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Abstract

This thesis provides the study of graphene’s electrostatic interaction with the substrate surround-

ing it. Mathematical models based on current experimental configurations of graphene field-effect

transistors (FET) are developed and analyzed. The conductivity and mobility of charge carriers in

graphene are examined in the presence of impurities trapped in the substrate near graphene. The

impurities encompass a wide range of possible structures and parameters, including different types

of impurities, their distance from graphene, and the spatial correlation between them. Furthermore,

we extend our models to analyze the influence of impurities on the fluctuations of the electrostatic

potential and the charge carrier density in the plane of graphene. The results of our mathematical

models are compared with current experimental results in the literature.
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Chapter 1

Introduction

1.1 History

Carbon is the most ubiquitous element in nature. The 6th element of the periodic table shows up

in everything from the building blocks of our cells to the strongest known materials. Carbon by

itself forms a variety of different crystal structures, called allotropes. The varying structure of the

allotropes is responsible to the different properties of the material. Diamond is an example of an

allotrope of carbon in which the atoms form a hexagonal crystal system. Such a structure makes it one

of the strongest materials known. Recent experimental discoveries have given rise to new allotropes

of carbon whose properties have been evaluated theoretically. The experimental discovery of these

allotropes of carbon confirmed theoretical predictions. The first carbon allotrope to be discovered

in the lab was buckminsterfullerene [37], a 60 atom carbon molecule formed into a highly symmetric

ball shape. The team led by Sir Harold Kroto, Robert Curl and Richard Smalley, who made the

discovery in 1985, was awarded the Nobel prize in chemistry in 1996. The discovery was surprising, as

it confirmed that new forms of carbon crystal exist. Since its discovery, buckminsterfullerene and its

variants have found some applications in chemistry as a lubricant and a catalyst. Another allotrope

of carbon, the carbon nanotube, was discovered by Iijima in 1991 [30]. Carbon nanotubes are

long cylinders of different radii formed entirely of carbon, sometimes one cylinder being contained

within another. Due to its small radius, they can be thought of as an almost one-dimensional

crystal. This crystal structure gives it great strength while maintaining its relatively small mass.

Carbon nanotubes are the strongest materials in terms of tensile strength, and multi-walled carbon

nanotubes have been shown to have strengths of 63 GPa [51], the equivalent of 6.2 metric tons for

a cable with cross section 1mm2. Due to its high strength and very low density, carbon nanotubes

have been proposed to be used as threading in a space elevator. Other potential applications of

carbon nanotubes are staggering, and range from increasing electron conductivity in wires to making

lightweight protective vests. The integration of carbon nanotubes into consumer products is still in

its infancy and it is expected to be seen on shelves within the decade.

The most recently discovered carbon allotrope is graphene. Graphene is a two dimensional

honeycomb lattice made of carbon atoms. It is a long sought after material due to its unique
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Figure 1.1: Allotropes of carbon formed from a sheet of graphene. From left to right we have
buckminsterfullerene, carbon nanotubes and multi-layer graphene sheets. All of these can be formed
from a single, large, sheet of graphene. Adapted from [10]

and versatile properties which were derived theoretically in the 1960s. The discovery of graphene

in 2004 by a team from the University of Manchester surprised the physics community, and won

them the Nobel prize in 2010. Since its discovery, experiments have confirmed graphenes theoretical

predictions, and thousands of reports and articles dealing with its properties and possible applications

have been published. In 2012 the European Union has pledged a e1B grant for development and

research in graphene devices. Recent reports indicate that graphene based devices, such as e-paper

and flexible touch screens, are due to hit the shelves as early as 2020, and its integration into high-

performance logic circuits is expected by 2030 [48]. The wide gamut of graphene’s properties have

led it to be dubbed the material of the 21st century.

1.2 Properties and applications of graphene

Graphene has the potential to revolutionize many technologies in use today. Its properties have

applications in both theoretical physics and material engineering. Graphene has shown to be an

ideal, cheap testbed for various problems in quantum electrodynamics and condensed matter physics.

Furthermore, adding a small amount of electrical energy to graphene makes the electron quasi-

particles in it behave as though they were relativistic particles traveling at three-hundred times

slower than the speed of light. The properties of these particles can be examined through the use

of the Dirac equation in quantum electrodynamics, and hence the particles have been called Dirac

fermions. A direct result of electrons behaving as Dirac fermions gives rise to a phenomena called

Klein tunneling. With Klein tunneling, relativistic particles are allowed to transmit through potential

barriers of any height with probability one. In layman terms this would be like a massless tennis

2



Figure 1.2: (Left) A comparison between relativistic Klein tunneling and regular quantum tunneling.
In Klein tunneling, (top case) a massless fermion is transmitted through a potential barrier with
probability one. In non-relativistic quantum mechanics, (bottom case) transmission through a barrier
exponentially decreases as the length and height of the barrier increases. If the barrier is too high
or too long, the transmission probability is negligible. (Right) Schematic overview of the quantum
Hall effect. Due to the magnetic field, some electrons are localized in the graphene sheet, circling
in orbitals of quantized radius. Other electrons near the edge of the graphene sheet cause a cross-
conductance in the material since their quantized orbitals overlap with the boundary of graphene.
Obtained from (left) [34] and (right) [31]

ball traveling at the speed of light going through a wall without hindrance. Recent experiments

have shown that Klein tunneling in graphene is a realizable phenomenon and its application to

semiconductors is being considered [62]. Another interesting property of graphene is its ability to

show the quantum Hall effect. The quantum Hall effect is unique to two dimensional systems, and

graphene is no exception. When graphene is placed in a transverse magnetic field, the electrons

traveling through graphene experience a force in the perpendicular direction to its travel. This force

causes the electrons in graphene to orbit in circles of quantized radius, thus reducing the conductivity

in graphene. The results of these experiments give insight into the major problems in fundamental

physics.

Graphene is an attractive and applicable material due to its high optical conductivity and its

linear dispersion in energy near its ground state. By high optical conductivity, we mean that external

electric fields induce a strong electrical response in graphene. Furthermore, the range of frequencies

which interact with graphene (i.e. its bandwidth) is higher than conventional semiconductors. This

implies that graphene could be used as a photodetector and an optical modulator for high bandwidth,

high speed optical communications [72]. The linear dispersion in graphene is quite remarkable and

is the primary reason for graphene’s attractiveness. The linear dispersion implies that there is

a linear relation between the so-called crystal momentum of the electrons in graphene and their

energy. In most conventional semiconductor devices, the dispersion is parabolic, giving rise to a non-

zero effective mass of the electrons. The linear relation gives rise to massless quasi-particles, and

allows for Klein tunneling to take place. In addition, the linear dispersion relation allows graphene

to be used in tunable mode-locked lasers [4, 65]. Other applications of graphene include its use

as an ultracapacitor [64], a biosensors [38], a filtering membrane [11], and most importantly, as a

transistors[53].
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1.3 Graphene as a transistor

Plenty of research has been devoted to using graphene as a field effect transistor (FET). Through the

use of capacitive gating and a back gate in a graphene FET, we can efficiently control the density of

charge carriers (electrons or holes) in graphene. Graphene has been shown to have electron mobility

an order of magnitude larger than conventional transistors [59]. This, coupled with the fact that

graphene transistors would require relatively low amounts of energy to switch between on and off

states (i.e. by controlling current through source and drain contacts), could pave the way for new

electronic devices with increased execution speed and decreased power consumption. Furthermore,

conventional semiconductors suffer from short channel effects. These effects arise from the scaling

of the FET below a certain threshold and impair the performance of the transistor significantly.

Graphene on the other hand, can overcome these problems due to its one atomic layer thickness [46].

This would greatly increase the miniaturization of transistors and allow the progression of Moore’s

law in everyday computer chips where conventional semiconductors would fail.

The research is not without problems. Due to the two dimensional structure of graphene, it

is highly sensitive to its internal and external surroundings. This causes undesirable impurities to

have a big effect on graphenes electrical properties. Charge carriers traveling through graphene can

be scattered by external defects, such as charge or dipole impurities in the substrate, or internal

defects, such as atomic vacancies in graphene or the crumpling of the graphene sheet itself [5]. This

sensitivity makes graphene based transistors difficult to engineer since the level of control needed, in

and around graphene, is extremely high. Another hurdle in developing graphene based transistors is

the absence of a band gap. A band gap is a material property which implies that a material requires

some finite, fixed energy in order for electrons to move within the material and conduct electricity.

A band gap is necessary in order for a transistor to have a robust switch with unambiguous on and

off states. In theory, graphene is a semi-metallic material (to be shown later) with no band gap.

However, in practice, graphene possesses an extremely small band gap due to the material being

finite in nature. Considerable work has been done to engineer graphene nanoribbons (GNR), which

are sheets of graphene with a small width (10-20 nm), to induce a band gap in graphene devices. So

far, no method developed has been able to produce a band gap larger than 360 meV in graphene.

A large enough band gap threshold is required for two reasons: to overcome thermal effects, which

undesirably increase the energy of the electrons, and to increase the on/off ratio (the ratio of the

on state current to the off state current) above 104 [59]. An appropriately sized band gap is needed

for graphene to be used in future transistors. There is a trade off between mobility and band gap

[71]. Decreasing the width of the GNR and hence increasing the band gap, causes a reduction

in the electron mobility. High electron mobility is required for logic gate transistors with high

switching rate. However, electron mobility is greatly affected by impurities surrounding graphene as

they induce scattering in the charge carriers. It has been shown that in suspended graphene, with

minimal impurities surrounding it, the electron mobility is at least one order of magnitude larger

than graphene on conventional substrates [7]. This large difference requires special attention, and

the effects and limitations of the impurities on graphene need to be explored in greater detail.
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1.4 Outline of thesis

In this thesis I shall discuss external effects that influence the static, electronic properties of graphene.

The main idea is to develop realistic mathematical models and compare them with experimental

results. The correlation between my theory and experimental results will shed some light on the

still unanswered questions about charge carrier transport in graphene. The mathematical models

will use semi-classical physics. In other words, the properties of graphene will be derived using

quantum theory and the surrounding material will be modeled using classical electrostatics. Chapter

2 will describe the structure of the graphene lattice and the tight binding model for graphene. The

mathematical description of the lattice is used to obtain the energy dispersion relation for quasi-

particles in graphene and their density of states will be derived. Next, the experimental methods

of modifying the Fermi energy of graphene through charge carrier doping are shown. This gives

us a direct link between experimental results and the theory developed in this thesis. Chapter 3

will deal with the random phase approximation (RPA) as a method to derive the linear response

function. There I shall describe the electron-electron interactions in graphene with its surrounding

and how they contribute to the linear response to an external electric field. Afterwards, a geometric

structure of the dielectric environment is presented. The Green’s function is derived for the Poisson

equation in order to solve for the electric potential in the classical, static case. Chapter 4 will

be devoted to the discussion of charge impurities in the substrate near graphene. I shall present

different statistical models of impurity correlation and impurity distribution in the substrate. Using

the statisitcal description of impurities, the fluctuations in the potential and the fluctuation in the

charge carrier density in the plane of graphene will be derived. There I shall show how the effect of

charge impurities causes the formation of electron hole puddles in the sheet of graphene for a veriety

of models, and a direct comparison to experimental results will be shown. Chapter 5 presents the

equation for conductivity of charge carriers through graphene using the energy loss method (ELM).

A variety of charge carrier conductivity and mobility profiles in a sheet of graphene is shown for

a variety of different geometric models. A comparison between my theoretical results and those

obtained experimentally will be shown once again. Finally, Chapter 6 will conclude my thesis and

summarize the main points of my work and discuss potential future projects.
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Chapter 2

Electronic Structure Of Graphene

2.1 Crystal structure of graphene

Graphene is formed by a two dimensional honeycomb crystal structure made from carbon atoms. It

has two carbon atoms per primitive cell which are repeated throughout the lattice. The inter-atomic

distance between the nearest atoms has been calculated to be approximately a ≈ 1.42Å [10]. Figure

2.1 shows what a small portion of the crystal structure of graphene looks like.

a1

a2

t1

t2

t3
B A

kx

ky
b1

b2

K

K ′

Figure 2.1: (Left) Crystal structure of graphene. The unit cell consists of the two atoms, A and B.
The Bravais lattice is formed by repeating the structure of the unit cell using the vectors a1 and a2.
The location of the nearest neighbour atom sites is determined by vectors t1,t2 and t3. (Right) The
first Brillouin zone of the graphene lattice. Vectors b1 and b2 denote the reciprocal lattice vectors.

Using simple geometrical arguments we can calculate that the Bravais lattice of graphene is

formed by the vectors

a1 =
a

2
(3,
√

3)

a2 =
a

2
(3,−

√
3)

These vectors define the crystal structure of graphene and are translation vectors between atoms of
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the same type. Each atom of type A is connected to three atoms of type B, and vice versa. We need

the transition vectors between these two types of atoms in our tight binding calculations. Using

similar geometric arguments we calculate that the nearest neighbour transitional vectors are given

by

t1 =
a

2
(1,
√

3)

t2 =
a

2
(1,−

√
3)

t3 = −a(1, 0)

Using the vectors that form the Bravais lattice we can calculate the reciprocal lattice and identify

the 1st Brillouin zone. The reciprocal lattice vectors are given by,

b1 =
2π

3a
(1,
√

3)

b2 =
2π

3a
(1,−

√
3)

and the first Brillouin zone is marked in figure 2.1.

2.2 Tight binding calculations

Now we wish to evaluate the energy dispersion relation of graphene using the tight binding model.

We know that graphene is a 2-dimensional honeycomb lattice formed from carbon atoms, so we

must examine the structure of the carbon atom first. Each carbon atom consists of six electrons.

Two of these electrons are contained in the deepest 1s electron orbitals. They are screened from

external effects by the other four electrons in the 2s and 2p orbitals and are tightly bound to the

carbon atom giving them limited mobility throughout the lattice. As such, they play no role in the

electrical properties of graphene and so we will ignore them. The other four electrons in the n = 2

shell have very similar energies and so the electron orbitals will hybridize (i.e. form a superposition

of electron orbitals). In order to do a proper tight binding calculation, we would have to include

all four n = 2 orbitals (2s, 2px, 2py, 2pz) in the wavefunction. Since the graphene lattice will form

a periodic potential, the wavefunction will obey Bloch’s theorem [69]. Essentially Bloch’s theorem

states that for a periodic system, the eigenfunctions will have the form

ψk(r) = eik·ruk(r)

where uk(r) is a periodic function which has the same period as the Bravais lattice (i.e. the potential

of the Hamiltonian) and k is the so-called crystal momentum, which labels the quasi-free electronic

states. In addition to the four n = 2 orbitals, since there are two atoms per primitive cell of the

Bravais lattice our Bloch wavefunction would be a superposition of 8 terms, summed over all Bravais

7



lattice vectors. With this in mind we can write the wavefunctions as

ψk(r) =
∑
R

eik·R(bAsϕAs + bApxϕApx + bApyϕApy + bApzϕApz

+ bBsϕBs + bBpxϕBpx + bBpyϕBpy + bBpzϕBpz ) (2.1)

Here ϕAs, ϕApx , etc. are the hydrogen like atomic orbital wavefunctions (whose derivation can be

found in [58]) with each one centered at either site A or B in the primitive cell. To keep the notation

manageable we have dropped the r and R dependence from the atomic orbital wavefunctions. The

sum, as usual, is taken over all Bravais lattice vectors. The wavefunction above forms 8 energy

bands for each k in the first Brillouin zone. We can simplify our analysis of the energy dispersion

by analyzing the structure of the electron orbitals in graphene more thoroughly. Each carbon atom

in graphene is bonded to three other carbon atoms in the x-y plane. This means that the s, px

and py orbitals on each atom must mix together (or hybridize) in such a way to form the covalent

bonds between the carbon atoms. Such a mixed orbital state is called sp2 hybridization since one

s orbital mixes with two p orbitals to form a two dimensional hybrid orbital in the x-y plane. The

sp2 orbital states give rise to what are known as σ-bonding bands. Of the eight energy bands in

the first Brillouin zone, six are σ-bonding bands of which three are the conduction and three the

valence bands. The σ-bonding bands are characterized by having a very high energy gap between the

conduction and valence bands and by having the Fermi energy in neutral (i.e. undoped) graphene lie

between the two bands. Due to this high energy gap the σ-bonding bands do not contribute much

to the electrical properties of graphene near the ground state, and so we will neglect them in our

tight binding calculations, but a detailed analysis of the σ-bands can be found elsewhere [73]. The

pz orbitals remain separated from the rest of the orbitals and form what are known as π-bonding

bands. The two π-bonding bands in graphene give us the unique electronic properties of graphene

and are the primary reason why so much research has been devoted to this substance. Our tight

binding calculations will deal with the pz orbitals and the π-bonding bands, after which we will show

why graphene is such an interesting material to study. Ignoring the wavefunctions that contribute

to the sp2 orbitals we can write the wavefunction as a linear combination of pz orbitals on sites A

and B,

Ψk = akψA,k + bkψB,k (2.2)

Here ψA,k and ψB,k are the Bloch wavefunctions for the pz orbitals located on sites A and B

respectively. The wavefunctions are defined as

ψA,k(r) =
1√
N

∑
R

eik·RϕApz (r−R) (2.3)

where R are the Bravais lattice vectors for the atoms on site A, and N is the number of unit cells.

Similarly, ψB,k is defined with the replacement of A and B and summing over Bravais lattice vectors

on site B. In order to solve for the energy as a function of k we start from the Schrodinger equation

8



in matrix form[
〈ψA,k|H|ψA,k〉 〈ψB,k|H|ψA,k〉
〈ψA,k|H|ψB,k〉 〈ψB,k|H|ψB,k〉

][
ak

bk

]
= E

[
〈ψA,k|ψA,k〉 〈ψB,k|ψA,k〉
〈ψA,k|ψB,k〉 〈ψB,k|ψB,k〉

][
ak

bk

]

where H is the Hamiltonian of the graphene’s atomic lattice. The exact form of the Hamiltonian is

not known. What we can do is approximate the matrix elements of the Hamiltonian in the basis of

the atomic orbital wavefunctions. The first matrix element is given by

〈ψA,k|H|ψA,k〉 =
1

N

∑
R

eik·R
∫
dr3ϕApz (r−R)HϕApz (r)

=

∫
dr3ϕApz (r)HϕApz (r) +

∑
rj

eik·rj
∫
dr3ϕApz (r− rj)HϕApz (r) + · · ·

≈ ε2p

In the second line we neglect all the terms after the first one. Here rj denotes the nearest carbon

atom of type A (i.e. a full unit cell translational vector). The distance between neighbouring type

A atoms is large enough that all the integrals involving orbitals on different atoms of type A are

negligible, and so we will drop them. What we are left with is the on site energy of the 2pz orbital

which we write ε2p. Using the same argument we can show that 〈ψB,k|H|ψB,k〉 = ε2p as well. Now

using once again only nearest neighbour interactions, the off diagonal matrix elements become

〈ψA,k|H|ψB,k〉 =

3∑
i=1

eik·ti
∫
dr3ϕpz (r− ti)Hϕpz (r)

= α

3∑
i=1

eik·ti

Here α is the nearest neighbour coupling strength between atoms of type A and B and it is defined

as α =
∫
dr3ϕpz (r − ti)Hϕpz (r) and ti is one of the three translational vectors defined in section

2.1. Using the same nearest neighbour integrals on the normalization terms we get

〈ψA,k|ψA,k〉 = 1

〈ψA,k|ψB,k〉 = β

3∑
i=1

eik·ti

where β =
∫
dr3ϕpz (r− ti)ϕpz (r). Next we define,

f(k) =

3∑
i=1

eik·ti (2.4)

In order to find the energy dispersion relation of graphene we need to find non-trivial solutions of

the system ([
ε2p αf(k)

αf∗(k) ε2p

]
− E

[
1 βf(k)

βf∗(k) 1

])[
ak

bk

]
= 0

9



giving the secular equation

det

[
ε2p − E (α− βE)f(k)

(α− βE)f∗(k) ε2p − E

]
= 0

After some algebra we get that the energy dispersion has the form

E(k) =
ε2p ± α|f(k)|
1± β|f(k)| (2.5)

where we use + to denote the dispersion in the conduction band and − for the valence band. This

result is exact when only considering nearest neighbour coupling in the tight binding model. Analysis

of the graphene dispersion relations beyond nearest neighbour coupling have been done [54, 32].

Unfortunately including 2nd nearest neighbour interactions in the dispersion causes some properties

which make our analytical results manageable, to vanish. Furthermore 2nd nearest neighbour effects

are approximately one order of magnitude smaller than equation 2.5, so their contribution to the

energy dispersion would be relatively small.

Since the Hamiltonian is not exactly known, the values for ε2p and α are not known. However, they

can be approximated from experimental results or first principle calculations. Currently admissible

values of the parameters are α = 2.7 eV and β < 0.1 with ε2p being redundant [54]. The value for β is

the overlap integral between the two electron orbitals centered at the two nearest neighbour atoms.

For two pz orbitals a distance 1.42Å apart from each other their overlap is rather small and so we

will approximate it to be zero. Also the on site energy ε2p, which specifies the amount of energy

required to ionize a carbon atom, shifts our two energy bands up or down by the same amount. We

can ignore it since this constant does not change the qualitative description of the energy bands.

Evaluating the energy dispersion, E(k), we get

E(k) =± α|f(k)| = ±α
∣∣∣∣∣

3∑
i=1

eik·ti

∣∣∣∣∣
=± α

√
3 + 4 cos(

√
3a

2
ky) cos(

3a

2
kx) + 2 cos(

√
3aky) (2.6)

With these two functions we can graph the surface of the energy dispersion in the first Brillouin zone

(fig. 2.2).

Of importance here are the points K and K′ in reciprocal lattice space. The points K and K′

specify the location where the conduction and valence bands meet, but do not intersect. In other

words the energy gap, between the two bands, is zero only at these two points. A material with no

energy gap and negligible density of states at the Fermi level is characteristic of a semi-metal, hence

this dispersion makes graphene a semi-metal. Furthermore, the energy dispersion near K and K′

becomes linearly dependent on the momentum k. These points are called Dirac points. The two

10



kxa

−3 −2 −1 0 1 2 3

ky
a

−3
−2

−1
0

1
2

3

E
(k

)
α

−2

−1

0

1

2

-3 -2 -1  0  1  2  3

kx

-3

-2

-1

 0

 1

 2

 3

k
y

 0

 0.5

 1

 1.5

 2

 2.5

 3

K

K’

Figure 2.2: (Left) The energy dispersion of the graphene lattice, normalized by the parameter α, in
the tight binding model using only the nearest neighbour coupling. No energy gap is present in the
band diagram and there are six points where the conduction and the valence bands are touching but
not overlapping. (Right) Dispersion of the conduction band overlaid with the first Brillouin zone.
The two distinct Dirac points K and K′ are clearly seen as the minimums of the conduction band,
and hence the location where the two bands meet.

Dirac points are located at

K =
2π

3a
(1,

1√
3

)

K′ =
2π

3a
(1,− 1√

3
)

To show the linear dispersion of the energy near these points, we Taylor expand the dispersion

equation around point K and keep all the terms up to second order. Defining kx = Kx + δkx,

similarly with ky, gives us

|f(k)|2 = 3 + 4 cos

[√
3a

2
(Ky + δky)

]
cos

[
3a

2
(Kx + δkx)

]
+ 2 cos[

√
3a(Ky + δky)]

= 3 + 4 cos

(
π

3
+

√
3a

2
δky

)
cos

(
π +

3a

2
δkx

)
+ 2 cos

(
2π

3
+
√

3aδky

)
= 3− 2 + 3aδky +

3a2

4
δk2
y +

9a2

4
δk2
x − 1− 3aδky +

3a2

2
δk2
y

=
9a2

4
(δk2

y + δk2
x)

So near the Dirac point, K, the dispersion only depends on its distance from the Dirac point. Taking

the square root we get that |f(k)| = 3a
2 k where k = |k| is redefined as a small displacement in the

crystal momentum away from the Dirac point K. We would have come up with the same result if

instead of doing the perturbation around point K we did it around point K′. So for momentum near
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the Dirac point the energy dispersion is approximated by

E(k) = ±α3a

2
|k| = ±vF k. (2.7)

Here we defined vF = α 3a
2 , where vF has units of velocity. We note that the energy dispersion

given here is scaled by a factor of ~. Although this does not change any qualitative description, it is

important to keep in mind in order for the units to make sense. The interesting thing about equation

2.7 is that the energy dispersion of electrons in graphene is linear and independent of their mass.

The dispersion relation in equation 2.7 also arises from the study of massless fermions traveling at

the speed of light. Using the Dirac equation for spin 1/2 fermions one can arrive at equation 2.7

with vF being the speed of light. In graphene the speed vF ≈ 106m s−2 ≈ c/300 has been calculated

experimentally through the use of its cyclotron mass [49, 80]. This relation between graphene and

the Dirac equation is the reason why points K and K′ in the first Brillouin zone are called Dirac

points. Equation 2.7 is one of the more important properties of graphene and it is the reason why

so much research has been devoted to the material.

Using equation 2.6 we can evaluate the eigenstates of the system and examine how the pz orbitals

on site A and site B are related. Near the Dirac cone K equation 2.4 becomes, f(k) = 3a
2 (kx + iky).

So the eigenvectors for a state near the Dirac point K are solutions to the matrix equation[
±αk α(kx + iky)

α(kx − iky) ±αk

][
ak

bk

]
= 0

Right away this gives us the normalized eigenvectors

u± =
1√
2

 1

±
√

kx+iky
kx−iky


Using complex analysis we can simplify the above equation into,

u± =
1√
2

[
1

±eiθk

]
(2.8)

where θk = tan−1
(
kx
ky

)
is the polar angle of the vector k. A similar result would have been obtained

if the derivation was done around the Dirac point K. So we see that the electron orbitals on sites

A and B differ by a phase. This phase differense between the atoms in the unit cell gives rise to

pseudospin and is a key component for relativistic like effects [33], which will not be discussed here.

2.3 Density of states

An important quantity needed in semiconductor physics is the density of states (DOS). The DOS

gives us the number of states that are accessible for any given energy. With the energy dispersion

defined in equation 2.7 we can evaluate the DOS near the Dirac point. The DOS for any given
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material is defined as

D(E) =

∫
dnk

(2π)n
δ(E − E(k))

where n is the dimensionality of the dispersion relation. For graphene with a two-dimensional

dispersion relation function the DOS is given by

D(E) = g

∫
d2k

(2π)2
δ(E − E(k))

where the integration is evaluated over the Brillouin zone. The value g is included to account for

the degeneracy of the system. In this case we have two degenerate spin states and two Dirac point

in the 1st Brillouin zone. So the total degeneracy is 4. For small energies, E(k), near the vicinity

of the Dirac points K or K′ the dispersion will be linear in k (i.e. equation 2.7). Including the ~
dependence on the energy and integrating over the polar angle we get

D(E) = 4

∫ ∞
0

dk

2π
kδ(E ± ~vF k) (2.9)

Evaluating this integral gives us the DOS of graphene

D(E) =
2|E|

π(~vF )2
(2.10)

In this case, the density of states is clearly linear and symmetric around the Dirac point. The

linear regime of the DOS is only valid for |E| . 1.6 eV. Beyond the Dirac cone, the the DOS contains

Van Hove singularities (see fig. 2.3). The derivation of the DOS beyond the Dirac cone can be found

in [27]. For a more general case, which includes beyond nearest neighbour interactions, the DOS

loses some nice properties. While the energy gap near the Dirac cone is still zero, the slope of the

DOS for electron doping (E > 0) and hole doping (E < 0) is different, breaking the electron-hole

symmetry of the system, and causing asymmetry of charge carrier doping. Although we do not deal

with ”beyond the Dirac cone” type problems in this thesis, it is still important to understand the

limitations of our derivations. Furthermore, examining these problems can give insight into more

general mathematical models describing graphene, and could be useful in the undertaking of future

work.

2.4 Capacitive Gating

It is important to know the mechanisms of modifying the electrical properties of graphene in a

typical experiment in order for a comparison between theory and experiment to be accessible. As

with most other conventional semiconductors, graphene’s electrical properties are controlled through

the use of the electrical field effect. The electric field effect consists of inducing an external electric

field near the material. The external field increases the energy of the charge carriers (electrons

or holes) on the surface of the material. The shift in the energy allows for the charge carriers to

go from the valence band to the conduction band, thus allowing for current to flow through the
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Figure 2.3: The density of states for the graphene lattice. Here ρ(ε) is the DOS defined in this thesis
as D(E) and t and t′ are the nearest neightbour and nearest-nearest neighbour coupling parameters
respectively. (Top) With 2nd nearest neighbour interactions the Dirac point shifts to the right. The
DOS is asymmetric around the Dirac point. (Top right) Although there is still no energy gap, the
slopes of the DOS is different for hole and electron doping near the Dirac point. (Bottom) The DOS
for graphene considering only nearest neighbour interactions. Van Hove singularities can be seen at
approximately E/α = ±1. (Bottom right) The linear DOS near graphene is clearly visible, and has
the same slope for both electron and hole doping. Picture adapted from [10]

material. In experiments examining the electrical properties of graphene, graphene is placed on

top of a thin, insulating dielectric layer (usually silicon dioxide, SiO2). Beneath the substrate is a

metallic back-gate electrode which is connected to experimental controls. The back-gate electrode

is used to produce an electric field, which causes a voltage difference across the insulating, dielectric

layer. This layout is fairly similar to that of a capacitor with a parallel-plate geometry (see fig.

2.4). As such, we can use the capacitance to get a simple relation between the charge carrier density

(number of charge carriers per unit area) on the graphene sheet and the back-gate voltage,

n =
ε0εrVg
te

(2.11)

Here εo is the constant, permittivity of free space, having the value εo = 8.854 × 10−12 F/m in

SI units, εr is the relative permittivity of the substrate. In this thesis we will be using Gaussian

electrostatic units, which implies that 4πε0 = 1. Vg is the back gate voltage, t is the thickness of the

dielectric substrate and e is the fundamental electric charge. Equation 2.11 is used in experimental

settings as a bridge between theoretical and experimental results. By changing the gate voltage we

can alter the charge carrier density in graphene. Graphene needs to be attached to metal contacts

at different ends in order for charge carriers to flow and cause a current. In experiments the two

contacts are called the source and the drain. In order for current to flow there needs to be a
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potential difference between the source and the drain contacts. Usually the current saturates with

slight increase in the source-drain voltage difference. Throughout this thesis, we assume that the

source-drain voltage is large enough to permit current saturations, as such, we will not deal with the

effects of the source-drain voltage in detail.

Figure 2.4: (Left) A parallel plate capacitor. Applying a voltage across the dielectric causes charges to
accumulate on the different ends. A similar scenario occurs in graphene (Right) Schematic of typical
experimental set-up to measure graphene conductivity. Source and drain contacts are attached to
different ends of a sheet of graphene, and a dielectric substrate is placed underneath it. A slight
potential difference between the two contacts is applied in order for current to flow through graphene.
The voltage difference between the back gate and graphene controls the conductivity. In practice
the voltage difference between the back gate and one of the contacts is used since the voltage in
graphene isn’t exactly known. (Right) Adapted from [26]

The charge carriers in graphene can either be electrons (ne) or holes (nh). The total charge carrier

density is given by the absolute difference between these two values. We can calculate |ne−np| using

the density of states in graphene near the Dirac point, and usual Fermi statistics. The number of

electrons per unit area in the conduction band is given by

ne =

∫ ∞
0

dED(E)f(E)

where D(E) is the density of states and f(E) is the Fermi-Dirac distribution. Similarly the number

of holes in the valence band is

nh =

∫ ∞
0

dED(E)(1− f(E))

Assuming the Fermi energy of graphene is EF , and using equation 2.10 as the density of states gives

us

ne − np =
2

π(vF~)2

[∫ ∞
0

dE
E

1 + exp(β(E − EF ))
+

∫ 0

−∞
dE

E exp(β(E − EF ))

1 + exp(β(E − EF ))

]
where β = 1/kBT . Dividing the second integral by exp(β(E−EF )) and integrating over the positive

real axis we get

ne − np =
2

π(vF~)2

[∫ ∞
0

dE
E

1 + exp(β(E − EF ))
−
∫ ∞

0

dE
E

1 + exp(β(E + EF ))

]
(2.12)

These two integrals are called Fermi-Dirac integrals and they show up frequently in solid state
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physics. We can express the charge density for an arbitrary temperature as

ne − np =
2

π(βvF~)2
[F (EF )− F (−EF )] (2.13)

where

F (x) =

∫ ∞
0

dy
y

1 + exp(y − x)

In the zero temperature limit, the Fermi distribution becomes a step function (a Heaviside function)

which is evaluated to one for energies less than the Fermi energy and zero otherwise (centered around

EF ). In this case our integrals can be simplified to

ne − np =
2

π(vF~)2

∫ |EF |
0

dEE

which gives us

|ne − np| =
E2
F

π(vF~)2
(2.14)

Equation 2.14 gives us the charge carrier density, regardless of charge carrier type (i.e. electron or

hole). Defining n̄ = |ne−np| as the average total charge carrier density and using the relation between

the Fermi energy and the Fermi wavevector, EF = ~vF kF , we get the direct relation between the

Fermi level and the charge carrier density.

kF =
√
πn̄ (2.15)

In undoped graphene with no external interactions the valence band is full of electrons while the

conduction band is full of holes. In this case the Fermi level lies on the Dirac point. Since the Dirac

point is a single point of measure zero the density of states at the Dirac point is zero. This means

that there are no charge carriers in graphene at the Dirac point. As such the conductivity would be

zero. However this is not the case. Experimentally it has been shown that graphene has a minimum

conductivity, even at zero charge carrier doping [66]. This paradox can be explained by realizing that

flat graphene with no external interactions is an idealistic scenario. External charge impurities and

the roughness of the substrate can spontaneously dope graphene. This can cause randomness in the

local charge carrier density. It has been proposed that due to this randomness, graphene experiences

finite conductivity near the Dirac point. Although equation 2.11 gives us a relation between the

charge carrier density and the back gate voltage, one must keep in mind that this charge carrier

density is only considered to be the average value, as impurities cause local fluctuations. To limit

the effects of impurities near the Dirac point, we only consider the average charge carrier density,

n̄, in the range 1011cm−2 . n̄ . 1013cm−2. The lower limit on n̄ is imposed for a reduction of the

effects of impurities while the upper limit is needed so we only consider the two dimensional response

function for graphene’s π electrons in the approximation of the Dirac cone.
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Chapter 3

Linear Response of Graphene

3.1 Random phase approximation

The Random Phase Approximation (RPA) is a widely used general framework for investigating

many-electron systems and their response to external electric fields. It has been extensively used in

the field of condensed matter to study the dielectric function of a free-electron gas [3], the dissociation

behaviour of diatomic molecules [21, 67], atomization energies of small covalent molecules [17], etc.

The idea behind the RPA is to examine particle-hole excitations that would result from an external

field. A condition required for the RPA to be accurate is that the electron-electron interaction in

the material is weak. However, in graphene the quasiparticle interaction is not necessarily weak.

The coupling constant, which defines the strength of Coulomb interactions in graphene, is given by
rs
ε ≈ 2.19

ε , where ε is the dielectric constant of the material surrounding graphene. The coupling

constant shows up in the perturbative expansion of the polarization function using the RPA. The

constant rs = e2

~vF ≈ 2.19 is analogous to the fine-structure constant in QFT. In free graphene

(ε = 1) the coupling constant is greater than 1, making the perturbative expansion of the interactions

questionable, but since the coupling constant is controlled by the dielectric environment surrounding

graphene, the value could be reduced to much less than 1 using a suitable substrate. There is

still debate surrounding the RPA’s validity in graphene [45, 15]. However the literature seems to

agree that the problems arise in the case of intrinsic graphene (i.e. undoped graphene with n̄ close to

zero). In extrinsic graphene, where the Fermi energy is far away from the Dirac point, the logarithmic

ultraviolet and infrared divergences, which arise from the momentum integral not including an upper

and a lower cutoff respectivley, cancel each other out [15], making the RPA well behaved.

To derive the RPA we will follow the method of Bohm and Pines [6]. We begin this derivation

using the most basic properties of the density matrix. The density matrix describes a quantum

system in an ensemble of several quantum states. It is the quantum mechanical equivalent to the

classical phase space distribution which evaluates the dynamics of the system. The equation that

governs the quantum dynamics of the many-electron system is called the Liouville equation and it

is given by

i~
∂ρ

∂t
= [H, ρ] (3.1)
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Here H is a Hamiltonian operator and ρ is the density matrix, which is also an operator acting

on a Hilbert space. Similarly [∗, ∗] is the usual commutation operator. It is usually the case that

we can’t solve equation 3.1. However we can approximate it through the use of a simpler, solvable

Hamiltonian. We would like to expand the Hamiltonian operator into its unperturbed Hamiltonian

part and a perturbation potential that would arise from both external and induced internal effects

reacting to the external field,

H = H0 + V

We consider the perturbation potential, V , to be small when compared to the unperturbed Hamilto-

nian, H0. Let the states, |Ψk〉, be the eigenstates of the unperturbed Hamiltonian with corresponding

energy levels Ek (i.e. H0|Ψk〉 = Ek|Ψk〉). Since we are dealing with a many-body system, we note

that k in general includes a vector describing the momentum, as well as the band indices, of the

many-body system. We expand the density matrix, ρ, as a sum of an unperturbed and a perturbation

density matrix,

ρ = ρ0 + ρ1

We assume that ρ0 determines the dynamics of the unperturbed Hamiltonian and is a solution to

equation 3.1, i.e. i~∂ρ0∂t = [H0, ρ0]. As such ρ0 acting on one of the unperturbed states, |Ψk〉, gives

us the probability of the system being in state |Ψk〉, that is ρ0|Ψk〉 = f0(Ek)|Ψk〉 where f0(Ek) is

the Fermi-Dirac distribution function. Now we want to approximate the solution to equation 3.1 for

the full perturbed system

i~
(
∂ρ0

∂t
+
∂ρ1

∂t

)
= [H0 + V, ρ0 + ρ1]

giving

i~
∂ρ1

∂t
= [H0, ρ1] + [V, ρ0] + [V, ρ1]

Since both V and ρ1 are small perturbations we will ignore the last term in the equation above, as

it is a second order effect. Evaluating the matrix elements of the equation above in the basis of the

unperturbed Hamiltonian gives,

i~
∂

∂t
〈Ψk|ρ1|Ψk′〉 = 〈Ψk|[H0, ρ1]|Ψk′〉+ 〈Ψk|[V, ρ0]|Ψk′〉

= (Ek − Ek′)〈Ψk|ρ1|Ψk′〉+ (f(Ek′)− f(Ek))〈Ψk|V |Ψk′〉,

where the last equality follows from the properties of the eigenstate |Ψk〉 interacting with operators

H0 and ρ0 which were described earlier. Taking the Fourier transform in the time domain we get,

(ω~ + iν+)〈Ψk|ρ1|Ψk′〉 = (Ek − Ek′)〈Ψk|ρ1|Ψk′〉+ (f(Ek′)− f(Ek))〈Ψk|V |Ψk′〉

Here ν+ is a small positive number that is taken to approach zero. It arises from causality, that

is initially (in the limit t → −∞) the system is assumed to be unperturbed and the perturbing

potential is applied adiabatically. Collecting the like terms gives,

〈Ψk|ρ1|Ψk′〉 =
f(Ek′)− f(Ek)

Ek′ − Ek + ω~ + iν+
〈Ψk|V |Ψk′〉 (3.2)
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This result is valid under the condition that |Ψk〉 are eigenstated of the unperturbed Hamiltonian.

Equation 3.2 gives us the first order correction to the density matrix. Higher order corrections can

be obtained using equation 3.2, but we will not consider these in this thesis. Now we can use the

first order correction of the density matrix to evaluate the induced charge density at any point in

space. First we need to make some assertions about the system we wish to analyze and its eigenstate

wavefunctions |Ψk〉. Since this thesis primarily deals with graphene, we assume that our system is

a two dimensional crystal with periodic structure that could be described by some primitive basis

vectors as derived in Chapter 2. Furthermore we expand on the wavefunctions |Ψk〉 that we will

be using. Using the tight binding model we have already calculated the electron wavefunction of

graphene near the Dirac points K and K′ (eq. 2.8) and we know the dispersion of the energy for

different momenta (eq. 2.7). Since there are two energy bands we can label the electron wavefunctions

as |k, l〉. Here k specifies the two dimensional (2D) momentum of our wavefunctions and l is the

index representing one of the two bands of the π bonds. Then we could represent the wavefunctions

in position space as

〈r, z|k, l〉 = Ψk,l(r, z) =
1√
A
eik·ruk,l(r, z)

where A is the area of the crystal solid that we wish to examine. Since graphene is a two dimensional

material, we are only concerned with momentum waves traveling in the plane of graphene. This

implies that r and k are two dimensional vectors. Graphene is analyzed in a three dimensional space

so we must include the out of plane dependence (the z dependence) on the wavefunction. eik·r is

a plane wave with momentum k, which is the momentum of the crystal lattice, and uk,l(r, z) is a

function which is periodic in the x and y coordinates and has the same period as the crystal in

position space (i.e. uk,l(r + R, z) = uk,l(r, z), where R is some two dimensional lattice translational

vector of graphene). Furthermore, we follow usual convention and define l = 1 for the conduction

band and l = −1 for the valence band.

An external charge will induce an opposing charge density on the surface of graphene. Now the

induced charge density can be expressed as the expectation value of the density matrix of a charged

particle in position space,

nind(r, z) = 〈r, z|ρ1|r, z〉 (3.3)

The dependence of induced charge density on the frequency ω is implied, however we drop it for

brevity. We can expand equation 3.3 in momentum space by using the completeness relation 1 =∑
k,l |k, l〉〈k, l|,

nind(r, z) =
∑
k′,l′

∑
k,l

〈r, z|k′, l′〉〈k′, l′|ρ1|k, l〉〈k, l|r, z〉

=
∑
k′,l′

∑
k,l

Ψ∗k′,l′(r, z)〈k′, l′|ρ1|k, l〉Ψk,l(r, z)

To evaluate the equation above we will consider a two dimensional Fourier transform of the induced
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charge density,

ñind(q, z) =

∫
d2re−iq·rnind(r, z)

=
∑
k′,l′

∑
k,l

〈k′, l′|ρ1|k, l〉
∫
d2rΨ∗k′,l′(r, z)e

−iq·rΨk,l(r, z) (3.4)

The matrix elements 〈k′, l′|ρ1|k, l〉 are independent of the location r so they are taken out of the

integral. We can simplify our integral using the properties of the Bloch wave functions to get,

=
∑
k′,l′

∑
k,l

〈k′, l′|ρ1|k, l〉δk,k′+q

∫
d2rΨ∗k′,l′(r, z)e

−iq·rΨk′+q,l(r, z)

=
∑
k′

∑
l,l′

〈k′, l′|ρ1|k′ + q, l〉〈k′, l′|e−iq·r|k′ + q, l〉

=
∑
k′

∑
l,l′

〈k′, l′|ρ1|k′ + q, l〉M l,l′

k′,k′+q(z)

Here we defined M l,l′

k′,k′+q(z) as the two dimensional Fourier transform of Ψ∗k′,l′(r, z)Ψk′+q,l(r, z).

Now using equation 3.2 for the matrix elements of the density matrix ρ1 we expand our equation

above to get

ñind(q, z) = 2
∑
k′

∑
l,l′

f(Ek′,l′)− f(Ek′+q,l)

Ek′,l′ − Ek′+q,l + ω~ + iν+
〈k′, l′|V |k′ + q, l〉M l,l′

k′,k′+q(z) (3.5)

We have included the multiple of 2 to account for the spin degeneracy of the electrons. In a more

general situations where the spin of the electrons are coupled to the external interactions, the factor

of 2 cannot be added and the spin interactions must be accounted for in the energy dispersion

Ek,l. To simplify equation 3.5 even further we need to evaluate the matrix elements of the potential

operator V . To do this, we once again look at the Fourier transform of the potential function in

position space

V (r′, z′) =

∫
d2q′

(2π)2
eiq
′·r′ Ṽ (q′, z′)

Using this definition of the potential function, the matrix elements in equation 3.5 become

〈k′, l′|V |k′ + q, l〉 =

∫
d2r′

∫
dz′Ψ∗k′,l′(r

′, z′)V (r′, z′)Ψk′+q,l(r
′, z′)

=

∫
d2q′

(2π)2

∫
dz′Ṽ (q′, z′)

∫
d2r′Ψ∗k′,l′(r

′, z′)e−iq
′·r′Ψk′+q,l(r

′, z′)

Now to integrate out the r′ variable we use a similar trick as before. This reduces the above equation

to

〈k′, l′|V |k′ + q, l〉 =

∫
d2q′

(2π)2

∫
dz′Ṽ (q′, z′)δ(q− q′)

∫
d2r′Ψ∗k′,l′(r

′, z′)e−iq
′·r′Ψk′+q,l(r

′, z′)

=

∫
dz′ Ṽ (q, z′)M l,l′

k′,k′+q(z)
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So finally the Fourier transform of the induced charge density has the form

ñind(q, z) = 2
∑
k

∑
l,l′

f(Ek,l′)− f(Ek+q,l)

Ek,l′ − Ek+q,l + ω~ + iν+
M l,l′

k,k+q(z)

∫
dz′M l,l′

k,k+q(z′)Ṽ (q, z′) (3.6)

This is the most general form of the induced charge density for graphene. So far the only assumption

we have made about graphene is that it is a two dimensional periodic lattice.

Equation 3.6 is purely the result of using the first order approximation to the density matrix

defined in equation 3.2. The function M l,l′

k,k′(z) can be thought of as the average z dependence of

the wavefunction. A realistic approach to evaluating it is through the use of the electron orbital

structure of graphene which was derived using the tight binding approximation. The π-bonds which

are formed from 2pz orbital wavefunctions have an electron density which decays exponentially in

the z direction. The spatial decay rate is less than an angstrom so, a distance of a few angstroms

away from the graphene surface results in a negligible electron density contribution from the π-

bonds. Within the zero thickness approximation of graphene we assume that the function M l,l′

k,k′(z)

is localized in the plane of graphene. This is a somewhat idealistic approximation, as impurities near

the surface of graphene could significantly overlap with the electron orbitals. We ignore the effects

of orbital overlap since they make the analytic calculations less attractive and inseparable. Instead

we approximate
√
AM l,l′

k,k′(z) ≈ M̄
l,l′

k,k′δ(z). With this in mind the last factor in equation 3.6 becomes

M l,l′

k,k+q(z)

∫
dz′M l,l′

k,k+q(z′)Ṽ (q, z′) =
1

A
δ(z)Ṽ (q, z)|M̄ l,l′

k,k+q|2

giving us an induced charge density of

ñind(q, z) = 2δ(z)Ṽ (q, z)

∫
d2k

(2π)2

∑
l,l′

f(Ek,l′)− f(Ek+q,l)

Ek,l′ − Ek+q,l + ω~ + iν+
|M̄ l,l′

k,k+q|2 (3.7)

where we have turned the sum over k into an integral over the 1st Brillouin zone. This is a valid

move since the spacing between consecutive momenta becomes smaller and smaller as the size of the

graphene sheet becomes larger. For a theoretically infinite graphene sheet the sum transforms into

an integral. In the zero thickness approximation of graphene, the induced charge density resides on

the plane of graphene. In Fourier space this density is related to the external potential and the linear

response via,

ñind(q, z) = δ(z)Ṽ (q, z)χ̃0(q) (3.8)

Although the idea of a zero thickness graphene sheet may seem somewhat ad hoc the formalism

greatly simplifies our calculations and is very accurate with the limits of kF discussed in Chapter 2.

So the linear response of graphene is equal to,

χ̃0(q) = 2

∫
d2k

(2π)2

∑
l,l′

|M̄ l,l′

k,k+q|2
f(Ek,l′)− f(Ek+q,l)

Ek,l′ − Ek+q,l + ω~ + iν+
(3.9)

Now we need to evaluate the matrix elements of |M̄ l,l′

k,k+q|2 which is the Fourier transform of two
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wavefunctions. Expanding the wavefunctions by using the tight binding approximation from equation

2.2

M̄ l,l′

k,k+q =

∫
d2r

∫
dz
[
a∗k,lψ

∗
A,k + b∗k,lψ

∗
B,k

]
e−iq·r [ak+q,l′ψA,k+q + bk+q,l′ψB,k+q]

The evaluation of this integral is tedious and the reader is invited to see its derivation in the Appendix.

Here we shall reiterate the result

M̄ l,l′

k,k+q =
1

2
R(q)

[
1 + (−1)l+l

′ f(k)f(k + q)

|f(k)||f(k + q)|

]
where R(q) is the two-dimensional Fourier transform of the modulus squared of the pz orbital,

R(q) =

∫
dz

∫
d2r |ϕpz (r, z)|2eiq·r =

[
1 +

(
a0q

Zeff

)2
]−3

Here ao is the Bohr radius and Zeff is the effective charge of the screened nucleus in the carbon atom

[60]. Taking the modulus squared of M̄ l,l′

k,k+q results in

|M̄ l,l′

k,k+q|2 =
1

2
R2(q)

{
1 + (−1)l+l

′<
[
f(k)f(k + q)

|f(k)||f(k + q)|

]}

Using equation 2.4 for f(k) near the Dirac point, we can simplify |M̄ l,l′

k,k+q|2, so our polarization

function now becomes

χ̃0(q) = R2(q)

∫
BZ

d2k

(2π)2

∑
l,l′

[
1 + (−1)l+l

′ k + q cos θk,q
|k + q|

]
f(Ek,l′)− f(Ek+q,l)

Ek,l′ − Ek+q,l + ω~ + iν+
(3.10)

The evaluation of this integral is rather computationally cumbersome, though straightforward. The

results can be found in [29, 70], and a partial derivation is in the Appendix. Here we will just cite

the results of the first order linear response of graphene. Define the two complex functions

F (q, ω) =
1

4π

~v2
F q

2√
ω2 − v2

F q
2

G(x) = x
√
x2 − 1− ln(x+

√
x2 − 1)

then

χ0(q, ω) = χ−0 (q, ω) + χ+
0 (q, ω) (3.11)
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where,

χ−0 (q, ω) = iπ
F (q, ω)

(~vF )2

χ+
0 (q, ω) = − 2EF

π~2v2
F

+
F (q, ω)

~2v2
F

{
G

(
~ω + 2EF

~vF q

)
−H

(
2EF − ~ω

~vF q
− 1

)
×
[
G

(
2EF − ~ω

~vF q

)
− iπ

]
−H

(
1− 2EF − ~ω

~vF q

)
G

(
~ω − 2EF

~vF q

)}
and EF is the Fermi energy of doped graphene and H(x) is the Heaviside function. The polarization

function of graphene is still subject to intense research. Second order, and beyond the Dirac cone,

effects, and their contribution to the polarization function, are currently being examined [61, 35, 63,

77]. For this thesis, first order effects will be sufficient.

Furthermore, we make a note of the factor R(q). According to Zener [78], the effective charge of

the carbon atom is Zeff ≈ 3.18. With the Bohr radius being approximately 0.53 Å, we get a ratio

a0/Zeff ≈ 0.167 Å. This implies that the wavevector q needs to be on the order of 5 Å−1 before R(q)

has a significant effect. However, due to the limitations imposed on the Fermi wavevector in Chapter

2, forcing kF . 0.1 Å−1, we can ignore the factor R(q) since it will be almost 1 over the region of

interest.

3.2 Dielectric function

Perhaps the most important property of the polarization function of graphene, is its use in the

dielectric function. The dielectric function is versatile in the sense that it describes many properties

of the material. For graphene in a medium with a relative dielectric constant εr, the dielectric

function is given by

ε(q, ω) = 1− vqχ0(q, ω) (3.12)

where vq = 2πe2

εrq
is the 2D Fourier transform of the Coulomb potential. For more complicated system,

the dielectric function changes to include the Green’s function of the surrounding system, as will be

shown later. One of the important properties that the dielectric function gives is the plasmon (i.e.

oscillations of charge density) dispersion relation. Solving

ε(q, ω + iγ) = 0 (3.13)

gives a relation between ω and q, defined as ωp(q), which tells us how the collective electron excitation

modes called, plasmons, disperse in the material. The value γ is the decay rate of the plasmon. The

dielectric function in the long wavelength limit q → 0, ω > vF q is particularly important in optical

spectroscopy and plasmon dispersion. This limit tells us the interaction between photons impinging

on graphene and graphene’s response to them. Although plasmons are not studied here, we mention

that they are an important and active area of research, particularly in the optical properties of

graphene [75, 20, 8].

Another property that the dielectric function tells us, is the screening of external charges. Exter-
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nal charges usually are composed of slowly moving, or static, massive charge carriers that interact

with the material via Coulomb interaction. Since the external charges are slow and massive, we use

the dielectric function in the static limit, ω = 0. The external particles cause an induced charge

density to be formed in the material. For a point charge on graphene, the induced charge density is

given by

nind(r) ∝
∫

d2q

[
1

ε(q, 0)
− 1

]
eiq·r (3.14)

where the static polarization function of graphene is,

χ0(q, ω → 0) = − 2kF
π~vF

1 +H(q − 2kF )

 q

4kF
arccos

(
2kF
q

)
− 1

2

√
1−

(
2kF
q

)2
 (3.15)

Using this in our dielectric function 3.12 we get

ε(q, 0) = 1 +
2rs
εr

1

x

1 +H(x− 1)

x
2

arccos

(
1

x

)
− 1

2

√
1−

(
1

x

)2


where we defined the dimensionless parameters rs = e2

~vF and x = 2kF
q . As mentioned earlier rs is

the coupling constant of the quasi particles in graphene. The dielectric function has a discontinuous

derivative at x = 1, which gives rise to Friedel oscillations in the induced charge density in equation

3.14. Friedel oscillations are often found in a Fermi gas, and are analogous to electron screening in

a quantum mechanical system. They are characterized by decaying oscillations whose wavevector

is proportional to the Fermi wavevector of the material. As was shown earlier, the average charge

density is dependent on an external potential. With the inclusion of an external charge in our model,

we expect charge density oscillations in the plane of graphene.
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3.3 Green’s function of nearby dielectrics

In this thesis we consider the interaction of graphene with its surrounding material. As such, a

proper treatment of the geometric structure surrounding graphene must be considered. We have

already discussed the process of using graphene as a field effect transistor in experiments. So we

would like to model the material surrounding graphene after conventional experimental set-ups. First

we will consider the geometry of the material surrounding graphene and derive a Green’s function

for its Poisson equation. After that we will introduce graphene as a two dimensional, zero thickness

material and derive a general Green’s function by considering the linear response of graphene as a

boundary condition.

Consider a three dimensional medium with a discontinuous dielectric boundary at z = 0. The

upper medium has a dielectric constant of ε2 and the lower medium has a dielectric constant of ε1.

Below the lower medium is a metallic electrode with infinite dielectric constant (see figure 3.1). The

metallic material is analogous to a back gate in an experimental setting. The model is considered to

be translationally invariant and isotropic in the x-y plane. We will use r to specify a two dimensional

vector in the x and y coordinates, and we will denote r = |r|. We want to obtain the electric potential,

given an external charge density. This motivates us to use the Poisson equation.

∇ · ε(z)∇Φ = −4πρ (3.16)

Our three-dimensional Poisson equation can be decomposed into two equations, one above z = 0

and one below,

ε14Φ1 = −4πρ1

ε24Φ2 = −4πρ2

where 4 = ∇2 is the Laplacian. We require that the two potentials Φ1 and Φ2 satisfy the regular

conditions of continuity across the discontinuous dielectric surface and we require them to vanish as

z → ∞ and z = −L, where −L is the location of the metallic plate in the z axis. We also require

the electric displacement field to conserve the charge density along the z = 0 plane. We can write

these boundary conditions mathematically as

Φ1(r, 0) = Φ2(r, 0)

Φ1(r,−L) = 0

Φ2(r,∞) = 0

ε1
∂Φ1

∂z

∣∣∣∣
z=0

− ε2
∂Φ2

∂z

∣∣∣∣
z=0

= 0

In essence we would like to solve for the Green’s function of the differential equation 3.16. In

that way we can obtain the scalar potential for any external charge distribution, ρ, by evaluating

an integral equation. Since our system is isotropic in the x and y directions we can take the two
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Figure 3.1: The geometry of the model considered with graphene included, which in this case,
is sandwiched between two dielectric substrates. Below the bottom substrate lies the back-gate,
which is metallic. Charged impurities are placed in the bottom substrate at a distance d away from
graphene. The treatment of impurities will be considered in Chapter 6.

dimensional Fourier transform in r. Now our differential equations become:(
∂2

∂z2
− q2

)
Φ̃1(q, z) = −4π

ε1
ρ̃1(q, z)(

∂2

∂z2
− q2

)
Φ̃2(q, z) = −4π

ε2
ρ̃2(q, z)

Here we denote q to be a two dimensional vector in Fourier space, and set q = |q|. Furthermore,

the tildes denote that the functions have been Fourier transformed in the x-y plane, and that the

functions dependence on q is implied. To solve the above differential equation we seek a Green’s

function of the form 
(
∂2

∂z2 − q2
)
G1(q, z, z′) = − 4π

ε1
δ(z − z′) (−L < z < 0)(

∂2

∂z2 − q2
)
G2(q, z, z′) = 0 (z > 0)

(3.17)

As is conventional in integral operators, the z′ variable will denote the source point and z will

denote the observation point [43]. In this thesis the sources of the charge distribution will be

charged impurities in the substrate. We will only consider charge distributions which are located

in the bottom dielectric. So the location of the source points will be in the negative z axis, and so

there is no need to have a δ(z − z′) term on the right for the greens function G2 in equation 3.17.
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In general the two Green’s functions will have the following boundary conditions

G1(q,−L, z′) = 0 (3.18)

G2(q,∞, z′) = 0 (3.19)

G1(q, z′ + η, z′) = G1(q, z′ − η, z′) (3.20)

G1(q, 0, z′) = G2(q, 0, z′) (3.21)

ε1
∂G1

∂z

∣∣∣∣
z=0

− ε2
∂G2

∂z

∣∣∣∣
z=0

= 0 (3.22)

∂G1

∂z

∣∣∣∣
z=z′+η

− ∂G1

∂z

∣∣∣∣
z=z′−η

= −4π

ε1
(3.23)

where η is some infinitesimally small positive number. Boundary conditions 3.18, 3.19, 3.21, and

3.22 are a direct result of the boundary conditions imposed on equation 3.16. The other boundary

conditions arise as a property of the Green’s function. We know that the solutions to 3.17 will be

exponential functions, so, using boundary conditions 3.18 and 3.19 we get

G1(q, z, z′) =

A sinh(q(z + L)) z′ > z

Be−qz + Ceqz z > z′

and

G2(q, z, z′) = De−qz

With the remaining boundary conditions we get

A sinh(q(z′ + L)) = Be−qz
′
+ Ceqz

′

−Be−qz′ + Ceqz
′ −A cosh(q(z′ + L)) = − 4π

qε1

B + C = D

ε2(−D)− ε1(−B + C) = 0

After some lengthy algebra

A =
4π

ε1q

ε1 cosh(qz′)− ε2 sinh(qz′)
ε1 cosh(qL) + ε2 sinh(qL)

B =
2π

ε1q
(ε1 − ε2)

sinh(q(z′ + L))

ε1 cosh(qL) + ε2 sinh(qL)

C =
2π

ε1q
(ε1 + ε2)

sinh(q(z′ + L))

ε1 cosh(qL) + ε2 sinh(qL)

D =
4π

q

sinh(q(z′ + L))

ε1 cosh(qL) + ε2 sinh(qL)

Defining Γ±(x) = ε1 cosh(x) ± ε2 sinh(x), z> = max{z, z′} and z< = min{z, z′} we can express the

27



Green’s functions as

G(q, z, z′) =

G1(q, z, z′) = 4π
ε1q

Γ−(qz>) sinh(q(z<+L))
Γ+(qL) −L < z < 0

G2(q, z, z′) = 4π
q

sinh(q(z′+L))
Γ+(qL) e−qz z > 0

(3.24)

We can test our result by examining the Green’s function in the limit of the special case L→∞. In

this case the Green’s function reduces to

G(q, z, z′) =


2π
ε1q

(
ε1−ε2
ε1+ε2

e−q|z+z
′| + e−q|z−z

′|
)

z < 0

2π
qεavg

e−q|z−z
′| z > 0

Here we define εavg = ε1+ε2
2 as the average dielectric value between the two mediums. An inverse

two dimensional Fourier transform of this Green’s function for z < 0 gives the following Green’s

function in position space,

∫
d2q

(2π)2
eiq·(r−r

′)G(q, z, z′) =
1

ε1

[
ε1 − ε2
ε1 + ε2

1√
|r− r′|2 + (z + z′)2

+
1√

|r− r′|2 + (z − z′)2

]

A quick glance at this Green’s function and one notices that it is the sum of two familiar Green’s

function. The first Green’s function on the right side is the image term, which results from a

discontinuous dielectric boundary, and as a result causes screening of the external charge. The

second term on the right is the standard Green’s function for a Poisson equation with a dielectric

constant ε1. Similarly, if one were to take the Fourier transform of the Green’s function for z > 0

one would get the usual Poisson equation Green’s function with a dielectric constant εavg.

3.4 Adding graphene

Now we use our Green’s function, which only considers the discontinuous dielectric boundary, and

add the interaction with graphene to derive a new Green’s function. We treat the sheet of graphene

using the zero thickness approximation, turning the Fourier transformed Poisson equation into(
∂2

∂z2
− k2

)
Φ̃(z) = −4πe2χ0(q, ω)δ(z − zg)Φ̃(z)− 4πρ̃(z) (3.25)

Here χ0(q, ω) is the linear response of the electrons in graphene derived earlier (equation 3.11). ρ̃(z)

is the external charge density and Φ̃(z) is the scalar electric potential, which is the quantity we are

interested in. For the sake of brevity, we shall drop the q dependence in those functions. With the

zero thickness approximation, the location of graphene is a delta function in the z axis, and in this

case graphene is located in the plane z = zg. One notices that the first term on the right in equation

3.25 is in fact the induced charge density in graphene, derived in equation 3.8. So the right side of

equation 3.25 could be considered as a charge density which includes both the external impurities

and the internal, induced charge density due to the external impurities. The Fourier transformed

Poisson equation could be used as the linear operator in equation 3.25. This allows us to use the
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Green’s function derived above (equation 3.24) to find the scalar potential. Denoting the Green’s

function from the dielectric substrates as G̃0(z, z′), and dropping the q dependence for brevity, the

potential can be expressed as

Φ̃(z) =

∫
dz′G̃0(z, z′)[ρ̃(z′) + e2χ0(q, ω)δ(z − zg)Φ̃(z′)]

= e2χ0(q, ω)Φ̃(zg)G̃
0(z, zg) +

∫
dz′G̃0(z, z′)ρ̃(z′)

Evaluating the scalar potential at z = zg we get

[1− e2χ0(q, ω)G̃0(zg, zg)]Φ̃(zg) =

∫
dz′G̃0(zg, z

′)ρ̃(z′)

Solving for Φ̃(zg) and plugging it in the original equation gives us

Φ̃(z) =

∫
dz′
[
G̃0(z, z′) +

e2χ0(q, ω)G̃0(z, zg)G̃
0(zg, z

′)

1− e2χ0(q, ω)G̃0(zg, zg)

]
ρ̃(z′)

Now we can define the full Green’s function, which incorporates the linear response of graphene as

G̃(z, z′) = G̃0(z, z′) +
e2χ0(q, ω)G̃0(z, zg)G̃

0(zg, z
′)

1− e2χ0(q, ω)G̃0(zg, zg)
(3.26)

So the final result is given in terms of the linear response function, χ(q, ω), and the Green’s function

for the bare model without graphene, G̃0(z, z′). The denominator in equation 3.26 is subtly connected

to the dielectric function of the material. If we evaluate equation 3.26 in the plane z = zg we get

the Green’s function for an observation point on graphene, which is given by
G̃0(zg,z

′)

1−e2χ0(q,ω)G̃0(zg,zg)
.

Consequently, the denominator in this case gives us the dielectric function in graphene. In the

standard case of free graphene, e2G̃0(zg, zg) reduces to the two-dimensional Fourier transform of the

Coulomb potential, e
22π
qεr

. In the more general case for any Green’s function G̃0(zg, zg), the dielectric

function is ε(q, ω) = 1− G̃0(zg, zg)χ0(q, ω)

We note that, although we have used the zero thickness approximation for graphene, a more

general model, with a finite thickness of graphene, could be considered. However the derivation of

such a model requires a three dimensional linear response function as well. In this thesis, we neglect

the derivation of such a model due to its complexity. Furthermore, we make a note on the limitation

of equation 3.26. The Green’s function, G̃0(z, z′), need not be the one derived earlier (equation

3.24) and could be replaced with any other Green’s function for a substrate geometry without a

sheet of graphene. We make use of this property later on when we consider a vacuum gap model.

The vacuum gap model is a more general case where we consider a spatial gap between the two

dimensional sheet of graphene and the substrates. The derivation of the Green’s function for the

vacuum gap model is computationally more involved, although the idea is rather rudimentary. The

result is presented in the Appendix. The vacuum gap model assumes a dielectric layer between the

the substrates in which the graphene sheet resides (see figure 3.2). There are two advantages to this

model. Usually in experiments, between the sheet of graphene and the substrate there are impurities
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Figure 3.2: The geometry of the the vacuum gap model. Here we have the added parameter h which
gives us the distance between the two dielectric surfaces. In the H = 0 limit, the vacuum gap model
reduces to the simpler model derived earlier.

trapped from the cleaning and manufacturing process. The vacuum gap model has the added utility

that it could explore such structures. The other advantage is that the vacuum gap model can be

thought of as a simpler way of relaxing the zero thickness approximation of graphene. The out of

plane π orbitals decay exponentially and are negligible at a distance of 3Å away from graphene. So

we can consider the position of the graphene sheet to be around 3Å away from the substrates. Note

that this distance is expected since graphene interacts with the substrate only weakly, usually via

Van der Waals interaction, with a typical distance of about 3Å.
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Chapter 4

Statistical Properties of Impurities

and their Effects

4.1 Types of impurities

Impurities are particles which are confined in a well described material whose properties differ from

that of the material itself. Although materials may contain low concentrations of impurities, the

properties of the entire system may change. An example of this would be the decrease in the freezing

temperature of water by adding certain salts to it. Impurities are an unavoidable consequence in the

production of materials. The elimination of all impurities from a material is impossible as it would

require reducing the entropy of the system to zero, violating the second law of thermodynamics [22].

As such, we must incorporate impurities in our material analysis. We will only deal with external

charged impurities in this thesis. Other types of impurities, such as atomic vacancies in graphene,

will not be considered here. In most bulk materials, charged impurities external to the material,

cause negligible electronic effects inside the material. With graphene, which can be considered as

an ideal surface, this is not the case. It’s two dimensional nature gives it tremendous sensitivity to

its surroundings. Graphene, being a chemically inert material, does not change its structure due to

the external impurities, however, the interaction of the impurities with the crystal lattice alters the

electrical properties of graphene. This can be considered both a blessing and a curse. Due to its

sensitivity graphene can be an ideal sensor for measuring minute concentrations, of certain chemicals,

in its vicinity [47, 57]. However this also causes the undesirable effect of giving false positive results

due to unavoidable charged impurities in the substrate surrounding it. This chapter deals with the

mathematical description of charged impurities in the vicinity of graphene, as well as their effect on

the electric potential and induced charge carrier density in graphene. We will develop mathematical

models to describe both the geometric structure of the impurities (i.e distributed in two and three

dimensions) as well as the statistical distribution between the impurities (i.e. their pair correlation

function).

We assume that the system of external charges contains N particles, with each particle carrying a

total charge of Zje (where e > 0 is the charge of a proton). The particles need not be point charges.
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Assuming that the jth particle is centered around the position Rj = {rj , zj}, we could consider the

charge to be distributed around the center of the particle according to some function ∆j(R) under

the condition
∫
d3R∆j(R) = Zj . The entire, external charge density, due to impurities, can be

expressed as

ρ(r, z) = e

N∑
j=1

∆j(r− rj , z − zj) (4.1)

Given that the positions Rj of external particles, as well as their individual charge densities ∆j(R)

are statistically distributed, we denote their joint ensemble average by 〈...〉. In general ∆j may

consist of different types of distributions for different j. However, in this thesis we assume that the

charge around each particle has the same distribution (i.e. ∆j(R) = ∆(R)). The most general N

particle density function will be denoted by FN (r1, z1, ..., rN , zN ), and so the average charge density

at a point is defined as

〈ρ(r, z)〉 = e

∫
d2r1

∫
dz1...

∫
d2rN

∫
dzNFN (r1, z1, ..., rN , zN )

N∑
j=1

∆(r− rj , z − zj) (4.2)

We will assume translational invariance in the direction of r. This will make the ensemble average,

〈ρ(r, z)〉, purely dependent on the z coordinate. If we were to expand out the sum in 4.2, we would

have the integral given by

〈ρ(r, z)〉 = e

∫
d2r1

∫
dz1F1(r1, z1)∆(r− r1, z − z1) (4.3)

By the assumption of translational invariance, the particles will be distributed evenly in the r

direction, so we can express F1(r, z) = Nf1(z)
A , where A is the area of the x-y plane in which

the impurities lie and f1(z) is a probability distribution which describes how the impurities are

distributed in the z direction.

We want to make a clear distinction between the structure of each impurity and their collective

distribution. The structure of each impurity is defined through the function ∆(R). In general, this

function can describe a variety of different impurity types. In this thesis we will focus only on two

that are applicable to our research. The simplest types of impurities are point particles. Point

particles are idealized particles characterized by a delta function in their spatial distribution and are

usually used to model particles whose size is not relevant to the problem (e.g. classically interacting

electrons). In addition to carrying a total charge of Ze, point particles can be generalized to contain

a dipole moment, D = eµ, where µ is the displacement vector. With this in mind, the structure of

the charge for a point particle impurity is of the form

∆(R) = e(Z + µ · ∇R)δ(R) (4.4)

We could express the dipole moment vector in terms of its perpendicular and parallel components

with respect to graphene, D = D⊥ + D‖. In addition, the perpendicular dipole moment component

may depend on the local electrostatic field E⊥, which arises form the back gate, according to D⊥ =

αE⊥, where α is an effective dipole polarizability near graphene.
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Often in experiments, the point particle impurities tend to cluster together as a result of controlled

thermal annealing [44]. This clustering of charged impurities can be modeled by an idealized disc

of uniformly distributed charge, such that its total charge is still Z. We will only deal with a two

dimensional disc, so that the impurities are still fixed in a plane in the z axis. Assuming the disc is

of radius Rcl in a plane parallel to graphene, we have the following structure of the charge.

∆cl(R) =
eZ

πR2
cl

H(Rcl − r)δ(z) (4.5)

where H(r) is the usual Heaviside step function. The collective distribution of the particles is

governed by the N particle distribution function, FN (r1, z1, ..., rN , zN ). In general this function can

be very complicated for interacting particles. Instead we will assume that the impurities are not

necessarily independently distributed, and so we will focus on the single particle distribution function

described above, and a two particle distribution function defined as

F2(r1, z1, r2, z2) =
N(N − 1)

A2
f1(z1)f1(z2)g(r2 − r1; z1, z2)

Here g(r; z1, z2) is the pair correlation function between two particles. It is used to describe the

probability of finding two particles separated by a distance r in the x-y plane. The use of the pair

correlation function will be discussed later in the thesis, where we relate it to the structure factor.

For a large amount of impurities we can make the approximation N(N − 1) ≈ N2 to simplify our

results. Now we describe the distribution of the particles in the z direction. The simplest, and most

widely used, model to describe the location of the charge impurities is to assume they are distributed

in a plane parallel to the graphene sheet, a distance d below graphene [56, 1, 76, 39]. Assuming that

graphene is placed in the plane z = 0, this would give us f1(z) = δ(z+d). in this case, the impurities

are distributed in a two dimensional plane and have an average two dimensional density of

nimp =
N

A
(4.6)

Another possible distribution of the impurities, which has not been previously used in the analysis

of graphene-impurity interactions, is a uniform, three dimensional distribution of impurities in a

substrate of finite thickness. Once again assuming that the charge impurities are at least a distance

d away from the graphene sheet the distribution function in the z direction becomes f1(z) = 1
L−d .

Although now the three dimensional impurity density should be of the form N
A(L−d) , however, we

will neglect the idea of defining a new impurity density for the three dimensional model. The

impurity density for the three dimensional model will be
nimp

L−d , where we use equation 4.6 as our

model parameter to be consistent throughout our analysis.

The external charge density at any given point could be written in the form

ρ(R) = ρ̄(z) + δρ(R) (4.7)

where ρ̄(z) = 1
A

∫
d2r

∫
dz′f1(z′)ρ(r, z − z′) is the average value over the x-y plane at some point

on the z axis, and δρ(R) is the fluctuation of the external charge density at some point R. The

33



quantity we are most interested in is the autocovariance of the fluctuating external charge density

(i.e. δρ(R)). It is given by

〈δρ(r, z)δρ(r′, z′)〉 = 〈ρ(r, z)ρ(r′, z′)〉 − ρ̄(z)ρ̄(z′) (4.8)

The importance of this equation will become apparent later. To evaluate this function we break it

up term by term. The first term on the right gives,

〈ρ(r, z)ρ(r′, z′)〉 =e2

∫
d2r1

∫
dz1...

∫
d2rN

∫
dzNFN (r1, z1, ..., rN , zN )

×

 N∑
j=1

∆(r− rj , z − zj)

 N∑
j′=1

∆(r′ − rj′ , z
′ − zj′)

 (4.9)

Expanding the sums and collecting like terms yields,

〈ρ(r, z)ρ(r′, z′)〉 =e2

∫
d2r1

∫
dz1F1(r1, z1)∆(r− r1, z − z1)∆(r′ − r1, z

′ − z1)

+e2

∫
d2r1

∫
dz1

∫
d2r2

∫
dz2 F2(r1, z1, r2, z2)∆(r− r1, z − z1)∆(r′ − r2, z

′ − z2)

Since we have already defined F1(r1, z1) and F2(r1, z1, r2, z2) we substitute them in to get

〈ρ(r, z)ρ(r′, z′)〉 =e2nimp

∫
d2r1

∫
dz1f1(z1)∆(r− r1, z − z1)∆(r′ − r1, z

′ − z1)

+e2n2
imp

∫
d2r1

∫
dz1

∫
d2r2

∫
dz2 f1(z1)f1(z2)g(r2 − r1; z1, z2)

×∆(r− r1, z − z1)∆(r′ − r2, z
′ − z2)

The second term in the sum is just

ρ̄(z)ρ̄(z′) = e2n2
imp

∫
d2r1

∫
dz1

∫
d2r2

∫
dz2f1(z1)f1(z2)∆(r1, z1 − z)∆(r2, z2 − z′)

For the simple case of point particles (equation 4.4), which is the most widely used in this thesis,

equation 4.8 becomes

〈δρ(r, z)δρ(r′, z′)〉 =e2(Z + µ · ∇R)2nimp {δ(r− r′)δ(z − z′)f1(z)

+ nimpf1(z)f1(z′)[g(r− r′, z, z′)− 1]} (4.10)

4.2 Geometric structure factor

In this thesis we will deal with two types of correlated impurities, aside from the trivial, uncorrelated

ones. Only correlations in two dimensional distribution of the impurities will be considered (i.e.

f1(z) = δ(z− z0)). As such we can drop the z dependence in the pair correlation function and write

g(r, z, z′) = g(r). The two models that we consider, contain a single parameter rc characterizing the
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inter-particle correlation distance. They are the step-correlation (SC) model with g(r) = H(r− rc),
where H is a Heaviside unit step function, which was often used in the previous studies of charged

impurities in graphene,[76, 39] and the hard-disc (HD) model, in which particles interact with each

other as hard discs of the diameter rc in a many-body Hamiltonian [55]. There are several advantages

to using the HD model over the SC model. First, the former model is based on a Hamiltonian equation

for the thermodynamic state of a 2D fluid with a well-defined pair potential between impurities,

whereas the latter model is an ad hoc description of the impurity distribution, made-up for simple,

analytic results. That is not to say that the SC model is poor at capturing the interesting results of

the electrical properties of graphene with correlated impurities [76, 39], but we think that the HD

model is an improvement to obtain more realistic results. The other advantages of the HD model

are related to its structure factor, which we describe here.

Instead of the pair correlation functions, we will focus on the structure factor of the impurities

in the substrate. The structure factor in two dimensions is defined in terms of the pair correlation

function as,

I2D(q) = 1 + nimp

∫
d2r eiq·r[g(r)− 1] (4.11)

Analogous to the pair correlation function, the structure factor describes the arrangement of external

particles in the plane z = z0. The structure factor is a more palpable measure of the particle

distribution as it is a direct relation to experimental results in neutron or X-ray scattering [68].

It is well known that I2D(0) is related to the isothermal compressibility of a 2D fluid,[25] which

may be expressed as a function of the packing fraction defined by p = πnimpr
2
c/4. Thus, p is a

key measure of performance of the two models. It was recently shown by Li et al.[39] that the SC

model gives reliable results for packing fractions p� 1. This was done by comparing the analytical

result for the 2D structure factor in that model, ISC(q), with a numerically calculated structure

factor of a hexagonal lattice of impurities. However, the analytical limit ISC(0) = 1 − 4p (see

Appendix) shows that the SC model already breaks down for p ≥ 0.25 because the corresponding

compressibility becomes negative at higher packing fractions. On the other hand, it was recently

shown that the interaction potential between two point ions near doped graphene is heavily screened

and, moreover, exhibits Friedel oscillations with inter-particle distance, giving rise to a strongly

repulsive core region of distances on the order of k−1
F that resembles the interaction among hard

disks with diameter rc ∼ k−1
F [52]. Therefore, we may estimate that the packing factor in such cases

may reach values on the order p ∼ nimp/n̄ that may not always be much less than 1, necessitating

the use of a model that goes well beyond the SC model.

In that respect, we note that various parameterizations of the HD model extend its applicability

to include phase transitions in a 2D fluid as a function of the packing fraction, [41] even going up

about p = 0.9, corresponding to a crystalline closest packing where hard discs form a hexagonal

structure in 2D [24]. We use a simple analytical parametrization for the 2D structure factor in

the HD model, SHD(q), provided by Rosenfeld [55] (see Appendix) which works reasonably well for

packing fractions up to about p = 0.69, just near the freezing point of a 2D fluid.
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Figure 4.1: The structure factor, I(q), for the step correlation (SC) and hard disc (HD) models,
expressed in terms of the unitless parameter qrc, where rc is the correlation length of the particles.
For small packing fractions (top, p = 0.1) the two models agree, with the HD model causing slightly
larger oscillations in the structure factor. As we increase the packing fraction past 0.25 (bottom) we
see that the two structure factors are qualitatively different. The SC model turns unphysical since
I(0) becomes negative.
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4.3 Charge carrier and potential fluctuations

Impurities around graphene cause changes to the electrical properties of graphene. How large these

changes are depends on many factors including the type of impurities, their location, distribution

and concentration near graphene. This poses a problem for experimentalists. The presence of

charge impurities, which may be trapped in the substrate or directly absorbed on graphene, render

quantitative details of many measurements of graphene’s electronic properties ’sample dependent’.

We may not know the precise position or type of impurities near graphene, however we can consider

their statistical distribution to obtain some qualitative description of their effects on graphene. In an

Figure 4.2: Fluctuations in the local potential in the plane of graphene. The randomness of the
potential causes two effects. At low charge carrier doping, near the Dirac point, the graphene sheet
experiences localized charge carrier density fluctuations, causing a minimum conductivity. At higher
charge carrier densities, the impurities cause Coulomb scattering of the charge carriers, reducing
their mobility and conductivity. Adapted from [74]

experiment, external gates present an efficient mean for producing concentrations of charge carriers

in graphene. External impurities spatially distort the charge carriers and are thought to produce

electron-hole puddles in graphene that reduce the resistivity of nominally neutral graphene, which

is supposed to be devoid of quasi-free charge carriers and hence present infinite resistivity [79]. This

section examines this claim by analyzing the statistics of the electrical potential and charge carrier

density in graphene.

Consider the electrical potential defined as

Φ(R) = Φ̄(z) + δΦ(R) (4.12)

Here δΦ(R) is the fluctuation or the deviation of the potential from its average in the x-y plane and

Φ̄(z) is the average potential in the x-y plane at some point z which is defined as

Φ̄(z) =
1

A

∫
d2rΦ(R)
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where A is the area of the plane. Using an appropriate Green’s function, the potential fluctuations

and charge density fluctuations are related via

δΦ(R) =

∫
d3R′G(R,R′)δρ(R′)

where δρ(R′) was defined in equation 4.7. We don’t really know what the Green’s function will be

in position space. However we do know its Fourier transform in the x-y plane. We will express the

potential fluctuation in a rather more complicated form

δΦ(R) =

∫
d2q

(2π)2
eiq·r

∫
dz′G(q, z, z′)

∫
d2r1e

−iq·r1δρ(r1, z
′) (4.13)

What we are interested in is the spatial autocovariance function of the potential fluctuations, that is

C(R,R′) = 〈δΦ(R)δΦ(R′)〉 (4.14)

where the angled bracket indicates an ensemble average over all distributions of the charge density.

Since δΦ(R) = Φ(R)− Φ̄(z), and Φ̄(z) is the expected value of Φ(R) in the x-y plane, then equation

4.14 certainly satisfies the usual definition of an autocovariance function. Expanding equation 4.14

by using equation 4.13 gives us the rather long integrals

C(R,R′) =

∫
d2q

(2π)2
eiq·r

∫
d2q′

(2π)2
eiq
′·r′
∫
dz1G(q, z, z1)

∫
dz2G(q′, z′, z2)

×
∫

d2r1e
−iq·r1

∫
d2r2e

−iq′·r2〈δρ(r1, z1)δρ(r2, z2))〉 (4.15)

Recall that, we can expand the ensemble average part to get

〈δρ(r1, z1)δρ(r2, z2)〉 = 〈ρ(r1, z1)ρ(r2, z2)〉 − ρ̄(z1)ρ̄(z2)

Now we need to commit ourselves to the type of impurities that will be examined. Only point charge

impurities will be considered for the calculation of the autocovariance of potential fluctuations and

charge carrier density fluctuations. So the geometry of each impurity is of the same form as equation

4.4 with Z = 1 and no dipole moment, i.e. ∆(r− rj , z− zj) = δ(r− rj)δ(z− zj). Since this case was

already derived earlier (equation 4.10) we just cite the result,

〈δρ(r1, z1)δρ(r2, z2)〉 = e2nimp {δ(r1 − r2)δ(z1 − z2)f1(z1) + nimpf1(z1)f1(z2)[g(r1 − r2)− 1)]}

Seting r2 − r1 = r3 and e−iq
′·r2 = e−iq

′·(r2−r1)e−iq
′·r1 and integrating over r1 and r3 gives
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∫
d2r1e

−i(q+q′)·r1
∫

d2r3e
−iq′·r3e2nimp{δ(r3)δ(z1 − z2)f1(z1) + nimpf1(z1)f1(z2)[g(r3)− 1]}

= (2π)2δ(q + q′)e2nimp {δ(z1 − z2)f1(z1) + nimpf1(z1)f1(z2)[I(q′)− 1]}

where I(q) = 1 +nimp

∫
d2re−iq·r[g(r)− 1] is the structure factor. Integrating over q′ leaves us with

the substitution of q′ = −q.

C(R,R′) = e2nimp

∫
d2q

(2π)2
eiq·(r−r

′)

{∫
dz1G(q, z, z1)G(−q, z′, z1)f1(z1)

+ nimp

∫
dz1

∫
dz2G(q, z, z1)G(−q, z′, z2)f1(z1)f1(z2)[I(−q)− 1]

}
Now we assume that our Green’s function is radially symmetric in q. This is a valid assumption

since our model is isotropic in the x-y plane. The same argument could be used for the structure

factor (i.e. there is no preference where the ions are located in the x-y plane). Also we are only

interested in the potential correlation in the plane of graphene. So we can set z = z′ = zg, where

zg is the location of the graphene plane, in the final equation. Noticing that the final answer only

depends on the difference r− r′, making the autocovariance of the potential a stationary process, we

can, without loss of generality, choose r′ = 0 to get

C(r) = e2N

A

∫
d2q

(2π)2
eiq·r

[∫
dz1G(q, zq, z1)2f1(z1)

+

∫
dz1

∫
dz2G(q, zg, z1)G(q, zg, z2)f1(z1)f1(z2)(I(q)− 1)

]
Using the Green’s function derived in equation 3.26 and evaluating it at z = zg simplifies our

calculations to

G(q, zg, z
′) = G(0)(q, zg, z

′) +
e2χ0(q)G(0)(q, zg, zg)G

(0)(q, zg, z
′)

1− e2χ0(q)G(0)(q, zg, zg)
(4.16)

=
G(0)(q, zg, z

′)

1− e2χ0(q)G(0)(q, zg, zg)
(4.17)

Now we notice two things. First the terms in the integral only depend on the magnitude q, and

second the denominator of the Green’s funciton is independent of the location of the source term z′.

Integrating q over the polar angle and taking out the denominator of the Green’s function gives us,

CV (r) = e2nimp

∫ ∞
0

dq

2π

J0(qr)q

ε(q, zg)2
S(q) (4.18)
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where we define

S(q) =

∫
dz1G

(0)(q, zq, z1)2f1(z1)

+

∫
dz1

∫
dz2G

(0)(q, zg, z1)G(0)(q, zg, z2)f1(z1)f1(z2)(I(q)− 1), (4.19)

(4.20)

and the dielectric function to be

ε(q, zg) = 1− e2χ0(q)G(0)(q, zg, zg) (4.21)

We include the subscript V to specify that this is the autocovariance of the potential fluctuations,

and to differentiate from another type of autocovariance function. The above analysis could have

been performed to obtain the autocovariance in the fluctuations of the charge carrier density. The

fluctuatuon of the charge carrier density in Fourier space is defined as

δñ(q, zg) = eχ0(q)δΦ̃(q, zg) (4.22)

To obtain its autocovariance we are required to transform it into position space and evaluate

〈δn(r, zg)δn(r′, zg)〉. We omit this derivation as it is similar to the one done above. The result

for the autocovariance of the fluctuation of the charge carrier density is

Cn(r) = nimp

∫ ∞
0

dq

(2π)3
J0(qr)q3

[
1− 1

ε(q, zg)

]2

S(q) (4.23)

It is quite clear from equation 4.22 that the fluctuations in the potential cause fluctuations in the

charge carrier density, through the linear response function χ0(q). Recall that χ0(q) is constant for

q < 2kF , and increases for q > 2kF . So we expect that a larger kF (which means a greater charge

carrier concentration) would yeild smaller fluctuations in the charge carrier density, since the linear

response would be smaller over greater values of momentum vecotr q.

4.4 Autocovariance of potential fluctuations and charge car-

rier density fluctuations in graphene

We first consider a two-dimensional distribution of impurities in the plane z = −d, below the surface

of graphene, which is placed in the plane z = 0. This implies that f1(z) = δ(z+d), reducing equation

4.19 to

S(q) = G(0)(q, 0,−d)2I(q) (4.24)

In the uncorrelated case (i.e. I(q) = 1) it has been shown that the variance (i.e. CV (r = 0))

experiences a logarithmic divergence as d → 0 [1, 2]. The divergence is expected to persist in the

correlated case, as I(q) is independent of distance d. This forces all our calculations to be conducted

with the condition d > 0. For our calculations we consider d = 0.3 nm, which is a reasonable
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assumption since this is the typical gap size between graphene and the nearby dielectric. Figure 4.3

shows the autocovariance of the potential fluctuations in the plane of graphene as a function of the

distance, r, in nanometers. This model consists of graphene placed on top of a semi-infinite layer of

a silicon dioxide substrate (SiO2, ε1 = 3.9), with air above graphene (ε2 = 1). An areal density of

nimp = 1012cm−2 of impurities is located 0.3 nm below the graphene sheet. For low charge carrier

doping (fig. 4.3 (a)), the models with correlated impurities exhibit oscillatory behaviour for small

r. The oscillatory behaviour is much more pronounced in the HD model (black) and increases with

increase in correlation length between the impurities. In the SC model (blue) the oscillation is almost

nonexistent, even at the highest correlation length, rc = 5 nm, while for uncorrelated impurities there

is no noticeable oscillation. Therefore, the oscillation in the autocovariance must be a consequence

of the structure factor, I(q), and not the conventional Friedel oscillation, which would be present

in isolated impurities [52]. In the HD model with the highest packing fraction (i.e. rc = 7 nm and

p ≈ 0.38) an unambiguous first local minimum is noticeable around r = 5 nm. Interestingly enough

the location of the minimum varies little with change in the charge carrier density.

As we increase the charge carrier density (fig. 4.3 (a)→(c)), a number of different effects are

taking place, giving a significant change in the qualitative description of the autocovariance. First

we notice that the spatial decay of the autocovariance is much faster for highly doped graphene (i.e.

the autocovariance approaches zero faster). This can be explained through the use of screening. It

was shown elsewhere [52] that the screening length of the electrostatic potential induced in graphene

by a point charge is approximately proportional to 1/kF . Thus, the screening of external charges

is much stronger in highly doped graphene, so the effects of the impurities on the fluctuations of

the potential will have much shorter range. The autocovariance seems to be spatially decaying

in an exponential manner in all three charge carrier densities, implying the absence of long-range

order and that the potential in the plane of graphene is, in fact, disordered. Another interesting

property that emerges in the highly doped cases is the existence of anticorrelation. In fig. 4.3 (b) the

autocovariance curve for the HD model with the highest correlation length, is negative in the range

4 nm . r . 7 nm and then again in the range 12 nm . r . 15 nm (see inset). The negative value in

the autocovariance is quite significant as it implies that the potential fluctuations at close distances

are opposite sign, giving a possible indication for electron-hole puddles. A negative autocovariance

of the potential has been experimentally observed [9, 16], however, the most recent literature does

not explain these results from a mathematical modeling point of view [2]. As we increase the charge

carrier density to n̄ = 1013 cm−2 we see that the negative autocovariance is present in all models with

correlated impurities. An interesting pattern can be noticed in the HD model. The autocovariance of

the potential fluctuations switches from negative to positive near a value of r ≈ rc (see 4.3 (c) inset).

This is a somewhat expected trend. Since the minimum distance between two charged impurities is

rc, the possibility of finding a point charge impurity a distance r < rc away from your observation

point is zero. So, for a sufficiently short screening length, it is likely that the signs in the values of

the potential fluctuation at two points a distance r < rc away are different, giving rise to a range of

negative values of CV (r). This property, however, is absent from the SC model, possibly due to it

being a poor thermodynamic model (i.e. is not derived from a Hamiltonian).

Figure 4.4 gives us the autocovariance of the charge carrier density fluctuations scaled by a factor
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Figure 4.3: Autocovariance of the potential fluctuation in the sheet of graphene placed on top of
a semi-infinite silicon dioxide substrate. The hard disc (black) and step correlation (blue) models
are compared with the uncorrelated impurities (red) model for different correlation lengths of the
impurities.
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of k2
Fnimp. We can see that the oscillations in this autocovariance are present for all correlated

impurity models, but absent for the uncorrelated impurity model. Once again this implies that the

oscillations are a result of the charged impurity distribution, and not Friedel oscillations. The general

profiles of the autocovariance functions seem to be approximately independent from charge carrier

doping, n̄, with slight variation in the size of the oscillation. However, quantitatively, increasing the

charge carrier doping decreases the size of autocovariance of the charge carrier density fluctuations

by the same factor. The reason behind such a large decrease of the autocovariance of the charge

carrier density fluctuations is still not very well understood, and could point towards a poor choice

of scaling. The same property of the autocovariance having a zero at r ≈ rc, is present in the HD

model. The most interesting result is the similarities between figure 4.4 (c) and figure 4.3 (c) (see

inset). The similarities imply that for highly doped graphene, impurities are being strongly screened

and having smaller effect on graphene when the charge carrier concentration is high.

We also consider the case of impurities being distributed in a three dimensional volume of finite

thickness. For this we use the distribution f1(z) = 1
|L−d| , where the impurities are uniformly dis-

tributed between z = −d and z = −L, where in this case d = 0.3 nm. We plot the autocovariance

of the fluctuations in the potential as a function of the reduced length kF r in figure 4.5 for both a

2D and a 3D distribution of the impurities. In this model, we assume graphene is placed between a

hafnium dioxide (HfO2, ε1 = 22) substrate of finite thickness L and a semi-infinite layer of SiO2. As

we increase the charge carrier density we see that the variance (i.e. CV (r = 0)) of the fluctuations

of the potential decreases for every model considered. This is because greater charge carrier density

has a stronger screening effect on the impurities, causing a smaller amount of randomness [2]. More

importantly we see a decrease in the variance from the 2D model to the 3D model. In fact, the

2D, uncorrelated impurities model and the 3D model are qualitatively similar, but quantitatively

different by a factor of around 4. This is expected, since essentially the 3D model has the same

amount of impurities, but they are spread over the entire volume of the substrate. So the impurities

further away from graphene have a weaker effect due to the dielectric screening of the substrate and

hence cause smaller fluctuations in graphene. As we increase the substrate thickness from L = 2 nm

to L = 10 nm the autocovariance of the potential fluctuations in most cases increases as well, with

some exception in the 3D case. In the 2D cases (i.e. fig. 4.5 (c) to (f)) we see that the increase in the

substrate thickness is consistent with a greater increase in the autocovariance for samples with low

charge carrier doping. A thicker substrate implies that the metallic back gate is further away from

the charged impurities. The charged impurities experience a weaker image force from the metallic

gate when it is further away, hence, causing a greater external potential on the graphene sheet. For

the 3D impurity model, the increase in the substrate thickness causes two things to happen. The

distribution of the impurities is now stretched out over a larger volume, and the screening from

the metallic gate is weaker. The interplay between these two effects has a somewhat unexpected

consequence, where the autocovariance decreases for large charge carrier doping, but increases for

smaller carrier doping. Another interesting phenomena are the changes in the autocovariance for the

correlated impurities, with correlation length rc = 6 nm, when the substrate becomes thicker. When

the substrate is thin (fig. 4.5 (e)) the autocovariance of the potential fluctuations oscillates around

the zero value, indicating statistical possibility for electron-hole puddles. However this property is
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are compared with the uncorrelated impurities (red) model for different correlation lengths of the
impurities.
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absent when the substrate thickness is increased. Although the absence of the autocovariance being

negative for such a impurity correlation length may seem in stark contrast to the results obtained

in figure 4.3, we note that in this case the large dielectric constant of the substrates dampens the

effects of impurities. The reason why increasing the substrate thickness decreases the possibility of

electron-hole puddles is still not fully understood.

Figure 4.6 is a comparison between our theoretical models and experimental results obtained by

Castellanos-Gomez, et. al. [9]. The experimental results were obtained using a combined scanning

tunneling and electron force microscope. Their results obtained local potential variations in the plane

of graphene which are formed due to trapped charge impurities in the SiO2 substrate. The variation

in the potential was used to calculate the autocorrelation (i.e. CV (r)/CV (0)) of the potential fluctu-

ations in the plane of graphene. We compare a HD and a SC model to their experimental data. It is

quite clear that the HD model gives a better fit to the experimental results. As mentioned earlier the

HD model contains much stronger oscillations than the SC model, which agrees with the experimen-

tally observable results. Also important is the comparison between the experimental and theoretical

model parameters. The theoretical parameters, nimp = 2.1 · 1011cm−2 and n̄ = 2.5 · 1011cm−2

are in close proximity to the experimentally observed values, nimp = (2.9 ± 0.6) · 1011cm−2 and

n̄ = (2.6 ± 0.5) · 1011cm−2. However the impurity correlation length between the two models is

significantly different. For the HD model we had rc = 15.9 nm (p = 0.42) while for the SC model

we had rc = 12.3 nm (p = 0.25). The mean length between impurities found in the article was

22± 2 nm, although the minimum length between impurities, which would correspond to our value

rc, was not evaluated. The inset shows the conductivity of the two models. The conductivity was

not evaluated in the paper, so there was no experimental results to compare it to. However it is still

interesting to compare the conductivity between the two models. The HD model clearly shows linear

dependence for low charge carrier doping, with some saturation near 6 · 1011cm−2. The SC model,

on the other hand, saturates into a linear relation after a small charge carrier doping. We note that,

although it may seem like the SC model has a finite conductivity at zero charge carrier doping, this

is not the case. What is actually happening is that the SC model is becoming unphysical since p

is close to 0.25. This makes us doubt the validity of the SC model at such a high packing fraction.

The conductivity in graphene will be discussed with more detail in the next chapter.
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Chapter 5

Conductivity

5.1 Energy loss method

As mentioned before, we consider a single-layer graphene sheet sandwiched between a dielectric

substrate which contains charge impurities and a layer above graphene, which may be air or another

dielectric material. The system may be considered translationally invariant in the x and y coordinates

and so we will denote our three dimensional coordinate system by R = {r, z}. The energy loss method

(ELM) considers the rigid, steady, motion of an external charge density near graphene and its induced

potential on the graphene sheet itself [23]. The movement of an external charge density gives rise to

energy dissipation due to excitation of the charge carriers in graphene. The idea behind the ELM is

that the frame of reference between the moving charges and graphene (or in general the laboratory

reference frame) can be reversed. This allows us to consider the electric conductivity of graphene

by examining its charge carriers movement, which has an opposite velocity to the external charge

density. For a sufficiently small speed, the resistivity in graphene (which is inversely proportional to

conductivity) is related to the energy dissipated by the charge carriers resulting from their scattering

on the potential fluctuations due to the external charge density, which in this case are impurities

in the substrate. The energy is dissipated due to scattering from external impurities, giving rise

to Ohmic heating in graphene. The ELM was developed for studying the transport properties of

semiconductor heterostructures by means of the dielectric response formalism for their conducting

electrons. This method has been used successfully in studying the scattering of conduction electrons

on interface roughness and polarizable scattering centers, as well as in discussing vibrational damping

in adsorbed layers due to surface resistivity, and in studying optical properties of thin films for solar

energy materials. We note that the ELM gives an expression for the conductivity of doped graphene,

which is identical to that obtained by the semiclassical Boltzmann transport theory, but we chose

ELM because it yields the drag force on externally moving charges as a side result that may be more

directly used in modeling other processes, such as sliding friction of molecular layers physisorbed on

graphene [36] or probing the streaming potential in a flowing electrolyte by a graphene based sensor

[47] to mention a few.
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The electrical energy loss rate of a system due to an external charge is given by

dW

dt
= −

∫
d3R j(R, t) ·Eind(R(t), t) (5.1)

Here Eind is the induced electrical field in the material and j is the current vector associated with the

distribution of external charges moving parallel to graphene. The induced electrical field arises from

external charges. The induced electric field can be represented by the induced electric potential,

Eind(R, t) = −∇Φind(R, t)

and from the conservation of electric charge we have

∇ · j = −∂ρ
∂t

where ρ is the external charge density. Now we recall that the induced electric potential and the

current density can be written as a sum of their respective average at a point on the z axis and a

fluctuating part. That is Φind(R) = Φ̄ind(z) + δΦind(R) and j(R) = j̄(z) + δj(R). Substituting these

into equation 5.1 we get

dW

dt
=

∫
d3R j(R, t) · ∇Φind(R, t)

=

∫
d3R

(̄
j(z, t) + δj(R, t)

)
·
(
êz
dΦ̄ind(z, t)

dz
+∇δΦind(R, t)

)
where êz is a unit vector in the z direction. Since the average current is parallel to graphene by

assumption, we have, j̄(z, t) · êz = 0. What we are interested in is the average dissipation of energy,

but the average fluctuations of the current density and potential are zero, so the cross terms cancel

out, and what we are left with is〈
dW

dt

〉
=

∫
d3R j̄(z, t) · 〈∇δΦind(R, t)〉+ 〈δj(R, t) · êz〉

dΦ̄ind(z, t)

dz
+ 〈δj(R, t) · ∇δΦind(R, t)〉

=

∫
d3R 〈δj(R, t) · ∇δΦind(R, t)〉

Since the induced electric potential goes to zero as R → ∞, we use Gauss’s theorem and the

conservation of the fluctuation in the electric charge to get〈
dW

dt

〉
=

∫
d3R

〈
∂δρ

∂t
δΦind(R, t)

〉
(5.2)

Using the law of the total derivative we can express 5.2 as〈
dW

dt

〉
=

d

dt

∫
d3R 〈δρ(R, t)δΦind(R, t)〉 −

∫
d3R

〈
δρ(R, t)

∂δΦind

∂t

〉
The first term on the right side denotes the change in the total energy. The total energy is conser-
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vative and hence does not contribute to the energy dissipation, so the first term will be zero. Now

the induced electric potential can be represented in terms of the total potential and the external

potential fluctuations

δΦind = δΦtot − δΦext

where δΦtot is the fluctuation in the total potential and δΦext is the fluctuation in the external

potential. Both potentials can be expressed using the external charge density and a suitable Green’s

function. For the total potential we use equation 3.26 as our Green’s function, while for the external

potential we use G0(R,R′), the Green’s function of the dielectric substrate without graphene, which

is static (i.e. time independent). Thus, the induced potential becomes

δΦind =

∫
d3R′

∫
dt′
[
G(R,R′, t− t′)−G0(R,R′)

]
δρ(R′, t′)

Now taking the time derivative gives us the dissipation rate〈
dW

dt

〉
=

∫
d3R

∫
d3R′

∫
dt′ 〈δρ(R, t)δρ(R′, t′)〉 ∂

∂t
[G(R,R′, t− t′)−G0(R,R′)] (5.3)

As usual we have to transform the Green’s functions into their counterparts in Fourier space.

The two Green’s function in the brackets can be expressed as

G(R,R′, t− t′)−G0(R,R′) =

∫
d2q

(2π)2
eiq·(r−r

′)

∫
dω e−iω(t−t′)

[
G̃(q, z, z′, ω)− G̃0(q, z, z′)

]
(5.4)

Since we know what the Green’s functions are in Fourier space, using equation 3.26 we get

G̃(q, z, z′, ω)− G̃0(q, z, z′) =
e2χ0(q, ω)G̃0(q, z, zg)G̃

0(q, zg, z
′)

1− e2χ0(q, ω)G̃0(q, zg, zg)

The above relation can be expressed in the more convenient form

e2χ0(q, ω)G̃0(q, z, zg)G̃
0(q, zg, z

′)

1− e2χ0(q, ω)G̃0(q, zg, zg)
=

[
1

ε(q, ω)
− 1

]
G̃0(q, z, zg)G̃

0(q, zg, z
′)

G̃0(q, zg, zg)
(5.5)

where we define the dielectric function ε(q, ω) = 1−e2χ0(q, ω)G̃0(q, zg, zg). Taking the time derivative

of the Green’s function and using substitutions 5.4 and 5.5 into 5.3 gives〈
dW

dt

〉
=

∫
dz

∫
dz′
∫
d2r

∫
d2r′

∫
dt′ 〈δρ(R, t)δρ(R′, t′)〉

×
∫

d2q

(2π)2
eiq·(r−r

′)

∫
dω (−iω)e−iω(t−t′)

[
1

ε(q, ω)
− 1

]
G̃0(q, z, zg)G̃

0(q, zg, z
′)

G̃0(q, zg, zg)
(5.6)

Furthermore, we assume that the entire distribution of external charges is moving rigidly with velocity
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v parallel to graphene〈
dW

dt

〉
=

∫
dz

∫
dz′
∫
d2r

∫
d2r′

∫
dt′
∫

d2q

(2π)2
〈δρ(r− vt, z)δρ(r′ − vt′, z′)〉eiq·(r−vt−r′+v′t)

×eiq·v(t−t′)
∫
dω (−iω)e−iω(t−t′)

[
1

ε(q, ω)
− 1

]
G̃0(q, z, zg)G̃

0(q, zg, z
′)

G̃0(q, zg, zg)
(5.7)

where δρ(r, z) is the fluctuating part of the external charge density defined in equation 4.1, in the rest

frame of reference. The integration over r and r′ transforms our external impurity density functions

into their Fourier transformed counterparts,〈
dW

dt

〉
=− i

∫
dz

∫
dz′
∫
dω ω

∫
d2q

(2π)2

[
1

ε(q, ω)
− 1

]
G̃0(q, z, zg)G̃

0(q, zg, z
′)

G̃0(q, zg, zg)

×eiq·v(t−t′)
∫
dt′ ei(q·v−ω)(t−t′)〈δρ̃(−q, z)δρ̃(q, z′)〉 (5.8)

where the tildes indicate a Fourier transform on the x-y plane. So using the definition of the external

charge density in equation 4.1 we can express its Fourier transform as

ρ̃(q, z) =

∫
d2reiq·rρ(r, z) = e

N∑
j=1

∆̃(q, z − zj)e−iq·rj

and note that δρ̃ are the fluctuations of this quantity. Now taking the integral of the last part of

equation 5.8 over t′ gives∫ ∞
−∞

dt′ ei(q·v−ω)(t−t′)〈δρ̃(−q, z)δρ̃(q, z′)〉 = 2π〈δρ̃(−q, z)δρ̃(q, z′)〉δ(ω − q · v)

Substituting this back into equation 5.8 and integrating over ω gives〈
dW

dt

〉
= −i

∫
dz

∫
dz′
∫

d2q

(2π)2
q · v

[
1

ε(q,q · v)
− 1

]
G̃0(q, z, zg)G̃

0(q, zg, z
′)

G̃0(q, zg, zg)
〈δρ̃(−q, z)δρ̃(q, z′)〉

Since the Green’s function G̃0(q, z, z′) only depends on the magnitude q and the fluctuations are

isotropic in the x-y plane we get that∫
dz

∫
dz′
∫

d2q

(2π)2
(q · v)

G̃0(q, z, zg)G̃
0(q, zg, z

′)

G̃0(q, zg, zg)
〈δρ̃(−q, z)δρ̃(q, z′)〉 = 0

Using the symmetry properties of the dielectric function ε(q, ω) = ε∗(q,−ω) and integrating over q

we get〈
dW

dt

〉
=

∫
dz

∫
dz′
∫

d2q

(2π)2
q · v=

[
− 1

ε(q,q · v)

]
G̃0(q, z, zg)G̃

0(q, zg, z
′)

G̃0(q, zg, zg)
〈δρ̃(−q, z)δρ̃(q, z′)〉

(5.9)

The full dielectric function is not necessary as we are more concerned about its value in the so-called

friction regime, which is obtained in the v→ 0 limit. Focusing only on the first order approximation
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of the dielectric function in v by taking the partial derivative of the linear response function (eq.

3.11) gives

=
[
− 1

ε(q,q · v)

]
=
=
[
1 + e2χ∗0(q,q · v)G̃0(q, zg, zg)

]
|ε(q,q · v)|2

≈e2 q · v
π~v2

F

H(2kF − q)G̃0(q, zg, zg)

√(
2kF
q

)2

− 1

|ε(q,q · v)|2 (5.10)

We can readily replace |ε(q,q · v)|2 with the static case |ε(q, 0)|2 since higher order terms in v will

not contribute to the conductivity in limit v→ 0. Substituting equation 5.10 into 5.9 and using the

fact that rs = e2

~vF gives us

〈
dW

dt

〉
=
rs
vF

∫
d2q

(2π)2

(q · v)2

π

H(2kF − q)
√(

2kF
q

)2

− 1

|ε(q, 0)|2

×
∫
dz

∫
dz′G̃0(q, z, zg)G̃

0(q, zg, z
′)〈δρ̃(−q, z)δρ̃(q, z′)〉

Now notice that the last term with the integrals over z and z′ is quite similar to the earlier

defined equation 4.19. In fact

S(q) =
1

e2N

∫
dz

∫
dz′G̃0(q, z, zg)G̃

0(q, zg, z
′)〈δρ̃(−q, z)δρ̃(q, z′)〉

is the more general case of equation 4.19. Using the fact that (q ·v)2 = q2v2 cos2(θ) we can integrate

over the polar angle of q to get

〈
dW

dt

〉
= e2N

2kF rsv
2

vF

∫ 2kF

0

dq

(2π)2

q2

√
1−

(
q

2kF

)2

|ε(q, 0)|2 S(q) (5.11)

Using a change of variables q = 2kFx equation 5.11 becomes〈
dW

dt

〉
= e2N

k2
F rsv

2

π2vF

∫ 1

0

dx
(2kFx)2

√
1− x2

|ε(2kFx, 0)|2 S(2kFx)

Since k2
F = πn̄ and e2

vF
= ~rs = 2πhrs, the final expression for the average energy dissipation is

〈
dW

dt

〉
= 2Nhn̄r2

sv
2

∫ 1

0

dx
(2kFx)2

√
1− x2

|ε(2kFx, 0)|2 S(2kFx) (5.12)

By reversing the frame of reference, we can express the energy loss rate in graphene through the

use of the standard expression of classical electrodynamics〈
dW

dt

〉
=

∫
d2r 〈J ·E〉 (5.13)
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where J = σE is the current density of the charge carriers in graphene, σ denotes its DC conductivity

and E is the applied external electric field tangentially across graphene. Assuming that the charge

carrier density is uniform in graphene, we may write J = −en̄v in the steady-state regime. This

gives us an average energy loss rate of 〈
dW

dt

〉
=
A(en̄v)2

σ
(5.14)

where A is the area of the graphene sheet. Taking the limit as v → 0, we get the conductivity in

graphene as

σ =
A(en̄v)2〈

dW
dt

〉 =
e2

h

n̄
nimp

2r2
s

∫ 1

0
dx (2kF x)2

√
1−x2

|ε(2kF x,0)|2 S(2kFx)
(5.15)

where e2

h is the inverse of the Von Klitzing constant. With the derivation of the conductivity using

the ELM we can easily extend it to evaluate the charge carrier mobility, given by

µ = σ/ (en̄) (5.16)

5.2 Conductivity in graphene

The conductivity in graphene is a subject of intense interest and current research. Graphene has

the potential to revolutionize the semiconductor industry since it allows for extremely high electron

mobility on its surface. However, many experimentally observable phenomena of the conductivity

through graphene have still not been fully understood. The conductivity in graphene varies quan-

titatively for different samples of graphene sheets. Before graphene FETs can be implemented, the

cause of this variation in the conductivity needs to be examined. Recently it has been shown that

the mobility in suspended graphene is 10 times larger than graphene on SiO2 [7]. The most logical

explanation for this is that charged impurities, which are in greater concentrations in a SiO2 sub-

strate than in air surrounding graphene, play an important role in the conductivity and mobility

in graphene. Similarly, increased conductivity and mobility have also been observed with graphene

being placed on a high-κ (i.e. high dielectric constant) surface. The high-κ substrate have a stronger

screening of trapped charged impurities reducing their effects [28].

Since the discovery of graphene, many mathematical models, which incorporate various kinds of

impurities, have been proposed to examine the conductivity [10, 1, 39, 50, 14, 19], most of which

seem to agree quantitatively and qualitatively, but have different underlying physics to explain the

phenomena. Graphene is known to exhibit a sublinear behaviour in the conductivity for large charge

carrier doping [66]. This can be explained from a variety of different models. Atomic vacancies in the

structure of graphene cause short range scattering of the charge carriers, and a constant resistance

across the sheet of graphene [56]. As such, due to Matthiessen’s rule the conductivity would have

the form σ = n̄
A+Bn̄ , for some material dependent constants A and B. This model certainly does

give a sublinear trend to the conductivity for higher n̄ (and even saturates for extremely high n̄),

however the experimental absence of atomic vacancies in graphene casts some doubt as to whether

this is the underlying mechanism for the sublinear trend. Another contender for the explanation of
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the sublinear conductivity for larger n̄ is the so called resonant scattering model. The idea behind

the resonant scattering method is that the molecules absorbed on graphene, cause both bound states

in graphene, near the Dirac point, and strong short range potentials [19, 12]. Although, there is

no direct experimental observation of resonant scattering [56] it does provide a phenomenological

model. The models we present here were first developed by Das Sarma, et. al. [40]. The models

consider the correlation between charged impurities as the main source of charge carrier scattering

in graphene for high n̄. It is well-known that impurities are present in the substrate and do cause

significant effects in graphene, strengthening the argument that long range scatterers are the cause

to the sublinear behaviour of the conductivity.

In figure 5.1 we consider a two-layer structure that consists of a semi-infinite SiO2 substrate

(ε1 = 3.9) and a semi-infinite layer of air (ε2 = 1), with graphene placed right between the two

dielectrics at zg = 0. We show the dependence of graphene’s conductivity, σ, with respect to its

average charge carrier density n̄. The impurities have a planar distribution a distance d away from

graphene (i.e. f1(z) = δ(z + d)) with a fixed Z = 1, which will be used throughout all models, and

no dipole moment. In all three cases the areal impurity density is nimp = 1012 cm−2. We show

the results for several values of the correlation length rc among the impurities, which are obtained

by using the SC and the HD models through their 2D structure factor. Note that the SC model

only yields physical results for rc < 5.6 nm for the given value of nimp, whereas the HD model

is meaningful for larger values of rc. In addition to the case of point-like impurities being placed

directly on graphene (d = 0 and Rcl = 0), we also show the effects of point-like impurities embedded

at d = 0.3 nm inside the SiO2 substrate (fig. 5.1 (b)), as well as disc-like impurities (see equation

4.5) with fixed radius Rcl = 2 nm placed on graphene (d = 0) (fig. 5.1 (c)).

With regards to the effects of non-zero d and Rcl, one notices that in figures 5.1 (b) and (c),

they both contribute to an increase in the slope of conductivity at higher n̄ values, as expected,

where they even give rise to a super-linear dependence of conductivity on n̄ for smaller values of the

correlation length rc. Note that the case of uncorrelated discs with rc = 0 is somewhat unphysical

as the discs are allowed to overlap. The effects of finite d and Rcl are relatively weak and only affect

quantitative details of conductivity at higher n̄, whereas comparison among the insets in figure 5.1

shows that their effects are barely noticeable at n̄ . 1012 cm−2

The most prominent effect in figure 5.1 is a strong increase of the initial slope of conductivity

as a function of n̄ (and hence an increase in mobility of graphene, µ = σ/ (en̄)) at low values of

n̄ as the correlation length rc increases. From the insets in figure 5.1, one notices that the initial

slopes from the SC model are higher than those from the HD model for the same value of rc because

ISC(0) < IHD(0), where I(q) is the structure factor. However, the latter model permits the use

of much larger values of rc than the former model, hence giving rise to rather large initial slopes

of the conductivity at the largest packing fractions shown. (Notice that the case with a maximum

packing fraction of p ≈ 0.38 that is shown in figure 5.1 is still well within the interval of confidence

for the HD model used here.[55]) As the charge carrier density n̄ increases, the conductivity shows

a sub-linear dependence on n̄ that becomes more pronounced as the correlation length rc increases.

In the case of d = 0 and Rcl = 0 the sub-linear dependence occurs for all rc > 0, whereas in the

cases of finite d or Rcl values, the sub-linear dependence may even overcome the opposite effect
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Figure 5.1: Conductivity for various correlation lengths of impurities with nimp = 1012 cm−2 in the
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clusters of radius Rc = 2 nm. Black lines denote conductivity using hard disk model and blue lines
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of super-linear dependence for a sufficiently large rc. For the largest rc value shown in figure 5.1,

the sub-linear behavior even gives rise to a saturation effect in the conductivity of graphene with

increasing n̄, which is reminiscent of a similar saturation effect in the conductivity of graphene when

the scattering processes on both charged impurities and short-ranged impurities are combined via the

Matthiessen’s rule [76]. Thus, we may propose that high packing fractions due to large correlation

lengths among the charged impurities can give rise to both higher initial slopes of conductivity at

lower n̄ and a stronger saturation effect at higher n̄ with the HD model than those that can be

achieved with the SC model. In particular, since nimp is typically used as a fitting parameter that

determines the initial slope of conductivity in comparisons with experiments on graphene, the strong

effect of the packing fraction of impurities on this slope may cast additional uncertainty in modeling,

which could be, in principle, resolved by looking at the degree of saturation in conductivity at higher

doping densities.

In figure 5.2 we consider the same configuration of single-layer graphene atop a semi-infinite

SiO2 substrate with a semi-infinite layer of air above it as in figure 5.1, and attempt to model the

experimental data for conductivity versus charge carrier density n̄ from [66] by using the HD model

for a 2D distribution of point charges with Z = 1. We select two graphene samples from [66] labeled

K17 and K12 and present them in figure 5.2 (a) and (b) respectivly. Both samples exhibit sublinear

behaviour with increasing n̄, with (a) being symmetric and (b) showing an electron-hole asymmetry

(i.e., asymmetry with respect to the sign of n̄). The physical mechanism(s) that occasionally give

rise to this kind of asymmetry in graphene are still unclear, so we explore here the possibility that

the presence of the perpendicular component of a dipole moment in each impurity, D⊥, may give

rise to a sizeable asymmetry, as that seen in figure 5.2 (b). We assume D⊥ = αE⊥/e, where α is the

effective polarizability and E⊥ is the total perpendicular electric field near graphene. Assuming nimp

to be small enough, we may neglect mutual depolarization among the impurities and simply write

E⊥ = 4πen̄/ε1, with E⊥ being positive(negative) for electron(hole) doping of graphene [42]. The

two samples were fitted in [66] by assuming that the impurities reside in graphene (d = 0) and are

uncorrelated, and the optimal linear symmetric fits were found with nimp = 2.2 · 1011 cm−2 for (a)

and with nimp = 4 ·1011 cm−2 for (b). We also assume the impurities to lie in graphene (d = 0), and

we use nimp, rc and α as fitting parameters. In the case of the symmetric sample, the best fit is found

for nimp = 3 · 1011 cm−2 with rc = 6.8 nm (p = 0.11) and α = 0, whereas for the asymmetric case

the best fit is found for nimp = 7.4 · 1011 cm−2 with rc = 6.3 nm (p = 0.23) and α = 1150 Å3. Both

fits obtained with the HD model in figure 5.2 are quite satisfactory as far as the sublinear behavior

of conductivity is concerned, and the relatively large values of packing fractions used in both cases

suggest the necessity of using the HD rather than the SC model. On the other hand, a good fit in

the asymmetric case can only be achieved with a rather large value of α, which indicates that the

dipole mechanism may not be the primary cause of the electron-hole asymmetry in conductivity, at

least for the experimental setting in [66]. However, we note that the effective polarizability α of a

single impurity may be significantly increased by the presence of a nearby conducting surface.[42]

In figure 5.3 we consider a structure that consists of a dielectric material of finite thickness L (we

choose HfO2 with ε1 = 22) and a semi-infinite layer of SiO2 (ε2 = 3.9) with graphene placed right on

their boundary at zg = 0. This configuration may represent the physical situation where single-layer
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Figure 5.2: Here we compare our theoretical results with experimental results obtained by Tan,
Zhang, et. al. [66]. In their experiments they used two samples of high quality graphene and
measured their conductivity as a they changed the charge carrier density. The linear fit is the
theoretical conductivity obtained in the paper and takes only the two dimensional impurity density
in the substrate as the fitting parameter. In their paper the densities used were nimp = 2.2·1011 cm−2

for sample (a) and nimp = 4.0 ·1011 cm−2 for sample (b). The linear fit does not explain the sublinear
growth of the conductivity for larger carrier densities and the asymmetry of the conductivity around
the Dirac point. In our case we consider correlations between the impurities (using a hard disk
model) which produce a better fit to the experimental results. For our fitting parameters we used
nimp = 3.0 · 1011 cm−2 and p = 0.11 for sample (a) (top graph). For the bottom graph we show how
dipole impurities cause an asymmetric conductivity around the Dirac point (light blue). The fitting
parameters for the line of best fit were nimp = 7.4 · 1011 cm−2, p = 0.23 and D = 1100k2

F for sample
(b). In both cases we had the impurities on graphene (i.e. d = 0 nm). These fits are in excellent
agreement with the experimental results. Further more, since these were high quality samples, we
expect there to be minimal short-range scattering, so the sub linear behaviour must come from long
range scatterers i.e. charge impurities.
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Figure 5.3: Conductivity for various substrate thickness L with nimp = 1012 cm−2. We assume
graphene is placed between SiO2 (ε2 = 3.9) and vary the thickness of HfO2 (ε1 = 22.0). The left
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range 0 cm−2 ≤ n̄ ≤ 5 · 1011 cm−2
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graphene sits on a thick SiO2 substrate (with typically H ∼ 300 nm) and is top-gated through a

thin layer of HfO2 (with L . 10 nm). We show the dependence of the conductivity σ on charge

carrier density n̄ for several model distributions of point charge impurities in the HfO2 layer with

fixed Z = 1 and no dipole moment, having the areal number density nimp = 1012 cm−2. We examine

the conductivity using a homogeneous 3D distribution of uncorrelated charges throughout the HfO2

substrate, which extends up to a distance d from graphene, as well as a 2D planar distribution placed

in HfO2 a distance d away from graphene, with both uncorrelated (rc = 0) and correlated (rc = 6

nm, p ≈ 0.28) charges that are described with the HD model.

One notices in figure 5.3 that finite thickness L exhibits strong effects on conductivity, both in

quantitative and qualitative aspects, which are dependent on the underlying structure of charged

impurities. First noted is that the overall conductivity is generally increased compared to that seen

in figures 5.1 and 5.2, which is expected due to more efficient screening of charged impurities by

a high-κ material such as HfO2. Moreover, the conductivity is seen to increase with decreasing L

for all n̄ in the 2D cases and only for lower n̄ in the 3D case, which may be explained by the more

efficient screening of impurities due to the proximity of a metal gate. Furthermore, the conductivity

is larger in the 3D case than in the corresponding uncorrelated 2D case because the same number

of impurities is spread over larger distances from graphene so that the resulting scattering potential

in graphene is weaker. As regards the distance d, one notices similar trends as in figure 5.1, namely,

a non-zero d increases both the value of conductivity and its slope (i.e., mobility) in both 3D and

2D models. However, in the case of non-zero correlation length rc in the 2D models with finite L,

one sees little evidence to the increase in the initial slope of conductivity at lower n̄, in contrast to

the trends seen in figure 5.1, whereas saturation of conductivity at higher n̄ seems to get stronger

than in figure 5.1 as L decreases. In fact, for the shortest thickness of L = 1 nm for both d = 0 and

d = 0.3 nm, this saturation turns into a broad maximum of conductivity around n̄ = 1011 cm−2,

followed by a still broader minimum at higher n̄ values.

One remarkable feature seen in figure 5.3 is that the conductivity does not vanish as n̄ → 0 for

finite L but rather reaches a mimum value σ(0). This minimum may be easily estimated for d = 0

by using the limiting form of S(2kF x)
ε(2kF x,0)2 when 2kFL� 1 in equation 5.15, which then gives

σ(0) =

(
ε1

πrsL

)2
e2/(2h)

nimpT
, (5.17)

where T = 1/3 for the 3D case and T = I2D(0) for the 2D case, where I2D(0) is the structure factor

in the long wavelength limit. So in figure 5.3 we would get T = I2D(0) = (1− p)3/(1 + p) ≈ 0.29 for

the correlated 2D case in the HD model.

In figure 5.4 we consider a three-layer structure (implying the use of the substrate model with a

gap) that consists of a HfO2 layer (ε1 = 22) with finite thickness L, a layer of air (ε2 = 1) of thickness

H = 0.6 nm, and a semi-infinite layer of SiO2 (ε3 = 3.9), with graphene placed in the air at zg = 0.3

nm, midway between the two dielectrics (see figure 3.2). This configuration is similar to that in figure

5.3 with graphene sandwiched between the HfO2 and SiO2 dielectrics, but we introduce in figure 5.4

gaps of air of equal thickness 0.3 nm on both sides of graphene. We investigate the effects of finite

thickness L on the mobility of graphene, µ = σ/ (en̄), as a function of charge carrier density n̄ for a
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2D planar distribution of uncorrelated point charges with Z = 1 and no dipole moment, having the

areal density nimp = 1012 cm−2. We consider three configurations, with the impurities placed either

(A) on graphene (d = 0) or (B) on the surface of the HfO2 layer a distance d = 0.3 nm away from

graphene in the presence of the 0.3 nm gaps, as well as the case (C) from figure 5.3 with zero gaps

between graphene and the HfO2 and SiO2 dielectrics (i.e. H = 0) in the presence of a 2D distribution

of uncorrelated charges on graphene (d = 0). One may see in figure 5.4 that the mobility increases

with decreasing L within each of the three configurations, (A), (B) and (C). This general trend has

been experimentally verified by Fallahazad, et. al. [18], where the experimental set-up was similar

to our theoretical one. However, there is a remarkable differences between the models presented here

in the magnitude of the mobility and its dependence on n̄. In the configurations (A) and (C) with

charge impurities placed on graphene, the mobility generally decreases with increasing n̄, whereas in

the configuration (B) with the impurities placed on the surface of the HfO2 layer with a finite gap

relative to graphene, the mobilities with higher L values pass through a minimum at a low n̄ value

and further increase as n̄ increases. Moreover, the magnitude of the mobilities with equal L values

is seen in figure 5.4 to increase in the order of configurations (A)→(C)→(B), which is also the order

of increasing spread of the curves with different L values within each configuration.

One may conclude from figure 5.4 that the existence of a finite gap between graphene and the

nearby dielectric, as well as the precise location of impurities within that gap (with the extreme

positions being on graphene and on the surface of the dielectric) both have decisive influences on the

mobility. Noting that the configuration (A) with impurities on graphene in the presence of gaps was

considered by Fischetti and Ong [50], it is remarkable how closing the gaps increases the magnitude

of the mobility and increases the spread of its values for different L values, whereas moving the

impurities to the surface of a HfO2 layer in the presence of finite gaps further accentuates those two

effects, and even gives rise to a non-monotonous dependence of the mobility on n̄ for thicker HfO2

layers.

5.3 Self-consistent minimum conductivity

We present another phenomenon that occurs in experimental measurements of conductivity through

graphene. For graphene with small charge carrier density, the conductivity approaches a non-zero

minimum value, σmin. However, in the ELM, equation 5.15 implies that the conductivity, considered

a function of the average induced charge carrier density in graphene, σ(n̄), should vanish in a

linear manner close to the neutrality point, i.e., when n̄ → 0, as long as S(kF→0)
[ε(kF→0,0)]2 remains finite.

The reason behind a minimum conductivity near the neutrality point could be explained through

the fluctuations of the electrostatic potential [76, 66]. As was shown in Chapter 4, the potential

in the plane of graphene fluctuates due to the impurities being trapped in the substrate. This

fluctuation may form electron-hole puddles in the charge carrier density across graphene, causing

finite conductivity, even for zero back gate voltage. An estimate of σmin may be found according

to the self-consistent transport (SCT) theory as σmin = σ(n∗), where n∗ is referred to as a residual

charge carrier density that gives a measure of the width of the plateau near the neutrality point

where the conductivity minimum is reached [1]. It was shown that n∗ may be found as a solution
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Figure 5.5: We measure the variance of the potential (scaled by e2nimp) in the plane of graphene
as a function of the charge carrier density. Here we denote C0(n̄) = CV (r = 0, n̄). The variance is
shown to decrease with increasing charge carrier doping, and with increase in impurity correlation
length, a result which was shown in Chapter 4. The results are obtained using both the zero gap,
and non zero gap model, showing that the model with a finite gap causes smaller fluctuations in the
potential.

of an equation involving the square of graphene’s Fermi energy, EF = ~vF kF , and the variance of

the fluctuating electrostatic potential of graphene derived earlier CV (r = 0, n̄), where we include the

dependence of the variance on the charge carrier doping, n̄. The residual charge carrier density n∗

is the solution to the equation

(~vF )2πn∗ = CV (r = 0, n∗), (5.18)

In this section we turn to studying the conductivity minimum as n̄ → 0 due to the presence

of electron-hole puddles by solving equation 5.18. We only consider a 2D planar distribution of

point charges with Z = 1 having no dipole moment. As was mentioned before, CV (r) experiences a

logarithmic divergence as d→ 0, whereas equation 5.15 is well behaved in that limit. So in order to

make equation 5.18 valid we are forced to assume that charged impurities are placed a finite distance

d away from graphene.

In figure 5.5 we consider a configuration similar to that in 5.1, with a semi-infinite SiO2 substrate

(L→∞ with ε1 = 3.9) and a semi-infinite layer of air (H →∞ with ε2 = 1), with graphene placed

in the air at a distance zg ≥ 0 above SiO2. We show in the main panel of figure 5.5 the n̄ dependence

of the variance of the potential in the plane of graphene CV (r = 0, n̄) from equation 4.18 for a 2D
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distribution of charged impurities with density nimp = 1012 cm−2 that are placed in/on SiO2 at

a fixed distance d = 0.3 nm below graphene. Specifically, we explore the effects of the size of the

gap between graphene and the SiO2 substrate by considering both the zero gap case with zg = 0

(impurities embedded at the depth of 0.3 nm inside SiO2) and the finite gap case with zg = 0.3

nm (impurities placed on the surface of SiO2). In addition to considering uncorrelated impurities,

we use a finite correlation length of rc = 5 nm (p ≈ 0.2) allowing us to compare in the main panel

the effects of the SC and the HD models on CV (r = 0, n̄). In the insets of figure 5.5, we show the

dependence of the residual charge carrier density n∗ and the corresponding minimum conductivity

σmin = σ(n∗) on rc for both the HD and the SC models, in the presence of both zero and finite gaps.

One notices in figure 5.5 that the size of the gap between graphene and the SiO2 substrate exerts

a very strong effect on the magnitude of CV (r = 0, n̄) for all n̄, echoing similar conclusion drawn

from the results analyzed in figure 5.4. The gap size also strongly affects the values of n∗ for all

correlation lengths rc, whereas the effect of the gap size on σmin is seen to diminish as rc decreases.

The latter result seems to justify the neglect of graphene–substrate gap, which is implicitly invoked

in all simulations of the conductivity minimum in graphene in the presence of charged impurities

with small or vanishing packing fractions [1, 76, 40, 13]. As far as the comparison between the

HD and SC models is concerned, one sees a noticeable difference in the variance CV (r = 0, n̄) at

small n̄, which diminishes at large n̄ values. The differences between the two models are surprisingly

small in both n∗ and σmin, and only become noticeable when the packing fraction p approaches

the breakdown value of 0.25 for the SC model for sufficiently large correlation lengths rc. These

results again lend confidence to simulations that use the SC model with short correlation lengths

among the charged impurities, which were seen to yield robustly satisfactory interpretations for the

conductivity minimum in graphene due to electron-hole puddles [1, 76, 40, 13].

Finally, in figure 5.6 we consider a configuration that was studied in figure 5.3 with graphene

sandwiched between a layer of HfO2 of finite thickness L and a semi-infinite layer of SiO2, with no

gaps between graphene and the two dielectrics, and with a 2D distribution of charged impurities of

density nimp = 1012 cm−2 embedded at a depth d = 0.3 nm inside the HfO2 layer. In the main panel

of figure 5.6 we show the dependence of the variance CV (r = 0, n̄) on the charge carrier density in

graphene n̄, which exhibits an overall reduction in the magnitude of CV (r = 0, n̄) in comparison to

figure 5.5 due to a larger dielectric constant of HfO2, as well as a strong decrease of CV (r = 0, n̄) with

decreasing L owing to the screening of impurities by the nearby metallic gate. As a consequence,

the resulting residual density n∗ is seen in an inset to figure 5.6 to decrease with decreasing L, which

indicates that fluctuations in the charge carrier density in graphene due to electron-hole puddles

would be gradually erased as the metal gate gets closer to graphene. Finally, in the inset showing

σmin we explore the contribution of electron-hole puddles to raising the conductivity minimum above

its value σ(0) that was discussed in figure 5.6 as the limiting value of the expression for conductivity

in equation 5.15 when n̄ → 0 for a finite thickness L. From that inset one may conclude that the

effects of electron-hole puddles in the conductivity minimum of graphene are dominant for dielectric

thicknesses L & 10 nm.

63



10−3

10−2

10−1

1010 1011 1012 1013

C
0
(n̄
)/
(e

2
n
im

p
)

n̄ (cm−2)

0.0

0.5

1.0

1.5

2.0

1 2 5 10 ∞

n
∗
(1
0
1
1
cm

−
2
)

L (nm)

100

101

102

103

1 2 5 10 ∞

σ
m
in

(
e
2 h
)

L (nm)

L = 1 nm
L = 2 nm
L = 5 nm
L = 10 nm
L = ∞ nm

Figure 5.6: We measure the fluctuation of the potential in the plane of graphene as a function
charge carrier density and substrate thickness where C0(n̄) = CV (r = 0, n̄). The model we use
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Chapter 6

Conclusion

6.1 Summary

The main goal of this thesis was to study the differences and similarities of various mathematical

models that examine the static, electrical properties of graphene. It began with the most basic geo-

metrical and atomic arguments to derive the two dimensional structure of graphene. Using the now

derived structure and the tight binding model, the quasi-particle dispersion relation in graphene

was obtained, along with the corresponding density of states. A direct correspondence between

the charge carrier density in graphene and the back-gate voltage in an experimental setting was

shown through the use of capacitive gating. Using this relation enables a direct comparison between

experimental and theoretical results. Through the random phase approximation we obtained the

linear response of graphene in the zero thickness approximation. Since graphene is affected by ex-

ternal charges trapped in the substrate surrounding graphene, a proper mathematical derivation of

the appropriate Green’s function for the geometry of the substrate was shown. Using this Green’s

function and the linear response of graphene, an integral equation between the external charged

impurities and the total potential was derived. The external charged impurities which are trapped

in the substrate, can have some structure in their distribution. A thorough analysis of the structure

and the distribution of the impurities was derived, and a structure factor for the hard disc and step

correlation models were presented. The fluctuations in the potential and the charge carrier density

were obtained and their respective autocovariance functions were derived. The autocovariance func-

tions gave us a measure of the disorder of the potential and charge carrier density in graphene. Our

theoretical results were compared with recent experimental results showing that the hard disc model

provided very good agreement with the experimental data. Afterwards, the energy loss method

(ELM) was developed to examine the conductivity in graphene. Through the use of the ELM we

compare the conductivity in graphene using different structures and distributions of the impurities

in the substrate. Theoretical results obtained using a hard disc model are in good agreement with

experimental data. Furthermore, we presented the possibility that charged impurities with dipole

moments could cause an asymmetric conductivity with respect to electron and hole doping. We also

evaluated the charge carrier mobility in graphene using a general substrate geometry which includes
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a non-zero gap between the top and the bottom dielectrics. The mobility was shown to be very sen-

sitive to both the location of the charged impurities, and the type of substrate model used. Finally

the self-consistent transport theory for graphene was used to evaluate the minimum conductivity in

a model with correlated impurities, and a model with changing substrate thickness. There it was

shown that correlation between impurities increases the minimum conductivity and increase in the

substrate thickness decreases the minimum conductivity.

6.2 Future work

There are many avenues available for the expansion of our current research. While still considering

the interaction of graphene with static charged impurities, we could extend our model of graphene

beyond the zero thickness approximation. This would require an extended derivation of the linear

response of graphene to include the out of plane momentum vector. The use of a graphene model

with finite thickness would give a more realistic approach for studying charged impurities near or on

the graphene sheet. We could also expand on the idea of impurities distributed in a three dimensional

volume to include correlation between the impurities. This addition of the correlation would give a

much more realistic model, and a better approach to studying the graphene-impurity interactions.

We can also take another approach for possible future work. Instead of focusing only on the

static linear response of graphene, we can consider the full dielectric function and how the addition

of different materials surrounding graphene changes the plasmon frequency in graphene. Although

the study of plasmons are beyond the scope of this thesis, the analysis is rather straightforward, and

results can obtained from the derivations of Chapter 3. Furthermore, we can blend the two research

ideas and consider a non-zero thickness of graphene, and how this would effect the plasmon dispersion.

The amount of possible directions for future work is endless, and I hope this thesis provides a good

introduction for future graduate students conducting research in mathematical models of graphene.
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Appendix A

Appendix

A.1 Derivation of linear response in graphene

Here we derive the linear polarization function of graphene within the Dirac cone approximation.

The derivation follows the procedures of [29, 60, 70]. The full polarization function is given by

χ0(q, ω) = −gsgv
8π

∫
k≤D

d2k
∑
l,l′

fl(k)− fl′(k′)
El(k)− El′(k′) + ω + iν

Fl,l′(k,k
′) (A.1)

The factors gs and gv count the spin and valley degeneracy of the system, l and l′ denote the type of

band (i.e. valence or conduction) and can either be +1 or −1. The linear response is a function of q,

which is related to k′ through k′ = k+q. fl(k) is the Fermi-Dirac distribution and Fl,l′(k,k
′) is the

integral overlap between states given by 1
2 (1 + (l)(l′) cos(θkk′)) where θkk′ is the angle between two

vectors and l and l′ are either 1 or −1 to indicate the conduction and valence bands respectively. The

integral is conducted over all k ≤ D where D is taken to be the Fermi wavevector in the Dirac cone

approximation, and the sums are evaluated over the two types of bands. To compute the integral we

break it up into two parts, χ+
0 (q, ω) and χ−0 (q, ω) where χ+

0 (q, ω) results from the intra-band electron

transitions, and χ−0 (q, ω) results from the inter-band electron transitions. Each one is defined as

χ−0 (q, ω) =− gsgv
8π

∫
d2k

[
[f−(k)− f−(k′)] (1 + cos(θkk′))

E−(k)− E−(k′) + ω + iν

+
f−(k)(1− cos(θkk′))

E−(k)− E+(k′) + ω + iν
− f+(k)(1− cos(θkk′))

E+(k)− E−(k′) + ω + iν

]
and

χ+
0 (q, ω) =− gsgv

8π

∫
k≤D

d2k

[
[f+(k)− f+(k′)] (1 + cos(θkk′))

E+(k)− E+(k′) + ω + iν

+
f+(k)(1− cos(θkk′))

E+(k)− E−(k′) + ω + iν
− f−(k)(1− cos(θkk′))

E−(k)− E+(k′) + ω + iν

]
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We assume that graphene is at zero temperature and the valence band is full. This implies that

f−(k) = 1. Using the linear dispersion relation near the Dirac cone χ−(q, ω) becomes,

χ−0 (q, ω) = −gsgv
8π

∫
d2k(1− cos(θkk′))

[
1

−vF (k + k′) + ω + iν
− 1

vF (k + k′) + ω + iν

]

Set k′ = k+q then, by the law of cosines we have cos(θkk′) = k−q cos(β)
k′ where β is the angle between

k and q. Define a new variable u = k + k′ = k +
√
k2 + q2 − 2kq cos(β). Then

dβ =
u− k
qk

(1− cos2(β))−1/2

=
u− k
qk

[
1−

(
k2 + q2 − (u− k)2

2kq

)2
]−1/2

Now our limits of integration are between u = k+ |k + q| and u = k+ |k−q|, so after some algebra

the integral becomes∫ ∞
0

∫ k+|k−q|

k+|k+q|
dk du

(u− 2k)2 − q2√
(q2 − u2)[(u− 2k)2 − q2]

[
1

−vFu+ ω + iν
− 1

vFu+ ω + iν

]
Again set x = u− 2k and y = u to get

χ−0 (q, ω) =− gsgv
8π

∫ ∞
q

∫ q

−q
dx dy

√
x2 − q2

q2 − y2

[
1

−vF y + ω + iν
− 1

vF y + ω + iν

]
=− gsgv

4π2

∫ ∞
q

dy
πvF yq

2

2
√
y2 − q2[(ω + iν)2 − v2

F y
2]

Integrating the final equation and taking the limit ν → 0 we have

χ−0 (q, ω) = i
q2

4
√
ω2 − v2

F q
2

(A.2)

The evaluation of χ+(q, ω) is quite tedious and lengthy. We omit its derivation in this thesis, which

can be found in [70].

A.2 Derivation of M̄ l,l′

k,k+q

The matrix M̄ l,l′

k,k+q is given by the integral,

M̄ l,l′

k,k+q =

∫
d2r

∫
dzΨ∗l,k(r, z)e−iq·r Ψl′,k+q(r, z)

=

∫
d2r

∫
dz
[
a∗k,lψ

∗
A,k + b∗k,lψ

∗
B,k

]
e−iq·r [ak+q,l′ψA,k+q + bk+q,l′ψB,k+q]
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Using equation 2.3 we can express the terms ψA,k and ψB,k as a sum over the pz orbitals. Looking at

the individual terms without their coefficients and expanding the integral in terms of the pz orbitals

we get,

(M̄ l,l′

k,k+q)i,j =

∫
d2r

∫
dz ψ∗i,ke

−iq·rψj,k

=
1

N

∑
R

∑
R′

ei(k+q)·(R+ti)−ik·(R′+tj)

∫
d2r

∫
dz ϕ∗pz (r−R′ − tj ; z)e

−iq·rϕpz (r−R− ti; z)

Here i and j are indices identifying either position A or position B atoms in the sub-lattice, ti are

the nearest neighbour vectors and R are the Bravias lattice vectors. The overlap integral between

pz orbitals on different Bravais lattice sites (i.e. R 6= R′) will be negligible so we will ignore them.

This reduces our integral to,

(M̄ l,l′

k,k+q)i,j =
1

N

∑
R

ei(k+q)·(ti−tj)+iq·tj
∫
d2r

∫
dz ϕ∗pz (r−R− tj ; z)e

−iq·(r−R)ϕpz (r−R− ti; z)

=
∑
α

ei(k+q)·wα
∫
d2r

∫
dz ϕ∗pz (r; z)e−iq·rϕpz (r−wi; z)

where we define wα = ti− tj to be a difference between nearest neighbour positions within the unit

cell. Once again, assuming that the nearest neighbour overlap integral is negligible we are left with

(M̄ l,l′

k,k+q)i,i =

∫
d2r

∫
dz |ϕpz (r; z)|2e−iq·r

Using the hydrogen like wavefunctions for the pz orbital we get,

(M̄ l,l′

k,k+q)A,A = (M̄ l,l′

k,k+q)B,B =

[
1 +

(
a0q

Zeff

)2
]−3

(A.3)

were ao is the Bohr radius and Zeff is the effective charge of the nucleus of the carbon atom. Now

to include the coefficients in our analysis, we recall that the coefficients for sublattice sites A and B

are ak,l = 1 and bk,l = f(k)
|f(k)| respectively. So the final equation for the matrix is

M̄ l,l′

k,k+q =

[
1 +

(
a0q

Zeff

)2
]−3 [

1 +
f(k)f(k + q)

|f(k)f(k + q)|

]
(A.4)

A.3 Green’s function of vacuum gap model

Here we present the Green’s function of the vacuum gap model (fig. 3.2), whose derivation we will

omit. The result is an adaptation of the Green’s function in [50], with minor changes to account for

the geometric difference of the substrate. The Green’s function is only valid for source points in the
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same layer in which graphene resides. For 0 < z, z′ < H the Green’s function is given by

G0(z, z′) =
2π

ε2q

[
e−q|z−z

′| +
λtλbe

−2qH

1− λtλbe−2qH
[e−q(z−z

′) + eq(z−z
′)]− λte

(z+z′−2qh) + λbe
(z+z′)

1− λtλbe−2qH

]
(A.5)

where λt = ε3−ε2
ε3+ε2

and λt = ε1 coth(qL)−ε2
ε1 coth(qL)+ε2

A.4 Geometric structure models

Here we present the structure factor for the Hard disc (HD) model without derivation. For a complete

derivation and limitations of the model see [55]. The HD model assumes that the pair potential

between particles in the Hamiltonian is infinite below some distance rc and zero otherwise. The

statistical mechanics of the model can be described using by the the packing fraction p = πnimpr
2
c/4,

where nimp = N/A is their areal number density, and rc is the disc diameter. The structure factor

for the HD model is

IHD(q) =

{
1 + 16a

[
J1(qrc/2)

qrc

]2

+ 8b
J0(qrc/2)J1(qrc/2)

qrc
+

8p

1− p
J1(qrc)

qrc

}−1

(A.6)

with

a = 1 + x(2p− 1) +
2p

1− p ,

b = x(1− p)− 1− 3p

1− p ,

x =
1 + p

(1− p)3
.

Note that the important long wavelength limit is given by IHD(0) = 1/x = (1 − p)3/(1 + p). The

expression in equation A.6 should be compared with the structure factor for a model with the step-

like pair correlation function,[76, 39]

ISC(q) = 1− 8p

qrc
J1(qrc), (A.7)

which gives ISC(0) = 1− 4p.
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