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Abstract

Following the introduction of the discounted penalty function by Gerber and Shiu

(1998), significant progress has been made on the analysis of various ruin-related quantities

in risk theory. As we know, the discounted penalty function not only provides a systematic

platform to jointly analyze various quantities of interest, but also offers the convenience

to extract key pieces of information from a risk management perspective. For example, by

eliminating the penalty function, the Gerber-Shiu function becomes the Laplace-Stieltjes

transform of the time to ruin, inversion of which results in a series expansion for the

associated density of the time to ruin (see, e.g., Dickson and Willmot (2005)). In this

thesis, we propose to analyze the long-standing finite-time ruin problem by incorporating

the number of claims until ruin into the Gerber-Shiu analysis. As will be seen in Chapter

2, many nice analytic properties of the original Gerber-Shiu function are preserved by this

generalized analytic tool. For instance, the Gerber-Shiu function still satisfies a defective

renewal equation and can be generally expressed in terms of some roots of Lundberg’s

generalized equation in the Sparre Andersen risk model.

In this thesis, we propose not only to unify previous methodologies on the study of

the density of the time to ruin through the use of Lagrange’s expansion theorem, but also

to provide insight into the nature of the series expansion by identifying the probabilistic

contribution of each term in the expansion through analysis involving the distribution of

the number of claims until ruin. In Chapter 3, we study the joint generalized density of

the time to ruin and the number of claims until ruin in the classical compound Poisson risk

model. We also utilize an alternative approach to obtain the density of the time to ruin

based on the Lagrange inversion technique introduced by Dickson and Willmot (2005).

In Chapter 4, relying on the Lagrange expansion theorem for analytic inversion, the joint

density of the time to ruin, the surplus immediately before ruin and the number of claims
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until ruin is examined in the Sparre Andersen risk model with exponential claim sizes and

arbitrary interclaim times.

To our knowledge, existing results on the finite-time ruin problem in the Sparre Ander-

sen risk model typically involve an exponential assumption on either the interclaim times

or the claim sizes (see, e.g., Borovkov and Dickson (2008)). Among the few exceptions,

we mention Dickson and Li (2010, 2012) who analyzed the density of the time to ruin for

Erlang-n interclaim times. In Chapter 5, we propose a significant breakthrough by utiliz-

ing the multivariate version of Lagrange’s expansion theorem to obtain a series expansion

for the density of the time to ruin under a more general distribution assumption, namely

when interclaim times are distributed as a combination of n exponentials. It is worth

emphasizing that this technique can also be applied to other areas of applied probability.

For instance, the proposed methodology can be used to obtain the distribution of some

first passage times for particular stochastic processes. As an illustration, the duration of a

busy period in a queueing risk model will be examined.

Interestingly, the proposed technique can also be used to analyze some first passage

times for the compound Poisson processes with diffusion. In Chapter 6, we propose an

extension to Kendall’s identity (see, e.g., Kendall (1957)) by further examining the distri-

bution of the number of jumps before the first passage time. We show that the main result

is particularly relevant to enhance our understanding of some problems of interest, such as

the finite-time ruin probability of a dual compound Poisson risk model with diffusion and

pricing barrier options issued on an insurer’s stock price.

Another closely related quantity of interest is the so-called occupation times of the sur-

plus process below zero (also referred to as the duration of negative surplus, see, e.g., Eǵıdio

dos Reis (1993)) or in a certain interval (see, e.g., Kolkovska et al. (2005)). Occupation

times have been widely used as a contingent characteristic to develop advanced derivatives
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in financial mathematics. In risk theory, it can be used as an important risk management

tool to examine the overall health of an insurer’s business. The main subject matter of

Chapter 7 is to extend the analysis of occupation times to a class of renewal risk processes.

We provide explicit expressions for the duration of negative surplus and the double-barrier

occupation time in terms of their Laplace-Stieltjes transform. In the process, we revisit

occupation times in the content of the classical compound Poisson risk model and examine

some results proposed by Kolkovska et al. (2005). Finally, some concluding remarks and

discussion of future research are made in Chapter 8.
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Chapter 1

Introduction

1.1 Background

The random nature of an insurer’s business and its obligation to fulfill future claim pay-

ments have drawn considerable attention of each stakeholder in the society. For instance, to

maintain the overall healthiness of insurers, a variety of measures and capital requirements

have been imposed by regulators to prevent insurers from insolvency. As an immediate

result, the level of risk-based capital to hold becomes the main concern of insurers and

has triggered multiple waves of discussion regarding the analytic relationships between the

initial capital level, the characteristics of the underlying risk business and the likelihood

of an insolvency event. In risk theory, this is partly accomplished by analyzing crucial

variables such as the time of ruin (the first time that the surplus becomes negative), the

deficit at ruin (minimum capital injection required to revive the insurer’s business) and the

surplus immediately before ruin interesting from an early warning viewpoint. The main

objective of this thesis is to join the effort of the actuarial community to analyze these
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(and other related) variables and develop efficient risk management tools to enhance our

understanding of ruin events. In particular, we focus on the time of ruin and aim to provide

insights on the distribution of the time of ruin in various risk models.

In risk theory, the insurer’s surplus process {Ut, t ≥ 0} is commonly modeled as

Ut = u+ ct− St, (1.1)

where u (u ≥ 0) is the initial surplus level, c (c > 0) is the level premium rate per unit

time and {St, t ≥ 0} is the aggregate claim amount process. We model the aggregate claim

amount at time t by

St =


Nt∑
i=1

Xi, Nt > 0,

0, Nt = 0,

(1.2)

where {Nt, t ≥ 0} is the claim number process defined through the sequence of interclaim

time random variables (r.v.’s) {Ti}∞i=1 with Ti representing the time between the (i − 1)-

th claim and the i-th claim (and T1 is the time of the first claim occurrence). Also, we

represent by Xi the amount of the i-th claim size. Let τ = inf {t ≥ 0 : Ut < 0} be the time

of ruin for the surplus process {Ut, t ≥ 0} with τ =∞ if ruin does not occur. Then, Uτ− is

the surplus immediately before ruin and |Uτ | is the deficit at ruin (see Fig 1.1). Note that

Xτ = Uτ− + |Uτ | is the amount of the claim causing ruin and Nτ = max {n :
∑n

i=1 Ti ≤ τ}

is the number of claims until ruin.

We next introduce one of the most widely studied models in the current actuarial

literature by specifying a dependence structure between claim sizes and claim frequencies.

In a Sparre Andersen risk model (see, e.g., Sparre Andersen (1957)), we assume that the

claim size r.v.’s {Xi}∞i=1 are independent and identically distributed (i.i.d.) with density p,

cumulative distribution function (c.d.f.) P (x) = 1−P (x), Laplace-Stieltjes transform (or
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Figure 1.1: Surplus process and ruin quantities

T1 T2 Τ

UΤ

UΤ-
u

t

Ut

Laplace transform) p̃ (s) =
∫∞

0
e−sxp (x) dx, mean µ and k-th moments µk (with µ1 = µ).

Similarly, the interclaim time r.v.’s {Ti}∞i=1 are also i.i.d. with density k, c.d.f. K (t) =

1 − K (t), Laplace transform k̃ (s) =
∫∞

0
e−stk (t) dt and mean κ. Furthermore, {Xi}∞i=1

and {Ti}∞i=1 are independent of each other. As a special case, when the r.v.’s {Ti}∞i=1 follow

the exponential distribution, (1.1) reduces to the classical compound Poisson risk model

(see, e.g., Cramér (1955), Gerber (1979) and Grandell (1991)).

While the starting time of the surplus process is not necessarily associated to a claim

occurrence, T1 is not always a “full” interclaim time. It may be proper to assume that T1

has a different density k0 than the other interclaim times. In this case, T1 is called the

delayed period and the model (1.1) is referred to as the delayed Sparre Andersen risk model

(see, e.g., Cox (1962)). When k0 = k, the delayed Sparre Andersen risk model becomes

the ordinary Sparre Andersen risk model. When k0(t) = ke(t) = K (t) /κ, the model (1.1)

is referred to as the stationary or equilibrium Sparre Andersen risk model (see, e.g., Cox
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(1962), Karlin and Taylor (1975), Asmussen (2000) and Willmot and Lin (2001)). Readers

are also referred to Willmot (2004) for particular distributional assumptions for k0.

We may also generalize the dependence setting in the aforementioned risk model. In

a dependent Sparre Andersen risk model, we assume that the bivariate pairs {(Xi, Ti)}∞i=1

form a sequence of i.i.d. r.v.’s and consequently {cTi −Xi}∞i=1 also form a sequence of i.i.d.

r.v.’s. However, for each pair, Ti and Xi are not necessarily independent. In this case, the

surplus process {Ut, t ≥ 0} still retains the Sparre Andersen random walk structure. This

type of process is especially useful to model some insurance events involving dependence

between the claim frequency and severity, such as earthquake insurance. Throughout this

thesis, we assume a positive security loading θ (θ > 0) such that cκ = (1 + θ)µ.

For the most part, recent research on ruin-related quantities can be rooted to the

seminal paper of Professors Hans U. Gerber and Elias S.W. Shiu (Gerber and Shiu (1998)).

They introduced a unified analytic tool, namely the Gerber-Shiu expected discounted penalty

function (also referred to as the Gerber-Shiu function), defined as

mδ (u) ≡ E
[
e−δτw(Uτ−, |Uτ |)1 (τ <∞) |U0 = u

]
, (1.3)

where δ (δ ≥ 0) can be interpreted as a force of interest or a Laplace transform argument,

w(·) is the so-called penalty function, and 1 (A) is the indicator function with value 1 if

event A is true and 0 otherwise. A nice feature of the Gerber-Shiu function comes from the

flexibility in choosing the penalty function w(·). For instance, if w (·) = 1, the Gerber-Shiu

function reduces to the Laplace transform of the time to ruin. Further, if w (x, y) = e−sx−zy,

the Gerber-Shiu function becomes the trivariate Laplace transform of the time to ruin, the

surplus immediately before ruin, and the deficit at ruin. Analytic inversion of the Laplace

transform naturally leads to the joint density of those three quantities (see, e.g., Landriault

and Willmot (2009) in the classical compound Poisson risk model). Therefore, the Gerber-
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Shiu function not only provides a systematic way to jointly analyze various quantities of

interest, but also provides the convenience to extract key risk management information

from a standard Gerber-Shiu type analysis.

The Gerber-Shiu function was first analyzed in the context of the classical compound

Poisson risk model by Gerber and Shiu (1998). It was shown that the Gerber-Shiu function

mδ (u) satisfies a defective renewal structure and can be expressed in terms of the non-

negative root of Lundberg’s fundamental equation (see, e.g., Gerber and Shiu (1998) and Lin

and Willmot (1999, 2000)). The analysis has quickly expanded to various generalizations

of the classical compound Poisson risk model. In the Sparre Andersen risk model, the

interclaim times or the claim sizes are typically assumed to follow a class of distributions,

such as Erlang distributions (see, e.g., Dickson and Hipp (2001) and Li and Garrido (2004)),

Coxian distributions (see, e.g., Li and Garrido (2005) and Landriault and Willmot (2008)),

and combinations of n exponentials (Gerber and Shiu (2005)). In general, the Gerber-Shiu

function in these Sparre Andersen risk models still satisfies a defective renewal equation

and can be expressed in terms of some solutions to the so-called Lundberg’s generalized

equation for which the dependence on δ appears in a non-trivial manner. Similar Gerber-

Shiu type analysis has also been conducted in models perturbed by diffusion (see, e.g.,

Gerber and Landry (1998) and Tsai and Willmot (2002)), with dividend strategies (see,

e.g., Lin et al. (2003), Gerber et al. (2006), Lin and Pavlova (2006) and Lin and Sendova

(2008)) or with two-sided jumps (see, e.g., Albrecher et al. (2010) and Zhang et al. (2010)).

On the other hand, the Gerber-Shiu function has also been analyzed in discrete-time

risk models (see the review paper by Li et al. (2009)). Typically, discrete-time risk models

assume that there are at most one claim in each period and the claim sizes are also integer-

valued random variables (see, e.g., Gerber (1988)). The results in discrete-time risk models

are generally more explicit and can be used to approximate their continuous analogues (see,
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e.g., Dickson (1994)). Given that discrete-time risk models are not the focus of this thesis,

we refer to Li et al. (2009) for a thorough review of the Gerber-Shiu analysis in the

compound binomial model and the discrete-time Sparre Andersen risk model. In the next

section, we will continue on the topic of Gerber-Shiu functions and comment on some

recent progress related to its generalizations.

1.2 Generalizations of the Gerber-Shiu function

The popularity and ingenuity of the Gerber-Shiu function has led some authors to pro-

pose and analyze particular generalizations of this analytic tool. One of them was in-

troduced by Cai et al. (2009). They considered the first passage time of the surplus

process down-crossing a given level d ∈ R, namely the time to default, which is defined as

τd = inf {t ≥ 0 : Ut < d} . When d = 0, τ0 = τ becomes the time to ruin. By introducing

a cost function l(Ut), which can be viewed as the operating cost at time t, they define the

expectation of the total discounted operating costs up to default as

Hδ(u) ≡ E
[∫ τd

0
e−δtl(Ut)dt |U0 = u

]
. (1.4)

Cai et al. (2009) pointed out that the Gerber-Shiu function is a special case of Hδ(u) in

a general class of surplus processes (namely, the piecewise-deterministic compound Pois-

son risk model). Moreover, Hδ(u) can be used to analyze many other time-dependent

quantities, such as the expected discounted dividends paid up to ruin,

V (u) = E
[∫ τd

0
e−δtdD(t) |U0 = u

]
, (1.5)

where D(t) represents the accumulated dividends paid up to time t (see, e.g., Avanzi

(2009) and references therein). Cai et al. (2009) further studied the properties of Hδ(u)
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and pointed out that Hδ(u) still satisfies a defective renewal equation for d = 0 and a

class of function l(·) in the classical compound Poisson risk model. While Hδ(u) is a very

general tool that could meet various interests, further analysis of the properties may rely

on some additional assumptions on l(·).

Another class of generalizations consists in adding new quantities of interest into the

penalty function w(·) (see, e.g., Cheung et al. (2010a, 2010b) and Biffis and Morales

(2010)). Cheung et al. (2010a, 2010b) defined a generalized Gerber-Shiu function,

mδ (u) ≡ E
[
e−δτw(Uτ−, |Uτ | , Yτ , RNτ−1)1 (τ <∞) |U0 = u

]
, (1.6)

where Yt = inf0≤s<t Us is the minimum surplus before time t, and Rn = u +
n∑
i=1

(cTi −Xi)

for n = 1, 2, ... (with R0 = u), which denotes the surplus immediately following the n-th

claim. A very important property of this generalization is that the resulting analytic tool

still satisfies a defective renewal equation and can be written in terms of the associated

compound geometric tail.

Similarly, we can jointly analyze the number of claims until ruin Nτ with the traditional

ruin-related variables by introducing a new function,

mr,δ (u) ≡ E
[
rNτ e−δτw(Uτ−, |Uτ | , Yτ , RNτ−1)1 (τ <∞) |U0 = u

]
(1.7)

for δ ≥ 0 and r ∈ (0, 1]. r = 0 is excluded, given that mr,δ (u) = 0 for all u ≥ 0 in this

case. We point out that mr,δ (u) also satisfies a defective renewal equation and general

structural properties will be discussed in Section 2.2. It is worth pointing out that the

number of claims until ruin has already been examined in some ruin related problems

(see, e.g., Stanford and Stroinski (1994) and De Vylder and Goovaerts (1998)). By using

probabilistic arguments on the number of claims, recursive formulas were developed to

calculate ruin probabilities by Stanford and Stroinski (1994) and Eǵıdio dos Reis (2002).
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In this thesis, the proposed analytic function mr,δ (u) enables us to incorporate the number

of claims until ruin into the Gerber-Shiu type analysis in a relatively simple manner, as we

will show.

1.3 The finite-time ruin problem

Calculating the finite-time ruin probabilities has been a long-standing problem in risk

theory. One fruitful approach proposed in the literature is to develop recursive algorithms.

For instance, De Vylder and Goovaerts (1988), and Dickson and Waters (1991) successfully

approximated the finite-time ruin probabilities in the classical risk model using the ruin

probabilities in the associated discrete-time risk process. By employing the number of

claims until ruin, Stanford and Stroinski (1994) and Stanford et al. (2000) proposed

a recursive method to calculate the probability of ruin before or on the n-th claim in

the classical compound Poisson risk model and some non-Poisson claim processes (e.g.

Erlang interclaim times and mixtures of exponentials interclaim times). The advantages

of this approach include relatively simple recursive expressions and fast-speed numerical

evaluations.

Recently, there has been an accrued interest in the identification of a closed-form expres-

sion for the density of the time to ruin, which naturally leads to mathematically tractable

expressions for the finite-time ruin probabilities. In the context of the classical compound

Poisson risk model, Drekic and Willmot (2003), Dickson and Willmot (2005) and Garcia

(2005) have all examined the density of the time to ruin through the analytic inversion of

its Laplace transform. The reader is referred to as Picard and Lefèvre (1997) when claim

sizes are discrete. The distribution of the time to ruin has also been obtained in the Sparre

Andersen risk model with exponential claim sizes; see, e.g., Borovkov and Dickson (2008)
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and Landriault et al. (2011). The reader is also invited to consult Dickson et al. (2005) for

an equivalent representation when further assumptions are made on the interclaim density

k. However, results on the distribution of the time to ruin are rather scarce when an expo-

nential assumption is not imposed on either the interclaim times or the claim sizes. Among

the few exceptions, we mention Dickson and Li (2010) who obtained an expression for the

density of the time to ruin in the Sparre Andersen risk model with Erlang-2 interclaim

times and specific claim size distributions. Also, Dickson and Li (2012) used probabilistic

arguments to obtain a recursive formula for the calculation of the joint density of the time

to ruin and the deficit at ruin for some models with Erlang-n interclaim times. As for

some discrete-time risk models, Gerber (1988) and Willmot (1993) provided formulas for

the (finite-time) ruin probabilities in the compound binomial model while Cossette et al.

(2006) proposed a recursive formula to calculate the finite-time ruin probabilities in the

Sparre Andersen risk model.

Although some of the above results are obtained by using probabilistic arguments,

analysis of the time to ruin through its Laplace transform, namely

φ1,δ (u) ≡ E
[
e−δτ1 (τ <∞) |U0 = u

]
, (1.8)

is generally easier in the sense that it can be achieved through the analysis of the Gerber-

Shiu function mδ (u). However, as mentioned earlier, the Laplace transform m1,δ (u) de-

pends on δ in a non-straightforward way, which renders its inversion with respect to δ

a daunting task even in the most simplistic risk models (see, e.g., Dickson and Willmot

(2005) and Landriault et al. (2011) for more details). In general, there are many existing

numerical inversion techniques (see, e.g., Abate and Whitt (1992)), but analytic inversion

of the Laplace transform remains a very challenging topic.

In this thesis, we propose to unify previous methodology to tackle the finite-time ruin
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problem via the use of Lagrange’s expansion theorem (which will be discussed in Section

1.4.2), as well as provide insight into the nature of the series expansions by identifying

the probabilistic contribution of each term in the expansion through analysis involving the

distribution of the number of claims until ruin. We define

φr,δ (u) ≡ E
[
rNτ e−δτ1 (τ <∞) |U0 = u

]
, (1.9)

for δ ≥ 0 and r ∈ (0, 1]. Clearly, this joint Laplace transform/probability generating

function (p.g.f.) is a special case of (1.7) when w(Uτ−, |Uτ | , Yτ , RNτ−1) = 1. The main focus

will be to obtain the expression of φr,δ (u) by using the traditional Gerber-Shiu approach

and to analytically invert φr,δ (u) w.r.t. r and δ via an application of the multivariate

Lagrange expansion theorem.

1.4 Mathematical preliminaries

1.4.1 Defective renewal equation

As mentioned earlier, the defective renewal equation plays an important role in deriving

a closed-form expression for the Gerber-Shiu function in Sparre Andersen risk models. In

this section, we will briefly discuss the solution of the defective renewal equations (see, e.g.,

Feller (1971)) and analyze the behavior of the solution in both the general and limiting

cases.

Definition 1.4.1 Suppose that F (y) = 1− F (y) for y ≥ 0 is a distribution function with

F (0) = 0 and v(x) ≥ 0 is a locally bounded continuous function (i.e., v(x) < ∞ for

x <∞), then m(x) satisfies a defective renewal equation if

m(x) = φ

∫ x

0

m(x− y)dF (y) + v(x), x ≥ 0, (1.10)
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where 0 < φ < 1.

In risk theory, F (y) generally represents the claim size distribution with Laplace trans-

form f̃(s) =
∫∞

0
e−sydF (y). The solution to Eq. (1.10) can be expressed as an associated

compound geometric tail G(y), which is defined through G(y) = 1−G(y) = Pr(L ≤ y),

G(y) =
∞∑
n=1

(1− φ)φnF
∗n

(y), y ≥ 0. (1.11)

Here F
∗n

(y) = 1−F ∗n(y) is the tail of the distribution of the n-fold convolution of F with

itself. It is not difficult to see that G(y) has a mass point of 1 − φ at y = 0. In fact,

if the number of claims is assumed to follow a geometric distribution with parameter φ,

G(y) can be interpreted as the distribution of the aggregate claim amount L. The Laplace

transform of G(y) can be written as

E
(
e−sL

)
=

∞∑
n=0

(1− φ)φn
∫ ∞

0

e−syf ∗n(y)dy

=
∞∑
n=0

(1− φ)φn
{
f̃(s)

}n
=

1− φ
1− φf̃(s)

. (1.12)

Proposition 1.4.2 The solution to Eq. (1.10) can be expressed as

m(x) =
1

1− φ

∫ x

0+
v(x− y)dG(y) + v(x), x ≥ 0. (1.13)

Proof. Taking Laplace transform on both sides of (1.10), one finds

m̃(s) = φm̃(s)f̃(s) + ṽ(s). (1.14)
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Combining (1.12) and (1.14) yields

m̃(s) =
ṽ(s)

1− φ
E
(
e−sL

)
=

ṽ(s)

1− φ

{
E
(
e−sL

+
)

+ 1− φ
}

=
ṽ(s)E

(
e−sL

+
)

1− φ
+ ṽ(s), (1.15)

where L+ is the r.v. L · 1(L > 0). Inverting (1.15) immediately leads to (1.13).

It is worth noting that the compound geometric tail G(y) itself is the solution of the

defective renewal equation when v(x) = φF (x) (see, e.g., Willmot and Lin (2001, p156)).

In this case,

m̃(s) =
ṽ(s)

1− φf̃(s)
=

1

1− φf̃(s)

(
φ

1− f̃(s)

s

)
.

Taking the Laplace transform of (1.11) yields

G̃(s) =
1− E

(
e−sL

)
s

=
1

s

{
1− 1− φ

1− φf̃(s)

}
= m̃(s).

By the uniqueness property of Laplace transforms, one concludes that G(y) satisfies

G(x) = φ

∫ x

0

G(x− y)dF (y) + φF (x), x ≥ 0. (1.16)

Eq. (1.16) could be used to obtain the Laplace transform of the time to ruin and will be

further discussed in later sections. For more insight on (1.13) with various specifications of

v(x), readers are referred to Willmot and Lin (2001, Section 9.1) for a detailed discussion.

Due to the complexity of Eq. (1.13), which involves the convolution between v(x) and

the associated compound geometric distribution G(x), asymptotic properties and relia-

bility bounds of m(x) have drawn considerable interest in the literature. Willmot et al.

(2001) provided a general approach to obtain different types of bounds by specifying the
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choice of an F -integrable, nonnegative function g(x) in the following generalized Lundberg

adjustment equation ∫ ∞
0

g(y)dF (y) =
1

φ
. (1.17)

In particular, if g(x) = eRx is directly Riemann integrable and R > 0 satisfies∫ ∞
0

eRydF (y) =
1

φ
,

then

CLe
−Rx ≤ m(x) ≤ CUe

−Rx, x ≥ 0, (1.18)

where CL = inf
z≥0

α(z), CU = sup
z≥0

α(z) and

α(z) =
eRzv(z)

φ
∫∞
z
eRydF (y)

.

Bounds (1.18) are sometimes called exponential bounds. When x → ∞, a closely related

asymptotic result (also referred to as the Cramér-Lundberg asymptotic result) is readily

available (see, e.g., Resnick (1992, Section 3.11)),

m(x) ∼ Ce−Rx, x→∞, (1.19)

where

C =

∫∞
0
eRyv(y)dy

φ
∫∞

0
yeRydF (y)

, (1.20)

and a(x) ∼ b(x), x→∞ denotes that lim
x→∞

a(x)/b(x) = 1.

1.4.2 Multivariate Lagrange expansion theorem

In this section, a brief summary of Lagrange’s expansion theorem (see, e.g., Good (1960)

and Goulden and Jackson (1983, Section 1.2.9)) in its univariate and multivariate form is
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presented. Under additional constraints, some of its simplified representations are given

which turn out to be of particular interest in the later sections of this thesis. For notational

convenience, define

h(m1,...,mn)(ρ1, ρ2, . . . , ρn) ≡ ∂m1+...+mn

∂ρm1
1 . . . ∂ρmnn

h(ρ1, ρ2, . . . , ρn), m1, . . . ,mn ∈ N.

In what follows, it is convenient to define ∂−1

∂t−1f
′(t) ≡ f(t).

We first state the univariate version of this theorem, also known as the Lagrange implicit

function theorem (see, e.g., Good (1960, p. 375) and Goulden and Jackson (1983, Section

1.2.4)).

Theorem 1.4.3 For h(z) an analytic function in a neighborhood of z = a, if

ζ − α =
z − a
g(z)

,

with g(a) 6= 0, then

h(z) =
∞∑
m=0

(ζ − α)m

m!

dm

dtm

{
h(t)(g(t))m

(
1− (t− a)g′(t)

g(t)

)}∣∣∣∣
t=a

. (1.21)

It is not difficult to show that (1.21) is equivalent to

h(z) = h(a) +
∞∑
m=1

(ζ − α)m

m!

dm−1

dtm−1
{h′(t)(g(t))m}

∣∣∣∣
t=a

=
∞∑
m=0

(ζ − α)m

m!

dm−1

dtm−1
{h′(t)(g(t))m}

∣∣∣∣
t=a

. (1.22)

In ruin theory, Eq. (1.22) has been central to the inversion of the Laplace transform of the

time to ruin and other ruin-related quantities when their functional forms can be expressed

in terms of a single solution of the generalized Lundberg equation (see, e.g., Dickson and

Willmot (2005)). It has also been used (in an opposite way) to obtain a concise expression
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when the expansion is readily available (see De Vylder and Goovaerts (1998)). However,

for most risk models, the Laplace transform φ1,δ (u) is a function of more than one solution

of the generalized Lundberg equation, in which case the multivariate version of Lagrange’s

expansion theorem applies.

Theorem 1.4.4 For h(z) an analytic function in a neighborhood of z = a ( z = (z1, z2, . . . , zn)

and a = (a1, a2, . . . , an)), if

ζi − αi =
zi − ai
gi(z)

, (1.23)

with gi(a) 6= 0 for i = 1, . . . , n, then

h(z) =
∞∑

m1,...,mn=0

n∏
j=1

(ζj − αj)mj
mj!

∂m1+...+mn

∂tm1
1 . . . ∂tmnn

{Hn(t)(g1(t))m1 . . . (gn(t))mn}
∣∣∣∣
t=a

, (1.24)

where

Hn(t) = h(t) · det

(
1(i = j)− ti − ai

gi(t)

∂gi(t)

∂tj

)
,

for t = (t1, t2, . . . , tn).

While the theorem is stated in a rather concise way, we propose to work with one of its

equivalent representations which turns out to be of more help in Chapter 5 for inversion

purposes. For the case n = 2, Poincaré (1886) provided this expression which can be

viewed as an extension of Eq. (1.22) in the univariate case, namely

h(z) =
∞∑

m1,m2=0

(ζ1 − α1)m1(ζ2 − α2)m2

m1!m2!

{
∂m1+m2−2

∂tm1−1
1 ∂tm2−1

2

h(1,1)(t)gm1
1 (t)gm2

2 (t)

+ h(1,0)(t)
∂gm1

1 (t)

∂t2
gm2

2 (t) + h(0,1)(t)gm1
1 (t)

∂gm2
2 (t)

∂t1

}∣∣∣∣
t=a

. (1.25)

As expected, Poincaré’s expansion of (1.24) becomes lengthy even for small values of n > 2.

However, it is worth pointing out that when gi(z) is only a function of zi for i = 1, . . . , n,
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significant simplifications arise. This is precisely the context of application of Lagrange’s

expansion theorem in the later chapters of the thesis. The result is stated in the following

corollary.

Corollary 1.4.5 Under the same conditions as in Theorem 1.4.4, together with gi(z) being

functions in zi only (i = 1, ..., n), we have

h(z)

=
∞∑

m1,...,mn=0

n∏
j=1

(ζj − αj)mj
mj!

∂m1+...+mn−n

∂tm1−1
1 . . . ∂tmn−1

n

{
h(1,...,1)(t)(g1(t1))m1 . . . (gn(tn))mn

}∣∣∣∣
t=a

.

(1.26)

Proof. To prove Corollary 1.4.5, it is sufficient to verify that

∂m1+...+mn

∂tm1
1 . . . ∂tmnn

{Hn(t)(g1(t))m1 . . . (gn(t))mn}
∣∣∣∣
t=a

=
∂m1+...+mn−n

∂tm1−1
1 . . . ∂tmn−1

n

{
h(1,...,1)(t)(g1(t1))m1 . . . (gn(tn))mn

}∣∣∣∣
t=a

, (1.27)

for any mi ∈ N. We prove (1.27) by induction on n. For n = 1, (1.27) becomes (1.22).

Note that when gi(z) is only a function of zi,

Hn(t) = h(t)
n∏
i=1

{
1− ti − ai

gi(ti)

∂gi(ti)

∂ti

}
= Hn−1(t)

{
1− tn − an

gn(tn)

∂gn(tn)

∂tn

}
.
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Assume that (1.27) holds for 2, 3, ..., n− 1. Then,

∂m1+...+mn

∂tm1
1 . . . ∂tmnn

{Hn(t)(g1(t1))m1 . . . (gn(tn))mn}
∣∣∣∣
t=a

=
∂mn

∂tmnn

{[
1− tn − an

gn(tn)

∂gn(tn)

∂tn

]
(gn(tn))mn

× ∂m1+...+mn−1

∂tm1
1 . . . ∂t

mn−1
n

{
Hn−1(t)

n−1∏
j=1

(gj(tj))
mj

}}∣∣∣∣∣
t=a

=
∂mn

∂tmnn

{[
1− tn − an

gn(tn)

∂gn(tn)

∂tn

]
(gn(tn))mn

× ∂m1+...+mn−1−n−1

∂tm1−1
1 . . . ∂t

mn−1−1
n

{
h(1,...,1,0)

n−1∏
j=1

(gj(tj))
mj

}}∣∣∣∣∣
t=a

=
∂m1+...+mn−1−n−1

∂tm1−1
1 . . . ∂t

mn−1−1
n

{
n−1∏
j=1

(gj(tj))
mj

× ∂mn

∂tmnn

{
h(1,...,1,0)

[
1− tn − an

gn(tn)

∂gn(tn)

∂tn

]
(gn(tn))mn

}}∣∣∣∣
t=a

=
∂m1+...+mn−1−n−1

∂tm1−1
1 . . . ∂t

mn−1−1
n

{
∂mn−1

∂tmn−1
n

{
h(1,...,1,1)(gn(tn))mn

} n−1∏
j=1

(gj(tj))
mj

}∣∣∣∣∣
t=a

=
∂m1+...+mn−n

∂tm1−1
1 . . . ∂tmn−1

n

{
h(1,...,1)(t)(g1(t1))m1 . . . (gn(tn))mn

}∣∣∣∣
t=a

. (1.28)

Substituting (1.27) into (1.24) completes the proof.

1.5 Structure of the thesis

The thesis is organized as follows. The general structure of the proposed Gerber-Shiu

function (1.7) is first discussed in Chapter 2. We allow the penalty function to only

dependent on the surplus immediately before ruin and the deficit at ruin, although the
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result can be generalized to the four-variable penalty function as discussed in (1.7). In

particular, in Section 2.3, we further exploit the structural properties when the interclaim

times are exponentially distributed. In Chapter 3, we study the joint generalized density

of the time to ruin and the number of claims until ruin in the classical compound Poisson

risk model. We present an alternative approach to obtain the density of the time to ruin

based on the Lagrange inversion technique introduced by Dickson and Willmot (2005) and

then identify the individual contribution in relation with the number of claims until ruin.

Our approach recovers the so-called Seal’s formula (see, e.g., Prabhu (1961) and Dickson

(2007)). In Chapter 4, relying on (1.7) and the Lagrange expansion theorem, the joint

density of the time to ruin, the surplus immediately before ruin and the number of claims

until ruin is examined in the Sparre Andersen risk model with exponential claim sizes and

arbitrary interclaim times. Naturally, the marginal distribution of the number of claims

until ruin can be obtained from the resulting joint distribution and this will be the subject

matter of Section 4.3. In particular, we consider the case when the interclaim times are

mixed Erlang distributed. In Chapter 5, we relax the restriction of exponential assumptions

either on the interclaim times or the claim sizes and generalize the results of Chapter 4

by assuming that claim sizes are distributed as a combination of n exponentials. The

multivariate Lagrange expansion theorem plays a key role in the ensuing analysis. Also,

another application of this general methodology will be considered in a queueing model.

A fluid flow process is constructed to build the connection between the Sparre Andersen

risk model and the underlying queueing model. In Chapter 6, we propose to analyze

the first passage time for the compound Poisson process with diffusion. An interesting

connection between Kendall’s identity (see, e.g., Kendall (1957)) and the distribution of

the first passage time is presented. The main results are used to calculate the finite ruin

probabilities in a dual compound Poisson risk model with diffusion and to price some path-
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dependent exotic options (i.e. barrier options) issued on an insurer’s stock. In Chapter 7,

we examine another time-related characteristic, namely the occupation time, of an insurer’s

surplus process in the Sparre Andersen risk model. We provide the Laplace transform of

the total duration of negative surplus and the occupation time in an interval [0, b] of an

insurer’s surplus process. The occupation times in the classical compound Poisson risk

model are also revisited. We point out that our approach is based on some regenerative

arguments, which are totally different from Kolkovska et al. (2005). More importantly, we

show that the Laplace transform of the occupation time is actually much more complicated

than the one suggested by Kolkovska et al. (2005, Proposition 3). In Chapter 8, we end

the thesis with some concluding remarks and discussion of possible future research.

It is important to remark that most chapters relate to a scientific paper, and therefore

were written independently of one another. Although efforts have been made to have

consistent notations over the entire thesis, we hope to have been able to accomplish this

task to a level acceptable to remove any ambiguity.
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Chapter 2

Dependent Sparre Andersen risk

model: general structure

2.1 Introduction

In this chapter, we consider analytic properties of the generalized Gerber-Shiu function

(1.7) in the dependent Sparre Andersen risk model, in which both the interclaim times

{Ti}∞i=1 and claim sizes {Xi}∞i=1 form a sequence of i.i.d. r.v.’s. To preserve the random

walk structure of the surplus process at claim instants, we also assume that {cTi −Xi}∞i=1

forms a sequence of i.i.d. r.v.’s. However, for fixed i, Ti and Xi need not be independent.

The positive security loading θ satisfies cκ = (1 + θ)µ.

Given that the main focus of the thesis is on the distribution of the time to ruin, in

what follows we assume that the penalty function w only depends on Uτ− and |Uτ | and

re-define mr,δ (u) as

mr,δ (u) ≡ E
[
rNτ e−δτw(Uτ−, |Uτ |)1 (τ <∞) |U0 = u

]
, (2.1)
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for δ ≥ 0 and r ∈ (0, 1]. We show that (2.1) satisfies a defective renewal equation and

general structural properties will be discussed in Section 2.2. Note that this conclusion

still holds for the more general Gerber-Shiu function (1.7).

As pointed out in Section 1.3, we are particularly interested in φr,δ (u), the joint Laplace

transform (or p.g.f.) of the time to ruin and the number of claims until ruin,

φr,δ (u) ≡ E
[
rNτ e−δτ1 (τ <∞) |U0 = u

]
,

which is a special case of (2.1). It can be shown that φr,δ (u) can be expressed as a

compound geometric tail in the Sparre Andersen risk model. This is a fundamental result

for the remaining chapters of the thesis.

However, it is very challenging to further identify the quantity mr,δ (u) solely based

on the above results. Specification of distributional assumptions for the interclaim times

or the claim sizes is generally required. In Section 2.3, we show that {mr,δ (u) , u ≥ 0}

can be expressed in terms of the unique non-negative solution to the so-called generalized

Lundberg equation in the classical compound Poisson risk model, which is a necessary

preparation for the analysis in Chapter 3.

2.2 General structure

In this section, we show that {mr,δ (u) , u ≥ 0} satisfies a defective renewal equation in

the general Sparre Andersen risk model. We employ the “first drop in surplus” argument

to demonstrate this result (see, e.g., Gerber and Shiu (1998) and Cheung et al. (2010)),

where some slight adjustments will first be required to accommodate our specific needs.

For an initial surplus of u, let h1 (x, y |u) be the joint density of a surplus prior to ruin of

x and a deficit at ruin of y for ruin occurring at the time of the first claim. It is immediate
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that the time to ruin τ is (x− u)/c almost surely in this case (see Landriault and Willmot

(2009) for more details). Also, let hj (t, x, y) be the joint density of a time to ruin of t, a

surplus prior to ruin of x and a deficit at ruin of y for ruin occurring at the time of the jth

claim (j = 2, 3, ...). For convenience, we also define their respective ‘discounted’ densities

as

g1,δ (x, y |u) =

 e−
δ
c
(x−u)h1 (x, y |u), x ≥ u,

0, x < u,

and

gj,δ (x, y |u) =

∫ ∞
0

e−δthj (t, x, y |u) dt,

for j = 2, 3, ... Finally, let

ξr,δ (x, y |u) =
∞∑
j=1

rjgj,δ (x, y |u) ,

for x ≥ 0 and y > 0.

By conditioning on the relevant characteristics of the first drop in surplus, one finds

mr,δ (u) =

∫ u

0

∫ ∞
0

mr,δ (u− y) ξr,δ (x, y |0) dxdy + ωr,δ (u) , (2.2)

where

ωr,δ (u) =

∫ ∞
u

∫ ∞
0

w(x+ u, y − u)ξr,δ (x, y |0) dxdy.

Note that mr,δ (u) can also be expressed as

mr,δ (u) =

∫ ∞
0

∫ ∞
0

w(x, y)ξr,δ (x, y |u) dxdy. (2.3)

Let w(x, y) = 1 and u = 0 in (2.3), it follows that

φr,δ (0) =

∫ ∞
0

∫ ∞
0

ξr,δ (x, y |0) dxdy. (2.4)
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Utilizing (2.4), (2.2) becomes

mr,δ (u) = φr,δ (0)

∫ u

0

mr,δ (u− y) kr,δ (y) dy + ωr,δ (u) , (2.5)

where

kr,δ (y) =

∫∞
0
ξr,δ (x, y |0) dx∫∞

0

∫∞
0
ξr,δ (x, y |0) dxdy

, (2.6)

is a proper density function.

From the definition of φr,δ (u), we conclude that

• for δ > 0 or r ∈ (0, 1),

φr,δ (0) < Pr (τ <∞|U (0) = 0) ≤ 1.

• for δ = 0 and r = 1, the positive security loading condition cκ > µ ensures

φ1,0 (0) = Pr (τ <∞|U (0) = 0) < 1.

As a result, (2.2) is a defective renewal equation. This is an extremely useful observa-

tion, as it has various implications for its solution (see Section 1.4.1), some of which will

be used in what follows.

For example, when w(x, y) = 1, (2.5) can be simplified to

φr,δ (u) = φr,δ (0)

{∫ u

0

φr,δ (u− y) kr,δ (y) dy +

∫ ∞
u

kr,δ (y) dy

}
,

which implies that {φr,δ (u) , u ≥ 0} is a compound geometric tail, i.e.

φr,δ (u) =
∞∑
j=1

(1− φr,δ (0)) (φr,δ (0))jK
∗j
r,δ (u) , (2.7)

where K
∗j
r,δ is the survival function associated with the j-fold convolution of the density

kr,δ with itself.

23



Remark 2.2.1 When the r.v.’s T and X of the generic pair (T,X) are independent, it

follows that

ξr,δ (x, y |0) = ξr,δ (x |0) px (y) , (2.8)

where px is the mean excess loss density

px (y) =
p (x+ y)

P (x)
, x, y > 0,

and

ξr,δ (x |0) =

∫ ∞
0

ξr,δ (x, y |0) dy.

Substituting (2.8) into (2.6), one finds

kr,δ (y) =

∫ ∞
0

ηr,δ (x) px (y) dx, (2.9)

where

ηr,δ (x) =
ξr,δ (x |0)∫∞

0
ξr,δ (w |0) dw

.

One concludes that kr,δ (y) is a mixture of the mean excess loss densities {px (y)}x≥0.

2.3 Exponential interclaim times

To further exploit the structural properties of {mr,δ (u) , u ≥ 0} , we specifically examine

the classical compound Poisson risk model, in which the interclaim times are exponentially

distributed with mean 1/λ , also independent of the claim sizes.

Conditioning on the time and amount of the first claim, we have

mr,δ(u) =

∫ ∞
0

re−δtλe−λt {αr,δ (u+ ct) + ω (u+ ct)} dt, (2.10)
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where

ω(x) =

∫ ∞
x

w(x, y − x)dP (y), (2.11)

and

αr,δ(x) =

∫ x

0

mr,δ(x− y)dP (y).

Changing the variable of integration from t to x = u+ ct yields

mr,δ(u) = r
λ

c

∫ ∞
u

e−
λ+δ
c

(x−u) {αr,δ (x) + ω (x)} dx

= r
λ

c

{
Tλ+δ

c
αr,δ (u) + Tλ+δ

c
ω(u)

}
, (2.12)

where Tρf(x) is the Dickson-Hipp transform applied to a function f defined as

Tρf(x) =

∫ ∞
x

e−ρ(y−x)f (y) dy, x ≥ 0,

(see Dickson and Hipp (2001)).

Taking the Laplace transform on both sides of (2.12) and using the properties of

Dickson-Hipp operator (see Li and Garrido (2004, Section 3)), one finds that

m̃r,δ(s) = r
λ

c

{
α̃r,δ

(
λ+δ
c

)
− α̃r,δ(s)

s− λ+δ
c

+
ω̃
(
λ+δ
c

)
− ω̃(s)

s− λ+δ
c

}
. (2.13)

Substitution by α̃r,δ(s) = m̃r,δ(s)p̃(s) into (2.13) yields

m̃r,δ(s)

{
s− λ+ δ

c
+ r

λ

c
p̃(s)

}
= r

λ

c

{
ω̃

(
λ+ δ

c

)
+ m̃r,δ

(
λ+ δ

c

)
p̃

(
λ+ δ

c

)}
− rλ

c
ω̃(s). (2.14)

To further identify the constant on the right side of (2.14), we consider the following

generalized Lundberg equation (in s)

s− λ+ δ

c
+ r

λ

c
p̃ (s) = 0. (2.15)
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It can be shown by an application of Rouché’s theorem that, for δ > 0 or 0 < r < 1,

(2.15) has a unique non-negative solution ρ (ρ = ρ(r, δ)). Specifically speaking, consider

a half-circle K (with non-negative real parts) determined by |s| = d
(
d > 2(λ+δ)

c

)
in the

complex plane. For the boundary |s| = d, we have∣∣∣∣rλc p̃ (s)

∣∣∣∣ < λ+ δ

c
< |s| − λ+ δ

c
≤
∣∣∣∣s− λ+ δ

c

∣∣∣∣ ;
for the part of the contour with real part < (s) = 0 (the imaginary axis), one observes that∣∣∣∣rλc p̃ (s)

∣∣∣∣ < λ+ δ

c
≤
∣∣∣∣s− λ+ δ

c

∣∣∣∣ .
Therefore, s− λ+δ

c
= 0 has the same number of roots with (2.15) in K. Since s− λ+δ

c
= 0

only has one positive root in K, and hence (2.15) has a unique solution with non-negative

real part. Given that the solutions of real-coefficient equations are conjugate pairs, one

concludes that (2.15) has a unique non-negative solution. We remark that when δ → 0+

and r = 1, ρ(1, 0+) = 0.

Setting s = ρ in (2.14) yields

ω̃(ρ) = ω̃

(
λ+ δ

c

)
+ m̃r,δ

(
λ+ δ

c

)
p̃

(
λ+ δ

c

)
,

which implies that (2.14) can be rewritten as

m̃r,δ(s)

{
s− λ+ δ

c
+ r

λ

c
p̃(s)

}
= r

λ

c
{ω̃(ρ)− ω̃(s)} . (2.16)

Consequently, let s = ρ in (2.15), we have

ρ+ r
λ

c
p̃ (ρ) =

λ+ δ

c
. (2.17)
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It follows that

s− λ+ δ

c
+ r

λ

c
p̃(s)

= s+ r
λ

c
p̃(s)−

(
ρ+ r

λ

c
p̃(ρ)

)
= (s− ρ)

{
1− rλ

c

p̃(ρ)− p̃(s)
s− ρ

}
= (s− ρ)

{
1−

(
r
λ

c

1− p̃(ρ)

ρ

)(
ρ

s− ρ
p̃(ρ)− p̃(s)

1− p̃(ρ)

)}
= (s− ρ) {1− φr,δp̃1,ρ(s)} , (2.18)

where

φr,δ = r
λ

c

{
1− p̃(ρ)

ρ

}
, (2.19)

and p1,ρ(y) is a proper density defined as

p1,ρ(y) ≡
eρy
∫∞
y
e−ρxdP (x)∫∞

0
e−ρxP (x)dx

, (2.20)

with Laplace transform

p̃1,ρ(s) =

∫ ∞
0

e−syp1,ρ(y)dy =
ρ

s− ρ
p̃(ρ)− p̃(s)

1− p̃(ρ)
.

Note that (2.19) can be re-expressed as

φr,δ = r
1

(1 + θ)

∫ ∞
0

e−ρy
P (x)

µ
dy,

which implies that 0 < φr,δ < 1.

Substituting (2.18) into (2.16), one arrives at

m̃r,δ(s) {1− φr,δp̃1,ρ(s)} = r
λ

c

{
ω̃(ρ)− ω̃(s)

s− ρ

}
. (2.21)

Inverting Laplace transform wrt s, (2.21) becomes

mr,δ(u) = φr,δ

∫ u

0

mr,δ(u− y)p1,ρ(y)dy + r
λ

c
Tρω(u), u ≥ 0. (2.22)
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In conclusion, mr,δ(u) satisfies the defective renewal equation (2.22). More importantly,

from Proposition 1.4.2, the solution to (2.22) can be expressed in terms of the non-negative

solution ρ of Eq. (2.15). �

In what follows, we consider the special case φr,δ (u). When w(x, y) = 1, we have

r
λ

c
Tρω(u) = r

λ

c

∫ ∞
0

e−ρxP (x+ u) dx

= r
λ

c

∫ ∞
0

e−ρx
∫ ∞
u

p (y + x) dydx

= r
λ

c

∫ ∞
u

∫ ∞
0

e−ρxp (x+ y) dxdy

=

{
r
λ

c

∫ ∞
0

e−ρxP (x)dx

}∫ ∞
u

(∫∞
0
e−ρxp (x+ y) dx∫∞

0
e−ρxP (x)dx

)
dy

= φr,δ

∫ ∞
u

p1,ρ(y)dy. (2.23)

Substituting (2.23) into (2.22) yields

φr,δ (u) = φr,δ

{∫ u

0

φr,δ(u− y)p1,ρ(y)dy +

∫ ∞
u

p1,ρ(y)dy

}
, u ≥ 0. (2.24)

It follows that φr,δ (u) can be expressed as a compound geometric tail in terms of ρ, i.e.

φr,δ (u) =
∞∑
j=1

(1− φr,δ) (φr,δ)
j P
∗j
1,ρ (u) , (2.25)

where P
∗j
1,ρ is the tail of the distribution of the j-fold convolution of the density p1,ρ with

itself.

Remark 2.3.1 When u = 0, it follows immediately from (2.24) that

φr,δ (0) = φr,δ

∫ ∞
0

p1,ρ(y)dy = φr,δ.

Thus, (2.25) can be re-expressed as

φr,δ (u) =
∞∑
j=1

(1− φr,δ (0)) (φr,δ (0))j P
∗j
1,ρ (u) .

28



We end this section by analyzing the reliability bounds and the asymptotic properties

of mr,δ(u) when u→∞. Consider R > 0 satisfies∫ ∞
0

eRyp1,ρ(y)dy =
1

φr,δ
,

or

φr,δp̃1,ρ(−R) = 1. (2.26)

Using (2.18), (2.26) becomes

−R− λ+ δ

c
+ r

λ

c
p̃(−R) = 0.

Therefore, −R is a negative solution of the generalized Lundberg equation (2.15). Note

that −R does not always exist given that the moment generating function (m.g.f.) of the

claim size distribution may not exist. However, if the m.g.f. of p does exist, it is not

difficult to show that Eq. (2.15) has a unique negative solution.

It follows from (1.18) that

CLe
−Ru ≤ mr,δ(u) ≤ CUe

−Ru, (2.27)

for u ≥ 0, where CL = inf
z≥0

α(z), CU = sup
z≥0

α(z) and

α(z) =
r λ
c
eRzTρω(z)

φr,δ
∫∞
z
eRyp1,ρ(y)dy

. (2.28)

On the other hand, when u→∞, (1.19) yields

mr,δ(u) ∼ Ce−Ru, (2.29)

where

C =
r λ
c

∫∞
0
eRyTρω(y)dy

φr,δ
∫∞

0
yeRyp1,ρ(y)dy

. (2.30)
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Generally, it is difficult to further simplify CL, CU and C unless further assumptions are

made on the claim size distribution. In the following example, we identify the exponential

bounds and the asymptotic expression for φr,δ(u) when the claim sizes are exponentially

distributed with mean 1/β.

Example 2.3.2 When the claim sizes are exponentially distributed with mean 1/β, p1,ρ(y)

is also exponentially distributed with mean 1/β. Also, the negative solution to Eq. (2.15)

satisfies −β < −R < 0.

If w(x, y) = 1, it follows from (2.23) that

α(z) =
eRze−βz∫∞

z
eRyβe−βydy

=
β −R
β

,

and

C =

∫∞
0
eRye−βydy∫∞

0
yeRyβe−βydy

=
β −R
β

.

Therefore, the bound is exact, i.e.

CL = CU = C =
β −R
β

.

We conclude that

φr,δ(u) =
β −R
β

e−Ru.
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Chapter 3

Classical compound Poisson risk

model

3.1 Density of the time to ruin revisited

In this chapter, we examine with the help of a Gerber-Shiu type analysis the joint distri-

bution of the time of ruin and the number of claims until ruin in the classical compound

Poisson risk model. We first briefly review the Lagrange inversion approach proposed by

Dickson and Willmot (2005) to obtain the density of the time to ruin. In Section 3.2, we

build on the main result of Dickson and Willmot (2005) pertaining to the density of the

time to ruin to identify its individual contributions when the number of claims until ruin is

also considered. In Section 3.3, we provide an alternative and more compact representation

of the density of the time to ruin and show that this expression is consistent with Seal’s

formula (see, e.g., Prabhu (1961)).

As mentioned in Section 1.1, in a compound Poisson risk model, the interclaim times
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{Ti}∞i=1 and claim sizes {Xi}∞i=1 form two sequences of i.i.d. r.v.’s, mutually independent

of one another. Also, {Xi}∞i=1 have an arbitrary density p with mean µ and {Ti}∞i=1 are

exponentially distributed with density

k(t) = λe−λt, t ≥ 0.

In other words, the claim occurring process {Nt, t ≥ 0} is a Poisson process with arrival

rate λ. The positive security loading θ in this model is determined by c = (1 + θ)λµ.

Let p1 be the equilibrium density associated with the density p, i.e.

p1 (x) =
P (x)

µ
, x > 0,

with Laplace transform

p̃1 (s) =
1− p̃ (s)

µs
.

In addition, let ψ(u, t) = Pr (τ ≤ t |U0 = u) be the ruin probability in the time interval

(0, t] with initial surplus level u, then the density of the time to ruin is given by

f (t |u) =
∂

∂t
ψ(u, t).

As a limiting case, the ultimate ruin probability is ψ(u) = lim
t→∞

ψ(u, t).

In Section 1.1, we pointed out that the Gerber-Shiu function (1.3) in the classical

compound Poisson risk model satisfies a defective renewal equation (see Gerber and Shiu

(1998)) and can be expressed in terms of the associated compound geometric tail (see Lin

and Willmot (1999)). As a special case, the Laplace transform of the time to ruin φ1,δ(u)

can be expressed as

φ1,δ(u) =
∞∑
n=1

(1−φ1,δ(0))(φ1,δ(0))nP
∗n
1,ρ(u), (3.1)
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where ρ = ρ(1, δ) is the unique non-negative solution (in s) of Lundberg’s fundamental

equation

s− λ+ δ

c
+
λ

c
p̃ (s) = 0, (3.2)

and

φ1,δ(0) = ψ(0)p̃1(ρ) =
λµ

c
p̃1(ρ), (3.3)

In fact, (3.1) is simply the case r = 1 of Eq. (2.25). From (3.1) and (3.3), one can

easily find that φ1,δ(u) only depends (indirectly) on δ through ρ. This implicit dependence

structure, as well as the complexity involved in inverting P
∗n
1,ρ(u) (even wrt ρ), makes it a

very challenging task to analytically invert φ1,δ(u) wrt δ.

Yet Dickson and Willmot (2005) solved this problem by first inverting φ1,δ(u) term by

term wrt ρ and subsequently making use of a relationship between ρ and δ to complete the

inversion and obtain the density of the time to ruin. This relationship between ρ and δ

is obtained through an application of Lagrange’s implicit function theorem (see Theorem

1.4.3 and Eq. (1.22)), namely

e−ρt = e−
δ+λ
c
t +

∞∑
n=1

(−1)n
(λ/c) n

n!

dn−1

dzn−1

{(
−te−zt

) ∫ ∞
0

e−zxp∗n(x)dx

}∣∣∣∣ z= δ+λ
c

= e−
δ+λ
c
t +

∞∑
n=1

(λ/c) n

n!
t

∫ ∞
0

(x+ t) n−1e−(δ+λ)(x+t)/cp∗n(x)dx. (3.4)

Substituting (3.4) into

φ1,δ(u) =

∫ ∞
0

e−ρtξ (t |u) dt =

∫ ∞
0

e−δtf (t |u) dt, (3.5)

it follows that

f (t |u) = ce−λtξ (ct |u) +
∞∑
n=1

λn

n!
tn−1e−λt

∫ ct

0

yp∗n (ct− y) ξ (y |u) dy. (3.6)
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To invert φ1,δ(u) wrt ρ, Eq. (3.1) is rewritten as

φ1,δ(u) =
λµ

c
p̃1(ρ) +

∞∑
n=1

(
λ

c

)n(
λµ

c
p̃1(ρ)H∗nρ (u)−H∗nρ (u)

)
, (3.7)

(see Dickson and Willmot (2005, Eq. (3))), where

Hρ (u) =

∫ u

0

∫ ∞
z

e−ρ(y−z)p(y)dydz.

Clearly, if H∗nρ (u) can be inverted wrt ρ, i.e.

H∗nρ (u) =

∫ ∞
0

e−ρtbn (u, t) dt, (3.8)

for n = 1, 2, ..., it follows immediately from (3.7) that, for u > 0,

ξ (t |u) =
λ

c
P (t) +

∞∑
n=1

(
λ

c

)n{
λ

c

∫ t

0

P (x)bn (u, t− x) dx− bn (u, t)

}
. (3.9)

The following expression for bn (u, t) was obtained by Dickson and Willmot (2005) following

a series of lengthy algebraic manipulations:

bn (u, t) =
n−1∑
j=0

(
n

j

)
(−1)j

Γ (n)

∫ u

0

(u− x)n−1 P ∗j (x) p∗(n−j) (t+ u− x) dx, (3.10)

for n = 1, 2, ...

In conclusion, the density of the time to ruin in the compound Poisson risk model is

given by (3.6), where ξ (t |u) satisfies (3.9). For the case u = 0, the process to obtain

ξ (t |0) can be significantly simplified. From (3.3), inverting φ1,δ(0) wrt ρ yields

ξ (t |0) =ψ(0)p1(t) =
λµ

c
p1(t). (3.11)

Combining (3.11) with (3.6), one concludes that

f (t |0) =
λµ

c

{
ce−λtp1(ct) +

∞∑
n=1

λn

n!
tn−1e−λt

∫ ct

0

yp∗n (ct− y) p1(y)dy

}
. (3.12)
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3.2 Joint (generalized) density of the time to ruin and

the number of claims until ruin

In this section, we re-examine the closed-form expression (3.6) for the density of the time

to ruin in connection with the number of claims until ruin, and derive the joint generalized

density of the time to ruin and the number of claims until ruin in the context of the

compound Poisson risk model. Throughout this thesis, we employ the term generalized

density (as opposed to density) when at least one random variable of the associated joint

distribution is discrete. Note that the general structure of φr,δ (u) has been extensively

discussed in Section 2.3.

Using virtually identical arguments that derived (3.7) in Dickson and Willmot (2005),

it is not difficult to deduce from (2.25) that

φr,δ (u) =
λ

c
µrp̃1 (ρ) +

∞∑
n=1

(
λ

c
r

)n(
λ

c
µrp̃1 (ρ)H∗nρ (u)−H∗nρ (u)

)
, (3.13)

Utilizing (3.8), (3.13) becomes

φr,δ (u) =

∫ ∞
0

e−ρt

{
λ

c
rP (t) +

∞∑
n=1

(
λ

c
r

)n(
λ

c
r

∫ t

0

P (x) bn (u, t− x) dx− bn (u, t)

)}
dt

=
∞∑
n=1

∫ ∞
0

{
rne−ρt

}
ξ (t, n |u) dt, (3.14)

where

ξ (t, n |u) =


λ
c

(
P (t)− b1 (u, t)

)
, n = 1,(

λ
c

)n (∫ t
0
P (x) bn−1 (u, t− x) dx− bn (u, t)

)
, n = 2, 3, ...

From the definition of ρ as the unique non-negative solution of (2.15), the use of Lagrange’s

expansion theorem (Eq. (1.22)) yields

e−ρt = e−
λ+δ
c
t +

∞∑
m=1

rm
(
λ
c

)m
m!

t

∫ ∞
0

(x+ t)m−1 e−
λ+δ
c

(x+t)p∗m (x) dx. (3.15)
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Substituting (3.15) into (3.14) yields

φr,δ (u) =
∞∑
n=1

∫ ∞
0

rn
{
e−

λ+δ
c
t
}
ξ (t, n |u) dt

+
∞∑
n=1

∞∑
m=1

∫ ∞
0

rm+n

{(
λ
c

)m
m!

t

∫ ∞
0

(x+ t)m−1 e−
λ+δ
c

(x+t)p∗m (x) dx

}
ξ (t, n |u) dt

=
∞∑
n=1

∫ ∞
0

{
rne−δt

}
ce−λtξ (ct, n |u) dt

+
∞∑
n=1

∞∑
m=n+1

∫ ∞
0

rm

{ (
λ
c

)m−n
(m− n)!

t

∫ ∞
t

xm−n−1e−
λ+δ
c
xp∗(m−n) (x− t) dx

}
ξ (t, n |u) dt.

(3.16)

Interchanging the order of both summations followed by a similar manipulation of the

two integrals, (3.16) becomes

φr,δ (u) =
∞∑
n=1

∫ ∞
0

{
rne−δt

}
ce−λtξ (ct, n |u) dt

+
∞∑
m=2

m−1∑
n=1

∫ ∞
0

{
rme−

δ
c
x
}(γλ

c
,m−n (x)

m− n

∫ x

0

p∗(m−n) (x− t) tξ (t, n |u) dt

)
dx

=
∞∑
n=1

∫ ∞
0

{
rne−δt

}
ce−λtξ (ct, n |u) dt

+
∞∑
m=2

∫ ∞
0

{
rme−δx

}(m−1∑
n=1

γλ,m−n (x)

m− n

∫ cx

0

p∗(m−n) (cx− t) {tξ (t, n |u)} dt

)
dx,

where γβ,n is the Erlang density

γβ,n (y) =
βnyn−1e−βy

(n− 1)!
, y ≥ 0.

In conclusion,

φr,δ (u) =
∞∑
n=1

∫ ∞
0

{
rne−δt

}
f (t, n |u) dt,
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where the joint generalized density of the time to ruin, and the number of claims until ruin

is

f (t, n |u) = ce−λtξ (ct, n |u) +
n−1∑
m=1

γλ,n−m (t)

n−m

∫ ct

0

p∗(n−m) (ct− x) {xξ (x,m |u)} dx, (3.17)

for t > 0 and n = 1, 2, ...

With a zero initial surplus, (3.17) can be further simplified. Indeed, for u = 0, one

easily deduces from (3.10) that bn (0, t) = 0 for all t ≥ 0 and n = 1, 2, ..., which in turn

implies

ξ (t, n |0) =

 λ
c
P (t), n = 1,

0, n = 2, 3, ...

for t ≥ 0. Thus, for u = 0, one concludes that

f (t, n |0) =

 λe−λtP (ct), n = 1,

λ
c

γn−1,λ(t)

n−1

∫ ct
0
p∗(n−1) (ct− x)

{
xP (x)

}
dx, n = 2, 3, ...

(3.18)

Remark 3.2.1 An alternative approach to obtain f (t, n |u) (see Dickson (2012)) is to use

the probabilistic arguments proposed by Prabhu (1961). By first deriving expressions for

f (t, n |0), f (t, n |u) can be calculated recursively from f (t, n |0), i.e.

f (t, n+ 1 |u) = e−λt
(λt)n

n!

∫ u+ct

0

p∗n (x)λP (u+ ct− x) dx

−c
n∑
j=1

∫ t

0

e−λz
(λz)j

j!
p∗j(u+ cz)f(t− z, n+ 1− j |0)dz,

for n = 1, 2, ...

Remark 3.2.2 Using Eq. (3.17), the covariance of Nτ and τ given that ruin occurs can be

calculated. Note that an alternative and possibly more clever way to calculate the covariance

is to take the derivatives of φ̃r,δ (s) w.r.t. δ and r and subsequently invert the Laplace
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transform w.r.t. s. For some light-tailed claim sizes, a strong positive correlation between

Nτ and τ is observed. However, it would be difficult to make such a conclusion in general.

In theory, an explicit expression for the (marginal) probability mass function (p.m.f.)

of the number of claims until ruin

p (n |u) ≡ Pr (Nτ = n |U0 = u) (3.19)

can be obtained from (3.17) (or (3.18) when u = 0) by integrating out the joint generalized

density f (t, n |u) over the (time) variable t from 0 to infinity. For instance, in the context

of a zero initial surplus,

p (n |0) =

 λ
∫∞

0
e−λtP (ct) dt, n = 1,

λ
c

∫∞
0

γλ,n−1(t)

n−1

(∫ ct
0
p∗(n−1) (ct− x)

{
xP (x)

}
dx
)
dt, n = 2, 3, ...

(3.20)

It is not difficult to show the consistency of this result with Eǵıdio dos Reis (2002, Eqs.

(14) and (15)), which states that

p (n |0) =


g̃(λ

c
|0), n = 1,

−λ
c
p̃(λ

c
)g̃′(λ

c
|0), n = 2,

(−λc )
n−1

(n−1)!
dn−2

dsn−2

{
(p̃(s))n−1 g̃′(s |0)

}∣∣
s=λ

c

, n = 3, 4, ...

(3.21)

where

g(y |0) =
λ

c
P (y) , (3.22)

is the (defective) density of the deficit at ruin for a zero initial surplus level.

To verify this, we start from the case n = 1. Substituting (3.22) into (3.21) and changing

the order of integration, one immediately arrives at

p (1 |0) =

∫ ∞
0

e−
λ
c
t

(
λ

c
P (t)

)
dt

= λ

∫ ∞
0

e−λtP (ct) dt.
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For n = 2, we have

p (2 |0) = −λ
c

(∫ ∞
0

e−
λ
c
tp (t) dt

)(∫ ∞
0

e−
λ
c
t

(
−λ
c
tP (t)

)
dt

)
=

(
λ

c

)2 ∫ ∞
0

e−
λ
c
t

(∫ t

0

p (t− x)
{
xP (x)

}
dx

)
dt

=
λ

c

∫ ∞
0

λe−λt
(∫ ct

0

p (ct− x)
{
xP (x)

}
dx

)
dt.

For n = 3, 4, ..., we notice that

(p̃(s))n−1 g̃′(s |0) = −λ
c

∫ ∞
0

e−st
(∫ t

0

p∗(n−1) (t− x)
{
xP (x)

}
dx

)
dt. (3.23)

Combining (3.23) and (3.21), one concludes that

p (n |0)

=

(
−λ

c

)n
(n− 1)!

dn−2

dsn−2

(∫ ∞
0

e−st
(∫ t

0

p∗(n−1) (t− x)
{
xP (x)

}
dx

)
dt

)∣∣∣∣
s=λ

c

=

(
λ
c

)n
(n− 1)!

∫ ∞
0

e−
λ
c
t

(
tn−2

∫ t

0

p∗(n−1) (t− x)
{
xP (x)

}
dx

)
dt

=
λ

c

∫ ∞
0

λn−1tn−2

(n− 1)!
e−λt

(∫ ct

0

p∗(n−1) (ct− x)
{
xP (x)

}
dx

)
dt. �

In general, it appears doubtful that the resulting expression for the p.m.f. of the

number of claims until ruin (e.g., Eq. (3.20)) will allow for much simplifications unless

some distributional assumptions are imposed on the claim size density p. For illustrative

purposes, we derive an explicit expression of p (n |0) for mixed Erlang claim sizes in the

following example.

Example 3.2.3 Assume that the claim sizes follow a Mixed Erlang density with Laplace

transform

p̃ (s) = Q

(
β

β + s

)
,
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where

Q (s) =
∞∑
j=1

qjs
j,

with {qj}∞j=1 being a discrete probability measure. Therefore,

(p̃ (s))n =
∞∑
j=1

q∗nj s
j,

where q∗n, the n-fold convolution of the p.m.f. q, is obtained through

∞∑
j=1

q∗nj s
j =

(
∞∑
j=1

qjs
j

)n

.

We also notice that

P (x) = e−βx
∞∑
k=0

Qk

(βx)k

k!
, (3.24)

where Qk =
∞∑

i=k+1

qi.

For n = 1, using (3.21), we have

p (1 |0) =
λ

c

1− p̃ (s)

s

∣∣∣∣
s=λ

c

= 1−Q
(

cβ

λ+ cβ

)
.

For n = 2, 3, ..., using (3.24), one finds∫ t

0

p∗(n−1) (t− x)
{
xP (x)

}
dx

=

∫ t

0

{
∞∑
j=0

q
∗(n−1)
j

βj (t− x)j−1

(j − 1)!
e−β(t−x)

}{
∞∑
k=0

Qk

βkxk+1

k!
e−βx

}
dx

=
∞∑
j=0

∞∑
k=0

q
∗(n−1)
j Qk

(k + 1)

β2

βj+k+2tj+k+1

(j + k + 1)!
e−βt. (3.25)
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Substituting (3.25) into (3.20), one arrives at

p (n |0)

=
λ

c

∫ ∞
0

λn−1tn−2

(n− 1)!
e−λt

(
∞∑
j=0

∞∑
k=0

q
∗(n−1)
j Qk

(k + 1)

β2

βj+k+2 (ct)j+k+1

(j + k + 1)!
e−cβt

)
dt

=
∞∑
j=0

∞∑
k=0

q
∗(n−1)
j Qk

(k + 1)λn (cβ)j+k

(n− 1)!(j + k + 1)!

∫ ∞
0

(
tn+j+k−1e−(λ+cβ)t

)
dt

=
∞∑
j=0

∞∑
k=0

q
∗(n−1)
j Qk

(k + 1)λn (cβ)j+k

(n− 1)!(j + k + 1)!

(n+ j + k − 1)!

(λ+ cβ)n+j+k

=
∞∑
j=0

∞∑
k=0

q
∗(n−1)
j Qk

k + 1

n+ j + k

(
n+ j + k

n− 1

)(
λ

λ+ cβ

)n(
cβ

λ+ cβ

)j+k
.

3.3 Alternative approach

In this section, we present an alternative analytic approach to obtain the joint generalized

density of the time to ruin and the number of claims until ruin. Let w(x, y) = 1 in Eq.

(2.16), it follows that the Laplace transform of φr,δ(u) satisfies

φ̃r,δ(s) =
rλ
(
P̃ (ρ)− P̃ (s)

)
cs− (δ + λ) + rλp̃ (s)

= rλṽr,δ(s)
(
P̃ (ρ)− P̃ (s)

)
, (3.26)

where

ṽr,δ(s) =
1

cs− λ(1− rp̃ (s))− δ
. (3.27)

We remark that v1,δ(x) is the δ-scale function of a compound Poisson risk process defined

through its Laplace transform

ṽ1,δ(s) = 1/ (ϕ(s)− δ) ,
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with ϕ(s) the Laplace exponent defined as

ϕ(s) = cs− λ(1− p̃ (s)),

(see, e.g., Kyprianou (2006)).

In order to obtain the joint generalized density of the time to ruin and the number

of claims until ruin with an initial surplus level u, we need to invert (3.26) wrt s, r and

δ. Note that in Section 3.2, (3.26) was first inverted wrt s and then in r and δ. In what

follows, we invert ṽr,δ(s)P̃ (s) and ṽr,δ(s)P̃ (ρ) wrt s, r and δ simultaneously, which turns

out to be relatively easier.

3.3.1 Inversion of ṽr,δ(s)P̃ (s)

Clearly, the key of the inversion is to invert ṽr,δ(s) wrt s, r and δ. From (3.27), we have

− ṽr,δ(s) =
1

δ + λ(1− rp̃ (s))− cs

=

∫ ∞
0

e−δt
{
e−λt+csterλtp̃(s)

}
dt, (3.28)

(see, e.g., Panjer and Willmot (1992, Section 11.7)). Given that

erλtp̃(s) = 1 +
∞∑
n=1

rn
(λt)n

n!
(p̃ (s))n

= 1+
∞∑
n=1

rn
(λt)n

n!
p̃∗n (s) ,
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(3.28) becomes

− ṽr,δ(s) =

∫ ∞
0

e−δt

{
e−λt+cst

(
1+

∞∑
n=1

rn
(λt)n

n!
p̃∗n (s)

)}
dt

=

∫ ∞
0

e−δt

{
e−λt+cst + e−λt

∞∑
n=1

rn
(λt)n

n!

∫ ∞
0

e−s(y−ct)p∗n (y) dy

}
dt

=

∫ ∞
0

e−δt

{
e−λt+cst+

∞∑
n=1

rn
∫ ∞
−ct

e−syfn(y + ct, t)dy

}
dt

=

∫ ∞
0

e−δt
{
e−λt+cst+

∫ ∞
−ct

e−syf(y + ct, t; r)dy

}
dt, (3.29)

where

fn(y, t) =
(λt)n e−λt

n!
p∗n (y) , (3.30)

is the density (at y) of the total amount of n claims incurred by time t and

f(y, t; r) =
∞∑
n=1

rnfn(y, t).

Clearly,

f(y, t; 1) =
∞∑
n=1

(λt)n e−λt

n!
p∗n (y) ,

is the density (at y) of the aggregate claim amount St.

It follows that

−ṽr,δ(s)P̃ (s)

=

∫ ∞
0

e−sxP (x) dx

∫ ∞
0

e−δt

{
e−λt+cst+

∞∑
n=1

rn
∫ ∞
−ct

e−syfn(y + ct, t)dy

}
dt

=

∫ ∞
0

e−δte−λt
∫ ∞

0

e−s(x−ct)P (x) dxdt

+
∞∑
n=1

rn
∫ ∞

0

e−δt
∫ ∞
−ct

∫ ∞
0

e−s(x+y)P (x) fn(y + ct, t)dxdydt. (3.31)
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Changing the integration variables in (3.31), one arrives at

− ṽr,δ(s)P̃ (s) =

∫ ∞
0

e−δt
∫ ∞
−ct

e−sue−λtP (u+ ct) dudt

+
∞∑
n=1

rn
∫ ∞

0

e−δt
∫ ∞
−ct

∫ u+ct

0

e−suP (x) fn(u− x+ ct, t)dxdudt.

=

∫ ∞
0

e−δt
∫ ∞
−ct

e−sue−λtP (u+ ct) dudt

+
∞∑
n=1

rn
∫ ∞

0

e−δt
∫ ∞
−ct

e−suhn(u, t)dudt, (3.32)

where

hn(u, t) =

∫ u+ct

0

fn(x, t)P (u+ ct− x) dx.

3.3.2 Inversion of ṽr,δ(s)P̃ (ρ)

To invert P̃ (ρ) wrt r and δ, we first rewrite the Lagrange identity (3.15) as

e−ρy = e−
δ+λ
c
y +

∞∑
n=1

rn
(λ/c) n

n!
y

∫ ∞
0

(x+ y) n−1e−(δ+λ)(x+y)/cp∗n(x)dx

= e−
δ+λ
c
y +

∞∑
n=1

rn
(λ/c) n

n!
y

∫ ∞
y
c

e−(δ+λ)zc (cz) n−1p∗n(cz − y)dz

= e−
δ+λ
c
y +

∞∑
n=1

rn
∫ ∞
y
c

e−δz
{y
z
fn(cz − y, y)

}
dz, (3.33)

where fn(cz − y, y) is the density (3.30) at cz − y.
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Using (3.33), we have

P̃ (ρ) =

∫ ∞
0

e−ρyP (y) dy

=

∫ ∞
0

e−
δ+λ
c
yP (y) dy +

∫ ∞
0

{
∞∑
n=1

rn
∫ ∞
y
c

e−δz
{y
z
fn(cz − y, y)

}
dz

}
P (y) dy

=

∫ ∞
0

e−δzce−λzP (cz) dz +
∞∑
n=1

rn
∫ ∞

0

∫ cz

0

e−δz
y

z
fn(cz − y, y)P (y) dydz

=

∫ ∞
0

e−δzce−λzP (cz) dz +
∞∑
n=1

rn
∫ ∞

0

e−δzgn(z)dz

=

∫ ∞
0

e−δzg(z; r)dz, (3.34)

where

gn(z) =

∫ cz

0

y

z
fn(cz − y, y)P (y) dy, (3.35)

and

g(z; r) = ce−λzP (cz) +
∞∑
n=1

rngn(z).

Combining (3.29) and (3.34) yields

−ṽr,δ(s)P̃ (ρ)

=

{∫ ∞
0

e−δzg(z; r)dz

}∫ ∞
0

e−δt
{
e−λt+cst+

∫ ∞
−ct

e−syf(y + ct, t; r)dy

}
dt

=

∫ ∞
0

e−δt
∫ 0

−ct
e−su

{
1

c
g(t+

u

c
; r)e−

λ
c
u

}
dudt

+

∫ ∞
0

e−δt
∫ 0

−ct
e−su

∫ t

− y
c

g(t− z; r)f(u+ cz, z; r)dzdudt

+

∫ ∞
0

e−δt
∫ ∞

0

e−su
∫ t

0

g(t− z; r)f(u+ cz, z; r)dzdudt. (3.36)
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Substituting (3.32) and (3.36) into (3.26), one arrives at

φ̃r,δ(s) = rλ

∫ ∞
0

e−δt
∫ ∞
−ct

e−sue−λtP (u+ ct) dudt

+λ
∞∑
n=1

rn+1

∫ ∞
0

e−δt
∫ ∞
−ct

e−suhn(u, t)dudt

−rλ
∫ ∞

0

e−δt
∫ 0

−ct
e−su

{
1

c
g(t+

u

c
; r)e−

λ
c
u

}
dudt

−rλ
∫ ∞

0

e−δt
∫ 0

−ct
e−su

∫ t

− y
c

g(t− z; r)f(u+ cz, z; r)dzdudt

−rλ
∫ ∞

0

e−δt
∫ ∞

0

e−su
∫ t

0

g(t− z; r)f(u+ cz, z; r)dzdudt. (3.37)

Given that

φ̃r,δ (s) =

∫ ∞
0

e−suφr,δ (u) du,

(3.37) can be simplified to

φ̃r,δ(s) = r

∫ ∞
0

e−δt
∫ ∞

0

e−su
{
λe−λtP (u+ ct)

}
dudt

+
∞∑
n=1

rn+1

∫ ∞
0

e−δt
∫ ∞

0

e−su {λhn(u, t)} dudt

−rλ
∫ ∞

0

e−δt
∫ ∞

0

e−su
∫ t

0

g(t− z; r)f(u+ cz, z; r)dzdudt

= r

∫ ∞
0

e−δt
∫ ∞

0

e−su
{
λe−λtP (u+ ct)

}
dudt

+
∞∑
n=1

rn+1

∫ ∞
0

e−δt
∫ ∞

0

e−su {λhn(u, t)− λζn (u, t)} dudt, (3.38)

where

ζn (u, t) =


∫ t

0

{
ce−λ(t−z)P (c (t− z)) fn(u+ cz, z)

}
dz, n = 1,∫ t

0
kn (u, z) dz, n = 2, 3, ...,
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and

kn (u, z) = ce−λ(t−z)P (c (t− z)) fn(u+ cz, z)

+
n−1∑
m=1

gm(t− z)fn−m(u+ cz, z),

for n = 2, 3, ...

From (3.38), one concludes that the joint generalized density of the time to ruin and

the number of claims is given by

f (t, n |u) =

 λe−λtP (u+ ct), n = 1,

λhn−1(u, t)− λζn−1 (u, t), n = 2, 3, ...
(3.39)

When u = 0, an application of the initial value theorem on (3.26) yields

φr,δ(0) = lim
s→∞

sφ̃r,δ(s) = r
λ

c
P̃ (ρ) .

Using (3.34), it follows that

φr,δ(0) = r
λ

c

{∫ ∞
0

e−δzce−λzP (cz) dz +
∞∑
n=1

rn
∫ ∞

0

e−δzgn(z)dz

}

= r

∫ ∞
0

e−δz
{
λe−λzP (cz)

}
dz +

∞∑
n=2

rn
∫ ∞

0

e−δz
{
λ

c
gn−1(z)

}
dz.

The uniqueness property of Laplace transform implies that

f (t, n |0) =

 λe−λtP (ct), n = 1,

λ
c
gn−1(t), n = 2, 3, ...

(3.40)

By simple algebraic manipulations, it is immediate that (3.40) is consistent with (3.18).
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Remark 3.3.1 Substituting (3.40) into (3.39), we have, for n = 1, 2, 3, ...,

f (t, n+ 1 |u) = λhn(u, t)− c
∫ t

0

f (t, 1 |0) fn(u+ cz, z)dz

−c
∫ t

0

{
n−1∑
m=1

f (t− z,m+ 1 |0) fn−m(u+ cz, z)

}
dz

= λhn(u, t)− c
∫ t

0

{
n∑

m=1

f (t− z,m |0) fn+1−m(u+ cz, z)

}
dz,

which is precisely the recursive formula in Dickson (2012) (see Remark 3.2.1).

Remark 3.3.2 Letting r = 1 in (3.37), one finds that the density of the time to ruin is

given by

f(t |u) =λe−λtP (u+ ct) + λ
∞∑
n=1

hn(u, t)− λ
∫ t

0

g(t− z; 1)f(u+ cz, z; 1)dz. (3.41)

Also, from (3.40), it can be easily shown that for u = 0,

f(t |0) = λe−λtP (ct) +
λ

c

∞∑
n=1

gn(t)

=
λ

c
g(t; 1). (3.42)

Substituting (3.42) into (3.41), we have

f(t |u) = λ

{
e−λtP (u+ ct) +

∫ u+ct

0

f(x, t; 1)P (u+ ct− x) dx

}
−c
∫ t

0

f(u+ cz, z; 1)f(t− z |0)dz. (3.43)

Eq. (3.43) is consistent with Seal’s formula (see, e.g., Prabhu (1961) and Dickson (2007)).
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Chapter 4

Sparre Andersen risk model:

exponential claim sizes

4.1 Introduction

In this chapter, we consider the finite-time ruin problem in the ordinary Sparre Andersen

risk model, in which the interclaim times {Ti}∞i=1 and claim sizes {Xi}∞i=1 are i.i.d. r.v.’s.

The claim size r.v.’s {Xi}∞i=1 are assumed to be mutually independent of the interclaim

times {Ti}∞i=1. We further assume that the claim size r.v.’s {Xi}∞i=1 are exponentially

distributed with mean 1/β.

As pointed out in Section 1.3, Borovkov and Dickson (2008) used a duality argument

to derive an infinite series representation for the density of the time to ruin in a Sparre

Andersen risk model with exponential claims. We consider an alternative approach to that

of Borovkov and Dickson (2008) which involves the use of Lagrange’s expansion theorem.

The advantage of this latter approach is that it allows for the probabilistic interpretation
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of each term in the series expansion which results for the density of the time of ruin. To be

more precise, we incorporate the random variable representing the number of claims until

ruin into the analysis, and interpret each term in the expansion in terms of the distribution

of this new variable. From the point of view of risk management, such analysis provides

additional insight for planning purposes by virtue of the fact that the distribution of

quantities associated with the event of ruin (including the time of ruin and the number of

claims until ruin) may be ascertained in advance of the event of ruin itself (even though

the realized values of the associated variables obviously cannot be). Consequently, the

proposed new Gerber-Shiu function (1.9)

φr,δ (u) ≡ E
[
rNτ e−δτ1 (τ <∞) |U0 = u

]
, δ ≥ 0, r ∈ (0, 1] ,

allows the identification of the joint distribution of the time to ruin and the number of

claims until ruin. In turn, this joint distribution of the time to ruin and the number of

claims until ruin will play an integral part in the interpretation of the joint generalized

density of the time to ruin, the surplus prior to ruin, and the number of claims until ruin.

The main result of this chapter is obtained in Section 4.4 where a closed-form expression

for the trivariate distribution of the time to ruin, the surplus prior to ruin and the number

of claims until ruin is derived. Due to the intrinsic structure of this trivariate distribution,

the simpler case involving the bivariate distribution of the time to ruin and the number of

claims until ruin is analyzed first in Section 4.2. The marginal distribution of the number

of claims until ruin is the subject matter of Section 4.3.
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4.2 Joint distribution of the time to ruin and the

number of claims until ruin

In this section, we analyze the joint distribution of the time to ruin and the number of claims

until ruin. We start from the compound geometric tail expression (2.7) for {φr,δ (u) , u ≥ 0}.

When the claim sizes are exponentially distributed with mean 1/β, from (2.9), it is

immediate that

kr,δ (y) = βe−βy, y ≥ 0. (4.1)

Utilizing the fact that kr,δ is an exponential density with mean 1/β, (2.7) becomes

φr,δ (u) = (1− φr,δ (0))
∞∑
j=1

(φr,δ (0))j
j−1∑
i=0

(βu)i e−βu

i!

= (1− φr,δ (0)) e−βu
∞∑
i=0

(βu)i

i!

∞∑
j=i

(φr,δ (0))j+1

= φr,δ (0) e−βu(1−φr,δ(0)), (4.2)

for u ≥ 0. Note that (4.2) is a generalization of Eq. (3.16) in Willmot (2007).

Also, by conditioning on the time and the amount of the first claim, we have

φr,δ (u) =

∫ ∞
0

re−δtk (t)

{∫ u+ct

0

φr,δ (y) βe−β(u+ct−y)dy + e−β(u+ct)

}
dt. (4.3)

Using the defective renewal equation (2.5) with kr,δ (y) = βe−βy for y ≥ 0, (4.3) becomes

φr,δ (u) =

∫ ∞
0

re−δtk (t)
φr,δ (u+ ct)

φr,δ (0)
dt. (4.4)

Then, substituting (4.2) into (4.4) yields

φr,δ (0) e−βu(1−φr,δ(0)) = re−βu(1−φr,δ(0))k̃ (δ + cβ (1− φr,δ (0))) . (4.5)
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Equating the coefficients of e−βu(1−φr,δ(0)) on both sides of (4.5) implies that φr,δ (0) is a

solution (in z) of

z = rk̃ (δ + cβ (1− z)) . (4.6)

Using Rouché’s theorem, it can be proved that (4.6) has exactly one solution in the unit

circle whenever r < 1 or δ > 0.

Using Lagrange’s expansion theorem with f (x) = xe−βu(1−x) (see Eq. (1.22)), we obtain

φr,δ (0) e−β(1−φr,δ(0))u =
∞∑
n=1

rn

n!

dn−1

dxn−1

[
(1 + βux) e−βu(1−x)

∫ ∞
0

e−(δ+cβ(1−x))zk∗n (z) dz

]∣∣∣∣
x=0

=
∞∑
n=1

rn

n!

∫ ∞
0

e−δz
{
dn−1

dxn−1
(1 + βux) e−β(u+cz)(1−x)

}
k∗n (z) dz

∣∣∣∣
x=0

= re−βuk̃ (δ + cβ)

+
∞∑
n=2

rn

n!

∫ ∞
0

e−δz
{
dn−1

dxn−1
(1 + βux) e−β(u+cz)(1−x)

}
k∗n (z) dz

∣∣∣∣
x=0

,

where k∗n is the n-fold convolution of the density k with itself. Given that

dn−1

dxn−1
(1 + βux) e−β(u+cz)(1−x)

=
n−1∑
j=0

(
n− 1

j

)[
dj

dxj
(1 + βux)

] [
dn−1−j

dxn−1−j e
−β(u+cz)(1−x)

]

=
n−1∑
j=0

(
n− 1

j

)[
dj

dxj
(1 + βux)

] [
(β (u+ cz))n−1−j e−β(u+cz)(1−x)

]
= ((1 + βux) β (u+ cz) + (n− 1) βu) (β (u+ cz))n−2 e−β(u+cz)(1−x),
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for n ≥ 2, it follows that

φr,δ (0) e−βu(1−φr,δ(0)) = r

∫ ∞
0

e−δz
{
e−β(u+cz)k (z)

}
dz

+
∞∑
n=2

rn
∫ ∞

0

e−δz

{
βn−1 (nu+ cz) (u+ cz)n−2

n!
e−β(u+cz)k∗n (z)

}
dz.

(4.7)

One concludes that the joint generalized density of the time to ruin and the number of

claim until ruin is given by

f (t, n |u) =

 e−β(u+ct)k (t), n = 1,

nu+ct
n(n−1)

γβ,n−1 (u+ ct) k∗n (t), n = 2, 3, ...,
(4.8)

for t ≥ 0, where γβ,n is the Erlang density

γβ,n (y) =
βnyn−1e−βy

(n− 1)!
, y ≥ 0.

It is immediate that the density of the time to ruin is given by

f (t |u) = e−β(u+ct)k (t) +
∞∑
n=2

nu+ ct

n (n− 1)
γβ,n−1 (u+ ct) k∗n (t) , (4.9)

which corresponds to Eq. (3) in Borovkov and Dickson (2008). As a result, the individual

terms of the infinite-sum representation (4.9) correspond to the “density of the time to

ruin” contributions with respect to the number of claims until ruin.

Remark 4.2.1 An alternative approach to solve for f (t, n |u) is to use the method pro-

posed by Chan and Zhang (2006). By conditioning on the time and the amount of the first

claim, we have

f (t, 1 |u) = k (t) e−β(u+ct), (4.10)
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and

f (t, n |u) =

∫ t

0

k (t− x)

[∫ u+c(t−x)

0

βe−β(u+c(t−x)−y)f (x, n− 1 |y ) dy

]
dx, (4.11)

for n = 2, 3, ... With the help of (4.10) and (4.11), it is easy to find an explicit expression

for f (t, n |u) for the first few values of n. Then, one infers the general form of the solution

of f (t, n |u), and uses an inductive argument to verify its validity. However, although this

technique is straightforward and involves only simple algebraic manipulations in the present

context, it largely relies on the identification of a general solution which may turn out to

be a challenging task in some (other) cases. For instance, the application of this technique

in Section 4.4 to obtain the distribution of the time to ruin, the surplus prior to ruin, and

the number of claims at ruin is definitely not a trivial one. For this reason (and others),

we believe that the Gerber-Shiu approach proposed above is deductive rather than inductive

and can be employed to solve more general problems (see Section 4.4 for more details).

In Borovkov and Dickson (2008), an expression for the density of the time to ruin is

also derived in the context of the delayed renewal risk model. We extend this result to the

joint generalized density of the time to ruin and the number of claims until ruin, namely

f0 (t, n |u). By conditioning on the time of the first interclaim time with density k0, we

have

f0 (t, 1 |u) = k0 (t) e−β(u+ct).

In general, for n = 2, 3, ..., we condition on the time and the amount of the first claim to

obtain

f0 (t, n |u) =

∫ t

0

k0 (t− x)

[∫ u+c(t−x)

0

βe−β(u+c(t−x)−y)f (x, n− 1 |y ) dy

]
dx. (4.12)
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Substituting (4.8) into (4.12), when n = 2, results in

f0 (t, 2 |u) =

∫ t

0

k0 (t− x)

[∫ u+c(t−x)

0

βe−β(u+c(t−x)−y)
{
e−β(y+cx)k (x)

}
dy

]
dx

= e−β(u+ct)

∫ t

0

k0 (t− x) β (u+ c (t− x)) k (x) dx

= e−β(u+ct)

∫ t

0

k0 (x) β (u+ cx) k (t− x) dx

= e−β(u+ct)β (u (k0 ∗ k (t)) + c (k1 ∗ k (t))) ,

where k1(x) = xk0 (x), and ∗ denotes convolution, e.g., a ∗ b(t) =
∫ t

0
a(x)b(t− x)dx.

Similarly, for n = 3, 4, ..., we have

f0 (t, n |u)

=

∫ t

0

k0 (t− x)

[∫ u+c(t−x)

0

βe−β(u+c(t−x)−y)f (x, n− 1 |y ) dy

]
dx

= e−β(u+ct) βn−1

(n− 1)!

∫ t

0

k0 (t− x) k∗(n−1) (x)

[∫ u+c(t−x)

0

((n− 1) y + cx) (y + cx)n−3 dy

]
dx,

where ∫ u+c(t−x)

0

((n− 1) y + cx) (y + cx)n−3 dy

=

∫ u+ct

cx

((n− 1) (y − cx) + cx) yn−3dy

=

∫ u+ct

cx

(n− 1) yn−2dy − cx
∫ u+ct

cx

(n− 2) yn−3dy

= (u+ ct)n−1 − cx (u+ ct)n−2

= (u+ ct)n−2 (u+ c (t− x)) .
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One concludes that

f0 (t, n |u) =
βn−1 (u+ ct)n−2 e−β(u+ct)

(n− 1)!

∫ t

0

k0 (t− x) k∗(n−1) (x) ((u+ c (t− x))) dx

=
γn−1,β (u+ ct)

n− 1

(
u
(
k0 ∗ k∗(n−1) (t)

)
+ c
(
k1 ∗ k∗(n−1) (t)

))
,

for n = 2, 3, ...

4.3 Marginal distribution of the number of claims un-

til ruin

Recall from (3.19) that the p.m.f. of the number of claims until ruin for an initial surplus

of U0 = u is denoted as p (n |u) for n = 1, 2, ... From (4.8), it is easy to see that

p (n |u) =

 e−βuk̃ (βc), n = 1,∫∞
0

nu+ct
n(n−1)

γβ,n−1 (u+ ct) k∗n (t) dt, n = 2, 3, ...
(4.13)

Using (4.13), a closed-form expression for p (n |u) is first derived when the interclaim time

distribution is mixed Erlang. For that purpose, we assume that the interclaim time density

k has a Laplace transform of the form

k̃ (s) = Q

(
λ

λ+ s

)
, (4.14)

where

Q (s) =
∞∑
j=1

qjs
j,

with {qj}∞j=1 being a probability measure.

We refer the readers to Willmot and Woo (2007) and Willmot and Lin (2011) for the

scope of distributions that belong to this class of mixed Erlang distributions. For the mixed
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Erlang distribution (4.14), (4.13) yields

p (1 |u) = e−βuQ

(
λ

λ+ cβ

)
,

and

p (n |u)

=
βn−1

n!
e−βu

∞∑
j=1

q∗nj
λj

(j − 1)!

∫ ∞
0

(nu+ ct) (u+ ct)n−2 tj−1e−(λ+βc)tdt

=
βn−1

n!
e−βu

∞∑
j=1

q∗nj
λj

(j − 1)!

n−2∑
i=0

(
n− 2

i

)
un−2−ici

∫ ∞
0

(nu+ ct) ti+j−1e−(λ+βc)tdt

=
βn−1

n!
e−βu

∞∑
j=1

q∗nj

(
λ

λ+cβ

)j
(j − 1)!

n−2∑
i=0

(
n− 2

i

)
un−2−ici

(
nu

(i+ j − 1)!

(λ+ βc)i
+ c

(i+ j)!

(λ+ βc)i+1

)
,

(4.15)

where q∗n is the n-fold convolution of the p.m.f. q. In particular, when u = 0, we have

p (n |0) =
∞∑
j=1

q∗nj
(cβ)n−1

n!

λj

(j − 1)!

∫ ∞
0

tn+j−2e−(λ+βc)tdt

=
∞∑
j=1

q∗nj
(n+ j − 2)!

n! (j − 1)!

(
λ

λ+ cβ

)j (
cβ

λ+ cβ

)n−1

,

for n = 1, 2, ...

We remark that (4.15) can be viewed as an alternative to the recursive formula given

by Stanford et al. (2000, Theorem 3.1 and Eq. (3.6)) for the calculation of p (n |u). In the

following example, we identify the (marginal) distribution of the number of claims until

ruin when the interclaim times are exponentially distributed.

Example 4.3.1 (Exponential interclaim times) We assume that the Laplace transform of

the interclaim time density k is of the form (4.14) with Q (s) = s. Under this distributional

57



assumption, it follows that

p (n |0) =
(2n− 2)!

n! (n− 1)!

(
λ

λ+ cβ

)n(
cβ

λ+ cβ

)n−1

, (4.16)

for n = 1, 2, ... for which the form of this p.m.f. can be linked to the extended-truncated

negative binomial (ETNB) distribution. Indeed, by making use of Gauss’ multiplication

formula

Γ (2n− 2) =
22(n−1)−1Γ (n− 1) Γ

(
n− 1

2

)
Γ
(

1
2

) ,

(4.16) becomes

p (n |0) =
2 (n− 1) Γ (2n− 2)

n!Γ (n)

(
λ

λ+ cβ

)n(
cβ

λ+ cβ

)n−1

=
4n−1Γ

(
n− 1

2

)
n!Γ

(
1
2

) (
λ

λ+ cβ

)n(
cβ

λ+ cβ

)n−1

=
4n−1Γ

(
n− 1

2

)
n!
(
−1

2

)
Γ
(
−1

2

) ( λ

λ+ cβ

)n(
cβ

λ+ cβ

)n−1

.

Let (
n+ r − 1

n

)
=

Γ (n+ r)

n!Γ (r)
,

be the generalized binomial coefficient for a non-negative integer n. It follows that

p (n |0) =

(
n− 1

2
−1

n

) (
4cβλ

(λ+cβ)2

)n
−2cβ
λ+cβ

=

(
n− 1

2
−1

n

) ( (λ+cβ)2−(λ−cβ)2

(λ+cβ)2

)n
−2cβ
λ+cβ

=

(
n− 1

2
−1

n

)(
1−

(
λ−cβ
λ+cβ

)2
)n

−2cβ
λ+cβ

,

for n = 1, 2, ...
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Whenever the positive security loading cβ > λ is satisfied, the p.m.f. of the number of

claims until ruin is defective. We have

p (n |0) =

cβ−λ
λ+cβ

− 1
−2cβ
λ+cβ

(
n− 1

2
−1

n

)(
1−

(
λ−cβ
λ+cβ

)2
)n

cβ−λ
λ+cβ

− 1

=
λ

cβ

(
n− 1

2
−1

n

)(
1−

(
λ−cβ
λ+cβ

)2
)n

cβ−λ
λ+cβ

− 1

=
1

1 + θ
gn,

where θ is the positive security loading which satisfies

cβ = λ (1 + θ) ,

and

gn =

(
n− 1

2
−1

n

)(
1−

(
λ−cβ
λ+cβ

)2
)n

cβ−λ
λ+cβ

− 1
,

is the p.m.f. of an extended truncated negative binomial (ETNB) r.v.’s with parameters

α = −1
2

and p = 1−
(
λ−cβ
λ+cβ

)2

(see Willmot (1988, Eq. 3.1)).

Whenever cβ < λ, {p (n |0)}n≥1 is a proper p.m.f. with

p (n |0) =

(
n− 1

2
−1

n

)(
1−

(
λ−cβ
λ+cβ

)2
)n

λ−cβ
λ+cβ

− 1
.

We point out that

φr,0 (u) = C (φr,0 (0)) ,

where

C (z) = zeβu(z−1),
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is the p.g.f. of a shifted (by one unit) Poisson r.v. with mean βu. The secondary distribu-

tion has p.g.f. φr,0 (0).

4.4 Joint distribution of the time to ruin, the surplus

prior to ruin and the number of claims until ruin

In this section, the joint Laplace transform/p.g.f. of the number of claims until ruin, the

time to ruin and the surplus prior to ruin is presented, generalizing a result of Willmot

(2007). Further, this new analytic tool is explicitly inverted (with the help of (4.8)) to

identify the joint generalized density of the time to ruin, the surplus prior to ruin, and the

number of claims until ruin.

If we let w(Uτ−, |Uτ |) = e−sUτ− in Eq. (2.1), the Gerber-Shiu function becomes

φr,δ,s (u) ≡ E
[
rNτ e−δτ−sUτ−1 (τ <∞) |U0 = u

]
,

for s ≥ 0, δ ≥ 0 and r ∈ (0, 1]. By conditioning on the first drop in initial surplus, we have

φr,δ,s (u) =

∫ u

0

∫ ∞
0

φr,δ,s (u− y) ξr,δ (x, y |0) dxdy +

∫ ∞
u

∫ ∞
0

e−s(u+x)ξr,δ (x, y |0) dxdy

= φr,δ (0)

∫ u

0

φr,δ,s (u− y) kr,δ (y) dy +

∫ ∞
u

∫ ∞
0

e−s(u+x)ξr,δ (x, y |0) dxdy, (4.17)

for u ≥ 0. Using (4.1), (4.17) can be rewritten as

φr,δ,s (u) = φr,δ (0)

∫ u

0

φr,δ,s (u− y) βe−βydy +

∫ ∞
u

∫ ∞
0

e−s(u+x)ξr,δ (x |0) βe−βydxdy

= φr,δ (0)

∫ u

0

φr,δ,s (u− y) βe−βydy + b̃r,δ(s)e
−(s+β)u, (4.18)

where

b̃r,δ(s) =

∫ ∞
0

e−sxξr,δ (x |0) dx.
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Let φ̃r,δ,s (z) =
∫∞

0
e−zuφr,δ,s (u) du. From (4.18), one deduces that

φ̃r,δ,s (z) = φr,δ (0) φ̃r,δ,s (z)
β

β + z
+

b̃r,δ(s)

s+ β + z
.

Solving for φ̃r,δ,s (z) and subsequently expanding into a partial fraction form, one obtains

φ̃r,δ,s (z) =

b̃r,δ(s)

s+β+z

1− φr,δ(0) β
β+z

=
b̃r,δ(s)(β + z)

(s+ β + z)(β(1− φr,δ (0)) + z)

=
b̃r,δ(s)

s+ βφr,δ (0)

{
s

s+ β + z
+

βφr,δ (0)

z + β(1− φr,δ (0))

}
. (4.19)

Inversion of (4.19) w.r.t. z yields

φr,δ,s (u) =
b̃r,δ(s)

s+ βφr,δ (0)

{
se−(s+β)u + βφr,δ (0) e−βu(1−φr,δ(0))

}
=

b̃r,δ(s)

s+ βφr,δ (0)

{
se−(s+β)u + βφr,δ (u)

}
, (4.20)

for u ≥ 0.

To complete the characterization of φr,δ,s (u) given in (4.20), we shall find an explicit

expression for b̃r,δ(s) (to ultimately allow its inversion w.r.t. the probability generating

function argument r as well as the Laplace transform arguments δ and s). Indeed, by

conditioning on the time and the amount of the first claim,

φr,δ,s (u) =

∫ ∞
0

re−δtk (t)

{∫ u+ct

0

φr,δ,s (y) βe−β(u+ct−y)dy + e−(s+β)(u+ct)

}
dt. (4.21)
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Substituting (4.20) into (4.21) and using (2.5) and (4.2), (4.21) becomes

φr,δ,s (u)

=

∫ ∞
0

re−δtk (t)

{
b̃r,δ(s)

s+ βφr,δ (0)
βe−β(u+ct)(1− e−s(u+ct))

+
b̃r,δ(s)

s+ βφr,δ (0)
β

[
φr,δ (u+ ct)

φr,δ (0)
− e−β(u+ct)

]
+ e−(s+β)(u+ct)

}
dt

=

∫ ∞
0

re−δtk (t)

{
βb̃r,δ(s)

s+ βφr,δ (0)

φr,δ (u+ ct)

φr,δ (0)
+

[
1− βb̃r,δ(s)

s+ βφr,δ (0)

]
e−(s+β)(u+ct)

}
dt

=
βb̃r,δ(s)

s+ βφr,δ (0)

∫ ∞
0

re−δtk (t)
φr,δ (u+ ct)

φr,δ (0)
dt

+

[
1− βb̃r,δ(s)

s+ βφr,δ (0)

]∫ ∞
0

re−δtk (t) e−(s+β)(u+ct)dt

=
βb̃r,δ(s)

s+ βφr,δ (0)
φr,δ (u) +

[
1− βb̃r,δ(s)

s+ βφr,δ (0)

]
rk̃ (δ + c(s+ β)) e−(s+β)u. (4.22)

Equating the coefficients of e−(s+β)u on both sides of (4.22), one concludes, using (4.20),

that
b̃r,δ(s)

s+ βφr,δ (0)
=

rk̃ (δ + c(s+ β))

s+ rβk̃ (δ + c(s+ β))
,

which implies that

φr,δ,s (u) =
rk̃ (δ + c(s+ β))

s+ rβk̃ (δ + c(s+ β))

{
se−(s+β)u + βφr,δ (u)

}
=

rβk̃ (δ + c(s+ β))

s+ rβk̃ (δ + c(s+ β))

{
s

β
e−(s+β)u + φr,δ (u)

}
. (4.23)

It remains to invert (4.23) w.r.t. the arguments r, δ, and s. We point out that φr,δ,s (u)

is explicitly expressed in terms of φr,δ (u) which explains the order of presentation in this

section.
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Capitalizing on the well-known identity

x

1 + x
=
∞∑
n=1

(−1)n−1xn, |x| < 1,

the first term on the right-hand side of (4.23) can be expanded into the following power

series in r (for s > β):

rβk̃ (δ + c(s+ β))

s+ rβk̃ (δ + c(s+ β))
=
∞∑
n=1

rn

{
(−1)n−1

(
βk̃ (δ + c(s+ β))

s

)n}

=
∞∑
n=1

rn
∫ ∞

0

e−δt
{
e−cst

sn
(−1)n−1βne−cβtk∗n (t)

}
dt. (4.24)

It remains to invert (4.24) w.r.t. the Laplace transform argument s.

Given that

e−cst

sn
= e−cst

∫ ∞
0

1

(n− 1)!
xn−1e−sxdx

=

∫ ∞
ct

1

(n− 1)!
(x− ct)n−1e−sxdx, (4.25)

for n = 1, 2, ..., (4.24) becomes

rβk̃ (δ + c(s+ β))

s+ rβk̃ (δ + c(s+ β))

=
∞∑
n=1

rn
∫ ∞

0

e−δt
{

(−1)n−1βne−cβtk∗n (t)

∫ ∞
ct

1

(n− 1)!
(x− ct)n−1e−sxdx

}
dt

=
∞∑
n=1

rn
∫ ∞

0

∫ ∞
ct

e−δte−sx
{
βn(ct− x)n−1e−cβt

(n− 1)!
k∗n (t)

}
dxdt. (4.26)
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Similarly,

rβk̃ (δ + c(s+ β))

s+ rβk̃ (δ + c(s+ β))

s

β
e−(s+β)u

= se−(s+β)u

{
∞∑
n=1

rn
∫ ∞

0

e−δt
{
e−cst

sn
(−1)n−1βn−1e−cβtk∗n (t)

}
dt

}

=
∞∑
n=1

rn
∫ ∞

0

e−δt
{
e−s(u+ct)

sn−1
(−1)n−1βn−1e−β(u+ct)k∗n (t)

}
dt

= r

∫ ∞
0

e−δte−s(u+ct)
{
e−β(u+ct)k (t)

}
dt

−
∞∑
n=2

rn
∫ ∞

0

∫ ∞
u+ct

e−δte−sx
{
βn−1(u+ ct− x)n−2e−β(u+ct)

(n− 2)!
k∗n (t)

}
dxdt. (4.27)

Using (4.26) and (4.7), we also have

rβk̃ (δ + c(s+ β))

s+ rβk̃ (δ + c(s+ β))
φr,δ (u)

=

(
∞∑
n=1

rn
∫ ∞

0

∫ ∞
ct

e−δte−sx
{
βn(ct− x)n−1e−cβt

(n− 1)!
k∗n (t)

}
dxdt

)

×

(
∞∑
n=1

rn
∫ ∞

0

e−δtf (t, n |u) dt

)
. (4.28)

Through convolutions, (4.28) becomes

rβk̃ (δ + c(s+ β))

s+ rβk̃ (δ + c(s+ β))
φr,δ (u)

=
∞∑
n=2

rn
∫ ∞

0

e−δt

{
n−1∑
m=1

∫ t

0

∫ ∞
cz

e−sxgn (t, z,m |u) dxdz

}
dt,

where

gn (t, z,m |u) =
βm (cz − x)m−1 e−cβz

(m− 1)!
k∗m (z) f (t− z, n−m |u) .
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Changing the order of integration of the two inner integrals, one arrives at

rβk̃ (δ + c(s+ β))

s+ rβk̃ (δ + c(s+ β))
φr,δ (u)

=
∞∑
n=2

rn
∫ ∞

0

∫ ∞
0

e−δte−sx

{
n−1∑
m=1

∫ min(xc ,t)

0

gn (t, z,m |u) dz

}
dxdt, (4.29)

Substituting (4.27) and (4.29) into (4.23), one concludes that

φr,δ,s (u)

=
∞∑
n=2

rn
∫ ∞

0

∫ ∞
0

e−δte−sx

{
n−1∑
m=1

∫ min(xc ,t)

0

gn (t, z,m |u) dz

}
dxdt

+ r

∫ ∞
0

e−δte−s(u+ct)
{
e−β(u+ct)k (t)

}
dt

−
∞∑
n=2

rn
∫ ∞

0

∫ ∞
u+ct

e−δte−sx
{
βn−1(u+ ct− x)n−2e−β(u+ct)

(n− 2)!
k∗n (t)

}
dxdt. (4.30)

Given that the surplus prior to ruin is at most u+ct for a time to ruin of t, (4.30) simplifies

to

φr,δ,s (u) = r

∫ ∞
0

e−δte−s(u+ct)
{
e−β(u+ct)k (t)

}
dt

+
∞∑
n=2

rn
∫ ∞

0

∫ u+ct

0

e−δte−sx

{
n−1∑
m=1

∫ min(xc ,t)

0

gn (t, z,m |u) dz

}
dxdt.

One concludes that the joint generalized density of the time to ruin, the surplus prior

to ruin, and the number of claims until ruin is

f (t, x, n |u)

=


e−β(u+ct)k (t) , n = 1, x = u+ ct,
n−1∑
m=1

∫ min(xc ,t)
0

βm(cz−x)m−1e−cβz

(m−1)!
k∗m (z) f (t− z, n−m |u) dz, n ≥ 2, x ∈ [0, u+ ct],

0, elsewhere,

(4.31)
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for t, u ≥ 0.

Formula (4.31) can be further simplified when the interclaim time distribution is spec-

ified. In the following example, we assume that interclaim times are mixed Erlang dis-

tributed.

Example 4.4.1 In the case that the interclaim time distribution is mixed Erlang with

Laplace transform (4.14), (4.31) becomes

f (t, u+ ct, 1 |u) = e−β(u+ct)

∞∑
j=1

q∗nj
λjtj−1e−λt

(j − 1)!
,

and

f (t, x, n |u)

=
n−1∑
m=1

min(xc ,t)∫
0

βm (cz − x)m−1 e−cβz

(m− 1)!

(
∞∑
k=1

q∗mk
λkzk−1e−λz

(k − 1)!

)
f (t− z, n−m |u) dz

=
n−1∑
m=1

βm

(m− 1)!

∞∑
k=1

q∗mk λk

(k − 1)!

∫ min(xc ,t)

0

(
(cz − x)m−1 zk−1e−(λ+βc)z

)
f (t− z, n−m |u) dz,

(4.32)

for n = 2, 3, ... and x ∈ [0, u+ ct].

Note that

f (t, n |u)

=
(nu+ ct) (u+ ct)n−2 βn−1

n!

∞∑
j=1

q∗nj
λjtj−1e−λt

(j − 1)!

=
βn−1

n!
e−βu

∞∑
j=1

q∗nj
λj

(j − 1)!
(nu+ ct) (u+ ct)n−2 tj−1e−(λ+βc)t. (4.33)
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Substituting (4.33) into (4.32), one arrives at

f (t, x, n |u) =
n−1∑
m=1

βn−1e−βue−(λ+βc)t

(m− 1)! (n−m)!

∞∑
k,j=1

q∗mk q
∗(n−m)
j λk+j

(k − 1)! (j − 1)!
Ik,j (t, x,m, n |u) , (4.34)

where

Ik,j (t, x,m, n |u)

=

∫ min(xc ,t)

0

(cz − x)m−1 zk−1 (t− z)j−1 ((n−m)u+ c (t− z)) (u+ c (t− z))n−m−2 dz

= (n−m− 1)
n−m−2∑
i=0

(
n−m− 2

i

)
un−m−1−iHm

i (t, x; k, j)

+
n−m−1∑
i=0

(
n−m− 1

i

)
un−m−1−iHm

i (t, x; k, j) , (4.35)

and

Hm
i (t, x; k, j) = ci

∫ min(xc ,t)

0

(cz − x)m−1 zk−1 (t− z)i+j−1 dz. (4.36)

Using the kernel of the beta distribution, one finds

(i) for 0 ≤ x ≤ ct, (4.36) becomes

Hm
i (t, x; k, j)

= ci
∫ x

c

0

(cz − x)m−1 zk−1 (t− z)i+j−1 dz

=

i+j−1∑
l=0

(
i+ j − 1

l

)
(−1)m−1+l ci−k−lti+j−l−1xm+k+l−1

∫ 1

0

(1− z)m−1 zk+l−1dz

=

i+j−1∑
l=0

(
i+ j − 1

l

)
Γ(m)Γ(k + l)

Γ(m+ k + l)
(−1)m−1+l ci−k−lti+j−l−1xm+k+l−1;
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(ii) for ct < x ≤ u+ ct, (4.36) reduces to

Hm
i (t, x; k, j)

= ci
∫ t

0

(cz − x)m−1 zk−1 (t− z)i+j−1 dz

=
m−1∑
l=0

(
m− 1

l

)
(−x)m−1−l ci+l

∫ t

0

zk+l−1 (t− z)i+j−1 dz

=
m−1∑
l=0

(
m− 1

l

)
Γ(i+ j)Γ(k + l)

Γ(i+ j + k + l)
(−x)m−1−l ci+lti+j+k+l−1.

As a special case, when the initial surplus level u = 0, (4.35) becomes

Ik,j (t, x,m, n |0) = cn−m−1

∫ min(xc ,t)

0

(cz − x)m−1 zk−1 (t− z)j+n−m−2 dz

= Hm
n−m−1 (t, x; k, j) . (4.37)

Substituting (4.37) back into (4.34), it follows that

f (t, x, n |0) =
n−1∑
m=1

βn−1e−(λ+βc)t

(m− 1)! (n−m)!

∞∑
k,j=1

q∗mk q
∗(n−m)
j λk+j

(k − 1)! (j − 1)!
Hm
n−m−1 (t, x; k, j) ,

for n = 2, 3, ... and x ∈ [0, ct] . �

For the delayed Sparre Andersen risk model (with exponential claims), the joint gener-

alized density of the time to ruin, the surplus prior to ruin, and the number of claims until

ruin follows quite naturally from (4.31) (e.g. by conditioning on the time and the amount

of the first claim and recognizing that the process restarts in its non-delayed (ordinary)

form). Therefore, we omit the details here.
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Chapter 5

Sparre Andersen risk model:

combination of n exponentials claim

sizes

5.1 Introduction

In this chapter, we capitalize on the most recent advances in connection with the time to

ruin of an insurer’s surplus process, and identify a closed-form expression for the distribu-

tion of the time to ruin in some Sparre Andersen risk models. Again, we do so through

the analytic inversion of the Laplace transform of the time to ruin (see Eq.(1.8))

φ1,δ (u) ≡ E
[
e−δτ1 (τ <∞) |U0 = u

]
,

and ruin-related quantity known in a variety of Sparre Andersen risk models (see, e.g., Li

and Garrido (2005) and Gerber and Shiu (2005)). As pointed out in Section 1.3, most of the
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results on the distribution of the time to ruin so far are based on an exponential assumption

imposed on either the interclaim times or the claim sizes with very few exceptions.

By relaxing the exponential assumption, we propose to build on the recent contribu-

tions of Dickson and Li (2010, 2012) and provide an analytic expression to the density

of the time to ruin in some Sparre Andersen risk models through the use of Lagrange’s

expansion theorem in its multivariate form (see Theorem 1.4.4 and Corollary 1.4.5). To

our knowledge, these results are the first of their kind for the class of surplus processes of

interest in this chapter. Also, we would like to point out that our proposed methodology to

tackle the density of the time to ruin can also be applied to study other first passage times

of interest in applied probability. One particular queueing application will be considered

in Section 5.3.

As a general setting, we assume that the surplus process {Ut, t ≥ 0} follows a Sparre An-

dersen risk process exactly as described in Section 1.1, where the interclaim times {Ti}∞i=1

and claim sizes {Xi}∞i=1 form a sequence of i.i.d. r.v.’s. It is further assumed that the inter-

claim times {Ti}∞i=1 and the claim sizes {Xi}∞i=1 are mutually independent. In this chapter,

we show that, when the claim sizes have a combination of n exponential distributions with

Laplace transform

p̃ (s) =
n∑
i=1

αi
βi

βi + s
, s ≥ 0, (5.1)

for
∑n

i=1αi = 1, βi > 0, and βi 6= βj for i 6= j, the analytic inversion of φ1,δ (u) can be

performed through the use of the multivariate Lagrange expansion theorem. We recall that

one of the important properties of this class of distributions is that they are dense among

the set of continuous distributions with support on [0,∞) (see, e.g., Dufresne (2007)).

The rest of this chapter is structured as follows: in Section 5.2, we obtain a closed-form

expression for the density of the time to ruin in the Sparre Andersen risk model when
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claim sizes have Laplace transform (5.1). We also discuss how our proposed methodology

can be used to solve other finite-time ruin problems. In Section 5.3, we consider another

application of the multivariate Lagrange expansion theorem to obtain the distribution of

the duration of a busy period in a subclass of the Km/G/1 queueing model. Finally,

numerical examples are considered in Section 5.4.

5.2 Density of the time to ruin

In this section, we propose to make use of Eq. (1.26) to derive the density of the time to

ruin in the Sparre Andersen risk model with claim sizes having Laplace transform (5.1).

In a more general risk model, Landriault and Willmot (2008) showed that the Laplace

transform of the time to ruin is of the form

φ1,δ (u) =
n∑
i=1

Cie
−ρiu, (5.2)

where {ρi}ni=1 are the n solutions in the right-half of the complex plane (i.e. Re(ρi) ≥ 0)

of the generalized Lundberg equation

k̃ (δ + cρi) p̃ (−ρi) = 1. (5.3)

In the sequel, we assume that the solutions {ρi}ni=1 are distinct, i.e. ρi 6= ρj for i 6= j. For

claim sizes with Laplace transform (5.1), the coefficients {Ci}ni=1 are the solution to the

system of linear equations
n∑
i=1

Ci
βj

βj − ρi
= 1, (5.4)

for j = 1, . . . , n. Using a matrix representation, (5.4) can be rewritten as AC = B where

A = {aij}ni,j=1 with aij = 1
βi−ρj , B =

(
(β1)−1 , . . . , (βn)−1)>, and C = (C1, . . . , Cn)>. It is
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worth pointing out that A is a Cauchy matrix with determinant

det A =

n∏
k=2

k−1∏
s=1

(βk − βs)(ρs − ρk)
n∏

s,k=1

(βs − ρk)
.

Using Cramer’s rule for the solution of a system of linear equations, we have

Ci =

{
n∏
s=1

βs − ρi
βs

}
n∏
k=1
k 6=i

ρk
ρk − ρi

 . (5.5)

Given that φ1,δ (u) has now been expressed in terms of the n solutions {ρi}ni=1 of the

generalized Lundberg equation (5.3), we propose to invert the Laplace transform of the

time to ruin (5.2) wrt δ with the help of the multivariate Lagrange expansion theorem. To

this end, we first rewrite the generalized Lundberg equation (5.3) as

1 =
ρi − βi
li(ρi)

, (5.6)

where

li(ρi) = fi(ρi)k̃ (δ + cρi) ,

and

fi(ρi) = −αiβi +
n∑
j=1

j 6=i

αjβj(ρi − βi)
βj − ρi

. (5.7)

Note that (5.6) is of the form (1.23) with ai = βi, zi = ρi, ζi−αi = 1, and gi(z) =li (zi). It

is not difficult to verify that li(βi) 6= 0 for i = 1, . . . , n which is a necessary condition for the

application of Lagrange’s expansion theorem. Also, given that gi(z) is only a function in

zi for i = 1, . . . , n, this allows us to make use of the simplified version (1.26) of Lagrange’s

expansion theorem. Thus, letting

h(ρ1, . . . , ρn;u) =
n∑
i=1

Cie
−ρiu,
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it follows that

φ1,δ (u) =
∞∑

m1,...,mn=0

1
n∏
j=1

mj!

× ∂m1+...+mn−n

∂ρm1−1
1 . . . ∂ρmn−1

n

{
h(1,...,1)(ρ1, . . . , ρn;u)

n∏
i=1

(
fi(ρi)k̃ (δ + cρi)

)mi}∣∣∣∣∣
ρi=βi

.

(5.8)

Recall that we define ∂−1

∂t−1f
′(t) ≡ f(t). When mi = 0, we simply evaluate h (. . . , ρi, . . .) at

ρi = βi. For a given vector m = (m1, . . . ,mn), we define Λm = {i ∈ {1, 2, . . . , n} : mi 6= 0}.

Using the chain rule for differentiation, (5.8) becomes

φ1,δ (u) =
∞∑

m1,...,mn=0

max(m1−1,0)∑
k1=0

. . .

max(mn−1,0)∑
kn=0

χk,m(u)
∏
i∈Λm

ρmiki,δ, (5.9)

where

χk,m(u) =

∏
j∈Λm

(
mj−1
kj

)
n∏
j=1

mj!

∂
∑n
j=1(mj−kj−1)

∂ρm1−k1−1
1 . . . ∂ρmn−kn−1

n

{
h(1,...,1)(ρ1, . . . , ρn;u)

n∏
i=1

fi(ρi)
mi

}∣∣∣∣∣
ρi=βi

,

(5.10)

and

ρmiki,δ =
∂ki

∂ρkii
k̃ (δ + cρi)

mi

∣∣∣∣
ρi=βi

=

∫ ∞
0

e−δt
{

(−ct)kie−cβitk∗mi(t)
}
dt.

We point out that the term χk,m(u) does not depend on δ which implies that the inversion

of (5.9) wrt δ only concerns the terms
{
ρmiki,δ

}n
i=1

. More precisely, we have∏
i∈Λm

ρmiki,δ =
∏
i∈Λm

∫ ∞
0

e−δt
{

(−ct)kie−cβitk∗mi(t)
}
dt

=

∫ ∞
0

e−δtgk,m(t)dt, (5.11)
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where gk,m(t) corresponds to the convolution (in t) of the terms (−ct)kie−cβitk∗mi(t) for

i ∈ Λm.

Substituting (5.11) into (5.9), it follows that

φ1,δ (u) =

∫ ∞
0

e−δt


∞∑

m1,...,mn=0

max(m1−1,0)∑
k1=0

. . .

max(mn−1,0)∑
kn=0

χk,m(u)gk,m(t)

 dt. (5.12)

In conclusion, the density of the time to ruin when claim sizes have a Laplace transform

of the form (5.1) is given by

fτ (t|u) =
∞∑

m1,...,mn=0

max(m1−1,0)∑
k1=0

. . .

max(mn−1,0)∑
kn=0

χk,m(u)gk,m(t). (5.13)

Remark 5.2.1 The explicit expression for χk,m(u) involves n partial derivatives and as

such, yields a lengthy expression for given h(ρ1, . . . , ρn;u) and fi(ρi) in general. However,

it can be treated as a constant for a given initial surplus level and therefore will not affect

the structural form of the density of the time to ruin as a function of t. For higher order

derivatives, χk,m(u) may be cumbersome to obtain in an explicit manner; in such cases,

the evaluation of χk,m(u) can be done via numerical algorithms such as the finite difference

method (see, e.g., Khan and Ohba (2003)).

Remark 5.2.2 When n = 1, the claim sizes become exponentially distributed and our

approach naturally reduces to the application of the univariate Lagrange expansion theorem,

which has been extensively analyzed by Landriault et al. (2011). The results were shown to

be consistent with Borovkov and Dickson (2008).

Remark 5.2.3 The present analysis can readily be extended to include the number of

claims until ruin Nτ . Indeed, recall that

φr,δ(u) = E[rNτ e−δτI(τ <∞)|U0 = u],
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for δ ≥ 0 and r ∈ (0, 1] (see Eq. (1.9)). It turns out that the only difference between φ1,δ (u)

and φr,δ (u) arises in the generalized Lundberg equation (5.6) where the “1” is replaced by

the probability generating function argument r. As such, (5.9) can be generalized for φr,δ(u)

to

φr,δ (u) =
∞∑

m1,...,mn=0

rm1+...+mn

max(m1−1,0)∑
k1=0

. . .

max(mn−1,0)∑
kn=0

χk,m(u)
∏
i∈Λm

ρmiki,δ.

One immediately concludes that the joint generalized density of the time to ruin (at t) and

the number of claim until ruin (at l) is given by

fτ,Nτ (t, l |u) =
∑

m1+...+mn=l
mi≥0

max(m1−1,0)∑
k1=0

. . .

max(mn−1,0)∑
kn=0

χk,m(u)gk,m(t), (5.14)

for t ≥ 0 and l = 1, 2, ...

In what follows, we show that a tractable expression for gk,m(t) can be found when

the density k is of a particular form. We examine the class of Erlang distributions, i.e. a

density k with Laplace transform

k̃ (s) =

(
θ

θ + s

)l
,

for θ > 0 and l is a positive integer. By routine manipulations, we have

e−cβit(ct)kik∗mi(t) = e−cβit(ct)ki
(θt)mil−1θe−θt

Γ(mil)

=
Γ(ki +mil)c

kiθmil

Γ(mil)(cβi + θ)ki+mil
τki+mil,cβi+θ(t),

where τn,β(t) is the Erlang density with mean nβ−1 and variance nβ−2. Therefore, the

Laplace transform of gk,m(t) can be rewritten as

g̃k,m (s) = %
∏
i∈Λm

(
cβi + θ

cβi + θ + s

)ki+mil
, (5.15)
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where

% =
∏
i∈Λm

(−1)ki
Γ(ki +mil)c

kiθmil

Γ(mil)(cβi + θ)ki+mil
.

Laplace transforms of the form (5.15) have been studied extensively (see, e.g., Willmot and

Woo (2007) and Willmot and Lin (2011)). Without loss of generality, we assume mi ≥ 1

for i = 1, 2, . . . , n and βi < βn for any i < n (for the case when some mi = 0, the method

still applies). Using results of Willmot and Woo (2007, Section 2.3), one obtains that

gk,m(t) = %

∞∑
j=1

qjτj,cβn+θ(t),

where qj = 0 for j < M =
∑n

i=1 (ki +mil) , and

qM =
n−1∏
i=1

(
cβi + θ

cβn + θ

)ki+mil
.

For j > M, qj can be calculated recursively via

qj =
1

j −M

j−M∑
p=1

{
n−1∑
i=1

(ki +mil)

(
1− cβi + θ

cβn + θ

)p}
qj−p.

The inversion of the Laplace transform of the time to ruin through the multivariate

Lagrange expansion theorem largely relies on the generalized Lundberg equation (5.3) to

be of the form (1.23) with specific gi(a) 6= 0 for i = 1, . . . , n. As shown earlier, this is

satisfied when the claim sizes are a combination of exponentials. It is not difficult to show

that this condition is also satisfied for other claim size distributions (such as Erlangs and

mixtures/combinations of Erlangs with appropriately chosen a), but the ensuing inversion

of Lagrange’s expansion wrt δ is expected to be challenging. This is less of a concern given

that the class of combinations of exponentials is dense in the set of positive continuous

distributions.
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Remark 5.2.4 By a similar use of the multivariate Lagrange expansion theorem, one could

derive a closed-form expression for the density of the time to ruin in the SA risk model

when the interclaim times are assumed to be a combination of n exponentials and claim

sizes have an arbitrary distribution. However, we point out that such expression is expected

to be particularly lengthy given that the Laplace transform of the time to ruin has a more

complicated form in this context (see, e.g., Li and Garrido (2005)).

In the next section, we consider another application of the multivariate Lagrange ex-

pansion theorem in applied probability, more precisely to invert the Laplace transform of

the duration of a busy period in a queueing system.

5.3 Duration of a busy period in a queueing system

Until the system becomes empty, the workload process {Dt, t ≥ 0} of the queueing system

G/G/1 (see, e.g., Cohen (1982) and Kleinrock (1975)) is defined as

Dt = u− ct+ St, (5.16)

where u > 0 is the time-0 workload, c > 0 is the service speed, and {St, t ≥ 0} is a

compound renewal process defined as in (1.2). Here, St represents the total workload of

all customers’ arrivals in (0, t]. In this context, the r.v.’s {Ti}∞i=1 represent the interarrival

times of customers in the queue while {Xi}∞i=1 are their associated service times. Let

τD = inf {t ≥ 0 : Dt = 0} be the duration of the busy period with initial workload u.

Define its Laplace transform as

Φδ (u) ≡ E
[
e−δτD1 (τD <∞) |D0 = u

]
.
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Figure 5.1: Connections of Dt, Ft and Qt
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We point that τD can also be interpreted as the time to ruin in the dual risk model in ruin

theory (see, e.g., Avanzi et al. (2007) and Takács (1967)).

Our first objective is to obtain the Laplace transform of the length of the busy period

τD. We propose to do so by connecting the queueing system (5.16) with its corresponding

Sparre Andersen risk model through the intermediary of a fluid flow process (see, e.g.,

Asmussen (1995)). Similar duality arguments were used by Frostig (2004). For the process

{Dt, t ≥ 0}, its corresponding fluid flow process {Ft, t ≥ 0} is constructed by replacing the

upward jumps of workload by periods of ascent of the fluid flow. More precisely, a workload

jump of size x is substituted by a period of ascent of the fluid flow at a rate of c over a period

of length x/c (see Fig 5.1). Let τF = inf {t ≥ 0 : Ft < 0} be the first passage time to 0 of the

fluid flow {Ft, t ≥ 0}. Associated to the fluid flow {Ft, t ≥ 0} is the risk model {Qt, t ≥ 0}

constructed by replacing the downward linear paths of the fluid flow by downward jumps

of appropriate size (see, e.g., Ramaswami (2006)). In the risk process {Qt, t ≥ 0}, {cTi}∞i=1

corresponds to the claim sizes, {Xi/c}∞i=1 are the interclaim times. The premium rate is c

and the first claim cT1 is assumed to occur at time 0. Let τQ = inf {t ≥ 0 : Qt < 0} be the

time to ruin for the risk process {Qt, t ≥ 0}. By construction, the first passage time τD of

the queueing process {Dt, t ≥ 0} dominates the first passage time τQ of the risk process

{Qt, t ≥ 0} by u/c. This is because the time of descent of the fluid flow process (aka τD)

exceeds its time of ascent (aka τQ) until the first passage time τF by a factor of u/c. Given

that a claim of size cT1 occurs at time 0, we have

Φδ (u) = E
[
E
[
e−δ(τQ+u

c )1 (τQ <∞) |Q0 = u− cT1

]]
.

To use the results of Section 5.2, we assume that the r.v.’s {cTi}∞i=1 follow a combination

of n exponentials distribution with Laplace transform (5.1). Also, the r.v.’s {Xi/c}∞i=1 are

assumed to have density k. Given that combinations of exponentials are a subclass of the
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Km family of distributions, the queueing system of interest is a special case of the Km/G/1

queueing model (see Kleinrock (1975)). By considering whether the first claim will cause

ruin at time 0 or not, one deduces

Φδ (u) = e−δ
u
c

(∫ u

0

E
[
e−δτQ1 (τQ <∞) |Q0+ = u− y

]
p (y) dy +

∫ ∞
u

p (y) dy

)
,

where Q0+ is the initial surplus level after the claim payment at time 0. Under the above

distributional assumptions, it is not difficult to see that

E
[
e−δτQ1 (τQ <∞) |Q0+ = u

]
= φ1,δ (u) ,

which implies that

Φδ (u) = e−δ
u
c

(∫ u

0

φ1,δ (u− y) p (y) dy +

∫ ∞
u

p (y) dy

)
. (5.17)

Substituting (5.2) into (5.17) followed by the use of (5.1), one finds that

Φδ (u) = e−δ
u
c

{∫ u

0

(
n∑
i=1

Cie
−ρi(u−y)

)
p (y) dy + P (u)

}

= e−δ
u
c

{
n∑
i=1

Ci

n∑
j=1

αjβj

∫ u

0

e−ρi(u−y)e−βjydy +
n∑
j=1

αje
−βju

}

= e−δ
u
c

{
n∑
i=1

Ci

n∑
j=1

αjβj
e−ρiu − e−βju

βj − ρi
+

n∑
j=1

αje
−βju

}

= e−δ
u
c

{
n∑
i=1

Cie
−ρiup̃ (−ρi)−

n∑
j=1

αje
−βju

n∑
i=1

Ci
βj

βj − ρi
+

n∑
j=1

αje
−βju

}
. (5.18)

Using (5.4), (5.18) becomes

Φδ (u) = e−δ
u
c

n∑
i=1

ηie
−ρiu (5.19)
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where

ηi = Cip̃ (−ρi)

=


n∑
j=1

αj

n∏
s=1
s 6=j

βs − ρi
βs




n∏
k=1
k 6=i

ρk
ρk − ρi

 .

Here again, an application of the multivariate Lagrange expansion theorem with

h∗(ρ1, . . . , ρn;u) =
n∑
i=1

ηie
−ρiu,

yields

Φδ (u) = e−
δ
c
uh∗(ρ1, . . . , ρn;u)

= e−
δ
c
u

∞∑
m1,...,mn=0

max(m1−1,0)∑
k1=0

. . .

max(mn−1,0)∑
kn=0

χ∗k,m(u)
∏
i∈Λm

ρmiki,δ.

Note that the symbol ∗ is added to the functions h and χ to emphasize that χ is as defined

in (5.10), but with the function h replaced by h∗. Using (5.11), it follows that

Φδ (u)

= e−
δ
c
uP (u) + e−

δ
c
u

∫ ∞
0

e−δt


∞∑

m1,...,mn=0

m1+...+mn 6=0

max(m1−1,0)∑
k1=0

. . .

max(mn−1,0)∑
kn=0

χ∗k,m(u)gk,m(t)

 dt

= e−
δ
c
uP (u) +

∫ ∞
u
c

e−δt


∞∑

m1,...,mn=0

m1+...+mn 6=0

max(m1−1,0)∑
k1=0

. . .

max(mn−1,0)∑
kn=0

χ∗k,m(u)gk,m

(
t− u

c

) dt

One concludes that τD is a mixed r.v. with a mass point at u/c of size P (u) associated

to the arrival of no customers (i.e. NτD = 0) until the initial workload of u is completed.

81



With at least one customer arrival before τD, the duration of the busy period with initial

workload u has density given by

fτD(t|u) =
∞∑

m1,...,mn=0

m1+...+mn 6=0

max(m1−1,0)∑
k1=0

. . .

max(mn−1,0)∑
kn=0

χ∗k,m(u)gk,m

(
t− u

c

)
, t >

u

c
. (5.20)

Note that the combination of Eqs. (5.12) and (5.17) leads to the following alternative

expression for χ∗k,m(u):

χ∗k,m(u) =

∫ u

0

χk,m(u− y)p (y) dy.

We conclude this section with the generalized Erlang-2 example for which an explicit

expression for χ∗k,m(u) is identified.

Example 5.3.1 We assume that {cTi}∞i=1 follows the generalized Erlang-2 distribution

with Laplace transform p̃(s) = β1β2/ {(β1 + s) (β2 + s)}. In this case, (5.19) reduces to

φδ (u) = e−
δ
c
u

(
ρ2

ρ2 − ρ1

e−ρ1u +
ρ1

ρ1 − ρ2

e−ρ2u
)
,

and (5.7) becomes

fi(ρi) =
β1β2

β3−i − ρi
, i = 1, 2.

To identify χ∗k,m(u), the following two preliminary results turn out to be useful:

(a) for k ≤ m−1, the (m− k − 1)-th derivative of (ρ+s)−2 (β1 − ρ)−m evaluated at ρ = β2

is given by

dm−k−1

dρm−k−1

{
1

(ρ+ s)2 (β1 − ρ)m

}∣∣∣∣
ρ=β2

=

m−k−1∑
j=0

ϑk,m(j; β1, β2)
1

(β2 + s)j+2
, (5.21)

where

ϑk,m(j; β1, β2) =

(
m− k − 1

j

)
(−1)j (j + 1)!(2m− k − j − 2)!

(m− 1)! (β1 − β2)2m−k−j−1
.

This result is immediate from Leibniz’s chain rule.
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(b) Using partial fractions, the generalized Erlang-(n1 + n2) transform can be expressed as(
β1

β1 + s

)n1
(

β2

β2 + s

)n2

=
2∑
i=1

ni∑
j=1

wi,j (β1, β2)

(βi + s)j
, (5.22)

where

wi,j (β1, β2) = (β1)n1 (β2)n2

(
n1 + n2 − j − 1

ni − j

)
(−1)ni−j

(βi − β3−i)
n1+n2−j

for i = 1, 2 and j = 1, . . . , ni (see, e.g., Li and Garrido (2005, p.841)). Inverting

(5.22) yields (
β1

β1 + s

)n1
(

β2

β2 + s

)n2

=

∫ ∞
0

e−suzn1,n2(u; β1, β2)du, (5.23)

where

zn1,n2(u; β1, β2) =
2∑
i=1

ni∑
j=1

wi,j (β1, β2)

(βi)
j τj,βi(u).

In what follows, we consider χ∗k,m(u) in four cases:

(i) for m = (0, 0):

χ∗k,m(u) = h∗(β1, β2;u) =
β2

β2 − β1

e−β1u +
β1

β1 − β2

e−β2u = P (u).

(ii) for m1 = 0 and m2 ≥ 1: (5.10) becomes

χ∗k,m(u) =

(
m2−1
k2

)
m2!

∂m2−k2−1

∂ρm2−k2−1
2

{
h∗(0,1)(β1, ρ2;u)

(
β1β2

β1 − ρ2

)m2
}∣∣∣∣

ρ2=β2

(5.24)

with

h̃∗(0,1)(β1, ρ2; s) =
−β1

(β1 + s) (ρ2 + s)2
.

Using (5.21), the Laplace transform of (5.24) yields

χ̃∗k,m(s) =

m2−k2−1∑
j=0

γk2,m2(j; β1, β2)

(
β1

β1 + s

)(
β2

β2 + s

)j+2

, (5.25)
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where

γk2,m2(j; β1, β2) = −
(
m2−1
k2

)
(β1β2)m2

m2!(β2)j+2
ϑk2,m2(j; β1, β2).

Using (5.23) with n1 = 1 and n2 = j + 2, one immediately arrives at

χ∗k,m(u) =

m2−k2−1∑
j=0

γk2,m2(j; β1, β2)z1,j+2(u; β1, β2).

(iii) for m1 ≥ 1 and m2 = 0: by symmetry to (ii), one finds

χ∗k,m(u) =

(
m1−1
k1

)
m1!

∂m1−k1−1

∂ρm1−k1−1
1

{
h∗(1,0)(ρ1, β2;u)

(
β1β2

β2 − ρ1

)m1
}∣∣∣∣

ρ1=β1

=

m1−k1−1∑
j=0

γk1,m1(j; β2, β1)zj+2,1(u; β1, β2).

(iv) for m1 ≥ 1 and m2 ≥ 1: given that

h̃∗(1,1)(ρ1, ρ2; s) =
s

(ρ1 + s)2 (ρ2 + s)2
,

and using (5.21) twice, the Laplace transform of χ∗k,m(u) can be expressed as

χ̃∗k,m(s)

=

(
2∏
i=1

(
mi−1
ki

)
mi!

)
∂m1−k1−1+m2−k2−1

∂ρm1−k1−1
1 ∂ρm2−k2−1

2

{
h̃∗(1,1)(ρ1, ρ2; s)

(β1β2)m1+m2

(β2 − ρ1)m1 (β1 − ρ2)m2

}∣∣∣∣
ρi=βi

=

m1−k1−1∑
j1=0

m2−k2−1∑
j2=0

(
2∏
i=1

γki,mi(ji; β3−i, βi)

)
s

(
β1

β1 + s

)2+j1 ( β2

β2 + s

)2+j2

. (5.26)

Using the fact that

s

(
β1

β1 + s

)n1
(

β2

β2 + s

)n2

= β1

{(
β1

β1 + s

)n1−1(
β2

β2 + s

)n2

−
(

β1

β1 + s

)n1
(

β2

β2 + s

)n2
}
,
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the inversion of (5.26) with the help of (5.23) results in

χ∗k,m(u) =

m1−k1−1∑
j1=0

m2−k2−1∑
j2=0

(
2∏
i=1

γki,mi(ji; β3−i, βi)

)
ς2+j1 ,2+j2(u; β1, β2),

where

ςn1 ,n2(u; β1, β2) = β1 {zn1−1,n2(u; β1, β2)− zn1,n2(u; β1, β2)} .

5.4 Numerical examples

5.4.1 The finite-time ruin probability

In this section, we provide a numerical example to calculate the finite-time ruin probabilities

in the Sparre Andersen risk model of Section 5.2. We assume that the claim sizes follow a

combination of 3 exponentials with mean µ = 12 and density

p(y) =
3

200
e−

y
20 +

1

20
e−

y
10 +

1

25
e−

y
5 , y > 0.

The interclaim times are assumed to follow an Erlang-3 distribution with mean κ = 3/0.45,

and Laplace transform k̃ (s) = (1 + s/0.45)−3. The premium rate is payable continuously

at a rate of c = 2 which implies that the loading factor θ defined as c = (1 + θ)µκ−1 is

11.1%.

Formulas (5.13) and (5.14) are used to calculate the finite-time ruin probabilities in

Tables 5.1 and 5.2. Note that for our choice of claim size distribution, the derivatives

χk,m(u) were analytically evaluated with the help of Maple. Tables 5.1 and 5.2 present the

values of the finite-time ruin probabilities up to n claims for a time horizon of T = 10 and

T = 50, respectively. The initial surplus level u varies from 0, 5, 10 and 20. As expected,

for lower initial surplus levels, ruin is more likely to happen. Fig 5.2 and Fig 5.3 present
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Figure 5.2: The density of the time to ruin when u = 0

Figure 5.3: The density of the time to ruin when u = 10
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Table 5.1: Finite-time ruin probabilities with no more than n claims (T = 10)

u \ n 1 2 3 4 5 6

0 0.33796 0.38866 0.39215 0.39224 0.39224 0.39224

5 0.22377 0.27843 0.28364 0.28383 0.28383 0.28383

10 0.15324 0.20308 0.20895 0.20921 0.20922 0.20922

20 0.07713 0.11222 0.11768 0.11799 0.11800 0.11800

Table 5.2: Finite-time ruin probabilities with no more than n claims (T = 50)

u \ n 1 2 4 6 8 10 12

0 0.35990 0.48107 0.58966 0.64154 0.66312 0.66719 0.66746

5 0.23951 0.35832 0.47919 0.54119 0.56875 0.57448 0.57490

10 0.16471 0.26958 0.39055 0.45753 0.48906 0.49612 0.49668

20 0.08344 0.15602 0.25993 0.32670 0.36159 0.37041 0.37120

the density of the time to ruin (with no more than n claims) when the initial surplus level

is u = 0 and u = 10, respectively. We point out that the density of the time to ruin

for the case n = 12 (solid line) has demonstrated convergence of its numerical values for

t ≤ 50. As shown in Table 5.1, the finite-time ruin probabilities converge very fast for a

relatively shorter time horizon. However, as the time horizon T gets larger, contributions

of ruin from larger n becomes more significant and the speed of convergence is slower (as

expected). This can also be seen in Fig 5.2 (or Fig 5.3). The densities for n = 4, n = 8 and

n = 12 all coincide for t ≤ 15. For larger T, we see the differences (which are the portion
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of ruin probabilities from larger number of claims until ruin) arises from n = 4, and later

from n = 8 and n = 12.

5.4.2 The duration of a busy period

Similarly, we can use (5.20) (with a joint analysis of the number of customers waiting in the

queue) to identify the distribution of the duration of a busy period. We assume that the

interarrival times {Ti}∞i=1 of customers in the queue follow a combination of 2 exponentials

with mean µ0 = 7.5 and density

p0(y) =
1

2

(
1

10
e−

y
10 +

1

5
e−

y
5

)
, y > 0.

The associated service times {Xi}∞i=1 follow an Erlang-3 distribution with mean κ0 = 12.

We also assume that the service speed of the system is c = 2. Therefore, {cTi}∞i=1 has mean

µ = 15 with density

p(y) =
1

2

(
1

20
e−

y
20 +

1

10
e−

y
10

)
, y > 0,

and {Xi/c}∞i=1 follow an Erlang-3 distribution with mean κ = 6, and Laplace transform

k̃ (s) = (1 + s/0.5)−3.

Table 5.3: Duration of a busy period with no more than n customers (T = 10)

u \ n 0 1 2 3 4 5 6

5 0.69267 0.79591 0.80752 0.80794 0.80794 0.80794 0.80794

10 0.48721 0.58987 0.59520 0.59526 0.59527 0.59527 0.59527

20 0.25161 0.25161 0.25161 0.25161 0.25161 0.25161 0.25161
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Table 5.4: Duration of a busy period with no more than n customers (T = 50)

u \ n 0 2 4 6 8 10 12

5 0.69267 0.86330 0.90911 0.93102 0.93999 0.94160 0.94170

10 0.48721 0.73770 0.82087 0.86174 0.87694 0.87916 0.87926

20 0.25161 0.52612 0.65575 0.72175 0.74056 0.74224 0.74228

30 0.13646 0.36694 0.50996 0.57987 0.59327 0.59393 0.59393

Tables 5.3 and 5.4 present the probabilities that the duration of a busy period is no

more than T = 10 and T = 50, respectively. The initial work loading u varies from 5 to

30. The columns with n = 0 show the probabilities of the mass point at τD = u/c. Note

that in Table 5.3, the lowest duration of a busy period for an initial work loading of u = 20

is T = 10. Fig 5.4 presents the (defective) density of the duration of a busy period for

t > u/c (with no more than n customers) when the initial work loading u equals 10.
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Figure 5.4: (Defective) density of the duration of a busy period for t > u/c (u = 10)
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Chapter 6

The compound Poisson processes

with diffusion

6.1 Introduction

In this chapter, first passage times in a compound Poisson process perturbed by diffusion

are studied through a generalization of an identity derived by Kendall (1957) (commonly

referred to as Kendall’s identity). Our main result directly leads to an infinite-series

expression for the density of the first passage time, which could be used to calculate finite-

ruin probabilities in risk theory and to price barrier options in finance, among others.

In comparison to the traditional numerical approaches to invert Laplace transforms, the

proposed series expansion not only improves the accuracy, but also provides a probabilistic

interpretation to each term of the resulting expansion.

Let R = {Rt, t ≥ 0} be a spectrally negative Lévy process with R0 = 0. Such a process

is known to have independent and stationary increments with no positive jumps. For b > 0,
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define τb = inf {t ≥ 0 : Rt = b}. From Kendall (1957), it is known that the distribution of

the first passage time τb satisfies the following identity:∫ ∞
x

Pr (τb ≤ t)
db

b
=

∫ t

0

Pr (Rs > x)
ds

s
, (6.1)

for t, x > 0 (see also Borovkov and Burq (2001) and references therein for further discussion

on the distribution of this first passage time). In a ruin theoretical context, Eq. (6.1)

leads to the determination of the distribution of various first hitting times of interest.

Among them, we mention the distribution of the time to ruin in the dual risk model with

exponential inter-innovation times and with or without a diffusion component (see, e.g.,

Avanzi et al. (2007) and Avanzi and Gerber (2008)), as well as the distribution of the

time to reach a given surplus level in the classical compound Poisson risk model (see, e.g.,

Gerber (1990)).

We propose to extend (6.1) by further incorporating one particular property of this

first passage, namely the number of negative jumps before τb. For this to be of interest, we

shall restrict the class of spectrally negative Lévy processes to those which takes the form

of a compound Poisson process perturbed by a Brownian motion with drift, that is

Rt = ct+ σWt −Mt, (6.2)

with c 6= 0, σ > 0, W = {Wt, t ≥ 0} a standard Brownian motion, and M = {Mt, t ≥ 0}

an independent (of W ) compound Poisson process. More precisely, we define the process

M as

Mt =


∑Nt

i=1Xi, Nt > 0,

0, Nt = 0,

where {Nt, t ≥ 0} is a Poisson process with rate λ > 0 and is defined via the sequence

of i.i.d. interclaim time r.v.’s {Ti}∞i=1 with density k(t) = λe−λt. {Xi}∞i=1 also form a
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sequence of i.i.d. r.v.’s with density p, and Laplace transform p̃ (s) =
∫∞

0
e−sxp (x) dx. We

assume that the r.v.’s {Xi}∞i=1 are also independent of the Poisson process {Nt, t ≥ 0}.

For spectrally negative Lévy processes not of the form (6.2), it is well known that these

processes have infinitely many jumps in every interval (i.e. infinite intensity of infinitely

small activity). Thus, the present analysis is not applicable to this class of spectrally

negative Lévy processes.

Our main objective is to generalize (6.1) for the class of compound Poisson processes

with diffusion by jointly analyzing the number of jumps before the first passage time.

Our approach makes use of Lagrange’s expansion theorem and establishes an interesting

connection with Kendall’s identity. In the process, an alternative proof of Kendall’s identity

which is both relatively straightforward and only involves simple algebraic manipulations is

provided for spectrally negative Lévy processes of the form (6.2). An implied result of the

generalization is the joint generalized density of the first passage time and the number of

negative jumps until this first passage time. In Section 6.4, we point out that our result can

be directly used to find the finite-time ruin probability in a dual risk model with diffusion

(see, e.g., Avanzi and Gerber (2008)). It is worth mentioning that this dual risk model can

also be applied in a fluid flow context (see, e.g., Asmussen 1995). Finally, we show that

our main result can be used to price path-dependent options on an insurer’s stock price.

Numerical examples are provided for illustrations.
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6.2 Kendall’s identity: revisited

6.2.1 Preamble

In this section, the joint Laplace transform of the first passage time to level b and the

number of jumps until this first passage time is derived. Consider the process

{
γNte−δt+sRt , t ≥ 0

}
(6.3)

for γ ∈ (0, 1] and δ > 0. Under the condition

γE
[
e−δT1es(cT1+σWT1

−X1)
]

= 1, (6.4)

it is easy to verify that (6.3) is a martingale. Eq. (6.4) has a unique positive solution (see

the case γ = 1 in Gerber and Landry (1998)). Indeed, routine calculations yield

E
[
e−δT1es(cT1+σWT1

−X1)
]

=

(∫ ∞
0

λe−(λ+δ−cs)tE
[
esσWt

]
dt

)
p̃ (s)

=
λ

λ+ δ − cs− 1
2
σ2s2

p̃ (s) . (6.5)

Substituting (6.5) into (6.4), we have

y (s) =
1

2
σ2s2 + cs− (λ+ δ) + γλp̃ (s) = 0.

Since y′′ (s) = σ2 + γλ
∫∞

0
e−sxx2p (x) dx > 0, y (s) is convex. Also, y (0) = λ (γ − 1) − δ

and y (s)→∞ as s→∞. It follows that (6.4) has a unique positive solution ξ when γ < 1

or δ > 0. When s = ξ, the stopped process
{
γNt∧τbe−δ(t∧τb)+ξRt∧τb , t ≥ 0

}
is bounded. By

the optional sampling theorem, we have

E
[
γNτbe−δτb1 (τb <∞)

]
= e−ξb. (6.6)
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Next, we develop an identity particularly relevant to the use of Lagrange’s expansion

theorem in the next section. We start from the left side of (6.5). Using partial fractions,

λ

λ+ δ − cs− σ2

2
s2

=
−2λ
σ2

(s− ρ1) (s− ρ2)
, (6.7)

where

ρi =
− 2c
σ2 ±

√(
2c
σ2

)2
+ 8λ+δ

σ2

2

= − c

σ2
±
√( c

σ2

)2

+ 2
λ+ δ

σ2

=
1

σ2

(
−c±

√
c2 + 2σ2 (λ+ δ)

)
.

In the sequel, we assume (without loss of generality) that

ρ1 = − 1

σ2

(
c−

√
c2 + 2σ2 (λ+ δ)

)
, (6.8)

and

ρ2 = − 1

σ2

(
c+

√
c2 + 2σ2 (λ+ δ)

)
. (6.9)

It is worth pointing out that ρ1 > 0 and ρ2 < 0 for c 6= 0. Finally, substituting (6.5) and

(6.7) into (6.4) yields

s− ρ1 +
2λγ

σ2

1

s− ρ2

p̃ (s) = 0. (6.10)

6.2.2 Main result

In this section, a generalization of Kendall’s identity is proposed for the compound Poisson

process with diffusion.

Theorem 6.2.1 For a compound Poisson process with diffusion, we have∫ ∞
x

Pr (τb ≤ t, Nτb = n)
db

b
=

∫ t

0

Pr (Rs > x,Ns = n)
ds

s
, (6.11)
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for t, x > 0 and n = 0, 1, ...

Proof: We employ a transform-based approach to derive (6.11). Indeed, using (6.6),

∞∑
n=0

γn
∫ ∞

0

e−δt
{∫ ∞

x

Pr (τb ≤ t, Nτb = n)
db

b

}
dt

=

∫ ∞
x

e−ξb

δ

db

b
. (6.12)

The existence of the integral on the right side of Eq. (6.12) ensures that the left side is

also integrable. From the representation (6.10), the use of Lagrange’s expansion theorem

(see Eq. (1.22)) allows to re-write e−ξb as

e−ξb = e−ρ1b +
∞∑
n=1

γn

n!

(
−2λ

σ2

)n
dn−1

dxn−1

{
(−b) e−xb

(
p̃ (x)

x− ρ2

)n}∣∣∣∣
x=ρ1

= e−ρ1b +
∞∑
n=1

γn

n!

(
−2λ

σ2

)n
(−b) dn−1

dxn−1

{∫∞
0
e−x(b+y)p∗n (y) dy

(x− ρ2)n

}∣∣∣∣∣
x=ρ1

= e−ρ1b +
∞∑
n=1

γn

n!

(
2λ

σ2

)n
b
n−1∑
j=0

(2n− j − 2)!

(n− j − 1)!j!

{∫∞
b
yje−ρ1yp∗n (y − b) dy
(ρ1 − ρ2)2n−1−j

}
(6.13)

From (6.8) and (6.9), we know that

ρ1 − ρ2 =
2

σ2

√
c2 + 2σ2 (λ+ δ)

= 2
(
ρ1 +

c

σ2

)
,

which implies that (6.13) becomes

e−ξb = e−ρ1b +
∞∑
n=1

γn

n!
b

×
n−1∑
j=0

ζj,n

{
(2n− j − 2)!

(
ρ1 +

c

σ2

)−(2n−1−j)
}{∫ ∞

b

e−ρ1y
{
yjp∗n (y − b)

}
dy

}
,

(6.14)
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where

ζj,n =
1

(n− j − 1)!j!

(
λ

2σ2

)n
2j+1.

Given that (
ρ1 +

c

σ2

)−n
=

∫ ∞
0

e−ρ1x

{
xn−1e−

c
σ2
x

(n− 1)!

}
dx,

for n = 1, 2, ..., it follows that

e−ξb = e−ρ1b +
∞∑
n=1

∫ ∞
b

{
γne−ρ1y

}
ϕn (y |b) dy, (6.15)

where

ϕn (y |b)

=
b

n!

n−1∑
j=0

ζj,n

∫ y

b

xj (y − x)2(n−1)−j e−
c
σ2

(y−x)p∗n (x− b) dx

=
2b

n! (n− 1)!

(
λ

2σ2

)n ∫ y

b

(y + x)n−1 (y − x)n−1 e−
c
σ2

(y−x)p∗n (x− b) dx. (6.16)

From (6.8), it is also clear that

e−ρ1b = e
1
σ2

(c−|c|)be
|c|
σ2

(
1−
√

1+ 2σ2

c2
(λ+δ)

)
b
. (6.17)

Given that an inverse Gaussian r.v. with parameters κ and µ (κ, µ > 0) and density

q (t) =
( κ

2πt3

) 1
2
e
−κ(t−µ)

2

2µ2t , x > 0,

has Laplace transform

q̃ (s) = e
κ
µ

[
1−
√

1+ 2µ2s
κ

]
, (6.18)

(6.17) can be rewritten as

e−ρ1b =

∫ ∞
0

e−δt
{

e−λt√
2πσ2t3

be
1
σ2

(c−|c|)be−
1

2σ2t
(|c|t−b)2

}
dt

=

∫ ∞
0

e−δt
{

e−λt√
2πσ2t3

be−
1

2σ2t
(ct−b)2

}
dt. (6.19)
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Substituting (6.19) into (6.15) yields

e−ξb =
∞∑
n=0

∫ ∞
0

{
γne−δt

}
fn (t |b) dt, (6.20)

where

fn (t |b) =

 e−λt√
2πσ2t3

be−
1

2σ2t
(ct−b)2 , n = 0,

e−λt√
2πσ2t3

∫∞
b
ye−

1
2σ2t

(ct−y)2ϕn (y |b) dy, n = 1, 2, ...
(6.21)

Interchanging the order of integration, (6.21) becomes

fn (t |b) =
e−λt√
2πσ2t3

2b

n! (n− 1)!

(
λ

2σ2

)n ∫ ∞
b

p∗n (x− b) In (x, t) dx, (6.22)

for n = 1, 2, ... where

In (x, t) =

∫ ∞
x

y (y + x)n−1 (y − x)n−1 e−
c
σ2

(y−x)e−
1

2σ2t
(ct−y)2dy

= e−
1

2σ2t
(ct−x)2

∫ ∞
x

y
(
y2 − x2

)n−1
e−

1
2σ2t

(y2−x2)dy.

Using integration by parts, it is not difficult to show that

In (x, t) = e−
1

2σ2t
(ct−x)2

∫ ∞
x

{
(y2 − x2)

n

2n

}{ y

σ2t
e−

1
2σ2t

(y2−x2)
}
dy

=
1

2nσ2t
In+1 (x, t) , (6.23)

for n = 1, 2, ... Through a recursive use of (6.23) together with its starting point

I1 (x, t) = e−
1

2σ2t
(ct−x)2

∫ ∞
x

ye−
1

2σ2t
(y2−x2)dy

=
e−

1
2σ2t

(ct−x)2

2

∫ ∞
0

e−
1

2σ2t
wdw

=
(
σ2t
)
e−

1
2σ2t

(ct−x)2 ,

one concludes that

In (x, t) =
(2σ2t)n

2
(n− 1)! e−

1
2σ2t

(ct−x)2 ,
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for n = 1, 2, ... Substituting into (6.22) yields

fn (t |b) =


b
t
e−λt

{
1√

2πσ2t
e−

1
2σ2t

(ct−b)2
}

, n = 0,

b
t

(λt)ne−λt

n!

∫∞
b
p∗n (x− b)

{
1√

2πσ2t
e−

1
2σ2t

(ct−x)2
}
dx, n = 1, 2, ...

. (6.24)

Note that

fn (t |b) =
b

t

(λt)n e−λt

n!
fRt|Nt (b |n) , (6.25)

for n = 0, 1, 2, ...

Substituting (6.25) and (6.20) into (6.12) followed by some simple manipulations, one

arrives at
∞∑
n=0

γn
∫ ∞

0

e−δt
{∫ ∞

x

Pr (τb ≤ t, Nτb = n)
db

b

}
dt

=
∞∑
n=0

γn
∫ ∞
x

∫ ∞
0

e−δt

δ

{
b

t

(λt)n e−λt

n!
fRt|Nt (b |n)

}
dt
db

b

=
∞∑
n=0

γn
∫ ∞

0

e−δt

δ

{
(λt)n e−λt

n!
Pr (Rt > x |Nt = n)

}
dt

t

=
∞∑
n=0

γn
∫ ∞

0

e−δt

δ
Pr (Rt > x,Nt = n)

dt

t
.

Using integration by parts, one concludes that
∞∑
n=0

γn
∫ ∞

0

e−δt

δ
Pr (Rt > x,Nt = n)

dt

t

=
∞∑
n=0

γn
∫ ∞

0

e−δt
{∫ t

0

Pr (Rs > x,Ns = n)
ds

s

}
dt.

By the uniqueness property of Laplace transforms and probability generating functions,

the result follows. �

Remark 6.2.2 Given that Rs (s > 0) has a density at x ∈ R, it is immediate from Theo-

rem 6.2.1 that the (defective) joint generalized density of the first passage time τb and the

jumps until the first passage time Nτb at (t, n) is given by fn (t |b).
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Remark 6.2.3 As expected, Theorem 6.2.1 still holds when σ = 0. (note that the proof

has to be modified accordingly). We point out that the marginal distribution of the first

passage time τb was discussed by, e.g., Gerber and Shiu (1998, Eq. (5.15)) together with

its connection with a particular version of the Ballot theorem. In our context, Theorem

6.2.1 provides a generalization of this result: the first passage time τb is a mixed random

variable with a mass point at b/c of Pr(τb = b/c,Nτb = 0) = e−
λ
c
b. When at least one

claim occurs before the first passage time, the joint generalized density of (τb, Nτb) at (t, n)

is given by

κn (t |b) =
b

t

(λt)n e−λt

n!
p∗n (ct− b) ,

for t > b/c and n = 1, 2, ...

In the following section, we consider a large class of distributions which leads to a

mathematically tractable expression for fn (t |b).

6.3 Mixed Erlang distributed jumps

In this section, we assume that the Laplace transform of the negative jumps is of the form

p̃ (s) = C

(
β

β + s

)
, (6.26)

where

C (z) =
∞∑
j=1

cjz
j,

with cj ≥ 0 for j = 1, 2, ... and
∑∞

j=1 cj = 1. The reader is referred to Tijms (1994, p.163)

for a proof that any continuous and positive random variable can be approximated arbitrary

accurately by a mixed Erlang density and to Willmot and Woo (2007) and Willmot and

Lin (2011) for an extensive analysis of this class of distributions.
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Under this distributional assumption, (6.24) becomes

fn (t |b) =
b

t

(λt)n e−λt

n!

∫ ∞
0

{
∞∑
j=1

c∗nj
βjxj−1e−βx

(j − 1)!

}
1√

2πσ2t
e−

1
2σ2t

(ct−b−x)2dx

=
b

t

(λt)n e−λt

n!

1√
2πσ2t

∞∑
j=1

c∗nj
βj

(j − 1)!

∫ ∞
0

xj−1e−βxe−
1

2σ2t
(ct−b−x)2dx

=
b

t

(λt)n e−λt

n!

e
−β
(
ct−b−βσ

2

2
t

)
√

2πσ2t

∞∑
j=1

c∗nj
βj

(j − 1)!

∫ ∞
0

xj−1e−
1

2σ2t
(x−((c−βσ2)t−b))

2

dx,

(6.27)

where c∗nj are defined via the transform relationship

(C (z))n =
∞∑
j=1

c∗nj z
j.

Simple modifications of the integrand in (6.27) results in

fn (t |b) =
b

t

(λt)n e−λt

n!

e
−β
(
zt+

βσ2

2
t

)
√

2πσ2t

∞∑
j=1

c∗nj β
j

j−1∑
k=0

(zt)
j−1−k

(j − 1− k)!k!
αk (zt) ,

(6.28)

where

αk (z) =

∫ ∞
−z

xke−
1

2σ2t
x2dx,

and

zt =
(
c− βσ2

)
t− b.
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For k odd (say k = 2i+ 1), we have

α2i+1 (z) =

∫ ∞
|z|

x2i+1e−
1

2σ2t
x2dx

=
1

2

∫ ∞
z2

yie−
1

2σ2t
ydy

=
1

2
(i!)
(
2σ2t

)i+1
i∑
l=0

(
z2

2σ2t

)l
e−

z2

2σ2t

l!
. (6.29)

For k even (say k = 2i), using integration by parts, one finds that

α2i (z) = σ2t

{
(−z)2i−1 e−

1
2σ2t

z2 + (2i− 1)

∫ ∞
−z

y2(i−1)e−
1

2σ2t
y2dy

}
.

By repeating this argument, one finds

α2i (z) =
i∑

j=1

γi
γj

(
σ2t
)i−j+1

{
(−z)2j−1 e−

1
2σ2t

z2
}

+ γi
(
σ2t
)i ∫ ∞

−z
e−

1
2σ2t

y2dy

=
i∑

j=1

γi
γj

(
σ2t
)i−j+1

{
(−z)2j−1 e−

1
2σ2t

z2
}

+ γi
(
σ2t
)i+ 1

2
√

2π

(
1− Φ

(
−z
σ
√
t

))
,

(6.30)

where Φ is the cumulative distribution function of a Normal random variable with mean 0

and variance 1, and

γi =
i∏

k=1

(2k − 1) .
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6.4 Applications

6.4.1 First passage times in dual risk model with diffusion and

in fluid flow model

The dual risk process with diffusion Ud =
{
Ud
t , t ≥ 0

}
is defined as

Ud
t = u− ct+ σWt +Mt (6.31)

= u−Rt,

where u is the initial surplus level, and c is the non-negative expense rate (see, e.g.,

Grandell (1991, p.8) and Avanzi and Gerber (2008)). As pointed out by Avanzi and

Gerber (2008), the dual risk model is well suited to model the cash flow dynamics of a

portfolio of life annuities, or of companies specializing in inventions and discoveries. Let

ς = inf
{
t ≥ 0 : Ud

t < 0
}

be the time to ruin for this surplus process. By a reflective ar-

gument, one can easily conclude that the time to ruin ς with an initial surplus u in the

dual risk process Ud corresponds to the first passage time to level u, namely τu, of the pro-

cess {Rt, t ≥ 0}. Therefore, one can directly use the main result of Section 6.2 to obtain

finite-time ruin probabilities in the dual risk process with no more than a given number of

claims in the interim.

Many researchers have analyzed the ruin probability in the dual risk process (see, e.g.,

Cramér (1955, Section 5.13) and Mazza and Rulliére (2004)). A traditional way to obtain

the distribution of the time to ruin is through the numerical inversion of its Laplace trans-

form (which is known under various distributional assumptions). The explicit expression

(6.24) can be considered as an alternative to calculate finite-time ruin probabilities. More

interestingly, it enables one to break the contribution to the finite-time ruin probability

103



by the number of claims until ruin, which by itself is of interest. Moreover, the resulting

approximative quantity provides an insightful ruin related quantity.

The dual risk process (6.31) can also be considered as a second-order fluid flow queue,

where u is the initial fluid in the system and Mt is the non-decreasing fluid arrivals into

the queue. We assume a linear service rate c and use the Brownian motion to represent

the traffic noise. A more general definition of a second-order fluid queue can be found in

Kulkarni (1997), Rabehasaina and Sericola (2004), as well as references therein. Fluid flow

models are widely used in engineering to analyze the behavior of telecommunication flow,

whereby the fluid represents the signals temporarily stored in a buffer. The first passage

time to level 0 is the duration of a busy period of the buffer. Similarly, Eq. (6.24) can be

directly used to obtain the joint (defective) distribution of the busy period and the number

of signal arrivals.

In the following example, we will illustrate the usage of Eq. (6.24) to obtain the finite

ruin probabilities in a dual risk model.

Example 6.4.1 We assume that the jump size distribution follows a mixture of 3 Erlangs

with Laplace transform

p̃(s) = 0.3 · 0.05

0.05 + s
+ 0.5 ·

(
0.05

0.05 + s

)2

+ 0.2 ·
(

0.05

0.05 + s

)3

, s ≥ 0.

Also, let λ = 0.15, σ = 0.2, and the expense rate c = 5. Tables 6.1 and 6.2 present the

values of finite-time ruin probabilities with no more than n jumps (i.e. Pr (ς ≤ T,Nς ≤ n))

for a time horizon of T = 10 and T = 50, respectively.

As expected, longer is the time horizon, more jumps are required to observe the conver-

gence of the joint cumulative distribution function of the time to ruin and the number of
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Table 6.1: Finite-time ruin probability with no more than n jumps (T = 10)

u \ n 0 1 2 3 4 5 6

5 0.8607 0.9107 0.9176 0.9183 0.9183 0.9183 0.9183

10 0.7408 0.8235 0.8349 0.8359 0.8359 0.8359 0.8359

25 0.4724 0.5765 0.5882 0.5888 0.5889 0.5889 0.5889

50 0.1138 0.1151 0.1151 0.1151 0.1151 0.1151 0.1151

Table 6.2: Finite-time ruin probability with no more than n jumps (T = 50)

u \ n 0 1 3 5 7 8 9

5 0.8607 0.9164 0.9421 0.9512 0.9549 0.9556 0.9558

10 0.7408 0.8368 0.8860 0.9036 0.9107 0.9119 0.9124

25 0.4724 0.6253 0.7288 0.7686 0.7837 0.7861 0.7870

50 0.2232 0.3676 0.5089 0.5706 0.5920 0.5948 0.5957

claims at ruin to the finite-time ruin probability (as n→∞). Theoretically, we know that

lim
n→∞

Pr (ς ≤ T,Nς ≤ n) = Pr (ς ≤ T ) .

6.4.2 Pricing path-dependent exotic options

In recent years, jump-diffusion processes have been widely used to model financial assets.

In general, researchers are using two-sided jumps to represent random gains and losses of

a company (see, e.g., Kou and Wang (2004)). However, many authors have argued the

relevance of using one-sided jump-diffusion processes to model the stock price of insurance

companies, where the one-sided negative jumps represent the impact of catastrophic losses

(see, e.g., Gerber and Landry (1998), Cox et al. (2004) and Lin and Wang (2009)). Rather
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than investigating catastrophe-linked securities (in which the catastrophe loss is the exercise

trigger, as in, e.g., Cox et al. (2004) and Lin and Wang (2009)), we are interested here

in analyzing general path-dependent options issued on the insurer’s stock. Specifically

speaking, we will use the main result of Section 6.2 to price the up-and-in call option of

an insurer. Other up-and-in, up-and-out call (put) options can be obtained in a similar

fashion. An up-and-in call is a regular call option that will be activated only if the price

of the underlying asset rises above a certain price level (see, e.g., Hull (2010)).

The underlying asset process of an insurance company {S(t), t ≥ 0} is assumed to have

the form

S(t) = S(0) exp (ct+ σWt −Mt) ,

where S(0) is the initial stock price. The process is further assumed to be under the risk-

neutral probability measure Q with a continuous risk-free rate r > 0. To ensure that the

discounted stock price process {e−rtS(t), t ≥ 0} is a martingale under Q, c is assumed to

be given by

c = r − σ2

2
− λ(p̃(1)− 1). (6.32)

Under the risk-neutral probability measure, the price of an up-and-in call option with

time to maturity T, strike price K, barrier level H (H > S(0)) and up to n negative jumps

is given by

Cn(T,H,K) = EQ

[
e−rT (S(T )−K)+1

(
max

0≤t≤T
S(t) ≥ H, NT ≤ n

)]
= Λn −Ke−rTΠn,

where

Λn = EQ

[
e−rTS(T )1

(
S(T ) ≥ K, max

0≤t≤T
S(t) ≥ H, NT ≤ n

)]
, (6.33)
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and

Πn = PQ

(
S(T ) ≥ K, max

0≤t≤T
S(t) ≥ H, NT ≤ n

)
. (6.34)

Naturally, the price of an up-and-in call option is the limit of Cn(T,H,K) as n→∞, i.e.

C(T,H,K) = lim
n→∞

Cn(T,H,K).

Let b = ln H
S(0)

. By conditioning on the first passage time of the process R to level b

and on the number of jumps, (6.34) becomes

Πn = PQ (S(T ) ≥ K, τb ≤ T, NT ≤ n)

=
n∑
k=0

∫ T

0

PQ(S(T ) ≥ K, NT ≤ n| τb = t, Nτb = k)fk (t |b) dt.

Noting that Rτb = b and Sτb = H, and making use of the strong Markov property of the

process R, one deduces

PQ (S(T ) ≥ K, NT ≤ n| τb = t, Nτb = k)

=
n∑
j=k

PQ(Sτbe
RT−b ≥ K, NT−τb = j − k

∣∣ τb = t)

=
n∑
j=k

PQ(RT−t ≥ ln
K

H
, NT−t = j − k)

=
n∑
j=k

∫ ∞
ln K
H

gj−k (y;T − t) dy,

where gn (y; t) is the density of Rt with n jumps, namely

gn (y; t) =

 e−λt
{

1√
2πσ2t

e−
1

2σ2t
(ct−y)2

}
, n = 0,

(λt)ne−λt

n!

∫∞
0
p∗n (x)

{
1√

2πσ2t
e−

1
2σ2t

(ct−y−x)2
}
dx, n = 1, 2, ...

Therefore,

Πn =
n∑
k=0

n∑
j=k

∫ T

0

fk (t |b)

∫ ∞
ln K
H

gj−k (y;T − t) dydt. (6.35)
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Using the same change of numeraire arguments as in Kou and Wang (2004), an expres-

sion for Λn can be obtained. Indeed, define a new probability measure Q̃ such that

dQ̃

dQ
= e−rt

S(t)

S(0)
= exp

((
−σ

2

2
− λ(p̃(1)− 1)

)
t+ σWt −Mt

)
.

Under the Q̃ measure, Rt is a jump-diffusion process

Rt = cQ̃t+ σW Q̃
t −M

Q̃
t ,

where cQ̃ = c + σ2, and {W Q̃
t , t ≥ 0} defined as W Q̃

t = Wt − σt is a standard Brownian

motion, and {M Q̃
t , t ≥ 0} is a compound Poisson process with Poisson arrival rate λQ̃ =

λp̃(1) and secondary distribution having density pQ̃(x) = e−x

p̃(1)
p(x) for x ≥ 0.

Furthermore, (6.34) under the Q̃ measure is given by

Λn = S(0)EQ̃

[
1

(
S(T ) ≥ K, max

0≤t≤T
S(t) ≥ H, NT ≤ n

)]
= S(0)Q̃ (S(T ) ≥ K, τb ≤ T, NT ≤ n)

= S(0)ΠQ̃
n ,

where ΠQ̃
n is the value of Πn replacing c, λ and p(x) by cQ̃, λQ̃ and pQ̃(x) respectively.

Example 6.4.2 Assume S(0) = 100, H = 120, T = 1, r = 0.05, σ = 0.2, and the jump

sizes have Laplace transform p̃(s) = 0.9 50
50+s

+ 0.1
(

50
50+s

)2
. We point out that this example

is identical to Kou and Wang (2004, Section 4.3) except for the jump size density. Indeed,

Kou and Wang (2004) assume a jump-diffusion process which allows for both positive and

negative exponential jumps, whereas only one-sided jumps are considered in this paper.

However, for comparative purposes, the mean of the jump size was preserved. Tables 6.3

and 6.4 contain the price for up-and-in call options with no more than n negative jumps
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Table 6.3: Prices of the up-and-in call option with no more than n jumps (λ = 0.01)

K \ n 0 1 2 3 4 5 6 B-S Price

80 16.7702 16.9191 16.9198 16.9198 16.9198 16.9198 16.9198 16.9182

90 12.9167 13.0303 13.0308 13.0308 13.0308 13.0308 13.0308 13.0296

100 9.1955 9.2752 9.2756 9.2756 9.2756 9.2756 9.2756 9.2746

110 5.8394 5.8891 5.8893 5.8893 5.8893 5.8893 5.8893 5.8885

120 3.2213 3.2481 3.2482 3.2482 3.2482 3.2482 3.2482 3.2477

130 1.6269 1.6400 1.6401 1.6401 1.6401 1.6401 1.6401 1.6396

when λ = 0.01 and λ = 3, respectively. Note that the drift c of the Brownian motion (as

defined in (6.32)) is 0.0302 (0.0946) when λ = 0.01 (λ = 3).

Remark that the last column of Table 6.3 gives the price of up-and-in call options under

the Black-Scholes model (λ = 0). We observe that the values of Cn(T,H,K) for λ = 0.01

and n relatively large are very close to the Black-Scholes price of these up-and-in call

options, as anticipated. Also, as the Poisson arrival rate λ of the jump-diffusion processes

gets larger, the speed of convergence (in n) of Cn(T,H,K) to C(T,H,K) gets slower.

Indeed, for a jump-diffusion process with a large value of λ, more jumps are expected (on

average) within a given time horizon.

When the strike price is no less than the barrier level, the up-and-in call option becomes

a regular call option. This can be formally proven as highlighted in the following remark.

Remark 6.4.3 When K ≥ H, (6.35) is consistent with the expression for regular call

options. Indeed, for y > 0, by using Laplace transform arguments, it can be shown that the
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Table 6.4: Prices of the up-and-in call option with no more than n jumps (λ = 3)

K \ n 0 1 3 5 7 9 11 12

80 1.1824 4.3804 12.5362 16.4717 17.3013 17.3973 17.4043 17.4045

90 0.9338 3.4380 9.7395 12.7252 13.3417 13.4115 13.4164 13.4166

100 0.6906 2.5192 7.0325 9.1159 9.5341 9.5800 9.5831 9.5833

110 0.4642 1.6717 4.5727 5.8652 6.1150 6.1413 6.1430 6.1431

120 0.2774 0.9822 2.6175 3.3135 3.4418 3.4547 3.4555 3.4555

130 0.1530 0.5322 1.3803 1.7243 1.7847 1.7904 1.7908 1.7908

convolution of gj (y; t) and fk (t |b) satisfies

j∑
k=0

∫ T

0

gj−k (y;T − t) fk (t |b) dt = gj(y + b;T ),

which, substituted into (6.35), yields

Πn =
n∑
j=0

∫ ∞
ln K
H

gj(y + b;T )dy =
n∑
j=0

∫ ∞
ln K
S(0)

gj(y;T )dy = PQ(S(T ) ≥ K,NT ≤ n).
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Chapter 7

Occupation times

7.1 Introduction

In this chapter, we examine the occupation time of an insurer’s surplus process within an

interval of the form [a, b] for a < b. This includes some quantities which have already

drawn some attention in the ruin theory community, notably the time spent by the surplus

process in the negative half-plane, also referred to as the total duration of negative surplus

or the time in red. In the context of some Sparre Andersen risk models, we propose to

utilize renewal techniques and some probabilistic arguments to obtain an expression for

the Laplace transform of the occupation time.

In finance, occupation times have been widely used as a contingent characteristic in the

development of financial derivatives, such as step options (see, e.g., Linetsky (1999)) and

corridor options (see, e.g., Fusai (2000)). Researchers have derived the Laplace transform

of the occupation time for various stochastic processes. For instance, Linetsky (1999)

and Davydov and Linetsky (2002) analyzed the Laplace transform of the single-barrier
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(intervals of the form (−∞, 0) or (0,∞)) and double-barrier (intervals of the form [a, b]

for a, b finite) occupation time in a geometric Brownian motion model. Cai et al. (2010)

generalized their results to the jump-diffusion process with double exponential jumps.

In risk theory, occupation times can be utilized as an enhanced risk management tool

for insurers. Gerber (1990) pointed out that the recovery time of a ruin event can help

insurers to determine whether to continue or terminate the business in the case of ruin.

As a generalization of the recovery time, the duration of negative surplus can also be used

as an alternative risk management tool for insurers to examine the health of the insurance

business. On the other hand, by properly choosing the barrier level b, the occupation time

in [0, b] is an indicator of the time the insurer’s surplus remains in critical levels, which

also provides valuable risk management information for both the insurers and regulators.

In the context of the classical compound Poisson risk model, Eǵıdio dos Reis (1993) and

Dickson and Eǵıdio dos Reis (1996) derived the distribution of the duration of negative

surplus by analyzing the recovery time of ruin and the number of negative excursions.

Similar studies have also been conducted in the dual compound Poisson risk model (see

Song et al. (2008)), the compound Poisson risk model perturbed by diffusion (see Zhang

and Wu (2002)) and the compound Poisson risk model with dependent premium structures

(see Chiu and Yin (2002) and He et al. (2009)). More recently, Landriault et al. (2011)

investigated the single-barrier occupation time in a spectrally negative Lévy process. In the

two-barrier case, Kolkovska et al. (2005) studied the local time and occupation measure in

the compound Poisson risk model. Loeffen et al. (2013) obtained the Laplace transform

of occupation times of intervals until some first passage times for spectrally negative Lévy

processes. However, as far as we know, the literature is rather scarce on the analysis of the

duration of negative surplus and other occupation times in the Sparre Andersen risk model,

which is a very common modeling assumption for an insurer’s surplus process. One of the
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few exceptions is the recent paper by Dickson and Li (2013) who studied the duration of

negative surplus in the Erlang-2 risk model.

The main subject matter of this chapter is to study the occupation time in a class of

Sparre Andersen risk processes, where the interclaim times r.v.’s {Ti}∞i=1 and the claim

sizes {Xi}∞i=1 form a sequence of i.i.d. r.v.’s. We also assume that the interclaim times

{Ti}∞i=1 and the claim sizes {Xi}∞i=1 are mutually independent and such that cκ > µ, which

implies that in the long run the surplus process goes to infinity with probability 1.

In what follows, the interclaim times are assumed to be phase-type distributed (see, e.g.,

Bladt(2005)) with representation (α,B), where α = (α1, α2, ..., αn) is the initial probability

vector with
n∑
i=1

αi = 1 and the generator B = [bij]ij is an n× n matrix with bii < 0, bij ≥ 0

for i 6= j and
n∑
j=1

bij ≤ 0 for i = 1, 2, ..., n. Then the density function and Laplace transform

are expressed as

k (t) = αetBb>,

for t ≥ 0 and

k̃ (s) = α (sI−B)−1 b>, (7.1)

respectively, where I is the n×n identity matrix and b> = −Be> with e> a column vector

of 1’s.

In the double-barrier context, the occupation time of {Ut, t ≥ 0} in the interval [a, b]

(a < b) can be written in an integral form as

T̃a,b =

∫ ∞
0

1 (a ≤ Us ≤ b) ds. (7.2)

Without loss of generality, we assume a = 0. Define the Laplace transform of T̃0,b as

Vδ (u; b) ≡ E
[
e−δT̃0,b |U0 = u

]
,
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for δ ≥ 0. We also define the total duration of negative surplus by

T̃−∞ ≡
∫ ∞

0

1 (Us ≤ 0) ds,

with Laplace transform

Vδ (u) ≡ E
[
e−δT̃−∞ |U0 = u

]
, u ≥ 0.

In comparison to the Poisson claim arrival process and the general Lévy process, the

challenge for analyzing Vδ (u) and Vδ (u; b) in the present context arises from the non-

regenerative property of the renewal risk model at all times. However, this challenge can

be overcome in the Sparre Andersen risk model with interclaim claims of distributional

form (7.1) by introducing a continuous-time Markov process (CTMC) and tracking the

state of the CTMC at some first passage times. Consider an (n+ 1)-state continuous

time-homogeneous Markov process J = {Jt, t ≥ 0} with Jt = i (i = 0, 1, 2, ..., n). We

construct J as follows:

1. Let Z = {Zt, t ≥ 0} be an (n+ 1)-state terminating CTMC with Zt = i (i =

0, 1, 2, ..., n) and initial probability vector α. We assume that state 0 is the absorbing

state. Then, the interclaim times {Ti}∞i=1 can be viewed as the time until absorption

of this terminating CTMC. Claim instants only occur when state 0 is reached. The

infinitesimal generator of the CTMC is given by

G =

 0 0

b> B

 .
2. The process J is constructed by pasting sample paths of the terminating CTMC

Z up to the absorption time. That is, whenever state 0 is reached, the process J

immediately restarts as Z with initial probability vector α.
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Or equivalently, the process J (excluding the absorbing state 0) is a CTMC with the

infinitesimal generator

GJ = B + b>α.

In this setting, the bivariate process {(Ut, Jt) , t ≥ 0} is a Markov process.

Let

Vδ,i (u) ≡ E
[
e−δT̃−∞ |U0 = u, J0 = i

]
,

for i = 1, 2, ..., n, be the Laplace transform of the duration of negative surplus for the

surplus process {Ut, t ≥ 0} with an initial state J0 = i. Its unconditional version is given

by

Vδ (u) =
n∑
i=1

αiVδ,i (u) = αVδ (u) , (7.3)

where Vδ (u) = (Vδ,1 (u) , Vδ,2 (u) , ..., Vδ,n (u))> and the initial probability vector of J0 is α.

Therefore, the main task is to find an expression for Vδ (u) .

Similarly, the Laplace transform of T̃0,b satisfies

Vδ (u; b) = αVδ (u; b) , (7.4)

where Vδ (u; b) = (Vδ,1 (u; b) , Vδ,2 (u; b) , ..., Vδ,n (u; b))> and

Vδ,i (u; b) ≡ E
[
e−δT̃0,b |U0 = u, J0 = i

]
,

for i = 1, 2, ..., n.

The remaining sections of this chapter are structured as follows: in Section 7.2, we

revisit the one-sided and two-sided exit problems for the aforementioned class of Sparre

Andersen risk models. These quantities are essential components to develop the Laplace

transform of the one-barrier and two-barrier occupation times in the later sections. In

Section 7.3, the Laplace transform of the duration of negative surplus is derived. The
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results are natural extensions of those obtained by Eǵıdio dos Reis (1993). In Section 7.4,

the Laplace transform of the occupation time in [0, b] of the surplus process {Ut, t ≥ 0}

is obtained. As a special case, we revisit the occupation time in the classical compound

Poisson risk model and further examine some results of Kolkovska et al. (2005). An

example to calculate the mean occupation time will also be considered.

7.2 The one-sided and two-sided exit problem

In this section, we examine the time to ruin, the time to reach a certain level b, and the

two-sided exit times for the process {Ut, t ≥ 0}. Most results are obtained in vector or

matrix form given that these first passage times are analyzed jointly with the initial and

ending states of the process {Jt, t ≥ 0}. Many of these exit times for phase-type interclaim

times have been extensively analyzed in the literature (see, e.g., Albrecher and Boxma

(2005), Ren (2007) and Li (2008b)) and will be reviewed here for completeness purposes.

Some results will also be derived to accommodate the occupation time analysis in the later

sections.

7.2.1 The time to ruin and other first passage times

As mentioned in Chapter 1, a systematic approach to analyze the time to ruin τ is proposed

by Gerber and Shiu (1998) through the discounted penalty function (1.3). It is well known

that in a Sparre Andersen risk model, the Gerber-Shiu function mδ(u) satisfies a defective

renewal equation and can generally be expressed in terms of the solution(s) of Lundberg’s

generalized equation

k̃ (δ − cs) p̃ (s) = 1, (7.5)
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(see, e.g., Gerber and Shiu (2005) and Landriault and Willmot (2008)). For a phase-type

interclaim times, Eq. (7.5) is known to have n solutions {ρk}nk=1 with non-negative real

parts (see Ren (2007)). We assume that ρi 6= ρj for i 6= j.

First, we define the Gerber-Shiu function conditional on the initial state J0 = i by

mδ,i(u) ≡ E
[
e−δτw(Uτ− , |Uτ |)1 (τ <∞) |U0 = u, J0 = i

]
, (7.6)

and aim to obtain an expression for mδ (u) = (mδ,1 (u) ,mδ,2 (u) , ...,mδ,n (u))>. Note that

when w(Uτ− , |Uτ |) = 1 in (7.6), the Gerber-Shiu function becomes the Laplace transform

of the time to ruin, i.e.

φδ,i(u) ≡ E
[
e−δτ1 (τ <∞) |U0 = u, J0 = i

]
, (7.7)

for i = 1, 2, ..., n with vector form Φδ (u) = (φδ,1 (u) , φδ,2 (u) , ..., φδ,n (u))>.

Clearly, the (unconditional) Gerber-Shiu function mδ(u) is given by

mδ(u) =
n∑
i=1

αimδ,i(u) ≡ αmδ (u) . (7.8)

It was shown by Schmidli (2005) that mδ (u) satisfies the following integro-differential

equation

cm′δ (u) = δmδ (u)−Bmδ (u)− E [mδ(u−X)] b>, (7.9)

where

E [mδ(y −X)] =

∫ y

0

αmδ (y − x) p(x)dx+ ω(y),

and

ω(y) =

∫ ∞
y

w(y, x− y)p(x)dx,

(see also Albrecher and Boxma (2005)). By taking the Laplace transform of (7.9), Ren

(2007) showed that

Lδ (s) m̃δ (s) = cmδ (0)− ω̃(s)b>, (7.10)
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where

Lδ (s) = (cs− δ) I + B + b>αp̃ (s) .

Note that det Lδ (s) = 0 is an equivalent representation of Lundberg’s generalized equation

(7.5) and thus, has n solutions {ρk}nk=1. Moreover, Ren (2007) demonstrated that mδ (0)

can be expressed as

mδ (0) =
1

c
V−1ω̃(ρ)Vb> =

1

c
ω̃(Q)b>,

where V =
(
v>1 ,v

>
2 , ...,v

>
n

)>
with the row vector vi = α ((δ − cρi) I−B)−1 satisfying

viLδ (ρi) = 0 for i = 1, 2, ..., n, ρ = diag (ρ1, ρ2, ..., ρn) and Q = V−1ρV. It is worthy to

mention that vi is the left eigenvector corresponding to the eigenvalue ρi.

Next, for b ≥ u, let τb = inf {t ≥ 0 : Ut = b} be the first passage time of the surplus

process to level b. Note that τb is equivalent to the time of ruin in the dual risk model (see,

e.g., Grandell (1991, p.8)). We are interested in the Laplace transform of τb with an initial

state J0 = i and a hitting state Jτb = j, which is defined as

Rδ,ij (u; b) ≡ E
[
e−δτb1 (Jτb = j) |U0 = u, J0 = i

]
,

with matrix representation Rδ (u; b) = [Rδ,ij (u; b)]ij .

By the skip-free upward property of the surplus process, one immediately notices that

Rδ (u1; b) = Rδ (u1;u2) Rδ (u2; b) (7.11)

for any 0 ≤ u1 < u2 ≤ b with boundary condition Rδ (b; b) = I. Thus, the solution to

(7.11) can be expressed as

Rδ (u; b) = eK(u−b), (7.12)

where K is an n× n matrix to be determined.
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It was shown by Li (2008a) that K = HρH−1, where H = (h1,h2, ...,hn) with the

column vector hi satisfying Lδ (ρi) hi = 0 for i = 1, 2, ..., n. Note that hi is the right

eigenvector corresponding to the eigenvalue ρi. We also remark that another possible

expression for hi is given by

hi = ((δ − cρi) I−B)−1 b>α

Indeed, using (7.1) and (7.5), we have

Lδ (ρi) hi =
{

(cρi − δ) I + B + b>αp̃ (ρi)
}

((δ − cρi) I−B)−1 b>α

= −b>α + b>
(
α ((δ − cρi) I−B)−1 b>p̃ (ρi)

)
α

= 0.

It follows that

Rδ (u; b) = Heρ(u−b)H−1. (7.13)

7.2.2 First passage times in the two-sided exit problem

Finally, we will analyze the Laplace transform of the two-sided exit time in the interval

[0, b] of the surplus process {Ut, t ≥ 0}. Define the Laplace transform of the first passage

time to reach level b before ruin occurs, with an initial state J0 = i and a hitting state

Jτb = j, as

ϕδ,ij (u; b) ≡ E
[
e−δτb1 (τb < τ, Jτb = j) |U0 = u, J0 = i

]
,

for i, j = 1, 2, ..., n with matrix representation Ψδ (u; b) = [ϕδ,ij (u; b)]ij. Using the same

arguments as in Ko (2007), it is not difficult to show that Ψδ (u; b) satisfies

cΨ′δ (u; b) = (δI−B) Ψδ (u; b)− b>α

∫ u

0

Ψδ (y; b) p(u− y)dy, (7.14)
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with boundary condition Ψδ (b; b) = I. Taking the Laplace transform of (7.14) wrt u, one

arrives at

c
(
sΨ̃δ (s; b)−Ψδ (0; b)

)
= (δI−B) Ψ̃δ (s; b)− b>αΨ̃δ (s; b) p̃ (s) . (7.15)

Rearranging the terms of (7.15) yields

Lδ (s) Ψ̃δ (s; b) = cΨδ (0; b) .

Define vδ (x) through its Laplace transform as

L−1
δ (s) = ṽδ (s) =

∫ ∞
0

e−sxvδ (x) dx.

It follows from the boundary condition that

Ψδ (u; b) = vδ(u)v−1
δ (b). (7.16)

Next, we define a generalized Gerber-Shiu function mδ,i (u; b) for the surplus process

{Ut, t ≥ 0} killed by reaching level b, i.e.

mδ,i (u; b) ≡ E
[
e−δτw(Uτ−, |Uτ |)1 (τ < τb) |U0 = u, J0 = i

]
,

with vector form mδ (u; b) = (mδ,1 (u; b) ,mδ,2 (u; b) , ...,mδ,n (u; b))>. In the limit, mδ,i(u) =

limb→∞mδ,i (u; b). Furthermore, if w(Uτ−, |Uτ |) = 1, mδ,i (u; b) becomes the Laplace trans-

form of the exit time from level 0 before hitting level b with an initial state J0 = i, i.e.

ξδ,i (u; b) ≡ E
[
e−δτ1 (τ < τb) |U0 = u, J0 = i

]
,

with vector representation ξδ (u; b) = (ξδ,1 (u; b) , ξδ,2 (u; b) , ..., ξδ,n (u; b))>.

By excluding the paths of the surplus process hitting level b before ruin, we have

mδ (u; b) = mδ (u)−Ψδ (u; b) mδ (b) . (7.17)

Eq. (7.17) implies that mδ (u; b) is fully characterized by Ψδ (u; b) given in (7.16) and

mδ (u) whose Laplace transform was obtained in (7.10).
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Remark 7.2.1 In the classical compound Poisson risk model with exponential interclaim

times of mean 1/λ, vδ(x) reduces to the δ-scale function v1,δ(x) whose Laplace transform

is given by (3.27). Using similar arguments as in Section 3.3.1 for inversion yields

v1,δ(x) =
1

c
e
λ+δ
c
x+

∫ x/c

0

(
∞∑
n=1

(−λt)n e(λ+δ)t

n!
p∗n (x− ct)

)
dt.

In this case, the Laplace transform of the first passage time to level b before ruin occurs is

given by

ϕδ (u; b) ≡ E
[
e−δτb1 (τb < τ) |U0 = u

]
=
v1,δ(u)

v1,δ(b)
, (7.18)

and the Laplace transform of the exit time from level 0 before hitting level b is

ξδ (u; b) ≡ E
[
e−δτ1 (τ < τb) |U0 = u

]
= φδ(u)− φδ(b)

v1,δ(u)

v1,δ(b)
, (7.19)

where φδ(u) is the Laplace transform of the time to ruin (see, e.g., Kyprianou (2006,

Theorem 8.1)).

Remark 7.2.2 An alternative expression of Ψδ (u; b) is obtained by using similar argu-

ments as in Gerber and Shiu (1998) and Li (2008b). Similar to Eqs. (6.22 and 6.23) in

Gerber and Shiu (1998), we have

Φδ (u) = ξδ (u; b) + Ψδ (u; b) Φδ (b) , (7.20)

and

Rδ (u; b) = ξδ (u; b) Rδ (0; b) + Ψδ (u; b) . (7.21)

Solving Eqs. (7.20) and (7.21) yields

Ψδ (u; b) = [Rδ (u; b)−Φδ (u) Rδ (0; b)] [I−Φδ (b) Rδ (0; b)]−1

=
[
eKu −Φδ (u)

] [
eKb −Φδ (b)

]−1
.
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7.3 The duration of negative surplus

7.3.1 Laplace transform

Equipped with the intermediary results of Section 7.2, we are now in position to derive an

expression for the Laplace transform of the duration of negative surplus. Let

ψi(u) = Pr (τ <∞|U0 = u, J0 = i) ,

and define gd(y|u) = (ψ1(u)g1 (y |u) , ψ2(u)g2 (y |u) , ..., ψn(u)gn (y |u))>, where gi (y |u) is

the proper density of the deficit at ruin (given that ruin occurs) for an initial surplus level

u with an initial state J0 = i.

By conditioning on whether ruin occurs and on the time to recovery if it does, one finds

Vδ (u) = Υ(u) +

∫ ∞
0

gd(y|u) {αRδ (−y; 0) Vδ (0)} dy

= Υ(u) + Aδ(u)Vδ (0) , (7.22)

where

Υ(u) = (1− ψ1(u), 1− ψ2(u), ..., 1− ψn(u))>,

and

Aδ(u) =

∫ ∞
0

gd(y|u) {αRδ (0; y)} dy. (7.23)

Substituting (7.13) into (7.23), we have

Aδ(u) =

∫ ∞
0

gd(y|u)
{
αHe−ρyH−1

}
dy

=

(∫ ∞
0

gd(y|u)
(
αh1e

−ρ1y,αh2e
−ρ2y, ...,αhne

−ρny
)
dy

)
H−1

= (αh1m0 (u, ρ1) ,αh2m0 (u, ρ2) , ...,αhnm0 (u, ρn)) H−1,
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where m0 (u, z) = (m0,1 (u, z) ,m0,2 (u, z) , ...,m0,n (u, z))> with

m0,i(u, z) ≡ E
[
e−z|Uτ |1 (τ <∞) |U0 = u, J0 = i

]
.

Note that m0,i(u, z) is the Laplace transform of the deficit at ruin (i.e., a special case of

the Gerber-Shiu function (7.6) with δ = 0 and w(x, y) = e−zy).

To solve (7.22), letting u = 0, one obtains

Vδ (0) = Aδ(0)Vδ (0) + Υ(0),

which implies that

Vδ (0) = (I−Aδ(0))−1 Υ(0). (7.24)

Substituting (7.24) into (7.22), one arrives at

Vδ (u) = Υ(u) + Aδ(u) (I−Aδ(0))−1 Υ(0). (7.25)

Multiplying both sides of (7.25) by α, one concludes that the Laplace transform of the

duration of negative surplus for the phase-type interclaim times is given by

Vδ (u) = α
(
Υ(u) + Aδ(u) (I−Aδ(0))−1 Υ(0)

)
. (7.26)

Remark 7.3.1 In the classical compound Poisson risk model, Eq. (7.26) becomes

Vδ (u) = 1− ψ(u) +
aδ(u) (1− ψ(0))

1− aδ(0)
, (7.27)

where ψ(u) is the ruin probability with an initial surplus level u, and aδ(u) satisfies

aδ(u) = ψ(u)

∫ ∞
0

e−ρ0yg (y |u) dy.

Here, ρ0 is the unique non-negative solution of Lundberg’s fundamental equation (7.5) and

g (y |u) is the proper density of the deficit at ruin. That is, g (y |u) is given by

g (y |u) =
λ

cψ(u)

∫ ∞
0

α0 (x, u) p (x+ y) dx,
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for y ≥ 0 and

α0 (x, u) =


ψ(u−x)−ψ(u)

1−ψ(0)
, x ≤ u,

1−ψ(u)
1−ψ(0)

, x > u,

(see, e.g., Landriault and Willmot (2009)). When u = 0, g(y|0) = 1
µ
P (y). Eq. (7.27) is

consistent with Eǵıdio dos Reis (1993, Section 5.2.2).

7.3.2 Number of claims with negative surplus level

Let NT̃−∞
be the number of claims with a negative surplus value following the claim set-

tlement, i.e.

NT̃−∞
≡

∞∑
k=1

1 (UVk < 0) ,

where Vk =
∑k

i=1 Ti is the occurring time of the kth claim (k = 1, 2, ...). Note that the

positive security loading ensures that NT̃−∞
is finite with probability 1. In what follows,

we jointly analyze T̃−∞ and NT̃−∞
in the classical compound Poisson risk model through

the generalized analytic tool

Vr,δ (u) ≡ E
[
r
N
T̃−∞e−δT̃−∞ |U0 = u

]
,

for u, δ ≥ 0 and r ∈ (0, 1]. For a given deficit level −y (y > 0), using the same arguments

as in Chapter 6, it can be shown that the joint Laplace transform of the first passage time

to reach level 0 and the number of claims before the first passage is given by

Rr,δ (y) = e−ρy, (7.28)

where ρ is the unique non-negative solution of

s− λ+ δ

c
+ r

λ

c
p̃ (s) = 0.
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The inversion of (7.28) yields

e−ρy = e−
λ+δ
c
y +

∞∑
n=1

rn
∫ ∞
y
c

e−δtκn (t |y ) dt, (7.29)

where

κn (t |y ) =
y

t

(λt)n e−λt

n!
p∗n (ct− y) ,

(see Remark 6.2.3).

By conditioning on whether ruin occurs and on the time to recovery if it does, it follows

that

Vr,δ (u) = 1− ψ(u) + rψ(u)

∫ ∞
0

g (y |u) {Rr,δ (y)Vr,δ (0)} dy. (7.30)

Substituting (7.28) into (7.30) followed by some simple manipulations, one arrives at

Vr,δ (u) = 1− ψ(u) +
rar,δ(u) (1− ψ(0))

1− rar,δ(0)
, (7.31)

where

ar,δ(u) = ψ(u)

∫ ∞
0

e−ρyg (y |u) dy.

To invert Vr,δ (u), we rewrite (7.31) as

Vr,δ (u) = 1− ψ(u) + (1− ψ(0))
∞∑
m=0

rm+1ar,δ(u) (ar,δ(0))m

= 1− ψ(u) + (1− ψ(0))ψ(u)r

∫ ∞
0

e−ρyg (y |u) dy

+ ψ(u) (1− ψ(0))
∞∑
m=1

rm+1 (ψ(0))m
(∫ ∞

0

e−ρyg (y |u) dy

)(∫ ∞
0

e−ρyg∗m (y |0) dy

)
= 1− ψ(u) + ψ(u)

∞∑
m=1

rm (1− ψ(0)) (ψ(0))m−1

∫ ∞
0

e−ρygm (y |u) dy, (7.32)

where

gm (y |u) =

 g (y |u) , m = 1,∫ y
0
g (y − x |u) g∗(m−1) (x |0) dx, m = 2, 3, ...
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Finally, substituting the Lagrangian identity (7.29) into (7.32), one finds that

Vr,δ (u) = 1− ψ(u)

+ ψ(u)
∞∑
m=1

rm (1− ψ(0)) (ψ(0))m−1

∫ ∞
0

e−
λ+δ
c
ygm (y |u) dy

+ ψ(u)
∞∑
m=1

∞∑
n=1

rn+m (1− ψ(0)) (ψ(0))m−1

∫ ∞
0

e−δt
{∫ ct

0

κn (t |y ) gm (y |u) dy

}
dt

= 1− ψ(u)

+
∞∑
n=1

rn
∫ ∞

0

e−δt
{
ψ(u) (1− ψ(0)) (ψ(0))n−1 ce−λtgn (ct |u)

}
dt

+
∞∑
n=2

rn
∫ ∞

0

e−δt

{
ψ(u)

n−1∑
m=1

(1− ψ(0)) (ψ(0))m−1

∫ ct

0

κn−m (t |y ) gm (y |u) dy

}
dt.

In conclusion, if there is no excursion below 0, the total duration of negative surplus

has a mass point at 0 with

Pr
(
T̃−∞ = 0, NT̃−∞

= 0
∣∣∣U0 = u

)
= 1− ψ (u) .

Otherwise, the joint generalized density of T̃−∞ and NT̃−∞
is given by

h(t, n |u) =

 ψ(u) (1− ψ(0)) ce−λtg (ct |u) , n = 1,

z(t, n |u), n = 2, 3, ...,
(7.33)

for t > 0, where

z(t, n |u) = ψ(u) (1− ψ(0)) (ψ(0))n−1 ce−λtgn (ct |u)

+ ψ(u)
n−1∑
m=1

(1− ψ(0)) (ψ(0))m−1

∫ ct

0

κn−m (t |y ) gm (y |u) dy.

Remark 7.3.2 As an immediate corollary, the total duration of negative surplus has a

mass point at 0 with

Pr
(
T̃−∞ = 0

∣∣∣U0 = u
)

= 1− ψ(u),
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and for t > 0, the marginal density of the total duration of negative surplus can be expressed

as

h(t |u) = ψ(u) (1− ψ(0)) ce−λtg (ct |u) +
∞∑
n=2

z(t, n |u)

= ψ(u)
∞∑
n=1

(1− ψ(0)) (ψ(0))n−1

{
ce−λtgn (ct |u) +

∫ ct

0

(
∞∑
m=1

κm (t |y )

)
gn (y |u) dy

}
.

This expression is an explicit solution to the recursive equation (3.1) in Dickson and Eǵıdio

dos Reis (1996).

7.4 Occupation time in [0, b]

7.4.1 Laplace transform

In this section, we analyze the double-barrier occupation time for the assumed Sparre

Andersen risk model. For notational convenience, we write

Vδ (u; b) =


V 1
δ (u; b) , u < 0,

V 2
δ (u; b) , 0 ≤ u < b,

V 3
δ (u; b) , u ≥ b,

and

Vδ,i (u; b) =


V 1
δ,i (u; b) , u < 0,

V 2
δ,i (u; b) , 0 ≤ u < b,

V 3
δ,i (u; b) , u ≥ b.

From (7.4), we have

V k
δ (u; b) = αVk

δ (u; b) , (7.34)

where Vk
δ (u; b) = (V k

δ,1 (u; b) , V k
δ,2 (u; b) , ..., V k

δ,n (u; b))>, for k = 1, 2, 3.
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For u < 0, the skip-free upward property of the surplus process leads to

V 1
δ (u; b) = αR0 (u; 0) V2

δ (0; b) , (7.35)

where R0 (u; 0) is given by (7.13).

For 0 ≤ u < b, conditioning on whether the surplus process exits the interval [0, b] from

the lower or upper boundary, one deduces

V2
δ (u; b) = Ψδ (u; b) V3

δ (b; b) + m∗δ (u; b) V2
δ (0; b) , (7.36)

where m∗δ (u; b) =
((

mR
δ,1 (u; b)

)>
,
(
mR

δ,2 (u; b)
)>
, ...,

(
mR

δ,3 (u; b)
)>)>

is an n × n matrix

with the row vector mR
δ,i (u; b) defined as

mR
δ,i (u; b) ≡ E

[
e−δταR0 (Uτ ; 0) 1 (τ < τb) |U0 = u, J0 = i

]
,

for i = 1, 2, ..., n. The expression for the elements in mR
δ,i (u; b) can be obtained using Eq.

(7.17). In particular, letting u = 0, one finds

V3
δ (b; b) = Ψ−1

δ (0; b) (I−m∗δ (0; b)) V2
δ (0; b) . (7.37)

Also, for u ≥ b, conditioning on the first drop below level b, one arrives at

V3
δ (u; b) = Υ(u−b)+

∫ b

0

gd(y|u−b)V 2
δ (b− y; b) dy+

∫ ∞
b

gd(y|u−b)V 1
δ (b− y; b) dy. (7.38)

Define a row vector wδ (x) as

wδ (x) ≡

 α
[
Ψδ (b− x; b) Ψ−1

δ (0; b) (I−m∗δ (0; b)) + m∗δ (b− x; b)
]
, 0 < x ≤ b,

αR0 (b− y; 0) , x > b.

Substituting (7.36) and (7.37) into (7.38), it follows that

V3
δ (u; b) = Υ(u− b) + mwδ

0 (u− b)V2
δ (0; b) , (7.39)
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where mwδ
0 (u) =

((
mwδ

0,1(u)
)>
,
(
mwδ

0,2(u)
)>
, ...,

(
mwδ

0,n(u)
)>)>

is an n × n matrix with the

row vector mwδ
0,i (u) defined as

mwδ
0,i (u) ≡ E [wδ (|Uτ |) 1 (τ <∞) |U0 = u, J0 = i ] .

The Laplace transform of the elements in mwδ
0,i (u) is given by (7.10). As a special case,

letting u = b in (7.39), we have

V3
δ (b; b) = Υ(0) + mwδ

0 (0)V2
δ (0; b) . (7.40)

Solving (7.37) and (7.40), one obtains

V2
δ (0; b) =

[
Ψ−1
δ (0; b) (I−m∗δ (0; b))−mwδ

0 (0)
]−1

Υ(0). (7.41)

Finally, combining (7.34) with (7.35), (7.36) and (7.39), one concludes that

Vδ (u; b) =


αR0 (u; 0) V2

δ (0; b) , u < 0,

α (Ψδ (u; b) V3
δ (b; b) + m∗δ (u; b) V2

δ (0; b)) , 0 ≤ u < b,

α (Υ(u− b) + mwδ
0 (u− b)V2

δ (0; b)) , u ≥ b,

where V2
δ (0; b) and V3

δ (b; b) are as given in (7.41) and (7.37) respectively.

7.4.2 Classical compound Poisson risk model revisited

When the claim arrival process is Poisson, the above analysis can be significantly simplified.

In this section, we further examine the occupation time in the classical compound Poisson

risk model and revisit some results proposed by Kolkovska et al. (2005).

For u < 0, capitalizing on the strong Markov property and skip-free upward properties

of the surplus process with a positive security loading, we have

V 1
δ (u; b) = V 2

δ (0; b) . (7.42)
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For 0 ≤ u < b and u ≥ b, using the same properties, (7.36) and (7.38) respectively become

V 2
δ (u; b) = ϕδ (u; b)V 3

δ (b; b) + ξδ (u; b)V 2
δ (0; b) , (7.43)

and

V 3
δ (u; b) = 1− ψ(u− b) +

∫ b

0

g(y|u− b)V 2
δ (b− y; b) dy +

∫ ∞
b

g(y|u− b)V 1
δ (b− y; b) dy

= 1− ψ(u− b) +

∫ b

0

g(y|u− b)V 2
δ (b− y; b) dy + V 2

δ (0; b)

∫ ∞
b

g(y|u− b)dy.

(7.44)

Combining (7.18), (7.19) and (7.39), (7.44) becomes

V 3
δ (u; b) = 1− ψ(u− b) +Wδ (u; b)V 2

δ (0; b) , (7.45)

where

Wδ (u; b) =

∫ b

0

{
vδ(y)

vδ(0)
(1− φδ(0)) + φδ(y)

}
g(b− y|u− b)dy +

∫ ∞
b

g(y|u− b)dy.

Eqs. (7.43) and (7.45) at u = 0 and u = b respectively yield

V 2
δ (0; b) =

(1− ψ(0))ϕδ (0; b)

1− ξδ (0; b)− ϕδ (0; b)Wδ (b; b)
, (7.46)

where ψ(0) = λµ/c. Substituting (7.46) back into (7.42), (7.43) and (7.45) yields the

Laplace transform of the occupation time for different initial surplus levels.

Remark 7.4.1 For u ≤ 0, the Laplace transform of the occupation time is directly given

by (7.46) and does not depend on the initial deficit level. Eq. (7.46) is in contradiction

with the result of Kolkovska et al. (2005, Proposition 3). Note that the Laplace transform

obtained in Kolkovska et al. (2005) can easily be inverted and results in

Pr

(
T̃0,b =

(n+ 1)b

c

)
=

(
1− λµ

c

)(
λµ

c

)n
, n = 0, 1, 2, ...

However, it is clear that T̃0,b cannot be a discrete r.v.
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Generally speaking, it would be tedious to calculate the moments of the occupation

time by taking derivatives wrt δ of its Laplace transform. However, the first moment can

be easily calculated through the duration of negative surplus, i.e.

E
[
T̃0,b

∣∣∣u] = E
[
T̃−∞,b

∣∣∣u]− E [ T̃−∞∣∣∣u] . (7.47)

The mean of the duration of negative surplus E
[
T̃−∞

∣∣∣u] is readily available from Eǵıdio

dos Reis (1993):

E
[
T̃−∞

∣∣∣u] =


−u
c−λµ + E

[
T̃−∞

∣∣∣ 0] , u < 0,

ψ(u)
(
E[Y |u]
c−λµ + E

[
T̃−∞

∣∣∣ 0]) , u ≥ 0,
(7.48)

in which E [Y |u] ≡ E [ |Uτ || τ <∞, U0 = u] is the mean of the deficit at ruin given that

ruin occurs for an initial surplus u and E
[
T̃−∞

∣∣∣ 0] is given by

E
[
T̃−∞

∣∣∣ 0] =
λµ2

2 (c− λµ)2 .

Substituting (7.48) into (7.47), it follows that:

(i) for u < 0,

E
[
T̃0,b

∣∣∣u] =

(
b− u
c− λµ

+ E
[
T̃−∞

∣∣∣ 0])− ( −u
c− λµ

+ E
[
T̃−∞

∣∣∣ 0])
=

b

c− λµ
,

(ii) for 0 ≤ u < b,

E
[
T̃0,b

∣∣∣u] =

(
b− u
c− λµ

+ E
[
T̃−∞

∣∣∣ 0])− ψ(u)

(
E [Y |u]

c− λµ
+ E

[
T̃−∞

∣∣∣ 0])
=

b− u
c− λµ

+ (1− ψ(u))E
[
T̃−∞

∣∣∣ 0]− ψ(u)
E [Y |u]

c− λµ
,
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(iii) and for u ≥ b,

E
[
T̃0,b

∣∣∣u] = ψ(u−b)
(
E [Y |u− b]
c− λµ

+ E
[
T̃−∞

∣∣∣ 0])−ψ(u)

(
E [Y |u]

c− λµ
+ E

[
T̃−∞

∣∣∣ 0]) .
Example 7.4.2 When the claim size Xi follows an exponential distribution with mean

1/β, explicit expressions can be derived for E
[
T̃0,b

∣∣∣u] . In this case, the ruin probability is

ψ(u) =
λ

cβ
e−(β−λc )u,

the mean of the deficit at ruin given that ruin occurs is E [Y |u] = 1/β and

E
[
T̃−∞

∣∣∣ 0] =
λ

(cβ − λ)2 .

Therefore,

E
[
T̃0,b

∣∣∣u] =


b

c−λ/β , u < 0,

b−u
c−λ/β + λ

(cβ−λ)2

(
1− e−(β−λc )u

)
, 0 ≤ u < b,

λ
(cβ−λ)2

(
e−(β−λc )(u−b) − e−(β−λc )u

)
, u ≥ b.

(see also Kolkovska et al. (2005, Proposition 4)).

To conclude, we derived in this chapter the Laplace transform of the occupation time

in the class of Sparre Andersen risk models with phase-type distributed interclaim times.

A similar analysis can even lead to the determination of the Laplace transform of these

occupation times in the generalized MAP risk model (see, e.g., Ahn and Badescu (2007)).

However, we chose the present model over the MAP risk model for the simplicity of pre-

sentation.
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Chapter 8

Concluding Remarks

The main topic of this thesis is the distribution of the time until ruin in risk theory. We

first introduce a generalized Gerber-Shiu function in Chapter 1 by incorporating the num-

ber of claims until ruin into the analysis. As a result, by deriving the joint distribution

of the time until ruin and the number of claims until ruin, we are not only able to obtain

the marginal density of the time to ruin but also to identify the individual contribution

of ruin from each claim. We show in Chapter 2 that the proposed Gerber-Shiu function

still satisfies a defective renewal equation and can be generally expressed in terms of an

associated compound geometric tail. In Chapters 3 and 4, we start the analysis by im-

posing an exponential distribution assumption on the interclaim times and the claim sizes,

respectively. In this case, the joint Laplace transform/p.g.f. of the time to ruin and the

number of claims until ruin can be expressed in terms of the unique non-negative solution

of Lundberg’s (generalized) equation. We employ Lagrange’s implicit function theorem for

inversion to obtain the joint generalized density of these two quantities.

In Chapter 5, we extend the analysis of the time until ruin into the Sparre Andersen
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risk model under the assumption of a combination of n exponentials distributed claim

sizes. The multivariate version of Lagrange’s expansion theorem plays a key role in the

inversion. We point out that it remains a challenging research problem to obtain an

explicit expression for the density of the time to ruin in the mixed Erlang claim size risk

model, in which case the Lagrange inversion approach might not be the most appropriate

methodology to employ. In our proposed methodology, we also demonstrate that other

quantities of interest in applied probability can be obtained, such as the duration of the

busy period in a Km/G/1 queue. It is the author’s belief that the proposed technique has

further applications in obtaining the density of the duration of the busy period in more

general queueing systems. To further illustrate the proposed unified inversion approach,

in Chapter 6, we analyze the first passage time in the compound Poisson risk model with

diffusion. A generalization of Kendall’s identity is derived and several applications of the

results in ruin theory and financial mathematics are extensively discussed. One potential

direction for future research is to study the density of the time to ruin in the compound

Poisson risk model with diffusion or to study general first passage times in a diffusion

model with two-sided jumps. The density of the first passage times in the latter model has

wide applications in pricing financial options. However, it is expected that the inversion

of the Laplace transform would be quite tedious and it would be interesting to compare

the inversion approach suggested in this thesis with existing numerical Laplace transform

inversion techniques.

In Chapter 7, we study the single-barrier and double-barrier occupation times in some

Sparre Andersen risk models with phase-type interclaim times. This is a more advanced

topic in the sense that the aforementioned exit times are essential components of the

analysis of these occupation times. We obtain the Laplace transform of the occupation

time in this model and also derive the density of the total duration of negative surplus in
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the classical compound Poisson risk model. Another possible direction for future research

consists of deriving the density of the occupation time in more general cases, such as the

mixture of exponentials interclaim time risk model or even the mixed Erlang interclaim

time risk model.
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