
 

 

 

 

 

 

 

What are the Effects of Maternal Obesity on Synaptic Function in the  

Maternal and Offspring Hippocampus? 

 

 

  

by   

 

 

Denise Lau 

 

 

 

 

 

 

 

 

 

A thesis  

presented to the University of Waterloo 

in fulfullment of the 

thesis requirement for the degree of 

Master of Science 

in 

Health Studies and Gerontology 

 

 

 

 

 

 

 

 

Waterloo, Ontario, Canada, 2013 

 

 

 

© Denise Lau 2013 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Waterloo's Institutional Repository

https://core.ac.uk/display/144146622?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

ii 

Author’s Declaration 

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including 

any required final revisions, as accepted by my examiners. 

I understand that my thesis may be made electronically available to the public. 



 

iii 
 

Abstract 

 

Obesity is a global epidemic that is associated with several adverse health consequences.  

In addition, there is also a growing prevalence of obesity in pregnancy. Maternal obesity 

places the fetus in an abnormal in utero condition that can produce alterations in 

development leading to permanent programming of physiological systems. Obesity is also 

associated with cognitive dysfunction, which calls for investigations into its effects on the 

hippocampus, a brain area involved in learning and memory. Long-term potentiation (LTP), 

a neurophysiological correlate for learning and memory, can be examined in hippocampal 

slices. This study aimed to fill in the gap in literature regarding the effect of obesity on 

hippocampal synaptic plasticity in female rats, and maternal obesity effects on offspring 

hippocampal synaptic plasticity. Female Sprague-Dawley rats were fed either a control diet 

(CD), or a high-fat diet (HFD; 40% of calories from saturated fat) for 16 weeks. Impaired 

glucose tolerance and greater retroperitoneal fat pad weight indicated an obese phenotype in 

HFD rats; as well, the modified diet led to impaired LTP: CD rats had 10% more potentiation 

in amplitude, and 11% more potentiation in slope than HFD rats. Offspring were weaned 

onto control diet at post-natal day 21. Reduced success rates for achieving LTP, and lowered 

magnitudes of mean LTP in the offspring, strongly suggest that maternal obesity may have 

compromised hippocampal synaptic plasticity, and warrants further study. 
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1.0 Introduction 

Obesity, the excess accumulation of adipose tissue, is becoming a great concern (WHO 

2003). With a steady increase in prevalence that extends across the world, the World Health 

Organization refers to obesity as a “global epidemic” (WHO 2003). Obese individuals have a 

poorer quality of life and shorter life expectancies (Fontaine 2003). As well, obesity contributes 

to significantly increased mortality risk, with a number of co-morbidities such as heart disease, 

diabetes mellitus type 2, osteoarthritis, hypertension, coronary artery disease, obstructive sleep 

apnea, and many forms of cancer (Lopez-Jimenez 2010, Kulie et al 2011, Mamun et al 2011).  

In parallel with the trend of obesity, there has also been a steady increase in the 

prevalence of obese women of reproductive age (Kulie et al 2011). Evidence has also 

accumulated regarding the large prevalence of obesity in pregnancy. Importantly, studies have 

reported that pregnant women who are overweight or obese have an increased risk of gestational 

diabetes, hypertensive disorders (including pre-eclampsia), thromboembolic events, respiratory 

complications, prolonged delivery, congenital anomalies (such as spina bifida and omphalocele), 

macrosomia, and higher rates of caesarean sections (Dixit 2008, Yogev 2009, Kulie et al 2011, 

Mamun et al., 2011, Afifi 2011).  In addition, maternal obesity may have further long-term 

consequences for the fetus (Ramachenderan et al., 2008).  

There are critical periods during the prenatal and early postnatal developmental stages 

that determine the future health of the fetus (Solomons 2009). During these critical periods the 

fetus is highly influenced by the maternal environment, and important physiological changes in 

fetal development can occur (Vickers 2011). There is a general developmental programming 

thesis that states there may be adaptations in the fetus from sensing changes in the maternal 

environment, which lead the fetus to be adaptively programmed to respond to what would be 
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expected in postnatal life (Solomons 2009).   A fundamental part of the in utero environment is 

maternal nutrition (Redmer 2004). Many studies have been devoted to investigating the effects of 

under-nutrition during gestation. However, with the escalating prevalence of obesity and obesity 

in pregnancy, there is a rising interest in the potentially harmful programming effects of over-

nutrition during gestation. Extensive research has provided evidence that maternal obesity 

increases the risk that offspring may become obese and develop other components of the 

metabolic syndrome, like diabetes and insulin resistance (Vickers 2011). Not surprisingly, 

maternal obesity also appears to have programming effects on the brain (Undurti 2010).  

There have been reports that maternal obesity is associated with offspring memory and 

cognitive function (Scholtz 2009). Since the hippocampus thought to play an important role in 

learning and memory (Kanoski 2011), focus has been placed on this structure. Indeed, further 

studies have shown offspring of obese dams to have alterations in their hippocampal 

organization and neurogenesis (Tozuka et al 2009).  However, these structural changes do not 

necessarily denote a functional change, and the effect of maternal obesity on offspring 

hippocampal function has not been explored.  
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2.0 Literature Review 

2.1 Obesity 

2.1.1 Definition 

Obesity is often defined as simply a condition of adipose tissue accumulation to the 

extent that health may be impaired (Saravanakumar 2006). Diagnosis of obesity is indirectly 

measured via body mass index (BMI). Also known as Quetelet’s Index, BMI is calculated as 

weight divided by height squared (kg/m
2
) (WHO 1995). BMI acts as a surrogate marker for 

adiposity since it is based only on weight and height, and body composition is not taken into 

account.  Although BMI calculation is argued to be closely correlated to the actual amounts of 

fatty tissue otherwise derived from more complex methods (Maennig et al 2008). On the 

contrary, BMI as a measure for body fat is sometimes thought to be inadequate because it fails to 

differentiate fat and nonfat mass like bone and muscle (Rothman 2008).  Obesity as a risk factor 

predominantly concerns abdominal obesity, which can be attributable to the visceral adipose 

tissue, where better measures of its accumulation can be calculated with waist circumference 

(WC) and waist-to-hip ratio (WHR) (de Koning 2007). However, WHR can theoretically be the 

same between a non-obese and an obese individual (Caan 1994). Magnetic resonance imaging 

and computed tomography are the most accurate anthropometric measurements for assessing 

abdominal fat, but are impractical for routine clinical use (NIH 1998). In addition, there are 

difficulties in obtaining accurate and consistent WC and WHR measures (de Koning 2007), 

making BMI a better measure to be globally used to provide internationally comparable results. 

The classification according to BMI places a BMI of ≥25 as overweight, and a BMI of ≥30 as 

obese.   
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2.1.2 Epidemiology 

Worldwide obesity has more than doubled since the 1980s, and it is currently the most 

common metabolic disease (Yu 2008, Kulie et al 2011). The alarming increase in obesity 

prevalence worldwide has led the World Health Organization to consider it one of the most 

serious global health problems of the 21
st
 century (Gunstar et al 2008). The WHO estimated that 

in 2008, 1.5 billion adults were overweight – over 500 million of which were obese (Kulie et al 

2011).  The overwhelming increase in obesity prevalence is apparent through statistics gathered 

from several parts of the world (Gaziano 2010).  The prevalence of obesity has been steadily 

rising in developing countries, and began to affect many impoverished nations during the last 

half century (Popkin 1998). According to the WHO Global Database on BMI, the percentage of 

obese adults rose from 7.3% in 1985 to 23.1% in 2000 (WHO 2003). In the period from 1995 to 

2000, the number of obese people rose by 50% (Maennig 2008). In some areas, such as parts of 

North America, Eastern Europe, the United Kingdom, the Middle East, and China, obesity rates 

have risen three-fold, or more, in the last 100 years (WHO 2003). An estimated 1 in 5 adults in 

China are obese or overweight (Wu 2006).  

The relationship between BMI and mortality was considered to be a U-shaped or J-

shaped curve (WHO 2005). After adjusting for confounders like pre-existing disease, smoking, 

and stable weight maintenance, the association is more linear, with increased mortality at high 

BMI (>29-30) (Adami 2008). The shape highlights the complex association of mortality at BMI 

extremes. In Western Europe, obesity accounts for an estimated 200,000 deaths each year 

(Maennig 2008). In the United States, an estimated 300,000 people die annually as a 

consequence of obesity (Flegal 2005). South Asian countries are facing a rapid increase in 

obesity-related non-communicable disease (Misra 2011). The most recognizable diseases – type 
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2 diabetes mellitus (T2DM), hypertension, coronary heart disease (CHD), and dyslipidemia – 

can arise from physiological changes as a result of obesity.  

2.1.3 Physiological changes leading to disease 

A. Respiratory changes 

Obese individuals have increased oxygen consumption and carbon dioxide production. 

Obesity has a direct effect on respiratory well-being because it increases the mechanical work 

needed for breathing. The increased amount of adipose tissue around the rib cage and in the 

visceral cavity shifts the inflationary and deflationary pressures, resulting in a reduction in total 

lung capacity and under-ventilation of lower zones of the lungs (Salome 2009).  Increasing BMI 

is also associated with a reduction in forced expiratory volume, forced vital capacity, functional 

residual capacity, and expiratory reserve volume (Poulain 2006). 

Even with no previous respiratory illness, obese people are at an increased risk of 

respiratory system related difficulties, such as breathlessness and bronchoconstriction. The 

reduced maximal inspiratory pressure seen in obese subjects compared to subjects with normal 

body weight indicates that respiratory muscle strength is compromised in obesity (Poulain 2006). 

Other concerns regarding the mechanical effects of obesity involve possible contributions to 

airway dysfunction that potentially could induce or worsen asthma (Salome 2009). Obese 

individuals have reduced tidal lung expansion, which compromises dilating forces in airway 

maintenance, leading to increased airway responsiveness via greater contractile responses of 

airway smooth muscle (Poulain 2006).  

The increased airway closure seen in obese individuals leads to increased gas trapping 

and unequal ventilation distribution, potentially leading to mild hypoxemia, dyspnea, and chronic 

obstructive pulmonary disease (Salome 2009). According to Sin and colleagues (2002), there is a 
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clear association between dyspnea and obesity. Obesity stiffens the respiratory system due to a 

combination of effects on the lung and chest wall compliance, which may be a result of 

mechanical effects of fat on the diaphragm, increased pulmonary blood volume, closure of 

dependent airways, or increased alveolar surface tensions (Poulain 2006, Salome 2009). 

Reductions in chest wall compliance and respiratory muscle strength create an imbalance 

between the demand on respiratory muscles and their capacity to generate tension, forming the 

perception of increased breathing effort (Poulain 2006).  

Obesity is a well-recognized risk factor for obstructive sleep apnea. Approximately 70% 

of people with obstructive sleep apnea are obese; about 40% of obese individuals have 

obstructive sleep apnea (Resta 2001). Obstructive sleep apnea is characterized by intermittent 

upper airway obstruction - airways are predisposed to repetitive closures during sleep (Poulain 

2006). With obesity, there is increased adipose tissue deposition in the pharyngeal musculature, 

and, in combination with reduced total lung capacity, upper airway competence is reduced and 

the risk for collapsed lungs is increased (Poulain 2006). 

The obesity hypoventilation syndrome has similar symptoms to obstructive sleep apnea, 

however it also involves daytime hypercapnia that is accompanied by compensated respiratory 

acidosis and hypoxemia (Olsen 2005).  Prevalence of obesity hypoventilation syndrome is 

unknown, but a recent study on hospitalized obese patients (BMI ≥35) found 31% to have 

daytime hypercapnia unexplained from other disorders (Nowbar 2004). Although most patients 

with obesity hypoventilation syndrome have obstructive sleep apnea, some patients do not, 

suggesting that obesity alone can lead to chronic hypoventilation (Poulain 2006).  Increased 

mechanical load on the respiratory system resulting in respiratory muscle fatigue is suspected to 

contribute to the pathogenesis of obesity hypoventilation syndrome (Poulain 2006).  
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B Cardiovascular changes 

The association between obesity and different forms of cardiovascular disease (CVD) is 

well recognized. A prospective study of over a million US adults followed for 14 years reported 

a strong association between obesity and an increased risk of all-cause and cardiovascular 

mortality (Calle 1999). The study also associated CHD mortality risk with increasing BMI, 

stating a twofold to threefold greater risk in individuals with BMI ≥35. Indeed, more than two-

thirds of patients with CHD are overweight or obese, and being obese doubles the risk for heart 

failure compared to those with normal BMI of <25 (Lopez-Jimenez 2011). A meta-analysis that 

involved more than 258,000 subjects reported a progressive increase in CVD risk with increasing 

waist circumference and waist-to-hip ratios, stating that every 1 cm increase in waist 

circumference was associated with a 2% increased relative risk of a cardiovascular event 

(DeKoning 2007). The mechanisms through which obesity increases risks of CVD are 

characterized by physiological changes related to the cardiovascular system.  

Increased body fat content and BMI has been associated with endothelial dysfunction, 

which induces chemotaxis of adhesion molecules, differentiation of monocytes into 

macrophages, platelet aggregation, and decreased nitric oxide bioavailability that promotes 

thrombosis (Lopez-Jimenez 2011). Obesity is also positively associated with elevated C-reactive 

protein (CRP); CRP is associated with increased risk for cerebrovascular disease, peripheral 

arterial disease, myocardial infarction, and CHD death (Kuller 1996). Although still unclear, it is 

speculated that obesity leads to elevated CRP through increased cytokine levels found in adipose 

tissue that stimulates CRP production in the liver (Lopez-Jimenez 2011).   

Structural changes of the heart have been observed in obese individuals. Obesity is 

associated with several compensatory cardiovascular alterations mostly as a result of increased 



 

8 
 

demands from an excessive body mass and hyperdynamic circulation. Obesity is associated with 

increased myocardial fibrosis (seen to develop through fat infiltration into the myocardium) and 

left ventricular hypertrophy (Zalesin 2008, Lopez-Jimenez 2011). The pathologic change of left 

ventricular hypertrophy is suggested to stem from increases in blood volume, cardiac output, 

stroke volume and filling pressures in obese individuals (Zalesin 2008). Obesity is also 

associated with both diastolic and systolic heart failure (Kenchaiah 2002). The pathologic 

changes previously mentioned may culminate with impairments in diastolic relaxation and 

induce diastolic dysfunction (Zalesin 2008). In age-adjusted regression models, an increase in 

BMI of 1.25 in women and 1.70 in men was associated with a 1 mm Hg increase in systolic 

blood pressure (Engeli 2002). 

When excessive body fat accumulates, visceral storage sites fill to capacity, resulting in 

the release of triglycerides and free fatty acids into circulation that then accumulate within the 

myocardium; the accumulation of lipids in the muscle and vasculature tends to increase with the 

extent of adiposity (Malavazos 2007). Furthermore, there is also an abnormal aggregation of 

apicardial and pericardial adipose tissue (Zalesin 2008). These accumulated stores of fat secrete 

hormones, cytokines, and proteins that expose the myocardium to inflammation and may 

intensify the progression of atherosclerosis (Iacobellis 2005). There is also lipid metabolism by-

product accumulation in the myocardium, leading to lipotoxicity and activates signaling cascades 

that induce cell death and contribute to left ventricular remodeling and diastolic dysfunction 

(McGravrock 2006). The association between obesity and CHD is partially mediated by 

accelerated coronary atherosclerosis, which obesity potentiates via increased fat stores, as well as 

intravascular volume and vascular wall stress (Lopez-Jimenez 2011). The prothrombotic state 
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that obese individuals are in also contributes to the onset of acute coronary events (Scarabin 

1996). 

Various studies suggest that obesity favors the appearance of ventricular arrhythmias and 

atrial fibrillation (AF). Obese individuals have increased electrical irritability that may trigger the 

onset of ventricular arrhythmias, evidenced through electrophysiological studies (Lopez-Jimenez 

2011). A 2008 meta-analysis showed that obese individuals have a 50% higher risk of AF, and 

the risk continues to increase with increasing BMI (Wanahita 2008). Evidence has emerged that 

left atrial diameter enlargement is the strongest echocardiographic predictor of AF and has been 

directly correlated with increasing BMI levels (Wang 2004). Atrial enlargement may also be in 

part due to the influence of lipotoxicity (McGrarock 2006).  

C Endocrine changes   

Adipose tissue is a powerful endocrine organ. Adipose tissue is predominantly adipocytes 

surrounded by highly innervated and vascularized loose connective tissue (Ahima 2006). 

Consequently, obese individuals experience notable endocrine changes compared to normal 

weight individuals. For example, the increased fat mass in obesity puts individuals in an 

inflammatory state. Adipose tissue endothelium in obesity is populated by inflammatory cells 

that include increased activated macrophages (leading to increases in tumor necrosis factor-α 

TNF-α, interleukin-6 IL-6, and other cytokines) and monocytes (due to increased monocyte 

chemoattractant protein 1, MCP-1,  and other chemokines) (Ahima 2006).  The factors secreted 

by adipose tissue are collectively referred to as adipokines (Dahlman 2007).  

The best characterized obesity hormone is leptin, which is found in the blood circulation 

in proportion to fat mass, and acts primarily in the central nervous system to inhibit food intake 

and promote energy expenditure, but has additional peripheral effects as well (Dahlman 2007, 
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Bouret 2010). Obesity is associated with increased leptin production and plasma leptin 

concentration, and leads to leptin insensitivity (Constidine 1996). Leptin crosses the blood brain 

barrier, controlling specific neuronal groups to increase anorectic peptides, stimulate 

thermogenesis, and reduce intracellular lipid levels in skeletal muscle, liver, and pancreatic β 

cells (Ahima 2006, Konstantinos 2009). 

Adipose tissue, particularly mature adipocytes, secretes high levels of amylin (Bigal 

2007). As a potent, long-lasting vasoactive peptide, amylin is a speculated mechanism in the 

association of obesity and chronic migraines via its suggested pro-nociceptive function in 

primary sensory neurons (Bigal 2007).  

Adiponectin is an important adipokine that is exclusively expressed in differentiated 

adipocytes and has endocrine effects in the liver, muscle, and vasculature (Bigal 2007). 

Adiponectin suppresses hepatic gluconeogenesis, glucose uptake in skeletal muscle, and fatty 

acid oxidation (Konstantinos 2009).  Adiponectin is reduced in obesity (Kadowaki 2005), and 

adiponectin receptors are downregulated in obese individuals (Dahlman 2007). Adiponectin 

increases insulin sensitivity, hence, there is insulin resistance seen in obese individuals (Undurti 

2010).  Enhanced adipose tissue expression of proinflammatory mediators (TNF-α, IL-6, MCP-

1) from obesity may also contribute to insulin resistance (Dahlman 2007, Konstantinos 2009).  

Insulin regulates the uptake, oxidation, and storage of fuel (Kahn 2000). Insulin 

resistance is a condition in which higher than normal insulin concentrations are required to 

achieve a normal metabolic response (Kahn 2000).  Obesity is associated with elevated basal 

plasma insulin levels and resistance to the metabolic effects of insulin (Lichtenstein 2000). 

Insulin resistance is an important predictor of T2DM and CVD (Konstantinos 2009). Various 

studies show strong associations between obesity and insulin resistance. Obesity is associated 
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with impaired glucose tolerance and insensitivity to the blood glucose lowering effect of insulin 

(Lichtenstein 2000). Differential fat distribution also affects insulin sensitivity. The increased 

amount of visceral adipose tissue, often predominant in obese individuals, is composed of large 

adipoctyes that are more metabolically active than cells of subcutaneous adipose tissue. The 

result is increased secretion of adipokines, as well as less sensitivity to the anti-lipolytic effects 

of insulin (Konstantinos 2009).  

Insulin sensitivity is strongly associated with hepatocellular lipid content (Stefan 2008). 

Non-alcoholic fatty liver disease is present in about 30% of the general US population, and up to 

75% of obese Americans (Konstantinos 2009). Fat accumulation in the liver impairs hepatic 

insulin signaling, which increases hepatic gluconeogenesis that is normally suppressed by insulin 

(Konstantinos 2009). Fatty liver also secretes more fetuin-A, a factor that inhibits insulin 

receptors in the liver as well as skeletal muscles, thus contributing to insulin resistance 

(Konstantinos 2009).  

Another endocrine change observed in obese individuals involves the renin angiotensin 

aldosterone system (RAAS). The association of obesity with hypertension is related to changes 

in RAAS.  A study of 449 obese individuals from Jamaica showed significantly higher levels of 

serum angiotensin converting enzyme (ACE) and circulating angiotensinogen (Cooper 1997). A 

study by Engeli and colleagues (2005) reported that obese women had higher circulating 

angiotensinogen, renin, aldosterone, and ACE levels than non-obese women. Subsequent weight 

reduction by 5% reduced plasma angiotensinogen by 27%, renin by 43%, aldosterone by 31%, 

and ACE activity by 12%. Obese individuals are also seen with higher blood pressures since 

aldosterone increases blood pressure (acting on mineralcorticoid and glucocorticoid receptors in 

brain, heart, kidney, and vasculature) (Rahmouni 2005).  
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D Renal System 

Obesity can cause structural and functional changes in the renal system. Most obese 

subjects exhibit the same pattern of glomerular hemodynamics as patients with reduced renal 

mass – preglomerular vasodilation, increased glomerular filtration rate and filtration fraction 

(Praga 2010).  

 Obesity increases tubular sodium reabsorption and shifts pressure natriuresis toward 

higher blood pressures. The underlying mechanism is speculated to be the accumulation of 

adipose tissue around the kidney that results in medullary compression (Kurukulasuriya 2008). 

The association of obesity with afferent renal artery vasodilation and increased glomerular 

filtration rate is considered compensatory for maintaining sodium balance and help overcome the 

increased tubular sodium reabsorption (Kurukulasuriya 2008). Unfortunately, obese patients 

experiencing chronic renal vasodilation also see increased hydrostatic pressures and wall stress 

in the glomerularus, increasing the risk for glomerulosclerosis and loss of nephron function 

(Kurukulasuriya 2008). In addition to hyperfiltration, proteinuria and secondary 

glomerulosclerosis are now recognized as complications of severe obesity (Praga 2010). 

Mechanisms of renal damage among obese individuals develop from hemodynamic, metabolic, 

and inflammatory disorders that are side effects of obesity (Stolic 2010). Consequently, obesity 

is an increasingly frequent cause of end-stage renal disease (Hall 1998). 

E Brain-related changes 

 Although there is a large array of studies regarding obesity and its effects on various 

organ systems, the effects of obesity on the central nervous system are not understood nearly as 

well. High BMI in middle age is reported to be associated with higher dementia risk (Kivipelto 

2005). Whitmer and colleagues (2005) found that obese people had a 74% greater risk of 
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dementia compared to normal weight individuals at mid-life. Although some studies that do 

explore this relationship have reported obesity in the elderly to be related to greater dementia 

risk, the findings are conflicting as a result of incorrect BMI measurements. Taking this into 

account, Fitzpatrick and associates (2009) also found higher BMI at ages 70, 75, and 79 years 

predicted dementia (Gustafson 2003). Independent of age, there are reports for gross reductions 

in brain volume (Gunstad 2008), and prefrontal structural abnormalities (Pannacciulli  2006) and 

baseline metabolic activity (Volkow 2009) in obese individuals.  Neurocognitive functioning 

tests, further supported by evidence from neuroimaging studies, have shown frontal-subcortical 

dysfunction with diminished executive functioning, and reductions in complex attention and 

speed processing in obese men and women (Boeka 2009, Fergenbaum 2009).  

As previously mentioned, obesity leads to altered circulating leptin levels. Studies have 

shown that diet-induced obese (DIO) rats show reduced leptin sensitivity even before they 

develop obesity, and this reduction in leptin sensitivity alters the architecture of the hypothalamic 

neurocircuitry, such as the inability for leptin to promote neurite outgrowth from neurons in the 

arcuate nucleus (Bouret 2010). This is important since the anorectic effects of leptin are largely a 

result of projections of the arcuate nucleus to the paraventricular nucleus in the hypothalamus. 

Other DIO rat studies have shown abnormal dendrite morphology in the hypothalamus, but have 

not concluded these structural changes to be a result of reduced leptin sensitivity (Bouret 2010).    

Most studies have focused on gray matter, and not disruptions to white matter.  Since 

white matter pathways play a role in neural transmission speed and information processing, they 

may contribute to cognitive impairments. Unfortunately, work on the effects of obesity on white 

matter is limited. Jagust and colleagues (2005), in the same study where they saw increased 

waist-to-hip ratio to be negatively correlated to hippocampal volume, also saw it to be positively 
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correlated to white matter hyperintensities. White matter hyperintensities are patchy white matter 

areas and smooth periventricular areas of high signal intensity on brain images (Fazekas 1993). 

They are associated with cerebrovascular risk factors and cognitive decline, and believed to be 

involved in ischemia, hypoperfusion, blood-brain barrier leakage, and neurodegeneration 

(Longstretch 1996, Fazekas 1993, Jeerakathill 2004).   

Normal aging processes may possibly interact with the processes linking obesity to some 

of the observed brain-related changes in previous studies (Stanek 2011). Indeed, most studies 

regarding obesity and its effects – not only on brain-related changes, but also other systems (like 

cardiovascular) – have targeted populations in middle age and beyond.  There is a call for more 

research into other subpopulations of obese individuals, and this is becoming exceedingly more 

important due to the growing rates of obesity.   

2.2  Maternal Obesity  

2.2.1 Definition and Epidemiology  

Consistent with the larger population trend, the prevalence of obesity is increasing 

rapidly among women of reproductive age worldwide. According to Statistics Canada, the 

prevalence of obesity in Canadian women has increased 8% between the late 1980s and 2010 

(Shields 2011).  Other surveys found that one in three Australian women are either overweight or 

obese, and 44% of American women are overweight or obese (Mamun et al 2011).  In the United 

States, >50% of non-pregnant women of reproductive age (20-39) were overweight or obese, and 

>30% of girls (12-19) were at risk of being overweight or obese (Ogden 2006). A Department of 

Health survey in England reported that 32% of women aged 35-64 were overweight, and 21% 

were obese (Dixit 2008, Afifi 2011). The WHO has estimated that as many as 60% of South 
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African women may be overweight or obese (Balkau 2007). Collectively, these statistics indicate 

that many babies were, and will be born from overweight and obese mothers. 

2.2.2 Physiological Changes Associated with Maternal Obesity  

Obese women are at a greater risk of infertility than normal-weight women, and are at 

greater risk of developing oligo-amenorrhea and polycystic ovarian syndrome (Dixit 2008).  

Women who are exposed to maternal obesity during pregnancy are also subject to additional 

complications for both the mother and fetus.  Maternal, and fetal morbidity risk are increased 

with maternal obesity (Yu 2008). Maternal obesity is associated with higher risk of hypertensive 

disorders and thrombo-embolic disease incidence (Dixit 2008). Studies have reported the 

incidence of hypertensive disorders during pregnancy was 28.8% in morbidly obese women 

compared to the 2.9% incidence in non-obese women (Dixit 2008).  

Complications due to obesity, for the mother, include increased risks for obstructive sleep 

apnea, and postpartum hemorrhage (Dixit 2008).  Obese women are also more likely to have pre-

existing diabetes, and are also at increased risk of developing gestational diabetes mellitus 

(GDM) (Dixit 2008). An estimated 17% of obese women develop GDM, compared to the 

approximate 1-3% of non-obese women (Linne 2002).  Furthermore, it has been reported that 15 

– 60% of women who have GDM will develop T2DM 5-15 years after delivery (Kim 2002).  

In women who do not have diabetes prior to their pregnancy, GDM first appears in the 

second half of gestation, when placentation and opening of uterine spiral arteries have been 

completed (Yu 2008). The majority of fetal and neonatal pathological conditions occurring as a 

result of GDM are a function of maternal glycemic control (Dixit 2008).  Approximately 40-50% 

of glucose taken up by the placenta is subsequently transferred to the fetus (Yu 2008). In GDM 

women, there is hyperglycemia, hyperinsulinemia, and increased proinflammatory cytokines that 
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are also found in the fetal compartment (Dixit 2008). There are also morphological changes of 

the placenta in GDM women.  

One feature often seen in the placenta with GDM is a thickening of the trophoblast 

basement membrane that is mainly is a result of increased amounts of collagen, which can 

compromise oxygen delivery to the fetus (Dixit 2008).  The structural changes result in 

functional alterations of the placenta that affect the transport of glucose, amino acids, lipids, and 

other nutrients to the fetus (Yu 2008). The imbalance is further exacerbated with an increased 

fetal demand for oxygen due to hyperinsulinemia and hyperglycemia-induced stimulation of the 

fetal aerobic metabolism, which has been reported to increase fetal oxygen consumption by up to 

30% (Dixit 2008, Desoye et al 2003).  The combined effects of reduced oxygen supply from an 

altered placenta, and the increased fetal oxygen consumption, may lead to fetal hypoxia. Obesity 

during pregnancy may also involve further long-term complications for the fetus 

(Ramachenderan et al., 2008). 

2.3 Developmental Origins of Health and Disease 

Epidemiological and experimental studies have highlighted relationships between peri-

conceptual, fetal, and early infant stages of life, and the subsequent development of adult 

disorders. Together, these relationships have helped to generate a theory referred to as the 

“developmental origins of adult health and disease” (DOHaD). A central tenet in DOHaD is 

programming, which is defined as “either the induction, detection, or impaired development of a 

permanent somatic structure of the ‘setting’ of a physiological system by an early stimulus or 

insult operating at a ‘sensitive’ period” (Lucus 1991).  

The formation of the DOHaD hypothesis can be primarily attributed to the early work of 

David Barker and colleagues (1998). During the latter half of the 20
th

 century, they postulated 
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that events in utero that reduce fetal growth permanently can alter both physiology and structure 

of the offspring to the extent that their risk of cardiovascular disease and diabetes is later 

increased. Adaptations may include resetting of set points of metabolic homeostasis and 

endocrine systems, and down-regulation of growth (Vickers 2011). Hence, DOHaD is a 

derivation of the fetal programming hypothesis initiated by Barker and colleagues. The paradigm 

of DOHaD is rooted in the process of developmental plasticity. A nutritional or environmental 

stimulus at a critical period of development leads to a permanent change in the offspring 

physiology (Vickers 2011).  

While the physiological changes may be beneficial for in utero survival, it is thought that 

the changes to fetal tissue structure and function may be maladaptive in postnatal life (Vickers 

2011).  According to the Predictive Adaptive Responses hypothesis, proposed by Gluckman and 

colleagues (2005), upon exposure to stimuli in the in utero environment, the fetus will predict 

that the post-natal environment is also the same, and adapt physiologically based on this 

prediction. When the predictive adaptive response is correct, the fetus’ phenotype into adulthood 

will be normal. However, when there is a mismatch between predicted and actual post-natal 

environment, risks to developing chronic diseases increase (Gluckman 2005).  

Studies from the Dutch Hunger Winter of 1944-1945, a case of disparity where nutrition 

was plentiful following the famine, revealed the importance of the timing of the exposure as a 

major determinant in phenotypic outcomes. Ravell and colleagues (1976) found that women with 

famine exposure during early gestation gave birth to normal-sized infants that later developed 

adult hypertension and obesity;  the reduction in maternal intake in late gestation was associated 

with increased risk factors for coronary heart disease like hypercholesterolemia, elevated blood 

pressure, and glucose intolerance compared to early or mid-gestation. Hulshoff and colleagues 
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(2000) also found prenatal exposure to the Dutch Hunger Winter to be associated with the 

twofold increase in schizophrenia incidence.  Other studies correlate low birth weight and greater 

risk of diseases ranging from coronary heart disease, stroke, depression, T2DM, and osteoporosis 

(Tang 2007).   The early studies have led to the development of specific research committed to 

uncovering the mechanisms that underlie DOHaD.  

2.3.1 The Effects of maternal nutrition on offspring development 

2.3.1.1 Maternal Undernutrition  

Nutrient requirements increase during periods of growth and development, such as 

pregnancy. An adequate amount of nutrients is needed to support fetal growth and development, 

as well as maternal metabolism and specialized tissue development (i.e., placenta and mammary 

gland) (Picciano 2003). For example, micronutrient deficiency has been reported to cause defects 

of the CNS. Weight gain during pregnancy is expected, representing components of the fetus 

(including amniotic fluid and placenta), and maternal accretion of tissues (i.e., enlargement of 

uterus and mammary glands, enlargement of maternal stores in the form of adipose tissue, 

expansion of blood and extracellular fluid). Given the evidence that pre-pregnancy weight-for-

height is a greater determinant of fetal growth beyond that of gestational weight gain, the 

recommendations for weight gain during pregnancy are individualized (Picciano 2003).  

Extensive studies have been conducted on prenatal famine and the effects on adult health. 

Lumey and colleagues (2011) examined the health status of those with prenatal exposures to the 

Dutch Hunger Winter, and found associations with T2DM, increased blood pressure, altered 

lipid profiles, prevalence of mild to severe mental retardation, congenital nervous system 

anomalies, and increased mental disorders (e.g., schizophrenia, antisocial personality disorder, 

mood disorder). In terms of brain development, Hulshoff and colleagues (2000) found prenatal 
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exposure to the Dutch Hunger Winter was associated with the increased incidence of focal brain 

abnormalities and, specifically, white matter hyperintensities. Observations that intracranial 

volume decreased only in schizophrenia patients with prenatal famine exposure further suggests 

an association between prenatal undernutrition and brain development (Hulshoff et al., 2000).  

Insufficient weight gain in the mother is associated with intrauterine growth retardation 

(IUGR).  IUGR is associated with fetuses that are small for their gestational age, and greater 

perinatal mortality (Reeves 2008). In a longitudinal study, Eriksson and colleagues (2003) found 

that children born with low birth weight, and who have low body weight at age 1, display 

increased incident T2DM. This cohort also experienced “catch-up growth’, resulting in elevated 

weight and BMI in later childhood, as well as an association with diabetes. Other human studies 

established important relationships between fetal growth restriction and placental size, which is 

inversely related to fetal size and positively related to adult hypertension, even though placental 

size gives only an indirect measure of placental function (Godfrey 2002). The placental role in 

regulating nutrient availability to the fetus deserves careful consideration, as other studies reveal 

that alterations in placental growth, vascular resistance and subsequent nutrient transmission to 

the fetus, have also been associated with development of cardiovascular disease in later life 

(Godfrey 2002).  

Animal models have been used in DOHaD research and successfully replicated the 

epidemiological observations in human studies. Parallel to the findings from pregnancies in the 

Dutch famine, feeding rats a low protein diet during pregnancy raised systolic blood pressure in 

the offspring post weaning, and the magnitude of effect was greatest when the modified diet was 

consumed during the final week of gestation (Langley-Evans 1996). Specific nutrient imbalance 

in protein in pregnancies exposed to an undernourished environment has been theorized to be the 
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critical factor that determines cardiovascular outcome in the offspring. Indeed, glycine 

supplementation of a low protein diet was seen to prevent the increased postnatal systolic blood 

pressure, while methionine supplementation further impaired blood pressure (Langley-Evans 

2000). In addition to revealing the importance of adequate nutrients, this study also alluded to the 

possibilities of excess nutrition and its effects on the offspring.  

2.3.1.2 Maternal Overnutrition  

Many studies have established an association between maternal obesity and fetal 

macrosomia (Yogev 2009, Drake 2010), and that maternal obesity constitutes a risk for 

childhood obesity (Sirimi 2010). Compromised prenatal nutrition, and its consequence in insulin 

resistance, can directly influence development, growth and differentiation of insulin sensitive 

tissues like the pancreas, liver, and skeletal muscles. Maternal hyperglycemia has been 

demonstrated to induce diabetes in offspring later in life. 

Maternal obesity as a strong predictor of childhood obesity and metabolic syndrome in 

offspring has motivated studies investigating its transgenerational effects (Vickers 2011). The 

associations seen in humans have been reproduced in rodent models, which showed that 

offspring from obese dams become obese and have abnormal glucose metabolism (Guo 1995, 

Drake 2010). Both male and female macrosomic rat offspring show accelerated growth during 

the first 10 weeks of life, and by 10 weeks of age have higher plasma insulin and glucose 

concentrations post oral glucose challenge, and decreased peripheral insulin sensitivity (Gelardi 

1991). The intergenerational programming hypothesis proposes that the stimulus the pregnant 

mother (F0) is exposed to permanently program the F1 generation with altered metabolic 

function, and these symptoms of the F1 will affect the following F2 generation upon pregnancy 

(Drake 2010).  Vickers and colleagues (2011) have shown that a moderate maternal high fat diet 
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results in male and female rat offspring obesity and hyperinsulinemia, independent of post-

weaning diet. Given the extensive amount of physiological changes seen with obesity, as 

reviewed in the previous section, the increased risk of offspring obesity from maternal obesity 

will also substantially increase their risk for developing other chronic diseases as well. 

2.3.2 Maternal Overnutrition effects on brain development - hypothalamus  

Studies have suggested several mechanisms that may explain the programming effects of 

maternal obesity on offspring obesity risk, much of which surround changes in the 

hypothalamus, a region of the brain critical in feeding regulation and glucose homeostasis 

(Hovrath 2006). The hypothalamus integrates endocrine, metabolic, and neural signals to 

regulate energy homeostasis. Hypothalamic neurogenesis is influenced by maternal obesity, as 

offspring born to obese dams show increased proliferation of hypothalamic neuronal precursors 

that are ultimately orexigenic (appetite stimulating) neurons in the mature hypothalamus (Bouret 

2010). Leptin, a metabolic hormone which is secreted by adipocytes into the bloodstream, is 

transported across the blood-brain barrier and act on pro-opiomelanocortin (POMC) neurons 

found in the arcuate nucleus (ARC) of the hypothalamus. Neurons of the ARC then project to the 

paraventricular nucleus (PVN) of the hypothalamus and inhibit feeding.  Leptin normally acts as 

a neurotrophic agent that promotes ARC neural projections. Rodent studies have shown 

hyperleptinemia and diminished leptin sensitivity in rats born to obese dams, as well as affected 

hypothalamic neurogenesis that was seen in the attenuated development of neuronal projections 

from ARC to PVN (Nivoit 2009, Kirk 2009).  

Proper neurodevelopment requires a neonatal leptin surge during the second postnatal 

week in rodents, which is also observed in humans (Walker, et al 2007). The observed 

morphological alterations in ARC connectivity in the hypothalamus in offspring of obese rats 
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were corrected with leptin treatment as neonates, but not with treatment in adulthood (Vickers 

2005, Kirk 2009). The degree of leptin’s actions have been demonstrated to differ between adults 

and neonates, establishing the critical period of hypothalamic organization in which leptin 

operates to be in the very early stages of life (Bouret 2010).  

The hypothalamic changes observed from altered leptin levels are seen to have 

consequences on hypothalamic feed circuits (Bouret 2010). Increased leptin levels that 

accompany maternal obesity are considered to expose the fetus to an obesogenic intrauterine and 

postnatal environment (Bouret 2010). Increased leptin exposure results from increased transfer 

between the placenta and the fetus, and in milk fat post-natally, that may range from 9-22% 

(Bouret 2010). With the evidence gathered on fetal hypothalamic differences as a result of 

maternal obesity, there is reason to explore the effects of maternal obesity on the development of 

other fetal brain regions.  

2.4 The hippocampus 

2.4.1 Maternal Overnutrition  

Compared to other brain regions, the hippocampus is preferentially susceptible to a 

variety of insults (e.g., environmental toxicants, cardiovascular and metabolic perturbations) 

(Walsh 1988). Maternal nutritional status through pregnancy has been associated with long-term 

consequences on memory, cognitive function, and brain senescence (Gordon 1997, Scholtz 

2009). Since learning and memory consolidation is largely the role of the hippocampus, it is the 

appropriate brain region to focus upon.  

Maternal obesity effects on leptin levels in the fetus have been well established (see 

section 2.2.2 C). Leptin receptors have been identified in the hippocampus as well, particularly in 

the dentate gyrus and CA1/CA3 regions (Fig 1; Wayner 2004, Harvey 2006). O’Malley and 
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colleagues (2007) have shown in neonatal hippocampal cell culture that leptin treatment 

increases motility and density of dendritic filopodia, and evidence suggests that prolonged 

exposure to leptin can promote the formation of new synaptic contacts. This demonstrates an 

extra-hypothalamic role of the observed neonatal leptin surge that can be potentially affected by 

maternal obesity. 

Neural progenitor cells are located in the dentate gyrus of the hippocampus, and produce 

new neurons that can contribute to hippocampal-dependent cognitive functions like learning and 

memory (Shors 2001, Zhang 2008, Dupret 2008). Certain animal models have shown that 

maternal condition (such as stress and nutrient supply) can modulate hippocampal neurogenesis 

(Mirescu 2004, Wong-Goodrich 2008).  Under stressful conditions, increased corticosterone 

levels in mother dams have been reported to inhibit hippocampal progenitor cell proliferation 

(Cameron 1994). Tozuka and colleagues (2009) have demonstrated in mice that offspring from 

obese dams have impaired hippocampal neurogenesis, independent from stress hormone-

mediated cascades, but via increased lipid peroxidation. Hippocampal organization and neuronal 

development was observed to accompany reduced hippocampal growth in transplanted fetal 

hippocampal-intraocular grafts obtained from offspring of obese dams (Willis et al 2005, 

Freeman et al 2010). However, there is little evidence (from both human and animal studies) on 

the effects of maternal obesity on the brain function of the offspring. 

2.4.2 Anatomy  

The hippocampus is a complex bilateral structure that is part of the forebrain, and located 

in the medial temporal lobe. The hippocampal region consists of the dentate gyrus (DG, an input 

stage), the hippocampus proper (Cornu Ammonis CA3 and CA1 fields), and the enclosing 

cortical tissue (the entorhinal, perirhinal, and parahippocampal cortices). Classically described as 
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consisting of a tri-synaptic pathway, the hippocampus receives information from the entorhinal 

cortex, sending it through the dentate gyrus, to CA3, and then to CA1 (Fig 1). Fibres from the 

entorhinal cortex form synapses with granule cells in the molecular layer of the DG, and form 

bilateral connections with pyramidal neurons in CA1 (Granger et al 1996). Neurons from DG 

extend their axons along the mossy fibre pathway to pyramidal neurons in the CA3 stratum 

radiatum. These CA3 neurons then extend via Schaffer collaterals and form synapses with apical 

dendrites of pyramidal cells in CA1 (Granger et al 1996). The efferent projections from CA1 

integrate the hippocampus through the subiculum and into a complex network, involving other 

cortical structures like the olfactory bulb, nucleus accumbuns, amygdala and hypothalamus 

(Granger et al 1996).  

The DG and subiculum are considered a transition zone from the 6-layered surrounding 

cortices to the 3-layered structure of the hippocampus (Granger et al 1996). The deepest layer of 

the DG is the stratum moleculare, containing proximal dendrites that are the main synaptic 

junction for perforant path fibres from the entorhinal cortex, and sits directly above the 

hippocampal fissure separating the DG from the CA1. The layer below is the stratum 

granulosum, containing cell bodies of granule cells (the main excitatory neurons of the DG) that 

project to CA3. CA3 neurons have multiple destinations to send information – out of the 

hippocampus to other cortices (through the fornix), back to the DG, back towards themselves, or 

to CA1 (via Schaffer collaterals).  

The CA fields also contain 3 distinct layers. The alveus, which is the most superficial 

layer, contains fibres of pyramidal cells. These fibres are collectively referred to as the fimbria, 

and are a source of output from the hippocampus. The stratum oriens layer contains basal 

dendrites of the excitatory pyramidal cells, as well as basket cells (inhibitory interneurons). 
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Inhibitory interneurons are believed to regulate activity levels in the hippocampus, and play an 

important role in the hippocampal system (Bauer 2002).  This stratum oriens also contains fibres 

received from the contralateral hippocampus (Granger et al 1996).  The stratum pyramidale 

mainly contains the cell bodies of pyramidal neurons, as well as some mossy fibre connections 

between DG and CA3, and interneurons in CA3. The stratum moleculare is divided into 3 

sublayers – stratum lucidum, stratum radiatum, and stratum lacunosum (Granger et al 1996). The 

stratum moleculare is where Schaffer collaterals synapse in CA1 (Granger et al 1996). It has 

been speculated that the feed-forward pathway is important for establishing encoding of new 

memories, whereas the recurrent connectivity within CA3 represents a function for recalling 

previously stored memories (Bauer 2002). 

2.4.3 Synaptic Plasticity  

The ability to learn from past experiences is key to survival. Most eloquently said by 

Malenka (1995), “One of the most remarkable features of the mammalian central nervous system 

is its ability to store large amounts of information for periods approaching lifetime”. Memory is 

arguably one of the most fundamental aspects of brain functioning, though over the course of 

history it has been primarily studied due to its absence. Supported by cases of human amnesia, 

medial temporal lobe structures, especially the hippocampal formation, are now established to be 

critical for learning and memory consolidation (Squire 1986, Tulving 1998). In the late 1800s, 

neuroanatomist Ramon y Cajal was the first to suggest that changes in connections between 

neurons may provide the foundation for learning and memory (Anderson et al., 2007). 

Subsequent postulations by Sherrington (1906) and  Hebb (1949) suggested memories are 

formed through synaptic plasticity, as new information is represented as patterns of neuronal 

activity in the brain and results in modifications to synapses in the particular neuronal circuits 
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involved (Malenka 1995). Indeed, with the complex circuitry within the hippocampus, alterations 

among synapses would likely modify learning and memory processes.  There has been evidence 

to support the significance of synaptic communication in learning and memory, which indicates 

certain structural and biochemical changes that need to occur with synaptic plasticity in the brain 

(Bauer 2002).  

 Calcium influx into post-synaptic neurons, through L-type voltage-gated calcium 

channels (VGCC) and excitatory amino-acid receptors, has been generally accepted as a 

mechanism that initiates synaptic plasticity (Nicoll 1995, Bauer 2002). The excitatory amino-

acid receptors are primarily ionotropic glutamate receptors, with subtypes α-amino-3-hydroxy-5-

methyl-4-isoxazole propionate (AMPA) receptors, N-methyl-D-aspartate (NMDA) receptors, 

and kainite receptors (Nusser 2000). AMPA and NMDA receptors are the subtypes that 

participate in synaptic plasticity (Pickard et al 2000). Elevation of intracellular calcium activates 

additional signaling pathways that contribute to synaptic plasticity; for example, phosphorylation 

of constitutively present protein kinases like calcium/calmodulin-dependent protein kinases 

(CaMK) and protein kinase C, whose phosphorylation results in increased synaptic efficacy 

(Tanaka 1994, Lisman 2002). Further changes may occur subsequently, such as activation of 

gene transcription and protein synthesis (such as brain derived neurotrophic factor, BDNF) that 

can also lead to structural changes in synapses (West 2002, Tanaka 2008). Another study 

suggested that the large calcium influx induces cytoskeletal changes of the neuron that include 

new dendritic spines through rapid actin polymerization (Lamprecht 2004). 
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2.4.4 Hippocampal slice models in research  

Brain slices can be maintained on a porous membrane filter at an interface between a 

medium (typically artificial cerebrospinal fluid, ACSF) and a humidified atmosphere to closely 

resemble the in vivo environment (Stoppini 1991). Brain slices are often used as experimental 

models since tissue architecture of the brain regions that the slices originated from are preserved 

(Cho 2007). Notably, the trisynaptic circuitry of the hippocampus, is maintained in slice 

preparations, and is readily accessible for optical imaging or electrophysiological studies (Lein et 

al., 2011). The patterns of connections within the slice are minimally altered relative to the in 

vivo patterns. Also, brain slice models are useful since there is no need for laborious monitoring 

of multiple accompanying physiological parameters that typically follow in vivo manipulations 

(Cho 2007). Advances in multi-electrode array technology have allowed for the measurement of 

neural activity patterns among discrete locations within each slice (Lein et al., 2011).  Similarly, 

the targeting of specific brain areas (that is with the nature of slice models) facilitates research to 

establish clear correlations between molecular changes and the particular physiologic or 

pathophysiologic context (Lein et al., 2011). Group studies that combine electrophysiology with 

behaviour studies show consistency in their findings (Cho 2007, Dawson 2005, Finley 2004) that 

further indicate slice models to make substantial contributions to research beyond the cellular 

level from which it represents.  

2.4.5 Long Term Potentiation  

Electrophysiological studies provide important clues regarding the nature and 

development of synaptic health and impairment. Long-term potentiation (LTP) is an artificially 

induced phenomenon demonstrating synaptic plasticity, and is widely used for investigating the 

cellular mechanisms behind memory. LTP is characterized by a stable increase of synaptic 
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response following a moderately high frequency of stimulation (usually 100 Hz) applied to a 

specific pathway in the hippocampus (Bliss 1973). After high frequency stimulation, the baseline 

stimulation that previously induced low activation, leads to a heightened response that can last 

up to weeks in intact animals (Bliss 1973). One characteristic of LTP that makes it an attractive 

model of memory is that the induction of LTP is selective, in that only inputs which were 

specifically stimulated display increased efficacy, much like memories that are formed for 

specific facts or events.    

The LTP phenomenon is thought to be primarily related to postsynaptic events (explained 

by an increase in postsynaptic responsiveness to glutamate) (Sevens 1993, Nicoll 1995). NMDA 

and AMPA receptors are the main subtypes of glutamate receptors. Increased AMPA receptor 

function or number would increase the amplitude of the EPSPs, which is a hallmark of LTP 

(Pickard et al., 2000). NMDA receptors are permeable to Ca
2+

, so their activation causes a 

significant, but transient increase in Ca
2+

 concentration in the postsynaptic spine (Pickard, et al., 

2000), which is then thought to initiate second messenger cascades and ultimately engage 

cellular mechanisms underlying synaptic plasticity (as discussed in 2.4.2).   

2.5 Animal models in research 

The ultimate goal of experimental models using animals is to gain insight into the 

pathophysiology of disease in humans. Animal models are useful when studies are addressing 

particular research questions that cannot be conducted in humans due to ethical concerns and 

cannot be addressed by alternative methods that do not imply live animals (Farnaud 2009).  

Animal use in research, particularly rodents, provides the opportunity to study basic and clinical 

processes otherwise unfeasible with human samples.  Suitable characteristics of rodents for 

research include the availability from many commercial or private sources, the costs to purchase 



 

29 
 

and maintain, genetic uniformity for control, well-defines physiologic parameters, and short 

lifespan that provide the opportunity to study long-term effects on health and well-being that 

may be extrapolated for the human condition.  

To maximize relevance, the selected rodent model should relate as closely as possible to 

the human condition it is attempting to represent. In the case of obesity research, obese rodent 

models include diet-induced models, genetic models (e.g., Zucker (fa/fa) rat, ob/ob mouse, 

Agouti mouse), and pharmacologically induced models (e.g., gold-thioglucose mouse) (Buettner 

et al., 2007). Genetically modified rodent strains are useful for studying the underlying biological 

mechanisms and pathways of obesity. A diet-induced rodent model, like a high-fat diet (HFD), 

more accurately represents the genesis of obesity in humans – from environmental factors like 

the excessive intake of calories with a disproportionately higher fat composition of the diet (Li et 

al., 2007). It is important that not only does the phenotype, but also the pathogenesis, of the 

animal’s condition resemble the human condition being examined (Buettner et al., 2007).  

Normal rat diets have 3-9% of calories from fat, 72-82% of calories from carbohydrates, 

and 14-20% of calories from protein, and do not contain refined sugars or high levels of 

saturated fat (Harlan Teklad; Rothwell 1988, Tschop 2001). HFD models alter diets to be ≥20% 

calories from fat (mostly saturated fat), making trade-offs with calories from carbohydrates while 

maintaining typical calories from protein (Tschop 2001, Buettner et al., 2007). HFD fed rodents 

have been shown to develop insulin resistance and impaired glucose tolerance, indications that 

the progression to obesity in the rodent on a HFD fed diet properly mimics the obese phenotype 

seen in humans (Buettner et al., 2007). Adipokines (e.g., leptin, adiponectin) are systemic factors 

that are altered in HFD fed rats, and mirror that seen in human obesity (Buettner et al., 2007). 

1998, Schrauwen 2004). In addition to increased adiposity, adipocyte changes seen with HFD-
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induced rodents also resemble the pro-inflammatory state found with human obesity (see section 

2.1.2 C, Li et al., 2008). Finally, HFD-fed rodents display hepatic steatosis, which resembles that 

observed in obese humans (Buettner et al., 2007, Konstantinos 2009). The similarities in 

physiological changes found in HFD-fed rodents and obese humans suggests that the HFD 

rodent model is a valid representation for the pathophysiological progression and condition of 

human obesity.   

In pregnancy research, rodents are often selected as the animal model of use (Jawerbaum 

2010). Ethically, in any animal model selected, the number of animals used should be as low as 

possible. Rodents are selected for their multiparity, human-like hemochorial placentation, and 

the short duration of their pregnancies (Jawerbaum 2010). The extensive knowledge of rodent 

embryonic development further grants rodent use in pregnancy research so that experimental 

results can contribute to a human situation with confidence (Jawerbaum 2010). For example, 

regional development of the rodent brain proceeds in days, versus weeks to months in humans, 

although progression through stages and patterns of neurogenesis (proliferation and migration of 

neurons) are relatively parallel (Rice 2000). Furthermore, with animal research, it is possible to 

select and evaluate the health in the population of females to be studied even before pregnancy 

(Nathanielsz 2006).  

Maternal-induced impairments in fetal and neonatal development have both short- and 

long-term adverse effects (see section 2.3).  Congenital malformations seen in neonatal rodents 

on experiments in teratogen research are consistent with that seen at the human level (Jawerbaum 

2010). Consistency among human epidemiology and rodent studies on long-term effects 

(Jawerbaum 2010) only adds to the rationale of rodent use for scientific research to better 

understand mechanisms, outcomes, and potential interventions related to human pregnancy.  
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2.6 Summary  

Obesity is now a global matter. Like the increasing drift in prevalence of obesity, there is 

also a rise in the prevalence of obese women of reproductive age. With the knowledge that the 

maternal environment can significantly influence the fetus to develop physiological changes that 

increase its risk for developing disease, there is a strong necessity to explore all aspects of this 

phenomenon.  

Maternal obesity has effects on fetal brain development. Besides the endocrine-related 

hypothalamic area, these effects have not been significantly studied. The hippocampus is a brain 

structure easily subject to insult, and is critical for learning and memory consolidation. From 

previous findings in animal models, there is evidence that maternal obesity may affect the 

offspring hippocampus. Unfortunately, due to the novelty of this area, a clear consensus and 

magnitude of the effects are not established. 

Functional synaptic connectivity in response to environmental cues form the basis for the 

neural substrate of learning and memory. LTP is an artificial model that has been repeatedly 

utilized to study synaptic plasticity, the cellular mechanism implicated behind learning and 

memory. The association between maternal obesity and altered cognition in offspring is 

suggestive that induction of LTP will also be altered in the offspring, however, this has not yet 

been explored.  
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Figure 1 Cross-section of the Hippocampus. Red arrows indicate direction of activity. EC = 

entorhinal cortex. Modified from Nguyen PV (2006). 



 

33 
 

3.0 Materials and Methods 

3.1 Animals Used 

Please refer to Figure 2 for a schematic of the study. 

Phase 1: Each week, for a total of 5 weeks, 6 female Sprague-Dawley rats were received as 

young adults and housed in polypropylene cages with woodchip bedding and stainless steel wire 

lids. Environmental conditions were controlled, and maintained at constant room temperature 

with a 12 hour light/dark cycle. Animals were initially weighed and separated into two groups (N 

= 3/group), so that each group had approximately the same average weight. The rats were fed 

Harlan Teklad standard rodent diet ad libitum with free access to water for 10 days, and were 

then switched, one group to a control diet (CD; 20% protein, 70% carbohydrate, 10% fat; 

Research Diets D12450B), and the other to a HFD (20% protein, 35% carbohydrate, 45% fat; 

Research Diets D12451) (Table 1). Ear notching was performed to identify each rat.  

Phase 2: After 16 weeks, one female rat from each group (control diet-fed and high fat diet-fed) 

was bred with a normal weight Sprague-Dawley male rat.  

Phase 3: During lactation, mothers were maintained on their respective diets, and, after weaning, 

all pups were fed the control diet. For each diet group, two rats of each sex were taken for data 

analysis: the first were pre-adolescent (PA; post-natal day 28-35) and the second were young 

adult (YA; post-natal day 55-70). All animal care procedures were approved by the University of 

Waterloo Animal Care Committee.  

3.2 Data Collection  

3.2.1 Phase 1 

Food consumption per rat was measured every Monday, Wednesday, and Friday by 

weighing the amount of food per cage, subtracting it from the weight of food measured 
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previously, and dividing this amount by the number of animals per cage. The amount of food 

consumed was averaged to obtain weekly food consumption (g) and calculate caloric 

consumption (kcal).  Body weights were measured twice a week. Bi-weekly fasting glucose 

measurements were taken using blood collected via the tail vein following a 12 h fast. An oral 

glucose tolerance test (OGTT) was performed once a month. Initial fasting blood glucose was 

measured, and then rats were gavaged with a 50% (w/v) glucose solution prepared that morning. 

Each rat was weighed and given an equivalent of 2 g glucose per kg body weight. Blood glucose 

measurements were taken at 30 min, 60 min, 90 min, 120 min, and 180 min post gavage.  

The 2 animals of each set that were not bred were sacrificed to gather additional 

measurements of altered metabolism: body weight, fasting blood glucose, fasting serum insulin, 

serum leptin, retroperitoneal fat pad weight, adrenal gland weight, spleen weight, and liver 

weight. The various measurements were taken as indications for the progression of our rats into 

an obese phenotype (see section 2.5).  Electrophysiological recordings were also performed on 

slices obtained from one of the sacrificed rats.  

Serum insulin and leptin levels were obtained from blood collected on the day of 

sacrifice. Whole blood was collected and allowed to clot for 30 min at room temperature. Whole 

blood was then centrifuged at 2000 x g for 15 min, and the resulting supernatant was designated 

as serum. Serum samples were stored at -80ºC. The quantitative measurement of the hormones in 

serum was performed with either an insulin ELISA kit (EMD Millipore, USA), or leptin ELISA 

kit (EMD Millipore, USA) following the manufacturer’s recommended protocols. Serum 

analyses were performed using a plate reader (SPECTRAmax Plus; Molecular Devices). 
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3.2.2 Phase 3 

At each age (PA and YA), 2 pups from each set of animals were sacrificed, one of each 

sex. A preference was given for testing at the YA stage when there was an inadequate number of 

pups to allow testing at both ages. An OGGT was performed at the YA stage only. Body weight, 

fasting blood glucose, retroperitoneal fat pad weight, adrenal gland weight, spleen weight, and 

liver weight were taken on the day of sacrifice.   

3.3 Electrophysiology  

A Slice Preparation 

Female rats from phase 1, and pups (postnatal day 28-35, and postnatal day 55-70), were 

sacrificed via decapitation after anesthesia with carbon dioxide, and the brains quickly removed 

and placed in chilled oxygenated (95% O2 : 5% CO2) artificial cerebrospinal fluid (ACSF; 4ºC; 

composition 127.0 mM NaCl, 2.0 mM KCl, 1.2 mM KH2PO4, 26.0 mM NaHCO3, 2.0 mM 

MgSO4, 2.0 mM CaCl2, 10.0 mM glucose; pH 7.4; osmolality 300-320 mOsm). The left 

hippocampus was extracted and cut with a McIlwain tissue chopper into 350 µm thick slices 

(Figure 3). Slices were then incubated on a microfilter and allowed to recover for a minimum of 

1 hour in a chamber with warm ACSF (35ºC) and flowing carbogen (95% O2 : 5% CO2) prior to 

the start of experiments.  

B Field Potential Recording  

Slices from each animal were treated as replicates, and not as separate data points. Field 

excitatory postsynaptic potentials (fEPSPs) were recorded by placing the recovered hippocampal 

slice onto a 8 x 8 multi-electrode array probe (electrode size 50 x 50 µm, and interelectrode 

distance 100 µm). The fEPSPs were sampled using the MED64 system (Alpha MED Scientific 

Inc., Osaka).  Slices were placed on the probe, immersed in warmed ACSF, and immobilized by 
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a mesh and a small anchor (Figure 4). The probe was connected to a perfusion system running at 

1.6 mL ACSF/min.   

After 20 minutes of stabilization, points for stimulation were selected. One stimulation 

point was placed on the Schaffer collaterals, and the other stimulation point was placed between 

CA1 and EC (used as a control pathway). The recording point was within the CA1 dendritic 

field. 

An input-output curve was made to determine the test stimulation intensity needed to 

evoke a response with 30-50% of maximum fEPSP amplitude. To measure the input-output (IO) 

relationship, fEPSP amplitudes were recorded against increasing stimulation intensities at 

increments of 5 μA. Maximum fEPSP amplitudes were defined as those that occurred 

immediately before the generation of a population spike (when a group of neurons 

synchronously fire their action potentials), and ranged between 500-1000 µV in our slices. Test 

stimulation intensities generally ranged from 15-35 µA. To generate IO curves, fEPSP 

amplitudes for a slice were taken as a percentage of the maximum fEPSP recorded, and the  

normalized fEPSP amplitudes plotted against increasing stimulation intensities at steps of 5 μA.   

Both amplitude and slope of the waveforms were recorded (Figure 5). Amplitude 

measurements were taken from peak-to-peak between cursor positions, and slope measurements 

were taken as 10-90% of slope values between cursor positions.  A control period of baseline 

activity was recorded (test stimulation every minute) for a minimum of 20 minutes before a 

tetanus was applied to one stimulation pathway (high frequency stimulation, HFS, two 1 s trains 

at 100 Hz, 20 s apart).  fEPSP recordings were continued for 30 minutes after HFS.  
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3.4 Analysis  

Data acquisition and analysis were performed using MED64 Mobius software (Alpha 

MED Scientific Inc., Osaka). Data were normalized to the average pre-HFS slope, or amplitude, 

collected during the last 10 min of baseline recording. Post-HFS slope and amplitude means 

were determined by averaging the last 10 min of post-HFS recording. The data were plotted and 

analyzed using GraphPad Prism (GraphPad Software, Inc., San Diego, CA). Statistical analysis 

was performed in Prism using Student’s unpaired t-test with Welch’s correction, or two-way 

ANOVA. Linear regression analysis was performed on the slopes of the normalized IO curves. 

The Fischer’s exact test was performed on the number of slices that passed or failed reaching an 

arbitrary potentiation threshold of 120% of baseline. Biometric data were normalized to 100 g 

body weight before being analyzed. P values less than 0.05 were considered to be statistically 

significant. All data were presented as mean ± SEM. Confidence intervals were also presented. 

Error bars presented were standard errors of the mean (group data).  

 

 

 

 

 

 

 

 

 



 

38 
 

Phase 1: Animal 
Feeding 

Phase 2: Animal 
Breeding 

N = 5 per diet 

Phase 3: Offspring 
Analysis 

(PND 28-35; 55-70) 

Biometric data 
collection  

Electrophysiology 

Electrophysiology 

Separate animals into 
CD and HFD (5 sets 

each, with N = 3/set) 

Biometric data 
collection 

N = 10 per diet 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2 Schematic Timeline of the Study. CD: control diet. HFD: 

high-fat diet. PND: post-natal day.  
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Figure 3 Position of Slicing of the Left Rat Hippocampus. Slices were taken from a 

septal to temporal orientation, as indicated by the arrow.  

Modified from Cheung THC and Cardinal RN (2005).  

Figure 4 Brain Slice Position on Multi-electrode Array. DG: 

dentate gyrus, EC: entorhinal cortex, S1 and S2 are stimulation 

points, R: recording channel. 
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Figure 5 Example of Waveform Presentation. Waveforms are used to obtain 

amplitude and slope information. 1 is pre-HFS application; 2 is post-HFS 

application. The first vertical line indicates the stimulation artifact, while the 

remaining vertical lines are the measurement cursors.  
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Table 1 Complete Diet Breakdown. 

 Control Diet (CD) High Fat Diet (HFD) 

Ingredient Amount (mg) Calories (kcal) Amount (mg) Calories (kcal) 

Casein, 80 Mesh 200 800 200 800 

L-Cystine 3 12 3 12 

Cornstarch 315 1260 72.8 291 

Maltodextrin 10 35 140 100 400 

Sucrose 350 1400 172.8 691 

Cellulose 50 0 50 0 

Soybean oil BW200 25 225 25 225 

Lard 20 180 177.5 1598 

Mineral Mix S10026 10 0 10 0 

DiCalcium Phosphate 13 0 13 0 

Calcium Carbonate 5.5 0 5.5 0 

Potassium Citrate, 1 H2O 16.5 0 16.5 0 

Vitamin Mix V10001 10 40 10 40 

Choline Bitartrate 2 0 2 0 

FD&C Yellow Dye #5 0.05 0 0 0 

FD&C Red Dye #40 0 0 0.05 0 

Total 1055.05 4057 858.15 4057 
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4.0 Results 

4.1 Phase 1 Results 

Food Consumption  

The animals were randomly divided into two groups (CD, HFD) and were given their 

respective diets for 16 weeks.  Food consumption was measured for each set. During this time, 

the HFD animals began to consume less food (Figure 6). Total food consumption, after 16 weeks 

of feeding, showed that each dietary group was also significantly different (p = 0.03).  HFD 

animals consumed, weekly, an average of 22.5 g less than CD animals (p < 0.01, Figure 7), or, 

an average of 2049 kcal more than CD animals (p = 0.01, Figure 8).  

Biometric Data 

There were no statistically significant differences in total body weight between treatment 

groups (p = 0.83, Figure 9), or total weight gained (as a percentage of initial body weight at week 

0) between treatment groups (p = 0.12). Mean HFD animal BMI was 0.03g/cm
2
 more than the 

mean BMI of CD animals (p = 0.11). Upon sacrifice, adrenal gland, spleen, liver, and 

retroperitoneal fat pad weights were obtained (Figure 10, Table 2). There was no statistically 

significant difference between treatment groups in regards to adrenal gland, spleen, or liver 

weight (Table 3). However, retroperitoneal fat pad weights were significantly larger in HFD 

animals, and averaged 0.18 g more than those from CD animals (p < 0.01).  

Metabolic Data 

Fasting blood glucose levels were compared using measurements obtained on the date of 

sacrifice. There was no statistically significant difference in fasting blood glucose levels between 

treatment groups (p = 0.96). Both CD and HFD animals had an average fasting blood glucose 

level of 6.4 mmol/L. An OGTT was performed every 4 weeks on each animal (Figure 11). The 
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AUC of OGTT (Figure 12) after 4 weeks had a mean difference of 62.88 (p = 0.26); OGTT after 

8 weeks had a mean difference of 79.5 (p = 0.030); OGTT after 12 weeks had a mean difference 

of 109.9 (p < 0.01); OGTT after 16 weeks had a mean difference of 74.9 (p = 0.018). 

Serum Analysis 

Serum was evaluated for insulin and leptin concentrations (Figure 14). Data presented were 

concentrations (ng/mL) normalized to 100 g body weight of the specific rat. Values exceeding 

%CV range remained incorporated in the analyses in order to have enough data points for 

comparisons. Preliminary measurements showed HFD animals averaged greater serum insulin 

(0.07 ng/mL) and leptin (0.5 ng/mL) concentrations than CD animals, with no statistical 

significance.  

Electrophysiology  

Electrophysiological recordings were made using four hippocampal slices prepared from 

each animal; that is, n = 4 slices for each of N = 5 animals. Slices obtained from HFD animals 

required greater stimulation intensities to evoke a maximum response, but there was no 

significant difference between intensities (p = 0.62). Also, linear regression analysis found the 

differences between the slopes of the IO curves were not significant (p = 0.63; Figure 13). From 

the evoked fEPSPs, amplitude and slope were measured and compared between diet groups. The 

CD animals had an average of 9.75% more potentiation in amplitude (Figure 15, p < 0.0001) and 

an average of 11.26% more potentiation in slope (Figure 16, p < 0.0001) relative to the HFD 

animals. Representative waveforms recorded from slices obtained from CD and HFD animals 

were shown in Figure 17.  

85% of slices prepared from CD animals met our amplitude threshold limit, compared to 

60% of the slices prepared from HFD animals. 90% of slices prepared from CD animals met our 
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slope threshold limit, compared to 60% of the slices prepared from HFD animals.  The number 

of slices that passed or failed reaching the threshold limit of 120% of baseline was significantly 

different between dietary groups (Table 4, p = 0.0001).  
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Figure 6 Mean cumulative food consumption per week (+/-) SEM between female Sprague-Dawley rats eating 

control, or high-fat diet. 
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Figure 7 Mean food consumption per week (+/-) SEM between female Sprague-Dawley rats eating control, or high-

fat diet. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8 Mean caloric consumption per week (+/-) SEM between female Sprague-Dawley rats eating control, or 

high-fat diet. 
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Figure 9 Mean Body Weight (+/-) SEM between female Sprague-Dawley rats eating control, or high-fat diet. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10 Mean Retroperitoneal Fat Pad Weight (+/-) SEM, Liver Weight (+/-) SEM, and Spleen Weight (+/-) SEM 

between female Sprague-Dawley rats eating control, or high-fat diet. ** p < 0.01 
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Figure 11 Mean Oral Glucose Tolerance Test values (+/-) SEM post glucose bolus administration comparing female 

Sprague-Dawley rats eating control or high-fat diet at A) 4 weeks; B) 8 weeks; C) 12 weeks; D) 16 weeks.  
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Figure 12 Mean Oral Glucose Tolerance Test values (+/-) SEM comparing female Sprague-Dawley rats eating 

control, or high-fat diet. * p < 0.05, ** p < 0.01. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13 Mean Serum Concentrations of insulin and leptin, (+/-) SEM comparing female Sprague-Dawley rats 

eating control, or high-fat diet. Serum insulin from CD (N = 10) and HFD (N = 10).  Serum leptin from CD (N = 5) 

and HFD (N = 5). 
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Figure 14 Input-output (IO) curves (+/-) SEM comparing female Sprague-Dawley rats eating control, or high-fat 

diet.  
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Figure 15 Mean change in amplitude of fEPSPs (+/-) SEM between female Sprague-Dawley rats eating control, or 

high-fat diet (N = 5). Arrow indicates tetanus application. *** p < 0.001. 

*** 
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Figure 16 Mean change in slope of fEPSPs (+/-) SEM between female Sprague-Dawley rats eating control, or high-

fat diet (N = 5). Arrow indicates tetanus application. *** p < 0.001 
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Figure 17 Superimposed fEPSPs before and after HFS (two trains of 100 Hz) from A) CD slices and B) HFD 

slices. 
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Table 2 Control and High-Fat Diet Group Characteristics  

BIOMETRICS 

CONTROL DIET HIGH FAT DIET 

Mean Standard Error Mean Standard Error 

total food consumption (g) 4255.00 108.70 3894.00 85.20 

weekly food consumption (g) 265.94 4.69 243.39 5.10 

weekly caloric consumption (kcal) 16362.00 417.90 18411.00 402.8 

body weight (g) 286.80 5.95 288.80 6.91 

total weight gain (g) 

total weight gain (%) 

rodent BMI (g/cm
2
) 

87.15 

38.30 

0.54 

3.35 

1.23 

0.01 

89.92 

42.29 

0.56 

3.97 

2.16 

0.02 

fasting blood glucose (mmol/L) 6.39 0.50 6.36 0.21 

OGTT1 (AUC) 330.00 28.06 392.90 45.90 

OGTT2 (AUC) 303.90 25.67 383.40 23.27 

OGTT3 (AUC) 319.00 20.43 428.90 20.39 

OGTT4 (AUC) 287.70 16.17 362.60 24.58 

insulin levels (ng/mL) 0.18 0.03 0.19 0.03 

leptin levels (ng/mL) 0.79 0.20 1.31 0.25 

adrenal gland weight  (g) * 

retroperitoneal fat pad weight (g) * 

0.02 

0.47 

0.00062 

0.03 

0.02 

0.65 

0.00062 

0.04 

liver weight (g) * 2.21 0.04 2.21 0.07 

spleen weight (g) * 0.20 0.01 0.22 0.01 

ELECTROPHYSIOLOGY     

stimulation intensity to reach maximum (μA) 30.75 1.93 32.5 2.87 

slope of line of best-fit on input-output curve 2.11 0.21 1.55 0.27 

normalized amplitude post-LTP (%) 135.00 1.84 125.3 0.35 

normalized slope post-LTP (%) 140.00 0.30 128.70 1.26 

 

*organ weights normalized to 100 g body weight. 
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Table35 Student Unpaired t-test Results (control vs. high fat diet), with Welch’s correction 

 

  
BIOMETRICS Mean of differences p-value 95% confidence interval 

total food consumption (g) 360.6 0.03 34.06 to 687.2 

weekly food consumption (g) 22.54 <0.01 8.40 to 36.68 

weekly caloric consumption (kcal) -2049.00 0.01 -3422.00 to -676.50 

body weight (g) -1.98 0.83 -20.69 to 16.73 

total weight gain (g) -2.77 0.60 -13.43 to 7.886 

total weight gain (%) -3.98 0.12 -9.13 to 1.16 

rodent BMI (g/cm
2
) -0.03 0.11 -0.07 to -0.01 

fasting blood glucose (mmol/L) 0.03 0.96 -1.16 to 1.22 

OGTT1 (AUC) -62.88 0.26 -175.70 to 46.96 

OGTT2 (AUC) -79.50 0.03 -150.5  to -8.55 

OGTT3 (AUC) -109.90 <0.01 -169. 0 to -50.77 

OGTT4 (AUC) -74.90 0.01 -135.6  to -14.21 

insulin levels (ng/mL) -0.07 0.86 -0.09 to 0.08 

leptin levels (ng/mL) -0.52 0.14 -0.7222 to 1.267 

adrenal gland weight (g) -0.00096 0.29 -0.00281 to 0.00088 

retroperitoneal fat pad weight (g) -0.18 0.01 -0.31 to -0.06 

liver weight (g) 0.00 0.99 -0.17 to 0.18 

spleen weight (g) -0.01 0.14 -0.03 to 0.00 

ELECTROPHYSIOLOGY 
 

stimulation intensity to reach maximum (μA) -1.75 0.62 -8.79 to 5.29 

normalized Input-Output curve (%)  0.58 0.97 -28.10 to 29.27 

normalized amplitude post-LTP (%) 9.75 <0.0001 5.82 to 13.67 

normalized slope post-LTP (%) 11.26 <0.0001 8.53 to 13.98 
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a)                                                                                                                       b) 

 

 

 

 

 
PASS (%) 

 

FAIL (%) 

CD 85 
 

15 

HFD 60 
 

40 

 
PASS (%) 

 

FAIL (%) 

CD 90 
 

10 

HFD 60 
 

40 

Table 4 Contingency table of slices from CD vs. HFD treatment that meet 120% potentiation 

threshold. a) Percent of slices meeting amplitude threshold. b) Percent of slices meeting slope 

threshold.  
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4.2 Phase 3 Results 

 

Litter Sizes 

All CD dams produced sufficient offspring for both pre-adolescent, PA, and young adult, 

YA, pup examinations (PA: males N = 5, females N = 5; YA: males N = 5, females N = 5). A 

total of N = 10 pups born from HFD-dams was tested (PA: males N = 3, females N = 1; YA: 

males N = 3, females N = 3). The average CD litter size was 8 (Table 6). HFD dams had very 

small litter sizes (average litter size was 4, Table 5). An unpaired t-test was performed on the 

litter sizes and showed there was no significant difference across treatment groups (p = 0.23).  

Organ and Tissue Measurements 

A two-way ANOVA was performed on adrenal gland weight, liver weight, spleen weight, 

and retroperitoneal fat pad weight (Table 6). Weights were normalized to 100 g body weight 

before analysis. The two-way ANOVA on adrenal gland weight showed no main effect of the 

age factor (p = 0.08); no main effect of the diet factor (p = 0.79); and no interaction between age 

and diet factors (p = 0.44). A two-way ANOVA on liver weight showed a main effect of the age 

factor (p = 0.04); no main effect of the diet factor (p = 0.95); and no interaction between age and 

diet factors (p = 0.23). A two-way ANOVA on spleen weight showed no main effect of the diet 

factor (p = 0.98); no interaction between age and diet factors (p = 0.64); but showed a main age 

effect alone that was significant (p = 0.01). A two-way ANOVA on retroperitoneal fat pad 

weight showed a main effect of the age factor (p < 0.01); no main effect of the diet factor (p = 

0.18); and no interaction between age and diet factors (p = 0.38). An unpaired t-test showed no 

significant differences in adrenal gland weight, liver weight, and spleen weight between groups, 

at both ages (Table 7). An unpaired t-test showed a statistical difference between retroperitoneal 

fat pad weights between PA pups (p = 0.049), but no difference at the YA age (p = 0.83).  
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Metabolic Data 

Fasting blood glucose levels were compared using measurements obtained on the date of 

sacrifice.  A two-way ANOVA on fasting blood glucose showed no main effect of the age factor 

(p = 0.27); no main effect of the diet factor (p = 0.60); and no interaction between age and diet 

factors (p = 0.59, Table 6). An unpaired t-test showed no significant difference in fasting blood 

glucose levels between groups of PA pups (p = 0.72), and no significant difference between 

groups of YA pups (p = 0.69). An unpaired t-test on the OGTT performed on YA pups showed 

that those from HFD dams did not significantly differ from pups born to CD dams (p = 0.13, 

Table 8).  

Electrophysiological Data 

Electrophysiological recordings were made from 73 slices obtained from pups born to 

CD dams, and 35 slices from pups born to HFD dams. Of the slices from pups born to CD dams, 

35 slices were obtained at the PA age category (N = 10), and 38 slices were from the YA 

category (N = 10). Of the slices from pups born to HFD dams, 13 slices were obtained at the PA 

age category (N = 4), and 22 slices were from the YA category (N = 6). There was no significant 

difference in the IO curves between treatment groups (PA: p = 0.96, Figure 18; YA: p = 0.93, 

Figure 19). Linear regression analysis found that the differences between slopes of IO curves 

were not significant, at the PA stage (p = 0.90) and YA stage (p = 0.28). From the fEPSPs, 

amplitude and slope were measured and compared between treatment groups. Slices obtained 

from PA pups born to HFD dams required significantly greater stimulation intensities to evoke a 

maximum response (p < 0.01), but there was no significant difference at the YA age (p = 0.41).  

A two-way ANOVA was performed on normalized amplitude and normalized slope post-HFS. 

The two-way ANOVA (Table 6) on amplitude post-HFS showed no main effect of the age factor 
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(p = 0.95); no main effect of the diet factor (p = 0.42); and no interaction between age and diet 

factors (p = 0.99). The two-way ANOVA on slope post-HFS showed no main effect of the age 

factor (p = 0.64); no main effect of the diet factor (p = 0.37); and no interaction between age and 

diet factors (p = 0.94). Unpaired t-tests were also conducted. PA pups born from HFD dams had 

an average of 7.5% less amplitude potentiation (Figure 20, p < 0.05), and an average of 4% more 

slope potentiation (Figure 21, p < 0.05) than pups born CD dams. Baseline values were not 

significantly different between groups at the YA age. YA  pups born from HFD dams had an 

average of 30% less amplitude potentiation (Figure 22, p < 0.05) and an average of 24% less 

slope potentiation (Figure 23, p < 0.05) than pups born CD dams.   

The Fischer’s exact test was performed on the percent of slices that passed or failed 

reaching the threshold limit of 120% of baseline (Table 8). There was no significant relationship 

between percent of PA slices meeting amplitude threshold of pups born from HFD dams to those 

of pups born to CD dams (Table 8a, p = 0.7161).   There was a significant relationship between 

percent of PA slices meeting slope threshold of pups born from HFD dams to those of pups born 

from CD dams (Table 8b, p = 0.0008).   There was a significant relationship between percent of 

YA slices meeting amplitude threshold of pups born from HFD dams to those of pups born from 

CD dams (Table 8c, p = 0.0010).   There was no significant relationship between percent of YA 

slices meeting slope threshold of pups born from HFD dams to those of pups born from CD 

dams (Table 8d, p = 0.3523).   
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Table 5 Litter ratios of female Sprague-Dawley rats eating control or high-fat diet.  

 

 Dam Male  Pups Female Pups Total Pups Average SEM 

CD 

1 4 5 9   

2 2 2 4   

3 5 2 7   

4 9 7 16   

5 2 2 4   

    8 2.214 

HFD 

1 0 0 0   

2 0 0 0   

3 5 1 6   

4 4 1 5   

5 5 5 10   

    4.2 1.908 
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Figure 18 Input-output (IO) curves (+/-) SEM between pre-adolescent pups born to Sprague-Dawley dams 

eating control, or high-fat diet. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 19 Input-output (IO) curves (+/-) SEM between young adult pups born to Sprague-Dawley dams eating 

control, or high-fat diet. 
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Figure 20 Mean change in amplitude of fEPSPs (+/-) SEM between pre-adolescent pups born to Sprague-

Dawley dams eating control, or high-fat diet. Arrow indicates tetanus application. *** p < 0.001 
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Figure 21 Mean change in slope of fEPSPs (+/-) SEM between pre-adolescent pups born to Sprague-Dawley 

dams eating control, or high-fat diet. Arrow indicates tetanus application. 
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Figure 22 Mean change in amplitude of fEPSPs (+/-) SEM between young-adult pups born to Sprague-Dawley 

dams eating control, or high-fat diet. Arrow indicates tetanus application. *** p < 0.001 
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Figure 23 Mean change in slope of fEPSPs (+/-) SEM between young-adult pups born to Sprague-Dawley dams 

eating control, or high-fat diet. Arrow indicates tetanus application. *** p < 0.001 
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Figure 24 Superimposed fEPSPs before and after HFS (two 1 s trains of 100Hz stimulation) from A) PA-CD 

slices, B) YA-CD slices, C) PA-HFD slices, D) YA-HFD slices 
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Table 6 Pup Biometrics Summary - Two-way ANOVA Analysis  

 

*organ weights normalized to 100 g body weight. 

 

 

Measurement 
ANOVA table 

 

 

SS DF MS F  P value 
 

rodent BMI (g/cm2) 

Interaction 

Age 

Diet 

Residual 

31.78 x10-5 

24.58 x10-3 

99.41 x10-5 

12.11 x10-3 

1 

1 

1 

4 

0.0003178 x10-5 

0.02458 x10-5 

0.0009941 x10-5 

0.003027 x10-5 

10.50 x10-2 

81.18 x10-3 

32.84 x10-3 

 

0.76 

0.05 

0.60 
 

fasting blood glucose (mmol/L) 

Interaction 

Age 

Diet 

Residual 

18.60 x10-2 

88.44 x10-2 

17.40 x10-2 

21.61 x10-1 

1 

1 

1 

4 

18.60 x10-2 

0.8844 x10-5 

0.1740 x10-5 

0.5404 x10-5 

34.43 x10-2 

16.37 x10-3 

32.21 x10-3 

0.59 

0.27 

0.60 
 

retroperitoneal fat pad weight (g)* 

Interaction 

Age 

Diet 

Residual 

10.20 x10-4 

56.43 x10-3 

28.19 x10-4 

42.81 x10-4 

1 

1 

1 

4 

10.20 x10-4 

56.43 x10-3 

28.19 x10-4 

10.70 x10-4 

95.35 x10-3 

52.72 x10-3 

26.34 x10-3 

 

0.38 

<0.01 

0.18 
 

adrenal gland weight (g)* 

Interaction 

Age 

Diet 

Residual 

3.44x10-5 

25.44 x10-5 

39.59x10-7 

18.64 x10-5 

1 

1 

1 

4 

34.40x10-6 

25.44 x10-5 

39.59x10-7 

46.61x10-6 

73.80 x10-2 

54.59 x10-3 

84.95 x10-3 

0.44 

0.08 

0.79 

 

liver weight (g)* 

Interaction 

Age 

Diet 

Residual 

26.42 x10-2 

11.96 x10-6 

59.88 x10-5 

52.98 x10-2 

1 

1 

1 

4 

26.42 x10-2 

11.96 x10-2 

59.88 x10-5 

13.24 x10-2 

19.95 x10-1 

90.29 x10-3 

45.21 x10-4 

 

0.23 

0.04 

0.95 

 

spleen weight (g)* 

Interaction 

Age 

Diet 

Residual 

40.35 x10-5 

30.08 x10-3 

13.97x10-7  

60.82 x10-4 

1 

1 

1 

4 

40.35 x10-5 

30.08 x10-3 

13.97x10-7 

15.21 x10-4 

26.54 x10-2 

19.78 x10-5 

91.087 x10-5 

 

0.64 

0.01 

0.98 
 

normalized amplitude post-LTP (%) 

Interaction 

Age 

Diet 

Residual 

78.20 x10-3 

12.87 x10-6 

25.52 x10-4 

9052.00 

1 

1 

1 

23 

78.20 x10-3 

12.87 x10-6 

255.20 

377.20 

20.73 x10-5 

34.11 x10-4 

67.67 x10-2 

 

0.99 

0.95 

0.42 
 

normalized slope post-LTP (%) 

Interaction 

Age 

Diet 

Residual 

2.942 x10-5 

222.0 x10-5 

831.0 x10-5 

22709 .00 

1 

1 

1 

23 

4.94 

222.00  

831.00  

987.30 

50.04 x10-4 

22.49 x10-2 

        84.16 x10-2 

 

0.94 

0.64 

0.37 
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Table 7 Pup Biometrics - Student unpaired t-test results (control vs. high fat diet) with Welch’s correction 

*organ weights normalized to 100 g body weight. 

 Pre-Adolescent Young Adult 

BIOMETRICS 
Mean of 

differences 

p-value 95% confidence 

interval 

Mean of 

differences 

p-value 95% confidence 

interval 

fasting blood glucose (mmol/L) 0.25 0.72 -1.25 to 1.74 -0.30 0.69 -1.95 to 1.35 

OGTT (AUC)    -81.67 0.13 -195.20 to 31.90 

retroperitoneal fat pad (g)* -0.069 0.049 -0.1392 to 0.0012 -0.008 0.83 -0.089 to 0.073 

adrenal gland weight (g)* 

liver weight (g)* 

spleen weight (g)* 

<0.01 

0.28 

0.04 

0.053 

0.17 

0.34 

<-0.01 to 0.02 

-0.14 to 0.69 

-0.05 to 0.12 

<-0.01 

-0.061 

-0.02 

0.35 

0.70 

0.40 

-0.01 to <0.01 

-0.41 to 0.29 

-0.08 to 0.04 

ELECTROPHYSIOLOGY (%)   

stimulation intensity to reach maximum (μA) -13.55 <0.01 -20.56 to -6.536 -4.21 0.41 -14.47 to 6.06 

normalized Input-Output curve (%) 0.79 0.96 -28.41 to 30.00 -0.94 0.93 -22.50 to 20.63 

normalized amplitude post-LTP 7.49 <0.0001 6.150 to 8.832 29.87 <0.0001 25.13 to 34.60 

normalized slope post-LTP -4.26 0.056 -8.67 to 0.14 24.43 <0.0001 21.78 to 27.07 
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a)                                                                                                        b) 

 

 

 

 

 

c)            d)            

                                                            

 

 

Slices PASS (%) 
 

FAIL (%) 

CD 77 
 

23 

HFD 46 
 

54 

Slices PASS (%) 
 

FAIL (%) 

CD 83 
 

17 

HFD 69 
 

31 

Slices PASS (%) 
 

FAIL (%) 

CD 82 
 

18 

HFD 64 
 

36 

Slices PASS (%) 
 

FAIL (%) 

CD 63 
 

37 

HFD 50 
 

50 

Table 8 Contingency table of slices from CD vs. HFD treatment that meet 120% threshold. a) 

Percent of pre-adolescent pup slices meeting amplitude threshold. p = 0.7161 b) Percent of pre-

adolescent pup slices meeting slope threshold. p = 0.0008 c) Percent of young adult pup slices 

meeting amplitude threshold. p = 0.0010 d) Percent of young adult pup slices meeting slope 

threshold. p = 0.3523 
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5.0 Discussion 

To our knowledge, this is the first study to evaluate the impact of maternal obesity on 

synaptic function in the maternal and offspring hippocampus. We first sought to establish a diet 

regimen that would induce obesity in female Sprague-Dawley rats. Secondly, we aimed to 

determine the effects of obesity on the maternal generation’s hippocampal synaptic function. 

Lastly, we wanted to investigate the effects of maternal obesity on offspring hippocampal 

synaptic function.  

Obesity is a growing global health problem. Similarly, the increasing rate of maternal 

obesity is also a concern. Maternal obesity can result in negative outcomes for both the mother 

and the fetus, and, with advances in research reinforcing the significance of the prenatal 

environment, all aspects of maternal obesity need to be explored. The present study expands 

upon previous maternal obesity research in that it confirms obesity effects on cognition in the 

maternal generation, and fills in the gap between the observed structural changes (for example, 

hippocampal volume, neurogenesis, and organization of cells) and behavioral changes (such as 

decreased performance in spatial memory tests) in offspring from maternal obesity. 

Although the quantity of obesity research is increasing, there is not yet a standardized 

HFD model for inducing obesity in an animal model (Buettner 2007). As well, many rodent 

studies using HFD treatment groups do not specifically aim to establish an obese phenotype, but 

simply assess the effect of the diet. As a result, the change in phenotype caused by our HFD 

protocol needed to be evaluated in order to investigate the consequences of obesity on synaptic 

function in the offspring.  

The purpose of this animal study was to determine what effects maternal obesity may 

have on synaptic transmission, a measure of brain function. Specifically, we looked at the CA1 

region of the hippocampus, an area with particularly robust synaptic plasticity. Synaptic 
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plasticity was evaluated using LTP since it is an established experimental model for examining 

the synaptic mechanisms behind learning and memory (see section 2.5). 

Confirming an Obese Phenotype in the Maternal Generation 

One of the typical barriers in most studies is translating results from a rodent model to 

humans. For instance, most humans do not consistently consume the same thing every day, and 

instead have a diet gathered from different sources (resulting in a variable diet composition). 

However, this inconsistent behavior cannot be accurately reproduced in animal models via a 

cafeteria-style diet (where the foods provided are from a variety of sources). Cafeteria-style diets 

also compromise the accuracy in food consumption calculations, and, consequently, using a 

defined diet was more appropriate for this study.   

A significant positive relationship has been shown between the amount of dietary 

energy from fat and the proportion of the population that is overweight, and clinical studies show 

a positive relationship between level of dietary fat and body-weight gain, and reduction in 

dietary fat and weight loss (Hariri and Thibault 2010).  In addition, human studies have shown 

that diets rich in saturated fat are more obesogenic than diets containing mono- or poly-

unsaturated fatty acids (DeLany 2000, Piers 2003). Animal studies have also shown saturated fat 

to be more obesogenic (Yaqoob 1997, Ellis 2002). Fat content of diets used in DIO research vary 

within the literature, ranging from 13% to 85% (Hariri and Thibault 2010).  To mimic the human 

condition and what has been referred to as the ‘Western diet’, several studies (including ours) use 

40-45% calories from saturated fat, which is the proportion of fat that would best resemble that 

consumed in the ‘Western diet’ (Buettner 2007). Though diets of high-sucrose content also exist 

in DIO research, the higher palatability of the diet may affect food consumption and therefore 

could confound several of our measurements. Rats have a sensitivity for glucose polymers, and 
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are shown to exhibit a preference for saccharide solutions, such as those with maltose or sucrose, 

over water (Sclafani and Nissenbaum 1987).  

In this study, a diet with 45% of calories from saturated fat administered to female 

Sprague-Dawley rats resulted in an obese phenotype.  While we did not detect a statistically 

significant effect of the diet on adrenal gland, liver, or spleen weights, after 16 weeks, animals 

showed a trend toward greater total and percentage weight gained, and statistically significant 

differences in retroperitoneal fat pad weights and OGTT outcomes (at 8, 12, and 16 weeks). 

Cumulative food consumption data indicated that HFD animals increasingly ate less than CD 

animals as time passed. The differences in total weight gained, when paired with the significantly 

greater fat pad weights, indicate that our HFD animals had an altered fat to lean muscle mass 

ratio. Since the OGTT was performed as a means for measuring glucose metabolism, statistically 

significant differences in the results of the OGTT suggest that the HFD animals had 

compromised glucose metabolism compared to CD animals. Our study also detected a trend that 

seemed to suggest a difference in serum leptin concentration, with higher levels being observed 

in HFD animals. The alterations to body composition, and the metabolic changes, observed in 

our HFD animals strongly suggest that our treatment resulted in an obese phenotype.  

To further confirm that an obese phenotype was established, other measures could also 

have been evaluated. For example, conducting measures on physical activity and the metabolic 

rates of our rats could reconcile the significantly greater caloric consumption in the HFD rats 

with the lack of difference in body weight. Also, future trials using the same treatment protocol 

could examine fat cell size. Adipocyte hypertrophy is seen with obesity (refer to 2.1.3 C). 

Triglyceride content could also be measured, since higher levels of triglycerides exist in the 

metabolic syndrome (Matyskova et al 2007, Yamato et al 2007). Measuring triglyceride levels in 
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our animals would also be desirable since Banks and colleagues have shown that triglycerides 

can impair the transport of leptin across the blood-brain barrier and may contribute, in part, to 

peripheral leptin resistance (Banks et al 2004). Because leptin may enhance cognition (Harvey 

2007), and leptin-receptor deficient animals have impaired hippocampal LTP and poor spatial 

memory (Li et al 2002), triglycerides are particularly important to measure because they can 

prevent leptin from reaching brain areas important for learning and memory (i.e., hippocampus). 

Since obesity is also characterized as a systemic inflammatory condition, peripheral cytokines 

(from liver, fat, and serum) should also be measured (Bilbo and Tsang 2010).  

Diet-Induced Changes in Synaptic Plasticity Among Female Rats 

There are no studies investigating the effects of obesity on synaptic plasticity in female 

rat hippocampus. The majority of obesity research has focused on the hypothalamus, but more 

recent studies suggest that the complications of obesity may also affect the integrity of the 

hippocampus (Farr et al, 2008, Li et al 2002, Molteni et al 2002, Ogden et al 2006). For example, 

impaired hippocampal neurogenesis that resulted in a decreased number of newly generated cells 

in the DG, altered differentiation and proliferation of neural progenitor cells in the DG, and 

decreased apoptosis in specific hippocampal areas (Ammon’s horn and fimbria). However, the 

structural changes found in these studies do not reveal the full relationship between obesity and 

memory. Epidemiological evidence has found associations between obesity and impaired 

cognitive performance and memory (refer to section 4.4.1). Consequently, there is a need to 

examine the effects of obesity on female rat hippocampal synaptic plasticity. 

Input-output curves provide information about the basal synaptic transmission of the 

pyramidal cells, as they illustrate the relationship between the intensity of the stimulation 

delivered and the amplitude of the evoked fEPSP (Woolley et al 1997). Our observations of IO 
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curves showed that there was no difference in baseline synaptic transmission between diet 

groups. Results from electrophysiological recordings also showed that HFS was able to cause 

significantly less potentiation in both amplitude and slope of the fEPSP in HFD animals 

compared to CD animals. Specifically, HFD animals showed an average of 10% less potentiation 

in measured amplitude and 11% less potentiation in measured slope relative to fEPSPs of CD 

animals.  The success rate of LTP induction was also compared across treatment groups. The 

success rates of slices reaching the pre-determined amplitude and slope threshold (i.e., at least a 

20% increase relative to baseline) were also significantly different between CD and HFD 

animals.  While 85% of slices from CD animals reached the amplitude threshold, only 60% of 

slices from HFD animals reached the threshold. In terms of slope, 90% of slices from CD 

animals reached the threshold, whereas only 60% of slices from HFD animals reached threshold. 

Taken together, the electrophysiological findings indicate that hippocampal synaptic plasticity 

was affected by our dietary treatment. Although there is no literature on DIO effects on the 

synaptic plasticity of the female rat hippocampus, the findings from our study agree with 

previous evidence that demonstrated HFD consumption and obesity can negatively affect 

learning and memory (refer to section 2.3.2b). In particular, Greenwood and Winocur (2005) fed 

male rats a diet of 40% calories from saturated fat for 3 months, and saw consistently lower 

performances on the three tests of learning and memory (of which, the water maze tested 

hippocampal-dependent spatial memory). Farr and colleagues (2008) found that their obese male 

mice (identified by having as 30% greater body weight relative to controls) performed more 

poorly than normal mice on hippocampal-dependent water maze and T maze tests, and also 

failed to maintain LTP.  
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Our study has demonstrated that HFD may compromise synaptic plasticity in female 

animals. As mentioned previously, additional measures such as triglyceride and cytokine levels 

need to be evaluated in order to reveal the possible mechanisms behind the observed 

electrophysiological phenomena in this study.  While the exact mechanisms for the observed 

associations between obesity and cognition and memory deficit have not been defined, BDNF 

has been suggested. BDNF is abundant in the hippocampus and has a significant role in the 

survival, maintenance, and differentiation of neurons - it acts on certain neurons, helping support 

the survival of existing neurons and encouraging the growth and differentiation of new neurons 

and synapses (Tozuka et al 2010). BDNF expression is increased in the hippocampus of animals 

that learn a spatial memory task (Mizuno et al 2000), and animals with decreased BDNF levels 

show deficits in learning and memory (Linnarsson et al 1997). BDNF facilitates LTP induction 

by enhancing synaptic response to tetanus stimulation, most likely due to BDNF regulation of 

synaptic vesicle mobilization and docking (Jovanovic et al 2000, Rex et al 2006, Yano et al 

2006). Notably, brain inflammation associated with HFD has been shown to decrease BDNF 

levels (Molteni et al 2002, Tozuka et al 2010).  Therefore, future trials should investigate what 

role BDNF may have had in our study, as BDNF has been reported to be negatively regulated by 

cytokines, and, as a neurotrophin, has large potential to be involved in the observed altered 

synaptic function in this study (Poo 2001, Yamada and Nabeshima 2003, Martinowich et al 

2007).   

Long-term potentiation can be divided into an early phase (E-LTP, that lasts up to 2 

hours) and later phase (L-LTP, that lasts 8 hours and up to days) (Lu et al 2008). The current set 

of experiments examined only E-LTP. As our pilot study established a difference in potentiation 

between HFD and CD animals, and among their respective offspring, it would be interesting to 
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investigate memory via induction of L-LTP. E-LTP and L-LTP involve different, although 

partially overlapping, biochemical pathways that lead to distinct changes at synapses (Lu et al 

2008). Differences seen in L-LTP would imply changes at the transcription and de novo protein 

synthesis level.  If future experiments are to examine the role of BDNF, L-LTP needs to be 

employed. Patterson and colleagues (1992) have shown that stimulation of Schaffer collaterals 

with HFS could increase BDNF mRNA in postsynaptic CA1 neurons. As mentioned, BDNF 

plays an important role in the proliferation, differentiation, and survival of neurons. Since BDNF 

levels can be measured using hippocampal homogenates, it would be interesting to determine 

whether HFD would decrease BDNF regulation, something which L-LTP could explore.  

Transgenerational Effects of Maternal Obesity 

There are no studies investigating the effects of maternal obesity on the synaptic 

plasticity of the offspring hippocampus. Experimental animal studies have demonstrated 

structural changes in the hippocampus of offspring from high-fat fed mothers (Niculescu 2009, 

Tozuka et al 2009, Park et al 2010), but, as previously explained, the structural changes are 

insufficient in signifying a change in synaptic function.  

The third phase of our longitudinal study investigated the pup generation, and examined 

two factors – diet (pups born from HFD dams or CD dams) and age (pre-adolescent, PA, or 

young adult, YA). The uneven sample number of female offspring (too few from either diet 

group) prevented analysis at the factor level of sex; therefore, this factor was removed from the 

ANOVA analysis. Drake and Reynold (2010) have reviewed the evidence from several human 

and animal studies to show that maternal obesity is associated with programming obesity and 

metabolic risk in the offspring. Although most of our biometrics showed no interaction between 

diet and age factors, some p values approached statistical significance and suggested a trend, 
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which, given the small sample size of the HFD pups, warrants further study to determine whether 

the model can produce offspring with an obese phenotype.  

Our data showed no interaction between diet and age in terms of normalized fEPSPs of 

post-HFS recordings. IO curve analyses further indicated that baseline synaptic transmission 

between pups was not different. At the PA stage, pups born from CD dams averaged 7% more 

potentiation in fEPSP amplitude than pups born from HFD dams. Diet-related differences in 

potentiation were much greater in the YA stage. Possibly, the impact of HFD on potentiation of 

fEPSP did not become apparent until a later age. These observations are consistent with other 

studies that identified age-dependent effects of exposures (e.g., nutrient deficiencies, toxin 

exposure), where older animals were more affected than younger animals (Queen et al 1993, Lu 

et al 2007). However, due to the small sample size of the current study, interpretations of the 

observed differences need to be made with caution. There were initially no reference values in 

the literature to help calculate a sufficient sample size.  The large 95% confidence intervals of 

several of our measures was an indication that sample size was small, suggesting that the 

precision may be lacking in our observations. Moreover, using an average of the effect size and 

the standard deviations obtained from our pilot study, we were able to calculate that 22 animals 

would be needed in each group for phase 3 of our study (National Research Council Committee 

on Guidelines for the Use of Animals in Neuroscience and Behavioural Research, 2003). 

Consequently, the observations in this study do not permit conclusions regarding changes in 

fEPSP potentiation and age. 

The potentiation success rate was also calculated for this phase of our study. The 

success rate of slices reaching the slope threshold was significantly different between slices from 

CD animals and HFD animals in the pre-adolescent stage, and the success rate of slices reaching 
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amplitude threshold was significantly different between slices from CD animals and HFD 

animals in the young adult stage. Given that our pilot study lacked a sufficient sample size, the 

significant differences in slope and amplitude success rates between age groups warrants further 

trials. 

Future trials of this study should measure cytokine levels and microglial activation 

markers. Bilbo and Tsang (2010) found that offspring from dams fed a HFD (60% calories from 

saturated fat) showed increased peripheral cytokines and increased hippocampal IL-1b responses 

at birth and in adulthood, indicating that systemic inflammation had been programmed into the 

offspring. They argued that maternal HFD primed microglial activation, and associated 

hyperleptinemia programmed into the offspring further exacerbated the already sensitive immune 

response. In addition, White and colleagues (2009) have shown that offspring from HFD dams 

had increased IL-6 in the brain. The authors speculated that increased IL-6 in the immature brain 

of the offspring could lead to white matter damage, and resulted in their observed declines in 

water maze performance. Without the cytokine profiles of our animals, we cannot comment upon 

brain inflammation as a cause for the observed changes between HFD and CD animals. 

However, future trials should measure inflammation markers to evaluate their potential 

involvement in the deleterious effects of maternal HFD on hippocampal function in both 

maternal and offspring generations.  

One of the aims of this study was to observe the effects of obesity on brain function 

across generations of animals. We hoped to extrapolate from our results, and apply our findings 

toward humans. It is possible to make inferences from our rodent research since all of the major 

brain structures in humans are also present in rodents and subserve approximately the same 

functions. Furthermore, the time-course of hippocampal development (specifically in the DG, 
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which forms prenatally and displays continued postnatal proliferation of granule cells) is the 

same in both rodents and humans (Rice 2000). The exposure to maternal obesity, therefore, is the 

same in both rodents and humans, throughout the stages of hippocampal development.  For these 

reasons, using electrophysiological measures to illustrate the effects of our dietary treatment on 

rat hippocampus can be extrapolated from our study to that in humans.   

Maternal Obesity and Offspring Synaptic Plasticity: strengths and limitations  

The greatest strength of this study was that many variables, like housing environment 

and diet consumption, were well controlled between treatment groups. Many animal studies in 

the literature do not show CD composition, or use a non-purified chow for the CD, which could 

have confounding effects when making comparisons with the HFD (Ainge, et al 2010). Several 

publications have reported composition variability in non-purified diets, which could result in 

variable findings across studies (Newberne 1975, Schecter 1996, Thigpen et al 2004, Jensen and 

Ritskes-Hoitinga 2007). Notably, concentrations of essential ingredients can vary across different 

batches, as well as the presence of unintentional additives and biologically active components 

that can significantly influence animals consuming the diet. Variable protein, fat, carbohydrate, 

vitamin, and mineral compositions can have physiological effects that can confound the 

experimental results. As well, non-purified diets can contain bioactive compounds (such as soy 

isoflavones) that can significantly influence different endpoints, such as effects on the skeletal 

system, and sex organ weights (Jensen and Ritskes-Hoitinga 2007).  Most relevant to this study 

is the estrogenic and antiestrogenic effects elicited by isoflavones (via the chemical structure 

similar to 17-β -estradiol).  Estrogen receptors are found throughout the CNS, and activation of 

certain subtypes of estrogen receptors have been shown to modulate hippocampal synaptic 
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plasticity (Ooishi Y et al 2012). Since isoflavones can cross the blood brain barrier and affect the 

brain (Pilsakova 2010), it was important that our study used purified diets.  

 A great limitation of this study involved small litter size that resulted in inadequate 

numbers of offspring. The typical litter size of Sprague-Dawley rats is 10.6, with sex ratio being 

equal (Vanheest 1997). Given that obesity affects fertility (Dixit 2008), and that previous studies 

have indicated breeding difficulties (Niculescu 2009), the difficulty experienced in this pilot 

study, where our litter sizes ranged greatly, should have been expected.  

Several improvements may be made regarding the breeding protocol, in order to 

increase litter size. As this was the first time animal breeding occurred within our lab, several 

recommendations from the animal care staff were received that may be employed for future 

trials. For example, males bred with female rats should be experienced, and the breeding phase 

held in a separate room to avoid any distress that may influence the success of breeding.  

Maternal cannibalism occurs in the first 24 hours after birth, and the stress-induced infanticide 

that may have occurred in our study could have been due to physical factors, such as excessive 

noise and too frequent cage cleaning or movement (Lane-Petter, et al 1968). The entire 

gestational period should also be held in a separate room to avoid stress on the dams, particularly 

considering that prenatal stress has been reported to affect LTP (Yang, et al 2006). Some reports 

indicate alterations in sex ratio from prenatal nutrition manipulation studies. Increasing saturated 

fat content in mice and polyunsaturated fatty acid composition in sheep have been shown to 

skew the sex ratio toward more male offspring (Alexenko et al 2007, Green et al 2008). 

Although reported in a limited number of studies, there tended to be a greater number of males 

per litter with our study as well. However, sample size and litter numbers are too small to make 

any real conclusions on sex ratios.   
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In future trials, it would be greatly beneficial to conduct this study with an inclusion of 

the additional sex factor. Estrany and colleagues (2011) have shown significant sex dimorphisms 

between male and female rats exposed to the same diet. The study investigated rats fed a high-fat 

diet (30% calories from saturated and unsaturated fat), and found increased triglycerol 

accumulation in male inguinal fat depots, but decreased accumulation in the same depot of 

female animals.  Therefore, the factor of sex has probable interaction effects with our other two 

factors (diet and age), and it would be interesting to observe the extent of the sex dimorphism on 

the RT fat pad weights that would be measured.  

General Conclusions  

Obesity is a risk factor for many conditions, such as type 2 diabetes and CVD (Kulie et 

al., 2011). In addition, obesity is fast approaching tobacco use as a leading cause of preventable 

death (Mokdad 2000). In addition to the effects of obesity on overall health, obesity is affecting 

the economy as well. As rates of obesity and related co-morbidities increase, so do the associated 

health care and disability costs. In 1998 the estimated medical costs of obesity approached $78.5 

billion in the US, and these costs were thought to have reached $147 billion in 2008 (Firkelstein 

2009). It is estimated that the health care costs for overweight and obese individuals in the US 

are 37% higher compared to those of normal weight (Firkelstein 2009). Despite the fact that 

obesity is clearly damaging to our population, insurance companies and health care providers 

have not adjusted policies to consider obesity a health risk, like that of tobacco use and alcohol 

abuse (Bhattacharya and Sood, 2006). Therefore, the results from this study not only demonstrate 

the damaging effects of obesity, but may also help form new policies towards obesity awareness 

and prevention.  
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The results of the current study demonstrate that DIO can be accomplished in female 

rats fed a 45% kcal fat diet (with lard as the primary source of fat calories). Metabolic data 

obtained reveal changes in glucose tolerance in animals on HFD treatment as early as 8 weeks, 

and suggest that further testing be performed to determine whether an obese phenotype can be 

established with a shorter length of diet treatment. The results of this study supplement current 

literature on DIO animal models, which have not applied the current treatment regimen. The 

most common challenge in DIO research is diet composition (Kirk 2009, Ainge 2011).  Among 

the studies that use a diet consisting of 45% calories from fat, some lack detail in describing the 

full diet composition as well as applying a consistent length of exposure to the diet (Shankar 

2008, Howie 2009, Samprey 2011). The shorter duration of treatment suggested by our data 

provides an even more promising and efficient DIO model.  

In our study, dams were kept on their diets throughout gestation, and pups continued on 

the respective treatment diets of their mothers until postnatal day 21. Similar to humans, it is 

known that maternal nutrition during pregnancy impacts neurodevelopment, and brain 

development continues postnatally, and is very sensitive to environmental influences in the 

neonatal period (Walker, et al 2007). Using our diet regimen, studies in the future should 

compare effects on dams that do not remain on their diets during gestation, and also on pups that 

do not continue on their mothers’ respective diets. Walker and colleagues (2007) have shown 

that fat content in the maternal diet affects milk composition and subsequently induces 

significant increases in the plasma level of leptin in pups, which, in the neonatal period, has large 

influences on proper brain development (refer to section 4.3.2).  

We have designed the current pilot study to mimic the human condition, which was best 

represented by having our groups remain on their respective maternal diets until weaning. 
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Studies have shown similarities in dietary patterns between children and their parents (Davison 

2001, Vauthier et al 1996). Although the mother’s obese status cannot be changed in time to 

prevent effects on the already developing fetus, it would be interesting to see how modifications 

to their diet during gestation and after parturition could affect the synaptic abilities of the 

offspring. Sun and colleagues (2012) showed significantly higher plasma leptin levels in pups (at 

PND 7, and PND 21) of dams fed a high-fat diet during lactation, and Ahima and colleagues 

(1999) have reported that decreased neonatal leptin levels can affect myelin proteins. Although 

electrophysiology was not conducted, the impact of leptin should be considered in affecting 

synaptic transmission since abnormal myelination will affect synaptic efficacy. Depending on the 

findings of the proposed future studies, targets of interventions could be directed at maternal 

nutritional knowledge and parental child feeding practices.  

To our knowledge, no previous studies have performed electrophysiological recordings 

on pups born from either HFD dams or CD dams. The main goal of our study was to determine 

the effects of maternal obesity on offspring hippocampal function. By utilizing the LTP protocol, 

our data suggest that offspring from obese dams showed memory impairment through a lowered 

potentiation in their evoked responses. Our data showed pups from HFD dams achieving 

significantly less potentiation than pups from CD dams, which suggests possible learning and 

memory deficiencies. Extrapolating to the human condition, this would suggest greater attention 

be given to children born under maternal obesity.  Indeed, in several longitudinal studies, 

maternal BMI and GDM status have suggested that, as Vickers and colleagues (2011) have 

replicated in rodents, maternal obesity increases the risk of childhood obesity (Whitaker 2004, 

Boney 2005, Reilly 2005). This suggests interventions be targeted to children at the pre-

pubescent stage, where inequalities in learning abilities are less pronounced, but are projected to 
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exacerbate with age.  Further investigations should also include brain-damaged pups (e.g., 

genetically modified strains, traumatic, or ischemic brain injury), so that the extent of 

impairment that we have detected electrophysiologically between our diets can be compared to 

the compromised potentiation of brain damaged pups.  For example, Winocur and Greenwood 

(2005) saw that rats fed HFD were impaired on all task performances compared to CD rats, and 

the deficits were comparable to brain-damaged rats fed normal diets that were tested under the 

same conditions. There is a limited collection of literature on maternal obesity, and the results 

from comparisons with brain-damaged rats would not only contribute to maternal obesity 

research, but also have practical implications as well (i.e., provide a solid dissuasion from 

maternal obesity).  

The data obtained from this study suggest that our high-fat diet is obesogenic and 

negatively affects maternal hippocampal synaptic plasticity, and that pups born from dams fed 

this diet likely have impaired hippocampal synaptic plasticity, as well. The results of this study 

complement epidemiological findings in humans, and the understanding of such developmental 

programming will allow for better pre-pregnancy advice and care to improve the health of 

children in the future.  Evidence has supported the claims of maternal obesity and its influence 

on offspring risks of cardiovascular disease, diabetes, and obesity.  Whether maternal obesity 

affects learning and memory at a pre-adolescent stage, young adult stage, or both, the novel 

knowledge from this study will allow for the development of better treatments suited towards the 

particular phenotype of the child.  

 

 

 

 



 

85 
 

References 

Adami F (2008) Childhood and adolescent obesity and mortality: a systematic review of cohort 

studies. Cad. Saude Publica 24(S4):S558-S568. 

Adesnik H et al (2008) NMDA receptors inhibit synapse unsilencing during brain development. 

Proc Natl Acad Sci USA 105:5597-5602. 

Afifi MM and Abbas AM (2011) Monosodium glutamate versus diet induced obesity in pregnant 

rats and their offspring. Acta Physiologica Hungarica 98(2):177-188. 

Ahima RS, et al (1999) Regulation of neuronal and glial proteins by leptin: implications for brain 

development. Endocrinology 140(6):2755-2762. 

Ahima RS (2006) Adipose tissue as an Endocrine organ. Obesity 14:S242-S249. 

Ainge H, et al (2011) A systematic review on animal models of maternal high fat feeding and 

offspring glycaemic control. Int J Obes 35:325-335. 

Alexenko AP, et al (2007) The contrasting effects of ad libitum and restricted feeding of a diet 

very high in saturated fats on sex ratio and metabolic hormones in mice. Biol of Reprod 77: 599-

604. 

Anderson P, et al (2007) Historical perspective: Proposed Functions, Biological Characteristics, -

and Neurobiological Models of the Hippocampus. In: The Hippocampus Book (Andersen P, 

Morris R, Amaral D, Bliss T, O'Keefe J, eds). New York: Oxford University Press. 

Balkau B et al (2007) International day for the evaluation of abdominal obesity (IDEA): a study 

of waist circumference, cardiovascular disease, and diabetes mellitus in 168,000 primary care 

patients in 63 countries. Circulation 116(17):1942-1951. 

Banks WA, et al (2004) Triglycerides induce leptin resistance at the blood-brain barrier. 

Diabetes 53:1253-1260. 

Barker DJ (1998) Mothers, babies, and health in later life. Edinburgh: Churchill Livingstone. 

Bauer EP, Schafe GE, LeDoux JE (2002) NMDA receptors and L-type voltage-gated calcium 

channels contribute to long-term potentiation and different components of fear memory 

formation in the lateral amygdala. J Neurosci 22:5239-5249. 

Bhattacharya, J and Sood N (2006) Health insurance and the obesity externality, in Bolin K and 

Cawley (ed) The Economics of Obesity (Advances in Health Economics and Health Services 

Research, Volume 17) p 279-318. 

Bigal ME, et al (2007) Obesity, migraine, and chronic migraine: possible mechanism of 

interaction. Neurology 68(21):1851-1861. 



 

86 
 

Bilbo SD and Tsang V (2010) Enduring consequences of maternal obesity for brain 

inflammation and behavior of offspring. FASEB J 24:2104-2115.  

Bliss TV and Collingridge GL (1993) A synaptic model of memory: Long-term potentiation in 

the hippocampus. Nature 361:31-39. 

Boeka AG, Lokken KL (2008). Neuropsychological performance of a clinical sample of 

extremely obese individuals. Arch Clin Neuropsychol 23:467-474. 

Boney CM, et al (2005) Metabolic syndrome in childhood: association with birth weight, 

maternal obesity, and gestational diabetes mellitus. Pediatrics 115(3):290-296. 

Bouret SG (2010) Neurodevelopmental actions of leptin. Brain Res 1350:2-9. 

Bruce-Keller AJ, Keller JN, Morrison CD (2009) Obesity and vulnerability of the CNS. BBA 

1792(5):395-400. 

Buettner R, Scholmerich J, Bollheimer LC (2007) High-fat diets: modeling the metabolic 

disorders of human obesity in rodents. Obesity 15:798-808. 

Cajal RS (1894) La fine structure des centres nerveux. Proc R Soc Lond 55:444-468. 

Calle EE et al (1999) Body-mass index and mortality in a prospective cohort of US adults. N Eng 

J Med 341109-1105. 

Cameron HA, and Gould E (1994) Adult neurogenesis is regulated by adrenal steroids in the 

dentate gyrus. Neuroscience 61:203-209. 

Cheung THC and Cardinal RN (2005) Hippocampal lesions facilitate instrumental learning with 

delayed reinforcement but induce impulsive choice in rats. BMC Neurosci 6:36. 

Cho S, Wood A, and Bowlby MR (2007) Brain slices as models for neurodegenerative disease 

and screening platforms to identify novel therapeutics. Curr Neuropharmacol 5(1):19-33 

Considine RV, et al (1996) Serum immunoreactive-leptin concentrations in normal-weight and 

obese humans. N Eng J Med 334:292-295. 

Cooper R, et al (1997) ACE, angiotensinogen and obesity: a potential pathway leading to 

hypertension. J Hum Hypertens 11:107-111 

Cordain, L et al (2005) Origins and evolution of the Western Diet: health implications for the 

21
st
 century. Am J Clin Nutr 81(2):131-144. 

Craft, S (2009) The role of metabolic disorders in AD and vascular dementia: two roads 

converged. Arch Neurol 66(3):300-5.  

Dahlman I and Arner P (2007) Obesity and polymorphisms in genes regulating human adipose 

tissue. Int J Obes 31:1629-1641. 



 

87 
 

Danzter R, et al (2008) From inflammation to sickness and depression: when the immune system 

subjugates he brain. Nat Rev Neurosci 9:46-56. 

Davison, KK and Birch, LL (2001) Childhood overweight: a contextual model and 

recommendations for future research. Obes Rev 2(3):159-171. 

Dawson G, Webb SJ, McPartland J (2005) Understanding the nature of face processing 

impairment in autism: insights form behavioral and electrophysiological studies. Dev 

Neuropsychology 27(3):403-424. 

De Koning L, et al (2007) Waist circumference and waist-to-hip ratio as predictors of 

cardiovascular events: meta-regression analysis of prospective studies. Eur Heart J 28(7):850-

856. 

DeLany JP, et al (2000) Differential oxidation of individual dietary fatty acids in humans. Am J 

Clin 72:905-911. 

Dixit A, Girling JC (2008) Obesity in pregnancy. J Obes Gynocol 28(1):14-23. 

Drake AJ, Reynold RM (2010) Impact of maternal obesity on offspring obesity and 

cardiometabolic disease risk. Reproduction 140:387-398 

Dupret D et al (2008) Spatial relational memory requires hippocampal adult neurogenesis. PLoS 

ONE 3:1-14. 

Ellis J, Lake A & Hoover-Plow J (2002) Monounsaturated canola oil reduces fat deposition in 

growing female rats fed a high or low fat diet. Nutr Res 22: 609–621. 

 

Engeli S et al (2005) Weight loss and the renin-angiotensin-aldosterone system. Hypertension 

45(3):356-62. 

Engeli S, Sharma AM (2002) Emerging concepts in the pathophysiology and treatment of 

obesity-associated hypertension. Curr Opin Cardiol 12:355-359. 

Eriksson JG, et al (2003) Early growth and coronary heart disease in later life: longitudinal 

study. BMJ 322:949-953. 

Estrany ME et al (2011) Isocaloric intake of a high-fat diet modifies adiposity and lipid handling 

in a sex dependant manner in rats. Lipids Health Dis 10:52-62. 

Ethell IM, and Pasquale EB (2005) Molecular mechanisms of dendritic spine development and 

remodeling. Prog in Neurobiol 75(3):161-205. 

Farnaud S (2009) The evolution of the three Rs. Altern Lab Anim 37:249-254. 

Farr SA, et al (2008) Obesity and hypertriglyceridemia produce cognitive impairment. 

Endocrinology 149(5):2628-2636. 



 

88 
 

Fazekas F, et al (1993) Pathologic coreates of incidental MRI white matter signal 

hyperintensities. Neurology 43(9):1693-1699. 

Fergenbaum JH, et al (2009). Obesity and lowered cognitive performance in a Canadian First 

Nations population. Obesity 17:1957-1963. 

Finley M (2004) Functional validation of adult hippocampal organotypic cultures as an in vitro 

model of brain injury. Brain Res 1001:125-132. 

Firkelstein EA, et al (2009) Annual medical spending attributable to obesity: payer and service-

specific estimates. Health Affairs 28:822-831. 

Fitzpatrick AL, et al (2009) Midlife and late-life obesity and he risk of dementia: cardiovascular 

health study. Arch Neurobiol 66:336-342. 

Flegal KM et al (2002) Prevalence and trends in obesity among US adults, 1999-2000. JAMA 

288(14):1723-1727. 

Fontaine KR et al (2003) Years of life lost due to obesity. JAMA 289:187-193. 

Frassen R, et al (2008) Obesity and dyslipidemia. Endocrinol Metab Clin N Am 37:623-633. 

Freeman LR, et al (2010) A high fat/high cholesterol diet inhibits growth of fetal hippocampal 

transplants via increases inflammation.  Cell Transplantation doi: 10.3727/096368910X557281 

Frick A, Magee J, Johnston D (2004) LTP is accompanied by an enhanced local excitability of 

pyramidal neuron dendrites. Nat Neurosci 7:126-135. 

Gaziano JM (2010) Fifth phase of the epidemiologic transition – The age of obesity and 

inactivity. JAMA 303(3):275-276. 

Gelardi NL, et al (1991) Evaluation of insulin sensitivity in obese offspring of diabetic rats by 

hyperinsulinemic-euglycemic clamp technique. Pediatr Res 30:40-44. 

Gluckman PD, Hanson MA, and Spencer HG. (2005) Predictive adaptive responses and human 

evolution. Trends Ecol Evol 20(10):527-533. 

Godfrey KM (2002) The role of the placenta in fetal programming – a review. Placenta 23:S20-

S27. 

Gordon N (1997)  Nutrition and cognitive function. Brain Dev 19:165-170. 

Granger R et al (1996) Distinct memory circuits composing the hippocampal region. 

Hippocampus 6:567-578. 

Granholm AC, et al (2008) Effects of a saturated fat and high cholesterol diet on memory and 

hippocampal morphology in the middle-aged rat. J Alz 14:133-145.   



 

89 
 

Green MP, et al (2008) Nutritional skewing of conceptus sex in sheep: effects of a maternal diet 

enriched in rumen-protected polyunsaturated fatty acids (PUFA). Reprod Bio Endocrin 6:21. 

Greenwood CE and Winocur G (1996) Cognitive impairment in rats fed high-fat diets: A specific 

effect of saturated fatty-acid intake. Behav Neurosci 110(3):451-459. 

Grosshans DR, et al (2002) LTP leads to rapid surface expression of NMDA but not AMPA 

receptors in adult rat CA1. Nat Neurosci 5:27-33. 

Gunstar K et al (2008). Relationship between body mass index and brain volume in healthy 

adults. Int J Neurosci 118:1582-1593. 

Guo F and Jen KL (1995) High-fat feeding during pregnancy and lactation affects offspring 

metabolism in rats. Physiol Behav 57:681-686. 

Gustafson D, et al (2003) An 18-year-follow-up of overweight and risk of Alzheimer’s disease. 

Arch Neurol 62(1):55-60. 

Hall JE et al (1998) Abnormal kidney function as a cause and a consequence of obesity 

hypertension. Clin Exp Pharmacol Physiol 25(1):58-64. 

Hansen PA, et al. (1998) A high fat diet impairs stimulation of glucose transport in muscle: 

functional evaluation of potential mechanisms. J Biol Chem 273:26157-26163. 

Hariri N and Thibault L (2010) High-fat diet-induced obesity in animal models. Nutr Res Rev 

23:270-299.  

Harvey J (2007) Leptin regulation of neuronal excitability and cognitive function. Curr Opin 

Pharmacol 7(6-3):643-647. 

Hebb DO (1949) The organization of behaviour. New York: John Wiley & Sons 

Horvath TL (2006) Synaptic plasticity in energy balance regulation. Obesity 14:2285-2335. 

Howie GJ, et al (2008) Maternal nutritional history predicts obesity in adult offspring 

independent of postnatal diet. J Physiol 587:905-915.  

Hulshoff HE, et al (2000)Prenatal exposure to famine and brain morphology in schizophrenia. 

Am J Psychiatry 157:1170-1172. 

Hwang LL, et al (2010) Sex differences in high-fat diet-induced obesity, metabolic alterations 

and learning, and synaptic plasticity in mice. Obesity 18(3):463-469. 

Iacobellis G, Corradi D, Sharma AM (2005) Epicardial adipose tissue: anatomic, biomolecular, 

and clinical relationship with the heart. Nat Clin Pract Cardiovasc Med 2:536-543. 



 

90 
 

Jacob S, et al (1999) Association of increased intramyocellular lipid content with insulin 

resistance in lean nondiabetic offspring of type 2 diabetic subjects. Diabetes 48(5):1113-1119. 

Jagust W, et al (2005) Central obesity and the aging brain. Arch Neurol 62:1545-1548. 

Jawerbaum A et al  (2010) Animal models in diabetes and pregnancy. Endocr Rev 31(5):680-

701. 

JeerakayhillT, et al (2004) Stroke risk profile predicts white matter hyperintensity volume: the 

Framingham Study. Stroke 35(8):1857-1861. 

Jensen MN, and Ritskes-Hoitinga M (2007) How isoflavone levels in common rodent diets can 

interfere with the value of animal models and with experimental results. Lab Anim 41(1):1-18. 

Jovanic JN et al (2000) Synapsins as mediators of BDNF-enhanced neurotransmitter release. Nat 

Neurosci 3(4):323-329. 

Kadowaki T and Yamaguchi T (2005) Adiponectin and adiponectin receptors. Endocr Rev 

26:439-451. 

Kahn BB, and Flier SS (2000) Obesity and insulin resistance. J Clin Invest 106(4):473-481. 

Kanoski SE, Davidson TL (2011) Western diet consumption and cognitive impairment: links to 

hippocampal dysfunction and obesity. Physiol Behav 103:59-68. 

Keen, CL et al (2003) The plausibility of micronutrient deficiencies being a significant 

contributing factor to the occurrence of pregnancy complications. J Nutr 133:1597S-1605S. 

Kenchaiah S, Evans JC, Levy D (2002) Obesity and the risk of heart failure. N Eng J Med 

.347(5):305-313 

Kerchner GA, and Nicoll RA (2008) Silent synapses and the emergence of a postsynaptic 

mechanism for LTP. Nat Rev Neurosci 9(11):813. 

Kim C, Newton KM, and Knopp RH (2002). Gestational diabetes and the incidence of type 2 

diabetes: a systematic review. Diabetes Care 25:1862-1868. 

Kirk SL, et al (2009) Maternal Obesity Induced by Diet in Rats Permanently Influences Central 

Processes Regulating Food Intake in Offspring. PLoS ONE 4(6): e5870. 

doi:10.1371/journal.pone.0005870 

Kivpelto M, et al (2005) Obesity and vascular risk factors at midlife and the risk of dementia and 

Alzheimer disease. Arch Neurol 62(10):1556-1560. 

Konstantinos K, et al (2009) Role of ectopic fat in the pathogenesis of insulin resistance. Clin 

Lipidol 4(4):457-464. 

Kulie T et al (2011) Obesity and women’s health: an evidence-based review. J Am Board Fam 

Med 24:75-85. 



 

91 
 

Kuller LH e al (1996) Relation of C-reactive protein and coronary heart disease in the MRFIT 

nested case-control study. Am J Epidemiol 144:537-547.  

Kurukulasuriya LR et al (2008) Hypertension in Obesity. Endocrinol Metab Clin N Am 37:647-

662. 

Lamprecht R and LeDoux J (2004) Structural plasticity and memory. Nat Rev Neurosci 5:45-54. 

Lane-Petter W, Lane-Petter ME, Bowtell CW (1968) Intensive breeding of rats. Lab Animals 

2:35.  

Langley-Evans SC, et al (1996) Weaning rats exposed to maternal low-protein diets during 

discrete periods of gestation exhibit differing severity of hypertension. Clin Sci 91:607-615. 

Langley-Evans SC et al (2000) Critical differences between two low protein diet protocols in the 

programming of hypertension in the rat. Int J Food Sci Nutr 51:11-17. 

Lein PJ, et al (2011) Acute hippocampal slice preparation and hippocampal slice cultures. 

Methods Mol Biol 758:115-134. 

Li S, et al (2007) Assessment of diet-induced obese rats as an obesity model by comparative 

functional genomics. Obesity 16(4):811-818. 

Li XL, et al (2002) Impairment of long-term potentiation and spatial memory in leptin receptor-

deficient rodents. Neuroscience 113:607-615. 

Liao D, Hessler NA, Malinow R (1995) Activation of post-synaptically silent synapses during 

pairing-induced LTP in CA1 region of hippocampal slice. Nature 375:400-404. 

Linne Y, et al (2002) Natural course of gestational diabetes mellitus; long term follow up of 

women in the SPAWN study. British J of Obs and Gyn 109:1227-1231. 

Lisman J et al (2002) The molecular basis of CaMKII function in synaptic and behavioural 

memory. Nat Rev Neurosci 3:175-190. 

Lichtenstein AH, and Schawb US (2000). Relationship of dietary fat to glucose metabolism. 

Atherosclerosis 150:227-243.  

Linnarsson S, et a (1997) Learning deficit in BDNF mutant mice. Eur J Neurosci 9:2581-2587. 

Longstretch WT, et al (1996) Clinical correlates of white matter findings on cranial magnetic 

resonance imaging of 3301 elderly people: The Cardiovascular Health Study. Stroke 27:1374-

1282. 

Lopez-Jimenez F and Cortes-Bergoderi M. (2011) Obesity and the Heart. Rev Esp Cardiol 

64(2):140-149. 

Lu B and Martinowich K (2008) Cell biology of BDNF and its relevance to schizophrenia. 

Novartis Found Symp 289:119-195. 



 

92 
 

Lu Y et al (2007) Age-dependent requirement of AKAP150-anchored PKA and GluR2-lacking 

AMPA receptors in LTP. EMBOJ 26:4879-4890. 

Lu Y et al (2008) BDNF: a key regulator for protein-synthesis dependent LTP and long-term 

memory? Neurobiol Learn Mem 89(3):312-323. 

Lucus A (1991) Programming by early nutrition in man. Ciba Found Symp. 156:38-50. 

Lumey LH, Stein AD, and Susser E (2011) Prenatal famine and adult health. Annu Red Public 

Health 32:237-262. 

Maennig W, Schicht T and Sievers T (2008) Determinants of obesity. J Socio-Economics 

37(6):2523-2534. 

Malavazos AE et al (2007) Influence of epicardial adipose tissue and adipocytokine levels on 

cardiac abnormalities in visceral obesity. Int J Cardiol 12(1):132-4. 

Malenka RC (1995) LTP and LTD: Dynamic and interactive processes of synaptic plasticity. 

Hippocampus. The Neuroscientist 1:35-42. 

Mamun AA et al (2011) Associations of maternal pre-pregnancy obesity and excess pregnancy 

weight gains with adverse pregnancy outcomes and length of hospital stay. BMC Pregnancy and 

Childbirth 11:62-70. 

Martinowich K, et al (2007) New insights into BDNF function in depression and anxiety. Nat 

Neuroscci 10:1089-1093. 

McGravrock JM, et al (2006) Adiposity of the heart, revisited. Ann Intern Med 144:517-524. 

McNay EC, et al (2011) Hippocampal memory processes are modulated by insulin and high-fat-

induced insulin resistance. Neurobiol Learn Mem 93:546-553. 

Mirescu C, Peters JD, and Gould E (2004) Early life experience alters response of adult 

neurogenesis to stress. Nat Neurosci 7:841-846. 

Mizuno M, et al (2000) Involvement of brain-derived neurotrophic factors in spatial memory 

formation and maintenance in a radial arm maze test in rats. J Neurosci 20:7116-7121.  

Mogado-Bernal I (2011) Learning and memory consolidation: linking molecular and behavioural 

data. Neuroscience 176:12-19. 

Mokdad AH, et al (2004) Actual causes of death in the US. JAMA 291:1238-1245. 

Molteni R, et al (2002) A high-fat, refined sugar diet reduced hippocampal brain-derived 

neurotrophic factor, neuronal plasticity, and learning. Neuroscience 112(4):803-814. 

Nathanielsz PW (2006) Animal models that elucidate basic principles of the developmental 

origins of adult disease. ILAR J 47(1):73-82. 



 

93 
 

National Research Council Committee on Guidelines for the Use of Animals in Neuroscience 

and Behavioural Reaserch. Guidelines for the Use of Animals in Neuroscience and Behavioural 

Research. Washington: National Academies Press; 2003.  

Newberne PM (1075) Influence of pharmacological experiments of chemicals and other factors 

in diets of laboratory animals. Fed Proc 34(2):209-218.  

Nicoll R & Malenka RC (1995) Contrasting properties of two forms of long-term potentiation in 

the hippocampus. Nature 377:115-118. 

Niculescu MD, Lupu DS (2009) High fat diet-induced maternal obesity alters fetal hippocampal 

development. Int J Dev Neurosci 17(7):627-633. 

Nivoit P, et al (2009) Established diet-induced obesity in female rats leafs to offspring 

hyperphagia, adiposity and insulin resistance. Diabetologia 52:1133-1142. 

Nowbar S, et al (2004) Obesity associated hypoventilation in hospitalized patients. JAMA 116:1-

7. 

Nusser Z (2000) AMPA and NMDA receptors: similarities and differences in synaptic 

distribution. Curr Opin Neurobiol 10:337-341 

O’Keele J and Nadel L (1978) The hippocampus as a cognitive map. London; Clarendon Press. 

O’Malley D, et al (2007) Leptin promotes rapid dynamic changes in hippocampal dendritic 

morphology. Mol Cell Neurosci 35(4):559-572. 

Ogden CL, et al (2006) Prevalence of overweight and obesity in the United States, 1999-2004. 

JAMA 295:1549-1555. 

Oh MC, et al (2006) Extrasynaptic membrane trafficking regulated by GluR1serine 845 

phosphorylation primes AMPA receptors for long-term potentiation. J Biol Chem 281:752-758. 

Olsen AL and Zwilich C (2005) The obesity hypoventilation syndrome. JAMA 118(9):348-356. 

Ooishi Y, et al (2012) Modulation of synaptic plasticity in the hippocampus by hippocampus-

derived estrogen and androgen. J Steroid Biochem Mol Biol 131(1-2):37-51. 

Pannacciulli N, et al (2006). Brain abnormalities in human obesity: a voxel-based morphometric 

study. Neuoimage 31:1419-1425. 

Park HR, et al (2010) A high-fat diet impairs neurogenesis: involvement of lipid peroxidation 

and brain-derived neurotrophic factor. Neurosci Lett 482(3):235-239. 

Park M, et al (2000) Recycling Endosomes supply AMPA receptors for LTP. Science 305:1972-

1975. 

Passafaro M, et a. (2001) Subunit-specific temporal and spatial patterns of AMPA receptor 

exocytosis in hippocampal neurons. Nat Neurosci 4:917-926. 



 

94 
 

Patterson SL et al (1992) Neurotrophin expression in rat hippocampal slices: a stimulus 

paradigm inducing LTP in CA1 evokes increases in BDNF and NT-3 mRNAs. Neuron 

9(6):1081-1088.  

Penzes P, et al (2008) Convergent CaMK and RacGEF signals control dendritic structure and 

function. Trends Cell Biol 18:405-413. 

Perez-Otano I, Ehlers MD (2005) Homeostatic plasticity and NMDA receptor trafficking. Trends 

Neurosci 28:229-238. 

Picciano, MF (2003) Pregnancy and lactation: physiological adjustments, nutritional 

requirements and the role of dietary supplements. J Nutri 133:1997S-2002S. 

Pickard L et al (2000) Developmental changes in synaptic AMPA and NMDA receptor 

distribution and AMPA receptor subunit composition in living hippocampal neurons. J Neurosci 

20(21):7922-7931. 

Piers LS, et al (2003) Substitution of saturated with monounsaturated fat in a 4-week diet affects 

body weight and composition of overweight and obese men. Br J Nutr 90:717-720. 

Pilsakova L, Riecansky I, Jagla F (2010) The physiological actions of isoflavone phytoestrogens. 

Phsyio Res 59:651-664. 

Poo M (2001) Neurotrophins as a synaptic modulator. Nat Rev Neurosci 2:24-32.  

Popkin BM (1998) The nutrition transition and its healthier implications in lower income 

countries. Public Health Nutr 1:5-21. 

Poulain M et al (2006) The effect of obesity on chronic respiratory diseases: pathophysiology 

and therapeutic strategies. CMAJ 174(9):1293-1299 

Praga M and Morales E (2010) Obesity-related renal damage: changing diet to avoid 

progression. Kidney Int 78:633-635. 

Queen SA et al (1993) Dose- and age-dependent effects of prenatal ethanol exposure on 

hippocampal metabotropic-glutamate receptor-stimulated phosphoinositide hydrolysis. Alcohol 

Clin Exp Res 17(4):887-893. 

Rahmouni K, et al (2005) Obesity induced hypertension: new insights into mechanism. 

Hypertension 45(1):9-14. 

Ramachenderan J, Bradford J, and Mclean M (2008) Maternal obesity and pregnancy 

complications: a review. Aus and New Zealand J Obs and Gynacol 48:228-235. 

Ravell AC, et al (1976) Obesity in young men after famine exposure in utero and early infancy. 

N Engl J Med (29):349-353. 



 

95 
 

Redmer DA, Wallace JM, Reynolds LP (2004) Effect of nutrient intake during pregnancy on 

fetal and placental growth and vascular development. Domestic Animal Endocrinol 27(3):199-

217. 

Reeves, S and Bernstein IM (2008) Optimal growth modeling. Semin Perinatol 32:148-153. 

Reilly JJ et al (2005) Early life risk factors for obesity in childhood: cohort study. BMJ 

330:1357. 

Resta O, et al (2001) Sleep-related breathing disorders, loud snoring, and excessive daytime 

sleepiness in obese subjects. Int J Obs Relat Metab Disord 25:699-675. 

Rex CS, et al (200) Restoration of long-term potentiation in middle-aged hippocampus after 

induction of brain-derived neurotrophic factor. J Neurophysiol 9692):677-685. 

Rice D, Barone S (2000) Critical periods of vulnerability for the developing nervous system: 

evidence from human and animal models. Env Health Persp 108(3):SS511-S533. 

Rothman KJ (2008) BMI-related errors in the measurement of obesity. Int J Obesity 32:S56-S59. 

Rothwell NJ, Stock MJ (1988) The cafeteria diet as  a tool for studies of thermogenesis.  J 

Nutr118:925-928. 

Salome CM, King GG, and Berend N (2010) Physiology of obesity and effects on lung function. 

J Appl Physiol 108:206-211. 

Samprey BP, et al (2011) Cafeteria diet is a robust model of human metabolic syndrome with 

liver and adipose inflammation: comparison to high-fat diet. Obesity 19(6):1109-1117. 

Scarabin PY et al (1996) Population correlates of coagulation factor VII. Arterioscler Throm 

Vasciol 16:1170-1176. 

Schecter AJ, Olson J, Papke O (1996) Exposure of laboratory animals to polychlorinated 

dibenzodioxins and polychlorinated cibenzofurans from commercial rodent chow. Chemosphere 

32(3):501-508. 

Scholtz W, Phillips DIW (2009) Fetal origins of mental health: evidence and mechanisms. Brain 

Behav Immunity 23:905-916. 

Schrauwen P, Hesselink MK (2004) Oxidative capacity, lipotoxicity, and mitochondrial damage 

in type 2 diabetes. Diabetes 53:1412-1417. 

Sclafani A and Nissenbaum JW (1987) Taste preference thresholds for polycose, maltose, and 

sucrose in rats. Neurosci Biobehav Rev 11(2):181-185. 

Shankar, K et al (2008) Maternal obesity at conception programs obesity in offspring. AJP 

294(2):528-538. 



 

96 
 

Shanley LJ, Irving AJ, and Harvey J (2001) Leptin enhances NMDA receptor function and 

modulates hippocampal synaptic plasticity. J Neurosci 21:1-6. 

Sherrington CS (1906) The integrative action of the nervous system. 2
nd

 Ed. Yale Uni Press, 

New Jersey. 

Shields M, Carroll MD, Ogden CL (2011). Adult obesity prevalence in Canada and the United 

States. NCHS Data Brief No. 56 

Shors TJ et al (2001) Neurogenesis in the adult is involved in the formation of trace memories. 

Nature 410:372-376. 

Sin DD, Jones RJ, Man SF (2002) Obesity is a risk factor for dyspnea but not for airflow 

obstruction. Arch Intern Med 163:1477-1481. 

Sirimi N, Goulis DG (2010) Obesity in pregnancy. Hormones 9(4):299-306. 

Solomons, NW (2009). Developmental origins of health and disease: concepts, caveats, and 

consequences for public health nutrition. Nutr Rev 67:S12-S16. 

Squire LR (1986) Mechanisms of memory. Science 232:1612-1619. 

Stanek KM, et al (2011) Obesity is associated with reduced white matter integrity in otherwise 

healthy adults. Obesity 19(3):500-504. 

Stefan N et al (2008) Identification and characterization of metabolically benign obesity in 

humans. Arch. Intern. Med 168(15):1609-1616. 

Stevens CF (1993) Quantal release of neurotransmitter and long-term potentiation. Cell 72:55-

63. 

Stolic R (2010) Obesity in renal failure – health or disease? Medical hypotheses 75:497-500. 

Stoppini L, Buchs PA, Muller D (1991) A simple method for organotypic cultures of nervous 

tissue. J Neurosci Methods 37(2):173-182. 

Sun B, et al (2012) Maternal high-fat diet during gestation or suckling differentially affects 

offspring leptin sensitivity and obesity. Diabetes 61(11):2833-2841. 

Tamashiro KL, et al (2009) Prenatal stress or high-fat diet increases susceptibility to diet-induced 

obesity in rat offspring. Diabetes 58:1116-1125.  

Tanaka C, Nishizuka Y (1994) The protein kinase C family for neuronal signaling. Annu Rev 

Neurosci 17:551-567. 

Tang W and Ho S (2007) Epigenetic reprogramming and imprinting in origins of disease. Rev 

Endocr Metab Disord 8:173-182. 



 

97 
 

Thigpen JE, et al (2004) Selecting the appropriate rodent diet for endocrine disruptor research 

and testing studies. ILAR J 45(4):401-416. 

Touretzky DS (2011) Anatomy of the hippocampus. in Computational Models of Neural 

Systems.  

Tozuka Y, Wada E, Wada K (2009) Diet-induced obesity in female mice leads to peroxidized 

lipid accumulations and impairment of hippocampal neurogenesis during the early life of their 

offspring. J FASEB 23:1920-1934. 

Tschop M, Heiman ML (2001) Rodent obesity models: an overview. Exp Clin Endocrinol 

Diabetes 109:307-391. 

Tulving E and Markowitsch HJ (1998). Episodic and declarative memory: role of the 

hippocampus. Hippocampus 8:198-204. 

Undurti ND (2010) Obesity: Genes, brain, gut, and environment. Nutrition 26:459-473. 

Van Lieshout RJ, Taylor VH, Boyle MH (2011) Pre-pregnancy and pregnancy obesity and 

neurodevelopmental outcomes in offspring: a systemic review. Obesity reviews 12:548-559. 

Vanheest JL, et al (1997) Effects of exercise in diabetic rats before and during gestation on 

maternal and neonatal outcomes. Am J Physiol 273:727-733. 

Vauthier JM, et al (1996) Family resemblance in energy and macronutrient intakes: the Stanislas 

Family Study. Int J Epi 25(5):1030-1037. 

Vickers MH et al (2005) Neonatal leptin treatment reverses developmental programming. 

Endocrinology 146:4211-4216. 

Vickers MH (2011) Developmental programming of the metabolic syndrome – critical windows 

for intervention. World J Diabetes 2(9):137-148. 

Volkow ND, et al (2009). Inverse association between BMI and prefrontal metabolic activity in 

healthy adults. Obesity 17:60-65. 

Walker CD, et al (2007) Long-lasting effects of elevated neonatal leptin on rat hippocampal 

function, synaptic proteins and NMDA receptor subunits. J Neurosci Res 85:816-828.  

Walsh TJ, Emerich DF (1988) The hippocampus as a common target of neurotoxic agents. 

Toxicology 49:137-140. 

Wanahita N et al (2008) Atrial fibrillation and obesity – results of a meta-analysis. Am Heart J 

155:310-315. 

Wang TJ et al (2004) Obesity and the risk of new-onset atrial fibrillation. JAMA 292:2471-247. 

Wayner MJ, et al (2004) Orexin-A (Hypocretin-1) and leptin enhance LTP in dentate gyrus of 

rats in vivo. Peptides 25:991-996. 



 

98 
 

West AE et al (2002) Regulation of transcription factors by neuronal activity. Nat Rev Neurosci 

3:921-931. 

Whitmer RA, et al (2005). Obesity in middle age and future risk of dementia: a 27 year 

longitudinal population based study. BMJ 330(7504):1360. 

Whitaker RC (2004) Predicting preschooler obesity at birth: the role of maternal obesity in early 

pregnancy. Pediatrics 114(1):29-36.  

White CL, et al (2009) Effects of high fat diet on Morris maze performance, oxidative stress, and 

inflammation in rats: Contributions of maternal diet. Neurobiol Dis 35(1):3-13. 

Winocur G and Greenwood Ce (2005) Studies of the effects of high fat diets on cognitive 

function in a rat model. Neurobiol Aging 26:S46-S49. 

WHO (1995) Physical status: the use and interpretation of anthropometry. WHO Technical 

Preport Series 854.  

WHO (2003) Diet, nutrition and the prevention of chronic diseases. WHO technical report series 

916. 

Williams J et al (2007) Differential trafficking of AMPA and NMDA receptors during long-term 

potentiation in awake adult animals. J Neurosci 27(51):14171-14178. 

Willis L, et al (2005) Blueberry extract enhances survival of intraocular hippocampal transplants. 

Cell Transplant. 14(4):213-223. 

Wong-Goodrich SJ et al (2008) Prenatal choline supplementation attenuates neuropathological 

response to status epilepticus in the adult rat hippocampus. Neurobiol Dis 30:255-269. 

Woolley CS et al (1997) Estradiol increases the sensitivity of hippocampal CA1 pyramidal cells 

to NMDA receptor-mediated synaptic input: correlation with dendritic spine density. J Neurosci 

17(5):1848-1859. 

Yamada K, and Nabeshima T (2003) Brain-derived neurotrophic factor/TrkB signaling in 

memory processes. J Pharmacol Sci 92:267-270. 

YangJ, et al (2006) Prenatal stress modifies hippocampal synaptic plasticity and spatial learning 

in young rat offspring. Hippocampus 16:431-436.  

Yano H et al (2006) BDNF-mediated neurotransmission relies upon myosin VI motor complex. 

Nat Neurosci 9(8):1009-1018. 

Yaqoob P, Sherrington EJ, Jeffery NM, et al. (1995) Comparison of the effects of a range of 

dietary lipids upon serum and tissue lipid composition in the rat. Int J Biochem Cell Biol 27, 

297–310. 

 

Yehuda S, Rabinovitz S, Mostofsky DI (2005) Mediation of cognitive function by high fat diet 

following stress and inflammation. Nutr Neurosci 5:309-315.  



 

99 
 

Yogev V and Catalano PM (2009) Pregnancy and Obesity. Obstet Gynecol Clin N Am 36:285-

300. 

Yu C, Teoh T, Robinson S (2006) Obesity in pregnancy. BJOG 113:1117-1125 

Zalesin KC, et al (2008) Impact of obesity on cardiovascular disease. Endocrinol Metab Clin N 

Am 37:663-684. 

Zhang CL et al (2008) A role for adult TLX-positive neural stem cells in learning and behavior. 

Nature 451:1004-1007. 

Zhou M (2009) Plasticity of NMDA receptor NR2B subunit in memory and chronic pain. Mol 

Brain 2:4. 

 

 


