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Abstract

The main topic of this thesis is combinatorics on words. The field of combinatorics on
words dates back at least to the beginning of the 20th century when Axel Thue constructed
an infinite squarefree sequence over a ternary alphabet. From this celebrated result also
emerged the subfield of repetition in words which is the main focus of this thesis.

One basic tool in the study of repetition in words is the iteration of morphisms. In
Chapter 1, we introduce this tool among other basic notions. In Chapter 2, we see appli-
cations of iterated morphisms in several examples. The second half of the chapter contains
a survey of results concerning Dejean’s conjecture. In Chapter 3, we generalize Dejean’s
conjecture to circular factors. We see several applications of iterated morphism in this
chapter. We continue our study of repetition in words in Chapter 4, where we study the
length of the shortest repetition-free word in regular languages. Finally, in Chapter 5, we
conclude by presenting a number of open problems.
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Chapter 1

Combinatorics on Words

In this chapter, we give the basic definitions needed for this thesis. We define words: the
subject being studied in this thesis. We then define the basic tools in the study of words
such as morphisms. Repetition, a well-studied concept in combinatorics on words, is also
introduced. The interested reader can find more in the papers [10, 17, 34, 30].

1.1 Words

A word is a finite or infinite sequence (ai)i≥0 where the symbols ai (also called letters) are
taken from a finite set called the alphabet. For example the alphabets for the finite word
acbab and the infinite word 0111 · · · are {a, b, c} and {0, 1} respectively. Alphabets with
two and three letters are called binary and ternary alphabets, respectively. The empty
word ε is the empty sequence.

For an alphabet Σ, the notation Σ∗ is used to denote the set of finite words over Σ. A
language is any subset L ⊆ Σ∗. Let Σω denote the set of infinite words over Σ, and let
Σ∞ = Σω ∪Σ∗. Let w = a0a1 · · · ∈ Σ∞ be a word. Let w[i] = ai, and let w[i..j] = ai · · · aj.
By convention w[i..j] = ε for i > j.

A prefix (suffix) of the word w is a word x such that w = xy (w = yx) for some word
y. The word z is a factor of w if w = xzy, for some words x and y. For a word x, let
pref(x) and suff(x), respectively, denote the set of prefixes and suffixes of x. For example
pref(abc) = {ε, a, ab, abc} and suff(abc) = {ε, c, bc, abc}. For words x, y, let x � y denote
that x is a factor of y. A factor x of y is proper if x 6= y and is denoted by x ≺ y. For
example b ≺ abc but ac 6≺ abc. Let x �p y (resp., x �s y) denote that x is a prefix (resp.,
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suffix) of y. Let x ≺p y (resp., x ≺s y) denote that x is a proper prefix (resp., proper
suffix) of y; that is, a prefix (resp., suffix) such that x 6= y. A prefix p of w is a period of
w if w[i+ r] = w[i] for 0 ≤ i < |w| − r, where r = |p|.

The concatenation or product of two words x and y, denoted by xy, is the juxtaposition
of the symbols of x followed by y. For example (ab)(cab) = abcab. The empty word is the
identity element for concatenation. Concatenation is an associative operator, and thus, we
can omit the brackets in products such as (xy)z. We use exponentiation to represent the

concatenation of a word with itself for a certain number of times, that is xk =

k︷ ︸︸ ︷
xx · · ·x.

For an integer k ≥ 2, a k-power is a nonempty word of the form w = xk. For the
special cases of k = 2, 3, such a word is called square and cube, respectively. An example of
a square is blahblah. A word is k-power-free if it has no k-powers as factors. For example,
the word square is squarefree and the word squarefree is not since it contains the square
ee. A word of the form axaxa, where a is a single letter, and x is a (possibly empty) word,
is called an overlap. For example, abbabba is an overlap. A word is overlap-free if it has no
factor that is an overlap.

A word is primitive if it is not a k-power for any k ≥ 2. Two words x, y are conjugate
if one is a cyclic shift of the other; that is, if there exist words u, v such that x = uv and
y = vu. The two words bookcase and casebook are conjugates. One simple observation
is that all conjugates of a k-power are k-powers.

1.2 Morphisms

It is easy to see that the set Σ∗ together with concatenation forms a free monoid. The
map h : Σ∗ → Γ∗ between two monoids is said to be a monoid homomorphism (or just
morphism) if it respects concatenation h(xy) = h(x)h(y) for all x, y ∈ Σ∗.

The fact that Σ∗ and Γ∗ are free monoids implies that for any mapping from Σ→ Γ∗,
there exists a unique extension to a morphism between Σ∗ and Γ∗. In other words, to
specify a morphism, we just need to define its image for all the single letters. For example,
h : {a, b, c}∗ → {a, b, c}∗ where

h(a) = bac

h(b) = aac

h(c) = ab
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is a morphism, and we have h(abc) = bacaacab.

A morphism h : Σ∗ → Γ∗ is said to be q-uniform if |h(a)| = q for all a ∈ Σ. A morphism
is uniform if it is q-uniform for some q. Let h : Σ∗ → Σ∗ be a morphism, and suppose
h(a) = ax for some letter a. The fixed point of h, starting with a ∈ Σ, is denoted by
hω(a) = a x h(x)h2(x) · · · . A word w is pure morphic if a nontrivial morphism h exists
such that w = h(w).

Let Σm = {0, 1, . . . ,m− 1}. Define the morphism µ : Σ∗2 → Σ∗2 as follows:

µ(0) = 01

µ(1) = 10.

We call t = µω(0) = 01101001 · · · the Thue-Morse word [2]. It is easy to see that

µ(t[0..n− 1]) = t[0..2n− 1] for n ≥ 0.

A morphism h is k-power-free (resp., overlap-free) if h(w) is k-power-free (resp., overlap-
free) if w is. From classical results of Thue [32, 33], we know that the morphism µ is
overlap-free. From [6], we know that that µ(x) is k-power free for each k > 2.

An infinite word w is said to be recurrent if every factor of w occurs infinitely often.
A finite or infinite word w is uniformly recurrent, if for every factor x of w, an integer l
exists such that every factor of w of length l contains x. A uniformly recurrent word is
linearly recurrent if a constant C exists such that for every factor x of w, every factor of
w of length C|x| contains x. The Thue-Morse word is linearly recurrent.
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Chapter 2

Repetition Avoidance

In this chapter, we briefly survey some of the main avoidability results in the literature.
In Section 2.1, we summarize the basic techniques for proving repetition-freeness of mor-
phisms. In Section 2.2, we define repetition threshold, a variation of which is studied in
detail in Chapter 3. At the end, we highlight some of the proof techniques developed in
[14, 27, 24, 9, 23, 13, 28] over several decades that eventually proved the famous Dejean
conjecture.

2.1 Constructing Repetition-Free Words

The study of repetitions and, in general, patterns in words is the heart of combinatorics
on words. The basic idea is that a long word that is picked at random tends to contain
repetitions. A simple example is words of length greater than 3 over a binary alphabet. It
is an easy exercise to observe that all such words contain squares as factors.

One goal in the study of repetition avoidance is to construct an infinite word that avoids
certain repetitions. The principal tool for constructing infinite repetition-free words so far
is the morphism. In this section, we illustrate the applications of this tool by means of
examples.

Perhaps the most convenient way of constructing an infinite k-power-free word is to
give a k-power-free morphism. As defined in Chapter 1, a morphism h is k-power-free if
it preserves k-power-freeness. Suppose we have a k-power-free morphism h : Σ∗ → Σ∗.
Clearly for a ∈ Σ, the words hi(a) for all i are k-power-free. Therefore, if hω(a) exists, it is
k-power-free. The fixed point starting from a of h exists if h(a) = ax for some x. Finally,
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in order for hω(a) to be infinite, we need to guarantee |hi+1(a)| > |hi(a)|. Next, we see an
example of this method applied to construct a squarefree word.

Example 1. Thue [33] gave the morphism

h(a) = abcab

h(b) = acabcb

h(c) = acbcacb.

It is easy to check that hω(a) exists and is infinite. Therefore, all we need is to prove that
h is a squarefree morphism. We observe that images of all the letters are squarefree. It
is effortless to check that the same quality holds for images of short squarefree words, but
we need a systematic way of deciding whether a given morphism is squarefree. Crochemore
[11], as stated more precisely in the following proposition, has shown that a morphism is
squarefree if it’s images of all squarefree words less than a certain constant in length are
squarefree.

Proposition 1. Let µ : Σ∗ → Γ∗ be a morphism. Then µ is squarefree if µ(x) is squarefree
for all squarefree words x of length

k = max{3,
⌈
M(µ)− 3

m(µ)

⌉
+ 1}

where

M(f) = max{|µ(a)| : a ∈ Σ}
m(f) = min{|µ(a)| : a ∈ Σ}.

For the morphism h we have

M(h) = 7,

m(h) = 5,

k = 3,

and one can easily check that h(x) is squarefree for all |x| ≤ 3. Therefore h is squarefree,
and hence the word

hω(a) = abcabacabcbacbcacbabcabacabcb · · ·

is squarefree.
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As the next example indicates, it is possible to construct squarefree words using using
non-squarefree morphisms.

Example 2. The morphism

h(0) = 01

h(1) = 23

h(2) = 03

h(3) = 21

is not squarefree since, for example, h(031) = 012123 is not squarefree. Still, we prove
w = hω(0) is squarefree.

We note three simple properties of w and h:

1. w[i] is even if and only if i is even.

2. For a, b ∈ {0, 1, 2, 3}, if h(a) and h(b) start with the same letter, then the parities of
a and b are the same.

3. For a, b ∈ {0, 1, 2, 3}, if h(a) and h(b) are distinct but end with the same letter, then
the parities of a and b are different.

By way of contradiction, suppose that w[i..j] = uu for some i < j that minimizes |u|.
Using (1), the length |u| is even since w[i] = w[i + |u|], and hence i and i + |u| have the
same parity. There are two cases to consider:

1. uu = h(vv) = w[i..j] which implies vv is a smaller square in w, a contradiction.

2. uu = ah(v)bah(v)b = w[i..j] for some a, b ∈ {0, 1, 2, 3}. If we let c = w[i − 1] and
d = w[j + 1] we can write

cuud = cah(v)bah(v)bd = w[i− 1..j + 1].

There exist e, f, g ∈ {0, 1, 2, 3} such that

h(e) = ca,

h(f) = ba,

h(g) = bd.
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Hence cah(v)bah(v)bd = h(evfvg), and therefore

evfvg ≺ w.

Note that e 6= f because otherwise h(ev)h(ev) ∈ w, which is a contradiction using
case (1). Now using (3), the parities of e and f are different, and hence |v| is even.
On the other hand, using (2), we get that the parities of f and g are the same, so |v|
is odd, a contradiction.

This is a typical argument for proving the repetition-freeness of a fixed point of a mor-
phism. We employ similar ideas in Chapter 3.

2.2 Dejean’s Conjecture

Repetition in words is an active research topic and has been studied for over a hundred
years. For example, Axel Thue [32, 33] constructed an infinite word over a three-letter
alphabet that contains no squares (i.e., no nonempty word of the form xx), and another
infinite word over a two-letter alphabet that contains no cubes (i.e., no nonempty word of
the form xxx).

In 1972, Dejean refined these results by considering fractional powers. An α-power for
a rational number α ≥ 1 is a word of the form w = xbαcx′, where x′ is a (possibly empty)
prefix of x and |w| = α|x|. The word w is a repetition, with a period x and an exponent α.
Among all possible exponents, we let exp(w) denote the largest one, corresponding to the
shortest period. For example, the word alfalfa has shortest period alf and exponent 7

3
.

The critical exponent of a word w is the supremum, over all factors f of w, of exp(f). We
write it as exp(w).

For a real number α, an α+-power is a β-power where β > α. For example ababa = (ab)
5
2

is a 2+-power. A word w is

• α+-power-free, if none of the factors of w is an α+-power;

• α-power-free if, in addition to being α+-power-free, the word w has no factor that is
an α-power.

We also say that w avoids α+-powers (resp., avoids α-powers). Dejean asked, what is the
smallest real number r for which there exist infinite r+-power-free words over an alphabet
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of size k? This quantity is known as the repetition threshold [6], and is denoted by RT(k).
From results of Thue we know that RT(2) = 2. Dejean [14] in 1972 proved RT(3) = 7

4
, and

conjectured that

RT(k) =

{
7
5
, if k = 4;
k
k−1

, if k > 4.

This conjecture received much attention in the last forty years, and its proof was recently
completed by Currie and Rampersad [13] and Rao [28], independently, based on work of
Moulin-Ollagnier [24] and Carpi [9].

Thue [32] in 1906 proved RT(2) = 2, and Dejean [14] in 1972 proved RT(3) = 7
4
. They

showed that there are only a finite number of RT(k)-power-free words and gave RT(k)+-
power-free morphisms for k = 2, 3. Thue’s RT(2)+-power-free morphism is

µ(a) = ab, (2.1)

µ(b) = ba, (2.2)

as we introduced in Section 1.2, and Dejean’s RT(3)+-power-free morphism is

ν(a) = abcacbcabcbacbcacba, (2.3)

ν(b) = bcabacabcacbacabacb, (2.4)

ν(c) = cabcbabcabacbabcbac. (2.5)

Brandenburg [6] realized that this approach, of using a repetition-free morphisms, can-
not be applied to cases where RT(k) < 3

2
.

Theorem 1 (Brandenburg). If RT(k) < 3
2
, then there exists no growing RT(k)+-power-free

morphism h : Σ∗k → Σ∗k.

Here, “growing” means that |h(a)| > 1 for all a ∈ Σk. Based on this theorem of
Brandenburg and the conjecture of Dejean that predicts RT(k) < 3

2
for k ≥ 4, researchers

knew as early as 1981 that they needed a new method for k ≥ 4.

Lemma 1 (Dejean). The repetition threshold, RT(k), is bounded below by k
k−1

, that is,

RT(k) ≥ k

k − 1
.
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Proof. Let w ∈ Σω
k be an arbitrary infinite word. We just need to prove that exp(w) ≥ k

k−1
.

If a subword of length k in w contains a repeated letter, then exp(w) ≥ k
k−1

. Then we can
assume that all subwords of length k have k distinct letters. Thus every subword of length
k + 2 in w begins and ends with the same word of length 2. See Figure 2.1.

a b · · · a b

k

Figure 2.1: Subwords of length k + 2 in w

So we have exp(w) ≥ k+2
k
≥ k

k−1
, provided k ≥ 2.

Based on this result, all that is needed to prove Dejean’s conjecture is to prove that
RT(k) ≤ k

k−1
for k > 4. In other words, all that is needed is to find a ( k

k−1
)+-power-free

word over an alphabet of size k. The same is true for RT(4), where the conjectured value
is 7

5
, since a computer search indicates that RT(4) ≥ 7

5
.

The first breakthrough in proving the Dejean’s conjecture emerged in the work of
Pansiot [27] in 1984. Pansiot [27] introduced a compact binary encoding of k−1

k−2
-power-free

words over Σk known as the Pansiot encoding. Since ( k
k−1

)+-power-free words are also
k−1
k−2

-power-free, the Pansiot encoding also exists for ( k
k−1

)+-power-free words. The Pansiot
encoding is defined as follows.

Let w ∈ Σ∗k be a k−1
k−2

-power-free word. Being k−1
k−2

-power-free implies that every subword
of w of length k − 1 has k − 1 distinct letters. This, in turn, implies that every subword
of w of length k either contains k − 1 distinct letters and the last letter is the same as the
first letter or contains k distinct letters. The former is called type 0 factor, and the latter
is called type 1. See Figure 2.2.

a1 a2 · · · ak−1 a1

(a) Type 0

a1 a2 · · · ak−1 ak

(b) Type 1

Figure 2.2: Subwords of w of length k are either of type 0 or 1, where {a1, . . . , ak} = Σk
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In other words, for a k−1
k−2

-power-free word w and for every i < |w| − k, we have either

w[i+ k − 1] = w[i], or (2.6)

w[i+ k − 1] ∈ Σk − {w[i], w[i+ 1], . . . , w[i+ k − 2]} . (2.7)

Note that since w[i..i+k−2] has k−1 distinct letters, the set Σk−{w[i], w[i+ 1], . . . , w[i+ k − 2]}
is a singleton, so (2.7) determines w[i+ k − 1] uniquely. Let us record for every i whether
w[i] = w[i+ k − 1]. For this purpose define a new word b as follows:

b[i] =

{
0, if w[i] = w[i+ k − 1];

1, if w[i] 6= w[i+ k − 1];

for 0 ≤ i ≤ |w|−k. We call this new word b the Pansiot encoding of w. Here is an example
in Σ5: Suppose that w = 012304132, then b = 01101.

A nice property of the Pansiot encoding is that using the first k − 1 letters of w and
b, we can reconstruct w. For example if b = 101011 and w ∈ Σ∗4 starts with 130, we can
uniquely determine w = 130231203. Pansiot [27] gives the morphism

h(0) = 101101

h(1) = 10.

Suppose w = 012 · · · is the unique word over Σ4 with Pansiot encoding hω(0). Pansiot

then proves that w is 5
4

+
-power-free, and completes the proof of Dejean’s conjecture for

k = 4.

The next major step in proving Dejean’s conjecture was taken by Moulin Ollagnier
[24], by observing a connection between Pansiot encoding and the symmetric group. This
connection relates repetitions in words to the identity element in the symmetric group. Let
σ0 and σ1 be two permutations in the symmetric group on Σk defined by

σ0 =

(
0 1 2 · · · k − 3 k − 2 k − 1
1 2 3 · · · k − 2 0 k − 1

)
σ1 =

(
0 1 2 · · · k − 3 k − 2 k − 1
1 2 3 · · · k − 2 k − 1 0

)
.

The permutation σ0 is the cycle on the first k− 1 elements of Σk, and σ1 is the cycle on all
the k elements. Define the monoid morphism η : Σ∗2 → Sk where η(0) = σ0 and η(1) = σ1.
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Let us illustrate these definitions in an example in Σ5. Suppose that w = 01230423140.
The Pansiot encoding is then b = 0100101. We apply η on all prefixes of b and we obtain

η(ε) =

(
0 1 2 3 4
0 1 2 3 4

)
η(0) =

(
0 1 2 3 4
1 2 3 0 4

)
η(01) =

(
0 1 2 3 4
2 3 0 4 1

)
η(010) =

(
0 1 2 3 4
3 0 4 2 1

)
η(0100) =

(
0 1 2 3 4
0 4 2 3 1

)
η(01001) =

(
0 1 2 3 4
4 2 3 1 0

)
η(010010) =

(
0 1 2 3 4
2 3 1 4 0

)
η(0100101) =

(
0 1 2 3 4
3 1 4 0 2

)
.

The second row and first four columns of each of the above permutations is a factor
of w of length 4. This is no coincidence. In fact, a simple induction proves that for a
k−1
k−2

-power-free word w = 0123 · · · k − 2 · · · , we can write

η(b[0..i]) =

(
0 1 2 · · · k − 3 k − 2 k − 1
w[i] w[i+ 1] w[i+ 2] · · · w[i+ k − 3] w[i+ k − 2] a

)
where a is the unique letter in Σk − {w[i], w[i+ 1], . . . , w[i+ k − 2]}.

Now if w[i..i+k−1] = w[j..j+k−1], then η(b[0..i]) = η(b[0..j]). It follows immediately
that η(b[i+1..j]) = idk where idk is the identity element of Sk. In other words, the Pansiot
encoding of repetitions in words (or at least those that are long) are kernels of the morphism
η. To put it simply, in order to avoid repetitions, we need to control kernels in Pansiot
encodings. This view enabled Moulin Ollagnier to prove Dejean’s conjecture for 5 ≤ k ≤ 11
in 1989.

The last major step was taken by Carpi [9] in 2007. Carpi proved that Dejean’s conjec-
ture holds for k ≥ 33 by extending the work of Moulin Ollagnier. The remaining cases, i.e.,
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the cases 11 < k < 33 were proved independently by Currie, Rampersad and Mohammad-
Noori [13, 23] and Rao [28] in 2009, along the lines of the proof by Carpi.
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Chapter 3

Repetition Avoidance in Circular
Factors

In this chapter1, we consider the following novel variation on a classical avoidance problem
from combinatorics on words: instead of avoiding repetitions in all factors of a word, we
avoid repetitions in all factors where each individual factor is considered as a “circular
word”, i.e., the end of the word wraps around to the beginning. We determine the best
possible avoidance exponent for alphabet size 2 and 3, and provide a lower bound for larger
alphabets. The main result of this chapter is Theorem 4.

3.1 Introduction

We consider the following novel variation on Dejean, which we call “circular α-power
avoidance”. We consider each finite factor x of a word w, but interpret such a factor as
a “circular” word, where the end of the word wraps around to the beginning. Then we
consider each factor f of this interpretation of x; for w to be circularly α-power-free, each
such f must be α-power-free. For example, consider the English word w = dividing with
factor x = dividi. The circular shifts of x are

dividi, ividid, vididi, ididiv, didivi, idivid,

and (for example) the word ididiv contains a factor ididi that is a 5
2
-power. In fact, w

is circularly cubefree and circularly (5
2
)+-power-free.

1The contents of this chapter are taken largely verbatim from Mousavi and Shallit [25].
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To make this more precise, we recall the notion of conjugacy. Two words x, y are
conjugate if one is a cyclic shift of the other; that is, if there exist words u, v such that
x = uv and y = vu.

Definition 1. Let w be a finite or infinite word. The largest circular α-power in a word
w is defined to be the supremum of exp(f) over all factors f of conjugates of factors of w.
We write it as cexp(w).

Although Definition 1 characterizes the subject of this chapter, we could have used a
different definition, based on the following.

Proposition 2. Let w be a finite word or infinite word. The following are equivalent:

(a) s is a factor of a conjugate of a factor of w;

(b) s is a prefix of a conjugate of a factor of w;

(c) s is a suffix of a conjugate of a factor of w;

(d) s = vt for some factor tuv of w.

Proof. (a) =⇒ (b): Suppose s = y′′x′, where xy is a factor of w and x = x′x′′ and
y = y′y′′. Another conjugate of xy is then y′′x′x′′y′ with prefix y′′x′.

(b) =⇒ (c): Such a prefix s is either of the form y′ or yx′, where xy be a factor of w
and x = x′x′′ and y = y′y′′. Considering the conjugate y′′xy′ of yx, we get a suffix y′, and
consider the conjugate x′′yx′ we get a suffix yx′.

(c) =⇒ (d): Such a suffix s is either of the form s = x′′ or s = y′′x, where xy be a
factor of w and x = x′x′′ and y = y′y′′. In the former case, let t = x′′, u = v = ε. In the
latter case, let t = x, u = y′, and v = y′′.

(d) =⇒ (a): Let tuv be a factor of w. Then vtu is a conjugate of tuv, and vt is a
factor of it.

Let Σk = {0, 1, . . . , k− 1}. Define RTC(k), the repetition threshold for circular factors,
to be the smallest real number r for which there exist infinite circularly r+-power-free
words in Σk. Clearly we have

RTC(k) ≥ RT(k).

14



In this paper we prove that RTC(2) = 4 and RTC(3) = 13
4

. For larger alphabets, we
conjecture that

RTC(k) =


5
2
, if k = 4;

105
46
, if k = 5;

2k−1
k−1

, if k ≥ 6.

In the next section, we prove some preliminary results. We get some bounds for RTC(k),
and in particular, we prove that RTC(2) = 2 RT(2) = 4. In Section 3.3, we study the three-
letter alphabet, and we prove that RTC(3) = 13

4
. Finally, in Section 3.4, we give another

interpretation for repetition threshold for circular factors.

Finally, we point out that the quantities we study here are not closely related to the
notion of avoidance in circular words, studied previously in [1, 15, 18]. Aberkane and
Currie [1] proved a conjecture in Alon et al. [3]. Alon et al. introduced the concept of
nonrepetitive coloring of graphs. A nonrepetitive coloring of a graph is a coloring for
which the sequence of colors in every cycle-free path contains no square. They conjectured
there exist nonrepetitive coloring of Cn, cycle on n vertices, for every n ≥ 18.

Related to Cn is the notion of circular words. A circular word is a word that the end is
linked to the beginning, forming a cycle. Gorbunova [15] studied repetition threshold on

circular words, and proved for every k ≥ 6, there exist
(
d k
2
e+1

d k
2
e

)+

-power-free circular words

of every length.

3.2 Binary Alphabet

First of all, we prove a bound on RTC(k).

Theorem 2. 1 + RT(k) ≤ RTC(k) ≤ 2 RT(k).

Proof. Let r = RT(k). We first prove that RTC(k) ≤ 2r. Let w ∈ Σω
k be an r+-power-free

word. We prove that w is circularly (2r)+-power-free. Suppose that xty � w, such that
yx is (2r)+-power. Now either y or x is an r+-power. This implies that w contains an
r+-power, a contradiction.

Now we prove that 1 + r ≤ RTC(k). Let l be the length of the longest r-power-free
word over Σk, and let w ∈ Σω

k . Considering the factors of length n = l + 1 of w, we
know some factor f must occur infinitely often. This f contains an r-power: zr. Therefore

15



zrtz is a factor of w. Therefore w contains a circular (1 + r)-power. This proves that
1 + r ≤ RTC(k).

Note that since RT(k) > 1, we have RTC(k) > 2.

Lemma 2. RTC(2) ≥ 4.

Proof. Let w ∈ Σω
2 be an arbitrary word. It suffices to prove that w contains circular

4-powers. There are two cases: either 00 or 11 appears infinitely often, or w ends with
a suffix of the form (01)ω. In the latter case, obviously there are circular 4-powers; in
the former there are words of the form aayaa for a ∈ Σ2 and y ∈ Σ∗2 and hence circular
4-powers.

Theorem 3. RTC(2) = 4.

Proof. A direct consequence of Theorem 2 and Lemma 2.

The Thue-Morse word is an example of a binary word that avoids circular 4+-powers.

3.3 Ternary Alphabet

Our goal in this section is to show that RTC(3) = 13
4

. For this purpose, we frequently use
the notion of synchronizing morphism, which was introduced in Ilie et al. [20].

Definition 2. A morphism h : Σ∗ → Γ∗ is said to be synchronizing if for all a, b, c ∈ Σ
and s, r ∈ Γ∗, if h(ab) = rh(c)s, then either r = ε and a = c or s = ε and b = c.

Definition 3. A synchronizing morphism h : Σ∗ → Γ∗ is said to be strongly synchronizing
if for all a, b, c ∈ Σ, if h(c) ∈ pref(h(a)) suff(h(b)), then either c = a or c = b.

The following technical lemma is applied several times throughout the paper.

Lemma 3. Let h : Σ∗ → Γ∗ be a synchronizing q-uniform morphism. Let n > 1 be an
integer, and let w ∈ Σ∗. If zn �p h(w) and |z| ≥ q, then un �p w for some u. Furthermore
|z| ≡ 0 (mod q).

Proof. Let z = h(u)z′, where |z′| < q and u ∈ Σ∗. Note that u 6= ε, since |z| ≥ q. Clearly,
we have z′h(u[0]) �p h(w[|u|..|u|+ 1]). Since h is synchronizing, the only possibility is that
z′ = ε, so |z| ≡ 0 (mod q). Now we can write zn = h(un) �p h(w). Therefore un �p w.

16



The next lemma states that if the fixed point of a strongly synchronizing morphism
(SSM) avoids small n’th powers, where n is an integer, it avoids n’th powers of all lengths.

Lemma 4. Let h : Σ∗ → Σ∗ be a strongly synchronizing q-uniform morphism. Let n > 1
be an integer. If hω(0) avoids factors of the form zn, where |zn| < 2nq, then hω(0) avoids
n’th powers.

Proof. Let w = a0a1a2 · · · = hω(0). Suppose w has n’th powers of length greater than or
equal to 2nq. Let z be the shortest such word, i.e., |zn| ≥ 2nq and zn � w. We can write

zn = xh(w[i..j])y,

x �s h(ai−1),

y �p h(aj+1),

|x|, |y| < q,

for some integers i, j ≥ 0. If x = y = ε, then using Lemma 3, since |z| ≥ q, the word w[i..j]
contains an n’th power. Therefore w contains an n’th power of length smaller than |zn|, a
contradiction. Now suppose that xy 6= ε. Since |z| ≥ 2nq

n
= 2q, and |xh(w[i])|, |h(w[j])y| <

2q, we can write

xh(w[i]) �p z,
h(w[j])y �s z.

Therefore h(w[j])yxh(w[i]) � z2 � zn. Since h is synchronizing

h(w[j])yxh(w[i]) � h(w[i..j]).

Hence yx = h(a) for some a ∈ Σ. Since h is an SSM, we have either a = ai−1 or a = aj+1.
Without loss of generality, suppose that a = ai−1. Then we can write h(w[i − 1..j]) =
yxh(w[i..j]). The word yxh(w[i..j]) is an n’th power, since it is a conjugate of xh(w[i..j])y.
So we can write

h(w[i− 1..j]) = zn1

where z1 is a conjugate of z. Note that |z1| = |z| ≥ 2q. Now using Lemma 3, the word
w[i − 1..j] contains an n’th power, and hence w contains an n’th power of length smaller
than |zn|, a contradiction.

The following lemma states that, for an SSM h and a well-chosen word w, all circular
(13

4
)+-powers in h(w) are small.
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Lemma 5. Let h : Σ∗ → Γ∗ be a strongly synchronizing q-uniform morphism. Let w =
a0a1a2 · · · ∈ Σω be a circularly cubefree word. In addition, suppose that w is squarefree. If
x1tx2 � h(w) for some words t, x1, x2, and x2x1 is a (13/4)+-power, then |x2x1| < 22q.

Proof. The proof is by contradiction. Suppose there are words t, x1, x2, and z in Γ∗ and a
rational number α > 13

4
such that

x1tx2 � h(w)

|x2x1| ≥ 22q

x2x1 = zα.

Suppose |z| < q. Let k be the smallest integer for which |zk| ≥ q. Then |zk| < 2q,
because otherwise |zk−1| ≥ q, a contradiction. We can write x2x1 = (zk)β, where β =
|x2x1|
|zk| > 22q

2q
> 13

4
. Therefore we can assume that |z| ≥ q, since otherwise we can always

replace z with zk, and α with β.

There are three cases to consider.

(a) Suppose that x1 and x2 are both long enough, so that each contains an image of a
word under h. More formally, suppose that

x1 = y1h(w[i1..j1])y2, (3.1)

x2 = y3h(w[i2..j2])y4, (3.2)

i1 ≤ j1, i2 ≤ j2,

y1 �s h(ai1−1),

y2 �p h(aj1+1),

y3 �s h(ai2−1),

y4 �p h(aj2+1),

|y1|, |y2|, |y3|, and |y4| < q, and

y2ty3 = h(w[j1 + 1..i2 − 1]).

Let v1 = w[i1..j1] and v2 = w[i2..j2]. See Figure 3.1.
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w = v1 v2

i1 j1 i2 j2

h(w) = y1 h(w[i1..j1]) y2 t y3 h(w[i2..j2]) y4
x1 t x2

Figure 3.1: x1tx2 is a factor of h(w)

There are two cases to consider.

(1) Suppose that y4y1 = ε. Let v = w[i2..j2]w[i1..j1].

The word h(v)y2 is a factor of y3h(v)y2 = zα of length ≥ 22q − q = 21q, and so

h(v)y2 = zβ1 ,

where z1 is a conjugate of z, and β ≥ 21
22
α > 3. Therefore we can write

z3
1 �p h(v)y2 �p h(vw[j1 + 1]).

Note that |z1| = |z| ≥ q, so using Lemma 3, we can write |z1| ≡ 0 (mod q).
Therefore

z3
1 �p h(v).

Using Lemma 3 again, the word v contains a cube, which means that the word
w contains a circular cube, a contradiction.

(2) Suppose that y4y1 6= ε. We show how to get two new factors x′1 = h(v′1)y′2 and
x′2 = y′3h(v′2), with v′1, v

′
2 nonempty, such that x′2x

′
1 = x2x1. Then we use case

(1) above to get a contradiction.

Let s = h(w[j2])y4y1h(w[i1]), and let m be the smallest integer for which |zm| ≥
|s|. Note that if |z| < |s|, then

|zm| < 2|s| < 8q. (3.3)

We show that at least one of the following inequalities holds:

|h(v1)| ≥ q + |zm|,
|h(v2)| ≥ q + |zm|.

19



Suppose that both inequalities fail. Then using (3.1) and (3.2) we can write

|x2x1| < 2q + 2|zm|+ |y1y2y3y4| < 6q + 2|zm|. (3.4)

If |z| < |s|, then by (3.3) and (3.4) one gets |x2x1| < 22q, contradicting our
assumption. Otherwise |z| ≥ |s|, and hence m = 1. Then

|x2x1| = α|z| < 2q + 2|z|+ |y1y2y3y4| < 6q + 2|z|,

and hence |z| < 6q. So |x2x1| < 6q + 2|z| < 18q, contradicting our assumption.
Without loss of generality, suppose that |h(v1)| ≥ q + |zm|.
Using the fact that z is a period of x2x1, we can write

h(v1)[q + |zm| − |s|..q + |zm| − 1] = s,

or, in other words,
s � h(v1).

See Figure 3.2.

x2x1 = y3 h(v2) y4 y1 h(v1) y2

s

|zm|

s

Figure 3.2: h(v1) contains a copy of s

Using the fact that h is synchronizing, we get that y4y1 = h(a) for some a ∈ Σ.
Since h is an SSM, we have either a = ai1−1 or a = aj2+1. Without loss of
generality, suppose that a = aj2+1. Now look at the following factors of h(w),
which can be obtained from x1 and x2 by extending x2 to the right and shrinking
x1 from the left:

x′1 = h(w[i1..j1])y2

x′2 = y3h(w[i2..j2 + 1]).

See Figure 3.3.
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x1 x2

h(w) = h(ai1−1) h(ai1ai1+1 · · · aj1) y2 t y3 h(ai2ai2+1 · · · aj2) h(aj2+1)
x′1 x′2

Figure 3.3: x′1 and x′2 are obtained from x1 and x2

We can see that

x′2x
′
1 = y3h(w[i2..j2 + 1])h(w[i1..j1])y2 = y3h(w[i2..j2])y4y1h(w[i1..j1])y2 = x2x1.

Now using case (1) we get a contradiction.

(b) Suppose that x2 is too short to contain an image of a word under h. More formally,
we can write

x1 = y1h(v)y2 where |x2| < 2q and |y1|, |y2| < q

for some words y1, y2 ∈ Γ∗ and a word v � w. Then h(v) is a factor of x2x1 = zα of
length ≥ 22q − 4q = 18q, and so

h(v) = zβ1 ,

where z1 is a conjugate of z, and β ≥ 18
22
α > 2. Note that |z1| = |z| ≥ q, so using

Lemma 3, the word v contains a square, a contradiction.

(c) Suppose that x1 is not long enough to contain an image of a word under h. An
argument similar to (b) applies here to get a contradiction.

The following 15-uniform morphism is an example of an SSM:

µ(0) = 012102120102012

µ(1) = 201020121012021

µ(2) = 012102010212010

µ(3) = 201210212021012

µ(4) = 102120121012021

µ(5) = 102010212021012.
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Another example of an SSM is the 4-uniform morphism ψ : Σ∗6 → Σ∗6 as follows:

ψ(0) = 0435

ψ(1) = 2341

ψ(2) = 3542

ψ(3) = 3540

ψ(4) = 4134

ψ(5) = 4105.

Our goal is to show that µ(ψω(0)) is circularly (13
4

)+-power-free. For this purpose, we
first prove that ψω(0) is circularly cubefree. Then we apply Lemma 5, for h = µ and
w = ψω(0).

Lemma 6. The fixed point ψω(0) is squarefree.

Proof. Suppose that ψω(0) contains a square. Using Lemma 4, there is a square zz � ψω(0)
such that |zz| < 16. Using a computer program, we checked all factors of length smaller
than 16 in ψω(0), and none of them is a square. This is a contradiction.

Lemma 7. The fixed point ψω(0) is circularly cubefree.

Proof. By contradiction. Let w = a0a1a2 · · · = ψω(0). Suppose x1tx2 � w, and x2x1 = z3

for some words t, x1, x2, z, where

x1 = y1ψ(w[i1..j1])y2,

x2 = y3ψ(w[i2..j2])y4,

y1 �s ψ(ai1−1),

y2 �p ψ(aj1+1),

y3 �s ψ(ai2−1),

y4 �p ψ(aj2+1),

|y1|, |y2|, |y3|, and |y4| < 4,

y2ty3 = ψ(w[j1 + 1..i2 − 1]),

for proper choices of the integers i1, i2, j1, j2. Let v1 = w[i1..j1] and v2 = w[i2..j2].
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Using a computer program, we searched for circular cubes of length not greater than
66, and it turns out that there is no such circular cube in w. Thus we can assume that
|x2x1| > 66 so |z| > 22. Moreover suppose that x2x1 has the smallest possible length.

There are two cases to consider.

(a) Suppose that y4y1 = ε. If y2y3 = ε, then ψ(v2v1) = z3. Using Lemma 3, we get that
v2v1 contains a cube. Hence w contains a smaller circular cube, a contradiction.

Suppose that y2y3 6= ε. Since |y3ψ(w[i2])|, |ψ(w[j1])y2| < 8 and |z| > 22, we can write

y3ψ(w[i2]) �p z,
ψ(w[j1])y2 �s z.

Therefore ψ(w[j1])y2y3ψ(w[i2]) � z3, and since ψ is synchronizing

ψ(w[j1])y2y3ψ(w[i2]) � ψ(v2v1).

Hence y2y3 = ψ(b) for some b ∈ Σ6. Since ψ is an SSM, we have either b = ai2−1, or
b = aj1+1. Without loss of generality, suppose that b = ai2−1. So we can write

ψ(w[i2 − 1..j2]w[i1..j1]) = y2y3ψ(w[i2..j2]w[i1..j1]).

The word y2y3ψ(v2v1) is a cube, since it is a conjugate of y3ψ(v2v1)y2. So we can
write

ψ(w[i2 − 1..j2]w[i1..j1]) = z3
1

where z1 is a conjugate of z. Then using Lemma 3, the word w[i2 − 1..j2]w[i1..j1]
contains a cube. Note that since y2y3 6= ε we have j1 < i2 − 1. Hence w[i2 −
1..j2]w[i1..j1] is a circular cube of w, a contradiction.

(b) Suppose that y4y1 6= ε. We show how to get two new factors x′1 = h(v′1)y′2 and
x′2 = y′3h(v′2) of w, for nonempty words v′1, v

′
2, such that x′2x

′
1 = x2x1. Then we use

case (a) above to get a contradiction.

The word w is squarefree due to Lemma 6. Therefore |x1|, |x2| > |z| > 66
3

and hence
|v1|, |v2| > 0. One can observe that either |ψ(v1)| ≥ 4 + |z| or |ψ(v2)| ≥ 4 + |z|.
Without loss of generality, suppose that |ψ(v1)| ≥ 4 + |z|. Let s = w[j2]y4y1w[i1].
Now, using the fact that z is a period of x2x1, we can write

ψ(v1)[4 + |z| − |s|..4 + |z| − 1] = s,
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or, in other words,
s � ψ(v1).

Using the fact that ψ is synchronizing, we get that y4y1 = ψ(a) for some a ∈ Σ6.
Since ψ is an SSM, we have either a = ai1−1, or a = aj2+1. Without loss of generality,
suppose that a = aj2+1. Now look at the following factors of w, which can be obtained
from x1 and x2 by extending x2 to the right and shrinking x1 from the left

x′1 = ψ(w[i1..j1])y2

x′2 = y3ψ(w[i2..j2 + 1]).

We can write

x′2x
′
1 = y3ψ(w[i2..j2 + 1])ψ(w[i1..j1])y2 = y3ψ(v2)y4y1ψ(v1)y2 = x2x1 = z3.

So using case (a) we get a contradiction.

Theorem 4. RTC(3) = 13
4

.

Proof. First let us show that RTC(3) ≥ 13
4

.

Suppose there exists an infinite word w that avoids circular α-powers, for α < 4. We
now argue that for every integer C, there exists an infinite word w′ that avoids both squares
of length ≤ C and circular α-powers. Note that none of the factors of w looks like xxyxx,
since w avoids circular 4-powers. Therefore, every square in w occurs only finitely many
times. Therefore w′ can be obtained by removing a sufficiently long prefix of w.

Computer search verifies that the longest circularly 13
4

-power-free word over a 3-letter
alphabet that avoids squares xx where |xx| < 147 has length 147. Therefore the above
argument for C = 147 shows that circular 13

4
-powers are unavoidable over a 3-letter alpha-

bet.

Now to prove RTC(3) = 13
4

, it is sufficient to give an example of an infinite word that
avoids circular (13

4
)+-powers. We claim that µ(ψω(0)) is such an example. We know that

ψω(0) is circularly cubefree. Therefore we can use Lemma 5 for w = ψω(0) and h = µ. So
if xty � µ(ψω(0)), and yx is a (13

4
)+-power, then |yx| < 22 × 15. Now there are finitely

many possibilities for x and y. Using a computer program, we checked that none of them
leads to a (13

4
)+-power. This completes the proof.
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3.4 Another Interpretation

We could, instead, consider the supremum of exp(p) over all products of i factors of w.
Call this quantity pexpi(w).

Proposition 3. If w is a recurrent infinite word, then pexp2(w) = cexp(w).

Proof. Let s be a product of two factors of w, say s = xy. Let y occur for the first time
at position i of w. Since w is recurrent, x occurs somewhere after position i+ |y| in w. So
there exists z such that yzx is a factor of w. Then xy is a factor of a conjugate of a factor
of w.

On the other hand, from Proposition 2, we know that if s is a conjugate of a factor of
w, then s = vt where tuv is a factor of w. Then s is the product of two factors of w.

We can now study the repetition threshold for i-term products, RTi(k), which is the
infimum of pexpi(w) over all words w ∈ Σω

k . Note that

RT2(k) ≥ RTC(k).

The two recurrent words, the Thue-Morse word and µ(ψω(0)), introduced in Section
3.3, are circularly RTC(2)+-power-free and circularly RTC(3)+-power-free, respectively.
Using Proposition 3, we get that RT2(k) = RTC(k) for k = 2, 3.

Theorem 5. For i ≥ 1 we have RTi(2) = 2i.

Proof. From Thue we know there exists an infinite 2+-power-free word. If some prod-
uct of factors x1x2 · · · xi contains a (2i)+-power, then some factor contains a 2+-power, a
contradiction. So RTi(2) ≤ 2i.

For the lower bound, fix i ≥ 2, and let w ∈ Σω
2 be an arbitrary word. Either 00 or 11

appears infinitely often, or w ends in a suffix of the form (01)ω. In the latter case we get
arbitrarily high powers, and the former case there is a product of i factors with exponent
2i.

It would be interesting to obtain more values of RTi(k). We propose the following
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conjectures which are supported by numerical evidence:

RT2(4) = RTC(4) =
5

2
,

RT2(5) = RTC(5) =
105

46
, and

RT2(k) = RTC(k) = 1 + RT(k) =
2k − 1

k − 1
for k ≥ 6.

We know that the values given above are lower bounds for RTC(k).
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Chapter 4

Automata Accepting Repetition-Free
Words

In this chapter1 we consider the following problem: given that a finite automaton M of
N states accepts at least one k-power-free (resp., overlap-free) word, what is the length of
the shortest such word accepted? We give upper and lower bounds which, unfortunately,
are widely separated. The main results of this chapter are Theorem 10 and 13.

4.1 Introduction

For a DFAD = (Q,Σ, δ, q0, F ), the set of states, input alphabet, transition function, set
of final states, and initial state are denoted by Q,Σ, δ, F, and q0, respectively. Let L(D)
denote the language accepted by D. As usual, we write δ(q, wa) = δ(δ(q, w), a) for a word
w.

Let L be an interesting language, such as the language of primitive words, or the
language of non-palindromes. We are interested in the following kind of question: given
that an automaton M of N states accepts a member of L, what is a good bound on the
length `(N) of the shortest word accepted?

For example, Ito et al. [21] proved that if L is the language of primitive words, then
`(N) ≤ 3N − 3. Horváth et al. [19] proved that if L is the language of non-palindromes,
then `(N) ≤ 3N . For additional results along these lines, see [4].

1The contents of this chapter are taken largely verbatim from Mousavi and Shallit [26].
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In this paper we address two open questions left unanswered in [4], corresponding to
the case where L is the language of k-power-free (resp., overlap-free) words. For these
words we give a class of DFAs of N states for which the shortest k-power (resp., overlap)

is of length N
1
4

(logN)+O(1). For overlaps over a binary alphabet we give an upper bound of
2O(N4N ).

We state the following basic result without proof.

Proposition 4. Let D = (Q,Σ, δ, q0, F ) be a (deterministic or nondeterministic) finite
automaton. If L(D) 6= ∅, then D accepts at least one word of length smaller than |Q|.

4.2 Special cases

In this section, we study the cases of the original problem where the shortest word in L that
is accepted by M has an additional property. Proving upper bounds for these special cases
are easier. In fact, we are not aware of any good upper bound for the original problem.
The first special case we study is when the shortest repetition-free word accepted is also
circularly repetition-free as defined in Chapter 3. The second case we study is when the
shortest repetition-free word is a linearly recurrent. In the former case we prove a linear
upper bound, and in the latter case we prove an exponential upper bound. Before we start
proving the main theorem of this section, we recall an important theorem of automata
theory.

We recall that a relation R on a set S is a subset of S ×S. We denote by xRy the fact
that (x, y) ∈ R. A relation R is an equivalence relation if R is reflexive, symmetric, and
transitive. Index of an equivalence relation R is the number of equivalence classes of R.

One important equivalence relations in formal languages is the Myhill-Nerode relation.
For a language L ⊆ Σ∗ the Myhill-Nerode relation RL on Σ∗ is defined as follows

RL = {(x, y)|xz ∈ L ⇐⇒ yz ∈ L for all z ∈ Σ∗}.

For example for L = a(a + b)∗, we have (a, b) /∈ RL since a ∈ L but b /∈ L, whereas
clearly (a, aa) ∈ RL. It is easy to see that RL is an equivalence relation. The famous
Myhill-Nerode Theorem states a necessary and sufficient condition of when L is a regular
language.

Theorem 6 (Myhill-Nerode). The language L is regular if and only if RL is of finite index.
Furthermore, if L = L(M) where M is a DFA with N states and RL has index n, then
n ≤ N .
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Now we can state the main theorem of this section which enables us to prove upper
bound on the length of the shortest k-power-free word accepted by a DFA in special cases.

Theorem 7. Suppose w is the shortest k-power-free word for some k ≥ 2, accepted by DFA
M with N states. Suppose also that there exist an integer l and words p1, q1, p2, q2, . . . , pl, ql
such that

p1 ≺p p2 ≺p · · · ≺p pl,
w = p1q1 = p2q2 = · · · = plql,

and piqj for all i < j are k-power-free, then l ≤ N .

Proof. Let L = L(M). We show that the index of RL is ≥ l. The theorem then follows
immediately using the Myhill-Nerode Theorem. To prove that RL has at least l equivalence
classes, we show that (pi, pj) /∈ RL for all i 6= j. The relation RL is symmetric, so
without loss of generality suppose that i < j. We know that piqj is k-power-free and that
|piqj| < |w|. Based on the assumption that w is the shortest k-power-free word in L, we
get that piqj /∈ L. Now since pjqj = w ∈ L, we get that (pi, pj) /∈ RL by definition of
Myhill-Nerode relation.

The next theorem states a linear upper bound on the length of the shortest repetition-
free word accepted by a DFA when the word is also circularly repetition-free.

Theorem 8. Let M be a DFA with N states, and let w be the shortest k-power-free word
in L(M). If w is circularly k-power-free, then |w| ≤ N .

Proof. Let l = |w| and pi be the prefix of length i of w. Since w is circularly k-power-free,
the words piqj, for i < j, are all k-power-free. Therefore (pi, pj) /∈ RL(M) and the conditions
of Theorem 7 hold. Thus the theorem follows immediately.

Next we consider the case where the shortest repetition-free word is linearly recur-
rent. We say w is c-linearly recurrent if for every factor x of w the distance between two
consecutive occurrences of x in w is ≤ c|x|.

Theorem 9. Let M be a DFA with N states, and let w be the shortest k-power-free word
in L(M). If w is c-linearly recurrent, then |w| < (1 + c)N .
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Proof. First note that if we take w = p1q1 = p2q2 = · · · = plql such that pi is a proper
suffix of pi+1, for all i, then the conditions in Theorem 7 are all satisfied. The reason is that
w = pjqj is k-power-free and therefore all factors of pjqj, including piqj, are k-power-free.
Thus we have (pi, pj) /∈ RL(M).

Let l be the integer for which

(1 + c)l−1 ≤ |w| (4.1)

(1 + c)l > |w|. (4.2)

Let p1 = w[0]. Since w is c-linearly recurrent, there exists p2 of length ≤ 1 + c such
that p1 ≺s p2. Likewise, there exist p3, . . . , pl such that p1 ≺p p2 ≺p p3 · · · ≺p pl ≺p w and
p1 ≺s p2 ≺s p3 · · · ≺s pl. Note that |pl| ≤ (1 + c)l−1.

Now using Theorem 7, we get that l ≤ N . On the other hand, using (4.2), we get that
log1+c |w| < l. Thus we can write |w| < (1 + c)N .

4.3 Lower bound

In this section, we construct an infinite family of DFAs such that the shortest k-power-free
word accepted is rather long, as a function of the number of states. Up to now only a
linear bound was known.

For a word w of length n and i ≥ 1, let

cyci(w) = w[i..n− 1]w[0..i− 2]

denote w’s ith cyclic shift to the left, followed by removing the last symbol. Also define

cyc0(w) = w[0..n− 2].

For example, we have

cyc2(recompute) = computer,

cyc4(richly) = lyric.

We call each cyci(w) a partial conjugate of w, which is not a reflexive, symmetric, or
transitive relation.

A word w is a simple k-power if it is a k-power and it contains no k-power as a proper
factor.

We start with a few lemmas.
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Lemma 8. Let w = pk be a simple k-power. Then the word p has |p| distinct conjugates.

Proof. By contradiction. If pk is a simple k-power, then p is a primitive word. Suppose
that p = uv = xy such that x ≺p u and vu = yx. Without loss of generality, we can
assume that xv 6= ε. Then there exists a word t 6= ε such that u = xt and y = tv. From
vu = yx we get

vxt = tvx.

Using a theorem of Lyndon and Schützenberger [22], we get that there exists z 6= ε such
that

vx = zi

t = zj

for some positive integers i, j. So yx = zi+j. Hence p = xy is not primitive, a contradiction.

Lemma 9. Let w be a simple k-power of length n. Then we have

cyci(w) = cycj(w) iff i ≡ j (mod
n

k
). (4.3)

Proof. Let w = pk. If i ≡ i′ (mod n
k
) and i′ < n

k
, then

cyci(w) = (p[i′..
n

k
− 1] p[0..i′ − 1])k−1 cyci′(p).

Similarly, if j ≡ j′ (mod n
k
) and j′ < n

k
, then

cycj(w) = (p[j′..
n

k
− 1] p[0..j′ − 1])k−1 cycj′(p).

So if i′ = j′, we get cyci(w) = cycj(w). On the other hand, if i′ 6= j′, we get

p[i′..
n

k
− 1] p[0..i′ − 1] 6= p[j′..

n

k
− 1] p[0..j′ − 1]

using Lemma 8, and hence cyci(w) 6= cycj(w).

Lemma 10. All conjugates of a simple k-power are simple k-powers.
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· · ·x =
uqkv =

p p p p p p
· · ·u q q q q v

|u| |pu| − e |p2u| − 2e |pk−1u| − (k − 1)e

Figure 4.1: Starting positions of the occurrences of q inside x

Proof. By contradiction. Let w = pk be a simple k-power, and let z 6= w be a conjugate
of w. Clearly z is a k-power. Suppose z contains qk and z 6= qk. Thus |q| < |p|. Since w
is simple qk � w = pk. The word x = pk+1 contains z as a factor. So x = uqkv, for some
words u, v � p.
Note that u and v are nonempty and not equal to p since qk � pk. Letting e := |p| − |q|,
and considering the starting positions of the occurrences of q in x (see Figure 4.1), we can
write

x
[
|piu| − ie..|piu| − (i− 1)e− 1

]
= x

[
|pju| − je..|pju| − (j − 1)e− 1

]
for every 0 ≤ i, j < k. Since p is a period of x, we can write

x [|u| − ie..|u| − (i− 1)e− 1] = x [|u| − je..|u| − (j − 1)e− 1]

which means x[u− (k − 1)e..u+ e− 1] � w is a k-power. Therefore w contains a k-power
other than itself, a contradiction.

Corollary 1. Partial conjugates of simple k-powers are k-power-free.

The next lemma shows that there are infinitely many simple k-powers over a binary
alphabet for k > 2. We also show that there are infinitely many simple squares over a
ternary alphabet, using a result of Currie [8].

Lemma 11.

(i) Let p = t[0..2n − 1] where n ≥ 0. For every k > 2, the word pk is a simple k-power.

(ii) There are infinitely many simple squares over a ternary alphabet.

Proof.

(i) By induction on n. For n = 0 we have pk = 0k which is a simple k-power. Suppose
n > 0. To get a contradiction, suppose that there exist words u, v, x with uv 6= ε
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and x 6= ε such that pk = uxkv. Note that |x| < |p|, so |uv| ≥ k. Without loss of
generality, we can assume that |v| ≥ dk

2
e ≥ 2. Let q = t[0..2n−1 − 1]. We know that

pk = µ(qk).

We can write
w = uxk �p µ(qk−1q[0..|q| − 2]).

Since µ is k-power-free, the word qk−1q[0..|q| − 2] contains a k-power. Hence qk con-
tains at least two k-powers, a contradiction.

(ii) Currie [8] proved that over a ternary alphabet, for every n ≥ 18, there is a word p of
length n such that all its conjugates are squarefree. Such squarefree words are called
circularly squarefree words.

We claim that for every circularly squarefree word p, the word p2 is a simple square.
To get a contradiction, let q2 be the smallest square in p2. So there exist words u, y
with uy 6= ε such that p2 = uq2y. We have |q2| > |p| since p is circularly squarefree.
Therefore, if we let p = uv = xy, then |x| > |u| and |v| > |y|. So there exists t
such that x = ut and v = ty. We can assume |t| < |q|, since otherwise |t| = |q|
and |uy| = 0, a contradiction. Now since q2 = vx = tyut, we get that q begins
and ends with t, which means t2 ≺ q2. Therefore p2 has a smaller square than q2, a
contradiction.

Next we show how to construct arbitrarily long simple k-powers from smaller ones. Fix
k = 2 (resp., k ≥ 3) and m = 3 (resp., m = 2). Let w1 ∈ Σ∗m be a simple k-power. Using
the previous lemma, there are infinitely many choices for w1. Let w1 be of length n. Define
wi+1 ∈ Σ∗m+i for i ≥ 1 recursively by

wi+1 = cyc0(wi)ai cycni−1(wi)ai cyc2ni−1(wi)ai · · · cyc(n−1)ni−1(wi)ai (4.4)

where ai = m + i − 1. The next lemma states that wi, for i ≥ 1, is a simple k-power.
Therefore, using Corollary 1, each word cyc0(wi) is k-power-free. For i ≥ 1, it is easy to
see that

|wi| = n|wi−1| = ni. (4.5)

Lemma 12. For every i ≥ 1, the word wi is a simple k-power.
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Proof. By induction on i. The word w1 is a simple k-power. Now suppose that wi is a
simple k-power for some i ≥ 1. Using Lemma 9, we have cycjni−1(wi) = cyc(j+n

k
)ni−1(wi),

since |wi|
k

= ni

k
.

We get that wi+1 is a k-power since

wi+1 = (cyc0(wi)ai cycni−1(wi)ai cyc2ni−1(wi)ai · · · cyc(n
k
−1)ni−1(wi)ai)

k.

We now claim that wi+1 is a simple k-power. To see this, suppose that wi+1 contains a
k-power yk such that wi+1 6= yk.

If y contains more than one occurrence of ai, then y = uai cycj(wi)aiv for some words
u, v and an integer j. Since y2 = uai cycj(wi)aivuai cycj(wi)aiv � wi+1, using (4.4) and
Lemma 9, we get that

|y| =
∣∣cycj(wi)aivuai

∣∣ ≥ n

k
ni =

|wi+1|
k

,

and hence yk = wi+1, a contradiction.

If y contains just one ai, then y = uaiv for some words u, v which contain no ai. So
yk = u(avu)k−1av for a = ai. Therefore vu is a partial conjugate of wi. However the
distance between two equal partial conjugates of wi in wi+1 is longer than just one letter,
using (4.4) and Lemma 9.

Finally, if y contains no ai, then a partial conjugate of wi contains a k-power, which is
impossible due to Corollary 1.

To make our formulas easier to read, we define a0 = w1[n− 1].

Theorem 10. For i ≥ 1, there is a DFADi with 2i−1(n− 1) + 2 states such that cyc0(wi)
is the shortest k-power-free word in L(Di).

Proof. Define D1 = (Q1,Σa1 , δ1, q1,0, F1) where

Q1 := {q1,0, q1,1, q1,2, . . . , q1,n−1, qd},
F1 := {q1,n−1},
δ1(q1,j, w1[j]) := q1,j+1 for 0 ≤ j < n− 1,

and the rest of the transitions go to the dead state qd. Clearly we have |Q1| = n + 1 and
L(D1) = {cyc0(w1)}.
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We define Di = (Qi,Σai , δi, q1,0, Fi) for i ≥ 2 recursively. We recall that ai = m+ i− 1
for i ≥ 1 and a0 = w1[n − 1]. For the rest of the proof s and t denote (possibly empty)
sequences of integers and j denotes a single integer (a sequence of length 1). We use integer
sequences as subscripts of states in Qi. For example, q1,0, qs,j, and qs,1,t might denote states
of Di. For i ≥ 1, define

Qi+1 := Qi ∪ {qi+1,t : qt ∈ (Qi − Fi)− {qd}}, (4.6)

Fi+1 := {qi+1,i,t : δi(qi,t, c) = q1,n−1 for some c ∈ Σai}, (4.7)

if qt ∈ Qi and c ∈ Σai , then δi+1(qt, c) := δi(qt, c) (4.8)

if qt, qs ∈ (Qi − Fi)− {qd}, c ∈ Σai , and δi(qt, c) = qs,

then δi+1(qi+1,t, c) := qi+1,s (4.9)

if qt ∈ Fi, then δi+1(qt, ai) := q1,1 and δi+1(qt, ai−1) := qi+1,1,0 (4.10)

if i > 1, qi+1,t /∈ Fi+1, and δi(qt, ai−1) = q1,j,

then δi+1(qi+1,t, ai) := q1,j+1 (4.11)

and finally for the special case of i = 1,

δ2(q2,1,j, a1) := q1,j+2 for 0 ≤ j < n− 2. (4.12)

The rest of the transitions, not indicated in (4.8)–(4.12), go to the dead state qd. Figure 4.2b
depicts D2 and D3. Using (4.6), we have |Qi+1| = 2|Qi| − 2 = 2i(n − 1) + 2 by a simple
induction.

An easy induction on i proves that |Fi| = 1. So let fi be the appropriate integer
sequence for which Fi = {qfi}. Using (4.8)–(4.12), we get that for every 1 ≤ j < n, there
exists exactly one state qt ∈ Qi for which δi(qt, ai−1) = q1,j.

By induction on i, we prove that for i ≥ 2 if δi(qt, ai−1) = q1,j, then

x1 = cyc(j−1)ni−2(wi−1), (4.13)

x2 = wi[0..jn
i−1 − 2], (4.14)

x3 = wi[(j − 1)ni−1..ni − 2]. (4.15)

are the shortest k-power-free words for which

δi(q1,j−1, x1) = qt, (4.16)

δi(q1,0, x2) = qt, (4.17)

δi(q1,j−1, x3) = qfi . (4.18)
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In particular, from (4.15) and (4.18), for j = 1, we get that cyc0(wi) is the shortest
k-power-free word in L(Di).

The fact that our choices of x1, x2, and x3 are k-power-free follows from the fact that
proper factors of simple k-powers are k-power-free. For i = 2 the proofs of (4.16)–(4.18)
are easy and left to the readers.

Suppose that (4.16)–(4.18) hold for some i ≥ 2. Let us prove (4.16)–(4.18) for i + 1.
Suppose that

δi+1(qt, ai) = q1,j. (4.19)

First we prove that the shortest k-power-free word x for which

δi+1(q1,j−1, x) = qt,

is x = cyc(j−1)ni−1(wi).

If qt ∈ Qi, from (4.10) and (4.19), we have

qt = qfi , and

δi+1(qt, ai) = q1,1.

By induction hypothesis, the cyc0(wi) is the shortest k-power-free word in L(Di). In
other words, we have δi(q1,0, cyc0(wi)) = qfi = qt, which can be rewritten using (4.8) as
δi+1(q1,0, cyc0(wi)) = qt.

Now suppose qt /∈ Qi. Then by (4.11) and (4.19), we get that there exists t′ such that
qt′ ∈ Qi and

t = i+ 1, t′;

δi(qt′ , ai−1) = q1,j−1.

From the induction hypothesis, i.e., (4.17) and (4.18), we can write

δi(q1,0, wi[0..(j − 1)ni−1 − 2]) = qt′ , (4.20)

δi(q1,j−1, wi[(j − 1)ni−1..ni − 2]) = qfi . (4.21)

In addition wi[0..(j − 1)ni−1 − 2] and wi[(j − 1)ni−1..ni − 2] are the shortest k-power-free
transitions from q1,0 to qt′ and from q1,j−1 to qfi respectively. Using (4.8), we can rewrite
(4.20) and (4.21) for δi+1 as follows:

δi+1(q1,0, wi[0..(j − 1)ni−1 − 2]) = qt′ , (4.22)

δi+1(q1,j−1, wi[(j − 1)ni−1..ni − 2]) = qfi . (4.23)

36



Note that from (4.9) and (4.22), we get

δi+1(qi+1,1,0, wi[0..(j − 1)ni−1 − 2]) = qi+1,t′ = qt. (4.24)

We also have δi+1(qfi , ai) = qi+1,1,0, using (4.10). So together with (4.23) and (4.24), we
get

δi+1(q1,j−1, cyc(j−1)ni−1(wi)) = qt

and cyc(j−1)ni−1(wi) is the shortest k-power-free transition from q1,j−1 to qt.

The proofs of (4.17) and (4.18) are similar.

In what follows, all logarithms are to the base 2.

Corollary 2. For infinitely many N , there exists a DFA with N states such that the
shortest k-power-free word accepted is of length N

1
4

logN+O(1).

Proof. Let i = blog nc in Theorem 10. Then D = Di has

N = 2blognc−1(n− 1) + 2 = Ω(n2)

states. In addition, the shortest k-power-free word in L(D) is cyc0

(
wblognc

)
. Now, using

(4.5) we can write ∣∣cyc0(wblognc)
∣∣ = nblognc − 1.

Suppose 2t ≤ n < 2t+1−1, so that t = blog nc and Then logN = 2t+O(1), so 1
4
(logN)2 =

t2 + O(t). On the other hand log |w| = blog nc(log n) = t(t + O(1)) = t2 + O(t). Now
2O(t) = nO(1) = NO(1), and the result follows.

Remark 1. The same bound holds for overlap-free words. To do so, we define a simple
overlap as a word of the form axaxa where axax is a simple square. In our construction
of the DFAs, we use complete conjugates of (ax)2 instead of partial conjugates.

Remark 2. The Di in Theorem 10 are defined over the growing alphabet Σm+i−1. However,
we can fix the alphabet to be Σm+1. For this purpose, we introduce w′i which is quite similar
to wi:

w′1 = w1,

w′i+1 = cyc0(w′i)bi cycni−1(w′i)bi cyc2ni−1(w′i)bi · · · cyc(n−1)ni−1(w′i)bi,

where bi = mcim such that ci is (any of) the shortest nonempty k-power-free word over Σm

not equal to c1, . . . , ci−1. Clearly we have |bi| ≤ |bi−1|+ 1 = O(i), and hence w′i = Θ(ni).
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One can then prove Lemma 12 and Theorem 10 for w′i with minor modifications of the
argument above. In particular, we construct DFAD′i that accepts cyc0(w′i) as the shortest
k-power-free word accepted, and a D′i that is quite similar to Di. In particular, they have
asymptotically the same number of states.

4.4 Upper bound for overlap-free words

In this section, we prove an upper bound on the length of the shortest overlap-free word
accepted by a DFAD over a binary alphabet.

Let L = L(D) and let R be the set of overlap-free words over Σ∗2. Carpi [7] defined a
certain operation Ψ on binary languages, and proved that Ψ(R) is regular. We prove that
Ψ(L) is also regular, and hence Ψ(L) ∩ Ψ(R) is regular. Then we apply Proposition 4 to
get an upper bound on the length of the shortest word in Ψ(L) ∩Ψ(R). This bound then
gives us an upper bound on the length of the shortest overlap-free word in L.

Let H = {ε, 0, 1, 00, 11}. Carpi defines maps

Φl,Φr : Σ25 → H

such that for every pair h, h′ ∈ H, one has

h = Φl(a), h′ = Φr(a)

for exactly one letter a ∈ Σ25.

For every word w ∈ Σ∗25, define Φ(w) ∈ Σ∗2 inductively by

Φ(ε) = ε,Φ(aw) = Φl(a)µ(Φ(w))Φr(a) (w ∈ Σ∗25, a ∈ Σ25). (4.25)

Expanding (4.25) for w = a0a1 · · · an−1, we get

Φl(a0)µ(Φl(a1)) · · ·µn−1(Φl(an−1))µn−1(Φr(an−1)) · · ·µ(Φr(a1))Φr(a0). (4.26)

For L ⊆ Σ∗2 define Ψ(L) =
⋃
x∈L Φ−1(x). Based on the decomposition of Restivo and

Salemi [29] for finite overlap-free words, the language Ψ({x}) is always nonempty for an
overlap-free word x ∈ Σ∗2. The next theorem is due to Carpi [7].

Theorem 11. Ψ(R) is regular.
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Carpi constructed a DFAA with less than 400 states that accepts Ψ(R). We prove that
Ψ preserves regular languages.

Theorem 12. Let D = (Q,Σ2, δ, q0, F ) be a DFA with N states, and let L = L(D). Then
Ψ(L) is regular and is accepted by a DFA with at most N4N states.

Proof. Let ι : Q→ Q denote the identity function, and define η0, η1 : Q→ Q as follows

ηi(q) = δ(q, i) for i = 0, 1. (4.27)

For functions ζ0, ζ1 : Q→ Q, and a word x = b0b1 · · · bn−1 ∈ Σ∗2, define ζx = ζbn−1 ◦· · ·◦ζb1 ◦
ζb0 . Therefore we have ζy ◦ ζx = ζxy. Also by convention ζε = ι. So for example x ∈ L(D)
if and only if ηx(q0) ∈ F .

We create DFAD′ = (Q′,Σ25, δ
′, q′0, F

′) where

Q′ = {[κ, λ, ζ0, ζ1] : κ, λ, ζ0, ζ1 : Q→ Q},
δ′([κ, λ, ζ0, ζ1], a) =

[
ζΦl(a) ◦ κ, λ ◦ ζΦr(a), ζ1 ◦ ζ0, ζ0 ◦ ζ1

]
.

Also let

q′0 = [ι, ι, η0, η1],

F ′ = {[κ, λ, ζ0, ζ1] : λ ◦ κ(q0) ∈ F}. (4.28)

We can see that |Q′| = N4N . We claim that D′ accepts Ψ(L). Indeed, on input w, the
DFAD′ simulates the behavior of D on Φ(w).

Let w = a0a1 · · · an−1 ∈ Σ∗25, and define

Φ1(w) = Φl(aa0)µ(Φl(a1)) · · ·µn−1(Φl(an−1)),

Φ2(w) = µn−1(Φr(an−1)) · · ·µ(Φr(a1))Φr(a0).

Using (4.26), we can write
Φ(w) = Φ1(w)Φ2(w).

We prove by induction on n that

δ′(q′0, w) =
[
ηΦ1(w), ηΦ2(w), ηµn(0), ηµn(1)

]
. (4.29)

For n = 0, we have Φ(w) = Φ1(w) = Φ2(w) = ε. So

δ′(q′0, ε) = q′0 = [ι, ι, η0, η1] = [ηΦ1(w), ηΦ2(w), ηµ0(0), ηµ0(1)].
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So we can assume (4.29) holds for some n ≥ 0. Now suppose w = a0a1 · · · an and write

δ′(q′0, a0a1 · · · an)

= δ′(δ′(q′0, a0a1 · · · an−1), an)

= δ′
([
ηΦ1(w[0..n−1]), ηΦ2(w[0..n−1]), ηµn(0), ηµn(1)

]
, an
)

=
[
ηµn(φl(an)) ◦ ηΦ1(w[0..n−1]), ηΦ2(w[0..n−1]) ◦ ηµn(φr(an)),

ηµn(1) ◦ ηµn(0), ηµn(0) ◦ ηµn(1)

]
=
[
ηΦ1(w), ηΦ2(w), ηµn+1(0), ηµn+1(1)

]
, (4.30)

and equality (4.30) holds because

Φ1(w[0..n− 1])µn(φl(an)) = Φ1(w),

µn(φr(an))Φ2(w[0..n− 1]) = Φ2(w),

µn(0)µn(1) = µn(01) = µn(µ(0)) = µn+1(0), and similarly

µn(1)µn(0) = µn+1(1).

Finally, using (4.28), we have

w ∈ L(D′) ⇐⇒ δ′(q′0, w) =
[
ηΦ1(w), ηΦ2(w), ζ0, ζ1

]
∈ F ′

⇐⇒ ηΦ2(w) ◦ ηΦ1(w)(q0) ∈ F
⇐⇒ Φ(w) = Φ1(w)Φ2(w) ∈ L(D).

Theorem 13. Let D = (Q,Σ2, δ, q0, F ) be a DFA with N states. If D accepts at least one
overlap-free word, then the length of the shortest overlap-free word accepted is 2O(N4N ).

Proof. Let L = L(D). Using Theorem 12, there exists a DFAD′ with N4N states that
accepts the language Ψ(L).

Since Ψ(R) is regular and is accepted by a DFA with at most 400 states, we see that

K = Ψ(L) ∩Ψ(R)

is regular and is accepted by a DFA with O
(
N4N

)
states.

Since L accepts an overlap-free word, the language K is nonempty. Using Proposition 4,
we see that K contains a word w of length O

(
N4N

)
.

Therefore Φ(w) is an overlap-free word in L. By induction, one can easily prove that
|Φ(w)| = O

(
2|w|
)
. Hence we have |Φ(w)| = 2O(N4N ).
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Chapter 5

Open Problems

We state a number of open problems in this chapter.

In Chapter 3, we introduced the quantity exp(w). The naive algorithm to compute
exp(w) takes cubic time. Badkobeh et al. [5] give a linear algorithm that computes
exp(w).

Problem 1. How fast can we compute the circular exponent, cexp(w)?

We introduce the notion of RTk in Chapter 3.

Problem 2. Prove or disprove any of the following equalities

RT2(4) = RTC(4) =
5

2
,

RT2(5) = RTC(5) =
105

46
, and

RT2(n) = RTC(n) = 1 + RT(n) =
2n− 1

n− 1
for n ≥ 6.

Problem 3. Compute RTk(n) for all k and n.

In Chapter 4, we gave a doubly exponential upper bound on the length of the shortest
binary overlap-free word accepted by a DFA. We are not aware of any upper bound on the
length of the shortest k-power-free word accepted by a DFA.

Problem 4. Either prove a sharp lower bound on the length of the shortest binary overlap-
free word accepted by a DFA, or improve the upper bound.

Problem 5. Prove any upper bound on the length of the shortest k-power-free word accepted
by a DFA, for any k.
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[33] A. Thue. Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen. Norske vid.
Selsk. Skr. Mat. Nat. Kl., 1:1–67, 1912. Reprinted in Selected Mathematical Papers of
Axel Thue, T. Nagell, editor, Universitetsforlaget, Oslo, 1977, pp. 413–478.

[34] S. Yu. Regular languages. In G. Rozenberg and A. Salomaa, editors, Handbook of
Formal Languages, volume 1, pages 41–110. Springer-Verlag, 1997.

45


	List of Figures
	Combinatorics on Words
	Words
	Morphisms

	Repetition Avoidance
	Constructing Repetition-Free Words
	Dejean's Conjecture

	Repetition Avoidance in Circular Factors
	Introduction
	Binary Alphabet
	Ternary Alphabet
	Another Interpretation

	Automata Accepting Repetition-Free Words
	Introduction
	Special cases
	Lower bound
	Upper bound for overlap-free words

	Open Problems
	References

