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Abstract

This thesis presents the results for the temperature variation of the Differential Group Delay (DGD)
measurements of a Dispersion Compensation Module (DCM) and interprets the results with a
theoretical DGD model based on glass viscoelastic properties and estimated values of some of glass
parameters. The results of our analysis demonstrate the existence of long birefringence relaxation
times on the order of many hours in response to temperature changes. These results could be of
significance in interpreting the behavior of optical fiber systems.
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Chapter 1
Theoretical and Mathematical Introduction to Polarization and
Differential Group Delay (DGD) in Fibers

1.1 Overview

Optical communications is increasingly dominating telecommunication systems; as a result of its
ability to provide large data rates in response to increased bandwidth demand. Since optical fibers
have been employed as a transmission medium, high data rates over long fiber spans require efficient
and high-performance distributed amplification and dispersion compensation modules, optimally in
conjunction with low loss and dispersion fibers. However, optical cables laid in the ground are
susceptible to long term changes caused by the surrounding environment while optical components;
like filters, amplifiers and DCM’s; are subject to daily temperature changes, causing their parameters
to fluctuate frequently and hence affecting the link stability.

Dispersion, which leads to pulse broadening, is classified as, firstly, Material Dispersion, which
results when the refractive index of the dielectric medium varies with the optical frequency of the
pulse and therefore is associated with bulk glass. Waveguide Dispersion results from the change in
the propagation constant with optical frequency while additionally Multimode Dispersion occurs
when a waveguide supports multiple modes, which correspond to several classical ray paths, with
different angles of propagation through the optical fiber. The effect of dispersion is therefore to
broaden a pulse at the output of the fiber.

Polarization Mode Dispersion (PMD) results from the dependence of the propagation constant on
polarization resulting from the small but unavoidable presence of birefringence in optical fibers. In
birefringent media light experiences slightly different effective refractive indices according to its
polarization and propagation direction. While a perfectly circular, stress-free fiber is not birefringent;
as a result of the manufacturing process, fibers possess slight elliptical core distortions. Fibers also
encounter mechanical stresses in both the manufacturing process and that of cabling, due to twists and
bends. Since PMD not only affects the amplitude but also the phase of the signal, it must be
appropriately reduced or compensated in optical systems, especially coherent ones.

PMD, which can be influenced by changes in birefringence generated by twists, and bends and
transverse forces and temperature variations, causes a stochastic distortion of the output signal. This
results in fading at the receiver’s end for both coherent and direct detection systems [1].
Consequently, while PMD can be compensated through either optical or electronic compensation
using signal processing techniques, Further PMD compensation techniques should optimally be able
to detect temporal changes, if not anticipate them, to maintain the stability of the system and avoid
fading.

This chapter discusses mathematical representations of in fiber polarizations and related calculation
methods.



1.2 Light polarization [2]

An electromagnetic wave possesses two transverse polarization directions. This section discusses
the Jones and Stokes formalism for polarization in fibers as well as presents a mathematical
description of PMD.

1.2.1 Jones mathematical representation
In the Jones representation, an optical wave is described by a column vector

J{:z;} @

where A, and A, are the electric field amplitudes of the corresponding axis noted by the subscript;
while § is the phase corresponding to each electric field component. If J is normalized to unit power,

Eq.(1.1) can be rewritten as
3 cos¥ L.2)
| e¥siny '
in which § is the difference between 3, and 8 and ¥ is the azimuth angle of the resultant electric field

A

with respect to the x axis (‘chosl[Ej). Here J in equation (1.2) is a unitary vector
representing only the polarization profile (Power =J*J" =1).

1.2.2 Stokes parameters representation
The state of polarization is also often represented by the Stokes parameters.

S ={15-5)

5,=((K- )
2((AA, cos5))

S, =2({AAsins))

Sy is proportional to the optical power while << >> represents the time average. For fully

(1.3)
SZ

polarized light, the parameters can be normalized as below,

S, =1
S, =cos2¥
) (1.4)
S, =sin2¥ cosd
S, =sin2¥sino

2



so that S; S, and S, are sufficient to describe the polarization state of a fully polarized wave.

Plotting these parameters on orthogonal axes yields the Poincaré sphere (Figure 1.1) which is
particularly convenient for displaying the evolution of polarization with wavelength or time. On the
sphere, all polarization states on the equator are linearly polarized, while the states at the poles are
circularly polarized and elliptically polarized elsewhere. Plotting states of polarizations on the
Poincaré sphere yields a smooth curve for the polarization evolution of either the output at a single
wavelength or the evolution of polarization with wavelength, as will be demonstrated later.

LHC N=(8=n/2, y=n/4)

! RHC |S=(8=-n/2, y=1/4)

Figure 1.1 Poincaré sphere showing special cases of polarizations [2].

1.2.3 Jones Matrix & Rotation matrix

The Jones matrix is a 2x2 matrix in the Jones representation (Noted as U) while the Rotation
Matrix is a 3x3 matrix in the Stokes parameter representation (Noted as R). These matrices model and
relate the input polarization to the output polarization in any birefringent system. Thus in the Jones

Matrix representation
cos V" U cos\¥®
e siny" e siny* (1.5)

V)=Uls)

Here |v) and |s) represent the Jones vectors of the output polarization and input polarization
respectively. U is a unitary unimodular matrix; that follows

3



U= a b 1.6
EY (1.6)

S1 S1
s, [=R|s;
y . 7
SS SS
v=Rs

in which v and s are the three-dimensional Stokes vectors of the output polarization and input
polarization respectively. The Pauli spin vector & components are employed to transform a Jones
matrix or vector to Stokes’ space.

o,
6=|o, (18)
O3
and
B 1 0 3 0 1 B 0 —i T
0 271 o] o (9)
Hence
s=(s|a|s),v=(v|o|v) (1.10)
which is an abbreviated notation for
s, =(s|oy[s).s, =(s|o,|s),s; =(s| 0y |5) (1.12)

Consequently the relation between R and U is given by
=Rs=R =(s|R
v=Rs (s|c|s>“ (s|Re|s) 112
v =(v]e|v)=(s|U"cUs)
From the upper set of equations
Re =U'oU (1.13)

where “ > represents the Hermitian conjugate.



For every Jones or rotation matrix representing a birefringent section two input polarizations
maintain the same polarization at the output. These input states obey the relations

_ir +iZ
lvy=U|r)=e 2|r) and |[v)=U|r)=e 2|r) (1.14)
Here the polarization states of the slow and fast modes |r>and |r_>, respectively, are the
_iZ iz
eigenvectors of the matrix U with eigenvalues e 2 and e ?; where —i% and +i% represent the

difference in phase between the input and output wave. The quantity y also represents the rotation
angle between the input SOP (State Of Polarization) and the output SOP around the slow mode axis
(also called the rotation axis) on the Poincaré sphere; that is “r” in terms of Stokes parameters,
calculated following the example of equation(1.10).

s

S,
_’
r .
R AXIS- of
\ P/ rotation
S, [

Figure 1.2 Polarization transformation on the Poincaré sphere. P and P’ are the input and output
SOPs respectively. T represents the rotation angle vy. [2].

Expressing U in terms of its eigenvectors and eigenvalues,
U=e 2|r)(r|+e"2[r )(r | (L15)
where [3]
|r><r|:%(l +ro) (L.16)

The two previous equations yield



U= cos(gj | —isin (%j r.o (1.17)

Substituting equation (1.17) in (1.13) leads to, after some algebra,

R=rr+sin(y)rx—cos(y)rxrx (1.18)
or in terms of components
nn nho nh 0 - N nn -1 nr, E
R=nL nr, no(+sin(y) b 0 -—r|-cos(y) nn nL-1 nr |(119
LL GL GG - n 0 30 1P f3h -1

1.2.4 Principal states of polarization (PSP)

A principal state of polarization is an output polarization state that does not vary to first order with
wavelength for a fixed input polarization state|s). Differentiating equation (1.5) with respect to the
angular frequency w, the PSP states are determined by solving

0 (0 _
2 va), _(awuj|s>% ——iov),

or (1.20)
0

2 & i) =i 2o pto) e )

Here 0 corresponds to the propagation group delay defined as the phase differentiation with respect
to frequency. From the previous equation

Uuy), =-idlv), (1.21)

The prime stands for the differentiation with respect to the frequency w. Since U'U is anti-Hermitian
and unitary,

2

det(UU ) = det(U") = % —|af +|b| (1.22)
hence
r=detU") =2./|a’’ +|b’’ (1.23)

The eigenvectors of the U'U™ matrix are therefore the Principle States of Polarization (PSPs). For
the slow PSP (noted as | p) in the Jones space and p in the Stokes space), & equals+7 /2 ; while for

the fast PSP (noted as | p_) in the Jones space and P_in the Stokes space) & equals —7 /2. The
6



quantity 7 is termed the Differential Group Delay (DGD), which is the time delay between the fast
and slow propagating PSP modes at the system’s output. Practically, this discussion is only valid for
very small frequency variations, as we were only interested in the frequency variations to the first
order.

Representing an arbitrary SOP as
‘v(a)o)>:cl| p)+c,|p.) (1.24)

where ¢; and c, are arbitrary constants. Equation (1.24) yields for a linearly frequency-dependent
output polarization

| Aw .TAw

V(@ +A0))=c|p)e 7 +¢,] p7>e+IT (1.25)

Equation (1.25) can be represented on the Poincaré as a rotation around the slow PSP vector by an
angle tAw (Figure 1.3).

Figure 1.3 Polarization transformation on the Poincaré sphere. Q and Q’ are the output SOPs at
wo and wo+ Aw, respectively, for the same input SOP. zAw represents the rotation angle y
around the slow PSP. [2].

1.2.5 PMD vector and DGD

The Polarization Mode Dispersion (PMD) vector is defined as a vector parallel to the slow PSP and
whose magnitude is the Differential Group Delay (DGD).

t=tp=1(p|o|p) (1.26)

Here p has the direction of the slow PSP unit vector.



P
p=|p, (1.27)
P;

1.2.6 Differential rotations

There are two types of infinitesimal rotations, one due to a differential birefringent system and the
other type due to differential frequency changes. For a birefringent material with infinitesimal
thickness dz , the output State Of Polarization (SOP) is rotated around the rotation axis, relatively to
the input SOP, by an angle

¥ = 5Bdz (1.28)
where the birefringence Jf equals
B =Ko AN =Ky (Ngop — Nagt) (1.29)
where ngow and N, are the refractive indices of the medium along the two birefringence axes.

Similarly, a pulse with a small bandwidth - starting at @, and ending at@, - and a constant input
SOP, experiences a rotation around PMD axis, between the output SOPs at @, and @, , by an angle
equal to

Yy =Aw (1.30)

In this case, the rotation is occurring around the PMD vector, which has the same direction as the

slow PSP (Figure 1.3). That is, R, represents the Rotation matrix that relates the output polarization

at two infinitesimally separated wavelengths A, and Ag+AL. The subscriptd indicates that the
rotation is with respect to the output polarizations at different wavelengths.

V(@,) =Ry, V(@) (131)
We can easily deduce R, using equation(1.7) as follows

V(@) =R(®)s & " Vv(w,)=R(w,)s (1.32)
V(a)z) = R(a)z) R (a)l) V(a)l)

while from Figure 1.3 and equations (1.24) and (1.25), in the same manner as in the derivation of
equation (1.19), we find

PP, P, P; P.P; 0 —Ps p, PP, — 1 P.P; P.Ps
_ (1.33)
Rio =] PPy P2P,  PoPs +sm(7dw) Ps 0 -p _COS(Tda)) P, Py p,p, -1 P, P,
PsP. P3P, P; P, —P; P, 0 P; P, P; P, P3P; -1

And for infinitesimal changes in frequency equation (1.33) simplifies to



0 —P; P
R,=l+7do| p, 0 —p |=l+7rdopx (1.34)

- pz pl 0

1.3 Long fiber cable analysis, concatenated sections model [2]
To analyze the varying changes of the fiber parameters along the length of a long fiber sample, the
fiber is divided into small concatenated sections.

Slow axis Slow axis Slow axis Slow axis Slow axis

A 4

Input

........

Y

Figure 1.4 A long segment of fiber is represented by a series of birefringent elements. The slow
axis of adjacent birefringent elements is arbitrary orientated. [2]

1.4 Resultant PMD vector of concatenated sections [2]

To calculate the PMD vector of a series of concatenated sections, consider first a single birefringent
section as shown in Figure 1.5. Where R is the rotation matrix of the section, s is the input
polarization Stokes vector, v is the output polarization Stokes vector and t is the PMD vector of the

section.

v=Rs (1.35)
For infinitesimal frequency changes we have
—=TxVv=TxRs=—s
aag aaé" (1.36)
.—=1xR = m™x=—R"
ow ow
S v
— R =
T

Figure 1.5 Linear input output relationship of a birefringent fiber system. [2]

For 2 successive sections with PMD vectors z; and z,, and rotation matrices R; and R, (Figure 1.6),
the resultant rotation matrix and PMD vector of the system R and t are then given by

9



T, L7)

Figure 1.6 Concatenation of two birefringent sections. [2]

From equations (1.36) and (1.37)

R o1 _O(RR) R a1, (R Han
=—R™ R R,——=R "R
™ Py Py ———(R R1) ow RRR,™+R, Py RR,
T = @ R, +R,1, xR, =1,x+R,1, xR,™

w

But R,T,xR,™ (R‘rl) [2]
™ =1, x+(R,T; )X

Hence

T=1,+R7,

Equation (1.40) is the elementary rule of a series of concatenated sections of a fiber cable.

(1.37)

(1.38)

(1.39)

(1.40)

Alternatively, in the Jones matrix formulation, to calculate the total DGD for a system of
concatenated birefringent sections, a single birefringent section is considered and reference axis (x
and y), the fast and slow mode axis and the angle ¥ between the two axis systems are defined as

shown in Figure 1.7.

v

Figure 1.7 A diagram showing a birefringent section and the reference x and y axis, the fast and

slow mode axis and the angle ¥ between them. [2]
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The input SOP is

vl
=ly (1.41)

y

Before applying the birefringent effect, the incident SOP is decomposed into a linear combination of

the fast and slow modes.
{\\//f } B {—C;Sn(z/jz/f)) z:)r;((ly/j))} B//j - R(‘P)Bﬂ (1.42)

Where R(¥) is the coordinate rotation matrix and ¥ is the azimuth angle between the x-y coordinates
and the slow-fast axis. Applying the birefringent effect to the decomposed input SOP,

_i%
Vs' ~ e 2 d 0 Vs _W |:Vs :| (1 43)

e
in which
op =P, — B (1.44)

and d is the thickness of the birefringent section. To express the output SOP with respect to the x-y
coordinates, the output is multiplied by R(-¥)

\H _|cos(y) —sin(y) A B A
{VylLin(t//) cos(v,)}{vfiR(—‘P){vf,] (1.45)

Summing the previous mathematical discussion,

{V*',Hcosw) o] e o ) s

v, —sin(y) cos(y) +%q || sin(y) cos(y) ||V,
0 e? (1.46)
Vv, Vv
=R(-¥)WR(-¥)|,
oo |PREnRC)
Note that in this discussion the propagation phase ¢ was not included, where
1 2
(ﬂ=§(ns+nf)7ﬁd (1.47)

In order to calculate the total effect of the birefringence of all the sections, equation (1.46) is
expressed in its recursive form

11



VX’ VX'
=R(-¥ )W R(-¥Y 1.48
v, | (-, )W, R( n)vy, (1.48)

y

!

V ’
in which the subscript n represents the section number and the input SOP is represented as {VX } :
Y o

1.5 Measuring DGD in lab environment
Our measurement of the DGD requires the determination of the 3x3 matrixR;,. The method
employed as described in [4] requires determining 2 matrices as follows,

Py p p Py p p
S1 Sl ’ Sl ’ S1 Sl ’ Sl ’

Py p p — By p p
SZ S22 S23 - Rdw SZ S22 S23 (1 49)
Spl sz Sps Spl sz Sp3 )

3 3 3 . 3 3 3 A

r_
Q - Rd(uQ

This is accomplished by measuring three output polarizations at two slightly different wavelengths.
Here Q" and Q represent the output at 4, and A, respectively, while superscripts py, p, and ps refer

to differing input polarizations. Thus s is the first Stokes parameter of the output polarization when

the input polarization is p;. More than three polarizations can be used to calculate R to give a better
accuracy while calculating R, . In this case, the above equation is rearranged as

Q" =Q'R,’ (1.50)

which is in the form of the Orthogonal Procrustes problem [5] which solves
AT =B+E (1.51)

where A and B are known matrices, and T is the matrix relating A and B such as E, the residual
matrix, is minimal. T is obtained from the singular value decomposition of

M=UXV' (1.52)
where
M=A"B (1.53)
and hence
T=UV' (1.54)
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For an M matrix of dimensions mxn the dimensions of U is mxm, ¥ is mxn and V" is nxn. Hence T
possesses the same dimensions as M. Accordingly writing
R,T=UV'=R

do do

=V U’ (1.55)

To calculate 7 from R we use equation (1.33) instead of equation (1.34) with the following technique
for improved accuracy

(R _ R T) 0 _pS p2
drR,, = % =sin(zdw)| p, 0 -p (1.56)
—P: P 0

As dR is a 3x3 matrix with zero diagonal elements, the third element of the 2™ column is equal
p,sin(zdw), while the first element of the 3" column equals p, sin(zdw)and the second element
of the 1* column is p,Sin (z'd a)) . These components define a vector whose direction is the slow PSP
vector with magnitude sin(z de). Subsequently cos(z de)is given from equation (1.33)
according to

Trace(R,,)-1

> (1.57)

cos(z dw)=

From sin(z dw)and cos(z dw) the angle of rotation 7 de and hencez are determined for a given

do.
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Chapter 2
Relaxation of stress and strain in fibers

In this chapter we examine the stresses that induce birefringence in an optical fiber and how these
stresses relax with time by following the analysis presented by G.W. Scherer [6]. Although the
formulation of [6] is developed for stresses in glass at high temperatures (> 200 to 100°C) for
manufacturing and annealing processes, we present some of the basic formulas of great importance to
understand the latter part of the thesis.

2.1 Overview
By definition the uniaxial strain &; is related to the applied stress o; on a body as follows

O, O, O3
& =—, &, =—, Ey=— 2.1
' E * E ° E 1)
in Cartesian space where E is the Young modulus of the material (see Figurel Figure 2.1); where the i

subscript represents the stress and strain direction assuming that it acts perpendicularly on the body’s
surface. Applying the above stress to a cube alters its dimensions from L, to

L=L(l+a), L=L(+s). L=L(+s) (2.2)
yielding a volume, after neglecting all second-order terms,
V=LLL =L (1+&+¢&,+¢&) (2.3)
X3
4
o

—

_Xa

g

Xy
Figure 2.1 Coordinate system and components of stress [6].

thus
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V-L°® AV

L03 =7=6‘1+6‘2+6‘3=8 (2.4)
For solely uniaxial stresses applied on Figure 2.1’s body
AV—V:(l—ZN)gl (25)

where N is the Poisson’s ratio of the cube’s material. The constitutive equations relate stresses and
strains in an isotropic material according to

1

£ =& +E|:61—N(62+O'3):|
1

& =& +E[0'2—N(al+03)] (2.6)
1

£, =&, +E[63—N(01+02)]

where ¢, is the free strain caused by thermal expansion (&; = AT where« is the linear thermal
expansion coefficient). The pure dilatation (volume changing or hydrostatic [6]) stress and strain are
E=¢& t¢&,+¢&, 2.7)
and
o=0,1t0,+t0, (2.8)

Because ¢ is the relative volume change and o is the dilatational stress, then

o=3Ke (2.9)
where K is the bulk modulus. The following relation can be easily derived
E
K=— (2.10)
3(1— 2N)

For N=1/2, K is infinite indicating that the material is incompressible.

2.2 Viscoelasticity of glass

The viscoelastic property of glass allows it to react instantaneously to stresses with an elastic
behavior and in the same time react with a delayed strain without a true viscous flow. This can be
modeled with a spring in series with a VVoigt element (see Figure 2.2). A Voigt element consists of a
spring and a dash pot (filled with a viscous fluid) connected in parallel. The strain in both the Voigt’s
element spring and the dash pot are equal but the stress on each is different. The stress across the
model in Figure 2.2 is constant, but the strain in the spring K; and the Voigt element are not equal.

15



This model assumes pure dilatational strain (i.e. no shear stresses and hence no deformation of the
substance)

Figure 2.2 A Voigt element in series with a spring to model the viscoelasticity of glass [6].
According to Scherer [6] the instantaneous elastic strain gt
£ o(t
et (t)= 3LK1) (2.19)
and the Voigt element follows the following relation
o (t)=3K,e" (t)+1,£° (t) (2.12)
where 7, is the volume viscosity of glass, &® is the delayed strain and &° is the time derivative of

the delayed strain. The solution of the previous equation is [6]

t t!) e
gP(t)= ie“‘)/’Ddt' (2.13)
() '([ Yy

where 7, is the dilatational retardation time

Uy,
T, =—— (2.14)
3K,
Then the total strain is
S =€ T +E° (2.15)

The following relation between K, and K, can be deduced if constant stress is assumed in (2.13)
when t — oo [6].

111 o1
K K, K,



2.3 Mechanical constants of glass

Glass can be doped with different elements at different concentrations to alter its mechanical and /
or optical properties. Although the mechanical properties of glass proved to affect its optical
parameters (ex: birefringence), they are not discussed in depth.

2.3.1 Young’s Modulus of glass

References [7]and [8] suggest different Young’s modulus values (Figure 2.3 and Figure 2.4). The
value of Young’s modulus that best suited our model (to be discussed in Chapter 5) was found to be
around 68 Giga Pascal. This value lies in the reasonable range mentioned by Morey [7] and Philips

[8].

TasLe XII. 3. ELastic CoNsTANTs OF Sirica Grass*

Bulk modulus .......0000nee K 370 kilobars
Rigidity modulus .......... R 305 kilobars
Youngs modulus .......>.. E 700 kilobars
Poisson’s ratio ............. @ 0.14 \@lnbar.

* Unit: 1 kilobar = 10° bars = 10° dynea per sq. cm.
1 bar=1.020 Kg./em.*= 1450 Ib./in.*

Figure 2.3 Some mechanical constants of silica glass [7].

TasLE 4.1—Properties of Some Multi-component Glasses

Thermal Expansion
Number | e B = Sxmtes Ol i e i T
(Table 3.7) (Table 3.7) (g. per cu. cm.) Bt (T E) e
(kg. per sq. mm.) | (dimensionless) (Range indicated—°C.) (g.-cal. per g.)
1 496/644 2.370 7300 019780 " @ I8 oo it ihini 0.204* !
4 511/640 241 7470 021005 @ B Soidpossimitomes ~ 5 e Tooess
6 513/637 247 7970 0.213¢ 79.7(17.5-947 | .....
7 513/573 25723 6500 QRAT TR R Saaane o 1T 2 BLE
11 517/602 2.580 6600 0.2314 96.3(17-95.5 | ...
27 573/576 3.218 7420 0.252¢ 79.0(18.9-93.1)* | ...
34 610/574 3.532 8000 02718 3 B: =t e 0.140°
40 645/341 3.879 © 5460 Q224 < I Cogssivaeds | Ih L Tees
43 751/276 4.7311 5480 023002 B S SenEiE e s T Semes
46 905/217 5.9444 5080 0.261¢ 93.3(24.5-84) |  .....
55 165111 2479 B - =] ° cwtsl T v 0.196*
59 2.629* 6650 & Dl Cooesml w0l Tt B - ¥ B
61 Thermometer, 2.585t 7470 0.228¢ 80.3(14.6-92.2)* | ...
64 b 10 SO 2.518t 6000 0253%) 5 Ar Bge e Gadsirne 0.189*
66 2.668! 5850 02618 5" 1 Cosadiemeenes T I8 o o
68 3.578t B - D) SeRel o) U ediieviaees = I =L aeees
48 507/614 2.2431 4710 0.274¢ 67.1(14.4-94.4)¢ 0.2182
52 653/508 3.521 8170 0.319¢ 33.3(10.4-92.9)* 0.166*
71 522/697 2.588t 6770 02355 = f  CieeassasigiEass - 0 8 eumm
72 558/670 3.070 6330 0.253¢ 87.0(20.3-92.2)* 0.1592
Pyrex chem.-resistant 2.23 6230 = ) = _Tiaa 33.0(19-350°) 0.20
1 A, Winkelmann and O. Schott, Ann. Physik Chem., 51, 697 (1894). 4 R. Straubel, Ann. Physik Chem., 68, 369 (1899).
2 A. Winkelmann, Amx Physik Chem 49 401 (1893) & C. Pulfrich, Ann. Physik Chem., 45, 609 (1892).
3 E. Zschimmer, in C. Doelter, H. dcr hemse, 1, 869, ¢ H. Hovestadt, Jena Glass, The Macmillan Co., New York, 1902.

%
—tn

Figure 2.4 Mechanical constants of different types of glass [8].

——— e oy
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2.3.2 Viscosity and Volume Viscosity

The Viscosity of glass is usually studied around melting and annealing temperatures. Therefore we
will use the curves in [6] to find the different values of viscosity at room temperature by
extrapolation. Doing so we find that the viscosity of different types of glass, suggested by Mazurin et
al. ( [6] pages 148-151) (Figure 2.5), varies between 10™ and 10% (Pascal.second). On the other
hand Zijlstra’s measurements (Figure 2.6, [6] page 148-151) suggest that the viscosity of glass
changes slope after 400°. Extrapolating Zijlstra’s measurements would result a viscosity varying

between 10"*° and 10" (Pascal.Second).

17t "‘.
M 5
? Ief
o
o
& 15 - 15t
g 1
3
14
13+

65 155 45 135 125 .5 L
0% /T(K) 104/T(K)

16

LOG 5 (Pa-s)

104/T(K)

Figure 2.5 Mazurin et al. - viscosity measurements versus temperature for different types of
glass [6] (pages 149-150).

18



15
w 14 / =¥
& M
a Ad -t
: 13 f / /i'
[ ¥ “
3 / Sy
l L4
Nimyy
= 1
o /"/ '
3 /f /
10 5
"/
11/1/
8
10 Il 1.2 13 14 15
103/T [°K)

Figure 2.6 Zijlstra’s - viscosity measurements versus temperature for different types of glass [6]
(pages 149-151).

According to J. Lyklema and H. Van Olphen [9], the Shear Viscosity, also known as simply
Viscosity, is defined as the constant relating shear stress and rate of strain at a point in the fluid; while
the Volume viscosity, also known as Bulk Viscosity or Dilatational Viscosity, describes the flow of
fluids whenever a change of volume due to the flow is present.

Although the property we are interested in is the volume viscosity, and because measurements of
volume viscosity of glass are unavailable, it seems reasonable to assume that the value of volume
viscosity should be comparable to shear viscosity. Therefore we assumed 5x10% (Pascal.Second)

which best fit our simulations Chapter 5 and which was also close to range of measurements of the
shear viscosity.

2.4 Optical properties of glass

2.4.1 Refractive index and temperature [10]

J. Wary and J. Neu measured the refractive index changes of fused silica with temperature at
different wavelengths for the purpose of characterizing optical equipment in the upper atmosphere
where it is vulnerable to very large temperature variations. According to the following tables they
found that the rate of change of the refractive index is in the order of 7.9x10° to 19.6x10°® /°Celsius.
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Table 2-1"Refractive index vs temperature, fused silica, Corning code 7940, ultraviolet grade”
[10]

A 7 n (dn/d1)/ 7 (dn/dT)/
Microns 26°C 4T1°C °CX105  828°C *Cx 100

0.23021  1.52034  1.52008 +19.6 1.5358¢ 4-19.3
0.23783  1.51496 1.52332 4188 1.52985 +18.6
0.2407 1.51361  1.52201 189  1.52832 --18.3
0.2465 1.50970  1.51774  +18.1 ~ 1.52391 4177
0.24827 150865 1.51665 -18.0 1.52280 -L17.8
0.26520 150023  1.50763 +16.6 1.51351 1-16.5
0.27528 149615  1.50327 <160 1.50899 +16.0
0.28035 149425  1.50143 +162 1.50691 4-15.8
0.28036 149121  1.49818 +157 1.50358 4-15.4
0.20673  1.48892  1.49584¢ 156 1.50112 +15.2
0.30215 148738  1.49407 +151  1.49942  -15.0
0.3130 148462  1.49126 +149 149641 +14.7
033415 148000 1.48633 +14.2 1.49135 141
036502  1.474690° 1.48089 +14.0 148563 +13.6
040466 146978  1.47575 134 148033 413.2
043584 146685 147248 +12.7 147716 4-12.9
0.54607  1.46028 1.46575 123  1.47004 +12.2
0.5780 145899 146429 +11.9 1.46870 +12.1
101398 145039 145562 +11.8 145960 4115
1.12866 144903 145426 +11.8 1.435820 4114
1.254» 144772 145283 115 1.45700 +11.6
136728 144635 1.45140 114  1.45540 114
1.470» 1.44524¢  1.45031 4114 145440 1114
152052 144444 144961  +11.6  1.45352 4113
1.6602 1.44307 144799 111 1.45174 108
1.701 1.44230  1.44733 +11.3  1.45140 4-11.3
1.081» 1.43863 1.44361 --11.2  1.44734 4109
2.2620 1.43430  1.43933  +11.3  1.44306 109
2.553» 142949 143450 4113 143854 +11.3
3.00e 1.41995 142495 112 1.42877  411.0
3.2459 141353 141893 +122 142243 4111
3.372 1.40990  1.41501  +11.5  1.41915 4115

% Wavelength determination by narrow-bandwidth interference filters.

Table 2-2 “Refractive index vs temperature, alumino-silicate glass, Corning code 1723 [10]

A i n (gin/dT)/
Microns 28°C 526°C C X108
0.36502 1.57093 l.§7645 +11.1
0.40466 1.56405 1.:_)6014 +-10.2
0.43584 1.56000 1.:_)6487 +9.8
0.54607 1.55100 1.535548 +9.0
0.5780 1.54928 1.55366 +8.8
1.01398 1.53854 1.54260 +8.2
1.12866 1.53699 1.§4101 +8.1
1.36728 1.53419 1.53814 +7.9
1.470» 1.53202 l.§3687 +7.9
1.52952 1.53224 1.23619 +7.9
1.660 1.53078 1.53476 +8.0
1.701 1.53014 1.§3403 +7.9
1981+ 152648 1.53044 +8.0
2.262¢ 1.52245 1.52643 +8.0
2.553» 1.51778 1.52181 +8.1
2.665+ 1.51578 1.51998 +8.4

» Wavelength determination by narrow-bandwidth interference filters.
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Table 2-3 “Refractive index vs temperature, Vycor Corning code 7913, optical grade” [10]

A n n (dn/dT)/ i (dn/dT)/
Microns 28°C 526°C °Cx108 826°C  °Cx10¢

0.26520  1.49988  1.50799 4163 151438 +18.2
0.28936  1.49074  1.49831 +15.2 1.50418 +16.8
0.20673  1.48851 149587 4148 150164 +16.5
0.30215  1.48694 1.49423 +14.6 149990 +16.2
0.3130 1.48416  1.49121  +14.2 149679 +15.8
0.33415  1.47949 148622 +13.5 149158 +15.2
0.36502  1.47415 148065 +13.1  1.48570  +14.5
0.40466  1.46925  1.47547 +12.5  1.48027 +13.8
0.43584  1.46628 1.47234 4122 147708 +13.5
0.54607  1.45960  1.46544 ~-11.7 146992 +12.9
0.5780 1.45831  1.46407 +11.6  1.46849 128
1.01398  1.44968 145526 +11.2  1.45924 +12.0
1.12866  1.44831 145373 4109 145779 +119
1.254» 1.44677  1.45222 4109 145627 +11.9
1.36728  1.44554  1.45095 4109 1.45504 --11.9
1.4708 1.44422 144965 4109 1.45370 +11.9
1.52952  1.44356 1.44896 108 145306 +11.9
1.660° 1.44206 1.44750 4110 1.45157 119
1.701 1.44137  1.44677 +10.8 1.45088 +11.9
1.981» 1.43750  1.44291 4109 144702 +11.9
2.262* 1.43208  1.43839 +10.9 144258 +12.0
2.553s 1.42825 1.43373 +11.0 143824 +12.5

a Wavelength determination by narrow-bandwidth interference filters.

These values of rate of change of the refractive index with temperature give us an order of

magnitude estimate while constructing our mathematical model later; as we don’t know the material
of the fiber based DCM under test.
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Chapter 3
Previous work and literature review

Below, we overview the background literature related to our work. The first section discusses the
temperature behavior of fiber based optical components while the second section discusses
mathematical models that predict the influence of mechanical and temperature variations on
birefringence. These provide important input to our model of a DCM and enable us later to
gualitatively predict the DCM’s fiber behavior.

3.1 Temperature measurements for different fiber based optical components

3.1.1 Time evolution measurements on installed fibers

This subsection summarizes previous studies of the DGD behavior of installed fibers. In [11], De
Angelis et al. measured the DGD of a terrestrial fiber located in Italy. The buried cable consisted of 8
sections of fiber connected to each other. During 27 hours long measurements, over two sections of
cable, the temperature dependent variation of the DGD was recorded during sunrise and sunset. The
two measurements revealed similar behavior (Figure 3.1 and Figure 3.2) with pronounced DGD
changes during sunrise and sunset, resulting from the large temperature fluctuations over these
periods [11].

10 g3 AT 10

08y

DGD (ps)
o
m

STOKES PARAMETERS
o
n

* . . &R
0 10 £ 30
TIME {h) TIME {f)

00

Figure 3.1 “Time evolution of the normalized stokes vector (left side graph) and that of the
DGD (right side graph) of the first measurement (sunset = *, sunrise = **)” [11]
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Figure 3.2 “Time evolution of the normalized stokes vector (left side graph) and that of the
DGD (right side graph) of the second measurement (sunset = *, sunrise = **)” [11]

Similarly, Takahashi et al. performed a measurement on a 120 km long submarine cable with 86%
of its length submerged [12]. Here the DGD changed on a time scale of few hours (4 to 5 hours)
according to their data which suggested that the fluctuations resulted from daily temperature changes.

At New Brunswick University, J. Cameron et al. conducted a DGD measurement on a 36 Km
single mode spool of fiber enclosed in a temperature controlled chamber; they also did a DGD
measurement on a 48.8 Km buried cable and on a 96 Km areal cable [13]. The temperature was
changed rapidly during the measurement (Figure 3.3). Note that, when the temperature returns to its
initial value, the DGD is steady again and has a slightly different value to the initial DGD at the
beginning of the experiment; similar behavior will be further discussed in Chapter 4. Cameron et al.
also compared the DGD behavior of the buried and areal cables they tested (Figure 3.4). They
concluded that high rates of temperature changes yields rapid DGD fluctuations and that,
consequently, the DGD of buried or submarine fibers fluctuate less than that of aerial fibers, as they
are less subject to temperature changes.

0.30 -_

o o

Temperature (°C)
8 & 8
i\
r- [}

0 100 200 300 400 500 600 700
Elapsed Time (min)

Figure 3.3 “Time evolution of PMD (upper curve), and temperature at the outside of the 36 km
fiber spool (lower curve)” [13]

23



T
0 200 400 600 800 1000
Elapsed Time (min)

PMD (ps)
L]

~

«i@*f‘w’\wﬁw

|

200 400 600 800 1000 1200 1400
Elapsed Time (min}

Temperature (°C)
PaoaSRKRY

o

Figure 3.4 “Time evolution of PMD (upper curves), and temperature measured a meter above
ground (lower curves) for the 48.8 Km buried cable (left side curves) and the 96 Km aerial
cable (right side curves)” [13]

M. Brodsky et al. performed long-term DGD measurements for more than 20 days [14]. The tested
cable was mainly buried but with several exposed sections, rendering it vulnerable to weather
conditions. Figure 3.5 shows the difference in DGD (from the initial value) for 48 hours (left axis)
and the corresponding temperature (right axis). Clearly, the DGD is highly influenced by temperature
changes. A plot of the DGD temperature relation displayed a linear like relation between the DGD

and temperature (Figure 3.6).
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Figure 3.5 “Changes of ADGD for 3
wavelengths, 2=1529.5 um (e), A=1533.5 um
(o) and A=1556.5 um ('V), as a function of time
(left axis). The thick dotted lines (e) is the
ambient temperature (right axis)” [14]
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Figure 3.7 “Plot similar to Figure 3.6, but with a data span over 3 weeks of measurements” [14]

Figure 3.7 shows the difference in DGD versus temperature over a 21 days span. Although the linear
like relation is still present, the data points were spread more randomly (compared to Figure 3.6) than
linearly. Brodsky et al. concluded that, over long terms, the fiber cable experience irreversible
variations; while over short time spans, temperature variations induce reversible DGD changes.

3.1.2 Dispersion compensation modules (DCMs) under temperature variations

T. Geisler and P. Kristensen tested DCMs under different temperatures in a controlled environment
(climate chamber) [15]. In the first measurement, the temperature was varied periodically; where each
period started by a temperature increase from 25°C to 35°C in two hours. The chamber’s temperature
was then held at 35°C for five minutes followed by a temperature decrease to 25°C over 25 minutes
period. Finally the temperature was held at 25°C for one hour. This cycle was repeated 6 times. The
resulting measured DGD, for 2 different DCMs, is displayed as the grey scale diagram of Figure 3.8.
It should be noted that, although the DGD is almost periodic with every temperature cycle, the DGD
value is not the same —for most wavelengths— for the same temperature during the same cycle.
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Figure 3.8 “Grey-scale plots of the DGD spectra as a function of time during 6 temperature
cycles (far right side). a) DCM#1 b)DCM#2” [15]
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Geisler and Kristensen also shocked DCM#2 thermally by changing the temperature from 25°C to
75°C in 20 minutes, maintaining the temperature for seven hours at 75°C and then passively cool it
back to 25°C. Figure 3.9 (a) shows the grey-scale of the DGD measurement for DCM#2 during the
thermal shock; while Figure 3.9 (b) shows the DGD spectra before and after the 6 temperature cycles,
after the thermal shock and after 2 temperature cycles. They concluded that due to the thermal shock
the DCM have experienced irreversible changes, which is not the case when the temperature was
changing in a 10°C span. They also experienced DGD changes due to mechanical perturbations.

DGO b) | —Before cycles — After cycles
10803 = After 'Shock’ - Additional two cycles

1530 1545 1560 1575 1580 1605 1620 25 50 75 1530 1545 1560 1575 1590 1605 1620
Wavelength (nm) Temperature (°C) Wavelength (nm)

Figure 3.9 “a) Grey-scale plots of the DGD spectra as a function of time during thermal shock,
with temperature profile to the right. b) DGD spectra before (black) temperature cycles and
after the thermal shock (dark blue) and after two temperature cycles (light blue)” [15]

3.2 Mathematical models of mechanical and temperature effects on
birefringence

As discussed earlier, the birefringence of optical fibers results from both geometrical deformation
(i.e. the fiber core is not perfectly circular) and mechanical stresses. The mechanical stresses result
from bending, bending under tension, twisting and by built in stresses due to non-perfect circular
shape of the core and cladding. In this section we will present mathematical models for each source of
birefringence.

3.2.1 Birefringence due to geometrical deformation

Although an ideal fiber possesses a perfectly circular core and cladding, a manufactured fiber
deviates from cylindrical symmetry as a result of imperfections in the manufacturing process. The

ellipticity e of an actual fiber is
€= ’ B (3.1)
Px

where p, and p, are the semi-major axis and the semi-minor axis respectively (Figure 3.10). The
ellipticity varies along the fiber length.
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Figure 3.10 Elliptical core fiber’s diagram

Many references ( [16] [17] [18] [19]) discuss birefringence due to core ellipticity. J. D. Love et al.
formulation is used [17].

22A)° W2, ., 2 2\) Jo (U 2 2J0U3
s =B~ B, =~ (p) EV Hur-w ){ﬁ} o {ﬁ} (3.2)

{ for A <1e? < 1}

where 3 is the birefringence due to the geometrical form of the core, 5 and g, are the propagating

constants of the x-polarized and y-polarized fundamental modes respectively, e is the core ellipticity,
A is the relative refractive index, p is the average core, V is the normalized frequency, U & W are the
usual circular waveguide parameters (core and cladding parameters respectively [19]) and J is the
Bessel function of the first kind.

¢ (3.3)
\Y :277[,0 n.N2A =k, 0 n,N2A

Where n. and n are the refractive indices of the core and cladding respectively and k, is the free
space propagation constant of the wave. U and V are obtained from ( [2] [19])
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U= p\é k02n02 _IBZ
W = p’\fﬂz _koznclz

P(kozﬂc2 - koznclz) =U%+W? (3.4)
J,(V) L KiW)
"0 T KW

In which £ is the propagation constant of the mode in the core and K is the modified Bessel function.

3.2.2 Birefringence due to built-in stresses [20]

During the manufacturing process, a fiber is free of stresses at the softening temperature. When it
starts to cool, stresses begin to build up due to the different expansion coefficients between the core
and the cladding. If the fiber was perfectly circular these stresses would not generate birefringence;
however, the small ellipticity of the fiber core and the stresses lead to a polarization dependent
birefringence. Eickhoff studied both cases of a fiber with a circular core and an elliptical cladding and
that of fiber with an elliptical core and a circular cladding (Figure 3.11).

Y
@)

yaiill

N Zp.l’ -_x
20«

Figure 3.11 “Cross section of fibers with elliptical structure. (a) Round core in an elliptical inner
cladding. (b) Elliptical core in a round cladding.” [20]
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For the first case (Figure 3.11 a), the birefringence is modeled as

(aocl — Ui )(Tsoft _Troom ) y Px ~ Py
1-N ? Pxt py
or (3.5)
(aocl — Uiy )(Tsoft _Troom ) % €.lad

1-N°? (L4 Ve )

Here n denotes the mean refractive index, p;; and py, are the components of the photoelastic tensor,
oo @nd o are the thermal-expansion coefficients of the outer and inner cladding respectively, Teo
and T,oom are the softening temperature of the fiber material and the room temperature respectively, N
is the Poisson’s ratio of the fiber material and €54 iS the inner cladding ellipticity..

k
5ﬂstress eclad :ﬂx _ﬂy :?On3(p11_ plZ)x

K
=_0n3(p11_ plZ)x

5ﬂ stress eclad 2

For the second case (Figure 3.11 b), the birefringence is given by

U2 k (aic _acore) Tso _Troom Px—P
§ﬂstressecore:ﬁx_lgy:(1_V_2j><?0n3(p11_p12)x I 1_E\|2ﬁ )pr"'pi

or (3.6)
(aicl ~ Qeore ) (Tsoft _Troom ) v e

1-N? (Levi—e)

The following graph displays the dependence of the birefringence on the normalized frequency in
both cases.

u?) k
é‘ﬂstress ecore (l_v_zj X ?0 n3 ( P — Py ) X

form birefringence
(elliptical core)

stress birefringence
(eltiptical core)

Nstress birefringence
(elliptical inner cladding)
[ " " "

1 2 3 4
NORMALIZED FREQUENCY V=(2mb ‘Jrﬁ—ng Y

Figure 3.12 “Frequency dependence of the three kinds of linear birefringence” [20]
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3.2.3 Birefringence due to bends [21]

Often fibers are bent around drums, solid objects or experience microbending, leading to bending
induced birefringence. Ulrich et al. [21] concluded that this type of birefringence results from
stresses. A bent fiber experiences tensile stress in its outer layers with respect to the central axis of the
fiber and a compressive stress in the inner layers with respect to the same axis (see Figure 3.13).
Although these stresses generate birefringence, they don’t contribute directly to it; only second order
dependence causes the birefringence.

(a) KD\ z
\.

' e)

Figure 3.13 “Geometry of a bent fiber” [21]

For an elastically homogeneous and isotropic fiber the birefringence associated with bending a
fiber around a drum, with a bending radius R equals

3 2
Ko, r

7 X(Py— Py )x(1+N)x— (3.7)

in which 2r is the outer diameter of the fiber (All other variables are the same as discussed in previous
sections). Figure 3.14 shows the agreement of equation (3.7) to some measurement of [21] and
displays the proportionality between the bending-induced birefringence and the outer fiber diameter.

éﬂbend :ﬁx _ﬂy =
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Figure 3.14 “Bending birefringence of single-mode silica fibers. The solid line represents the
calculated birefringence (3.7). The points are measurements at 0.633 and 0.676 wm using
three fibers of different origins. (xk=1/R)” [21]

3.2.4 Birefringence due to bends under tension [22]

Although fiber bends and tensile stresses do not generate birefringence to first order due to
cylindrical fiber symmetry, the combination of bending and tensile stress yields birefringence to first
order. Hence if either bending or curvature is removed, this component of birefringence is null. With
the directions of the fiber and the coil axis defined as in Figure 3.15, the birefringence generated by
the combination of tension and bending denoted p is given by
KoNyc® (1+N)x(2-3N) r

X — X X—X& 3.8

5 (Pa=Po) N b (3.8)

Here ne is the effective refractive index and &, is the axial strain (All other variables are the same
as discussed in previous sections). Figure 3.16 shows some measured data indicating done by
Rashleigh and Ulrich proving the validity of equation(3.8).

5ﬂtc :ﬂx _ﬂy =
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Figure 3.15 “Geometry of a tension-coiled fiber” [22]
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Figure 3.16 “Tension-coiled birefringence f; of single-mode fibers. The solid lines represent the
calculated birefringence. Measurements for 1 = 0.633 wm are indicated by the dots. (k=1/R)”
[22]
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3.2.5 Birefringence due to twists [23]

In chapter 11 and Appendix E of [23], Chin-Len Chen discusses the birefringence due to fiber
twists. Although previous types of birefringence are linear, twists cause circular birefringence. If a
fiber of length L is twisted by an angle ® (positive when twisted counter clockwise) the resultant
birefringence Jdfm due to twists is

2

®
5ﬂTW:ﬁR_ﬁL:%X(pll_pIZ)XIXFTW (V) (3.9)

in which, Bg and B_ are the propagation constant of the right- and left-hand circularly polarized
modes, and Fry(V) is a function of the normalized frequency V.
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Chapter 4
Dispersion Compensation Modules (DCMs) behavior under
temperature variations

In this chapter we examine the variation of the Differential Group Delay (DGD) of a DCM with
temperature variations in a controlled setup.

4.1 THE EXPERIMENT

4.1.1 Setup Description

We investigate a Nortel DSCM-10A, part no: 0121.0101 DCM by placing the device in a box and
further thermally isolating it with fiberglass. We then connect two thermal modules in to the DCM
with a thermal paste and attach four thermal sensors in contact with DCM to measure its temperature
at four different points. Each thermal module and the 2 sensors are connected to a temperature
controller.

Cooling / Heating
Modules

Temperature
Sensors

‘ Laser

Polarimeter

Tunable Laser Source = Polarization controller == DCM

Control Signal
PC

Voltages

Temperature Controller

Temperatures

Figure 4.1 Setup block diagram, showing signals and laser flows.

The DCM is excited by a tunable laser followed by a polarization controller while the output of the
DCM is input into a polarimeter. A lab computer controls the 2 temperature controllers, the tunable
laser source, and the polarization controller and acquires the polarimeter readings (Figure 4.1).

4.1.2 Experiment Procedure

A Matlab program sets the desired temperature via the temperature controllers. After the
temperature is stabilized, the program enables the tunable laser source and sets the polarization
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controller to a random polarization; then the polarimeter transforms the output polarization to four
voltages read by the PC. The voltages acquired by the polarimeter can be used to calculate the S-
parameters of the output polarization via a conversion matrix characterizing the polarimeter. To be
able to calculate a DGD point, we need to measure three different output polarization points at two
different wavelengths as explained in Section 1.5.

4.2 Results
4.2.1 DCM under room temperature effect

0.12- X: 59.79

X: 37.23 Y:0.1114
0.11 Y:0.1073 =

0.1+

0.09
)

Q
@ 0.08] X: 14.76
3 007" Y: 0.06805

(m]

0.06-
0.05-
0.04

0'030 20 40 60 80

Time (hours)

Figure 4.2 DGD evolution in room temperature for 76.5 hours

As the room temperature fluctuates throughout the day, the DCM’s DGD is affected. Figure 4.2
shows the DGD variations during a period of approximately 3 days. The curve exhibits a 24 hour
period resulting from daily temperature changes, as already noted in Section 3.1.2 [15]. The
anomalous behavior of the first cycle is associated with the 36° initial temperature of the DCM.
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Figure 4.3 DGD vs. Room Temperature

Figure 4.3 displays DGD versus temperature which is similar to [13] and [24] measured data.

4.2.2 DCM’s DGD vs. Temperature

—29(°C) to 37(°C) y
-==37(°C) to 29(°C) Y/
——29(°C) to 37(°C) after 7 days
—37(°C) to 29(°C) after 7 days

0.3

DGD (psec)
o
N
N

o
)

0.16

| | 1 1 1 L | |
29 30 31 32 33 34 35 36 37
Temperature (°C)

Figure 4.4 Reproducible curves under same circumstances
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Although the previous measurements of [15] and [24] appear to indicate that the DGD versus
temperature curves are determined solely by the DCM’s temperature, however Figure 4.4
demonstrates that the DGD obtained when heating the DCM (solid curves) is different than that
obtained when the DCM is cooled (dotted curves). Further, when this measurement was repeated a
week later (blue and red curves), the same traces were reproduced; which doesn’t comply with the
Maxwellian randomness of the DGD! [25]. Furthermore, Figure 4.5 demonstrates that the heating and
cooling process yields different DGD curves if the curves start at 26° Celsius and end at different
temperatures (34°, 35°, 36° and 37° Celsius) before returning to 26°C. Only curves varying from 26°

to 37°C were reproduced, when compared to Figure 4.4 (blue curves).

—29(°C) to 34(°C) 3
34(°C) to 29(°C) !
29(°C) to 35(°C)
35(°C) to 29(°C) /

0.3L ——29(°C) to 36(°C) i

--- 36(°C) to 29(°C) /
T et ——29(°C) to 37(°C) /
---37(°C) to 29(°C)

0.25

DGD (psec)

°
N

0.16

| I | | I |
29 30 31 32 33 34 35 36 37
Temperature (°C)

Figure 4.5 Irreproducible curves of DGD vs. Temperature at different Temperatures ranges
Additionally, Figure 4.6 shows that if we add a delay of 6 hours between every temperature change
(red curves) and compare the new curves with the old ones (blue curves), these traces do not coincide
as in Figure 4.4,

These measurements show that unless all circumstances, which are initial and final temperatures,
timing between successive temperatures and increasing or decreasing the temperature are identical,
measuring reproducible DGD curves is not possible. Hence temperature is not the only parameter
controlling the DGD despite the strong correlation between both of them.
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Figure 4.6 Irreproducible curves of DGD and Temperature different settling times

4.2.3 Hysteresis and temperature spans

Although we demonstrated the correlation of many parameters to the DGD in the previous section,
the DGD behavior is dependent on the temperature extremes (Figure 4.7.1 and Figure 4.8.1). By
comparing the behavior of the DGD in all three cases —Figure 4.7.1, Figure 4.8.1 and Figure 4.9.1 —
we conclude that the DGD of the fiber-based DCM depends on the history of its temperature
evolution and that this effect becomes more relevant with increased temperature variation. Plotting
the absolute difference between the DGDs, for cooling and heating for each set of curves (Figure
4.7.2, Figure 4.8.2 and Figure 4.9.2), shows that the wider the span of temperature the higher the
difference between cooling and heating curves, provided that the circumstances are the same.
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Figure 4.7.1  The DGD measured when heating (Solid lines) and cooling (Dotted lines) the
DCM from different starting temperatures to 32°C.
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Figure 4.7.2  Divergence between heating and cooling measurements for the curves in the
above figure.
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Figure 4.8.2  Divergence between heating and cooling measurements for the curves in the
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4.2.4 DGD relaxation with time

Ramaswamy et al. observed a birefringence relaxation with time in optical fibers that takes days to
return an initial value [26]. To illustrate the relaxation of the DGD with time, Figure 4.10 shows the
measured DGD as a function of time at different temperatures. A DGD relaxation is observed every
time the temperature is changed. This relaxation appears to have an impact on the initial DGD value
of the successive temperature. The small DGD features superimposed on the relaxation curves are the
result of small temperature variations (~0.1°C) (Figure 4.11).

T T T T T T T T T 38
——Measured DGD
——Measured DCM's temperature
‘Fr WA
0.6 -136
Ty ey
\
s B H"“"ﬁ‘
‘ Lo 34
"\ 2 V‘W;‘ ey
Ill'\"(‘f’J —
O
< 04r J 322
i} [ o
a 2
fa) vy g
8 | o
30 g
[
| ]
M, I
0.2 [ ‘(‘A'M‘\J L 128
f
lwrrrJ W
#_M,J " 426
0 ! L I I l I I 1 ! 4
0 20 40 60 80 100 120 140 160 180 20%

Time (hours)

Figure 4.10 DGD vs. Time at different temperatures (8 hours per temperature)
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Figure 4.11 DGD vs. Time during the second temperature cycle displayed in the previous figure.
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Chapter 5
Modeling the DCM

In this chapter we introduce a mathematical model of the single-mode fiber-based DCM tested
previously and whose fiber is coiled in a cylindrical form and placed in a temperature controlled
chamber. We employ the mathematical techniques of the first three chapters to qualitatively explain
the measurements in Chapter 4. Although, the model is the first to include mechanical relaxation in
DGD predictions, it assumes that shear stresses are negligible as the fiber doesn’t suffer deformations
at varying room temperature. Perturbation length theory [27] [28] is also taken into account in this
model.

5.1 Fiber-based DCM’s strain model
We model the strain in the DCM by a constant value (&, = &,) as the fiber inside the DCM is

glued to the outside of the drum and therefore is not displaced physically as the temperature changes.
The strain component generated by stress contributes to the birefringence generated by the coiling of
the fiber under tension as discussed in section 3.2.4. Rearranging equation(2.15), the elastic strain is
expressed as follows

(5.1)

25 (1) =60~ (TO-T,) JG“)e“W%m'

where Ty is a constant temperature and T(t) is the DCM’s temperature as a function in time. From
equation(2.11), (5.1) can be written as follows

E h 3K —(t-t")/7,

£ (t) =y~ (TM)~Ty)— [ =2 " (1) e odt 5.2)

o TN

which is a linear Volterra integral equation that can be solved by Laplace transform. Written as

x(t) = g(t) - j x(t) k(t—t) dt’ (5.3)
where
x(t) =& (1)
gt)=& - .AT@ To) (5.4)
k(t)==——Le Y™
77v

taking the Laplace transform of (5.3) yields
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X(s)=G(s)—X(s) K(s) (5.5)

Hence
X(s) = G(s) — 56
1+ K(s) '
where
K(e) =21 _To (5.7)
n, l+s7,
Then
3K, (1+s
X (5) = G(s) ot () e/ 3KlLESTo)
143K 7o 1 /3K, (1+ 57, ) + 75
n, 1+s7,
_G(s) my /3K, (1457, )+ 75 — 7,
77v/3K1(1+STD)+TD (5.8)
T
=G(s)|1- D }
L m /3K, +szom, /3K, + 1,
_G(s)|1- 1
| /3K +1+87, /3K,
From equation (2.14)
3K
X (s) = G(s) - G(s) 1/ (5.9)
3(K,+K,)/m, +s
An inverse Laplace transform yields
t
x(t) = g(t) -~ o) e ar (5.10)
™ %
with
N
r=— N 5.11
T3(K,+K,) 610
Hence the elastic strain as a function of time is
£ () =g, — oty (T -T,) ]——I[so o (T)-T,)] e ar (5.12)
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5.2 Physical parameters and mathematical equations

In this section, we present the constants, parameters and equations employed in our simulation of
the DCM. In Table 5-1 we present constants and parameters for a typical single-mode fiber in the
DCM. The operating wavelength and the radius of curvature are measured values, while the fiber
length is estimated from the DCM properties. The outer fiber radius is taken as a typical cladding
radius; the later postulate was assumed to agree with Ulrich et al. postulate stating that the fiber is
elastically homogeneous and isotropic to validate the use of their formulation (section 3.2.3, [21]).
We further assume that the stresses induced by the plastic jacket around the fiber can be neglected.
Although the ellipticity is chosen to be zero in this model to fit the previously measured DGD curves,
we will include its formulas in the mathematical model to present a complete DGD model.

Table 5-1 Physical parameters characterizing the fiber-based DCM (SI units)

Symbo Parameter name Value
I

A Operating wave-length 1.55%10°(m)

) Differential wave length 2x10(m)

Ne Core refractive index 1.44402 [29]

N Clad refractive index 1.4388 [29]

p Core mean radius 4.1x10° (m) [29]

e Core ellipticity 0

P11 Component of photoelastic tensor 0.126 [29]

P12 Component of photoelastic tensor 0.260 [29]

Qi) Thermal-expansion coefficient of inner cladding 5.6x107(°C™) [29]
eore Thermal-expansion coefficient of core 9.19x107(°C™) [29]
Troom Room temperature 26 - 37(°C)

Teott Softening temperature of Silica (fiber material) 1065(°C) [29]

N Poisson ratio of silica 0.17 [23]

R Radius of curvature of the coiled-fiber (DCM) 8.75%107%(m)

r Outer radius of the DCM’s fiber 125%10° (m)

L Fiber length ~5000(m)

E Young’s Modulus ~68x10°(Pascal) [7] [8]

Ny Volume Viscosity ~5x10%( [6] page 150)

The Young’s Modulus and the volume viscosity are as well assigned the values above in
consistence with the observed data as no direct measurements appear to exist for these quantities at

room temperature (Section Figure 2.3).

5.2.1 Single section general model

In Table 5-2 we present the equations we employ to calculate the propagation constants of the fiber
for each section. The core and clad parameters are obtained from the defining equations(3.4), through

numerical iteration.
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Table 5-2 Relations used to obtain fiber parameters

order Equation Equation #
Relative n2_n.2
. _ ' cl
refractive A= o2 (3.3)
index Ne
Normalized
=22 hnA2A =k, p nA2A
frequency P oP (3.3)
J.(U) L, KaW)

Uu—-=-w——-
S WU) W)
and U= P k 2n 2 _ﬂz (34)
propagation W=p [ ﬂ—o K
constant

p(k'n2 —k'ng?) =U% +W?

In Table 5-3 we collect the equations of Section 3.2, which form the basis of our numerical model.
We also assume that the simulated fiber has a single clad.

Table 5-3 Mathematical model of the fiber-based DCM

order Equation Equation #
Geometrical 2 2 3
e (2A)° W J, (U J, (U
deformation §ﬂG ( ) 8\/ U 2 (U 2 _W2 ){L} +UW 2 { 0 ( )} (32)
birefringence p J,(U) 3, (V)
Built-in U2 k (aic _acore) Tso _Troom e
stress éﬂstress ecore (l_v_zjx ?0 n3 ( Py~ plz)>< : 1— E\l 2 : ) X \/— 2 (36)
birefringence (1+ 1—e)
Bend’s 3 2
birefringence 5ﬂbend ﬂ ﬂ ( pll plz)x(1+ N )X_ (37)
Tension- 3
. 1+ N)x(2—-3N r

coiled P = x( Py — P ) X ( i (N ) X ZXE, (3.8)
birefringence N

3K “tY/2, a1
Elastic strain & (t) [50 |c| Ui (T (t ) T :I e i "dt (512)
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&ois given by

. stress _F/ar?
® Young's Modulus  E

(5.13)

where F is the initial applied force, assumed to be 0.95 (N), during manufacturing at room
temperature (T, of 25° Celsius).

In order to calculate 7, and K, one of these 2 variables must be assigned a representative value.
Hence 7,is assumed to be equal 14.3 hours (51480 seconds) after which the following set of
equations yield K, . From (2.16)

l:i_ki:i_{_i (514)
K K K, xK yK
where
K, =xK, K, =YyK (5.15)
and
1 1
l=—+—=X+y=Xxy (5.16)
Xy
while equation (5.11) yields
U
X4y =—tv 5.17
Y =3z (5.17)
TX+Yy=Xy= X
' 1-1/x
2
e _ X (5.18)
3Kz, x-1
XZ_ 77v X 77v _0
3Kz,  3Kr,

so that
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2
T\ + Uz —4 Uz
3Kz, 3Kz, 3Kz,

2

X

(5.19)

Given x, and hence Kj, the strain can be evaluated.

5.2.2 Total DGD of the system

After employing the above equations in the previous section to calculate the birefringence of a
single section, we apply the concatenated sections model of Section 1.3 to determine the total DGD.
The length of each section set equal to the autocorrelation length which corresponds to the distance
after which the fiber loses memory of the direction of the initial axis of birefringence [28] as the
birefringence axes of each section are oriented randomly with respect to each other. From the
measurements of [27] of the autocorrelation length of different samples of a single-mode step-index
fiber we here employ a length of 25 meters which is slightly longer than the lengths cited in this
publication. This yields a system of 200 concatenated sections (for a 5 Km fiber) with randomly
oriented slow PSP axes.

In order to determine the Jones matrix of the series of concatenated sections from the birefringence
of each section, we employ the Jones matrices technique described in section 1.4. The system’s DGD
is obtained by relating the output polarization at certain frequency (w) and the output at an adjacent
frequency (w+Aw) using the Jones space. From equation(1.5),

[v), =U.s)

V) =Uuracld) o
where the input polarization |S> is independent of the angular frequency @, and therefore,
U,.,=U,+U Ao (5.22)
Accordingly
[V)rso =(Uo U AG)[5) = (U, +U A0)U,7|v), (5.22)
V) = (10U A0)V), =V, U1 V) (5.23)
Consequently, the total Jones matrix of the system U+
U; =U,.,, U, =(1+U/U,'Aw) (5.24)
from which, according to equation (1.22), the system’s total DGD is
Tfy%zdet(u;uj)zdet(ug_ 'j (5.25)
0]
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and hence

T = 2X det(UT_lj (5.26)

system Aw

5.3 Numerical results

We first discuss the results of the numerical model presented above employing the values presented
in Table 5-1. With an appropriate randomly oriented set of PMD vectors, we obtained the curves of
Figure 5.1 which agree with the experimental measurements in Figure 4.4, Figure 4.10 and Figure
4.11. The temperature variation as a function of time is taken to be that measured in Section 4.2.4. A
period of 5 days is incorporated at the beginning of the simulation to ensure that the initial transient
elastic strain was sufficiently relaxed. Figure 5.1 shows the averaged simulated and measured DGD
during a heating and cooling cycle; while Figure 5.2 shows the same simulated and measured DGD
and temperature versus time; and Figure 5.3 is a detailed view for the second heating cycle of Figure
5.2. The curves clearly indicate the manner in which temperature variations influence DGD. The
agreement between the measured and simulated DGD indicate that the mechanical stress relaxation
associated with the viscoelasticity of glass results in the observed DGD changes when the
temperature fluctuates around an average temperature.

0.4~
—Averaged measured DGD (26°C to 37°C)
---Averaged measured DGD (37°C to 26°C)
—Averaged simulated DGD (26°C to 37°C)
0.35 —---Averaged simulated DGD (37°C to 26°C)
0.3
< 0.25[
L]
7]
Z
[a)
Q
O g2
0.15
0.1
| | | I | | ]
0'034 26 28 30 32 34 36 38

Temperature (°C)

Figure 5.1 Averaged measured DGD (red curves) and Simulated DGD (blue curves) versus
Temperature
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Figure 5.3 A zoomed view on the second heating cycle
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5.4 Conclusion

In this thesis we have investigated the behavior of the DGD of a fiber based DCM as a function of
temperature and time. Previous studies that did not incorporate the viscoelastic properties of glass
(Chapter 2), could not explain the measured time variation of the DGD for fiber-based components
even for constant temperature; although they got similar results as shown in the previous chapter. In
Chapter 4, we observed a high degree of correlation between the measured DGD and temperature
changes over time; and the observed variation of the DGD was further shown to be invariant over
periods of several days. Hence, the assumption that repeated measurements of DGD with time
describe a Maxwellian distribution [25] is only valid for a system located in an uncontrolled
temperature environment.

To demonstrate the relationship between DGD, temperature and time, different mathematical
birefringence models were employed in this thesis to simulate the measured data. Simulations showed
that the DGD relaxation arises from the viscoelastic property of glass; this is clearly displayed
through the high resemblance of curves features between the simulated DGD, measured DGD and
measured temperature. Knowledge of the relaxation times of the DGD could be useful in
understanding the behavior of buried fiber sections or of highly stable optical links, possibly such as
those relevant to quantum communication.

The numerical model of PMD behavior presented in this thesis could be improved through
additional knowledge of the material properties of the fiber as well as of manufacturing parameters,
such as the tension imparted to the fiber while coiled on the DCM’s aluminum drum and the exact
length of the fiber in the DCM. More accurate data for the temperature dependence of the volume
viscosity of glass would also significantly enhance the model. In this regard, our model of fiber
viscoelasticity consisting of a spring and a Voigt element neglected stresses between the core and the
cladding glasses. Incorporating these stresses could conceivably further enhance the accuracy of our
physical model and might suggest manufacturing techniques for minimizing temperature induced
stresses variations that would lead to fibers with reduced temperature sensitivity, improving the DGD
stability of high-speed communication links.

Finally, measurements of DGD for standard fibers, coiled on metal spools with different expansion
coefficients would as well significantly improve our understanding of the fiber system and the
predictive ability of our numerical model. Also, access to a fixed temperature environment would
lead to a more uniform temperature distribution over the aluminum body of the DCM when compared
to what achieved with discrete temperature control modules.
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Appendix A
Matlab code to plot measured data and prepare it for simulation

clear all
close all
clc

figure (3)

hold on

figure (4)

hold on

figure (6)

hold on

Temperature=[26:37 37:-1:26];

time diff between files=0;

for i=1:24
cmd=sprintf ('load

$iconsecutive readings for comparison with simulations%i.mat',

i, Temperature (i));
eval (cmd)
DGD (i, :)=dgd’';
mean_dgd (i, :)=mean(dgd(25:end) ') ;
Time (i, :)=T;
Templ=mean (Temperaturel') ;
TempZ=mean (Temp Upper') ;
Temp3=mean (Temperature2"') ;
Temp4=mean (Temp Bottom') ;

TEMP1 (1, :)= mean ([Templ; Temp2; Temp3; Temp4]) ; Seraturel’) ;
mean temperature (i, :)=mean (TEMP1 (i,25:end)"');
strthere (i, :)=strt;

if i==

figure (3)

plot (Time (i, :)/3600,DGD (i, :))

figure (4)

plot (Time (i, :) /3600, TEMP1 (i, :))

time axis=[(Time(i,:)+time diff between files)];
measured DGD axis=[DGD(i,:)];
measured temperature axis=[TEMP1(i,:)];
elseif i==9 %loop added to compensate for timing due to day light
saving
time diff between files=etime (strthere(i,:),strthere(i-
1,:))+time diff between files+3600;
figure (3)
plot ((Time (i, :)+time diff between files)/3600,DGD (i, :))
figure (4)
plot ((Time (i, :)+time diff between files) /3600, TEMPL (i, :))
adjusted local time=(Time (i,:)+time diff between files);
time axis=[time axis adjusted local time];
measured DGD axis=[measured DGD axis DGD (i, :)];
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measured temperature axis=[measured temperature axis TEMP1 (i, :)];

else
time diff between files=etime (strthere(i,:),strthere(i-
1,:))+time diff between files;%Time (i-1,end) +x;
figure (3)
plot ((Time (i, :)+time diff between files)/3600,DGD (i, :))
figure (4)

plot ((Time (i, :)+time diff between files) /3600, TEMPL (i, :))
adjusted local time=(Time (i, :)+time diff between files);
time axis=[time axis adjusted local time];
measured DGD axis=[measured DGD axis DGD (i, :)];
measured temperature axis=[measured temperature axis TEMP1 (i, :)];
end
end
figure (6)
[AX,H1,H2] =
plotyy(time axis/3600,measured DGD axis,time axis/3600,measured temperatur
e axis);
set (get (AX (1), 'Ylabel'), 'String', 'DGD (psec)')
set (get (AX(2), 'Ylabel'), 'String', 'Temperature (°C)")
xlabel ('Time (hours) ")

clear 1 7 n

sampling factor=10;

buffer days=5;

buffer time=0:mean(diff(time_ axis)) :buffer days*3600*24;

buffer time size=floor (buffer days*3600*24/mean (diff (time axis)))+1;

time axis=[buffer time time axis+buffer time(l,end)];

measured temperature axis=[measured temperature axis(l,1) *ones(1l,size (buff
er time,2)) measured temperature axis];

measured DGD axis=[measured DGD axis(l,1)*ones(l,size(buffer time,2))
measured DGD axis];

temperature slope=diff (measured temperature axis)./diff (time axis);
DGD_slope=diff (measured DGD axis)./diff (time axis);
equally sampled time axis=time axis(1l,1):(time axis(1l,end)-
time axis(1l,1))/sampling factor/size(time axis,2):time axis(l,end);
equally sampled temperature axis (l)=measured temperature axis(1l);
equally sampled measured DGD axis (l)=measured DGD axis(1l);
n=2;
for j=2:size(equally sampled time axis,2)
for i=n:size(time axis,2)

if time axis(i-1)<equally sampled time axis(j) &&
equally sampled time axis(j)<time_ axis (i) ||
j==size(equally sampled time axis,2)

equally sampled temperature axis(j)=measured temperature axis (i-

1) +temperature slope(i-1) * (equally sampled time axis(J)-time axis(i-1));
equally sampled measured DGD axis(j)=measured DGD axis (i-

1) +DGD_slope (i-1) * (equally sampled time axis(j)-time axis(i-1));
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n=i;
break
end
end

end
figure
plot (equally sampled time axis/3600, equally sampled temperature axis)
hold on
plot (time axis/3600,measured temperature axis,'r')
figure (8)
hold on
plotyy(equally sampled time axis/3600,equally sampled measured DGD axis,eq
ually sampled time axis/3600, equally sampled temperature axis)

save axium after Sandy equally sampled time axis
equally sampled temperature axis equally sampled measured DGD axis
mean dgd sampling factor buffer time size mean temperature
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Appendix B
Matlab model

close all
clear all

clc
matlabpool
tic
rng('default")

load measured time temperature vectors.mat;
time=equally sampled time axis(l:end);
Temperature=equally sampled temperature axis(l:end);

Length=5000; $Fiber length (meters)
perturbation length=25; $perturbation length in
meters

Sections Number=round(Length/perturbation length);%Number of concatenated
sections (Fiber length/ perturbation length)

R _curvature=8.75e-2; %Radius of curvature of
the coiled fiber

outer radius=125e-6; $fiber outer radius
mean ellip=0; gmean ellipticity value
.00120e-12

mean sec length=(Length/Sections Number) ; $mean section length
sec_length std=0.01; $section length standard
deviation

n_core=1.44402 ; %core refractive index
n _icladding=1.4388; %cladding refractive
index

lambda=1.55e-6 ; swave length (meters)
Dlambda=2e-9; %delta wave

length (meters)

r core=4.le-6 ; $Core radius (meters)
c=3e8; $Light velocity (m/sec)
alfaclad=9.19%e-7 ; %$Thermal expansion
coefficient of the cladding

alfacore=5.6e-7 ; %$Thermal expansion
coefficient of the core

T Soft=1065 ; $Softening temperature
of the glass

N=0.17 ; %$Poisson's ratio of the
fiber material

pll=0.126 ; Scomponents of the
photoelastic tensor

pl2=0.260 ; %components of the
photoelastic tensor

n=mean([n core,n icladding]); Smean refractive index
youngmodulus=68e9; %$Young modulus

initial starin= 0.95/ (pi*outer radius”2)/youngmodulus;%Strain applied
while winding the fiber around the spool

Temp0=25; $temperature at which
thermal strain equal zero
K=youngmodulus/ (3* (1-2*N)) ; $bulk modulus
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etav=5e20; $volumr viscosity at
room temperatue

relaxation timel=14.3*3600; %assumed relaxation time
in seconds

%% Calculating K1

xy=etav/ (3*K*relaxation timel);
x1=xy/2+sqgrt (xy*xy/4-xy) ;
yl=(1-1/x1)"-1;

if x1<yl

etav_3kl= 3*yl*K/etav;
else

etav_3kl= 3*x1*K/etav;
end

relaxation time= etav/ (3* (yl+x1l)*K);

%% Calulating the Strain vector versus time
gt=initial starin-alfaclad* (Temperature-TempO) ;
delay=exp (-time/relaxation time);

CONV=conv (gt,delay) ;

elastic_strain=gt-etav_ 3k1*CONV(l:size(gt,2));
figure (7)

hold on
plotyy(time/3600,elastic_strain,time/3600, Temperature)
plot (time/3600, equally sampled measured DGD axis)

%% removing added time (to minimize simulation time)

time=time (sampling factor*buffer time size:end);
Temperature=Temperature (sampling factor*buffer time size:end);

elastic strain=elastic strain(sampling factor*buffer time size:end);
equally sampled measured DGD axis=equally sampled measured DGD axis (sampli
ng factor*buffer time size:end);

%% Calculating Fiber Geometry
e=mean ellip;
rng('default")
section length=mean sec length+ (rand(Sections Number, 1) *sec length std);

%% calculating propagation paramters
delta=(n_core”2-n icladding”2)/(2* (n_core”2));

% for Lamda 1

V=2*pi*r core*sqrt(n_core”2-n icladding”2)/lambda;

FUN=Q@ (x) (x .* besselj(-1,x) ./ besselj(0,x)) + (sqrt(v"2-x.72) .*
besselk(-1,sgrt (V*2-x.72)) ./ besselk(0,sqrt(V*2-x.72)));

U=fzero (FUN, [0 0.999*V]) ;

W=sgrt (V"2-U"2) ;

n eff=sqrt ((2*pi*n core/lambda)"2-(U/r _core)"2)*lambda/2/pi;

% for Lamda 2
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DV=2*pi*r core*sqrt(n core”2-n icladding”2)/(lambda+Dlambda) ;

FUN=@Q (x) (x .* besselj(-1,x) ./ besselj(0,x)) + (sqrt(DV"2-x."2) .*
besselk(-1,sqgrt (DV*"2-x.72)) ./ besselk(0,sqrt(DV"2-x."2)));
DU=fzero (FUN, [0 0.999*DV]) ;

DW=sqrt (V"2-DU"2) ;

Dn eff=sqrt ((2*pi*n core/ (lambda+Dlambda)) "2~

(DU/r _core)”~2)* (lambda+Dlambda) /2/pi;

Domega=-2*pi*c*Dlambda/ (lambda”2) ;

o\

% Calculating the birefringence for each section

% for Lamda 1

Biref total=zeros(l,size(Temperature,2))/0;

Biref ellip core=zeros(l,size(Temperature,2))/0;

Biref bend=(2*pi/lambda)/4*n core”3* (pll-
p12)*(l+N)*((outer_radius/R_curvature)A2);

Biref tension coiled=(2*pi/lambda)* (n_eff”3)/2* (pll-pl2)* (14N)* (2-3*N)/ (1-
N) * (outer radius/R_curvature).*elastic_strain;

Biref geometrical=(e.”2)*delta”3*W"2/r core/V~ 3*(U"2 + (U"2-

W~2) * ((bessel]j (0,U) /bessel] (1,U0))"2) +

U*W"2* ( (besselj (0,U) /besselj (1,U))"3));

Biref ellip core=(1-U"2/V"2)* (2*pi/lambda)*n"3* (pll-pl2)* ((alfaclad-
alfacore) * (T_Soft-Temperature)/ (1-N"2))* (e./ (1l+sqgrt(l-e)) ."2);

for j=l:size(Temperature,?2)

Biref total(:,j)=Biref bend+Biref tension coiled(j)+Biref geometrical+Bire
f ellip core(Jj):;

end

figure (1)

hold on

plot (Temperature, Biref ellip core, 'r')

plot (Temperature, Biref bend*ones(1l,size(Temperature,2)), 'c')

plot (Temperature, Biref tension coiled, 'k')

plot (Temperature, Biref geometrical*ones(l,size(Temperature,2)), 'g')

plot (Temperature, Biref total(), 'b'")

[

% for Lamda 2

DBiref total=zeros(l,size(Temperature,2))/0;

DBiref ellip core=zeros(l,size (Temperature,2))/0;

DBiref bend=(2*pi/ (lambda+Dlambda))/4*n_ core”3* (pll-

pl2) * (1+N) * ( (outer radius/R_curvature)"2);

DBiref tension coiled=(2*pi/ (lambda+Dlambda))* (Dn_eff"3)/2* (pll-
pl2) * (1+N) * (2-3*N) / (1-N) * (outer radius/R curvature) .*elastic_ strain;
DBiref geometrical=(e.”2)*delta”3*DW"2/r core/DV"3*(DU"2 + (DU"2-
DW"2) * ( (besselj (0,DU) /bessel] (1,DU))"2) +

DU*DW"2* ( (bessel]j (0,DU) /besselj (1,DU))"3));

DBiref ellip core=(1-DU"2/DV"2)* (2*pi/ (lambda+Dlambda))*n"3* (pll-
pl2)*((alfaclad-alfacore) * (T _Soft-Temperature)/ (1-N"2))* (e./ (l+sqgrt (1-
e))."2);

for j=l:size (Temperature,?2)
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DBiref total(:,Jj)=DBiref bend+DBiref tension coiled(j)+DBiref geometrical+
DBiref ellip core(]j);
end

%% Generating angles (in Jones space) between consecutive sections
rng(8) ;
angles=rand (Sections_Number, 1) *2*pi;

%% calculating the PMD
clear i
TotalPMD=zeros (1,size (Temperature,2))/0;
parfor j=l:size (Temperature,2)
Matrix=eye (2,2);
for i=l:Sections Number
Matrix=[cos (angles (i, 1)), -
sin(angles(i,1));sin(angles(i,1)),cos(angles(i,1))]*[exp(li*Biref total (1,
j) *section length(i,1)/2) 0; 0 exp(-
li*Biref total(l,j)*section length(i,1)/2)]1*[cos(angles(i,1l)),sin(angles (i
;1)) ;-sin(angles (i, 1)) ,cos (angles (i, 1)) ]*Matrix;
end
DMatrix=eye (2,2);
for i=1:Sections_ Number
DMatrix=[cos (angles (i, 1)), -
sin(angles (i, 1)) ;sin(angles(i,1)),cos(angles(i,1))]*[exp(1i*DBiref total(l
,J) *section length(i,1)/2) 0; 0 exp(-
li*DBiref total(l,j)*section length(i,1)/2)]*[cos(angles(i,1)),sin(angles

i,1));-sin(angles(i, 1)) ,cos(angles(i,1))]*DMatrix;

end

TotalPMD (J)=abs (sqrt (4*det ( ( (DMatrix/Matrix)-eye (2))/Domega))) ;
end
toc

oo

%% plotting data

figure (7)

hold on

plot (Temperature, TotalPMD/le-12)

figure (8)

hold on

[AX,H1,H2] = plotyy(time/3600, [TotalPMD/le-

12; equally_sampled measured DGD axis],time/3600, Temperature);
set (get (AX (1), '"Ylabel'), 'Strlng 'DGD (psec) ')

set (get (AX (2 ),'Ylabel'),'String',‘Temperature (°cy ")
xlabel ('Time (hours) ")

%% Plotting averaged data

i=1;

for index=l:sampling factor*1000:size (time, 2)
if (index+1000)<size(time,2)-
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avearged simulated PMD(i)=mean (TotalPMD (index:index+1000))
i=1i+1;
end

end

figure (9)

hold on

plot (mean temperature(l:12),mean dgd(1:12))

plot (mean temperature(13:24),mean dgd(13:24))

plot (mean temperature(1:12),avearged simulated PMD(1:12)/le-12)

plot (mean temperature (13:24),avearged simulated PMD(13:24)/le-12)

xlabel ('Temperature (°C)")

ylabel ('DGD (psec) ")

save workspace
matlabpool close
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