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Abstract 

This thesis presents the results for the temperature variation of the Differential Group Delay (DGD) 

measurements of a Dispersion Compensation Module (DCM) and interprets the results with a 

theoretical DGD model based on glass viscoelastic properties and estimated values of some of glass 

parameters. The results of our analysis demonstrate the existence of long birefringence relaxation 

times on the order of many hours in response to temperature changes. These results could be of 

significance in interpreting the behavior of optical fiber systems. 
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Chapter 1 
Theoretical and Mathematical Introduction to Polarization and 

Differential Group Delay (DGD) in Fibers 

1.1 Overview 

Optical communications is increasingly dominating telecommunication systems; as a result of its 

ability to provide large data rates in response to increased bandwidth demand. Since optical fibers 

have been employed as a transmission medium, high data rates over long fiber spans require efficient 

and high-performance distributed amplification and dispersion compensation modules, optimally in 

conjunction with low loss and dispersion fibers. However, optical cables laid in the ground are 

susceptible to long term changes caused by the surrounding environment while optical components; 

like filters, amplifiers and DCM’s; are subject to daily temperature changes, causing their parameters 

to fluctuate frequently and hence affecting the link stability. 

Dispersion, which leads to pulse broadening, is classified as, firstly, Material Dispersion, which 

results when the refractive index of the dielectric medium varies with the optical frequency of the 

pulse and therefore is associated with bulk glass. Waveguide Dispersion results from the change in 

the propagation constant with optical frequency while additionally Multimode Dispersion occurs 

when a waveguide supports multiple modes, which correspond to several classical ray paths, with 

different angles of propagation through the optical fiber. The effect of dispersion is therefore to 

broaden a pulse at the output of the fiber.  

Polarization Mode Dispersion (PMD) results from the dependence of the propagation constant on 

polarization resulting from the small but unavoidable presence of birefringence in optical fibers. In 

birefringent media light experiences slightly different effective refractive indices according to its 

polarization and propagation direction. While a perfectly circular, stress-free fiber is not birefringent; 

as a result of the manufacturing process, fibers possess slight elliptical core distortions. Fibers also 

encounter mechanical stresses in both the manufacturing process and that of cabling, due to twists and 

bends. Since PMD not only affects the amplitude but also the phase of the signal, it must be 

appropriately reduced or compensated in optical systems, especially coherent ones. 

PMD, which can be influenced by changes in birefringence generated by twists, and bends and 

transverse forces and temperature variations, causes a stochastic distortion of the output signal.  This 

results in fading at the receiver’s end for both coherent and direct detection systems [1]. 

Consequently, while PMD can be compensated through either optical or electronic compensation 

using signal processing techniques, Further PMD compensation techniques should optimally be able 

to detect temporal changes, if not anticipate them, to maintain the stability of the system and avoid 

fading. 

This chapter discusses mathematical representations of in fiber polarizations and related calculation 

methods. 
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1.2 Light polarization [2] 

An electromagnetic wave possesses two transverse polarization directions. This section discusses 

the Jones and Stokes formalism for polarization in fibers as well as presents a mathematical 

description of PMD. 

1.2.1 Jones mathematical representation 

In the Jones representation, an optical wave is described by a column vector 
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where Ax and Ay are the electric field amplitudes of the corresponding axis noted by the subscript; 

while δ is the phase corresponding to each electric field component. If J is normalized to unit power, 

Eq.(1.1) can be rewritten as 
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). Here J  in equation (1.2) is a unitary vector 

representing only the polarization profile ( †* 1Power  J J ). 

1.2.2 Stokes parameters representation 

The state of polarization is also often represented by the Stokes parameters. 
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S0 is proportional to the optical power while   represents the time average. For fully 

polarized light, the parameters can be normalized as below, 
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so that S1 S2 and S3, are sufficient to describe the polarization state of a fully polarized wave. 

Plotting these parameters on orthogonal axes yields the Poincaré sphere (Figure 1.1) which is 

particularly convenient for displaying the evolution of polarization with wavelength or time. On the 

sphere, all polarization states on the equator are linearly polarized, while the states at the poles are 

circularly polarized and elliptically polarized elsewhere. Plotting states of polarizations on the 

Poincaré sphere yields a smooth curve for the polarization evolution of either the output at a single 

wavelength or the evolution of polarization with wavelength, as will be demonstrated later. 

 

Figure 1.1 Poincaré sphere showing special cases of polarizations [2]. 

1.2.3 Jones Matrix & Rotation matrix 

The Jones matrix is a 2×2 matrix in the Jones representation (Noted as U) while the Rotation 

Matrix is a 3×3 matrix in the Stokes parameter representation (Noted as R). These matrices model and 

relate the input polarization to the output polarization in any birefringent system. Thus in the Jones 

Matrix representation 
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Here v  and s  represent the Jones vectors of the output polarization and input polarization 

respectively.   is a unitary unimodular matrix; that follows 
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1a b  . In the Stokes representation, 
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in which v and s are the three-dimensional Stokes vectors of the output polarization and input 

polarization respectively. The Pauli spin vector σ components are employed to transform a Jones 

matrix or vector to Stokes’ space. 
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Hence 
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which is an abbreviated notation for 

 1 1 2 2 3 3, ,s s s s s s s s s      (1.11) 

Consequently the relation between R  and U  is given by 
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From the upper set of equations 

 
†R U Uσ σ   (1.13) 

where “ † ” represents the Hermitian conjugate. 
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For every Jones or rotation matrix representing a birefringent section two input polarizations 

maintain the same polarization at the output. These input states obey the relations 

 2 2and
i i

v U r e r v U r e r
 

 

      (1.14) 

Here the polarization states of the slow and fast modes r and r , respectively, are the 

eigenvectors of the matrix U  with eigenvalues 2
i

e
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i

e




; where 
2

i


  and 
2

i


  represent the 

difference in phase between the input and output wave. The quantity γ also represents the rotation 

angle between the input SOP (State Of Polarization) and the output SOP around the slow mode axis 

(also called the rotation axis) on the Poincaré sphere; that is “r” in terms of Stokes parameters, 

calculated following the example of equation(1.10). 

 

Figure 1.2 Polarization transformation on the Poincaré sphere. P and P’ are the input and output 

SOPs respectively. Γ represents the rotation angle γ. [2]. 

 

Expressing U in terms of its eigenvectors and eigenvalues, 
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The two previous equations yield 
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Substituting equation (1.17) in (1.13) leads to, after some algebra,  

    sin cosR    rr r× r×r×  (1.18) 

or in  terms of components 
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1.2.4 Principal states of polarization (PSP) 

A principal state of polarization is an output polarization state that does not vary to first order with 

wavelength for a fixed input polarization state  ⟩. Differentiating equation (1.5) with respect to the 

angular frequency ω, the PSP states are determined by solving 
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Here   corresponds to the propagation group delay defined as the phase differentiation with respect 

to frequency. From the previous equation 

 
0 0
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The prime stands for the differentiation with respect to the frequency ω. Since U U  is anti-Hermitian 

and unitary, 

 

2
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U U U a b
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hence 

 
2 2

det( ) 2U a b        (1.23) 

The eigenvectors of the 
1U U   matrix are therefore the Principle States of Polarization (PSPs). For 

the slow PSP (noted as p  in the Jones space and p in the Stokes space), δ equals / 2 ; while for 

the fast PSP (noted as p  in the Jones space and p in the Stokes space) δ equals / 2 . The 
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quantity  is termed the Differential Group Delay (DGD), which is the time delay between the fast 

and slow propagating PSP modes at the system’s output. Practically, this discussion is only valid for 

very small frequency variations, as we were only interested in the frequency variations to the first 

order. 

Representing an arbitrary SOP as 

  0 1 2v c p c p    (1.24) 

where c1 and c2 are arbitrary constants. Equation (1.24) yields for a linearly frequency-dependent 

output polarization 

   2 2
0 1 2

i i

v c p e c p e
   

 
 

 

    (1.25) 

Equation (1.25) can be represented on the Poincaré as a rotation around the slow PSP vector by an 

angle τ△ω (Figure 1.3). 

 

Figure 1.3 Polarization transformation on the Poincaré sphere. Q and Q’ are the output SOPs at 

ω0 and ω0+△ω, respectively, for the same input SOP. τ△ω represents the rotation angle γ 

around the slow PSP. [2]. 

1.2.5 PMD vector and DGD 

The Polarization Mode Dispersion (PMD) vector is defined as a vector parallel to the slow PSP and 

whose magnitude is the Differential Group Delay (DGD). 

 p p  τ p σ   (1.26) 

Here p has the direction of the slow PSP unit vector. 
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1.2.6 Differential rotations 

There are two types of infinitesimal rotations, one due to a differential birefringent system and the 

other type due to differential frequency changes. For a birefringent material with infinitesimal 

thickness dz , the output State Of Polarization (SOP) is rotated around the rotation axis, relatively to 

the input SOP, by an angle 

 dz   (1.28) 

where the birefringence   equals 

 0 0( )slow fastk n k n n      (1.29) 

where nslow and nfast are the refractive indices of the medium along the two birefringence axes.  

Similarly, a pulse with a small bandwidth - starting at 1 and ending at 2  - and a constant input 

SOP, experiences a rotation around PMD axis, between the output SOPs at 1 and 2 , by an angle 

equal to  

      (1.30) 

In this case, the rotation is occurring around the PMD vector, which has the same direction as the 

slow PSP (Figure 1.3). That is, dR   represents the Rotation matrix that relates the output polarization 

at two infinitesimally separated wavelengths λ0 and λ0+∆λ. The subscript d  indicates that the 

rotation is with respect to the output polarizations at different wavelengths. 

 2 1( ) ( )dR  v v  (1.31) 

We can easily deduce dR  using equation(1.7) as follows 
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while from Figure 1.3 and equations (1.24) and (1.25), in the same manner as in the derivation of 

equation (1.19), we find  
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And for infinitesimal changes in frequency equation (1.33) simplifies to 
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1.3 Long fiber cable analysis, concatenated sections model [2] 

To analyze the varying changes of the fiber parameters along the length of a long fiber sample, the 

fiber is divided into small concatenated sections. 

 

Figure 1.4 A long segment of fiber is represented by a series of birefringent elements. The slow 

axis of adjacent birefringent elements is arbitrary orientated. [2] 

1.4 Resultant PMD vector of concatenated sections [2] 

To calculate the PMD vector of a series of concatenated sections, consider first a single birefringent 

section as shown in Figure 1.5. Where R is the rotation matrix of the section, s is the input 

polarization Stokes vector, v is the output polarization Stokes vector and τ is the PMD vector of the 

section. 

 Rv s  (1.35) 

For infinitesimal frequency changes we have 

 
1

R
R

R R
R R

 

 



 
    

 

 
     
 

v
τ v τ s s

τ τ

 (1.36) 

 

Figure 1.5 Linear input output relationship of a birefringent fiber system. [2] 

 

For 2 successive sections with PMD vectors τ1 and τ2, and rotation matrices R1 and R2 (Figure 1.6), 

the resultant rotation matrix and PMD vector of the system R and τ are then given by 
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 2 1R R R v s s  (1.37) 

 

Figure 1.6 Concatenation of two birefringent sections. [2] 

From equations (1.36) and (1.37) 
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 (1.38) 

But  1

2 1 2 2 1R R R  τ τ  [2] 

  2 2 1R   τ τ τ  (1.39) 

Hence  

 2 2 1R τ τ τ  (1.40) 

Equation (1.40) is the elementary rule of a series of concatenated sections of a fiber cable. 

Alternatively, in the Jones matrix formulation, to calculate the total DGD for a system of 

concatenated birefringent sections,  a single birefringent section is considered and reference axis (x 

and y), the fast and slow mode axis and the angle Ψ between the two axis systems are defined as 

shown in Figure 1.7. 

 

Figure 1.7 A diagram showing a birefringent section and the reference x and y axis, the fast and 

slow mode axis and the angle Ψ between them. [2] 
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The input SOP is 
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V  (1.41) 

Before applying the birefringent effect, the incident SOP is decomposed into a linear combination of 

the fast and slow modes. 
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Where R(Ψ) is the coordinate rotation matrix and Ψ is the azimuth angle between the x-y coordinates 

and the slow-fast axis. Applying the birefringent effect to the decomposed input SOP, 
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in which 

 
s f     (1.44) 

and d is the thickness of the birefringent section. To express the output SOP with respect to the x-y 

coordinates, the output is multiplied by R(-Ψ)  
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Summing the previous mathematical discussion, 
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 (1.46) 

Note that in this discussion the propagation phase φ was not included, where 

  
1 2

2
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   (1.47) 

In order to calculate the total effect of the birefringence of all the sections, equation (1.46) is 

expressed in its recursive form 
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in which the subscript n represents the section number and the input SOP is represented as 

0

x

y

V
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1.5 Measuring DGD in lab environment 

Our measurement of the DGD requires the determination of the 3×3 matrix dR  . The method 

employed as described in [4] requires determining 2 matrices as follows, 
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3 31 2 1 2
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  (1.49) 

This is accomplished by measuring three output polarizations at two slightly different wavelengths. 

Here Q  and Q represent the output at 2  and 1 respectively, while superscripts p1,  p2 and p3 refer 

to differing input polarizations. Thus 1

1

p
s  is the first Stokes parameter of the output polarization when 

the input polarization is p1. More than three polarizations can be used to calculate R to give a better 

accuracy while calculating dR  . In this case, the above equation is rearranged as 

 
T T T

dQ Q R 
    (1.50) 

 

which is in the form of  the Orthogonal Procrustes problem [5] which solves 

 A T B E= +   (1.51) 

where A and B are known matrices, and T is the matrix relating A and B such as E, the residual 

matrix, is minimal. T is obtained from the singular value decomposition of 

 
TM U V    (1.52) 

where 

 
TM A B   (1.53) 

and hence 

 
TT U V   (1.54) 
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For an M matrix of dimensions m×n the dimensions of U is m×m, Σ is m×n and V
T
 is n×n. Hence T 

possesses the same dimensions as M. Accordingly writing 

 
T T T

d dR U V R V U      (1.55) 

To calculate   from R we use equation (1.33) instead of equation (1.34) with the following technique 

for improved accuracy 
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  (1.56) 

As dR
 is a 3×3 matrix with zero diagonal elements, the third element of the 2

nd
 column is equal 

 1 sinp d  , while the first element of the 3
rd

 column equals  2 sinp d  and the second element 

of the 1
st
 column is  3 sinp d  . These components define a vector whose direction is the slow PSP 

vector with magnitude  sin d  . Subsequently  cos d  is given from equation (1.33) 

according to 

  
  1

cos
2

dTrace R
d

 


   (1.57) 

From  sin d  and  cos d  the angle of rotation d   and hence  are determined for a given

d .  
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Chapter 2 
Relaxation of stress and strain in fibers 

In this chapter we examine the stresses that induce birefringence in an optical fiber and how these 

stresses relax with time by following the analysis presented by G.W. Scherer [6]. Although the 

formulation of [6] is developed for stresses in glass at high temperatures (> 200 to 100°C) for 

manufacturing and annealing processes, we present some of the basic formulas of great importance to 

understand the latter part of the thesis.  

2.1 Overview 

By definition the uniaxial strain i  is related to the applied stress i  on a body as follows 

 31 2
1 2 3, ,

E E E

 
      (2.1) 

in Cartesian space where E is the Young modulus of the material (see Figure1 Figure 2.1); where the i 

subscript represents the stress and strain direction assuming that it acts perpendicularly on the body’s 

surface. Applying the above stress to a cube alters its dimensions from 0L  to 

      1 0 1 2 0 2 3 0 31 , 1 , 1L L L L L L         (2.2) 

yielding a volume, after neglecting all second-order terms, 

  3

1 2 3 0 1 2 31V L L L L         (2.3) 

 

Figure 2.1 Coordinate system and components of stress [6]. 

thus 
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For solely uniaxial stresses applied on Figure 2.1’s body 
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where N is the Poisson’s ratio of the cube’s material. The constitutive equations relate stresses and 

strains in an isotropic material according to  
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 (2.6) 

where 
f is the free strain caused by thermal expansion (

f T   where is the linear thermal 

expansion coefficient). The pure dilatation (volume changing or hydrostatic [6]) stress and strain are 

 1 2 3       (2.7) 

and 

 1 2 3       (2.8) 

Because   is the relative volume change and  is the dilatational stress, then 

 3K   (2.9) 

where K is the bulk modulus. The following relation can be easily derived 

 
 3 1 2

E
K

N



 (2.10) 

 For N=1/2, K is infinite indicating that the material is incompressible. 

2.2 Viscoelasticity of glass 

The viscoelastic property of glass allows it to react instantaneously to stresses with an elastic 

behavior and in the same time react with a delayed strain without a true viscous flow. This can be 

modeled with a spring in series with a Voigt element (see Figure 2.2). A Voigt element consists of a 

spring and a dash pot (filled with a viscous fluid) connected in parallel. The strain in both the Voigt’s 

element spring and the dash pot are equal but the stress on each is different. The stress across the 

model in Figure 2.2  is constant, but the strain in the spring K1 and the Voigt element are not equal. 
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This model assumes pure dilatational strain (i.e. no shear stresses and hence no deformation of the 

substance) 

 

Figure 2.2 A Voigt element in series with a spring to model the viscoelasticity of glass [6]. 

According to Scherer [6] the instantaneous elastic strain 
E  
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E
t

t
K


   (2.11) 

and the Voigt element follows the following relation 

      23 D D

Vt K t t      (2.12) 

where V  is the volume viscosity of glass, 
D  is the delayed strain and 

D  is the time derivative of 

the delayed strain. The solution of the previous equation is [6] 
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V
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t e dt






 


   (2.13) 

where D is the dilatational retardation time 
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V
D

K


   (2.14) 

Then the total strain is 

 
E D

total f       (2.15) 

The following relation between 1K  and 2K  can be deduced if constant stress is assumed in (2.13) 

when t   [6]. 

 
1 2

1 1 1

K K K
   (2.16) 
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2.3 Mechanical constants of glass 

Glass can be doped with different elements at different concentrations to alter its mechanical and / 

or optical properties. Although the mechanical properties of glass proved to affect its optical 

parameters (ex: birefringence), they are not discussed in depth. 

2.3.1 Young’s Modulus of glass 

References [7]and [8] suggest different Young’s modulus values (Figure 2.3 and Figure 2.4). The 

value of Young’s modulus that best suited our model (to be discussed in Chapter 5) was found to be 

around 68 Giga Pascal. This value lies in the reasonable range mentioned by Morey [7] and Philips 

[8]. 

 

Figure 2.3 Some mechanical constants of silica glass [7]. 

 

Figure 2.4 Mechanical constants of different types of glass [8]. 
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2.3.2 Viscosity and Volume Viscosity 

The Viscosity of glass is usually studied around melting and annealing temperatures. Therefore we 

will use the curves in [6] to find the different values of viscosity at room temperature by 

extrapolation. Doing so we find that the viscosity of different types of glass, suggested by Mazurin et 

al. ( [6] pages 148-151) (Figure 2.5), varies between 
7410  and 

2510 (Pascal.second). On the other 

hand Zijlstra’s measurements (Figure 2.6, [6] page 148-151) suggest that the viscosity of glass 

changes slope after 400°. Extrapolating Zijlstra’s measurements would result a viscosity varying 

between 
18.510  and 

1710 (Pascal.Second). 

 

 

Figure 2.5 Mazurin et al. - viscosity measurements versus temperature for different types of 

glass [6] (pages 149-150). 
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Figure 2.6 Zijlstra’s - viscosity measurements versus temperature for different types of glass [6] 

(pages 149-151). 

According to J. Lyklema and H. Van Olphen [9], the Shear Viscosity, also known as simply 

Viscosity, is defined as the constant relating shear stress and rate of strain at a point in the fluid; while 

the Volume viscosity, also known as Bulk Viscosity or Dilatational Viscosity, describes the flow of 

fluids whenever a change of volume due to the flow is present. 

Although the property we are interested in is the volume viscosity, and because measurements of 

volume viscosity of glass are unavailable, it seems reasonable to assume that the value of volume 

viscosity should be comparable to shear viscosity. Therefore we assumed 
205 10 (Pascal.Second) 

which best fit our simulations Chapter 5 and which was also close to range of measurements of the 

shear viscosity. 

2.4 Optical properties of glass 

2.4.1 Refractive index and temperature [10] 

J. Wary and J. Neu measured the refractive index changes of fused silica with temperature at 

different wavelengths for the purpose of characterizing optical equipment in the upper atmosphere 

where it is vulnerable to very large temperature variations. According to the following tables they 

found that the rate of change of the refractive index is in the order of 7.9×10
-6

 to 19.6×10
-6

 /°Celsius. 
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Table 2-1”Refractive index vs temperature, fused silica, Corning code 7940, ultraviolet grade” 

[10] 

 

Table 2-2 “Refractive index vs temperature, alumino-silicate glass, Corning code 1723” [10] 
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Table 2-3 “Refractive index vs temperature, Vycor Corning code 7913, optical grade” [10] 

 

These values of rate of change of the refractive index with temperature give us an order of 

magnitude estimate while constructing our mathematical model later; as we don’t know the material 

of the fiber based DCM under test.  
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Chapter 3 
Previous work and literature review 

Below, we overview the background literature related to our work. The first section discusses the 

temperature behavior of fiber based optical components while the second section discusses 

mathematical models that predict the influence of mechanical and temperature variations on 

birefringence.  These provide important input to our model of a DCM and enable us later to 

qualitatively predict the DCM’s fiber behavior. 

3.1 Temperature measurements for different fiber based optical components 

3.1.1 Time evolution measurements on installed fibers 

This subsection summarizes previous studies of the DGD behavior of installed fibers. In [11], De 

Angelis et al. measured the DGD of a terrestrial fiber located in Italy. The buried cable consisted of 8 

sections of fiber connected to each other. During 27 hours long measurements, over two sections of 

cable, the temperature dependent variation of the DGD was recorded during sunrise and sunset. The 

two measurements revealed similar behavior (Figure 3.1 and Figure 3.2) with pronounced DGD 

changes during sunrise and sunset, resulting from the large temperature fluctuations over these 

periods [11]. 

  

Figure 3.1 “Time evolution of the normalized stokes vector (left side graph) and that of the 

DGD (right side graph) of the first measurement (sunset = *, sunrise = **)” [11] 
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Figure 3.2 “Time evolution of the normalized stokes vector (left side graph) and that of the 

DGD (right side graph) of the second measurement (sunset = *, sunrise = **)” [11] 

Similarly, Takahashi et al. performed a measurement on a 120 km long submarine cable with 86% 

of its length submerged [12]. Here the DGD changed on a time scale of few hours (4 to 5 hours) 

according to their data which suggested that the fluctuations resulted from daily temperature changes. 

At New Brunswick University, J. Cameron et al. conducted a DGD measurement on a 36 Km 

single mode spool of fiber enclosed in a temperature controlled chamber; they also did a DGD 

measurement on a 48.8 Km buried cable and on a 96 Km areal cable [13]. The temperature was 

changed rapidly during the measurement (Figure 3.3). Note that, when the temperature returns to its 

initial value, the DGD is steady again and has a slightly different value to the initial DGD at the 

beginning of the experiment; similar behavior will be further discussed in Chapter 4. Cameron et al. 

also compared the DGD behavior of the buried and areal cables they tested (Figure 3.4). They 

concluded that high rates of temperature changes yields rapid DGD fluctuations and that, 

consequently, the DGD of buried or submarine fibers fluctuate less than that of aerial fibers, as they 

are less subject to temperature changes. 

 

Figure 3.3 “Time evolution of PMD (upper curve), and temperature at the outside of the 36 km 

fiber spool (lower curve)” [13] 
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Figure 3.4 “Time evolution of PMD (upper curves), and temperature measured a meter above 

ground (lower curves) for the 48.8 Km buried cable (left side curves) and the 96 Km aerial 

cable (right side curves)” [13] 

M. Brodsky et al. performed long-term DGD measurements for more than 20 days [14]. The tested 

cable was mainly buried but with several exposed sections, rendering it vulnerable to weather 

conditions. Figure 3.5 shows the difference in DGD (from the initial value) for 48 hours (left axis) 

and the corresponding temperature (right axis). Clearly, the DGD is highly influenced by temperature 

changes. A plot of the DGD temperature relation displayed a linear like relation between the DGD 

and temperature (Figure 3.6). 

  

Figure 3.5 “Changes of ΔDGD for 3 

wavelengths, λ=1529.5 μm (●), λ=1533.5 μm 

(○) and λ=1556.5 μm (▼), as a function of time 

(left axis). The thick dotted lines (●) is the 

ambient temperature (right axis)” [14] 

Figure 3.6 Same data as previous figure but 

presented as a function of temperature 

(λ=1529.5 μm (●), λ=1533.5 μm (○) and 

λ=1556.5 μm (▼)) [14] 
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Figure 3.7 “Plot similar to Figure 3.6, but with a data span over 3 weeks of measurements” [14] 

Figure 3.7 shows the difference in DGD versus temperature over a 21 days span. Although the linear 

like relation is still present, the data points were spread more randomly (compared to Figure 3.6) than 

linearly. Brodsky et al. concluded that, over long terms, the fiber cable experience irreversible 

variations; while over short time spans, temperature variations induce reversible DGD changes. 

3.1.2 Dispersion compensation modules (DCMs) under temperature variations 

T. Geisler and P. Kristensen tested DCMs under different temperatures in a controlled environment 

(climate chamber) [15]. In the first measurement, the temperature was varied periodically; where each 

period started by a temperature increase from 25°C to 35°C in two hours. The chamber’s temperature 

was then held at 35°C for five minutes followed by a temperature decrease to 25°C over 25 minutes 

period. Finally the temperature was held at 25°C for one hour. This cycle was repeated 6 times. The 

resulting measured DGD, for 2 different DCMs, is displayed as the grey scale diagram of Figure 3.8. 

It should be noted that, although the DGD is almost periodic with every temperature cycle, the DGD 

value is not the same –for most wavelengths– for the same temperature during the same cycle. 

 

Figure 3.8 “Grey-scale plots of the DGD spectra as a function of time during 6 temperature 

cycles (far right side). a) DCM#1 b)DCM#2” [15] 
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Geisler and Kristensen also shocked DCM#2 thermally by changing the temperature from 25°C to 

75°C in 20 minutes, maintaining the temperature for seven hours at 75°C and then passively cool it 

back to 25°C. Figure 3.9 (a) shows the grey-scale of the DGD measurement for DCM#2 during the 

thermal shock; while Figure 3.9 (b) shows the DGD spectra before and after the 6 temperature cycles, 

after the thermal shock and after 2 temperature cycles. They concluded that due to the thermal shock 

the DCM have experienced irreversible changes, which is not the case when the temperature was 

changing in a 10°C span. They also experienced DGD changes due to mechanical perturbations. 

 

Figure 3.9 “a) Grey-scale plots of the DGD spectra as a function of time during thermal shock, 

with temperature profile to the right. b) DGD spectra before (black) temperature cycles and 

after the thermal shock (dark blue) and after two temperature cycles (light blue)” [15] 

 

3.2 Mathematical models of mechanical and temperature effects on 
birefringence 

As discussed earlier, the birefringence of optical fibers results from both geometrical deformation 

(i.e. the fiber core is not perfectly circular) and mechanical stresses. The mechanical stresses result 

from bending, bending under tension, twisting and by built in stresses due to non-perfect circular 

shape of the core and cladding. In this section we will present mathematical models for each source of 

birefringence. 

3.2.1 Birefringence due to geometrical deformation 

Although an ideal fiber possesses a perfectly circular core and cladding, a manufactured fiber 

deviates from cylindrical symmetry as a result of imperfections in the manufacturing process. The 

ellipticity e of an actual fiber is 

 1
y

x

e



   (3.1) 

where ρx and ρy are the semi-major axis and the semi-minor axis respectively (Figure 3.10). The 

ellipticity varies along the fiber length. 
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Figure 3.10 Elliptical core fiber’s diagram 

Many references ( [16] [17] [18] [19]) discuss birefringence due to core ellipticity. J. D. Love et al. 

formulation is used [17]. 
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 (3.2) 

where G is the birefringence due to the geometrical form of the core, βx and βy are the propagating 

constants of the x-polarized and y-polarized fundamental modes respectively, e is the core ellipticity, 

△ is the relative refractive index, ρ is the average core, V is the normalized frequency, U & W are the 

usual circular waveguide parameters (core and cladding parameters respectively [19]) and J is the 

Bessel function of the first kind. 
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 (3.3) 

Where nc and ncl are the refractive indices of the core and cladding respectively and k0 is the free 

space propagation constant of the wave. U and V are obtained from ( [2] [19]) 
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In which β is the propagation constant of the mode in the core and K is the modified Bessel function. 

3.2.2 Birefringence due to built-in stresses [20] 

During the manufacturing process, a fiber is free of stresses at the softening temperature. When it 

starts to cool, stresses begin to build up due to the different expansion coefficients between the core 

and the cladding. If the fiber was perfectly circular these stresses would not generate birefringence; 

however, the small ellipticity of the fiber core and the stresses lead to a polarization dependent 

birefringence. Eickhoff studied both cases of a fiber with a circular core and an elliptical cladding and 

that of fiber with an elliptical core and a circular cladding (Figure 3.11). 

 

Figure 3.11 “Cross section of fibers with elliptical structure. (a) Round core in an elliptical inner 

cladding. (b) Elliptical core in a round cladding.” [20] 
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For the first case (Figure 3.11 a), the birefringence is modeled as 
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 (3.5) 

Here n denotes the mean refractive index, p11 and p12 are the components of the photoelastic tensor, 

αocl and αicl are the thermal-expansion coefficients of the outer and inner cladding respectively, Tsoft 

and Troom are the softening temperature of the fiber material and the room temperature respectively, N 

is the Poisson’s ratio of the fiber material and eclad is the inner cladding ellipticity.. 

For the second case (Figure 3.11 b), the birefringence is given by 
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(3.6) 

The following graph displays the dependence of the birefringence on the normalized frequency in 

both cases. 

 

Figure 3.12 “Frequency dependence of the three kinds of linear birefringence” [20] 
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3.2.3 Birefringence due to bends [21] 

Often fibers are bent around drums, solid objects or experience microbending, leading to bending 

induced birefringence. Ulrich et al. [21] concluded that this type of birefringence results from 

stresses. A bent fiber experiences tensile stress in its outer layers with respect to the central axis of the 

fiber and a compressive stress in the inner layers with respect to the same axis (see Figure 3.13). 

Although these stresses generate birefringence, they don’t contribute directly to it; only second order 

dependence causes the birefringence. 

 

Figure 3.13 “Geometry of a bent fiber” [21] 

For an elastically homogeneous and isotropic fiber the birefringence associated with bending a 

fiber around a drum, with a bending radius R equals 

    
3 2

0
11 12 2

1
4

c
bend x y

k n r
p p N

R
           (3.7) 

in which 2r is the outer diameter of the fiber (All other variables are the same as discussed in previous 

sections). Figure 3.14 shows the agreement of equation (3.7) to some measurement of [21] and 

displays the proportionality between the bending-induced birefringence and the outer fiber diameter. 
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Figure 3.14 “Bending birefringence of single-mode silica fibers. The solid line represents the 

calculated birefringence (3.7). The points are measurements at 0.633 and 0.676 μm using 

three fibers of different origins. (κ=1/R)” [21] 

3.2.4 Birefringence due to bends under tension [22] 

Although fiber bends and tensile stresses do not generate birefringence to first order due to 

cylindrical fiber symmetry, the combination of bending and tensile stress yields birefringence to first 

order. Hence if either bending or curvature is removed, this component of birefringence is null. With 

the directions of the fiber and the coil axis defined as in Figure 3.15, the birefringence generated by 

the combination of tension and bending denoted βtc is given by 
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k n N N r
p p

N R
   

  
       


 (3.8) 

Here neff is the effective refractive index and εz is the axial strain (All other variables are the same 

as discussed in previous sections). Figure 3.16 shows some measured data indicating done by 

Rashleigh and Ulrich proving the validity of equation(3.8). 
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Figure 3.15 “Geometry of a tension-coiled fiber” [22] 

 

 

Figure 3.16 “Tension-coiled birefringence βtc of single-mode fibers. The solid lines represent the 

calculated birefringence. Measurements for λ = 0.633 μm are indicated by the dots. (κ=1/R)” 

[22] 
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3.2.5 Birefringence due to twists [23] 

In chapter 11 and Appendix E of [23], Chin-Len Chen discusses the birefringence due to fiber 

twists. Although previous types of birefringence are linear, twists cause circular birefringence. If a 

fiber of length L is twisted by an angle Θ (positive when twisted counter clockwise) the resultant 

birefringence δβTW due to twists is 

    
2

11 12
2

c
TW R L TW

n
p p F V

L
  


        (3.9) 

in which, βR and βL are the propagation constant of the right- and left-hand circularly polarized 

modes, and FTW(V) is a function of the normalized frequency V.  
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Chapter 4 
Dispersion Compensation Modules (DCMs) behavior under 

temperature variations 

In this chapter we examine the variation of the Differential Group Delay (DGD) of a DCM with 

temperature variations in a controlled setup. 

4.1 THE EXPERIMENT 

4.1.1 Setup Description 

We investigate a Nortel DSCM-10A, part no: 0121.0101 DCM by placing the device in a box and 

further thermally isolating it with fiberglass. We then connect two thermal modules in to the DCM 

with a thermal paste and attach four thermal sensors in contact with DCM to measure its temperature 

at four different points. Each thermal module and the 2 sensors are connected to a temperature 

controller. 

 

Figure 4.1 Setup block diagram, showing signals and laser flows. 

The DCM is excited by a tunable laser followed by a polarization controller while the output of the 

DCM is input into a polarimeter. A lab computer controls the 2 temperature controllers, the tunable 

laser source, and the polarization controller and acquires the polarimeter readings (Figure 4.1).  

4.1.2 Experiment Procedure 

A Matlab program sets the desired temperature via the temperature controllers. After the 

temperature is stabilized, the program enables the tunable laser source and sets the polarization 
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controller to a random polarization; then the polarimeter transforms the output polarization to four 

voltages read by the PC. The voltages acquired by the polarimeter can be used to calculate the S-

parameters of the output polarization via a conversion matrix characterizing the polarimeter. To be 

able to calculate a DGD point, we need to measure three different output polarization points at two 

different wavelengths as explained in Section 1.5. 

4.2 Results 

4.2.1 DCM under room temperature effect 

 

Figure 4.2 DGD evolution in room temperature for 76.5 hours 

As the room temperature fluctuates throughout the day, the DCM’s DGD is affected. Figure 4.2 

shows the DGD variations during a period of approximately 3 days. The curve exhibits a 24 hour 

period resulting from daily temperature changes, as already noted in Section 3.1.2 [15]. The 

anomalous behavior of the first cycle is associated with the 36° initial temperature of the DCM. 
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Figure 4.3 DGD vs. Room Temperature 

Figure 4.3 displays DGD versus temperature which is similar to [13] and [24] measured data. 

4.2.2 DCM’s DGD vs. Temperature 

 

Figure 4.4 Reproducible curves under same circumstances 
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Although the previous measurements of [15] and [24] appear to indicate that the DGD versus 

temperature curves are determined solely by the DCM’s temperature, however Figure 4.4 

demonstrates that the DGD obtained when heating the DCM (solid curves) is different than that 

obtained when the DCM is cooled (dotted curves). Further, when this measurement was repeated a 

week later (blue and red curves), the same traces were reproduced; which doesn’t comply with the 

Maxwellian randomness of the DGD! [25]. Furthermore, Figure 4.5 demonstrates that the heating and 

cooling process yields different DGD curves if the curves start at 26° Celsius and end at different 

temperatures (34°, 35°, 36° and 37° Celsius) before returning to 26°C. Only curves varying from 26° 

to 37°C were reproduced, when compared to Figure 4.4 (blue curves). 

 

Figure 4.5 Irreproducible curves of DGD vs. Temperature at different Temperatures ranges 

Additionally, Figure 4.6 shows that if we add a delay of 6 hours between every temperature change 

(red curves) and compare the new curves with the old ones (blue curves), these traces do not coincide 

as in Figure 4.4. 

These measurements show that unless all circumstances, which are initial and final temperatures, 

timing between successive temperatures and increasing or decreasing the temperature are identical, 

measuring reproducible DGD curves is not possible. Hence temperature is not the only parameter 

controlling the DGD despite the strong correlation between both of them. 
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Figure 4.6 Irreproducible curves of DGD and Temperature different settling times 

 

4.2.3 Hysteresis and temperature spans 

Although we demonstrated the correlation of many parameters to the DGD in the previous section, 

the DGD behavior is dependent on the temperature extremes (Figure 4.7.1 and Figure 4.8.1). By 

comparing the behavior of the DGD in all three cases –Figure 4.7.1, Figure 4.8.1 and Figure 4.9.1 – 

we conclude that the DGD of the fiber-based DCM depends on the history of its temperature 

evolution and that this effect becomes more relevant with increased temperature variation. Plotting 

the absolute difference between the DGDs, for cooling and heating for each set of curves (Figure 

4.7.2, Figure 4.8.2 and Figure 4.9.2), shows that the wider the span of temperature the higher the 

difference between cooling and heating curves, provided that the circumstances are the same. 
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Figure 4.7.1 The DGD measured when heating (Solid lines) and cooling (Dotted lines) the 

DCM from different starting temperatures to 32°C. 

 

Figure 4.7.2 Divergence between heating and cooling measurements for the curves in the 

above figure. 
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Figure 4.8.1 Heating (Solid lines) and cooling (Dotted lines) measurements with a 

minimum of 26°C and maximum variable temperatures. 

 

Figure 4.8.2 Divergence between heating and cooling measurements for the curves in the 

above figure. 
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Figure 4.9.1 Heating (Solid lines) and cooling (Dotted lines) measurements with variable 

maximum and minimum temperatures. 

 

 

Figure 4.9.2 Divergence between heating and cooling measurements for the curves in the 

above figure. 
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4.2.4 DGD relaxation with time 

Ramaswamy et al. observed a birefringence relaxation with time in optical fibers that takes days to 

return an initial value [26]. To illustrate the relaxation of the DGD with time, Figure 4.10 shows the 

measured DGD as a function of time at different temperatures. A DGD relaxation is observed every 

time the temperature is changed. This relaxation appears to have an impact on the initial DGD value 

of the successive temperature. The small DGD features superimposed on the relaxation curves are the 

result of small temperature variations (~0.1°C) (Figure 4.11). 

 

Figure 4.10 DGD vs. Time at different temperatures (8 hours per temperature) 
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Figure 4.11 DGD vs. Time during the second temperature cycle displayed in the previous figure. 
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Chapter 5 
Modeling the DCM 

In this chapter we introduce a mathematical model of the single-mode fiber-based DCM tested 

previously and whose fiber is coiled in a cylindrical form and placed in a temperature controlled 

chamber. We employ the mathematical techniques of the first three chapters to qualitatively explain 

the measurements in Chapter 4. Although, the model is the first to include mechanical relaxation in 

DGD predictions, it assumes that shear stresses are negligible as the fiber doesn’t suffer deformations 

at varying room temperature. Perturbation length theory [27] [28] is also taken into account in this 

model. 

5.1 Fiber-based DCM’s strain model 

We model the strain in the DCM by a constant value ( 0total  ) as the fiber inside the DCM is 

glued to the outside of the drum and therefore is not displaced physically as the temperature changes. 

The strain component generated by stress contributes to the birefringence generated by the coiling of 

the fiber under tension as discussed in section 3.2.4. Rearranging equation(2.15), the elastic strain is 

expressed as follows 
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where T0 is a constant temperature and T(t) is the DCM’s temperature as a function in time. From 

equation(2.11), (5.1) can be written as follows 
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which is a linear Volterra integral equation that can be solved by Laplace transform. Written as 
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 taking the Laplace transform of (5.3) yields 
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From equation (2.14) 
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An inverse Laplace transform yields  
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Hence the elastic strain as a function of time is 
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5.2 Physical parameters and mathematical equations 

In this section, we present the constants, parameters and equations employed in our simulation of 

the DCM. In Table 5-1 we present constants and parameters for a typical single-mode fiber in the 

DCM. The operating wavelength and the radius of curvature are measured values, while the fiber 

length is estimated from the DCM properties. The outer fiber radius is taken as a typical cladding 

radius; the later postulate was assumed to agree with Ulrich et al. postulate stating that the fiber is 

elastically homogeneous and isotropic to validate the use of their formulation (section 3.2.3, [21]). 

We further assume that the stresses induced by the plastic jacket around the fiber can be neglected. 

Although the ellipticity is chosen to be zero in this model to fit the previously measured DGD curves, 

we will include its formulas in the mathematical model to present a complete DGD model. 

Table 5-1 Physical parameters characterizing the fiber-based DCM (SI units) 

Symbo

l 

Parameter name Value 

λ Operating wave-length 1.55×10
-6

(m) 

δλ Differential wave length 2×10
-9

(m) 

nc Core refractive index 1.44402 [29] 

ncl Clad refractive index 1.4388 [29] 

ρ Core mean radius 4.1×10
-6

 (m) [29] 

e Core ellipticity 0 

p11 Component of photoelastic tensor 0.126 [29] 

p12 Component of photoelastic tensor 0.260 [29] 

αicl Thermal-expansion coefficient of inner cladding 5.6×10
-7

(°C
-1

) [29] 

αcore Thermal-expansion coefficient of core 9.19×10
-7

(°C
-1

) [29] 

Troom Room temperature 26 - 37(°C) 

Tsoft Softening temperature of Silica (fiber material) 1065(°C) [29] 

N Poisson ratio of silica 0.17 [23] 

R Radius of curvature of the coiled-fiber (DCM) 8.75×10
-2

(m) 

r Outer radius of the DCM’s fiber 125×10
-6

 (m) 

L Fiber length ~5000(m) 

E Young’s Modulus ~68×10
9
(Pascal) [7] [8] 

ηV Volume Viscosity ~5×10
20

( [6]
 
page 150) 

The Young’s Modulus and the volume viscosity are as well assigned the values above in 

consistence with the observed data as no direct measurements appear to exist for these quantities at 

room temperature (Section Figure 2.3). 

5.2.1 Single section general model 

In Table 5-2 we present the equations we employ to calculate the propagation constants of the fiber 

for each section. The core and clad parameters are obtained from the defining equations(3.4), through 

numerical iteration. 
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Table 5-2 Relations used to obtain fiber parameters 

order Equation Equation # 
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In Table 5-3 we collect the equations of Section 3.2, which form the basis of our numerical model. 

We also assume that the simulated fiber has a single clad. 

Table 5-3 Mathematical model of the fiber-based DCM 

order Equation Equation # 

Geometrical 

deformation 
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The constant Z  in (3.8) equals to 
E of (5.12). To calculate

E , we assume that the initial strain 

0 is given by 

 

2

0

stress

Young's Modulus

F r
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    (5.13) 

where F is the initial applied force, assumed to be 0.95 (N), during manufacturing at room 

temperature ( 0T of 25° Celsius). 

In order to calculate r  and 1K  one of these 2 variables must be assigned a representative value. 

Hence r is assumed to be equal 14.3 hours (51480 seconds) after which the following set of 

equations yield 1K . From (2.16) 
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so that 
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Given x, and hence K1, the strain can be evaluated. 

5.2.2 Total DGD of the system 

After employing the above equations in the previous section to calculate the birefringence of a 

single section, we apply the concatenated sections model of Section 1.3 to determine the total DGD. 

The length of each section set equal to the autocorrelation length which corresponds to the distance 

after which the fiber loses memory of the direction of the initial axis of birefringence [28] as the 

birefringence axes of each section are oriented randomly with respect to each other. From the 

measurements of [27] of the autocorrelation length of different samples of a single-mode step-index 

fiber we here employ a length of 25 meters which is slightly longer than the lengths cited in this 

publication. This yields a system of 200 concatenated sections (for a 5 Km fiber) with randomly 

oriented slow PSP axes.  

In order to determine the Jones matrix of the series of concatenated sections from the birefringence 

of each section, we employ the Jones matrices technique described in section 1.4. The system’s DGD 

is obtained by relating the output polarization at certain frequency (ω) and the output at an adjacent 

frequency (ω+△ω) using the Jones space. From equation(1.5), 
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where the input polarization s is independent of the angular frequency  , and therefore, 

 U U U    
    (5.21) 

Accordingly 
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        (5.22) 
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Consequently, the total Jones matrix of the system UT 

  1 1

TU U U I U U      


     (5.24) 

from which, according to equation (1.22), the system’s total DGD is 
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and hence 

 2 det T
system

U I




 
   

 
 (5.26) 

5.3 Numerical results 

We first discuss the results of the numerical model presented above employing the values presented 

in Table 5-1. With an appropriate randomly oriented set of PMD vectors, we obtained the curves of 

Figure 5.1 which agree with the experimental measurements in Figure 4.4, Figure 4.10 and Figure 

4.11. The temperature variation as a function of time is taken to be that measured in Section 4.2.4. A 

period of 5 days is incorporated at the beginning of the simulation to ensure that the initial transient 

elastic strain was sufficiently relaxed. Figure 5.1 shows the averaged simulated and measured DGD 

during a heating and cooling cycle; while Figure 5.2 shows the same simulated and measured DGD 

and temperature versus time; and Figure 5.3 is a detailed view for the second heating cycle of Figure 

5.2. The curves clearly indicate the manner in which temperature variations influence DGD. The 

agreement between the measured and simulated DGD indicate that the mechanical stress relaxation 

associated with the viscoelasticity of glass results in the observed DGD changes when the 

temperature fluctuates around an average temperature. 

 

Figure 5.1 Averaged measured DGD (red curves) and Simulated DGD (blue curves) versus 

Temperature  
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Figure 5.2 DGD (Measured and Simulated) and Temperature versus Time 

 

Figure 5.3 A zoomed view on the second heating cycle 
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5.4 Conclusion 

In this thesis we have investigated the behavior of the DGD of a fiber based DCM as a function of 

temperature and time. Previous studies that did not incorporate the viscoelastic properties of glass 

(Chapter 2), could not explain the measured time variation of the DGD for fiber-based components 

even for constant temperature; although they got similar results as shown in the previous chapter. In 

Chapter 4, we observed a high degree of correlation between the measured DGD and temperature 

changes over time; and the observed variation of the DGD was further shown to be invariant over 

periods of several days. Hence, the assumption that repeated measurements of DGD with time 

describe a Maxwellian distribution [25] is only valid for a system located in an uncontrolled 

temperature environment. 

To demonstrate the relationship between DGD, temperature and time, different mathematical 

birefringence models were employed in this thesis to simulate the measured data. Simulations showed 

that the DGD relaxation arises from the viscoelastic property of glass; this is clearly displayed 

through the high resemblance of curves features between the simulated DGD, measured DGD and 

measured temperature. Knowledge of the relaxation times of the DGD could be useful in 

understanding the behavior of buried fiber sections or of highly stable optical links, possibly such as 

those relevant to quantum communication.  

The numerical model of PMD behavior presented in this thesis could be improved through 

additional knowledge of the material properties of the fiber as well as of manufacturing parameters, 

such as the tension imparted to the fiber while coiled on the DCM’s aluminum drum and the exact 

length of the fiber in the DCM. More accurate data for the temperature dependence of the volume 

viscosity of glass would also significantly enhance the model. In this regard, our model of fiber 

viscoelasticity consisting of a spring and a Voigt element neglected stresses between the core and the 

cladding glasses. Incorporating these stresses could conceivably further enhance the accuracy of our 

physical model and might suggest manufacturing techniques for minimizing temperature induced 

stresses variations that would lead to fibers with reduced temperature sensitivity, improving the DGD 

stability of high-speed communication links. 

Finally, measurements of DGD for standard fibers, coiled on metal spools with different expansion 

coefficients would as well significantly improve our understanding of the fiber system and the 

predictive ability of our numerical model.  Also, access to a fixed temperature environment would 

lead to a more uniform temperature distribution over the aluminum body of the DCM when compared 

to what achieved with discrete temperature control modules.  
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Appendix A 
Matlab code to plot measured data and prepare it for simulation 

clear all 
close all 
clc 

  
figure(3) 
hold on 
figure(4) 
hold on 
figure(6) 
hold on 
Temperature=[26:37 37:-1:26]; 
time_diff_between_files=0; 
for i=1:24 
    cmd=sprintf ('load 

%iconsecutive_readings_for_comparison_with_simulations%i.mat', 

i,Temperature(i)); 
    eval(cmd) 
    DGD(i,:)=dgd'; 
    mean_dgd(i,:)=mean(dgd(25:end)'); 
    Time(i,:)=T; 
    Temp1=mean(Temperature1'); 
    Temp2=mean(Temp_Upper'); 
    Temp3=mean(Temperature2'); 
    Temp4=mean(Temp_Bottom'); 
    TEMP1(i,:)= mean([Temp1;Temp2;Temp3;Temp4]);%erature1'); 
    mean_temperature(i,:)=mean(TEMP1(i,25:end)'); 
    strthere(i,:)=strt; 
        if i==1 
        figure(3) 
        plot(Time(i,:)/3600,DGD(i,:)) 
        figure(4) 
        plot(Time(i,:)/3600,TEMP1(i,:)) 

         
        time_axis=[(Time(i,:)+time_diff_between_files)]; 
        measured_DGD_axis=[DGD(i,:)]; 
        measured_temperature_axis=[TEMP1(i,:)]; 
    elseif i==9 %loop added to compensate for timing due to day light 

saving 
        time_diff_between_files=etime(strthere(i,:),strthere(i-

1,:))+time_diff_between_files+3600; 
        figure(3) 
        plot((Time(i,:)+time_diff_between_files)/3600,DGD(i,:)) 
        figure(4) 
        plot((Time(i,:)+time_diff_between_files)/3600,TEMP1(i,:)) 
        adjusted_local_time=(Time(i,:)+time_diff_between_files); 
        time_axis=[time_axis adjusted_local_time]; 
        measured_DGD_axis=[measured_DGD_axis DGD(i,:)]; 



 

54 

 

        measured_temperature_axis=[measured_temperature_axis TEMP1(i,:)]; 
    else 
        time_diff_between_files=etime(strthere(i,:),strthere(i-

1,:))+time_diff_between_files;%Time(i-1,end)+x; 
        figure(3) 
        plot((Time(i,:)+time_diff_between_files)/3600,DGD(i,:)) 
        figure(4) 
        plot((Time(i,:)+time_diff_between_files)/3600,TEMP1(i,:)) 
        adjusted_local_time=(Time(i,:)+time_diff_between_files); 
        time_axis=[time_axis adjusted_local_time]; 
        measured_DGD_axis=[measured_DGD_axis DGD(i,:)]; 
        measured_temperature_axis=[measured_temperature_axis TEMP1(i,:)]; 
    end 
end 
figure(6) 
[AX,H1,H2] = 

plotyy(time_axis/3600,measured_DGD_axis,time_axis/3600,measured_temperatur

e_axis); 
set(get(AX(1),'Ylabel'),'String','DGD (psec)') 
    set(get(AX(2),'Ylabel'),'String','Temperature (°C)') 
    xlabel('Time (hours)')  

  
clear i j n 
sampling_factor=10; 
buffer_days=5; 
buffer_time=0:mean(diff(time_axis)):buffer_days*3600*24; 
buffer_time_size=floor(buffer_days*3600*24/mean(diff(time_axis)))+1; 

  
time_axis=[buffer_time time_axis+buffer_time(1,end)]; 
measured_temperature_axis=[measured_temperature_axis(1,1)*ones(1,size(buff

er_time,2)) measured_temperature_axis]; 
measured_DGD_axis=[measured_DGD_axis(1,1)*ones(1,size(buffer_time,2)) 

measured_DGD_axis]; 

  
temperature_slope=diff(measured_temperature_axis)./diff(time_axis); 
DGD_slope=diff(measured_DGD_axis)./diff(time_axis); 
equally_sampled_time_axis=time_axis(1,1):(time_axis(1,end)-

time_axis(1,1))/sampling_factor/size(time_axis,2):time_axis(1,end); 
equally_sampled_temperature_axis(1)=measured_temperature_axis(1); 
equally_sampled_measured_DGD_axis(1)=measured_DGD_axis(1); 
n=2; 
for j=2:size(equally_sampled_time_axis,2) 
    for i=n:size(time_axis,2)    
        if time_axis(i-1)<equally_sampled_time_axis(j) && 

equally_sampled_time_axis(j)<time_axis(i) || 

j==size(equally_sampled_time_axis,2) 
            

equally_sampled_temperature_axis(j)=measured_temperature_axis(i-

1)+temperature_slope(i-1)*(equally_sampled_time_axis(j)-time_axis(i-1)); 
            equally_sampled_measured_DGD_axis(j)=measured_DGD_axis(i-

1)+DGD_slope(i-1)*(equally_sampled_time_axis(j)-time_axis(i-1)); 
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            n=i; 
            break 
        end 
    end 
end 
figure 
plot (equally_sampled_time_axis/3600, equally_sampled_temperature_axis) 
hold on 
plot(time_axis/3600,measured_temperature_axis,'r') 
figure(8) 
hold on 
plotyy(equally_sampled_time_axis/3600,equally_sampled_measured_DGD_axis,eq

ually_sampled_time_axis/3600, equally_sampled_temperature_axis) 

  
save axium_after_Sandy equally_sampled_time_axis 

equally_sampled_temperature_axis equally_sampled_measured_DGD_axis 

mean_dgd sampling_factor buffer_time_size mean_temperature 
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Appendix B 
Matlab model 

close all 
clear all 
clc 
matlabpool 
tic 
rng('default') 

  
load measured_time_temperature_vectors.mat; 
time=equally_sampled_time_axis(1:end); 
Temperature=equally_sampled_temperature_axis(1:end); 

  
Length=5000;                                      %Fiber length(meters) 
perturbation_length=25;                           %perturbation length in 

meters 
Sections_Number=round(Length/perturbation_length);%Number of concatenated 

sections (Fiber length/ perturbation length) 
R_curvature=8.75e-2;                              %Radius of curvature of 

the coiled fiber 
outer_radius=125e-6;                              %fiber outer radius 
mean_ellip=0;                                     %mean ellipticity value  

.00120e-12 
mean_sec_length=(Length/Sections_Number);         %mean section length 
sec_length_std=0.01;                              %section length standard 

deviation 
n_core=1.44402  ;                                 %core refractive index 
n_icladding=1.4388;                               %cladding refractive 

index 
lambda=1.55e-6  ;                                 %wave length(meters) 
Dlambda=2e-9;                                     %delta wave 

length(meters) 
r_core=4.1e-6   ;                                 %Core radius(meters) 
c=3e8;                                            %Light velocity (m/sec) 
alfaclad=9.19e-7   ;                              %Thermal expansion 

coefficient of the cladding 
alfacore=5.6e-7    ;                              %Thermal expansion 

coefficient of the core 
T_Soft=1065     ;                                 %Softening temperature 

of the glass 
N=0.17         ;                                  %Poisson's ratio of the 

fiber material 
p11=0.126       ;                                 %components of the 

photoelastic tensor 
p12=0.260       ;                                 %components of the 

photoelastic tensor 
n=mean([n_core,n_icladding]);                     %mean refractive index 
youngmodulus=68e9;                                %Young modulus 
initial_starin= 0.95/(pi*outer_radius^2)/youngmodulus;%Strain applied 

while winding the fiber around the spool 
Temp0=25;                                         %temperature at which 

thermal strain equal zero 
K=youngmodulus/(3*(1-2*N));                       %bulk modulus 
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etav=5e20;                                        %volumr viscosity at 

room temperatue 
relaxation_time1=14.3*3600;                       %assumed relaxation time 

in seconds 

  
%% Calculating K1 
xy=etav/(3*K*relaxation_time1); 
x1=xy/2+sqrt(xy*xy/4-xy); 
y1=(1-1/x1)^-1; 
if x1<y1 
    etav_3k1= 3*y1*K/etav; 
else 
    etav_3k1= 3*x1*K/etav; 
end 
relaxation_time= etav/(3*(y1+x1)*K); 

  
%% Calulating the Strain vector versus time 
gt=initial_starin-alfaclad*(Temperature-Temp0); 
delay=exp(-time/relaxation_time); 
CONV=conv(gt,delay); 
elastic_strain=gt-etav_3k1*CONV(1:size(gt,2)); 
figure(7) 
hold on 
plotyy(time/3600,elastic_strain,time/3600,Temperature) 
plot(time/3600,equally_sampled_measured_DGD_axis) 

  
%% removing added time (to minimize simulation time) 
time=time(sampling_factor*buffer_time_size:end); 
Temperature=Temperature(sampling_factor*buffer_time_size:end); 
elastic_strain=elastic_strain(sampling_factor*buffer_time_size:end); 
equally_sampled_measured_DGD_axis=equally_sampled_measured_DGD_axis(sampli

ng_factor*buffer_time_size:end); 

  
%% Calculating Fiber Geometry 
e=mean_ellip; 
rng('default') 
section_length=mean_sec_length+(rand(Sections_Number,1)*sec_length_std); 

  
%% calculating propagation paramters 
delta=(n_core^2-n_icladding^2)/(2*(n_core^2)); 

  
% for Lamda 1 
V=2*pi*r_core*sqrt(n_core^2-n_icladding^2)/lambda; 
FUN=@(x) (x .* besselj(-1,x) ./ besselj(0,x)) + (sqrt(V^2-x.^2) .* 

besselk(-1,sqrt(V^2-x.^2)) ./ besselk(0,sqrt(V^2-x.^2))); 
U=fzero(FUN,[0 0.999*V]); 
W=sqrt(V^2-U^2); 
n_eff=sqrt((2*pi*n_core/lambda)^2-(U/r_core)^2)*lambda/2/pi; 

  
% for Lamda 2 
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DV=2*pi*r_core*sqrt(n_core^2-n_icladding^2)/(lambda+Dlambda); 
FUN=@(x) (x .* besselj(-1,x) ./ besselj(0,x)) + (sqrt(DV^2-x.^2) .* 

besselk(-1,sqrt(DV^2-x.^2)) ./ besselk(0,sqrt(DV^2-x.^2))); 
DU=fzero(FUN,[0 0.999*DV]); 
DW=sqrt(V^2-DU^2); 
Dn_eff=sqrt((2*pi*n_core/(lambda+Dlambda))^2-

(DU/r_core)^2)*(lambda+Dlambda)/2/pi; 

  
Domega=-2*pi*c*Dlambda/(lambda^2); 

  
%% Calculating the birefringence for each section 
% for Lamda 1 
Biref_total=zeros(1,size(Temperature,2))/0; 
Biref_ellip_core=zeros(1,size(Temperature,2))/0; 
Biref_bend=(2*pi/lambda)/4*n_core^3*(p11-

p12)*(1+N)*((outer_radius/R_curvature)^2); 
Biref_tension_coiled=(2*pi/lambda)*(n_eff^3)/2*(p11-p12)*(1+N)*(2-3*N)/(1-

N)*(outer_radius/R_curvature).*elastic_strain; 
Biref_geometrical=(e.^2)*delta^3*W^2/r_core/V^3*(U^2 + (U^2-

W^2)*((besselj(0,U)/besselj(1,U))^2) + 

U*W^2*((besselj(0,U)/besselj(1,U))^3)); 
Biref_ellip_core=(1-U^2/V^2)*(2*pi/lambda)*n^3*(p11-p12)*((alfaclad-

alfacore)*(T_Soft-Temperature)/(1-N^2))*(e./(1+sqrt(1-e)).^2); 
for j=1:size(Temperature,2) 
    

Biref_total(:,j)=Biref_bend+Biref_tension_coiled(j)+Biref_geometrical+Bire

f_ellip_core(j); 
end 
figure(1) 
hold on 
plot(Temperature, Biref_ellip_core, 'r') 
plot(Temperature, Biref_bend*ones(1,size(Temperature,2)), 'c') 
plot(Temperature, Biref_tension_coiled, 'k') 
plot(Temperature, Biref_geometrical*ones(1,size(Temperature,2)), 'g') 
plot(Temperature, Biref_total(), 'b') 

  
% for Lamda 2 
DBiref_total=zeros(1,size(Temperature,2))/0; 
DBiref_ellip_core=zeros(1,size(Temperature,2))/0; 
DBiref_bend=(2*pi/(lambda+Dlambda))/4*n_core^3*(p11-

p12)*(1+N)*((outer_radius/R_curvature)^2); 
DBiref_tension_coiled=(2*pi/(lambda+Dlambda))*(Dn_eff^3)/2*(p11-

p12)*(1+N)*(2-3*N)/(1-N)*(outer_radius/R_curvature).*elastic_strain; 
DBiref_geometrical=(e.^2)*delta^3*DW^2/r_core/DV^3*(DU^2 + (DU^2-

DW^2)*((besselj(0,DU)/besselj(1,DU))^2) + 

DU*DW^2*((besselj(0,DU)/besselj(1,DU))^3)); 
DBiref_ellip_core=(1-DU^2/DV^2)*(2*pi/(lambda+Dlambda))*n^3*(p11-

p12)*((alfaclad-alfacore)*(T_Soft-Temperature)/(1-N^2))*(e./(1+sqrt(1-

e)).^2); 
for j=1:size(Temperature,2) 
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DBiref_total(:,j)=DBiref_bend+DBiref_tension_coiled(j)+DBiref_geometrical+

DBiref_ellip_core(j); 
end 

  
%% Generating angles (in Jones space) between consecutive sections 
rng(8); 
angles=rand(Sections_Number,1)*2*pi; 

  
%% calculating the PMD 
clear i 
TotalPMD=zeros(1,size(Temperature,2))/0; 
parfor j=1:size(Temperature,2) 
    Matrix=eye(2,2); 
    for i=1:Sections_Number 
        Matrix=[cos(angles(i,1)),-

sin(angles(i,1));sin(angles(i,1)),cos(angles(i,1))]*[exp(1i*Biref_total(1,

j)*section_length(i,1)/2) 0; 0 exp(-

1i*Biref_total(1,j)*section_length(i,1)/2)]*[cos(angles(i,1)),sin(angles(i

,1));-sin(angles(i,1)),cos(angles(i,1))]*Matrix; 
    end 
    DMatrix=eye(2,2); 
    for i=1:Sections_Number 
        DMatrix=[cos(angles(i,1)),-

sin(angles(i,1));sin(angles(i,1)),cos(angles(i,1))]*[exp(1i*DBiref_total(1

,j)*section_length(i,1)/2) 0; 0 exp(-

1i*DBiref_total(1,j)*section_length(i,1)/2)]*[cos(angles(i,1)),sin(angles(

i,1));-sin(angles(i,1)),cos(angles(i,1))]*DMatrix; 
    end 
    TotalPMD(j)=abs(sqrt(4*det(((DMatrix/Matrix)-eye(2))/Domega)));     
end 
toc 

  
%% plotting data 
figure(7) 
hold on 
plot(Temperature,TotalPMD/1e-12) 

  
figure(8) 
hold on 
[AX,H1,H2] = plotyy(time/3600,[TotalPMD/1e-

12;equally_sampled_measured_DGD_axis],time/3600,Temperature); 
set(get(AX(1),'Ylabel'),'String','DGD (psec)') 
set(get(AX(2),'Ylabel'),'String','Temperature (°C)') 
xlabel('Time (hours)') 

  
%% Plotting averaged data 
i=1; 
for index=1:sampling_factor*1000:size(time,2) 
    if (index+1000)<size(time,2)-1 
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        avearged_simulated_PMD(i)=mean(TotalPMD(index:index+1000)); 
        i=i+1; 
    end 
end 
figure(9) 
hold on 
plot(mean_temperature(1:12),mean_dgd(1:12)) 
plot(mean_temperature(13:24),mean_dgd(13:24)) 
plot(mean_temperature(1:12),avearged_simulated_PMD(1:12)/1e-12) 
plot(mean_temperature(13:24),avearged_simulated_PMD(13:24)/1e-12) 
xlabel('Temperature (°C)') 
ylabel('DGD (psec)') 

  
save workspace 
matlabpool close



 61 

Bibliography 

 

[1]  C. D. Poole, R. W. Tkach, A. R. Chraplyvy and D. A. Fishman, "Fading in Lightwave 

Systems Due to Polarization-Mode Dispersion," Photonics Technology Letters, vol. 3, no. 1, pp. 

68-70, January 1991.  

[2]  Amnon Yariv, Pochi Yeh, Optical Electronics in Modern Communications, 6th ed., New 

York: Oxford university press, 2007.  

[3]  J.P.Gprdon and H. Kogelnik, "PMD fundementals: POlarization mode dispersion in optical 

fiber," PNAS, vol. 97, no. 9, pp. 4541-4550, April 2005.  

[4]  M. A. Reimer, Modeling and Simulation of Polarization Mode Dispersion and Polarization 

Dependent Loss, 2007.  

[5]  P. H. Schönemann, "A Generalized Solution of the Orthogonal Procrustes Problem," 

Psychometrika, vol. 31, no. 1, March, 1966.  

[6]  G. W. Scherer, Relaxatiton in Galass and Composites, New York: John Wiley & Sons, 1986.  

[7]  G. W. Morey, The Properties of Glass, 1st ed., Baltimore: The Waverly Press, 1938, p. 302. 

[8]  C. J. Phillips, Glass: The Miracle Maker, 2nd ed., New York: Pitman Publishing Corporation, 

1941, p. 62. 

[9]  J. Lyklema and H. Van Olphen, "Terminology and Sumbols in Colloid and Surface Chemistry 

Part 1.13. Definitions, Terminology and Symbols for Rheological Properties," Pure and Applied 

Chemistry (IUPAC), vol. 51, pp. 1213 - 1218, 1979.  

[10]  J. H. Wary and John T. Neu, "Refractive Index of Several Glasses as a Function of 

Wavelength and Temperature," Journal of The Optical Society of America, vol. 59, no. 6, pp. 774 

- 776, June 1969.  

[11]  Costantino De Angelis, Andrea Galtarossa, Giovanni Gianello, Franco Matera and Marco 

Schiano, "Time Evolution of Polarization Mode Dispersion in Long Terrestial Links," Journal of 

Lightwave Thechnology, vol. 10, no. 5, pp. 552 - 554, May 1992.  

[12]  T.Takahashi, T. Imai and M. Aiki, "Time Evolution of Polariazation Mode Dispersion in 120 

Km Installed Optical Cable," Electronics Letters, vol. 29, no. 18, pp. 1605 - 1606, September 

1993.  

[13]  John Cameron, Liang Chen, Xiaoyi Bao and John Stears, "Time Evolution of Polarization 

Mode Dispersion in Optical Fibers," Photonics Technology Letters, vol. 10, no. 9, pp. 1265-

1267, September 1998.  

[14]  Misha Brodsky, Nicholas J. Frigo, Misha Boroditsky and Moshi Tur, "Polarization Mode 



 

62 

 

Dispersion of Installed Fibers," Lightwave Thechnology, vol. 24, no. 12, pp. 4584-4599, 

December 2006.  

[15]  T. Geisler and P Kristensen, "Polarization Properties of DCMs: Thermal Variations," in 

Optical Fiber Communication Conference, San Diego, California, 2009.  

[16]  M. J. Adams, D. N. Payne and C. M. Ragdale, "Birefringence in optical fibers with elliptical 

cross-section," Electronics Letters, vol. 15, no. 10, pp. 298 -299, May 1979.  

[17]  J. D. Love, R. A. Sammut and A. W. Snyder, "Birefringence in elliptically deformed optical 

fibers," Electronics Letters, vol. 15, no. 20, pp. 615 - 616, September 1979.  

[18]  R. A. Sammut, "Birefringence in slightly elliptical optical fibers," Electronics Letters, vol. 16, 

no. 19, pp. 728 - 729, September 1980.  

[19]  A.W. Snyder, J. Love, in Optical Waveguide Theory, New York, Chapman and Hall, 1983, p. 

373. 

[20]  W. Eickhoff, "Stress-induced single-polarization single-mode fiber," Optics Letters, vol. 7, no. 

12, pp. 629-631, December 1982.  

[21]  R. Ulrich, S. C. Rashleigh and W. Eickhoff, "Bending-induced birefringence in single-mode 

fibers," Optics Letters, vol. 5, no. 6, pp. 273 - 275, June 1980.  

[22]  S. C. Rashleigh and R. Ulrich, "High birefringence in tension-coiled single-mode fibers," 

Optics Letters, vol. 5, no. 8, pp. 354 - 356, August 1980.  

[23]  C. Chin-Lin, Foundations for guided-wave optics, Hoboken: John Wiley & Sons, Inc., 2007.  

[24]  Misha Brodsky, Peter Magill and Nicholas J. Frigo, "Polarization-Mode Dispersion of 

Installed Recent Vintage Fiber as a Parametric Function of Temperature," Photonics Technology 

Letters, vol. 16, no. 1, pp. 209-211, January 2004.  

[25]  Alan Eli Willner, S. M. Reza Motaghian Nezam, Lianshan Yan and Michelle C. Hauer, 

"Monitoring and Control of Polarization-Related Impairments in Optical Fiber Systems," 

LIGHTWAVE TECHNOLOGY, vol. 22, no. 1, pp. 106 - 125, 2004.  

[26]  V. Ramaswamy, R. H. Stolen, M. D. Divino and W. Pleibel, "Birefringence in elliptically clad 

borosilicate single-mode fibers," Applied Optics, vol. 18, no. 24, pp. 4080 - 4084, December 

1979.  

[27]  Andrea Galtarossa and Luca Palmieri, "Measurements of beat length and perturbation length 

in long single-mode fibers," Optics Letters, vol. 25, no. 6, pp. 384 - 386, March 2000.  

[28]  P. K. A. Wai and C. R. Menyuk, "Polarization Mode Dispersion, Decorrelation, and Diffusion 

in Optical Fibers with Randomly Varying Birefringence," Lightwave Technology, vol. 14, no. 2, 



 

63 

 

pp. 148 -157, February 1996.  

[29]  Deepak Gupta, Arun Kumar, K. Thyagarajan, "Polarization mode dispersion in single mode 

optical fibers due to core-ellipticity," Optics Communications, vol. 263, no. 1, pp. 36-41, July 

2006.  

 

 

 


