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Abstract

Many insurance and finance activities involve multiple risks. Dependence structures be-

tween different risks play an important role in both theoretical models and practical appli-

cations. However, stochastic and actuarial models with dependence are very challenging

research topics. In most literature, only special dependence structures have been consid-

ered. However, most existing special dependence structures can be integrated into more-

general contexts. This thesis is motivated by the desire to develop more-general dependence

structures and to consider their applications.

This thesis systematically studies different dependence notions and explores their appli-

cations in the fields of insurance and finance. It contributes to the current literature in the

following three main respects. First, it introduces some dependence notions to actuarial

science and initiates a new approach to studying optimal reinsurance problems. Second,

it proposes new notions of dependence and provides a general context for the studies of

optimal allocation problems in insurance and finance. Third, it builds the connections

between copulas and the proposed dependence notions, thus enabling the constructions of

the proposed dependence structures and enhancing their applicability in practice.

The results derived in the thesis not only unify and generalize the existing studies of

optimization problems in insurance and finance, but also admit promising applications in

other fields, such as operations research and risk management.
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Chapter 1

Introduction

1.1 Background

In both practical and theoretical studies, long-standing strategic problems widely exist,

such as how to design a insurance policy, or how to make an investment. Essentially, these

kinds of problems can be formulated as optimization problems. This thesis focuses on

modeling and solving optimization problems in insurance and finance.

In the field of insurance, reinsurance is an important instrument for risk management.

In order to reduce the exposure to risk, an insurer chooses to enter into a reinsurance

arrangement to cede part of its risk to a reinsurer. One of the main concerns of the insurer

is how to design an optimal reinsurance arrangement so as to minimize its retained risk.

Such an optimal reinsurance problem is a complex topic in actuarial science and has been

extensively studied during the past decades. In the classical setting of optimal reinsurance

problems, an insurer’s risk is modeled by a single risk and a lot of results have been derived.

The drawback of the single-risk model is that it is too simple to capture the complexity
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of insurance risk in the real world. In practice, an insurer is likely to run more than

one line of business. In this case, the insurance risks have to be modeled by a random

vector. The difficulties of the multivariate risk model come from two sources. First,

in insurance practice, different lines of business are likely to adopt different reinsurance

arrangements separately, in what is called individualized strategy. The individualized

strategy is a vector of ceded functions other than a single ceded function, which means

that the optimal reinsurance problem is an optimization over multiple functionals. Second,

dependence structures between risks from different lines of business can be complicated.

To cope with these difficulties, seeking solutions to optimal reinsurance problems is divided

into two steps: identifying the optimal reinsurance form and determining parameters of

the optimal reinsurance form. In the literature, optimal reinsurance problems with special

dependence structures have been studied and the excess-of-loss strategy has proved to be

the optimal form in most cases.

With an optimal reinsurance form known as an individualized excess-of-loss form, the

optimal reinsurance problem reduces to identifying the optimal parameters, or specifically,

the optimal retentions. Essentially, it is an extreme value problem of a multivariate func-

tion. However, without the joint distribution function of the risk random variables, the

extreme value problem is still difficult to solve. In that case, many studies explore the

qualitative properties of the optimal retentions. This approach actually puts the study of

the optimal reinsurance problem into a different context, as an optimal allocation problem.

Optimal allocation problems are commonly seen in the fields of insurance, finance and

operations research. For example, investors are concerned about how to allocate investment

weights in different assets; a system designer wants to determine an optimal issuing order of

system components so as to maximize the duration of the system. Again, with assumptions

of special dependence structures, many optimal allocation problems have been studied and
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the solutions to optimal reinsurance problems have been qualitatively analyzed in the same

context.

It is worthwhile to point out that, in the aforementioned optimization problems, the

dependence structure between the multiple risks plays an essential role. The ways in which

the risks depend on each other directly affect what optimal strategy will be adopted. It is

also the complexity of the dependence structure that brings the main difficulty in solving

those models. To simplify the models, many studies have focused only on special depen-

dence structures such as independence, comonotonicity, exchangeability or the common

shock model.

Motivated by the limitations of the dependence structures in the literature, this thesis

aims to develop general dependence structures so as to unify as well as to extend the

existing studies.

Roughly speaking, there are two types of dependence structures. Dependence structures

of type I are fully characterized by copulas, regardless of marginal distributions. Typical

examples of this type include independence and comonotonicity. Type I dependence is a

property of copula and thus is preserved under (strictly) increasing transformations. For

instance, for comonotonic random variables, their increasing transformations still result

in comonotonic random variables. Dependence structures of type II involve properties of

both copula and marginal distributions, for example, exchangeable random variables. It

is easy to see that type II dependence is not preserved under increasing transformations,

since increasing transformations of exchangeable random variables do not necessarily have

the same marginal distributions.

Solving different optimization problems calls for different dependence structures. In

order to identify the optimal reinsurance form, independence or comonotonicity between
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insurance risks has been assumed in most of the literature. In Chapter 3 of the thesis,

we employ the concept of “positive dependence through sequence” (PDS) and develop

a related concept to study the optimal reinsurance problem. The concept of PDS was

initially proposed by Shaked (1977), and has been applied in the field of statistics. We

introduce this concept to model dependence structures of insurance risks for two reasons.

First, PDS is a positive dependence structure. In insurance practice, risks from different

lines of business are often supposed to be positively correlated since they are more likely

to be affected by common external factors in the same way. Second, PDS is a very general

dependence structure, which includes independence and comonotonicity as special cases.

In this sense, this thesis generalizes the studies of optimal reinsurance problems.

In order to study the optimal allocation problems, stronger assumptions of depen-

dence structures are needed. In qualitative analyses of optimal allocation of policy lim-

its/deductibles, Cheung (2007), Zhuang et al. (2009), and many others have made the

assumptions of independence and comonotonicity with marginal distributions ordered in

certain stochastic orders. These assumptions are special cases of type II dependence struc-

tures. In light of this observation, some general dependence structures of type II are

developed in Chapter 4. With the introduction of these new dependence structures, we

have unified the existing studies of optimal allocation problems and also explore more

applications in Chapter 5.

Below is a brief summary of the rest of the chapters.

In Chapter 2, we examine the notion of PDS and propose a related concept PDUO.

We derive invariant properties of these notions of positive dependence. More importantly,

we build a relation between PDS/PDUO and copulas. This relation allows us to construct

PDS/PDUO random vectors easily through copulas and thus greatly enhances applicability
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of these notions. In addition, we generalize the invariant property of copulas, which is

widely used in the fields of not only finance and insurance but also statistics, economics

and other areas.

In Chapter 3, we use the notions of PDS and PDUO to study the optimal reinsurance

problem, thereby broadening approaches to address this optimization problem. We prove

that the individualized excess-of-loss reinsurance strategy is optimal, not only in the tradi-

tional sense of minimizing risk measures of the total retained risk, but also in the sense of

minimizing the ruin probability or stochastically maximizing the ruin time in the collective

model, and maximizing the expected utility in the model with a random initial wealth.

On the other hand, we also generalize some classical results about multivariate stochastic

orders.

In Chapter 4, we work on the dependence structures of type II. We develop an existing

notion and propose some new notions through the arrangement increasing property of joint

distribution functions or joint density functions. We systematically analyze properties of

these notions. We develop different characterizations of these dependence structures and

illustrate how to construct them through copulas. Special dependence structures that have

been considered in the literature are proved to belong to these new dependence structures.

In Chapter 5, we apply the dependence structures proposed in Chapter 4 to study op-

timal allocation problems in insurance, finance as well as operations research. We restudy

the following problems: optimal allocation of policy limits/deductibles with discount fac-

tor, optimal portfolio selections and optimal stochastic scheduling problems. The results

derived in Chapter 5 unify and extend previous studies in optimal allocation problems.

In Chapter 6, we provide concluding remarks.

In order to make the thesis self-contained, some standard contents about stochastic
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orders, risk measures and copulas are firstly introduced.

1.2 Stochastic Orders

Due to the randomness, it is difficult to compare two random variables directly. Many

stochastic orders are proposed for the comparison of random variables. Below we state

some commonly used results about stochastic orders, which can be found in Shaked and

Shanthikumar (2007).

Through out this thesis, we assume that all random variables are defined on the common

probability space (Ω,F ,P); expectations under P are assumed to be finite whenever we

write them; the notation of ‘≤a.s. (≥a.s.)’ means the inequality ‘≤ (≥)’ holds almost surely

on the common probability space (Ω,F ,P); and the notation of ‘=st’ means the equality

holds in distribution.

Definition 1.2.1 LetX and Y be two random variables with distribution functions FX(x) =

1− F̄X(x) and FY (x) = 1− F̄Y (x).

X is said to be smaller than Y in the usual stochastic order, denoted as X ≤st Y , if

F̄X(x) ≤ F̄Y (x) for all x ∈ R ;

X is said to be smaller than Y in the hazard rate order, denoted as X ≤hr Y , if

F̄Y (x)/F̄X(x) is increasing in x ∈ R such that F̄X(x) > 0;

X is said to be smaller than Y in the reversed hazard rate order, denoted as X ≤rh Y ,

if FY (x)/FX(x) is increasing in x ∈ R such that FX(x) > 0.

Assume that X and Y have density functions fX(x) and fY (x). X is said to be smaller

than Y in the likelihood ratio order, denoted as X ≤lr Y , if fY (x)/fX(x) is increasing in

x ∈ R such that fX(x) > 0. 2
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For the likelihood ratio order, the assumption of the existence of the density functions is

not essential. The following is an equivalent definition of the likelihood ratio order, which

avoids the density function.

Definition 1.2.2 Random variable X is said to be smaller than random variable Y in the

likelihood ratio order, denoted as X ≤lr Y , if

P{X ∈ A}P{Y ∈ B} ≥ P{X ∈ B}P{Y ∈ A}

for all A,B ∈ B(R) such that supA ≤ inf B. 2

The usual stochastic order has a functional characterization: X ≤st Y if and only if

E[u(X)] ≤ E[u(Y )] for any increasing function u(x) such that the expectations exist.

It is known that the stochastic orders defined above have the following implications:

X ≤lr Y =⇒ X ≤hr Y (X ≤rh Y ) =⇒ X ≤st Y.

The following relation between the hazard rate order and the reverse hazard rate can

be found in Theorem 1.B.41 in Shaked and Shanthikumar (2007).

Proposition 1.2.3 X ≤hr Y if and only if −X ≥rh −Y . 2

Definition 1.2.4 Random variables X1, ..., Xn are said to be comonotonic, if

P{X1 ≤ x1, ..., Xn ≤ xn} = min{P{X1 ≤ x1}, ...,P{Xn ≤ xn}}.

We also refer this case as that random vector (X1, ..., Xn) is comonotonic. 2

7



For comonotonic random variables X and Y , there exists a random variable Z and

nondecreasing functions f, g such that X = f(Z) and Y = g(Z).

Proposition 1.2.5 If random variables X and Y are comonotonic, then X ≤st Y if and

only if X ≤a.s. Y .

Proof. The proof for the “if” part is obvious.

For the “only if” part, noting that {X > Y } = ∪r∈Q{X > r > Y }, where Q is the

collection of all the rational numbers, we have

P{X > Y } = P {∪r∈Q{X > r > Y }} ≤
∑
r∈Q

P{X > r ≥ Y }

=
∑
r∈Q

(P{X > r} − P{X > r, Y > r}) . (1.2.1)

Since X and Y are comonotonic and X ≤st Y , we have

P{X > r, Y > r} = min{P{X > r},P{Y > r}} = P{X > r}.

Therefore, P{X > Y } = 0 from (1.2.1), which means X ≤a.s. Y . 2

Definition 1.2.6 Let X and Y be two nonnegative random variables.

X is said to be smaller than Y in the moments order, denoted as X ≤mom Y , if

E[Xm] ≤ E[Y m] for all m ∈ N.
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X is said to be smaller than Y in the moment generating function order, denoted as

X ≤mgf Y , if

E[esX ] ≤ E[esY ],

for all s > 0 such that the above expectations exist. 2

Noting that esx =
∑∞

n=0
1
n!

(sx)n, we have X ≤mom Y implies X ≤mgf Y given that

moment generating functions of X and Y exist.

Definition 1.2.7 Let X and Y be two random variables.

X is said to be smaller than random variable Y in the convex order, denoted asX ≤cx Y ,

if E[u(X)] ≤ E[u(Y )] for any convex function u(x) such that the expectations exist.

X is said to be smaller than random variable Y in the increasing convex order, denoted

as X ≤icx Y , if E[u(X)] ≤ E[u(Y )] for any increasing convex function u(x) such that the

expectations exist.

X is said to be smaller than random variable Y in the concave order, denoted as

X ≤cv Y , if E[u(X)] ≤ E[u(Y )] for any concave function u(x) such that the expectations

exist.

X is said to be smaller than random variable Y in the increasing concave order, denoted

as X ≤icv Y , if E[u(X)] ≤ E[u(Y )] for any increasing concave function u(x) such that the

expectations exist. 2

Obviously, X ≤cx (≤cv)Y ⇒ X ≤icx (≤icv)Y , and X ≤st Y implies that X ≤icx (≤icv
)Y . With the assumption of E[X] = E[Y ], X ≤icx (≤icv)Y implies that X ≤cx (≤cv)Y .
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Insurance practice often involves the comparison of the stop-loss premiums of two risks,

which motivates the definition of the stop-loss order.

Definition 1.2.8 Random variable X is said to be smaller than random variable Y in the

stop-loss order, denoted as X ≤sl Y , if E[(X − t)+] ≤ E[(Y − t)+] for all t ∈ R. 2

It is easy to verify that, X ≤sl Y if and only if X ≤icx Y ; see for example Shaked and

Shanthikumar (2007).

The following result, known as Ohlin’s Lemma, provides a useful sufficient condition

for the convex order, and the proof can be found in Lemma 3 of Ohlin (1969).

Lemma 1.2.9 Let X be a random variable, h1 and h2 be increasing functions such that

E[h1(X)] = E[h2(X)]. If there exists α ∈ R ∪ {+∞} such that h1(x) ≥ h2(x) for all x < α

and h1(x) ≤ h2(x) for all x > α, then h1(X) ≤cx h2(X). 2

When it comes to comparison of random vectors, the univariate stochastic orders can

be generalized into multivariate cases. In the following, we focus on the usual stochastic

order and investigate its generalizations in three different forms.

Definition 1.2.10 Let (X1, ..., Xn) and (Y1, ..., Yn) be two random vectors.

(X1, ..., Xn) is said to be smaller than (Y1, ..., Yn) in the upper orthant order, denoted

as (X1, ..., Xn) ≤uo (Y1, ..., Yn), if P{X1 > z1, ..., Xn > zn} ≤ P{Y1 > z1, ..., Yn > zn} for

any (z1, ..., zn) ∈ Rn.

(X1, ..., Xn) is said to be smaller than (Y1, ..., Yn) in the lower orthant order, denoted

as (X1, ..., Xn) ≤lo (Y1, ..., Yn), if P{X1 ≤ z1, ..., Xn ≤ zn} ≥ P{Y1 ≤ z1, ..., Yn ≤ zn} for

any (z1, ..., zn) ∈ Rn.
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(X1, ..., Xn) is said to be smaller than (Y1, ..., Yn) in the usual stochastic order, denoted

as (X1, ..., Xn) ≤st (Y1, ..., Yn), if E[u(X1, ..., Xn)] ≤ E[u(Y1, ..., Yn)] for any increasing

function u : Rn → R such that the expectations exist. 2

Clearly, among the above three stochastic orders, ≤st is the strongest, and it implies

the other two.

Shaked and Shanthikumar (2007) have proposed functional characterizations of upper

orthant order and lower orthant order (Theorem 6.G.1), which is restated below.

Proposition 1.2.11 Let X = (X1, ..., Xn) and Y = (Y1, ..., Yn) be two random vectors.

(i) X ≤uo Y if and only if E [
∏n

i=1 gi(Xi)] ≤ E [
∏n

i=1 gi(Yi)] for all univariate nonnegative

increasing functions gi, i = 1, ..., n.

(ii) X ≤lo Y if and only if E [
∏n

i=1 hi(Xi)] ≥ E [
∏n

i=1 hi(Yi)] for all univariate nonnegative

decreasing functions hi, i = 1, ..., n. 2

From Proposition 1.2.11 we can build a relation between ≤uo and ≤lo. Specifically,

(X1, ..., Xn) ≤uo (Y1, ..., Yn) if and only if (−X1, ...,−Xn) ≥lo (−Y1, ...,−Yn).

It follows from Proposition 1.2.11 that the upper/lower orthant order is closed un-

der certain increasing transformations. Specifically, (X1, ..., Xn) ≤uo (≤lo)(Y1, ..., Yn) im-

plies (g1(X1), ..., gn(Xn)) ≤uo (≤lo)(g1(Y1), ..., gn(Yn)) for all univariate increasing functions

g1, ..., gn. Details can be seen in Theorem 6.G.3 in Shaked and Shanthikumar (2007).

Lemma 1.2.12 If (X1, ..., Xn) ≤uo (Y1, ..., Yn), then

n∑
k=1

Xi ≤mgf
n∑
k=1

Yi and
n∑
k=1

Xi ≤mom
n∑
k=1

Yi.
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Proof. Since ≤mom implies ≤mgf , we only need to show the second inequality.

For any given m ∈ N, consider the following set

K =

{
(k1, ..., kn)

∣∣∣∣∣
n∑
i=1

ki = m, and k1, ..., kn ∈ N

}
.

According to Proposition 1.2.11, we have E [
∏n

i=1 X
ki
i ] ≤ E [

∏n
i=1 Y

ki
i ], for any k1, ..., km ∈

N, then

E

[(
n∑
i=1

Xi

)m]
=

∑
(k1,...,kn)∈K

m!∏n
i=1 ki!

E

[
n∏
i=1

Xki
i

]

≤
∑

(k1,...,kn)∈K

m!∏n
i=1 ki!

E

[
n∏
i=1

Y ki
i

]
= E

[(
n∑
i=1

Yi

)m]
. 2

1.3 Risk Measures and Utility Functions

In order to compare different random variables, another approach is to use the concept

of risk measure. A risk measure is a function defined on a set of random variables, and

assigns a real number to a random variable in the set. A risk measure should satisfy certain

conditions, and detailed discussions can be found in Delbaen (2000) and many others. A

traditional way to define risk measure is through expectation. For a random variable X, its

risk measure is defined to be ρ(X) = E[u(X)], where u(x) is a function to be determined.

An individual who is risk averse tends to take a risk with smaller risk measure. In insurance

and finance, one important criterion is to minimize the risk measure of a risk.

A concept dual to the risk measure is the expected utility. The concept of utility

function was initially proposed by Daniel Bernoulli in 1738 and then fully developed by
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von Neumann and Morgenstern (1947). A systematical discussion of the applications of

utility functions in actuarial science can be found in Gerber and Pafumi (1998). Utility

functions help make decisions on financial activities. For example, consider two risky assets

W1 and W2, an investor with the utility function u(x) will choose W2 over W1 if W2 has a

greater utility, that is, E[u(W2)] ≥ E[u(W1)].

There are many different choices of utility functions, and different utility functions

reflect different attitudes toward the risky assets. A fundamental assumption of the utility

function is the increasingness, in the sense that the utility is supposed to increase as the

the wealth increases. For a risk-averse individual, an additional assumption of the utility

function is the concavity. The increasingness and concavity of the utility function have

the following interpretation: when the amount of the wealth is small, a small increase

in the wealth results in a large increase in the utility. However, once this investor has

accumulated a certain amount of wealth, there is little increase in the utility for additional

dollars earned. In this case, the individual is risk-averse in the sense that she does not care

much about the additional dollars earned. An example of risk-averse utility function is the

exponential utility function u(x) = 1
γ
(1− e−γx), γ > 0.

For notational convenience, we define

Uicx = {u(x) : u(x) is increasing convex},

Uicv = {u(x) : u(x) is increasing concave},

U+
exp = {u(x) : u(x) = eγx, γ > 0},

U−exp = {u(x) : u(x) = 1− e−γx, γ > 0}.

In the fields of insurance and finance, many optimization problems use the criterion of
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minimizing the risk measure or maximizing the expected utility. To some degree, these two

criteria are equivalent. For example, let {Wλ, λ ∈ Λ} be the total wealth under different

strategies for some given index set Λ. Then the optimization problem aiming at maximizing

the expected utility can be formulated as

max
λ∈Λ

E[u(Wλ)], ∀u ∈ U . (1.3.1)

On the other hand, the negative of the wealth can be taken as the risk. Let U∗ =

{−u(−x) : u(x) ∈ U}, then the above optimization problem is equivalent to:

min
λ∈Λ

E[u(−Wλ)], ∀u ∈ U∗. (1.3.2)

which can be interpreted as minimizing the risk measure of the risk.

Recall Section 1.1, the functional characterizations of most stochastic orders connect

stochastic orders to optimization criteria: either minimizing risk measures or maximizing

expected utilities. For example, in Problem (1.3.1) and Problem (1.3.2), we set U = Uicv,

then U∗ = Uicx. The two problems can be interpreted as minimizing the risk in the sense

of increasing convex order.

We furthermore define the following functional classes:

Ust = {u(x) : u(x) is increasing},

Ucx = {u(x) : u(x) is convex},

Umom = {u(x) : u(x) = xn, n = 1, 2, ...}.
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Clearly,

X ≤st Y ⇐⇒ E[u(X)] ≤ E[u(Y )], ∀u ∈ Ust,

X ≤icx Y ⇐⇒ E[u(X)] ≤ E[u(Y )], ∀u ∈ Uicx,

X ≤mgf Y ⇐⇒ E[u(X)] ≤ E[u(Y )], ∀u ∈ U+
exp,

X ≤mom Y ⇐⇒ E[u(X)] ≤ E[u(Y )], ∀u ∈ Umom.

Throughout this thesis, we focus on the traditional risk measures, defined by the form

ρ(X) = E[u(X)]. Recently, there are more risk measures introduced to the field of insur-

ance, such as CTE and other law invariant coherent risk measures. Recent studies on the

applications of CTE measure in actuarial science can be seen in Cai et al. (2008), Tan

et al. (2011) and many others. Kusuoka (2001) and Bäuerle and Müller (2006) have shown

that the law-invariant coherent risk measure has a relation to convex order, which allows

potentials of extending our work to the general risk measure.

1.4 Copulas and Survival Copulas

Copula is a common tool to model dependence structure. A copula, denoted as C(u1, ..., un),

is the joint distribution function of a random vector (U1, ..., Un) with Ui, i = 1, ..., n, all

uniformly distributed on [0, 1]. The random vector (U1, ..., Un) is called the generator of

the copula C. We say that random vector (X1, ..., Xn) is linked by (or has) the copula

C(u1, ..., un), if

F (x1, ..., xn) = C(F1(x1), ..., Fn(xn)),
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where F (x1, ..., xn) is the joint distribution function of (X1, ..., Xn) and Fi(xi) is the

marginal distribution of Xi, i = 1, ..., n.

From Sklar’s theorem, we know that for any given random vector (X1, ..., Xn), its

copula always exists. It is worthwhile to point out, the uniqueness of copula only holds

when the random vector has continuous marginal distributions. Assume that (X1, ..., Xn)

has continuous marginal distributions. Then Fi(Xi) ∼ UNIF ([0, 1]), i = 1, ..., n, and

(F1(X1), ..., Fn(Xn)) is the generator of the unique copula of (X1, ..., Xn).

Two commonly used dependence structures are independence and comonotonicity.

They correspond to the following copula:

Cind(u1, ..., un) = u1u2...un and Cc(u1, ..., un) = min{u1, ..., un}.

It is known that, with certain assumptions, copulas have the invariant property. Specif-

ically, if (X1, ..., Xn) has the copula C, then (f1(X1), ..., fn(Xn)) also has the copula C for

any strictly increasing functions fi(x), i = 1, ..., n. If (X1, ..., Xn) has the copula C and has

continuous marginal distribution functions, then (f1(X1), ..., fn(Xn)) also has the copula

C for any increasing continuous functions fi(x), i = 1, ..., n. See, for example, Proposition

5.6. of McNeil et al. (2005), Proposition 4.7.4 of Denuit et al. (2006), Theorem 3.4.3 of

Nelsen (1999), and Theorem 2.8 of Cherubini et al. (2004). We generalize these invariant

properties in Chapter 2.

A concept parallel to the copula is the survival copula. Let Ĉ(u1, ..., un) be a copula.

We say that random vector (X1, ..., Xn) has the survival copula Ĉ, if

F̄ (x1, ..., xn) = P{X1 > x1, ..., Xn > xn} = Ĉ(F̄1(x1), ..., F̄n(xn)),
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where F̄i(x) = 1− Fi(x) is the survival function of Xi, i = 1, ..., n.

A different concept to be distinguished with the survival copula is the survival function

of a copula. The survival function of copula C, denoted by C̄, is the survival function of the

generator of C. If (X1, ..., Xn) has continuous marginal distribution functions, the unique

copula of (X1, ..., Xn) is generated by (U1, ..., Un) = (F1(X1), ..., Fn(Xn)). In that case, it

is easy to verify that the copula Ĉ generated by (1−U1, ..., 1−Un) = (F̄1(X1), ..., F̄n(Xn))

is the survival copula of (X1, ..., Xn). With continuous marginal distributions, it is easy

to verify the following relation between the survival copula Ĉ and the survival function of

copula C̄ (see McNeil et al. (2005)).

C̄(u1, ..., un) = Ĉ(1− u1, ..., 1− un). (1.4.1)

We also have the following relation between the copula and the survival copula:

Proposition 1.4.1 Assume that C(u1, ..., un) is a copula of the random vector (X1, ..., Xn).

Then C(u1, ..., un) is a survival copula of (−X1, ...,−Xn).

Proof. We need to verify that, for any x1, ..., xn,

P{−X1 > −x1, ...,−Xn > −xn} = C(P{−X1 > −x1}, ...,P{−Xn > −xn})

⇐⇒ P{X1 < x1, ..., Xn < xn} = C(P{X1 < x1}, ...,P{Xn < xn}).

Noting that C is a copula of (X1, ..., Xn), we have

P{X1 ≤ x1 − δ, ..., Xn ≤ xn − δ} = C(P{X1 ≤ x1 − δ}, ...,P{Xn ≤ xn − δ}),
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for any δ. Since C(u1, ..., un) is continuous in each uk, k = 1, ..., n, then

P{X1 < x1, ..., Xn < xn}

= lim
δ↓0
P{X1 ≤ x1 − δ, ..., Xn ≤ xn − δ}

= lim
δ↓0

C(P{X1 ≤ x1 − δ}, ...,P{Xn ≤ xn − δ})

= C(lim
δ↓0
P{X1 ≤ x1 − δ}, ..., lim

δ↓0
P{Xn ≤ xn − δ})

= C(P{X1 < x1}, ...,P{Xn < xn}). 2

We are particularly interested in a special class of copulas: Archimedean copulas. Let

Ψ : (0, 1]→ [0,∞) be invertible and satisfy: (i) Ψ(1) = 0, limx↓0 Ψ(x) =∞, and (ii) Λ(x)

is completely monotonic, specifically, (−1)kΛ(k)(x) = (−1)k dk

dxk
Λ(x) ≥ 0 for all k = 0, 1, ...,

where Λ(x) = Ψ−1(x). Define

C(u1, ..., un) = Λ

(
n∑
k=1

Ψ(uk)

)
, u1, ..., un ∈ [0, 1]. (1.4.2)

Then C(u1, ..., un) is a copula, which is called Archimedean copula.

The complete monotonicity implies an important properties of the generator of an

Archimedean copula, which will be used in later studies. We state the property below.

Remark 1.4.2 If Λ(x) is completely monotonic, then (−1)kΛ(k)(x) is decreasing for all

k = 1, 2, ....
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Chapter 2

Notions of Positive Dependence and

Their Relations with Copulas

2.1 Introduction

Notions of positive dependence and copulas play important roles in modeling dependent

risks. The invariant properties of notions of positive dependence and copulas under

(strictly) increasing transformations are often used in the studies of economics, finance,

insurance and many other fields. In the literature, some of these invariant properties have

been proved, while some were stated without proofs and are assumed to hold.

In this chapter, we examine the notions of the conditionally increasing (CI), the condi-

tionally increasing in sequence (CIS), the positive dependence through the stochastic or-

dering (PDS), and the positive dependence through the upper orthant ordering (PDUO).

The definitions of these notions will be stated later.

We first use two counterexamples to show that the statements in Theorem 3.10.19 of
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Müeller and Stoyan (2002) about the invariant properties of CI and CIS under increasing

transformations are not true. The counterexamples motivate us to verify the statements of

Theorem 3.10.19 of Müeller and Stoyan (2002) about the invariant properties of other no-

tions of positive dependence under increasing transformations. Actually, it is easy to prove

that most of the notions of positive dependence mentioned in Theorem 3.10.19 of Müeller

and Stoyan (2002) are preserved under increasing transformations. However, it is not easy

to verify if those notions defined through conditional expectations or conditional survival

functions, such as CI, CIS, and PDS, are preserved under increasing transformations. It is

straightforward to show that PDS is preserved under strictly increasing transformations.

Indeed, Theorem 2.1 of Block et al. (1985) states that the negative dependence through

the stochastic ordering (NDS), which is the counterpart of PDS, is preserved under strictly

increasing transformations. More discussion about the notion of positive dependence and

negative dependence can be found in Lehmann (1966), Block and Ting (1981) and Block

et al. (1982). To the best of our knowledge, the proof for the invariant property of PDS

is not available. Indeed, the proof is not trivial and needs further investigation on the

concept of the conditional expectation.

Under certain conditions, some notions of positive dependence of a random vector are

the properties of its copula in the sense that a random vector has a notion of positive

dependence if and only if its copula has the same notion. In addition, some notions of

positive dependence of a random vector can be characterized by its copula. Actually, we will

show that a random vector (X1, ..., Xn) is PDS (PUDO) if and only if (F1(X1), ..., Fn(Xn))

is PDS (PDUO). Consequently, if (X1, ..., Xn) has the continuous marginal distribution

functions, then (X1, ..., Xn) is PDS (PDUO) if and only if its copula is PDS (PDUO).

A very useful property of a copula is the invariance under strictly increasing trans-

formations on the components of a continuous random vector or under increasing and
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continuous transformations on the components of any random vector. See, for example,

Proposition 5.6. of McNeil et al. (2005), Proposition 4.7.4 of Denuit et al. (2006), Theorem

3.4.3 of Nelsen (1999), and Theorem 2.8 of Cherubini et al. (2004). Using the properties of

generalized left-continuous and right-continuous inverse functions, we give rigorous proofs

for the invariant properties of copulas under increasing transformations on the components

of any random vector.

The invariant properties of notions of positive dependence and copulas under increasing

transformations are often used in the studies of economics, finance, insurance and many

other fields. It is necessary for one to give a detailed study of these invariant properties.

In this chapter, ‘=st’ means ‘equal in distribution’.

The rest of the chapter is organized as follows. In Section 2.2, we revisit several notions

of positive dependence including the stochastically increasing (SI), CI, CIS, PDS, and

PDUO. We use two counterexamples to show that the statements in Theorem 3.10.19 of

Müeller and Stoyan (2002) about the invariant properties of CI and CIS under increasing

transformations are not true. We prove that CIS and CI are preserved under strictly

increasing transformations. We give rigorous proofs for the invariant properties of SI, PDS,

and PDUO under strictly increasing transformations. These invariant properties enable us

to show that a continuous random vector is PDS (PDUO) if and only if its copula is PDS

(PDUO). In Section 2.3, using the properties of the generalized inverse functions, we also

give a rigorous proof for the invariant property of copulas under increasing transformations

on any random vector. This result generalizes Proposition 5.6. of McNeil et al. (2005) and

Proposition 4.7.4 of Denuit et al. (2006). In Section 2.4, we give the characterization of

PDUO in terms of survival copulas.
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2.2 The Invariant Properties of the Notions of Posi-

tive Dependence

In the literature, there are several notions of positive dependence, which describe positive

dependence for two random variables or two random vectors. We refer to Müeller and

Stoyan (2002) and Shaked and Shanthikumar (2007) for a detailed treatment of these

topics and to Denuit et al. (2006) for their applications in actuarial science and insurance.

In this section, we focus on the notions of SI, CI, CIS, PDS, PDUO. The notions of SI, CI,

CIS, and PDS and their properties can be found in Block et al. (1985), Joe (1997), Shaked

(1977), and references therein. The PDUO will be defined in this section. More notions

of positive dependence can be found in Colangelo et al. (2005) and references therein. A

new characterization of CIS is given in Fernández-Ponce et al. (2011).

We recall that for a random vector Y = (Y1, ..., Yn), a support of Y, denoted by S(Y)

or S(Y1, ..., Yn), is a Borel set of Rn such that P{Y ∈ S(Y)} = 1.

Definition 2.2.1 Let (X1, ..., Xn) be a random vector and Y be a random variable.

(1) Y is said to be stochastically increasing (SI) in random vector (X1, ..., Xn), de-

noted as Y ↑SI (X1, ..., Xn), if P{Y > y |X1 = x1, ..., Xn = xn} is increasing in

(x1, ..., xn) ∈ S(X1, ..., Xn) for all y ∈ R, or equivalently, Y ↑SI (X1, ..., Xn) if and

only if E[u(Y ) |X1 = x1, ..., Xn = xn] is increasing in (x1, ..., xn) ∈ S(X1, ..., Xn) for

any increasing function u such that the conditional expectation exists.

(2) (X1, ..., Xn) is said to be stochastically increasing (SI) in random variable Y , denoted

as (X1, ..., Xn) ↑SI Y , if E [u(X1, ..., Xn) |Y = y] is increasing in y ∈ S(Y ) for any

increasing function u : Rn → R such that the conditional expectation exists.
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(3) (X1, ..., Xn) is said to be conditionally increasing in sequence (CIS) ifXi ↑SI (X1, ..., Xi−1)

for all i = 2, ..., n.

(4) (X1, ..., Xn) is said to be positively dependent through the stochastic ordering (PDS)

if (X1, ..., Xi−1, Xi+1, ..., Xn) ↑SI Xi for all i = 1, ..., n.

(5) (X1, ..., Xn) is said to be conditionally increasing (CI) if (Xπ(1), ..., Xπ(n)) is CIS for

all permutations π of (1, ..., n). 2

The following is some preliminary properties of stochastic increasing.

Proposition 2.2.2 Let (X1, ..., Xn) be a random vector and Y be a random variable. If

(X1, · · · , Xn) ↑SI Y , then

(i) (Y,X1, · · · , Xn) ↑SI Y .

(ii) u(X1, · · · , Xn) ↑SI Y for any increasing function u : Rn → R k where k ∈ N.

Proof. Let u : Rn+1 → R be an increasing function. For any y1, y2 ∈ S(Y ) such that

y1 ≤ y2, we have

E [u(Y,X1, ..., Xn)|Y = y1] = E [u(y1, X1, ..., Xn)|Y = y1]

≤ E [u(y2, X1, ..., Xn)|Y = y1] ≤ E [u(y2, X1, ..., Xn)|Y = y2]

= E [u(Y,X1, ..., Xn)|Y = y2],

which implies that (Y,X1, · · · , Xn) ↑SI Y according to Definition 2.2.1(2).

For any increasing function φ : R k → R, φ ◦ u : Rn → R is also increasing. Then

E [φ(u(X1, ..., Xn))|Y = y] is increasing in y since (X1, · · · , Xn) ↑SI Y . Therefore, we have

u(X1, · · · , Xn) ↑SI Y according to the definition of SI. 2
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The natural extensions of (X1, ..., Xn) ↑SI Y and PDS are to define a notion of positive

dependence by using the weaker condition of the conditional survival function P{X1 >

x1, ..., Xn > xn|Y = y} instead of using the stronger condition of the condition expectation

E[u(X1, ..., Xn)|Y = y]. Thus, we can define two notions of positive dependence which are

weaker than the dependence of SI and PDS.

Definition 2.2.3 Let X = (X1, ..., Xn) be a random vector and Y be a random variable.

(1) (X1, ..., Xn) is said to be weakly stochastically increasing (WSI) in Y , denoted as

(X1, ..., Xn) ↑WSI Y , if P{X1 > x1, ..., Xn > xn |Y = y} is increasing in y ∈ S(Y ) for

any (x1, ..., xn) ∈ Rn.

(2) (X1, ..., Xn) is said to be positively dependent through the upper orthant ordering

(PDUO) if (X1, ..., Xi−1, Xi+1, ..., Xn) ↑WSI Xi for all i = 1, 2, ..., n. 2

Note that X ↑WSI Y actually means X |Y = y1 ≤uo X |Y = y2 for any y1, y2 ∈ S(Y )

with y1 < y2. Combining this observation and Proposition 1.2.11, we immediately get the

following property about weakly stochastically increasing.

Proposition 2.2.4 If (X1, ..., Xn) ↑WSI Y , then for any nonnegative increasing functions

fi, i = 1, ..., n, E [
∏n

i=1 fi(Xi)|Y = y] is increasing in y ∈ S(Y ).

It is clear that for two random variables X and Y , X ↑WSI Y is equivalent to X ↑SI Y ,

and for a bivariate random vector (X1, X2), (X1, X2) is PDUO if and only if (X1, X2) is

PDS. In general, we have SI =⇒ WSI and PDS =⇒ PDUO. In addition, we will see that

PDUO can be characterized by the survival copulas for continuous random vectors. Hence,

it is easy to construct a continuous PDUO random vector by copulas.
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From the definitions, we know that CI, CIS, PDS, and PDUO describe the notions of

positive dependence for a random vector and are defined by using conditional expectations

or conditional survival functions. We summarize their implications as follows:

CI =⇒ CIS

and

CI =⇒ PDS =⇒ PDUO.

Theorem 3.10.19 of Müeller and Stoyan (2002) states (without proofs) that several

common notions of positive dependence including CIS, CI and PDS are preserved under

increasing transformations. We point out the “increasing” in their result should be under-

stood as “strictly increasing”. We shall first construct two counterexamples to demonstrate

that invariant property of CIS/CI does not hold for nondecreasing transformations:

Example 2.2.5 (CIS is not preserved under general increasing transformations) Let X

and Y be two independent random variables. Then it always holds that X + Y ↑SI X.

Now, assume that X and Y have the following probability mass functions: P(X = 0) =

P(X = 1) = 0.5, P(Y = 0) = 0.4, P(Y = 1) = 0.2, and P(Y = 2) = 0.4. Then it is easy to

check that

P(X > 0 |X + Y = 1) = P(X = 1 |X + Y = 1) = 2/3,

P(X > 0 |X + Y = 2) = P(X = 1 |X + Y = 2) = 1/3.

Then E[X |X + Y = 1] = 2/3 > E[X |X + Y = 2] = 1/3, which means that E[X |X + Y ]
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is not increasing in X + Y .

Let X1 = X, X2 = X+Y , and X3 = X. Then (X1, X2, X3) is CIS since X2 = X+Y ↑SI
X1 = X and E[u(X3) |X1 = x1, X2 = x2] = E[u(X) |X = x1, X + Y = x2] = u(x1)

is increasing in x1 and x2 for any increasing function u. Now, consider the increasing

transformations of f1(x) = 1 and f2(x) = f3(x) = x, then (f1(X1), f2(X2), f3(X3)) =

(1, X+Y, X) is not CIS since E[f3(X3) | f1(X1), f2(X2)] = E[X | 1, X+Y ] = E[X |X+Y ] is

not increasing in X+Y . Therefore, CIS is not preserved under increasing transformations.

2

Example 2.2.6 (CI is not preserved under general increasing transformations) Assume

that the conditional distribution of X, conditioning on Y , is given by the left table be-

low. For instance, from the table, P{X = 1 |Y = 2} = 0.2. Assume that the marginal

distribution of Y is P{Y = i} = 1/3, i = 0, 1, 2. Thus, the conditional distribution of

Y , conditioning on X, is given by the right table below. For example, from the table,

P{Y = 2 |X = 1} = 2/7.

X |Y 0 1 2

0 0.4 0.2 0.4

1 0.2 0.3 0.5

2 0.2 0.2 0.6

Y |X 0 1 2

0 1/2 1/4 1/4

1 2/7 3/7 2/7

2 4/15 1/3 2/5

It is easy to verify that X ↑SI Y and Y ↑SI X. Consider the random vector V =

(V1, V2, V3) = (X, Y, X). Obviously, V = (V1, V2, V3) is CI. Consider the increasing

transformations of f1(x) = (x− 1)+, f2(x) = f3(x) = x. Now we examine the CI property

of the random vector (f1(V1), f2(V2), f3(V3)) = ((X − 1)+, Y, X).
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Note that

E [X | ((X − 1)+, Y ) = (0, 1)] = E [X | 0 ≤ X ≤ 1, Y = 1] = 0.6,

E [X | ((X − 1)+, Y ) = (0, 2)] = E [X | 0 ≤ X ≤ 1, Y = 2] = 0.5 < 0.6,

which means that E [X|((X − 1)+, Y ) = (x, y)] is not increasing in y. Thus X is not

stochastically increasing in ((X − 1)+, Y ). Therefore, (f1(V1), f2(V2), f3(V3)) = ((X −

1)+, Y, X) is not CI. 2

Motivated by the counterexamples, we feel it is necessary to reexamine the invariant

property of CIS/CI. In the following, we shall rigorously prove that CIS/CI is invariant

under strictly increasing transformations.

Definition 2.2.7 For an increasing function g : R → R, we denote the generalized

left-continuous inverse function of g by g−1 : R → [−∞,∞] and the generalized right-

continuous inverse function of g by g−1+ : R → [−∞,∞], which are defined as g−1(y) =

inf{x | g(x) ≥ y} and g−1+(y) = sup{x | g(x) ≤ y} with the convention inf{∅} = ∞ and

sup{∅} = −∞. 2

Proposition 2.2.8 Assume that random vector (X1, ..., Xn) is CIS. Then for any strictly

increasing functions fi, i = 1, ..., n, random vector (f1(X1), ..., fn(Xn)) is also CIS.

Proof. For any k ∈ {2, 3, ..., n}, we have σ(f1(X1), ..., fk−1(Xk−1)) ⊂ σ(X1, ..., Xk−1).

Thus,

E[fk(Xk) | f1(X1), ..., fk−1(Xk−1)]

= E[E[fk(Xk) |X1, ..., Xk−1] | f1(X1), ..., fk−1(Xk−1)]

= E[hk(X1, ..., Xk−1) | f1(X1), ..., fk−1(Xk−1)], (2.2.1)
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where hk(x1, ..., xk−1) = E [fk(Xk) |X1 = x1, ..., Xk−1 = xk−1]. Since Xk ↑SI (X1, ..., Xk−1),

by the definition of ↑SI , we know that hk is increasing in each argument. Recalling that fi

is strictly increasing, we have f−1
i is increasing and f−1

i (fi(x)) = x. Therefore, by (2.2.1),

we have

E[fk(Xk) | f1(X1), ..., fk−1(Xk−1)]

= E[hk(f
−1
1 (f1(X1)), ..., f−1

k−1(fk−1(Xk−1))) | f1(X1), ..., fk−1(Xk−1)] (2.2.2)

= hk(f
−1
1 (f1(X1)), ..., f−1

k−1(fk−1(Xk−1))) = g(f1(X1), ..., fk−1(Xk−1)),

where g(x1, ..., xk−1) = hk(f
−1
1 (x1), ..., f−1

k−1(xk−1)) is increasing in each argument, which

means fk(Xk) ↑SI (f1(X1), ..., fk−1(Xk−1)). 2

Proposition 2.2.8 means that CIS property is invariant under strictly increasing trans-

formations. Following this result, we immediately get the invariant property of CI.

Corollary 2.2.9 Assume that random vector (X1, ..., Xn) is CI. Then for any strictly

increasing functions fi, i = 1, ..., n, random vector (f1(X1), ..., fn(Xn)) is also CI.

In the following, we shall show that the notions of PDS and PDUO are invariant under

general increasing transformations. In doing so, we need some properties of increasing

functions and conditional expectations.

For a set A ⊆ R, we denote the inverse image of the set A under function g : R → R

by g−1(A) = {x ∈ R | g(x) ∈ A}. Thus, for any y ∈ R, g−1({y}) = {x ∈ R | g(x) = y}.
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For an increasing function g, we define the following three sets:

F0 = {y ∈ R | g−1({y}) = ∅}

= {y ∈ R | there does not exist a point x ∈ R such that g(x) = y},

F1 = {y ∈ R | g−1({y}) contains exactly one element}

= {y ∈ R | there exists exactly one point x ∈ R such that g(x) = y},

F2 = {y ∈ R | g−1({y}) contains more than one element}

= {y ∈ R | there exist more than one point x ∈ R such that g(x) = y}.

Moreover, for an increasing function g, we recall that g has at most countably many

points of discontinuities and that if g is discontinuous at x, then the left and right limits

of g at x exist with g(x−) < g(x+). Furthermore, since g is increasing, the sets F0, F1, F2

are mutually disjoint and F0 ∪ F1 ∪ F2 = R. Note that if g(x) ∈ F1, then g−1(g(x)) = x.

Lemma 2.2.10 If g is an increasing function, then the set F2 is countable.

Proof. For any y ∈ F2, there exist two points x1(y) < x2(y) in R such that x1(y), x2(y) ∈

g−1({y}), and then g(x1(y)) = g(x2(y)) = y. Thus g(x) = y for any x ∈ (x1(y), x2(y))

since g is increasing. Note that for any y1 6= y2 ∈ F2, the open intervals (x1(y1), x2(y1))

and (x1(y2), x2(y2)) are disjoint. Therefore, there is a one-to-one mapping between F2 and

the set of the mutually disjoint open intervals of R and thus F2 is countable. 2

For increasing function g and random variables X and Y = g(X), denote F3 = {y ∈

F2 |P{Y = y} > 0} and F4 = {y ∈ F2 |P{Y = y} = 0}. Then F3 and F4 are disjoint and

F3 ∪ F4 = F2. From Lemma 2.2.10, we know that F4 is countable. Thus, P{Y ∈ F4} = 0.
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Note that P{Y ∈ F0} = P{X ∈ ∅} = 0 and F0∪F1∪F3∪F4 = R. Hence, P{Y ∈ F1∪F3} =

1− P{Y ∈ F4} − P{Y ∈ F0} = 1.

Furthermore, for any function u such that E
[
|u(X)|

]
<∞ and for y ∈ F3, we define

qu(y) =
E[u(X) I{Y = y}]

P{Y = y}
.

Proposition 2.2.11 Let E
[
|u(X)|

]
<∞ and g be an increasing function. Then

E[u(X) | g(X)] = u(X) I{g(X) ∈ F1}+ qu(g(X)) I{g(X) ∈ F3}. (2.2.3)

Proof. Let X be defined on the probability space (Ω,F,P). Note that if g(X) ∈ F1, then

g−1(g(X)) = X. Denote Y = g(X) and

mu(Y ) = u(g−1(Y )) I{Y ∈ F1}+ qu(Y ) I{Y ∈ F3}. (2.2.4)

Thus, according to the definition of the conditional expectation, to prove the expression

(2.2.3), it is sufficient to show E[u(X) IA] = E[mu(Y ) IA] for all A ∈ σ(Y ). For any

A ∈ σ(Y ), there exists B ∈ B(R) such that A = {Y ∈ B} = {ω ∈ Ω |Y (ω) ∈ B}.

Recalling that g−1(Y ) = g−1(g(X)) = X if Y = g(X) ∈ F1 and P{Y ∈ F1 ∪ F3} = 1, we
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have

E[u(X) IA] = E[u(X) I{Y ∈ B}] = E[u(X) I{Y ∈ B ∩ (F1 ∪ F3)}]

= E[u(X) I{Y ∈ B ∩ F1}] + E[u(X) I{Y ∈ B ∩ F3}]

= E[u ◦ g−1(Y ) I{Y ∈ B ∩ F1}] + E

[ ∑
y0∈B∩F3

u(X) I{Y = y0}

]
= E[u ◦ g−1(Y ) I{Y ∈ B ∩ F1}] +

∑
y0∈B∩F3

E[u(X) I{Y = y0}] (2.2.5)

= E[u ◦ g−1(Y ) I{Y ∈ B ∩ F1}] +
∑

y0∈B∩F3

qu(y0)P{Y = y0} (2.2.6)

= E[u ◦ g−1(Y ) I{Y ∈ B ∩ F1}] + E[qu(Y ) I{Y ∈ B ∩ F3}]

= E[mu(Y ) I{Y ∈ B}] = E[mu(Y ) IA],

where (2.2.5) holds by the Lebesgue convergence theorem and (2.2.6) holds by the definition

of qu(y). 2

Corollary 2.2.12 For increasing function g and random variable X, it holds that X ↑SI
g(X).

Proof. By Proposition 2.2.11, we have E[u(X) | g(X)] = mu(Y ), where mu(Y ) is defined

by (2.2.4). In order to prove X ↑SI g(X), it is sufficient to show that, for any increasing

function u, mu(y) = u ◦ g−1(y) I{y ∈ F1} + qu(y) I{y ∈ F3} is increasing in y ∈ F1 ∪ F3,

which is a support of Y since P(Y ∈ F1 ∪ F3) = 1.

For any set A ⊆ R and the function u, we denote u(A) = {u(x) |x ∈ A}, sup{A} =

sup{x |x ∈ A} and inf{A} = inf{x |x ∈ A}. Let B(y) = g−1({y}), then B(y) 6= ∅ for any
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y ∈ F1 ∪ F3. For y ∈ F3, we have

qu(y) =
E[u(X) I{Y = y}]

P{Y = y}
=
E[u(X) I{X ∈ B(y)}]

P{Y = y}

≤ E [sup{u(B(y))} I{X ∈ B(y)}]
P{Y = y}

= sup{u(B(y))}.

Similarly, qu(y) ≥ inf{u(B(y))}. If y ∈ F1, then inf{u(B(y))} = u(g−1(y)) = sup{u(B(y))}

sinceB(y) = {g−1(y)} is a single point set in this case. Since for any fixed y ∈ F1∪F3, mu(y)

is of the form either u(g−1(y)) or qu(y), we have inf{u(B(y))} ≤ mu(y) ≤ sup{u(B(y))}.

Consider y1 < y2 ∈ F1 ∪ F3. For any x1 ∈ B(y1), x2 ∈ B(y2), we have g(x1) =

y1 < y2 = g(x2), and then x1 < x2 since g is increasing. Thus, u(x1) ≤ u(x2) and then

sup{u(B(y1))} ≤ inf{u(B(y2))}. Therefore mu(y1) ≤ sup{u(B(y1))} ≤ inf{u(B(y2))} ≤

mu(y2). 2

Proposition 2.2.13 Let X = (X1, ..., Xn) be an n-dimensional random vector and Y

be a random variable. If X ↑SI Y , then f(X) ↑SI g(Y ) for any increasing functions

f : Rn → R k and g : R→ R , where k ∈ N.

Proof. First, it is easy to show that X ↑SI Y =⇒ f(X) ↑SI Y . Indeed, for any increasing

function h : R k → R , h ◦ f : Rn → R is also increasing. By the definition of ↑SI , we know

that E[h◦f(X1, ..., Xn) |Y = y] is increasing in y ∈ S(Y ), which means f(X1, ..., Xn) ↑SI Y .

Then, to complete the proof, it is sufficient to show that X ↑SI Y =⇒ X ↑SI g(Y ).

Denote Z = g(Y ), note that σ(Z) ⊂ σ(Y ). Thus, for any increasing function u : Rn → R,

we have

E[u(X) |Z] = E[E[u(X) |Y ] |Z] = E[hu(Y ) |Z], (2.2.7)
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where hu(Y ) = E[u(X) |Y ] is increasing in Y since X ↑SI Y . By the properties of condi-

tional expectations, we know that (2.2.7) implies E[u(X) |Z = z] = E[hu(Y ) |Z = z] for

all z ∈ S(Z), where S(Z) is a support of Z. By Corollary 2.2.12, we have Y ↑SI Z and

thus hu(Y ) ↑SI Z. Therefore E[u(X) |Z = z] = E[hu(Y ) |Z = z] is increasing in z ∈ S(Z),

which implies that X ↑SI Z. 2

From Proposition 2.2.13, we immediately get the following property.

Proposition 2.2.14 If random vector (X1, ..., Xn) is PDS, then (f1(X1), ..., fn(Xn)) is

PDS for any increasing functions fi, i = 1, ..., n. 2

Corollary 2.2.15 Random vector (X1, ..., Xn) is PDS if and only if (F1(X1), ..., Fn(Xn))

is PDS, where Fi is the distribution function of Xi, i = 1, ..., n.

Proof. Since Fi(x), i = 1, ..., n are increasing, according to Proposition 2.2.14, we have

(X1, ..., Xn) PDS implies (F1(X1), ..., Fn(Xn)) PDS. On the other hand, from Proposition

A.4 of McNeil et al. (2005), we know that Xi = F−1
i ◦ Fi(X1) holds with probability 1

for all i = 1, ..., n. By Proposition A.3(i) of McNeil et al. (2005), F−1
i , i = 1, ..., n are

increasing. Thus, if (F1(X1), ..., Fn(Xn)) is PDS, by Proposition 2.2.14, we have (F−1
1 ◦

F1(X1), ..., F−1
n ◦ Fn(Xn)) is PDS, and hence (X1, ..., Xn) is PDS. 2

Proposition 2.2.16 Assume that that g(x) and gi(x), i = 1, 2, ..., n, are increasing func-

tions. For random vector X = (X1, ..., Xn) and random variable Y , if X = (X1, ..., Xn) ↑WSI

Y , then (g1(X1), ..., gn(Xn)) ↑WSI g(Y ).

Proof. Since X ↑WSI Y , we have X |Y = y1 ≤uo X |Y = y2 for any y1, y2 ∈ S(Y ) with

y1 < y2. Thus, by Theorem 6.G.3 of Shaked and Shanthikumar (2007), we know that
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the upper orthant order ≤uo is preserved under componentwise increasing transformations.

Thus we have (g1(X1), ..., gn(Xn)) |Y = y1 ≤uo (g1(X1), ..., gn(Xn)) |Y = y2 for any y1, y2 ∈

S(Y ) with y1 < y2, which means that h(y) = P{g1(X1) > x1, ..., gn(Xn) > xn |Y = y} is

increasing in y ∈ S(Y ) for any (x1, ..., xn) ∈ Rn.

On the other hand, since σ(g(Y )) ⊆ σ(Y ), we have

E[I{g1(X1) > x1, ..., gn(Xn) > xn} | g(Y )]

= E[E [I{g1(X1) > x1, ..., gn(Xn) > xn} |Y ] | g(Y )] = E[h(Y ) | g(Y )].

According to Corollary 2.2.12, we have Y ↑SI g(Y ), thus E[h(Y ) | g(Y ) = y] is increasing

in y ∈ S(g(Y )), which implies P{g1(X1) > x1, ..., gn(Xn) > xn | g(Y ) = y} is increasing in

y ∈ S(g(Y )) for any (x1, ..., xn) ∈ Rn. 2

Corollary 2.2.17 Assume that gi(x), i = 1, ..., n, are increasing functions. If random

vector X = (X1, ..., Xn) is PDUO, then (g1(X1), ..., gn(Xn)) is PDUO.

Proof. The proof follows immediately from the definition of PDUO and Proposition 2.2.16.

2

Corollary 2.2.18 Let Fi be the distribution function of Xi for i = 1, ..., n. Then, (X1, ...,

Xn) is PDUO if and only if (F1(X1), ..., Fn(Xn)) is PDUO.

Proof. The proof is similar to that for Corollary 2.2.15 and is omitted. 2

Corollaries 2.2.15 and 2.2.18 imply that if (X1, ..., Xn) has continuous marginal distri-

butions Fi, i = 1, 2, ..., n, then (X1, ..., Xn) is PDS (PDUO) if and only if its copula is PDS

(PDUO).

34



2.3 Generalized Inverse Functions and the Copula In-

variance

For the inverse functions g−1 and g−1+ defined in Definition 2.2.7, it is easy to check that

g−1 is left-continuous while g−1+ is right-continuous. The generalized inverse functions of

increasing functions appear in many studies. Below, we prove a property of the generalized

inverse functions, which will be used to derive the invariant property of copulas under

increasing transformations.

Proposition 2.3.1 Let g : R→ R be an increasing function and x, z ∈ R.

(i) If g is left continuous, then g(x) ≤ z if and only if x ≤ g−1+(z).

(ii) If g is right continuous, then g(x) ≥ z if and only if x ≥ g−1(z).

(iii) The following implications hold: x < g−1+(z) =⇒ g(x) ≤ z =⇒ x ≤ g−1+(z).

Proof. (i) If g(x) ≤ z, then x ∈ {y | g(y) ≤ z} and thus x ≤ sup{y | g(y) ≤ z} = g−1+(z).

Conversely, if x ≤ g−1+(z), then g(x) ≤ g(g−1+(z)) since g is increasing. Because g−1+(z)

is the supremum of the set {y | g(y) ≤ z}, there exists a series {xn}∞n=1 in the set such

that g(xn) ≤ z and xn ↑ g−1+(z) as n→∞. Since g is left-continuous, then g(g−1+(z)) =

limn→∞ g(xn) ≤ z. Thus, g(x) ≤ g(g−1+(z)) ≤ z.

(ii) The statement is from Proposition A.3(iv) in McNeil et al. (2005).

(iii) Assume that x < g−1+(z). If g(x) > z, then g(x) > g(y) for all y ∈ {t :

g(t) ≤ z}. Hence, x > y for all y ∈ {t | g(t) ≤ z} since g is increasing. Thus, x ≥

sup{t | g(t) ≤ z} = g−1+(z), which contradicts the assumption of x < g−1+(z). Therefore,
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x < g−1+(z) =⇒ g(x) ≤ z. Furthermore, assume g(x) ≤ z, then x ∈ {y | g(y) ≤ z} and

thus x ≤ sup{y | g(y) ≤ z} = g−1+(z). 2

Lemma 2.3.2 Assume that random variable Xi has continuous marginal distribution

function Fi for i = 1, ..., n and (X1, ..., Xn) has copula C. If f1, ..., fn are increasing func-

tions, then (f1(X1), ..., fn(Xn)) also has the copula C.

Proof. Note that P{X1 ≤ x1, ..., Xn ≤ xn} = C(F1(x1), ..., Fn(xn)). For any i = 1, ..., n,

we have P{Xi = f−1+
i (zi)} = 0 since Xi has a continuous distribution function. According

to Proposition 2.3.1 (iii), we have for any i = 1, ..., n, {Xi < f−1+
i (zi)} ⊆ {fi(Xi) ≤ zi} ⊆

{Xi ≤ f−1+
i (zi)}, which, together with P{Xi = f−1+

i (zi)} = 0, implies that Ffi(Xi)(zi) =

P{fi(Xi) ≤ zi} = P{Xi ≤ f−1+
i (zi)} = Fi ◦ f−1+

i (zi). Therefore,

P{f1(X1) ≤ z1, ..., fn(Xn) ≤ zn} = P{X1 ≤ f−1+
1 (z1), ..., Xn ≤ f−1+

n (zn)}

= C(F1 ◦ f−1+
1 (z1), ..., Fn ◦ f−1+

n (zn)) = C(Ff1(X1)(z1), ..., Ffn(Xn)(zn)),

which means that C is also a copula of (f1(X1), ..., f(Xn)). 2

Theorem 2.3.3 Assume that f1, ..., fn are increasing functions. If random vector (X1, ...,

Xn) has copula C, then (f1(X1), ..., fn(Xn)) also has the copula C.

Proof. Since random vector (X1, ..., Xn) has copula C, by the last paragraph of the proof

for Theorem 5.3 of McNeil et al. (2005), we know that there exists a uniform random vector

(U1, ..., Un) defined on [0, 1]n such that (U1, ..., Un) has distribution function C(u1, ..., un)

and (F−1
1 (U1), ..., F−1

n (Un)) =st (X1, ..., Xn).

Thus, (f1(X1), ..., fn(Xn)) =st (f1(F−1
1 (U1)), ..., fn(F−1

n (Un))) or (f1(X1), ..., fn(Xn))

and (f1(F−1
1 (U1)), ..., fn(F−1

n (Un))) have the same joint distribution function and hence
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they have the same copula. On the other hand, since fi ◦ F−1
i is increasing and Ui has the

continuous marginal distribution function, by Lemma 2.3.2, we know that (U1, ..., Un) and

(f1(F−1
1 (U1)), ..., fn(F−1

n (Un))) have the same copula C. Therefore, (f1(X1), ..., fn(Xn))

has the copula C as well. 2

Theorem 2.3.3 generalizes Proposition 4.7.4 of Denuit et al. (2006) and Proposition 5.6.

of McNeil et al. (2005).

Combining Theorem 2.3.3 and Proposition 1.4.1, we get the following invariant property

about survival copulas.

Corollary 2.3.4 Assume that f1, ..., fn are increasing functions. If random vector (X1, ..., Xn)

has survival copula C, then (f1(X1), ..., fn(Xn)) also has survival copula C.

Proof. According to Proposition 1.4.1, we know that (−X1, ...,−Xn) has copula C. Define

gi(x) = −fi(−x), i = 1, ..., n. Then gi(x) is increasing for i = 1, ..., n. Combining with

Theorem 2.3.3, we have (g1(X1), ..., gn(Xn)) has copula C, i.e., (−f1(X1), ...,−fn(Xn)) has

copula C. Therefore, (f1(X1), ..., fn(Xn)) also has survival copula C. 2

Following Corollary 2.3.4, we immediately get

Corollary 2.3.5 If C(u1, ..., un) is a copula (survival copula) of random vector (X1, ...,

Xn), then C(u1, ..., un) is a survival copula (copula) of (f1(X1), ..., fn(Xn)) for any decreas-

ing functions f1(x), ..., fn(x). 2
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2.4 The Characterization of PDUO in Terms of Sur-

vival Copulas

If the distribution function Fi of Xi is continuous for i = 1, ..., n, then Fi(Xi) has the uni-

form distribution over [0, 1] and thus the joint distribution function of (F1(X1), ..., Fn(Xn))

is the unique copula of (X1, ..., Xn), which links the marginal distributions of X1, ..., Xn.

This means that the PDS and PDUO properties of a continuous random vector can be

characterized by their copulas. Actually, if the joint distribution function of a continuous

random vector (X1, ..., Xn) is linked by a Gaussian copula, then (X1, ..., Xn) is PDS if and

only if all off-diagonal elements of the covariance matrix in the Gaussian copula are non-

negative. See, for example, Joe (1997). Now, using Corollary 2.2.18, we could develop a

sufficient and necessary condition for PDUO in terms of survival copulas.

Let (X1, ..., Xn) be a random vector with marginal distribution functions F1, ..., Fn and

marginal survival functions F̄i(x) = 1 − Fi(x), i = 1, ..., n. The joint survival function of

the random vector is denoted by F̄ (x1, ..., xn) = P{X1 > x1, ..., Xn > xn}, which is linked

by a copula Ĉ as

F̄ (x1, ..., xn) = Ĉ(F̄1(x1), ..., F̄n(xn)).

Such a copula Ĉ is called a survival copula of the random vector (X1, ..., Xn). See, for

example, McNeil et al. (2005).

Proposition 2.4.1 Assume that (X1, ..., Xn) has continuous marginal distribution func-

tions F1, ..., Fn with survival copula Ĉ. Then (X1, ..., Xn) is PDUO if and only if Ĉ is

concave in each argument.
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Proof. Denote Ui = Fi(Xi), i = 1, 2, ..., n, then Ui has a uniform distribution over [0, 1].

According to Corollary 2.2.18, it is sufficient to show that (U1, ..., Un) is PDUO if and only

if Ĉ is concave in each argument.

Let C̄ be the survival function of (U1, ..., Un). Note that the survival function C̄ is

decreasing in each argument and thus differentiable with respect with each argument almost

everywhere. Thus, for any uk ∈ [0, 1] and k ∈ {1, 2, ..., n},

P{U1 > u1, ..., Uk−1 > uk−1, Uk+1 > uk+1, ..., Un > un |Uk = uk}

= lim
∆u↓0

{
P{U1 > u1, ..., Uk > uk, ..., Un > un}

P{Uk ∈ (uk, uk + ∆u]}

− P{U1 > u1, ..., Uk > uk + ∆u, ..., Un > un}
P{Uk ∈ (uk, uk + ∆u]}

}
= lim

∆u↓0

C̄(u1, ..., uk, ..., un)− C̄(u1, ..., uk + ∆u..., un)

∆u

= − ∂

∂uk
C̄(u1, ..., uk, ..., un). (2.4.1)

Hence, (U1, ..., Uk−1, Uk+1, ..., Un) ↑WSI Uk if and only if − ∂
∂uk

C̄(u1, u2, ..., un) is increasing

in uk ∈ [0, 1] (almost everywhere) for any fixed u1, ..., uk−1, uk+1, ..., un if and only if C̄ is

concave in each argument.

Recall (1.4.1), we know that C̄(u1, u2, ..., un) = Ĉ(1 − u1, 1 − u2, ..., 1 − un). Hence,

C̄(u1, ..., uk, ..., un) is concave in uk if and only if Ĉ(u1, ..., uk, ..., un) is concave in uk.

Therefore, we conclude that continuous random vector (X1, ..., Xn) is PDUO if and only if

their survival copula Ĉ is concave in each argument. 2

Proposition 2.4.1 enables one to easily construct a PDUO random vector by choosing a

copula such that the copula is concave in each argument. We give such an example below.
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Example 2.4.2 Assume that that a continuous random vector (X1, ..., Xn) is linked by a

survival Archimedean copula

Ĉ(u1, u2, ..., un) = Ψ−1

(
n∑
k=1

Ψ(uk)

)
, uk ∈ [0, 1], k = 1, 2, ..., n. (2.4.2)

Rewrite (2.4.2), we get Ψ(Ĉ) =
∑n

k=1 Ψ(uk). Then, differentiating with respect to uk

on both sides of the equation, we have Ψ′(Ĉ)× ∂Ĉ
∂uk

= Ψ′(uk). Therefore, ∂Ĉ
∂uk

= Ψ′(uk)

Ψ′(Ĉ)
and

∂2Ĉ

∂u2
k

=
Ψ′(Ĉ)Ψ′′(uk)−Ψ′′(Ĉ) ∂Ĉ

∂uk
Ψ′(uk)

[Ψ′(Ĉ)]2
=

[Ψ′(uk)]
2

Ψ′(Ĉ)
×

[
Ψ′′(uk)

[Ψ′(uk)]2
− Ψ′′(Ĉ)

[Ψ′(Ĉ)]2

]
.

Recall that the survival copula Ĉ = Ĉ(u1, u2, ..., un) is a copula. By the Fréchet bounds

for copulas, we have Ĉ = Ĉ(u1, u2, ..., un) ≤ min{u1, ..., un} ≤ uk. Thus, Ĉ(u1, ..., un) is

concave in each argument, or ∂2Ĉ
∂u2

k
≤ 0 for each k ∈ {1, ..., n}, if

Ψ′′(x)

[Ψ′(x)]2
is increasing in x ∈ [0, 1]. (2.4.3)

Hence, if the joint survival function of a continuous random vector (X1, ..., Xn) is linked

by the Archimedean copula (1.4.2), then (X1, ..., Xn) is PDUO if (2.4.3) holds.

Two examples of the Archimedean copula satisfying (2.4.3) are the multivariate Gum-

bel copula with Ψ(x) = (− lnx)θ, θ ≥ 1 and the multivariate Clayton copula with Ψ(x) =

x−θ − 1, θ > 0. In both cases, the condition (2.4.3) holds. We refer to Müller and Scarsini

(2005) for a detailed study of the relationships between Archimedean copulas and other

notions of positive dependence. 2
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Chapter 3

Optimal Reinsurance with Positive

Dependence

3.1 Introduction

Let {Xi, i ≥ 1} be random variables. Assume that an insurer has n lines of business or

the insurance portfolio of an insurer has n policyholders. The loss or claim in line i or for

policy holder i is Xi, i = 1, ..., n. Without reinsurance, the total loss/claim of the insurer

is Sn =
∑n

i=1Xi, which is called the individual risk model. However, each line of business

or each policyholder may produce a large claim. To protect from a potential huge loss, the

insurer applies reinsurance strategy Ii to the loss in line i. With the reinsurance strategy

Ii, the insurer retains the part of the loss in line i, which is Ii(Xi), and a reinsurer covers

the rest of the loss, which is Xi − Ii(Xi), where the function Ii(x) is increasing in x ≥ 0

and satisfies 0 ≤ Ii(x) ≤ x for i = 1, 2, ..., n. Thus, the total retained loss of the insurer is

SIn = I1(X1) + I2(X2) + · · ·+ In(Xn) and the total loss covered by the reinsurer is Sn−SIn,
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where we use I = (I1, ..., In) to denote the n-dimensional reinsurance policy. Such a policy

I is called an individualized reinsurance strategy.

In the reinsurance contract I, the insurer needs to pay a reinsurance premium to the

reinsurer. As in Denuit and Vermandele (1998) and Vanheerwaarden et al. (1989), we

assume that the reinsurance premium is charged by the expected value principle and is fixed

to a constant $P , which means that the reinsurance premium is equal to (1+θR)E[Sn−SIn] =

P , where θR > 0 is called the security loading of the reinsurer. In this way, the insurer

can control her cost or budget for the reinsurance contract at the amount of P . Note that

(1+θR)E[Sn−SIn] = P is equivalent to assuming that E[SIn] is fixed and equal to a constant

p = E[Sn]−P/(1+θR), which means that the expected retained loss of the insurer is fixed.

We are interested in the following class of admissible reinsurance strategies:

Dpn =

I = (I1, ..., In)

∣∣∣∣∣∣ Ii(x) is increasing in x ≥ 0 with

0 ≤ Ii(x) ≤ x for i = 1, ..., n and E[SIn] = p > 0

 . (3.1.1)

In particular, when Ii(x) = x ∧ di for i = 1, ..., n, the reinsurance I = (I1, ..., In) is called

the individualized excess-of-loss strategy and (d1, ..., dn) is called the retention vector of

the individualized excess-of-loss strategy.

In this chapter, we study what the optimal reinsurance strategy I∗ = (I∗1 , ..., I
∗
n) ∈ Dpn

is for the insurer under certain optimization criteria. We use a unified criterion and study

the following optimization problem:

inf
I∈Dp

n

E[u(SIn)] (3.1.2)

for a convex function u.

This optimization criterion (3.1.2) includes the criteria of minimizing the variance of
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the total retained loss of the insurer; maximizing the expected exponential utility for the

insurer; maximizing the expected concave utility function for the insurer; and so on.

When X1, ..., Xn are exchangeable random variables, Denuit and Vermandele (1998)

showed that the optimal reinsurance strategy for problem (3.1.2) is the excess-of-loss

strategy with the equal retentions for each line of business. A further study of Denuit

and Vermandele (1998) about optimal reinsurance with exchangeable risks can be found

in Denuit and Vermandele (1999).

However, in individualized reinsurance treaties, one is often concerned about dependent

risks, and in particular positively dependent risks. For example, in a two-line insurance

business with life insurance and non-life insurance, the property losses and the numbers of

death in earthquakes, tornadoes, and hurricanes are usually positively dependent. Roughly

speaking, two risks are positively dependent if a large value of one risk results in a potential

large value of the other. Several notions of positive dependence were proposed to describe

such dependent risks in the literature.

In this chapter, we assume that the risks in the individual risk model are positively

dependent through the stochastic ordering (PDS), which is defined in Chapter 2. We

show that when X1, ..., Xn are PDS dependent risks, the optimal reinsurance strategy for

problem (3.1.2) is the excess-of-loss strategy. To do so, we denote Dp∗n by all individualized

excess-of-loss strategies in Dpn, namely

Dp∗n =
{
Id = (Id1 , ..., Idn)

∣∣ Id ∈ Dpn, Idi(x) = x ∧ di, di ≥ 0, i = 1, ..., n
}
.

This subclass Dp∗n is uniquely determined by the retention vector (d1, ..., dn) and there is a
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one-to-one mapping between Dp∗
n and Lpn that is defined as

Lpn =
{

(d1, ..., dn)
∣∣∣ di ≥ 0, i = 1, ..., n and E

[ n∑
i=1

(Xi ∧ di)
]

= p > 0
}
. (3.1.3)

We will show that for the PDS dependent risks X1, ..., Xn and a convex function u,

inf
I∈Dp

n

E[u(SIn)] = inf
I∈Dp∗

n

E[u(SIn)], (3.1.4)

which means that the optimal strategies for problem (3.1.2) are the individualized excess-

of-loss strategies and that the infinite-dimensional optimization problem (3.1.2) is reduced

to the feasible finite-dimensional optimization problem:

inf
(d1,...,dn)∈Lp

n

E
[
u
( n∑
i=1

(Xi ∧ di)
)]
. (3.1.5)

The rest of the chapter is organized as follows. In Section 3.2, we recall the notions

of several positive dependence including the stochastically increasing (SI) and the positive

dependence through the stochastic ordering (PDS). In Section 3.3, we first improve the

results about convex order of PDS random vectors in Müller and Scarsini (2005). We then

prove that the individualized excess-of-loss strategy is the optimal reinsurance form for

the insurer with PDS dependent risks. This extends the study in Denuit and Vermandele

(1998) on individualized reinsurance strategies. In Section 3.4, we use a two-line insurance

business model to illustrate how to derive the explicit expressions for the retention vector

(d∗1, d
∗
2) ∈ Lp2 in the optimal individualized excess-of-loss strategy such that E

[
u
(
X1 ∧ d∗1 +

X2 ∧ d∗2
)]

= inf(d1,d2)∈Lp
2
E
[
u
(
X1 ∧ d1 + X2 ∧ d2

)]
. In Section 3.5, we apply the results

in previous sections to study the collective risk model. The individualized excess-of-loss

strategy is proved optimal in the sense of minimizing the ruin probability or stochastically
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maximizing the ruin time. In Section 3.6, we study the optimal reinsurance problem with

a random initial wealth. The excess-of-loss strategy is proved to preserve its optimality

under certain assumptions on the dependent structure between the initial wealth and the

risk.

3.2 Optimal Reinsurance Form with Dependent Risks

In this section, we first prove that two convolution preservation results of the convex order

for SI and PDS random vectors in Lemma 3.2.5 and Theorem 3.2.6. Then, we can determine

the optimal reinsurance forms with the PDS dependent risks in Propositions 3.2.10 and

3.2.12 for the individual risk model and the collective risk model, respectively.

Müeller and Stoyan (2002) introduced the concept of directional convex order for ran-

dom vectors.

Definition 3.2.1 A multivariate function φ : Rn → R is said to be directional convex, if

φ(x1 + y)− φ(x1) ≤ φ(x2 + y)− φ(x2),

for all x1 ≤ x2 and y ≥ 0.

Definition 3.2.2 Random vector X = (X1, ..., Xn) is said to be smaller than Y = (Y1, ..., Yn)

in the directional convex order, denoted as X ≤dcx Y, if E [φ(X)] ≤ E [φ(Y)] for all direc-

tional convex function φ such that the above expectations exist.

Random vector X = (X1, ..., Xn) is said to be smaller than Y = (Y1, ..., Yn) in the

increasing directional convex order, denoted as X ≤idcx Y, if E [φ(X)] ≤ E [φ(Y)] for all

increasing directional convex function φ such that the above expectations exist.
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Lemma 3.2.3 Assume that random vectors X = (X1, ..., Xn) and Y = (Y1, ..., Yn) are

both comonotonic.

(i) If Xi ≤cx Yi for all i = 1, ..., n, then X ≤dcx Y.

(ii) If Xi ≤icx Yi for all i = 1, ..., n, then X ≤idcx Y.

Proof. See Lemma 2.12.13 in Müeller and Stoyan (2002) . 2

Corollary 3.2.4 Let X be random variable and f, g, h be increasing functions.

(i) If g(X) ≤cx h(X), then E [f(X)g(X)] ≤ E [f(X)h(X)];

(ii) If g(X) ≤icx h(X) and f(x), g(x) ≥ 0, then E [f(X)g(X)] ≤ E [f(X)h(X)].

Proof. (i). Apparently, random vector (f(X), g(X)) is comonotonic, so is (f(X), h(X)).

Since f(X) ≤cx f(X) and g(x) ≤cx h(X), then (f(X), g(X)) ≤dcx (f(X), g(X)) according

to Lemma 3.2.3.

Consider the function φ1(x, y) = xy, it is easy to verify that φ1(x, y) is directional

convex. According to Definition 3.2.2, we have E[φ1(f(X), g(X))] ≤ E[φ1(f(X), h(X))],

i.e., E [f(X)g(X)] ≤ E [f(X)h(X)].

(ii) Consider the function φ2(x, y) = xyI{x ≥ 0, y ≥ 0}. Note that φ2(x, y) is increasing

directional convex. Following the same arguments as in (i), we have E [f(X)g(X)] =

E[φ2(f(X), g(X))] ≤ E[φ2(f(X), h(X))] = E [f(X)h(X)]. 2

Lemma 3.2.5 Let X and Y be random variables. If Y ↑SI X, then h1(X) + Y ≤cx
h2(X) + Y for any increasing functions h1 and h2 such that h1(X) ≤cx h2(X).
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Proof. It is sufficient to show that h1(X)+Y ≤sl h2(X)+Y , or equivalently, to show that

E[(h1(X) + Y − t)+] ≤ E[(h2(X) + Y − t)+] for all t ∈ R.

It is easy to verify that (x− t)+− (y− t)+ ≤ I{x > t}× (x− y) for any x, y, t ∈ R, then

E [(h1(X) + Y − t)+ − (h2(X) + Y − t)+]

≤ E [I{(h1(X) + Y ) > t} × (h1(X)− h2(X))]

= E [E [I{(h1(X) + Y ) > t}|X]× (h1(X)− h2(X))]

= E [pt(X)(h1(X)− h2(X))], (3.2.1)

where the function pt(x) = E [I{(h1(x) + Y ) > t} |X = x] ≥ 0 is well defined since

0 ≤ I{x > t} ≤ 1.

From Proposition 2.2.2, we know that (Y,X) ↑SI X and h1(X) + Y ↑SI X. Therefore,

the function pt(x) = E [I{h1(x) + Y > t} |X = x] is increasing in x since I{x > t} is

increasing in x. Thus, both (pt(X), h1(X)) and (pt(X), h2(X)) are comonotonic vectors.

According to Corollary 3.2.4, we have E [pt(X)h1(X)] ≤ E [pt(X)h2(X)], which completes

the proof by (3.2.1). 2

Lemma 3.2.5 is an interesting result and will be used to prove the following Theo-

rem 3.2.6. Also, Lemma 3.2.5 generalizes Theorems 1 and 2 of Aboudi and Thon (1995),

in which they presented the optimal insurance policies when the insurance risk has posi-

tively dependent relationships with the random initial wealth.

Theorem 3.2.6 Let (X1, ..., Xn) be a PDS random vector, and fi, gi be increasing func-

tions such that fi(Xi) ≤cx gi(Xi) for i = 1, · · · , n. Then
∑n

k=1 fk(Xk) ≤cx
∑n

k=1 gk(Xk).
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Proof. According to Proposition 2.2.2, we have
∑k−1

i=1 fi(Xi) +
∑n

i=k+1 gi(Xi) ↑SI Xk for

any k = 1, · · · , n, where
∑j

k=i ak is defined to be 0 for i > j. Applying Lemma 3.2.5, we

have for any k = 1, ..., n,

k−1∑
i=1

fi(Xi) +
n∑

i=k+1

gi(Xi) + fk(Xk) ≤cx
k−1∑
i=1

fi(Xi) +
n∑

i=k+1

gi(Xi) + gk(Xk),

or equivalently,

k∑
i=1

fi(Xi) +
n∑

i=k+1

gi(Xi) ≤cx
k−1∑
i=1

fi(Xi) +
n∑
i=k

gi(Xi). (3.2.2)

By applying the relationship (3.2.2) repeatedly from k = n to k = 1 and using the transitive

property of the convex order, we have

n∑
i=1

fi(Xi) ≤cx
n−1∑
i=1

fi(Xi) +
n∑
i=n

gi(Xi) ≤cx
n−2∑
i=1

fi(Xi) +
n∑

i=n−1

gi(Xi)

≤cx · · · ≤cx
1∑
i=1

fi(Xi) +
n∑
i=2

gi(Xi) ≤cx
n∑
i=1

gi(Xi).

It completes the proof. 2

Using Theorem 3.2.6, we can prove the convolution preservation of the convex order

for two random vectors with the same PDS copula in the following corollary.

Corollary 3.2.7 Assume that random vectors (Y1, ..., Yn) and (Z1, ..., Zn) have the same

PDS copula. If Yk ≤cx Zk for k = 1, ..., n, then
∑n

k=1 Yk ≤cx
∑n

k=1 Zk.

Proof. Let Fi and Gi be the distributions of Yi and Zi, respectively. Let the common

PDS copula be C(u1, ..., un) = P{U1 ≤ u1, ..., Un ≤ un} for some uniform random vec-
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tor (U1, ..., Un) defined on [0, 1]n. Then, (U1, ..., Un) is a PDS random vector. From

the last paragraph of the proof for Theorem 5.3 of McNeil et al. (2005), we know that

(Y1, ..., Yn) =st (F−1
1 (U1), ..., F−1

n (Un)) and (Z1, ..., Zn) =st (G−1
1 (U1), ..., G−1

n (Un)), where

F−1
i and G−1

i are the left-continuous generalized inverses of Fi and Gi and they are in-

creasing. Thus,
∑n

k=1 Yk ≤cx
∑n

k=1 Zk by Theorem 3.2.6. 2

Remark 3.2.8 We point out that for all non-negative constants α1, ..., αn, (Y1, ..., Yn) and

(α1Y1, ..., αnYn) have the same copula, and (α1Z1, ..., αnZn) and (Z1, ..., Zn) have the same

copula. Thus, if (Y1, ..., Yn) and (Z1, ..., Zn) have the same PDS copula, and Yk ≤cx Zk
for k = 1, ..., n, then by Corollary 3.2.7, we have

∑n
k=1 αkYk ≤cx

∑n
k=1 αkZk since Yk ≤cx

Zk =⇒ αkYk ≤cx αkZk for k = 1, ..., n. Hence, Corollary 3.2.7 extends Corollary 3.12.15 of

Müeller and Stoyan (2002) about the preservation of the convex order under non-negative

linear combinations of CI random variables since CI =⇒ PDS. 2

Similar as in Theorem 3.2.6, we have an analogous result for PDUO random vector

below.

Theorem 3.2.9 Let (X1, ..., Xn) be a PDUO random vector, and fi, gi : R+ → R+ be

increasing functions such that fi(Xi) ≤icx gi(Xi) for i = 1, ..., n. Then E [
∏n

i=1 fk(Xk)] ≤

E [
∏n

i=1 gk(Xk)].

Proof. It is sufficient to show that E [
∏n

i=1 fi(Xi)] ≤ E [
∏n−1

i=1 fi(Xi) × gn(Xn)]. Denote

W =
∏n−1

i=1 fi(Xi), then E[W |Xn] = h(Xn) is increasing in Xn by Proposition 2.2.4. There-

fore, applying Corollary 3.2.4, we have

E [W × fn(Xn)] = E [E [W × fn(Xn)|Xn]] = E [h(Xn)fn(Xn)]

≤ E [h(Xn)gn(Xn)] = E [E [W × gn(Xn)|Xn]] = E [W × gn(Xn)]. 2
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Using Theorem 3.2.6 and 3.2.9, we can show in the following propositions that, in the

presence of PDS or PDUO, the optimal reinsurance for the optimization problem 3.1.2 is

the individualized excess-of-loss strategy.

Proposition 3.2.10 Assume that random vector (X1, · · · , Xn) is PDS, then for any rein-

surance policy I = (I1, ..., In) ∈ Dpn, there exists retention vector (d1, ..., dn) ∈ Lpn such

that

n∑
i=1

(Xi ∧ di) ≤cx
n∑
i=1

Ii(Xi),

where di is determined by E[Xi ∧ di] = E[Ii(Xi)], i = 1, ..., n.

Proof. Since 0 ≤ E[Ik(Xk)] ≤ E[Xk] and the function g(x) = E[Xk ∧ x] is continuous

and increasing in x ∈ [0,∞) with g(0) = 0 and g(∞) = E[Xk], there exists dk ∈ [0,∞]

such that g(dk) = E[Xk ∧ dk] = E[Ik(Xk)]. Note that 0 ≤ Ik(x) ≤ x for all x ≥ 0. Thus,

according to Lemma 1.2.9, we have Xk ∧ dk ≤cx Ik(Xk) for k = 1, · · · , n. Therefore,∑n
i=1(Xi ∧ di) ≤cx

∑n
i=1 Ii(Xi) from Theorem 3.2.6. 2

Proposition 3.2.11 Assume that random vector (X1, · · · , Xn) is PDUO, then for any

reinsurance policy I = (I1, ..., In) ∈ Dpn, there exists retention vector (d1, ..., dn) ∈ Lpn such

that

E

[
u

(
n∑
i=1

(Xi ∧ di)

)]
≤ E

[
u

(
n∑
i=1

Ii(Xi)

)]
, for any u ∈ U+

exp ∪ Umom,

where di is determined by E[Xi ∧ di] = E[Ii(Xi)], i = 1, ..., n.
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Proof. The conclusion follows immediately from Theorem 3.2.9 if u ∈ U+
exp , i.e., u(x) = eγx

with γ > 0.

In the case that u ∈ Umom, i.e., u(x) = xm with m ∈ N, consider the following set

K =

{
(k1, ..., kn)

∣∣∣∣∣
n∑
i=1

ki = m, and k1, ..., kn ∈ N

}
.

Since Xi ∧ di ≤cx Ii(Xi), then (Xi ∧ di)ki ≤icx (Ii(Xi))
ki for any ki ∈ N. From Theo-

rem 3.2.9, we have E
[∏n

i=1(Xi ∧ di)ki
]
≤ E

[∏n
i=1(Ii(Xi))

ki
]
. Therefore,

E

[(
n∑
i=1

(Xi ∧ di)

)m]
=

∑
(k1,...,kn)∈K

m!∏n
i=1 ki!

E

[
n∏
i=1

(Xi ∧ di)ki
]

≤
∑

(k1,...,kn)∈K

m!∏n
i=1 ki!

E

[
n∏
i=1

(Ii(Xi))
ki

]
= E

[(
n∑
i=1

Ii(Xi)

)m]
2

Now, we apply the above result to consider the optimal reinsurance in a collective risk

model. In this model, we assume that the number of claims in the insurance portfolio of an

insurer is a counting random variable N and the amount of claim i is Xi, i = 1, 2, ... and

that the reinsurance strategy Ii is applied to claim i for i = 1, 2, ..., where Ii(x) satisfies

the same conditions assumed in the individual risk model, namely Ii(x) is increasing in

x ≥ 0 and 0 ≤ Ii(x) ≤ x for i = 1, 2, .... In this case, the total retained loss for the insurer

is
∑N

i=1 Ii(Xi).

Proposition 3.2.12 Let {X1, X2, · · · } be a sequence of random variables and N be a

counting random variable independent of {X1, X2, · · · }. If for any n = 2, 3, ..., the random

vector (X1, · · · , Xn) is PDS, then for any Ii(x), i = 1, 2, ..., there exist di ∈ [0,∞], i =
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1, 2, ..., such that

N∑
i=1

(Xi ∧ di) ≤cx
N∑
i=1

Ii(Xi),

where di is determined by E[Xi ∧ di] = E[Ii(Xi)], i = 1, 2, ....

Proof. According to Proposition 3.2.10,
∑n

i=1(Xi ∧ di) ≤cx
∑n

i=1 Ii(Xi) for any fixed n.

Thus for any convex function u, we have

E

[
u

(
n∑
i=1

(Xi ∧ di)

)]
≤ E

[
u

(
n∑
i=1

Ii(Xi)

)]
.

Therefore,

E

[
u

(
N∑
i=1

(Xi ∧ di)

)]
=
∞∑
n=0

P{N = n}E

[
u

(
n∑
i=1

(Xi ∧ di)

)]

≤
∞∑
n=0

P{N = n}E

[
u

(
n∑
i=1

Ii(Xi)

)]
= E

[
u

(
N∑
i=1

Ii(Xi)

)]
,

which means
∑N

i=1(Xi ∧ di) ≤cx
∑N

i=1 Ii(Xi). 2

If X1, X2, ... are a sequence of independent random variables, then for any n = 2, 3, ...,

the random vector (X1, X2, · · · , Xn) is PDS. Furthermore, if X1, X2, ... are a sequence

of comonotonic random variables or there exist a random variable Z and a sequence of

increasing functions {fi, i = 1, 2, ...} such that Xi = fi(Z), i = 1, 2, ..., then for any n =

2, 3, ..., the random vector (X1, X2, · · · , Xn) is PDS. Propositions 3.2.10 and 3.2.12 mean

that the excess-of-loss reinsurance is the optimal strategy for an insurer to minimize certain

risk measures of the retained loss.
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3.3 Explicit Expressions for the Retentions in the Op-

timal Individualized Excess-of-loss Strategy

In this section, we illustrate how to derive the explicit expressions for the retentions in

the optimal individualized excess-of-loss strategy. In general, it is difficult to derive such

expressions due to the complexity of dependent risks. Here, we consider the bivariate case

and assume that the company has two lines of business or n = 2 in the individual risk

model. We assume that X1 and X2 are nonnegative random variables with distribution

functions F1 and F2, respectively.

To avoid tedious arguments, throughout this section, we assume F 1(d1) = 1−F1(d1) > 0

and F 2(d2) = 1−F2(d2) > 0 for any d1, d2 ∈ R. We will derive the explicit expressions for

(d∗1, d
∗
2) ∈ L such that

E[u
(
X1 ∧ d∗1 +X2 ∧ d∗2

)
] = inf

(d1,d2)∈L
E
[
u
(
X1 ∧ d1 +X2 ∧ d2

)]
, (3.3.1)

where

L = Lp2 =

{
(d1, d2)

∣∣∣∣ ∫ d1

0

F 1(x)dx+

∫ d2

0

F 2(x)dx = p > 0, d1, d2 ≥ 0

}
.

Moreover, we assume p < E[X1] + E[X2]. Otherwise, if p ≥ E[X1] + E[X2], then

L = {(∞, ∞)} or L = ∅.

To derive the explicit solutions given in Theorems 3.3.4 and 3.3.5, we need the following

Lemmas 3.3.1-3.3.3.

Lemma 3.3.1 On the set L, the mapping from d1 to d2 is one-to-one. Denote the mapping
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as d2 = L(d1). Then, L(d1) is continuous, differentiable and strictly decreasing in d1, with

∂d2

∂d1
= −F 1(d1)

F 2(d2)
. 2

Proof. To show that the mapping is one-to-one, it suffices to show that for any (d1, d2)

and (d′1, d
′
2) ∈ L, d1 = d′1 if and only if d2 = d′2. First assume d1 = d′1. Recalling that

∫ d′1

0

F 1(x)dx+

∫ d′2

0

F 2(x)dx =

∫ d1

0

F 1(x)dx+

∫ d2

0

F 2(x)dx = p, (3.3.2)

we have
∫ d′2

0
F 2(x)dx =

∫ d2

0
F 2(x)dx, or

∫ d′2
d2
F 2(x)dx = 0, which implies d2 = d′2 since

F 2(s) > 0,∀x ∈ R . Similarly, d2 = d′2 implies d1 = d′1. Therefore, on L, there is a

one-to-one mapping from d1 to d2.

Differentiating the second equation in (3.3.2) with respect to d1 on both sides, we have

F 1(d1) + F 2(d2)∂d2

∂d1
= 0, which implies that ∂d2

∂d1
= −F 1(d1)

F 2(d2)
< 0. Thus L(d1) is strictly

decreasing. 2

Lemma 3.3.1 means that the set L is a continuous and strictly decreasing curve in

the first quadrant and the inverse function L−1 of L is also continuous, differentiable and

strictly decreasing.

To avoid tedious discussions, in the following, we further assume E[X1] < p and E[X2] <

p. Thus, both limits of limd2→∞ L
−1(d2) and limd1→∞ L(d1) exist on the set L. We denote

by d1 = limd2→∞ L
−1(d2) and d2 = limd1→∞ L(d1). Therefore, (d1, ∞) is the domain of the

function L(d1) with limd1↓d1
L(d1) = ∞ and d2 = limd1→∞ L(d1). Furthermore, on the set

L, d1 ↓ d1 ⇐⇒ d2 →∞.
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In the following, we denote

M(d1, d2) = E [u(X1 ∧ d1 +X2 ∧ d2)], (d1, d2) ∈ L.

Note that M(d1, d2) = M(d1, L(d1)) is a univariate function of d1 on the set L.

Lemma 3.3.2 Let function u be continuous and monotonic such that E
[
|u(X1 +X2)|

]
<

∞. Then M(d1, d2) = M(d1, L(d1)) is continuous in d1 ∈ (d1, ∞) with

lim
d1→∞

M(d1, L(d1)) = M(∞, d2) = E [u(X1 +X2 ∧ d2)].

and

lim
d1↓d1

M(d1, L(d1)) = lim
d2→∞

M(L−1(d2), d2) = M(d1, ∞) = E [u(X1 ∧ d1 +X2)].

Proof. Since u(x) is monotonic, and X1, X2 ≥ 0, then |u(X1 ∧ d1 + X2 ∧ d2)| is bounded

from above by either |u(0)| or |u(X1 + X2)|, both of which are integrable. Therefore,

according to Lebesgue dominated convergence theorem, for any d1 ∈ (d1, ∞), we have

lim
s→d1

M(s, L(s)) = E[ lim
s→d1

u(X1 ∧ s+X2 ∧ L(s))]

= E[u(X1 ∧ d1 +X2 ∧ L(d1))] = M(d1, L(d1)),

which means that M(s, L(s)) is continuous at d1.

55



Similarly,

lim
d1→∞

M(d1, L(d1)) = lim
d1→∞

E[u(X1 ∧ d1 +X2 ∧ L(d1))]

= E[ lim
d1→∞

u(X1 ∧ d1 +X2 ∧ L(d1))]

= E[u(X1 +X2 ∧ L(∞))] = E[u(X1 +X2 ∧ d2)],

and

lim
d1↓d1

M(d1, L(d1)) = lim
d2→∞

M(L−1(d2), d2)

= lim
d2→∞

E[u(X1 ∧ L−1(d2) +X2 ∧ d2)]

= E[ lim
d2→∞

u(X1 ∧ L−1(d2) +X2 ∧ d2)]

= E[u(X1 ∧ L−1(∞) +X2)] = E[u(X1 ∧ d1 +X2)].

2

Lemma 3.3.3 Assume that u(x) ∈ C1(R), i.e., u′(x) is continuous on R . Then the right

derivative ∂ +

∂d1
M(d1, d2) is right continuous in d1 ∈ (d1, ∞) and

∂ +

∂d1

M(d1, d2) = F 1(d1)
(
E[u′(d1 +X2 ∧ d2) |X1 > d1]

−E[u′(d2 +X1 ∧ d1) |X2 > d2]
)
. (3.3.3)

2

Proof. Denote f(ω, s) = u(X1(ω) ∧ s + X2(ω) ∧ L(s)), then M(d1, d2) = E [f(ω, d1)] =∫
Ω
f(ω, s)P(dω). Note that for any fixed ω ∈ Ω, the right derivative of f(ω, s) with respect
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to s exists for any s ∈ (d1,∞) and

∂ +

∂s
f(ω, s) = u′(X1 ∧ s+X2 ∧ L(s))

(
I{X1 > s}+ I{X2 > L(s)}∂L(s)

∂s

)
.

Let [a, d1] ⊂ (d1,∞), then for any (ω, s) ∈ Ω× [a, d1], we have 0 ≤ X1∧s+X2∧L(s) ≤

s + L(s) ≤ d1 + L(a) < ∞, since L(s) is decreasing. Therefore u′(X1 ∧ s + X2 ∧ L(s)) is

bounded on Ω × [a, d1] since u′(x) is continuous and thus bounded on the closed interval

[0, d1 + L(a)]. Also, by Lemma 3.3.1, we have∣∣∣∣I{X1 > s}+ I{X2 > L(s)}∂L(s)

∂s

∣∣∣∣ ≤ 1 +

∣∣∣∣∂L(s)

∂s

∣∣∣∣ = 1 +
F 1(s)

F 2(L(s))
≤ 1 +

F 1(a)

F 2(L(a))
<∞.

Therefore, ∂ +

∂s
f(ω, s) is bounded on Ω× [a, d1]. Denote the bound as A, then

∫ d1

a

E
[∣∣∣∣∂ +

∂s
f(ω, s)

∣∣∣∣] ds ≤ A (d1 − a) <∞.

According to Fubini’s theorem, we can exchange the order of integration and expectation:

∫ d1

a

E
[
∂ +

∂s
f(ω, s)

]
ds = E

[∫ d1

a

∂ +

∂s
f(ω, s)ds

]
.

For any fixed ω ∈ Ω, it is easy to verify that u(x) and g(s) = X1(ω)∧ s+X2(ω)∧L(s)

satisfies Lipschitz condition on [0, d1+L(a)] and on [a, d1] respectively. Therefore f(ω, s) =

u ◦ g(s) also satisfies Lipschitz condition on [a, d1], and thus is absolute continuous on

[a, d1]. Then f(ω, s) is differentiable with respect to s almost everywhere on [a, d1], and

the derivative is equal to the right derivative. By Fundamental Theorem Π of Lebesgue
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integral, we have

∫ d1

a

∂ +

∂s
f(ω, s)ds =

∫ d1

a

∂

∂s
f(ω, s)ds = f(ω, d1)− f(ω, a).

Therefore,

∫ d1

a

E
[
∂ +

∂s
f(ω, s)

]
ds = E

[∫ d1

a

∂ +

∂s
f(ω, s)ds

]
= E[f(ω, d1)− f(ω, a)] = M(d1, d2)− E [f(ω, a)]. (3.3.4)

Since ∂ +

∂s
f(ω, s) is right continuous in s and is bounded on [a, d1], according to Lebesgue

dominated convergence theorem, we have E
[
∂ +

∂s
f(ω, s)

]
is right continuous in s.

It is easy to show that if g(x) is right continuous and integrable on closed interval I and

G(x) =
∫ x
a
g(t)dt, where a ∈ I, then ∂ +

∂x
G(x) = g(x),∀x ∈ I. Thus, taking right derivative

on both sides of (5.2.5), we get

∂ +

∂d1

M(d1, d2) =
∂ +

∂d1

∫ d1

a

E
[
∂ +

∂s
f(ω, s)

]
ds = E

[
∂ +

∂d1

f(X, d1)

]
(3.3.5)

= E
[
u′(X1 ∧ d1 +X2 ∧ d2)

(
I{X1 > d1}+ I{X2 > d2}

∂d2

∂d1

)]
= E[u′(d1 +X2 ∧ d2) I{X1 > d1}]−

F 1(d1)

F 2(d2)
E[u′(X1 ∧ d1 + d2) I{X2 > d2}]

= F 1(d1)
(
E [u′(d1 +X2 ∧ d2) |X1 > d1]− E [u′(d2 +X1 ∧ d1) |X2 > d2]

)
.

The last equality follows from the fact that E[X I{Y ∈ B}] = E[X |Y ∈ B]P{Y ∈ B} if

P{Y ∈ B} > 0. The right continuity of ∂ +

∂d1
M(d1, d2) is from (5.2.6). 2

Now, applying the above preliminarily results, we can determine the optimal solutions
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to the following problems.

E
[(
X1 ∧ d∗1 +X2 ∧ d∗2

)2]
= inf

(d1,d2)∈L
E [(Id1(X1) + Id2(X2))2], (3.3.6)

E
[

exp{s(X1 ∧ d∗1 +X2 ∧ d∗2)}
]

= inf
(d1,d2)∈L

E [exp{s (Id1(X1) + Id2(X2))}], (3.3.7)

where s > 0 is fixed.

Theorem 3.3.4 Assume that (X1, X2) is PDS and E
[
(X1 +X2)2

]
<∞. For d1 ∈ (d1, ∞),

define

C1(d1) = E[(X2 − L(d1)) ∧ 0 |X1 > d1]− E[(X1 − d1) ∧ 0 |X2 > L(d1)].

Denote r1 = sup{d1 |C1(d1) < 0} and r2 = inf{d1 |C1(d1) > 0}. Then d1 < r1 ≤ r2 < ∞

and for any d∗1 ∈ [r1, r2], the retention vector (d∗1, L(d∗1)) is a solution to (3.3.6).

Proof. By setting u(x) = x2 in (5.2.4) and noticing d2 = L(d1), we have

∂ +M(d1, d2)

∂d1

= 2F 1(d1)
(
E[(d1 +X2 ∧ d2) |X1 > d1]E[(d2 +X1 ∧ d1) |X2 > d2]

)
= 2F 1(d1)

(
E[(d1 +X2 ∧ d2)− (d1 + d2) |X1 > d1]

−E[(d2 +X1 ∧ d1)− (d1 + d2) |X2 > d2]
)

= 2F 1(d1)
(
E[(X2 − d2) ∧ 0 |X1 > d1]− E[(X1 − d1) ∧ 0 |X2 > d2]

)
= 2F 1(d1)C1(d1). (3.3.8)

Now we show that C1(d1) is an increasing function of d1 in (d1,∞). In doing so, let

d1, d
′
1 ∈ (d1, ∞) and d1 < d′1. Since X2 ↑SI X1, we have X2|(X1 > d1) ≤st X2|(X1 > d′1),
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see, for example, Barlow and Proschan (1981). Therefore, since (x−L(d1))∧0 is increasing

in x and L(d1) > L(d′1), by the definition of ≤st, we have

E[(X2 − L(d1)) ∧ 0 |X1 > d1] ≤ E[(X2 − L(d1)) ∧ 0 |X1 > d′1] (3.3.9)

≤ E[(X2 − L(d′1)) ∧ 0 |X1 > d′1],

which means that E[(X2−L(d1))∧0 |X1 > d1] is increasing in d1. Similarly, since (x−d1)∧0

is increasing in x and d′1 > d1, we have

E[(X1 − d1) ∧ 0 |X2 > L(d1)] ≥ E[(X1 − d1) ∧ 0 |X2 > L(d′1)]

≥ E[(X1 − d′1) ∧ 0 |X2 > L(d′1)].

Thus E[(X1 − d1) ∧ 0 |X2 > L(d1)] is decreasing in d1. Therefore C1(d1) is increasing in

d1 ∈ (d1, ∞).

In the following, we examine the limits of C1(d1) at two endpoints d1 and ∞ of the

interval (d1, ∞). For a fixed d > d1 > d1, by (3.3.9), we have

E[(X2 − L(d1)) ∧ 0 |X1 > d1] ≤ E[(X2 − L(d1)) ∧ 0 |X1 > d].

Then by the monotone convergence theorem, we have

lim
d1↓d1

E[(X2 − L(d1)) ∧ 0 |X1 > d1]

≤ lim
d1↓d1

E[(X2 − L(d1)) ∧ 0 |X1 > d]

= E[ lim
d1↓d1

(X2 − L(d1)) ∧ 0 |X1 > d] = −∞, (3.3.10)

where, the first limit exists because E [(X2−L(d1))∧ 0 |X1 > d1] is an increasing function

60



of d1 and the last equality follows from the fact that limd1↓d1
L(d1) =∞.

Since X1 ≥ 0, we have E[(X1−d1)∧0 |X2 > L(d1)] ≥ E[(−d1)∧0 |X2 > L(d1)] = −d1.

Then, limd1↓d1
E[(X1 − d1) ∧ 0 |X2 > L(d1)] ≥ limd1↓d1

(−d1) = −d1, which, together

with (3.3.10) and the definition of C1(d1), implies limd1↓d1
C1(d1) = −∞. Thus, there

exists d1 > d1 such that C(d1) < 0, which implies {d1 |C1(d1) < 0} 6= ∅ and r1 =

sup{d1 |C1(d1) < 0} > d1.

Similarly, we have limd1↑∞ E[(X2 − L(d1)) ∧ 0 |X1 > d1] ≥ −d2 and limd1↑∞ E[(X1 −

d1)∧0 |X2 > L(d1)] ≤ −∞. Therefore, limd1↑∞C1(d1) =∞ and thus {d1 |C1(d1) > 0} 6= ∅

and r2 = inf{d1 |C1(d1) > 0} <∞.

Since C1(d1) is increasing in d1, for any x ∈ {d1 |C1(d1) < 0}, y ∈ {d1 |C1(d1) > 0},

we have x < y, thus r1 = sup{d1 |C1(d1) < 0} ≤ inf{d1 |C1(d1) > 0} = r2. According to

the definitions of r1 and r2, we have C1(d1) < 0 for all d1 ∈ (d1, r1) and C1(d1) > 0 for

all d1 ∈ (r2, ∞). Moreover, if d1 > r1, then C1(d1) ≥ 0; and if d1 < r2, then C1(d1) ≤ 0.

Therefore, C1(d1) = 0 for all d1 ∈ (r1, r2).

By (3.3.8), we know that ∂+

∂d1
M(d1, L(d1)) = 2F 1(d1)C(d1) has the same sign as

C1(d1) on (d1, ∞). Hence, M(d1, L(d1)) is strictly decreasing on (d1, r1), strictly in-

creasing on (r2,∞), and a constant on (r1, r2) and thus a constant on [r1, r2] since

M(d1, L(d1)) is continuous. Therefore, infd1∈(d1,∞) M(d1, L(d1)) = M(d∗1, L(d∗1)) for any

d∗1 ∈ [r1, r2]. Notice that M(d1, L(d1)) is continuous in d1 ∈ (d1, ∞), strictly decreas-

ing on (d1, r1), and strictly increasing on (r2, ∞). Thus, according to Lemma 3.3.2, for

any d∗1 ∈ [r1, r2], M(d∗1, L(d∗1)) < limd1→∞M(d1, L(d1)) = M(∞, d2) and M(d∗1, L(d∗1)) <

limd1↓d1
M(d1, L(d1)) = M(d1,∞). Hence, infd1∈[d1,∞] M(d1, L(d1)) = M(d∗1, L(d∗1)) for any

d∗1 ∈ [r1, r2]. It completes the proof of the theorem. 2

Theorem 3.3.5 Let s > 0 and assume (X1, X2) is PDS and E [exp{s (X1 + X2)}] < ∞.
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For d1 ∈ (d1,∞), let

C2(d1) = E[exp{s (X2 − L(d1)) ∧ 0} |X1 > d1 ]− E[exp{s (X1 − d1) ∧ 0} |X2 > L(d1) ].

Denote r1 = sup{d1 |C2(d1) < 0} and r2 = inf{d1 |C2(d1) > 0}. Then we have d1 < r1 ≤

r2 <∞, the retention vector (d∗1, L(d∗1)) is a solution to (3.3.7)and for any d∗1 ∈ [r1, r2].

Proof. By setting u(x) = esx in (5.2.4) and noticing d2 = L(d1), we have

∂+M(d1, d2)

∂d1

= F 1(d1)
(
E[s exp{s (X2 ∧ d2)} |X1 > d1 ]

−E[s exp{s (X1 ∧ d1)} |X2 > d2]
)

= s es (d1+d2) F 1(d1)
(
E[exp{s (X2 − d2) ∧ 0} |X1 > d1]

−E [exp{s (X1 − d1) ∧ 0} |X2 > d2]
)

= s es (d1+d2) F 1(d1)C2(d1).

Then, using the same arguments as in Theorem 3.3.4, we complete the proof. The details

are omitted. 2

3.4 Applications in the Collective Risk Model

In the collective risk model, the surplus process of an insurer is modeled as following.

U(t) = u+ c t−
N(t)∑
i=1

Xi, (3.4.1)
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where u is the initial surplus, c is the premium rate, {X1, X2, ...} are claim sizes which are

mutually independent and identically distributed as the generic random variable X, and

N(t) is a Poisson process independent of {X1, X2, ...} with the arrival intensity λ > 0. In

addition, we assume that c > λE [X] to avoid ruin with probability 1.

The collective risk model (3.4.1) has been extensively studied. For more details, see, for

example, Gerber and Shiu (1998) and many others. One essential quantity of the model is

the ruin probability, which measures the potential sustainability of the insurance company

in a long term. In optimization problems, one of our concerns is to minimize the ruin

probability. However, it is usually difficult to derive an explicit expression for the ruin

probability in general cases. As an alternative, we turn to study the adjustment coefficient

γ, which is defined as the the smallest positive root of the following Lundberg equation.

λ+ c s− λE
[
esX
]

= 0. (3.4.2)

The adjustment coefficient plays an important role in ruin analysis. In the absence

of the explicit expression for the ruin probability, the adjustment coefficient provides an

upper bound for the ruin probability, which is given by the following Lundberg inequality.

ψ(u) = P
{

inf
t≥0

U(t) < 0

}
≤ e−γu, u ≥ 0.

The classical proof for Lundberg inequality involves the technique of induction; details

can be found in Klugman et al. (2012). Willmot and Yang (1996) provided a different

proof using a martingale approach, which reveals the probabilistic essence of the adjust-

ment coefficient. Their proof uses the fact that {e−γ U(t), t ≥ 0} is a martingale, which

actually motivates the definition of the adjustment coefficient. It is worth pointing out
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that, the Lundberg inequality still holds in the Sparre-Anderson model, only except that

the definition of the adjustment coefficient needs to be slightly modified.

In this section, we consider the case that each policy claim has n different sources

of risks, modeled by the random vector Xi = (Xi,1, ..., Xi,n). Assume that random vec-

tors {Xi, i = 1, 2, ...} are mutually independent and identically distributed as the generic

random vector X = (X1, ..., Xn). The insurer applies the individualized reinsurance strat-

egy (I1, ..., In) to each claim. Then the total retained risk for the kth claim is SIk,n =

I1(Xk,1) + ... + In(Xk,n). Noting that {SIk,n, k = 1, 2, ...} are independent and identically

distributed random variables, we use the notation SIn = I1(X1) + ...+ In(Xn) to represent

their generic random variable. The surplus process after reinsurance is represented by

U I(t) = u+ (c− P ) t−
N(t)∑
k=1

SIk,n, (3.4.3)

where c is the insurance premium rate and P is the reinsurance premium rate.

Again, we adopt the expectation premium principle to calculate the reinsurance pre-

mium, which implies that E[SIn] = E[
∑n

i=1 Ii(Xi)] is a constant, denoted as p. We also

assume c− P > λE[SIn] = λp to avoid the trivial case, namely, ruin with probability 1.

For model (3.4.3), our target is to find the optimal reinsurance strategy I = (I1, ..., In)

so as to

1. Minimize the ruin probability of the insurer’s surplus process, or

2. Maximize the adjustment coefficient of the insurer’s surplus process, thereby mini-

mizing the upper bound of the ruin probability.

We use the notations γI and ψI(u) to denote the adjustment coefficient and the ruin
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probability in the model (3.4.3). We still adopt the previously defined notationsDpn andDp∗n
to represent different admissible strategy classes. With these notations, the optimization

problems are formulated as:

min
I∈Dp

n

ψI(u), (3.4.4)

max
I∈Dp

n

γI . (3.4.5)

Recalling Pollaczek-Khinchine formula, the ruin probability ψI(u) is expressed as

ψI(u) =
λE [SIn]

c− P
−
(

1− λE [SIn]

c− P

)
KI(u), u ≥ 0,

where

KI(x) =
∞∑
k=1

(
λE [SIn]

c− P

)k
×G∗kI (x), and GI(x) =

∫ x
0
F̄SI

n
(y)dy

E [SIn]
,

and G∗kI (x) is the n−fold convolution of the function G(x).

Proposition 3.4.1 Consider model (3.4.3), if (X1, ..., Xn) is PDS, then

min
I∈Dp

n

ψI(u) = min
I∈Dp∗

n

ψI(u), for any u ≥ 0.

Proof. According to Proposition 3.2.10, we know that, for any reinsurance strategy I ∈

Dpn, there exists I∗ ∈ Dp∗n such that SI
∗
n ≤cx SIn. Noting that E [SI

∗
n ] = E [SIn], we have

GI∗(x) ≥ GI(x) for all x ≥ 0, and thus G∗kI∗(x) ≥ G∗kI (x) for all k ∈ N and all x ≥ 0. Recall

that c− P > λE [SIn], we have ψI
∗
(u) ≤ ψI(u) for any u ≥ 0. 2
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Proposition 3.4.2 Consider model (3.4.3). If (X1, ..., Xn) is PDUO, then

max
I∈Dp

n

γI = max
I∈Dp∗

n

γI .

Proof. For any reinsurance strategy I = (I1, ..., In) ∈ Dpn, there exists I∗ = (x∧ d1, ..., x∧

dn) ∈ Dp∗n such that E[Xi ∧ di] = E[Ii(Xi)]. Then Xi ∧ di ≤cx Ii(Xi) for all i = 1, ..., n,

according to Ohlin’s Lemma. For any s > 0, define functions fi(x) = es (x∧di) and gi(x) =

es Ii(x) for i = 1, ..., n. Obviously, fi(x), gi(x), i = 1, ..., n, are all nonnegative and increasing.

Note that fi(Xi) = es(Xi∧di) ≤icx esI(Xi) = gi(Xi). Since (X1, ..., Xn) is PDUO, according

to Proposition 3.2.9, we have

E
[
es S

I∗
n

]
= E

[
n∏
i=1

fi(Xi)

]
≤ E

[
n∏
i=1

gi(Xi)

]
= E

[
es S

I
n

]
.

Recall that γI
∗

and γI satisfy Lundberg equation (3.4.2), i.e.,

λ+ (c− P ) γI
∗ − λE

[
eγ

I∗ SI∗
n

]
= 0,

λ+ (c− P ) γI − λE
[
eγ

I SI
n

]
= 0.

Then γI
∗

and γI can be viewed as smallest (also unique) positive solutions to the

following two systems respectively. y = λ+ s(c− P )

y = λE
[
es S

I∗
n

] ,

 y = λ+ s(c− P )

y = λE
[
es S

I
n

] .

The relation E
[
es S

I∗
n

]
≤ E

[
es S

I
n

]
indicates that the curve

{
(y, s)

∣∣∣y = E
[
es S

I∗
n

]}
is be-

low the curve
{

(y, s)
∣∣∣y = E

[
es S

I
n

]}
. Therefore, the latter curve upward crosses the line
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{(y, s) |y = λ+ s(c− P )} first, which means γI
∗ ≥ γI . 2

Proposition 3.4.1 and Proposition 3.4.2 indicate that, under certain assumptions of

positive dependence, the individualized excess-of-loss is the optimal reinsurance form in

the sense of minimizing ruin probability or upper bound of ruin probability. Note that

ruin probability is merely one characteristic of the ruin time. In order to do more accu-

rate studies, we shall approach the distribution function of the ruin time random variable

directly in the following.

Consider the model (3.4.1), the ruin time is defined as

τ(u) = inf{t > 0 : U(t) < 0|U(0) = u}.

Note that τ(u) ≥ 0 is an improper random variable, and its distribution function

ψ(u, t) = P{τ(u) ≤ t}

is also referred to as the finite-time ruin probability.

We use the notation τ I(u) to denote the ruin time in the model (3.4.3), i.e.,

τ I(u) = inf{t > 0 : U I(t) < 0|U I(0) = u},

and use ψI(u, t) to denote its distribution function or the finite-time ruin probability. We

shall focus on the model with zero initial capital, namely, u = 0.

In model (3.4.1), in the case that u = 0, Seal (1978) provided an expression for the
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survival function of the ruin time τ(0).

P{τ(0) > t} =
1

(c− P )t

∫ (c−P )t

0

P


N(t)∑
k=1

Xk ≤ y

 d y, t > 0. (3.4.6)

In model (3.4.3), assume (X1, ..., Xn) is PDS. According to Proposition 3.2.12 we have,

for any I ∈ Dpn, there exists I∗ ∈ Dp∗n such that SI
∗
n ≤cx SIn. Then

∑N(t)
k=1 S

I∗

k,n ≤
∑N(t)

k=1 S
I
k,n

according to the closure property of ≤cx under independent compounding. Therefore,

∫ (c−P )t

0

P


N(t)∑
k=1

SI
∗

k,n ≤ y

 d y = E

(c− P )t−
N(t)∑
k=1

SI
∗

k,n


+


≥ E

(c− P )t−
N(t)∑
k=1

SIk,n


+

 =

∫ (c−P )t

0

P


N(t)∑
k=1

SIk,n ≤ y

 d y,

which, according to (3.4.6), implies that P{τ I∗(0) > t} ≥ P{τ I(0) > t} for all t > 0, or

P{τ I∗(0) ≤ t} ≤ P{τ I(0) ≤ t} for all t > 0. Based on the above discussions, we may

conclude that the individualized excess-of-loss reinsurance strategy uniformly minimizes

the finite-time ruin probability for any time horizontal. Formally, we have

Proposition 3.4.3 Consider model (3.4.3). If (X1, ..., Xn) is PDS, then

min
I∈Dp

n

ψI(0, t) = max
I∈Dp∗

n

ψI(0, t), for all t > 0. 2

Essentially, Proposition 3.4.3 indicates that the individualized excess-of-loss strategy

maximizes the ruin time τ I(0) in the usual stochastic order.
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3.5 Optimal Reinsurance with Random Initial Wealth

In this section, we consider the classical optimal reinsurance problem. Let X be the

insurer’s original risk. If applying the reinsurance strategy I, the insurer’s retained risk

would be I(X). The insurer’s objective is to find the optimal reinsurance strategy I so

as to minimize the risk measure of the retained risk. Traditionally, we employ the form

ρ(X) = E[u(X)] to measure the risk X, where u(x) is (increasing) convex. Then the

optimization problem is stated as minI E[u(I(x))].

There is a different way to interpret the optimization problem. Assume that insurer’s

initial wealth is w. Then insurer’s total wealth after reinsurance arrangement is w−I(X)−

P , where P is the reinsurance premium which is assumed to be a constant. Another

optimization criterion is to maximize the expected utility of the insurer’s total wealth.

The optimization problem is expressed as maxI E[v(w− p− I(X))], where v(x) is a utility

function, which is usually assumed to be increasing and concave.

Define u∗(x) = −v(w − P − x). Obviously, u∗(x) is increasing and convex. We have

max
I
E[v(w − P − I(X))]⇐⇒ min

I
E[u∗(I(X))].

In this sense, minimizing the insurer’s retained risk and maximizing expected utility of

the insurer’s total wealth are equivalent. However, it has to be pointed out that, the

equivalence is based on the fact that the initial wealth w is a constant, which is not usually

the case in practice. In practice, the initial wealth is usually related to the potential risk.

In this section, we shall study the optimal reinsurance model with a random initial wealth.

We denote the initial wealth by a random variable W and we only focus on single risk

model.
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The optimal reinsurance problem has been studied by Hong et al. (2011) and references

therein. Most of the studies work on certain optimal reinsurance form (for example, excess-

of-loss or quota share reinsurance) and try to identify the optimal parameters. In this

section, under the dependence structure of PDS, we identify the optimal reinsurance form

in the first place.

We formulate the optimization problem as follows.

max
I∈Dp

1

E[v(W − P − I(X))], for all increasing concave function v,

or

min
I∈Dp

1

E[u(I(X)−W )], for all u ∈ Uicx, (3.5.1)

where Dp1 is the admissible strategy class defined by

Dp1 =

I(x)

∣∣∣∣∣∣∣∣∣
I(x) is increasing in x ≥ 0;

0 ≤ I(x) ≤ x and E[I(X)] = p > 0;

|I(x1)− I(x2)| ≤ |x1 − x2| for any x1, x2 ≥ 0.

 . (3.5.2)

Note that, compared to the admissible strategy class Dpn defined by (3.1.1), Dp1 adds

the assumption of |I(x1) − I(x2)| ≤ |x1 − x2|. This assumption is called slow growth

assumption, which means that the retained risk is not supposed to increase faster than the

original risk. This assumption actually implies that the ceded function Ī(x) = x− I(x) is

also increasing.

Proposition 3.5.1 If −W ↑SI X, then the optimal solution to (3.5.1) is I∗ = x ∧ d∗,

where d∗ is determined by E[X ∧ d∗] = p.
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Proof. For any I ∈ Dp1, we know that I∗(X) ≤cx I(X). Since −W ↑SI X, according to

Theorem 3.2.6, we have E[u(I∗(X)−W )] ≤cx E[u(I(X)−W )] for all u ∈ Ucx. 2

Proposition 3.5.2 If (W−X) ↑SI X, then the optimal solution to (3.5.1) is I∗ = (x−d∗)+,

where d∗ is determined by E[(X − d∗)+] = p.

Proof. Denote W ′ = W −X, Ī(x) = x− I(x), then

E [u(I(X)−W )] = E [u(−Ī(X)−W ′)] = E [v(Ī(X) +W ′)],

where v(x) = u(−x) is also a convex function.

Noting that Ī∗(X) = X ∧ d∗ ≤ Ī(X), and Ī(x), Ī∗(x) are increasing, according to

Theorem 3.2.6, we have E [v(Ī∗(X) +W ′)] ≤ E [v(Ī(X) +W ′)]. 2

Proposition 3.5.1 and Proposition 3.5.2 respectively give the optimal reinsurance form

to Problem (3.5.1) when the initial wealth W and the risk X are negative dependent or

“strongly” positive dependent. The case that W and X are “regularly” positive dependent

still needs to be studied.
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Chapter 4

Dependence Notions through

Arrangement Increasing Functions

Chapter 3 has studied the optimal reinsurance problem with multiple risks. With certain

assumptions of positive dependence between the risks, the individualized excess-of-loss

form was proved to be optimal. Therefore, the infinite dimensional optimization prob-

lem minI∈Dp
n
E[u(

∑n
k=1 Ik(Xk))] is reduced to a finite dimensional optimization problem

minI∈Dp∗
n
E[u(

∑n
k=1 Ik(Xk))]. The conversion of the problem only completes the first step:

identifying the optimal reinsurance form. To completely solve the optimal reinsurance

problem, we need to determine the parameters of the reinsurance form.

Section 3.3 investigates two optimization problems with bivariate risks and specific risk

measures, and derives explicit solutions. However, when multivariate risks and general

risk measures are involved, it is difficult to derive explicit solutions. Alternatively, many

studies turn to analyze the quantitative properties of the optimal solutions; see, for example

Cheung (2007), Zhuang et al. (2009), and Hu and Wang (2010). In the literature, only a
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few special dependence structures have been considered. This limitation motivates us to

develop more general dependence structures. In this chapter, we first revisit the notion of

joint likelihood ratio order and its multivariate version proposed by Shanthikumar and Yao

(1991) and derive new characterizations and properties for these two notions. Furthermore,

we propose new dependence notions of UOAI, LOAI, TDAI and CTDAI, and systematically

develop their properties.

4.1 Preliminaries

In the literature, the following three dependence structures are commonly used in the

studies of optimal allocation problems.

(A1) X1, ..., Xn are comonotonic and X1 ≤st ... ≤st Xn;

(A2) X1, ..., Xn are mutually independent and X1 ≤hr ... ≤hr Xn;

(A3) X1, ..., Xn are mutually independent and X1 ≤lr ... ≤lr Xn.

Note that these dependence structures can be rephrased as (X1, ..., Xn) has a comono-

tonic/independent copula with specially ordered marginal distributions. In light of this

observation, we want to develop new dependence structures which involve properties of

both copulas and marginal distributions.

To get some inspirations, we first recall some concepts of bivariate stochastic orders

proposed by Shanthikumar and Yao (1991).
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Definition 4.1.1 Let X and Y be two random variables. X is said to be smaller than Y

in the joint hazard rate order, denoted as X ≤hr:j Y , if

∂

∂x
F̄ (x, y) ≤ ∂

∂x
F̄ (y, x), for all x ≤ y,

where F̄ (x, y) is the joint survival function of the random vector (X, Y ).

X is said to be smaller than Y in the joint likelihood ratio order, denoted as X ≤lr:j Y ,

if

f(x, y) ≤ f(y, x), for all x ≤ y,

where f(x, y) is the joint density function or joint probability function of (X, Y ).

In Definition 4.1.1, the existence of the joint density function and the existence of the

partial derivatives of the joint survival function are assumed. As a matter of fact, these

assumptions are not essential. Shanthikumar and Yao (1991), Righter and Shanthikumar

(1992) and Aly and Kochar (1993) have developed some functional characterizations to

avoid these assumptions. We restate some of the functional characterizations later in

Section 4.3 and Section 4.4.

In Shanthikumar and Yao (1991), the joint hazard rate order and the joint likelihood

ratio order are referred as bivariate stochastic orders. Accordingly, we refer to the stochastic

orders defined in Section 1.2 (≤st,≤hr,≤lr) as univariate stochastic orders. Our main

concern is how to generalize these bivariate stochastic orders into multivariate cases. The

difficulty lies in the fact that, unlike univariate stochastic orders, the bivariate stochastic

orders are not transitive. For instance, X1 ≤lr X2 and X2 ≤lr X3 imply X1 ≤lr X3.

However, it is not the case for bivariate stochastic orders, namely, X1 ≤lr:j X2 and X2 ≤lr:j
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X3 do not necessarily imply X1 ≤lr:j X3, as shown by the following example.

Example 4.1.2 The joint likelihood ratio order ≤lr:j is not transitive.

Let (X1, X3) have the following joint distribution: p00 = p11 = 0.1, p10 = 0.15, p01 =

0.1, p02 = 0.5, p12 = 0.05, where pij = P{X1 = i,X3 = j} is the joint mass function.

The marginal probability mass functions of X1 and X3 are p1(0) = 0.7, p1(1) = 0.3

and p3(0) = 0.25, p3(0) = 0.2, p3(2) = 0.55. On the other hand, let X2 be independent of

X1, X3 and have the mass function p2(0) = 0.6, p2(1) = 0.4. Then it is easy to verify that

X1 ≤lr:j X2 and X2 ≤lr:j X3. But X1 �lr:j X3 since p01 > p10. 2

Note that, if X ≤hr:j Y , then
∫ y
x

∂
∂s
F̄ (s, y)ds ≤

∫ y
x

∂
∂s
F̄ (y, s)ds for x ≤ y, which implies

that F̄ (x, y) ≥ F̄ (y, x) for all x ≤ y. Shaked and Shanthikumar (2007) has shown that

X ≤hr Y if and only if F̄X(x)F̄Y (y) ≥ F̄X(y)F̄Y (x) for all x ≤ y, and X ≤lr Y if and

only if fX(x)fY (y) ≥ fX(y)fY (x) for all x ≤ y given that the density functions exist.

Essentially, those stochastic orders are characterized by a common property of the joint

survival function or the joint density function, which is arrangement increasing. This

observation motivates us to develop general stochastic dependence structures based on

arrangement increasing functions.

Before we state the definition of arrangement increasing, we first introduce some nota-

tions for convenience. Throughout Chapter 4 and Chapter 5, we refer to the real-valued

vector (x1, ..., xn) as x, and refer to the random vector (X1, ..., Xn) as X. Accordingly,

X > (<) x meansXi > (<)xi for all i = 1, ..., n. Let f = (f1, ..., fn) be a vector-valued func-

tion, then f(x) represents (f1(x1), ..., fn(xn)). In particular, X∧ x = (X1 ∧ x1, ..., Xn ∧ xn)

and (X− d)+ = ((X1−d1)+, ..., (Xn−dn)+). We use the notation a ·b to denote the inner

product of two vectors, namely, a·b =
∑n

k=1 akbk where a = (a1, ..., an) and b = (b1, ..., bn).
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In particular, we use the notation x · e to denote the sum of the components of x, i.e.,∑n
i=1 xi, where e = (1, ..., 1) has the same dimension of x.

For any set K = {i1, ..., ik} ⊂ {1, ..., n} where i1 < ... < ik, we denote by |K| the

cardinality of K, i.e., |K| = k. We also xK = (xk, k ∈ K) = (xi1 , ..., xik). For convenience,

the vector x is also referred to as (xK ,xK̄), where K̄ = {1, ..., n} \ K; in particular, we

write ij = {1, ..., i−1, i+1, ..., j−1, j+1, ..., n}. Let (π(1), ..., π(n)) be any permutation of

{1, ..., n}, and we define π(x) = (xπ(1), ..., xπ(n)). We are particularly interested in a special

class of permutation: transposition πij, where πij(k) = k for k 6= i, j and πij(i) = j, π(j) =

i. Let A be a subset of Rn, and denote πij(A) = {x : πij(x) ∈ A}.

Definition 4.1.3 A multivariate function f(x) is said to be arrangement increasing (AI),

if f(x) ≥ f(πij(x)) for any x ∈ Rn and any i < j such that xi ≤ xj.

A multivariate function f(x) is said to be arrangement decreasing (DI), if f(x) ≤

f(πij(x)) for any x ∈ Rn and any i < j such that xi ≤ xj. 2

Obviously, f(x1, ..., xn) is arrangement decreasing if and only if −f(x1, ..., xn) is ar-

rangement increasing.

More discussions about arrangement increasing functions can be found in Marshall

and Olkin (1979). It is easy to verify the following properties of arrangement increasing

functions.

Proposition 4.1.4 Arrangement increasing functions have the following properties.

(i) If f(x) = f(x1, ..., xn) : Rn 7→ R is arrangement increasing, then g(xK) := f(xK ,xK̄)

is arrangement increasing for any fixed xK̄ ∈ Rn−|K|.
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(ii) If h1(x1, ..., xn) and h2(x1, ..., xn) are nonnegative and arrangement increasing, then

h1(x1, ..., xn)× h2(x1, ..., xn) is also arrangement increasing.

(iii) If h(x1, ..., xn) is arrangement increasing, then g(h(x1, ..., xn)) is arrangement increas-

ing for any increasing function g(x) : R→ R. 2

Proposition 4.1.4 (ii) and (iii) are obvious. As an example of Proposition 4.1.4 (i),

consider the linear function f(x1, x2, x3) = x1 + 2x2 + 3x3. f(x1, x2, x3) is arrangement

increasing. If x3 is fixed, g(x1, x2) = x1 + 2x2 + 3x3 is also arrangement increasing.

In order to characterize the bivariate stochastic orders, we first introduce some nota-

tions. For any bivariate function g(x, y), denote ∆g(x, y) = g(x, y) − g(y, x). Define two

classes of functions as follows:

Ghr = {g(x, y) : ∆g(x, y) is increasing in y, ∀y ≥ x},

Glr = {g(x, y) : ∆g(x, y) ≥ 0, ∀y ≥ x}.

Shanthikumar and Yao (1991) derived the following results.

(i) X ≤hr:j Y if and only if E[g(X, Y )] ≥ E[g(Y,X)] for all g ∈ Ghr;

(ii) X ≤lr:j Y if and only if E[g(X, Y )] ≥ E[g(Y,X)] for all g ∈ Glr;

(iii) X ≤hr Y if and only if E[g(X∗, Y ∗)] ≥ E[g(Y ∗, X∗)] for all g ∈ Ghr, where X∗ =st

X, Y ∗ =st Y and X∗ is independent of Y ∗;

(iv) X ≤lr Y if and only if E[g(X∗, Y ∗)] ≥ E[g(Y ∗, X∗)] for all g ∈ Glr, where X∗ =st

X, Y ∗ =st Y and X∗ is independent of Y ∗.
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To generalize the bivariate stochastic orders, we also introduce some classes of multi-

variate functions. For a multivariate function g(x1, ..., xn), for any 1 ≤ i < j ≤ n, denote

∆ijg(x) = g(x)− g(πij(x)). Define

Gijctdai = {g(x1, ..., xn) : ∆ijg(x1, ..., xn) is increasing in xj for any xj ≥ xi},

Gijsai = {g(x1, ..., xn) : ∆ijg(x1, ..., xn) ≥ 0 for any xj ≥ xi}.

Obviously, Gijctdai and Gijsai are natural generalizations of Ghr and Glr. It is easy to verify

that Glr ⊂ Ghr and Gijsai ⊂ G
ij
ctdai.

As a matter of fact, a function in Gijsai can be considered “partially” arrangement increas-

ing, which is a weaker concept than arrangement increasing. For instance, f(x1, x2, x3) =

x1 +2x2 +x3 ∈ G12
sai is not arrangement increasing. But for a fixed x3, the bivariate function

g(x1, x2) ≡ f(x1, x2, x3) is arrangement increasing.

4.2 (Conditionally) Upper Orthant Arrangement In-

creasing

Definition 4.2.1 Random vector X = (X1, ..., Xn) is said to be upper orthant arrange-

ment increasing (UOAI) if its joint survival function F̄ (x1, ..., xn) is arrangement increasing.

Definition 4.2.2 Random vector X = (X1, ..., Xn) is said to be conditionally upper or-

thant arrangement increasing (CUOAI), if (Xi, Xj)|Xij = xij is UOAI for any 1 ≤ i < j ≤

n and any fixed xij ∈ S(Xij), where ij = {1, ..., n} \ {i, j} and S(Xij) is the support of

the random vector Xij.
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Obviously, CUOAI and UOAI are equivalent in the bivariate case. In general cases, CUOAI

implies UOAI, as shown by the following proposition.

Proposition 4.2.3 If random vector X = (X1, ..., Xn) is CUOAI, then (X1, ..., Xn) is

UOAI.

Proof. From Definition 4.2.2, for any 1 ≤ i < j ≤ n and xi ≤ xj, we have

P{Xi > xi, Xj > xj|Xij = xij} ≥ P{Xi > xj, Xj > xi|Xij = xij},

for any xij ∈ S(Xij), which means

E [I{Xi > xi, Xj > xj}|Xij] ≥a.s. E [I{Xi > xj, Xj > xi}|Xij].

Therefore,

P{Xi > xi, Xj > xj,Xij > xij}

= E [I{Xi > xi, Xj > xj} × I{Xij > xij}]

= E [E [I{Xi > xi, Xj > xj}|Xij]× I{Xij > xij}]

≥ E [E [I{Xi > xj, Xj > xi}|Xij]× I{Xij > xij}]

= P{Xi > xj, Xj > xi,Xij > xij}. 2

Below we derive some preliminary properties of the notion of UOAI.
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Lemma 4.2.4 If X = (X1, ..., Xn) is UOAI, then

P{Xi > xi, Xj > xj,XK1 ≥ xK1 ,XK2 > xK2}

≥ P{Xi > xj, Xj > xi,XK1 ≥ xK1 ,XK2 > xK2}, (4.2.1)

P{Xi ≥ xi, Xj > xj,XK1 ≥ xK1 ,XK2 > xK2}

≥ P{Xi > xj, Xj ≥ xi,XK1 ≥ xK1 ,XK2 > xK2}, (4.2.2)

P{Xi > xi, Xj ≥ xj,XK1 ≥ xK1 ,XK2 > xK2}

≥ P{Xi ≥ xj, Xj > xi,XK1 ≥ xK1 ,XK2 > xK2}, (4.2.3)

P{Xi ≥ xi, Xj ≥ xj,XK1 ≥ xK1 ,XK2 > xK2}

≥ P{Xi ≥ xj, Xj ≥ xi,XK1 ≥ xK1 ,XK2 > xK2}, (4.2.4)

for any 1 ≤ i < j ≤ n and xi < xj and any (xK1 ,xK2) ∈ Rn−2, where K1 ∪ K2 =

{1, ..., n} \ {i, j} and K1 ∩K2 = ∅.

Proof. It is sufficient to show the above inequalities hold for the case n = 2. The first

inequality holds obviously. For any x1 < x2, there exists an increasing series {xn1} ⊂ R

such that limn→∞ x
n
1 = x1 and thus xn1 < x2 for all n. Since (X1, X2) is UOAI, we have

P{X1 > xn1 , X2 > x2} ≥ P{X1 > x2, X2 > xn1}. (4.2.5)

Denote An = {X1 > xn1 , X2 > x2}, Bn = {X1 > x2, X2 > xn1}, then An ⊃ An+1, Bn ⊃ Bn+1

and thus

lim
n→∞

An = ∩∞n=1An = {X1 ≥ x1, X2 > x2}, lim
n→∞

Bn = ∩∞n=1 Bn = {X1 > x2, X2 ≥ x1}.
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Let n → ∞ in (4.2.5), according to the continuous property of probability measure, we

have

P{X1 ≥ x1, X2 > x2} ≥ P{X1 > x2, X2 ≥ x1}.

Using similar approximation argument, we can prove P{X1 ≥ x1, X2 > x2} ≥ P{X1 >

x2, X2 ≥ x1} and P{X1 ≥ x1, X2 ≥ x2} ≥ P{X1 ≥ x2, X2 ≥ x1} for any x1 < x2. 2

Proposition 4.2.5 If (X1, ..., Xn) is UOAI, then (f(X1), ..., f(Xn)) is UOAI for any in-

creasing function f(x).

Proof. The proof is straightforward by combining Lemma 4.2.4 and the fact that f−1((x,∞))

has the form of either [ax,∞) or (ax,∞) for any increasing function f(x), where ax ∈ R

depends on x. 2

Proposition 4.2.6 If random vector X = (X1, ..., Xn) is UOAI, then

(i) Xi ≤st Xi+1 for all 1 ≤ i ≤ n− 1.

(ii) XK = (Xi1 , ..., Xik) is UOAI for any K = {i1, ..., ik}, where 1 ≤ i1 < ... < ik ≤ n.

(iii) Let K1, K2, K3 be mutually disjoint subsets of {1, ..., n} such that |K1| = |K2| and

maxK1 < minK2, then

(Xk, k ∈ K1 ∪K3) ≤uo (Xk, k ∈ K2 ∪K3).

Proof. (i) It suffices to show that X1 ≤st X2.
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Since F̄ (x1, ..., xn) is arrangement increasing, we have

P{X1 > x} = P{X1 > x,X2 > −∞, ..., Xn > −∞} = F̄ (x,−∞,−∞, ...,−∞)

≤ F̄ (−∞, x,−∞, ...,−∞) = P{X2 > x},

which means X1 ≤st X2.

(ii) Note that

F̄XK
(xK) = P{XK > xK} = P{XK > xK ,XK̄ > −∞} = lim

xK̄→−∞
F̄X(xK ,xK̄).

According to Proposition 4.1.4(i), we know that F̄X(xK ,xK̄) is arrangement increasing for

any fixed xK̄ . Therefore, F̄XK
(xK) is arrangement increasing, which means XK is UOAI.

(iii) For simplicity, assume K1 = {1}, K2 = {2} and K3 = {3, ..., n}, then we need to

show that

(X1, X3, ..., Xn) ≤uo (X2, X3, ..., Xn).

Since (X1, ..., Xn) is UOAI, we have for any fixed x, x3, ..., xn ∈ R,

P{X1 > x,X3 > x3, ..., Xn > xn} = P{X1 > x,X2 > −∞, X3 > x3, ..., Xn > xn}

≤ P{X1 > −∞, X2 > x,X3 > x3, ..., Xn > xn} = P{X2 > x,X3 > x3, ..., Xn > xn},

which implies (X1, X3, ..., Xn) ≤uo (X2, X3, ..., Xn). 2

Proposition 4.2.7 If random variables X1, ..., Xn are mutually independent, then the

random vector (X1, ..., Xn) is UOAI if and only if Xi ≤hr Xi+1 for all 1 ≤ i ≤ n − 1. If
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X1, ..., Xn are comonotonic, then (X1, ..., Xn) is UOAI if and only if Xi ≤st Xi+1 for all

1 ≤ i ≤ n− 1.

Proof. Denote by F̄ (x) = F̄ (x1, ..., xn) the joint survival function of (X1, ..., Xn), by F̄i(x)

the survival function of Xi, i = 1, ..., n. Define supX = sup{x : P{X > x} > 0}.

(i) Independent case.

The “only if” part, assume (X1, ..., Xn) is UOAI, thus (Xi, Xi+1) is UOAI from Propo-

sition 4.2.6(i), then P{Xi > xi, Xi+1 > xi+1} ≥ P{Xi > xi+1, Xi+1 > xi} for any xi ≤

xi+1 < supXi+1. Noting that Xi and Xi+1 are independent, we have F̄i(xi)F̄i+1(xi+1) ≥

F̄i(xi+1)F̄i+1(xi) for any xi ≤ xi+1 < supXi+1, which means Xi ≤hr Xi+1.

The “if” part, assume Xi ≤hr Xi+1, i = 1, ..., n − 1. According to Definition 4.2.1, we

need to show that F̄ (x) is arrangement increasing, i.e.,

F̄ (x) ≤ F̄ (πij(x)) for any x ∈ Rn and i < j such that xi ≥ xj.

We only need to show the inequality for the case i = 1, j = 2. Since X1 ≤ X2, we have

F̄1(x1)F̄2(x2) ≤ F̄1(x2)F̄2(x1) for any x1 ≥ x2. Therefore,

F̄1(x1)F̄2(x2)×
n∏
k=3

F̄k(xk) ≤ F̄1(x2)F̄2(x1)×
n∏
k=3

F̄k(xk),

which implies that F̄ (x) ≤ F̄ (π12(x)) since X1, ..., Xn are mutually independent.

(ii) Comonotonic case.

The “only if” part holds from Proposition 4.2.6(i).

The “if” part, assume Xi ≤st Xi+1 for all 1 ≤ i ≤ n − 1, thus F̄i(xj) ≤ F̄j(xj) for

any 1 ≤ i < j ≤ n. Then for any xi ≤ xj, we have F̄j(xi) ≥ F̄j(xj) ≥ F̄i(xj) and

83



F̄i(xi) ≥ F̄i(xj). Therefore, min{F̄i(xi), F̄j(xj)} ≥ F̄i(xj) = min{F̄i(xj), F̄j(xi)}. Noting

that F̄ (x) = min{F̄k(xk), k = 1, ..., n} due to the comonotonicity of {X1, ..., Xn}, we have

F̄ (x) = min{F̄k(xk), k = 1, ..., n} = min{min{F̄i(xi), F̄j(xj)},min{F̄k(xk), k ∈ ij}}

≥ min{min{F̄i(xj), F̄j(xi)},min{F̄k(xk), k ∈ ij}} = F̄ (πij(x)).

2

Proposition 4.2.7 constructs two special cases of UOAI random vectors, which demon-

strates that UOAI dependence involves not only properties of copulas but also proper-

ties of marginal distributions. In the following, we show how to construct more general

UOAI/CUOAI random vectors through copulas and specially ordered marginal distribu-

tions.

First, we recall an important property of convex (concave) functions. Consider the line

determined by two points located on the graph of a convex function. If we fix one point

and move another point along the graph to the right, then the slope of the line between

the two point increases. This observation is summarized as the following lemma.

Lemma 4.2.8 If f(t) is convex (concave), then the slope function:

Lf (t1, t2) =
f(t1)− f(t2)

t1 − t2
, t1 < t2,

is increasing (decreasing) in both t1 and t2. 2

Definition 4.2.9 A multivariate function f(x) is said to be super-modular, if for any
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x,y ∈ Rn, it satisfies

f(x ∨ y) + f(x ∧ y) ≥ f(x) + f(y),

where x ∨ y = max{x,y} and x ∧ y = min{x,y}. 2

Consider a bivariate function g(x, y). A different version of the definition of super-

modularity is, g(x, y) is super-modular if and only if g(x2, y2) − g(x2, y1) ≥ g(x1, y2) −

g(x1, y1) for all x1 ≤ x2 and y1 ≤ y2. Detailed discussions about the super-modular function

and its applications can be found in Shaked and Shanthikumar (2007) and references

therein. Given the existence of cross partial derivatives, f(x1, ..., xn) is super-modular if and

only if ∂2

∂xi∂xj
f(x1, ..., xn) ≥ 0 for all 1 ≤ i 6= j ≤ n. Obviously, a joint distribution function

or a copula is super-modular. Furthermore, we have the following invariant property.

Lemma 4.2.10 Let multivariate function f(x1, ..., xn) be increasing in xi for all i =

1, ..., n. If f(x1, ..., xn) is super-modular, then u(f(x1, ..., xn)) is super-modular for any

increasing convex function u.

Proof. If suffices to prove the bivariate case.

Assume that f(x, y) is increasing and super-modular. For any x1 ≤ x2 and y1 ≤ y2,

denote f(x2, y2) = a, f(x2, y1) = b, f(x1, y2) = c and f(x1, y1) = d. Without loss of

generality, assume b ≥ c. Since f(x, y) is increasing and super-modular, we have a ≥ b ≥

c ≥ d and a− b ≥ c− d. Noting that u(x) is increasing and convex, we have

u(a)− u(b) ≥ u′+(b)(a− b) ≥ u′+(c)(a− b) ≥ u′+(c)(a− b) ≥ u(c)− u(d),

which implies that u(f(x, y)) is 2−increasing. 2
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Lemma 4.2.11 Assume that random variables X1, ..., Xn with marginal survival functions

F̄1(x), ..., F̄n(x) satisfy X1 ≤hr ... ≤hr Xn. For a multivariate function H(u1, ..., un), if

(i) H(u1, ..., un) is arrangement decreasing and is increasing in uk, k = 1, ..., n; and

(ii) there exists a strictly increasing function g(x) such that

g(H(u1, ..., uk−1, e
t, uk+1, ..., un)) is concave in t ∈ (−∞, 0],

for all k = 1, ..., n, and g(H(u1, ..., un)) is super-modular,

then H(F̄1(x1), ..., F̄n(xn)) is arrangement increasing.

Proof. Without loss of generality, it is sufficient to show that

H(F̄1(x1), F̄2(x2), ..., F̄n(xn)) ≥ H(F̄1(x2), F̄2(x1), ..., F̄n(xn)) for all x1 ≤ x2.

For strictly increasing function g(x), it is equivalent to

g(H(F̄1(x1), F̄2(x2), ..., F̄n(xn))) ≥ g(H(F̄1(x2), F̄2(x1), ..., F̄n(xn))), (4.2.6)

for all x1 ≤ x2.

For any fixed x1, x3, ..., xn, define q(u) = g(H(F̄1(x1), u, ..., F̄n(xn))), then q ◦ e(t) =

q(et) is increasing and concave in t ∈ (−∞, 0]. Therefore, Lq◦e(t1, t2) is nonnegative and
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decreasing in t1, t2. Note that

g(H(F̄1(x1), F̄2(x2), ..., F̄n(xn)))− g(H(F̄1(x1), F̄1(x2), ..., F̄n(xn)))

= q(F̄2(x2))− q(F̄1(x2)) = q ◦ e(log(F̄2(x2)))− q ◦ e(log(F̄1(x2)))

= Lq◦e(log(F̄2(x2)), log(F̄1(x2)))× (log(F̄2(x2))− log(F̄1(x2)))

= Lq◦e(log(F̄2(x2)), log(F̄1(x2)))× log

(
F̄2(x2)

F̄1(x2)

)
≥ Lq◦e(log(F̄2(x1)), log(F̄1(x1)))× log

(
F̄2(x1)

F̄1(x1)

)
(4.2.7)

= g(H(F̄1(x1), F̄2(x1), ..., F̄n(xn)))− g(H(F̄1(x1), F̄1(x1), ..., F̄n(xn)))

≥ g(H(F̄1(x2), F̄2(x1), ..., F̄n(xn)))− g(H(F̄1(x2), F̄1(x1), ..., F̄n(xn))). (4.2.8)

Inequality (4.2.7) holds because F̄k(x2) ≤ F̄k(x1) for k = 1, 2 and F̄2(x2)

F̄1(x2)
≥ F̄2(x1)

F̄1(x1)
since

X1 ≤hr X2. Inequality (4.2.8) holds because g(H(u1, u2, ..., un)) is super-modular.

Recalling that H(u1, ..., un) is arrangement decreasing and F̄1(x2) ≤ F̄1(x1), we have

g(H(F̄1(x1), F̄1(x2), ..., F̄n(xn))) ≥ g(H(F̄1(x2), F̄1(x1), ..., F̄n(xn))),

which implies (4.2.6) according to (4.2.8). 2

Proposition 4.2.12 Assume that random variables X1, ..., Xn are linked by a survival

copula C(u1, ..., un). If

(i) Xk ≤hr Xk+1 for all k = 1, ..., n− 1,

(ii) C(u1, ..., un) is arrangement decreasing, and
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(iii) there exists a strictly increasing convex function g(x) such that

g(C(u1, ..., uk−1, e
t, uk+1, ..., un)) is concave in t ≤ 0 for any k = 1, ..., n, (4.2.9)

then (X1, ..., Xn) is UOAI.

Proof. It is easy to verify that the survival copula C(u1, ..., un) satisfies the conditions (ii)

and (iii) in Lemma 4.2.11. Therefore, the joint survival function C(F̄1(x1), ..., F̄n(xn)) is

arrangement increasing, which implies that (X1, ..., Xn) is UOAI. 2

The following corollary shows that Archimedean copulas with certain restrictions satisfy

conditions (ii) and (iii) in Proposition 4.2.12.

Corollary 4.2.13 Assume that random variables X1, ..., Xn are linked by an Archimedean

survival copula C(u1, ..., un) given in (1.4.2). If

(i) Xk ≤hr Xk+1 for all k = 1, ..., n− 1, and

(ii) Ψ(et) is convex in t ∈ (−∞, 0],

then (X1, ..., Xn) is UOAI.

Proof. First, C(u1, ..., un) is symmetric and thus arrangement decreasing. Second, let

g(x) = −Ψ(x) = −Λ−1(x), then g′(x) = − 1
Λ′(Λ−1(x))

. Noting that Λ′(x) is negative and

increasing, and Λ−1(x) = Ψ(x) is decreasing, we have g′(x) is positive and increasing, which

means that g(x) is increasing convex. On the other hand, g(C(u1, ..., un)) = −
∑n

k=1 Ψ(uk)

satisfies condition (4.2.9) given that Ψ(et) is convex. Therefore, (X1, ..., Xn) is UOAI

according to Proposition 4.2.12. 2
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Proposition 4.2.14 Assume that random vector X = (X1, ..., Xn) with positive joint

density function f(x1, ..., xn) is linked by an Archimedean survival copula given in (1.4.2).

If Xk ≤hr Xk+1 for k = 1, ..., n− 1 and Ψ(et) is convex in t ∈ (−∞, 0], then X is CUOAI.

Proof. Without loss of generality, it is sufficient to show that (X1, X2)|(X3, ..., Xn) =

(x3, ..., xn) is UOAI for any fixed x3, ..., xn, or equivalently

P{X1 > x1, X2 > x2|(X3, ..., Xn) = (x3, ..., xn)}

is arrangement increasing.

Note that

P{X1 > x1, X2 > x2|(X3, ..., Xn) = (x3, ..., xn)}

= (−1)n−2 × ∂n−2

∂x3 · · · ∂xn
P{X1 > x1, ..., Xn > xn} ×

1

f(X3,...,Xn)(x3, ..., xn)

= (−1)n−2 × ∂n−2

∂x3 · · · ∂xn
C(F̄1(x1), ..., F̄n(xn))× 1

f(X3,...,Xn)(x3, ..., xn)

= (−1)n−2Λ(n−2)

(
n∑
k=1

Ψ(F̄k(xk))

)
×

n∏
k=3

(−Ψ′(F̄k(xk)))×
∏n

k=3 fk(xk)

f(X3,...,Xn)(x3, ..., xn)
.

It is sufficient to show that (−1)n−2Λ(n−2)
(∑n

k=1 Ψ(F̄k(xk))
)

is arrangement increasing for

any fixed x3, ..., xn.

Consider the function H(u1, u2) = −Ψ(u1) − Ψ(u2), then H(u1, u2) satisfies condi-

tion (i) and condition (ii) in Lemma 4.2.11 with g(x) ≡ x. Recalling that X1 ≤hr X2,

according to Lemma 4.2.11 we have H(F̄1(x1), F̄2(x2)) = −Ψ(F̄1(x1)) − Ψ(F̄2(x2)) is ar-

rangement increasing. Therefore (−1)nΛ(n−2)
(∑n

k=1 Ψ(F̄k(xk))
)

is arrangement increasing

since (−1)n−2Λ(n−2)(−x) is decreasing from Remark 1.4.2. 2
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There are many well known copulas satisfying the condition that Ψ(et) is convex. For

instance, Gumbel copula Ψ(x) = (− log x)α with α ≥ 1 and Clayton copula Ψ(x) =

x−θ − 1 with θ > 0. Noting that independent copula and comonotonic copula are special

Gumbel copulas with α = 1 and α =∞, respectively, Proposition 4.2.13 actually includes

Proposition 4.2.7 as a special case.

Lemma 4.2.15 Let g1(x), ..., gn(x) be differentiable functions such that g1(0) = ... =

gn(0) = 0. Denote by F (x1, ..., xn) and F̄ (x1, ..., xn) the joint distribution function and

joint survival function of random vector (X1, ..., Xn).

(i) If random variables X1, ..., Xn are nonnegative, then

E

[
n∏
i=1

gi(Xi)

]
=

∫ ∞
0

· · ·
∫ ∞

0

F̄ (x1, ..., xn)
n∏
i=1

g′i(xi) dx1 · · · dxn,

(ii) and if random variables X1, ..., Xn are non-positive, then

E

[
(−1)n

n∏
i=1

gi(Xi)

]
=

∫ 0

−∞
· · ·
∫ 0

−∞
F (x1, ..., xn)

n∏
i=1

g′i(xi) dx1 · · · dxn,

provided that the expectations exist.
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Proof. (i) Noting that F̄ (x1, ..., xn) = E[
∏n

i=1 I{xi < Xi}], according to Fubini’s theorem,

we have

∫ ∞
0

· · ·
∫ ∞

0

F̄ (x1, ..., xn)
n∏
i=1

g′i(xi) dx1 · · · dxn

=

∫ ∞
0

· · ·
∫ ∞

0

E

[
n∏
i=1

I{xi < Xi}

]
n∏
i=1

g′i(xi) dx1 · · · dxn

= E

[∫ ∞
0

· · ·
∫ ∞

0

n∏
i=1

g′i(xi)I{xi < Xi} dx1 · · · dxn

]

= E

[
n∏
i=1

∫ ∞
0

g′i(xi)I{xi < Xi} dxi

]
= E

[
n∏
i=1

∫ Xi

0

g′i(xi) dxi

]
= E

[
n∏
i=1

g(Xi)

]
.

The inequality of (ii) can be proved by the same argument. 2

Proposition 4.2.16 Let gi(x), i = 1, ..., n, be continuous differentiable increasing func-

tions such that g1(0) = ... = gn(0) ≥ 0. Assume that there exists 1 ≤ i < j ≤ n such that

g′i(x) ≤ g′j(x) and
∏n

k=1 g
′
k(xk) ∈ G

ij
sai. If (X1, ..., Xn) is nonnegative and UOAI, then

E[g(X1, ..., Xn)] ≥ E[g(πij(X1, ..., Xn))],

where g(x1, ..., xn) =
∏n

k=1 gk(xk).

Proof. We only give the proof for the case i = 1, j = 2.
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Case 1: gk(0) = 0 for all k = 1, ..., n. According to Lemma 4.2.15, we have

E

[
g1(X1)g2(X2)

n∏
k=3

gk(Xk)

]
=

∫
[0,∞)n

F̄ (x1, ..., xn)g′1(x1)g′2(x2)
n∏
k=3

g′k(xk) d x1...d xn

=

∫
[0,∞)n−2

∫ ∞
0

∫ ∞
0

F̄ (x1, x2, ..., xn)g′1(x1)g′2(x2)
n∏
k=3

g′k(xk) d x1 d x2 d x3...d xn

=

∫
[0,∞)n−2

∫ ∞
0

(∫ x2

0

+

∫ ∞
x2

)
F̄ (x1, x2, ..., xn)g′1(x1)g′2(x2)

n∏
k=3

g′k(xk) d x1 d x2 d x3...d xn

=

∫
[0,∞)n−2

∫ ∞
0

∫ x2

0

(
F̄ (x1, x2, ..., xn)g′1(x1)g′2(x2) + F̄ (x2, x1, ..., xn)g′1(x2)g′2(x1)

)
×

n∏
k=3

g′k(xk) d x1 d x2 d x3...d xn

≥
∫

[0,∞)n−2

∫ ∞
0

∫ x2

0

(
F̄ (x1, x2, ..., xn)g′1(x2)g′2(x1) + F̄ (x2, x1, ..., xn)g′1(x1)g′2(x2)

)
×

n∏
k=3

g′k(xk) d x1 d x2 d x3...d xn (4.2.10)

=

∫
[0,∞)n

F̄ (x1, ..., xn)g′1(x2)g′2(x1)
n∏
k=3

g′k(xk) d x1...d xn = E

[
g1(X2)g2(X1)

n∏
k=3

gk(Xk)

]
,

where Inequality (4.2.10) holds because F̄ (x1, ..., xn) ∈ G12
sai and

∏n
k=1 g

′
k(xk) ∈ G12

sai.

Case 2: gk(0) 6= 0 for all k = 1, ..., n. Without loss of generality, assume gk(0) = 1.

Define hi(x) = gi(x) − 1 for i = 1, ..., n. Then we have hk(0) = 0 and g(x1, ..., xn) =
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∏n
k=1(hk(xk) + 1). Note that

g(X1, ..., Xn) = (h1(X1) + 1)(h2(X2) + 1)×
n∏
k=3

(hk(Xk) + 1)

= (h1(X1)h2(X2) + h1(X1) + h2(X2) + 1)×
∑

K⊂{3,...,n}

∏
k∈K

hk(Xk), (4.2.11)

g(π12(X1, ..., Xn)) = (h1(X2) + 1)(h2(X1) + 1)×
n∏
i=3

(hk(Xk) + 1)

= (h1(X2)h2(X1) + h1(X2) + h2(X1) + 1)×
∑

K⊂{3,...,n}

∏
k∈K

hk(Xk). (4.2.12)

Following the proof for case 1, it is easy to verify that

E

[
h1(X1)h2(X2)×

∏
k∈K

hk(Xk)

]
≥ E

[
h1(X2)h2(X1)×

∏
k∈K

hk(Xk)

]
, (4.2.13)

for any K ⊂ {3, ..., n}.

On the other hand, according to Proposition 4.2.6 (iii), we have (X1,XK) ≤uo (X2,XK).

Noting that h2 − h1 is nonnegative increasing, from Lemma 1.2.12, we have

E

[
(h2(X1)− h1(X1))×

∏
i∈K

hi(Xi)

]
≤ E

[
(h2(X2)− h1(X2))×

∏
i∈K

hi(Xi)

]
,

which implies

E

[
(h1(X1) + h2(X2))×

∏
i∈K

hi(Xi)

]

≥ E

[
(h1(X2) + h2(X1))×

∏
i∈K

hi(Xi)

]
, (4.2.14)
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for any K ⊂ {3, ..., n}.

Combining (4.2.11),(4.2.12),(4.2.13) and (4.2.14), the proof is completed. 2

Proposition 4.2.16 can be considered as a “quasi” functional characterization of the

notion of UOAI. It should be pointed out that, the assumption of differentiability of gk(x)

can be weakened to single sided differentiability, which is to be applied in Chapter 5.

From Proposition 4.2.16, we can draw some conclusion on the joint moment generating

function of UOAI random vectors:

Corollary 4.2.17 If X = (X1, ..., Xn) is UOAI, then the moment generating function

MX(t1, ..., tn) = E
[∏n

k=1 e
tkXk

]
is arrangement increasing in tk ≥ 0, k = 1, ..., n.

Proof. It is sufficient to show that

E

[
et1X1et2X2

n∏
k=3

etkXk

]
≥ E

[
et1X2et2X1

n∏
k=3

etkXk

]
, (4.2.15)

for any 0 ≤ t1 ≤ t2 and tk ≥ 0, k = 3, ..., n. Define gk(x) = etkx, k = 1, ..., n, then

gk(x), k = 1, ..., n, satisfies the conditions in Proposition 4.2.16, which implies (4.2.15). 2

Corollary 4.2.18 Let X = (X1, ..., Xn) be nonnegative UOAI random vector. For any

vector a = (a1, ..., an) ≥ 0, if there exists 1 ≤ i < j ≤ n such that ai ≤ aj, then

a ·X ≥mgf a · πij(X). 2

From Shaked and Shanthikumar (2007), moment generating function order is implied

by moments order. As a matter of fact, the moment generating function order in Corollary

4.2.18 could be strengthened to moments order.
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Corollary 4.2.19 Let X = (X1, ..., Xn) be nonnegative UOAI random vector. For any

a = (a1, ..., an) ≥ 0, if there exists 1 ≤ i < j ≤ n such that ai ≤ aj, then a · X ≥mom
a · πij(X).

Proof. It is sufficient to show that

E

[(
a1X1 + a2X2 +

n∑
i=3

aiXi

)m]
≥ E

[(
a1X2 + a2X1 +

n∑
i=3

aiXi

)m]
.

Note that(
a1X1 + a2X2 +

n∑
i=3

aiXi

)m

=
m∑
j=0

(
m

j

)
(a1X1 + a2X2)j

(
n∑
i=3

aiXi

)m−j

.

For any j that is odd,

(a1X1 + a2X2)j =

[ j
2 ]∑
l=0

(
j

l

)(
al1X

l
1a
j−l
2 Xj−l

2 + aj−l1 Xj−l
1 al2X

l
2

)
,

for any j that is even

(a1X1 + a2X2)j =

[ j
2 ]−1∑
l=0

(
j

l

)(
al1X

l
1a
j−l
2 Xj−l

2 + aj−l1 Xj−l
1 al2X

l
2

)
+

(
j
j
2

)
(a1X1a2X2)j/2.

On the other hand,

(
n∑
i=3

aiXi

)m−j

=
∑

(l3,...,ln)∈K

n∏
i=3

ciX
li
i ,

where K = {(l3, ..., ln)|
∑n

i=3 li and l3, ..., ln ∈ N}, and c3, ..., cn are nonnegative constants.
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Then it is sufficient to show that

E

[(
al1X

l
1a
j−l
2 Xj−l

2 + aj−l1 Xj−l
1 al2X

l
2

)
×

n∏
i=3

ciX
li
i

]

≥ E

[(
al1X

l
2a
j−l
2 Xj−l

1 + aj−l1 Xj−l
2 al2X

l
1

)
×

n∏
i=3

ciX
li
i

]

for any j = 1, ..., n and l ≤ j/2, which is equivalent to,

E

[
(al1a

j−l
2 − aj−l1 al2)X l

1X
j−l
2

n∏
i=3

X li
i

]

≥ E

[
(al1a

j−l
2 − aj−l1 al2)Xj−l

1 X l
2

n∏
i=3

X li
i

]
. (4.2.16)

Note that a1 ≤ a2 and l ≤ j − l. If l 6= 0, inequality (4.2.16) holds directly from Propo-

sition 4.2.16; if l = 0, inequality (4.2.16) holds from the fact that (X2, X3, .., Xn) ≥uo
(X1, X3, ..., Xn) (according to Proposition 4.2.6 (iii)) and Lemma 1.2.12. 2

A parallel concept to UOAI is LOAI, which is defined as follows:

Definition 4.2.20 Random vector (X1, ..., Xn) is said to be lower orthant arrangement

increasing (LOAI), if its joint distribution function F (x1, ..., xn) = P{X1 ≤ x1, ..., Xn ≤ xn}

is arrangement increasing.

Lemma 4.2.21 Random vector (X1, ..., Xn) is LOAI if and only if (−Xn, ...,−X1) is

UOAI.

Proof. We give the proof for the bivariate case for simplicity.
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“⇒” Assume that (X1, X2) is LOAI. For any x1 ≤ x2, we have −x2 ≤ −x1, and then

P{−X2 ≥ x1,−X1 ≥ x2} = P{X1 ≤ −x2, X2 ≤ −x1}

≥ P{X1 ≤ −x1, X2 ≤ −x2} = P{−X2 ≥ x2,−X1 ≥ x1}. (4.2.17)

Since inequality (4.2.17) holds for any x1 ≤ x2, it also holds that

P{−X2 ≥ x1 + δ,−X1 ≥ x2 + δ} ≥ P{−X2 ≥ x2 + δ,−X1 ≥ x1 + δ}

for any δ > 0. Taking the limit of δ ↓ 0, we have

P{−X2 > x1,−X1 > x2} ≥ P{−X2 > x2,−X1 > x1},

which means (−X2,−X1) is UOAI.

“⇐” Assume that (−X2,−X1) is UOAI. For any x1 ≤ x2, we have

P{X1 < x1 + δ,X2 < x2 + δ} = P{−X2 > −x2 − δ,−X1 > −x1 − δ}

≥ P{−X2 > −x1 − δ,−X1 > −x2 − δ} = P{X1 < x2 + δ,X2 < x1 + δ},

for any δ > 0. Let δ ↓ 0, we get

P{X1 ≤ x1, X2 ≤ x2} ≥ P{X1 ≤ x2, X2 ≤ x1},

for any x1 ≤ x2, i.e., (X1, X2) is LOAI. 2

Lemma 4.2.21 builds a relation between UOAI and LOAI. Based on this relation, we

can easily derive similar properties of LOAI random vectors based on the properties of
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UOAI random vectors.

Proposition 4.2.22 If random vector (X1, ..., Xn) is LOAI, then (f(X1), ..., f(Xn)) is

LOAI for any increasing function f(x).

Proof. Noting that −f(−x) is increasing, according to Lemma 4.2.21 and Proposition

4.2.5, we have

(X1, ..., Xn) is LOAI ⇒ (−Xn, ...,−X1) is UOAI

⇒ (−f(Xn), ...,−f(X1)) is UOAI ⇒ (f(X1), ..., f(Xn)) is LOAI. 2

Corollary 4.2.23 Let f(x) be a decreasing function.

(i) If random vector (X1, ..., Xn) is UOAI, then (f(Xn), ..., f(X1)) is LOAI.

(ii) If random vector (X1, ..., Xn) is LOAI, then (f(Xn), ..., f(X1)) is UOAI.

Similar as Proposition 4.2.6, the LOAI dependence also implies lower orthant order

between random vectors formulated by marginalizations.

Proposition 4.2.24 Let K1, K2, K3 be mutually disjoint subsets of {1, ..., n} such that

|K1| = |K2| and maxK1 < minK2. If (X1, ..., Xn) is LOAI, then

(Xk, k ∈ K1 ∪K3) ≤lo (Xk, k ∈ K2 ∪K3).

Proof. For simplicity, assume K1 = {1}, K2 = {2} and K3 = {3, ..., n}, then we need to

show

(X1, X3, ..., Xn) ≤lo (X2, X3, ..., Xn).
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Since (X1, ..., Xn) is LOAI, we have for any fixed x, x3, ..., xn ∈ R,

P{X1 ≤ x,X3 ≤ x3, ..., Xn ≤ xn} = P{X1 ≤ x,X2 ≤ ∞, X3 ≤ x3, ..., Xn ≤ xn}

≥ P{X1 ≤ ∞, X2 ≤ x,X3 ≤ x3, ..., Xn ≤ xn} = P{X2 ≤ x,X3 ≤ x3, ..., Xn ≤ xn},

which implies (X1, X3, ..., Xn) ≤lo (X2, X3, ..., Xn). 2

Similar as UOAI, independent or comonotonic random variables with certain marginal

distributions can formulate a LOAI random vector.

Corollary 4.2.25 Let random variables X1, ..., Xn be mutually independent. Then ran-

dom vector (X1, ..., Xn) is LOAI if and only if X1 ≤rh ... ≤rh Xn.

Proof. Combine Proposition 4.2.7 and Lemma 4.2.21, it is sufficient to show that

X1 ≤rh ... ≤rh Xn ⇔ −Xn ≤hr ... ≤hr −X1.

The equivalence holds according to Proposition 1.2.3. 2

Following the same argument, we have

Corollary 4.2.26 Let random variables X1, ..., Xn be comonotonic. Then random vector

(X1, ..., Xn) is LOAI if and only if X1 ≤st ... ≤st Xn. 2

Furthermore, we can construct LOAI random vectors through copulas, as Proposition

4.2.12.

Proposition 4.2.27 Assume that random variables X1, ..., Xn are linked by Archimedean

copula C(u1, ..., un). If
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(i) X1 ≤rh ... ≤rh Xn,

(ii) C(u1, ..., un) is arrangement increasing, and

(iii) there exists a strictly increasing convex function g(x) such that

g(C(u1, ..., uk−1, e
t, uk+1, ..., un)) is concave in t ∈ (−∞, 0] for any k = 1, ..., n,

then (X1, ..., Xn) is LOAI.

Proof. This result can be proved following the same argument as the proof for Proposition

4.2.12. However, the relation between LOAI and UOAI given by Lemma 4.2.21 provides a

shortcut for its proof, which is given below.

First, X1 ≤rh ... ≤rh Xn implies −Xn ≤hr ... ≤hr −X1. According to Proposition

1.4.1, we know that as the survival copula of (X1, ..., Xn), C(u1, ..., un) is also a copula of

(−X1, ...,−Xn). Then, C↓(u1, ..., un) ≡ C(un, ..., u1) is a copula of (−Xn, ...,−X1). Recall

that C(u1, ..., un) is arrangement increasing, then C↓(u1, ..., un) is arrangement decreas-

ing. Obviously, C↓(u1, ..., un) satisfies condition (iii) in Proposition 4.2.12. Therefore,

(−Xn, ...,−X1) is UOAI according to Proposition 4.2.12, which means that (X1, ..., Xn) is

LOAI. 2

4.3 (Conditionally) Tail Density Arrangement Increas-

ing

In this section, we focus on the generalization of the hazard rate order. There are two ways

to generalize this concept into multivariate cases.
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Definition 4.3.1 Random vector (X1, ..., Xn) with a joint density function is said to be

tail density arrangement increasing (TDAI), if

∂

∂xi
F̄ (x1, .., xi, ..., xj, ..., xn) ≤ ∂

∂xi
F̄ (x1, .., xj, ..., xi, ..., xn),

for any 1 ≤ i < j ≤ n and xi ≤ xj.

Definition 4.3.2 Random vector (X1, ..., Xn) is said to be conditionally tail density ar-

rangement increasing (CTDAI), if

∂

∂xi
P{Xi > xi, Xj > xj|Xij = xij} ≤

∂

∂xi
P{Xi > xj, Xj > xi|Xij = xij},

for any 1 ≤ i < j ≤ n and xi ≤ xj.

It is easy to verify that TDAI implies UOAI, and CTDAI implies CUOAI. Obviously,

“(X1, ..., Xn) is CTDAI” is equivalent to “(Xi, Xj)|Xij = xij is TDAI for all 1 ≤ i < j ≤ n

and all xij ∈ S(Xij)”. It is clear that, in the case n = 2, (X, Y ) is CTDAI if and only if

(X, Y ) is TDAI if and only if X ≤hr:j Y . In the case that n ≥ 3, CTDAI implies TDAI.

Proposition 4.3.3 If random vector (X1, ..., Xn) is CTDAI, then (X1, ..., Xn) is TDAI.

Proof. The conclusion is straightforward by noting that

∂

∂xi
P{Xi > xi, Xj > xj|Xij = xij}

= (−1)n−2∂
n−2

∂xij

∂

∂xi
P{X1 > x1, ..., Xn > xn} × (fXij

(xij))
−1,

where fXij
(xij) is the joint density function of Xij, and by noting that ∂

∂xi
F̄ (x1, ..., xn) is

a multiple integration of (−1)n−2 ∂n−2

∂xij

∂
∂xi
P{X1 > x1, ..., Xn > xn}. 2
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In the case that X1, ..., Xn are mutually independent, “(X1, ..., Xn) is CTDAI” is equiv-

alent to “(X1, ..., Xn) is TDAI”. Indeed, we have the following result.

Proposition 4.3.4 Assume that random variables X1, ..., Xn are mutually independent.

(X1, ..., Xn) is CTDAI if and only if (X1, ..., Xn) is TDAI if and only if X1 ≤hr ... ≤hr Xn.

Proof. Due to the independence between X1, ..., Xn, it suffices to show that (X1, X2) is

TDAI if and only if X1 ≤hr X2, which follows from Shanthikumar and Yao (1991). 2

Recall that the definition of the joint hazard rate order given in Definition 4.1.1 assumes

the existence of partial derivatives of the joint survival function. As mentioned in Section

4.1, this assumption is not essential. In the following, we state several equivalent char-

acterizations of the joint hazard rate order from the probabilistic and functional aspects,

which avoid the existence of the partial derivatives of the joint survival function and can

serve as the generalized versions of the definition of joint hazard rate order.

Definition 4.3.5 Let A be a subset of Rn. A is said to be an upper set, if the indicator

function I{(x1, ..., xn) ∈ A} is increasing in x1, ..., xn.

A is said to be a partial upper set with respect to a subset K ⊂ {1, ..., n}, or a K−upper

set, if I{(x1, ..., xn) ∈ A} is increasing in xk for all k ∈ K.

Proposition 4.3.6 The following statements are equivalent.

(i) X ≤hr:j Y

(ii) E[g(X, Y )] ≥ E[g(Y,X)] for all g(x, y) ∈ Ghr.

(iii) P{(X, Y ) ∈ A} ≥ P{(Y,X) ∈ A} for all {2}−upper set A ⊂ {(x, y)|x ≤ y}.
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Proof. The equivalence between (i) and (ii) has been proved by Shanthikumar and Yao

(1991) in Theorem 3.17. In the following, we only prove the equivalence between (ii) and

(iii).

(ii)⇒(iii). For any {2}−upper set A ⊂ {(x, y)|x ≤ y}, consider the indicator function

h(x, y) = I{(x, y) ∈ A}. Obviously, h(x, y) in increasing in y since A is a {2}−upper

set. Noting that ∆h(x, y) = h(x, y) if y > x, and ∆h(x, y) = 0 if y = x, we have

∆h(x, y) = h(x, y) is increasing in y ≥ x. Therefore h(x, y) ∈ Ghr, which implies that

P{(X, Y ) ∈ A} = E[h(X, Y )] ≥ E[h(Y,X)] = P{(Y,X) ∈ A}.

(iii)⇒(ii). Consider any function g(x, y) ∈ Ghr. Noting that ∆g(y, x) = −∆g(x, y) and

∆g(x, y) = 0 if x = y, we have

E[∆g(X, Y )] = E[∆g(X, Y )I{Y ≥ X}] + E[∆g(X, Y )I{Y ≤ X}]

= E[∆g(X, Y )I{Y ≥ X}]− E[∆g(Y,X)I{X ≥ Y }]. (4.3.1)

Since ∆g(X, Y )I{Y ≥ X} ≥ 0, we have

E[∆g(X, Y )I{Y ≥ X}] =

∫ ∞
0

P{∆g(X, Y )I{Y ≥ X} > z}d z

=

∫ ∞
0

P{∆g(X, Y ) > z, Y ≥ X}dz =

∫ ∞
0

P{(X, Y ) ∈ Az}d z, (4.3.2)

where Az = {(x, y)|∆g(x, y) > z, y ≥ x}. Similarly,

E[∆g(Y,X)I{X ≥ Y }] =

∫ ∞
0

P{(Y,X) ∈ Az}dz. (4.3.3)
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Recalling that g(x, y) ∈ Ghr, it is easy to verify that Az ⊂ {(x, y)|x ≤ y} and Az is a

{2}−upper set for any fixed z ≥ 0, then P{(X, Y ) ∈ Az} ≥ P{(Y,X) ∈ Az} for any z ≥ 0.

Combining with (4.3.2) and (4.3.3), we have

E[∆g(X, Y )I{Y ≥ X}] ≥ E[∆g(Y,X)I{X ≥ Y }],

which implies E[g(X, Y )] ≥ E[g(Y,X)] according to (4.3.1). 2

Proposition 4.3.6 (ii) is actually a functional characterization of the joint hazard rate

order, which has been proposed by Shanthikumar and Yao (1991). The contribution of this

proposition is to develop a probabilistic characterization (iii) and to build connection with

the functional characterization. The proof of (iii)⇒(ii) reveals the essence of the functional

characterization and gives some inspirations on how to generalize the joint hazard rate order

into multivariate cases.

Below we propose a functional characterization for the notion of CTDAI. First, we

derive a property of the class Gijctdai.

Lemma 4.3.7 Let u(x) be an increasing and convex function. If g(x1, ..., xn) ∈ Gijctdai and

g(x1, ..., xn) is increasing in each xi, then u(g(x1, ..., xn)) ∈ Gijctdai.

Proof. For simplicity, assume that u(x) and g(x1, ..., xn) are differentiable, and denote by

g′i(x1, ..., xn) the partial derivative of g with respect to the ith argument. Then g(x1, ..., xn) ∈

Gijctdai implies g′j(x1, ..., xn) ≥ g′i(πij(x1, ..., xn)) for all xj ≥ xi.
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Note that u′(x) is nonnegative and increasing, then

∂

∂xj
u(g(x1, ..., xn)) = u′(g(x1, ..., xn))× g′j(x1, ..., xn)

≥ u′(g(πij(x1, ..., xn)))× g′i(πij(x1, ..., xn)) =
∂

∂xj
u(g(πij(x1, ..., xn))).

2

Proposition 4.3.8 Assume that random vector (X1, ..., Xn) has a joint density function.

Then the following statements are equivalent.

(i) (X1, ..., Xn) is CTDAI.

(ii) E[g(X)] ≥ E[g(πij(X))] for any 1 ≤ i < j ≤ n and any g(x1, ..., xn) ∈ Gijctdai.

(iii) P{X ∈ A} ≥ P{πij(X) ∈ A} for any 1 ≤ i < j ≤ n and any {j}−upper set

A ⊂ {(x1, ..., xn) ∈ Rn|xi ≤ xj}.

Proof. (i)⇒(ii). For any 1 ≤ i < j ≤ n and any fixed xij ∈ S(Xij), according to

Definition 4.3.2, we know that (Xi, Xj)|Xij = xij is TDAI. For any g(x) ∈ Gijctdai, denote

h(xi, xj) ≡ g(x1, ..., xi, ..., xj, ..., xn), then h(xi, xj) ∈ G0
hr. Then according to Proposition

4.3.6, we have E [h(Xi, Xj)] ≥ E [h(Xj, Xi)], or

E [g(X1, ..., Xi, ..., Xj, ..., Xn)|Xij] ≥ E [g(X1, ..., Xj, ..., Xi, ..., Xn)|Xij].

Taking expectation on both sides of the above inequality, we have E[g(X)] ≥ E[g(πij(X))].

(ii)⇒(iii). For any 1 ≤ i < j ≤ n and any {j}−upper set A ⊂ {(x1, ..., xn) ∈ Rn|xi ≤

xj}, define h(x1, ..., xn) = I{(x1, ..., xn) ∈ A}. It is easy to verify that h(x1, ..., xn) ∈ Gijctdai.

Then P{X ∈ A} = E[h(X)] ≥ E[h(πij(X))] = P{πij(X) ∈ A}.
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(iii)⇒(i). Without loss of generality, it is sufficient to show that

∂

∂x1

P{X1 > x1, X2 > x2|X12 = x12} ≤
∂

∂x1

P{X1 > x2, X2 > x1|X12 = x12}, (4.3.4)

for any x1 ≤ x2 and any fixed x12 ∈ S(X12).

For any x1 ≤ x2, define At = (x1− t, x1]×(x2,∞)×A12, where t > 0 and A12 ∈ σ(X12).

Then At is a {2}−upper set and At ⊂ {(x1, ..., xn) ∈ Rn|x1 ≤ x2}. Therefore, we have

P{(X1, X2, ..., Xn) ∈ At} ≥ P{(X2, X1, ..., Xn) ∈ At}, or

P{x1 − t < X1 ≤ x1, X2 > x2,X12 ∈ A12} ≥ P{x1 − t < X2 ≤ x1, X1 > x2,X12 ∈ A12}.

which is equivalent to

E[E[I{x1 − t < X1 ≤ x1, X2 > x2}|X12]× I{X12 ∈ A12}]

≥ E[E[I{x1 − t < X2 ≤ x1, X1 > x2}|X12]× I{X12 ∈ A12}]

According to Lemma 4.4.4, we have

E[I{x1 − t < X1 ≤ x1, X2 > x2}|X12] ≥a.s. E[I{x1 − t < X2 ≤ x1, X1 > x2}|X12]

or

P{x1 − t < X1 ≤ x1, X2 > x2|X12 = x
12
} ≥ P{x1 − t < X2 ≤ x1, X1 > x2|X12 = x

12
},

for any x
12
∈ S(X12).
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By dividing t > 0 on both sides of the above inequality and letting t↘ 0, we have

∂

∂x1

P{X1 > x1, X2 > x2|X12} ≤
∂

∂x1

P{X1 > x2, X2 > x1|X12},

which implies (4.3.4). 2

Proposition 4.3.8 provides a functional characterization and a probabilistic characteri-

zation of the notion of CTDAI, which also serve as two generalized versions of the definition

of CTDAI. The advantage of these generalized definitions is that they do not require the

existence of joint density function. It has to be pointed out that, although being assumed in

Proposition 4.3.8, the existence of the joint density function is not essential for the proof

of the implication of (iii)⇒(ii). Alternatively, we can prove (iii)⇒(ii) using the similar

arguments as in the proof of Proposition 4.3.6.

Following the functional characterization of CTDAI, it is easy to derive the invariant

property of CTDAI.

Proposition 4.3.9 If random vector (X1, ..., Xn) is CTDAI, then (f(X1), ..., f(Xn)) is

CTDAI for any increasing function f(x).

Proof. The proof is straightforward by noting the fact that

g(x1, ..., xn) ∈ Gijctdai =⇒ g(f(x1), ..., f(xn)) ∈ Gijctdai,

for any increasing function f(x). 2

Proposition 4.3.10 Assume that random vector (X1, ..., Xn) has a joint density function

and the marginal distributions satisfy X1 ≤hr ... ≤hr Xn. Let (X1, ..., Xn) be linked by
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an Archimedean survival copula C(u1, ..., un) = Ψ−1(
∑n

k=1 Ψ(uk)). If Ψ(et) is convex in

t ∈ (−∞, 0], then (X1, ..., Xn) is CTDAI.

Proof. It suffices to show that

∂

∂x1

P{X1 > x1, X2 > x2|X12 = x12} ≤
∂

∂x1

P{X1 > x2, X2 > x1|X12 = x12}, (4.3.5)

for any x1 ≤ x2.

Note that F̄ (x1, ..., xn) = Λ
(∑n

k=1 Ψ(F̄k(xk))
)

and
∑n

k=1 Ψ(F̄k(xk)) = Ψ(F̄ (x1, ..., xn)).

Then,

P{X1 > x1, X2 > x2|X12 = x12}

= (−1)n−2 ∂n−2

∂x3...∂xn
F̄ (x1, ..., xn)× 1

f(X3,...,Xn)(x3, ..., xn)

= (−1)n−2Λ(n−2)

(
n∑
k=1

Ψ(F̄k(xk))

)
×

n∏
k=3

(−Ψ′(F̄k(xk)))×
∏n

k=3 fk(xk)

f(X3,...,Xn)(x3, ..., xn)

= (−1)n−2Λ(n−2)
(
Ψ(F̄ (x1, ..., xn))

)
× h(x3, ..., xn),

where h(x3, ..., xn) =
∏n

k=3(−Ψ′(F̄k(xk)))×
∏n

k=3 fk(xk)

f(X3,...,Xn)(x3,...,xn)
≥ 0.

Therefore,

− ∂

∂x1

P{X1 > x1, X2 > x2|X12 = x12}

= (−1)n−1Λ(n−1)
(
Ψ(F̄ (x1, x2, ..., xn))

)
× Ψ′(F̄1(x1))(−f1(x1))× h(x3, ..., xn), (4.3.6)
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and

− ∂

∂x1

P{X1 > x2, X2 > x1|X12 = x12}

= (−1)n−1Λ(n−1)
(
Ψ(F̄ (x2, x1, ..., xn))

)
×Ψ′(F̄2(x1))(−f2(x1))× h(x3, ..., xn). (4.3.7)

According to Corollary 4.2.13, we know that F̄ (x1, x2, ..., xn) ≥ F̄ (x2, x1, ..., xn) for any

x1 ≤ x2. On the other hand, Ψ(x) is decreasing and (−1)n−1Λ(n−1)(x) is decreasing from

Remark 1.4.2, then

(−1)n−1Λ(n−1)
(
Ψ(F̄ (x1, x2, ..., xn))

)
≥ (−1)n−1Λ(n−1)

(
Ψ(F̄ (x2, x1, ..., xn))

)
. (4.3.8)

Since Ψ(et) is convex, we have d
d t

Ψ(et) = Ψ′(et)et is increasing and thus Ψ′(x)x is

increasing. Since F̄1(x1) ≤ F̄2(x1), we have

− F̄1(x1)×Ψ′(F̄1(x1)) ≥ −F̄2(x1)×Ψ′(F̄2(x1)). (4.3.9)

Recalling that X1 ≤hr X2, we have

f1(x1)

F̄1(x1)
≥ f2(x1)

F̄2(x1)
. (4.3.10)

A combination of (4.3.9) and (4.3.10) implies that

Ψ′(F̄1(x1))(−f1(x1)) ≥ Ψ′(F̄2(x1))(−f2(x1)). (4.3.11)

Combing (4.3.6),(4.3.7),(4.3.8) and (4.3.11), we get (4.3.5). 2
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Similarly as Corollary 4.2.19, we can compare different linear combinations of compo-

nents of a CTDAI random vector in certain stochastic orders.

Proposition 4.3.11 If random vector X = (X1, ..., Xn) is CTDAI, then

a ·X ≥icx a · πij(X),

for any vector a = (a1, ..., an) ≥ 0 such that 1 ≤ i < j ≤ n and ai ≤ aj.

Proof. It is sufficient to show that

E

[
u

(
a1X1 + a2X2 +

n∑
k=3

akXk

)]
≥ E

[
u

(
a2X1 + a1X2 +

n∑
k=3

akXk

)]

for all u ∈ Uicx and any a1 ≤ a2.

Consider the function g(x1, ..., xn) = u (
∑n

k=1 akxk). Noting that

∆12g(x1, ..., xn) = u

(
a1x1 + a2x2 +

n∑
k=3

akxk

)
− u

(
a2x1 + a1x2 +

n∑
k=3

akxk

)
,

we have

∂

∂x2

∆12g(x1, ..., xn) = a2u
′(a · x)− a1u

′(a · π12(x)).

Since u ∈ Uicx, we have u′(x) ≥ 0 and u′(x) is increasing. Noting that a2 ≥ a1 and

a · x ≥ a · π12(x), we have ∂
∂x2

∆12g(x1, ..., xn) ≥ 0, which means g(x1, ..., xn) ∈ D12
ctdai.
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According to the functional characterization of CTDAI, we know that

E

[
u

(
a1X1 + a2X2 +

n∑
k=3

akXk

)]
= E [g(X1, X2, ..., Xn)]

≥ E [g(X2, X1, ..., Xn)] = E

[
u

(
a2X1 + a1X2 +

n∑
k=3

akXk

)]
. 2

4.4 Stochastic Arrangement Increasing

Shanthikumar and Yao (1991) extended the definition of the joint likelihood ratio order into

multivariate cases. In this section, we redefine the notion using a multivariate functional

characterization and derive many important properties.

Definition 4.4.1 Random vector X = (X1, ..., Xn) is said to be stochastically arrange-

ment increasing (SAI), if for any 1 ≤ i < j ≤ n, E [g(X)] ≥ E [g(πij(X))] for any

g(x1, ..., xn) ∈ Gijsai such that the expectations exist.

Obviously, SAI implies CTDAI since Gijctdai ⊂ G
ij
sai. Recall that the notions of UOAI

(CUOAI) and TDAI (CTDAI) are characterized by joint survival functions. Similarly,

SAI can also be characterized by the joint density function, given that the joint density

function exists. Shanthikumar and Yao (1991) have stated this result without proof. In

the following, we provide a detailed proof.

Proposition 4.4.2 Assume that X has joint density function f(x). Then X is SAI if and

only if f(x) is arrangement increasing.
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Proof. First assume f(x) is arrangement increasing. Without loss of generality, it is

sufficient to show that

E[g(X1, X2, ..., Xn)] ≥ E[g(X2, X1, ..., Xn)] for any g ∈ G12
sai.

Noting that (g(x1, x2,x12)− g(x2, x1,x12))(f(x1, x2,x12)− f(x2, x1,x12)) ≥ 0, we have

g(x1, x2,x12)f(x1, x2,x12) + g(x2, x1,x12)f(x2, x1,x12)

≥ g(x2, x1,x12)f(x1, x2,x12) + g(x1, x2,x12)f(x2, x1,x12).

Therefore,

E [g(X)] =

∫
Rn

g(x1, x2,x12)f(x1, x2,x12)dx

=

∫
x1>x2

g(x1, x2,x12)f(x1, x2,x12)dx +

∫
x1<x2

g(x1, x2,x12)f(x1, x2,x12)dx

+E [g(X)I{X1 = X2}]

=

∫
x1>x2

g(x1, x2,x12)f(x1, x2,x12)dx +

∫
x1>x2

g(x2, x1,x12)f(x2, x1,x12)dx

+E [g(X)I{X1 = X2}]

=

∫
x1>x2

(g(x1, x2,x12)f(x1, x2,x12) + g(x2, x1,x12)f(x2, x1,x12))dx

+E [g(X)I{X1 = X2}]

≥
∫
x1>x2

(g(x2, x1,x12)f(x1, x2,x12) + g(x1, x2,x12)f(x2, x1,x12))dx

+E [g(X)I{X1 = X2}]

=

∫
Rn

g(x2, x1,x12)f(x1, x2,x12)dx = E [g(π12(X))].
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Now assume that X is SAI, without loss of generality, it is sufficient to show that

f(x1, x2,x12) ≥ f(x2, x1,x12) for any x1 < x2 and any x12 ∈ Rn−2. Since the density

function exists, we have

f(x1, x2,x12) = lim
t1→0

lim
t2→0

1

4t1t2
lim

t12→0

22−n∏n
i=3 ti

P{|Xi − xi| ≤ ti, i = 1, · · · , n}. (4.4.1)

Noting that for any given x ∈ Rn such that x1 < x2, there exist t1, t2 ≥ 0 such that x1+t1 ≤

x2 − t2. It is easy to verify that the function h(y) =
∏n

i=1 I{yi ∈ [xi − ti, xi + ti]} ∈ G12
sai,

thus

P{|X1 − t1| ≤ t1, |X2 − t2| ≤ t2, |Xi − ti| ≤ ti, i = 3, · · · , n}

= E [I{|X1 − t1| ≤ t1, |X2 − t2| ≤ t2, |Xi − ti| ≤ ti, i = 3, · · · , n}]

≥ E [I{|X2 − t1| ≤ t1, |X1 − t2| ≤ t2, |Xi − ti| ≤ ti, i = 3, · · · , n}]

= P{|X2 − t1| ≤ t1, |X1 − t2| ≤ t2, |Xi − ti| ≤ ti, i = 3, · · · , n}.

Combining with (4.4.1), we have f(x1, x2,x12) ≥ f(x2, x1,x12) for any x1 < x2. 2

The following two propositions show that the SAI property is preserved under marginal-

ization and conditioning:

Proposition 4.4.3 If X = (X1, ..., Xn) is SAI, then XK = (Xk, k ∈ K) is SAI for any

non-empty K ⊆ {1, ..., n}.

Proof. Without loss of generality, assume K = {1, ..., |K|}. For any 1 ≤ i < j ≤ |K|,

consider any function g(x1, ..., x|K|) : R |K| → R such that g ∈ Gijsai. Define h(x) =

h(x1, ..., xn) ≡ g(x1, ..., x|K|). It is easy to verify that h(x) ∈ Gijsai for any 1 ≤ i < j ≤ |K|.
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Since (X1, ..., Xn) is SAI, we have

E[g(XK)] = E[h(X)] ≥ E[h(πij(X))] = E[g(πij(XK))],

which implies XK is SAI according to Definition 4.4.1. 2

Lemma 4.4.4 Let X be a random vector defined on the space (Ω,F ,P) and f(x) be a

multivariate function. If E[f(X)I(A)] ≤ 0 for all A ∈ F , then f(X) ≤a.s. 0.

Proof. Define A = {ω ∈ Ω : f(X(ω)) > 0}, we want to show that P(A) = 0. Otherwise,

assume P(A) > 0. Denote An = {ω ∈ Ω : f(X(ω)) ≥ 1/n}. Then the sets sequence

{An, n = 1, 2, ...} is increasing and converges to A, therefore limn→∞ P(An) = P(A) > 0.

Then there exists N ∈ N+ such that P(AN) > 0, and thus

E[f(X(ω))I{ω ∈ AN}] ≥ E
[

1

N
I{ω ∈ AN}

]
=

1

N
P(AN) > 0,

which conflicts with the fact that E[f(X)I(A)] ≤ 0 for all A ∈ F . 2

Proposition 4.4.5 If X is SAI, then XK |XK̄ = xK̄ is SAI for any K ⊂ {1, ..., n} and any

xK̄ ∈ S(XK̄).

Proof. Without loss of generality, assume K = {1, ..., |K|}. For any i < j ≤ |K|,

consider any function g(x1, ..., x|K|) : R |K| → R such that g ∈ Gijsai. Define h(x) =

g(x1, ..., x|K|)I{(x|K|+1, ..., xn) ∈ A}, where A ∈ σ(X|K|+1, ..., Xn). It is easy to verify

that h(x) ∈ Gijsai. Following the definition of SAI, we have E [h(X)] ≥ E [h(πij(X))], i.e.,

E [g(XK)I{XK̄ ∈ A}] ≥ E [g(πij(X1, ..., X|K|))I{(X|K|+1, ..., Xn) ∈ A}]. According to the
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property of conditional expectation, it is equivalent to

E [E [g(XK)|XK̄ ]I{XK̄ ∈ A}] ≥ E [E [g(πij(XK))|XK̄ ]I{XK̄ ∈ A}].

Therefore, E [g(XK)|XK̄ ] ≥a.s. E [g(πij(XK))|XK̄ ] by Lemma 4.4.4. 2

Proposition 4.4.6 X is SAI if and only if (Xi, Xj)|Xij = xij is SAI for any 1 ≤ i < j ≤ n

and any xij ∈ S(Xij).

Proof. The “only if” part follows directly from Proposition 4.4.5.

As for the “if” part, consider any 1 ≤ i < j ≤ n and any function g ∈ Gijsai. We want

to show

E [g(X)] ≥ E [g(πij(X))].

Note that for any fixed xij ∈ S(Xij), g(xi, xj; xij) is arrangement increasing as a bivariate

function. Since (Xi, Xj)|Xij = xij is SAI, we have E [g(X)|Xij = xij] ≥ E [g(πij(X))|Xij =

xij], which implies E [g(X)] ≥ E [g(πij(X))] by taking expectation on Xij. 2

Recall that the likelihood ratio order could be characterized by distribution, i.e., X ≤lr
Y if and only if P{X ∈ A}P{Y ∈ B} ≥ P{X ∈ B}P{Y ∈ A} for all measurable sets A,B

such that supA ≤ inf B, see Shaked and Shanthikumar (2007). This fact motivates us

to derive a similar characterization for SAI. In doing so, we first derive some equivalent

characterizations for the bivariate SAI dependence (i.e., the joint likelihood ratio order).

Proposition 4.4.7 The following statements are equivalent.

(i) (X, Y ) is SAI.
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(ii) P{(X, Y ) ∈ I × J} ≥ P{(X, Y ) ∈ J × I} for all measurable sets I, J ⊂ R such that

sup I ≤ inf J .

(iii) P{(X, Y ) ∈ A} ≥ P{(Y,X) ∈ A} for any measurable A ⊆ {(x, y)|x ≤ y}.

Proof. (i)=⇒(iii) is obvious since h(x, y) = I{(x, y) ∈ A} is arrangement increasing for

any measurable A ⊂ {(x, y) ∈ R 2 : x ≤ y}.

(iii)=⇒(ii) is straightforward.

(ii)=⇒(i). Consider any arrangement increasing function g(x, y). We first assume

g(x, y) ≥ 0. For positive integer n, define

An =

{[
i

2n
,
i+ 1

2n

)
×
[
j

2n
,
j + 1

2n

)
, i, j ∈ Z and − n2n ≤ j < i ≤ n2n − 1

}

and

gn(x, y) =
∑
A∈An

inf
(s,t)∈A

g(s, t)× I{(x, y) ∈ A},

where the minimum inf(x,y)∈A g(x, y) always exists since g(x, y) ≥ 0. It is easy to see

that {gn(x, y)} is an increasing series and converges to g(x, y) × I{x > y}. Therefore, by

monotone convergence theorem, we have

E [g(X, Y )I{X > Y }] = lim
n→∞

E [gn(X, Y )].

For any set A ⊂ R 2, define its symmetric set as As = {(y, x) : (x, y) ∈ A}.
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Define Bn = {As, A ∈ An}, and

hn(x, y) =
∑
B∈Bn

inf
(s,t)∈B

g(s, t)× I{(x, y) ∈ B},

then

E [g(X, Y )I{X < Y }] = lim
n→∞

E [hn(X, Y )].

Therefore,

E [g(X, Y )] = lim
n→∞

E [gn(X, Y ) + hn(X, Y )] + E [g(X,X)I{X = Y }]. (4.4.2)

E [g(Y,X)] = lim
n→∞

E [gn(Y,X) + hn(Y,X)] + E [g(X,X)I{X = Y }]. (4.4.3)

In order to show E [g(X, Y )] ≥ E [g(Y,X)], it is sufficient to show that

E [gn(X, Y ) + hn(X, Y )] ≥ E [gn(Y,X) + hn(Y,X)] for all n. (4.4.4)

On the other hand, we have

E [gn(X, Y )] =
∑
A∈An

inf
(x,y)∈A

g(x, y)× P{(X, Y ) ∈ A};

E [hn(X, Y )] =
∑
A∈An

inf
(x,y)∈As

g(x, y)× P{(X, Y ) ∈ As};

E [gn(Y,X)] =
∑
A∈An

inf
(x,y)∈A

g(x, y)× P{(X, Y ) ∈ As};

E [hn(Y,X)] =
∑
A∈An

inf
(x,y)∈As

g(x, y)× P{(X, Y ) ∈ A}.
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Note that for any A ∈ An, As has the form of I × J with I, J ⊂ R and sup I ≤ inf J .

Based on the assumption of (ii), we have P{(X, Y ) ∈ As} ≥ P{(X, Y ) ∈ A} for any

A ∈ An. Noting that g(x, y) ≤ g(y, x) since g is arrangement increasing, we have

inf
(x,y)∈A

g(x, y) ≤ inf
(x,y)∈A

g(y, x) = inf
(x,y)∈As

g(x, y).

Recall the arrangement inequality, i.e., ab+cd ≥ ad+ bc for any constants a, b, c, d such

that a ≤ c and b ≤ d. Therefore, we have

inf
(x,y)∈A

g(x, y)× P{(X, Y ) ∈ A}+ inf
(x,y)∈As

g(x, y)× P{(X, Y ) ∈ As}

≥ inf
(x,y)∈A

g(x, y)× P{(X, Y ) ∈ As}+ inf
(x,y)∈As

g(x, y)× P{(X, Y ) ∈ A},

which implies (4.4.4) immediately.

Similarly, it can be proved that E [g(X, Y )] ≥ E [g(X, Y )] for any negative arrangement

increasing function g(x, y) such that the expectations exist.

For general arrangement increasing function g(x, y), denote g+(x, y) = max{g(x, y), 0}

and g−(x, y) = min{g(x, y), 0}. Then g+(x, y) and g−(x, y) are both arrangement increas-

ing, and g(x, y) = g+(x, y) + g−(x, y). According to the above result, we have

E [g+(X, Y )] ≥ E [g+(Y,X)] and E [g−(X, Y )] ≥ E [g−(Y,X)],

which implies E [g(X, Y )] ≥ E [g(Y,X)]. 2

Based on Propositions 4.4.6 and 4.4.7, we derive an equivalent characterization of SAI

through distribution for random vector with high dimension below.
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Proposition 4.4.8 X = (X1, ..., Xn) is SAI if and only if

P{(Xi, Xj) ∈ Aij,Xij ∈ Aij} ≥ P{(Xj, Xi) ∈ Aij,Xij ∈ Aij}, (4.4.5)

for any 1 ≤ i < j ≤ n and any measurable sets Aij ⊂ {(x, y)|x ≤ y} and Aij ⊆ Rn−2.

Proof. The only if part is straightforward by noting that the function h(x) = I{(xi, xj) ∈

Aij,xij ∈ Aij} ∈ G
ij
sai for any 1 ≤ i < j ≤ n and Aij ⊆ {(x, y)|x ≤ y} and Aij ⊆ Rn−2.

For the if part, assume that (4.4.5) holds. It could be rewritten as

E [E [I{(Xi, Xj) ∈ Aij}|Xij]× I{Xij ∈ Aij}]

≥ E [E [I{(Xj, Xi) ∈ Aij}|Xij]× I{Xij ∈ Aij}].

According to Lemma 4.4.4 we have

E [I{(Xi, Xj) ∈ Aij}|Xij] ≤a.s. E [I{(Xj, Xi) ∈ Aij}|Xij],

which means that (Xi, Xj)|Xij = xij is SAI according to Proposition 4.4.7 (iii). Thus X is

SAI according to Proposition 4.4.6. 2

Note that SAI is characterized by the density function, while UOAI/CUOAI/LOAI

are characterized by the survival function. We should expect the implication from SAI to

UOAI/CUOAI/LOAI.

Proposition 4.4.9 If X is SAI, then X is UOAI/LOAI/CUOAI.
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Proof. Note that for any x1 < x2, h(y1, ..., yn) = I{y1 > x1, ..., yn > xn} ∈ G12
sai. Since X

is SAI, we have

F̄ (x1, x2, ..., xn) = E [I{X1 > x1, ..., Xn > xn}] = E [h(X)]

≥ E [h(π12(X))] = F̄ (x2, x1, ..., xn).

Following the same argument, it could be proved that F̄ (x) ≥ F̄ (πij(x)) for any 1 ≤ i <

j ≤ n such that xi < xj, which means that X is UOAI.

Similarly, note that h(y1, ..., yn) = I{y1 ≤ x1, ..., yn ≤ xn} ∈ Gijsai for any 1 ≤ i < j ≤ n

and xi < xj. Then F (x1, ..., xn) = E [h(X)] ≥ E [h(πij(X))] = F (πij(x1, ..., xn)), which

implies that X is LOAI.

From Proposition 4.4.5, we know that XK |XK̄ = xK̄ is SAI for any set K ⊂ {1, ..., n},

and thus X is CUOAI. 2

Proposition 4.4.10 Assume that X = (X1, ..., Xn) is mutually independent. Then X is

SAI if and only if Xi ≤lr Xi+1 for all i = 1, ..., n− 1.

Proof. “=⇒” From Proposition 4.4.3, we know that (Xi, Xi+1) is SAI. According to Propo-

sition 4.4.7, we have P{Xi ∈ A,Xi+1 ∈ B} ≥ P{Xi ∈ B,Xi+1 ∈ A} for any measur-

able sets A,B ⊂ R such that supA ≤ inf B. Since Xi, Xi+1 are independent, we have

P{Xi ∈ A}P{Xi+1 ∈ B} ≥ P{Xi ∈ B}P{Xi+1 ∈ A}, which means Xi ≤lr Xi+1.

“⇐=” By the transitivity property of ≤lr, we know that Xi ≤lr Xj for any 1 ≤ i <

j ≤ n. Noting that if X and Y are independent, then X ≤lr Y ⇒ (X, Y ) is SAI, we have

(Xi, Xj) is SAI and thus (Xi, Xj)|Xij = xij is SAI for any xij ∈ S(Xij). Therefore, X is

SAI by Proposition 4.4.6. 2

120



Proposition 4.4.11 If X is SAI, then Xi ≤st Xi+1 for i = 1, ..., n− 1; if Xi ≤a.s. Xi+1 for

i = 1, ..., n− 1, then X is SAI.

Proof. The first part is obvious. The second part is straightforward by noting that if

Xi ≤as Xi+1 for i = 1, ..., n− 1, then we have g(X) ≥a.s. g(πij(X)) for any g ∈ Gijsai. 2

Combining the above proposition with Proposition 1.2.5, we have

Corollary 4.4.12 Assume that X = (X1, ..., Xn) is comonotonic. Then X is SAI if and

only if Xi ≤st Xi+1 for all i = 1, ..., n− 1.

Remark 4.4.13 Proposition 4.4.10 and Corollary 4.4.12 imply that two special depen-

dence structures studied in Cheung (2007) are incorporated in this section.

Proposition 4.4.14 If random vector (X1, ..., Xn) is SAI, then (f(X1), ..., f(Xn)) is also

SAI for any increasing function f(x).

Proof. For any 1 ≤ i < j ≤ n, consider any function g(x1, ..., xn) ∈ Gijsai. Since f(x) is

increasing, it is easy to verify that h(x1, ..., xn) = g(f(x1), ..., f(xn)) ∈ Gijsai, therefore

E [h(X1, ..., Xn)] ≥ E [h(πij(X1, ..., Xn))]

⇐⇒ E [g(f(X1), ..., f(Xn))] ≥ E [g(πij(f(X1), ..., f(Xn)))]. 2

Corollary 4.4.15 Let random vector Z be independent of random vector (X1, ..., Xn). If

(X1, ..., Xn) is SAI, then (f(X1, Z), ..., f(Xn, Z)) is SAI for any bivariate function f(x, z)

increasing in x.
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Proof. Since f(x, z) is increasing in x, we have (f(X1, z), ..., f(Xn, z)) is SAI for any

fixed z according to Proposition 4.4.14. For any 1 ≤ i < j ≤ n, consider any function

g(x1, ..., xn) ∈ Gijsai. We have

E [g(f(X1, Z), ..., f(Xn, Z))] = E [E [g(f(X1, Z), ..., f(Xn, Z))|Z]]

≥ E [E [g(πij(f(X1, Z), ..., f(Xn, Z)))|Z]] = E [g(πij(f(X1, Z), ..., f(Xn, Z)))],

which implies that (f(X1, Z), ..., f(Xn, Z)) is SAI. 2

Example 4.4.16 Common shock model and inflation model.

Let random vector (X1, ..., Xn) be SAI and the common shock random variable Z be

independent of (X1, ..., Xn), then random vector (X1 ∧ Z, ..., Xn ∧ Z) is also SAI.

If Z ≥ 0, then random vector (X1 Z, ..., Xn Z) is also SAI.

Recalling Proposition 4.2.6 and Proposition 4.2.24, we know that, for a UOAI/LOAI

random vector, some of its sub-random vectors can be compared in the upper/lower orthant

order. Now with the SAI dependence structure, we can strengthen the upper/lower orthant

order to the multivariate usual stochastic order.

Proposition 4.4.17 Let K1, K2, K3 be mutually disjoint subsets of {1, ..., n} such that

|K1| = |K2| and maxK1 < minK2. If (X1, ..., Xn) is SAI, then

(Xk, k ∈ K1 ∪K3) ≤st (Xk, k ∈ K2 ∪K3).
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Proof. For simplicity, assume K1 = {1}, K2 = {2} and K3 = {3, ..., n}. We need to show

(X1, X3, ..., Xn) ≤st (X2, X3, ..., Xn).

Consider any increasing function u(x1, ..., xn−1) : Rn−1 → R. Define g(x1, ..., xn) :=

u(x2, x3, ..., xn). Then

g(x1, x2, ..., xn) = u(x2, x3, ..., xn) ≥ u(x1, x3, ..., xn) ≥ g(x2, x1, ..., xn),

for any x1 ≤ x2. Since (X1, ..., Xn) is SAI, according to Definition 4.4.1, we have

E[g(X1, X2..., Xn)] ≥ E[g(X2, X1..., Xn)],

which means that E[u(X2, X3..., Xn)] ≥ E[u(X1, X3..., Xn)]. 2

4.5 Summary

In this chapter, we have developed the new properties of the dependence notion of SAI and

proposed new notions of dependence structures of UOAI, CUOAI, TDAI and CTDAI. As

have been proved in the previous sections, these notions have the following implications.

SAI =⇒ CTDAI =⇒ TDAI/CUOAI =⇒ UOAI.

Note that TDAI and CUOAI do not imply each other. We need to point out that all the

above implications are strict. In other words, the reverses of those implications do not

hold. We take the implication CTDAI ⇒ CUOAI and CUOAI ⇒ UOAI for example.

123



Example 4.5.1 UOAI ; CUOAI, CUOAI ; CTDAI

Let (X1, X2, X3) be a discrete random vector with the following joint probability mass

function: P{(X1, X2, X3) = (1, 2, 3)} = p1, P{(X1, X2, X3) = (2, 1, 4)} = p2, P{(X1, X2, X3)

= (2, 3, 5)} = p3 with p1+p2+p3 = 1 and p1 > p2. Then it is easy to verify that (X1, X2, X3)

is UOAI but not CUOAI.

Furthermore, let (X, Y ) be a random vector with the following joint probability mass

function: p00 = p11 = p22 = p01 = p10 = 0, p02 = 0.1, p12 = 0.4, p20 = 0.2, and p21 = 0.3,

where pij = P{X = i, Y = j} for i, j = 0, 1, 2. Then, it is easy to verify that (X, Y ) is

CUOAI but not CTDAI.

One important common property of these dependence structures is the invariant prop-

erty under uniform increasing transformations. Specifically, if (X1, ..., Xn) is UOAI (or

LOAI, TDAI, SAI), then (f(X1), ..., f(Xn)) is also UOAI (or LOAI, TDAI, SAI) respec-

tively for any increasing function f(x). To make a comparison, we recall the invariant

property of the positive dependence structures in Chapter 2: (X1, ..., Xn) is PDS/PDUO

implies (f1(X1), ..., fn(Xn)) is PDS/PDUO for any increasing function f1, ..., fn. We find

that the assumption of the invariant property for PDS/PDUO is much weaker, in the sense

that it does not require the increasing transformations to be uniform.

As a matter of fact, this difference originates from the different natures of Type I de-

pendence and Type II dependence. As we know, positive dependence structures introduced

in Chapter 2 belong to Type I dependence, which is a property of copulas and does not

involve marginal distributions. However, on the other hand, UOAI/LOAI/TDAI/SAI is a

Type II dependence structure, which involves the nature of marginal distributions. When

applying different transformations on different components of a random vector, the nature

of the marginal distributions is not necessarily preserved.
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Proposition 4.2.12, Corollary 4.2.13, Proposition 4.2.14, Proposition 4.2.27, and Propo-

sition 4.3.10 demonstrate that random vectors with dependence structures of UOAI, LOAI,

CUOAI, and CTDAI can be constructed through copulas, especially Archimedean copulas.

It turns out that a random vector (X1, ..., Xn) linked by an Archimedean survival copula

C(u1, ..., un) = Ψ−1(
∑n

k=1 Ψ(uk)) with Ψ(et) convex and X1 ≤hr ... ≤hr Xn is CTDAI, and

thus is also CUOAI, TDAI and UOAI.

Archimedean copulas which satisfy the condition that Ψ(et) is convex are not difficult

to find. For example, Gumbel copula Ψ(x) = (− log x)α with α ≥ 1 and Clayton copula

Ψ(x) = x−θ − 1 with θ > 0. Recall that Example 2.4.2 in Chapter 2, the above two classes

of copulas are actually PDUO. In this sense, we build a connection between dependence

notions of UOAI/CUOAI/TDAI/CTDAI and positive dependence notion of PDUO.
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Chapter 5

Optimal Allocation Problems with

Dependent Risks

5.1 Introduction

In this chapter, we apply the dependence structures proposed in Chapter 4 to study optimal

allocation problems in the fields of insurance, finance as well as operations research.

In the field of insurance, we model by {Xi, i = 1, ..., n} the losses/risks faced by a

policyholder and by Si the occurrence time of the loss for i = 1, ..., n. Typically, there are

two types of insurance strategies: policy limit and deductible.

Under the policy limit strategy, the policyholder is granted an amount of $l > 0 as total

policy limits, which can be allocated arbitrarily among the n risks. Let di ≥ 0 be the policy

limit allocated to the risk Xi for i = 1, ..., n; then d1 + ...+ dn = l. For each limit di on the

risk Xi, the insurer covers Xi ∧ di and the policyholder retains Xi −Xi ∧ di = (Xi − di)+.
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The total discounted retained loss of the policyholder is

n∑
i=1

e−δSi(Xi − di)+,

where δ ≥ 0 is the force of interest.

The policyholder may choose the optimal limits d∗1, ..., d
∗
n to maximize the expected

utility of the total discounted wealth:

max∑n
i=1 di=l

E

[
u

(
ω −

n∑
i=1

e−δSi(Xi − di)+

)]
, (5.1.1)

where ω is the initial wealth of the policyholder after premium is paid, and u is an increasing

and/or concave utility function.

The policyholder may also choose the optimal limits d∗1, ..., d
∗
n to minimize the expected

discounted total retained loss:

min∑n
i=1 di=l

E

[
n∑
i=1

e−δSi(Xi − di)+

]
. (5.1.2)

Under the strategy with deductible, the policyholder is granted an amount of $l > 0

as total deductibles, which can be allocated arbitrarily among the n risks. Let di ≥ 0 be

the deductible allocated to the risk Xi for i = 1, ..., n; then d1 + ... + dn = l. For each

deductible di on the risk Xi, the insurer covers (Xi − di)+ and the policyholder retains

Xi − (Xi − di)+ = Xi ∧ di. The total discounted retained loss of the policyholder is

n∑
i=1

e−δSi(Xi ∧ di).
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The policyholder may choose the optimal limits d∗1, ..., d
∗
n to maximize the expected

utility of the discounted wealth, or minimize the total expected discounted retained loss:

max∑n
i=1 di=l

E

[
u

(
ω −

n∑
i=1

e−δSi(Xi ∧ di)

)]
, (5.1.3)

min∑n
i=1 di=l

E

[
n∑
i=1

e−δSi(Xi ∧ di)

]
. (5.1.4)

Note that if u(x) is increasing and/or concave, then u∗(x) = −u(ω − x) is increasing

and/or convex. Therefore, the optimal allocation problems (5.1.1)-(5.1.4) are reduced to

the following two types of optimal allocation problems:

min∑n
i=1 di=l

E

[
u

(
n∑
i=1

e−δSi(Xi ∧ di)

)]
, (5.1.5)

min∑n
i=1 di=l

E

[
u

(
n∑
i=1

e−δSi(Xi − di)+

)]
, (5.1.6)

where u is an increasing and/or convex function.

The optimization problems (5.1.5) and (5.1.6) have been studied with certain assump-

tions. For example, Cheung (2007) has studied the case without interest rate, that is

δ = 0. In this case, the impacts of the occurrence times S1, ..., Sn disappear and the

problems (5.1.5) and (5.1.6) are reduced to

min∑n
i=1 di=l

E

[
u

(
n∑
i=1

Xi ∧ di

)]
, (5.1.7)

min∑n
i=1 di=l

E

[
u

(
n∑
i=1

(Xi − di)+

)]
. (5.1.8)
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Cheung (2007) has studied the optimization model (5.1.7) and obtained some qualitative

properties of the optimal solutions. Hua and Cheung (2008b) generalize the studies in

Cheung (2007). Zhuang et al. (2009) has studied the problems in the case of δ > 0 and

derived similar results as Cheung (2007). Li and You (2012) extended the studies in Zhuang

et al. (2009) by modeling the dependence between the occurrence times {S1, ..., Sn} with

specific Archimedean copulas. In all the above researches, special assumptions are made

about the dependence structure of (X1, ..., Xn).

By the introduction of the dependence structures of UOAI/CUOAI, CTDAI and SAI,

the optimal allocation problems can be studied in a more general context. In this chapter,

Sections 5.2 and 5.3 focus on solving the optimal allocations of policy limits/deductibles,

and Sections 5.4 and 5.5 explore interesting applications of the newly defined dependence

structures in optimal portfolio selections and optimal scheduling problems.

5.2 Optimal Allocation of Policy Deductibles/Limits

Lemma 5.2.1 Assume that random vector X = (X1, ..., Xn) is UOAI . Let f, g1, · · · , gn−2

be nonnegative strictly increasing functions, and denote g = (g1, · · · , gn−2). Then,

(f(Xj ∧ xi),g(Xij))× I{Xi > xj} ≤uo (f(Xi ∧ xi),g(Xij))× I{Xj > xj},

for any 1 ≤ i < j ≤ n such that xi ≤ xj.

Proof. Denote V = (V1,Vij) = (f(Xi ∧ xi),g(Xij))× I{Xj > xj} and W = (W1,Wij) =

(f(Xj ∧ xi),g(Xij))× I{Xi > xj}.

Note that for any z < 0, P{V > z} = P{W > z} = 1; and for any z ≮ 0 (i.e., there
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exists zi ≥ 0), V > z implies Xj > xj. Then for any z1 < 0 and zij < 0, we have

P{V > z} = P{W > z} = 1.

For any z1 < 0 and zij ≮ 0, we have

P{V > (z1, zij)} = P{Vij > zij} = P{Xi > −∞, Xj > xj,Xij > g−1(zij)}

≥ P{Xi > xj, Xj > −∞,Xij > g−1(zij)} (5.2.1)

= P{Wij > zij} = P{W > (z1, zij)},

where g−1 = (g−1
1 , · · · , g−1

n−2) and g−1
k is the generalized left-continuous inverse of the func-

tion gk.

For any z1 ≥ f(xi), P{V > (z1, zij)} = P{W > (z1, zij)} = 0.

For any 0 ≤ z1 < f(xi),

P{V > (z1, zij)} = P{Xi > f−1(z1), Xj > xj,Xij > g−1(zij)}

≥ P{Xi > xj, Xj > f−1(z1),Xij > g−1(zij)} = P{W > (z1, zij)}. (5.2.2)

Inequalities (5.2.1) and (5.2.2) hold because X is UOAI and f−1(z1) < xi ≤ xj.

Combining all all the cases (i.e., z1 < 0, 0 ≤ z1 < f(xi) and z1 ≥ f(xi)), we have

P{V > z} ≥ P{W > z} for any z ∈ Rn−1, which means V ≥uo W. 2

Corollary 5.2.2 Let f1(x), f2(x) be two strictly increasing univariate functions valued on

[0,∞). Assume that there exists x0 ∈ R such that f1(x) ≤ f2(x) for all x ≤ x0. If (X1, X2)

is UOAI, then

f1(X2 ∧ x1)× I{X1 > x2} ≤st f2(X1 ∧ x1)× I{X2 > x2},
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for any x1, x2 such that x1 ≤ x0 and x2 ≥ x1.

Proof. According to Lemma 5.2.1, we have

f1(X2 ∧ x1)× I{X1 > x2} ≤st f1(X1 ∧ x1)× I{X2 > x2}

for any x1 ≤ x2.

Since x1 ≤ x0, we have Xi∧x1 ≤ x0 for i = 1, 2, and thus f1(X1∧x1) ≤a.s. f2(X1∧x1).

Therefore,

f1(X2 ∧ x1)× I{X1 > x2} ≤st f2(X1 ∧ x1)× I{X2 > x2}. 2

In order to study problem (5.1.7), we define the following objective function:

M(d) = M(d1, ..., dn) = E

[
u

(
n∑
i=1

Xi ∧ di

)]
,d = (d1, · · · , dn) ≥ 0. (5.2.3)

For notational convenience, the vector (d1, ..., di−1, x, di+1, ..., dn) is also referred as (x,dī).

In particular, M(x,dī) = M(d1, ..., di−1, x, di+1, ..., dn).

Proposition 5.2.3 Assume that u(x) is an increasing convex function defined on R such

that E [|u (
∑n

i=1 Xi)|] <∞. Then M ′+
i (d) = ∂ +

∂di
M(d) is right continuous in di and

M ′+
i (d) =

∂ +

∂di
M(d) = E

[
u′+

(
n∑
i=1

Xi ∧ di

)
I{Xi > di}

]
. (5.2.4)

Proof. Denote f(ω,d) = u (
∑

X(ω) ∧ d), then M(d) = E [f(ω,d)] =
∫

Ω
f(ω,d)P(dω).

Noting that for any fixed ω ∈ Ω, the right partial derivative of f(ω,d) with respect to each
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di exists and from the chain rule of one-sided derivatives, we have

∂ +

∂di
f(ω,d) = u′+

(
n∑
i=1

Xi(ω) ∧ di

)
× I{Xi > di}.

Let di ∈ [a, s] ⊆ (0,∞). For any fixed d1, ..., di−1, di+1, ..., dn ≥ 0, we have 0 ≤∑n
i=1Xi(ω) ∧ di ≤ s+

∑
j 6=i dj, and thus u′+ (

∑n
i=1Xi(ω) ∧ di), as a univariate function of

di, is bounded on [a, s] since u′+(x) is increasing on R. Therefore, ∂ +

∂di
f(ω,d) is bounded

on [a, s] for any fixed d1, ..., di−1, di+1, ..., dn ≥ 0. Denote the bound as A, and we have

∫ s

a

E
[∣∣∣∣∂ +

∂di
f(ω,d)

∣∣∣∣] ddi ≤ A (s− a) <∞.

According to Fubini’s theorem, we can exchange the order of the integration and the

expectation:

∫ s

a

E
[
∂ +

∂di
f(ω,d)

]
ddi = E

[∫ s

a

∂ +

∂di
f(ω,d)ddi

]
.

For any fixed ω ∈ Ω, it is easy to verify that u(x) satisfies Lipschitz condition on

[0, s +
∑

j 6=i dj] and g(ω,d) =
∑n

i=1Xi(ω) ∧ di satisfies Lipschitz condition on [a, s] as a

function of di. Therefore f(ω,d) = u ◦ g(d) also satisfies Lipschitz condition on [a, s], and

thus is absolute continuous on [a, s]. Then f(ω,d) is differentiable with respect to di almost

everywhere on [a, s], and the derivative is equal to the right derivative. By Fundamental

Theorem Π of Lebesgue integral, we have

∫ s

a

∂ +

∂di
f(ω,d)ddi =

∫ s

a

∂

∂di
f(ω,d)ddi = f(ω, (s,dī))− f(ω, (a,dī)).
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Therefore,

∫ s

a

E
[
∂ +

∂di
f(ω,d)

]
ddi = E

[∫ s

a

∂ +

∂di
f(ω,d)ddi

]
= E[f(ω, (s,dī))− f(ω, (a,dī))] = M(s,dī)− E [f(ω, a,dī)]. (5.2.5)

Since ∂ +

∂di
f(ω,d) is right continuous in di and is bounded on [a, s], according to Lebesgue

dominated convergence theorem, we have E
[
∂ +

∂di
f(ω,d)

]
is right continuous in di.

It is easy to show that if g(x) is right continuous and integrable on closed interval I and

G(x) =
∫ x
a
g(t)dt, where a ∈ I, then ∂ +

∂x
G(x) = g(x),∀x ∈ I. Thus, taking right derivative

on both sides of (5.2.5), we get

∂ +

∂s
M(s,dī) =

∂ +

∂s

∫ s

a

E
[
∂ +

∂di
f(ω,d)

]
ddi = E

[
∂ +

∂s
f(ω, s,dī)

]
(5.2.6)

= E
[
u′+ ((X(ω) ∧ (s,dī)) · e)× I{Xi > s}

]
.

Replace s with di in (5.2.6), we get (5.2.4). The right continuity of ∂ +

∂di
M(d) is from (5.2.6).

2

Theorem 5.2.4 Assume that X is UOAI and nonnegative. Then for any i ≤ j such that

di ≥ dj, it holds that

E [u ((X ∧ d) · e)] ≤ E [u ((X ∧ πij(d)) · e)] , for any u ∈ U+
exp ∪ Umom. (5.2.7)

Proof. Without loss of generality, assume i = 1, j = 2, then it is sufficient to show that

M(d1, d2,d12) ≤M(d2, d1,d12), where 12 = {3, · · · , n}.
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Note that

M(d1, d2,d12)−M(d2, d2,d12) =

∫ d1

d2

M ′+
1 (s, d2,d12)ds, (5.2.8)

M(d2, d1,d12)−M(d2, d2,d12) =

∫ d1

d2

M ′+
2 (d2, s,d12)ds. (5.2.9)

According to Proposition 5.2.3, we have

M ′+
1 (s, d2,d12) = E

[
u′
(
s+X2 ∧ d2 +

∑
X12 ∧ d12

)
I{X1 > s}

]
,

M ′+
2 (d2, s,d12) = E

[
u′
(
s+X1 ∧ d2 +

∑
X12 ∧ d12

)
I{X2 > s}

]
.

Denote V = (V1,V12) = (s+X1∧d2,X12∧dij)×I{X2 > s} and W = (W1,W12∧dij) =

(s + X2 ∧ d2,X12) × I{X1 > s}. From Proposition 5.2.1, we know that V ≥uo W for all

s ≥ d2.

Note that for u(x) of the form eγx or xn, u′(x) keeps the same form as u(x), only differing

up to a positive multiplier. From Lemma 1.2.12, we have E [u′ (
∑

V)] ≥ E [u′ (
∑

W)] for

all s ≥ d2, which is equivalent to

M ′+
2 (d2, s,d12) + u′(0)P{X2 ≤ s} ≥M ′+

1 (s, d2,d12) + u′(0)P{X1 ≤ s}.

Since u′(0) ≥ 0 and X1 ≤st X2, we have M ′+
2 (d2, s,d12) ≥ M ′+

1 (s, d2,d12) for all s ≥ d2,

which implies M(d2, d1,d12) ≥M(d1, d2,d12) by (5.2.8) and (5.2.9). 2

As a matter of fact, for any u ∈ U+
exp, (5.2.7) can be verified through Proposition 4.2.16.
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Consider the case i = 1, j = 2, then (5.2.7) becomes

E

[
exp

{
γ

(
X1 ∧ d1 +X2 ∧ d2 +

n∑
k=3

Xk ∧ dk

)}]

≥ E

[
exp

{
γ

(
X1 ∧ d2 +X2 ∧ d1 +

n∑
k=3

Xk ∧ dk

)}]
, (5.2.10)

for any γ > 0 and any d1 ≤ d2.

Define the following function: gk(x) = eγ (x∧dk) and g(x1, ..., xn) =
∏n

k=1 gk(xk). Noting

that g′+k (x) = γ exp{γ x}×I{x ≤ dk}, we have g′+1 (x) ≤ g′+2 (x) since d1 ≤ d2. Furthermore,

it is easy to verify that

n∏
k=1

g′+k (xk) = γn exp

{
γ

n∑
k=1

xk

}
× I{x1 ≤ d1, ..., xn ≤ dn} ∈ G12

sai.

Then according to Proposition 4.2.16, we have

E [g(X1, X2, ..., Xn)] ≥ E [g(X2, X1, ..., Xn)] ,

which implies (5.2.10).

In the bivariate case, i.e., n = 2, we can derive stronger results from Theorem 5.2.4.

Corollary 5.2.5 Assume that (X1, X2) is UOAI and nonnegative. Then for any d1 ≥ d2,

we have

E [u (X1 ∧ d1 +X2 ∧ d2)] ≤ E [u (X1 ∧ d2 +X2 ∧ d1)] , ∀u ∈ Uicx.

Proof. Following the same notations as in the proof for Theorem 5.2.4, the random vectors
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V and W are reduced to two univariate random variables, which are re-denoted as V and

W , and then V ≥uo W means V ≥st W . Therefore, for any increasing convex function u(x),

we have E [u′(V )] ≥ E [u′(W )]. Following the same argument as in the last paragraph of the

proof for Theorem 5.2.4, we have E [u (X1 ∧ d1 +X2 ∧ d2)] ≤ E [u (X1 ∧ d2 +X2 ∧ d1)]. 2

Proposition 5.2.6 Assume that random vector (X1, X2) is UOAI and nonnegative. Then

for any d1 ≥ d2 and any increasing function f , we have

E [u (f(X1 ∧ d1) + f(X2 ∧ d2))] ≤ E [u (f(X1 ∧ d2) + f(X2 ∧ d1))] , ∀u ∈ Uicx.

Proof. The conclusion is straightforward by noting that (f(X1), f(X2)) is also UOAI from

Proposition 4.2.5 and the fact that f(X ∧ d) = f(x) ∧ f(d). 2

Theorem 5.2.7 Assume that X is CUOAI and nonnegative. Then for any i ≤ j such

that di ≥ dj, we have

E [u ((X ∧ d) · e)] ≤ E [u ((X ∧ πij(d)) · e)] ,

for any increasing convex function u.

Proof. Without loss of generality, assume i = 1, j = 2. Since X is CUOAI, we have

(X1, X2)|X12 = x12 is UOAI, and thus (X1 + c,X2 + c)|X12 = x12 is UOAI for any c ∈ R .

For any x12 ∈ S(X12), let c = 1
2

∑
x12 ∧ d12, and d′1 = d1 + c, d′2 = d2 + c, then d′1 ≥ d′2.

According to Corollary 5.2.5, we have

E [u ((X1 + c) ∧ d′1 + (X2 + c) ∧ d′2) |X12 = x12]

≤ E [u ((X1 + c) ∧ d′2 + (X2 + c) ∧ d′1) |X12 = x12] ,
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or

E

[
u

(
X1 ∧ d1 +X2 ∧ d2 +

n∑
i=3

Xi ∧ di

)∣∣∣∣∣ X12

]

≤ E

[
u

(
X1 ∧ d2 +X2 ∧ d1 +

n∑
i=3

Xi ∧ di

)∣∣∣∣∣ X12

]
.

It completes the proof by taking expectation on X12. 2

Theorem 5.2.4 and Theorem 5.2.7 indicate that the solutions to problem (5.1.7) with

different criteria should satisfy d∗1 ≥ ... ≥ d∗n. Ordering the components of the solution to

problem (5.1.8) needs a stronger assumption of CTDAI, as shown in the following theorem.

Theorem 5.2.8 If random vector X = (X1, ..., Xn) is CTDAI, then

E [u ((X− d)+ · e)] ≤ E [u ((X− πij(d))+ · e)] (5.2.11)

for any u ∈ U2 and any 1 ≤ i < j ≤ n such that di ≤ dj.

Proof. For any di ≤ dj, consider the function g(x) = g(x1, ..., xn) = (x − πij(d))+ · e.

Then ∆ijh(x) = h(x)−h(πij(x)) = h(xj)−h(xi), where h(x) = (x−di)+− (x−dj)+ is an

increasing function. Therefore g(x1, ..., xn) ≥ g(πij(x1, ..., xn)) for any xi ≤ xj. We shall

show that u(g(x1, ..., xn)) ∈ Gijctdai, and then (5.2.11) follows immediately from Proposition

4.3.8.

Noting that ∂+

∂xj
g(x1, ..., xn) = I{xj ≥ di} and ∂+

∂xi
g(πij(x1, ..., xn)) = I{xj ≥ dj}, we
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have

∂+

∂xj
u(g(x1, ..., xn)) = u′+(g(x1, ..., xn))× I{xj ≥ di},

∂+

∂xj
u(g(πij(x1, ..., xn))) = u′+(g(πij(x1, ..., xn)))× I{xj ≥ dj}.

Since u′(t) is nonnegative and increasing and g(x1, ..., xn) ≥ g(πij(x1, ..., xn)) for any

xi ≤ xj, we conclude that ∂+

∂xj
u(g(x1, ..., xn)) ≥ ∂+

∂xj
u(g(πij(x1, ..., xn))) for any xi ≤ xj,

which means u(g(x1, ..., xn)) ∈ Gijctdai. 2

5.3 Optimal Allocation of Policy Deductibles/Limits

with Discount Factors

Theorem 5.3.1 If X = (X1, ..., Xn) is SAI, then the solution to (5.1.8) satisfies: d∗1 ≤

· · · ≤ d∗n.

Proof. It is sufficient to show that E [u ((X− d)+ · e)] ≤ E [u ((X− π12(d))+ · e)] for all

d ∈ Rn such that d1 ≤ d2.

Consider the function g(x) = (x− π12(d))+ · e. Note that

g(x)− g(π12(x)) = (x1 − d2)+ + (x2 − d1)+ − (x1 − d1)+ − (x2 − d2)+ = h(x2)− h(x1),

where h(x) = (x−d1)+− (x−d2)+ is increasing. Then we have g(x)−g(π12(x)) ≥ 0 for all

x1 ≤ x2, which means that g(x) is {12}−PAI. Since u(x) is increasing, we know that u◦g(x)

is also {12}−PAI. According to the definition of SAI, we have E [g(X)] ≥ E [g(π12(X))],

i.e., E [u ((X− d)+ · e)] ≤ E [u ((X− π12(d))+ · e)] . 2
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To study the model with discount factor, we need to extend some existing results.

Righter and Shanthikumar (1992) have systematically studied the characterizations of bi-

variate stochastic orders throng functionals.

For any bivariate functions g1(x, y) and g2(x, y), we denote ∆21g(x, y) = g2(x, y) −

g1(x, y). We derive an analogue of Theorem 1(i) in Righter and Shanthikumar (1992)

below.

Proposition 5.3.2 (X, Y ) is SAI if and only if E [g1(X, Y )] ≤ E [g2(X, Y )] for all g1(x, y)

and g2(x, y) such that ∆g21(x, y) ≥ 0 and ∆g21(x, y) + ∆g21(y, x) ≥ 0 for all x ≤ y.

Proof. ”⇒” For any arrangement increasing function g(x, y), let g1(x, y) = g(y, x) and

g2(x, y) = g(x, y). Then ∆g21(x, y) ≥ 0 and ∆g21(x, y) + ∆g21(y, x) ≥ 0 for all x ≤ y, thus

E [g(X, Y )] ≥ E [g(Y,X)].

”⇐” Define h(x, y) = (g2(x, y) − g1(x, y)) × I{x < y}, then h(y, x) = (g2(y, x) −

g1(y, x)) × I{y < x}, thus h(x, y) ≥ 0 = h(y, x) for all x ≤ y, which means that h(x, y)

is arrangement increasing. According to the definition of SAI, we have E [h(X, Y )] ≥

E [h(Y,X)], or

E [(g2(X, Y )− g1(X, Y )) I{X < Y }] ≥ E [(g2(Y,X)− g1(Y,X)) I{Y < X}]. (5.3.1)

Since ∆g21(y, x) ≥ −∆g21(x, y) for all y < x, we have

E [(g2(Y,X)− g1(Y,X)) I{Y < X}] ≥ E [(g1(X, Y )− g2(X, Y )) I{Y < X}]. (5.3.2)

Combining (5.3.1), (5.3.2) and the fact that E [(g2(X, Y ) − g1(X, Y )) × I{X = Y }] ≥ 0,

we get E [(g2(X, Y )− g1(X, Y ))] ≥ 0. 2
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The following lemma is a generalization of Lemma 4.6 in Zhuang et al. (2009).

Lemma 5.3.3 Let (X1, X2) be UOAI and X1, X2 ≥ 0. Assume that φ is an increasing

convex function. For any d1 ≥ d2, define two functions:

g1(ω1, ω2) = E [φ(ω1(X1 ∧ d1) + ω2(X2 ∧ d2))],

g2(ω1, ω2) = E [φ(ω1(X1 ∧ d2) + ω2(X2 ∧ d1))].

Then (i) ∆g21(x, y) ≥ 0 for all x ≤ y; and (ii) ∆g21(x, y) ≥ −∆g21(y, x) for all x ≤ y.

Proof. Denote g(ω1, ω2, d1, d2) = E [φ(ω1(X1 ∧ d1) + ω2(X2 ∧ d2))], then

g(ω1, ω2, d1, d2)− g(ω1, ω2, d2, d2) =

∫ d1

d2

∂+

∂s
g(ω1, ω2, s, d2)ds, (5.3.3)

g(ω1, ω2, d2, d1)− g(ω1, ω2, d2, d2) =

∫ d1

d2

∂+

∂s
g(ω1, ω2, d2, s)ds. (5.3.4)

According to Proposition 5.2.3, we have

∂+

∂s
g(ω1, ω2, s, d2) = E [φ′+(ω1 s+ ω2(X2 ∧ d2))× ω1 I{X1 > s}], (5.3.5)

∂+

∂s
g(ω1, ω2, d2, s) = E [φ′+(ω2 s+ ω1(X1 ∧ d2))× ω2 I{X2 > s}]. (5.3.6)

Consider the following two functions: f1(x) = ω1 s + ω2 x and f2(x) = ω2 s + ω1 x. It

is easy to verify that f1, and f2 satisfy the conditions in Proposition 5.2.2 for any s ≥ d2,

and thus,

f1(X2 ∧ d2)× I{X1 > s} ≤st f2(X2 ∧ d2)× I{X2 > s}.
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Therefore,

E [φ′+(ω1 s+ ω2(X2 ∧ d2))× I{X1 > s}]

= E [φ′+(ω1 s+ ω2(X2 ∧ d2)× I{X1 > s})]− φ′+(0)P{X1 ≤ s}

≤ E [φ′+(ω2 s+ ω1(X1 ∧ d2)× I{X2 > s})]− φ′+(0)P{X2 ≤ s}

= E [φ′+(ω2 s+ ω1(X1 ∧ d2))× I{X2 > s}], (5.3.7)

which implies ∂+

∂s
g(ω1, ω2, s, d2) ≤ ∂+

∂s
g(ω1, ω2, d2, s) if ω1 ≤ ω2, and thus it completes the

proof of (i) by (5.3.3) and (5.3.4).

As for (ii), note that

∆g21(ω1, ω2) + ∆g21(ω2, ω1) = g2(ω1, ω2)− g1(ω1, ω2) + g2(ω2, ω1)− g1(ω2, ω1)

= g(ω1, ω2, d2, d1)− g(ω1, ω2, d1, d2) + g(ω2, ω1, d2, d1)− g(ω2, ω1, d1, d2)

=

∫ d1

d2

∂+

∂s
g(ω1, ω2, d2, s)ds−

∫ d1

d2

∂+

∂s
g(ω1, ω2, s, d2)ds

+

∫ d1

d2

∂+

∂s
g(ω2, ω1, d2, s)ds−

∫ d1

d2

∂+

∂s
g(ω2, ω1, s, d2)ds. (5.3.8)

Recalling (5.3.5) and (5.3.6), we have

∂+

∂s
g(ω1, ω2, d2, s) = E [φ′+(ω2 s+ ω1(X1 ∧ d2))× ω2 I{X2 > s}],

∂+

∂s
g(ω2, ω1, s, d2) = E [φ′+(ω2 s+ ω1(X2 ∧ d2))× ω2 I{X1 > s}].

According to Corollary 5.2.2, for any s ≥ d2, we have

(ω2 s+ ω1(X1 ∧ d2))× I{X2 > s} ≥st (ω2 s+ ω1(X2 ∧ d2))× I{X1 > s},
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which, by the similar argument as in (5.3.7), implies ∂+

∂s
g(ω1, ω2, d2, s) ≥ ∂+

∂s
g(ω2, ω1, s, d2).

Similarly, we can prove ∂+

∂s
g(ω2, ω1, d2, s) ≥ ∂+

∂s
g(ω1, ω2, s, d2). Combining with (5.3.8), we

get ∆g21(ω1, ω2) + ∆g21(ω2, ω1) ≥ 0. 2

Theorem 5.3.4 Assume that X = (X1, ..., Xn) is CUOAI and nonnegative, and −S =

(−S1, ...,−Sn) is SAI. Then the solution to (5.1.5) with u ∈ Uicx, (d∗1, ..., d
∗
n), satisfies:

d∗1 ≥ · · · ≥ d∗n.

Proof. We first give the proof for the case n = 2. Denote (W1,W2) = (e−δ S1 , e−δ S2),

then (W1,W2) is SAI according to Proposition 4.4.14. It is sufficient to show that for any

increasing convex function u(x), the following holds:

E [u((X1 ∧ d1)W1 + (X2 ∧ d2)W2)] ≤ E [u((X1 ∧ d2)W1 + (X2 ∧ d1)W2)], (5.3.9)

for all d1 ≥ d2.

Using the notation in Lemma 5.3.3, we have

E [u((X1 ∧ d1)W1 + (X2 ∧ d2)W2)]

= E [E [u((X1 ∧ d1)W1 + (X2 ∧ d2)W2)]|(W1,W2)] = E [g1(W1,W2)],

E [u((X1 ∧ d2)W1 + (X2 ∧ d1)W2)]

= E [E [u((X1 ∧ d2)W1 + (X2 ∧ d1)W2)]|(W1,W2)] = E [g2(W1,W2)].

Combining Lemma 5.3.3 and Proposition 5.3.2, we get E [g1(W1,W2)] ≤ E [g2(W1,W2)].

As for the case n ≥ 3, it is sufficient to show that E [u(IX,S(d))] ≤ E [u(IX,S(πijd))]

for any 1 ≤ i < j ≤ n and di ≥ dj. Without loss of generality, assume i = 1, j = 2 and
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d1 ≥ d2. Denote W = (e−δ S1 , ..., e−δ Sn). Note that

E [u(IX,S(d))] = E [E [u(IX,S(d))|(X12,S12)]]

= E [E [u((X1 ∧ d1)W1 + (X2 ∧ d2)W2 + X12 ∧ d12 ?W12|(X12,S12)]]. (5.3.10)

For any fixed (x12, s12) ∈ S(X12,S12), we have (X1, X2)|(X12,S12) = (x12, s12) is UOAI,

(W1,W2)|(X12,S12) = (x12, s12) is SAI and they are independent. Consider the increasing

convex function u1(x) = u (x+ X12 ∧ d12 ?W12), according to (5.3.9) we have

E [u1((X1 ∧ d1)W1 + (X2 ∧ d2)W2)|(X12,S12)]

≤a.s. E [u1((X1 ∧ d2)W1 + (X2 ∧ d1)W2)|(X12,S12)].

Taking expectation on (X12,S12) and combing with (5.3.10), we have E [u(IX,S(d))] ≤

E [u(IX,S(π12(d)))]. 2

Theorem 5.3.5 Assume that X = (X1, ..., Xn) is SAI and nonnegative, and −S =

(−S1, ...,−Sn) is SAI. Then the solution to (5.1.6) with u ∈ Uicx, (d∗1, ..., d
∗
n), satisfies:

d∗1 ≤ · · · ≤ d∗n.

Proof. Let φ(x) be any increasing convex function. For any d1 ≤ d2 and ω1 ≤ ω2, define

two functions:

φ1(x, y) = φ(ω1(x− d1)+ + ω2(y − d2)+),

φ2(x, y) = φ(ω1(x− d2)+ + ω2(y − d1)+).

Then according to Lemma 4.1 in Zhuang et al. (2009), we have ∆φ21(x, y) ≥ 0 and

∆φ21(x, y) ≥ −∆φ21(y, x) for all x ≤ y. Since (X1, X2) is SAI, according to Proposi-
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tion 5.3.2, we have E [φ1(X1, X2)] ≤ E [φ2(X1, X2)]. Define the following two functions:

g1(ω1, ω2) = E [φ(ω1(X1 − d1)+ + ω2(X2 − d2)+)],

g2(ω1, ω2) = E [φ(ω1(X1 − d2)+ + ω2(X2 − d1)+)].

Following the same argument in Lemma 4.2 in Zhuang et al (2009), we have ∆g21(x, y) ≥ 0

and ∆g21(x, y) ≥ −∆g21(y, x) for all x ≤ y. Since (W1,W2) is SAI and independent of

(X1, X2), applying Proposition 5.3.2 again, we have

E [u((X1 − d1)+W1 + (X2 − d2)+W2)] = E [g1(W1,W2)]

≤ E [g2(W1,W2)] = E [u((X1 − d2)+W1 + (X2 − d1)+W2)],

for all increasing convex function u and d1 ≤ d2.

The proof for multivariate case is similar as the proof in Theorem 5.3.4. 2

Theorem 5.3.4 and Theorem 5.3.5 show that main results in Zhuang et al. (2009) still

hold under the generalized dependence structures proposed in Chapter 4.

5.4 Optimal Allocation Problems in Finance

In this section, we shall study the optimal investment problem and optimal allocation of

risk capitals. Consider n different assets in the market, and denote the returns of one dollar

over the investment period by random variables R1, ..., Rn. Assume that the initial capital

is m, and the investment ratio on each asset is a1, ..., an, where ak ≥ 0, k = 1, ..., n and∑n
k=1 ak = 1. At the end of the investment term, the total wealth is W =

∑n
k=1 mak×Rk,

and the total return rate is R = W/m =
∑n

k=1 akRk. One of an investor’s objective is
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to maximize the expected utility of the total return rate. The optimization problem is

formulated as

max∑n
k=1 ak=1

E

[
u

(
n∑
k=1

akRk

)]
, for all u ∈ U ,

where U is a class of utility functions, which is to be determined.

The optimal portfolio selection problems have been extensively studied with different

assumptions. For example, with the assumption of exchangeability of the return rates

random variables, Denuit and Vermandele (1998) have concluded that the capital should

be equally invested on each asset so as to maximize the concave utility. As intuitive as the

result seems, it is not trivial to prove the result. In the independent case, Landsberger and

Meilijson (1990) and Kijima and Ohnishi (1996) have studied this problem with different

assumptions on the return rates R1, ..., Rn. Recently, Hua and Cheung (2008a) have intro-

duced discount factor into this optimization problem. All the studies come to a conclusion

that the optimal weight should be arranged in a certain order.

In the following, we focus on increasing convex utility function and study the following

problem:

max∑n
k=1 ak=1

E

[
u

(
n∑
k=1

akRk

)]
, for all u ∈ Uicx. (5.4.1)

Theorem 5.4.1 If the random vector (R1, ..., Rn) is CTDAI, then the optimal solution to

Problem (5.4.1), (a∗1, ..., a
∗
n), should satisfy a∗1 ≤ ... ≤ a∗n.

Proof. It is sufficient to show that

E

[
u

(
n∑
k=1

ak Yk

)]
≥ E

[
u

(
ai Yj + aj Yi +

∑
k 6=i,j

ak Yk

)]
,
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for any u ∈ Uicx and any 1 ≤ i < j ≤ n and ai ≤ aj, which follows directly from Proposition

4.3.11. 2

We now study the threshold model proposed by Cheung and Yang (2004) with the new

dependence structures proposed in Chapter 4.

Let R1, ..., Rn be return rates of n different assets. Each return rate is not realized only if

the rate reaches a certain threshold, otherwise the actual return rate is 0. Mathematically,

denote the actual return rates as Ract
k , k = 1, ..., n, and then Ract

k = Rk × I{Rk > lk}, k =

1, ..., n, where l1, ..., ln are predetermined thresholds. The investor’s target is to maximize

the expected utility of the total return rate, i.e.,

max∑n
k=1 ak=1

E

[
u

(
n∑
k=1

akRk I{Rk > lk}

)]
, for all u ∈ U , (5.4.2)

where U is to be determined.

We consider the case that l1 = · · · = ln = l. Note that Ract
k = fl(Rk) where fl(x) =

xI{x > l} is an increasing function. According to Proposition 4.2.22 and Proposition 4.3.9,

we know that LOAI and CTDAI are invariant under uniform increasing transformations.

Therefore, following Theorem 5.4.1, we have

Corollary 5.4.2 Consider Problem (5.4.2) with l1 = ... = ln = l and U = Ust. If

(R1, ..., Rn) is CTDAI, then the optimal solution, (a∗1, ..., a
∗
n), should satisfy a∗1 ≤ ... ≤ a∗n.

2

Now we consider the allocation problem of risk capitals. Let X1, ..., Xn be n random

variables, which represent losses or profits from n lines of business. From the viewpoint

of the regulator, the investor is required to reserve certain amount of risk capital for each
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line of business to cope with the future uncertainty. A commonly used principle is Euler’s

principle, from which the risk capital for each line of business is determined by

ρi = E [Xi |S > VaRαS] , i = 1, ..., n, (5.4.3)

where S =
∑n

k=1Xk is the aggregate risk.

One interesting topic is to determine the amount of risk capitals. However, it is difficult

to calculate the conditional expectation without full information about the joint distribu-

tion of (X1, ..., Xn). In that case, qualitative analysis is needed. Asimit et al. (2011) have

derived some asymptotic results. In this section, we order the risk capitals for different

lines of business under CTDAI dependence structure.

Proposition 5.4.3 If the risk vector (X1, ..., Xn) is CTDAI, then ρ1 ≤ ... ≤ ρn, where

ρi, i = 1, ..., n, are given by (5.4.3).

Proof. Define g(x1, ..., xn) = xi × I{
∑n

k=1 xk > s} for any fixed s and j. Note that,

for any 1 ≤ i < j ≤ n, ∆gij(x1, ..., xn) = (xj − xi) × I{
∑n

k=1 xk > s} is increasing in

xj ≥ xi, which means g ∈ Gijctdai. Therefore, according to Proposition 4.3.8(ii), we have

E[g(X1, ..., Xn)] ≥ E[g(πij(X1, ..., Xn))], i.e., E [Xj × I{S > s}] ≥ E [Xi × I{S > s}]. Let

s = VaRαS. Then we have

E [Xj × I{S > VaRαS}] ≥ E [Xj × I{S > VaRαS}] ,

for any 1 ≤ i < j ≤ n. Therefore, E [Xi |S > VaRαS] ≤ E [Xj |S > VaRαS] for any

1 ≤ i < j ≤ n. 2
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5.5 Stochastic Scheduling Problems

In Shanthikumar and Yao (1991), many stochastic scheduling problems were proposed and

studied with the dependence structures developed therein. In this section, we show that,

we can extend most of their results with the dependence notions proposed in Chapter 4.

Consider a queuing system. There are n individuals in the queue. The processing time

for the individual k is modeled by a nonnegative random variable Xk, k = 1, ..., n. Let

π be a schedule (permutation), under which the individual π(k) is scheduled at the kth

position. Then, the waiting time of this individual π(k) is T πk =
∑k

l=1Xπ(l), and the total

waiting time of all individuals in the queue is

T π =
n∑
k=1

T πk =
n∑
k=1

k∑
l=1

Xπ(l) =
n∑
l=1

(n− l + 1)Xπ(l).

In this scheduling problem, one of our interests is to find a schedule so as to minimize

the total waiting time in some stochastic sense. With the assumption of independence of

(X1, ..., Xn) and X1 ≤hr ... ≤hr Xn, Shanthikumar and Yao (1991) have proved that the

identical permutation π(1, ..., n) = (1, ..., n) minimize the total waiting time in the sense of

increasing convex order. With the dependence structures proposed in Chapter 4, we can

generalize the optimal queuing problem.

Proposition 5.5.1 If random vector (X1, ..., Xn) is UOAI, then T π
∗ ≤mom T π for any

permutation π, where π∗(1, ..., n) = (1, ..., n).

Proof. Consider any permutation π, and denote aπ = (n + 1 − π(1), ..., n + 1 − π(n)).

Assume that there exists 1 ≤ i < j ≤ n such that π(i) > π(j). According to Corollary

4.2.19, we have aπ
ij(π) ·X ≤mom aπ ·X. Therefore, the optimal schedule π∗ that minimizes
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T π in the moment order should satisfy π∗(i) < π∗(j) for any 1 ≤ i < j ≤ n, which means

π∗(1, ..., n) = (1, ..., n). 2

Proposition 5.5.2 If random vector (X1, ..., Xn) is CTDAI, then T π
∗ ≤icx T π for any

permutation π, where π∗(1, ..., n) = (1, ..., n).

Proof. The desired conclusion follows from Proposition 4.3.11 with the same argument of

the proof for Proposition 5.5.1. 2

According to Proposition 4.3.4, if mutually independent random variables X1, ..., Xn

satisfy X1 ≤hr ... ≤hr Xn, then (X1, ..., Xn) is CTDAI. In this sense, Proposition 5.5.2

generalizes the result in Shanthukumar and Yao (1991).

The results of Proposition 5.5.1 and Proposition 5.5.2 are intuitive. Roughly speaking,

in a queuing system, the individual with “shorter” (in the stochastic sense) processing time

should be arranged prior to the one with “longer” processing time so as to save the total

waiting time.

Brown and Solomon (1973) proposed the problem of optimal issuing policies. The

model setting is as follows. There are n components kept in stock with their lifetimes

modeled by nonnegative random variables X1, ..., Xn. The components are to be issued

to a system one by one upon the failure of the preceding component. If component k is

issued to the system at time t, the actual lifetime of this component is d(t)Xk, where d(t)

is a positive function.

The function d(t) has two different interpretations. It can be explained as either the

“amplification” or the “decay” factor of the component lifetime. As an “amplification

factor”, d(t) is assumed to be increasing and convex; as a “decay” factor, d(t) is assumed
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to be decreasing and concave. Shanthikumar and Yao (1991) focuses on the model with

increasing convex d(t). In this section, we shall generalize their results and study the model

with decreasing concave d(t) as well.

Denote by Lk, k = 1, ..., n, the system duration up to the failure of the kth component.

The total duration of the system is Ln. Denote L0 = 0, then {Lk, k = 0, 1, ..., n} satisfy

the following recursive formulas.

Lk = Lk−1 + d(Lk−1)Xk, k = 1, ..., n.

We are particularly interested in how to issue the components so as to maximize the

total system duration. With the assumption of SAI (X1, ..., Xn), Shanthikumar and Yao

(1991) concluded that the issuing sequence (n, n− 1, ...., 1) (or (Xn, ..., X1)) is optimal, in

the sense of maximizing the total system duration in the usual stochastic order. In the

following, we derive a similar result with decreasing concave d(t). They have also studied

a special case: (X1, ..., Xn) is independent and X1 ≥hr ... ≥hr Xn. In that case, the issuing

sequence (n, n− 1, ..., 1) is optimal in the sense of increasing convex order. We extend this

result to the case that (X1, ..., Xn) follows CTDAI dependence structure.

Before we study the optimal issuing problem, we first introduce some notations. Recall

that in Section 4.3, we define the functional class Gijctdai and focus the case that 1 ≤ i <

j ≤ n to characterize the notion of CTDAI. In the following, we allow the case i > j. We

also define the following functions recursively.

l1(x1) = d(0)x1, lk(x1, ..., xk) = lk−1(x1, ..., xk−1) + d(lk−1(x1, ..., xk−1))xk, k = 2, ..., n.

Obviously, Lk = lk(X1, ..., Xk) for all k = 1, ..., n. It is easy to verify by induction that
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lk(x1, ..., xk) is increasing in each argument for all k = 1, ..., n, as long as d(t) ≥ 0.

Lemma 5.5.3 The multivariate function ln(x1, ..., xn) has the following properties:

(i) If d(t) is increasing convex, then

ln(x1, ..., xn) ∈ G{m+1,m}
ctdai , for all m = 1, ..., n− 1, (5.5.1)

(ii) If d(t) is decreasing concave, then

ln(x1, ..., xn) ∈ G{m,m+1}
ctdai , for all m = 1, ..., n− 1. (5.5.2)

Proof. We shall prove by induction that the relations (5.5.1) and (5.5.2) hold for all

lk(x1, ..., xk).

(i) Step 1. We first verify that (5.5.1) holds for l2(x1, x2). Assume that d(t) is differen-

tiable for simplicity. Noting that l2(x1, x2) = d(0)x1 + d(d(0)x1)x2, we have

∆12l2 = d(0)(x1 − x2) + d(d(0)x1)x2 − d(d(0)x2)x1,

∂

∂x1

∆12l2(x1, x2) = d(0) + d′(d(0)x1)d(0)x2 − d(d(0)x2).

Recall that d(t) is convex. Then for any x1 ≥ x2, we have

d(d(0)x2)− d(0) ≤ d′(d(0)x2)× d(0)x1 ≤ d′(d(0)x1)× d(0)x1,

which means that ∂
∂x1

∆12l2(x1, x2) ≤ 0 for any x1 ≥ x2. Then l2(x1, x2) ∈ G21
ctdai.

Step 2. Now consider the case k ≥ 3, we assume (5.5.1) holds for lk−1. We want to

show that lk ∈ G{m+1,m}
ctdai for all m = 1, ..., k − 1. Note that lk = lk−1 + d(lk−1)xk = u(lk−1),
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where u(t) = t+ xkd(t) is increasing convex. According to Lemma 4.3.7 and the fact that

lk−1 is increasing, we know that lk(x1, ..., xk) ∈ G{m+1,m}
ctdai for all m = 1, ..., k− 2. The proof

is completed if we can show that lk(x1, ..., xk) ∈ G{k,k−1}
ctdai .

Step 3. For convenience, we use lm to denote lm(x1, ..., xm) for m = 1, ..., k. Particularly,

we denote l′k−1 = l(x1, ..., xk−2, xk), then l′k−1 ≤ lk−1 if xk−1 ≥ xk, and l′k−1 − lk−2 =

d(lk−2)xk. Since lk = lk−1 + d(lk−1)xk, we have ∂
∂xk

lk = d(lk−1) and

∂

∂xk−1

lk = (1 + d′(lk−1)xk)
∂

∂xk−1

lk−1 = (1 + d′(lk−1)xk)d(lk−2).

On the other hand, noting that lk(πk−1,k(x1, ..., xk)) = lk(x1, ..., xk, xk−1), we have

∂

∂xk−1

lk(πk−1,k(x1, ..., xk)) = d(lk−1(x1, ..., xk−2, xk)) = d(l′k−1).

Therefore,

∂

∂xk−1

∆k−1,klk =
∂

∂xk−1

lk(x1, ..., xk)−
∂

∂xk−1

lk(πk−1,k(x1, ..., xk))

= d′(lk−1)d(lk−2)xk−1 − (d(l′k−1)− d(lk−2)). (5.5.3)

Recalling that u(t) is convex, we have d′(t) is increasing. For any xk−1 ≥ xk, we have

d′(l′k−1) ≤ d′(lk−1). Then

d(l′k−1)− d(lk−2) ≤ d′(l′k−1)(l′k−1 − lk−2) = d′(lk−1)d(lk−2)xk ≤ d(lk−1)d(lk−2)xk,

which, combining with (5.5.3), implies that ∂
∂xk−1

∆k−1,klk ≥ 0 for all xk−1 ≥ xk, i.e.,

lk(x1, ..., xk) ∈ G{k,k−1}
ctdai .

(ii) In the case that d(t) is decreasing concave, the proof for (5.5.2) is similar as above,
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only except that we need to verify the following two facts.

(a) d(l′k−1)− d(lk−2) ≥ d(lk−1)d(lk−2)xk;

(b) g(x1, ..., xn) ∈ Gijctdai for any 1 ≤ i < j ≤ n implies that u(g(x1, ..., xn)) ∈ Gijctdai, where

u(t) = t+ d(t)y for any fixed y > 0.

Fact (a) guarantees the validness of Step 1 and Step 3 of the proof of (i), and Fact (b)

guarantees the validness of Step 2.

Fact (a) is true since d′(t) is negative and decreasing and

d(l′k−1)− d(lk−2) ≥ d′(l′k−1)(l′k−1 − lk−2) = d′(l′k−1)d(lk−2)xk ≥ d′(lk−1)d(lk−2)xk.

Fact (b) can be easily verified. 2

Lemma 5.5.4 If (X, Y ) is TDAI, then

E[g(X, Y )] ≤ E[g(Y,X)] for any g(x, y) ∈ G21
ctdai.

Proof. Define h(x, y) = g(y, x). Then h(x, y) ∈ G12
ctdai. According to Proposition 4.3.8, we

have E[h(X, Y )] ≥ E[h(Y,X)], i.e., E[g(X, Y )] ≤ E[g(Y,X)]. 2

Proposition 5.5.5 Assume that (X1, ..., Xn) is CTDAI and d(t) is increasing and convex.

Then for any permutation π, we have

Ln(Xn, ..., X1) ≥icx Ln(Xπ(1), ..., Xπ(n)).
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Proof. For any permutation π, if there exists 1 ≤ i < j ≤ n such that π(i) < π(j), we

shall show that the issuing sequence πij ◦ π is superior to π, i.e.,

Ln(Xπ(1), ..., Xπ(j), ..., Xπ(i), ..., Xπ(n)) ≥icx Ln(Xπ(1), ..., Xπ(j), ..., Xπ(i), ..., Xπ(n)).

Therefore, for any issuing sequence π, we can derive a superior issuing sequence by exchang-

ing two consecutive components, which results in a decreasing arrangement of the index

of the two exchanged components. For example, L3(X2, X1, X3) ≤icx L3(X2, X3, X1) ≤icx
L3(X3, X2, X1). In this way, we show that the issuing sequence (n, n− 1, ..., 1) is optimal.

For simplicity, we assume π(1) < π(2). We are going to show that

E
[
u(Ln(Xπ(2), Xπ(1), ..., Xπ(n)))

]
≥ E

[
u(Ln(Xπ(1), Xπ(2), ..., Xπ(n)))

]
, (5.5.4)

for any u ∈ Uicx.

Since (X1, ..., Xn) is CTDAI, we know that (Xπ(1), Xπ(2))|Xπ(3,...,n) = xπ(3,...,n) is TDAI

for any xπ(3,...,n) ∈ S(Xπ(3,...,n)). From Lemma 5.5.3, we have Ln(y1, ..., yn) ∈ G21
ctdai.

For fixed y3, ..., yn, Ln(y1, y2, y3, ..., yn) is a bivariate function which also satisfies that

Ln(y1, y2, y3, ..., yn) ∈ G21
ctdai. Then u(Ln(y1, y2, y3, ..., yn)) ∈ G21

ctdai for any u ∈ Uicx. Ac-

cording to Lemma 5.5.4, we have

E
[
u(Ln(Xπ(2), Xπ(1), ..., Xπ(n)))

∣∣ Xπ(3,...,n) = xπ(3,...,n)

]
≥ E

[
u(Ln(Xπ(1), Xπ(2), ..., Xπ(n)))

∣∣ Xπ(3,...,n) = xπ(3,...,n)

]
.

Taking expectation with respect to Xπ(3,...,n) on both sides of the above inequality, we get

(5.5.4). 2
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Proposition 5.5.6 Assume that (X1, ..., Xn) is CTDAI and d(t) is decreasing and concave.

Then for any permutation π, we have

Ln(X1, ..., Xn) ≥icx Ln(Xπ(1), ..., Xπ(n)).

Proof. The conclusion follows from Lemma 5.5.3 (ii) and similar argument as proof for

Proposition 5.5.5. 2

Proposition 5.5.7 Assume that (X1, ..., Xn) is SAI and d(t) is decreasing and concave.

Then for any permutation π, we have

Ln(X1, ..., Xn) ≥st Ln(Xπ(1), ..., Xπ(n)).

Proof. Note that Gijctdai ⊂ G
ij
sai. Then Lemma 5.5.3 (ii) implies that Ln(x1, ..., Xn) ∈ Gm,m+1

sai

for all m = 1, ..., n− 1. Since (X1, ..., Xn) is SAI, we know that (Xi, Xj)|Xij = xij is SAI

for any fixed xij ∈ S(Xij).

Following the same argument as the proof for Proposition 5.5.5, we obtain that

E
[
u(Ln(πij ◦ (Xπ(1), ..., Xπ(n))))

]
≥ E

[
u(Ln(πij ◦ (Xπ(1), ..., Xπ(n))))

]
,

for any u ∈ Ust and any 1 ≤ i < j ≤ n such that π(i) > π(j). 2
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Conclusion

The main contribution of this thesis is that it proposes some new dependence structures

and explores their applications in different areas. The new dependence structures proposed

in this thesis not only provide a general framework for the studies of optimization problems

in the fields of insurance, finance and operations research, but also show their own interests

in the studies of probability theory and statistics.

The studies in this thesis are motivated by the optimal reinsurance problems. In order

to study the optimal reinsurance problems with multiple risks, we examine the notion

of PDS and also propose the notion of PDUO in Chapter 2. We derive some important

properties of these two notions and investigate their relations with copulas. In Chapter 3,

we apply these notions of dependence to model insurance risks and identify the optimal

reinsurance form. The introduction of PDS and PDUO provides a new approach to address

the optimal reinsurance problem.

Chapter 3 identify the individualized excess-of-loss form as the optimal reinsurance

strategy, leaving the parameters of the optimal form to be determined. Due to the difficulty

of the problem, we focus on qualitative analysis of the optimal solutions, and this triggers

the studies of the optimal allocation problems.

In Chapter 4, in order to study the optimal allocation problems, we improve the existing
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dependence notion of SAI and propose several new dependence notions of UOAI, CUOAI,

TDAI and CTDAI. We systematically study these new notions of dependence. We develop

probabilistic and functional characterizations for these notions. These characterizations

help understanding the nature of these dependence structures. These new notions are

of their own interests in the sense that they have close relations to other concepts in

probability theory, such as copulas, positive dependence and multivariate stochastic orders.

Furthermore, we provide a uniform way to construct these dependence structures, which

enhances their applicability in practice.

In Chapter 5, we show applications of the new dependence structures in solving optimal

allocation problems. The studies in Chapter 5 unify and greatly extend the existing studies

in the literature of optimal allocation problems.

By the introduction of the new dependence structures, this thesis also opens a door to

many new topics. We believe we can extend the studies in this thesis by developing more

dependence structures and applying them in more fields.
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