Interpreting and Answering Keyword
Queries using Web Knowledge Bases

by

Jeffrey Pound

A thesis
presented to the University of Waterloo
in fulfillment of the
thesis requirement for the degree of
Doctor of Philosophy
in
Computer Science

Waterloo, Ontario, Canada, 2013

© Jeffrey Pound 2013

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

111

Abstract

Many keyword queries issued to Web search engines target information about real world
entities, and interpreting these queries over Web knowledge bases can allow a search system
to provide exact answers to keyword queries. Such an ability provides a useful service to end
users, as their information need can be directly addressed and they need not scour textual
results for the desired information. However, not all keyword queries can be addressed
by even the most comprehensive knowledge base, and therefore equally important is the
problem of recognizing when a reference knowledge base is not capable of modelling the
keyword query’s intention. This may be due to lack of coverage of the knowledge base or
lack of expressiveness in the underlying query representation formalism.

This thesis presents an approach to computing structured representations of keyword
queries over a reference knowledge base. Keyword queries are annotated with occurrences
of semantic constructs by learning a sequential labelling model from an annotated Web
query log. Frequent query structures are then mined from the query log and are used along
with the annotations to map keyword queries into a structured representation over the
vocabulary of a reference knowledge base. The proposed approach exploits coarse linguistic
structure in keyword queries, and combines it with rich structured query representations
of information needs.

As an intermediate representation formalism, a novel query language is proposed that
blends keyword search with structured query processing over large Web knowledge bases.
The formalism for structured keyword queries combines the flexibility of keyword search
with the expressiveness of structures queries. A solution to the resulting disambiguation
problem caused by introducing keywords as primitives in a structured query language is
presented. Expressions in our proposed language are rewritten using the vocabulary of the
knowledge base, and different possible rewritings are ranked based on their syntactic rela-
tionship to the keywords in the query as well as their semantic coherence in the underlying
knowledge base.

The problem of ranking knowledge base entities returned as a query result is also
explored from the perspective of personalized result ranking. User interest models based
on entity types are learned from a Web search session by cross referencing clicks on URLs
with known entity homepages. The user interest model is then used to effectively rerank
answer lists for a given user. A methodology for evaluating entity-based search engines is
also proposed and empirically evaluated.

Acknowledgements

I would like to thank my supervisors Grant Weddell and Thab Ilyas for their support
and guidance, and for allowing me the independence to explore my research interests. I
would like to thank the many collaborators I have worked with over the years: David
Toman, Jiewen Wu, Alexander Hudek, Peter Mika, Roi Blanco, Hugo Zaragoza, Stelios
Paparizos, Panayiotis Tsaparas, and others. I would also like to thank my committee
members: Tamer Ozsu, Ming Li, Lukasz Golab, and Nick Koudas for taking the time to
read and critique my thesis.

I would also like to thank the many friends I've met during my studies. It’s the (more
than occasional) beer and coffee with friends that keep a person sane throughout a PhD.

Most of all I want to thank my family from the bottom of my heart. My parents Linda
and Steve, my brother Brad; mi suegra Monica, suegro Horacia, hermano Alejandro y
hermanita Macarena; my wife Sol and beautiful baby daughter Sofia. You have all always
stood by me and believed in me, I would not be where I am today if it wasn’t for your
support. Muchas gracias.

vii

Dedication

To my beloved wife Sol and my beautiful daughter Sofia. ..

X

Table of Contents

List of Figures

1 Introduction
1.1 Search in Information Systems
1.2 Representing Knowledge oL
1.3 Representing Query Intentions

1.4 Thesis Overview o o

2 The Query Understanding Problem
2.1 Formalizing The Query Understanding Problem
2.2 Solution Overview

2.3 Baseline Approaches

3 Semantic and Structural Annotation of Keyword Queries
3.1 Query Segmentation & Semantic Annotation
3.2 Structuring Annotated Querieso
3.3 Analysis of a Web Query Log
3.4 Evaluation of Keyword Query Understanding
3.5 Related Work

el

XV

15
17

19
22
24
28

4 Graph Queries with Keyword Predicates 57

4.1 Motivation 58
4.2 Structured Keyword Queries oo 60
4.3 Matching Subgraphs with Keyword Predicates 61
4.4 Concept Search Queries as Keyword Query Interpretations 72
4.5 Computing All-Pairs Similarity over Knowledge Base Items 75
4.6 Knowledge Graph Management 76
4.7 Evaluation of Graph Queries with Keyword Predicates 81
4.8 Related Work 88
5 Personalized User Interest Models for Entity Ranking 93
5.1 Data & Problem Definitions 94
5.2 Personalized Ranking of Entity Queries 100
5.3 Evaluation of Personalized Entity Ranking 105
54 Related Worko 112
6 A Methodology for Evaluating Entity Retrieval 115
6.1 The Ad-hoc Entity Retrieval Task, 115
6.2 An Empirical Study of Entity-based Queries 121
6.3 Related Work 129
7 Conclusions and Future Work 133
References 135
Appendices 149
A Evaluation Workloads 149
A.1 Query Understanding Workload 149
A.2 TREC-QA Structured Keyword Query Encoded Workload 156
A.3 Synthetic Efficiency Workload L. 161

xii

B Proofs
B.1 Proof of Lemma 1

B.2 Proof of Theorem 1

xiil

List of Figures

1.1
1.2

2.1
2.2
2.3
24
2.5

3.1

3.2
3.3
3.4
3.5
3.6
3.7
3.8

3.9

4.1

An example knowledge graph. oL 9
Part of an example knowledge graph extended with linguistic knowledge. . 14
Overview of the query understanding process. 24
Detailed overview of the query understanding process. 26
Examples of the query understanding process. 27
Example query result subgraph for the query “ohn lennon birth city”. . . . 29
Example query result subgraph for the query “imi hendrix birthplace”. . . 31
Example segmentation and annotation process for the CRF-based semantic

annotator. L e 37

Distribution of most frequent part-of-speech tags among entity-based queries. 40

Most frequently occurring templates among entity-based queries. 42
Effectiveness of keyword query annotation. 46
Effectiveness of query interpretation. 47
Effectiveness of query interpretation. 48
Average Precision, MRR, and Recall for the query answering task. 49
Average precision and recall vs. average run time for varying number of

candidate query structures. Lo Lo 50
Average run-times for each phase of the keyword query answering process. 51

An ambiguous concept search query and the possible mappings of each key-
word to a knowledge base item. L. 60

XV

4.2
4.3
4.4

4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12

5.1
2.2
2.3
5.4
2.5
2.6
2.7

2.8
2.9

6.1
6.2
6.3
6.4
6.5

An example structured keyword query disambiguation graph. 63

A complex structured keyword query disambiguation graph. 66
The example query disambiguation graph with zero-weight edges pruned

and the correct disambiguation highlighted. 71
Encoding structured keyword query disambiguation as a rank-join. 73
A knowledge graph index for the example knowledge graph. 78
The knowledge graph concept search query evaluation procedure. 79

An example encoding of a TREC QA task item to a structured keyword query. 83

Effectiveness of mapping structured keyword queries to concept search queries. 85

Entity retrieval effectiveness vs. number of knowledge base mappings . . . 87
Entity retrieval task effectiveness for all systems. 89
Performance of structured keyword query disambiguation and evaluation. . 90
Example result ranking with and without a user’s search context. 94
An example entity database and query click log. 97
Distribution of click frequency of entity types clicked in the query log. . . . 99
Distribution of entity count for entity types occurring in the entity database. 100
MRR and p@1 for the baseline ranking functions. 106
MRR values of each ranking method vs. generality filtering threshold value. 107

Precision at rank 1 for each reranking method vs. generality filtering thresh-
old value.o 108

Best reranking approaches for each baseline. 110

Increase in MRR and p@1 for best reranking approach for each baseline. . 111

A sample of queries with their entities, types, query intent, and query type. 118

A screen capture of the evaluation tool for judging results. 126
Inter-judge agreement on relevance scores. 127
Frequencies of valuations over all result judgements. 128
Stability of evaluation metrics for resource ranking. 129

Xvi

6.6

Al

A2
A3

Distinguishing among the baseline, random, and ideal rankings for various
evaluation metrics. L. 129

Query understanding workload: semantic summaries and structured query

templates. L 150
Query understanding workload: structured keyword query encodings. . . . 152
Query understanding workload: concept search query encodings. 154

xXvil

Chapter 1

Introduction

If Edison had a needle to find in a haystack, he would proceed at once with the diligence of

the bee to examine straw after straw until he found the object of his search... I was a sorry

witness of such doings, knowing that a little theory and calculation would have saved him
ninety per cent of his labor.

Nikola Tesla (1857 - 1943),

New York Times, October 19, 1931

1.1 Search in Information Systems

Consider a person who searches an information system using the keywords “toronto restau-
rants”. The person types their query and clicks the search button, anxiously awaiting their
results. But what information should a search system return in order to satisfy this user’s
information need? Certainly a Web search engine, such as Google or Bing, has many
choices. There are millions of documents on the Web that mention the terms “toronto”
and “restaurant”™ . There are also structured databases encoding information about vari-
ous restaurants, some of which are likely located in the city of Toronto. Whether a search
engine returns documents relevant to the query terms or structured results showing restau-
rants in Toronto, we cannot say that the search engine has done something right or wrong.
Since the intent of the query is underspecified — that is to say, we cannot know exactly
what it is the user is looking for due to the inherent ambiguity of keyword queries — there

! According to http://www.google.com, there are 156,000,000 documents matching the query “toronto
restaurant” at the time of writing. Retrieved April 27, 2013

is no definition of a “correct” query answer. However, it seems clear that some answers
may be better than others. Results providing information about restaurants in Toronto
would be considered more relevant than results that coincidently mention those two terms
together, but do not provide information explicitly about restaurants that are located in
Toronto.

1.1.1 Query Interpretation in Search Systems

The nature of search in information systems — be it the traditional information retrieval that
searches document collections given keyword queries, or more recent adaptations of search
that integrate large structured data repositories — is one of uncertainty and ambiguity.
Results are judged by their quality, not by a formal definition of correctness. At the time
of writing, a Bing? search for our example query “toronto restaurants” returns a list of
documents relevant to the query terms. Among them are various Web pages describing
restaurants in Toronto. A Google? search for the same query terms however, produces a
fundamentally different search result: a list of structured data items, each item describing
a particular entity that is a type of RESTAURANT with a location of Toronto. The difference
in the two results is not about access to data, indeed a search initiated from Bing’s local
page* returns a similar structured result as Google. The difference is in the understanding
and representation of the query. While Bing views this query as a collection of terms
describing textual documents of interest, Google views the query as having a more explicit
structure: a search for particular restaurant entities that are located in Toronto.

Special handling of queries for vertical domains is a common way of integrating domain
knowledge into search engines. Examples include the local business search provided by
major search engines, which aims to interpret queries over locations and business types;
the book search facility provided by Amazon, which aims to interpret queries over author
names, book titles, and ISBN numbers; or the job search from Monster.com, which aims to
interpret queries over locations, companies, and job types. While building domain specific
vertical search engines achieves the goal of integrating domain knowledge into the search
process, it comes at the expense of engineering a specific solution for each target domain.

2www.bing.com

3www.google.com
4www.bing.com/local

1.1.2 Semantic Search

A general search architecture that can integrate arbitrary external knowledge sources,
interpret keyword queries over these knowledge sources, and provide exact answers to
keyword queries is a highly desirable goal, and the focus of this thesis. This process
is often referred to as the semantic search problem — the problem of integrating reference
semantic information in the search process. A semantic search system allows the integration
of domain knowledge into the search process in a generic way. For example, a product
catalogue could be used as a reference knowledge base, allowing queries to be interpreted
in terms of products (attributes of products, brands, product types, etc...) enabling a
powerful vertical product search with an underlying understanding of the concepts and
entities in the reference knowledge. A query for “10mp canon digital cameras” could be
modelled as a query for entities with a megapizel value of 10, the brand Canon, and an entity
type DIGITAL_CAMERA. This semantic, or structural, understanding of the query allows the
retrieval of specific entities and information about those entities.

The semantic search approach also allows one to incorporate general knowledge, or fact
collections, into an open domain search engine as well. Similar to recent advances in the
Google search engine® which aims to answer simple factual queries like birthdays of famous
people or authors of popular books, a semantic search engine allows the integration of large
amounts of reference knowledge in the search process. The potential for semantic search
however is much greater than answering simple factual queries, as formal representations
of knowledge and queries can enable more complex query interpretations. For example, a
query for “grammy award winning guitarists” requires not only a structural understanding
of the query (i.e., entities of type GUITARIST that have hasWonPrize relation to entities of
type GRAMMY_AWARD), but also complex reasoning over the knowledge base to determine if
an entity can be inferred to be a GUITARIST that has won some entity that can be inferred
to be a type of GRAMMY_AWARD.

Modelling possible query interpretations also poses a difficult problem. Following
our previous example query “grammy award winning gquitarists”, how does a search sys-
tem identify that “winning” denotes the relation hasWonPrize? Similarly, for the query
“toronto restaurants” having an interpretation of RESTAURANTS that are locatedIn the city
of Toronto, a search system must infer the relationship locatedIn which is not explicitly rep-
resented in the query. Furthermore, even if a query understanding algorithm can compute
probable mappings of query terms to knowledge base items, how can a system determine
that a query is looking for entities of type RESTAURANT that are locatedIn Toronto, as

5See for example, the Google result of the query “moby dick author” which provides the exact answer
to the query, “Herman Melville”. Retrieved April 27, 2013.

opposed to the query looking for information about the entity Toronto which is the loca-
tion of various RESTAURANTs? As queries become more complex, the problem of modelling
their interpretations becomes more complex as well. We discuss the problem of search
in information systems, from the point of view of query understanding and knowledge
incorporation in Chapters 2 and 3.

1.2 Representing Knowledge

In this section we describe the data model used for representing factual world knowledge
about real-world entities, as well as linguistic knowledge that describes how the terms used
to encode a knowledge base are related to each other. The world knowledge acts as a
repository of searchable information, while the linguistic knowledge determines how query
terms can match against knowledge base items. We adopt of formal model of knowledge
representation based on an existing dialect of description logics, allowing us to give explicit
semantics to the often vaguely used terms knowledge base, knowledge graph, and concept.

1.2.1 Representing World Knowledge

We represent factual world knowledge as a collection of assertions about real-world entities.
Such assertions encode relationships between entities, such as

(Jimi Hendrix, hasWonPrize, Grammy Lifetime Achievement Award),
as well as relationships between entities and the types they have, for example
(Jimi Hendrix, type, GUITARIST),
and sub-class relationships between types

(GUITARIST, subClassOf, MUSICIAN).

Knowledge bases are often represented as collection of subject, predicate, object triples
following the RDF model. However RDF alone is not sufficient to describe the underlying
semantics of the data. Missing are constructs that allow one to express semantics such
as class hierarchies. There are a variety of proposals to extend triple-based models with
richer schema-level semantics such as RDFS [15] and the family of OWL languages [120].
We adopt a formal model of knowledge representation as a collection of assertions based on

4

the OWL2 EL Profile ¢ extended with unary entity sets (allowing an entity to represent a
class containing only itself), with attributes that map to values in a concrete domain such
as strings or dates, and with inverse relations. This model of knowledge representation
allows us the expressiveness to encode a wide variety of knowledge sources (including
many publicly available knowledge bases), formalize constraints in the data as inclusion
dependencies, and issue expressive concept-based search queries against the knowledge
base. At the same time, the OWL2 EL Profile is simple enough to allow efficient concept-
based search query processing over very large data sets with query-time inference.

The syntax and semantics of concept expressions are given as follows.

Definition 1 (Concept) Let {A, Ay,...}, {R,Ry,...}, {f, f1,...}, and {e,eq,...} be
countably infinite and disjoint sets of entity type names (a.k.a, entity class or primitive
concept), relation names, attribute names, and entity names respectively. Let R~ denote
the inverse of relation R, and f~ denote the inverse of attribute f. A concept is given by
the following.

cC = A
| 3R(C)

| 3R7(C)
| f(k)

| f7(O)

| Cy MGy
| {e}

Instances of concepts are specified using a knowledge representation interpretation func-
tion (KR~interpretation) which maps concept expressions to sets of items in given domains.
An KR-interpretation T is a 2-tuple (A @ S,-%) in which A is an abstract domain of
entities and S is a disjoint concrete domain, and T a KR-interpretation function. The
KR-interpretation function -Z maps

e cach concept name A to a set (A)T C A;
e cach relation name R to a relation (R)T C (A x A);

e cach attribute f to a relation (f) C (A x S);

Shttp://www.w3.org/ TR /owl-profiles/#OWL_2_EL

e cach nominal entity set {e} to itself ({e})* = {e} C A;

e a finite string k to itself (k)X =k €S;
The KR-interpretation function is extended to all concepts as follows.

o (CN D). = (C) N (D)

(

(FR.C) ={z € ATy € (C) : (x,y) € (B)}
e AR CY ={zeA|Iye(C):(yz)€ (R)}

(

(

fk)F ={z e A (x,k) € (f)"}
O ={keS|Fwe () : (z.k) € (f)}

|

An example of an entity type is GUITARIST, which denotes the set of all entities that are
a type of guitarist. An example of a relation is bornIn, which maps entities to the places
in which they were born. The inverse bornIn~ maps places of birth to entities (which
intuitively would represent a “birthplace of” relation). An example entity is Jimi Hendrix,
with an attribute dateOfBirth that maps Jimi_Hendrix to the constant “19/2-11-27”. The
inverse attribute dateOfBirth~ would map the concrete value “1942-11-27” to the set of
all entities known to be born on that day.

We allow all constructs to be used when defining concepts for queries (see Section 1.3),
and omit use of inverses and nominals when defining knowledge bases to ensure tractability
of reasoning.

Definition 2 (Knowledge Base Constraint) Let C; and Cy be concepts free of nom-
inals and inverses, A be an entity type, R a relation, f an attribute, e an entity and k is
an element of a concrete domain. An inclusion dependency is expressed as follows.

Gy C Gy
An assertion has one of the following forms.

Ale) | Rler,e2) | fle k)

A KR-interpretation Z satisfies a knowledge base constraint of type:

6

e inclusion dependency C; C Cy if (C1)% C (Cy)%;
e entity type assertion A(e) if e € (A)%;
e relation assertion R(ey,eq) if (e1,eq) € (R)F; and

e attribute assertion f(e, k) if (e, k) € (f)*.
O

An inclusion dependency describes a subset relationship between all of the entities in the
KR-interpretation of the left hand side, and all of the entities in the KR-interpretation of
the right hand side. This construct can be used to encode subclass hierarchies, for example

GUITARIST L MUSICIAN

expresses the fact that all guitarists are also musicians. Inclusion dependencies can also
describe more complex dependencies, for example the inclusion dependency

ARTIST C PERSON [dereated(CREATIVE _WORK)

defines the concept of an artist as any person that has created some thing considered to
be a creative work.

Facts about entities are represented as assertion constraints. The first assertion con-
straint asserts that an entity e has type A, e.g., GUITARIST(Jimi Hendrix). The second
assertion constraint asserts that a relation R holds between two entities, for example:
created(Jimi Hendrix,Little Wing). This also implies that the inverse relation holds:
created” (Little Wing, Jimi Hendrix). The last constraint asserts that an entity has a
particular value for a given attribute. This can be thought of as a special case of a relation
assertion, where the entity relates to a concrete value. For example, the attribute encoding
a date of birth: dateO f Birth(Jimi Hendrix, “1942-11-277).

Definition 3 (Knowledge Base) An ontology O is a set of inclusion dependencies.
We use the symbol A to refer to a set of assertions. Given an ontology O, and a set of
assertions A, a knowledge base K is defined as a two-tuple:

K:=(0, A).

A knowledge base K entails that a € (A W §) is an instance of concept C, written
K | C(a), if a € (C) for all KR-interpretations Z that satisfy all constraints in . A

7

knowledge base K entails that a concept Cy subsumes a concept Cy, written K = C; C Cy,
if (C1)F C (Cy)* for all KR-interpretations Z that satisfy all constraints in K.

A knowledge base K := (O, A) is a knowledge graph when all of the inclusion dependencies
in O are of the form A; C As.

O

An ontology (also known as a TBox) defines schema-level constraints over the knowledge
base, while the set of assertions (also known as an A Boz) define concrete information about
entities and their relationships to entity types and constants.

A knowledge graph restricts inclusion dependencies to have primitive left and right
hand sides. The phrase knowledge graph comes from the fact that the knowledge base can
be represented visually as a graph where nodes represent entities, types, and constants;
and edges represent relations, attributes, and inclusion dependencies between entity types.
While most of the work in this thesis applies to general knowledge bases, our implementa-
tion of back-end knowledge base query processing exploits the knowledge graph nature of
the test data sets for efficiency. An example knowledge graph is shown in Figure 1.1. We
represent entity type assertions using the edge label type and inclusion dependencies using
the edge label subClassOf. Entities are represented as ovals, entity types as shaded boxes,
concrete domain values as rectangles, and relations as solid lined arrows.

Throughout this thesis, we adopt the following notational conventions.

FEntities are written in a typed font with leading capitals (e.g., John Lennon, Canada).

Entity types are written in a typed font in all capitals (e.g., COUNTRY, GUITARIST).

Relations and attributes are written in italic camel caps (e.g., hasWonPrize, dateOf-
Birth).

Keyword queries and concrete values (or constants) are written in quoted italic lower
case (e.g., “guitarists”, “toronto restaurants”, “1940-10-097).

We now present a lemma concerning the constraints that must occur in a knowledge
graph in order to determine if a knowledge base entails that an entity has a given type.
We use the syntactic abbreviation {4; C A,... A, C A} to denote the set of inclusion
dependencies {A; C Ag, Ay C As,..., A, 1 C A,, A, C A}

‘ydeis o8pomouy ojdwrexs Uy :1°T 2Indig

|joodiani aoe|dyuiq
9zl1JUOpSBY

premy
JusWwaAaIyoy
awnay Awweln

1
\] _.

uouua uyop

S3lLIo advmyv 31vO0AaY
Igv.Lin
VLSVOD ANNYHO JON3TOIANON s

,.Ommm,__ogw ,_Ommm.,_oQ:w
4 §
ALID agdvmy
108se|nans

E

! NVIOISNIN

JosseI5ans

\ ’

NOSH3d

poyessd —

‘) yuigiosiep u60-01-0V6 L,

pajeald

pajeald

JOSse|Oqns

MHOM
JAILLYIHO

pues jo
ape\ sojse)

(4onQ sI 1epn)
sewy AddeH

ONOS
HVM-LINV

’
’

Josse|nans

Lemma 1 (Entity Type Inference) Given a knowledge graph K = (O, A), an entity
type A, and an entity e, K |= A(e) if and only if either of the following sets of constraints
exist in the knowledge graph K:

1. {A(e)} or,

2. {Ai(e)} U {41 CAy.. A, C AL (1.1)

Proof: See Appendix B.1.

1.2.2 Sources of Web Knowledge Bases

Knowledge bases on the Web are created both manually and in automated ways. In-
terestingly, both methods tend to produce very large and heterogeneous data sets. For
example, DBpedia is automatically extracted from various structured parts of Wikipedia,
and produces a KB of over 500 million assertions for ~3.64 million entities (as of DBpedia
3.7). Freebase on the other hand is built from user contributions (in the same style as
Wikipedia), and it also yields a large heterogeneous KB consisting of hundreds of millions
of assertions ~20 million entities.

Automatically extracted knowledge bases come from various sources. Some are built by
directly extracting facts from natural language text with predefined target schemas (e.g.,
[23, 53]). Others extract arbitrary facts from text without a fixed target schema by a
method known as open information extraction [5, 17, 19, 37]. Knowledge bases extracted
from text can be very large due to the vast amounts of text available for extraction, however
achieving high extraction accuracy can be difficult. Textual extraction frameworks are
also left with a very difficult resolution problem — the problem of determining when two
different strings reference the same entity, entity type, attribute, or relation. For example,
such knowledge bases may contain redundancies encoding “Einstein’s birthday”, “Albert
Einstein’s date of birth”, and “Dr. Einstein’s birth date.”

To exploit existing structure on the Web, some projects have aimed to extract high
precision knowledge bases from semi-structured sources. Two prominent examples are
DBpedia [1] and YAGO [96]. The DBpedia knowledge base uses custom scripts to ex-
tract structured facts from Wikipedia infoboxes and categories. Measures are taken to
resolve common rewording of relations to represent facts of the same type using a com-
mon schema (e.g., “dateOfBirth” to represent the many ways of expressing the birthday
relation). This produces a very large and high quality collection of facts over real world

10

entities, with categorical types for entities. The extraction of the YAGO knowledge base
uses a similar methodology as DBpedia, but exploits Wikipedia categories to a greater
extent. In YAGO, Wikipedia categories are cross-referenced with WordNet concepts to
produce a rich taxonomy over entities. For example, using the YAGO knowledge base one
can deduce that Jimi Hendrix is a Musician, because the entity Jimi Hendrix is known
to be a Lead Guitarist, which is known to be a type of Guitarist, which in turn is
a type of Musician. Google’s WebTables project [13] is another example of a large KB
extracted from partially structured Web data. HTML tables on Web pages, which can
often encode structured data, are processed to build a collection of structured facts with
schema information extracted from table headers.

Manually constructing large scale knowledge bases is another possible method for cre-
ating Web KBs. While such a goal may seem infeasibly ambitious, several projects have
produced large scale high quality knowledge bases from manual labour. In particular, the
Cyec project [63] pioneered work in the manual construction of a general domain knowledge
base. However the limited number of contributors resulted in a rather small output. The
Freebase project [113] on the other hand took a community approach, similar in nature
to how Wikipedia was built. Freebase now consists of a large collection of general knowl-
edge facts over 20 million real world entities. Another interesting manually constructed
knowledge base is WordNet [76]. WordNet is a linguistic ontology, encoding linguistic rela-
tionships between words and grouping words into conceptual units called “synsets.” While
WordNet is a valuable resource, it should be noted that the type of information it contains
is substantially different than the Web knowledge bases we consider in this thesis, which
primarily encode factual assertions about real world entities.

There are also a number of smaller scale knowledge bases manually constructed for
particular vertical domains. These include, for example, SNOMED CT [125] for medical
informatics, the GENE Ontology [14] for genetics, the MusicBrainz ontology [119] for
musical works and artists, and many others.

With all of the individual efforts to construct knowledge bases, the question of how
an information system can use multiple KBs becomes an issue. The LinkedData [l 10]
effort aims to address this issue by linking (defining equivalences over) common resources
described in different data sets. The LinkedData Web consists of over 30 billion assertions
as of September 20117, and has been growing so quickly statistics about its current size are
difficult to estimate. Additionally, there are efforts to manually create small ontologies to
serve as high level classification or typing systems from which specific knowledge bases can
provide finer granularity types as well as data level instances of types. By using common

"http://lod-cloud.net/state/. Retrieved May 25, 2013.

11

high level ontologies, integrating multiple knowledge bases into an information system is
easier. Such efforts include UMBEL [127] as well as schema.org [121], an effort jointly put
forward by industry search leaders Yahoo, Microsoft, and Google.

Independent of how a Web KB is created, they generally share a few common charac-
teristics. They are very large in terms of the number of assertions they contain, and they
are heterogenous in the types of information they encode. This makes search using a KB
a challenging task, as one cannot assume the user will have familiarity with the contents
of an underlying knowledge base.

We have found the formalism presented in Section 1.2 is sufficient to capture many
of these real world Web knowledge sources, such as the knowledge graphs DBpedia [11],
Freebase [113], and YAGO [96]; as well as the medical knowledge base SNOMED CT [125].

1.2.3 Representing Linguistic Knowledge

Web knowledge bases encode information about real-world entities. This information ul-
timately makes use of English labels to represent the entities, types, relations, attributes
and attribute values. Linguistic knowledge not only connects the knowledge base items to
their textual representations, but also encodes information about the linguistic relation-
ships between words in a vocabulary (e.g., synonymy between words, or one word being the
lemmatized form of another). Linguistic knowledge can also capture the roles words play in
expressing information (i.e., their parts-of-speech). For example, “city” is the lemmatized
form of “cities”; is a synonym of “metropolis”, and is a noun.

We encode linguistic knowledge by extending the formalism used to encode world knowl-
edge. We link constructs in a knowledge base to their textual labels by stating an assertion
over a label relation. For example,

label(GUITARIST, “guitarist”)

encodes the label for the type GUITARIST. Labels with multiple terms (e.g., “grammy
award”) can have a mapping to each term in the vocabulary (note that we need to retain the
order of the terms, we do this by using a term relation that maintains a count term1, term2,
etc...). We can then encode various linguistic relationships between the term “guitarist”
and related terms by extending the knowledge base constraints defined in Definition 2 to
allow relations between constants,

RL(kla k?)a

where Ry is a linguistic relation and k; and ky are constants. An example of such assertions
are given below.

12

synonym(“guitarist”, “gquitar player”)
lemma(“guitarists”, “guitarist”)
term1(“guitar player”, “quitar”)
term2(“guitar player”, “player”)

We can additionally encode part-of-speech relations by allowing assertions from constants
to a fixed set of part-of-speech tags.

part-of-speech(k, pos-tag)

where k is a constant and pos-tag is a part-of-speech tag from a reserved set of symbols
(disjoint from the abstract domain A). For example:

part-of-speech(“quitarist”, noun)
part-of-speech(“guitar”, noun)
part-of-speech(“hendriz”, proper_noun).

This model provides us with a formal way of describing how query terms map to knowledge
base items. It is ultimately the text representation of knowledge base items that we will
use to map keyword query terms into the knowledge base. Figure 1.2 shows a sample of
our example knowledge graph with the associated connections to an example linguistic
knowledge base. We abbreviate “part-of-speech” as “pos” in the example.

1.2.4 Sources of Linguistic Knowledge Bases

Linguistic knowledge bases can be created manually or automatically extracted from text
collections or query logs. WordNet is a manually constructed and expert curated collection
of linguistic knowledge [76]. It encodes a high precision collection of English linguistic
knowledge including a large English vocabulary, synsets which are relations among groups
of semantically synonymous terms, and part-of-speech annotations of terms. Vocabularies
can also be built automatically by analyzing text collections of interest, such as document
collections or query logs, and enumerating a set of terms. Synonyms can be discovered
automatically as well using statistical methods (see for example, [28]). Also, Web page
hypertext links can also be used to extract synonyms for entities on the Web [77]. For
example, if the text “T'he Great One” is often used to link to the Wayne_Gretzky Wikipedia
page (and not often used to link to other pages), then it is likely that this label is a synonym
for the entity Wayne_Gretzky.

13

World Knowledge

GUITARIST label

label
GUITARS

] label
instrument

label

Linguistic Knowledge

Labels

| term — |
—
synonym

term1 -
| —

| term2 —]

— term —

_
| term

| term1

—

term2

Vocabulary

............ _
! . . —
L~ "guitarist" !
1 1

]
1

"

"

/
pos
lemma
— NN
| — EO8 \1
pos
\
NNP

L \
synonym

" pos
\\\

| pos

Figure 1.2: Part of an example knowledge graph extended with linguistic knowledge. The relation “pos”
represents part-of-speech, NN denotes noun and NNP denotes proper noun. The “label” relation connects
knowledge graph items to their syntactic representations.

14

1.2.5 A Knowledge Graph with Textual and Linguistic Annota-
tions

We compile a number of publicly available resources to construct a knowledge graph con-
taining tens of millions of facts over millions of real-world entities. Our knowledge graph is
centred around the fact collection and type hierarchy compiled by the YAGO [90] project.
We make use of the entity labels extracted from the anchor text of cross-page links in
Wikipedia that are included in YAGO. We then integrate WordNet relations to model
synonymy among terms in the labels of the graph nodes and edges. We use a mapping of
terms to part-of-speech tags obtained from the well known Brown and Wall Street Journal
corpora (which have been manually annotated) by taking the most frequent tag for each
term as its part-of-speech. We compute the lemmatized form relations on-the-fly during
query processing using the Stanford natural language processing toolkit [126]. We also
cross-reference YAGO entities with DBpedia [11] (using existing Linked Data mappings)
in order to integrate integrate Wikipedia abstracts for each entity as a textual description
the entity.

Overall, the knowledge graph is built entirely from publicly available sources and con-
sists of ~3.3 million entities, ~300,000 entity types, ~11 million constants (strings, numbers,
dates, etc. ..), and ~38 million assertions (edges) over these KB items.

Experiments conducted as part of this thesis make use of various subsets of this knowl-
edge graph depending on the nature of the experiment. In particular, some experiments
make use of only the core YAGO data set with linguistic annotations (Chapters 3 and
4). Other experiments make use of an entity database subset, consisting of the entity sets
of YAGO and DBpedia, along with the extracted entity labels, synonyms, abstracts, and
linguistic annotations (Chapter 5).

1.3 Representing Query Intentions

We will ultimately use concepts in the given KB formalism to represent the explicit inten-
tion or information need of an ambiguously specified user keyword query. We adopt the
following definition of a concept-based search query over a knowledge base, analogous to
instance queries over description logic knowledge bases.

Definition 4 (Concept Search Query) A concept search query is given by a concept
C expressed using the grammar in Definition 1. Given a knowledge base K and a concept

15

search query C, the answer to the query C' over K is the set of entities or constants inferred
to be instances of C' by K,

answer(C,K) ={a | K E C(a)}.

As an example, the concept
MUSICIAN M Jhas WonPrize(GRAMMY_AWARD)

is interpreted as a query for all entities that are of type MUSICIAN and that have a
hasWonPrize relationship to some entity that has type GRAMMY_AWARD. Inferring which
entities are answers to a concept search query may require inference over the knowledge
base, as can be seen by considering the example query over the knowledge base illustrated
in Figure 1.1. A query processor must exploit the knowledge that a GUITARIST is a type
of MUSICIAN to infer that the entities Jimi Hendrix and John Lennon qualify.

This class of queries has a natural mapping to conjunctive queries (e.g., SPARQL
queries [37]). Concept search queries correspond to conjunctive queries with a single head
variable (hence the “search” or “retrieval” nature of the queries), with query bodies that
are directed acyclic graphs. (Note however, that the reverse is not necessarily true, i.e.,
not any directed acyclic graph query can be expressed as a concept search query.) The
example query above could be written in SPARQL the following way (assuming knowledge
base inference has been accounted for).

SELECT 7x

WHERE {
7x type GUITARIST .
?x hasWonPrize 7y .
7y type GRAMMY_AWARD .

}

Concept search queries essentially define selection conditions over knowledge base enti-
ties. Such functionality could also serve as a component of a larger knowledge base algebra,
as explored in [35].

16

1.4 Thesis Overview

1.4.1 Contributions

This thesis makes the following contributions.

At the core of this thesis is a novel method for interpreting keyword queries over Web
knowledge bases that computes mappings of keyword queries to formal concept search
queries over the vocabulary of a given knowledge base. The mappings form probable
interpretations of the user’s information need based on statistical models learned
from real user query logs (Chapter 3). The result of this process is a set of the top-k
structured concept search queries representing possible interpretations of a keyword
query, which can be evaluated over the knowledge base to produce precise answers
to the keyword query (Chapter 4). The latter process is able to exploit semantics
encoded in the knowledge base by performing reasoning during query evaluation. We
formalize the problem of mapping keyword queries to concept search queries over a
knowledge base in Chapter 2.

We present the results of an analysis of a real Web search log, giving insight into the
types of entity-based queries asked by real users. Our analysis shows the importance
of addressing entity-based queries due to the large number of these queries issued
by users. The analysis also establishes relationships between linguistic structure and
semantic structure, and gives insight into the types of latent semantic structures that
repeatedly occur in keyword queries (Chapter 3).

We propose a keyword-based structured query formalism that allows users to create
expressive descriptions of their information need without having detailed knowledge
of an underlying knowledge base vocabulary. The query formalism also acts as an
intermediate language for representing possible structure in users’ keyword queries.
We propose a model for efficient and effective mapping of these structured keyword
expressions into a large knowledge base (Chapter 4).

We propose a model for re-ranking entity results produce by a baseline ranking
algorithm to increase the effectiveness of results based on learned user profiles. We
show that the re-ranking is effective for a number of popular baseline entity ranking
methods (Chapter 5).

We propose a methodology for ad-hoc entity retrieval evaluation. We design a frame-
work for evaluating entity retrieval systems that builds upon existing evaluation ap-
proaches in document retrieval and maximizes the reusability of expensive human

17

relevance judgments on query results. We deploy our proposed evaluation method-
ology on a real world data set and query workload. We show experimentally that
our proposal is stable for some popular evaluation metrics, and that it can reliably
distinguish among the effectiveness of systems with these metrics (Chapter 6).

1.4.2 Outline

The remainder of this thesis is organized as follows. Chapter 2 formalizes the keyword
query understanding problem and gives an overview of our approach to semantic query un-
derstanding. The details of our approach to structuring keyword queries are presented in
Chapter 3. Chapter 4 explores the problem of mapping structured graph queries with key-
word predicates into a knowledge base. Such queries form an intermediate representation
of keyword query interpretations in our system. Keyword queries interpreted and evaluated
over Web knowledge bases ultimately produce a list of entity results. Chapter 5 address the
entity ranking problem, with a focus on learning personalized user interest models from a
query log, and ranking entity results based on a user’s interests. Throughout the thesis, we
conduct a number of evaluations involving entity retrieval. The theory and validation of
the methodology used to evaluate entity retrieval is presented in Chapter 6. We conclude
in Chapter 7 and discuss directions for future work.

18

Chapter 2

The Query Understanding Problem

As the amount of structured data on the Web continues to grow, the ability to exploit this
data for keyword search becomes increasingly important. Efforts such as DBpedia [I1],
Freebase [113], and Linked Data [116] have produced large heterogeneous knowledge bases
that encode great amounts of information about many real world entities. Web search
queries seeking information about these entities could be better served by interpreting the
query over a knowledge base in order to provide an exact answer to the query, or to enhance
document retrieval by understanding the entities described by the query.

For example, consider a user searching for “songs by jimi hendriz.” While a text search
may retrieve relevant documents to the query terms, it leaves the user with the task of
scouring textual results in search of the information they are seeking. This user’s query
could be better served by returning a list of particular songs by the musician Jimi Hendrix
(precise answers to the query), possibly along with information about each song (e.g.,
structured facts from a knowledge base or documents resulting from a text search for the
particular song). Similarly, the keyword query “author of moby dick” could be better
answered if a search system understood that “moby dick” describes a particular book,
“author of” describes a relationship, and the query intent is to find the unspecified entity
that has an “author of” relationship to “moby dick.”

We refer to the process of interpreting keyword queries over a knowledge base as seman-
tic query understanding. This problem has the following characteristics that pose difficult
technical challenges.

e Ambiguity Keyword queries tend to be short, ambiguous, and underspecified. For a
given keyword query there may be multiple possible ways to interpret the underlying

19

query intent. Semantic query understanding systems need to accurately interpret
entity-based keyword queries when the underlying reference knowledge base contains
the relevant information.

e Representation & Coverage Not all keyword queries have an entity focus (so
called, entity-based keyword queries). A query such as “corporate taz laws buyout”
may intentionally be seeking documents that mention the given query terms, and
an attempt to represent the query in terms of knowledge base entities may produce
an incorrect interpretation and harm the quality of results. Similarly, some entity-
based queries may seek information that does not exist in a given reference knowledge
base. A high accuracy semantic query understanding system will answer queries only
when the query intent can be represented and evaluated over the reference knowledge
base, and recognize when queries cannot be answered due to representation or KB
coverage.

e Scale Web knowledge bases tend to be very large and heterogenous, meaning ap-
proaches cannot be engineered to exploit domain specific regularities or depend on
small fixed schemas with complete data. Semantic query understanding techniques
must scale to large heterogeneous Web knowledge bases.

Query understanding is a broad phrase used to describe many techniques applied to
keyword queries in order to represent the underlying information need in a way that a
search system can exploit. Some popular approaches include topic classification, in which
the topic of a query is determined using a statistical classifier. Topic classification aids
a search system by giving it context, or by allowing the system to select the appropriate
data source to search. For example, the query

“songs by jimi hendriz” (2.1)

may be classified as a music query. However query classification does not give any insight
into precisely what the query is looking for within the domain of music.

Another query understanding approach that has received recent attention from re-
searchers is term annotation. Term annotation labels individual query terms with anno-
tations that describe the role these terms play with respect to an underlying information
system. Following our example query, the terms “jumi hendriz” may be annotated as a
name, and the term “songs” annotated as an entity type. While query annotations can aid
a search system in understanding the meaning of individual terms, the annotations do not
describe the underlying structure of the query as a single coherent query interpretation.
Continuing the example, we want to model the latent query structure that expresses the

20

query intention as finding entities of type song that are created by an entity named “jimi
hendriz” (as opposed to finding, for example, information about the person named “imsi
hendriz” who is known to have written songs, or a song named “jimi hendriz”).

The goal of semantic query understanding is to compute a formal interpretation of
an ambiguous information need. The interpretation is represented using some underly-
ing structured query language. The information need is expressed as a keyword query, a
short and often underspecified string of natural language words. The query understand-
ing process is inherently uncertain, and approaches for semantic query understanding are
generally based on inexact matching and ranking using probabilistic models. Figure 2.1
shows our proposed semantic query understanding process for a variation of our running
example information need.

A formal modelling of semantics can aid in returning more relevant results, and can also
allow the search system to decide on the type of results and the format for returning an
answer. For example, a query for digital cameras can return structured shopping results,
rather than (or in addition to) text documents. A query for a particular fact such as a
celebrity’s birthday can be better served by returning the exact date value, rather than a
list of documents. Thus the more a search system understands about a query’s intent, the
more possibilities there are for addressing the user’s information need.

Our example keyword query can be structurally understood as finding all entities of a
type described as “songs,” that have a “by” relationship to an entity described as “jimi
hendriz”. This is given as the following conjunctive query.

q(x):-Jy.SONG(x) A createdBy(z,y) Ay = Jimi Hendrix (2.2)

Where the predicates SONG and createdBy, and the entity Jimi Hendrix are part of a Web
knowledge base. The difficulty in mapping a keyword query to a formal interpretation
lies in the inherent ambiguity in keyword queries, and the many possible mappings query
terms can have over very large reference data collections. For example, the term “hendriz”
matches 68 data items in our data set (see Section 1.2.5), the term “songs” matches 4,219
items, and the term “by” matches 7,179 items. This yields a space of over two billion
possible conjunctive queries constructed by mapping each query term to a syntactically
similar predicate. This does not count the possibility of additional predicates existing
in the underlying conjunctive query that are not explicitly represented by a term in the
keyword query. For example, the query “hendriz songs” shown in Figure 2.1 shares the
same logical structure as example query 2.2, even though the createdBy relation is not
explicitly represented by any query terms. It is the job of the query understanding system
to infer the existence of such latent relations.

21

Another key challenge of the semantic query understanding problem is to determine
when a query cannot be modelled using a given collection of reference knowledge. Indeed,
no matter how large a data set is, it will always be possible to formulate a query that
describes information outside of the scope of the reference knowledge. Identifying when a
query’s semantics cannot be modelled using the available knowledge is equally important to
the problem of correctly modelling the query interpretation when the reference knowledge
captures the required information. We consider the importance of this component of
a query understanding system in the design of our approach and emphasize it in our
evaluation.

In this thesis we propose a method for interpreting keyword queries over Web knowledge
bases. We use an annotated Web search query log as training data to learn a mapping
between keyword queries and their underlying semantic structures. Because of the very high
cost in creating training data, we design an approach that maps high level representations
of keyword queries to schema-level representations of structured queries, greatly reducing
the amount of training data needed to accurately learn these mappings. Our approach
integrates state-of-the-art techniques in natural language processing with top-£ search over
structured data and knowledge base query processing, bridging the gap between statistical
representations of keyword queries and database formalisms for structured representations
of information needs.

2.1 Formalizing The Query Understanding Problem

A surface keyword query is given by a user as a string. We define a keyword query as the
ordered set of individual terms from a concrete domain S occurring in the input string.
The only structure specified in a keyword query is the order of the terms.

Definition 5 (Keyword Query) A keyword query @ is a non-empty ordered set of n
strings

Q= (192 qn)
such that ¢; € Sfor all 1 <17 <n. O

We can think of a concept search query C' as being composed of a number of items from
the vocabulary of a knowledge base, where each knowledge base item is either an entity,
entity type, relation, attribute, or constant. In order to express query interpretations
as concepts, we define a notion of admissibility of a concept search query for a keyword

22

query in terms of the knowledge base items used and the coverage of keywords the concept
provides.

Definition 6 (Admissible Keyword Query Interpretation) Given a keyword query
Q over S, a knowledge base K, and a concept search query C| let item(K) denote the set
of knowledge base items occurring in a knowledge base KC, let item(C') denote the set of
knowledge base items occurring in a concept search query C', and let £(i) C S denote the
set of textual labels in S that can be used to describe a knowledge base item i. A concept
search query C'is an admissible keyword query interpretation for keyword query @ iff

Vi € item(C),i € item(K); (2.3)
Vg € Q,3i € item(C),q € L(i); and
lanswer(C,)| > 0.

|

Equation 2.3 constrains all predicates to be part of the given knowledge base, ensuring
the query is safe. Equation 2.4 ensures coverage of all keyword query terms. Equation 2.5
ensures that the query is consistent with the knowledge base and that the knowledge
base has sufficient data coverage to answer the query by only allowing concept search
queries with non-empty answer sets (refer to Section 1.3 for a definition of concept search
query semantics). In theory we expect that £(i) contains all possible representations of
7, including all possible synonyms and variations. In practice, we approximate this by
relaxing the constraint ¢ € L(i) to allow fuzzy and partial string matching. We also
consider segmenting keyword queries into sequences of keyword phrases, and allow partial
or fuzzy matching at the phrase level in Chapter 3 (e.g., match “President Obama” to
“Barack Obama”).

Definition 7 (Keyword Query Understanding Problem) Given a keyword query Q
and a knowledge base I, the query understanding problem is to find the most probable
concept search query C' given the keyword query @:

C = argmax., Pr(C'|Q) (2.6)

such that C' is an admissible interpretation of the intention of) with respect to a knowledge
base K. O

23

| "hendrix songs" | \}

|
(P (" Little_Wing [1) Term Annotation]
[4) KB Query Evaluation] Gypsy_EyeS
][Red_House ” N 7] 7]
[sone A JcreatedBy.({Jimi_Hendrix})] Foxy _Lady hendrix":ent "songs":type
ﬁ Highway_Chile ||
(3) KB Interpretation] (2) Query Structuring]

"songs” A 3* ("hendrix")

Figure 2.1: Overview of the query understanding process.

2.2 Solution Overview

Estimating the distribution in Equation 2.6 directly would require a large amount of la-
belled training examples. One would need to see each possible keyword in a vocabulary
enough times to model the different possible semantic mappings that word can take in var-
ious contexts. The space of possible keyword queries mapping to possible concept search
queries is very large, and estimating such a mapping directly is not feasible when train-
ing data is limited. Because of the manual effort required in creating labelled training
data, we need to design an approach that can maximize the utility of a small collection
of training examples. We propose to compute high level summaries of queries based on
annotating query terms with semantic annotations, and learn a conditional distribution
over structured query templates given these summaries.

Our semantic query understanding approach is summarized as a sequence of four steps,
as illustrated in Figure 2.1.

1. Keyword Query Annotation Queries are first annotated with the semantic con-
structs from the knowledge representation language defined in Definition 1 (i.e., en-
tity, type, relation, attribute, attribute value). We use part-of-speech tags as features
that suggest probable semantic constructs for each query term. The mapping from
part-of-speech tags to semantic constructs is learned from an annotated query log

(Chapter 3).

2. Keyword Query Structuring Annotated queries are structured by computing
the most probable structured query templates given the annotations as a semantic

24

summary of the query contents. This relationship between annotations and query
structures is learned from an annotated query log. Learning a mapping directly from
keywords to structured queries would require large amounts of training examples.
By learning the mapping from semantic summaries to query templates, we take
advantage of the redundancy in the training data caused by many queries sharing
the same summaries and templates. For example, queries containing two entities
tend to be structured in particular ways, while queries containing a type followed by
an entity may exhibit different structures with regularity (Chapter 3).

3. Knowledge Base Mapping Semantically annotated keyword queries can be com-
bined with a structured query template to form a structured representation of the
keyword query known as a structured keyword query. This structured keyword query
is essentially a structured graph query (in the form of a concept search query) with
keyword predicates. We map structured keyword queries into concept search queries
over the vocabulary of the knowledge base. Our method computes mappings that
maximize syntactic similarity of query terms to KB items as well as semantic coher-
ence of the concept search query given the knowledge base (Chapter 4).

4. Knowledge Base Query Evaluation Concept search queries are then executed
over the knowledge base to find entities and values described by the query. This pro-
cess performs query-time inference, exploiting the semantics encoded in the knowl-
edge base to compute query answers using a custom knowledge base engine. Our
knowledge management approach also does closure path caching, taking advantage
of sets of queries that share query terms generated from the same keyword query by
the query understanding process (Chapter 4).

We also address the entity ranking problem in Chapter 5 from the view of personalized
entity ranking. In Chapter 6 we provide an in-depth analysis of evaluation of the entity
retrieval task.

Figure 2.2 gives a detailed visualization of the query understanding and evaluation
process for our example query “jimi hendrixz songs”. The figure also illustrates the steps
in which query log and knowledge base data are used.

Note that at steps 1 and 2 of the process, we are not yet concerned with how query
terms map to particular knowledge base items as would be done in traditional keyword
search over graphs. Inferring probable structures of the query terms first will allow us to
constrain the possible mappings into the knowledge base. This can improve performance by
fixing the structure of possible mappings into the knowledge base, and improve effectiveness
by only allowing structures that have a high probability of being representative of query

25

Little_Wing

Gypsy_Eyes
' Red_House
jimi hendrix songs | | Foxy_Lady
Highway_Chile

-
o

1) Term Annotation j«— — = — — — = — T: KB Query Evaluation

. {==3 wordnet_song n Jcreated*(Jimi_Hendrix)

O«__~O
Query Log %ANMJ\M_VO T

A1. "jimi hendrix" — ENT "songs" — TYPE
A2. "jimi hendrix songs" — TYPE

\

le — — — —p

—_ e — e —————-

2) Query Structuring j[4= — = — — =

I

A1. "jimi hendrix" — ENT "songs" — TYPE

T& Knowledge Base Mapping

A2. "jimi hendrix songs" — TYPE

wordnet_song 1 Jcreated\({Jimi_Hendrix})

$1. "songs"n 3 (*jimi hendrix") wordnet_song r IproducedA({Jimi_Hendrix})

P(Structure | Ann Query)
S2. "jimi hendrix songs" wikicategory_Jimi_Hendrix_songs
Amf "songs" n 3* ("jimi hendrix"),

S3. "jimi hendrix" n "songs"
S2. ‘jimi hendrix" N "songs"}

<emtpy>

ﬁmm. "jimi hendrix mo:@m&.

Figure 2.2: Detailed overview of the query understanding process.

26

“iime hendriz songs” User keyword query

— “9imi hendriz”:ent “songs”:type 1) Term annotation

— “songs” M * (“jimi hendriz”) 2) Query Structuring

< SONG M dcreated” (Jimi Hendrix) 3) Knowledge base mapping
— {Little Wing, Castles Made of Sand} 4) Knowledge base evaluation
“rima hendriz birthplace” User keyword query

— “jima hendriz”:ent “birthplace”:relation 1) Term annotation

— “birthplace”(“jimi hendriz”) 2) Query Structuring

— 0 3) Knowledge base mapping
=0 4) Knowledge base evaluation
“john lennon birth city” User keyword query

— “Jjohn lennon”:ent “birth”:relation “city”:type 1) Term annotation

— “city” T “birth” (“john lennon”) 2) Query Structuring

— CITY M 3birthplace” (John Lennon) 3) Knowledge base mapping
— {Liverpool} 4) Knowledge base evaluation

Figure 2.3: Examples of the query understanding process.

intentions. Inferring query structures also gives us the ability to know precisely what piece
of information is being requested, much like a projection in structured query languages.

At each stage of the query understanding process, we generate the top-k most probable
outputs as input to the next step. The expectation is that poor annotations will not
produce good structurings, which will then not find mappings into the knowledge base. On
the other hand, correct annotations (even if not ranked as the most probable), will produce
structured keyword queries that do map to coherent knowledge base queries. Similarly,
queries searching for information that cannot be modelled by the knowledge base (for
example, due to lack of coverage) will not resolve into concept search queries because
generated candidates will not have mappings that satisfy both the candidate structure and
keyword constraints.

Some examples of keyword queries, their semantically annotated forms, structures, and
proper knowledge base interpretations, along with the final results after KB evaluation are
illustrated in Figure 2.3.

27

2.3 Baseline Approaches

In this section we give an overview of the most relevant techniques used for answering
keyword queries over knowledge graphs, and contrast it with our proposed approach for
interpreting and answering keyword queries. A detailed discussion of specific related work
is presented in Sections 3.5 and 4.8 and a detailed experimental comparison in Sections 3.4
and 4.7.

Existing methods that can be applied to the problem of answering keyword queries
over knowledge bases are all based on some form of keyword search over graphs. The
problem of keyword search over graphs is to find nodes in the knowledge graph who'’s
labels match query terms, then find connections among these seed nodes. A connected
subgraph of the knowledge graph that contains nodes matching all of the keyword query’s
terms is considered a result. Often these result graphs are restricted in order to improve
performance. Some approaches restrict the result subgraphs to be trees, others also impose
maximum size conditions to constrain the search space.

Once a subgraph is found that contains all query terms, it may be directly returned
to the user as a result. Other approaches consider generalizing the returned graph, by
replacing nodes not containing query terms (i.e., nodes included only to connect other
nodes that do match query terms) with variables and then issuing the resulting graph as
a query against the knowledge base.

There are a number of drawbacks to using approaches for keyword search over graphs
for answering keyword queries over knowledge graphs. The first is that the result of the
keyword search over graphs techniques is a subgraph, not a specific answer to the query.
While the subgraphs will often contain the desired answer, this leaves the difficult problem
of how to communicate a graph answer to an end user in such a way that the user can
easily identify the answer to their query. An example is illustrated in Figure 2.4. The
query terms “ohn lennon birth city” produce an answer graph consisting of three edge
connections represented as three triples as follows.

ohn_Lennon, birthplace, Liverpoo
John_L birthpl Li pool
(Liverpool, type, COASTAL_CITIES)
(COASTAL_CITY, subClassOf, CITY)

Encoded in this answer graph is the query answer — Liverpool — and the task of locating
the answer is left to the user. The difficulty of such a task will largely depend on how
the search system manages to convey a graph as a result. An approach that can directly

28

"1X9) PAUI[IOPUN 9ARY SULID) AIonb Sulypjeu Sopou ‘SI9pPIRO(SYOIIS-9[qNOP [IIM PIIIPUSI IR J[NSAI
9UJ) Ul popnoul sepoN -, /i1 ypiq uouua) uyol,, Arenb oy 10§ ydersqns jmsor Arenb ojdurexy :§°g oInsryg

joodianI] aoe|diiq uouua uyor (1enQ sI Jepn)

sewy AddeH

pales)) —— »

9zl duop\sey

/ UHIgiO®Iep —> ,60-0L-0¥6 L,

P ’

)

plemy
JusWIaAsIYOY
awey Awwelsn

pareaso

pueg Jo
opeIN so|iseD

\

e
s Qo
Z

\ ’ paleald |
.> \
ma,H oﬂb : ' 5
v v
S3ILID gHYMY : DNOS
VLSYOO NINYHO o _" WVM-LINY
_ _ adfy odhy ;
y sse|ngns : sse|ngns b/
Josseloans J0sseI0q hommm_,,o%m 10 “_og o josseldans
v v vy -
LD 710ISNIN DNOS
Josse|oans | josseioans JOsse|0ans
v v ¥ v
MHOM
DILYDOO1 0S4d3d INELke)

29

provide the answer to the user is likely preferable to an approach that produces potentially
large and complex answer graphs.

The second drawback to keyword search over graph techniques is that there are no
constraints on the shape of the answer graph, which can lead to meaningless interpretations
that coincidentally match query terms. Figure 2.5 illustrates an example of this problem.
The query seeks to find the birthplace of Jimi Hendrix. While our example knowledge base
contains information about the entity Jimi Hendrix, as well as information encoded with
the birthplace relation, it does not contain the birthplace of Jimi Hendrix. This type of
sparsity is very common among automatically extracted knowledge graphs. Despite the
query answer not existing in the graph, an answer graph can quite easily be found by
linking the entity Jimi Hendrix to the entity Liverpool which is the birthplace of John
Lennon. The graph is connected via an award both entities have won (or alternatively by
both entities having the same type GUITARIST).

The third potential drawback is the efficiency of keyword search over graph techniques,
particularly in the case when the top-k answers are being queried and k answers do not
exist in the graph. The only way to confirm that k& answers don not exists is to exhaust the
entire search space. There have however, been efforts to greatly improve the performance
of search over graphs, such as [98] by use of indexing graph summarizations.

The final issue with keyword search over graphs is the difficult problem of ranking
answer graphs. The answer graphs contain very little text making existing ranking meth-
ods from the information retrieval literature difficult to apply. Most approaches rely on
heuristics based on the similarity of query terms to node labels and the size of the an-
swer graph. Our proposed method for interpreting keyword queries over knowledge bases
also requires ranking graph structured query interpretations, however our formalization
leads to a natural probabilistic interpretation of candidate scoring. We are able to esti-
mate the probability of keyword query annotations and structuring directly from annotated
query logs, and while part of our ranking depends on heuristic scoring (mapping annotated
queries into the knowledge base), we are able to empirically validate the effectiveness of
these heuristics.

30

"1X9) PAUI[IOPUN 9ARY SULID) AIonb SuIypjeu SOpOU ‘SIOPIRO(Y SYOIIS-0[NOP [[IIM PIISPUSI IR J[NSAT
9} Ul POPNDIUL SOPON °,22D)dy11q Trapuay el Arenb oy 10y yderdqns jmser Aronb ojdurexry :G g oInsryg

(4nQ s! 1epp)

joodiani] ade sewy AddeH

dyuiq uouua uyor pajeasd ——

8z1lduUopSBY
/ YUIgIO®IEP —(,60-01-06 L,

X

premy
JUBWAA3IYDY
awney Awwelr)

paresaio

pues jo
ape\ sojse)

\

odfi odh \ \ odfi
v

| | / / \ palealo -
adA) mn_\\ﬂ ma\\ﬁ
vy ¥ Y
BalLIO advmv 31vVO0AQY SIUVLIND / \ ONOS
V1SVOO NNYHDO DN TOIANON ___ / dVM-LINY
_ _ odf adfy
_ sse|nans : sse|nans [
U.Omm:m“_ogm JOsseInq %Ommm_muo_:m 10 “_OQ L JOSSeINans
v v v vy P
ALID advmv ___, VIOISNIN ONOS
JOSsse|nagns | ,_Om\mm_od:w JOSSE|IOqNs

<«

v v

v
AHOM
Ol1lvOO1 NOSH3d IALLYIHO

31

Chapter 3

Semantic and Structural Annotation
of Keyword Queries

As a first step to modelling the semantics of a keyword query, we map keyword sequences
to structured keyword expressions representing possible intents, called structured keyword
queries. This corresponds to steps 1 and 2 of our query understanding process as illustrated
in Figures 2.1 and 2.2. A structured keyword query describes a query in two ways: it breaks
it into segments that represent particular semantic constructs, and it describes how these
constructs relate to each other. In order to form structured keyword queries from a given
keyword query, we will have to address these two problems. This chapter presents work
originally published in [30].

3.1 Query Segmentation & Semantic Annotation

Recall that a keyword query @ is a sequence of query terms @ = (q14s . . . g,) Over a concrete
domain S (see Definition 5). A semantically annotated keyword query assigns semantic
constructs from a knowledge representation language to subsequences of keyword query
terms.

Definition 8 (Semantically Annotated Query) Given a keyword query @, and the
knowledge representation language defined in Definition 1, a semantically annotated key-
word query AQ (or simply annotated query when clear from context) is a sequence of
keyword-phrase /semantic-construct pairs

33

AQ = (@2 - - - Gi):a1 (Qiv1---qj):a2 .. (@1 - - - Qn):ay

where each ¢; € S and each a; € {ent, type,rel,attr,val} the set of semantic constructs
from the knowledge representation language.

O
A semantically annotated version of our example query is given by the following.
“songs”:type “by”:rel “jimi hendriz”:ent

An algorithm that annotates keyword queries with semantic constructs must solve both
the segmentation problem (the problem of determining the boundaries that separate multi-
term phrases) and the annotation problem. The resulting annotations indicate which sub-
sequences of query terms in a keyword query correspond to which semantic constructs. We
want to compute the probability of an annotated query given a keyword query, Pr(AQ|Q).

Research has shown that part-of-speech (POS) tagging can be accurately performed
over keyword queries [7]. Our approach to annotating queries exploits query terms, their
POS tags, and sequential relationships between terms and tags to concurrently infer a
segmentation and semantic annotation of a part-of-speech annotated keyword query. To
do this, we use a conditional random field (CRF) [59], a state-of-the-art machine learning
method for labelling sequence data. As a baseline method for comparison, we also try a
naive Bayes based technique that directly annotates terms independently with semantic
constructs. We then segment the query by joining any adjacent terms sharing the same
semantic construct.

3.1.1 Naive Bayes Annotation

Our baseline term classification aims to exploit the relationship between part-of-speech
tags and semantic constructs by using a term’s part-of-speech as a proxy for the term.
Intuitively, there is a relationship between semantic constructs (e.g., entities, relations)
and the parts-of-speech used in describing instances of those constructs. For example,
entities are generally expressed using proper nouns like “Jimi Hendrix” or “New York.”
Relations are often described by prepositions, such as “in” or “by.” The mapping be-
tween parts-of-speech and semantic constructs however, is not always so clear. Relations
can sometimes be described by parts-of-speech other than prepositions (e.g., the noun
“birthplace”); nouns can often describe many different semantic constructs, such as types,

34

relations, and attributes; and perhaps the most challenging side of using part-of-speech
tags to infer semantic constructs is that many entities, types, and relations are made up of
multi-word phrases that can contain many different parts-of-speech (e.g., the relation “has
won prize,” or the type “Chancellors of Germany”).

We model an annotated query log as set of triples L = {(Q,7,0)}; where @ is a
keyword query, 7 is a function mapping query terms to POS tags, and o is a function
mapping query terms to semantic constructs. To classify terms via their part of speech
tags, we use the standard naive Bayes classification method. We perform naive Bayes
classification by directly estimating the joint probability distribution of POS tags and
their semantic constructs from the query log. The conditional probability of a particular
semantic construct C given a POS tag P is then the frequency of that query term’s POS tag
P mapping to C, versus the frequency of P mapping to any semantic construct, Pr(C|P) =
Pr(C,P)/ Pr(P) which is estimated from the query log by the following frequencies.

Q.m,0) € LstIgeQ,n(q) =P,o(q) = C}|
{(Q.7m,0) € L st3geQ,n(q) =P}

pr(cp) = U

With a distribution over semantic constructs given the part-of-speech of a query term,
we can estimate the probability of assignments of semantic constructs to individual part-
of-speech tagged query terms for a whole query. Assuming independence of query terms
for tractability, this yields the following equation.

Pr(AQ|Q) = lgceaq Pr(Cl m(qg))

To illustrate the process, consider our example query:
“songs by jimi hendrix”
— “songs”:NNS “by”:IN “pumi”:NNP “hendriz”:NNP
— “songs”:type “by”:rel “jimi”:ent “hendrixz”:ent

— “songs”:type “by”:rel “yimi hendriz”:ent

Here, NNS denotes a plural noun, NNP a proper noun, and IN a preposition.

3.1.2 Conditional Random Field Annotation

A CRF is an undirected probabilistic graphical model for labelling sequential data. Given
a trained model and an input sequence, the Viterbi algorithm [101] over a CRF enables the

35

computation of the most probable, or £ most probable labellings according to the model.
Specifically, a labelling is an assignment of state labels yq,...,¥y,, to an input sequence
x1,...,T,, Where each y; corresponds to a state in the model and each x; corresponds to a
feature vector.

We base our CRF model on the design for noun-phrase detection proposed by Sha
and Pereira [92] since our problem shares similarities. For input position x; corresponding
to query term g¢;, we define a feature vector containing the following features: all query
terms and POS tags in a size five window around position x;; all query term bigrams in a
size three window; all POS tag bigrams in a size five window; and all POS tag trigrams
in a size five window. We include the actual query terms as features to allow important
repetitive terms to be captured (e.g., “in” describing a relation such as “restaurants in
barcelona™), but discard any generated feature that appears only once to avoid over-fitting
the particular terms in the training data.

We deviate from the model of Sha and Pereira in label design. The labels must encode
both the semantic constructs we want to annotate as well as the boundaries between
multi-term semantic constructs. We create two output labels for every semantic construct
in our chosen knowledge representation language: a “begin” (B) and a “continue” (C)
label. This encoding allows us to annotate boundaries as well as semantic constructs.
To generate training data, we label each multi-term phrase in the training data with the
begin and continue labels corresponding the phrase’s semantic construct. For example, the
correct labelling of our running example is the following.

“songs”:type-B “by”:rel-B “jimi”:ent-B “hendriz”:ent-C

Here, the query term “hendriz” is annotated as a continuation of the entity starting with
“nmi”, yielding the following annotated query.

“songs”:type “by”:rel “jimi hendrix”:ent

Unlike the Naive Bayes classification approach, the CRF model can distinguish between
multiple instances of the same semantic construct occurring in succession. For example,
the query “park guell barcelona” contains two consecutive entities. The CRF output labels
can express the labelling that segments the entity “park guell” from the entity “barcelona”,
while the Naive Bayes approach would merge the three tokens as a single entity. Figure 3.1
shows three examples of the CRF-based query annotation and segmentation process as-
suming a single (most probable) annotation is used. In practice, we consider the top-k
most probable annotations when interpreting queries.

36

“toronto restaurants”
— toronto:ent-B restaurants:type-B
— toronto:ent restaurants:type
“author of war and peace”
— author:rel-B of:rel-C war:ent-B and:ent-C peace:ent-C
— author_of:rel war_and_peace:ent
“songs by 7imi hendrix”
— songs:type-B by:rel-B jimi:ent-B hendrix:ent-C
— songs:type by:rel jimi_hendrix:ent

Figure 3.1: Segmentation and annotation process of the CRF-based approach. Annotated
labels are used to recover latent structure of multi-word phrases, as well as their semantic
construct classification.

We train our model using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm
(see [10]), a type of hill climbing approach for solving non-linear optimization problems.
To avoid over fitting we use L2 regularization. The probability Pr(AQ|Q) is then given
directly by the CRF model.

3.2 Structuring Annotated Queries

An annotated query reveals part of the latent structure of an entity-based keyword query
by indicating the semantic role represented by various parts of the query. However term
annotation alone does not describe how these various recognized semantic constructs relate
to model the underlying query intention. In our running example query, we know (after
annotation) that the query contains a type, a relation, and an entity. However there is still
ambiguity in what the query is seeking. Is it ultimately describing entities of the given
type that are related to the given entity? Or is it seeking information about the given
entity within the context of the given type?

To illustrate the ambiguity in query structure, consider the following two queries: “john
smith dentist” and “new york restaurants”. Both queries contain a two-term entity fol-
lowed by a single-term type. The first query seeks information about the given entity
(“john smith”), with a type (“dentist”) given as context to disambiguate among possible
interpretations of the entity. Whereas the second query is seeking instances of the given
type (“restaurants”), within the context of the given entity (“new york”). Despite both

37

queries having the same semantic contents (an entity followed by an entity type), they
exhibit different semantic structures.

Once a keyword query has been annotated, we need to represent possible concept
search structures that can encode the underlying query intent. To model high level query
structure, we follow the logical connectives from the knowledge representation language.

Definition 9 (Structured Query Template) A structured query template T is a
schema-level description of the structure of a concept search query, expressed in the fol-
lowing grammar

T == node | edge(T) | ThNTy
where node € {ent, type,val} and edge € {rel, attr}. O

A structured query template describes the overall graph structure of the query as well
as the node and edge types of the query predicates. For example, the structured query
template for our example query is type M rel(ent).

We want to estimate the probability of a query template given a semantically annotated
keyword query, Pr(T|AQ). We assume access to an annotated query log containing both
semantically annotated queries and their structured query templates, L = {(AQ;, T;)}.

Our structuring approach directly estimates the probability of a structured template
given an annotated query by aggregating over all queries in the training log that share the
same high-level summary of semantic annotations.

Definition 10 (Semantic Summary) Given an annotated query AQ = (qi:a1,g2:as2,
e niy), & semantic summary is an ordered list of semantic constructs occurring in AQ,
and is given by the function S : AQ — C" s.t. S(AQ) = (a1, as, ..., a,) a

For example, S(“songs”:type “by”:rel “jimi hendriz”:ent) = (type,rel,ent).

We directly estimate Pr(7'|AQ) from labelled training examples in our query log from
the definition of conditional probabilities, using the semantic summary as a high level
representation of the annotated query.

{(AQ,T") € L s.t.T =T",5(AQ) = S(AQ")}|
Pr(T|AQ) =
T4 =" Ty € Ls5(aQ) = S(AQ)]
The probability of a query template given an annotated query is estimated by the propor-

tion of queries with the same semantic summary that are structured using that template,
versus the total number of queries with the same semantic summary and any structuring.

38

Combining a structured query template with a semantically annotated query yields
a structured representation of the keyword query. Following the example query we have
“songs” T “by”(“jimi hendriz”). In Chapter 4 we explore how to exploit these semantic
and structural annotations to compute mappings to candidate concept search queries rep-
resenting a possible intention of the query over the knowledge base. We also describe
how semantic annotation and structuring fit into a probabilistic model of scoring query
interpretations in Section 4.4.

3.3 Analysis of a Web Query Log

We analyzed a sample of keyword queries available from the Yahoo WebScope program
[129]. This query log contains English queries issued to the U.S. Yahoo search engine in
January 2009. The log is filtered to ensure user privacy, in particular all queries in the log
have been issued by at least three different users and queries containing numeric values
longer than four digits are removed. We inspected queries keeping only those that have
a semantic construct as the primary query intention, following the classification proposed
in [83]. We annotated 258 queries with the part-of-speech tags and semantic constructs.
We did not consider misspelled, non-English, or other queries that were not clearly under-
standable. Among the annotated queries, 156 queries had some semantic construct as their
primary intention (entity-based queries). That is approximately 60% of queries having a
semantic construct as the primary intent of the query. This is consistent with the analysis
done in [83] which was performed over a different Web query log and reported 58% of
queries having a semantic construct as the primary intent. The sample of entity-based
queries have an average length of 2.94 query terms.

Our part-of-speech tag set is based on the analysis in [7], which is a reduced tag set
designed for annotating Web queries. Their tag set contains only 19 tags compared to
around 90 used by taggers for natural language text. Their tag set combines many tags
into one representative tag, e.g., one verb tag for all forms of verbs (past, present, etc...).
We extend their tag set to include a tag for plural nouns rather than group plural nouns
with all other forms of nouns. Figure 3.2 shows the distribution of part-of-speech tags over
query tokens as well as the percentage of entity-based queries that contain that part-of-
speech. The figure also illustrates the distribution of terms with the given part-of-speech
over semantic constructs. This distribution captures the relationship between part-of-
speech tags and semantic constructs, which plays a key role in our annotation methods
described in Section 3.1. Not surprisingly, there is a very strong correlation between proper
nouns and entities. Interestingly, plural nouns are a strong indicator of a term representing

39

7 Part-of-speech 7 Example 7 % of Queries 7 % of Tokens : Semantic construct 7 Frequency 7
ent 99.1%

Proper noun waterloo 771% 28.7% type 0.9%
type 49.5%

N ent 42.7%

Noun musician 42.6% 15.9% attr 6.8%
rel 0.9%

type 68.0%

ent 20.0%

Plural noun songs 13.6% 5.1% attr 8.0%
rel 4.0%

— . ent 60.0%
Adjective big 11.6% 4.3% type 40.0%
~ . rel 55.6%
Preposition n 7.8% 2.9% ent 44.4%
ent 53.8%

Number 2008 6.6% 2.5% val | 46.2%
URI yahoo.ca 5.0% 1.9% ent 100%
Verb run 4.7% 1.7% ent 100%
Determiner the 3.1% 1.2% ent 100%
— rel 66.7%

Gerund winning 2.7% 1.0% type 33.3%

Figure 3.2: The ten most frequently occurring part-of-speech tags among entity-based queries, with the

distribution of how frequently that tag mapped to various semantic constructs.

40

a type, while regular nouns are split between denoting type and entity labels.

From the 156 entity-based queries, we also annotated the structured query template
underlying our interpretation of the intent of the query. In the cases where there were
multiple possible structurings, we annotated all of them and count them as individual
queries when computing the frequencies for the equations described in Section 3.2.

Figure 3.3 shows the ten most frequent structured query templates in our training query
log, along with the percentage of queries exhibiting that structure (over all entity-based
queries). We see that many queries tend to repeat the same structures.

3.4 Evaluation of Keyword Query Understanding

In this section we evaluate the end-to-end system in interpreting keyword queries over a
large real-world Web knowledge base.

3.4.1 System Implementations

We implemented all of the techniques described in Chapter 3 for keyword query annotation
and structuring, and use the methods presented in Chapter 4 as a KB mapping tool and
backend knowledge base engine. In this section we treat KB mapping as a black-box
operation, and explore the impact of query annotation and structuring on overall quality of
query interpretation and answering. The process of KB mapping and scoring of candidate
mappings is explored in Chapter 4. In particular, the integration of annotation scoring and
knowledge base mapping scores is presented in Section 4.4.2. We use CRF++ [112] to learn
the CRF models. We implement a custom knowledge graph engine to support evaluating
the concept search queries produced by the query understanding approaches, as described
in Section 4.6. Each resulting concept search query produced by the procedure is evaluated
and only those with non-empty answers are kept as admissible query interpretations.

There are a number of threshold parameters that can be used to control the search
space considered by the query understanding process, including the number of seman-
tic annotations per keyword query, the number of structurings of annotated queries, the
number of knowledge base mappings of each structured keyword query, and the number
of candidate knowledge base items considered for each query term when mapping. We
consider all annotations with non-zero probability and the top-10 structurings unless oth-
erwise specified. For entity search, we union the results of the top-k KB mappings for

41

Template 7 Freq. : Example Query 7 Summary 7 Structured Keyword Query
ent 44.9% || “jimi hendriz” (ent) “jimi hendriz”

type Mrel(ent) 12.8% || “restaurants in toronto” (type, rel, ent) “restaurants” M “in”(“toronto”)
ento Mrel(enty) 7.7% || “eiffel tower paris” (ento, enty) “eiffel tower” M *(“paris”)

ent M type 5.8% || “john smith dentist” (ent, type) “lohn smith” M “dentist”

type 5.8% || “salsa songs” (type) “salsa songs”

attr(ent) 3.8% || “albert einsteins birthday” | (ent,attr) “birthday”(“albert einsteins”)
ent1 Mrel(entg) 3.2% || “barcelona parc guell” (entg, enty) “parc guell” M *(“barcelona”)
rel(ent) 1.9% || “author of moby dick” (rel,ent) “author of ’(“moby dick”)

ento Mrel(enty,rel(enty)) | 1.3% || “parthenon athens greece” | (entg,enty,enta) | “parthenon” M x(“athens” N *(“greece”))
type1 Mrel(typeo) 1.3% || “protest song musicians” | (typeo,typer) “musicians” M x(“protest song”)

Figure 3.3: The ten most frequently occurring templates among entity-based queries in the training log,
along with an example of a query following that template, the summary, and the structured keyword query.

42

each structure with & = 1 unless otherwise specified. We consider the top 30 knowledge
base items as candidates for query terms unless otherwise specified. For interpretations
resulting in unary structured keyword queries (which do not have multiple terms to per-
form disambiguation) we employ a heuristic requiring 0.95 syntactic similarity for a query
interpretation to qualify.

We create two system configurations, the first using the naive Bayes (NB) term classifier
for query annotation and the second using the CRF approach (CRF). Both systems use the
direct approach (Drct) to structuring (Section 3.2) and the same KB mapping tool to map
the computed structured keyword queries into the knowledge base. We omit structures
containing more than one unknown relation to avoid the exponential blow-up caused by
matching over all possible pairs of relations. We have found this does not have a significant
impact on the quality of results. We implement a simple POS-tagger that builds on the
Brown and Wall Street Journal POS tagged lexicon. Our tagger assigns the most frequent
POS tag for each known word (suitably mapped to our reduced tag set as described in
Section 3.3), and assigns proper noun to unseen tokens (the most frequent tag in our query
log). We find this to be sufficiently accurate for our purposes. Building and evaluating a
more sophisticated POS tagger is an orthogonal problem beyond the scope of this work.

For comparison, we also implement two alternative ways of mapping keyword queries
into knowledge bases. The first method implements traditional keyword search over graphs
as described in Section 2.3, with a number of heuristics taken from the literature. The
process of keyword search over graphs is to find all nodes and edges that match query
terms, then search among these seed matches to see if they can be connected. A result
graph is a subgraph of the knowledge graph that spans all query terms. This can be viewed
as an instance of the Steiner tree problem. Our implementation uses a breadth-first search
approach to finding Steiner trees. We use the same Lucene index and graph database
used by the KB mapping tool. Seed nodes are processed in order of syntactic similarity to
the query term they match. The graph search will generate a given parameter number of
results and return the k highest scoring. The parameter is set to 10,000 in the effectiveness
experiments and is set to 10 in the performance experiments. Scoring is based on the
same syntactic scoring (3-gram similarity) used by the KB mapping tool, normalized by
the answer graph size to promote more compact answers.

The heuristics used in our graph search implementation include traversal of outgoing
edges only, incoming edges only, bi-directional edge traversal [71], search depth limiting
as recommended in [98] (we use a depth of three), and a last heuristic that forces type
nodes to be leaves in answer graphs. The motivation for this heuristic comes from an
observation that type nodes form hubs in the graph that connect many nodes, allowing
query results graphs to spuriously match all query terms. Recall as an example the query

43

“nimi hendriz birthday” discussed in Section 2.3. Forcing type nodes to be leaves in answer
graphs alleviates this problem in many cases.

Note that the graph search systems return subgraphs of the knowledge base, and cannot
precisely interpret queries in order to find specific answers. In our evaluation, we give this
system the benefit of considering any answer graph as correct if it contains the answer
anywhere in the graph.

The second comparison approach builds a text representation of each node in the knowl-
edge base, then performs traditional keyword search over the text representations. We use
the labels of all edges and nodes in a one hop radius around each node to form the text
representation, then index these text representations using Lucene.

3.4.2 Data and Workload

We use YAGO [90] as our knowledge base, a high quality fact collection with a rich type
hierarchy over entities and a part of the Linked Data Web. YAGO contains approximately
thirty million assertions over two and a half million entities. The knowledge graph contains
around thirteen million nodes including constants. Our training data is the Yahoo query
log described in Section 3.3. To evaluate our approaches, we use both queries from the
query log and a hand-crafted keyword query workload designed with specific properties we
wish to evaluate. The query workload consists of 96 queries, half of which are manually
created to have an underlying query intention that can be modelled with the data in
YAGO, and half taken from the Yahoo log that describe data not occurring in YAGO. The
half that have YAGO answers, called positive queries, are created to exhibit the 12 most
frequent structures found in our analysis, accounting for over 90% of entity-based queries.
We create four examples of each structure. The second half are entity-based queries taken
from the Yahoo log for which we have manually verified that no interpretation exists in
YAGO. We refer to these as negative queries.

The gold standard result for positive queries is defined by manually constructing a
structured query over YAGO, and the correct answer for negative queries is defined as
the empty set. This query workload explicitly exercises both of the problems of interpret-
ing queries when possible, and recognizing when an interpretation is not possible. The
workload intentionally places equal importance on both problems. We manually create the
queries to ensure all structures are represented, and to control for KB coverage. Finding
examples of queries with all of the desired structures in a Web query log, such that they
also have intentions existing in YAGO would require a huge manual effort, and possibly a
larger query sample. Existing benchmarks also do not capture all of the structures we want

44

to evaluate while controlling for KB coverage. The positive queries from the workload are
available in Appendix A.1, the negative queries are available as part of Yahoo’s WebScope
program [129].

3.4.3 Effectiveness Results

To evaluate the effectiveness we conducted a direct evaluation of the query annotations,
an evaluation of the KB interpretations produced, and an end-to-end evaluation of the full
system in finding exact answers to keyword queries.

We employ a number of measures for our evaluation, based on the methodology pre-
sented in Chapter 6. Precision is defined as the fraction of returned results that are correct.
Recall is defined as the fraction of all possible correct results that get returned. MRR mea-
sures the (reciprocal) average rank where the (first) correct answer occurs. Given a set of
queries Q and a function rank(i) that returns the rank of the first correct answer for query
i, MRR is given by the following.

11

For all measures, we count a value of 0 if a system does not return any result for a positive
query or if any result is returned for a negative query. A system that always returns the
correct answer at rank one would have an MRR of 1.0, always returning the correct answer
at rank two would produce an MRR of 0.5, and so on.

Annotation Accuracy

Figure 3.4 shows the results of both the NB and CRF annotation approaches. Results are
averages using 10-fold cross validation over the 156 entity-based queries from the Yahoo
query log. We measure average query recall, the frequency in which the top-k annotations
of a query generates the correct annotation, for varying values of k. The correct annotation
means that all query terms are annotated correctly. The figure also shows average token
annotation accuracy (token recall) for the best annotation in a query’s top-k annotations.
This is the fraction of query terms annotated correctly for the best annotation produced for
each query. This is relevant because our structuring and KB mapping tools are tolerant to
errors, meaning an incorrect segmentation or annotation can still produce a correct concept
search query. While both approaches are comparable at k=1, the superiority of the CRF
approach is clear as we consider the top-5 to top-10 annotations.

45

1

0.9

0.8

0.7

0.6

0.5

Recall

0.4

03

0.2

0.1

0

1 5 10
———CRF - Avg. query recall 0.461 0.703 0.832
=—NB - Avg. query recall 0.432 0.5 0.547
=== CRF - Avg. token recall 0.626 0.797 0.923
...... NB - Avg. token recall 0.616 0.711 0.736

k (number of annotations)

Figure 3.4: Average number of queries with the correctly annotated query occurring in the top-k annotations
(query recall), and average number of correctly annotated tokens for the best annotation occurring in the
top-k (token recall).

46

’ CRF .Drct H Incorrect - “false” \ Correct - “true” H Total +/— ‘

Interpretation - “positive” 3 (3.1%) 44 (45.8%) || 47 (49.0%)
No Interpretation - “negative” 4 (4.2%) 45 (46.9%) || 49 (51.0%)

[Total false/true [7 (7.3%) | 89 (92.7%) | |
’ NB.Drct H Incorrect - “false” \ Correct - “true” H Total +/— ‘
Interpretation - “positive” 3 (3.1%) 36 (37.5%) | 39 (40.6%)
No Interpretation - “negative” 12 (12.5%) 45 (46.9%) || 57 (59.4%)
| Total false/true | 15 (15.6%) | 81 (84.4%) || |

Figure 3.5: Confusion matrices for the query interpretation task. Raw counts and per-
centages are shown for the true/false positive/negatives, as well as the marginals. The 96
query workload contains 48 positive queries and 48 negative queries.

Query Interpretation

There are four possible outcomes when interpreting a query. The first is that the query is
interpreted over the KB, and a correct interpretation is found (true positive); the second
is that the query is interpreted but all interpretations are incorrect (false positive); the
third is that the query does not get interpreted though an interpretation does exist in the
data (false negative); and the last is that the query does not get interpreted because no
interpretation exists in the data (true negative). Figure 3.5 shows the confusion matrices
for these outcomes for both the CRF and NB approaches when considering the top-10
structures and no bound on the number of query mappings per structure. A result is taken
to be correct if a correct interpretation is produced somewhere in the result list of query
interpretations. This experiment gives a view the quality of the search space explored by
our query interpretation algorithm with default parameter settings. The figure shows that
the CRF approach is superior with respect to both types of error, and exhibits a higher
overall true positive rate (correct interpretations) than the NB approach. Overall the CRF-
based approach produces a correct interpretation or recognizes an uninterpretable query
almost 93% of the time. We found the CRF’s ranked list of query interpretations to have
an MRR of 0.698 on the positive query set. This means that the correct interpretation
is found generally in the first or second position on average. The NB approach had an
MRR of 0.589, also slightly better than the second position on average. Figure 3.6 shows
the confusion matrix for the CRF.Drct approach with no bounds on any parameters (KB
item candidates per query term, number of structures per annotation, and number of KB

47

’ CRF .Drct H Incorrect - “false” \ Correct - “true” H Total +/— ‘

Interpretation - “positive” 11 (11.5%) 46 (47.9%) || 57 (59.4%)
No Interpretation - “negative” 2 (2.1%) 37 (38.5%) | 39 (40.6%)
[Total false/true [13 (13.5%) | 83 (86.5%) | |

Figure 3.6: Confusion matrices for the query interpretation task with unbounded thresh-
olds. The 96 query workload contains 48 positive queries and 48 negative queries.

mappings per structure). We can see that opening up the full search space reduces false
negatives and increase true positives, meaning that correct interpretations are found more
often for positive queries. However, this comes at the expense of finding more coincidental
matches for negative queries. Exploring the complete search space is also much more
expensive than computing top-k interpretations. This motivates the use of thresholds for
pruning the search space of query interpretations as described in Section 3.4.1.

Keyword Query Answering

We used the workload outlined in Section 3.4.2 to evaluate the ability of the proposed
approaches to interpret and answer keyword queries. Figure 3.7 shows the results of each
of the systems, as well the best run for each measure by any of the graph search sys-
tem’s configurations. The superior CRF-based annotator paired with the the semantic
summary-based structuring approach has the best performance across all metrics. This is
a very promising result as this feature rich model is trained with a relatively small number
of training examples. While the NB approach is comparable, the improved annotation
accuracy of the CRF approach yields better results and returns correct answers at higher
ranks. The graph search approach achieves reasonable recall and MRR, meaning it can
find many correct answers and return good answers at decent ranks, however the answer
set also becomes polluted with many non-relevant results hurting precision. The low per-
formance is in part due to spurious matches for negative queries that do not actually have
an answer existing in the knowledge base. The approach has no capacity to determine
which results are proper answers and which are coincidental keyword matches. Also, the
graph search is given the advantage of not having to find the precise answer to queries
(any answer graph containing the query answer is considered correct). Not surprisingly,
the text graph approach has very low precision as it is designed to find resources related to
the query terms and does not attempt to interpret queries in order to find exact answers.
Precision is never higher than 0.1 for any value of k. While the unbounded text graph

48

-1sod pourquiod o) I9A0 ¥se)} Jurromsue Aronb

papunoqun 3 ‘ydeid 1xa3 =
0T=Y ‘ydes3 1xo1m

yaJeas ydeas

PITINm

PIIdO ™

“peopjIom A1enb oaryedou /oar)

9} 10J [[BO9Y puUe ‘YN ‘UOISIAIJ o8RIoAY :)°¢ 9ISl

ScTo 98¥°'0 0 papunoqun 3 ‘ydeus 1xa1 =
8TT°0 8/1°0 €00 0T=) ‘ydeud 1xo1 m
79°0 7890 9150 youeas ydeu3
89L°0 ¥8L°0 [44X0] PITENm
S78°0 6180 68L°0 RIA4HI m
YN 11833y uolsiald
bl
o
Q,
]
2
=
~
=
[]
8
<
=
=
B
60
1

49

0.9

T 08
]
«
~N
5 0.7
@
(8]
< 0.6
e = —-Precision
-#-Recall
0.5
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

Time (s)

Figure 3.8: Average precision and recall vs. average run time for varying number of
candidate query structures.

approach achieves 97% recall on the positive query set, it has no means of detecting the
negative queries and answers each incorrectly, bringing down the average considerably.

3.4.4 Efficiency Results

Precision and recall can be traded off for run-time performance by varying the number
of query interpretations that are considered for each query. Figure 3.8 shows the effect
of varying the total number of query structures considered from top-1 to top-10 for the
CREF.Drct approach, taking the best KB mapping for each structure. As the data points
move from left to right, the total number of structures is increasing. This gives an increase
in precision and recall as we explore more of the search space to find the correct query
interpretation, but at the expense of greater run times. Occasionally an incorrect interpre-
tation is found causing a dip in precision. It is important to note that the lower precision
configurations of our system are most often due to queries not being answered, as opposed
to being answered incorrectly. The highest precision (0.789) is obtained for a configuration
that takes 1.5 seconds per query on average. An average precision of approximately 0.74
can be achieved in sub-second query processing time.

Figure 3.9 shows a breakdown of the average run-time for each component of the system.
The actual annotation and structuring time accounts for only a small percent of the total
run time, with the majority of time spent mapping candidate structures into the knowledge

20

’ System \ Struct \ Map \ Exec H Total ‘

CRF .Drct 0.002s | 1.23s | 0.32s || 1.55s
NB.Drct 0.001s | 0.94s | 0.29s | 1.24s
graph search - - - || 67.27s
text graph, k = 10 - - - 0.33s
text graph, & unbounded - - - || 17.33s

Figure 3.9: Average run-times for annotation and structuring (Struct), KB mapping (Map)
and execution (Exec).

base. We further explore the performance of this component in Chapter 4. The graph
search approach (k = 10) took around 67 seconds on average, often hitting an imposed
two minute timeout. This is in part due to the graph search attempting to searchwalk the
entire search space if it is unable to find k results. The text graph approach is very efficient
at £ = 10, but at the cost of effectiveness.

3.5 Related Work

The problem of interpreting keyword queries over knowledge bases bears relevance to many
areas, including semantic search, keyword search over structured data, and question an-
swering over knowledge bases. In this section we discuss the most relevant related research
in these and other areas.

Semantic/KB-based Search

Guha et al. first proposed the “semantic search” problem, which aimed to augment docu-
ment results with semantic Web data [11]. They proposed the TAP system, which scrapes
and publishes RDF triples, then augments document search results by displaying entities
that match query terms. Early work by Mayfield and Finin also proposed keyword search
over RDF by using a text index over RDF nodes [75]. Bast et al, also proposed integrat-
ing knowledge into text search, but with a more explicit accounting for knowledge base
semantics [3]. In their ESTER system, documents are annotated with entity occurrences
and the semantic types of these entities. Query terms are then matched against knowledge
base entities and types, allowing the retrieval of documents mentioning specific entities

ol

or entities of a given type. A dynamic user interface allows users to disambiguate among
possible matches. However, keyword mappings are based solely on individual entity types
and entities, and no attempts to compose complex concepts from sets of keywords are
made. Rocha et al. also map keywords into knowledge base items and treat the knowledge
base as a general graph to use a spreading activation algorithm to find additional relevant
knowledge base items related to the search terms [39].

Tran et al. [98, 99] have explored mapping keyword queries into conjunctive queries
by matching terms against knowledge base items and searching for connections among the
matches. This approach is similar to our graph search approach used in the evaluation,
though their top-k algorithm may explore less of the total search space than our BFS
approach and thus be more efficient. Zhou et al. have also proposed a similar data driven
approach [110]. These techniques are in contrast to our query-log driven approach which
elicits structures from the information needs of real users.

Lei et al. use manually defined templates to map query terms into formal structured
queries over a knowledge base, and employ heuristics to reduce the search space when the
query contains more than two terms [62]. This is combined with an entity index over a
text collection to provide a semantic search capability. Fagin et al. [38] use user specified
grammars and vocabularies to annotate query terms with type and attribute labels. Our
proposed approach could possibly be used to learn these types of grammars from a query
log.

Farfan et al. used knowledge bases to enhance keyword search over XML encoded
medical records that also encode knowledge base references [39]. Their work assume un-
ambiguous annotation of XML records with knowledge base identifiers. Castells et al.
proposed a semantic text search engine which takes structured RDQL queries and returns
documents annotated with entities in the result of the query [20]. The work was later ex-
tended to process natural language questions [09]. The Swoogle search engine by Ding et
al. takes a different view of the knowledge based search problem by indexing and searching
RDF documents directly, returning RDF documents as results [32].

Blanco et al. have used relevance based retrieval to search for nodes in large knowledge
bases [13]. A statistical language model based approach was presented by Elbassuoni
and Blanco [35]. These approaches however do not attempt to interpret the semantics of
queries, and thus do not necessarily provide exact answers to keyword queries. Instead the
goal of these systems is to provide a ranked list of resources relevant to the query terms.

o2

Term annotation

One form of query understanding is to try and annotate individual query terms with se-
mantic meaning. From a linguistic query understanding point-of-view, there has been work
on understanding the senses and parts-of-speech (POS) of query terms. In particular, Barr
et al. showed that relatively accurate POS tagging of Web queries was possible, achieving
83% tagging accuracy over a large query log [7]. Work has also been done in deriving
the word sense of ambiguous query terms, for example in [63]. Li proposed a method of
determining the intent head of a query, i.e., the part of the query that represents what
the user is looking for, leaving the remaining query terms as context or intent modifiers
[64]. For example, the query “Pet Cemetery author” has “author” as the intent head, since
the query is ultimately searching for an author. Our running example query would have
“songs” as the intent head, since the query is seeking songs with particular qualifications
specified by the context. While annotations of individual terms can provide insight into
the query semantics, these works do not address how terms relate to form single coher-
ent expressions of the underlying query intent. Guo et al., explored annotation of named
entities in keyword queries [12], this is a subset of our annotation problem which aims to
annotate types, relations, attributes, and attribute values in addition to named entities.

From a knowledge base point-of-view, Paparizos et al., have investigated using a large
heterogenous product KB to answer Web queries [79]. As part of this initiative, Sarkas et
al., proposed annotating query terms as being instances of attributes values using a prob-
abilistic model based on value distributions in the data [91]. This work was then extended
to produce more accurate annotations by comparing attribute value distributions to term
distributions over a large query log [$1]. A similar goal was achieved by Manshadi and Li,
by using a probabilistic hybrid parser based on probabilistic context-free grammar rules
[74]. In addition to attribute annotations of query terms, their proposal also allowed terms
like “cheap” to be annotated with operational annotations like “SortOrder.” While these
approaches annotate query terms with schema labels, they do not address how individual
terms fit together to form a single semantic representation of query intent.

A similar theme was explored by Agarwal et al., where query templates (like grammar
rules) were mined from a query log [!]. Templates would generalize terms that match KB
items, for example “obs in #location”. Web-sites clicked for particular queries were then
aggregated over all queries matching templates, allowing the computation of relevance of
Web-sites to templates. Unseen queries that match templates can then be answered by
returning the sites relevant to the template. Our template mining is similar in nature that of
Agarwal, though our templates fully specify semantic structure and not just types occurring
in keyword queries. Also, we do not rely on input query terms exactly matching a set of

23

known types, but instead match against syntactically similar types and resolve ambiguity
from the query context. Our Web knowledge base setting also yields over 280,000 possible
types. Cheng et al. allowed user queries to specify a similar form of template, which
explicitly specified the intended return type [23]. For example, the query “#phone-number
amazon customer support” would specify a search for instances of the type “phone-number”
in the context of the given keywords. Types are unambiguously specified and are simple
unary type specifications, not complex expressions built up from primitives as in our case.
Kandogan et al., proposed the AVATAR semantic search system which translates individual
keywords to possible KB items based on matching keywords provided by domain experts
for each KB item [53].

Search over Structured Data

Search over relational data can be viewed as a form of semantic query understanding. Query
terms are mapped into structured data producing structured queries that can be used to
retrieve data that contains the queried terms. These structured queries can be viewed as
semantic interpretations of the original keyword query. There is a long line of research
for search over structured data, starting with the DISCOVER [15] and BANKS systems
[10] that aim to efficiently find tuples that span all query terms, as well as extensions that
aim to integrate IR style ranking [11] or augment the graph traversal algorithm [51]. The
heuristics used in our graph search approach are based on this line of research. Tata et al.
extend keyword search over structured data to include aggregates and top-1 queries [97].
Queries are translated to SQL with the allowance of various aggregation keywords such as
num or auvg.

Question Answering

The problem of semantic query understanding shares a similar goal as the problem of
natural language question answering (QA). The QA problem aims to find specific answers
to questions, which inevitably implies constructing a model of the intention of the query.
QA approaches generally depend on either having properly formatted natural language
questions that can be linguistically parsed to take advantage of the grammatical structure
when building the semantic interpretation, or they depend on having the relatively large
amount of text (as compared to Web queries) from the question in order to match against
reference knowledge. Katz et al. have built the OMNIBASE+START system that answers
questions using a knowledge base extracted from the Web [56, 55]. OMNIBASE consists

o4

of an extracted knowledge base of object-property-value triples, which are queried after
identifying a target data source, an entity and a desired property from the query (e.g., imdb,
“Gone With the Wind”, DIRECTOR). Similarly, the TextRunner project has provided a
search service over a large set of triples extracted from Web text [5]. This project focuses
more methods to extract knowledge bases, but does include a flexible demo query interface
for TextRunner that parses natural language questions into triple patterns to match against
data triples. TextRunner has been succeeded by the ReVerb project [37], which does not
yet provide any special query capabilities.

The idea of exploiting existing Web knowledge bases for QA has also been explored by
Fernandez et al. by using the PowerAqua question answering system [10, (9]. PowerAqua
integrates a front-end QA system on a semantic search back-end to answer questions over
Linked Data knowledge bases. Lopez et al. have recently conducted a survey on using
semantic Web knowledge bases for question answering [70].

Yahya et al., have also recently proposed an approach to answering natural language
questions over Web knowledge bases [106]. Their approach (published in parallel with
our approach [30]) follows a similar methodology to our approach, where questions are
segmented and mapped to knowledge base items followed by an evaluation of semantic
coherence to retain only meaningful mappings. Their approach uses a dependency parser
to determine parts of the structure, this does not directly apply to keyword queries which do
not have the rich linguistic structure of natural language questions. They also rely on query
terms mapping to each part of the underlying query interpretation and do not consider the
possibility of latent relations existing in the query interpretation. Such considerations are
necessary to apply interpretation techniques to keyword queries.

While QA has a similar high level goal to our task, QA approaches generally depend
on having properly formatted questions that can be parsed to take advantage of the gram-
matical structure; having a large amount of query text (as compared to keyword queries)
to match against answer candidates; or having large amounts of answer text to match
query terms or exploit redundancy. Properly formatted questions allow a QA system to
determine a great amount of information about the question intent and candidate answers,
before even looking at the data. For example, many QA systems will perform dependency
parsing, answer type identification, and head/key noun-phrase detection. Having large
amounts of query text (as compared to three to four term keyword queries) is also often
used match questions against answer candidates extracted from passage retrieval [109].
An abundance of text can also be used to exploit redundancy to discern among multiple
answer candidates [25]. Keyword queries over knowledge bases on the other hand do not
allow deep question analysis, and both keyword queries and knowledge bases contain very
little text for frequency-based matching algorithms. Due to these core differences question

95

answering approaches are generally not directly applicable to the problem of keyword query
answering. We omit a comprehensive overview of question answering approaches, Lopez et
al. have recently conducted a survey on using semantic Web knowledge bases for question
answering [70] while Kolomiyets and Moens give an overview of general IR-based question
answering approaches [57].

The problem of semantic parsing shares a similar high level goal with semantic query
understanding. Both problems aim to construct a formal and unambiguous representation
of the underlying meaning of an ambiguous input. Recent work has explored applying
semantic parsing to natural language queries [107, 65]. These approaches parse natural
language queries to lambda calculus representations of the query intent. While these ap-
proaches do produce rich semantic interpretations of the input queries, they greatly depend
on having fully specified natural language inputs with proper grammatical structure. These
queries contain large amounts of text in comparison to Web keyword queries. Also, these
approaches are applied to small controlled domains with heterogeneous knowledge bases,
as opposed to the massive heterogeneous knowledge bases found on the Web.

3.5.1 Query Categorization

Query categorization (or classification) is another form of query understanding, where
queries are classified into categories indicating the target result types. For example, queries
may be classified as product search queries, political news queries, or sports queries. While
the categorizations do not represent semantic understanding of the query intent, they do
aid in judging the relevance of a candidate result or in selecting a data source for search.
Knowledge bases have been used to drive query categorization, Hu et al. showed that
query terms can be matched against Wikipedia categories to derive query intentions [17].
Wang et al. showed that loosely structured data in HTML lists could be exploited to learn
semantic classes for Web queries [103].

o6

Chapter 4

Graph Queries with Keyword
Predicates

Structured graph queries specify patterns to be matched against a knowledge graph. For-
malisms like the concept search queries defined in Section 1.3 also exploit semantics en-
coded in an underlying schema. In this chapter we explore extending graph queries based
on concept search queries to contain keyword predicates instead of proper well-formed
knowledge base predicates. Such a decision introduces ambiguity into the query, which
must be efficiently resolved by reasoning over possible mappings of the keyword terms into
the knowledge base predicates. This chapter presents work originally published in [$1] and

[52].

Graph queries with keyword predicates may be explicitly issued to a system by an ex-
pert user. Such a user is capable of formulating concept search queries, but is unable to
use proper graph predicates due the massive size of the knowledge base schema typical of
Web knowledge bases. Alternatively, these queries may serve as an internal representation
language for modelling the semantics of keyword queries as described in Chapter 3. Com-
bining an annotated query with a structured query template yields a structured version of
the keyword query. Mapping this structured graph query into the knowledge base, while
satisfying the keyword constraints corresponds to step 3 of our query understanding pro-
cess illustrated in Figures 2.1 and 2.2. Combining the annotated running example query
with its template gives the following query

“songs” M “by”(“jimi hendriz”)
by swapping the annotated constructs into their respective positions in the template. (we

use numbering to avoid ambiguity in templates that contain multiple instance of the same

57

type of construct, such as a query template with two entities). We refer to this type of
expression as a structured keyword query, which we define in the following chapter. We
also present an efficient algorithm for mapping structured keyword queries into a knowledge
base, producing a concept search query in the vocabulary of the knowledge base.

4.1 Motivation

Knowledge bases such as those discussed in Section 1.2 are heterogenous and contain large
numbers of resources. As an example, both ExDB [19] and YAGO [90] have schema items
numbering in the millions, and fact collections numbering in the hundreds and tens of
millions respectfully. WebTables has over five million unique attribute names in over two
million unique relational schemas [18]. At this scale, writing structured queries can be a
daunting task as the sheer magnitude of the information available to express the query is
overwhelming. We call this the information overload problem.

To deal with this problem, and also open a new form of exploratory search, recent work
has brought keyword query processing to structured data models, such as keyword search
over relational databases. While this alleviates the information overload problem caused
by massive schemas, it comes at a loss of expressivity. Users can no longer express desired
structure in the query, and can no longer explicitly take advantage of schema information.

As an example, consider a user who wants to find all guitarists who have won a Grammy.
The user may pose the following concept search query to an information system.

GUITARIST M 3hasWonPrize (GRAMMY_AWARD) (4.1)

If the user is not familiar with the schema of the underlying information system (i.e., they
do not know the labels of the knowledge base items in order to formulate a well formed
query), then they may alternatively issue the following keyword query.

“guitarist has won grammy” (4.2)

This query searches for all data items with a syntactic occurrence of the given keywords.
There are two important differences between the structured query and the keyword variant.
First, the structured query will be processed by making use of explicit semantics encoded as
an internal schema. In particular, the query will find data items that are a type of guitarist,
rather than those which contain the keyword “guitarist”. Second, the keyword query will
look for data items with any syntactic occurrence of “grammy”, while the structured query

o8

uses this as a selection condition over the qualifying entities to find those that have won a
grammy, exploiting the structure of the query to find qualifying results.

This example illustrates how query languages can vary in their expressiveness and ease-
of-use. On one end of the spectrum, structured query languages, such as SQL or SPARQL,
provide a mechanism to express complex information needs over a schema. A user of such
a language must have intimate knowledge of the underlying schema in order to formulate
well formed queries for arbitrary information needs. On the other end of the spectrum
are free form query languages such as keyword queries. These languages allow users to
express information needs with little to no knowledge of any schematic constructs in the
underlying information system, giving ease-of-use as well as useful exploratory functionality
to the user.

Consider the design of a query language that falls somewhere in the middle of this
spectrum. We would ideally like to retain the expressive structure of structured queries,
while incorporating the flexibility of keyword queries. One way to achieve this is to embed
ambiguity into the structured query language by allowing keywords to take the place of
entities or relations. In this setting the query from the previous example may be written
using structure as in Equation 4.1, but with keywords as in 4.2.

“‘guitarist” T “has won”(“grammy”)

This approach keeps the flexibility of keywords, but allows structure using conjunctions
and nesting with relations. In this model each keyword phrase will be replaced, by the query
processor, with a set of candidate schema items based on some metric of syntactic matching,
such as keyword occurrence or edit distance as depicted in Figure 4.1. Then, a mapping of
each query term to a knowledge base item will be chosen to find a semantically coherent
interpretation of the query. The advantage of this approach is in the flexibility of how
queries can be expressed. Users need not have intimate knowledge of the underlying schema
to formulate queries as is necessary with traditional structured query languages. At the
same time, the query retains explicit structure that gives greatly increased expressiveness
over flat keyword queries.

The problem with this approach is that the number of possible (disambiguated) queries
is exponential in the length of the query. This is problematic as many of the possible
matchings may be meaningless with respect to the underlying schema, or may not represent
the users actual intention. Processing every possible match is not only inefficient, as many
of the possible query interpretations may have empty result sets, it can overload the user
with many unwanted results from unintended interpretations. For example, the query
for all GUITARIST who have won an AWARD (the super class of all awards) would produce

29

“guitarist” M “has won” (“grammy”)

GUITARIST . GMM_Gramm
, hasWeight Y
Guitar M . GRAMMY_AWARD .
hasWonPrize .
STEEL_GUITARIST The _Grammy_Family

Figure 4.1: An ambiguous concept search query and the possible mappings of each keyword
to a knowledge base item.

many results that obstruct the user from finding those of interest (those who have won
a GRAMMY_AWARD in particular). Note that syntactic matching alone could not possibly
be sufficient as a disambiguation solution in all cases. For example, the term “grammy”
could describe the award, the name of a company, or the name of a family among other
possibilities. Also a term such as “spanish” is a natural choice of word to express the
both a nationality and a language (e.g., consider the query “spanish speaking countries”
vs. the query “spanish football players”). This phenomena, known as polysemy, is just one
of the challenges of disambiguation. Similar problems arise with synonymy, when multiple
different terms can be used to describe the same conceptual thing.

In this chapter, we investigate a solution to the problem of querying large heterogeneous
schemas by introducing a structured query language that builds upon keywords as its most
basic operator, while taking disambiguation steps before query evaluation in order to avoid
the exponential blow-up caused by keyword ambiguity. Our query language allows a natural
keyword-based description of entity-relationship queries over large knowledge bases without
intimate background knowledge of the underlying schema, while allowing complex query
structure to be explicitly specified.

4.2 Structured Keyword Queries

A structured variation of keyword queries may serve as an end-user query language to users
with the expertise to formulate structured queries, or as an intermediate internal represen-
tation language for modelling the semantics of keyword queries as presented in Chapter 3.
Combing an annotated query with a query template yields a structured query with key-
words as predicates. For example, combining the semantically annotated query from our
running example (“songs”:type “by”:rel “jimi hendriz”:ent) with the template structure
type Mrel(ent), gives the following query “songs”M “by”(“jimi hendriz”) by swapping the

60

annotated constructs into their respective positions in the template We call this type of
expression a structured keyword query, which we define as follows.

Definition 11 (Structured Keyword Query) Let £ € S be a keyword phrase (one
or more keywords), then a structured keyword query SKQ@ is defined by the following
grammar.

SKQ == k
| k(SKQ)
| SKQ: N SKQ

|

The first construct allows an entity or entity type in a query to be described by a set
of one or more keywords (e.g., “grammy award”). The second construct allows one to
describe an entity in terms of the relationships it has to other entities or types. (e.g., “born
in (liverpool)”). The third construct allows a set of queries to describe a single class of
entities in conjunction (e.g., “harmonica player M songwriter”).

Note that the relation query constructor allows an arbitrary query to describe the entity
to which the relation extends, e.g., “born in(country M has official language(spanish))”
could be used to query all entities born in spanish speaking countries.

4.3 Matching Subgraphs with Keyword Predicates

Because our structured keyword query language is built on keywords as primitives, there
is an inherent ambiguity in the semantics of the query. The user’s intentions are unknown
since each keyword in the query could map to one of many items from the knowledge
base, and there is an exponential number of ways (in the length of the query) in which
we could select an item for each keyword to create a general concept. Our approach
to disambiguating the structured keyword query is to compute mappings of the query
expression into the knowledge base. Such mappings aim to maximize the similarity of
query terms to knowledge base item labels while at the same time composing a coherent
concept with respect to the underlying knowledge base semantics.

61

4.3.1 The Disambiguation Model

Consider a structured keyword query SK(Q. Each keyword in SK@ could have many
possible KB item matches based on some measure of syntactic similarity. Let M (k) denote
the set of possible KB item (entity /type/relation/attribute/constant) mappings of keyword
k.

The goal is to map each query term to one KB item, such that the resulting map-
ping produces a meaningful disambiguated representation of the query with respect to the
knowledge base. There is a tradeoff that must be considered when mappings for each
keyword: we want mappings that stay true to the user’s intention as best as possible in
terms of syntactic similarity, but which also have a meaningful interpretation in terms of
the underlying knowledge base by means of semantic coherence.

We encode our disambiguation problem as a graph which represents the space of all
possible interpretations that bind one knowledge base item to each keyword phrase. In
the discussion that follows, we refer to a concept or the subgraph that denotes a concept
interchangeably.

Definition 12 (Disambiguation Graph) Let SK(Q be a structured keyword query.
Then a disambiguation graph G = (V, E) with vertex set V and edge set F, and P a
set of groupings of the vertices in V', are given by the following.

Vo= |J MK

kESKQ

R SR ()

kESKQ
E = edges(SKQ)

where the edge generating function edges(SKQ) is defined as follows.
edges(k) = {}

edges(k(SKQ)) = U (ni,n9) | U edges(SKQ)

ni1€M(k),
n2€root(SKQ)

edges(SKQy, SKQ2) = U (n1,n9) | U edges(SKQy) U edges(SKQ-2)

ni€root(SKQ1),
na€root(SKQ2)

62

"a singer's”

2 granlm,Y"

hasWonPrize

GUITARIST |/

Figure 4.2: An example query disambiguation graph.

where root(SK(Q) denotes the vertices in the root level query of SKQ as follows.

root(k) = M(k)
root(k(SKQ)) = M(k)
root(SKQ1,SKQs) = root(SKQ1) U root(SKQs)

Figure 4.2 depicts an example of a disambiguation graph for the structured keyword
query “a singer M guitarist M has won (a grammy)”, which could be input by a user or
generated by the means described in Chapter 3 from some keyword query. The candidate
KB items are represented as vertices, the dotted circles denote vertex groups P with groups
for relation terms in a double lined dotted circle, the quoted italic font labels denote the
keywords for which the group was generated (k;), and the interconnecting lines denote
edges which represent semantic similarity. Observe that each level of any subquery with ¢
conjuncts is fully connected t-partite, while edges do not span query nesting boundaries.
This is because nested concepts do not occur in conjunction with concepts at other nested
levels. They are related only through the vertices that denote the explicit knowledge base
relations.

For a disambiguation graph G generated from a structured keyword query SK@, any

63

induced subgraph of GG that spans all vertex groups in P corresponds to a concept inter-
pretation of SK(Q. For example, the induced subgraph spanning the vertices

{SINGER, GUITARIST, has WonPrize, Grammy Award}
corresponds to the concept

SINGER MM GUITARIST M JhasWonPrize({Grammy Award})

It is evident that the space of possible query interpretations is exponential in the size
of the query. Finding the “best” or top-k interpretations will depend on how we compute
a score for a candidate subgraph corresponding to a query interpretation.

4.3.2 The Scoring Model

Now that we have established a model for generating a space of candidate query interpreta-
tions, we need to define the notion of a score in order to compute the top-k interpretations.
We start by reviewing notions of semantic and syntactic similarity which will form the basis
of our scoring function.

Semantic Similarity

The first factor of our scoring model is semantic similarity, which we denote generically
using semanticSim(A, B) for the similarity between knowledge base items A and B. For
the purpose of similarity, we consider every knowledge base item to be a set. An entity is
a singleton set containing the entity, an entity type denotes the set of entities of that type,
a relation denotes all entities with an assertion containing that incoming relation, and an
inverse relation denotes the set of all entities with that outgoing relation (attributes follow
the same convention as relations).

The problem of computing the similarity between two concepts has a long history
in the computational linguistics and artificial intelligence fields. Early works focused on
similarities over taxonomies, often including the graph distance of concepts [50, 61,],
and probabilistic notions of information content of classes in the taxonomy [50, 66, 88].
More recent works have looked at generalizing semantic similarity metrics from taxonomies
to general ontologies (i.e., from trees to graphs) [27, 72, 90].

64

There are also traditional notions of set similarity which can be applied, since concepts
in a knowledge base ultimately denote sets of entities. One commonly used metric is the
Jaccard index which is defined below.

B |AN B
- |AuB|

SimJaccard(A7 B)

One common trait to all of these similarity measures is that they are binary; they
express similarity over pairs of concepts. We will see that efficiently accommodating n-
ary similarities using preprocessed statistics poses challenges, though our model allows a
natural approximation based on aggregates of binary metrics.

We now introduce the notion of knowledge base support, which characterizes the se-
mantic coherence of an arbitrary concept. In the definition of knowledge base support, we
appeal to n-ary similarity, with our approximation technique based on binary similarity to
be introduced in Section 4.3.3.

Definition 13 (Knowledge Base Support) Let C be a general concept expressed using
the entity types, relations, and entities in the knowledge base K. Then the support of C'
by K is given by the following.

0 if C is primitive,

support(C, K) = {SemanticSim(Cl,CQ, e C) +
> support(C;,K) otherwise.

where each C; is the i*" concept expression in a conjunction occurring in C.]

Intuitively, this is the similarity according to the edges in the disambiguation graph, which
mirrors the structure of the query.

Figure 4.3 illustrates a disambiguation graph for a more complex query with multiple
nesting branches and multiple levels of nesting. For this example, consider the following
concept C as a possible disambiguated concept search query produced by mapping the
query terms into the given knowledge base items.

SINGER 1M GUITARIST 1 JhasWonPrize(Grammy Award)
M JlivesIn(CITY M FlocatedIn(England))

65

"a singer" "guitarist"

Y

\\ O ,,,,, m m M..« ,,., ‘.m‘DQ\mﬁ,Q:
f _lives in" .

v/

Figure 4.3: An example of a query disambiguation graph for the query ”a singer MM guitarist M has won (a
grammy) lives in (cityl1 located in (england))” involving multiple query branches and multiple levels of
nesting. Each edge represents complete bipartite connectivity between all vertices in the groups.

66

Let C1, C5y, and C3 be defined as follows:

C = 3hasWonPrize(Grammy_Award)
Cy = FlivesIn(CITY M Cj)
C3 = JlocatedIn(England)

Now C can be expressed as the following.
SINGER I GUITARIST m C; M Cy

The support of C' corresponds to the following expression.

support(C, K) = semanticSim(SINGER, GUITARIST, C;, Cs)
+ semanticSim(hasWonPrize, Grammy _Award)

+ semanticSim(livesIn, CITY, Cs)

+ semanticSim(locatedIn, England)

Syntactic Similarity

The second component to our scoring model is the syntactic matching of the KB item label
(or one of its synonyms) to the keyword. Indeed, the user entering queries has an idea
of the entities they are trying to describe. It is simply the terminology of the user and
the knowledge base that may differ, and the massive scale of the knowledge base impedes
learning on the user’s part. The closer we can match a query syntactically while retaining
knowledge base support, the better our query interpretation will be with respect to both
the user’s intention and the knowledge encoded in our knowledge base. We use the function
label syntaxSim(a,b) to denote a measure of syntactic similarity. This could be simple
keyword occurrence in the knowledge base item’s label, or a more relaxed measure such as
edit distance or g-gram similarity.

While syntactic similarity serves as a proxy for the intended meaning of individual query
terms by a user, alternative signals of user intention could be integrated. For example, the
personalized entity ranking approach presented in Chapter 5 could be used to prioritize
knowledge base items of interest to a particular user. This would result in personalized
query interpretations.

Score Aggregation

Our final scoring model is thus some combination of knowledge base support, which quanti-
fies semantic coherence for the candidate disambiguated concept, and syntactic similarity,

67

which reflects how closely the candidate concept interpretation matches the user’s initial
description of their query intention. We can tune how important each factor is by how
we combine and weight the two similarity metrics. In general, we allow any aggregation
function to be plugged into our system. However, as we will see in later sections, we can
improve efficiency if the aggregation function is monotonic by making use of a rank-join
algorithm for top-k search. We denote such an aggregation function as .

Definition 14 (Concept Score) Let SKQ be a structured keyword query, C' a concept,
@ a binary aggregation function, and K a knowledge base. Then the score of concept C,
with respect to SKQ, IC, and & is given by the following.

score(C, SKQ, K) = support(C, K) @ syntazSim(C,SKQ)

|

Given a disambiguation graph GG with vertex groups P and a parameter integer k, the
goal of disambiguation is to find the top-k maximum scoring subgraphs of G' that span
all groups in P. Intuitively, we want to find the best k interpretations of the query in
terms of some balance between knowledge base support and syntactic similarity. Each
interpretation is formed by mapping each query term into an associated knowledge base
item, and corresponds to a concept search query over the vocabulary of the underlying
knowledge base.

The difficulty in solving the disambiguation problem lies in the nature of the scoring
function. Looking back to our disambiguation graph model, the score of a general concept
representing a candidate query interpretation depends on all components of the concept
(all conjunctions of entity types and relations). The volume of statistics that must be
(pre)computed in order to support queries with n terms would be infeasibly large to com-
pute. One would need to have access to the semantic similarity of all n-way compositions
of knowledge base items occurring in the knowledge base.

4.3.3 Approximating the Scoring Model

In most cases, having access to n-way semantic similarity would require pre-computing an
infeasible number of statistics, or incurring the expensive cost of computing similarity at
query time. Because the number of candidate query interpretations is exponential in the
length of the query, computing similarity at query time could add unacceptable costs to
performance. For example, Jaccard similarity requires the computation of intersections of

68

(possibly very large) sets. Thus, we move to an approximation model for any binary metric
of semantic similarity.

We approximate the score of a candidate query interpretation by aggregating the pair-
wise support of all components of the candidate concept. In terms of the disambiguation
graph, this means that each edge weight in the graph can represent the support of having
the two knowledge base items denoted by the edge’s vertices in conjunction.

We extend a disambiguation graph G to include a weight function w that assigns weights
to the vertices (v) and edges ({v1,v2)) of G as follows. The weights are computed with
respect to some knowledge base K and the keywords k from a structured keyword query

SKQ.

w(v) = syntaxSim(label(v), k), where v e M(k)
w((vy,v)) = support((item(vy) M item(vy)), K)

where item(v) denotes the knowledge base represented by vertex v and label(v) denotes
the string representation of the KB item represented by v.

The approximate score of an induced subgraph denoting a candidate concept interpre-
tation is given by the following.

Definition 15 (Approximate Score) Let SK(Q be a structured keyword query, K a
knowledge base, @ a binary aggregation function, and G = (V, E, w) a subgraph of the dis-
ambiguation graph of SK (@ representing a concept search query C. Then the approzimate
score of C represented by G with respect to SKQ, I, and @ is given by the following.

score(G, SKQ,K) = Z w((vy,va)) & Zw(v)

(v1,02)EE veV

4.3.4 Computing Knowledge Base Mappings

The goal of the disambiguation problem is to find the top-k maximally scoring subgraphs
(corresponding to concept interpretations of the original query) which are single connected
components spanning all vertex groups. A subgraph corresponds to a mapping of each
query term to a knowledge base item. Note that simply taking the maximum scoring
subgraph for each subquery will not necessarily result in a connected graph, since one
level of a query may bind a relation keyword to one relation, while the nested level of the

69

query may bind the relation keyword to a different relation. For example, a the top level
query may have a maximal scoring interpretation that binds “has won” to the relation
hasWeight, while the nested query may be maximal in binding “has won” to has WonPrize.
Interpretations must therefore ensure equality on the vertex that relation keywords are
bound to, and not only consider the disambiguation graph edges.

If our scoring function is monotonic, we can implement a rank-join algorithm [18] to
efficiently find the top scoring subgraphs, so long as we have access to vertices and edges
in sorted order. A global ordering over all edges can be precomputed, and vertices can be
sorted on the fly since these sets fit in memory and can be kept relatively small in practice.
Alternatively, we can implement a rank-join if we have access to only the vertices in sorted
order and allow random access to edges.

With this view of the problem, our disambiguation graph is a join graph, with each
keyword in the query providing an input to a rank-join operation based on the vertex
group corresponding to the keyword. Each group is ordered by syntactic similarity which
corresponds to vertex weight in the disambiguation graph. Consider each possible KB item
match for a keyword phrase (the set M (k)) ordered by syntactic similarity as an input. We
“join” two vertices if they have non-zero knowledge base support, and rank the join based
on the value of the approximate score. Simultaneously, we join across nested subqueries
based on equivalence of the vertex representing the relation keyword. This ensures the
resulting joins form connected graphs in terms of the underlying disambiguation graph.

In practice we can prune zero-weight edges from the disambiguation graph since they do
not contribute to semantically coherent interpretations and joins are only considered across
non-zero weight edges. Figure 4.4 illustrates the example query disambiguation graph with
the zero-weight edges pruned. As can be seen in the example, zero-weight edge pruning
can significantly reduce the search space considered by the disambiguation algorithm.

The rank-join algorithm proceeds as follows. Each vertex group provides an input to
the join. Each input is consumed one vertex at a time according to some policy for iterating
over inputs. In our case we use simple round-robin iteration over each vertex group. When
a vertex is consumed from an input list, we check (using random access to edges in the
disambiguation graph) if it joins with any other previously consumed candidates. If it
does a new (partial) mapping is created by adding the new vertex to the existing mapping.
We also create a new mapping consisting of only the vertex. After each iteration, we can
recompute the highest and lowest possible scores each mapping can have. The lowest score,
or lower bound, corresponds to the current score of the mapping. This would be the final
score of the mapping if no other vertices in the inputs join to the vertices currently in
the mapping. The highest score, or upper bound, corresponds to the current score of the

70

"a singer'””

" rammy"
\ agraliy,

i
. 3 - . /N
guﬁarlst R&B
A SINGERS

GUITARIST

] GUITAR !
V[STEEIN
\\ GUITARIST //

Figure 4.4: The example query disambiguation graph with zero-weight edges pruned. The
correct mapping is highlighted in red.

mapping aggregated with the last seen score from each input that the mapping is currently
missing (i.e., each vertex group for which the mapping has not yet bound a vertex to the
query term). Because the inputs are sorted by score, we know that other vertices that
remain in the input have equal or lower score than the last vertex consumed from the
input. Assuming our score aggregation function is monotonic, we also know that the total
score of the mapping will not decrease as more vertices are added to the mapping (bound
to query terms). The computation of these bounds is what allows early termination of
the algorithm during top-k£ query processing. As the algorithm iterates, we maintain a
list of the current top-k candidates in addition to the pool of all other candidates. If the
lower bound of the lowest scoring candidate in the top-k list is higher than the largest
upper bound among all other candidates the algorithm can terminate. This is because
the highest possible score that the best candidate can have will not be high enough to
qualify it as a top-k result. Similarly, if the upper bound of any other candidate is lower
than the lower bound of the lowest scoring top-k mapping, we can remove that candidate
from the candidate pool. This is because, independent of what other vertices join to the
candidate, it cannot possibly have a score high enough to qualify it as a top-k scoring
mapping since we already have k mappings with a higher score. The early termination
based on scoring bounds is the fundamental principle behind threshold algorithms. A more
detailed overview of the rank-join algorithm in particular can be found in Ilyas et. al. [18].

71

As an example, consider the disambiguation graph from Figure 4.2, we illustrate a rank-
join approach to disambiguation of the query in Figure 4.5. The illustration shows each
vertex group as an input to the rank join. Conjunctive components are joined based on the
existence of non-zero weight edges in the disambiguation graph. The actual weight of the
edge contributes to the final score of the concept search query produced by the mapping.
Nested sub-queries are joined to the outer query based on binding of the relation keyword
to the same KB relation by the outer query and sub-query.

When interpreting keyword queries we allow relations to be unspecified, however we
do not consider mappings in which entities or types are unspecified. This is denoted by
replacing k£ with the symbol “x” in the relation construct and represents an arbitrary,
unspecified relation with no syntactic constraints. The “x” thus matches any relation in
the knowledge base, as seen in the example query “songs” M *(“jimi hendriz”) illustrated

in Figure 2.1.

While solving the disambiguation problem involves possibly exploring an exponential
search space in the worst case, our experiments show that we can still find meaningful
solutions quickly in practice (see Section 4.7).

4.4 Concept Search Queries as Keyword Query Inter-
pretations

4.4.1 Admissibility of Concept Search Queries as Interpretations

Applying the techniques outlined in Chapters 3 and 4 to keyword queries produces ad-
missible concept search queries as defined in Definition 6. Keyword query interpretations
are ultimately composed of the nodes of a disambiguation graph. Disambiguation graph
nodes are constructed from the sets M (k) where k is a segmented keyword expression from
a keyword query). The set M (k) is defined as a set of knowledge base items. Thus,
produced concept search queries are safe and the first property is satisfied by definition.

Since query interpretations map each segmented query phrase to an item in M(k), the
second property is also satisfied at the level of each query phrase (¢1¢s...¢,) € Q. At the
level of individual query terms however, the strict definition of the second property is not
satisfied. We adopt a relaxed version of the constraint for keyword query coverage which
allows partial and fuzzy matching of segmented keyword phrases to knowledge base items
in order to satisfy this property.

72

1) SINGER 'l GUITARIST T hasWonPrize (Grammy_Award)

2) R&B_SINGER 'l GUITARIST Il hasWonPrize (Grammy_Award)
3) SINGER 'l STEEL_GUITARIST 'l hasWonPrize (Grammy_Award)
4) Al_Singer Il hasWonPrize (Grammy_Award)

5) Al_Singer 'l hasWeight ()

_— R |
i H /] 7 n ; iatll .
a singer /C)\ 'guitarist]
. : 0 n "
\Q § a grammy
S z
"has won"

Figure 4.5: Encoding disambiguation as a rank-join with random access to edges. Each
vertex group forms an ordered input sequence to the join operator. The join conditions
are on the existence of (non-zero) edges in the disambiguation graph, and on the equality
of relation bindings to ensure sub-queries are connected.

73

The third property is satisfied by the procedure described in Chapter 3 executing each
candidate concept search query, retaining only those with a non-empty result.

4.4.2 Scoring Keyword Query Interpretations

Among the space of admissible concept search queries, we want to compute the most
probable concept search query C' as an interpretation for the given keyword query @
over the knowledge base K, as specified in the query understanding problem definition
(Definition 7). Recall Equation 2.6 from the definition.

C = argmax. Pr(C’|Q,K)

While directly estimating this distribution is not possible in our situation (we do not
have enough examples of keyword queries mapping to concept search queries in order to
directly estimate the distribution), we can view the heuristic scoring functions presented in
Chapters 3 and 4 as an intuitive approximation of this quantity. We start by introducing
structured keyword queries as an intermediary between keyword queries and concept search
queries. We do this by expressing Pr(C|Q, K) (the conditional distribution over concept
search queries C' given a keyword query @) and knowledge base K) as the joint distribution
of concept search queries and structured keyword queries given a keyword query, with the
structured keyword query SK(@Q marginalized out.

= argmaxer) g Pr(C, SKQ|Q, K)
Applying the law of total probability we can rewrite the above equation as follows.
= argmax. ZSKQ Pr(C’|SKQ,Q,K) - Pr(SKQ|Q, K)

We assume a concept search query to be conditionally independent of a keyword query
given a structured keyword query. This allows us to drop the dependence on () in the
first term on the assumption that the structured keyword query faithfully represents the
intention of the keyword query). (Such assumptions are common practice, see for example

[58])-
= argmaxcs ZSKQ PI"(C”SKQ, K) ’ Pl"(SKQlQ,]C)

The mapping of queries to structured keyword queries is independent of any particular
knowledge base, thus we can drop the dependance on K in the second term which yields
the following.

= argmaxc, ESKQ PI‘(C/’SKQ,]C) . PI‘(SKQlQ)

74

We assume a structured keyword query to be conditionally independent of a keyword
query given an annotated query. This is intuitive since the annotated query captures
the keyword query in its entirety. The quantity Pr(SKQ|Q) can then be written as
>aq Pr(SKQ|AQ) - Pr(AQ|Q) which yields the following equation.

= argmax ZSKQ Pr(C'|SKQ,K) - ZAQ Pr(SKQ|AQ) - Pr(AQ|Q)

We use the methods based on query log analysis presented in Sections 3.1 and 3.2 to
estimate the latter two quantities directly where Pr(SKQ|AQ) = Pr(T|AQ) with T being
the structured query template for SK@). In practice we cannot directly estimate the
quantity Pr(C'|SKQ,K). We simply do not have a sufficiently large amount of labelled
training data to estimate such a large distribution. We resort to scoring concept search
queries using a heuristic scoring function. We use the scoring function score(C, SKQ, K)
presented in Section 4.3 as a heuristic to quantify the relevance of a concept search query
given a structured keyword query and knowledge base. Our final computation of a concept
search query C' given a keyword query () and knowledge base K is then given by the
following heuristic scoring function.

C ~ argmaxcs) gpq score(C', SKQ,K) - 3 4o Pr(SKQ|AQ) - Pr(AQ|Q)

While score is not a proper estimation of Pr(C’|SKQ, K), we rely on empirical evidence
that it effectively quantifies the quality of a concept search query given a structured key-
word query and knowledge base (see Section 4.7). Beacause the scoring function is ulti-
mately used to determine the relative order of concept search queries as interpretations of
a given keyword query, the absolute value of the function is not important. We are only
interested in the relative order of values over candidate query interpretations.

4.5 Computing All-Pairs Similarity over Knowledge
Base Items

A key computational challenge to supporting the disambiguation model described in this
chapter is in pre-computing semantic similarities over all pairs of knowledge base items in
order to support the efficient calculation of knowledge base support described in Defini-
tion 13. One approach is to actually enumerate and compute the similarity of all pairs.
This naive approach is prohibitively expensive, we estimate it would have taken roughly
six months of compute time on our server to compute all pairs of similarities for YAGO.

75

However, by exploiting a particular property of our chosen similarity measure, a much
more efficient formulation of the computation can be achieved.

Set-based similarity metrics that are based on intersections can benefit from a more
efficient all-pairs similarity algorithm if they have the property that a zero sized intersection
implies a similarity of zero. The algorithm gains efficiency in only considering pairs that
have non-zero similarities. If we conceptually think of the all-pairs similarity space as a
matrix with all items along the row and column, and each cell representing the similarity
of the corresponding row/column item, then we expect this matrix to be very sparse for
real world knowledge bases. Most items are not similar to each other (their entity sets
have an empty intersection). Any algorithm that explicitly considers all pairs is doomed
to waste time computing zero entries in such a matrix.

Our approach to all-pairs similarity for the Jaccard similarity measure works from the
bottom up, rather than the top down approach of considering all pairs. We iterate over all
entities, for each entity we enumerate all of its types, outgoing relations, incoming relations
(as inverses), and a singleton set of the entity itself. We then output all pairs from this
enumeration, as this entity will contribute a count of one to the size of the intersection of
each of these output pairs. A large file of pairs is generated after a linear database scan
is completed, we then sort this file so that the same pairs (generated by different entities)
will be sequential in the file. We then perform a linear scan over the file, counting the
number of times each pair occurs. This count is equal to the size of the intersection of the
two items constituting the pair. Since we also know the size of the entity set denoted by
each item, we can compute the Jaccard measure as follows.

|AN B|
(1Al +1B]) — [AN B
|AN B
|AU B|

This bottom up approach runs for our complete knowledge base in roughly one week, an
estimated ~26x reduction in run-time as compared to the naive approach.

SimJaccard(A> B) =

4.6 Knowledge Graph Management

4.6.1 Knowledge Graph Indexing

We index the knowledge graph using an adjacency list representation. For each node in the
graph (entity, entity type, constant), we create an index entry. For a given node, an index

76

entry consists of all incoming and outgoing edges in the graph, grouped by edge label.
We store edge labels ordered as a binary search tree. For each edge label, all adjacent
nodes are stored in an ordered set (represented physically as an array) ordered by a global
ordering (e.g., lexicographic ordering or a static global scoring function). Storing nodes
using a static global ordering will aid in efficiently computing intersections and unions of
node lists. An example index is illustrated in Figure 4.6.

An advantage to this representation of the knowledge graph is that it can be easily im-
plemented using a key/value store. With the recent explosion in interest around key /value
stores (e.g., [22, 60,]), our approach can directly benefit from the properties provided
by these systems. In particular, this indexing approach can be easily distributed, scaled,
and provide fault tolerance by building on existing key/value store technology.

A knowledge graph index is accessed by a single interface function index(IC, node, edge)
where K is a knowledge graph, node is a valid entity, entity type, or constant appearing
in KC, and edge is a valid relation, attribute, or one the special labels type or subClassOf
which represent entity type assertions and inclusion dependencies respectively. We also
use the function closure(kKC, A) to denote the set of entity types in the subclass hierarchy
below the entity type A. The closure function can be computed by recursively following the
subClassOf relation using the index function. We now describe some desirable properties
of a knowledge graph index that will be useful in proving the correctness of a concept
search evaluation procedure.

Propostition 1 (Knowledge Graph Index Construction) Given a knowledge graph
K = (0, A), the following properties hold by construction.

Ale) e A iff e €index(K, A, type™) (4.1)

R(ei,e2) € A iff eq € index(K, ey, R) (4.2)

R(ej,en) € A iff e € index(K,eq, R7) (4.3)

fler, k) e A iff k€ index(K, e, f) (4.4)

fler, k) e A iff e € index(KC,k, f7) (4.5)

AC A eO iff A €index(K, Ay, subClassOf™) (4.6)

AC A .. AL CACO iff {A1, Ay ..., A} Cclosure(KC, A) (4.7)

7

PERSON : {subClassOf (MUSICIAN, NON-VIOLENCE_ADVOCATE)}
MUSICIAN : {subclassOf {GUITARIST), subClassOf(PERSON)}
GUITARIST : {{ype (John Lennon, Jimi Hendrix), subClassOf{(MUSICIAN)}
NONVIOLENCE_ADVOCATE : {type (John Lennon), subClassOf(PERSON)}
AWARD : {subclassOf (GRAMMY_AWARD)}
GRAMMY_AWARD : {type (Grammy Lifetime_Achievement_Award), subclassOf(AWARD)}
CREATIVE WORK : {subClassOf (SONG)}
SONG : {type (Castles_Made_of Sand, Little Wing),
subclassOf (ANTI-WAR_SONG), subclass Of{CREATIVE WORK) }
ANTI-WAR_SONG : {type (Happy_Xmas_(War_Is_Over)), subclassOf{SONG)}
LOCATION : {subClassOf (CITY)}
CITY : {subclassOf (COASTAL_CITY), subclassOf{(LOCATION)}
COASTAL_CITY : {type (Athemns, Liverpool}), subclassOf(CITY)}
Grammy Lifetime Achievement Award : {hasWonPrize” (Jimi Hendrix, John Lennon), type(GRAMMY_AWARD)}
Happy Xmas_(War_Is_ Over) : {created” (John Lennon), type(ANTI-WAR_SONG)}
Little Wing : {created” (Jimi_Hendrix), type(SONG)}
Castles_Made_of Sand : {created (Jimi_Hendrix), type(SONG)}
“1940-10-09” : {dateOfBirth™ (John_Lennon)}
Liverpool : {birthplace™ (John_Lennon), type(COASTAL_CITY)}
Athens : {type(COASTAL CITY)}
Jimi Hendrix : {created(Castles Made of _Sand, Little_Wing),
hasWonPrize(Grammy Lifetime_Achievement_Award), type(GUITARIST)}
John Lennon : {birthplace(Liverpool), created(Happy Xmas_(War_Is_Over)),
has WonPrize(Grammy_Lifetime_Achievement_Award), dateOfBirth(“1940-10-09"),
type(GUITARIST, NON-VIOLENCE_ADVOCATE)}

Figure 4.6: A knowledge graph index for the example knowledge graph.

78

eval(C, K, indez):

case C = “{e}":
return {e}
case C = “A”:

result = index(IC, A, type™)

for each A’ in indez(KC, A, subClassOf~):
result = result U eval(A’, K, index)

return result

case C' = “C; M Cy”:
return eval(Cy, K, indezx) N eval(Cy, K, index)

case C = “JR(C4)":
result = ()
for each e in eval(C, K, indez):
result = result U index(KC, e, R™)
return result

case C = “JR™(CY)":
result = ()
for each e in eval(C}, K, indez):
result = result U index(IC, e, R)
return result

case C = “f(k)":
return index(IC, k, f7)

case C = “f~(Cy)":
result = ()
for each e in eval(Cy, K, index):
result = result U index (I, e, f)
return result

Figure 4.7: The knowledge graph concept search query evaluation procedure.

79

4.6.2 Concept Search Query Evaluation

Definition 16 (Concept Search Query Evaluation) Given a knowledge graph K, a
concept search query C, and an knowledge graph index index, we write eval(C, K, index)
to denote the result of the procedure presented in Figure 4.7.

|

Figure 4.7 details the query evaluation algorithm for query processing over the knowledge
graph index. The evaluation mirrors the concept grammar (Definition 1) used to define
concept search queries. Subclass hierarchies over entity types are recursively traversed as
part of query evaluation. The benefit of this approach is that knowledge graph constraints
can be efficiently inserted or deleted without affecting many index entries. If type hierar-
chies were “flattened” (ie., all implied assertions were explicitly materialized) then updates
could potentially be very expensive.

As an example of query processing, consider a search for the following concept search
query: MUSICIAN M birthplace(COASTAL_CITY). We can find all entities explicitly asserted to
have type MUSICIAN by retrieving the corresponding index entry, and extracting the nodes
(denoting entities) in the type~ relation (i.e., the nodes denoting entities that have an outgo-
ing type edge to the MUSICIAN node). In our example index, there are no entities explicitly
asserted to have the type MUSICIAN. Then we recursively repeat this process for all nodes
in the subclassOf™ relation, computing an ordered union (i.e., merge operation) for all enti-
ties found. In the example, this produces the ordered set (Jimi Hendrix, John Lennon).
Next (or in parallel in a distributed scenario), we evaluate the relation part of the query:
birthplace(COASTAL_CITY). We evaluate the subquery COASTAL_CITY producing the set
(Liverpool), and extract all nodes for the birthplace™ relation for each result. In the
example, this corresponds to the set (John Lennon) The last step of query evaluation is to
compute the intersection of the two subqueries. Note that the global entity order can be
preserved by using a merge style intersection algorithm since the input entity lists stored
in the index are sorted. For our example, this produces the final result (John_Lennon). We
use a galloping search implementation of set intersection [9] based on the analysis done in
Barbay et al [0]. An interesting observation with regards to this intersection approach is
that the behaviour can resemble a nested loop join, where items from one side of the in-
tersection are searched for in the other side. This gives significant performance advantages
over a linear intersection algorithm. For our example, the intersection would consist of a
single logarithmic search for John Lennon in the intersecting set.

We now show the correctness of the evaluation procedure defined in Definition 16 with
respect to the concept search query semantics defined in Definition 4.

80

Theorem 1 Given a knowledge graph K = (O, .A), a concept search query C, and the
knowledge graph index function indez:

eval(C, K,index) = answer(C, K)

Proof: (See Appendix B.2.) |

4.7 Evaluation of Graph Queries with Keyword Pred-
icates

Since computing mappings from candidate structures to knowledge base concept interpre-
tations in a key part of our system, we isolate that component and explore its capabilities
for a series of more complex structures than those produced by keyword queries. These
longer, more complex queries represent information needs that could be issued by tech-
nically inclined expert users capable of formulating their queries directly as structured
keyword queries.

We have designed a number of tasks to evaluate the effectiveness and efficiency of our
KB mapping procedure. We directly evaluate the concept search queries produced by our
system against the ideal structured concept query which is constructed manually. We also
use an entity search task to evaluate the precision and recall of entities returned by our
system as the number of computed query interpretations is varied.

We compare our system to two baseline approaches, one using syntax-only mappings,
and one being an adaptation of a traditional IR engine for the entity search task. We use
a manually defined concept search query as the definition of a correct answer in all cases.

4.7.1 System Descriptions

QUICK is built on a variety of open-source software. We create a Lucene [117] text index
over all KB items and any synonyms encoded in YAGO. We use this index to generate
the vertex groups of candidate items (the sets M (k)) based on keyword occurrence. The
knowledge base engine for concept query processing is an implementation of the architec-
ture described in Section 4.6 and was written in Java. The system uses Berkeley DB [111]
as a back-end data store for index entries. We also use a Berkeley DB instance to maintain
the knowledge base semantic similarity measures. The pair-wise semantic similarity values
used for disambiguation are pre-computed as described in Section 4.5. We experiment with

81

three types of syntactic similarity measures. The first is keyword occurrence, where the
syntactic similarity is the number of query keywords occurring in the label of the schema
item. While this measure is simplistic, it is very efficient since it is computed as part
of generating the candidate sets. The second measure is Levenshtein edit-distance. The
last measure is ¢g-gram similarity for varying values of q. We use the Jaccard measure for
semantic similarity.

IR is an information retrieval based system that uses only the keywords in the query
for search, and is thus unable to exploit the structure encoded in the query. This sys-
tem retrieves entities for the entity search task (see Section 4.7.3) by searching their

Wikipedia text. We make use of a commercial Web search engine for document retrieval
over Wikipedia by building on Yahoo BOSS!.

Syntax-Only is a simple disambiguation approach that uses only syntactic similarity
to perform mappings. The closest syntactic match occurring in the structured data source
for each relation and entity/concept are chosen for disambiguation to a formal query, and
semantic similarities are unused.

4.7.2 Data and Workload
Data

We start with the YAGO knowledge base described in Section 1.2.5. In order to measure
the effectiveness of our system in various situations, we also created an extended version
of YAGO. In the extended version, any information used in any of the benchmark queries
that was missing in the original YAGO is added. This allows us to evaluate knowledge
base mappings in the case where the knowledge base is incomplete as well as the case when
full disambiguations are possible. The extended information is encoded using the existing
entities and relations in YAGO where possible, or by using the Wikipedia identifier of the
entities if they do not exist in YAGO. We introduce a new relation when needed using
the terms from the benchmark. This means that the extended YAGO contains all of the
information used by the queries, but the specific keywords used in the queries may not
necessarily correspond to the labels in YAGO.

82

‘A1onb pIomA9Y PoInionIls ® 03 Wl yse) V) DHYL © Jo Surpooud opdurexo uy :QF oIndrg

(TePeW NIRRT S830g UYO[)aZWJUON SDY

LI (ASoTouyse] 70 91AN1TISUTI S110SNYOCSSRY) ULOL]PIIDNPD.LH
Ll (£1TSI9ATUN UOL0DUTI])7|/SYLOM || (SOWTL HIOX MON OYL) 1}/ SY.LOM

Arony) ydeouo)

«(1Ppows umpo s930q uyol)oziud uom || (LIJN) 23040300p Paa1aIa.L
U (figrsuparun uo3aoulid) 10 $2yomay | (sow) y.ofi mau) 4of sajiim,,

A1oN{) PIOMASY PRINIONIIG

[epow yaIeo sojeq uyol
LIN

Ays1oAatun uojeoutid
SOWII) YIOA mou

juom wewgnIy sey uredg ur Jurjeursrio ozrid jey A
J99°I0100D SIY 9AIOISI O PIP AJSIOAIUN [OTYM WIOL]
;0] URWISNIY] SO0P AJISIOATUN UDIYM JY

JOIIM TewsnIy seop Jodedsmou Yotym JI0q

SIomsuy / uorjseng)

LMwbnayy o, 91g 198I.L, DHYL

83

Effectiveness Workload

For the quality evaluation, we wanted a set of information needs which, when expressed as
structured keyword queries, form queries that extend beyond the relatively simple struc-
tures extracted from keyword queries. It was important when designing this benchmark
that the keywords in the queries were chosen without bias, as this could greatly simplify
disambiguation. We constructed a benchmark from the TREC 2007 Question Answering
task [29]. While the individual TREC questions where too simple to form challenging
disambiguation problems (i.e., they are too short), we were able to use the benchmark to
design more complex queries in the following way. Each TREC task consists of a target
entity and a set of questions and answers about the target. We inverted the benchmark,
taking question and answer pairs in conjunction to form a query which has the target entity
as the desired answer. Figure 4.8 shows an example of how this translation was done. In all
cases, we use only keywords appearing in the TREC benchmark (or morphological variants
to preserve the semantics of the questions) to ensure there is no bias in how keywords are
chosen. We then structured the queries to represent the query intent. This coincides with
the intent of structured keyword queries as an end-user query language, in which users
are able to express structure as desired, while the specific keywords needed to describe
concepts, entities, and relations are unknown. We encoded a total of 22 queries which can
be found in Appendix A.2. Half of the queries can be interpreted over the raw YAGO KB,
while half need the extended KB for interpretations.

Efficiency Workload

Because our TREC derived workload produces a set of queries with very similar shape
and size, we designed a synthetic workload to exercise a wider range of query shapes and
sizes. These queries vary in length from one to eight terms, and vary in generality of the
terms. We characterize the overall generality of a query by the total number of entities that
are processed at intermediate stages in order for our system to evaluate the query. Our
workload varies in generality from 1 to 100,000 intermediate entity results. Queries also
vary in their shape including flat queries (conjunctions with no relations), chain queries
(a nesting of relations), and star queries (a conjunction of relations) of each length and
generality where possible (it is not always possible to create one or two term queries with
high generality). This workload consists of 62 queries and can be found in Appendix A.3.

Thttp://developer.yahoo.com /search/boss/

84

| | Mapped (+) | Empty (=) | Total (true/false) |

Correct (true) %45.5 %50.0 %95.5
Incorrect (false) %4.5 %0.0 %4.5

| Total (+/=)] %50.0 | 9%50.0 | |

(a) Raw KB

| | Mapped (+) | Empty (-) || Total (true/false) |
Correct (true) %90.9 %00.0 %90.9
Incorrect (false) %9.1 %0.0 %09.1

| Total (+/—)] %100.0 | %0.0 | |

(b) Extended KB

Figure 4.9: Confusion matrices for mappings over the Raw and Extended knowledge bases.
Proportion of queries that get disambiguated (Mapped) or do not get disambiguated
(Empty) vs. whether the disambiguation is correct.

4.7.3 Experimental Results
Disambiguation Task

In the disambiguation task, we isolate the disambiguation algorithm from the rest of the
system and explore its behaviour on our effectiveness workload for both the raw and ex-
tended versions of the YAGO KB.

We consider the following question for each query. Was the computed (possibly partial)
disambiguation correct, or if no disambiguation is possible due to KB incompleteness, was
no disambiguation computed? This property allows us to see the proportion of queries for
which we obtain a correct formalization of some part of the information need. We consider
a “failed” (or “empty”) disambiguation to be the correct behaviour in the case where no
disambiguation is possible due to a lack of coverage in the underlying KB. This corresponds
to the true-positives, true-negatives, false-positives, and false-negatives respectively.

Figure 4.9 shows the confusion matrices after running our disambiguation algorithm
with the raw (incomplete) and extended KB. This demonstrates disambiguation behaviour
in the case of an incomplete KB and a complete KB. We take the top ranking knowl-
edge base mapping using 3-gram syntactic similarity and Jaccard similarity for semantic
similarity.

The results demonstrate that even in the presence of incomplete knowledge (Figure 4.9

85

table (a)), our system can still compute a correct partial mapping around 95% of the time.
Interestingly, our approach proves to be very accurate in determining when a mapping
does not exist, and returns no mapping rather than an incorrect one. It is this property
that allows us to accurately determine when keyword queries cannot be interpreted as
investigated in Section 3.4. This is particularly promising since in the scenario of applying
this technology to a general search system, this situation corresponds to falling back to
regular keyword search. Correctly identifying when to fall back to keyword search means
we do not process incorrect concept search queries which would produce irrelevant results.
When a complete KB is introduced (table (b)), the task becomes more difficult since there
always exists a correct disambiguation for every query. Our algorithm sees a slight drop
in overall correct mappings, but still stays around 90% correct.

Entity Search Task

In the entity search task, we used our effectiveness workload to evaluate the accuracy of
retrieving entities described by the queries. The results are compared against a manually
created concept search query which returns correct results by definition. We follow the
evaluation methodology outlined in Chapter 6 with correct results having a relevance of
1.0 and all other results 0.0. The evaluation in the raw KB scenario is not well defined
for this task, since partial interpretations may describe a broader class of entities than the
actual query target. How to use these partial interpretations is system dependant and more
of a user interface design issue than a search relevance issue. We therefore consider only
the extended KB for the entity search task, meaning complete interpretations are always
possible.

Figure 4.10 shows the average precision, recall, and F;-score for candidate sets (M (k))
of size 30 as a function of k, the number of knowledge base mappings considered by the
QUICK systems. In all cases, we take the union of the results of the top-k disambiguated
concept search queries. The three variants of QUICK correspond to the configurations of
syntactic similarity (keyword occurrence (KW), edit distance (ED), and ¢-gram similarity
with ¢ = 3 (QD3)). We see for QUICK-ED and QUICK-QD3 that precision degrades as k
increases. This is expected as more results are added from different interpretations, causing
more irrelevant entities in the result. QUICK-KW on the other hand, generally does not
find relevant entities until £ = 5, causing the spike in precision. In the recall graph, we
see that QUICK-QD3 generally finds all of the relevant entities it is capable of finding
within the top (kK = 1) mapping, while QUICK-ED peaks at k = 3 and QUICK-KW at
k = 5. Overall, we get maximum precision and F;-score using ¢-gram similarity at k = 1,
while recall is best with edit distance at k£ = 3. We also varied the size of candidate sets

86

ssurddewr oseq 93pa[mouy Jo oquunu oy} ‘sA (2) 9100s-1J pue ‘(q) [[eoal1 ‘(&) worsoald a8eIoAy ()] F 9InSL

0T S €

"Se) [RASLIJOI AJ1JUS OY) I0] POIOPISUOD ()

T0

o0

€Q0-NDIND ——

€0

a3-IN0 —m—

70

NINIIND —o—

S0

- L0
- 80

21095 T4

90

60

ot S €

T0

[4Y

€d0-IN0 —w—

€0

aa-MIN0—m—

0

ANANDIND —o—

S0

I1e23y

90

L0

80
= k
60

ot S €

T0

[4Y]

€d0-IND ——

€0

aa-MIN0—m—

0

AANDIND —o—

S0

uolsaid

90

j’. o
80

60

87

from 10 to 100, but found this had little to no impact on result quality. This means that
the correct schema items generally appear near the top of the candidate list, or not at all
within the first 100.

Figure 4.11 shows the results for all systems, including three variations of QUICK with
fixed k£ values. The IR and Syntax-Only disambiguation approaches do similarly, scoring
around 0.1 for precision, recall, and Fi-score. All three variations of QUICK produce
substantially better results, even when considering the poorest performing configurations
which can be seen in Figure 4.10. We also varied the value of ¢ from 1 to 5 for the ¢-gram
approach, and found no difference in quality. The simple position invariant property of
g-gram similarity seems to be what contributes to its high quality.

We find that all of the configurations of QUICK greatly outperform the simple IR and
Syntax-Only baselines. This is because QUICK is able to exploit the structure expressed
in the query, while the IR system is not designed to incorporate this form of structure.
The poor performance of the Syntax-Only system emphasizes the need for knowledge
base mappings that consider the semantic coherence of the mapping of the query into the
underlying structured data. Simply taking the best syntactic match for each keyword does
not produce good interpretations.

System Performance

The full system performance on our TREC derived workload averaged 0.32 seconds (0.06
seconds with the omission of one long running outlier) due to the relative simplicity in
the structure and generality of the queries. The synthetic workload on the other hand
exercises a much broader class of query shapes and generalities. Figure 4.12 shows the
breakdown of performance over the synthetic workload for both phases of query processing
(query disambiguation and KB search). KB search is generally the most expensive part of
the process. In general the disambiguation component accounts for only a small fraction
of the total run-time, however for some queries produce highly connected disambiguation
graphs causing disambiguation to dominate run-time.

4.8 Related Work

The problem of mapping keywords into structured knowledge graphs has been studied in
the context of keyword search over relational databases. In this problem, candidate network
graphs are generated based on the location of keyword matches [15]. The challenge in this

38

AuQ-XxeluAS
dlm
DI-MA-MIN0 =
€X-a3MIN0O m
TI-€A0- N0 m

"y} [eAdLITRI A}1JUL 91} I0] 2100s-T] pue ‘[[edal ‘uolsiald oFeIoAy :T1°F oINSI]

walsAs
60°0 60°0 60°0 AlUO-XeIUAS m
800 110 L0°0 dim
Lo LL0 1.0 SA-MI-NDIN0 =
[4A] 160 £9°0 €1-a3MIN0 m
80 980 80 TX-€AD-DIN0 m
91005-4 ||ed9y uolisidald

-0

- T0
-0
- €0
- vo
- S0
- 90

L0
80

9100G-4/||eI3Y /U0isidaid

60
T

89

i Concept Search i Disambiguation

35

2.5

Time (s)

15

05]
0 ——_————————————_----IIIIII

Query

Figure 4.12: Performance of structured keyword query disambiguation and evaluation for the synthetic
workload.

90

work is in efficiently generating and ranking the candidate networks, in contrast to our
work, where the shape of the disambiguation graph is fixed by the structure of the query.
Our approach also considers mapping against schema constructs, which is not considered
by candidate networks. This difference is important as it allows users to create abstract
descriptions of information needs at the schematic level, as opposed to simply expressing
keywords that may appear in the text of desired results.

The WebTables project [18] also processes keyword queries over large Web-extracted
data sets. While structured queries are not considered, their notion of probabilistic schema,
co-occurrence could be seen as a semantic similarity metric and used to support a disam-
biguation model like ours.

Our proposal differs from structured query languages over Web-extracted data, such as
[20, 23, 19, 51], in the integration of ambiguous terms into the structured part of queries.
NAGA [51] does support some ambiguity in queries via regular expression and keyword
matching against strings in a special “means” relation that is part of YAGO. Query pro-
cessing is done by finding all matches and evaluating the constraints in the query against
candidates. This is in contrast to our heuristic-based disambiguation as a preprocessing
step to query evaluation. Zhang et al. proposed Semplore, a semantic search engine that
processes hybrid queries: structured queries that allow keyword expressions to optionally
appear in the place of entities or types [108]. All entities or types that syntactically match
the given keywords are then interpreted as being instances of the keyword expression. This
is in contrast to considering different matches as distinct interpretations and ranking query
interpretations separately. The EntityRank system [23] incorporates keywords into struc-
tured queries as so called context keywords. However, EntityRank does not attempt to
construct complex queries from the input query, and entity types are explicitly given by the
user with no ambiguity. Elbassuoni et al., considered annotating variables in a SPARQL
query with keywords, and then used keyword matching and ranking against predicates that
bind to the variable [36]. This is in contrast to our structured keyword query language
which is founded entirely on keywords.

91

Chapter 5

Personalized User Interest Models
for Entity Ranking

Many keyword queries issued to search engines are ambiguous and underspecified descrip-
tions of a user’s information need. Without some representation of the user’s mental con-
text, it is often impossible for a search engine to reliably interpret many of the vague key-
word queries faced by search engines every day. For example, the query “southwest” could
be interpreted in many ways. There is the Southwest Research_Institute, a music album
named Southwest by a famous hip-hop artist, as well as the airlines Southwest_Airlines
and Air_Southwest among other possible interpretations. Without any context, an entity-
based search engine may rank the music album highest, since its label is an exact match
to the user query. However, given the knowledge that the user is interested in airlines,
the search engine may prefer a significantly different ranking, one that prioritizes the two
airlines. Furthermore, if the search engine was aware that the user had a preference for
US based airlines, it could rank Southwest_Airlines (an airline based in the US) over
Air Southwest (a British airline').

Search engines aiming to personalize the ranking of results must infer a user’s search
context based on the previous queries issued during the user’s search session, and their
click behaviour when presented with candidate results to a query. Mining a user’s search
and click history is a rich area of research and is heavily used in commercial search engines.

In this chapter we explore the possibility of cross-referencing Web search query logs
with large Web-extracted entity databases in order to build session-level profiles of the

! Although the company Air Southwest is no longer in existence, it was an active business at the time
our query log was collected, and is thus a relevant entity for our example.

93

’ Query Baseline \ Context-aware
“american American_Airlines American_Airlines
airlines” | Pan_American_Airlines | Pan_American_Airlines
American_Airlines_191 | American_Airlines_191
“southwest” | Southwest_(album) Southwest_Airlines
Air_Southwest Air_Southwest
Southwest_Airlines | Southwest_(Album)
“continental” | Continental (magazine) | Continental Airlines
Continental_(album) Continental _(magazine)
The_Continental (TV) | Continental (album)

Figure 5.1: Baseline and context-aware top-3 result lists for queries in an example session.
The context-aware approach learns user search context from previous result clicks (shown
in bold).

types of entities a user is interested in. FEntity types can be general such as Person
and Organization, or they may be very specific types such as ETH Zurich alumni and
Airlines_of _the United _States. We base our approach on the hypothesis that entities
of the same type tend to co-occur in search sessions. We analyse a large click log from
a commercial search engine to show support for our hypothesis. We then show how an
entity-based search system can exploit this knowledge to produce a more effective ranking
of entity results. As an example, consider the three-query session illustrated in Figure 5.1.
A baseline entity ranking function simply orders entities based on their syntactic similarity
to the entity labels. A context-aware reranking learns the user is interested in airlines
based on the results clicked. Results of subsequent queries are reranked to give higher
ranking to entities that have an entity type of interest.

5.1 Data & Problem Definitions

5.1.1 Search Engine Click Logs

A search engine click log is a recorded collection of user interactions with a search engine.
The main information recorded in a click log are a user identifier, a query string, and the
URL clicked by the user (if any result is clicked) in response to the search engine presenting
candidate results for the given query string. If a user clicks multiple results for a query,

94

each click forms a separate entry in the log. A click log generally also records additional
data such the rank of the clicked result in the list of presented candidate results and a
timestamp indicating when the event occurred. Formally, we can model a click log £ as a
set of four-tuples

L = (user_id, timestamp, query, [url])

where parameters in square parenthesis are optional, depending on whether or not a URL
was clicked for the given query. A keyword query () is expressed as an ordered set of terms
q1q> - . . qn over a concrete domain S as defined in Definition 5.

In query log mining, a user click on a URL in response to a query can be seen as
an indication of the intent of the query. Essentially, if the user clicked on a result
URL, it is assumed that the URL somehow satisfies the information need of the user.
In the context of query log mining, the clicked URL forms a proxy of the user inten-
tion. For example, if the user types the query “southwest” and then clicks on the URL
http://www.southwestair. com, it is assumed that the intention of the query is to find the
website of the airline Southwest Airlines. Of course this is a very noisy signal, sometimes
users click on a URL to find it is not relevant, and subsequently go back to the result
list to find a different result, or re-issue a modified version of their query. For example,
after issuing the query “southwest” and being presented with airline results, a user may re-
issue their query as “southwest research” to find the homepage of the Southwest Research
Institute. We leave the integration of negative feedback for future work.

5.1.2 Entity Databases

An entity database encodes information about real-world entities. We use a broad definition
of an entity database as the techniques studied in this chapter can be applied to a variety
of data sources, independent of their particular encoding. An entity database can be
encoded as a knowledge base (as in Section 1.2.5), though any format that captures some
particular information about entities could be substituted. There are three core types of
information we require of an entity database. The first is that the database encodes the
relationships between entities and their types. For example, the association between the
entity American Airlines and the type Airlines of the United States. The second
requirement is that the database encodes some relationship between entities and URLs
that are used to describe those entities on the Web. For example, relating the entity
American Airlines to the URL http://aa.com or the entity Nikola Tesla to a URL
that directs to an image of Nikola Tesla. The third type of information we require is a
mapping of entities to some textual representation of the entity, such as a label.

95

Formally, an entity database is a set of tuples D of the form (e_id, type, t_id), (e_id, label, s),
or (e_id, homepage, URL) where e_id is an entity identifier, ¢_id is a type identifier, s is an
arbitrary string, URL is an identifier, type is a relationship asserting that the entity de-
noted by e_id is of the type denoted by t_id, and label denotes a relationship asserting that
the entity denoted by e_itd can be textually described by the string s.

Our entity database starts with a subset of the knowledge base described in Section 1.2.5
extended with other public knowledge sources. The entity database is described in detail
in Section 5.3.1.

5.1.3 The Entity Retrieval Problem

The problem of keyword search over entity databases (also known as entity retrieval, entity
search, or object retrieval) is concerned with finding relevant entities given arbitrary key-
word queries in an unconstrained vocabulary. The first proposal for an entity-based search
task over a large Web entity database was given in [$3]. The proposed task was the entity
database variation of ad-hoc information retrieval, the task performed by document-based
Web search engines such as Google, Yahoo, and Bing. The core difference of course being
the structured entity database as a target data source, rather than a document collection.

While at first glance entity retrieval appears quite similar to document retrieval, there
is a core difference: entity databases generally contain very little text. As such, the long
history of techniques developed for document retrieval do not directly apply to entity
retrieval. It has been the focus of recent research to develop efficient and effective techniques
for entity retrieval (see for example [13, 80, 99]), as well as the focus of a series of search
competitions [1, 31, , 124].

Formally, given a query @, an entity search function S : SI9l — e_id" takes a keyword
query @ along with a number of desired results n and produces a set of entities determined
to be the result of the query using some heuristic. A search function is generally paired
with a ranking function R : e_td™ — e_id"™ which takes the result of a search function and
orders the elements according to some relevance heuristic.

5.1.4 Solution Overview
Our approach to identifying the entity of interest in response to a user’s keyword query is

based on learning a search context from the user’s search history. We use the entity types
from the entity database as a vocabulary to express a user’s search context, and build a

96

Entity Database

US-BASED RESEARCH
(ARCES > < AIRLINE > (INSTITUTE)
[N »

~
. 0 B type
type, s "

URLs Query Log

Click Query User Time

http://www.uwaterloo.ca
|~ "georgia tech"” 1111 [2013-01-01 11:01

http:/fiwww.vidb.or
P 9 | — "american airlines" 2222 2013-01-01 11:04

1» nttp:/mwww.gatech.edu /
remepees ’ ’ / "continental" 2222 2013-01-01 11:08

(v hitp/www.aa.com - "southwest " 1111 2013-01-01 11:09
homepage .
http.//www.continental.com P
- -

"southwest" 2222 2013-01-01 11:11

type

/ \ Georgia_Research
s type CInstitute
/ type / \‘\ i .
i | / N Southwest_Research
type ,\ Iy"pe i _Institute
\ (' Southwest_Airlines
Air_Southwest

Figure 5.2: An example entity database and query click log. Clicks on URLs are mapped
to entities via their known homepages.

homepage — o i www.swri.org 4

> http:/www. om &

—+—» http://www.airsouthwest.com
homepage

statistical model of the types of entities a user is interested based on how frequently they
interact with entities of a given type during their search session. This model is learned by
analyzing the URLs clicked by a user and then cross-referencing those URLs to the entities
they represent.

The approach depends on an assumption that multiple entities of the same type are
likely to queried (and clicked on) in the same search session. We explore this hypothesis
empirically in Section 5.3.

Figure 5.2 shows an example entity database and query click log. The log shows a
sequence of queries for two different users, one searching for research institutions and the
other for airlines. We want to predict the clicked URL for a given user based on that user’s
past search history (i.e., the dotted red arrows). This will aid in answering ambiguous
queries with user specific ranking, such as the query “southwest”.

Our methodology is based on the assumption that entities of the same type tend to
co-occur in a user session with a probability higher than that of random chance. In Sec-
tion 5.1.5 we analyze a real user click log in order to explore this assumption. We exploit
user clicks on Web search results as a form of relevance feedback, and map user clicks on
document URLs to entities in an entity database.

The validation of this assumption depends on how we define a user session and what
entity types we consider to be relevant. A session may be only the most recent queries,
queries issued over the past hour, over the past day, or even all queries ever issued by a
user. In terms of relevant entity types, it is not always the case that all types are useful.
For example, a hypothetical type Thing does not convey useful information since every

97

entity is considered to be a type of Thing and thus every entity would be considered as
co-occurring with an entity of the same type. We will consider various granularities of
entity types in our analysis.

5.1.5 Analysis of an Entity Click Log

We conduct our analysis over the widely available AOL query log. This log contains 38
million search interactions issued by over 650 thousand different users over a three month
period in 2006. While the log does not provide the complete URL clicked by users, it does
provide the clicked domain which is sufficient for our purposes.

Our analysis starts with the key insight that we can link a Web query click log to an
entity database by exploiting known home pages for entities. Since many real world entities
have known home pages, we can link a query resulting in a click on an entities home page to
the entity itself. For example, a query resulting in a click on http://www.aa.com allows us
to infer that the query was seeking the entity American Airlines. After cross-referencing
all click log interactions that have a clicked URL corresponding to a known entity, we have
a log of about 3.8 million queries. These queries are segmented into 372,611 separate user
sessions, with 278,756 non-unary sessions. The non-unary sessions have an average session
length of 11.71 unique queries (duplicate query/click pairs are removed) with a standard
deviation of 43.98. The shortest non-unary sessions consist of a two queries while the
longest session has 21,039 queries. Single query sessions provide no information for our
type co-occurrence analysis, and while small sessions are less ideal, we include them as to
not make arbitrary decisions about which sessions are large enough to include.

The integration of a click log with an entity database however, does produce a consid-
erable amount of noisy data. Users may click on a URL which they subsequently decide is
irrelevant, they may click on a URL unrelated to their query in an exploratory manner, or
they may click on a URL that describes a different entity that is related to the intended en-
tity (e.g., searching for one airline and clicking on a different airline, or searching for a music
album and clicking on the homepage of the artist). We expect many of these phenomena
to be infrequent enough as to not affect a statistical model learned over millions of queries.
Another potential problem with this form of linking clicks to entities is that there are
websites that encode information about many entities such as http://en.wikipedia.org
(an encyclopedia) and http://www.imdb.com (a movie database). In many cases, a query
leading to a click on http://en.wikipedia.org is likely not seeking the entity Wikipedia,
but rather some other entity described by that site. Such sites can accumulate many clicks
since they encode information about many different entities. We explore threshold-based
filtering methods to deal with theses scenarios.

98

1,000,000

100,000

10,000

Clicks

1,000

100

1
Entity Type

Figure 5.3: Distribution of click frequency of entity types clicked in the query log.

After linking entries in the click log to entities in the database, our next step is to
analyze the distribution of entity types that are clicked in response to queries. Figure 5.3
shows the distribution of clicked entity types over the query log. This figure illustrates
the exponential distribution exhibited by clicks on entities with given types. We see that
some very popular entity types are clicked nearly one million times, while others are clicked
much less frequently. There are two possible reasons why an entity type may be clicked
frequently: the entity type is very popular; or the entity type is very general. An example
of the first scenario is the entity type Company, a very popular entity type since many
queries result on clicks on homepages of companies. An example of the second scenario is
the entity type Artifact, a very general type that describes many entities in the database.
Figure 5.4 shows the distribution of entities over entity types in the entity database. We
see again an exponential distribution, showing that some types are very general (describe
many entities) and that many others on the tail of the distribution are much more specific,
describing relatively few entities. Distinguishing between these two scenarios is difficult
and not always possible. We may want to preclude very general entity types from a learned
user profile since they likely do not convey much useful information. For example, knowing
a user clicked on an entity type Thing, for which all entities are a Thing, does not convey
useful information. Knowing a user clicked on the type Airlines of the United States
is much more meaningful. We explore various ways of filtering entity types in Section 5.3.

99

1,000,000

100,000

10,000

1,000

Number of Entities

100

10

1
Entity Type

Figure 5.4: Distribution of entity count for entity types occurring in the entity database.

5.1.6 Entity Type Co-occurrence In User Sessions

The user interest model explored in this chapter is based on the premise that users searching
for entities of a particular type will favour entities of the same type in future searches. This
implies that entities of the same type should tend to co-occur more often than random
chance. Quantifying precisely the co-occurrence of entities types in a user session is a
difficult task, as it depends directly on what types are considered relevant. If we consider
all types in our entity database, we find that %99 of non-unary sessions contain clicks on
at least two entities of the same type. We also find that %72.8 of all queries result in
a click on an entity of that has the same type as a previously clicked entity in the same
session. However with extremely general types such as Artifact and Physical Entity it
is not clear how useful all of these type co-occurrences will be for learning a personalized
user interest model. We explore this empirically in Section 5.3.

5.2 Personalized Ranking of Entity Queries

In this section we demonstrate how to exploit knowledge of a user’s search context to
improve the effectiveness of entity ranking. A per user profile is maintained that describes
entity types of interest to the user along with the frequency that an entity of each type

100

is clicked. We aim to exploit this information along with a baseline ranking algorithm in
order to produce a more effective reranking of the results than the baseline approach.

5.2.1 Representing User Interests

Our model of user interest is based on annotating entity types from the database with the
number of interactions the user has with entities of that type in during the a particular
session. These interaction frequencies can then be used in various ways for entity ranking
(see Section 5.2.3). We maintain a set of annotated entity types for each user.

Formally, a user model M is a set of tuples (u_id,t, count) indicating that the user
denoted by u_id clicked on an entity of type t count number of times.

The simplicity of this user interest model allows for very efficient storage and mainte-
nance. For each user, we need only store the entity types which have a non-zero count,
and can reset a user’s session by simply deleting the type annotations associated with that
user. Such a design lends itself well to standard data structures with key-value interfaces.

This representation also allows on-line learning, so that user models can be built and
modified in real-time as queries are issued and do not require any offline training.

5.2.2 Baseline Ranking Approaches

We employ a simple search function with disjoint boolean retrieval semantics. Our search
function employs a standard stop-word list, breaks words on punctuation characters, and
accounts for lemmatized forms of words in searches.

S(k) = {e-id | Fe-id,label,s) € D,3t; € s,ty € k,t; ~ ty}
where ~ computes equality of terms in a vocabulary accounting for lemmatized forms (e.g.,
“airline” ~ “airlines”).

The search function is always paired with a ranking function that uses one of the
following four baseline ranking heuristics for keyword search over entities.

1. Label Similarity (labsim) The first approach based on searching known text labels
of the entities using a standard inverted indexing approach, followed by a ranking
of candidate entities based on their syntactic similarity to the query text. We use
g-gram similarity with a ¢ value of 3 as the syntactic similarity function.

101

2. Label Search (lab) The second approach is inspired by the YBCN approach|l]
that won the SemSearch 2010 competition [123]. This approach forms a virtual doc-
ument from all text properties of an entity then performs classical document retrieval
using an inverted index. In our case the text fields of most entities correspond to
various labels of the entity, and the ranking algorithm is Lucene’s tf-idf.

3. Summary Search (abs) The third approach is inspired by the NTNU approach
from Balog et al., [3] that had the best combined score at the SemSearch 2011 com-
petition [124]. This approach pulls a text description of each entity from Wikipedia
and uses classical document retrieval over the Wikipedia text. In our case we are
using Wikipedia abstracts for each entity.

4. Summary Similarity (abssim) The last approach performs an initial search using
the abstract search described above, followed by a reranking based on similarity of
the entity’s label to the query as described in the first approach.

5.2.3 Personalized Entity Ranking

Given the output of an entity search using some baseline ranking function, the goal of
personalized entity ranking is to rerank the entity list based on the user interest model
of the user issuing the query. A personalized entity ranking function is then a ranking
function which considers personalized context in the scoring heuristic. We consider five
different scoring heuristics that make use of the user model and in some cases also the
rank of the entity as determined by the baseline ranking algorithm. All of the reranking
heuristics are based on the learned user preference model presented in Section 5.4, and the
hypothesis that a user will be more interested in entities that have an entity type the user
has previously interacted with. This is achieved by defining a ranking function to rerank
the entity list while exploiting a user’s interest model.

In all cases, we learn the user’s interest model on-line. As queries are issued and results
are clicked, the interactions are recorded in the model and those interactions are used to
rerank subsequent queries. There is no offline training of the interest models required. The
reranking functions are defined as a sort of one of the following scoring functions, with the
underlying baseline ranking function being preserved in the case of ties (the rerankings are
stable sorts). We start with a definition of type generality, a measure of how many entities
in an entity database are asserted to have a given type. Formally, given an entity database
D, and an entity type t, the generality of ¢ is given by the following.

102

generality(t) = [{e s.t. (e, type, t) € D}|
The scoring functions are defined as follows.

1. Type Count (typecount) This reranking approach directly ranks entities by the
number of times the entity’s types have been clicked by the user. For each candidate
entity produced by the baseline ranking function, we consider all types the entity
is known to have from the database. The total clicks for all of the entity’s types is
summed and the candidates are scored based on these type counts.

Formally, given a query log £, a user interest model M, an entity e_id and a user ID
u_id, the score of the entity represented by e_id for user u_id is given by the following.

type-count(e_id, u_id) = Z Z c

(e-id,type,t)€D (uid,t,c)eM

This reranking method can be viewed as an application of the proposal of Sperreta
and Gauch [95] to entity databases, where the relevance of an entity to one of its
asserted types is defined to be 1.0 (there is no probabilistic classification of entities
to their types) and reranking is done purely based on the user model and not the
baseline ranking (o = 1) which was found to be the best performing configuration in
their work. See Section 5.4 for more discussion of related work.

2. Rank Discount (rankdiscount) This reranking approach modifies the type count
approach by giving more weight to the initial baseline ranking. In this approach, the
type counts are discounted by the rank of the candidate entity in the baseline ranking.
This makes it less likely an entity that is initially very lowly ranked will be reranked
at high positions, dampening the effect of the type count reranking.

Formally, given a query log £, a user interest model M, an entity e_id, a user ID
u-id, and a function rank(e) that gives the rank position of entity e in the baseline
rank order, the score of the entity represented by e_id for user u_id is given by the
following.

type-count(e_id, u_id)
rank(e_id)

rank-discount(e_id, u_id) =

103

3. Linear Discount (lineardiscount) This reranking approach takes into account
the generality of a type, discounting the score given by a type based on how many
entities in the database share that type. The goal is that overly general types (those
shared by many entities in the database) will have less effect in the ranking than
more specific types (e.g., the type Artifact will have little effect on the score, while
the type Airlines of the United States will have a more pronounced effect).

Formally, given a query log £, a user interest model M, an entity database D, an
entity e_id and a user ID wu_id, the score of the entity represented by e_id for user
u_id is then given by the following.

linear-discount(e_id, u_id) = Z Z ¢

<8,’L'd,typ€7t>€'D <U7’id,t,c>€_/\/l generalzty(t)

4. Logarithmic Discount (logdiscount) This reranking approach discounts the
value a type contributes to a score based on the logarithm of the type’s generality.
This smoothed form of discounting is less drastic than the linear discount.

Formally, given a query log £, a user interest model M, an entity database D, an
entity e_id and a user ID u_id, the score of the entity represented by e_id for user
u_td is then given by the following.

log-discount(e_id, u_id) = Z Z ¢

(e-id,type,t)eD \ (u-id,t,c)eM lOg(genemlzty(t))

5. Logarithmic idf discount (logidfdiscount) This reranking approach discounts
the value a type contributes to a score based on a normalized logarithm of the type’s
generality, inspired by tf-idf scoring in document retrieval. The type’s generality is
normalized by the size of the database, meaning types influence is proportional to
the fraction of entities in the database asserted to have that type.

Formally, given a query log £, a user interest model M, an entity database D, an
entity e_id and a user ID u_id, the score of the entity represented by e_id for user
u_id is then given by the following.

104

D]

log-idf-discount(e_id, u_id) = Z Z - log(m)

(e—id,type,t)eD \ (u_id,t,cyeM

5.2.4 Filtering Overly General Types

While the various reranking approaches described in Section 5.2.3 provide various mech-
anisms for dealing with overly general types, we may benefit from directly filtering types
deemed not to be useful. We investigate filtering overly general types using three different
filtering thresholds. The first is to filter types with generality over a given threshold value.
We define generality as the number of entities asserted to have the given entity type in
the database (see Section 5.2.3). For example, the generality of the type Musical Work
is 110,086 since there are 110,086 entities known to be a type of Musical Work in our
entity database. Conceptually this filtering approach will remove overly general types,
such as Artifact or Physical Entity, that provide little information about the interests
of a user. The second is to filter types that are clicked with very high frequency. This
approach aims to filter noise in the data, such as the type American_websites becom-
ing a highly relevant type because http://www.google.com is clicked frequently and is a
type of American websites. This causes any other entity that is asserted to be a type
of American websites to be reranked high in the ranking. The possible downside to this
filtering approach is that legitimately popular types may be filtered. The third approach
is to filter types with very low entropy in their click distribution. The motivation for
this approach is that very low entropy in the click distribution of a type may be a sign
of noise in the data. Returning to the previous example, the type American_websites
has a click distribution consisting of many clicks on very few entities, and most clicks on
the entity http://www.google.com. This click distribution has low entropy, i.e. it is very
predictable. This predictability could be an indicator that a type is not useful in character-
izing a user’s interest. We explore these thresholding methods empirically in the following
section.

5.3 Evaluation of Personalized Entity Ranking

We evaluate the effectiveness of personalized entity ranking by measuring the impact of
reranking the results of a number of intuitive baseline entity ranking approaches. Our

105

0.7

0.6

0.5

0.4

“labels

i labels-sim

MRR / p@1

03 abstracts

i abstracts-sim

p@1
Figure 5.5: MRR and p@1 for the baseline ranking functions.

evaluation follows the entity retrieval evaluation methodology outlined in Chapter 6 with
each query having only one relevant result (the clicked URL) and all other results considered
irrelevant.

5.3.1 Data & Implementation Descriptions

We use the previously described AOL query log for the evaluation (see Section 5.1.5). This
log contains 3.8 million queries that contain a click on a known entity. Because sessions
in this subset of the query log can be rather sparse, we use all queries from a user as a
definition of their session. Future work with larger click logs should explore varying the
definition of a session as a parameter to the user model building algorithm.

To evaluate our reranking methods, we have compiled an entity database from various
public sources, including Wikipedia [128], DBpedia [l 1], and YAGO [96]. Our entity
database consists of 2,816,177 searchable entities of which 606,906 entities have known
home pages and all have at least one textual label. The database is aware of 189,107 types
over these entities with 22,356,866 assertions of entities having some type. The types in
the database range from very general types such as Person to very specific types such as
Airlines_of _the United_States.

We implement all described reranking techniques in Java, with the baseline search and
ranking functions implemented using Lucene[l17]. Figure 5.5 shows the mean reciprocal
rank (MRR) and precision at 1 (p@1) for the baseline methods. Note that p@1 can be

106

0.7

0.6
0.5 J//
/—

x 04 = |ab::typecount::type-freq

= _é
03 ===|ab::rankdiscount::type-freq
02 ~=lab:lineardiscount::type-freq
0.1
o =—|ab::logdiscount::type-freq

—=|ab::logidfdiscount::type-freq
TP L L L LSS S
A S RS R RS SR
Ny W
Threshold

0.7
0.6
0.5

E 0.4 == labsim::typecount::type-freq
03 === |absim::rankdiscount::type-freq
02 labsim::lineardiscount::type-freq
0.1
o == |absim::logdiscount::type-freq

=== labsim::logidfdiscount::type-freq
L L L L LSS PSS S
’\”)b@,f)@'\é\z@tg%@
L A o)
Threshold
0.7
0.6
05 —

E 0.4 E — ——abs::typecount::type-freq
03 ===abs::rankdiscount::type-freq
02 ~==abs::lineardiscount::type-freq
0.1
o == abs::logdiscount::type-freq

~==abs::logidfdiscount::type-freq
O S '»@0 '&e %@0 ’&00 %@0 &e '»"‘@ gb°° g@o q,&e &
RO AR A S o
Threshold
0.7
0.6 *&;
0.5

z 04 == abssim::typecount::type-freq

=
03 ====abssim::rankdiscount::type-freq
02 ~===abssim::lineardiscount::type-freq
0.1
o ===abssim::logdiscount::type-freq

~==abssim::logidfdiscount::type-freq
L LTSS S S
AR A SR IR
N R
Threshold

Figure 5.6: MRR values of each method vs. generality filtering threshold value. Graphs
are plotted individually for each baseline entity ranking algorithm.

107

0.7
0.6
0.5
él' 0.4 J///h == |ab::typecount::type-freq
= 03 / 4/ —lab::rankdiscount::type-freq
02 _r f ~==lab::lineardiscount::type-freq
0'; | i i i i i i i i i i i i i i i . ==lab::logdiscount::type-freq
° ,&Q @06 @Q Cboe \/@Q 0;190 Q’@Q "3’@ 4000 \:&e qy‘&&%@ q@c q’v@ » ~=|ab::logidfdiscount::type-freq
V9T ST AT B
Threshold
0.7
0.6
0.5
@ 0.4 labsim:: ount::type-freq
%03 1 === |absim::rankdiscount::type-freq
02 1 labsim::lineardiscount::type-freq
0'3 i i i i i i i i i i i i i i i ' === |absim::logdiscount::type-freq
° @0 @0 @Q @0 \/@Q ,gSQ @& ,@00 %@0 &Q "y& @00 o "90 » === |absim::logidfdiscount::type-freq
PSS g
Threshold
0.7
0.6
0.5
'C:J 0.4 ——abs::typecount::type-freq
=03 # ==abs::rankdiscount::type-freq
02 ~==abs::lineardiscount::type-freq
OA(IJ ===abs::logdiscount::type-freq
° '&Q ,‘90 @Q %QQ \,@0 6;190 @QQ ’&@ ‘onQ ()90 W@o @@ Q@Q &90 » ~=abs::logidfdiscount::type-freq
PSP
Threshold
0.7
0.6
05 %
é}' 04 —— ==abssim::typecount::type-freq
=03 ===abssim::rankdiscount::type-freq
02 ~===abssim::lineardiscount::type-freq
0‘(1) i == abssim::logdiscount::type-freq
o &b w@ @0 %QQ N@Q @90 %@Q ’&00 %@Q ()99 ,900 “@0 %@Q é&c » === abssim::logidfdiscount::type-freq
RUEO AN S

Threshold

Figure 5.7: Precision at rank 1 for each reranking method vs. generality filtering threshold
value. Graphs are plotted individually for each baseline entity ranking algorithm.

108

interpreted as the proportion of queries for which we can perfectly predict the entity the
user will click for a query. We see that the abssim approach (text search over entity
abstracts followed by similarity ordering of entity labels to query text) performs best for
both metrics.

5.3.2 Personalized Entity Reranking

Figures 5.6 and 5.7 show the MRR and p@1 performance for each reranking approach over
each baseline. Each figure shows one graph per baseline, with each of the five reranking
approaches applied to each baseline. The graphs also show how the performance varies as a
parameter of the type generality filtering threshold. A threshold value of 0 corresponds to
the baseline ranking (no reranking) while a threshold value of oo corresponds to reranking
using all types (no filtering of any types). The threshold filters any types with a gener-
ality greater than the threshold value (i.e., the higher the value, the fewer the number of
entity types being filtered out). We see most baselines and reranking approaches have a
general trend to higher performance with less filtering (i.e., including more types in the
personalization model), though maxima are reached for most approaches with some level of
filtering. Optimal approaches tend to occur at threshold values that filter the 12 (thresh-
0ld=204,800) to 25 (threshold=102,400) most general types in the database. These overly
general types, such as Artifact and Physical Entity, carry little information for a user
interest model and can cause spurious rerankings in the reranking methods. We also see
that some reranking methods give little benefit or actually degrade performance for some
baselines (see the absim graph in Figures 5.6 and 5.7). This appears to be particularly
true for baselines that are already strong ranking methods. In contrast, we see that weaker
baselines (lab and labsim) receive great benefit from reranking. These trends appear for
both the MRR and p@1 measures.

Click frequency and entropy were also explored as filtering measures, however we found
that any filtering using these measures degraded overall performance, and optimal per-
formance was achieved when all entity types were included (threshold=00). We therefore
omit graphs of these approaches.

Figure 5.8 shows the best performing reranking approach for each baseline. It is inter-
esting to see that the labsim baseline performs as well as the abssim baseline after reranking
despite abssim being a much higher performing baseline. This shows that the reranking
approaches can pick out entities of interest and rerank them effectively even in the presence
of a less effective baseline ranking function. Overall, the reranking approaches are able to
improve the effectiveness of all of the baseline ranking functions. Figure 5.9 shows the

109

MRR

0.70
0.60
0.50
0.40
0.30
0.20
0.10

0.00

0.63

0.64

Figure 5.8: Best reranking approaches for each baseline.

p@1

0.70
0.60
0.50
0.40
0.30
0.20
0.10

0.00

0.50

0.53

110

ourpeseq oee 10j yoeordde Furjurior 150 10j Tod pue YN UL 9SROINU] GG 9INSI]

X00
XT'0 50
XT'0 XxZo
X8'0 X0'T
X0 =
XST 3 3
m - X9'0 w
x0T B XS0 H
. o o
e xsz 5 XL'0 0 m
3 E}
xoe 2 x0T ®
X§'€ XT'T
X0y X€'T Xp'T

XU’y X§'p

111

increase in MRR and p@1 for the best reranking approach for each baseline. Even the best
baseline (abssim) gains an 11% increase in MRR and p@1, while the worst baseline (lab)
sees a four-fold increase in p@1 again illustrating the ability of the reranking approaches
to improve upon mediocre baseline ranking functions.

5.4 Related Work

There is a vast body of literature surrounding the topic of personalized search, with the
majority focusing on keyword search over Web documents. Dou et al., give an empirical
evaluation of some core methods for personalized search over (textual) Web documents.
There has also been a considerable amount of work on entity ranking, however there has
been very little focus on combining personalized search with entity ranking. Hristidis et
al. have looked at scalability issues around personalizing authority flow computations over
object graphs [10], as has Chakrabarti [21]. Their work focuses on computational challenges
with (re)computing edge weights in an authority flow graph so that each user can have
custom “page rank” style weights. These approaches require a base set of authority nodes
for each user to be defined.

Previous research has also considered using a concept hierarchy to represent user in-
terests. Pretschner and Gauch explored annotating a small 4,400 node concept hierarchy
named Magellan with weights representing interest based on the documents the user has
browsed [26]. Such an approach requires detailed knowledge of a user’s browsing behaviour
and cannot be extracted from a query log. If we substitute clicks on entities with given
types for document classification into a small number of categories, their approach can
be viewed as similar to our “typecount” approach, though they also integrate a notion
of document relevance to a category which does not exist in our setting (every entity is
by definition relevant to all of the types it has). Daud et al., took a different approach
in annotating the concept hierarchy from the opened directory project (ODP), a small
hierarchy of 1,896 classes, with term vectors extracted from documents classified into ODP
categories [30]. Cosine similarities are then used to compute the relevance of a candidate
document to a the ODP categories. While such an approach is feasible for a small number
of categories, it does not scale to user profiles with thousands of categories. Chirita et
al., also used the ODP hierarchy to model user interests, but required users to explicitly
state which categories they were interested in [24]. This is in contrast to our approach of
learning preferences from click logs.

The most relevant area of personalized search to our problem is that which aims to
learn user interests from a query log using some form of concept hierarchy or ontology

112

for representation. Speretta and Gauch have considered learning user interest models
over a concept hierarchy from a user’s search history [95]. They considered classifying
document summaries from a search result page into the ODP classification scheme with a
pre-trained classifier. Document reranking was then performed as a linear combination of
the number of clicks on a class weighted by the importance of that class to the candidate
result, and the original ranking given by the baseline search engine. Their results show best
performance when using only the concept weight for reranking, and ignoring the baseline
ranking (o = 1). To this extent, their approach is equivalent to our “typecount” reranking
approach since by definition each entity is relevant to the types it is asserted to have (there
is no probabilistic classification of entities to types, as in scenario of text documents to
categories). Liu et al., explored mapping query text into ODP categories [67]. In their
work a user model associated the strength of a particular query term to a category, so
that subsequent queries using the same terms can be personalized based on the learned
weight for that term. These weights were learned by analyzing a user’s search history.
Such a model requires a large search history in order to learn the associations of the many
possible keywords a user may use to describe their information need to each of the possible
categories that the term may describe.

113

Chapter 6

A Methodology for Evaluating Entity
Retrieval

Evaluating the quality of a ranked list of entities is a problem that has been considered
throughout this thesis. In the following chapter, we describe and validate the methodology
used for entity-based evaluation. This chapter presents work originally published in [33].

Despite a growing interest in entity-based search, there has been little work focusing
on principled evaluation techniques for assessing the effectiveness of entity-based search
systems. In order to evaluate the effectiveness of entity-based search technologies, as well
as compare one system to another, a common evaluation methodology is needed.

Most current approaches to evaluating entity-based search systems are adaptations of
document evaluation techniques from the information retrieval community (e.g., as in [10]).
In this setting, search systems ultimately perform document retrieval, and the quality of
documents returned is used as a metric of the quality of the entire system. These results
make it difficult to interpret how well a search system functions internally, since a number
of different factors can play a role in which documents are returned.

6.1 The Ad-hoc Entity Retrieval Task

In this work we try to map an entity ranking problem to the well known problem of ad-hoc
document retrieval (ADR). Formalization of the ADR task and of its evaluation opened
up the way for research in ranking models in Information Retrieval. By providing a clear

115

problem setting, it allowed the creation of standard metrics and collections, allowing re-
searchers in IR to communicate and collaborate. This in turn yielded many fundamental
developments in ranking models, evaluation methods, efficiency and user models. A de-
tailed overview of the ADR task can be found in Chapter 1 of [73], we summarize the task
as follows:

e INPUT: a user keyword query () and a collection of documents D. The query has
a query intent Z specified as a natural language description, which is not made
available to the search engine. It is the job of the search engine to resolve among
possible intentions represented by Q).

e OUTPUT: an ordered list of document identifiers R = (dy, da, ..., dy,), where d; € D.

e EVALUATION: each document d; is labelled with a score (independent of the rest)
by a judge with respect to the information need Z describing the query Q.

Although ADR was initially developed for research in information science and library
search, it had a natural application to Web search. ADR models well the typical situation
for a user searching the Web: the user types a keyword query (), and expects a ranked list
of document identifiers R which represent Web pages relevant to their intention Z. For this
reason, Web search engines from their infancy built on all the advances in ADR research,
and adopted ADR metrics.

However, the Web is no longer simply a collection of Web pages. As the Web of Linked
Data grows, we see entities of different types surfacing in Web search results. For example,
for queries with a strong “local” interpretation (such as “pizza in new york”), the first
results of commercial Web search engines are typically constructed from structured entity
databases and not necessarily from Web pages. For such applications, Web search engines
need to be able to effectively rank candidate entities.

For the analysis of such tasks, we propose to adapt the traditional ADR task. Intuitively
we would like to replace documents by entities, leaving everything else the same. However,
this brings up several non-trivial issues that need to be dealt with. These issues in turn
will restrict our definition of the entity ranking task.

The ad-hoc entity retrieval task (AER) is defined as follows.
e INPUT: a user keyword query () and a knowledge graph KC. The query has a query

type T and query intent Z which are not explicitly defined. It is the job of the search
engine to resolve among possible intentions represented by Q).

116

e OUTPUT: a ranked list of knowledge base item identifiers R = (eq, ey, ..., €) such
that each e; occurs in K. An identifier corresponds to a node in the knowledge graph.

e EVALUATION: each resource e; is labelled with a score (independent of the rest) by
a judge with access to all the assertions containing e;, with respect to the query @,
query type T, and the query intent Z.

In the following sections, we highlight two of the key differences in evaluating AER and
ADR: the dependence between the type of the query and the type of result returned, and
the influential role played by result presentation. We then discuss metrics applicable to
AER and demonstrate their applicability.

6.1.1 Query Types

In ADR, a human judge must evaluate the relevance of a document to a query. Could a
human judge evaluate the relevance of an entity to a query? It would seem so intuitively.
For example, if one queries for the name of a person, then any hCard (a micro-format
encoding information similar to a business card) exactly matching the query would be
judged relevant, and other hCard matching the name partially would be judged related
but not as relevant. However, as we push our investigation of entity relevance further,
we quickly run into several problems. In particular, results may be connected to relevant
entities, but not directly relevant on their own. For example, a query for a movie could
return an entity representing an actor that starred in the movie. Also, the expectation of
what a result is may vary depending on the query. For example, a result may be a node,
a set of nodes, a connected subgraph, or even a set of connected subgraphs.

Our first step towards studying this problem was to manually analyse a real Web search
query log to try to understand how entity retrieval in the Web of Data could improve upon
these answers, if at all. For each query in the query log, we manually annotated any
entities, entity types, attributes, or relations occurring among the query terms (see Figure
6.1). Furthermore we annotated which was the primary intent of the query.

In our Web search log analysis we identified several query categories that would require
different treatment in an AER engine. We established five such categories (see examples
in Figure 6.1):

e Entity query: the intention of the query is to find a particular entity. Correct results
would be entities corresponding to some interpretation of the query entity.

117

7 Query 7 Entities (Types) 7 Intent 7 Query Type
1978 cjb jeep cjo jeep cjb jeep Entity
applewood golf in windham nh applewood golf, windham, nh applewood golf Entity
north texas eye doctors eye surgery north texas (eye doctors, eye surgery) eye doctors Type
akita dog akita akita Entity
best cold medication (cold medication) cold medication Type
botanicals for hair botanicals botanicals Entity
CARS FOR SALE IN AUSTIN austin (cars) cars Type
cello players (cello players) cello players Type
employment agencies w. 14th street nyc | w. 14th street, nyc (employment agencies) | employment agencies | Type
zip code waterville Maine waterville, Maine zip code Attr.

118

Figure 6.1: A sample of queries with their entities, types, query intent, and query type.

e Type query: the intention of the query is to find entities of a particular type (or
class). Correct results would be entities that are instances of the specified type.

e Attribute query: the intention of the query is to find values of a particular attribute
of and entity or type. Correct results would be the values of an attribute specified
in the query.

e Relation query: the intention of the query is to find how two or more entities or types
are related. Correct results would describe the relationship among the query entities
or types.

e Other keyword query: the intention of the query is described by some keywords
that do not fit into any of the above categories. Correct results would be resources
providing relevant information.

The existence of these query types has great importance to our problem, since each
type requires a different type of result, and would thus have to be evaluated differently
by the human judge. Any attempt to map the entity retrieval task to the ADR task will
must consider the existence of these query types, and the differences required in relevance
judgements. We believe this to be one of the significant distinctions between AER and
ADR, and thus one of the most complicating factors in mapping the ADR task to entity
ranking. We further investigate this issue in a quantitative analysis in Section 6.2.

6.1.2 Result Presentation

There is another important difference between entity search and document retrieval: what
constitutes a result? In document retrieval it is clear that a single document is a result.
Documents were invented by humans to be read, and therefore it is no challenge for a
human judge to read a document result and decide its relevance. However, entity graphs
on their own are not necessarily intended for raw human consumption. Resources are
complex, structured, and heavily interconnected. For example, many properties may be
needed to “define” an entity, and blank nodes are often used to hold information together.
The correct unit of information for retrieval is unclear.

The ADR community has also encountered such problems when retrieving very large
structured documents, for example books and XML documents. The main problem there
is to define the right level of granularity of the results: sometimes relevance will be in
a single sentence, sometimes in an entire section of XML subtree. Several approaches
have been developed to tackle these issues, but they always lead to quite cumbersome

119

task formalizations which demand a great amount of effort to the human evaluators (e.g.,
TREC sentence retrieval [94], and INEX entity search [52]).

We note that similar to the way a text retrieval engine provides an abstract of the
search result, a typical entity-based search engine will return more than the identifier of
the resulting resource. The search engine will provide more complete information to allow
the user to inspect the result without retrieving its definition from the Web. The search
engine may also highlight parts of the resulting graph, e.g. to show where the query terms
have matched or which triples are most representative in defining the entity.

However, treating the resulting (possibly decorated) RDF graphs as a result would
break our commitment to component-wise evaluation, because the relevance of the results
would be tied to particular strategies for presentation. This would be similar to judging
ADR methods by the quality of the snippet generator, or the rendering of the document.
Take the following example as an illustration. Consider three entity-based search systems
(S1, S2, and S3) that all return the entity Jimi Hendrix (identified by URI-1) as a search
result for the keyword query “hendriz”. The results are returned as follows:

S1: URI-1

S2: (URI-1, label, “Jimi Hendrixz”)

{
S3: (URI-1, label, “Jimi Hendriz”)
(URI-1, birthplace, Seattle)
(URI-1, hasColleague, URI-2)
(URI-2, label, “Mitch Mitchell”)
(URI-2, birthplace, London)
{

URI-2, actedIn, Live_it_up!)

It is evident from the example that, despite all three search systems having essentially
returned the same result, there is an inherent difference in the quality of how each item
is returned. A human evaluator would likely have difficulty judging the relevance of the
result returned by S1, while the verbosity of the result returned by S3 seems to make it of
lesser quality than that of S2. It is this difficulty that leads us to the separation of retrieval
from presentation. This allows us to define an explicit evaluation method for the ranked
retrieval of knowledge base resources with a fixed explanation strategy (and presentation
strategy for that matter), leaving presentation as a separate task from retrieval.

For this reason, in this work we use resources as the unit of retrieval. We show to
the evaluator a fixed presentation strategy consisting of all of the resource’s contents and

120

structure including the connections to other resources. This allows us to reuse human
judgments of resources to evaluate different ranking strategies independent of how systems
present results. Section 6.2 will discuss a particular evaluation tool and the guidelines
used for the human evaluators, and will present results obtained from the evaluation of a
baseline entity ranking system.

Judging a single resource, while making use of any information linked to that resource,
seemed to us the best possible compromise for evaluation. It has the advantage of decou-
pling the evaluation of entities from its presentation. Furthermore, it makes no limiting
assumptions on the uses an application may make of the entity; on the contrary, it assumes
that the application will know how to utilize a resource identifier. It is this decoupling of
relevance from presentation that allows the reuse of human judgments. We consider this
to be of paramount importance for an AER task.

6.1.3 Evaluation and Performance Measures

One of the advantages of mapping the entity ranking problem to the ADR task is that we
can reuse performance measures designed for ADR. Defining new performance measures
is very problematic, because it requires studying many aspects of the measure, such as
its generalization ability, its stability, appropriate statistical significance measures, etc.
In fact, being able to use well established performance measures for the entity ranking
problem was one of our main motivations in trying to map the problem to ADR.

Under the AER task definition, for a given query ¢ with query type t, a retrieval
system will return a list of entities {ey, s, -+ , €, }, which are evaluated and given relevance
values R(e;,q,t). We consider three popular metrics from the IR community, normalized
discounted cumulative gain (NDCG), mean average precision (MAP), and precision at k
(p@k) for a k value of 5. Details of these metrics can be found in Chapter 8 of [73].

6.2 An Empirical Study of Entity-based Queries

In order to evaluate a retrieval task such as ADR or AER, one needs to set up a search
task including data collection and human evaluators. As we saw in the previous section,
in the case of entity ranking, we also need to fix the resource presentation method. In this
section we set up a realistic evaluation of an AER task on the Web. We use real query
logs from a commercial search engine and a real large-scale collection of resources from a
crawl of the Web of Data.

121

For resources, we focused on metadata publicly available on the Web. We used a sub-
set of 240 million Web pages which have been crawled by Yahoo! and contain some form
of metadata (RDFa and various types of microformats). This produced approximately 8
billion triples when normalized as RDF, or about a 1.1 terabyte knowledge graph (uncom-
pressed).

In the evaluation we used the annotated query set described in Section 6.2.2. The
advantage of this approach is the diversity of the information needs that query logs capture,
i.e. a sample of the aggregate information needs of Web users in the US geography. As
opposed to a manually created or synthetic benchmark these queries also provide real
information needs. Lastly, since our data set has been gathered from the Web it is natural
to rely on Web queries for our evaluation. The disadvantage of our method is that the
original intent of the query is not directly available. We deal with this situation simply by
allowing evaluators to skip the queries that they do not understand. We do not instruct
evaluators to skip the queries where multiple interpretations are possible but rather to
consider all possible interpretations as valid. For example, a query for a person name
could be correctly answered by returning an entity corresponding to any person having
that name. In practice, the majority of queries can be easily interpreted by the evaluators.

As an entity retrieval engine we used the baseline system described in Section 6.2.1.
The retrieval implementation uses an inverted index over the text fields occurring in the
underlying triples. This index was used to retrieve a subset of resources, from which a
subset of the RDF graph could be constructed to produce and rank results. We use MG4J
[118] for our index.

With a fixed retrieval and presentation strategy, we conducted an evaluation of ranking
semantic resources as follows. We computed the top-5 results of a baseline ranking strategy.
We then did a human evaluation of relevance of the results, and also established the
ideal ranking based on the ideal re-ordering using the human evaluations. For a stability
comparison, we also use a random re-ranking of the top-5 results.

6.2.1 Baseline Ranking Approach

The baseline ranking strategy used is an adaptation of TF-IDF to RDF graphs. In this
setting, we compute an IDF score for each term in the vocabulary with respect to each
RDF property occurring in the graph. This means, for example, that the term “John” can
have different IDF values for the properties “vcard:name” and “vcard:address”, a desirable
property to distinguish among common terms in particular properties. In the example, the
term “John” may be very distinguishing as a street name, while very common as a person

122

name. We also blacklist a set of RDF properties that contain a lot of diverse text causing
noise in the results. These properties were chosen manually based on an inspection of a
sample of query results. The blacklisting includes properties such as review text and blog
summaries, which tend to match a diverse set of terms while providing little insight into
the meaning of a resource. While this is certainly not an ideal ranking approach in general,
it provides sufficient quality as a baseline metric to evaluate our methodology.

6.2.2 Query Analysis

Our query log analysis was conducted as follows. First, the queries themselves were an-
notated by human judges. Judges segmented the query into entities, types, relations,
attributes and remaining relevant keywords. Furthermore, judges annotated the intent
of the query, as discussed in 6.1.1. The intent of the query is defined as the component
of the query for which the query is primarily seeking information. Besides the primary
focus, a query may be further tagged with additional information such as secondary enti-
ties that appear in the query to disambiguate the primary intent or to provide additional
information. For example, the keyword query “doctors in barcelona” is primarily seeking
information about “doctors”, which is an entity type. The entity “barcelona” which also
appears in the query would be referred to as a context entity.

Table 6.1 shows the results of this study. We found a large bias towards entity centric
queries, or queries that do not fit easily into a semantic classification (“Other keyword
queries”, for example, the query “nightlife in Barcelona” has the primary intention of
finding information about “nightlife” within the context of the entity “Barcelona”). We
found that more than half of the queries focus on an entity or entity type. Interestingly,
among all of the “Other keyword queries” (those which do not have any semantic resource
as the primary intention), 14.3% of them also contain a context entity or type. This means
that over 70% of all queries contain a semantic resource (entity, type, relation, or attribute),
with almost 60% having a semantic resource as the primary intent of the query.

This analysis shows that type and entity queries constitute the vast majority of entity-
based queries and thus we restrict ourselves to these types of queries in our analysis. For
systems where these query types have a particular significance, separate evaluations can
be devised in the future.

123

’ Query type Percent of queries ‘

Entity query 40.60%
Type query 12.13%
Attribute query 4.63%
Relation query 0.68%
Other keyword query 36.10%
Uninterpretable 5.89%

Table 6.1: Distribution of query types for a sample of Web queries.

6.2.3 Entity Relevance Analysis

For each of the queries in the benchmark, we run the baseline entity retrieval engine
(discussed in Section 6.2.1) and asked human judges to evaluate the results. For this, we
developed an evaluation tool which allowed judges to see all the query information, and
the resources being evaluated.

The explanation strategy we used was a form of concise-bounded description®, where all
properties directly connected to a qualifying resource are included in the explanation, and
blank nodes are recursively expanded to provide explanations of how blank nodes connect
to any qualifying resource. We limit the expansion to a maximum of ten properties to
avoid overwhelming the user with high degree nodes (which are often large collections of
tags, generally unrelated to the resource and can thus be considered as spam). We do not
enforce a limit on how many blank nodes can be expanded, meaning the size of the RDF
subgraph shown to the user is unbounded and can vary considerably.

The tool displays a query along with a single entry of a search result (the URI along with
its expansion). A user can then rate the relevance of the result to the query on a four-point
zero to three scale. We measure two dimensions of relevance, the relevance of the result to
the main intention of the query; and relevance of the result to the full query text. For ex-
ample, given the query “john smith barcelona” with entity set { “john smith”, “barcelona”}
and intent = “john smith”, we would evaluate the relevance of each query result to both
the entity “john smith” as well as the full query. In this setting, any “John Smith” is rel-
evant in the first case, while only the “John Smiths” who are associated with “Barcelona”
are relevant in the second case. We design our experiment in this manner because we are
interested in both ranking for entity based retrieval and for full query answering.

http://www.w3.org/Submission/CBD/

124

Human judges were instructed to rate the relevance of the main entity, and only use
the query explanation as aid in understanding what the entity is. Thus over-explanation or
any irrelevant information in the explanation does not affect the relevance rating, ensuring
we only measure result quality and not explanation quality. The judges were given the
following two questions and a four-point scale for each.

e Is the resource in the result relevant to (the query intent resource)?

e Is the resource in the result relevant to (the full text query)?

In each case, the words “resource” and the resource or query were highlighted and colour
coded to coincide with the rendering of the query, query intent, and result resource. This
ensured that the judge could easily distinguish what was being evaluated for each question.
The description of the scale given to the judges was as follows.

e (: Not relevant - the resource in the result is not at all relevant to the query resource.

e 1: Somewhat relevant - the resource in the result is moderately relevant to the query
resource. For example, the result has the entity contained in a text property (review
text, summary, etc...) or tag.

e 2: Relevant - the resource in the result is related to the resource in the query.

e 3: Perfect match - the resource in the result exactly describes the resource in the
query. For example, the result is a VCard (address book entry) for a person entity
in the query. In the cases of a type query, a result which is an instance of the type
is also a perfect match.

A similar description was given for the task of rating the relevance of the result resource
to the full query.

The tool is shown in Figure 6.2. The query, “aerocalifornia, la paz” is rendered in
black, with the main intent of the query, “aerocalifornia” below in parenthesis. The result
being shown is a VCard for a person who works for Aerocalifornia in La Paz (the name is
anonymized for privacy reasons). Because this person entity is related to the intent entity
of the query, it would be given a score of two by human evaluators.

With this mechanism we judged 1162 results from 264 queries, corresponding to the (at
most) top-5 results produced by our baseline ranking algorithm. Such a shallow evaluation
scheme is typical of Web search engine evaluation, where greater number of queries is
preferred to large number of results evaluated per query.

125

Using file: example.txt 1 entries remaining Help!
Query: (Search Yahoo!)
aerocalifornia, la paz

(aerocalifornia)
Result:

nodeldbq57413x648
ns#fn Name Anonymized, AEROCALIFORNIA, S.A. JR SER La Paz
ns#org nodel4bg57413x648
22-rdf-syntax-ns#type http:/fwww.w3.org/2006/vcard/ns#VCard
ns#adr nodeldbg57413x650

nodel 4bg57413x649
ns#organization-name AEROCALIFORNIA, S.A. JR SER La Paz
22-rdf-syntax-ns#type http:/fwww.w3.0rg/2006/vcard/ns#COrganization

http://answers.yahoo.com/question/?qid=200708270547 1 3AAR]IBb
Card nodeldbgb7413x648
subject nodel 4bg57413x648

nodel 4bg57413x650

Do rAf_etmtavone#tuna htbndharurar e AaraDNNRRcardAme# AdArace
Is the resource in the result relevant to aerocalifornia ?

o 1 2 3
Not relevant © © @ © Veryrelevant

Is the resource in the result relevant to aerocalifornia, la paz »

o 1 2 3
Notrelevant © © ® © Veryrelevant

[0 Skip this result (do not record evaluation)

Submit L Make it stop!

Figure 6.2: A screen capture of the evaluation tool showing a query for the entity “Aerocalifornia” with

context entity “La Paz”.

126

Query Intent Resource Full Text Query

L [of 1] 2] 3] | [Of 1] 2] 3]
0] 46] 16| 6] 0 0148 20] 6] 0
1| -] 61] 37| 19 1| -|15| 7| 5
21 -] -] 13] 9 21 -] -| 3] 9
30 -] -] -| 23 31 - - -| 8

Figure 6.3: Inter-judge agreement on relevance scores from 0 to 3 for both relevance to the
query resource and relevance to the full text query.

Analysis of Human Judgments

Even with a given description of the evaluation task, determining the relevance of an RDF
resource to a query is a difficult process that can be highly subjective at times. To validate
our human assessments, we had the judges evaluate an overlapping set of 230 query results
and compared the assessments. Figure 6.3 shows a table of evaluation decisions for the
four-point relevance scale. Each cell in the (symmetric) table shows the frequency of a
judgment for the value of its respective row and column. Thus the diagonal entries show
the frequency of perfect agreement, which occurs on 64% of the result evaluations for query
intent, and 71% of the result evaluations for full query. If we also consider the cells adjacent
to the diagonals, we see that the “off-by-one” agreement of judges produces an agreement
of 93% for query intent 94% for full query. This indicates that our judges give generally
similar valuations to results, despite the inherent subjectiveness of the task.

In Figure 6.4 a histogram for both relevance of query intent to the result and relevance
of full query to the result is shown. These histograms illustrate the frequencies of each
value on our four-point scale over the full result set. While our entity retrieval scores mostly
in the moderate relevance range, the results are not very relevant to the full text queries.
This is a result of our simple baseline metric used for retrieval. Our results, however, do
contain enough diversity in relevance to conduct an evaluation for distinguishing ranking
algorithms.

Stability
We evaluate the stability of our chosen metrics on the resource ranking task. In order to

achieve a 95% confidence interval, we apply a standard bootstrap method [31]. We compute
a sample of size n from our query workload of size n, sampling with replacement. From

127

= - =
2 N 2
S k=3 S
N
2
k3

Frequency
=3
k=3
Frequency

ES 23
o =3

N
=3

120

60

40

” H N
° ° 1 2 3 ° ° 1 2 3

Valuation Valuation

Figure 6.4: Frequencies of valuations from the four-point evaluation scale. Valuations were
made for query intent (top) and full query (bottom).

this sample, we compute the mean value of the metric being evaluated over all queries in
the sample. We repeat this process one million times to get a set of means, and compute
the mean and standard error over the resulting set of means to obtain a 95% confidence
interval. This final mean can then be compared with the empirical mean obtained from
the actual workload to test the stability of the metric.

Figure 6.5 shows the results of our stability test. Averaged across many samples, the
bootstrapped mean of the metric becomes very close to the empirical mean and produces
a tight confidence interval at 95% confidence (we find a difference after the sixth decimal
place in all cases). This indicates that the metrics are stable across samples of queries
from the same distribution over RDF resource results. We note that this stability is also
dependent on our data, the sampling method used to obtain our query workload from the
Web query log, and the human relevance judgments. We must also make the assumption
that the bootstrap sampling draws scores from a normal distribution to apply this analysis.

Discriminant Power

We aim to show that applying our test metrics to RDF resources with a fixed retrieval
and presentation strategy has the ability to discriminate among ranking approaches in a
meaningful way. We consider three ranking strategies, all based on re-ranking the same top-
5 results returned by our fixed baseline retrieval strategy. The first approach is a random
re-ranking of the top-5 results, the second is our baseline ranking algorithm described in

128

’ Measurement \ Query Resource \ Full Query ‘

Empirical NDCG | 0.953 0.972
Bootstrap NDCG | 0.953 + 1.02e-05 | 0.973 + 9.08e-06
Empirical MAP 0.719 0.668
Bootstrap MAP | 0.719 + 7.04e-05 | 0.668 + 7.69¢-05
Empirical p@5 0.411 0.153
Bootstrap p@5 0.411 + 5.25e-05 | 0.153 + 4.15e-05

Figure 6.5: Stability of evaluation metrics for resource ranking. Confidence intervals are
computed at 95% confidence. Results are shown for both result resource to query resource,
and result resource to full text query.

Query Resource Full Query
Metric Random ‘ Baseline | Ideal | Random ‘ Baseline ‘ Ideal
DCG 5.004 5.072 | 5.402 2.878 2.923 | 3.0670
NDCG 0.942 0.952 1.0 0.968 0.972 1.0
MAP 0.644 0.719 | 0.820 0.603 0.668 | 0.790

Figure 6.6: Distinguishing among the baseline, random, and ideal rankings for various
evaluation metrics.

Section 6.2.1, and the third is the ideal re-ranking where results are ordered based on the
valuations given by a human judge.

Figure 6.6 shows the results of the three ranking approaches. We see that for both the
query resource relevance and the full text query relevance the scores distinguish among the
ranking approaches as expected. This is a positive result for discriminating power, given
how easy it is to obtain a high score with a random re-ranking of only 5 results. Note
that we omit p@5 since re-ranking the same results does not affect the score, and thus all
systems would be ranked equally.

6.3 Related Work

Due to the diverse nature of data models considered in semantic search systems (e.g., text,
annotated data, ontologies) a wide spectrum of query languages are used for semantic

129

search. These query languages range from expressive structured queries, like SPARQL
[87], to simple keyword queries. A number of works also consider semi-structured variations
(hybrid search) which integrate structured and keyword queries [31, 82, 89, , 108].

From the point of view of evaluation, structured queries have an explicit semantics and
thus a well defined query result. Such systems can be evaluated using standard approaches
from the database community, and as such, we omit them from our discussion. Keyword
queries and semi-structured queries however, have uncertain results and are thus much
more challenging to evaluate.

A number of end-to-end semantic search systems have been developed up to date, e.g.
[32, 33, 41, 43, 69, 78, 80, |. Fernandez et al. perform an evaluation using the TREC
benchmark [10]. TREC has been designed for measuring the relevance of results returned
by text retrieval engines and finds its origins in the Cranfield experiments [20]. However,
there are two potential problems in applying TREC measurements directly. First, many
semantic search engines fall back to basic keyword search when the query cannot be un-
derstood in terms of the available semantic models. Thus it is not known how much of the
evaluation tests the part of the system that actually employs semantics, and how much
covers traditional keyword search. In fact, in the work of Fernandez et al. only 20% of
the TREC queries used are covered by ontology concepts, the rest are removed leaving 20
queries for evaluation. Simply dismissing the queries that cannot be semantically inter-
preted is not easy as different search engines may have vastly different query understanding
capabilities. Furthermore, reaching consensus on a query workload in this manner may be
impossible as each approach to query interpretation can vary significantly. Thus, taking
the intersection of queries that a set of semantic search engines can handle would likely
produce an “easy” workload (if not empty), which cannot be justified as representative
of real users. Evaluating each search engine only on the queries it can interpret also has
drawbacks since the results obtained by two different search engines may not be directly
comparable. The second and even more apparent problem is that not all semantic search
engines perform document retrieval, but rather retrieve knowledge encoded in some seman-
tic data model. In many contexts, the data in the system is not necessarily associated with
any particular text document. This is the case for example with search engines that crawl
and index Linked Data such as Sindice [78]. Even in cases where there is a document, an
evaluation based on document rankings is not able to measure some of the key advantages
of semantic search such as being able to give precise answers to factual questions or that
answers can be computed by aggregating knowledge from different documents.

While TREC itself is thus not applicable to our scenario, the general concepts of the
Cranfield experiments can be directly carried over. In particular, we take a system-oriented
perspective with a reference collection, a fixed set of test queries and a set of relevance

130

judgments, which form the benchmark. In this respect our work is similar to the INEX
series [52], which is an adaptation of the methodology to XML content retrieval. Among
the various tracks of INEX, the entity-retrieval experiments the INEX Entity Ranking
Track is most relevant in terms of the query type. However, this INEX track also focuses
on textual corpora and that means that systems compete also on information extraction
functionality. In contrast, semantic search engines work with structured data.

In terms of the queries we consider, there are also commonalities to benchmarks that
consider queries for particular types of entities such as the Web People Search Evaluation
(WEPS) [2], or the expert finding task of the TREC Enterprise Track [93]. With respect to
addressing keyword retrieval on structured data, there is also existing work in the database
literature (e.g., [0, 45, 71]). This field of research has not produced a common evaluation
methodology for ranking effectiveness that we could adapt.

Since the presentation of this research, a number of follow up projections have been
completed. In particular, the exploration of crowd-sourcing relevance judgements in order
to scale the size of the benchmark and to quickly develop evaluation campaigns [123,]
and a comprehensive overview of the evaluation of semantic search systems [12]. Also, the
SEALS project has been established with a core goal of developing accessible and reusable
evaluation resources for semantic technologies [104, 122].

131

Chapter 7

Conclusions and Future Work

We have shown how keyword queries can be interpreted over large scale heterogeneous
Web knowledge bases by learning semantic structures from an annotated query log. Our
experiments verify that an accurate structuring model can be learned from a relatively
small training set by performing the structural mapping from high level summaries of
keyword queries to structured query templates.

We have proposed a keyword-based structured query language that trades off expres-
sivity and flexibility in utilizing Web knowledge graphs. This language can serve as an
end-user query language for expert users, or as an intermediate representation of the in-
tention of keyword queries over knowledge graphs. We have explored ambiguity issues with
basing a structured query language on keywords and proposed a solution for disambigua-
tion. Our experiments demonstrate that our proposed disambiguation model can quickly
achieve high quality disambiguations, even in the case where only partial knowledge is
available.

We have shown that a user’s click behaviour can be used to build a model of the types
of entities a user is interested in, and that such a model can be effectively used to rerank
entity results. We have shown effective reranking over four general baselines, though our
reranking methods could be applied to any entity retrieval system.

We have outlined the details of a methodology for entity-based search evaluation over
Web knowledge graphs. Our proposal builds on the well established ad-hoc document
retrieval task, allowing us to reuse existing efforts. We empirically justified the applicability
of ADR metrics to our entity ranking problem showing that our adaptations to entity
retrieval are justified. We also have constructed a classification of Web queries from the

133

entity retrieval point of view and have proposed the notion of a result and what relevance
means in this context.

Future directions for research on interpreting keyword queries over knowledge graphs
include exploring refinements on the granularity of semantic annotations. For example,
distinguishing locations from other types of entities could provide additional structuring
hints, since locations often appear as context information in keyword queries. Similarly,
person entities often appear as the primary intention of queries. There are a number of
parameters in the system that can control how much of the search space is explored (e.g.,
the number of semantic annotations to consider, the number of structurings of semanti-
cally annotated queries, the number of mappings of structured keyword queries into the
knowledge graph), future work could explore learning parameter values or auto-tuning
query dependent values. Future work may also consider applying these techniques to other
knowledge graphs and search verticals such as product catalogues or medical knowledge
bases. Query logs for such verticals may exhibit different structures and learning a model
for structuring specific to a search domain may improve effectiveness.

Future work may also investigate the effectiveness of personalized user interest models
for reranking entity results over other ranking baselines. Integrating negative feedback
could also be beneficial, for example if a user clicks a different URL quickly after an initial
click or if a user reformulates a query. This information could be used to ignore clicks in
the learned model or even to negatively weight entity types. Also, varying the definition of
session length to determine how long a user context is relevant, at and what point a user
interest model should be discarded and a new model learned. It would also be interesting
to investigate the possibility of propagating a user’s search context to users with similar
sessions using some form of collaborative filtering.

We have presented a procedure for concept search query evaluation in order to have a
complete system for evaluation. Future work should explore and compare the performance
of the proposed procedure to alternative implementations based on RDF databases that
support inference over entity type hierarchies as well as knowledge graph updates. Such
research would necessarily have to explore new benchmarks for knowledge graphs that
emphasize reasoning over type hierarchies with variable mixes of update and search queries.
Resources such as DBpedia Live! could form a basis for a real-world workload of knowledge
graph updates.

thttp://live.dbpedia.com

134

References

1]

Ganesh Agarwal, Govind Kabra, and Kevin Chen-Chuan Chang. Towards rich query
interpretation: walking back and forth for mining query templates. In Proceedings of
the 19th international conference on World wide web, WWW 10, pages 1-10, New
York, NY, USA, 2010. ACM.

Javier Artiles, Satoshi Sekine, and Julio Gonzalo. Web people search: results of the
first evaluation and the plan for the second. In WWW, pages 1071-1072, 2008.

K. Balog, M. Ciglan, R. Neumayer, W. Wei, and K. Ngrvag. NTNU at SemSearch
2011. In Proceedings of the 4th International Semantic Search Workshop (SEM-
SEARCH’11), 2011.

K. Balog, A. P. de Vries, P. Serdyukov, P. Thomas, and T. Westerveld. Overview of
the trec 2009 entity track. In TREC 2009 Working Notes. NIST, November 2009.

Michele Banko, Michael J. Cafarella, Stephen Soderland, Matthew Broadhead, and
Oren Etzioni. Open information extraction from the web. In IJCAI pages 2670-2676,
2007.

Jeremy Barbay, Alejandro Lopez-Ortiz, and Tyler Lu. Faster adaptive set intersec-
tions for text searching. In Ezperimental Algorithms, volume 4007 of Lecture Notes
i Computer Science, pages 146—157. Springer Berlin Heidelberg, 2006.

Cory Barr, Rosie Jones, and Moira Regelson. The linguistic structure of english web-
search queries. In Proceedings of the Conference on Empirical Methods in Natural
Language Processing, EMNLP ’08, pages 1021-1030, Stroudsburg, PA, USA, 2008.
Association for Computational Linguistics.

Holger Bast, Alexandru Chitea, Fabian M. Suchanek, and Ingmar Weber. ESTER:
efficient search on text, entities, and relations. In SIGIR, pages 671-678, 2007.

135

[9]

[10]

[11]

[12]

[17]

[18]

[19]

Jon Louis Bentley and Andrew Chi chih Yao. An Almost Optimal Algorithm for
Unbounded Searching. Information Processing Letters, 5:82-87, 1976.

Gaurav Bhalotia, Arvind Hulgeri, Charuta Nakhe, Soumen Chakrabarti, and S. Su-
darshan. Keyword Searching and Browsing in Databases using BANKS. In ICDF,
pages 431-440, 2002.

Christian Bizer, Jens Lehmann, Georgi Kobilarov, Séren Auer, Christian Becker,
Richard Cyganiak, and Sebastian Hellmann. Dbpedia - a crystallization point for
the web of data. Web Semant., 7(3):154-165, September 2009.

Roi Blanco, Harry Halpin, Daniel M. Herzig, Peter Mika, Jeffrey Pound, Henry S.
Thompson, and Thanh Tran. Repeatable and reliable semantic search evaluation.
To Appear: Web Semantics: Science, Services and Agents on the World Wide Web,
2013.

Roi Blanco, Peter Mika, and Sebastiano Vigna. Effective and efficient entity search
in rdf data. In The Semantic Web — ISWC 2011, volume 7031 of Lecture Notes in
Computer Science, pages 83-97. Springer Berlin / Heidelberg, 2011.

Roi Blanco, Peter Mika, and Hugo Zaragoza. Entity Search Track submission by
Yahoo! Research Barcelona. Technical report, SemSearch, 2010.

Dan Brickley and R.V. Guha. RDF Vocabulary Description Language 1.0: RDF
Schema. W3c recommendation, W3C, February 2004.

Charles George Broyden, John E Dennis, and Jorge J Moré. On the local and super-
linear convergence of quasi-newton methods. IMA Journal of Applied Mathematics,
12(3):223-245, 1973.

Michael J. Cafarella. Extracting and querying a comprehensive web database. In
CIDR, 2009.

Michael J Cafarella, Alon Halevy, Daisy Zhe Wang, Fugene Wu, and Yang Zhang.
WebTables: exploring the power of tables on the web. Proc. VLDB Endow., 1(1):538—
549, 2008.

Michael J. Cafarella, Christopher Re, Dan Suciu, and Oren Etzioni. Structured
querying of web text data: A technical challenge. In CIDR, pages 225-234, 2007.

136

[20]

[21]

[22]

[26]

27]

28]

[29]

P. Castells, M. Fernandez, and D. Vallet. An adaptation of the vector-space model
for ontology-based information retrieval. In IEEE Transactions on Knowledge and
Data Enginering 19(02), pages 261-272, 2007.

Soumen Chakrabarti. Dynamic personalized pagerank in entity-relation graphs. In
Proceedings of the 16th international conference on World Wide Web, WWW 07,
pages 571-580, New York, NY, USA, 2007. ACM.

Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C Hsieh, Deborah A Wallach,
Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E Gruber. Bigtable:
A distributed storage system for structured data. ACM Transactions on Computer
Systems (TOCS), 26(2):4, 2008.

Tao Cheng, Xifeng Yan, and Kevin Chen-Chuan Chang. EntityRank: searching
entities directly and holistically. In VLDB, pages 387-398, 2007.

Paul Alexandru Chirita, Wolfgang Nejdl, Raluca Paiu, and Christian Kohlschiitter.
Using odp metadata to personalize search. In Proceedings of the 28th annual interna-
tional ACM SIGIR conference on Research and development in information retrieval,

SIGIR ’05, pages 178-185, New York, NY, USA, 2005. ACM.

Charles L. A. Clarke, Gordon V. Cormack, and Thomas R. Lynam. Exploiting redun-
dancy in question answering. In Proceedings of the 24th annual international ACM

SIGIR conference on Research and development in information retrieval, SIGIR 01,
pages 358-365, New York, NY, USA, 2001. ACM.

C. Cleverdon and M. Kean. Factors Determining the Performance of Indexing Sys-
tems. Technical report, Aslib Cranfield Research Project, Cranfield, England, 1968.

Francisco M. Couto, Mrio J. Silva, and Pedro M. Coutinho. Measuring semantic
similarity between Gene Ontology terms. Data & Knowledge Engineering, 61(1):137
— 152, 2007.

Carolyn J Crouch and Bokyung Yang. Experiments in automatic statistical thesaurus
construction. In Proceedings of the 15th annual international ACM SIGIR conference
on Research and development in information retrieval, pages 77-88. ACM, 1992.

Hoa Trang Dang, Diane Kelly, and Jimmy J. Lin. Overview of the trec 2007 question
answering track. In TREC, 2007.

137

[30]

[39]

Mariam Daoud, Lynda Tamine-Lechani, Mohand Boughanem, and Bilal Chebaro. A
session based personalized search using an ontological user profile. In Proceedings of
the 2009 ACM symposium on Applied Computing, SAC '09, pages 1732-1736, New
York, NY, USA, 2009. ACM.

Gianluca Demartini, Tereza lofciu, and ArjenP. Vries. Overview of the inex 2009
entity ranking track. In Focused Retrieval and Fvaluation, volume 6203 of Lecture
Notes in Computer Science, pages 254-264. Springer Berlin Heidelberg, 2010.

Li Ding, Tim Finin, Anupam Joshi, Rong Pan, R. Scott Cost, Yun Peng, Pavan
Reddivari, Vishal Doshi, and Joel Sachs. Swoogle: a search and metadata engine for
the semantic web. In Proceedings of the thirteenth ACM international conference on
Information and knowledge management, CIKM ’04, pages 652-659, New York, NY,
USA, 2004. ACM.

Alistair Duke, Tim Glover, and John Davies. Squirrel: An advanced semantic search
and browse facility. In ESWC, pages 341-355, 2007.

B. Efron. Bootstrap Methods: Another Look at the Jackknife. The Annals of
Statistics, 7(1):1-26, 1979.

Shady Elbassuoni and Roi Blanco. Keyword search over rdf graphs. In Proceedings of
the 20th ACM international conference on Information and knowledge management,
CIKM 11, pages 237-242, New York, NY, USA, 2011. ACM.

Shady Elbassuoni, Maya Ramanath, Ralf Schenkel, and Gerhard Weikum. Searching
rdf graphs with sparql and keywords. IEEE Data Eng. Bull., 33(1):16-24, 2010.

Oren Etzioni, Anthony Fader, Janara Christensen, Stephen Soderland, and Mausam.
Open information extraction: The second generation. In IJCAI, pages 3-10, 2011.

Ronald Fagin, Benny Kimelfeld, Yunyao Li, Sriram Raghavan, and Shivakumar
Vaithyanathan. Understanding queries in a search database system. In Proceedings
of the twenty-ninth ACM SIGMOD-SIGACT-SIGART symposium on Principles of
database systems, PODS ’10, pages 273284, New York, NY, USA, 2010. ACM.

Fernando Farfan, Vagelis Hristidis, Anand Ranganathan, and Michael Weiner. XOn-
toRank: Ontology-Aware search of electronic medical records. In Proceedings of the
2009 IEEE International Conference on Data Engineering, pages 820-831, Washing-
ton, DC, USA, 2009. IEEE Computer Society.

138

[40]

[41]

[42]

[46]

[47]

[48]

[49]

M. Fernandez, V. Lopez, M. Sabou, V. Uren, D. Vallet, E. Motta, and P. Castells.
Semantic search meets the web. In Semantic Computing, 2008 IEEE International
Conference on, pages 253 —260, August 2008.

R. Guha, Rob McCool, and Eric Miller. Semantic search. In Proceedings of the 12th
international conference on World Wide Web, WWW ’03, pages 700-709, New York,
NY, USA, 2003. ACM.

Jiafeng Guo, Gu Xu, Xueqi Cheng, and Hang Li. Named entity recognition in query.
In Proceedings of the 32nd international ACM SIGIR conference on Research and
development in information retrieval, SIGIR 09, pages 267274, New York, NY,
USA, 2009. ACM.

Andreas Harth, Jiirgen Umbrich, Aidan Hogan, and Stefan Decker. YARS2: A Fed-
erated Repository for Querying Graph Structured Data from the Web. The Semantic
Web, pages 211-224, 2008.

Vagelis Hristidis, Luis Gravano, and Yannis Papakonstantinou. Efficient IR-style
keyword search over relational databases. In Proceedings of the 29th international
conference on Very large data bases - Volume 29, VLDB 2003, pages 850-861. VLDB
Endowment, 2003.

Vagelis Hristidis and Yannis Papakonstantinou. Discover: keyword search in rela-
tional databases. In Proceedings of the 28th international conference on Very Large
Data Bases, VLDB ’02, pages 670-681. VLDB Endowment, 2002.

Vagelis Hristidis, Louiqa Raschid, and Yao Wu. Scalable link-based personalization
for ranking in entity-relationship graphs. In WebDB, 2011.

Jian Hu, Gang Wang, Fred Lochovsky, Jian-tao Sun, and Zheng Chen. Understanding
user’s query intent with wikipedia. In Proceedings of the 18th international conference
on World wide web, WWW 09, pages 471-480, New York, NY, USA, 2009. ACM.

Ihab F. Ilyas, Walid G. Aref, and Ahmed K. Elmagarmid. Supporting top-k join
queries in relational databases. The VLDB Journal, 13(3):207-221, 2004.

Alpa Jain, AnHai Doan, and Luis Gravano. Optimizing sql queries over text
databases. In Proceedings of the 2008 IEEFE 2jth International Conference on Data
Engineering, ICDE ’08, pages 636-645, Washington, DC, USA, 2008. IEEE Com-
puter Society.

139

[50]

[51]

Jay J. Jiang and David W. Conrath. Semantic similarity based on corpus statistics
and lexical taxonomy. In Intl. Conf. on Computational Linguistics, 1997.

Varun Kacholia, Shashank Pandit, Soumen Chakrabarti, S. Sudarshan, Rushi Desali,
and Hrishikesh Karambelkar. Bidirectional expansion for keyword search on graph
databases. In Proceedings of the 31st international conference on Very large data
bases, VLDB ’05, pages 505-516. VLDB Endowment, 2005.

Jaap Kamps, Shlomo Geva, Andrew Trotman, Alan Woodley, and Marijn Koolen.
Overview of the inex 2008 ad hoc track. Advances in Focused Retrieval: 7Tth In-
ternational Workshop of the Initiative for the Evaluation of XML Retrieval, INEX
2008, Dagstuhl Castle, Germany, December 15-18, 2008. Revised and Selected Pa-
pers, pages 1-28, 2009.

Eser Kandogan, Rajasekar Krishnamurthy, Sriram Raghavan, Shivakumar
Vaithyanathan, and Huaiyu Zhu. Avatar semantic search: a database approach
to information retrieval. In Proceedings of the 2006 ACM SIGMOD international
conference on Management of data, SIGMOD ’06, pages 790-792, New York, NY,
USA, 2006. ACM.

G. Kasneci, F. M Suchanek, G. Ifrim, M. Ramanath, and G. Weikum. NAGA:
searching and ranking knowledge. In Data Engineering, 2008. ICDE 2008. IEEE
2/th International Conference on, pages 953 —962, April 2008.

Boris Katz, Sue Felshin, Deniz Yuret, Ali Ibrahim, Jimmy J. Lin, Gregory Marton,
Alton Jerome McFarland, and Baris Temelkuran. Omnibase: Uniform access to
heterogeneous data for question answering. In NLDB, pages 230-234, 2002.

Boris Katz and Beth Levin. Exploiting lexical regularities in designing natural lan-
guage systems. In Proceedings of the 12th conference on Computational linguistics -
Volume 1, COLING 88, pages 316-323, Stroudsburg, PA, USA, 1988. Association
for Computational Linguistics.

Oleksandr Kolomiyets and Marie-Francine Moens. A survey on question answering
technology from an information retrieval perspective. Information Sciences, In Press,
Corrected Proof:—, 2011.

Oren Kurland and Lillian Lee. Corpus structure, language models, and ad hoc
information retrieval. In Proceedings of the 27th annual international ACM SIGIR

conference on Research and development in information retrieval, SIGIR ’04, pages
194-201, New York, NY, USA, 2004. ACM.

140

[59]

[68]

John D. Lafferty, Andrew McCallum, and Fernando C. N. Pereira. Conditional
random fields: Probabilistic models for segmenting and labeling sequence data. In
Proceedings of the Eighteenth International Conference on Machine Learning, ICML
‘01, pages 282-289, San Francisco, CA, USA, 2001. Morgan Kaufmann Publishers
Inc.

Avinash Lakshman and Prashant Malik. Cassandra: a decentralized structured stor-
age system. ACM SIGOPS Operating Systems Review, 44(2):35-40, 2010.

Claudia Leacock and Martin Chodorow. Combining local context with wordnet sim-
ilarity for word sense identification. In WordNet: A Lezical Reference System and
its Application, 1998.

Yuangui Lei, Victoria S. Uren, and Enrico Motta. SemSearch: a search engine for
the semantic web. In EKAW, pages 238-245, 2006.

Douglas B. Lenat, R. V. Guha, Karen Pittman, Dexter Pratt, and Mary Shepherd.
Cyc: toward programs with common sense. Commun. ACM, 33(8):30-49, August
1990.

Xiao Li. Understanding the semantic structure of noun phrase queries. In Proceedings
of the 48th Annual Meeting of the Association for Computational Linguistics, ACL
10, pages 1337-1345, Stroudsburg, PA, USA, 2010. Association for Computational

Linguistics.

Percy Liang, Michael I. Jordan, and Dan Klein. Learning Dependency-Based com-
positional semantics. In ACL, pages 590-599, 2011.

Dekang Lin. An information-theoretic definition of similarity. In ICML °98: Proc.
of the Fifteenth Intl. Conf. on Machine Learning, pages 296-304. Morgan Kaufmann
Publishers Inc., 1998.

Fang Liu, Clement Yu, and Weiyi Meng. Personalized web search by mapping user
queries to categories. In Proceedings of the eleventh international conference on
Information and knowledge management, CIKM ’02, pages 558-565, New York, NY,
USA, 2002. ACM.

Shuang Liu, Clement Yu, and Weiyi Meng. Word sense disambiguation in queries. In
Proceedings of the 14th ACM international conference on Information and knowledge
management, CIKM ’05, pages 525-532, New York, NY, USA, 2005. ACM.

141

[69]

[70]

[71]

[72]

(73]

[74]

[76]

[77]

78]

V. Lopez, M. Fernndez, E. Motta, and N. Stieler. PowerAqua: supporting users in
querying and exploring the semantic web content. Semantic Web Journal, 2011.

Vanessa Lopez, Victoria S. Uren, Marta Sabou, and Enrico Motta. Is question
answering fit for the semantic web?: A survey. Semantic Web, 2(2):125-155, 2011.

Yi Luo, Xuemin Lin, Wei Wang, and Xiaofang Zhou. Spark: top-k keyword query
in relational databases. In Proceedings of the 2007 ACM SIGMOD international
conference on Management of data, SIGMOD ’07, pages 115-126, New York, NY,
USA, 2007. ACM.

Ana G. Maguitman, Filippo Menczer, Heather Roinestad, and Alessandro Vespig-
nani. Algorithmic detection of semantic similarity. In WWW °05: Proc. of the 14th
Intl. Conf. on World Wide Web, pages 107-116. ACM, 2005.

C.D. Manning, P. Raghavan, and H. Schiitze. An Introduction to Information Re-
trieval. Cambridge University Press, 2008.

Mehdi Manshadi and Xiao Li. Semantic tagging of web search queries. In Proceedings
of the Joint Conference of the 47th Annual Meeting of the ACL and the jth Inter-
national Joint Conference on Natural Language Processing of the AFNLP: Volume 2
- Volume 2, ACL ’09, pages 861-869, Stroudsburg, PA, USA, 2009. Association for
Computational Linguistics.

J. Mayfield and T. Finin. Information retrieval on the semantic web: Integrating
inference and retrieval. In Workshop on the Semantic Web at the 26th International
SIGIR Conference on Research and Development in Information Retrieval, 2003.

George A. Miller. Wordnet: A lexical database for english. Communications of the
ACM, 38:39-41, 1995.

Kotaro Nakayama, Takahiro Hara, and Shojiro Nishio. Wikipedia mining for an
association web thesaurus construction. In Boualem Benatallah, Fabio Casati, Dim-
itrios Georgakopoulos, Claudio Bartolini, Wasim Sadiq, and Claude Godart, editors,
Web Information Systems Engineering WISE 2007, volume 4831 of Lecture Notes
in Computer Science, pages 322-334. Springer Berlin Heidelberg, 2007.

Eyal Oren, Renaud Delbru, Michele Catasta, Richard Cyganiak, Holger Stenzhorn,
and Giovanni Tummarello. Sindice.com: a document-oriented lookup index for open
linked data. Int. J. Metadata Semant. Ontologies, 3(1):37-52, November 2008.

142

[79]

Stelios Paparizos, Alexandros Ntoulas, John Shafer, and Rakesh Agrawal. Answering
web queries using structured data sources. In Proceedings of the 35th SIGMOD
international conference on Management of data, SIGMOD 09, pages 1127-1130,
New York, NY, USA, 2009. ACM.

Jeffrey Pound, Alexander K. Hudek, Thab F. Ilyas, and Grant Weddell. Interpreting
keyword queries over web knowledge bases. In Proceedings of the 21st ACM inter-
national conference on Information and knowledge management, CIKM ’12, pages

305-314, New York, NY, USA, 2012. ACM.

Jeffrey Pound, Thab F Ilyas, and Grant Weddell. Expressive and flexible access to
web-extracted data: a keyword-based structured query language. In Proceedings
of the 2010 international conference on Management of data, SIGMOD ’10, pages
423-434, New York, NY, USA, 2010. ACM.

Jeffrey Pound, Thab F Ilyas, and Grant Weddell. QUICK: expressive and flexible
search over knowledge bases and text collections. Proc. VLDB Endow., 3(1-2):1573~
1576, September 2010.

Jeffrey Pound, Peter Mika, and Hugo Zaragoza. Ad-hoc object retrieval in the web of
data. In Proceedings of the 19th international conference on World wide web, WWW
10, pages 771-780, New York, NY, USA, 2010. ACM.

Jeffrey Pound, Stelios Paparizos, and Panayiotis Tsaparas. Facet discovery for struc-
tured web search: a query-log mining approach. In Proceedings of the 2011 interna-
tional conference on Management of data, SIGMOD ’11, pages 169180, New York,
NY, USA, 2011. ACM.

Jeffrey Pound, David Toman, Grant E. Weddell, and Jiewen Wu. An assertion
retrieval algebra for object queries over knowledge bases. In [JCAI pages 1051—
1056, 2011.

A. Pretschner and S. Gauch. Ontology based personalized search. In Tools with
Artificial Intelligence, 1999. Proceedings. 11th IEEE International Conference on,
pages 391-398, 1999.

Eric Prud’hommeaux and Andy Seaborne. Sparql query language for rdf. W3c
recommendation, W3C, January 2008.

143

[38]

[89]

[90]

[91]

[92]

[94]

[95]

[96]

[97]

Philip Resnik. Semantic Similarity in a Taxonomy: An Information-Based Measure
and its Application to Problems of Ambiguity in Natural Language. Journal of
Artificial Intelligence Research, 11:95-130, 1999.

Cristiano Rocha, Daniel Schwabe, and Marcus P. Aragao. A hybrid approach for
searching in the semantic web. In Proceedings of the 13th international conference
on World Wide Web, pages 374-383. ACM Press, 2004.

M. Andrea Rodriguez and Max J. Egenhofer. Determining Semantic Similarity among
Entity Classes from Different Ontologies. IEEE Trans. on Knowledge and Data
Engineering., 15(2):442-456, 2003.

Nikos Sarkas, Stelios Paparizos, and Panayiotis Tsaparas. Structured annotations of
web queries. In Proceedings of the 2010 international conference on Management of

data, SIGMOD 10, pages 771-782, New York, NY, USA, 2010. ACM.

Fei Sha and Fernando Pereira. Shallow parsing with conditional random fields. In
Proceedings of the 2003 Conference of the North American Chapter of the Association
for Computational Linguistics on Human Language Technology - Volume 1, NAACL
‘03, pages 134-141, Stroudsburg, PA, USA, 2003. Association for Computational
Linguistics.

I. Soboroff, A.P. de Vries, and N. Craswell. Overview of the TREC 2006 Enterprise
Track, page 32. Technical Report SP 500-272. TREC, NIST Special Publication,
2006.

Ian Soboroff. Overview of the trec 2004 novelty track. In The Thirteenth Text
Retrieval Conference (TREC 2004), 2004.

M. Speretta and S. Gauch. Personalized search based on user search histories. In
Web Intelligence, 2005. Proceedings. The 2005 IEEE/WIC/ACM International Con-
ference on, pages 622-628, 2005.

Fabian M Suchanek, Gjergji Kasneci, and Gerhard Weikum. Yago: A core of se-
mantic knowledge - unifying WordNet and wikipedia. In 16th Intl. World Wide Web
Conference (WWW 2007), pages 697-706, 2007.

Sandeep Tata and Guy M. Lohman. Sqak: doing more with keywords. In Proceed-
ings of the 2008 ACM SIGMOD international conference on Management of data,
SIGMOD 08, pages 889-902, New York, NY, USA, 2008. ACM.

144

(98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

T. Tran, H. Wang, S. Rudolph, and P. Cimiano. Top-k exploration of query candi-
dates for efficient keyword search on graph-shaped (rdf) data. In Data Engineering,
2009. ICDE’09. IEEE 25th International Conference on, pages 405416, 2009.

Thanh Tran, Philipp Cimiano, Sebastian Rudolph, and Rudi Studer. Ontology-Based
interpretation of keywords for semantic search. In The Semantic Web, volume 4825

of Lecture Notes in Computer Science, pages 523-536. Springer Berlin / Heidelberg,
2007. 10.1007/978-3-540-76298-0_38.

Thanh Tran, Haofen Wang, and Peter Haase. SearchWebDB: Data Web Search on a
Pay-As-You-Go Integration Infrastructure. Technical report, Universitat Karlsruhe
(TH), 2008.

AJ Viterbi. Error bounds for convolutional codes and an asymptotically optimum
decoding algorithm. In IEEE Transactions on Information Theory, volume 13 (2),
pages 260-269, 1961.

Haofen Wang, Thanh Tran, and Chang Liu. Ce2: towards a large scale hybrid search
engine with integrated ranking support. In Proceedings of the 17th ACM conference
on Information and knowledge management, CIKM 08, pages 1323-1324, New York,
NY, USA, 2008. ACM.

Ye-Yi Wang, Raphael Hoffmann, Xiao Li, and Jakub Szymanski. Semi-supervised
learning of semantic classes for query understanding: from the web and for the web. In
Proceeding of the 18th ACM conference on Information and knowledge management,
CIKM ’09, pages 37-46, New York, NY, USA, 2009. ACM.

Stuart N. Wrigley, Ratl Garcia-Castro, and Lyndon Nixon. Semantic evaluation at
large scale (seals). In Proceedings of the 21st international conference companion
on World Wide Web, WWW ’12 Companion, pages 299-302, New York, NY, USA,
2012. ACM.

Zhibiao Wu and Martha Palmer. Verb semantics and lexical selection. In 32nd.
Annual Meeting of the Association for Computational Linguistics, pages 133 —138,
1994.

Mohamed Yahya, Klaus Berberich, Shady Elbassuoni, Maya Ramanath, Volker
Tresp, and Gerhard Weikum. Natural language questions for the web of data. In
EMNLP-CoNLL, pages 379-390, 2012.

145

107]

108

[109]

[110]

111]
[112]
[113]
[114]
[115)
[116]
[117]
[118]
[119]

[120]

[121]
[122]

[123]

Luke S. Zettlemoyer and Michael Collins. Online learning of relaxed CCG grammars
for parsing to logical form. In EMNLP-CoNLL, pages 678-687, 2007.

Lei Zhang, QiaoLing Liu, Jie Zhang, HaoFen Wang, Yue Pan, and Yong Yu. Sem-
plore: An IR approach to scalable hybrid query of semantic web data. In The
Semantic Web, volume 4825 of Lecture Notes in Computer Science, pages 652—-665.
Springer Berlin / Heidelberg, 2007. 10.1007/978-3-540-76298-0_47.

Xian Zhang, Yu Hao, Xiaoyan Zhu, and Ming Li. New information distance mea-
sure and its application in question answering system. J. Comput. Sci. Technol.,
23(4):557-572, 2008.

Qi Zhou, Chong Wang, Miao Xiong, Haofen Wang, and Yong Yu. SPARK: adapting
keyword query to semantic search. In The Semantic Web, volume 4825 of Lecture
Notes in Computer Science, pages 694-707. Springer Berlin / Heidelberg, 2007.

Berkeley DB. http://www.oracle.com/technetwork/products/berkeleydb/.
CRF++: Yet Another CRF Toolkit. http://code.google.com/p/cripp/.
Freebase. http://www.freebase.com/.

The Gene Ontology. http://www.geneontology.org/.

Apache HBase. http://hbase.apache.org/.

Linked Data. linkeddata.org.

Apache Lucene. http://lucene.apache.org/.

MG4J: Managing gigabytes for java. http://mg4j.dsi.unimi.it/.
MusicBrainz: The Open Music Encyclopedia. http://musicbrainz.org/.

OWL 2 Web Ontology Language Document Overview (Second Edition).
http://www.w3.org/TR/owl2-overview/, December 2012.

schema.org. http://schema.org/.
SEALS - Semantic Evaluation at Large Scale. http://www.seals-project.eu/.

Semantic search workshop 2010. http://km.aifb.kit.edu/ws/semsearch10/.

146

[124] Semantic search challenge 2011. http://semsearch.yahoo.com/.
[125] SNOMED Clinical Terms. http://www.ihtsdo.org/snomed-ct/.

[126] Stanford Natural Language Processing Software.
http://www-nlp.stanford.edu/software.

[127] UMBEL. http://www.umbel.org/.
[128] Wikipedia, the free encyclopedia. http://www.wikipedia.org/.

[129] Yahoo! Academic Relations. http://webscope.sandbox.yahoo.com/catalog.php
- L13 - Yahoo! Search Query Tiny Sample.

147

Appendix A

Evaluation Workloads

A.1 Query Understanding Workload

The following tables encode the positive queries from the query understanding workload.
The negative queries from the Yahoo query log are subject to copyright and cannot be
published. They are available as part of the WebScope program [129].

149

QID | Keyword Query Semantic Summary | Structured Query Template
1 the cat in the hat ent ent

2 john lennon ent ent

3 electronic frontier foundation ent ent

4 once upon a time in mexico ent ent

D merkel chancellor of germany ent,type ent I type

6 clapton football club ent,type ent I type

7 john smith poet ent,type ent I type

8 apollo 13 movie ent, type ent M type

9 barcelona artists ent,type type M rel(ent)
10 chicago comedians ent,type type M rel(ent)
11 turing award mathematicians ent,type type M rel(ent)
12 emmy award actors ent,type type M rel(ent)
13 | toronto high park ent,ent ent1 M rel(ent0)
14 | madrid battle of somosierra ent,ent ent1 M rel(ent0)
15 | paris pulcinella ent,ent ent1 M rel(ent0)
16 | sony playstation ent,ent entl M rel(ent0)
17 stephen harper conservative party of canada | ent,ent ent0 M rel(ent1)
18 | guernica picasso ent,ent ent0 M rel(entl)
19 hard days night the beatles ent,ent ent0 M rel(ent1)
20 from hell johnny depp ent,ent ent0 M rel(ent1)
21 lead guitarists type type

22 spanish painters type type

23 coastal cities type type

24 companies based in silicon valley type type

Figure A.1: Query understanding workload: semantic summaries and structured query templates.

150

((gyue)(a1 | TIUe)[aI L (JUD MU U0 AueuiIo8 uI19(UelIesIary F
((gyud)[a1 | T9ue) [l [(YUD U1 TUo oouey stred 9939UONY NRIARD LV
((gyuod)[e1 | T9ue)[aI [()uD JUO* YU YU RUIJUOSIR SOITR SOUSI(AIOJOUIDD ©I[0991 oF
((gyuo)[o1 | TIue)[oI [()uD LNl oie) epRUR) BMR}I0 YIed Iomalq 7
Aoog\ﬁﬁg Ll TodA)y od£y‘ed Ly SISLIRIINSG popIeme A%
(0pd£y) 1 | TodAy odAyodAy syuapisard g [00YDS angea] AAl ey

(0pd£y) 1 | TodAy od£yeadLy SOLI} P01 9ed3al ¥
(ppd£y) 1 | TodAy odAyodLAy sueIoISNW suos 4s9301d 1¥

(yuo) o1 Ju‘To1 uoryoy dind jo 1030011p 0F

(yuo) o1 JUD‘To1 spue[93sem 91} JO Ioyjne 6¢

(yua)[o1 AVENEN ereIjsne rejdes Q¢

(yuo)(o1 JUD‘ToI Sunymey ueydeys eoe[dyjalq 1€

(yuo) oI [o1‘yua IOSTAP®R SURWIUADJ PIRYDLI 9¢

(yuo) o1 AL reydes s epeued ce

(yuo) o1 [PI1‘9uo spIeme ud[[e Apoom 7e

(yua)(o1 |CASILE] SOOI TedIsnuw s, uouua] uyol ee

(yua)(o1 || odAy Juo‘o1‘odA) CL61 ur paysiqelso sorueduod &S

(yuo)(o1 | odAy Jua‘Tor‘od Ay Awureld e popreme sjsre}ms 1€

(yuo)[o1 | odAy Juo‘oI0dA) AoupAs ur wroq sooxo 9jerodiod 0¢

(yuo)[o1 | odAy Juo‘tar‘odAy | ozrd sotsAyd [oqou o) uom jery sjswisAyd 62

(yus) 1y 133e‘U0 seofordure Jo IoquInu J00[ade] Q7

(yus) 137 I)1e‘que ayep Suruado 00z 0Ja1p ues 1T

(yue) 137 133R9U9 AePYIIIQ S, BUTRYO YoeIR(q oz,

(yuo) 19w I19eque ONUAASI W ey

ore[dwo], A1on(?) paInjonilg | Arewrung oljuruIog Arongy promAsy | IO

151

QID | Keyword Query Structured Keyword Query

1 the cat in the hat the cat in the hat

2 john lennon john lennon

3 electronic frontier foundation electronic frontier foundation

4 once upon a time in mexico once upon a time in mexico

D merkel chancellor of germany merkel M chancellor of germany
6 clapton football club clapton M football club

7 john smith poet john smith M poet

8 apollo 13 movie apollo 13 M movie

9 barcelona artists artists M * (barcelona)

10 | chicago comedians comedians M * (chicago)

11 | turing award mathematicians mathematicians M * (turing award)
12 emmy award actors actors M * (emmy award)

13 toronto high park high park M * (toronto)

14 | madrid battle of somosierra battle of somosierra M * (madrid)
15 | paris pulcinella pulcinella M * (paris)

16 sony playstation playstation M * (sony)

17 stephen harper conservative party of canada | stephen harper M * (conservative party of canada)
18 guernica picasso guernica M * (picasso)

19 hard days night the beatles hard days night M *(the beatles)
20 from hell johnny depp from hell M *(johnny depp)

21 lead guitarists lead guitarists

22 spanish painters spanish painters

23 coastal cities coastal cities

24 companies based in silicon valley companies based in silicon valley

Figure A.2: Query understanding workload: structured keyword query encodings.

152

((Aweur1of)
x L UImsq]
((eurjuaSie) ((oourry) , Ly sured) , Wp“w@ U9).IeSI91) \m
. x LI SoIre souonq) . J & O TIBOAES URUILING UI[I0(U0}Ies
A?@@Q@ov o L @EM 19J0WOD BJO[0DIT PUNTS ooueyy sured 01300 IsT) 7
ﬁva % L MM@Q IOMBI [JUSSIR SoIle SOual(Ko neaABo 1¥
(popreme) . L h) oUW BIO[0IaL
QOOQOw @ﬁMQQ_” \m\:v X * mpwﬁ.ﬁmpﬁzm prued eme}10 MH@Q . oF
[) 4 U syuopisoxd G g q et
. 1STIR
A@ﬁw@@@hv * L SOLI 5 WPQQUMmQHQ . P:Am U@@M@g@ ﬁ
(8u L1} 301 SN [00 i
oS @m@QP&V . U StRmSsnu s ongea AAr o
worpoy dmd jo o SoLI} o0I oe38aI1
(spue[ojsem 10011 strenisnm Suos 1s9301d 44
Aﬁ @va Jo xoyjne ooy QMSQ 10 MOPOM I ¥
I
(Sunspaey u fenste) eides spue ojsem oY) JO I uby o
npwer] worda)s) ooerd oqe | 6e
JOSIA [Ayrq eI[RIISI
[AP® SURTUUAD su . © [ejiden
§ PIBTH navey] woydogs ooeld 86
Ag@ Amnmﬂuﬁﬁwov reytdeo I0SIA® STRUIuAoy % g 1€
e : IeyOLI
(s, uouue] QWQ poom) spreme reqtden s @@@M@. 9¢
AN v SOOI Teolsnut spIR ¢ 9} ce
N@HV Ul poysI[qe)so | s h o pIeme u9a[e %@OOB
(Aururess e) @.@?@s Prueduiod 9101 [edIsnu s uouuo] uyol re
(£oup4s) ur wio ® | | s)stre)ms Z)6] W poUsIqeaso sortred qof | e
AQNEQ moﬁmkﬂg Pgou @ﬂpv QOQ L] Soox0 9re1odiod Aurmueis e popIeme m.m w0 ze
300q20j) s9af01dwd Jo yd | ozud sorsdyd oqou q 8090 93e10d100
(00z 0Za1p uR JO Ioquunu qou o) uom jey) spsISAYd 0¢
?Em s) oyep Suruado soafodurs jo IoqUINU D0t ! 6¢
qo x%mgv Aepyyaiq oyep Suruedo 00z Mw%waoﬂ 8¢
EO—Q ONUOADI %@@Quﬁ [p ues 12
AI017) PIOMADY] PoImyoNLI I(S, eWRqO YorIR(9z
pm ONUSDADI Eﬁ: MN
Arongy promAsy | IO

153

QID | Keyword Query Concept Search Query

1 the cat in the hat The_Cat_in_the_Hat

2 john lennon John_Lennon

3 electronic frontier foundation Electronic_Frontier_Foundation

4 once upon a time in mexico Once_Upon_a_Time_in_Mexico

5 merkel chancellor of germany Angela_Merkel M wikicategory_Chancellors_of Germany

6 clapton football club Clapton_F.C. M wikicategory_English_football clubs

7 john smith poet John_Gibson_Smith I wordnet_poet_110444194

8 apollo 13 movie Apollo_13_(film) M wordnet_movie_106613686

9 barcelona artists wordnet_artist 109812338 M JoriginatesFrom(Barcelona) UNION
wordnet _artist_109812338 1M 3livesIn(Barcelona)

10 chicago comedians wordnet_comedian_109940146 M JlivesIn (Chicago) UNION
wordnet_comedian_109940146 M Jbornln (Chicago)

11 turing award mathematicians wordnet_mathematician_110301261 M JhasWonPrize(Turing_Award)

12 emmy award actors wordnet_actor 109765278 M FhasWonPrize(Emmy_Award) m

13 | toronto high park High_Park M locatedIn(Toronto)

14 madrid battle of somosierra Battle_of Somosierra M JhappenedIn (Madrid)

15 | paris pulcinella Pulcinella_(ballet) M JhappenedIn(Paris)

16 sony playstation PlayStation M JhasProduct™(Sony)

17 stephen harper conservative party of canada | Stephen_Harper M JisAffiliated To(Conservative_Party_of Canada)

18 | guernica picasso Guernica_(painting) M Jcreated~ (Pablo_Picasso)

19 | hard days night the beatles A_Hard_Day’s_Night_(song) M Jcreated ™ (The_Beatles)

20 | from hell johnny depp From_Hell_(film) M JactedIn~ (Johnny_Depp)

21 lead guitarists wikicategory_Lead_guitarists

22 spanish painters wikicategory_Spanish_painters

23 coastal cities wikicategory_Coastal_cities

24 companies based in silicon valley wikicategory_Companies_based_in_Silicon_Valley

Figure A.3: Query understanding workload: concept search query encodings.

~rendense D) -reyd
Amﬁgsw_m L mﬁﬁ.&domdﬂm L u
((epemue ~rendepsede L @ﬁ@m@p@ooﬁm L
Ov\ﬁﬁpﬁg‘ﬁom U wwhﬂaﬂwwwhm@ﬁ@.wmwpﬁﬁwhwﬁrﬁ
' e on OA :
(¢ REER LA q) u €)™
AWMOOQOm\meQ Wﬂmw@@@O._”@MMWPOVQH@@@W@O@@E@OM@@o\mooﬁm 1 o Aueurog
1snq- e 0 00N ue ut
A Amwmwwo qongeoT & 0 p@EUpOBvaN L vﬁdﬁHHwﬁ e i 1 stured @.p?@@ 011081
s8uos” LT oes U soyerg” AT A108 9L1CTOTT™ 11 U0 MOIE unuoge JoTPNY N on}
159101 8or 1ou 1S peyt SHLC10] OTT Istre A\ SEY soIre s [neaAR) 15574
d Arozoye pI0M)o1 Hroty 1) wox; yma-jen - epeu soonq 41 Ly
U e 101 pion o s
Poajealo IE L SO ﬂ#@@.ﬂﬁw\\m .@@Mmm 190 YIe 3910991
" ﬁmowmafwomNow@fmo%% d 1oma1q 9
_ 1 :
AAE:%VQOHO._”ﬁ Qdﬂoﬁwﬁmwwnﬁouig S0 mpwﬂdpﬁaw 16374
(spue .p‘o_md?. JoupIo pisead popIeme
Adwh @pw@.\/m/%v _Ppo3oadl - S [00yos 9 44
AQ®EQ% Awg [RIISTL Q,Hv o IPE SOLI ngeo A
ol T[] V)_[e oL SUBIOISTID } o0 Al
preyor H uo reyide E [ISNUI 1 oeS01 57
Aﬁm%J@m MMV _JoS ngumv DSEYE uonoyg guos 3s Ol
Aﬁewwmumnas oy AQ A@UMLHXQQHEQUIQTCO@_M spue| @pmdmﬁﬁ& Jo 10 or01d 41
_ u : 151 M
Ay Aurure auOpoys ®:<\\m~uoo @Ovlﬁmﬁgo<mﬁﬂm g o o1} Jo HPUQH:U v
(sots4q (4oup4s) D)ozt HARISOE (wouuo M) o7 8DSeUE uppavey eTsIE ofne oy
QM\QNHH _ QHQHO ’ AMQO\S@N U wmow QQOWV : AMQO\/\V@N IOSIA @ggwpw M@QLQ.@O @M
LI][00 qE U ¢ UE U COROT & _o[oy[e V= [Ap® SuR ooed 9
ZFNS&QO@N@@@@Oﬁwwmﬂmﬂoﬁﬂ Q@QSOUJ@OESS_M e wuAdy UMMHCE Nm
\(/mﬁg_m L >Ss50®uﬁ®\ P@T@@PM‘DW\ QU.HONS o w@%m \.:Q@O S e QUMH m
70 SULCAI jou Q[O1 me jepeue 9¢
(087 odi1 piom Teo o 8
(0o ooqee FOTT IsI1sA 07 39Up! ¢L6L W P s (e Apoon G¢
N\OMQHQ\ ﬁC IQQO@. : LQ\QQQ oM %EE@.HW@Qw:Q%pm“ ouus[uy 143
A@& ueg)_oy JFOPqU pIoM | ozt Aoup4s © poplI ° m@E@QEo.ﬁ ee
®qO e rauope NEEY td sorsdqd ur uoq vie SISLL 9
Hﬁmv 9 USIqeIse SO [pqou e SI9X9 9 Lrejms3 ¢t
AE _oje(u @%OMQ) oM 1erodir 1¢
\A.H mHV 9 OQ.HO o WO 1079 S (019)
SNE) (o NUOAD 9 oye ToquI Is1o1S A 0€
goIea qse P Suru qumu yd
g 9do 1 J— ado o H00qg99 6¢
ouoy) Pyt 0z 039 v
ﬁ— mﬁﬁaﬁ ﬁ@ ues mN
qo e L
on Ie G
A U9ADI d
H@S@ wqr 9¢
@HOB%@VM. AM_N
am

155

A.2 TREC-QA Structured Keyword Query Encoded

Workload
’ TREC ID ‘ TREC target KB Target
216 Paul Krugman Paul_Krugman
217 Jay-Z Jay-7Z
218 Darrell Hammond Darrell Hammond
219 Iraqi defector Curveball Curveball_(informant)
220 International Management Group (IMG) | IMG_(business)
221 U.S. Mint United_States_Mint
222 3M 3M
223 Merrill Lynch & Co. Merrill Lynch
224 WWE World_Wrestling_Entertainment
225 Sago Mine disaster Sago_Mine_disaster
228 March Madness 2006 2006_NCAA Men’s_Division_I
_Basketball_Tournament
230 AMT Alternative_Minimum _Tax
231 USS Abraham Lincoln USS_Abraham Lincoln_(CVN-72)
232 Dulles Airport Washington_Dulles_International _Airport
233 comic strip Blondie Blondie_(comic_strip)
234 Irving Berlin Irving_Berlin
235 Susan Butcher Susan_Butcher
236 Boston Pops Boston_Pops_Orchestra
237 Cunard Cruise Lines Cunard_Line
238 2004 Baseball World Series 2004_World_Series
239 game show Jeopardy Jeopardy!
241 Jasper Fforde Jasper_Fforde

156

TREC ID

Structured Keyword Query

216

writes (new york times) MM teach(princeton university) M received doctorate (mit) 1
academic specialty (economics) M won prize(john bates clark medal) M wrote(Pop
Internationalism)

217

produced by (Def Jam Records) M real name (shawn carter) M planning to marry
(Beyonce Knowles) M president of(Def Jam) M grew up (brooklyn) M album (rea-
sonable doubt)

218

old (50) M graduated (UF) M regularly appears (Saturday Night Live) M appear
(NBC) M featured on (Comedy Central Presents) M impersonated(bush)

219

defected year (1999) MM scientist I real name(Rafid Ahmed Alwan) M employed
(Germany’s Federal Intelligence Service) M claims accepted by (George W. Bush)
M lives (germany)

220

founder (mark mccormack) M founded in year (1960) M acquired by (Forstmann
Little & Co.) T has board member (Theodore J. Forstmann) M head (mark
steinberg) M represents (Vijay Singh) M represents (Tiger Woods)

221

headquartered (washington) M established (1792) M part of department (Treasury
Department) MM has director (henrietta holsman)

222

founded when (1902) M based (St. Paul M Minnesota) M has CEO(George Buckley)
M CEO predecessor(Desi DeSimone) M stands for (Minnesota Mining and Manu-
facturing) M web address(http://www.3M.com) M manufactures product (Post-It
notes)

223

224

has chief executive(Stanley O’Neal) M has prime business (investment bank) M
headquartered (new york) M headquarters street (Wall Street) M other name

known as (Princeton Portfolio Research and Management)
chairman (Vince McMahon) M chief executive (Linda McMahon) M headquartered

(Stamford M Connecticut) M short form (WWE) M evolved from (WWF) M airs
on (Spike TV) M had wrestler appear (Chyna)

225

occurred on date (January 2 1 2006) M survivor (Randal McCloy Jr.) I miners
died (12) M state (West Virginia) MM investigated by (MSHA) M victim (Terry
Helms)

228

lasts (19 days) M has slang expression (Big Dance) M concluding night(April 3) M
described by (Final Four) M teams (64) M coach (Billy Donovan)

230

has expansion (Alternative Minimum Tax) M year added (1969) M exemption
amount ($33,750)

231

abbreviated ship designation (CVN-72) M commissioned on date (November 11
M 1989) M ported where (Everett M Washington) M has commander (Captain
Kendall Card) M aircraft (Sea Hawk helicopter)

232

airport code (IAD) MM approved designation (Washington Dulles International Air-
port) M state located (Virginia) M named after (John Foster Dulles) M run by au-
thority (Metropolitan Washington Airports Authority) M used by airline (Delta
Airlines)

157

233

has creator (Chic Young) M syndicated by (King Features Syndicate) M has char-
acter (Dagwood)

234

born (Russia) MM first big hit(Alexander’s Ragtime Band) M composed (God Bless
America) M died (September 22 1 1989) M died(heart attack)

235

born year (1954) M won race (Iditarod Race) M lives (alaska)

236

conductor (keith lockhart) M previous conductor (Arthur Fiedler) M manager
(Tony Beadle) M concert venue (Symphony Hall)

237

owned by (Carnival Cruise Lines) M based in city (Miami) M president (Carol
Marlow) M largest ship (Queen Mary 2) M has ship (Queen Elizabeth 2)

238

won by (Boston Red Sox) I was defeated (St. Louis Cardinals) I has star (Curt
Schilling)

239

aired for first time (March 30 M 1964) M first host (Art Fleming) M current
host(Alex Trebek) M had contestant (Ken Jennings)

241

first book (The Eyre Affair) M wrote (Lost in a good book)

TREC ID | Concept Search Query (Raw KB)

216
217
218
219
220
221
222
223
224
225
228
230
231
232
233
234
235
236
237
238
239
241

0

JisMarriedTo(Beyonc_Knowles) M Jcreated (Reasonable_Doubt)
0

isCalled (”"Rafid Ahmed Alwan”)

0

establishedOnDate (“1792-##-##")

establishedOnDate (“1902-##-##") M hasWebsite (“http://www.3m.com”)
JhasProduct (Investment_management)
isCalled (“WWE”)

=SS =

isCalled (“USS Abraham Lincoln (CVN-72)")
isCalled (“Washington Dulles International Airport”)

0
Jereated (God_Bless_America) M diedOnDate (“1989-09-22")
bornOnDate (“1954-#4-H4")

0
0
0
0
=

wrote (The_Eyre_Affair) M Jwrote (Lost_in_a_Good_Book)

158

TREC ID

Concept Search Query (Extended KB)

216

JworksAt (The_New_York_Times) M JworksAt(Princeton_University)
M JgraduatedFrom (Massachusetts_Institute_of_Technology) M
JacademicSpecialty (Economics) M JhasWonPrize(John Bates_Clark_Medal)
M Jwrote(Pop_Internationalism)

217

JdproducedBy (Def_Jam_Recordings) MisCalled (“Shawn Carter”) M JisMarriedTo
(Beyonc_Knowles) M JworksAt(Def_Jam_Recordings) M JlivesIn (Brooklyn) 1
Jereated (Reasonable_Doubt)

218

age (“50”) M dgraduatedFrom (University of Florida) M JworksAt (Satur-
day_Night_Live) M 3worksAt (NBC) M 3worksAt (Comedy_Central Presents) I
Jimpersonated(George_W._Bush)

219

defectedInYear (“1999-##-##") T wordnet_scientist_110560637 M is-
Called ("Rafid Ahmed Alwan”) M 3JworksAt (Bundesnachrichtendienst) [
dclaimsAcceptedBy (George-W._Bush) M JlivesIn (Germany)

220

Jfounder (Mark_-McCormack) M establishedOnDate — (“1960-##-##")
M JacquiredBy (Forstmann Little & Company) M JhasBoardMember
(Theodore_J._Forstmann) M ZhasCEO (Mark_Steinberg) M JhasClient (Vi-
jay_Singh) M JhasClient (Tiger_Woods)

221

JlocatedIn (Washington M _D.C.) M establishedOnDate (“1792-##-##") N
JisMemberOf (United_States_Department_of_the_Treasury) M JhasDirector (Hen-
rietta_Holsman)

222

establishedOnDate (“1902-##-##") M dlocatedIn (Saint_Paul\,_Minnesota)
M JhasCEO(George_Buckley) M JhasCEO(Desi-DeSimone) MM isCalled (”Min-
nesota Mining and Manufacturing”) M hasWebsite(“http://www.3m.com”) I
JhasProduct (Post-it_note)

223

JhasCEO(Stanley_O’Neal) M ZJhasProduct (Investment management) [
JlocatedIn (New_York) M IFlocatedIn (Wall_Street) M isCalled (“Princeton
Portfolio Research and Management”)

224

JhasChairman (Vince_McMahon) M JhasCEO (Linda_McMahon) M JlocatedIn
(Stamford\,_Connecticut) M isCalled (“WWE”) M isCalled (“WWE”) 11
JdisAffiliatedTo (Spike_\(TV_channel\)) M JhasEmployee (Chyna)

225

happendOnDate (¢2006-01-027) M JhadSurvivor (Randal_-McCloy)
M deaths (“12”) M 3dlocatedln (West_Virginia) M JhadInvestigator
(Mine_Safety_and_Health_Administration) M JhadVictim (Terry_Helms)

228

hasDuration (“19 days”) M isCalled (“Big Dance”) M endsOn (“2006-04-03")
isCalled (“Final Four”) M teams (“64”) M JhasCoach (Billy_Donovan)

230

isCalled (“Alternative Minimum Tax”) M establishedOnDate (“1969-##-##") I
hasValue (“337504#dollar”)

159

isCalled (“USS Abraham Lincoln CVN — 72”) MM establishedOnDate (“1989-

231 | 11-117) 1 3locatedIn (Everett M _Washington) M ZhasCommander (Cap-
tain_Kendall_Card) M Jsupports (SH-60_Seahawk)
isCalled (“IAD”) M isCalled (“Washington Dulles International Airport”) T
232 | JlocatedIn (Virginia) M JnamedAfter (John Foster_Dulles) M 3disAffiliatedTo
(Metropolitan_Washington_Airports_Authority) M JhasClient (Delta_Air_Lines)
933 JdereatedBy (Chic_Young) M JisAffiliatedTo (King_Features_Syndicate) I
JhasCharacter (Dagwood_Bumstead)
dbornln (Russia) M dcreated (Alexander’s_Ragtime Band) M Jereated
234 | (God_Bless_America) M diedOnDate (“1989-09-22”) M 3IdiedOf (Myocar-
dial_infarction)
bornOnDate (“1954-##-#+4") M JhasWonPrize (Iditarod_Trail_Sled_Dog_Race)
235 .
M JlivesIn (Alaska)
936 JhasConductor (Keith_Lockhart) M JhasConductor (Arthur_Fiedler) M Imanager
(Tony_Beadle) M JconcertVenue (Symphony_Hall\,_Boston)
JhasOwner (Carnival Corporation & PLC) M dlocatedIn (Miami) I
237 | JhasPresident (Carol-Marlow) M ZhasProduct (RMS_Queen_Mary 2) 1
JhasProduct (RMS_Queen_Elizabeth_2)
JwonBy (Boston-Red_Sox) M 3lostBy (St._Louis_Cardinals) M JhasStar
238 e
(Curt_Schilling)
939 establishedOnDate (“1964-03-30”) M JhasHost (Art Fleming) M JhasHost
(Alex_Trebek) M JhadParticipant (Ken_Jennings)
241 | Jwrote (The_Eyre_Affair) M 3wrote (Lost_in_a_Good_Book)

160

A.3 Synthetic Efficiency Workload

ID \ Concept Search Query

1 wikicategory_German_immigrants_to_Switzerland

2 wordnet_broadcast_journalist_109875979

3 wikicategory_New_Age_musicians

4 | wikicategory_United_States_Navy_officers

5 wordnet_painter_110391653

6 wordnet_village_ 108672738

7 wordnet_war_correspondent_110766718 M wikicategory _Royal_Green_Jackets_officers

8 wikicategory_Roman_emperors M wikicategory_Ancient_Olympic_competitors

9 wikicategory_American_jazz_pianists N wikicategory_Jewish_American_musicians

10 | wordnet_biologist_109855630 M wordnet_novelist_110363573

11 | wordnet_writer_ 110794014 M wordnet_actor_109765278

19 wikicategory _Double-named _places T wikicategory_Settlements_established in_1836 T wikicate-
gory_County_seats_in_Washington ' . _ .

13 wikicategory_Johns_Hopkins_University _alumni I'T wikicategory_20th_century_philosophers 'l wiki-
category_American_philosophers

14 | wordnet_botanist_109868270 M wordnet_physicist-110428004 M wordnet_biologist_109855630

15 | wordnet_writer_110794014 M wordnet_actor_109765278 M wordnet_poet_110444194
wikicategory _American_television_reporters_and_correspondents n word-

16 | net_broadcast_journalist_109875979 1 wikicategory_60_Minutes_correspondents 1 wikicate-
gory_Dalton_School_alumni

17 wikicategory_20th_century_philosophers ' wikicategory_Academics_of_the_University_of_Manchester
M wikicategory_Artificial_intelligence_researchers 1 wikicategory_Scientists_who_committed_suicide

18 wikicategory_American_film_directors 1T wikicategory_American_film_producers 1 word-
net film maker 110088390 [wordnet manufacturer 110292316]

19 wordnet_actor_109765278 1 wordnet_poet_110444194 1 wordnet_director _ 110014939 1 word-
net_professional 110480253
wikicategory_Languages_of_Australia T wikicategory_Languages_of_Bangladesh — TT — wi-

20 | kicategory_Languages_of_Botswana n wikicategory_Languages_of_Fiji n wikicate-

gory_Languages_of_Ghana M wikicategory_Languages_of_Guyana

161

wikicategory_American_baritones 1 wikicategory_American_B-movie_actors 1 wikicate-

21 | gory_American_gospel_singers M wikicategory Blues_musicians_from_Mississippi M wikicate-
gory_Tennessee_actors 1 wikicategory_Tennessee_musicians
wordnet_actress_109767700 r wikicategory _American_film_directors r wikicate-

22 | gory_American_film_producers m wikicategory _American_screenwriters m wikicate-
gory_American_essayists M wikicategory_American_novelists
wikicategory_American_film_actors T wordnet_singer_110599806 1 wordnet_actor_109765278

23 | N wikicategory_American_film_actors M wikicategory_American_male singers M word-
net soldier 110622053] —] —_—
wikicategory_Languages_of The_Gambia T wikicategory_Languages_of_Australia 11 wiki-

o4 category_Languages_of Bangladesh M wikicategory_Languages_ of Botswana M wikicate-
gory_Languages_of_Fiji M wikicategory_Languages_of_Ghana M wikicategory_Languages_of_Guyana
M wikicategory_Languages_of_Hong_Kong
wikicategory_Jazz_bandleaders I wikicategory New_Orleans_jazz_musicians r wi-

25 kicategory_American_jazz_singers n wikicategory_American_jazz_trumpeters r wi-
kicategory _Swing_trumpeters r wikicategory_Swing_bandleaders M wikicate-
gory_African_American_brass_musicians M wikicategory_Decca_artists
wordnet_philosopher_110423589 M wikicategory_20th_century_philosophers M wiki-

% category_American_political_writers r wikicategory_Jewish_scientists M wikicate-
gory_Fellows_of_the_Royal_Society_of_Canada M wikicategory_Guggenheim Fellows M wikicat-
egory_Jewish_American_writers M wikicategory_American_atheists
wordnet_novelist_110363573 TT wordnet_critic_109979321 ' wordnet_composer_109947232 11 word-

27 | net_poet_110444194 M wordnet_dramatist_110030277 M wordnet_screenwriter_110564400 M word-
net_writer_110794014 M wordnet_presenter_110466387

28 | FhasWonPrize(Babe_Ruth_Award)

29 | JbornIn(Alberta)

30 | FbornIn(Moscow)

31 | JlocatedIn(Texas)

32 | JdisMarried To(wikicategory_American_film_actors)

33 | JlocatedIn(wordnet_village_108672738)

34 | FhappenedIn(JlocatedIn(Australia))

35 | Jbornln(IlocatedIn(Belgium))

36 | JbornIn(JlocatedIn(Czech_Republic))

37 | JlocatedIn(FhasOfficialLanguage(wordnet_language_106282651))

38 | Jbornln(IlocatedIn(wordnet_village_108672738))

39 | Jmeans(3happenedIn(JlocatedIn(Australia)))

40 | JisMarriedTo(3bornIn(JhasOfficialLanguage(French_language)))

41 | Jmeans(JlocatedIn(locatedIn(Missouri)))

42 | JlivesIn(JlocatedIn(ThasOfficialLanguage(wordnet language_106282651)))

43 | FlivesIn(JlocatedIn(TlocatedIn(wordnet_village_108672738)))

44 | dmeans(FhappenedIn(locatedIn(Germany)))

45 | FfamilyNameOf(IbornIn(JlocatedIn(FhasOfficialLanguage(German_language))))

46 | disMarriedTo(JlivesIn(JlocatedIn(FhasOfficialLanguage(wordnet_language_106282651))))

47 | JgivenNameOf(FbornIn(JlocatedIn(locatedIn(wordnet_village_108672738))))

48 | JpoliticianOf(Ukraine) M JFhasSuccessor(Leonid _Kuchma)

49 | FbornIn(Edmonton) M FhasPredecessor(Piers_McDonald)

50 | JisMarriedTo(wordnet_saxophonist_110554243) M JdgraduatedFrom(Yale_Law_School)

162

o1

JbornIn(wordnet_county_108546183) M
JdiedIn(wikicategory_Host_cities_of _the_Summer_Olympic_Games)

52

FlocatedIn(wordnet_city 108524735) M JlocatedIn(wordnet_town_108665504)

53

Jereated (Peggy_Sue) M Jereated(20_Golden_Greats) M Jereated (Words_of_Love)

54

JhasWonPrize(Saturn_Award) m JactedIn(The_Adventures_of_Pluto_Nash)]
Jereated (wikicategory _African_American _films)

55

FhasWonPrize(wikicategory _Music_halls_of_fame)
M Jinfluences(wikicategory_American_rock_musicians) M Jinfluences(wikicategory_American_stand-
up_comedians)

56

ddirected (wikicategory _Short_films) M Jereated (wikicategory 2003 _albums) M
Jproduced(wikicategory_Comedy_films)

57

Jereated(wordnet_company_108058098) M IbornIn(wordnet_city_108524735) M
Jdirected(wikicategory_American_films)

58

dparticipatedIn(Battle_of_Cut_Knife) M ZhasOfficialLanguage(French language in_Canada) I
JhasCapital(Ottawa) M IparticipatedIn(Upper_Canada_Rebellion)

59

FhasWonPrize(Grammy _Lifetime_Achievement_Award) ™ dproduced(Appalachian Pride) M
Jereated(Ride_This_Train) M Jereated(Strawberry_Cake)

60

JhasWonPrize(wikicategory -Music_halls_of_fame) M
Jinfluences(wikicategory_American_rock musicians) M Jinfluences(wikicategory_American_stand-
up_comedians) M JactedIn(wikicategory_Television_specials)

FhasCapital(wordnet_capital 108518505) M JhasOfficialLanguage(wordnet_language _106282651) 1

61 JparticipatedIn(wordnet_military_action_100952963) M
JparticipatedIn(wikicategory_Conflicts_in_1944)
62 | dmusicalRole(wordnet_stringed_instrument_104338517) 11

FhasWonPrize(wordnet_award_106696483) M Jinfluences(wordnet_musician_110340312) 11
JactedIn(wikicategory_English-language films)

163

Appendix B

Proofs

B.1 Proof of Lemma 1

Proof: (<)
Case 1:

This case is trivial as the assertion A(e) is given explicitly as being part of K.

Case 2:

. Al(C)GA

K= Ai(e)
AICA...A,CACO
KEALCA...A,CA
KEALCA

K = Ale)

Proof: (—)

I

given.

1. and Definition 2.

given.

3 and Definition 2.

4. and transitivity of subsumption.
2., 5., and Definition 2.

Assume both case 1. and 2. are false for a proof by contradiction.

1. KE A(e)

2. Ale) ¢ A

3. VA st. Alle) € A:
31ACA...A,CAZO

32K E Ale)

3BKEACA

3.4 KFE A(e)

4. Both case 1. and 2. are not false.

5. K = Ale)

given.
given by assumption, case 1. is false.

3 and assumption case 2. is false.

3. and Definition 2.

3.1 and transitivity of subsumption.
2,3, 3.3.

Contradiction 1. and 3.4.

4.

165

B.2 Proof of Theorem 1

We consider a proof by structural induction on the concept search query C'. We define the
depth of the constructs {e}, f(k), and A to be 0; the depth of IR(C), IR (C) and f~(C)
to be 1 plus the depth of C'; and the depth of C; M C5 to be 1 plus the larger of the depth

of Cy and (.

Inductive Base Cases:

Case C' = “{e}”:
answer({e}, K) = {e | K = {e}(¢)}
= jge}\ e € ({e})"}

Definition 4.
Definition 3.
Definition 1.

= eval({e}, K,index) definition of eval procedure.

Case C = “f(k)”:

answer (f(k),KK) ={e | K= (f(k))(e)}
={e| (e,k) € (f(k)"}
={e| f(e,k) € A}
= index(KC, k, f~)

Definition 4.
Definition 3.
Definition 2.
Property 4.5.

= eval(f(k), K, index) definition of eval procedure.

Case ' = “A”:
answer(A,K) ={e | K = A(e)}
={e| Ale) e AV (A1(e) e ANATC Ay.. . A, C ACO)}
= index(K, A, type™) U {e| Ai(e) e ANATC Ay... A, C AC O}
= index (K, A, type~) U
{e | e €index (K, Ay, type)NAT C Ay... A, T AC O}
= index (K, A, type™) U
{e | e € index(K, Ay, type™) N Ay € closure(K, A)}
= index (K, A, type™) U Vacaosure(ic,ayindex(IC, A’ type™)

Definition 4.
Lemma 1.
Property 4.1.

Property 4.1.

Property 4.7.
def of eval.

166

Inductive Hypothesis: Assume eval(C, K, index) = answer(C,K) for an arbitrary C of
depth n.

Inductive Step: Consider the four cases in which a concept C' has depth n + 1.

Case C' = “Cy 1 Cy”:

answer(C1MCy, K) ={e | K= (C1NCy)(e)} Definition 4.
={e|ee (CiNCy)*} Definition 3.
={e|ee (C)FN(Cy)*} Definition 1.
={elee (Ch)f Ne € (Cy)'} definition of intersection.
={e | KECile) NK & Cy(e)} Definition 3.
= {e | e € answer(Cy,K) A e € answer(Cy, K)} Definition 4.
= answer(Cy, K) Nanswer(Cy, K) definition of intersection.
= eval(Cy, K, index) Neval (Cy, K, index) Inductive Hypothesis.
= eval(Cy; M Cy, K, index) definition of eval procedure.

Case C' = “IR(CY)":

answer(3R(C1),K) = {e | K = (FR(CY))(e)} Definition 4.

={e|ee (IR(C)))*} Definition 3.
={e| Je' € (C1)* A (e,€¢) € (R)*} Definition 1.
={e| 3 K | Ci()) A (e,¢) € (R)} Definition 3.
={e | 3¢’ € answer(Cy,K) A (e,€') € (R)*} Definition 4.
={e | 3¢ € eval(Cy, K,index) A (e,€') € (R)*} Inductive Hypothesis.
= {e | 3¢’ € eval(C, K, index) N (e e)e A} Definition 2.
={e | 3¢ € eval(Cy, K,index) N e € index(K,e', R7)} Property 4.3.
= eval(IR(CY), K, index) definition of eval procedure.
Case C' = “GR~(CY)":
answer(IR~(C1),K) ={e | K (IR (Cy))(e)} Definition 4.
={e|eec (EIR_(Cl))I} Definition 3.
={e| Je' € (C1)* A (€,e) € (R)*} Definition 1.
={e| 3 KECI()A(,e) € (R)*} Definition 3.
={e | 3¢’ € answer(Cy,K) A (¢',e) € (R)*} Definition 4.
={e | 3¢’ € eval(Cy,K,index) A (¢',¢) € (R)*} Inductive Hypothesis.
= {e | 3¢’ € eval(C}, K, index) A (e e) € A} Definition 2.
= {e | 3¢’ € eval(Cy, K, index) A e € index(K, e, R)} Property 4.2.
= eval (IR~ (C1), K, index) definition of eval procedure.

167

Case C' = “f~(Cy)":
answer(f~(C1),K) ={k | K= (f~(C1))(k)} Definition 4.
={k| ke (f(C))*} Definition 3.
={k|3Jee (C)* A(e k)€ (f)F} Definition 1.
={k|3e K Cile) A (e, k) € (f)*} Definition 3.
= {k | 3e € answer(C,K) A (e, k) € (f)*} Definition 4.
= {k | Je € eval(Cy,K,index) A (e, k) € (f)*} Inductive Hypothesis.
= {k | Je € eval(C1, K,index) A f(e, k) € A} Definition 2.
= {k | Je € eval(Cy,K,index) N k € index(K, e, f)} Property 4.4.
= eval(f~(Cy), K, index) definition of eval procedure.

By induction, eval(C, K, index) = answer(C, K) for all C' of depth > 0.

168

	List of Figures
	Introduction
	Search in Information Systems
	Representing Knowledge
	Representing Query Intentions
	Thesis Overview

	The Query Understanding Problem
	Formalizing The Query Understanding Problem
	Solution Overview
	Baseline Approaches

	Semantic and Structural Annotation of Keyword Queries
	Query Segmentation & Semantic Annotation
	Structuring Annotated Queries
	Analysis of a Web Query Log
	Evaluation of Keyword Query Understanding
	Related Work

	Graph Queries with Keyword Predicates
	Motivation
	Structured Keyword Queries
	Matching Subgraphs with Keyword Predicates
	Concept Search Queries as Keyword Query Interpretations
	Computing All-Pairs Similarity over Knowledge Base Items
	Knowledge Graph Management
	Evaluation of Graph Queries with Keyword Predicates
	Related Work

	Personalized User Interest Models for Entity Ranking
	Data & Problem Definitions
	Personalized Ranking of Entity Queries
	Evaluation of Personalized Entity Ranking
	Related Work

	A Methodology for Evaluating Entity Retrieval
	The Ad-hoc Entity Retrieval Task
	An Empirical Study of Entity-based Queries
	Related Work

	Conclusions and Future Work
	References
	Appendices
	Evaluation Workloads
	Query Understanding Workload
	TREC-QA Structured Keyword Query Encoded Workload
	Synthetic Efficiency Workload

	Proofs
	Proof of Lemma 1
	Proof of Theorem 1

