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Abstract

Motivated by applications in multimedia streaming and in energy systems,

we study duality relations in finite queues. Dual of a queue is defined to be

a queue in which the arrival and service processes are interchanged. In other

words, dual of the G1/G2/1/K queue is the G2/G1/1/K queue, a queue in

which the inter-arrival times have the same distribution as the service times

of the primal queue and vice versa. Similarly, dual of a fluid flow queue

with cumulative input C(t) and available processing S(t) is a fluid queue

with cumulative input S(t) and available processing C(t). We are primar-

ily interested in finding relations between the overflow and underflow of the

primal and dual queues. Then, using existing results in the literature re-

garding the probability of loss and the stationary probability of queue being

full, we can obtain estimates on the probability of starvation and the prob-

ability of the queue being empty. The probability of starvation corresponds

to the probability that a queue becomes empty, i.e., the end of a busy period.

We study the relations between arrival and departure Palm distributions

and their relations to stationary distributions. We consider both the case of

point process inputs as well as fluid inputs. We obtain inequalities between

the probability of the queue being empty and the probability of the queue

being full for both the time stationary and Palm distributions by interchang-

ing arrival and service processes. In the fluid queue case, we show that there

is an equality between arrival and departure distributions that leads to an

equality between the probability of starvation in the primal queue and the

probability of overflow in the dual queue. The techniques are based on mono-

tonicity arguments and coupling. The usefulness of the bounds is illustrated

via numerical results.
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Chapter 1

Introduction

How much time did you waste waiting in line, this week? It seems we can

not escape frequent delays and they are getting worse. We encounter wait-

ing lines in many industrial problems, as well. In communication systems,

voice and data packets queue up in switches and routers for transmission. In

manufacturing systems, products wait in line to get service from facilities. In

health care, patients wait in line to see a doctor, get a bed, or receive medical

services. Queueing theory studies the phenomena of standing, waiting, and

serving and provides useful tools for performance evaluation of waiting lines.

Moreover, it has been demonstrated that many problems in actuarial sciences

and mathematical finance (particularly in risk analysis) can be translated to

similar problems in queueing theory. Thus, over the years, many researchers

have devoted their time to studying the behavior of queues. The alteration in

queueing policy in banks is a simple example of how useful queueing analysis

can be in everyday life. A few decades ago, each teller had a separate line.

Queueing analysts investigated the effect of combining the queues and real-

ized that the mean waiting time of customers can be significantly decreased

by combining the lines. Thus, banks started using centralized numbering

systems.

Queueing theory as a discipline is almost a century old. It was developed

by Erlang, even though Johannsen seems to be the first person to publish
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a paper in this field. Johannsen’s paper [19] did not have a mathematical

approach to the problem. Thus, in 1908, Johannsen asked Erlang to treat

the problem from a mathematical point of view and Copenhagen Telephone

Company appointed Erlang as a research associate on telephone problems.

In the beginning, Erlang had no laboratory staff to help him. So, he had to

carry out all the measurements on his own. He was often seen in the streets of

Copenhagen, accompanied by a workman carrying a ladder, which was used

to climb down into manholes. In 1909, Erlang laid the foundation for the

place of Poisson distribution in queueing theory by showing that telephone

calls arrive based on a Poisson process in [10]. His papers written during the

next 20 years contain some of the most significant concepts and techniques;

the notion of statistical equilibrium and the method of writing state balance

equations are two such examples. In [12], he tackled the first optimization

problem in queueing theory and in 1917, he wrote his most important paper

on the subject [11]. As a result of the growing interest in his work, many of

his papers were translated into English, French and German. He wrote his

papers quite briefly, sometimes omitting the proofs, which made the papers

difficult to understand especially for non-specialists in this field. It is known

that a researcher from Bell Labs (in the United states) learned Danish, so

he could read Erlang’s papers in the original language. Interest in his work

continued after his death and by 1944 Erlang was used in Scandinavian coun-

tries for denoting the unit of traffic. International recognition followed at the

end of World War II [1]. Researchers continued working on this topic and

numerous results followed [6, 27, 22, 18, 37].

Electrical engineers study queueing models and investigate the impact of

different disciplines and distributions on the quantities of interest in order to

increase the efficiency of communication systems and decrease expenses. In

this thesis, motivated by applications in multimedia streaming and energy

systems, we consider duality in finite buffer queueing systems and study

the relations between arrival Palm distribution, departure Palm distribution,

and stationary distribution of a finite buffer queue with the corresponding

distributions in the dual queue.
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1.1 Motivation

Explicit results for stationary distributions in finite capacity queueing mod-

els with general arrival and service processes are rare, and yet, as applica-

tions evolve there is the need to move beyond classical Markovian queueing

models. However, in many applications, we are interested in specific mea-

sures such as the overflow probability in finite queues for which there exist

many results under fairly general hypotheses on the input processes via the

use of large deviations or heavy traffic limits as the loading on the queues

increases. Recently, motivated by applications in energy systems and mul-

timedia streaming, the probability of starvation of finite buffer queues has

become the focus of attention. The probability of starvation corresponds to

the probability that a queue becomes empty, i.e., the end of a busy period.

For instance, [4] relates the starvation of storage units in energy systems to

the starvation of finite buffer queues. Similarly, in [39], authors are interested

in maximizing the quality of experience (QoE) of media streaming service by

optimizing the number of prefetched packets in video streaming in order to

avoid having periods of buffer starvation with no packets to playback. A key

measure is the distribution of the number of buffer starvations within a se-

quence of N consecutive packet arrivals and they propose a trade-off between

the start-up delay and the starvation.

Starvation in queues is defined in many ways and different applications

use different notions. Furthermore, due to the nature of applications, differ-

ent assumptions on the nature of the queueing models are more appropriate.

In classical queueing models where the arrivals are point processes, the prob-

ability of a departure leaving no customers in the queue and the stationary

probability of queue being empty provide useful information about the star-

vation. Similarly, in a fluid flow model, underflow rate is of interest in most

applications. Unfortunately, explicit results for these quantities are very dif-

ficult to obtain. Moreover, although in a single server queue (point process

model), one can relate the probability of the queue being empty to the prob-
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ability of loss using

ρ(1− PL) = 1− π(0)

where ρ is the traffic intensity, PL is the probability of loss, and π(0) is the

stationary probability of the queue being empty, this equality is of no prac-

tical use. This is because, in the heavy traffic case, ρ(1 − PL) ≈ 1 and the

bounds obtained for π(0) are not very useful. However, motivated by the

M/M/1/K queueing model, it is of interest to relate the starvation prob-

ability measures to the overflow probabilities in a queue with the arrival

and service processes switched since well known and powerful methods that

are valid for general stationary inputs can be exploited especially if we re-

quire the starvation probability to be small. The relationship between these

two measures for queues with arrival and service distributions interchanged

are what we refer to as duality in queueing models. Duality results con-

cerning the stationary queue length distribution seen at arbitrary times and

departure instants, stationary distribution of workload process, and under-

flow and overflow rates can be very useful in studying the starvation of finite

buffer queues by relating the quantities of interest to other known and more

tractable quantities. Duality has been studied in other contexts as for ex-

ample in risk models [35, 5] where the dual or risk process corresponds to

processes with negative jumps and is a dual process of the workload process

with point process inputs and one of the measures of interest is the hitting

probability to the origin corresponding to bankruptcy.

1.2 Mathematical description

Let us begin by describing the problem and defining the quantities of interest

in our analysis. In this thesis, we consider classical queueing models with

both discrete point process arrivals and fluid queues with continuous arrivals

of work. The primal queue is assumed to be a G1/G2/1/K and will be

called system 1 and its dual is a system in which the inter-arrival times

have the same distribution as the service times in the primal queue and
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vice versa. In other words, the dual queue is a G2/G1/1/K queue and is

denoted by system 2. Let {TA[n]} denote the arrival times and {TD[n]}
the departure times, where n indicates the n-th arrival or departure. Let us

denote the queue length at time t by Q(t), and the queue length at arrival and

departure instants by QA[n] , Q(TA[n]−) and QD[n] , QD+ [n] , Q(TD[n]+)

respectively. Let π(·) , IP(Q = ·) denote the stationary distribution. Let

us denote the event of the arrival of a customer by [∆A0 = 1], the event

of the departure of a customer by [∆D0 = 1], and the event of customer

entering the queue by [∆Q0 = 1]. Note that because an arrival might get

rejected, [∆Q0 = 1] ⊂ [∆A0 = 1]. Then, πA(n) , IPA{Q0− = n} , IP(Q0− =

n|∆A0 = 1), and πD(n) , πD−(n + 1) , IP(Q0− = n + 1|∆D0 = 1) denote

the Palm probabilities associated with the arrivals and departures. In this

thesis, we will use πD(·) to denote πD+(·), the Palm distribution just after

a departure. For single server queues with FIFO discipline and finite buffer

size of K, the following relationship holds between the various distributions

[6, 23].

πD(n) =
πA(n)

1− πA(K)
(1.2.1)

λnπ(n) = λAπA(n) (1.2.2)

µnπ(n) = λDπD(n− 1) (1.2.3)

λnπ(n) = µn+1π(n+ 1) (1.2.4)

where λn and µn denote the conditional arrival intensity and conditional de-

parture intensity in state n and λA and λD denote the mean arrival rate and

mean departure rate. λn and µn are not known in general and are difficult to

calculate for general input and service distributions. Equation (1.2.1) follows

from an argument similar to the one proposed in [23, p.40] for infinite buffer

queues. Note equation (1.2.1) holds for all work-conservative disciplines.

For the fluid flow model, we will use a notation similar to [37] and denote

the cumulative input fluid and available processing in interval [0, t] respec-

tively by {C(t) : t > 0} and {S(t) : t > 0}. Let W (t) denote workload
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at time t, K denote the buffer size of the queue, U(t) ,
∫ t
0
1{W (s) =

K}d(C(s) − S(s)) denote the overflow process (the amount of flow that is

lost up to time t), and L(t) ,
∫ t
0
1{W (s) = 0}d(S(s) − C(s)) denote the

underflow process. Moreover, let us denote the overflow and underflow rates,

respectively by Λ = limt→∞ t
−1U(t) and ν = limt→∞ t

−1L(t). Furthermore,

as in the point process model, we will call the primal queue S1 and the dual,

which has a cumulative available processing distributed as the cumulative

input fluid in the primal queue and vice versa, S2.

1.3 Literature survey

The concept of duality in queues was first proposed by Prabhu in [27] and

later discussed by Kleinrock in [22]. In [22] a loop cyclic queueing system is

described in which K customers circulate between two finite buffer queueing

systems and customers that leave one queue enter the other. Since then this

notion has been studied by many authors. These authors have primarily fo-

cused on investigating the relationship between the stationary queue length

distribution of G1/G2/1/K seen at an arbitrary time and its counterpart in

G2/G1/1/K, and very few results are proposed for the relationship between

the stationary queue length distribution seen by arrivals or departures in the

above-mentioned queues.

In [16], Heathcote exhibits a relationship between the limit distribution

of the times between points of increase of the maximum queue length process

in the GI/M/1 queueing system and the distribution of the busy period of

the dual M/G/1 queueing system. [29] generalizes the result proposed in

[16] for phase-type queueing systems, GI/PH/1 and PH/G/1, so it can be

used for well-known distributions such as Erlang and hyper-exponential. The

main result of [29] implies in particular that in an unstable GI/M/1 queue-

ing system the maximum queue length process grows approximately like the

counting process of an appropriately defined Markov renewal process.
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In [36], Takacs proposes an alternate approach to queueing problems and

uses the classical ballot theorem to obtain direct probabilistic and combina-

torial derivations of numerous classical results of queueing theory, many of

which had been previously obtained by the use of Laplace transform in his

previous works. In [24], Niu continues in this spirit. He further generalizes

the ballot theorem used in [36] and provides generalizations of several well-

known formulas relating to busy periods and waiting times in M/G/1 and

GI/M/1 queues. In particular, a duality relation between the joint distribu-

tion of several variables associated with the busy period in M/G/1 and the

corresponding joint distribution in GI/M/1 is presented. In [25], Niu gener-

alizes this duality relation to GI/G/1 queues with exceptional/modified first

services. [25] clarifies the original result presented in [24] and proves that the

generalized ballot theorem is not necessary for obtaining duality relations.

[13] obtain relations between the joint distribution of several variables in

a GI/G/1 queue and the joint distribution of variables associated with the

busy period in the dual queue. It is assumed that the primal queue has the

preemptive-resume last-in-first-out (LIFO, aka last-come-first-served) disci-

pline while the dual queue may have any work conserving queueing discipline.

These relations generalize the results obtained by Niu in [24, 25] for M/G/1

and GI/G/1 queueing systems.

Ramaswami in [28] defines a double transform R(z, s), which is a gener-

alization of Neuts’ rate matrix R, for Markov renewal processes of GI/M/1

type and writes R(z, s) in terms of the double transform G(z, s) of Neuts for a

properly defined dual process of M/G/1 type. For the GI/PH/1 queue, the

G(z, s) matrix of the duality theorem is identified as the matrix of the dual

PH/GI/1 queue with a time reversed representation of the PH-distribution.

In [30], Ramaswami proposes a useful connection between Markov-modulated

fluid flows (MMFF) and quasi-birth-and-death (QBD) models. MMFF mod-

els are real-valued stochastic processes with piece-wise linear sample paths

whose instantaneous rate of change depend on the state of an associated

continuous-time Markov Chain (CTMC) called the phase process. QBD
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models are discrete state space processes on the integers modulated by a

Markov chain and make jumps of at most one unit up or down in each step.

This result has been used by Ramaswami and other in a series of papers.

[2] proposes one further similarity between MMFFs and QBD processes by

proposing a set of duality results using time reversal.

[7] is a good example of how one can benefit from duality theorems in

deriving some interesting results pertaining to workload, queue length, and

busy period of queues. [7] derives the stationary distribution of the workload

of the server, or the virtual waiting time of G/M/1 queue with patience time

K. It first obtains the expected number of downcrossings of a level in the

workload process during a busy period and then the expected length of a

busy period. The dual property between the M/G/1 queueing systems and

the G/M/1 queueing systems is utilized to derive the expectations. By ap-

plying the level crossing argument to the expectations, the stationary density

of the workload is derived.

[9] considers the queueing system GI/G/l with impatient customers,

meaning that customers will depart after a limited amount of time K if

their service has not yet been completed, and shows that the waiting time of

the nth customer is the dual of K minus the waiting time of the nth customer

in the dual system.

[9] considers queues with a maximum of C waiting spaces and uses du-

ality principles to relate the time of the first overflow of the M/G/1 and

G/M/1 queues. The time is measured in terms of the number of arriving or

departing customers before the overflow.

[32] establishes a relation between the queue sizes of a queuing system

with Poisson arrivals, batch services with general service times, and its dual

G/M/1 queue with batch arrivals and finite waiting space. Moreover, it

proves that the knowledge of this relation is useful in the simultaneous study

of the busy periods of such infinite buffer queues.
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[15] instead of trying to relate the queue length or busy period of the pri-

mal queue to the counterparts of its dual, introduces a dual dam. It claims

that events defined for the original queue can be related to events for the

dual dam and vice versa. It particularly emphasizes on results pertaining to

a single busy period.

[26] considers the notion of duality in infinite buffer dams and proposes in-

teresting results based on the construction of an auxiliary generalized moun-

tain process. It considers an infinite buffer G/M/1 dam with a general release

rule, and constructs a dual M/G/1 dam with state-dependent jumps and no

dry periods, whose workload process has the same stationary distribution up

to some transformation. The stationary distribution of the dual dam can be

computed in closed form.

[21] studies duality in the context of multiserver queues with no waiting

space (M/G/s/s aka Erlang’s loss system). This queueing system is particu-

larly interesting because it plays an important role in modeling and designing

telephone exchanges. [21] provides a duality relation between the joint dis-

tribution of several variables associated with busy servers in an M/G/s/s

queueing system and the corresponding joint distribution associated with

idle input sources in a GI/M/1/s/s queueing system. In particular, it proves

that the joint distribution of the number of busy servers and the attained

service times in the M/G/s/s queueing system are equivalent to the joint

distribution of the number of idle sources and the attained idle times in the

dual GI/M/1/s/s queueing system. The GI/M/1/s/s queueing system is a

queue in the following sense: We assume that the number of input sources

is s and that each input source independently generates customers according

to a renewal process when idle and sleeps otherwise. The distribution of

inter-point times is given by H, the same as the service time distribution in

the M/G/s/s queue. Moreover, assume that only one server is available and

that service times are independent exponentially distributed random vari-

ables with mean 1
λ
. A well-known application of the GI/M/1/s/s queueing
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system is the machine interference model where the group of input sources

is a set of s machines, an arrival corresponds to a machine breakdown, and

the server corresponds to a repair-man. Another application of this queueing

system is in modeling multiple access systems such as time-sharing systems

or multiple access communication channels.

Hlynka in [17] showed that π1(i) = π2(K − i), ∀i holds only for a

M/M/1/K queueing system and the equality fails to hold for more general

arrival processes and service times. He showed that there exists a quasi-dual

queue for which the equality holds. The so-called quasi-dual queue has a

modified first service time, meaning that the first service time of each busy

period has a different distribution, and its arrivals stop when the queue is

full. The results of [17] were used in [20] to obtain duality results for queue

length distribution in queueing systems with arrival and service control and

in [14] to compute the loss probability of an overloaded GI/M/1/K queue.

1.4 Contribution of this work

In this work, we show some new duality results for queue length distribution

of queues with more general arrival processes and service times, seen at ar-

bitrary times and at departure instants. These results were used to obtain

bounds for the queue length distribution seen at arbitrary times and at de-

parture instants. We did not not derive relationships between starvation and

overflow for general arrival and service processes. But, our results show that

in special cases, we can bound the probability of starvation, πD(0), and the

stationary probability of queue being empty, π(0), with the probability of

loss, πA(K), and the stationary probability of queue being full, π(K). Then,

the existing results in the literature concerning the probability of loss and the

stationary probability of queue being full can be used to obtain bounds on

the parameters of interest. Such results can be utilized in many applications

including multimedia streaming and energy systems.
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Similar results are provided for fluid flow queues with the exception that

the duality relations for point process inputs are given by inequalities, while

we will show that the remaining workload distribution of a fluid flow queue

can be related to the remaining workload distribution of its dual via an

equality. This is simply because fluid flow queues are limits of point process

queueing systems when the service time approaches zero and increase in ar-

rival rate compensates for it.

In the sequel, the probability distribution seen at arbitrary times will

simply be referred to as the (time) stationary distribution while the Palm

probabilities associated with arrivals and departures will be called arrival and

departure distributions. Our approach is via monotonicity arguments and

coupling whereby we construct processes on a common probability space to

compare them.

1.5 Outline of the report

The thesis is organized as follows. In chapter 2 we begin by defining the in-

terrupted arrival and virtual service disciplines and recall the results of [20]

for duality in queues with such disciplines. We also provide some new results

for queues with a virtual service discipline. Next, we compare the queue

length distribution of a GI/GI/1/K queue under FIFO and interrupted ar-

rival discipline and use the results to obtain some new relationships (bounds)

between the dual quantities in finite buffer FIFO queues. In section 2.2, we

consider the special case of M/G/1/K queues. In chapter 3, we investigate

duality results concerning finite buffer fluid flow queues in the general case

and the special case of fluid queues with ON-OFF fluid input and constant

available processing. Chapter 4 presents some numerical results for finite

buffer queues that confirm our results as well as how good the bounds are.

Chapter 5 provides a summary of the results.
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Chapter 2

Duality between overflow and

starvation in classical queueing

models

2.1 G/G/1/K

As stated in [17], an exact duality relation in the form π1(i) = π2(K − i), ∀i
does not hold for queues with general arrivals or service times. The lack of

equality is because when a queue is empty, its server stays idle and waits

for an arrival, but when the queue is full, the arrival process does not stop

and only the packets that find the queue full at the time of their arrival are

rejected. In other words, the time until next departure from the moment

a packet arrives at an empty queue is distributed as a service time, but

the time until next arrival from the moment a packet leaves the full queue

has a residual inter-arrival time distribution. Thus, if one desires to find

an equivalent dual queue one must consider queues with controlled arrival

and services as suggested in [20]. In queues with controlled arrival, the time

until next arrival from the moment a packet leaves the full queue has an

inter-arrival time distribution as opposed to the residual inter-arrival time

distribution encountered in queues with FIFO discipline. Thus, as stated in

Theorem 2.1.1, one can claim that a duality relation exists between the queue
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length distribution of the primal G1/G2/1/K queue with controlled arrival

discipline and the counterpart in the dual queue. This duality relation will

prove very useful in investigating duality relations in FIFO queues. We now

define two concepts introduced in [20] that are used in this paper.

Definition 2.1.1.

1. Virtual service discipline: The server does not become idle when the

queue length is zero but starts a virtual service. If an arrival occurs

during a virtual service, then service time of the first arrival is not

a regular service time but the remaining time of the ongoing virtual

service. If no arrivals occur, the server starts another virtual service.

In other words, the first customer served in a busy period receives a

special service while the rest of the customers receive regulars services.

2. Interrupted/Stopped arrival discipline: The arrival stream is turned off

when the buffer is full and turned on when the buffer space becomes

available. Therefore, no customer losses occur and the time until next

arrival from the moment a customer leaves the full queue has an inter-

arrival time distribution, as opposed to a queue with FIFO discipline,

in which customers are rejected when queue is full and the time until

next arrival from the moment a customer leaves the full queue has a

residual inter-arrival time distribution.

In [20, Thm 1] a duality relation between the queue length distributions

of G1/G2/1/K and G2/G1/1/K with interrupted arrivals is given and in [20,

Lemma 1] it is shown that a similar relation holds between the queue length

of the first queue seen at arrivals and the queue length of the dual at de-

parture instants. In [20, Thm 2], it is shown that a similar duality relation

holds for the stationary queue length seen at arbitrary times for queues with

a virtual service discipline. The paper does not discuss the queue length seen

at arrival or departure instants.

Here in Theorem 2.1.1 , we will restate the results in [20] and provide

a new duality relation between the queue length of G1/G2/1/K with vir-
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tual service seen at departure instants and the queue length of its dual at

departure times.

Theorem 2.1.1.

1. Let i1 denote a G1/G2/1/K queue with an interrupted arrival disci-

pline, and i2 a G2/G1/1/K queue with an interrupted arrival disci-

pline. Then, the corresponding stationary and Palm distributions at

departure times satisfy:

πi1(i) = πi2(K − i) , ∀0 ≤ i ≤ K (2.1.1)

and

πDi1
(i) = πAi2

(K − 1− i) = πDi2
(K − 1− i), ∀0 ≤ i ≤ K − 1 (2.1.2)

2. Similarly, let v1 denote a G1/G2/1/K with a virtual service discipline

and v2 a G2/G1/1/K with a virtual service discipline. Then,

πv1(i) = πv2(K − i) , ∀0 ≤ i ≤ K (2.1.3)

πDv1(i) = πDv2(K − 1− i) , ∀0 ≤ i ≤ K − 1 (2.1.4)

Proof. Equation (2.1.1) and the left hand side equality of (2.1.2) are essen-

tially the results presented in Theorem 1 and Remark 1 of [20] and do not

need proof. Since queues with interrupted arrival discipline do not reject

arrivals, similar to infinite buffer queues, πAi
(m) = πDi

(m) for all m. Hence,

we obtain the right hand side equality of equation (2.1.2).

Although equation (2.1.3) has been shown in [20], we provide a similar proof

based on coupling alongside equation (2.1.4), which is new and used subse-

quently. Imagine system v1 is in tandem with some other queueing system

with virtual service discipline that we will call system 2′. Moreover, the

sum of the number of customers in the two tandem queues is K. Therefore,

customers that arrive at system v1 and are accepted correspond to the depar-

tures of system 2′. Moreover, we enforce that the customers that are rejected
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in system v1 correspond to virtual departures (the instants in which virtual

service times finish) of system 2′ and vice versa. Hence, inter-arrival times

of system v1 are distributed as service times of system 2′ and vice versa.

Then, since Qv1(t) + Q2′(t) = K, πv1(i) = π2′(K − i) for all 0 ≤ i ≤ K.

Moreover, πDv1(i) = πA2′
(K − 1− i|∆Q0 = 1) 0 ≤ i ≤ K − 1. Hence,

πDv1(i) = πA2′
(K − 1− i|∆Q = 1) =

πA2′
(K − 1− i)∑K−1
j=1 πA2′

(j)

=
πA2′

(K − 1− i)
1− πA2′

(K)
=
πA2′

(K − 1− i)
1− PL

(2.1.5)

and vice versa. Substituting equation (1.2.1), that holds for all work conserv-

ing disciplines, into equation (2.1.5) results in πDv1(i) = πD2′
(K − 1− i) for

all 0 ≤ i ≤ K − 1. Next, notice that the inter-arrival and service times

of system v2 are distributed as their counterparts in system 2′. Thus,

systems 2′ and v2 are stochastically equivalent. Hence, equations (2.1.3)

and (2.1.4) hold for any distribution of G1 and G2.

Remark 2.1.1. The above proof does not require the inter-arrival and service

time distributions to be independent and hence holds for stationary queues

with general stationary arrivals and services that could be state-dependent.

As stated before, an exact duality theorem (in the form of an equality)

does not exist for FIFO queues with general arrival processes and service

times. This is because of the lack of symmetry between the arrivals to a full

queue (that are lost) and lack of departures from the empty queue. Theorem

2.1.1 suggests that a duality relation is possible if we alter the behaviour of

the queues when they are full [empty] to resemble the behaviour of their du-

als when they are empty [full] by using an interrupted arrival [virtual service]

discipline.

We now provide a comparison between the queue length distribution of a

G1/G2/1/K queueing system with interrupted arrival or virtual service disci-

pline with a G1/G2/1/K queueing system with FIFO discipline via stochastic
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majorization.

In the sequel, we use the notation X ≤st [≥st] Y to denote stochastic

dominance, i.e., random variable X is stochastically smaller [greater] than

random variable Y if P{X ≥ α} ≤ [≥] P{Y ≥ α}, ∀α > 0.

Theorem 2.1.2. Let system f denote a G1/G2/1/K queue with FIFO dis-

cipline and system i denote a G1/G2/1/K queue with interrupted arrivals.

Let RA|QK−1
D

denote the time until next arrival from the moment a customer

leaves the full queue and let A be a random variable that is distributed as

regular inter-arrival times of the arrival process of system f .

1. If RA|QK−1
D
≤st A, then

P{QDf
[n] ≤ j} ≤ P{QDi

[n] ≤ j} , ∀ 0 ≤ j ≤ K − 1(2.1.6)

P{Qf (t) ≤ j} ≤ P{Qi(t) ≤ j} , ∀ 0 ≤ j ≤ K (2.1.7)

2. Conversely, if RA|QK−1
D
≥st A, then

P{QDf
(t) ≤ j} ≥ P{QDi

(t) ≤ j} , ∀ 0 ≤ j ≤ K − 1(2.1.8)

P{Qf (t) ≤ j} ≥ P{Qi(t) ≤ j} , ∀ 0 ≤ j ≤ K (2.1.9)

Proof. Let us denote the counting process associated with the arrivals by

NA(t), the distribution of its inter-point times with GA(x), the counting

process associated with the departure process by ND(t), the distribution of

the service times by GS(x), the service time of the n-th accepted customer by

S[n], the length of the inter-arrival time at the end of which the n-th accepted

customer arrives at the queue by A[n], queue length at the time of the n-th

accepted customer by QA′ [n], and the forward recurrence time of the arrival

process NA(t) (residual inter-arrival time) at time t by RA[t]. Moreover, let us

denote the stationary distribution of the continuous/discrete-time stochastic

process X by πX . Let us prove part 1. The argument is similar to the

argument presented in [[34], Theorem 1]. We construct two new queueing
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systems1 on the same probability space such that Q̃Df
[n] ≥ Q̃Di

[n] for all

n, πQ̃Df
= πQDf

, and πQ̃Di
= πQDi

. To do this, use any arrival and service

processes for system f such that πNAf
= πÑAf

and πNDf
= πÑDf

and by

construction, take Ãi[n] = Ãf [n] if Q̃A′f
[n] < K−1, Ãi[n] ≥ Ãf [n] if Q̃A′f

[n] =

K−1, and S̃i[n] = S̃f [n] for all n. Let us show that if a proper starting point

is assumed for the queues, this construction guarantees that for all n, either

Q̃Df
[n] > Q̃Di

[n] or Q̃Df
[n] = Q̃Di

[n] and R̃Af
(T̃Df

[n]) ≤ R̃Ai
(T̃Di

[n]). Let us

use mathematical induction and show that if the above property holds for n, it

holds for n+1, as well. Consider tk[n] = T̃Dk
[n+1]−S̃k[n], ∀ k ∈ {f, i}, which

is equal to T̃Dk
[n] if and only if Q̃Dk

[n] > 0. If Q̃Dk
[n] = 0, Q̃k(tk[n]) = 1

and RAk
(tk[n]) = Ãk[n + 2]. It is straightforward to show that the above

property holds at t = tk[n]. Thus, for any 0 ≤ t ≤ S̃k[n + 1] we have either

Q̃f (T̃Df
[n] + t) > Q̃i(T̃Di

[n] + t) or Q̃f (T̃Df
[n] + t) = Q̃i(T̃Di

[n] + t) and

R̃Af
(T̃Df

[n] + t) ≤ R̃Ai
(T̃Di

[n] + t) because Ãf [n] ≤ Ãi[n] and S̃f [n] = S̃i[n].

Hence, the property holds for n+ 1, as well. Therefore, Q̃Df
[n] ≥ Q̃Di

[n] for

all n. Thus, 1{Q̃Df
[n] ≤ j} ≤ 1{Q̃Di

[n] ≤ j}. From the finiteness of the

queues and the strong law of large numbers, we conclude that P{Q̃Df
[n] ≤

j} ≤ P{Q̃Di
[n] ≤ j}; meaning that equation (2.1.6) holds. Furthermore for

m ≥ 0, we have∫ T̃Dk
[n+1]

T̃Dk
[n]

1{Q̃k(s) > m}ds =

∫ tk[n]

T̃Dk
[n]

1{Q̃k(s) > m}ds

+

∫ T̃Dk
[n+1]

tk[n]

1{Q̃k(s) > m}ds

Where
∫ tk[n]
T̃Dk

[n]
1{Q̃k(s) > m}ds = 0,

∫ tf [n]
T̃Df

[n]
1{Q̃f (s) > m}ds ≥ 0, and

1The constructed queueing systems will be distinguished from the primal ones by the
use of a ∼ sign.

17



∫ T̃Di
[n+1]

ti[n]
1{Q̃i(s) > m}ds ≤

∫ T̃Df
[n+1]

tf [n]
1{Q̃f (s) > m}ds. Therefore,

∫ T̃Di
[n+1]

T̃Di
[n]

1{Q̃i(s) > m}ds ≤
∫ T̃Df

[n+1]

T̃Df
[n]

1{Q̃f (s) > m}ds, ∀n ≥ 1

Hence,

ED[

∫ TDi

0

1{Qi(s) > m}ds] ≤ ED[

∫ TDf

0

1{Qf (s) > m}ds]

Where TDi
is the stationary inter-point time of QDi

and TDf
is the stationary

inter-point time of QDf
. Moreover, since T̃Di

[n+ 1]− T̃Di
[n] ≥ T̃Df

[n+ 1]−
T̃Df

[n] for all n, ED[TDi
] ≥ ED[TDf

]. Thus, λDi
≤ λDf

, where λDi
is the

mean rate of QDi
and λDf

is the mean rate of QDf
. Using the Palm inversion

formula introduced in [23], we obtain that

P{Qi > m} = E[1{Qi > m}] = λDi
·ED[

∫ TDi

0

1{Qi(s) > m}ds]

≤ λDf
·ED[

∫ TDf

0

1{Qf (s) > m}ds] = E[1{Qf > m}] = P{Qf > m}

Thus,

P{Qi ≤ m} = 1−P{Qi > m} ≥ 1−P{Qf > m} = P{Qf ≤ m}

Hence, equation (2.1.7). Proof of part 2 follows in a similar manner.

Now, we investigate the relationship between the residual inter-arrival

time RA|QK−1
D

and the inter-arrival time under the Palm distribution. Let us

denote the residual inter-arrival time seen by a departure that leaves i cus-

tomers in the queue by RA|Qi
D

and the residual service time seen by an arrival

that finds i customers in the queue by RS|Qi
A

. To the best of our knowledge,

the distribution of the residual times defined above, for queues with general

arrival processes and service times is unknown. In fact, according to [3], one

can extract the queue length distribution of a GI/GI/1/K queueing system
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if one can calculate E[RA|Qi
D

] and E[RS|Qi
A

]. The residual life of a renewal

process seen at arbitrary times has been well studied and the ratio of the

expectation of the residual life to the expectation of a regular inter-point

time is a function of the coefficient of variation (C) of the inter-point times,

see [22, 23, 33] for example. For C ≤ 1, the mean residual life is less than or

equal to the mean inter-point time and for C ≥ 1, the opposite. One can even

compare the random variables in the stochastic ordering sense. There are no

general stochastic orderings available for the residual life and they depend on

the form of the distribution, i.e., whether it is more or less variable than the

exponential case. In order to do so, we need the following stochastic orders

[31].

Definition 2.1.2.

1. The random variable X is IFR (Increasing Failure Rate) if and only

if, [X − t|X ≥ t] ≥st [X − t1|X ≥ t1] whenever t ≤ t1 and X is DFR

(Decreasing Failure Rate) if and only if, [X− t|X ≥ t] ≤st [X− t1|X ≥
t1] whenever t ≤ t1.

2

2. The non-negative random variable X is NBU (New Better than Used)

if and only if X ≥st [X − t|X ≥ t] for all t ≥ 0 and X is NWU (New

Worse than Used) if and only if, X ≤st [X − t|X ≥ t] for all t ≥ 0.

According to the definitions, IFR [DFR] random variables are a subclass of

NBU [NWU] random variables.

We will provide non-trivial examples of NBU random variables in Remark

2.1.2. Now, let us present the following result.

Theorem 2.1.3. If the inter-arrival times in a GI/GI/1/K queueing system

are NBU [NWU], the residual inter-arrival time RA|QK−1
D

is stochastically

smaller [greater] than a regular inter-arrival time.

2The random variable X is IFR if and only if 1 − F (x), where F (x) is the cululative
distribution function of the random variable X, is logconcave. Similarly, X is DFR if and
only if 1− F (x) is logconvex.
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Proof. Let function F (·) denote the cumulative distribution function, ran-

dom variable BA the backward recurrence times of the arrival process at the

instants of interest, and random variable A the stationary inter-arrival times.

Moreover, FBA
(x) = P{BA ≤ x} will be used to denote the distribution of

BA. Then if RA|QK−1
D
≤st A,

P{RA ≥ x} =

∫ ∞
0

dF{RA ≥ x,BA ≤ α}

=

∫ ∞
0

P{RA ≥ x|BA = α}dFBA
(α)

=

∫ ∞
0

P{A−BA ≥ x|A ≥ α}dFBA
(α)

≤
∫ ∞
0

P{A ≥ x}dFBA
(α)

= P{A ≥ x} ·
∫ ∞
0

dFBA
(α) = P{A ≥ x}

The proof of RA|QK−1
D
≥st A for NWU inter-arrival times follows similarly.

Combining the above results, gives us the opportunity to compare the

queue length distribution of a GI/GI/1/K queueing system with the queue

length distribution of its dual under certain conditions on the inter-arrival

and service time distributions.

Theorem 2.1.4. Let us call G1/G2/1/K as system 1 and the dual queue

G2/G1/1/K as system 2. The following properties hold,

1. If the inter-arrival and service times are NBU, then

P{QD1(t) ≤ i} =
i∑

j=1

πD1(j) ≤
K−1∑

j=K−1−i

πD2(j)

= P{QD2(t) ≥ K − 1− i}, ∀ 0 ≤ i ≤ K − 1 (2.1.10)
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and

P{Q1(t) ≤ i} =
i∑

j=1

π1(j) ≤
K∑

j=K−i

π2(j)

= P{Q2(t) ≥ K − i}, ∀ 0 ≤ i ≤ K (2.1.11)

2. If the inter-arrival and service times are NWU, then

P{QD1(t) ≤ i} =
i∑

j=1

πD1(j) ≥
K−1∑

j=K−1−i

πD2(j)

= P{QD2(t) ≥ K − 1− i}, ∀ 0 ≤ i ≤ K − 1 (2.1.12)

and

P{Q1(t) ≤ i} =
i∑

j=1

π1(j) ≥
K∑

j=K−i

π2(j)

= P{Q2(t) ≥ K − i}, ∀ 0 ≤ i ≤ K (2.1.13)

Proof. The proof is straightforward. We will prove part 1 and part 2 follows

similarly. Assume there exists a G1/G2/1/K queue with interrupted arrival

discipline that we will call system 1′ and a G2/G1/1/K queue with inter-

rupted arrival discipline that we will call system 2′. Using Theorems 2.1.2

and 2.1.3 for the primal queue, we have

P{QD1(t) ≤ i} ≤ P{QD1′
(t) ≤ i} , ∀ 0 ≤ i ≤ K − 1

P{Q1(t) ≤ i} ≤ P{Q1′(t) ≤ i} , ∀ 0 ≤ i ≤ K

Similarly, for the dual queue, we have

P{QD2(t) ≤ i} ≤ P{QD2′
(t) ≤ i} , ∀ 0 ≤ i ≤ K − 1

P{Q2(t) ≤ i} ≤ P{Q2′(t) ≤ i} , ∀ 0 ≤ i ≤ K,
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Moreover, Theorem 2.1.1 asserts that

P{QD1′
(t) ≤ i} =

i∑
j=1

πD1′
(j) =

K−1∑
j=K−1−i

πD2′
(j)

= P{QD2′
(t) ≥ K − 1− i}, ∀ 0 ≤ i ≤ K − 1

and

P{Q1′(t) ≤ i} =
i∑

j=1

π1′(j) =
K∑

j=K−i

π2′(j)

= P{Q2′(t) ≥ K − i}, ∀ 0 ≤ i ≤ K

Substituting the equations resulted from Theorems 2.1.2 and 2.1.3 into the

result of Theorem 2.1.1, concludes the proof.

Corollary 2.1.1. Theorem 2.1.4 relates P{Q1(t) ≤ i} to P{Q2(t) ≥ K− i}.
Using

∑K
j=0P{Q(t) = j} = 1, we can extract the same result for P{Q2(t) ≤

i} and P{Q1(t) ≥ K − i}. The same holds for the queue length distribution

at departure instants.

Corollary 2.1.2. A special case of Theorem 2.1.4, i = 0, results in Ps1 =

πD1(0) ≤ πD2(K − 1) and π1(0) ≤ π2(K − 1) for NBU inter-arrival and

service times. The opposite holds for NWU inter-arrival and service times.

Such bounds are very helpful in studying the starvation of finite buffer queues.

Remark 2.1.2. Though the relations proposed in Theorem 2.1.4 only hold

for two specific classes of inter-arrival and service times, they encompass

many common models such as queues with deterministic, uniform, Erlang-

K, and exponential inter-arrival and service times. Bimodal random variable

is an example of a random variable that depending on the parameters of its

distribution can be a NBU random variable or not. Moreover, the exponen-

tial random variable is the only random variable that is both NBU and NWU.

Hence, in M/G/1/K queues, we need only consider the service time distri-

bution.
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2.2 M/G/1/K

In this section, we consider a M/G/1/K queueing system as an example.

Instead of using the duality result of queues with interrupted arrival disci-

pline, we will prove a theorem similar to Theorem 2.1.2 for the special case

of queues with Poisson arrivals.

Theorem 2.2.1. Let us call the M/G/1/K with FIFO discipline, system f

and the M/G/1/K with virtual service discipline, system v. Also, let us

denote the service time of the first customer of each busy period in system v

by RS|Q0
A

and let S be a random variable that is distributed as regular service

times of system f . Then,

1. If RS|Q0
A
≤st S, then

P{QDf
[0] ≤ i} ≤ P{QDv [0] ≤ i} , ∀ 0 ≤ i ≤ K − 1(2.2.14)

P{Qf (0) ≤ i} ≤ P{Qv(0) ≤ i} , ∀ 0 ≤ i ≤ K (2.2.15)

2. If RS|Q0
A
≥st S, then

P{QDf
[0] ≤ i} ≥ P{QDv [0] ≤ i} , ∀ 0 ≤ i ≤ K − 1(2.2.16)

P{Qf (0) ≤ i} ≥ P{Qv(0) ≤ i} , ∀ 0 ≤ i ≤ K (2.2.17)

Due to PASTA property introduced in [38], a similar result holds for the

queue length distribution seen at arrival instants.

Proof. We will prove part 1 and the proof of part 2 follows similarly. The

argument is similar to Theorem 2.1.2 and we will use the same notation.

We will construct two new queueing systems on the same probability space

such that the distributions of the arrival and service processes of the primal

queueing systems are preserved. Use any arrival and service processes for

system f such that πNAf
= πÑAf

and πNDf
= πÑDf

. We will propose a

construction for system v that ensures that Q̃Df
[n] ≥ Q̃Dv [n] for all n. Let

us use mathematical induction. We assume that Q̃Df
[k] ≥ Q̃Dv [k] for k ≤ m
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and we want to prove that Q̃Df
[m + 1] ≥ Q̃Dv [m + 1]. If Q̃Dv [m] > 0, we

choose the (m+ 1)-th service time of system v equal to the one in system f .

Since arrivals are Poisson and exponential random variables are memoryless,

we can construct the same arrivals for system v during the (m+1)-th service

time. Hence, Q̃Df
[m+ 1] ≥ Q̃Dv [m+ 1]. On the other hand, if Q̃Dv [m] = 0,

because the exceptional first service time is assumed to be stochastically

smaller than a regular service time, we will choose a service time with a length

less than or equal to the length of the service time of system f for system v.

Then, because exponential random variables are memoryless, the number of

arrivals during the (m + 1)-th service time of system v will be less than or

equal to the number of arrivals in system f . Thus, Q̃Df
[m+1] ≥ Q̃Dv [m+1],

meaning that equation 2.2.14 holds.

For proving equation 2.2.15, we will use a result proposed in Theorem 1 of

[8]. Let us denote the epochs that the k-th arrival comes to enter the system

by Ak, the epochs that the k-th admitted customer is admitted by Bk, and

the probability of loss by PL. Since the arrival processes of the above-defined

systems are the same, for every sample path of system f , there exists a

sample path of system v that satisfies Akf = Akv . Moreover, Theorem 1 of

[8] suggests that for the above-mentioned systems, Bkf ≥ Bkv . Hence, we

have PLf
≥ PLv . Therefore,

P{Q̃Af
(t) ≤ i} = (1− PLf

) ·P{Q̃Df
(t) ≤ i}

≤ (1− PLv) ·P{Q̃Dv(t) ≤ i} = P{Q̃Av(t) ≤ i}

Using the PASTA property and the fact that the queue length distributions of

the constructed and primal queues are the same, we obtain equation (2.2.15).

Thus, duality results of both the interrupted arrival discipline and the

virtual service discipline can be used to extract bounds for finite buffer FIFO

queues. Next, we propose a bound similar to the one introduced in Theorem

2.1.4.

Corollary 2.2.1. Let us call M/G/1/K system 1 and its dual GI/M/1/K,
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system 2. Then,

1. If service times of the M/G/1/K queueing system (G) are NBU,

P{QD1(t) ≤ i} =
i∑

j=1

πD1(j) ≤
K−1∑

j=K−1−i

πD2(j)

= P{QD2(t) ≥ K − 1− i}, ∀ 0 ≤ i ≤ K − 1 (2.2.18)

and

P{Q1(t) ≤ i} =
i∑

j=1

π1(j) ≤
K∑

j=K−i

π2(j)

= P{Q2(t) ≥ K − i}, ∀ 0 ≤ i ≤ K (2.2.19)

2. If service times of the M/G/1/K queueing system (G) are NWU,

P{QD1(t) ≤ i} =
i∑

j=1

πD1(j) ≥
K−1∑

j=K−1−i

πD2(j)

= P{QD2(t) ≥ K − 1− i}, ∀ 0 ≤ i ≤ K − 1 (2.2.20)

and

P{Q1(t) ≤ i} =
i∑

j=1

π1(j) ≥
K∑

j=K−i

π2(j)

= P{Q2(t) ≥ K − i}, ∀ 0 ≤ i ≤ K (2.2.21)

Proof. We omit the proof since it is similar to Theorem 2.1.4.

In this chapter, using the duality relations for queues with interrupted

arrival and virtual service disciplines alongside stochastic orders, we found

some new relations between the queue length distribution of a finite buffer

FIFO queue with NBU or NWU inter-arrival and service times and the coun-

terpart in its dual. Next, we will consider fluid flow queues and study duality

results in such finite buffer queues.
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Chapter 3

Fluid Flow Model

3.1 Preliminaries

In this section, we will consider duality results concerning finite buffer fluid

flow queues and relate the workload distribution of a queue, which we will

call system 1, with cumulative fluid input C1(t) and cumulative available

processing S1(t) to the workload distribution of a queue, which we will call

system 2, with cumulative fluid input C2(t) ∼ S1(t) and cumulative available

processing S2(t) ∼ C1(t). Then, we will show an interesting relation between

the overflow and underflow rates and processes of the queues defined above.

In the end, we will propose a duality result concerning fluid flow queues with

ON-OFF fluid input and constant available processing. To analyse fluid

queues we need the notion of a fluid Palm measure. see [6, 23] for details.

Proposition 3.1.1. Let us denote the fluid Palm measure of the remaining

workload of a finite buffer fluid flow queue, associated with fluid input and

output of the queue, respectively by PA{W ≤ x} and PD{W ≤ x}. Also, let

us denote the fluid Palm measure associated with the fluid input that entered

the queue by PA′{W ≤ x}. Then,

PA{W ≤ x} ≤ PA′{W ≤ x} = PD{W ≤ x} (3.1.1)
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Proof. By changing equation 2.41 of [23] to fit a finite buffer queue, we obtain

the following results, in which C ′t is the cumulative fluid input that has

entered the queue up to time t.

f(Wt) = f(W0) +

∫ t

0

f ′(Ws)1{Ws > 0}d(C ′s − Ss)

Taking the expectation of both sides, we obtain

E{f(Wt)} = E{f(W0)}+E{
∫ t

0

f ′(Ws)1{Ws > 0}d(C ′s − Ss)}

Hence,

E{
∫ t

0

f ′(Ws)1{Ws > 0}d(C ′s − Ss)} = 0

Then,

E{
∫ t

0

f ′(Ws)1{Ws > 0}dC ′s} = E{
∫ t

0

f ′(Ws)1{Ws > 0}dSs}

By taking f ′(W ) , 1{W > x}, we have

t ·E{
∫ 1

0

1{Ws > x}dC ′s} = t ·E{
∫ 1

0

1{Ws > x}dSs}

Hence,

λA′ ·PA′{Ws > x} = λD ·PD{Ws > x}

And since the queue is stable, the rate of the input that is accepted to the

queue equals the output rate. In other words, λA′ = λD. Thus,

PA′{Ws > x} = PD{Ws > x}

The left hand side inequality follows from the definition of fluid Palm measure
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in equation 1.22 of [23]. Fluid input A is the sum of the fluid input that

entered the queue A′ and the portion of fluid input that is lost. The portion

that is lost only sees the full queue. Hence, according to the definition of fluid

Palm measure, the fluid Palm measure of {W ≤ x} for any x ≤ K associated

with the fluid input is less than or equal to the fluid Palm measure associated

with the fluid input that enters the queue.

The result of Proposition 3.1.1 resembles the relation between the queue

length distribution at arrival and departure instants of a finite buffer queue

when using the point process model.

PA{Q ≤ i} ≤ PA′{Q ≤ i} ,
PA{Q ≤ i}

1−PA{Q = K}
= PD{Q ≤ i} , ∀ i < K

where, the left-most term is the queue length distribution at arrival instants,

the term in the middle is the queue length distribution at the instants of

arrivals that enter the queue, and the right-most term is the queue length

distribution at departure instants.

3.2 General inputs and service processes

At this point, we can express the following duality results for general fluid

flow queues.

Theorem 3.2.1. Let us call the fluid queue with cumulative input C1(t)

and available processing S1(t) system 1 and its dual with cumulative input

C2(t) ∼ S1(t) and available processing S2(t) ∼ C1(t), system 2. Then,

P{W1(t) ≤ β} = P{W2(t) ≥ K − β} (3.2.2)

PD{W1(t) ≤ β} = PD{W2(t) ≥ K − β} (3.2.3)

PA{W1(t) ≤ β} ≤ PA{W2(t) ≥ K − β} (3.2.4)

P{U1(t) ≤ α} = P{L2(t) ≤ α} (3.2.5)

ν1 = lim
t→∞

t−1L1(t) = lim
t→∞

t−1U2(t) = Λ2 (3.2.6)
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Proof. Let us use the role inversion model introduced in [22] and later used

in [17]. This model inverts the roles of a customer and an empty space in

finite buffer queues. In other words, empty buffer spaces of system 1 can

be thought of as the occupied spaces (customers) in a second queue, which

we will call system 1′, and vice versa. The input fluid to system 1 is the

available processing for system 1′ and vice versa. Thus, systems 1′ and 2

are stochastically equivalent, meaning that their remaining workloads have

the same distribution. Therefore, since the remaining workload of systems 1

and 1′ are related as W1(t) = K−W1′(t), for every sample path of system 1,

there exists a sample path of system 2 that satisfies W1(t) = K − W2(t).

Hence, equation (3.2.2).

Note that when system 1 is full, the fluid input sees a full system with a rate

equal to the instantaneous fluid input rate1, but the fluid output of system 1′

sees an empty queue with a rate equal to the instantaneous rate of its fluid

input, which is less than or equal to the instantaneous available processing

because system 1′ is empty. Thus,

PA′{W1(t) ≤ β} = PD{W1′(t) ≥ K − β}

Using Theorem 3.1.1 and the fact that systems 1 and 2 are stochastically

equivalent, we obtain equation (3.2.3). Moreover, using equation (3.2.3) and

the inequality of Theorem 3.1.1, we obtain equation (3.2.4).

Based on the definition of underflow and overflow processes and the role

inversion model, U1(t) = L1′(t). Then, since systems 1′ and 2 are stochasti-

cally equivalent, for every sample path of the overflow process of system 1,

there exists a sample path of the underflow process of system 2 that satisfies

U1(t) = L2(t) and vice versa. Hence, we obtain equation (3.2.5). Equation

(3.2.6) follows by definition of the rates.

In some cases, it is of interest to compare the fluid Palm measure of the

remaining workload associated with the input of the primal queue with the

1the rate is the derivative of Ct
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fluid Palm measure associated with the output of its dual. Corollary 3.2.1

studies this relation.

Corollary 3.2.1. For systems 1 and 2 defined in Theorem 3.2.1, we have

PA{W1(t) ≥ K − β} ≥ PD{W2(t) ≤ β} (3.2.7)

Proof. Substituting the inequality proposed in Proposition 3.1.1 into equa-

tion (3.2.3) results in

PA{W1(t) ≤ β} ≤ PD{W2(t) ≥ K − β}

Since this inequality holds for all values of β, it also holds for β′ = β − δ
n
,

where δ is some positive real number that satisfies β − δ
n
≥ 0 for all n ≥ 1.

Since the sequences of events {Cn} , {W1(t) ≤ β− δ
n
} and {Dn} , {W2(t) ≥

K − (β − δ
n
)} are increasing,

PA{
∞⋃
n=1

Cn} = lim
n→∞

PA{Cn}

PD{
∞⋃
n=1

Dn} = lim
n→∞

PD{Dn}

By substituting this into the inequality above, we obtain

PA{W1(t) < β} = PA{
∞⋃
n=1

Cn} = lim
n→∞

PA{Cn}

= lim
n→∞

PA{W1(t) ≤ β − δ

n
}

and

PD{W2(t) > K − (β − δ
n
)} = PD{

⋃∞
n=1Dn} = limn→∞PD{Dn}

= limn→∞PD{W2(t) ≥ K − (β − δ
n
)}

Let us define the sequences of real numbers an , PA{W1(t) ≤ β − δ
n
} and
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bn , PD{W2(t) ≥ K − (β − δ
n
)}. Since an ≤ bn for all n ≥ 1, their limit

must follow the same ordering, meaning that limn→∞PA{W1(t) ≤ β − δ
n
} ≤

limn→∞PD{W2(t) ≥ K − (β − δ
n
)}. Hence,

PA{W1(t) < β} ≤ PD{W2(t) > K − β}

Then,

PA{W1(t) ≥ β} = 1−PA{W1(t) < β} ≥ 1−PD{W2(t) > K − β}
= PD{W2(t) ≤ K − β}

By interchanging β and K − β, we obtain equation (3.2.7).

Remark 3.2.1. In Theorem 2.1.4, duality relations for point process inputs

are given by inequalities, while Theorem 3.2.1 relates the remaining workload

distribution of a fluid queue to the remaining workload distribution of its dual

via an equality.

In this section, we provided a duality relation between the workload dis-

tribution of the primal fluid flow queue and the workload distribution of the

dual queue and showed that the underflow probability of one can be related

to the overflow probability of the other. Next, we will consider the special

case of fluid queues with ON-OFF inputs and constant available processing.

3.3 ON-OFF fluid queues

Finite buffer fluid queues with an ON-OFF fluid input and constant available

processing have received much attention recently due to applications in mod-

ern communication systems and energy systems. We will study these queues

as a special case of the more general fluid input case. Before doing so, let us

define a few new quantities. Define the loss event L, to be the event that the

fluid queue is full and the instantaneous input rate is greater than the instan-

taneous available processing. In other words, {L} = {W (t) = K}
⋂
{C(t) >

S(t)}. Similarly, define the starvation event S to be the event that the fluid
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queue is empty and the instantaneous input rate is less than the instantaneous

available processing. In other words, {L} = {W (t) = 0}
⋂
{C(t) < S(t)}.

The loss and starvation rates in stationary queues are define as follows.

RL , lim
t→∞

1

C(t)

∫ t

0

1{ω(s) ∈ L}d(C(s)− S(s)) = lim
t→∞

U(t)

C(t)
(3.3.8)

RS , lim
t→∞

1

S(t)

∫ t

0

1{ω(s) ∈ S}d(S(s)− C(s)) = lim
t→∞

L(t)

S(t)
(3.3.9)

In other words, the loss rate is the long run portion of the lost input and the

starvation rate is the long run portion of the unused (lost) processing.

Theorem 3.3.1. Consider two ON-OFF fluid queues with constant available

processing and call them systems 1 and 2. Denote the ON periods, OFF pe-

riods, input rate during the ON period, and the constant available processing

of system i by Ai, Bi, Hi, and Ci, respectively. Moreover, assume A2 ∼ B1,

B2 ∼ A1, H2 = H1 and C2 = H1 − C1. Then,

P{W1(t) ≤ β} = P{W2(t) ≥ K − β} (3.3.10)

P{U1(t) ≤ α} = P{L2(t) ≤ α} (3.3.11)

ν1 = lim
t→∞

t−1L1(t) = lim
t→∞

t−1U2(t) = Λ2 (3.3.12)

RL1 =
H1 − C1

H1

· E[A1] +E[B1]

E[A1]
·RS2 (3.3.13)

Notice that a relation similar to equations (3.2.3) and (3.2.4) does not hold

for the above queues.

Proof. From Theorem 3.2.1, the dual of system 1 is a fluid queue with a

constant input of C1 and an ON-OFF available processing with ON and

OFF periods distributed respectively as A1 and B1 with a constant avail-

able processing during the ON periods of H1. We will call the dual queue,

system 3. Now, let us define a third queue, which we will call system 2, with

an ON-OFF fluid input, constant input rate during the ON period, and a

constant available processing such that W2(t) = W3(t). For this to hold, the

third queue must be ON when the available processing in the dual queue is
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OFF and vice versa. Furthermore, constant available processing and input

rate during the ON periods in the third queue must respectively be equal

to H1 − C1 and C1 to ensure that the two queues have the same remaining

workload processes. Hence, based on W2(t) = W3(t) and equation (3.2.2),

the relation (3.3.10) follows. Moreover, since systems 2 and 3 both overflow

at an instantaneous rate of C1 and underflow at an instantaneous rate of

H1 − C1, and W2(t) = W3(t), we have L2(t) = L3(t) and U2(t) = U3(t).

By substituting this into equation (3.2.5), we obtain equations (3.3.11) and

(3.3.12).

Based on the definition of system 2, we have

E[S2(t)]

E[S3(t)]
=

(H1 − C1) · t
H1 · E[A1]

E[A1]+E[B1]
· t

=
H1 − C1

H1

· E[A1] +E[B1]

E[A1]
(3.3.14)

Then, since L2(t) = L3(t), by the definition of the starvation and loss rates,

we have

RS3 =
H1 − C1

H1

· E[A1] +E[B1]

E[A1]
·RS2 (3.3.15)

Moreover, using equation (3.2.5) and the fact that C1(t) = S3(t), because

they are duals, we obtain RL1 = RS3 and hence equation (3.3.13).

Using the above equation, we can translate the problem of finding the

overflow/underflow rate of a fluid queue with ON-OFF input and constant

available processing to the problem of finding the underflow/overflow in an-

other fluid queue. We can thus generalize the theorem to fluid queues with

bounded fluid inputs. We define a bounded fluid input process to be a fluid

process in which the derivative of the cumulative input is bounded. In other

words, dC(t)
dt
≤M .

Corollary 3.3.1. Consider two fluid queues with constant available process-

ing and fluid inputs bounded by the value of M and call them systems 1

and 2. Moreover, assume that C2(t) ∼ M · t − C1(t), S1(t) = C · t, and
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S2(t) = (M − C) · t. Then,

P{W1(t) ≤ β} = P{W2(t) ≥ K − β} (3.3.16)

P{U1(t) ≤ α} = P{L2(t) ≤ α} (3.3.17)

ν1 = lim
t→∞

t−1L1(t) = lim
t→∞

t−1U2(t) = Λ2 (3.3.18)

Proof. Similar to Theorem 3.3.1, the dual of system 1 is a fluid queue, which

we will call system 3, with cumulative fluid input C3(t) = S1(t) = C · t and

cumulative available processing S3(t) = C1(t). Now, let us define a third

queue, which we will call system 2′, with constant available processing such

that W2′(t) = W3(t). For this to hold, we must have C2′(t) = M · t−S3(t) =

M · t − C1(t) and S2′(t) = (M − C) · t. Based on W2′(t) = W3(t), and

equation (3.2.2), we obtain P{W1(t) ≤ β} = P{W2′(t) ≥ K−β}. Moreover,

systems 2′ and 2 are stochastically equivalent. Hence, we obtain equation

(3.3.16). Moreover, since C2′(t) = M · t − S3(t), S2′(t) = (M − C) · t, and

C3(t) = C ·t, systems 2′ and 3 overflow and underflow at equal instantaneous

rates. Thus, L2′(t) = L3(t) and U2′(t) = U3(t). By substituting this and the

fact that systems 2′ and 2 are stochastically equivalent into equation (3.2.5),

we obtain equations (3.3.17) and (3.3.18).

The results proposed in Corollary 3.3.1 can be particularly helpful in

queues that have a fluid input with a finite number of states (the state of

the input can be dependent on an external chain) and constant input rate

during each state.

In this chapter, we presented a duality relation between the workload

distribution of the primal fluid flow queue and the workload distribution of its

dual. In section 3.3, we focused our attention on a very well-known subclass

of such queues, namely queues with ON-OFF input and constant available

processing, and presented a relationship between the rate of starvation of
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the primal queue and the rate of overflow of its dual. Similar results were

presented for queues with bounded fluid input processes.
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Chapter 4

Numerical Results

In this section, we present numerical results for a few finite buffer models,

and investigate the tightness of the bounds that have been obtained.

4.1 Point Process Model

We consider four different NBU random variables for the inter-arrival and

service times of the finite buffer queues. In particular we consider exponen-

tial, deterministic, uniform and bimodal random variables. The first three

are NBU while a bimodal random variable is not NBU for all values of its

coefficient of variation. We will select its parameters such that the random

variable is NBU. Tables 4.1 and 4.2 present the numerical results for the

queue length distribution seen at departure instants of a finite buffer queue

with a buffer size of 10 and Table 4.3 exhibits the numerical results for the

stationary queue length distribution seen at an arbitrary time for a queue of

the same buffer size.

Since the inter-arrival and service times of all queues are NBU, queue

length distributions of the primal and dual FIFO queues must satisfy equa-

tions (2.2.20) and (2.2.21). Since the values in the second columns of the

tables are less than or equal to the values in the corresponding third columns,

the aforementioned inequalities hold true. Moreover, the numerical results
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Table 4.1: Queue length distribution seen by departures in the primal and
the dual queue - U/B (U and B stand for uniform and bimodal distributions)
- with an accuracy of 10−6

U/B/1/10 , ρ = 0.3 B/U/1/10, ρ = 3.33
P{Q1

D(t) ≤ 0} 0.832274 0.88759 P{Q2
D(t) ≥ 9}

P{Q1
D(t) ≤ 1} 0.981835 0.989923 P{Q2

D(t) ≥ 8}
P{Q1

D(t) ≤ 2} 0.998573 0.999213 P{Q2
D(t) ≥ 7}

P{Q1
D(t) ≤ 3} 0.999875 0.999944 P{Q2

D(t) ≥ 6}
P{Q1

D(t) ≤ 4} 0.999991 0.999997 P{Q2
D(t) ≥ 5}

P{Q1
D(t) ≤ 5} 0.999995 0.999998 P{Q2

D(t) ≥ 4}
P{Q1

D(t) ≤ 6} 1 1 P{Q2
D(t) ≥ 3}

show that the bounds are tight.

One of the primary uses of the results presented in section 2 is bounding

quantities such as π(0) = P{Q = 0} and πD(0) = PD{Q = 0}, that charac-

terize the starvation of finite buffer queues, by more well-known quantities

of its dual. According to Theorem 2.1.4, we can find upper or lower bounds

for π(0) and πD(0) of some finite buffer queueing systems using π(K) and

πD(K−1) of their duals. Table 4.4 provides some numerical results for π(0) of

a D/M/1/K and π(K) of its dual, M/D/1/K, where K = 10. Let us call the

D/M/1/K and M/D/1/K queueing systems systems 1 and 2, respectively.

From to the PASTA property, π2(K) = PA{Q2 = K} = PL2 . Therefore,

since numerous results for computing the probability of loss of finite buffer

queues especially in the case of queues with Poisson arrivals are already well

known in the literature, we can find tight bounds for π1(0). Similarly, we can

obtain a lower bound for π(0) of a queueing system with NWU inter-arrival

times and exponential service times using the probability of loss of its dual.
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Table 4.2: Queue length distribution seen by departures in the primal and
the dual queue (M/D) with an accuracy of 10−6

D/M/1/10 , ρ = 0.769 M/D/1/10, ρ = 1.3
P{Q1

D(t) ≤ 0} 0.001862 0.002845 P{Q2
D(t) ≥ 9}

P{Q1
D(t) ≤ 1} 0.006775 0.007920 P{Q2

D(t) ≥ 8}
P{Q1

D(t) ≤ 2} 0.015696 0.017263 P{Q2
D(t) ≥ 7}

P{Q1
D(t) ≤ 3} 0.030897 0.032487 P{Q2

D(t) ≥ 6}
P{Q1

D(t) ≤ 4} 0.057794 0.058865 P{Q2
D(t) ≥ 5}

P{Q1
D(t) ≤ 5} 0.104764 0.105497 P{Q2

D(t) ≥ 4}
P{Q1

D(t) ≤ 6} 0.186994 0.187076 P{Q2
D(t) ≥ 3}

P{Q1
D(t) ≤ 7} 0.328818 0.329275 P{Q2

D(t) ≥ 2}
P{Q1

D(t) ≤ 8} 0.574113 0.574638 P{Q2
D(t) ≥ 1}

P{Q1
D(t) ≤ 9} 1 1 P{Q2

D(t) ≥ 0}

Table 4.3: Queue length distribution seen at an arbitrary time in the primal
and the dual queue (U/D) with an accuracy of 10−6

U/D/1/10 , ρ = 0.8 D/U/1/10, ρ = 1.25
P{Q1(t) ≤ 0} 0.199828 0.321988 P{Q2(t) ≥ 10}
P{Q1(t) ≤ 1} 0.720737 0.844115 P{Q2(t) ≥ 9}
P{Q1(t) ≤ 2} 0.961449 0.97949 P{Q2(t) ≥ 8}
P{Q1(t) ≤ 3} 0.994831 0.997313 P{Q2(t) ≥ 7}
P{Q1(t) ≤ 4} 0.999273 0.999649 P{Q2(t) ≥ 6}
P{Q1(t) ≤ 5} 0.999902 0.999954 P{Q2(t) ≥ 5}
P{Q1(t) ≤ 6} 0.999992 0.999994 P{Q2(t) ≥ 4}
P{Q1(t) ≤ 7} 0.999999 1 P{Q2(t) ≥ 3}
P{Q1(t) ≤ 8} 1 1 P{Q2(t) ≥ 2}

Table 4.4: Bounding π1(0) with π2(K), where S1 is D/M/1/K and S2 is
M/D/1/K (K = 10)

ρ 0.1 0.5 0.9 1.3 1.5
π1(0) = P{Q1(t) = 0} 0.89977 0.49989 0.11269 0.00162 0.00018
π2(K) = P{Q2(t) = K} 0.90021 0.50008 0.11353 0.00210 0.00027
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4.2 Fluid Flow Model

Now, let us present the numerical results for a finite buffer fluid flow queue.

Figure 4.1 depicts the normalized fluid Palm measure of the remaining work-

load associated with the input in a finite buffer fluid queue with ON-OFF

input and constant available processing alongside the counterpart of its dual.1

The blue curve is the cumulative fluid Palm measure of the primal queue and

the red curve is the tail of the fluid Palm measure of its dual. As a direct

result of equation (3.2.4), the blue curve falls below the red one. Hence, one

can be used to obtain an upper or lower bound on the other. Moreover, since

the fluid Palm measure associated with the output equals the fluid Palm

measure associated with the input that enters the queue, the only difference

between the fluid Palm measure associated with the output and the fluid

Palm measure associated with the input is the portion of the input that is

lost. This portion is usually much smaller in comparison to the overall in-

put. Hence, the fluid Palm measure of the remaining workload associated

with the input in the primal queue should be very close to the tail of the

fluid Palm measure of the remaining workload associated with the input in

the dual queue. This is depicted in Figure 4.1.

1ON and OFF period average lengths in the primal queues are respectively 1.101 and
1.15 seconds. The input rate in the ON period is 50 bps and available processing is 20
bps.
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Figure 4.1: Workload distribution of the primal and dual fluid queues with
an ON-OFF input
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Chapter 5

Conclusion

In this work, we have studied duality relationships for finite G1/G2/1/K

queues. The queue length duality relationship of queueing systems with con-

trolled arrival and service processes was extended to FIFO queueing systems

with NBU and NWU inter-arrival and service times. These results were used

to obtain bounds for the queue length distribution seen at arbitrary times

and at departure instants. Such results can be utilized in many applications

including multimedia streaming and energy systems. For instance, Theorem

2.1.4 suggests that in queueing systems with NBU [NWU] inter-arrival and

service times, π1(0) ≤ [≥]π2(K) and πD1(0) ≤ [≥]πD2(K−1). In general, we

cannot relate the probability of starvation, PS = πD(0), of the primal system

to the probability of loss, PL = πA(K), of its dual. But, in the special case

of queueing systems with Poisson arrival process and NWU service times,

PS1 ≥ πA(0) = π1(0) ≥ π2(K) = PL2 . Hence, one can use the results on

probability of loss to compute an upper bound on the probability of starva-

tion. Similarly, if one is interested in finding π(0) for a finite buffer queueing

system with NBU or NWU inter-arrival and service times, one can use the

results on π(K) to find an upper or lower bound on the quantity of interest.

The remaining workload distribution and the fluid Palm measure of the

remaining workload associated with the input and output of the primal queue

were related to their counterparts in the dual queue in Theorem 3.2.1. It was
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shown that a duality holds between the overflow and underflow rates for fluid

flow queues, which was specialized for fluid queues with ON-OFF inputs.

Future work on this subject could investigate the notion of conditional

residual life (for instance, the residual life of the arrival process given that a

departure leaves i customers in the queue) to generalize the duality relations

provided in this work to more general service time and arrival distributions.
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