〉. First, find the least k2 − k1 even numbers

not yet in Asm and add them to the current equivalence class ~c. Since ~c is not

currently a witness, it is either in the portion of Asm that is copying As, or it

was a witness for R〈j,m,n〉 for some j,m at some earlier stage and has since been

abandoned (i.e. labeled ~b〈j,m,n〉,t for some j, n and some t < s). If we are in the

latter case, then no further action is necessary. If we are in the former case,

then we need to redefine the function fm on the preimage of ~c. Suppose that

f sm(~a) = ~c for ~a ∈ As. Let ~d be the first k1 odd numbers not yet in Asm. Delcare
~d to be a new k1-class in Am and define f s+1

m (~a) = ~d.

Finally, let ~be,s+1 = ~be,s for all e ∈ ω.

If no such e exists, then do not act for any requirement and let ~be,s+1 = ~be,s for all e.

3. For any x ∈ As+1−As do the following: For each m, introduce the least odd number

not yet in Am, say d, into As+1
m and define f s+1

m (x) = d . Make any new ≡Am
definitions, involving d, as necessary to ensure that that f s+1

m : As ↪→ Asm.

4. For each m, do the following: For each j = 0, 1, . . . , s + 1, introduce a new k1-class

in As+1
m labeled ~b〈j,m,m+s+1〉, and for each k = 1, 2 . . . , s, introduce a new k1-class

labeled ~b〈s+1,m,l+k〉, all using the first available even numbers.

End Construction 2

Verification

The fact that each structure Am is computable is clear from the construction. The domain

of each structure is ω as we use all even numbers and odd numbers in turn, and |As+1
m | >

|Asm| for all stages s. To compute whether n ≡Am m, we simply wait for both n and m to

appear in Am and, at that stage, the answer is determined.

16



We may injure each requirement finitely many times by forcing Re to change its witness
~be. Note that, on a fixed witness, each requirement will act by growing a tuple at most

once. If we act in Step 2 on behalf of Re by growing a k1-class, ~c, to size k2, then this

computation will stand for the remainder of the construction. Requirement Re may be

required to change its witness at a later stage, if the current witness is grown to size k2 by

a higher priority requirement. We will show that every requirement will eventually settle

on a true witness, and that we will act to meet Re in Step 2 if necessary.

Lemma 2.3.7. For each e ∈ ω, the witness ~be is redefined finitely often.

Proof. We will prove this by induction on e with base case e = 〈0, 0, 1〉. By the construc-

tion, ~b〈0,0,1〉 is never redefined. Assume that s is a stage after which the true witnesses be
for all e < e0 = 〈i0, l0,m0〉 have been chosen. As each requirement grows a k1-class for its

true witness, be, at most once during the construction, let t > s be a stage where every Re

for e < e0 has acted by growing a class (if it ever does). Then, by assumption, ~be0 will not

be grown on behalf of any requirement after stage t. If ~be0 is redefined at some later stage,

then it must be because ϕi0 satisfied all of the conditions from Step 1 of the construction,

and “selected” one of the k1-classes labeled ~be for e < e0. If ϕi0 “selects” the same class ~be
more than once (with different witnesses), then ϕi0 is not 1-1 and hence will never again

satisfy the conditions in Step 1 of the construction. So, in the worst case, ϕi0 “selects”

each tuple ~be exactly once for each e < e0 and the witness ~be0 is redefined those finitely

many times. Therefore ~be0 is redefined only finitely often.

Lemma 2.3.8. For each e ∈ ω, the requirement Re is met.

Proof. Fix e = 〈i, l,m〉 ∈ ω. Let s be the first stage after which the true witness, ~be = ~b,

has been chosen and every requirement with higher priority has finished growing k1-classes

(if it ever does). If ϕi does not converge on all of ~b, then Re is met. So suppose that at

some stage t > s we see ϕi,t(~b)↓= ~c. If ~c is part of an equivalence class in Am of size larger

than k1, then Re is met. If not, then, by assumption, Re is the least requirement needing

attention and hence we act in Step 2(B) or 2(C)and grow ~c to a k2-class to meet Re.

Lemma 2.3.9. Al ∼= A for all l ∈ ω.

Proof. First we will prove that the function fl = lims f
s
l is an isomorphism between the

structures A∗ and A∗l where A∗ is obtained from A by deleting all classes of size k1 and

k2, and A∗l is defined similarly.

Suppose that ~n = (n1, . . . , nk) is an equivalence class in A∗. Of course we are assuming

that all ni’s are distinct. We need to show that lims f
s
l (ni) exists and that fl sends the
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class ~n to a class of the same size in A∗l . Let s be the first stage where all of ~n appears in

As. By the end of stage s we will have defined f sl (ni) := mi where mi 6= mj ∈ Asl and ~m

forms an equivalence class in Asl . As ~n ⊆ A∗, the class ~m is cannot be of size k1, nor will

it ever grow to be one. As such, ~m will never be selected by any requirement. So the class

~m is in A∗l and is of the correct size, and f tl (ni) := mi for all t ≥ s.

Now suppose that ~m = (m1, . . . ,mk) is an equivalence class in A∗l . We need to show

that lim(f sl )−1(mi) exists and that (fl)
−1 sends the class ~m to a class of the same size in

A∗. If any member of ~m is even then, by our construction, ~m must be a k1-class or a

k2-class. So we can assume that ~m consists of odd numbers. Let m be the least member

of ~m. This means that, in our construction, m appears first in Al, let’s say at stage s. We

have two cases:

Case 1: m is introduced in Step 2(C). Then we introduce m as a part of a new k1-class

to recopy part of A. Say we define f s+1
l (a) = m and the k1-class of a in As, say ~a, is

mapped to some k1-class in Asl , say ~v, containing m. Since ~v ⊆ ~m, the class of m must be

of size at least k1. As we know m cannot be a member of a k1-class, the current k1-class,

~v, must gain another element at a later stage. If ~a truly is a k1-class, then the only way

the equivalence class of m can grow is if some requirement selects ~v and we grow ~v to a

k2-class (that stays the same size for all later stages). Since m cannot be a member of a

k2-class either, this cannot be the case. So ~a must be part of a larger class in A. As ~a

grows, we will introduce new odd numbers into the class ~v to match. Once ~a has grown

to ã and stopped, we will have grown ~v to ~m and from that stage onward we will have

f tl (ã) = ~m. So (fl)
−1 is defined on all of ~m and maps ~m to a class of the same size in A∗.

Case 2: m is introduced in Step 3. This time we define f sl (a) = m for some a that enters

Al at stage s. The class of m grows (if necessary) as the class of a grows and the function fl
is defined accordingly. If a is a member of a class of size at most k1− 1 then the argument

is easy. If the class containing a ever reaches k1 members (and hence the class containing

m reaches k1 elements as well) then the argument proceeds as in Case 1.

So fl is an isomorphism between A∗ and A∗l .

In our construction, we ensure that each structure Al has infinitely many classes of size

k1 and k2, and so there is also an isomorphism between the structures A−A∗ and Al−A∗l .
Therefore we can conclude that A ∼= Al as desired.

Corollary 2.3.10. The computable dimension of a computable equivalence structure is

either 1 or ω.
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Chapter 3

The Back-and-forth ordinal

In this Chapter we investigate a model-theoretic method of comparing classes of structures,

introduced by Montalbán in [28], called the back-and-forth ordinal. This measurement

assigns an ordinal to a class based on the number of types realized by finite tuples of

elements from structures in this class. In the following sections, we will see that while the

back-and-forth ordinal is defined in terms of model theory, it relates to the ease or difficulty

of coding non-trivial information into structures from the given class.

3.1 Definitions and background

Consider a class of structures, K. Given two structures A and B from K, not necessarily

distinct, and two fixed finite tuples ~a and ~b from the respective structures, we can ask

how difficult it is to distinguish the tuple ~a in A from the tuple ~b in B. If A and B are

isomorphic, with an isomorphism mapping ~a to ~b, then the tuples are indistinguishable. If

not then, from a complexity point of view, we can ask how difficult it is to separate the

two tuples. More precisely, what is the minimal complexity of a formula ϕ witnessing this

distinction. This idea is represented in the notion of the back-and-forth relations.

Definition 3.1.1 (Back-and-forth relations [2]). Let A be a countable structure in a finite

language and let ~a be an n-tuple from A. Let B be another structure in the same language

as A and let ~b be an n-tuple from B. For all ordinals α, define the back-and-forth relations,

≤α, inductively as follows:

1. (A,~a) ≤0 (B,~b) if and only if ~a and ~b satisfy the same atomic formulas in A and B
respectively, and
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2. for γ ≥ 1, (A,~a) ≤γ (B,~b) if and only if for each ~d ∈ B and each 0 ≤ β < γ there

exists ~c ∈ A such that (B,~b, ~d) ≤β (A,~a,~c), where ~c and ~d are of the same length.

Note that this definition includes the case where ~a and ~b are both the empty tuple. We

will denote (A, ∅) ≤γ (B, ∅) simply by A ≤γ B.

Note 3.1.2. To deal with infinite languages, it is helpful to define ≤0 using a standard

enumeration function for the atomic and negated atomic formulas (also called literals). We

define (A,~a) ≤0 (B,~b) if every literal with Gödel number less than |~a| that is true of ~a is

also true of ~b. We will only deal with finite languages here so we will use Definition 3.1.1

as it is sufficient for our purposes.

There is a known correspondence between the back-and-forth relations above and the

infinitary formulas in the language of A. For information about infinitary formulas see [2].

Theorem 3.1.3 (Ash and Knight [2]). Let A and B be structures in the same language

and let ~a and ~b be tuples, from A and B respectively, with |~a| = |~b|. Then, for all ordinals

α, the following are equivalent.

(i) (A,~a) ≤α (B,~b)

(ii) Every Σα formula true of ~b in B is also true of ~a in A.

(iii) Every Πα formula true of ~a in A is also true of ~b in B.

Note: The formulas are arbitrary Lω1,ω formulas, not necessarily computable.

We define (A,~a) ≡γ (B,~b) if both (A,~a) ≤γ (B,~b) and (B,~b) ≤γ (A,~a) and get the following

back-and-forth structures defined in [28]:

Definition 3.1.4 (Montalbán). Let K be a class of structures. Let bfγ(K) = {(A,~a):A∈K,~a∈A}
≡γ

where bfγ(K) is partially ordered by ≤γ in the obvious way.

It is not hard to see that (A,~a) ≤α (B,~b) implies (A,~a) ≤β (B,~b) for all β ≤ α. To

measure the complexity of a class of structures, we are interested in the number of back-

and-forth equivalence classes and, in particular, the first ordinal α where there are a large

number of different tuples up to α-equivalence.

Definition 3.1.5 (Montalbán). The back-and-forth ordinal of a class K is the least ordinal

α such that bfα(K) is uncountable, if such an α exists.
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By Theorem 3.1.3, the ≡α-equivalence classes correspond to Σα-types. It is easy to see

that there are uncountably many existential types realized by tuples from graphs, and it

follows that the back-and-forth ordinal of the class of graphs is 1. Montalbán analyzes the

back-and-forth classes of equivalence structures and linear orderings in [28] and shows that

the back-and-forth ordinal of these classes are 2 and 3 respectively.

In the next section, we will see how the back-and-forth ordinal can provide computability-

theoretic information about the given class of structures. In particular, it will help to de-

scribe the collection of sets that can be coded into structures in the class. We now present

the necessary background for this analysis.

Definition 3.1.6 (Montalbán [28]). We say that a set X ⊆ ω is coded by a structure A
if X is c.e. in D(B) for all B ∼= A. More generally, X ⊆ ω is coded by the nth jump of a

structure A if X is c.e. in D(B)(n) for all B ∼= A.

Montalbán also defined a slightly weaker notion of coding requiring only that the set

be left-c.e. rather than c.e. in each copy.

Definition 3.1.7. Let X ⊆ ω.

(1) For σ, τ ∈ 2<ω, we write σ ≤L τ if σ ⊆ τ or for the least n such that σ(n) and τ(n) are

both defined and σ(n) 6= τ(n), we have τ(n) = 1.

Note that ≤L is total order on 2<ω.

(2) Let σ ∈ 2<ω and X, Y ∈ 2ω. We write σ ≤L X if σ ⊆ X or there exists a least n

such that σ(n) is defined and σ(n) 6= X(n) = 1. If there is a least n such that σ(n) is

defined and 1 = σ(n) 6= X(n) then we write X ≤L σ. Finally, we write X ≤L Y if for

the least n such that X(n) 6= Y (n) we have Y (n) = 1.

Note that ≤L is total order on 2≤ω.

(3) We will write <L if we have ≤L but not equality. Observe that for any σ ∈ 2<ω and

X ∈ 2ω we have either σ <L X or X <L σ. Let XL := {σ ∈ 2<ω : σ <L X}. We say

that X is left-c.e. if the set XL is c.e.

Definition 3.1.8 (Montalbán in [28]). We say that a set X ⊆ ω is weakly coded by a

structure A if X is left-c.e. in D(B) for all B ∼= A. More generally, X ⊆ ω is weakly coded

by the nth jump of A if X is left-c.e. in D(B)(n) for all B ∼= A.
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Remark 3.1.9. The notion of a set being left-c.e. is slightly weaker than c.e. Instead of

requiring that we can enumerate the members of X, we only require that we can enumerate

all the finite strings that are “to the left” of X in the binary tree. It is not hard to see

that for every X ⊆ ω, XL ≡T X and hence every left-c.e. set must have c.e. degree. The

fact that XL ≤T X is obvious. For X ≤T XL, we have 0 ∈ X if and only if σ := 1 ∈ XL

and, in general, n ∈ X if and only if σ := X(0)X(1) . . . X(n− 1) 1 ∈ XL. However, there

are left-c.e. sets that are not c.e. For example, let A = limsAs where A0 := {2n : n ∈ ω}
and if, at stage s, 2n + 2 ∈ Wn,s −Wn,s−1 then enumerate 2n + 1 ∈ As and 2n + 2 ∈ As
(i.e. add 2n+ 1 to A and remove 2n+ 2 from A).

We will also be using the notion of enumeration reducibility. Informally, we want A to

be enumeration reducible to B if we can computably enumerate A from an enumeration

of B, where the enumeration of A does not depend on the order in which the set B is

enumerated. For a formal treatment, we need a coding of pairs n,D where n is a natural

number and D is a finite set of natural numbers. Fix an effective list of all finite sets of

natural numbers, say D0, D1, D2, . . . , and let 〈n,Dj〉 = 〈n, j〉.

Definition 3.1.10 ([6]). We say that a set A is enumeration reducible to a set B, denoted

A ≤e B, if for some c.e. set Wi,

n ∈ A ⇐⇒ (∃ finite D ⊆ B)[〈n,D〉 ∈ Wi].

If we have A ≤e B via the set Wi then we write A = ΨB
i .

Recall the following equivalent definition of enumeration reducibility due to Selman [35]:

A ≤e B ⇔ (∀X)[B is c.e. in X → A is c.e. in X].

A result of Knight’s relates the two previous definitions:

Theorem 3.1.11 (Knight [2]). Let A be a structure. A set X ⊆ ω is coded by the nth

jump of A if and only if X is enumeration reducible to the Σc
n+1-type of some tuple ~a ∈ A.

Note that the Σc
n+1-type of ~a in A is the set of Σc

n+1 formulas true of ~a in A. The proof

of the n = 0 case can be found in [2] and this proof can be generalized to obtain the above

result for all n ≥ 0.
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3.2 Size of the n-back-and-forth structure

It follows from Theorem 3.1.11 that if there are only countably many ≡n+1-classes of

tuples from K, then only countably many sets can be coded by nth jumps of structures

in K. It follows from a result of Silver’s in [36] that, if K is Borel class — i.e. a class

axiomatizable via countably many Lω1,ω formulas — then bfn(K) is either countable or

has size continuum. The following results from [28] characterize exactly when each of

these two sizes occur, relative to the difficulty of coding into structures of the given Borel

class.

Theorem 3.2.1 (Montalbán). Let K be a Borel class of structures. Then the following

are equivalent:

(i) |bfn(K)| = ℵ0

(ii) There exists an oracle relative to which the only sets of numbers that can be coded by

the (n− 1)st jump of a structure in K are the sets computable in the oracle.

Theorem 3.2.2 (Montalbán). Let K be a Borel class of structures. Then the following

are equivalent:

(i) |bfn(K)| = 2ℵ0

(ii) Relative to some fixed oracle, every set can be weakly coded into the (n− 1)st jump of

some structure in K.

To have a proper dichotomy in the above theorems we would need to replace weak

coding in Theorem 3.2.2 with coding, but unfortunately, this cannot be done. It is clear

that the direction (ii) ⇒ (i) remains true if we replace the statement with coding, but

the direction (i) ⇒ (ii) is false. This is not as obvious. A class of structures defined

by Montalbán (Example 2.17 in [27]) exhibits a class with uncountable 1-back-and-forth

structure, but where arbitrary coding is not possible, even relative to any fixed oracle.

Montalbán presented this example and explained why we have arbitrary weak coding; we

will provide verification of the other desired properties.
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Definition 3.2.3 (Montalbán). Let L = {U, V, f, {cσ : σ ∈ 2<ω}} where U and V are

unary relations, f is a unary function and each cσ is a constant. Let KW be the class of

countable L structures, A, that satisfy the following properties:

(i) U and V partition |A|

(ii) x is named by a constant iff x ∈ V

(iii) If σ 6= τ then cσ 6= cτ

(iv) rng(f) ⊆ V

(v) f �U is 1-1

(vi) f �V = id, and

(vii) If σ <L τ and (∃x ∈ U)[f(x) = cτ ] then (∃x ∈ U)[f(x) = cσ].

For each A ∈ KW , consider the set RA := {σ : A |= (∃x ∈ U)[f(x) = cσ]}. Recall that RA
is coded in A if and only if Spec(A) ⊆ {X : RA is c.e. in X}.

Proposition 3.2.4. For every A ∈ KW , Spec(A) = {X : RA is c.e. in X}.

Proof. Clearly, RA is c.e. in A. We claim that, for any B ∼= A, we have

RA = {σ : B |= (∃x ∈ U)[f(x) = cσ]} = RB.

Let π : A ∼= B. By the properties above, we must have π(U) = U and π(V ) = V . Let

σ ∈ RA. Then, for some a ∈ UA and some b ∈ V A, we have

fA(a) = cAσ = b.

Then fB(π(a)) = π(cAσ ) = cBσ . As π(a) ∈ UB we have σ ∈ RB. The other direction is

symmetric. As RB is c.e. in B, so is RA, and hence RA is coded in A.

It remains to show that Spec(A) ⊇ {X : RA is c.e. in X}. Suppose that RA is c.e. in

X. We want to build an X-computable copy B of A. Let {σ0, σ1, σ2, . . .} be a computable

listing of all strings in 2<ω. By properties (ii) and (iii), the set V must be infinite. First,

let Y = {b0, b1, b2, . . .} be a (coinfinite) computable subset of ω, declare bi ∈ V B for all

i ∈ ω and let cBσi = bi. Let {Rs
A}s∈ω be an X-computable enumeration of RA. At stage s,

use X to compute Rs
A and let

Rs
A −Rs−1

A = {τi1 , τi2 , . . . , τik}.
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Take the first k numbers that are not in Y and not yet in the domain of fB, say a1, a2, . . . , ak.

Declare aj ∈ UB for all j = 1, . . . , k, and let fB(aj) = bij and fB(bij) = bij .

By construction, the structure B is computable from X and satisfies properties (i)-(vii).

Let’s define a map, π, between A and B as follows: For each v ∈ V A, we have v = cAσ for

some σ. Let π(v) = π(cAσ ) = cBσ . For each u ∈ UA, we must have fA(u) = v = cAσ for some

v ∈ V A and some σ ∈ 2<ω. There must exist exactly one ũ ∈ UB such that fB(ũ) = cBσ
and so we let π(u) = ũ. This map, π, is an isomorphism between A and B.

Proposition 3.2.5 (Montalbán). Every set D ⊆ ω is weakly coded in some A ∈ KW .

Proof. Let D ⊆ ω. Consider the set E = {σ : σ <L D} = {σ0, σ1, σ2, . . .}. We will define

the structure A as follows: Let U consist of the even numbers, and V the odd numbers.

Let cAσi = 2i + 1 and let fA(2i + 1) = 2i + 1 and fA(2i) = 2i + 1. Then RA = E. As

RA = E is coded in A, the set D is weakly coded in A.

By Therorem 3.2.2, we must have |bf1(KW )| = 2ℵ0 . It remains to prove the following

result:

Theorem 3.2.6. There is a set D ⊂ ω such that D is not coded in any structure A ∈ KW .

First note that, for any set D and any A ∈ KW , we have

D is coded in A ⇔ Spec(A) ⊆ {X : D is c.e. in X}
⇔ {X : RA is c.e. in X} ⊆ {X : D is c.e. in X}
⇔ (∀X)[RA is c.e. in X → D is c.e. in X]

⇔ D ≤e RA

Therefore, to prove Theorem 3.2.6, we need to show that⋃
A∈K

{D : D ≤e RA} 6= 2ω.

In the proof of Proposition 3.2.5, we show that for every X ⊆ ω there is a structure

A ∈ KW such that RA = XL. Conversely, for every structure A ∈ KW , we have RA = XL

for some X ⊆ ω. It follows from this observation that⋃
A∈K

{D : D ≤e RA} =
⋃
X⊆ω

{D : D ≤e XL}.
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We will prove Theorem 3.2.6 by showing that
⋃
X⊆ω

{D : D ≤e XL} 6= 2ω.

We wish to build a set D such that D 6≤e XL for all X ⊆ ω. We will build D satisfying

the following requirements, for all e ∈ ω:

Re : D 6= ΨXL
e for all X ⊆ ω.

Given a set X ⊆ ω, finite subsets of XL will be finite sets of strings {σ1, . . . , σk} such that

σi <L X for all 0 ≤ i ≤ k. As such, ~σ := {σ1 . . . , σk} is a subset of XL if and only if the

“rightmost” string in ~σ is in XL. Let R(~σ) := {σ ∈ ~σ : τ ≤L σ for all τ ∈ ~σ} denote the

rightmost string of ~σ.

Recall that we write D = ΨXL
e if for all n ∈ ω,

n ∈ D ⇐⇒ (∃ finite ~σ ⊆ XL)[〈n, ~σ〉 ∈ We].

To meet Requirement Re: We will use the numbers {〈i, e〉}i∈ω to meet the requirement

Re.

Let Se0 := {~σ ∈ 2<ω : 〈〈0, e〉, ~σ〉 ∈ We} and for each n > 0 let

Sen := {~σ <L S
e
n−1 : 〈〈n, e〉, ~σ〉 ∈ We}

where we write “~σ <L S” for some set S ⊆ 2<ω if R(~σ) <L R(~τ) for all ~τ ∈ S.

Definition 3.2.7. We define the “e -slice” of D as follows, depending on the collection of

sets Sen:

(1) If Se0 = ∅ then set D(〈0, e〉) = 1. The rest of this slice can be defined arbitrarily, so let

D(〈n, e〉) = 1 for all n ∈ ω.

(2) If N > 0 is the least index n such that Sen = ∅ then set D(〈N − 1, e〉) = 0 and

D(〈N, e〉) = 1. The rest of the slice can be defined arbitrarily, so let D(〈n, e〉) = 1 for

all n 6= N − 1, N .

(3) If Sen 6= ∅ for all n then set D(〈0, e〉) = 1 and D(〈n, e〉) = 0 for all n > 0.

How we defined the “e -slice” of D will ensure that requirement Re is met.
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Lemma 3.2.8. The set D defined above satisfies D 6≤e XL for all X ⊆ ω.

Proof. We will show that Re is met for each e ∈ ω by cases:

Case 1 (Se0 = ∅): If Se0 is empty then, by definition of Se0, we have ΨXL
e (〈0, e〉) = 0 for all

X ⊆ ω. So since D(〈0, e〉) = 1 we satisfy Re.

Case 2 (N > 0 is least index such that SeN = ∅): By assumption SeN−1 6= ∅, and

SeN = ∅. We have two subcases:

(1) There is some ~τ ∈ SeN−1 satisfying R(~τ) <L X:

In this case we have ~τ ⊂ XL with 〈〈N − 1, e〉, ~τ〉 ∈ We and hence

ΨXL
e (〈N − 1, e〉) = 1 6= 0 = D(〈N − 1, e〉).

(2) X <L R(~τ) for all ~τ ∈ SeN−1:

In this case, for every ~ρ ∈ 2<ω, we must have either ~ρ 6⊆ XL or 〈〈N, e〉, ~ρ〉 /∈ We.

Suppose for a contradiction that we have both ~ρ ⊂ XL and 〈〈N, e〉, ~ρ〉 ∈ We. Then

we have R(~ρ) <L X <L R(~τ) for all ~τ ∈ SeN−1, or in other words, ~ρ <L SeN−1. As

〈〈N, e〉, ~ρ〉 ∈ We, it follows that ~ρ ∈ SeN = ∅ which is a contradiction. Therefore we

have 〈〈N, e〉, ~ρ〉 /∈ We for all ~ρ ⊆ XL and hence ΨXL
e (〈N, e〉) = 0 6= 1 = D(〈N, e〉).

Case 3 (Sen 6= ∅ for all n): Let Se =
⋃
n

Sen. Again we have two subcases:

(1) There is some ~σ ∈ Se such that R(~σ) <L X:

As ~σ ∈ Se, there is some N such that ~σ ∈ SeN . If N > 0 then we are done. If not, as

Sen 6= ∅ for all n, we can choose a string ~τ ∈ Sen for some n > 0 such that ~τ <L ~σ <L X

and hence ~τ ⊂ XL and 〈〈n, e〉, ~τ〉 ∈ We. As n > 0, we have D(〈n, e〉) = 0 6= 1 =

ΨXL
e (〈n, e〉).
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(2) X <L R(~σ) for all ~σ ∈ Se:

We will show in this case that 〈〈0, e〉, ~τ〉 /∈ We for all ~τ ⊂ XL. Suppose that ~τ ⊂ XL.

Then we have R(~τ) <L X and hence R(~τ) <L X <L R(~σ) for all ~σ ∈ Se. In particular,

we have R(~τ) <L R(~σ) for all ~σ ∈ Se0 and so ~τ /∈ Se0. The only way we could have

~τ /∈ Se0 is if 〈〈0, e〉, ~τ〉 /∈ We. So we have ΨXL
e (〈0, e〉) = 0 6= 1 = D(〈0, e〉).

In all cases, Re is met.

Remark 3.2.9. It should be noted there that the proof of Theorem 3.2.6 can be relativized

to include an arbitrary fixed oracle. In other words, if we fix an oracle Y , then we can

build a set D such that D is not coded in any structure in KW , even relative to the oracle

Y . We amend the previous construction as follows: We write A ≤Ye B if there is some e

such that for all n ∈ ω,

n ∈ A⇐⇒ (∃ finite D ⊆ B)
[
〈n,D〉 ∈ W Y

e

]
.

Then for any structure A ∈ KW , we have

D is coded in A relative to Y ⇔ (∀X)[RA is c.e. in X → D is c.e. in X⊕Y ]⇔ D ≤Ye RA.

The first equivalence follows immediately from previous work, and the second equivalence

is a relativization of Selman’s theorem. Now can prove (the relativized version of) Theorem

3.2.6 by fixing any oracle Y , and building a set D such that D 6≤Ye XL for all X ⊆ ω. The

construction and verification are the same, except that every occurrence of the set We must

be replaced by the set W Y
e .

Corollary 3.2.10. There is a class of structures K such that |bf1(K)| = 2ℵ0 but such that

there is no fixed oracle relative to which every set can be coded in some A ∈ K.

Proof. Let KW be the previously defined class. As every set can be weakly coded into

some A ∈ KW then, by Theorem 3.2.2, we must have |bf1(KW)| = 2ℵ0 .

The set D from Definition 3.2.7 is not coded in any A ∈ KW (even relative to a fixed

oracle) by Lemma 3.2.8, Remark 3.2.9 and earlier observations.
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Chapter 4

An upper bound on the

back-and-forth ordinal

In 1994, Jockusch and Soare introduced the notion of the Turing ordinal of a theory. This

was a computability-theoretic method of comparing classes of structures based on the ease

or difficulty of coding information into structures of the given class. In light of the results

in Chapter 3, it is natural to ask what the relationship is between the Turing ordinal and

the back-and-forth ordinal of a theory. In this Chapter, we will see a result of Montalbán

showing that the Turing ordinal provides an upper bound for the back-and-forth ordinal,

assuming the ordinals exist and are finite. In addition, we will prove a result stated by

Knight that can be used to prove a similar upper bound result in the case where the

ordinals are infinite.

4.1 Turing ordinal

In the previous chapter, we saw that the back-and-forth ordinal compares classes of struc-

tures by examining how difficult it is to distinguish tuples from structures in the given

class. Another way to compare classes of structures is to study the collection of degrees

that can be realized by a given class of structures. Recall the following definition from the

introduction:

Definition 4.1.1 (Jockusch). For any computable ordinal α, we say that A has αth jump

degree d if d = min{deg(D(B))(α) : B ∼= A}.
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Given a class of structures and any computable ordinal α, one can ask what collection

of degrees can be realized as αth jump degrees of structures in the class. For example,

in the case of α = 0, it is easy to see that every Turing degree can be realized as the

degree of a graph, while Richter showed that the only possible degree of a linear order is

0 [33]. This suggests that it is harder to code information into linear orderings than it is

to code into graphs. One might ask how much harder it is to code into linear orderings

than graphs. It turns out that we cannot code any non-trivial information into first jumps

of linear orderings either [21], but any degree d ≥ 0(2) can be realized as the second jump

degree of a linear order [1]. This idea is the motivation for the Turing ordinal defined by

Jockusch and Soare in [18]:

Definition 4.1.2 (Jockusch and Soare). Let T be a first order theory which has continuum

many pairwise nonisomorphic countable models. We call a computable ordinal α the Turing

ordinal of T if

(i) every degree ≥ 0(α) is the αth jump degree of a model of T , and

(ii) for all β < α, the only possible βth jump degree of a model of T is 0(β).

From the earlier discussion, the Turing ordinal of the theory of graphs is 0 while the

Turing ordinal of the theory of linear orderings is 2.

There are many natural questions that arise from this definition. One that is of partic-

ular interest in this paper is the following: Is every computable ordinal the Turing ordinal

of some class of structures? And if so, how complicated must the theory of such a class

be? It has been known since 1994 that, for each ordinal α satisfying 0 ≤ α ≤ ω, there is

a finitely axiomatizable class having Turing ordinal α. In Chapter 6, following the work

of Ash, Jockusch and Knight in [1], we will define classes of structures having Turing or-

dinal α for all computable ordinals α. None of these classes will be finitely axiomatizable,

although many will be Borel classes. For α > ω, it is still unknown whether or not there

is a finitely axiomatizable class with Turing ordinal α.

4.2 Relating the two ordinals

If a class has finite back-and-forth ordinal, then Montalbán’s work in [28] shows that the

Turing ordinal provides an upper bound on the back-and-forth ordinal.

Corollary 4.2.1 (Montalbán). Let K be class of countable structures with |bfn+1(K)| = ℵ0.

If K has Turing ordinal m then n < m (and hence n+ 1 ≤ m).
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Proof. Suppose that bfn+1(K) is countable. Then by Theorem 3.2.1, we can only code

countably many sets into the nth jumps of structures in K. It follows that structures in

K cannot have arbitrary nth jump degree. Hence the Turing ordinal (if it exists) must be

strictly bigger than n by definition.

Corollary 4.2.2. If K has back-and-forth ordinal n+ 1 and the Turing ordinal of K is m

then n ≤ m.

Proof. If K has back-and-forth ordinal n+ 1 then in particular bfn(K) is countable.

This work extends easily to include the case where the back-and-forth ordinal is ω.

Theorem 4.2.3. If the back-and-forth ordinal of K is infinite and the Turing ordinal exists

then the Turing ordinal is also infinite.

Proof. If the back-and-forth ordinal is infinite then, in particular, we have |bfn(K)| = ℵ0

for all n < ω. By Theorem 3.2.1, for each n > 0, we can only code countably many sets

into the (n − 1)st jumps of structures in K. Therefore the Turing ordinal γ (if it exists)

must satisfy n− 1 < γ for all n > 0 and hence γ ≥ ω.

Corollary 4.2.4. If K has back-and-forth ordinal ω and the Turing ordinal of K is γ then

ω ≤ γ.

The remainder of this section will be devoted to proving the following upper bound

result for all infinite computable ordinals. This theorem was stated but not proved in [27].

Theorem 4.2.5. Let K be a class of countable structures. If the Turing ordinal, γ, of K
exists and satisfies ω ≤ γ < ωCK1 , then the back-and-forth ordinal of K is at most γ.

To prove this theorem, we will need to extend Theorem 3.1.11 to all computable ordinals

α. Recall the theorem from Chapter 3:

Theorem 3.1.11 (Knight) Let A be a structure. A set X ⊆ ω is coded by the nth jump of

A if and only if X is enumeration reducible to the Σc
n+1-type of some tuple ~a ∈ A.

The set X being c.e. in the nth jump of some copy B of A can be rephrased as the set X

being c.e. in the canonical complete ∆0
n+1 set relative to B. We can extend this statement

to all computable ordinals with the following definition. Recall that we defined the sets

H(a)(X) for all notations a and all sets X in Definition 1.1.9.
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Definition 4.2.6 (Canonical complete ∆0
α set). Let a ∈ O be a notation for an ordinal α

and let A be a structure. Then

∆0
a(A) :=

{
H(a)(D(A)) if |a| ≥ ω

H(b)(D(A)) where |b|+ 1 = a if 0 < |a| < ω

If we fix a particular path in O, then we can identify α with its notation a along that path.

For this reason, we will write ∆0
α(A) for the complete ∆0

α set relative to A, namely ∆0
a(A).

When dealing with infinite ordinals, we need to consider computable infinitary types

instead of finitary types.

Definition 4.2.7. Given a structure A and a finite tuple ~a from A, the Σc
α-type of ~a in A

is the set of Σc
α formulas that are true of ~a in A.

The forward direction of Theorem 3.1.11 is rephrased, for all computable ordinals, as

follows:

Theorem 4.2.8 (Knight). Let α be a computable ordinal. If S is c.e. in ∆0
α(B) for all

B ∼= A then S is enumeration reducible to the Σc
α-type of some tuple ~a ∈ A.

Theorem 4.2.8, along with its converse, appears without proof in [20]. For completeness,

we will fill in the proof of the theorem and the desired upper bound from Theorem 4.2.5

will follow. Knight’s result is proven using forcing and so, before we begin, we will adapt

the forcing language from [2] for our purposes.

4.2.1 Forcing Language

The content of this section is essentially presented in Chapter 10 of [2]. We will adapt the

notation and fill in some details required for our particular question.

Let A be a structure with domain ω in a language L and let B = {b0, b1, b2, . . .} be an

infinite computable list of new constants. Then any bijection from B onto ω induces an

isomorphic copy B of A in the natural way. We call a particular copy B of A a generic

copy if B arises from a bijection p = ∪n∈ωpn where the sequence (pn)n∈ω consists of finite

1-1 functions from B to ω that decide statements about the diagram of B and its jumps.

Definition 4.2.9. Let F be the set of finite 1-1 functions from B to ω, called the forcing

conditions. Then F is partially ordered by extension.

32



If p is a forcing condition, then we think of the range of p, ran(p), as a subset of the

original structure A, and the domain of p, dom(p), as a subset of the copy B. As in [2], we

will take our forcing language to be propositional. Let P be the propositional language in

which the propositional symbols are the atomic sentences of the predicate language L∪B,

and let S be the set of computable infinitary formulas in P . Let B be a copy of A and let

ϕ ∈ S. We will abuse notation a bit here and write B |= ϕ even though ϕ is not a formula

in the language of B. The atomic sentences from the diagram of B form a structure in the

language P , say B∗, and we write “B |= ϕ” when we really mean B∗ |= ϕ.

Now we will distinguish particular formulas from S that are relevant for our result [2].

Remark 4.2.10. For each n, e ∈ ω, there is a Σc
1 formula, ψ, in S such that, for any copy

B of A, we have

B |= ψ ⇔ n ∈ WD(B)
e .

Remark 4.2.11. For each n, e ∈ ω and each computable ordinal α (identified with its

notation on some path in O) we can find a Σc
α formula ψ in S such that, for any copy B

of A,

B |= ψ ⇐⇒ n ∈ W∆0
α(B)

e .

We will denote this formula, ψ, by n ∈ WD(α)

e .

Now we are ready to define forcing, following the conventions from Chapter 10 of [2].

Definition 4.2.12 (Forcing). Let ψ ∈ S and let p be a forcing condition. The forcing

relation, denoted by p 
 ψ, is defined by induction on the formula ψ as follows:

(i) If ψ is finitary, then we say p 
 ψ and only if every b ∈ B that appears in ψ is in

dom(p) and if we replace each b appearing in ψ with the corresponding p(b) ∈ ω to

obtain ψ′ then A |= ψ′.

(ii) p 

∨
i

ψi if and only if p 
 ψi for some i.

(iii) p 

∧
i

ψi if and only if for each i and each q ⊇ p there exists r ⊇ q such that r 
 ψi.

The standard results about forcing hold in this context. A full treatment appears in

[2]. We present a summary of the important lemmas.

Lemma 4.2.13 (Lemma 10.2 in [2]). For any forcing condition p and any ψ ∈ S there

exists q ⊇ p such that q decides ψ. (I.e. either q 
 ψ or q 
 ¬ψ.)
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Lemma 4.2.14 (Lemma 10.3 in [2]). For all ψ ∈ S, if p 
 ψ and q ⊇ p then q 
 ψ.

Lemma 4.2.15 (Lemma 10.4 in [2]). For all ψ ∈ S and all forcing conditions p we cannot

have p 
 ψ and p 
 ¬ψ.

Let Cψ := {p ∈ F : p decides ψ} and let Ca := {p ∈ F : a ∈ ran(p)}. Let p be any forcing

condition. It is clear that for any a ∈ A there exists q ⊇ p such that q ∈ Ca. By Lemma

4.2.13, for any ψ ∈ S there exists q ⊇ p such that q ∈ Cψ. Let

C := {Cψ : ψ ∈ S} ∪ {Ca : a ∈ ω}.

Definition 4.2.16. A sequence of forcing conditions (pi)i∈ω is called a complete forcing

sequence if it is a chain such that, for each C ∈ C, there exists i such that pi ∈ C.

Note 4.2.17. As C is countable, complete forcing sequences exist, and if p = ∪ipi where

(pi) is a complete forcing sequence then, in particular, p is a bijection between B and ω.

Let (pi) be a complete forcing sequence and let B be the generic copy of A determined

by the bijection p = ∪ipi. We have the following lemma relating truth and forcing:

Lemma 4.2.18 (Lemma 10.5 in [2]). For all ψ ∈ S, B � ψ iff there is some i such that

pi 
 ψ.

The next lemma asserts that, for formulas in S, forcing is definable in A.

Lemma 4.2.19 (Lemma 10.6 in [2]). For each ψ ∈ S and each ~b ∈ B there is a computable

infinitary (predicate) formula in the language of A, Force~b,ψ(~x), such that, for any p in F

mapping ~b to ~a, we have

A � Force~b,ψ(~a)⇐⇒ p 
 ψ.

Moreover, if ψ is Σc
α (or Πc

α) then so is Force~a,ψ(~x).

Finally, we need to formalize the notion of a set being c.e. in ∆0
α(B) for some generic

copy B. In other words, we need to translate statements of the form X = WD(α)

e , for an

arbitrary set X, into our forcing language. We follow the idea from [21].

Lemma 4.2.20. If X is c.e. in ∆0
α(B) for all B ∼= A then, for some p ∈ F and some

e ∈ ω, we have the following:

1. For all n ∈ X, there is some q ⊇ p such that q 
 n ∈ WD(α)

e .
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2. For all n /∈ X, there is no q ⊇ p such that q 
 n ∈ WD(α)

e .

Proof. Assume for a contradiction that, for all e ∈ ω and all p ∈ F , there is some m(e, p) =

m such that either

(i) m ∈ X and there is no q ⊇ p such that q 
 m ∈ WD(α)

e , or

(ii) m /∈ X and there is some q(e, p) = q ⊇ p such that q 
 m ∈ WD(α)

e .

Then we can build a complete forcing sequence (pi)i∈ω such that, for the generic B deter-

mined by the sequence, we have X 6= W
∆0
α(B)

e for all e. We can build such a sequence as

follows: Let p0 = ∅. Given p3e, let

p3e+1 =

{
q(e, p3e) if m(e, p3e) /∈ X
p3e if m(e, p3e) ∈ X

Select p3e+2 ⊇ p3e+1 in Cψ where ψ is the eth formula in a listing of S, and p3e+3 ⊃ p3e+2

in Ce. Then {pi}i∈ω is a complete forcing sequence. Fix e ∈ ω. If we are in case (i),

then m(e, p3e) ∈ X and there is no q ⊇ p3e such that q 
 m(e, p3e) ∈ WD(α)

e . It follows

from Lemma 4.2.14 that we cannot have pi 
 m(e, p3e) ∈ WD(α)

e for any i. By Lemma

4.2.18, we have m(e, p3e) /∈ W
∆0
α(B)

e and hence X 6= W
∆0
α(B)

e . If we are in case (ii), then

m(e, p3e) /∈ X and p3e+1 = q(e, p3e) satisfies p3e+1 
 m(e, p3e) ∈ WD(α)

e . By Lemma 4.2.18,

we have m(e, p3e) ∈ W∆0
α(B)

e and hence X 6= W
∆0
α(B)

e . This is a contradiction as X must be

c.e. in ∆0
α(B). Therefore, there must be some e ∈ ω and p ∈ F satisfying properties 1 and

2.

4.2.2 Main Result

Now we are ready to prove Theorem 4.2.8 restated here:

Theorem 4.2.21. Let α be an (infinite) computable ordinal. If X is c.e. in ∆0
α(B) for all

B ∼= A then X is enumeration reducible to the Σc
α-type of some tuple ~a ∈ A.

Proof. Suppose that for all B ∼= A, X is c.e. relative to ∆0
α(B). By Lemma 4.2.20, there

must exist p ∈ F and e ∈ ω such that, for all m ∈ ω,

(∗) m ∈ X ⇔ (∃q ⊇ p)
[
q 
 m ∈ WD(α)

e

]
.
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By Remark 4.2.11, “m ∈ WD(α)

e ” is a Σc
α formula in S. Suppose that p maps ~b to ~a. By

Lemma 4.2.19, for all ~d ∈ B we can find a Σc
α formula Force~b,~d,m∈WD(α)

e
(~a, ~y) in the language

of A such that, for all ~c ∈ A,

A � Force~b,~d,m∈WD(α)
e

(~a,~c)⇐⇒ (q : ~b, ~d 7→ ~a,~c) 
 m ∈ WD(α)

e .

For each m ∈ ω, consider the formula

ψm(~x) :=
∨
~d∈B

∃~y Force~b,~d,m∈WD(α)
e

(~x, ~y).

Note that, for each m, ψm(~x) is disjunction of Σc
α formulas. Finally, we have

A � ψm(~a) ⇐⇒ A |=
∨
~d∈B

∃~y Force~b,~d,m∈WD(α)
e

(~a, ~y)

⇐⇒ For some ~d ∈ B,A � ∃~y Force~b,~d,m∈WD(α)
e

(~a, ~y)

⇐⇒ For some ~d ∈ B and some ~c ∈ A,A � Force~b,~d,m∈WD(α)
e

(~a,~c)

Lemma 4.2.19⇐⇒ For some ~d ∈ B and some ~c ∈ A, (q : ~b, ~d 7→ ~a,~c) 
 m ∈ WD(α)

e

⇐⇒ (∃q ⊇ p)
[
q 
 m ∈ WD(α)

e .
]

(∗)⇐⇒ m ∈ X

Given an enumeration of the Σc
α type of ~a, we enumerate m into X if and only if one of

the disjuncts of ψm(~x) appears. It follows that X is enumeration reducible to the Σc
α-type

of ~a = ran(p).

Now we can prove the main result - Theorem 4.2.5 - restated here:

Theorem 4.2.22. Let K be a class of countable structures. If the Turing ordinal, γ, of K
exists and satisfies ω ≤ γ < ωCK1 , then the back-and-forth ordinal of K is at most γ.

Proof. Suppose that the Turing ordinal of K is γ. Then we can assume K contains un-

countably many pairwise nonisomorphic models, and so the back-and-forth ordinal 6= ∞.

From the discussion in [27], in this case, the back-and-forth ordinal is at most ω1. Let α be

the back-and-forth ordinal of K. The case of α = ω was already done in Corollary 4.2.4,

so we can assume that α > ω. Then, by definition, we must have |bfβ(K)| = ℵ0 for all

β < α. For each β < α let

Cβ(K) := {D ⊆ ω : D is coded by the βth jump of some A ∈ K}.
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It is enough to show that, for all infinite ordinals β < α, we have γ > β. Fix an infinite

ordinal β < α and let

De
β := {D ⊆ ω : D ≤e Σc

β−tpA(~a) for some (~a,A) ∈ K}.

As bfβ(K) is countable by assumption, there are only countably many Σβ types realized

by tuples in K and hence De
β is countable. By Theorem 4.2.21, Cβ(K) ⊆ De

β and so the

set Cβ(K) is at most countable. It follows that at most countably many degrees can be

realized as βth jump degrees of structures in K and therefore γ > β. It follows that γ > β

for all (computable) ordinals β < α and hence α ≤ γ as desired.

4.3 Lower Bound

After Montalbán’s paper in 2010, we had the following concrete examples of classes where

both the Turing ordinals and back-and-forth ordinals were known, or easy to calculate:

Class of structures Turing ordinal Back-and-forth ordinal

Abelian groups 0 [33] 1

Graphs 0 [33] 1

Algebraic fields 0 [33] 1

Partial orders 0 [33] 1

Lattices 0 [33] 1

Equivalence structures 1 [33], [28] 2 [28]

Linear orders 2 [33], [21] 3 [28]

Boolean algebras ω [18] ω [2]

As we can see in the table, every case where the ordinals are finite satisfies that the

back-and-forth ordinal is equal to the successor of the Turing ordinal. In the only infinite

case, we have equality. It is natural to ask whether there is a reason for this pattern. By

Theorem 4.2.2, for every finite case, the successor of the Turing ordinal is an upper bound

for the back-and-forth ordinal, and by Theorem 4.2.5, in the infinite case, the Turing ordinal

is an upper bound for the back-and-forth ordinal. This leads to the following questions:

Question 4.3.1. If the back-and-forth ordinal of a Borel class of structures, K, is n + 1,

must K have Turing ordinal n?

Question 4.3.2. If the back-and-forth ordinal of a Borel class of structures, K, is α ≥ ω,

must K have Turing ordinal α?
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The answer to each of the above questions is no in general. In Chapter 6, we will see a

Borel class having Turing ordinal ω + 2 and back-and-forth ordinal ω + 1 which will be a

counterexample to Question 4.3.2. For Question 4.3.1, we can look at a well known class.

It is known that the Turing ordinal of the class of models of Peano arithmetic (PA) is

1. (A standard model of PA has degree 0 and Proposition 3.4 from [20] asserts that any

nonstandard model of PA has no degree. The fact that every jump degree is realizable is

explained in the Introduction of [21]). A quick analysis of the existential types of models

of PA shows that the back-and-forth ordinal of the class is also 1.

The class KW from Definition 3.2.3 — introduced to exhibit a class that weakly codes

every set but does not code every set — was originally thought to be another counterexam-

ple to Question 4.3.1. (Note that, in contrast, models of PA can code every set.) It turns

out that KW is actually an example of a Borel class without a Turing ordinal. It follows

from earlier work that the back-and-forth ordinal of KW is 1 but Theorem 4.2.2 only asserts

that 0 is a lower bound for the Turing ordinal and hence gives us no new information. The

remainder of this chapter is devoted to analyzing the class KW with respect to the notion

of Turing ordinal.

Proposition 4.3.3. The Turing ordinal of the class KW (if it exists) is at least 1.

Proof. Let D be the set we constructed in Theorem 3.2.6. We claim that there is no

structure A ∈ KW of degree d = deg(D). Suppose that we have some A ∈ KW such

that d is the least degree in Spec(A). Then in particular, for any structure B ∼= A, we

have D ≤T B and hence D c.e. in B. Therefore D is coded in the structure A which is a

contradiction. It follows that not every degree d is the degree of a structure in KW and

hence the Turing ordinal of KW (if it exists) must be strictly greater than 0.

To complete the picture, we would like to compute the Turing ordinal of KW , if it

exists. The following proposition amends a construction of Coles, Downey and Slaman

(Main theorem from [5]), and will show that the Turing ordinal of KW is at most 1, if it

exists.

Proposition 4.3.4. For each d ≥ 0
′
, there is a set A ⊆ ω such that d is least in the set

{X ′ : A is left-c.e. in X}.

Fix D ∈ d. We will build two sets A,G ⊆ ω that satisfy the following:

(1) A is left-c.e. in G,

(2) If A is left-c.e. in X then G′ ≤T X
′
, and
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(3) G′ ≡T D

Properties (1) and (2) will ensure that the set {X ′ : A is left-c.e. in X} has a least

degree, property (3) will ensure that this least degree is d. To meet (1) we will actually

build A and G such that A is c.e. in G. More precisely, we will have, for all i ∈ ω, i ∈ A if

and only if there exists j ∈ ω such that 〈i, j〉 ∈ G. To ensure that G′ ≤T D our construction

will be D-computable and force the jump of G. To meet (2) and ensure that D ≤T G′, we

will code D into both G and A.

G will be built by finite extensions {gs}s∈ω such that G = ∪sgs. A will be built in

stages satisfying the following properties:

• A = limsAs,

• At each stage s, there are at most finitely many x such that As(x)↓, and

• If As(x)↓, then At(x)↓= As(x) for all t ≥ s.

Note that we write As(x) ↓ to mean that the membership of x in A has been decided by

stage s, else we write As(x)↑.

Construction

Stage 0: Let g0 = ∅ and let A0(x)↑ for all x ∈ ω.

Stage s+ 1 = e+ 1: Given gs and As.

Step 1 (forcing the jump): Determine whether the following holds:

(∗) (∃σ ⊃ gs)(∃t)
[(

Φσ
e,t(e)↓

)
∧
(
∀〈i, j〉 < |σ|

)(
σ(〈i, j〉) = 1⇒ As(i) 6= 0

)]
If (∗) holds then let σs+1 be the least such σ and define Ãs+1 as follows:

Ãs+1(x) =


As(x) if As(x)↓
1 if As(x)↑ and (∃j)[σs+1(〈x, j〉) = 1]

↑ if As(x)↑ and (∀j) [σs+1(〈x, j〉) = 0]

If (∗) does not hold, then let σs+1 = gs and Ãs+1 = As.

Note: At the end of this stage we have determined whether e ∈ G′ and ensured that, for all

x, (∃j)[σs+1(〈x, j〉) = 1]⇒ Ãs+1(x)↓= 1.
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Step 2 (code D(e) into G and A): Find the least pair 〈i, j〉 such that

(i) σs+1(〈i, j〉) is undefined, and

(ii) Ãs+1(i)↑

and define fs+1 as follows:

fs+1(k) =


σs+1(k) if σs+1(k) is defined

0 if σs+1(k) is undefined and k < 〈i, j〉
D(e) if k = 〈i, j〉
↑ Else

Now we define As+1 from Ãs+1 to reflect the changes in G:

Let As+1(x) = Ãs+1(x) for all x 6= i. If D(e) = 1 then define As+1(i)↓= 1; if D(e) = 0 then

define As+1(i)↓= 0.

This action will ensure that, for all x, (∃j)[fs+1(〈x, j〉) = 1]⇒ As+1(x)↓= 1.

Finally, if As+1(s+ 1)↑ then define As+1(s+ 1)↓= 0.

Here we act to ensure that A will be total.

End Construction

Let G = ∪sgs. At the end of stage s we have defined As(s) ∈ {0, 1} and we have

At(s) = As(s) for all t ≥ s so let A = limsAs.

Verification

Lemma 4.3.5. For all i ∈ ω, i ∈ A if and only if there exists j ∈ ω such that 〈i, j〉 ∈ G.

Proof. This is clear from the construction. At every stage s we have

(∃j)[gs(〈i, j〉) = 1]⇔ As(i)↓= 1.
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Lemma 4.3.6. G′ ≤T D.

Proof. The construction is D ⊕ ∅′-computable and hence D-computable as D ≥T ∅
′
. At

stage s + 1 = e + 1, D can determine whether or not (∗) holds. If (∗) holds then, by our

choice of σs+1, we will have e ∈ G′. It remains to show that if (∗) does not hold then we

must have e /∈ G′. If (∗) does not hold then we have

(∗∗) (∀σ ⊃ gs)(∀t)
[(

Φσ
e,t(e)↑

)
∨
(
∃〈i, j〉

)(
σ(〈i, j〉) = 1 ∧ As(i)↓= 0

)]
.

If we have e ∈ G′ then there is some string τ satisfying gs ⊂ τ ⊂ G and a stage t such

that Φe,t(e)
τ↓. By (∗∗), we must have a pair 〈i, j〉 such that τ(〈i, j〉) = 1 but As(i)↓= 0.

This contradicts Lemma 4.3.5 as we cannot have 〈i, j〉 ∈ G with i /∈ A. Therefore we have

e /∈ G′ as desired.

Lemma 4.3.7. D ≤T G′.

Proof. We will show that the sequence {fs}s∈ω is a G′-computable sequence. The result

follows from this as D(e) is the last bit of fe+1.

As G′ ≥T ∅′, G′ can determine whether or not (∗) holds of g0 and find σ1. From σ1 we

can compute Ã1 and find the pair 〈i, j〉 from step 2. Using σ1 and the appropriate bits of

G we can define f1.

Now assume that {ft : t ≤ s} and {Ãt : t ≤ s} are G′-computable. Given Ãs and fs we

can compute As and gs. Now G′ can determine whether or not (∗) holds of gs and compute

σs+1. From σs+1 we can compute Ãs+1 and locate the pair 〈i, j〉 from step 2. Using σs+1

and G we can define fs+1.

This completes the proof.

Lemma 4.3.8. If A is left-c.e. in X then G′ ≤T X ′.

Proof. If A is left-c.e. in X then A ≤T X ′. We will show that the construction is A ⊕ ∅′-
computable. This involves similar ideas as the proofs of Lemma 4.3.6 and Lemma 4.3.7. ∅′
can run most of the construction, except for defining fs+1(〈i, j〉) in step 2. But fs+1(〈i, j〉) =

A(i) and so the construction is A⊕ ∅′-computable and hence X ′-computable.

The proof of Proposition 4.3.4 follows from Lemmas 4.3.5, 4.3.6, 4.3.7, 4.3.8.

Corollary 4.3.9. The Turing ordinal of the class KW (if it exists) is at most 1.
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Proof. This result follows directly from Proposition 4.3.3 and Proposition 4.3.4.

It turns out that this is not another counterexample to Question 4.3.1 as KW does not

have a Turing ordinal. This is due to the restrictive definition of the Turing ordinal. While

not all degrees can be realized as the degree of a structure in KW , there is (at least one)

structure in KW having nontrivial degree. The following example was found by Joseph

Miller: Let Z be the complement of ∅′. Let A be the KW structure with RA = ZL. Then

we have

Spec(A) = {deg(X) : ZL is left-c.e. in X} = {deg(X) : X ≥T ∅′}

and hence A has degree 0′. In fact we can realize any c.e. degree in the same manner.

Recall that the example of PA provides a counterexample to Question 4.3.1, but only

manages to show that we cannot replace the inequality in Theorem 4.2.2 with an equality.

Perhaps, for relatively nice classes of structures, the Turing ordinal and back-and-forth

ordinal still need to be close. We are left with the following question:

Question 4.3.10. Is there a class of structures K such that the Turing ordinal and the

back-and-forth ordinal are both finite and differ by at least 2? Are arbitrarily far apart?

If so, how complex is the axiomatization of such a class?

In the next two Chapters, we will explore different classes of structures, specifically

classes of linear orderings, and see how they fit into the current picture.
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Chapter 5

Classes of Downey and Jockusch

In this Chapter we will discuss particular classes of linear orderings, defined by Downey

and Jockusch, for which the Turing ordinals are known. When introduced, these classes

of orderings answered the question of whether every finite ordinal can be realized as the

Turing ordinal of a finitely axiomatizable class of structures. It turns out that each of the

infinitely many classes of linear orderings again satisfy that the back-and-forth ordinal of

the class is equal to the successor of the Turing ordinal.

5.1 Definition and Turing ordinals

It is known that there are finitely axiomatizable theories with Turing ordinal α for 0 ≤
α ≤ ω. For example, the Turing ordinal of Abelian groups is 0 [33], the Turing ordinal

of equivalence structures is 1 [28], and the Turing ordinal of Boolean algebras is ω [18].

In [7], Downey and Jockusch presented a family of finitely axiomatizable theories to finish

the picture.

For a linear ordering L, let

ϕ(L) := (η + 2 + η) · L

where η denotes the order type of the rationals. In other words, we obtain ϕ(L) by replacing

every element of L by a copy of η + 2 + η. By iterating the ϕ operator n times, we can

define the ordering ϕ(n)(L) for any L. The classes defined in [7] are as follows.
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Definition 5.1.1. For each n ∈ ω, consider the class of orderings defined by

{ϕ(n)(L) : L is a countable linear ordering}.

There is a theory, denoted by Tn, whose countable models are the above class. Note that

T0 is the theory of linear orderings.

In [7] the authors show that each theory Tn is finitely axiomatizable — i.e. axiomatiz-

able via finitely many first-order formulas — and it is not hard to see that the complexity

of the axiomatizations increases as a function of n. The Turing ordinals are as follows.

Theorem 5.1.2 (Downey and Jockusch). For each n ≥ 0, the Turing ordinal of the theory

Tn is n+ 2.

In order to see how these theories fit into the picture, we need to calculate their back-

and-forth ordinals. This is the topic of the next section.

Note 5.1.3. Given two orderings, A and B, with tuples ~a = (a1, . . . , ak) ∈ A and ~b =

(b1, . . . , bk) ∈ B, we will write

(A,~a) ↪→ (B,~b)

if there is an embedding of A into B that maps ai to bi for all i = 1, . . . , k and we will

write

(A,~a) ∼= (B,~b)

if there is an isomorphism from A to B that maps ai to bi for all i = 1, . . . , k. We will

often use this notation where A and B are replaced with particular suborderings.

5.2 Back-and-forth ordinals of Tn

As the Turing ordinal of Tn is n+2, Corollary 4.2.2 gives us that the back-and-forth ordinal

is at most n + 3. We will show that it is exactly n + 3. We have noted earlier that the

theory of linear orderings has back-and-forth ordinal 3 and so the case of n = 0 is complete.

To prove the general case, we need to show that, for each n > 0, Tn has only countably

many (n + 2)-back-and-forth types. Our first step will be to prove a main lemma, but to

do so, we need to introduce some notation in order to simplify the proof. We would like a

formal way of passing from tuples in L to tuples in ϕ(L) and vice versa and we will do so

as follows.
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Let Xk be the set consisting of k-tuples of the form

~x =
(
〈m1, q

1
1, q

1
2, . . . , q

1
m1
〉, 〈m2, q

2
1, q

2
2, . . . , q

2
m2
〉, . . . , 〈mk, q

k
1 , q

k
2 , . . . , q

k
mk
〉
)

where m1,m2, . . . ,mk are positive integers, and for each 1 ≤ i ≤ k, we have qi1<q
i
2<. . .<

qimi naming finitely many members of the ordering (η + 2 + η).

Given a linear order L, a k-tuple ~a = (a1, . . . , ak) from L, and a k-tuple ~x from Xk, we

define a corresponding (m1 + m2 + . . . + mk)-tuple, denoted by f~x(~a), in ϕ(L) as follows:

Let f~x(~a) := (ã1, ã2, . . . , ãk) where the tuple ãi is of length mi, lies in the (η+ 2 + η) block

corresponding to the element ai ∈ L, and there is an embedding of η + 2 + η into ϕ(L)

that sends qij to the jth member of the tuple ãi.

For any two tuples ~a = (a1, . . . , ak) and~b = (b1, . . . , bl), let ~a∪~b denote the concatenation

of ~a and ~b, namely ~a ∪~b = (a1, . . . , ak, b1, . . . , bl). Observe that, given k-tuples ~a ∈ L and

~x ∈ Xk, for any decomposition ~a = ~c ∪ ~d, there are corresponding tuples ~y ∈ X|~c| and

~z ∈ X|~d| such that f~y(~c) ∪ f~z(~d) = f~x(~a). And, conversely, given an n-tuple ~c and an

m-tuple ~d from L and tuples ~y ∈ Xn and ~z ∈ Xm, there is a tuple ~a in L with

f~y∪~z(~a) = f~y(~c) ∪ f~z(~d).

With this notation, we can formulate the needed lemma:

Lemma 5.2.1. For all n > 0 and all (infinite) linear orderings L1 and L2, if ~a ∈ L1 and
~b ∈ L2 are both of length k and ~x ∈ Xk then

(L1,~a) ≤n−1 (L2,~b) =⇒ (ϕ(L1), f~x(~a)) ≤n (ϕ(L2), f~x(~b)).

Proof. We proceed by induction on n, for all orderings and tuples of all lengths at once.

For n = 1: Suppose that (L1,~a) ≤0 (L2,~b). Then ~a and ~b are ordered in the same way

in L1 and L2 respectively. We need to show that (ϕ(L1), f~x(~a)) ≤1 (ϕ(L2), f~x(~b)). Fix

~c ∈ ϕ(L2). By how f~x(·) was defined, we have f~x(~a) = (ã1, . . . , ãk) and f~x(~b) = (b̃1, . . . , b̃k)

ordered in the same way in ϕ(L1) and ϕ(L2) respectively. Moreover, we have

(η + 2 + η, ãi) ∼= (η + 2 + η,~bi)

as suborderings. As such, if there are finitely many elements between any two consecutive

members of f~x(~a), then there is the same number of elements between the corresponding

members of f~x(~b). Else there are infinitely many elements between the two members of

f~x(~a) and corresponding members of f~x(~b). In linear orderings, this is sufficient to show

that (ϕ(L1), f~x(~a)) ≤1 (ϕ(L2), f~x(~b)) as desired. This completes the proof of the base case.
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Now fix n > 1. Let ~x ∈ Xk and suppose that (L1,~a) ≤n−1 (L2,~b). To show that

(ϕ(L1), f~x(~a)) ≤n (ϕ(L2), f~x(~b)), we need to show that for any choice of ~u ∈ ϕ(L2), there

is a tuple ~w ∈ ϕ(L1) such that

(ϕ(L2), f~x(~b), ~u) ≤n−1 (ϕ(L1), f~x(~a), ~w).

Given ~u ∈ ϕ(L2), there are tuples ~c ∈ L2 and ~y ∈ X|~c| such that ~u = f~y(~c). By definition

of ≤n−1, there is a tuple ~d ∈ L1 such that (L2,~b,~c) ≤n−2 (L1,~a, ~d). By the induction

hypothesis, for any ~z ∈ X|~b∪~c|, we have (ϕ(L2), f~z(~b ∪ ~c)) ≤n−1 (ϕ(L1), f~z(~a ∪ ~d)). In

particular, for z = ~x ∪ ~y, we have

(ϕ(L2), f~x(~b), f~y(~c)) ≤n−1 (ϕ(L1), f~x(~a), f~y(~d))

and hence

(ϕ(L2), f~x(~b), ~u)) ≤n−1 (ϕ(L1), f~x(~a), ~w)

for ~w := f~y(~d). This completes the proof of the Lemma.

Now we will prove the desired result:

Theorem 5.2.2. For each n ≥ 0, there are countably many (n + 2)-back-and-forth types

of the form (A,~a) where A ∼= ϕ(n)(L) for some ordering L, and ~a is a tuple from A.

Proof. We prove this by induction on n. For n = 0 we are asserting that there are

countably 2-back-and-forth types of tuples from linear orderings. This was proven in [28].

Fix n > 1 and suppose that there are countably many pairs of the form (A,~a) where

A ∼= ϕ(n−1)(L) for some L, up to ≡n+1-equivalence. Let’s choose a representative from

each of the countably many ≡n+1-classes and list them as follows: {(Ai,~ai)}i∈ω where ~ai is

of length ki. We claim that the list of ≡n+2-classes is contained in the following countable

set:

B :=
⋃
i∈ω

⋃
~x∈Xki

{(
ϕ(Ai), f~x(~ai)

)}

Fix an ordering ϕ(n)(L) and a tuple ~b ∈ ϕ(n)(L). Then we have ~b = f~x(~a) for some

~a ∈ ϕ(n−1)(L) and some ~x ∈ X|~a|. By assumption, there must exist some i such that

(ϕ(n−1)(L),~a) ≡n+1 (Ai,~ai). By Lemma 5.2.1, for the given ~x we must have(
ϕ
(
ϕ(n−1)(L)

)
, f~x(~a)

)
≡n+2

(
ϕ(Ai), f~x(~ai)

)
and hence

(ϕ(n)(L),~b) ≡n+2 (ϕ(Ai), f~x(~ai)).
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This shows that our pair (ϕ(n)(L),~b) falls into one of the equivalence classes in B. Since B is

countable, we conclude that there are at most countably many ≡n+2-classes as desired.

We now have infinitely many new theories that fit the same pattern as our previous results.

Before we move on, let us have a look at the current information:

Class of structures Turing ordinal Back-and-forth ordinal

Abelian groups 0 1

Graphs 0 1

Algebraic fields 0 1

Partial orders 0 1

Lattices 0 1

Models of PA 1 1

KW DNE 1

Equivalence structures 1 2

Linear orders 2 3

Tn n+ 2 n+ 3

Boolean algebras ω ω
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Chapter 6

Orderings of Ash, Jockusch and

Knight

In the previous section we saw that any ordinal between 0 and ω can be realized as the

Turing ordinal of a finitely axiomatizable class of structures. It is unknown whether there

exists a finitely axiomatizable class with Turing ordinal strictly greater than ω. If we relax

the condition of finitely axiomatizable to Borel, then we can produce a class with the

desired property in some cases. In this Chapter we will introduce linear orderings defined

by Ash, Jockusch and Knight in [1] and prove that, for each computable ordinal α, there

is a class of linear orderings with Turing ordinal α.

6.1 Classes with Turing ordinal α

As in the previous chapter, the classes will be particular subcollections of linear orderings.

First we will describe the various building blocks of the desired orderings. For any linear

ordering L = (ω,≤L), let L∗ = (ω,≤∗) denote the reverse ordering of L, i.e. x ≤∗ y if and

only if y ≤L x.

Definition 6.1.1. The orderings Zα for all ordinals α are defined inductively as follows:

(i) Z0 := 1,

(ii) For successor ordinals, Zβ+1 := Zβ · ω∗ + Zβ + Zβ · ω,

(iii) For limit ordinals, Zα :=
(∑
γ<α

Zγ · ω
)∗

+ 1 +
∑
γ<α

Zγ · ω.
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Definition 6.1.2. Given a countable family of orderings, F , the shuffle sum of F , denoted

by σ(F ), consists of densely many copies of each ordering in F . To build a copy of σ(F ),

partition the rational numbers into dense sets QA, one for each A ∈ F , and replace each

rational in QA with a copy of A.

Definition 6.1.3. Given a set S ⊆ ω, let σ∗(S) := σ(F ) where F consists of ω and n+ 1

for n ∈ S.

Definition 6.1.4. Given a set S ⊆ ω and a computable limit ordinal α, let να(S) denote

the sum of densely many copies of

r + 1 +
∑

1≤γ<β

Zγ

for each r < ω and 1 ≤ β < α and densely many copies of

r + 1 +
∑

1≤γ<α

Zγ

for each r ∈ S.

Given the orderings from Definitions 6.1.1, 6.1.3, 6.1.4, Ash, Jockusch and Knight

defined orderings Aα(S) for each successor ordinal α ≥ 2 and each set S ⊆ ω in [1] as

follows. The authors also defined orderings for each computable limit ordinal, but this

construction is left until Section 6.1.3.

Ordinal Aα(S)

(1) α = 2m+ 2, m ∈ ω Zm · σ∗(S ⊕ S)

(2) α = 2m+ 3, m ∈ ω Zm · σ∗(S)

(3) α = β + 1 (β limit) νβ(S ⊕ S)

(4) α = β + 2 (β limit) νβ(S)

(5) α = β + 2k + 3 (β limit) Zβ+k · σ∗(S ⊕ S)

(6) α = β + 2k + 4 (β limit) Zβ+k · σ∗(S)

The above orderings were introduced as structures having αth jump degree sharply.

(A structure having an αth jump degree is said to have αth jump degree sharply if the

structure does not have a βth jump degree for any β < α.) We will review the work from

[1] with an eye for building classes of orderings with particular Turing ordinals. For a given

computable ordinal α, consider the class of structures defined by

{Aα(S) : S ⊆ ω}.
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The hope is that this class of structures — or at least some related class — has Turing

ordinal α. We will include a sketch of certain proofs from [1] as these will suggest exactly

what collection of orderings to consider as a candidate for having Turing ordinal α. We

will work with a different definition of generic sets than that found in [1] and so we present

the preliminaries here.

Definition 6.1.5. ([19]) Let α be a computable ordinal. A set S ⊆ ω is α-generic if for

each Σ0
α set X ⊆ 2<ω there is some σ ⊂ S such that either σ ∈ X or else there is no τ ⊇ σ

such that τ ∈ X.

We will require the following facts about generic sets.

Lemma 6.1.6 (Macintyre [25]). For any computable ordinal α and any set X such that

X ≥T 0(α), there exists an α-generic set S such that S ⊕ 0(α) ≡T S(α) ≡T X.

Remark 6.1.7. Let S ⊆ ω and let Sn = {k : 〈n, k〉 ∈ S}. If S is an (α + 1)-generic set

then S is not c.e. in 0(α), and for any k ∈ ω and any β < α + 1 we have that Sk+1 is not

computable relative to (S0 ⊕ S1 ⊕ · · · ⊕ Sk)(β) .

6.1.1 Successor ordinals - Type I

For the following results, fix a computable ordinal α that is of the form in (1), (3) or (5).

The authors of [1] characterize the degree spectra of the orderings Aα(S) as follows.

Lemma 6.1.8 (Ash, Jockusch and Knight). For each S ⊆ ω, we have

Spec(Aα(S)) = {deg(D) : S ≤T D(α)}.

The following result from [1] shows that the class consisting of the Aα(S) orderings has

Turing ordinal at most α, if it exists.

Theorem 6.1.9 (Ash, Jockusch and Knight). Let α ≥ 2 be a computable ordinal. Then

for every degree d ≥ 0(α), there exists a set S such that Aα(S) has αth jump degree d.

Proof. Fix d ≥ 0(α). We claim that, for any set S ∈ d, the structure Aα(S) has αth

jump degree d. By Lemma 6.1.8, we need to show that d is the least element in the set

C := {deg(D)(α) : S ≤T D(α)}. By Lemma 6.1.6 there is a set D0 such that S ≡T D(α)
0 and

so D
(α)
0 ≡T S ∈ C. It is clear that S is a lower bound for the degrees in C by definition.
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With the following result, we can show that the collection of structures of the form

Aα(S) forms a class with Turing ordinal α.

Theorem 6.1.10 (Ash, Jockusch and Knight). Let γ be a computable ordinal and let

S ⊆ ω. If B ≤T D(γ) for all D satisfying S ≤T D(γ+1) then B ≤T 0(γ). Hence if

S 6≤T 0(γ+1), then the set {D(γ) : S ≤T D(γ+1)} has no element of least degree.

Corollary 6.1.11. If α is of the form in (1), (3) or (5) then the class {Aα(S) : S ⊆ ω}
has Turing ordinal α.

Proof. As such an α is a successor ordinal, let α = γ + 1. By Theorem 6.1.9, the given

class satisfies part (i) of Definition 4.1.2 and so it remains to show that part (ii) is satisfied.

In other words, we need to show that if C := {D(γ) : S ≤T D(α)} has an element of least

degree then it is 0(γ). If S ≤T 0(α) = 0(γ+1) then 0(γ) is least in C. By Theorem 6.1.10, if

S 6≤T 0(γ+1) then C has no element of least degree.

6.1.2 Successor ordinals - Type II

For the following results, fix a computable ordinal α that is of the form in (2), (4) or (6).

Again, the authors of [1] characterize the degree spectra the orderings Aα(S):

Lemma 6.1.12 (Ash, Jockusch and Knight). For each S ⊆ ω, we have

Spec(Aα(S)) = {deg(D) : S is c.e. in D(α−1)}.

The following result from [1] shows that the class consisting of the Aα(S) orderings has

Turing ordinal at most α, if it exists.

Theorem 6.1.13 (Ash, Jockusch and Knight). Let α ≥ 2 be a computable ordinal. Then

for every degree d ≥ 0(α), there exists a set S such that Aα(S) has αth jump degree d.

Proof. Fix d ≥ 0(α). By Lemma 6.1.6, we can choose a set S such that S is α-generic and

S⊕0(α) ≡T S(α) ∈ d. Again, we claim Aα(S) has αth jump degree d. By Lemma 6.1.12 we

need to show that d is the least element in the set C := {deg(D)(α) : S is c.e. in D(α−1)}. As

S is c.e. in S(α−1) we have deg(S)(α) = d ∈ C. Now suppose that S is c.e. in D(α−1) for some

set D. It follows that S ≤T D(α) and since 0(α) ≤T D(α) we have S(α) ≡T S⊕0(α) ≤T D(α).

Therefore d = deg(S)(α) is least in C.
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In this case, the Turing ordinal of the class {Aα(S) : S ⊆ ω} is not clear. We will show

that the class

{Aα(S) : S is α-generic}

has Turing ordinal α. We need the following result from [1]:

Theorem 6.1.14 (Ash, Jockusch and Knight). Let γ be a computable ordinal and let S ⊆ ω

be (γ + 1)-generic. If B ≤ D(γ) for all D such that S is c.e. in D(γ), then B ≤T 0(γ).

Hence, since S is not c.e. in 0(γ) (by Remark 6.1.7), the set {D(γ) : S is c.e. in D(γ)} has

no element of least degree.

Corollary 6.1.15. If α is of the form in (2), (4) or (6), then the class

{Aα(S) : S is α-generic}

has Turing ordinal α.

Proof. As the proof of Theorem 6.1.13 uses orderings of the form Aα(S) for α-generic S,

the given class of orderings satisfies part (i) of Definition 4.1.2. Theorem 6.1.14 completes

the proof. If S is α-generic then, by Theorem 6.1.14, the set

{D(α−1) : S is c.e. in D(α−1)}

has no element of least degree. It follows that no ordering in the given class can have βth

jump degree for any β < α.

In Section 6.3, we will axiomatize the classes from Corollary 6.1.11 and Corollary 6.1.15

for all ordinals α ≤ ω + 2 using Lω1,ω sentences, and hence show that each of these classes

is Borel. The classes corresponding to α = 2m + 3 for each m ∈ ω will provide extra

counterexamples to Question 4.3.1 and the class for α = ω + 2 will provide a negative

answer for Question 4.3.2.

6.1.3 Limit ordinals

Now that we have defined the orderings Aα(S) for all successor ordinals, we are ready to

define the corresponding orderings for all computable limit ordinals.

Definition 6.1.16. Let α be a countable limit ordinal. A fundamental sequence of α is

an ω-sequence which converges to α.
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For the following defintion, let α be a computable limit ordinal and let (αn)n∈ω be the

fundamental sequence with limit α picked out of some notation for α.

Definition 6.1.17. The adjusted fundamental sequence for α, denoted by (α′n)n∈ω is de-

fined as follows:

(a) If αn is finite then α′n := min{k : k even, k ≥ 4, k ≥ αn, k > α′n−1}

(b) If αn is infinite then let β be the greatest limit ordinal ≤ αn and we define

α′n := min{γ : γ = β + k, k odd, γ ≥ αn, γ > α′n−1}

Given a fundamental sequence (αn)n∈ω for α picked out of a notation for α, note that,

from the definition above, every member of the corresponding adjusted fundamental se-

quence (α′n)n∈ω is a successor ordinal. Hence for any limit ordinal α, the orderings Aα′n(S),

for all n, were defined at the beginning of this section. To form the ordering Aα(S), the

authors of [1] combined the Aα′n(S) orderings as follows.

Definition 6.1.18 (Ash, Jockusch and Knight). Let α be a computable ordinal and

(αn)n∈ω a fundamental sequence for α. Then, for any S ⊆ ω, let

Aα(S) :=
∑
n∈ω

(
1 + η + 1 +Aα′n(Sn)

)
where Sn = {k : 〈n, k〉 ∈ S} and α′n is nth member of the corresponding adjusted funda-

mental sequence.

Using the degree spectra results from the previous sections, the authors of [1] found

the following:

Lemma 6.1.19 (Lemma 4.5 (3) from [1]). Let α be a computable limit ordinal with fun-

damental sequence (αn)n∈ω picked out of a notation for α. Then for any set S ⊆ ω, we

have:

Spec
(
Aα(S)

)
=
{

deg(D) : Sn ≤T D(α
′
n) uniformly in n

}
.

The following result from [1] shows that the class consisting of the Aα(S) orderings has

Turing ordinal at most α, if it exists.

Theorem 6.1.20 (Ash, Jockusch and Knight). Let α ≥ 2 be a computable limit ordinal.

Then for every degree d ≥ 0(α), there exists a set S such that Aα(S) has αth jump degree

d.
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Proof. Let d ≥ 0(α). By Lemma 6.1.6, we can choose an α-generic set S with S(α) of degree

d. We claim that Aα(S) has αth jump degree d. By Lemma 6.1.19, we need to show that

d is least in the set
{

deg(D)(α) : Sn ≤T D(α
′
n) uniformly in n

}
,

Clearly Sk ≤T S(α
′
k) uniformly in k, and so S(α) is a member of the set. Suppose, for

some X, that Sk ≤T X(α
′
k) uniformly in k. Then S ≤T X(α). Since 0(α) ≤T X(α) as well,

we have S(α) ≡T 0(α) ⊕ S ≤T X(α). As S(α) ∈ d, d is the αth jump degree of Aα(S).

Another result from [1] will show that a particular subcollection of structures of the

form Aα(S) forms a class with Turing ordinal α.

Theorem 6.1.21 (Lemma 1.4 from [1] ). Let α be a computable limit ordinal and let

(αn)n∈ω be a fundamental sequence with limit α that is picked out by a notation for α. Let

S ⊆ ω. Define

C := {D : Sn ≤T D(αn) uniformly in n}

and suppose that, for some β < α, B ≤T D(β) for all D ∈ C. Then

β < αn =⇒ B ≤T (S0 ⊕ . . . Sn−1)(β).

Hence if β < αn and Sn 6≤T (S0⊕ . . . Sn−1)(αn) then the set {D(β) : D ∈ C} has no element

of least degree.

Theorem 6.1.22. Let α be a computable limit ordinal. Then for any fundamental sequence

(αn)n∈ω of α, the class

{Aα(S) : Sk 6≤T (S0 ⊕ S1 ⊕ . . .⊕ Sk−1)(αk) for all k}

has Turing ordinal α.

Proof. Fix d ≥ 0(α). By the proof of Theorem 6.1.20, there is an α-generic set S such

that Aα(S) has αth jump degree d. As S is α-generic, by Remark 6.1.7 we have Sk 6≤T
(S0 ⊕ S1 ⊕ . . .⊕ Sk−1)(αk) for all k and hence Aα(S) is in the given class.

Now fix any Aα(S) in the class, and fix β < α. Then we must have β < αn for some

n ∈ ω and Sn 6≤T (S0 ⊕ S1 ⊕ . . .⊕ Sn−1)(αn). By Theorem 6.1.21, Aα(S) has no βth jump

degree. Therefore the class has Turing ordinal α as desired.

Here we were able to avoid the α-generic condition needed in Section 6.1.2.
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6.2 A selection of back-and-forth ordinals

In this section we will compute the back-and-forth ordinals of the classes defined in Section

6.1 associated to all finite ordinals and the ordinals ω+ 1 and ω+ 2. We will deal with the

limit case of α = ω in Chapter 7.

6.2.1 Describing the Z powers

First we will define formulas that will axiomatize orderings of the form Zk for all k ∈ ω.

The complexities of the formulas will be displayed immediately following each formula.

Consider the relevant formulas for k = 0:

Here are the formulas needed to describe Z-chains:

• Let S(x, y) := (x < y) ∧ (∀z)[z ≤ x ∨ z ≤ y]. (Πc
1).

Then for any linear ordering A and a, b ∈ A, we have A |= S(a, b) if and only if b is

the successor of a in A.

• For n > 1, let Sn(x, y):=(∃x1, . . . , xn−1) [S(x, x1) ∧ S(x1, x2) ∧ · · · ∧ S(xn−1, y)]. (Σc
2)

Then A |= Sn(a, b) if and only if b is the nth successor of a in A. For completeness,

let S0(x, y) := (x = y).

• Let SP (x) := (∃y1)(∃y2)[S(y1, x) ∧ S(x, y2)]. (Σc
2)

Then A |= SP (a) if and only if a has a predecessor and a successor in A.

Consider the following formulas for k = 1:

• Let ϕZ(x) := SP (x) ∧
∧
n∈ω

(∀y)
[ (
Sn(x, y) ∨ Sn(y, x)

)
→ SP (y)

]
. (Πc

3)

Then A |= ϕZ(a) if and only if a lies in a Z-chain in A.

• Let ϕZ(x, y) := ϕZ(x) ∧ ϕZ(y) ∧

[∨
n∈ω

Sn(x, y) ∨
∨
n∈ω

Sn(y, x)

]
. (Πc

3)

Then A |= ϕZ(a, b) if and only if a and b lie in the same Z-chain in A.
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• Let SZ(x, y) := ϕZ(x) ∧ ϕZ(y) ∧ (x < y) ∧ ¬ϕZ(x, y)

∧ (∀z)
[
x ≤ z ≤ y → ϕZ(x, z) ∨ ϕZ(z, y)

]
. (∆c

4)

Then A |= ϕZ(a, b) if and only if a and b are in successive Z-chains in A.

• Let SnZ(x, y) := (∃x1, . . . , xn−1) [SZ(x, x1) ∧ SZ(x1, x2) ∧ · · · ∧ SZ(xn−1, y)] . (Σc
4)

Then A |= SZ(a, b) if and only if the Z-chain containing b in A is the nth successor

of the Z-chain containing a. For completeness, let S0
Z(x, y) := ϕZ(x, y).

• Let ϕZ := (∀x1)(∀x2)ϕZ(x1, x2). (Πc
3)

Then A |= ϕZ ⇔ A ∼= Z

• Let SPZ(x) := ϕZ(x) ∧ (∃y1)(∃y2)
[
SZ(y1, x) ∧ SZ(x, y2)

]
. (Σc

4)

Then we have A |= SPZ(a) if and only if the Z-chain containing x has immediately

preceding and succeeding Z-chains in A.

Using this pattern, we can define the formulas for all k by induction. Suppose that we

have formulas ϕZk , ϕZk(x), ϕZk(x, y), SZk(x, y), SnZk(x, y) and SPZk(x) with complexities

Πc
2k+1, Πc

2k+1, ∆c
2k+2, Σc

2k+2, Πc
2k+1 and Σc

2k+2 respectively. We define the formulas for k+1

as follows:

Formulas for k + 1:

• ϕZk+1(x) := ϕZk(x)∧SPZk(x)∧
∧
n∈ω

(∀y) [ (SnZk(x, y) ∨ SnZk(y, x))→ SPZk(y) ]. (Πc
2k+3)

Then A |= ϕZk+1(a) if and only if a lies in a Zk+1-chain in A.

• ϕZk+1(x, y) := ϕZk+1(x) ∧ ϕZk+1(y) ∧

[∨
n∈ω

SnZk(x, y) ∨
∨
n∈ω

SnZk(y, x)

]
. (Πc

2k+3)

Then A |= ϕZk+1(a, b) if and only if a and b lie in the same Zk+1-chain in A.

• SZk+1(x, y) := ϕZk+1(x) ∧ ϕZk+1(y) ∧ (x < y) ∧ ¬ϕZk+1(x, y)

∧ (∀z)
[
x ≤ z ≤ y → ϕZk+1(x, z) ∨ ϕZk+1(z, y)

]
. (∆c

2k+4)

Then A |= ϕZk+1(a, b) if and only if a and b are in successive Zk+1-chains in A.
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• Let SnZk+1(x, y) := (∃x1, . . . , xn−1) [SZk+1(x, x1) ∧ SZk+1(x1, x2) ∧ · · · ∧ SZk+1(xn−1, y)] .

(Σc
2k+4)

Then A |= SnZk+1(a, b) if and only if the Zk+1-chain containing b in A is the nth

successor of the Zk+1-chain containing a. Let S0
Zk+1(x, y) := ϕZk+1(x, y).

• ϕZk+1 := (∀x)(∀y)ϕZk+1(x, y). (Πc
2k+3)

Then A |= ϕZk+1 ⇔ A ∼= Zk+1.

• SPZk+1(x) := ϕZk+1(x) ∧ (∃y1)(∃y2)
[
SZk+1(y1, x) ∧ SZk+1(x, y2)

]
. (Σc

2k+4)

Then we have A |= SPZk+1(a) if and only if the Zk+1-chain containing a has immedi-

ately succeeding and preceding Zk+1-chains in A.

Here is a summary of the formulas and their complexities:

Formula Meaning Complexity

ϕZn(x) x lies in a Zn block Πc
2n+1

ϕZn(x, y) x and y lie in the same Zn block Πc
2n+1

ϕZn The ordering is isomorphic to Zn Πc
2n+1

SZn(x, y) x and y lie in successive Zn blocks ∆c
2n+2

SkZn(x, y) The Zn block of y is the kth successor of the Zn block of x Σc
2n+2

SPZn(x) The Zn block of x has preceding and succeeding Zn blocks Σc
2n+2

6.2.2 Finite ordinals

In this section, we will find the back-and-forth ordinals of the following classes:

K2m+2 := {A2m+2(S) : S ⊆ ω}

and

K2m+3 := {A2m+3(S) : S is (2m+ 3)-generic}.

Recall from Section 6.1 that the Turing ordinals of the two classes are 2m+ 2 and 2m+ 3

respectively. We will show that, in both cases, the back-and-forth ordinal is 2m+3. Recall

that A2m+2(S) := Zm · σ∗(S ⊕ S) and A2m+3(S) := Zm · σ∗(S).

First, consider the following formula:

(∃x0, x1, . . . , xr)

[
r−1∧
i=0

SZm(xi, xi+1) ∧ (∀y)
(
¬SZm(y, x0) ∧ ¬SZm(xr, y)

)]
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asserting the existence of a Zm · (r+ 1) block in an ordering. By the work in Section 6.2.1,

this formula is Σc
2m+3 and, by the definition of Zm · σ∗(X), this formula will distinguish

orderings of the form Zm · σ∗(X) and Zm · σ∗(Y ) provided that X 6= Y . It follows that the

back-and-forth ordinal of each of the two classes is at most 2m+ 3.

It remains to show that there are countably many ≡2m+2-classes the form (A,~a) where

A ∈ K2m+2 or A ∈ K2m+3. Before we state our theorem, we need to recall some notation

from Chapter 5. In this formulation, we will use similar notation to that appearing in

Section 5.2. This time, we need a formal way of passing from tuples in L to tuples in Z · L
and vice versa and we will do so as follows.

Let Yk be a set consisting of k-tuples of the form

~x = (〈m1, z
1
1 , z

1
2 , . . . z

1
m1
〉, 〈m2, z

2
1 , z

2
2 , . . . z

2
m2
〉, . . . , 〈mk, z

k
1 , z

k
2 , . . . z

k
mk
〉)

where m1,m2, . . . ,mk are positive integers, and for each 1 ≤ i ≤ k, we have zi1 < zi2 <

. . . < zimi , all picking elements of Z.

Given a linear order L, a k-tuple ~a = (a1, . . . , ak) from L, and a k-tuple ~x from Yk, we

define a corresponding (m1 +m2 +. . .+mk)-tuple, denoted by g~x(~a), in ϕ(L) as follows: Let

g~x(~a) := (ã1, ã2, . . . , ãk) where the tuple ãi is of length mi, lies in the Z block corresponding

to the element ai ∈ L, and there is an embedding of Z into Z · L that sends zij to the jth

member of the tuple ãi.

Now we are ready to characterize the pairs (Zm · σ∗(S),~a) up to ≡2n+2-equivalence.

Theorem 6.2.1. For all m ≥ 1, if ~a ∈ A ∼= Zm−1 · σ∗(S) and ~b ∈ B ∼= Zm−1 · σ∗(R) are

tuples of the same size such that

(i) ~a lies entirely in a Zm−1 · α block for some α ∈ {ω} ∪ {n+ 1}n∈ω,

(ii) ~b lies entirely in a Zm−1 · β block with β = α, and

(iii) as suborderings, we have (Zm−1 · α,~a) ∼= (Zm−1 · α,~b),

then for any ~x ∈ Y|~a| we have

(Zm · σ∗(S), g~x(~a)) ≤2m+2 (Zm · σ∗(R), g~x(~b)).
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This theorem amounts to showing that

(∀~b1)(∃~a1)(∀~a2)(∃~b2) · · · (∀~b2m+1)(∃~a2m+1)
[(
B, g~x(~b),~b1, . . . ,~b2m+1

)
≤1

(
A, g~x(~a),~a1, . . . ,~a2m+1

)]
where each~bi ∈ B and each ~ai ∈ A. To make our way through the back-and-forth argument

needed for the theorem, we will use the following lemma.

Lemma 6.2.2. Fix m ≥ 1 and let A ∼= Zm · σ∗(S) and B ∼= Zm · σ∗(R) for S,R ⊆ ω.

Suppose that, for some 0 ≤ k < m − 1, we have performed 2k + 2 back and forth steps

resulting in the tuples

~b1,~a1; ~a2,~b2; . . . ;~b2k+1,~a2k+1; and ~a2k+2,~b2k+2

with each ~ai ∈ A and each ~bi ∈ B, and suppose that the tuples chosen satisfy the following:

Let ~c = ~a1 ∪ . . . ∪ ~a2k+2 and ~d = ~b1 ∪ . . . ∪~b2k+2 and write

~c = ~c1 < . . . < ~cl

and
~d = ~d1 < . . . < ~dr

where the tuples ~c1, ~c2, . . . ,~cl each lie in distinct Zm−k blocks in A and the tuples ~d1,
~d2, . . . , ~dr each lie in distinct Zm−k blocks in B and are such that

(∗)k l = r and (Zm−k,~ci) ∼= (Zm−k, ~di) for all i = 1, . . . , l.

Then (∀~b2k+3)(∃~a2k+3)(∀~a2k+4)(∃~b2k+4) such that (∗)k+1 holds for the “new” tuples

c̃ = ~a1 ∪ . . .~a2k+2 ∪ ~a2k+3 ∪ ~a2k+4

and

d̃ = ~b1 ∪ . . . ∪~b2k+2 ∪~b2k+3 ∪~b2k+4

Remark 6.2.3. Let ~ci and ~di be the tuples described in the above theorem. Note that, for

each i = 1, . . . , l, there is a subordering of the form Zm−k−1 · ω∗ in between the rightmost

member of ~di−1 and the leftmost member of ~di, and similarly for ~ci−1 and ~ci. (We will use

the case of i = 1 to mean “to the left of the tuple ~d1 and ~c1”.)

Before we prove the above lemma, we will see how this lemma will give us the desired

result.
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Proof. (of Theorem 6.2.1 using Lemma 6.2.2) Fix m ≥ 1 and let ~a ∈ A ∼= Zm−1 · σ∗(S)

and ~b ∈ B ∼= Zm−1 · σ∗(R) be tuples of the same size such that

(i) ~a lies entirely in a Zm−1 · α block for some α ∈ {ω} ∪ {n+ 1}n∈ω,

(ii) ~b lies entirely in a Zm−1 · β block with α = β, and

(iii) as suborderings, we have (Zm−1 · α,~a) ∼= (Zm−1 · α,~b).

Fix ~x ∈ Y|~a|. We need to show that
(
Zm · σ∗(S), g~x(~a)

)
≤2m+2

(
Zm · σ∗(R), g~x(~b)

)
. By

properties (i)-(iii), and by the definition of g~x(·), we have that(
Zm · α, g~x(~a)

) ∼=(Zm · α, g~x(~b))
when we restrict the orderings Zm ·σ∗(S) and Zm ·σ∗(R) to only the blocks containing the

tuples g~x(~a) and g~x(~b) respectively.

Fix~b1 ∈ Zm·σ∗(R) and decompose g~x(~b)∪~b1 as g~x(~b)∪~b1 = g~x(~b)∪~b1(1)∪~b1(2)∪. . .∪~b1(k)

where the tuples ~b1(1) <~b1(2) < . . . < ~b1(k) lie in distinct Zm · αi blocks where

αi ∈ {ω} ∪ {r + 1}r∈R.

If any of ~b1 lies in the same Zm · α block as g~x(~b) then, without loss, we will include this

part of ~b1 in the tuple g~x(~b). We will let g~x(~a) ∪ ~a1 = g~x(~a) ∪ ~a1(1) ∪ ~a1(2) ∪ . . . ∪ ~a1(k)

where each tuple ~a1(i) is chosen in a distinct Zm ·ω block in Zm ·σ∗(S) so that the resulting

tuples, g~x(~b)∪~b1 and g~x(~a)∪~a1, have the same atomic type, and so that, as suborderings,

we have (
Zm · αi,~b1(i)

)
↪→
(
Zm · ω,~a1(i)

)
.

This can be done as there are densely many Zm · ω blocks.

Note that if αi = ω then the embedding is really an isomorphism.

Now fix ~a2 in Zm · σ∗(S). Again, decompose ~a2 as ~a2 = ~a2(1) < ~a2(2) < . . . < ~a2(l)

where each ~a2(j) lies in a distinct Zm · βj block where βj ∈ {ω} ∪ {s + 1}s∈S. Fix some j

with 1 ≤ j ≤ l. If ~a2(j) lies in the same block as g~x(~a) then the choice of corresponding

tuple ~b2(j) is obvious, so we consider the two remaining cases:

Case (1): ~a2(j) lies in the same Zm · ω block as ~a1(i) for some 1 ≤ i ≤ k.

If αi = ω (i.e. the corresponding tuple ~b1(i) lies in a Zm · ω block), then we can choose
~b2(j) in the Zm · ω block containing ~b1(i) so that, as suborderings, we have

(Zm · ω,~b1(i),~b2(j)) ∼= (Zm · ω,~a1(i),~a2(j)).
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If αi = r + 1 (i.e. the corresponding tuple ~b1(i) lies in a Zm · (r + 1) block), then we

decompose the Zm · ω block containing ~a1(i) and ~a2(j) as follows:

Zm · ω =
[
Zm · (r + 1)

]
+
[
Zm · ω

]
= L1 + L2.

We know ~a1(i) lies entirely in the first summand L1. Write ~a2(j) as ~e1 ∪ ~e2 where ~ei ∈ Li
(one may be the empty tuple). Here is the configuration in Zm · σ∗(S):

Zm · ω =
[
Zm · (r + 1)

]
+

[
Zm · ω

]
= L1 + L2

↑ ↑ ↑ ↑ ↑ ↑
~a1(i) ~e1 ~e2 ~a1(i) ~e1 ~e2

If ~e1 6= ∅ then we choose a corresponding ~f1 in the Zm · (r + 1) block containing ~b1(i) so

that, as suborderings, we have(
Zm · (r + 1),~b1(i), ~f1

) ∼=(L1,~a1(i), ~e1

)
.

If ~e2 6= ∅, then fix a “new” Zm ·ω block in Zm · σ∗(R) that lies between ~b1(i) and ~b1(i+ 1).

(If i = k then this condition reduces to being to the right of ~b1(k).) This block must exist as
~b1(i) and ~b1(i+ 1) lie in distinct Zm · αi blocks by assumption and hence there are densely

many Zm · ω blocks in between the two tuples.

Choose ~f2 in this Zm ·ω block so that, as suborderings, we have
(
Zm ·ω, ~f2

) ∼=(L2, ~e2

)
. Let

~b2(j) = ~f1 ∪ ~f2.

Case (2): ~a2(j) does not lie in the same Zm · ω block as any ~a1(i).

Let’s assume ~a2(j) lies strictly in between the Zm ·ω blocks of ~a1(i) and ~a1(i+ 1) for some

0 ≤ i ≤ k (where i = 0 is interpreted as “to the left of ~a1(1)” and i = k is interpreted as

“to the right of ~a1(k)”). Fix a “new” Zm · ω block in Zm · σ∗(R) that lies between ~b1(i)

and ~b1(i+ 1). Choose ~b2(j) in this block so that, as suborderings, we have

(Zm · βj,~a2(j)) ↪→ (Zm · ω,~b2(j)).

Having chosen ~b2(j) for 1 ≤ j ≤ k, we let ~b2 = ~b2(1) <~b2(2) < . . . < ~b2(k).
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Now, let’s stop to examine the current situation. Let ~d := g~x(b) ∪~b1 ∪~b2, the current

tuple in Z · σ∗(R), and ~c := g~x(a) ∪~a1 ∪~a2, the current tuple in Z · σ∗(S). Decompose the

two current tuples as

~c = ~c1 < . . . < ~cl

and
~d = ~d1 < . . . < ~dr

where the tuples ~c1, . . . ,~cl lie in distinct Zm blocks in their respective orderings. Then we

have l = r and (Zm, ~di) ∼= (Zm,~ci) for all i = 1, . . . , l. Note also that, for each i = 1, . . . , l,

there is a subordering of the form Zm−1 · ω∗ in between the rightmost member of ~di−1 and

the leftmost member of ~di and similarly for ~ci−1 and ~ci. (Again, i = 1 is interpreted as “to

the left of ~d1 and ~c1.”) We have shown that

(∀~b1)(∃~a1)(∀~a2)(∃~b2)
[
g~x(a) ∪ ~a1 ∪ ~a2 and g~x(b) ∪~b1 ∪~b2 satisfy (∗)0 of Lemma 6.2.2

]
.

By iterating Lemma 6.2.2 m− 1 times, resulting in 2(m− 1) additional back-and-forth

steps, we arrive at the following: For tuples

~u = g~x(~a) ∪ ~a1 ∪ ~a2 ∪ . . . ∪ ~a2m−1 ∪ ~a2m ∈ Zm · σ∗(S)

and

~w = g~x(~b) ∪~b1 ∪~b2 ∪ . . . ∪~b2m−1 ∪~b2m ∈ Zm · σ∗(R)

such that, when each tuple is decomposed as

~u = ~u1 < ~u2 < . . . < ~ul,

and

~w = ~w1 < ~w2 < . . . < ~wr

where each tuple ~ui and ~wi lies in a distinct Z block in its respective ordering, we have

l = r and (Z, ~ui) ∼= (Z, ~wi) for all i = 1, . . . , l. Observe that, for i = 1, . . . , l, there is

a subordering of the form ω∗ between the rightmost member of ~wi−1 and the leftmost

member of ~wi and similarly for ~ui−1 and ~ui. So we have shown that

(∀~b1)(∃~a1)(∀~a2)(∃~b2) · · · (∀~b2m−1)(∃~a2m−1)(∀~a2m)(∃~b2m)[
g~x(a) ∪ ~a1 ∪ . . . ∪ ~a2m and g~x(b) ∪~b1 ∪ . . . ∪~b2m satisfy (∗)m−1 of Lemma 6.2.2

]
.

Now fix ~b2m+1 ∈ Zm · σ∗(R) and let ~b2m+1 = ~b2m+1(1) < ~b2m+1(2) < . . . < ~b2m+1(r) where

each ~b2m+1(i) lies in a distinct Z block. If ~b2m+1(i) lies in the same Z block as some existing
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~wj, then the choice for corresponding ~a2m+1(i) ∈ Zm · σ∗(S) is natural. Let j the the least

index such that ~b2m+1 ≤ ~wj. (If no such j exists then we will follow the same procedure

as follows, but to the right of all the ~wj’s.) Let the corresponding ~a2m+1(i) ∈ Zm · σ∗(S)

be |~b2m+1(i)|-many consecutive elements in the ω∗ block that lies between the tuples ~uj−1

and ~uj. Finally let ~a2m+1 = ~a2m+1(1) < ~a2m+1(2) < . . . < ~a2m+1(r).

We now claim that
(
Zm ·σ∗(R), ~w,~b2m+1

)
≤1

(
Zm ·σ∗(S), ~u,~a2m+1

)
. We can justify this

last claim as follows. Let

~c = ~u ∪ ~a2m+1 = g~x(~a) ∪
2m+1⋃
i=1

~ai = c1 < c2 < . . . < cl

and

~d = ~w ∪~b2m+1 = g~x(~b) ∪
2m+1⋃
i=1

~bi = d1 < d2 < . . . < dl

Then for any pair (ci, ci+1) and corresponding (di, di+1), either the number of elements

between di and di+1 in B equals the number of elements between ci and ci+1 in A, or there

are infinitely many elements between di and di+1. In linear orderings, this is sufficient to

show that (B, ~d) ≤1 (A,~c) as desired.

Therefore we have shown that

(∀~b1)(∃~a1)(∀~a2)(∃~b2) · · · (∀~a2m)(∃~b2m)(∀~b2m+1)(∃~a2m+1)[(
B, g~x(~b),~b1,~b2 . . . ,~b2m,~b2m+1

)
≤1

(
A, g~x(~a),~a1,~a2 . . . ,~a2m,~a2m+1

)]
and hence

(
Zm · σ∗(S), g~x(~a)

)
≤2m+2

(
Zm · σ∗(R), g~x(~b)

)
.

Observe that this Theorem is still true if the original tuple ~a decomposes into finitely

many pieces all lying in distinct Zm−1 · αi blocks (for various αi’s) in Zm−1 · σ∗(S) and

similarly for ~b. Keeping track of the notation is a bit harder, but the proof is identical.

Now we will finish the result by proving Lemma 6.2.2.

Proof. (of Lemma 6.2.2) Fix m ≥ 1 and assume that we have ~c ∈ A ∼= Zm · σ∗(S) and
~d ∈ B ∼= Zm ·σ∗(R) satisfying property (∗)k for some 0 ≤ k < m−1. Fix~b2k+3 ∈ Zm ·σ∗(R).

If some part of ~b2k+3 appears in the same Zm−k blocks as current ~di’s then the choice of

the corresponding part of ~a2k+3 is clear based on property (∗)k. So let’s assume that ~b2k+3

appears in entirely “new” Zm−k blocks.

Let ~b2k+3(i) be the portion of ~b2k+3 that lies in to the right of ~di−1 and to the left of ~di,

if such a tuple exists.

63



Remark 6.2.4. As ~b2k+3 has no members in the Zm−k block containing ~di−1 by assumption,

there are infinitely many (entire) copies of Zm−k−1 strictly between the Zm−k block of ~di−1

and the leftmost member of the tuple ~b2k+3(i). In the case of i = 1, this result is obvious

as every copy of Zm−k−1 to the left of the tuple ~b2k+3(1) is “free”.

Decompose ~b2k+3(i) as ~b2k+3(i) := ~r1 < ~r2 < . . . < ~rs where the tuples ~r1, ~r2, . . . , ~rs lie in

distinct Zm−k−1 blocks. Then we have the following configuration in Zm · σ∗(R):

Zm−k Zm−k︷ ︸︸ ︷
[· · ·+Zm−k−1+Zm−k−1+ · · · ] < Zm−k−1< · · ·<Zm−k−1 <

︷ ︸︸ ︷
[· · ·+Zm−k−1+Zm−k−1+· · · ]

↑ ↑ ↑ ↑
~di−1 ~r1 · · · ~rs ~di

We will choose the corresponding tuple ~a2k+3(i) in the Zm−k−1 · ω∗ block that appears

between the tuples ~ci−1 and ~ci. Let ~a2k+3(i) = ~q1 < . . . < ~qs where the tuples ~q1, . . . , ~qs are

chosen in distinct, consecutive Zm−k−1 blocks so that, as suborderings, we have

(∗) (Zm−k−1, ~rj) ∼= (Zm−k−1, ~qj)

for j = 1, . . . , s. The configuration in Zm · σ∗(S) is as follows:

Zm−k Zm−k︷ ︸︸ ︷
[· · ·+Zm−k−1+Zm−k−1+· · · ] <

︷ ︸︸ ︷
[· · ·+Zm−k−1+· · ·+Zm−k−1+Zm−k−1+Zm−k−1+. . .︸ ︷︷ ︸]

↑ ↑ ↑ ↑
~ci−1 ~q1 · · · ~qs ~ci

Putting all the parts together we get ~a2k+3 = ~a2k+3(1) < ~a2k+3(2) < . . . < ~a2k+3(l).

Let ~a be the entire tuple from A that has been chosen so far and similarly for ~b in B.

Observe that, based on our actions in the previous step, we may no longer have a nice

correspondence between tuples in distinct Zm−k blocks in A and B; however, we do have

an adequate matching if we break our tuples into distinct Zm−k−1 blocks. More precisely, if

a portion, say ~a(0), of ~a lies in a distinct Zm−k−1 block in A then there is a corresponding

portion, say ~b(0), of ~b such that (Zm−k−1,~a(0)) ∼= (Zm−k−1,~b(0)). This makes the second

back-and-forth step straightforward.

Fix ~a2k+4 ∈ Zm · σ∗(S). Let ~a2k+4(i) be the portion of ~a2k+4 that lies in between the

tuples ~ci−1 and and ~ci. Our choice of corresponding ~b2k+4(i) will depend on the positioning
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of ~a2k+4(i) relative to the tuples ~ci and ~q1, . . . , ~qs. For the time being we will just refer to

~a2k+4(i) as ~a. There are three cases to consider:

(a) ~a lies to the right of the Zm−k−1-copy containing ~qs. In our picture, we have:

Zm−k Zm−k︷ ︸︸ ︷
[· · ·+Zm−k−1+Zm−k−1+· · · ] <

︷ ︸︸ ︷
[· · ·+Zm−k−1+· · ·+Zm−k−1+Zm−k−1+Zm−k−1+· · ·︸ ︷︷ ︸]

↑ ↑ ↑ ↑
~ci−1 ~q1 · · · ~qs ~a ~ci

Then we can choose ~b in the obvious way in Zm · σ∗(R):

Zm−k Zm−k︷ ︸︸ ︷
[· · ·+Zm−k−1+Zm−k−1+· · · ] < Zm−k−1< · · ·<Zm−k−1 <

︷ ︸︸ ︷
[· · ·+Zm−k−1+Zm−k−1+· · ·︸ ︷︷ ︸]

↑ ↑ ↑ ↑
~di−1 ~r1 · · · ~rs ~b ~di

(b) ~a lies in the same Zm−k−1 copy as some ~qj. Here is the picture for j = 1, the others

are similar:

Zm−k Zm−k︷ ︸︸ ︷
[· · ·+Zm−k−1+Zm−k−1+· · · ] <

︷ ︸︸ ︷
[· · ·+Zm−k−1+. . .+Zm−k−1+Zm−k−1+Zm−k−1+. . .︸ ︷︷ ︸]

↑ ↑ ↑ ↑
~ci−1 ~q1 ~a · · · ~qs ~ci

Then we can choose ~b in the obvious way in the Zm−k−1 block of ~rj, in this example, ~r1:

Zm−k Zm−k︷ ︸︸ ︷
[· · ·+Zm−k−1+Zm−k−1+· · · ] < Zm−k−1< · · ·<Zm−k−1 <

︷ ︸︸ ︷
[· · ·+Zm−k−1+Zm−k−1+· · ·︸ ︷︷ ︸]

↑ ↑ ↑ ↑
~di−1 ~r1

~b · · · ~rs ~di
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(c) ~a lies to the left of the copy of Zm−k−1 block containing ~q1. Here is the corresponding

picture (note that ~a could still lie in the same Zm−k block as ~ci):

Zm−k Zm−k︷ ︸︸ ︷
[· · ·+Zm−k−1+Zm−k−1+· · · ] <

︷ ︸︸ ︷
[· · ·+Zm−k−1+. . .+Zm−k−1+Zm−k−1+Zm−k−1+. . .︸ ︷︷ ︸]

↑ ↑ ↑ ↑ ↑
~ci−1 ~a ~q1 · · · ~qs ~ci

Then we can choose ~b in the infinitely many (entire) copies of Zm−k−1 strictly between the

Zm−k block of ~di−1 and the tuple ~r1. These copies exist by Remark 6.2.4. Let

~a = ~a(1) < ~a(2) < . . . < ~a(p)

where each ~a(j) lies together in a Zm−k−1 block. We pick ~b = ~b(1) < ~b(2) < . . . < ~b(p)

where each ~b(j) is in a distinct free copy of Zm−k−1 and is such that(
Zm−k−1,~a(j)

) ∼=(Zm−k−1,~b(j)
)
.

In any of these three cases, we chose an appropriate tuple ~b = ~b2k+4(i). Putting all the

parts of ~b2k+4 together we get ~b2k+4 = ~a2k+4(1) < . . . < ~b2k+4(l).

Now let ã = ~a1∪~a2∪ . . .∪~a2k+2∪~a2k+3∪~a2k+4 and b̃ = ~b1∪~b2∪ . . .∪~b2k+2∪~b2k+3∪~b2k+4, the

current tuples in A and B respectively. Let c̃ = c̃1 < . . . < c̃l̃ and d̃ = d̃1 < . . . < d̃l̃ where

each c̃i and d̃i lie in a distinct Zm−k−1 block in their respective orderings. Observe that,

by construction, we have (Zm−k−1, c̃i) ∼= (Zm−k−1, d̃i) for all i = 1, . . . l̃. This is property

(∗)k+1. Note that, as the tuples d̃i−1 and d̃i are finite and lie in distinct Zm−k−1 blocks, we

have a subordering of the form Zm−k−2 · ω∗ in between the rightmost member of ~di−1 and

the leftmost member of ~di. Similarly for the ~ci’s.

This completes the proof of the Lemma.

Corollary 6.2.5. For each m ≥ 0, there are countably many (2m+2)-back-and-forth types

of the form (L,~a) where L ∼= Zm · σ∗(S) for some S ⊆ ω.

Proof. Let A := {ω} ∪ {n + 1}n∈ω. For m = 0 we need to show that there are countably

many pairs of the form (σ∗(S),~a) up to ≡2-equivalence. Consider the following countable

set of tuples:

{(k, α1, α2, . . . , αk) : k ∈ ω, αi ∈ A}.
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Given any ordering σ∗(S) with ~a ∈ σ∗(S), we identify ~a with tuple (k, α1, α2, . . . , αk) if ~a

decomposes into k parts, ~a(1) < ~a(2) < . . . < ~a(k), where each tuple ~a(i) lies in a distinct

αi block in σ∗(S). If ~a ∈ σ∗(S) and ~b ∈ σ∗(R) are both identified with the same tuple

(k, α1, α2, . . . , αk) and, as suborderings, we have (αi,~a(i)) ∼= (αi,~b(i)) then we have

(σ∗(S),~a) ≡2 (σ∗(R),~b).

This is not hard to see. As there are countably many tuples of the form (k, α1, α2, . . . , αk),

and for each αi there are countably many finite tuples ~a ∈ αi, we have that there are at

most countably many ≡2-classes as desired.

For m > 0 we can use Theorem 6.2.1. Again, for each ~a in some Zm−1 ·σ∗(S), we identify

~a with tuple (k, α1, α2, . . . , αk) if ~a decomposes into k parts, ~a(1) < ~a(2) < . . .~a(k), where

each tuple ~a(i) lies in a distinct Zm−1 · αi block in Zm−1 · σ∗(S). If ~a ∈ Zm−1σ∗(S)

and ~b ∈ Zm−1σ∗(R) are both identified the the same tuple (k, α1, α2, . . . , αk) and, as

suborderings, we have
(
Zm−1 · αi,~a(i)

) ∼=(Zm−1 · αi,~b(i)
)

for each i, then by Theorem

6.2.1, for any ~x ∈ Y|~a|, we have(
Zm · σ∗(S), g~x(~a)

)
≤2m+2

(
Zm · σ∗(R), g~x(~b)

)
.

By symmetry, we really have ≡2m+2. Recall that any ~c ∈ Zm · σ∗(S), can be written in

the form ~c = g~x(~a) for an appropriate choice of ~a ∈ Zm−1 · σ∗(S) and ~x ∈ Y|~x|. As there

are countably many tuples of the form (k, α1, α2, . . . , αk), each Zm · αi countable, and Yk
for each k is countable, we have that there are countably many pairs (Zm · σ∗(S),~c) up to

≡2m+2 equivalence.

Finally, we have our desired result:

Corollary 6.2.6. For each m ≥ 0, the classes of structures

K2m+2 = {Zm · σ∗(X ⊕X) : X ⊆ ω} and K2m+3 = {Zm · σ∗(X) : X is (2m+ 3)-generic}

both have back-and-forth ordinal equal to 2m+ 3.

Proof. It follows from Corollary 6.2.5 that the back-and-forth ordinal of each of the two

classes is at least 2m + 3. As there are uncountably many (2m + 3)-generic sets, and any

two orderings Zm · σ∗(R) and Zm · σ∗(S) with R 6= S can be distinguished by a Σ2m+3

sentence, the back-and-forth ordinal of each is exactly 2m+ 3.
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6.2.3 Classes for ω + 1, ω + 2

In this section we will compute the back-and-forth ordinals of the following classes:

Kω+1 := {Aω+1(S) : S ⊆ ω}

and

Kω+2 := {Aω+2(S) : S is (ω + 2)-generic}.

From Section 6.1, we know that the Turing ordinals of Kω+1 and Kω+2 are ω+ 1 and ω+ 2

respectively. By Lemma 4.2.5, we know that the back-and-forth ordinal of Kω+1 is at most

ω + 1 and the back-and-forth ordinal of Kω+2 is at most ω + 2. We will show that the

back-and-forth ordinal is exactly ω + 1 in both cases.

Recall that Aω+1(S) = νω(S ⊕ S) and Aω+2(S) = νω(S) where νω(X), for some set X, is

a sum of densely many copies of the orderings

r + 1 +
∑

1≤i≤M

Zi for each r ∈ ω and M ≥ 1

and densely many copies of the orderings

r + 1 +
∑

1≤i<ω

Zi for each r ∈ X.

To simplify the notation, we will denote the orderings

r + 1 +
∑

1≤i≤M

Zi = r + 1 + Z + Z2 + . . .+ ZM , and

r + 1 +
∑

1≤i<ω

Zi = r + 1 + Z + Z2 + . . .+ Zi + . . .

by
∑

ZMr and
∑

Z∞r respectively.

First we will show, that there is a Σc
ω+1 formula that distinguishes two orderings νω(R)

and νω(S) for R 6= S.

Describing
∑∑∑

ZM
r blocks

We would like a formula χr,M(x) such that, for any linear ordering A and any a ∈ A,

A |= χr,M(a) if and only if a lies in a copy of
∑

ZMr in A. We will first define preliminary

formulas:
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1. To define an (r + 1) block ~x in an orderings let

Br(x0, . . . , xr) :=
r∧
i=1

S(xi, xi+1) ∧ (∀y)[¬S(y, x0) ∧ ¬S(xr, y)].

2. To define the initial (r + 1)-segment of a
∑

ZMr block we need the following family

of formulas, in addition to Br(~x):

• θZ(y1, ~x = (x0, . . . , xr)) := ϕZ(y1) ∧ (∀z) [ xr < z ≤ y1 ⇒ ϕZ(z, y1) ].

• θZi(yi−1, yi) := ϕZi(yi)∧(∀z) [ yi−1 ≤ z ≤ yi ⇒ ϕZi−1(yi−1, z) ∨ ϕZi(z, yi) ]

for i = 2, . . . ,M.

Then the formula

θr,M(~x, ~y) := Br(~x)∧
[
(y1 > xr) ∧ θZ(~x, y1)

]
∧
M−1∧
i=1

[
(yi+1 > yi) ∧ θZi+1(yi, yi+1)

]
defines a

∑
ZMr block with initial segment ~x and yi in Zi for each 1 ≤ i ≤M .

Finally, let

χr,Mk (x) := (∃x0, . . . , xk, . . . , xr) (∃~y)
[
xk = x ∧ θr,M(~x, ~y)

]
.

Then we have A |= χr,Mk (a) if and only if a is the (k+ 1)st member of the r+ 1 block

in
∑

ZMr .

3. To define membership in the Zi portion of a
∑

ZMr block for 1 ≤ i ≤ M , we need

the following formula:

χr,MZi (z) := (∃~x)(∃y1, . . . , yi, . . . , yM)[yi = z ∧ θr,M(~x, ~y)].

Now we are ready to define the formula of interest. Let

χr,M(x) :=
r∨

k=0

χr,Mk (x) ∨
M∨
i=1

χr,MZi (x),

Then for any linear ordering A and any a ∈ A, we have A |= χr,M(a) if and only if a lies

in a copy of
∑

ZMr .
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Describing
∑∑∑

Z∞r blocks

Fix r ∈ ω and consider the formula:

χr(x) :=
∨
M≥1

[ ∧
k≥M

χr,k(x)

]
.

Then A |= χr(a) if and only if a lies in a copy of
∑

Z∞r .

Here is a summary of the formulas from this section, along with their complexities:

Formula Meaning Complexity

χr,Mk (x) x is the (k+1)st member of the (r+1) block in a copy of
∑

ZMr Σc
2M+2

χr,MZi (x) x is in the Zi block of some copy of
∑

ZMr Σc
2M+2

χr,M(x) x lies in a copy of
∑

ZMr Σc
2M+2

χr(x) x lies in a copy of
∑

Z∞r Σc
ω+1

Now we can define our formulas separating orderings of the form νω(X).

Theorem 6.2.7. The back-and-forth ordinals of Kω+1 and Kω+2 are at most ω + 1.

Proof. Fix R, S ⊆ ω such that R 6= S. Without loss of generality assume there is some r0 ∈
ω such that r0 ∈ R and r0 /∈ S. Then, by definition, the structure Aω+1(R) = νω(R ⊕ R)

will have densely many copies of
∑

Z∞2r0 while the structure Aω+1(S) = νω(S⊕S) will have

none. Clearly these linear orderings are not isomorphic, but moreover, they have different

Σc
ω+1 types. This is because

Aω+1(R) |= (∃x)χ2r0(x) and Aω+1(S) 6|= (∃x)χ2r0(x)

where (∃x)χ2r0(x) is a Σc
ω+1 sentence. It follows that

|bfω+1(Kω+1)| ≥ |P(ω)| = 2ℵ0

Similarly, for any two (ω + 2)-generic sets R and S such that R 6= S, the corresponding

structures Aω+2(R) = νω(R) and Aω+2(S) = νω(S) have different Σc
ω+1 types. As there

are uncountably many distinct generic sets, we have that

|bfω+1(Kω+2)| ≥ 2ℵ0

as well. Therefore the back-and-forth ordinals of Kω+1 and Kω+2 are at most ω + 1.
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Now it remains to examine the Σω types of these two classes. We will prove that there

is exactly one model of Kω+1 and one model of Kω+2 up to ≡ω-equivalence. It will follow

that the back-and-forth ordinal of each class is at least ω + 1. Roughly speaking, the

reason the back-and-forth ordinal will be so high is the difficulty one has in differentiating

an ordering that has densely many copies of
∑

Z∞r from an ordering that only has densely

many copies of
∑

ZMr for arbitrarily large M . More precisely, fix M ≥ 1 and r ≥ 0 and

answer the following question: For which n ≥ 0 do we have
∑

Z∞r ≡n
∑

ZMr ?

Theorem 6.2.8. For all m ≥ 1, we have
∑

Z∞r ≡m
∑

Zm+1
r .

To get to this result, we need a few general results about linear orderings involving the

powers of Z. Recall the notation from Section 6.2.2 that allows us to pass from tuples in

L to tuples in Z · L.

Let Yk be a set consisting of k-tuples of the form

~x = (〈m1, z
1
1 , z

1
2 , . . . z

1
m1
〉, 〈m2, z

2
1 , z

2
2 , . . . z

2
m2
〉, . . . , 〈mk, z

k
1 , z

k
2 , . . . z

k
mk
〉)

where m1,m2, . . . ,mk are positive integers, and for each 1 ≤ i ≤ k, we have zi1 < zi2 <

. . . < zimi , all picking out integers.

Given a linear order L, a k-tuple ~a = (a1, . . . , ak) from L, and a k-tuple ~x from Yk, we

define a corresponding (m1 +m2 +. . .+mk)-tuple, denoted by g~x(~a), in ϕ(L) as follows: Let

g~x(~a) := (ã1, ã2, . . . , ãk) where the tuple ãi is of length mi, lies in the Z block corresponding

to the element ai, and there is an embedding of Z into Z ·L that sends zij to the jth member

of the tuple ãi.

Consider the following lemma:

Lemma 6.2.9. For all n > 0 and for all (infinite) linear orderings L1 and L2, if ~a ∈ L1

and ~b ∈ L2 are both of length k then, for any ~x ∈ Yk, we have(
L1,~a

)
≤n−1

(
L2,~b

)
=⇒

(
Z · L1, g~x(~a)

)
≤n
(
Z · L2, g~x(~b)

)
.

Proof. This proof is very similar to the proof of Lemma 5.2.1.

Base case: n = 1.

Suppose that (L1,~a) ≤0 (L2,~b). Then ~a and ~b must be ordered in the same way in L1 and

L2 respectively. Fix ~c ∈ Z · L2. By how g~x(·) was defined, we have g~x(~a) = (ã1, . . . , ãk) and

g~x(~b) = (b̃1, . . . , b̃k) ordered in the same way in Z · L1 and Z · L2 respectively. Moreover,

we have (
Z, ãi

) ∼=(Z,~bi)
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when we restrict to the suborderings Z containing ãi and b̃i for each i. It follows that, for

any two elements c1, c2 ∈ g~x(~a) appearing consecutively in Z · L1 and the corresponding

elements d1, d2 ∈ g~x(~b) in Z · L2, there are exactly the same number of elements between

the pair c1 and c2 as the pair d1 and d2. This is sufficient to show that

(Z · L1, g~x(~a)) ≤1 (Z · L2, g~x(~b))

as desired.

The inductive step proceeds exactly as in the proof of Lemma 5.2.1 with the ordering

Z · Li in the place of the ordering ϕ(Li), the set Yk in the place of the set Xk, and the

maps g~x(·) in the place of the maps f~x(·). We will omit the proof here.

Now we are ready to prove the following back-and-forth equivalence.

Proposition 6.2.10. If L1 and L2 are two countable linear orderings satisfying L1 ≡n L2,

then we have Z · L1 ≡n+1 Z · L2.

Proof. Fix ~b ∈ Z · L2 and l < n+ 1. Decompose ~b = ~b1 ∪ . . .∪ ~bk into the tuples ~bi lying in

distinct Z blocks. Then for some ~x ∈ Yk and some ~d ∈ L2 we have ~b = g~x(~d). As ~d ∈ L2,

l − 1 < n, and L1 ≡n L2, there must be some tuple ~c ∈ L1 such that

(L2, ~d) ≤l−1 (L1,~c).

By Lemma 6.2.9, we have (Z ·L2, g~x(~d)) ≤l (Z ·L1, g~x(~c)) and hence, for ~a := g~x(~c) ∈ Z ·L1,

we have (Z · L2,~b) ≤l (Z · L1,~a). Therefore Z · L1 ≡n+1 Z · L2 as desired.

Corollary 6.2.11. For all m ≥ 1 we have Zm ≡m Zm+k for all k ≥ 0.

Proof. We prove this corollary by induction on m. For m = 1, we have Z ≡1 Z1+k for all

k ≥ 0 as all countably infinite orderings are ≡1-equivalent. Now suppose that Zm ≡m Zm+k

for all k ≥ 0. By Proposition 6.2.10, we have that

Z · Zm ≡m+1 Z · Zm+k

for all k ≥ 0 or, equivalently, Zm+1 ≡m+1 Z(m+1)+k for all k ≥ 0. This completes the

proof.

Now we will turn our attention to the orderings
∑

Z∞r and
∑

ZMr . First, we note the

following result.
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Lemma 6.2.12 (Lemma 3.1 from [21]). Let A =
∑
i∈I

Ai and B =
∑
i∈I

Bi where all the Ai’s

and Bi’s are linear orderings. Let ~a ∈ A and ~b ∈ B. Let ~ai be the portion of ~a that lies in

Ai and let ~bi be the portion of ~b that lies in Bi. If (Ai,~ai) ≤n (Bi,~bi) for all i ∈ I, then

(A,~a) ≤n (B,~b). The result also holds for ω in place of n.

This can be easily proven by induction. Lemma 6.2.12 will allow us to consider the sum-

mands of our orderings separately. We now prove Theorem 6.2.8 restated here:

Theorem 6.2.13. For all m ≥ 1 we have
∑

Z∞r ≡m
∑

Zm+1
r .

Proof. Consider the two orderings∑
Z∞r = (r + 1) + Z + Z2 + . . . + Zm + Zm+1 + Zm+2 + . . .∑
Zm+1
r = (r + 1) + Z + Z2 + . . . + Zm + Zm+1

and decompose them as follows:∑
Z∞r = (r + 1) + Z + Z2 + . . . + Zm +

(
Zm+1 + Zm+2 + . . .

)
∑

Zm+1
r = (r + 1) + Z + Z2 + . . . + Zm +

(
. . .+ Zm + Zm + . . .

)
By Lemma 6.2.12, it suffices to show that(

Zm+1 + Zm+2 + . . .
)
≡m
(
. . .+ Zm + Zm + . . .

)
By Corollary 6.2.11, and Lemma 6.2.12, we have that

(Zm+1 + Zm+2 + . . .
)
≡m
(
Zm + Zm + . . .

)
so, by transitivity of ≤m, it remains to show that(

Zm + Zm + . . .
)

= Zm · ω ≡m Zm · Z =
(
. . .+ Zm + Zm + . . .

)
.

We will prove this by induction on m:

It is clear that Z · ω ≡1 Z · Z as they are both infinite orderings. Now assume that

Zm · ω ≡m Zm · Z. Then by Proposition 6.2.10, we have that

Z · (Zm · ω) ≡m+1 Z · (Zm · Z)

and hence, as multiplication is associative,

Zm+1 · ω ≡m+1 Zm+1 · Z

as desired.
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Finally, we return to our discussion of the classes Kω+1 and Kω+2, more precisely, to

the orderings νω(S) for some set S ⊆ ω. Suppose that we have two orderings A ∼= νω(S)

and B ∼= νω(R). We would like to show that we must have A ≡ω B, independent of

the choice of sets S and R. To get an idea of what we would like to prove consider the

following. Fix an element a ∈ A and n ∈ ω. We would like to find an element b ∈ B
such that (A, a) ≤n (B, b). We know that a lies in a block of the form

∑
ZMr for some

M ∈ {1, 2, . . . ,∞} and r ∈ ω. We would like to choose b ∈ B as similar as possible, so

ideally, we’d like to choose b to be an exact copy of a in some
∑

ZMr block on the B side.

This strategy will fail if M = ∞ and r is in the set R but not the set S. We would then

like to amend this strategy and choose a block of the form
∑

ZNr in B with N < ∞ but

such that
∑

ZNr ≡n+1

∑
Z∞r . Then we know we can find b in the ordering

∑
ZNr such that(∑

Z∞r , a
)
≤n
(∑

ZNr , b
)
. It turns out that this will be a winning strategy when we put

all the pieces together.

Definition 6.2.14. Fix a ∈ νω(S) and suppose that a lies in a block of the form
∑

ZMr
for some M ∈ {1, 2, . . . ,∞} and r ∈ ω. As the

∑
ZMr block is itself a linear ordering, there

is a natural embedding from
∑

ZMr into νω(S) that maps
∑

ZMr onto the
∑

ZMr block in

νω(S) containing a. We will denote the inverse image of a under this embedding by a∗.

Conversely, if we have an element a∗ in an ordering
∑

ZMr , then once we have fixed a single∑
ZMr block in νω(S), we let a denote the image of a∗ under the natural embedding from∑
ZMr into νω(S). We will use the same notation, ~a∗, for tuples ~a that lie together in a∑
ZMr block.

The following Lemma will relate the properties of a∗ in
∑

ZMr to the properties of a in

νω(S).

Lemma 6.2.15. For all n ≥ 0 and all orderings A ∼= νω(S) and B ∼= νω(R), if ~a =

~a1 ∪ ~a2 ∪ . . . ∪ ~ak ∈ A and ~b = ~b1 ∪~b2 ∪ . . . ∪~bk ∈ B satisfy

(i) ~ai < ~ai+1 and ~bi <~bi+1 for 1 ≤ i ≤ k − 1

(ii) |~ai| = |~bi| for i = 1, . . . , k, and

(iii) Each of the tuples ~a1, . . . ,~ak lie in a distinct
∑

ZMi
ri

block in A and each of the tuples
~b1, . . . ,~bk lie in a distinct

∑
ZNisi block in B with Mi, Ni ∈ {1, 2, . . . ,∞} and si = ri,

and

(iv)
(∑

ZNiri ,~b
∗
i

)
≤n
(∑

ZMi
ri
,~a∗i
)

for 1 ≤ i ≤ k

then (B,~b) ≤n (A,~a).
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Proof. We will prove the lemma by induction on n for all orderings and tuples at once.

Let ~a and ~b be as above.

For n = 0: Since
(∑

ZNiri ,~b
∗
i

)
≤0

(∑
ZMi
ri
,~a∗i
)
, the tuples ~a∗i and ~b∗i are ordered the

same way in
∑

ZMi
ri

and
∑

ZNisi respectively. As ~a1 < ~a2 < . . . < ~ak and ~b1 <~b2 < . . . < ~bk,

we have that ~a = ~a1 ∪ ~a2 ∪ . . . ∪ ~ak and ~b = ~b1 ∪~b2 ∪ . . . ∪~bk are ordered in the same way

in A and B respectively and hence (B,~b) ≤0 (A,~a).

Now assume the result holds for some n > 0 and suppose that we have(∑
ZNiri ,~b

∗
i

)
≤n+1

(∑
ZMi
ri
,~a∗i
)

for 1 ≤ i ≤ k. We wish to show that (B,~b) ≤n+1 (A,~a). Fix ~c ∈ A. We need to find ~d ∈ B
such that (A,~a,~c) ≤n (B,~b, ~d). For each i, let ~ci be the portion of ~c that lies in the same∑

ZMi
ri

block as ~ai. Note that we could have ~ci = ∅. Consider the corresponding tuple ~c∗i
in the ordering

∑
ZMi
ri

. Since(∑
ZNiri ,~b

∗
i

)
≤n+1

(∑
ZMi
ri
,~a∗i

)
by assumption, there exists a tuple ~d∗i ∈

∑
ZNiri such that(∑

ZMi
ri
,~a∗i ,~c

∗
i

)
≤n
(∑

ZNiri ,~b
∗
i ,
~d∗i

)
.

Consider the copy of
∑

ZNiri in B containing the tuple ~bi. Let ~di be the image of ~d∗i in this

copy of
∑

ZNiri . Now we have ~bi ∪ ~di in the same
∑

ZNiri block in B, and ~ai ∪~ci in the same∑
ZMi
ri

block in A and (
∑

ZMi
ri
,~a∗i ,~c

∗
i ) ≤n (

∑
ZNiri ,~b

∗
i ,
~d∗i ).

Any part of ~c that does not lie in the same
∑

ZMi
ri

block as one of the ~ai’s we deal with

separately. Let ~ej be the portion of ~c that lies together in some “new”
∑

ZPjsj block in A.

Define ~e∗j in the ordering
∑

ZPjsj as usual. By Theorem 6.2.13, we can pick Qj such that∑
ZPjsj ≡n+1

∑
ZQjsj . If Pj is finite, then we can let Qj = Pj; if Pj =∞ then we just need

to pick Qj large enough. By the theorem, Qj = n+ 2 will suffice. Then there is some tuple
~f ∗j ∈

∑
ZQjsj such that (

∑
ZPjsj , ~e∗j) ≤n (

∑
ZQjsj , ~f ∗j ). Now we need to select an appropriate

copy of
∑

ZQjsj in B in which to choose our corresponding tuple ~fj. If ~ai <A ~ej <A ~ai+1

then we select our copy of
∑

ZQjsj to lie to the right of
∑

ZNiri and to the left of
∑

ZNi+1
ri+1 in

B. (If ~ej lies to the left or to the right of all the tuples ~ai, then we proceed as follows but

to the left of
∑

ZN1
r1

or to the right of
∑

ZNkrk .) Let ~fj be the tuple corresponding to ~f ∗j in

this copy of
∑

ZQjsj in B and so we will have ~bi <B ~fj <B ~bi+1.

Now we have chosen ~d1 < ~d2 < . . . < ~dk and ~f1 < ~f2 < . . . < ~fl corresponding to

~c1 < ~c2 < . . . < ~ck and ~e1 < ~e2 < . . . < ~el where l is some natural number and some of the
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~ci (and corresponding ~di) may be the empty tuple. Arrange the tuples {(~ai ∪~ci), ~ej} k l
i=1,j=1

in A and {(~bi ∪ ~di), ~fj} k l
i=1,j=1 in B so that they satisfy property (i). (Note: We already

have properties (ii) and (iii) by construction.) Recall that we have(∑
ZMi
ri
,~a∗i ,~c

∗
i

)
≤n
(∑

ZNisi ,~b
∗
i ,
~d∗i

)
for 1 ≤ i ≤ k

and (∑
ZPjsj , ~e

∗
j

)
≤n
(∑

ZQjsj , ~f
∗
j

)
for 1 ≤ j ≤ l

which is property (iv). Let the tuple ~d include all ~di’s and ~fj’s ordered correctly relative

to the corresponding ~ci’s and ~ej’s in A. By the induction hypothesis, we have (A,~a,~c) ≤n
(B,~b, ~d). This proves that (B,~b, ) ≤n+1 (A,~a) as desired.

Now for our main result:

Theorem 6.2.16. For any two orderings A ∼= νω(S) and B ∼= νω(R) we have A ≡ω B.

Proof. We will show that B ≤ω A, the other inequality is symmetric. Fix ~a ∈ A and

n < ω. Decompose ~a as ~a1∪~a2∪ . . .∪~ak where each tuple ~ai lies in a distinct
∑

ZMi
ri

block

in A. For i = 1, pick N1 ≥ 1 (including ∞) such that
∑

ZM1
r1
≡n+1

∑
ZN1
r1

. Then there

exists a tuple ~b∗1 ∈
∑

ZN1
r1

such that (
∑

ZM1
r1
,~a∗1) ≤n (

∑
ZN1
r1
,~b∗1). Pick any copy of

∑
ZN1
r1

in ~B and let ~b1 be tuple corresponding to ~b∗1 in this copy.

For i = 2, pick N2 such that
∑

ZM2
r2
≡n+1

∑
ZN2
r2

. Then, similarly, there is some

tuple ~b∗2 such that
(∑

ZM2
r2
,~a2

)
≤n
(∑

ZN2
r2
,~b∗2
)
. Pick a copy of

∑
ZN2
r2

in B such that∑
ZN1
r1

<B
∑

ZN2
r2

if and only if
∑

ZM1
r1

<A
∑

ZM2
r2

. Let ~b2 be the tuple corresponding to
~b∗2 in this copy. We continue in this way to find ~b1,~b2, . . . ,~bk such that ~b = ~b1 ∪~b2 ∪ . . .∪~bk
and ~a satisfy properties (i)-(iv) from Lemma 6.2.15. Thus (A,~a) ≤n (B,~b) and hence

B ≤ω A.

Corollary 6.2.17. Let ~a ∈ νω(R) and ~b ∈ νω(S) satisfy the following:

1. The tuples decompose as ~a = ~c1 < ~c2 < . . . < ~ck where each tuple ~ci lies in a distinct∑
ZMi
ri

block, and ~b = ~d1 < ~d2 < . . . < ~dl where each tuple ~dj lies in a distinct
∑

ZNjsj
block, for Mi, Nj ∈ {1, 2, . . . ,∞} and ri, sj ∈ ω.

2. k = l and for each i = 1, . . . , k, Mi = Ni and ri = si.

3. For each i = 1, . . . , k, as suborderings, we have
(∑

ZMi
ri
,~ci
) ∼=(∑ZNisi , ~di

)
.

Then (νω(R),~a) ≤ω (νω(S),~b).
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Proof. Let ~a ∈ νω(R) and ~b ∈ νω(S) satisfy the given properties. Since Mi = Ni and

ri = si we will only refer to M ’s and r’s from now on. First note that we can decompose

νω(R) as

νω(R) = νω(R) +
∑

ZM1
r1

+ νω(R) +
∑

ZM2
r2

+ . . .+ νω(R) +
∑

ZMk
rk

+ νω(R)

and similarly,

νω(S) = νω(S) +
∑

ZM1
r1

+ νω(S) +
∑

ZM2
r2

+ . . .+ νω(S) +
∑

ZMk
rk

+ νω(S).

By Theorem 6.2.16, we have νω(R) ≤ω νω(S).

For each i, let ~ci = ci,1 < ci,2 < . . . < ci,ni and ~di = di,1 < di,2 < . . . < di,ni . Then in each

of νω(R) and νω(S),
∑

ZMi
ri

decomposes as∑
ZMi
ri

= Ai,0 + {ci,1}+Ai,1 + {ci,2}+ . . .+Ai,ni−1 + {ci,ni}+Ai,ni
for some linear orderings Ai,j and∑

ZMi
ri

= Bi,0 + {di,1}+ Bi,1 + {di,2}+ . . .+ Bi,ni−1 + {di,ni}+ Bi,ni
for some linear orderings Bi,j. By assumption, we have Ai,j ∼= Bi,j for all i = i, . . . , k and

all j = 1, . . . ni and hence Ai,j ≤ω Bi,j. Now, it follows from Lemma 6.2.12 that

(νω(R),~a) ≤ω (νω(S),~b).

Corollary 6.2.18. The back-and-forth ordinal of Kω+1 and Kω+2 is ω + 1.

Proof. By Theorem 6.2.7, the back and forth ordinal of each theory is at most ω + 1. By

Corollary 6.2.17, there are only countably many ≡ω-classes of pairs of the form (νω(S),~a)

where S ⊆ ω and ~a ∈ νω(S), and hence the back-and-forth ordinal of both theories is

exactly ω + 1.

The class Kω+2 is our first example of a class of structures with infinite Turing ordinal

and back-and-forth ordinal that are not equal. In fact, this class is Borel which will be

discussed in the next section.

6.3 Axiomatizing the theories

Many of the linear orderings defined in this Chapter can be axiomatized by computable

Lω1,ω formulas. In this section we will provide an axiomatization for a selection of the

classes from Section 6.1.
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6.3.1 Finite ordinals

In this section we will axiomatize orderings of the form Zm · σ∗(X) for all sets X. Recall

that we have the following formulas from Section 6.2.1:

Formula Meaning Complexity

ϕZm(x) x lies in a Zm block Π0
2m+1

ϕZm(x, y) x and y lie in the same Zm block Π0
2m+1

SZm(x, y) x and y lie in successive Zm blocks ∆0
2m+2

SkZm(x, y) The Zm block of y is the kth successor of the Zm block of x Σ0
2m+2

We will use these formulas to describe the basic properties of the given orderings.

Blocks of Zm · (r+ 1)

Consider the following formula:

θr,Zm(x0, x1, . . . , xr) :=
r−1∧
i=0

SZm(xi, xi+1) ∧ ∀y
(
¬SZm(y, x0) ∧ ¬SZm(xr, y)

)

Then A |= θr,Zm(a0, a2, . . . , ar) if and only if a0, a1, . . . , ar lie in r + 1 successive Zm blocks

in A and this “discrete block” of Zm’s is maximal. Similarly consider the following formula:

θr,Zm(y) := (∃x0, . . . , xr)

(
θr,Zm(x0, . . . , xr) ∧

r∨
i=0

ϕZm(xi, y)

)

Then A |= θr,Zm(a) if and only if a lies in a Zm · (r+1) block in A and this “discrete block”

of Zm’s is maximal.

Blocks of Zm · ω

Consider the following formula:

θkω,Zm(x) := ϕZm(x) ∧ ∃y Sk−1
Zm (y, x) ∧ ∀y ¬SkZm(y, x) ∧

∞∧
l=1

∃y SlZm(x, y)
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Then A |= θkω,Zm(a) if and only if a lies in the kth copy of Zm in a Zm · ω block in A. We

can also define the formula

θω,Zm(x) :=
∞∨
k=1

θkω,Zm(x)

with the property that A |= θω,Zm(a) if and only if a lies in a copy of Zm · ω in A.

Describing the Zm · σ∗(X) orderings

Consider the following formulas.

• Let Bm := (∀z)

[
θω,Zm(z) ∨

∞∨
r=0

θr,Zm(z)

]
.

Then A |= Bm if and only if every element of A either lies in a Zm · (r+ 1) block for

some r ∈ ω, or lies in a Zm · ω block.

• Let SBm(x, y) :=
∨
k∈ω

SkZm(x, y).

Then, for any A such that A |= Bm, we have A |= SBm(a, b) if and only if a and b

lie in the same Zm · α block for some α ∈ {1, 2, . . . , ω}.

Now we proceed to defining a shuffle sum of orderings of the form Zm · α for α ∈
{ω, 0, 1, . . .}. For the following, x and y will represent elements in different Zm · α blocks

in our ordering. We need to ensure that there is a copy of Zm · ω between x and y and, if

r ∈ X, a copy of Zm ·(r+1) between x and y. Consider the following preliminary formulas:

Bω,Zm(x, u, y) := (x < u < y) ∧ ¬SBm(x, u) ∧ ¬SBm(u, y) ∧ θω,Zm(u)

and

Br,Zm(x, u, y) := (x < u < y) ∧ ¬SBm(x, u) ∧ ¬SBm(u, y) ∧ θr,Zm(u).

Roughly speaking, these formulas assert the existence of a Zm · ω block or a Zm · (r + 1)

block between x and y. Similarly, let

Rω,Zm(x, u) := (x < u) ∧ ¬SBm(x, u) ∧ θω,Zm(u)

Lω,Zm(u, y) := (u < y) ∧ ¬SBm(u, y) ∧ θω,Zm(u)

Rr,Zm(x, u) := (x < u) ∧ ¬SBm(x, u) ∧ θr,Zm(u)

Lr,Zm(u, y) := (u < y) ∧ ¬SBm(u, y) ∧ θω,Zm(u)
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to assert blocks to the right of x and to the left of y. Now let

Dω,m(x, y) := (∃u)Rω,Zm(x, u) ∧ (∃u)Lω,Zm(u, y) ∧ (¬SBm(x, y)→ (∃u)Bω,Zm(x, u, y))

and

Dr,m(x, y) := (∃u)Rr,Zm(x, u) ∧ (∃u)Lr,Zm(u, y) ∧ (¬SBm(x, y)→ (∃u)Br,Zm(x, u, y))

then we can define the density property using the following formula

Dm := (∀x < y)

[
Dω,m(x, y) ∧

∧
r∈ω

(
(∃v)θr,Zm(v)→ Dr,m(x, y)

)]
.

The first half of the formula will ensure that there are densely many copies of Zm · ω
between x and y, and the second half of the formula will ensure that, for each r ∈ ω, either

there are no blocks of Zm · (r + 1) in the ordering, or there are densely many.

For structures in K2m+2, we need the set X to be of the form X = S ⊕ S and so we

need the following additional formula

Jm :=
∧
s∈ω

[(
(∃u) θ2s,Zm(u) ∧ (∀v) ¬θ2s+1,Zm(v)

)
∨
(

(∃u) θ2s+1,Zm(u) ∧ (∀v) ¬θ2s,Zm(v)
)]

to ensure that, for each r ∈ ω, exactly one of 2r and 2r + 1 appears in X.

Finally, consider the Πc
2m+5 formula χ2m+2 := Bm ∧ Dm ∧ Jm. Then for all linear

orderings A, we have

A |= χ2m+2 ⇐⇒ A ∈ {Zm · σ∗(S ⊕ S) : S ⊆ ω} = K2m+2

and hence the class K2m+2 is Borel.

To axiomatize the class K2m+3, we need to axiomatize the generic property of the set

S. Observe that for any A ∼= Zm · σ∗(S) we have

r ∈ S ⇔ There is a “maximal” Zm · (r + 1) block in A
⇔ A |= (∃~x) θr,Zm(~x).

Then, for any σ ∈ 2<ω, we have

σ ⊂ S ⇔ A |=
∧

σ(r)=1

r ∈ S ∧
∧

σ(r)=0

r /∈ S

⇔ A |=
∧

σ(r)=1

(∃~x) θr,Zm(~x) ∧
∧

σ(r)=0

¬(∃~x) θr,Zm(~x).
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By the definition of α-genericity, S is (2m+ 3)-generic if and only if

A |=
∧

X∈Σ0
2m+3

[ ∨
σ∈X

“σ ⊂ S” ∧
∨

σ∈2<ω

(
“σ ⊂ S” ∧

∨
τ⊇σ,τ∈X

(∃x)(x < x)

)]
.

Since this is an Lω1,ω sentence, the class K2m+3 is also a Borel class.

6.3.2 Classes for ω + 1 and ω + 2

How do we axiomatize orderings of the form νω(X) for some X ⊆ ω? They must satisfy

the following properties:

1. Every element lies in a copy of either r + 1 + Z + Z2 . . . + ZM for some r,M , or

r + 1 + Z + Z2 . . .+ Zi . . . for some r.

2. There are densely many copies of r + 1 + Z + Z2 . . .+ ZM for each pair r,M .

3. For each r, either there is no copy of r + 1 + Z + . . . + Zi . . . or there are densely

many.

Restricting to sets of the form X = S⊕S is not difficult. We then also require that exactly

one of (2s) + 1 + Z1 + . . .+ Zi . . . or (2s+ 1) + 1 + Z1 + . . .+ Zi . . . appears.

Recall the following formulas from Section 6.2.3.

Formula Meaning

θr,M(~x, ~y) ~x ∪ ~y lies in a
∑

ZMr block with initial segment ~x and each yi ∈ Zi

χr,M(x) x lies in a
∑

ZMr block

χr(x) x lies in a
∑

Z∞r block

Property 1

Using the work from Section 6.2.3, we can immediately describe Property 1 with the

formula

(∀x)

[ ∨
r≥0,M≥1

χr,M(x) ∨
∨
r∈ω

χr(x)

]
.

We need a bit more work for Properties 2 and 3.
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When x̃ and ỹ are in the same copy of
∑∑∑

ZM
r

To complete the description of the ordering, we need to define a formula that can check

whether two elements are in the same copy of some
∑

ZMr . Recall that, for any linear

ordering A and tuples ~a = (a0, . . . , ar) and ~b = (b1, . . . , bM) in A, we have

A |= θr,M(~a,~b)⇐⇒ ~a ∪~b lies in a single
∑

ZMr block with initial segment ~a and bi ∈ Zi.

Consider the following formula in two free variables x̃ and ỹ:

χr,M(x̃, ỹ) := S(x̃, ỹ) ∨ S(ỹ, x̃) ∨
M∨
i=1

ϕZi(x̃, ỹ)

∨
r∨

k=0

M∨
i=1

(∃~x)(∃~y)
[
x̃ = xk ∧ ỹ = yi ∧ θr,M(~x, ~y)

]
∨

M∨
i,l=1

(∃~x)(∃~y)
[
x̃ = yi ∧ ỹ = yl ∧ θr,M(~x, ~y)

]

Then for any ordering A and any a, b ∈ A, we have A |= χr,M(a, b) if and only if a and b

lie in the same block of the form
∑

ZMr in A.

When x̃ and ỹ are in the same copy of
∑∑∑

Z∞r
Using the above formula, we can extend this to the case of infinitely many summands. Let

χr(x̃, ỹ) :=
∨
M≥1

[ ∧
k≥M

χr,k(x̃, ỹ)

]

then A |= χr(a, b) if and only if a and b lie in the same copy of
∑

Z∞r .

When x̃ and ỹ are in different blocks in νω(S)

Consider the following formula

¬χ(x̃, ỹ) := ¬

[ ∨
r≥0,M≥1

χr,M(x̃, ỹ) ∨
∨
r≥0

χr(x̃, ỹ)

]
.

Then A |= ¬χ(a, b) if and only if a and b do not lie in the same copy of
∑

ZMr for any r,M

or
∑

Z∞r for any r.
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Property 2

To describe Property 2, for each pair (r,M), define the sentence D(r,M) as:

(∀x, y)
[
¬χ(x, y)→(∃z)

(
x < z < y ∧ ¬χ(x, z) ∧ ¬χ(z, y) ∧ χr,M(z) ∧ ¬χr,M+1(z)

)]
that says that blocks of the form

∑
ZMr are dense in a given ordering.

Property 3

For the final property, let Set(r) be the following formula

(∃z)
[
χr(z)

]
→(∀x, y)

[
¬χ(x, y)→(∃z)

(
x < z < y ∧ ¬χ(x, z) ∧ ¬χ(z, y) ∧ χr(z)

)]
then A |= Set(r) if and only if there are either densely many copies of

∑
Z∞r or no copies.

Theory of Kω+1

Recall the class Kω+1 = {νω(S⊕S) : S ⊂ ω}. This class can be axiomatized by the axioms

of linear orderings and the following computable infinitary sentences:

(∀x)

[ ∨
r≥0,M≥1

χr,M(x) ∨
∨
r∈ω

χr(x)

]
∧

[ ∧
r≥0,M≥1

D(r,M)

]
∧

[∧
r≥0

Set(r)

]
(1)

and ∨
r∈ω

[
(∃x)χ2r(x)⇔ ¬(∃x)χ2r+1(x)

]
(2)

Sentence (1) ensures that each linear ordering is of the form νω(X) for some set X and

sentence (2) ensures that X is of the form S ⊕ S. These are computable Lω1,ω sentence

and hence this class is Borel.

Theory of Kω+2

Recall the class Kω+2 = {νω(S) : S is (ω + 2)-generic}. We axiomatized the notion of

(2m + 3)-genericity Section 6.3.1 and we will use a similar axiomatization here. In this

case, we need to take our conjunction over all Σ0
ω+2 sets of strings. This is again an Lω1,ω

sentence and therefore Kω+2 provides our first counterexample to Question 4.3.2.
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Chapter 7

Separating the ordinals

The goal of this chapter is to define Borel classes of structures for which the Turing ordinal

and back-and-forth ordinal are far apart. First let us recall the current picture:

Class of structures Turing ordinal Back-and-forth ordinal

Abelian groups 0 1

Graphs 0 1

Algebraic fields 0 1

Partial orders 0 1

Lattices 0 1

Models of PA 1 1

KW DNE 1

Equivalence structures 1 2

Linear orders 2 3

Tn n+ 2 n+ 3

K2m+2 2m+ 2 2m+ 3

K2m+3 2m+ 3 2m+ 3

Boolean algebras ω ω

Kω+1 ω + 1 ω + 1

Kω+2 ω + 2 ω + 1
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7.1 Infinite Turing ordinal, finite back-and-forth or-

dinal

In this section, we will describe classes of orderings KN , one for each positive integer N ,

having Turing ordinal ω and finite back-and-forth ordinal 2N+3. These classes will provide

the first examples having finite back-and-forth ordinal but infinite Turing ordinal.

Given a positive integer N , there is a notation for ω with adjusted fundamental sequence(
α′k
)
k∈ω =

(
2(N + k) + 2

)
k∈ω.

Recall from Chapter 6, that, for all S ⊆ ω,

A2(N+k)+2(S) := ZN+k · σ∗(S ⊕ S)

and so the corresponding ordering, Aω(S), for this fundamental sequence is defined as

∞∑
k=0

(
1 + η + 1 + ZN+k · σ∗(Sk ⊕ Sk)

)
Building on the work from [1], we can form a subcollection of these orderings and get an

example of a Borel class with finite back-and-forth ordinal but infinite Turing ordinal.

This Section will be devoted to proving the following theorem and axiomatizing the

given classes.

Theorem 7.1.1. Fix N ≥ 1. The class of orderings defined by

KN :=

{
∞∑
k=0

(
1+η+1+ZN+k ·σ∗(Sk ⊕ Sk)

)∣∣∣∣∣Sk 6≤T (S0 ⊕ . . .⊕ Sk−1)2(N+k)+2 for all k ∈ ω

}

has Turing ordinal ω and back-and-forth ordinal 2N + 3.

For notation, let L(N,S) :=
∞∑
k=0

(
1 + η + 1 + ZN+k · σ∗(Sk ⊕ Sk)

)
.

The fact that the Turing ordinal of each class is ω follows directly from Theorem 6.1.22.

In Section 7.1.1 we will discuss the back-and-forth ordinals of the classes and in Section

7.1.2, we will provide an axiomatization of each theory.
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7.1.1 The back-and-forth ordinal of KN

As the building blocks of the L(N,S) orderings are orderings of the form Zm · σ∗(X) for

various sets X, we will use the results from Section 6.2.2 to help us examine the back-and-

forth types of the desired tuples.

Proposition 7.1.2. For all positive integers N , there are only countably many pairs of

the form (L(N,S),~a), where S ⊆ ω, up to ≡2N+2-equivalence.

Proof. Fix N ≥ 1. Recall that

L(S,N) =
∞∑
k=0

(
1 + η + 1 + ZN+k · σ∗(Sk ⊕ Sk)

)
.

It follows from Corollary 6.2.5 that, for all k ≥ 0, there are at most countably many pairs

of the form (ZN+k · σ∗(X),~a), up to ≡2N+2 equivalence. This follows from the fact that

≡2(N+k)+2-equivalence for any k ≥ 0 implies ≡2N+2-equivalence. Observe that there are

also at most countably many pairs of the form (1 + η + 1,~c) up to ≡2N+2-equivalence. So,

by Lemma 6.2.12, for each k ≥ 0, there are countably many pairs (A,~a) where

A ∼= 1 + η + 1 + ZN+k · σ∗(X),

up to ≡2N+2-equivalence. For each k ≥ 0, we will list the equivalence classes as follows:

(Ak0,~ak0), (Ak1,~ak1), . . .

Now, given any set S and any finite tuple ~b ∈ L(N,S), we can decompose ~b as

~b = ~b1 <~b2 < . . . < ~bp

where each ~bi lies in a distinct
(
1 + η + 1 + ZN+ki · σ∗(Ski ⊕ Ski)

)
block for some ki. Then

each ~bi is ≡2N+2-equivalent to some tuple ~akiji from our above list. We will identify ~b with

the tuple

(~ak1j1 ,~a
k2
j2
, . . . ,~a

kp
jp

).

By Lemma 6.2.12, if we have ~b ∈ L(N,S) and ~d ∈ L(N,R) that are both identified with

the same tuple (~ak1j1 ,~a
k2
j2
, . . . ,~a

kp
jp

), then we have

(L(N,S),~b) ≡2N+2 (L(N,R), ~d).

As there are only countably many such tuples, there are at most countably many pairs

(L(N,S),~b) up to ≡2N+2-equivalence.
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Corollary 7.1.3. The back-and-forth ordinal of KN is at least 2N + 3.

It remains to show that the back-and-forth ordinal is exactly 2N + 3.

Proposition 7.1.4. If R, S ⊆ ω satisfy R0 6= S0 then L(N,R) 6≡2N+3 L(N,S).

Proof. Suppose that R0 6= S0. If there is some a ∈ R0 − S0 then 2a ∈ R0 ⊕ R0 and

2a /∈ S0 ⊕ S0. If there is some a ∈ S0 − R0 then 2a + 1 ∈ R0 ⊕ R0 and 2a + 1 /∈ S0 ⊕ S0.

In either case, we have some r ∈ R0 ⊕R0 that is not in S0 ⊕ S0. We will show that this is

enough to distinguish L(N,R) and L(N,S) at the 2N + 3 level.

Fix r ∈ ω and positive integer N and consider the following sentence:

ϕ(r,N) := ∃x0, x1, . . . , xr

[
r−1∧
i=0

SZN (xi, xi+1) ∧ ∀y
(
¬SZN (y, x0) ∧ ¬SZN (y, xr)

)]

As the formula SZN (x, y) is ∆c
2N+2, the sentence ϕ(r,N) is Σc

2N+3. Moreover, ϕ(r,N) has

the following property: For any linear ordering L,

L |= ϕ(r,N) ⇐⇒ L has a maximal ZN · (r + 1) block.

Now observe that, by definition, we have the following equivalence for all R ⊆ ω and all

r ∈ ω:

L(N,R) has a maximal ZN · (r + 1) block ⇐⇒ r ∈ R0 ⊕R0

Therefore, as r ∈ R0 ⊕ R0, we have L(N,R) |= ϕ(r,N) and, since r /∈ S0 ⊕ S0, we have

L(N,S) 6|= ϕ(r,N). So L(N,R) 6≡2N+3 L(N,S) as desired.

Corollary 7.1.5. The back-and-forth ordinal of KN is at most 2N + 3.

Proof. There are uncountably many sets R0 ⊂ ω × ω. and we can choose R1, R2, . . . such

that, for each k ≥ 1, Rk 6≤T (R0 ⊕ . . . Rk−1)2(N+k)+2. It follows that there are uncountably

many orderings L(N,S) ∈ KN with distinct 0-slices and hence, by Proposition 7.1.4, KN

has uncountably many ≡2N+3-equivalence classes. So the back-and-forth ordinal of KN is

at most 2N + 3.

Now we restate the main result from the start of the section:
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Theorem 7.1.6. Fix N ≥ 1. The class of orderings defined by

KN :=

{
L(N,S)

∣∣∣∣∣ Sk 6≤T (S0 ⊕ . . .⊕ Sk−1)2(N+k)+2 for all k ∈ ω

}
has Turing ordinal ω and back-and-forth ordinal 2N + 3.

Proof. By Theorem 6.1.22, Corollary 7.1.3 and Corollary 7.1.5.

7.1.2 Axiomatizing the theories

In this section we will axiomatize the classes KN for all N ≥ 1 using an Lω1,ω sentence in

the language of linear orderings and hence show that the given classes are Borel. Recall

that we axiomatized the basic building blocks, Zm · σ∗(S ⊕ S) in Section 6.3.1. We have

formulas θr,Zm(x) such that A |= θr,Zm(a) if and only if a lies in a Zm ·(r+1) block in A and

this “discrete block” of Zm’s is maximal. And formulas θω,Zm(x) such that A |= θω,Zm(a)

if and only if a lies in a copy of Zm · ω in A. We need one more building block before we

start to define the L(N,S) orderings.

Blocks of 1 + η+ 1

We would like a formula in two variables x and y with the meaning that x and y are the

end points of a block of the form 1 + η + 1. Define this formula, which we will denote by

ϕη(x, y), as follows:

(x < y) ∧ (∀z)(∀w)
[
x < z < w < y → (∃u z < u < w) ∧ (∃u∃v x < u < z < v < y)

]
Describing the ZN+k · σ∗(X) orderings

Here, we need to amend our formulas from Section 6.3.1 to describe the Zn ·σ∗(X) orderings

as suborderings of the larger ordering L(N,S). We alter the formula Bm from section 6.3.1

by adding parameters that will act as end points:

Bn(x, y) := (∀z)

[
x < z < y −→

(
θω,Zn(z) ∨

∞∨
r=0

θr,Zn(z)

)]
.

Then A |= Bn(a, b) if and only if every element of A between a and b lies in either a

Zn · (r + 1) block for some r ∈ ω, or lies in a Zn · ω block.
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Now let’s assume that a and b are parameters representing the endpoints of the Zn ·
σ∗(X) ordering as follows:

a+ Zn · σ∗(X) + b

The variables x and y will represent elements in different Zn · α blocks satisfying a < x <

y < b . We need to ensure that there is a copy of Zn · ω between x and y and, if r ∈ X, a

copy of Zn · (r + 1) between x and y. Consider the following preliminary formulas:

Dω,Zn(x, u, y) := (x < u < y) ∧ ¬SBn(x, u) ∧ ¬SBn(u, y) ∧ θω,Zn(u)

and

Dr,Zn(x, u, y) := (x < u < y) ∧ ¬SBn(x, u) ∧ ¬SBn(u, y) ∧ θr,Zn(u)

Then we can describe density using the following formula:

Dn(a, x, y, b) := (∃u)Dω,Zn(x, u, y) ∧
∧
r∈ω

[
(∃v)Dr,Zn(a, v, b)→ (∃u)Dr,Zn(x, u, y)

]

The first half of the formula will ensure that there are densely many copies of Zn ·ω between

a and b, and the second half of the formula will ensure that, for each r ∈ ω, either there

are no blocks of Zn · (r + 1) between a and b, or there are densely many.

To describe the Zn · σ∗(X) ordering between a and b we have the following formula:

Σn(a, b) := Bn(a, b) ∧ (∀x)(∀y)
[(
a ≤ x < y ≤ b ∧ ¬SBn(x, y)

)
→ Dn(a, x, y, b)

]
To ensure that the set X is of the form S ⊕ S, we need to add the formula

Jn :=
∧
s∈ω

[(
(∃u) θ2s,Zn(u) ∧ (∀v) ¬θ2s+1,Zn(v)

)
∨
(

(∃u) θ2s+1,Zn(u) ∧ (∀v) ¬θ2s,Zn(v)
)]

and so our final formula is as follows:

Σ⊕n (a, b) := Σn(a, b) ∧ Jn ∧ (∃y)(a < y < b)

The last part of the formula is needed in order to ensure that the ordering between a and

b is non-empty. For any ordering A we have A |= Σ⊕n (a, b) if and only if between a and b

lies an ordering of the form Zn · σ∗(S ⊕ S) for some set S.
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Axiomatizing L(N,S)

Fix integers N ≥ 1 and k ≥ 0. We will first axiomatize all orderings of the form

1 + η + 1 + ZN+k · σ∗(Sk ⊕ Sk) + 1 + η + 1 + B

where S can be any subset of natural numbers and B can be any linear ordering. The free

variables x0, y0, x1, y1 in our formula will denote the “1”s in the (1 + η+ 1) blocks, ordered

from left to right. Then we can describe the ordering by the following formula:

(x0 < y0 < x1 < y1) ∧ (∀y) (x0 ≤ y) ∧ ϕη(x0, y0) ∧ Σ⊕N+k(y0, x1) ∧ ϕη(x1, y1)

Similarly, we can describe an ordering of the form

K∑
k=0

(
1 + η + 1 + ZN+k(Sk ⊕ Sk)

)
+ 1 + η + 1 + B

with the following formula in free variables x0, y0, . . . , xK , yK , xK+1, yK+1:

(x0 < y0 < . . . < xK+1 < yK+1) ∧
k=K∧
k=0

(
ϕη(xk, yk) ∧ Σ⊕N+k(yk, xk+1)

)
∧ ϕη(xK+1, yK+1)

Let ~xK := (x0, y0, . . . , xK , yK , xK+1, yK+1). Let’s denote this formula by

ϕKN (x0, y0, . . . , xK , yK , xK+1, yK+1) = ϕKN (~xK).

Let CK be the collection of orderings of the above form. More precisely, let

CK :=

{
K∑
k=0

(
1 + η + 1 + ZN+k(Sk ⊕ Sk)

)
+ 1 + η + 1 + B

∣∣∣∣∣ S ⊆ ω,B a lin. order

}
.

Then, for any linear ordering A, we have

A |= ∃~xK ϕKN (~xK) ⇐⇒ A ∈ CK

By taking the infinite conjunction of ϕKN for all K, we can axiomatize orderings with initial

segments isomorphic to L(N,S) for some S. More precisely, for any linear ordering A, we

have

A |=
∞∧
K=0

∃~xK ϕKN (~xK) ⇐⇒ A ∼= L(N,S) + B
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for some set S and some linear ordering B. The infinite conjunction ensures that arbitrarily

large initial segments of A must be isomorphic to corresponding initial segments of some

L(N,S), but the formula does not exclude a non-empty ordering B appearing to the right.

Our last step is to define a formula that will guarantee B = ∅. Informally, we would

like a formula in one free variable z that will force z to lie in the initial segment of the

form L(N,S). For each K ≥ 0, define the formula ψKN (z), such that for any ordering L
and any a from L we have

L |= ψKN (a) ⇐⇒ L ∈ CK where a lies strictly to the left of the ordering B.

For each K ≥ 0, consider the following collection of formulas in one free variable z:

(∃~xK)
[
ϕKN (~xK) ∧ (z = xi)

]
for i = 0, . . . , K + 1

(∃~xK)
[
ϕKN (~xK) ∧ (z = yi)

]
for i = 0, . . . , K + 1

(∃~xK)
[
ϕKN (~xK) ∧ (xi < z < yi)

]
for i = 0, . . . , K + 1

(∃~xK)
[
ϕKN (~xK) ∧ (yi < z < xi+1)

]
for i = 0, . . . , K

Let ψKN (z) be the disjunction of all of the above formulas, and define the following formula:

ψN :=

[
∞∧
K=0

∃~xK ϕKN (~xK)

]
∧

[
(∀z)

∞∨
K=0

ψKN (z)

]

Then, for any linear ordering A, we have

A |= ψN ⇐⇒ A ∼= L(N,S) for some S ⊆ ω.

Observe that, for each N , the formula ψN is a computable Lω1,ω formula. For the various

classes KN , we will need the sentences ψN for all N ≥ 1.

Axiomatizing Sk 6≤T (S0⊕ . . .⊕ Sk−1)
2(N+k)+2

Let’s suppose we have an ordering A such that A ∼= L(N,S) for some N ≥ 1 and some

S ⊆ ω. For each k ≥ 1 we need a formula ϕN,k such that

A |= ϕN,k if and only if Sk 6≤T (S0 ⊕ . . .⊕ Sk−1)2(N+k)+2 .
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Observe that, from the definition of L(N,S), for any r,m ∈ ω and any positive integer N ,

we have

r ∈ Sm ⇐⇒ 2r ∈ Sm ⊕ Sm
⇐⇒ There is a maximal ZN+m · (2r + 1) block in L(N,S).

⇐⇒ L(N,S) |= ∃~x θ2r,ZN+m(~x)

and

r /∈ Sm ⇐⇒ 2r + 1 ∈ Sm ⊕ Sm
⇐⇒ There is a maximal ZN+m · (2r + 2) block in L(N,S).

⇐⇒ L(N,S) |= ∃~x θ2r+1,ZN+m(~x)

Let’s look at how to axiomatize“ X ≤T Y (M)” for sets X and Y , and some M ≥ 0. We have

“X ≤T Y (M)” if and only if there is some index e such that for all r ∈ ω, X(r) = ΦY (M)

e (r).

So, as a formula, we have

“X ≤T Y (M)” ⇐⇒ There is some e such that for all r ∈ ω,[
r ∈ X ⇔

(
∃σ ⊂ Y (M)

)
(∃s)

(
Φσ
e,s(r)↓= 1

)]
, and[

r /∈ X ⇔
(
∃σ ⊂ Y (M)

)
(∃s)

(
Φσ
e,s(r)↓= 0

)]
⇐⇒ There is some e such that for all r ∈ ω,r ∈ X ⇔ ∨

(σ,s):Φσe,s(r)↓=1

σ ⊂ Y (M)

 , and

r /∈ X ⇔ ∨
(σ,s):Φσe,s(r)↓=0

σ ⊂ Y (M)


⇐⇒

∨
e∈ω

∧
r∈ω

[ (
r ∈ X ⇔

∨
(σ,s):Φσe,s(r)↓=1

σ ⊂ Y (M)

)
∧

(
r /∈ X ⇔

∨
(σ,s):Φσe,s(r)↓=0

σ ⊂ Y (M)

) ]

Now modulo the statements “r ∈ X”, “r /∈ X”, and “σ ⊂ Y (M)”, this is a computable

Lω1,ω formula. In our particular case we want a statement of the form

“Sk ≤T (S0 ⊕ . . .⊕ Sk−1)2(N+k)+2”
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and so we have X = Sk, Y = S0 ⊕ . . .⊕ Sk−1 and M = 2(N + k) + 2. Based on the work

above, to axiomatize this statement we need only produce formulas with the meaning

“r ∈ Sk”, “r /∈ Sk” for all k ∈ ω and “σ ⊂ (S0 ⊕ . . .⊕ Sk−1)2(N+k)+2” for all k ≥ 1 and all

positive integers N . We already have formulas meaning “r ∈ Sk”, “r /∈ Sk” for all k ∈ ω,

so it remains to find a formula for “σ ⊂ (S0 ⊕ . . .⊕ Sk−1)2(N+k)+2” for each k ≥ 1 and

positive integer N .

Observe that, if we have a formula for “σ ⊂ (S0 ⊕ . . .⊕ Sk−1)”, then, by induction, we

can build formulas for “τ ⊂ (S0 ⊕ . . .⊕ Sk−1)(M)” for all M ≥ 0. This follows from the

fact that, for M ≥ 1,

“τ ⊂ X(M)”⇔
∧

τ(i)=1

 ∨
(σ,s):Φσi,s(i)↓

“σ ⊂ X(M−1)”

 ∧ ∧
τ(i)=0

 ∧
(σ,s):Φσi,s(i)↓

¬“σ ⊂ X(M−1)”

 .
So it suffices to construct a formula with the meaning “σ ⊂ (S0 ⊕ . . .⊕ Sk−1) for each

k ≥ 1.

Proposition 7.1.7. For each triple (N, k, τ) where N, k ≥ 1 and τ ⊂ ω, there is a com-

putable Lω1,ω formula, α(N, k, τ), in the language of linear orderings such that for any set

S ⊆ ω,

τ ⊂ S0 ⊕ S1 ⊕ · · · ⊕ Sk−1 ⇐⇒ L(N,S) |= α(N, k, τ).

Proof. We will construct the desired formulas by describing how statements of the form

r ∈ S0 ⊕ S1 ⊕ · · · ⊕ Sk−1 manifest in the the ordering L(N,S). Note here that we write

S0⊕ S1⊕ · · · ⊕ Sk−1 for (. . . ((S0⊕ S1)⊕ S2)⊕ . . .⊕ Sk). For k = 1, the statement reduces

to r ∈ S0, for which a formula has already been defined, and so we will take the base case

as k = 2, the first time the join appears.

k = 2: r ∈ S0 ⊕ S1

If r is even, then

r ∈ S0 ⊕ S1 ⇐⇒ r/2 ∈ S0

⇐⇒ r ∈ S0 ⊕ S0

⇐⇒ L(N,S) |= ∃~x θr,ZN (~x)

If r is odd, then

r ∈ S0 ⊕ S1 ⇐⇒ (r − 1)/2 ∈ S1

⇐⇒ r − 1 ∈ S1 ⊕ S1

⇐⇒ L(N,S) |= ∃~x θr−1,ZN+1(~x)
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Let χ21(N, r, 1) := ∃~x θr,ZN (~x) and χ20(N, r, 1) := ∃~x θr−1,ZN+1(~x). These formulas are

computable Lω1,ω formulas in the language of linear orderings satisfying:

1. If 21|r, then r ∈ S0 ⊕ S1 ⇐⇒ L(N,S) |= χ21(N, r, 1), and

2. If 20|r but 21 -r, then r ∈ S0 ⊕ S1 ⇐⇒ L(N,S) |= χ20(N, r, 1).

For the following, let ord2,k(r) := max{i ≤ k : 2i|r}.

Inductive Hypothesis Assume that for k > 2 we have k formulas

χ2k−1(N, r, k − 1)

χ2k−2(N, r, k − 1)
...

χ20(N, r, k − 1)

with the property that, if ord2,k−1(r) = l, then

r ∈ S0 ⊕ S1 ⊕ · · · ⊕ Sk−1 ⇔ L(N,S) |= χ2l(N, r, k − 1).

We will describe how to obtain the formulas for k + 1:

If ord2,k(r) = l ≥ 1, then r is even and ord2,k−1(r/2) = l − 1 ≥ 0. Therefore we have

r ∈ (S0 ⊕ · · ·Sk−1)⊕ Sk ⇐⇒ r/2 ∈ S0 ⊕ · · · ⊕ Sk−1

⇐⇒ L(N,S) |= χ2l−1(N, r/2, k − 1)

If ord2,k(r) = 0 then r is odd and therefore we have

r ∈ (S0 ⊕ · · ·Sk−1)⊕ Sk ⇐⇒ (r − 1)/2 ∈ Sk
⇐⇒ r − 1 ∈ Sk ⊕ Sk
⇐⇒ L(N,S) |= ∃~x θr−1,ZN+k(~x)

For 1 ≤ i ≤ k, we let χ2i(N, r, k) := χ2i−1(N, r/2, k−1) and let χ20(N, r, k) := ∃~x θr−1,ZN+k(~x).

Then we have k + 1 formulas
χ2k(N, r, k)

χ2k−1(N, r, k)
...

χ20(N, r, k)
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with the property that, if ord2,k(r) = l, then

r ∈ S0 ⊕ S1 ⊕ · · · ⊕ Sk ⇐⇒ L(N,S) |= χ2l(N, r, k).

Now we are ready to define the desired formulas α(N, k, τ). For any N, τ , define

α(N, 1, τ) =

 ∧
τ(r)=1

“r ∈ S0” ∧
∧

τ(r)=0

“r /∈ S0”


=

 ∧
τ(r)=1

∃~x θ2r,ZN (~x) ∧
∧

τ(r)=0

∃~x θ2r+1,ZN (~x)

 .
Given a positive integer N , k ≥ 2 and τ ⊂ ω let

α(N, k, τ) :=

[ ∧
τ(r)=1

χ
2
ord2,k−1(r)(N, r, k − 1) ∧

∧
τ(r)=0

¬χ
2
ord2,k−1(r)(N, r, k − 1)

]
.

Then for any S ⊆ ω,

τ ⊂ S0 ⊕ S1 ⊕ · · · ⊕ Sk−1 ⇐⇒ L(N,S) |= α(N, k, τ).

Corollary 7.1.8. For each tuple (N, k, τ,M) where N ≥ 1, k ≥ 0, τ ⊂ ω and M ≥ 0,

there is a computable Lω1,ω formula α(N, k, τ)(M) such that for all S ⊆ ω,

τ ⊂ (S0 ⊕ S1 ⊕ · · · ⊕ Sk−1)(M) ⇐⇒ L(N,S) |= α(N, k, τ)(M).

Corollary 7.1.9. Given a set S ⊆ ω a positive integer N and k ≥ 1, there is a computable

Lω1,ω formula ϕN,k such that

L(N,S) |= ϕN,k ⇐⇒ Sk 6≤T (S0 ⊕ . . .⊕ Sk−1)2(N+k)+2

Proof. Let M = 2(N + k) + 2. Recall that, speaking informally, the statement

“Sk ≤T (S0 ⊕ · · · ⊕ Sk−1)(M) ”

can be formulated by

∨
e∈ω

∧
r∈ω

[ (
“r ∈ Sk”⇔

(σ,s):∨
Φσe,s(r)↓=1

“σ ⊂ Y (M)”

)
∧
(

“r /∈ Sk”⇔
(σ,s):∨

Φσe,s(r)↓=0

“σ ⊂ Y (M)”

) ]
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where Y = S0 ⊕ · · · ⊕ Sk−1. Now let ϕN,k be the negation of the following formula:

∨
e∈ω

∧
r∈ω

[(
∃~x θ2r,ZN+k(~x)←→

(σ,s):∨
Φσe,s(r)↓=1

α(N, k, σ)(M)

)
∧
(
∃~x θ2r+1,ZN+k(~x)←→

(σ,s):∨
Φσe,s(r)↓=0

α(N, k, σ)(M)

)]

Then ϕN,k is a computable Lω1,ω formula in the language of linear orderings with the

desired property.

Main Result

Fix any positive integer N . We would like to axiomatize the following class of orderings:

KN :=
{
L(N,S) : Sk 6≤T (S0 ⊕ . . .⊕ Sk−1)2(N+k)+2 for all k ≥ 1

}
Let

ΨN := ψN ∧
∧
k≥1

ϕN,k

Then for any linear ordering A, we have A ∈ KN ⇐⇒ A |= ΨN .

Corollary 7.1.10. For all positive integers N , KN is a Borel class.

Corollary 7.1.11. For every odd integer m ≥ 5, there is a Borel class of countable linear

orderings having Turing ordinal ω and back-and-forth ordinal m.

Proof. Given m odd, m ≥ 5, we can write m = 2N + 3 for some positive integer N . Take

the class to be KN .

7.2 Arbitrary finite difference

In this section we will prove that there exist Borel classes of structures where the back-

and-forth and Turing ordinals are an arbitrarily large finite distance apart. More precisely,

for each 0 ≤ N < M , we will define a Πc
2(N+M)+7-axiomatizable class with back-and-forth

ordinal 2N + 3 and Turing ordinal 2M + 2.
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7.2.1 Classes of orderings

For the following, let σ∗(X) for some set X denote the shuffle sum of the orderings ω and

r + 2 for each r ∈ X. This differs slightly from how the σ∗ operator was defined in the

previous chapter.

Definition 7.2.1. For any two sets X, Y ⊆ ω and 0 ≤ N < M define the following linear

ordering:

AN,M(X, Y ) := 1 + ZN · σ∗(X ⊕X) + 1 + ZM · σ∗(Y ⊕ Y ) + 1.

Recall from Theorem 6.1.8 that for each N ≥ 0,

Spec
(
ZN · σ∗(X ⊕X)

)
=
{

deg(D) : X ≤T D(2N+2)
}
.

Corollary 7.2.2. Spec(AN,M(X, Y )) =
{

deg(D) : X ≤T D(2N+2) and Y ≤T D(2M+2)
}

Proof. Let A = AN,M(X, Y ) and suppose we have B ∼= A with B ≤T D. Given the

element separating the two orderings, by the degree spectrum result above, we have that

X ≤T B(2N+2) and Y ≤T B(2M+2). As B ≤T D, we have X ≤T D(2N+2) and Y ≤T D(2M+2).

Now suppose that X ≤T D(2N+2) and Y ≤T D(2M+2). By the degree spectrum result,

there are copies of ZN · σ∗(X ⊕X) and ZM · σ∗(Y ⊕ Y ) computable in D. So we can build

a D-computable copy of AN,M(X, Y ).

Given the above degree spectrum, we can amend the work from Chapter 6 and prove the

following:

Theorem 7.2.3. Fix X, Y,B ⊆ ω and 0 ≤ N < M and let

C := {D : X ≤T D(2N+2) and Y ≤T D(2M+2)}.

If B ≤T D(2M+1) for all D ∈ C then B ≤T X(2M+1). Hence if Y 6≤T X(2M+2), then

{D(2M+1) : D ∈ C} has no element of least degree.

We will prove Theorem 7.2.3 using a generalization of the following claim of Ash, Jockusch

and Knight from [1].
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Proposition 7.2.4. Given Y ⊆ ω and a computable ordinal α, if B 6≤T ∅(α) then there is

a set A such that

(i) Y ≤T A⊕ ∅(α+1), and

(ii) B 6≤T A⊕ ∅(α).

By relativizing this result (easily) we get the following:

Corollary 7.2.5. Given any sets X, Y ⊆ ω and any computable ordinal α, if B 6≤T X(α)

then there is a set A such that

(i) Y ≤T A⊕X(α+1), and

(ii) B 6≤T A⊕X(α).

By relativizing Theorem 6.1.6 we get the following.

Corollary 7.2.6. For any computable ordinal α, and any sets A,W such that A ≥T W (α).

there exists a set S ≥T W such that S ⊕W (α) ≡T S(α) ≡T A.

For our purposes, we need the following consequence of the previous corollary.

Corollary 7.2.7. For any sets A,X ⊆ ω and any computable ordinal α, there is a set D

such that (D ⊕X)(α) ≡T A⊕X(α).

Proof. As A ⊕ X(α) ≥T X(α), there is a set D ≥T X such that D(α) ≡T A ⊕ X(α), by

relativized jump inversion. As D ≥T X, we have D(α) ≡T (D ⊕X)(α) ≡T A⊕X(α).

With these results in hand, we can prove the main lemma needed for Theorem 7.2.3.

Lemma 7.2.8. Given X, Y ⊆ ω and any computable ordinal α, if B 6≤T X(α) then there

is a set D such that

(i) Y ≤T (D ⊕X)(α+1), and

(ii) B 6≤T (D ⊕X)(α).
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Proof. Given X, Y and α, let A be as in Corollary 7.2.5. Given A,X and α, let D be a set

such that (D ⊕X)(α) ≡T A⊕X(α), guaranteed by Corollary 7.2.7. Then we have

Y ≤T A⊕X(α+1)

≤T (A⊕X(α))′

≡T
(
(D ⊕X)(α)

)′
≡T (D ⊕X)(α+1)

and so (i) is satisfied. As B 6≤T A⊕X(α) ≡T (D ⊕X)(α) we also have (ii).

Finally we can prove Theorem 7.2.3:

Proof. (of Theorem 7.2.3) Consider the following two sets:

C := {D : X ≤T D(2N+2) and Y ≤T D(2M+2)}

and

C∗ := {D : Y ≤T (D ⊕X)(2M+2)}.
Suppose that B ≤T D(2M+1) for all D ∈ C. We claim that B ≤T (D ⊕ X)(2M+1) for all

D ∈ C∗. For any D ∈ C∗ we have Y ≤T (D ⊕ X)(2M+2) by definition. Clearly, X ≤T
(D ⊕X)(2N+2) and hence D ⊕X ∈ C. So, by assumption, we have B ≤T (D ⊕X)(2M+1).

Now we wish to prove that B ≤T X(2M+1). Assume for a contradiction that B 6≤T
X(2M+1). Then by Lemma 7.2.8, there is a set D satisfying Y ≤T (D ⊕ X)(2M+1+1) =

(D ⊕ X)(2M+2) and B 6≤T (D ⊕ X)(2M+1). In other words, we have D ∈ C∗ with B 6≤T
(D⊕X)(2M+1) which is a contradiction. Therefore we must have B ≤T X(2M+1) as desired.

To prove the hence statement: We will prove the contrapositive. Suppose that the

set {D(2M+1) : D ∈ C} has an element of least degree, say D
(2M+1)
0 . Then we have X ≤T

D
(2N+2)
0 and Y ≤T D(2M+2)

0 and, for all D ∈ C we have D
(2M+1)
0 ≤T D(2M+1). It follows from

the statement of the theorem that D
(2M+1)
0 ≤T X(2M+1) and hence D

(2M+2)
0 ≤T X(2M+2).

Then, by the former statement, Y ≤T D(2M+2)
0 ≤T X(2M+2).

With this result in hand we are ready to prove the main result:

Theorem 7.2.9. For each 0 ≤ N < M , consider the following class of structures:

KN,M := {AN,M(X, Y ) : Y 6≤T X(2M+2)}.

Then the Turing ordinal of KN,M is 2M + 2 and the back-and-forth ordinal of KN,M is

2N + 3. In particular, by choosing M and N appropriately, we can produce a class of

structures such that the Turing ordinal and back-and-forth ordinal of the class differ by any

odd number d ≥ 1.
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Proof. This result really has three parts so we will present each separately.

1. For any d ≥ 0(2M+2), there are sets X, Y ⊆ such that AN,M(X, Y ) ∈ KM and

AN,M(X, Y ) has (2M + 2)th jump degree d.

Fix d ≥ 0(2M+2). We will choose our sets X and Y as follows: Let X = ∅ and by

Theorem 6.1.6, choose Y to be any set such that Y ⊕∅(2M+2) ≡T Y (2M+2) ∈ d. Then

clearly we have X ≤T Y (2N+2) and Y ≤T Y (2M+2) uniformly and hence deg(Y ) ∈
Spec(AN,M(X, Y )). So we have d = deg(Y )(2M+2) in the (2M + 2)nd jump spectrum

of AN,M(X, Y ). Now suppose that deg(D) ∈ Spec(AN,M(X, Y )). By the spectrum

result, we must have Y ≤T D(2M+2), and since ∅(2M+2) ≤T D(2M+2) as well, we have

Y (2M+2) ≡T Y ⊕ ∅(2M+2) ≤T D(2M+2). So d = deg(Y )(2M+2) is a lower bound for the

(2M + 2)nd jump spectrum of AN,M(X, Y ).

2. No A ∈ KN,M can have a (2M + 1)st jump degree (and hence a kth jump degree for

any k < 2M + 2).

Fix A ∈ KN,M . Then A ∼= AN,M for some X, Y satisfying Y 6≤T X(2M+2). It follows

from Theorem 7.2.3 that the set {D(2M+1) : D ∈ Spec(A)} cannot have a least degree

and hence the structure A cannot have a (2M + 1)st jump degree.

3. The back-and-forth ordinal of KN,M is 2N + 3.

It follows directly from Corollary 6.2.5 that there are only countably many pairs of

the form (ZK · σ∗(X ⊕ X),~a) up to ≡k equivalence for any k ≤ 2K + 3. It follows

that there are only countably many pairs of the form (AN,M(X, Y ),~a) up to ≡2N+2

equivalence. So the back-and-forth ordinal of the class is at least 2N + 3.

IfX1 6= X2 then there is a Σc
2N+2 formula that separatesAN,M(X1, Y ) andAN,M(X2, Y )

for any choice of Y ⊆ ω. As there are uncountably many orderings in KN,M hav-

ing different “first sets X”, it follows that the back-and-forth ordinal of the class is

exactly 2N + 3.

This completes the proof of the main statement of the Theorem. If we fix any odd integer

d ≥ 1 then there are infinitely many choices for a class where the two ordinals differ by d.

We will choose the least complicated one: Let N = 0 and let M = (d + 1)/2. Then the

back-and-forth ordinal of K0, d+1
2

is 3 and the Turing ordinal is d+ 3.
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7.2.2 Axiomatizations

Each of the classes defined in the previous section are Borel. Here we will provide an

axiomatization of each class.

Recall that for each n ∈ ω we have a formula, denoted by Σ⊕n (x, y), such that, for any

linear ordering A and any a, b ∈ A we have A |= Σ⊕n (a, b) if and only if between a and b

there lies an ordering of the form Zn · σ∗(X ⊕X) for some X ⊆ ω. We can axiomatize an

ordering of the form AN,M(X, Y ) with the Σc
2M+5 formula

(
∃x0 < x1 < x2

)
ΘN,M(x0, x1, x2)

where

ΘN.M := (∀y)(x0 ≤ y ≤ x2) ∧
∧

i=0,1,2

(∀y)(¬S(y, xi) ∧ ¬S(xi, y)) ∧ Σ⊕N(x0, x1) ∧ Σ⊕M(x1, x2).

To axiomatize the property of Y 6≤T X(2M+2) we need the following:

Observe that for any AN,M(X, Y ), we have

r ∈ X ⇔ 2r ∈ X ⊕X ⇔ There is a maximal ZN · (2r + 1) block in AN,M(X, Y )

and recall that the last statement can be described by a Σc
2N+3 formula. Similarly for

r /∈ X. Similarly, there are Σc
2M+3 formulas defining r ∈ Y and r /∈ Y in an ordering

of the form AN,M(X, Y ). Using the same techniques from section 7.1.2, we can define a

Πc
2(N+M)+7 formula with the meaning “Y 6≤T X(2M+2)”. This is limiting formula for the

axiomatization in terms of complexity.

Remark 7.2.10. The class with the simplest axiomatization corresponds to N = 0 and

M = 1. This produces an example of a Πc
9-axiomatizable class with Turing ordinal 4

and back-and-forth ordinal 3. More generally, if we fix N = 0 and let M vary, we have

a Π2M+7-axiomatizable class, K0,M , having back-and-forth ordinal 3 and Turing ordinal

2M + 2.
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Chapter 8

Summary and Open Questions

For a summary of the classes of structures discussed in this thesis see the table below.

Class of structures Turing ordinal Back-and-forth ordinal

Models of PA 1 1

KW DNE 1

Equivalence structures 1 2

Linear orderings 2 3

Tn n+ 2 n+ 3

K2m+2 2m+ 2 2m+ 3

K2m+3 2m+ 3 2m+ 3

KN,M 2M + 2 2N + 3

KN ω 2N + 3

Boolean algebras ω ω

Kω+1 ω + 1 ω + 1

Kω+2 ω + 2 ω + 1
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In every class of orderings presented in Chapters 5 and 6, whether finitely axiomati-

zable or not, a higher Turing ordinal corresponded to a more complex axiomatization of

the theory. If m < n then the natural axiomatization of Tn uses formulas with more quan-

tifiers than that of Tm. For each m ≥ 0, the orderings Zm · σ∗(X) from Section 6.3.1 are

Πc
2m+5-axiomatizable. The corresponding classes of orderings, K2m+2 and K2m+3, defined in

Section 6.1.1 and 6.1.2 have Turing ordinals 2m+ 2 and 2m+ 3 respectively. Axiomatizing

the orderings νω(X) from Section 6.3.2 requires Πc
α formulas for infinite α and the Turing

ordinals of the associated classes are ω + 1 and ω + 2. In every case, a more complex

axiomatization corresponded to a higher Turing ordinal. This is not true in general as

the theory of Boolean algebras is Πc
1-axiomatizable while the Turing ordinal is infinite. In

every case mentioned in Chapters 5 and 6, the rise in the Turing ordinal was coupled with

a similar rise in the back-and-forth ordinal.

In Chapter 6 we proved that for each computable α there is a class of structures having

Turing ordinal α. It would be of interest to know how complicated an axiomatization of

a theory must be in order to realize a Turing ordinal of a particular α ≥ ω. It is likely

that all of the classes in Chapter 6 are Borel, but this needs to be checked. As with the

previous examples, the classes with larger Turing ordinal will also be accompanied by more

complex axiomatizations.

In Chapter 7 we set out to show that, for Borel classes of structures, the Turing ordinal

and back-and-forth ordinal can be far apart. In Section 7.1 we saw the first example of a

class with finite back-and-forth ordinal but infinite Turing ordinal. In Section 7.2 we proved

that the Turing ordinal and the back-and-forth ordinal can be arbitrarily far apart, even for

Borel classes. Given an odd integer d ≥ 1, Theorem 7.2.9 provides a Πc
d+8-axiomatizable

class of linear orderings where the Turing ordinal and the back-and-forth ordinal differ

by d. The success of the results in Chapter 7 relied on the fact that the structures in

the classes KN,M essentially behave as two disjoint structures: one part ensuring that we

realize enough types to keep the back-and-forth ordinal low, and the other part forcing a

high Turing ordinal. This method should work in more generality.

We are left with the following open questions:

Question 1: Is there a finitely axiomatizable — i.e. axiomatizable via finitely many

first-order formulas — class of structures with Turing ordinal equal to some α > ω?

Question 2: Is there a finitely axiomatizable class of structures with the Turing ordinal

strictly larger than the back-and-forth ordinal?
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Question 3: What is the least n ∈ ω such that there is a Πc
n-axiomatizable class of

structures with the Turing ordinal strictly larger than the back-and-forth ordinal? We

currently have a Πc
9-axiomatizable class with this property.

Question 4: What conditions (if any) can one put on the complexity of the axiomatization

of a class of structures in order to ensure that the Turing ordinal and the back-and-forth

ordinal of the class are close?
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