
ViewDF: a Flexible Framework for
Incremental View Maintenance in

Stream Data Warehouses

by

Yuke Yang

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2013

c© Yuke Yang 2013

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Waterloo's Institutional Repository

https://core.ac.uk/display/144146609?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Because of the increasing data sizes and demands for low latency in modern data anal-
ysis, the traditional data warehousing technologies are greatly pushed beyond their limits.
Several stream data warehouse (SDW) systems, which are warehouses that ingest append-
only data feeds and support frequent refresh cycles, have been proposed including different
methods to improve the responsiveness of the systems. Materialized views are critical
in large-scale data warehouses due to their ability to speed up queries. Thus an SDW
maintains layers of materialized views. Materialized view maintenance in SDW systems
introduces new challenges. However, some of the existing SDW systems do not address
the maintenance of views while others employ view maintenance techniques that are not
efficient. This thesis presents ViewDF, a flexible framework for incremental maintenance
of materialized views in SDW systems that generalizes existing techniques and enables new
optimizations for views defined with operators that are common in stream analytics. We
give a special view definition (ViewDF) to enhance the traditional way of creating views
in SQL by being able to reference any partition of any table. We describe a prototype
system based on this idea, which allows users to write ViewDFs directly and can automat-
ically translate a broad class of queries into ViewDFs. Several optimizations are proposed
and experiments show that our proposed system can improve view maintenance time by a
factor of two or more in practical settings.

iii

Acknowledgements

This is an opportunity for me to express my appreciation to those who have supported
me during the master period. The first two persons I would like to thank deeply are my
two supervisors, Dr. Tamer Ozsu and Dr. Lukasz Golab from whom I have learned a
lot. They deserve a great deal of appreciation for their extensive support, both moral and
financial. Their breadth and depth of knowledge, extraordinary patience, rich experience
and hardworking spirit have always inspired me a lot. It is them that guided me to the
right direction and overcome the obstacles that I met during the master research. In
addition, they not only help me a lot at the academic level, but are also very helpful and
understanding with my personal issues.

I would also like to thank Dr. Grant Weddell and Dr. Khuzaima Daudjee for spending
their precious time on reviewing my thesis and for their comments.

A special thank goes to my boy friend, Huangdong Meng, for his support both on work
and life. I would say without his support and his so much confidence in me, I cannot have
such a happy and successful master period.

Finally I would like to thank my parents and my sister. Without their support and
encouragement, I could not achieve success in my life and work.

iv

Dedication

This is dedicated to the one I love.

v

Table of Contents

List of Tables viii

List of Figures ix

1 Introduction 1

1.1 Background . 1

1.2 Problem Definition . 2

1.3 Motivation: Sliding Window Aggregation 3

1.4 Contributions and Organization . 5

2 Related Work 8

2.1 Incremental View Maintenance . 8

2.2 Sequence-Oriented Query Processing . 10

2.2.1 Pattern Matching . 11

2.2.2 Sliding Window Operation . 13

2.3 Stream Data Warehouse . 15

2.4 UDFs and UDAs . 18

3 Overview of ViewDF Framework 20

3.1 Underlying DBMS . 20

3.2 ViewDF Framework . 22

vi

3.2.1 View Queries . 22

3.2.2 ViewDFs . 25

3.2.3 Interfaces for Other Systems . 28

4 Query-to-ViewDF Translation 29

4.1 Pattern Matching . 29

4.1.1 FSM Generation . 30

4.1.2 FSM-based ViewDF . 33

4.1.3 Runtime Translation . 39

4.2 Sliding Window Aggregation . 41

4.3 DBToaster . 47

5 Experiments 51

5.1 Data Generation . 51

5.2 Pattern Matching . 52

5.2.1 Algorithms . 52

5.2.2 Experiment Results . 53

5.3 Sliding Window Aggregation . 57

5.3.1 Algorithms . 57

5.3.2 Experiment Results . 59

6 Conclusions and Future Work 66

6.1 Conclusions . 66

6.2 Future Work . 66

References 68

vii

List of Tables

1.1 Partition of S at 9:00 . 4

1.2 Partition of S at 9:01 . 4

4.1 Basic Formulas on Edges . 31

4.2 DBToaster materialize the product of two relations R and S 49

viii

List of Figures

1.1 Illustration of the partitions required to create a new partition of View1
using an incremental strategy defined by a ViewDF. 6

2.1 Comparison between different pattern matching systems 14

2.2 DataDepot warehouse model . 17

2.3 Examples for DataDepot Partition Dependencies 18

3.1 Overview of the ViewDF system . 21

4.1 FSM generated for the example query . 31

4.2 A prefix synopsis . 42

4.3 An interval synopsis . 43

5.1 Pattern Matching: comparison between Direct, Hardcode, ViewDF union
and ViewDF under different number of tuples in the source partition . . . 55

5.2 Pattern Matching: comparison between Direct, Hardcode, ViewDF union
and ViewDF under different scopes . 56

5.3 Pattern Matching: comparison between Direct, Hardcode, ViewDF union
and ViewDF under different selectivities 57

5.4 Sliding Window Operation for sum loss for non-first window: comparison be-
tween DataCell Sum, Direct Sum, Prefix, ViewDF Sum and Hardcode Sum
under different number of tuples in the source partition 60

5.5 Sliding Window Operation for sum loss for first window: comparison be-
tween DataCell Sum, Direct Sum, Prefix, ViewDF Sum and Hardcode Sum
under different tuples . 61

ix

5.6 Sliding Window Operation for sum loss: comparison between DataCell Sum,
Direct Sum, Prefix, ViewDF Sum and Hardcode Sum under different win-
dow sizes . 62

5.7 Sliding Window Operation for max loss: comparison between DataCell Max,
Direct Max and Hardcode Max under different tuples 63

5.8 Sliding Window Operation for max loss: comparison between DataCell Max,
Direct Max and Hardcode Max under different window sizes 64

x

Chapter 1

Introduction

1.1 Background

Traditional data warehouses are updated during downtimes, e.g., every night or on week-
ends. However, recently, many streaming data sources have emerged, such as sensor and
RFID readings, financial transactions, network traffic traces, smart power grids and social
media. Users and organizations are increasingly interested in doing data analytics over
these types of data streams in nearly real time, with the goal of exploiting business oppor-
tunities or rapidly detecting system and infrastructure problems. These requirements are
pushing traditional data warehousing technologies beyond their limits due to the increasing
data volumes and demands for low latency in the stream-data analytics.

Stream processing has attracted attention for over a decade. In particular, some
academic Data Stream Management Systems (DSMS) prototypes, such as Aurora [12],
STREAM [10], as well as commercial DSMSs such as StreamBase [5] and StreamInsight
[1], have been developed to process streaming data. DSMSes focus on processing data
directly as it arrives without storing it first. As such, they offer high-performance and
low-latency continuous processing, but they don’t have access to history. However, there
are many scenarios where historical information is required. As an example, in a network
monitoring application, an administrator would receive alerts when there are continuous
high packet loss for a very long time. In order to quickly determine the cause, the admin-
istrator may want to see the historical data to find the solutions for the similar alerts that
occurred in the past. Another example is, in a stock market, a user may be interested
in checking whether the incoming event, combined with the historical data, satisfies some

1

pattern, e.g., a lasting rise or drop of price. In this scenario, the user needs to access the
historical data to find the pattern.

A Stream Data Warehouse (SDW) combines traditional data warehouse and a DSMS
to enable queries that seamlessly range from real-time processing and long-term historical
data mining. Some academic and industrial SDW systems have been provided such as
DataDepot [30], Moirae [13], TelegraphCQ [20], Truviso [27], Deja Vu [25] and so on.
However, queries in SDW against a growing data archive quickly slow down, in turn slowing
down real-time processing or producing results long after they are needed. Therefore, a
direct problem for SDW is how to improve the responsiveness of the system as data archive
grows, which is the topic addressed in this thesis.

1.2 Problem Definition

Materialized views are critical in large-scale data warehouses due to their ability to speed
up queries. Thus an SDW maintains layers of complex materialized views to improve
system’s responsiveness. A materialized view1 becomes out-of-date when the underlying
base relations are modified. Since it is not possible to get up-to-date results if out-of-
date materialized views are used, keeping the materialized views up-to-date becomes a
critical problem. Although the current SDW systems employ many different techniques to
improve the responsiveness of the system, and some of them consider view materialization
[30, 13], they either do not address maintenance of materialized views [13], or maintain the
materialized views in a very inefficient way [30].

This thesis explores using Incremental materialized View Maintenance (IVM) to do
efficient materialized view maintenance in SDWs to keep the materialized views up-to-
date, thereby improving the responsiveness of the system. This topic is important because
of the following reasons:

• Although there has been much work on IVM for a number of years, the solutions are
insufficient for today’s stream applications. This is because most of the early IVM
work, as well as recent developments, focus on views with relational operators [50, 7],
while stream analytics involve operators beyond standard relational algebra, such as
pattern matching [6, 19, 31] and sliding window aggregation [45]. In addition, stream
analytics requires much larger data volumes and much higher data processing speed.

1Note that in the later thesis, whenever we say “view”, we mean “materialized view”.

2

• Although there have been some algorithms proposed in event processing systems and
pub/sub systems to find a series of events that satisfy a specific pattern on the fly
[6, 25], or to maintain aggregates over sliding windows (see, e.g., [9, 41]), these are
stand-alone algorithms. In addition, they don’t maintain the results as materialized
views, which prevent revisiting the maintained results afterwards.

Consequently, a general SDW system for stream analytics is needed to maintain the
materialized views in an incremental way. This thesis presents ViewDF, which is a flexible
framework for IVM in SDWs that generalizes existing techniques and enables new opti-
mizations for views defined with operators that are frequently used in stream analytics.
The idea behind the proposed framework is as follows:

• A specific data model: We assume the inputs to our system are typically append-
only data feeds whose schemas include a timestamp attribute. Each source table
and materialized view is logically (and perhaps also physically) partitioned on a
timestamp attribute, with partition sizes ranging from minutes to hours in practice.
Source tables and views are refreshed at the granularity of partitions. Every time a
new source partition arrives, the SDWs generate a new view partition.

• A special view definition (ViewDF) to enhance the traditional way of creating views
in SQL: Given that views in an SDW evolve at a granularity of partitions, we should
be able to declaratively specify the contents of a new partition using an SQL like
query, which we call ViewDF. A ViewDF2 extends SQL by being able to reference
any partition of any table, including a previous partition of the view itself. This
extension, combined with the new data model, enables ViewDF to easily express
IVM for views defined with operators beyond traditional relational algebra which we
will explain in section 1.3.

1.3 Motivation: Sliding Window Aggregation

We motivate our approach with an example drawn from network monitoring [31]. Large
ISPs usually periodically measure packet loss from each server to a set of destinations to
monitor the network’s situation so that they can quickly conduct troubleshooting if there’s
any trouble. Suppose we have a table S that collects measured packet loss between various

2Note that in the later part of the thesis, we use the term “ViewDF” for both the framework and the
language.

3

Table 1.1: Partition of S at 9:00

timestamp src dest loss
9:00 a b 5
9:00 b c 15

Table 1.2: Partition of S at 9:01

timestamp src dest loss
9:01 a b 9
9:01 b c 12

source-destination pairs, with the schema: timestamp, src, dest, loss. Assume that new
measurements arrive every minute and S is partitioned by minute, meaning that a new
partition is created for every batch of new measurements every minute. Tables 1.1 and
1.2 show an example of source table S’s two partitions at 9:00 and 9:01, assuming, for
simplicity, there are two source-destination pairs in the ISP network.

Suppose we want to materialize a view (V iew1) containing the total packet loss for each
source-destination pair over a sliding window of 60 minutes, updating the materialized view
every minute to reflect the windowed total as of that minute. A naive way to update V iew1
when new packet loss measurements arrive is to access the most recent 60 minutes of data
in S and recompute the total loss numbers for each source-destination pair in the whole
window. A good optimization is to take the total packet loss computed over the previous
window, add the loss from the current minute, and subtract the loss from the expired data
from the previous window but outside the scope of the current window. In this way, we can
avoid re-accessing and re-computing from all the partitions in the window. However, it is
not possible to express this strategy in traditional SQL because the “create view” statement
in the traditional SQL does not support referring to the view itself when defining the view.
There are other optimizations for the sliding window aggregation proposed in [9, 41], which
will be illustrated in Chapter 3.

However, the above optimization can be easily expressed in our proposed data model
and ViewDF framework. In our specific data model, each source table and materialized
view is partitioned by timestamp, and refreshed at a granularity of partitions. Therefore,
in this example, every time a source partition arrives, we only need to generate a corre-
sponding view partition instead of the whole materialized view. Specifically, in ViewDF
framework, both S and V iew1 are partitioned by minute, with each partition of V iew1
containing the sliding window aggregates as of that minute. Let V iew1[i] denote the ith

4

partition of V iew1. Because ViewDF can reference any partition of any table, including a
previous partition of the view itself, we can write ViewDF to express the above optimiza-
tion by referring to the previous partition of V iew1 (denoted as V iew1[i− 1]), and to the
ith and (i − 60)th partitions of S (denoted as S[i] and S[i − 60]). Note that S[i − 60] is
the expired partition from the previous window that is outside the scope of the current
window. In this way, we can easily express the above optimization by ViewDF. The core
statements for the corresponding ViewDF are as follows.

SELECT * FROM

(

SELECT src,dest,sum(loss) as sum_loss FROM(

SELECT src,dest,sum(loss) as loss FROM S[i] GROUP BY src,dest

UNION ALL

SELECT src,dest,sum(loss)*(-1) as loss FROM S[i-60] GROUP BY src,dest

UNION ALL

SELECT * from View1[i-1]) as X

GROUP BY src,dest) as Y

WHERE sum_loss>0;

More details about ViewDF are discussed in Chapter 3. The reason that we add “where
sum loss > 0” in the UPDATE statement of V iew4 is because we want to exclude the
tuples that exist in the expired window, but not exist in the new window.

Figure 1.1 points out the data required to compute a new partition of V iew1 using the
optimized approach, where the source partitions are at the top and the materialized view
partitions are at the bottom. Each time a new source partition S[i] arrives, we maintain
a corresponding V iew1[i] for the sum of the packet loss. When partition at timestamp
10:01 arrives, the new View1 partition is generated based on source partition at timestamp
9:00 which is the oldest partition in the last sliding window, source partition at timestamp
10:01 and the View1 partition at 10:00. For example, the first loss value in the new View1
partition at 10:01 is computed by: 420 + 7 − 5 = 422. However, the naive way requires
accessing all of the most recent 60 source partitions which is very inefficient.

1.4 Contributions and Organization

From the above motivating example about sliding window aggregation, we summarize
ViewDF’s advantages as follows:

5

Figure 1.1: Illustration of the partitions required to create a new partition of View1 using
an incremental strategy defined by a ViewDF.

1. Compared with the naive way of maintaining materialized views, ViewDF is very
efficient and can achieve the IVM easily.

2. We give users freedom to express the materialized view maintenance by providing
ViewDF, a language which is SQL-like and very easy for users to learn.

The specific contributions of this thesis are as follows:

1. We present a flexible framework for incremental maintenance of materialized views in
SDW systems that generalizes existing techniques and enables new optimizations for
views defined with operators that are common in stream analytics, including pattern
matching and sliding window aggregation.

2. We give a special view definition (ViewDF) to enhance the traditional way of creating
views in SQL. ViewDF is able to reference any partition of any table, including
any partition of source tables, auxiliary tables and even the previous partitions of
the view itself. In addition to allowing users to specify ViewDFs directly, we also
develop algorithms to automatically translate a broad class of users’ normal queries
into ViewDFs that enable IVM.

3. We implement a prototype system for the proposed framework.

4. We experimentally evaluate the system, showing the speed-up of view maintenance
by a factor of two or more as compared to existing approaches.

6

The remainder of this thesis is organized as follows. Chapter 2 is an overview of the
related work. Chapter 3 presents an overview of the ViewDF framework. We talk about
the system model and ViewDF specification in this chapter. Chapter 4 presents detailed
algorithms for IVM in SDWs. We discuss the experiments and their results in Chapter 5.
Finally, Chapter 6 presents our conclusions, as well as directions for future work.

7

Chapter 2

Related Work

In this chapter, we divide the related work into 4 parts: Incremental View Maintenance,
Sequential Query Processing, Stream Data Warehouse, User Defined Functions (UDFs)
and User Defined Aggregates (UDAs).

2.1 Incremental View Maintenance

A materialized view is one that is materialized by storing the tuples of the view in the
database [36]. Materialized views provide fast access to data since the view is computed
once and stored. Then, any query can access the stored results without recomputing the
view. Materialized views have been widely used in query optimization, since answering
queries using an existing view yields more efficient query execution plans.

A materialized view becomes out-of-date when the underlying base relations are modi-
fied. Hence, view maintenance is the process of updating the view in response to changes in
the underlying relations. In most cases, it is wasteful to maintain a view by recomputing
it from scratch [36]. Thus, it is usually less expensive to compute only changes in the
view to update its materialization. Algorithms that compute changes to a view are called
IVM algorithms. IVM has been studied extensively in the literature, e.g., [14, 46, 36, 47],
for various view definition languages, e.g., Select-Project-Join (SPJ) views and views with
grouping/aggregation, and for various types of updates, e.g., insertions, deletions, modifi-
cations to the database base tables. For a detailed survey related to the IVM, see [36].

Blakeley et al [14] propose a method in which all database updates to base tables are
first filtered to remove from consideration those that cannot possibly affect the view. For

8

the remaining database updates, a differential algorithm can be applied to compute the
updated view by adding the changes instead of recomputing the materialized view from
scratch. However, they only consider SPJ queries, which is very limited. Palpanas et al
[46] consider views with aggregation and divided the behavior of an aggregate function
into three categories: distributive (SUM, COUNT), algebraic (AVG) and holistic (MIN,
MAX). While distributive and algebraic aggregation can be maintained incrementally based
on base table and changes, holistic function needs to recompute the base tables to get the
updated materialized views. A general IVM mechanism is proposed that applies to all
aggregate functions, including both distributive and non-distributive over the insert, delete
and modification operations. This work enhances the IVM framework with a selective
recomputation step for non-distributive aggregation.

Ross et al [47] optimize IVM by providing a fine-grained approach to materialize the
subqueries. Given a materialized view V , there are several possible views that can be
additionally materialized and used for incremental maintenance of V . They formulate the
problem of determining what additional views to materialize as an optimization problem,
and develop an exhaustive memoing algorithm to solve the problem, using the expression
DAG representation.

The above works only perform first-order maintenance and do not consider higher-
order deltas. Ahmad et al [7] present the concept of higher-order IVM by means of support
viewlet transforms, which is a recursive finite differencing technique applied to queries. The
viewlet transform materializes a query and a set of its higher-order deltas as views. These
views can support each other’s incremental maintenance, leading to a reduced overall view
maintenance cost. This can lead to that DBToaster can support applications ranging from
algorithmic trading to scientific data analysis which require realtime analytics based on
views over databases that change at very high rates. However, DBToaster only generalizes
non-windowed SQL semantics, while the environment considered in this thesis requires
IVM in windowed SQL semantics.

Witkowski et al [50] describe continuous queries (CQ) in Oracle DBMS, a feature that
incorporates stream and complex event processing into a RDBMS, which is similar to our
work in that it incorporates stream and sequential/temporal processing into a relational
DBMS (RDBMS). They monitor real time changes to the query as the result of changes
to its underlying tables and record the changes in auxiliary tables called clogs, in which
they maintain the preimage, postimage and the operation that caused the changes. Their
maintained clogs are similar to our maintained auxiliary tables. However, they only incre-
mentally compute continuous join queries (CQJ), continuous queries with aggregations and
window functions (CQW) while we also consider other sequence queries including pattern
matching. In addition, they focus on transactional changes, which not only include insert,

9

but also delete and update, while our work is focused on append-only data. Meanwhile,
they focus on providing concurrency control support and not letting CQ refresh slow down
the transaction traffic, which is different from our work.

Habich et al [38] exploit materialized views to speed up query processing in the pres-
ence of reporting functions. Given some existing materialized views and the user’s query,
through extending the relational query graph model and then rewriting query plans with
the reporting function as well as aggregation queries, they show how and when to exploit
the existing materialized views to make the query execution as fast as possible. They give
a broad spectrum of derivation rules for different situations with reporting functions in ma-
terialized views, e.g., ordering reduction, partitioning reduction and aggregation queries.
However, they focus on when and how to exploit materialized view, while ours focus on
view maintenance.

In addition, there are other interesting works about materialized view maintenance in
the temporal databases and the MapReduce framework. Yang et al [53] consider efficiently
maintaining materialized views in a temporal database, in which they focus on temporal
aggregate views. They introduce a new index structure called SB-tree, which incorporates
features from both segment-trees and B-trees, to support fast lookup of aggregate results
based on time. SB-tree can be maintained efficiently when the data changes. Chandramouli
et al [19] propose a novel framework called TiMR that combines a time-oriented data pro-
cessing system with a MapReduce framework, to perform temporal analytics. TiMR writes
its own reducer code to maintain the necessary in-memory data structures to process the
query, which is similar to the materialized view. No clear materialized view maintenance
technique is described.

Our work performs IVM efficiently especially in the stream environment. Unlike [14],
our work can support aggregation operations. Unlike [19], our work maintains materialized
views in SDW for later query processing. In addition, unlike [7], our work can deal with
windowed SQL semantics, as well as other sequence-oriented queries.

2.2 Sequence-Oriented Query Processing

Sequence-oriented query is a large class of queries that our system can support. It is
difficult to express these queries using standard SQL. Golab et al [31] propose a generic
extension to SQL to enable a new class of sequence-oriented queries to be easily expressed
and optimized. There is much work on sequential operators in database systems, event
processing systems, publish/subscribe systems and SDWs. In the following paragraphs,
we focus on two sequential operators: pattern matching and sliding window operation.

10

2.2.1 Pattern Matching

Pattern matching is a sequential operator to identify the specific pattern in the gradually
incoming data. For example, in the stock market, it is very useful to identify the increasing
trend for a stock’s price. How to express and support the search for complex sequential
patterns has been explored in many projects. Sadri et al [48] introduce SQL-TS, an ex-
tension of SQL to process queries for identifying complex sequential patterns in database
systems. Agrawal et al [6] provide an efficient pattern matching framework over event
stream based on finite state machine (FSM). Demers et al [22] consider pattern matching
in publish/subscribe systems based on FSM, and Dindar et al [25] develop an SDW in
which they support pattern matching queries. Like our system’s pattern matching queries,
[6, 22, 25, 48] can let the user specify the states and state transition predicates in the pat-
tern matching queries. In addition, all of them support Kleene Closure state and complex
state transition predicates. However, the pattern language proposed in [48, 22] and [25] are
SQL like languages while [6] is based on a new language [51], which is shown to be richer
than other languages [37]. We summarize these systems’ difference for pattern matching
in different aspects in Table 2.1 and we will elaborate different aspects in details in the
following paragraphs.

Agrawal et al [6] can support four event selection strategies while others can only sup-
port two or three strategies. Event selection strategy addresses how to select the relevant
events from an input stream mixing relevant and irrelevant events. We explain these using
an example pattern query: suppose the input stream has schema (Company name, price)
and is partitioned by Company name; we want to find a series of events from the input
stream which can satisfy pattern (a,b+) with the state transition predicates: a.price > 10
and b[i].price > b[i − 1].price. That is, we want to find a series of events where the
beginning event’s price larger than 10 and the later event’s price is larger than the pre-
vious event’s. In the following comparison, we use “a[Company name](int price)” and
“b[Company name](int price)” to represent an event that satisfies the a or b matching part
with the value in the ’()’ representing the value of the price and the value in ’[]’ repre-
senting the company name. If we don’t list the ’[Company name]’ part, it means that
Company name doesn’t affect the final result.

1. Strict contiguity: In the most stringent event selection strategy, two contiguously
selected events must also be contiguous in the input stream. For example, if a(11),
b(5), b(6) is a series of events that matches the pattern (a,b+), the three events must
also be consecutive in the input stream.

2. Partition contiguity: This is a relaxation of strict contiguity. In this selection

11

strategy, two contiguously selected events don’t have to be contiguous in the in-
put stream. If the events are conceptually partitioned based on a condition, the next
relevant event must be contiguous to the previous one in the same partition. For
example, although sequence “a[IBM](11), b[Dell](7), b[IBM](5), b[IBM](6)” doesn’t
satisfy strict contiguity because b[IBM](5).price < b[Dell](7).price, “a[IBM](11),
b[IBM](5), b[IBM](6)” as a single partition is contiguous and can satisfy the match-
ing under the partition contiguity selection strategy because b[Dell](7) belongs to the
“Dell” partition and should not be affect “IBM” partition’s matching results in this
strategy.

3. Skip till next match: This is a further relaxation that completely removes the contigu-
ity requirements: all irrelevant events will be skipped until the next relevant event is
read. For example, although “a[IBM](11), b[Dell], b[IBM](5), b[IBM](4), b[IBM](6)”
doesnt satisfy partition contiguity because b[IBM](5).price > b[IBM](4).price, it
satisfies matching under this strategy, because we can skip b[Dell] and b[IBM](4)
since they are not relevant events. After the skips, remaining events are all relevant.

4. Skip till any match: This strategy relaxes the previous one further, by allowing
different actions on relevant events. For example, for sequence “a[IBM](11), b[Dell],
b[IBM](5), b[IBM](4), b[IBM](6), b[IBM](7)”, the skip till next match strategy must
accept b[IBM](6) as this is the first matching event after b[IBM](4). However, skip
till any match strategy can have two choices: accept b[IBM](6) or not. Therefore,
this strategy introduces uncertainty in the matching process, and thus there can be
more than one matching results from the same input stream.

Agrawal et al [6] achieves the skip till next match strategy by introducing an ignore edge
on the corresponding state, it achieves the skip till any match by generating different series
of events based on the uncertainty of the match. For example, for sequence “a[IBM](11),
b[IBM](5), b[IBM](4), b[IBM](6)”, we can generate at least two series: “a[IBM](11),
b[IBM](5), b[IBM](6)” and “a[IBM](11), b[IBM](4), b[IBM](6)”. Then [6] uses a buffer
implementation to store these series and can finally construct these series, while other
systems do not support constructing all the matching series of events.

However, a problem this approach has is that it only supports finding a sequence of
events that match the specific pattern, doesn’t let the users to select the specific attribute
value or performing aggregation over the matching events. This is because there is no
SELECT clause provided in its pattern matching language. In other words, a default
“SELECT *” is assumed. From Table 2.1, we can see other systems support selecting
different contents in the SELECT clause. For other systems, “first”, “last” means the

12

first and last occurrence of the Kleene Closure state, and “previous” means immediately
preceding value. For aggregation, SQL TS [48] and Golab et al [31] can support aggregation
over each matching part, while others, except Agrawal et al [6] and Dindar et al [25], only
support aggregation over the entire matching part. For example, for pattern (a+, b+), a+
is a matching part and b+ is another matching part. SQL TS [48] and Golab et al [31]
support aggregation over the entire pattern or part a+ or part b+. Deja Vu [25] provides a
declarative pattern matching language to support getting aggregation values for the events
that satisfy a single matching part, it does not consider supporting aggregation over the
events that satisfy the entire matching query. Our work can easily support aggregation
both over the entire matching events and over a single matching part by maintaining
necessary intermediate variables in the Helper table1. For the comparison, see Table 2.1.

Agrawal et al [6] trade off a little space by creating a small data structure to maintain
the computation state necessary for the pattern matching to improve pattern matching
performance. The data structure includes version number of the run, current automaton
state that the run is in, the start time of the run and other information. This is quite similar
to our approach where we maintain auxiliary and materialized views to record the necessary
intermediate values to improve the processing speed. However, since Agrawal et al [6] only
address event systems, the structure is maintained only for necessary intermediate values,
and once this is no longer necessary, it is abandoned. So, compared to materialized views
in our approach, their maintained values cannot be used for future processing.

2.2.2 Sliding Window Operation

Sliding window operation is another non-relational operation that our system can support.
There have been some work about maintaining views for sliding window operation in an
efficient way. Arasu et al [9] and Chandrasekaran et al [20] propose several types of data
structures, called synopses, to store enough states to efficiently re-compute various sliding
window aggregates. We will use the same idea and discuss the prefix synopses and interval
synopses in Section 4.2.

There are additional work on operator-level [41, 28] and plan-level [45]. For operator-
level incremental processing, Jin et al [41] divide overlapping windows into disjoint panes,
compute sub-aggregates over each pane, and “roll up” the pane-aggregates to compute
window-aggregates. They explore the optimization of different types of aggregates, holistic

1In case that the Helper table may grow too big, for simplicity, we only implement aggregation over
the entire pattern.

13

Figure 2.1: Comparison between different pattern matching systems

14

or bounded. Ghanem et al [28] explore the semantics and implementation for the incre-
mental evaluation of window operators, including window select, project, join, window
aggregation and so on. Jin et al [41] and Ghanem et al [28] push the incremental logic all
the way down to the operators, while, Liarou et al [45] design and develop the incremental
logic at the query level, leaving the lower level intact and thus being able to reuse the
complete storage and execution engine of a DBMS kernel. The latter first splits the input
stream into n basic windows, processes each basic window separately, and finally merges
partial results. Every time the window slides, they only need to process the new basic
window’s result and merge with the non-expired basic windows’ results. While the concept
of basic window is similar to the concept of pane [41], Liarou et al [45] need to rewrite the
query plan including some modifications to the query optimizer in the DBMS kernel.

Although there is much work on non-relational operators, they are stand-alone al-
gorithms while this thesis focuses on developing a general framework to incrementally
materialized views maintenance on different kinds of queries.

2.3 Stream Data Warehouse

Several stream data warehouse systems have been developed in the research community.
The earliest system is perhaps TelegraphCQ [20] that was originally designed as a DSMS.
Instead of building the system from the scratch, TelegraphCQ implemented its Stream Pro-
cessing Engine (SPE) as an extension to the PostgreSQL relational engine. In this regard,
it provided a potential platform for tighter integration between relations and streams, and
this direction was pursued even further after TelegraphCQ was commercialized into Truviso
[27]. Truviso is a so-called “stream-relational” system that provides an integrated query
processing approach that runs SQL queries continuously and incrementally over data be-
fore it gets stored in the database. Truviso supports queries over tables, streams, and their
combinations, and as such, aims at efficiently serving continuous analytics applications.

There are a few other recent stream data warehouse systems that follow TelegraphCQ/
Truviso’s design principle of building a streaming engine out of a relational database engine,
but in slightly different ways. Moirae [13] incorporates Borealis [52] as SPE for continuous
stream processing and PostgreSQL [4] as the underlying RDBMS for the storage of histori-
cal streams. As the queries against the growing historical data archive can quickly become
slow and affect the whole system’s response time, Moirae proposes to produce approximate
results quickly, and, if necessary, additional more precise results incrementally. Specifically,
in order to improve the responsiveness of the system, Moirae partitions the historical data
into three types: present chunk, recent chunks and old chunks. The present chunk stays

15

in memory while the recent and old chunks are stored on disk. Moirae guarantees that
recent chunks have up-to-date indexes and materialized views by providing recent event
materialization, which means that Moirae materializes recent chunks for all newly defined
streams when a user submits a new query. The old chunks may be accompanied by some
older indexes and materialized views. At runtime, Moirae processes chunks incrementally,
prioritizing recent chunks over old chunks because any access to old chunks is much slower
than access to more recent chunks. In addition, Moirae allows users to tell whether they
want higher quality results or whether they are no longer interested in an event. Based on
the user’s preference, at runtime, Moirae decides how much resources to allocate and how
much historical data to access. However, Moirae only addresses recent event materializa-
tion and there are no details about efficiently maintaining the materialized views, while
this thesis is focused on efficient materialized view maintenance.

DataCell [44] extends the column-oriented MonetDB relational database for stream
processing [15]. Like STREAM’s “stream” data type, a new data type called “basket” is
introduced in addition to relational tables. Stream tuples are accumulated in baskets and
are accessed by continuous queries in a periodic fashion. Baskets allow batch, out-of-order,
and shared processing. The general goal of this project is to explore how much the existing
relational technology can be exploited for stream processing. As such, it has the potential
to naturally integrate SPE functionality with DBMS functionality as part of its future
work. Since DataCell is based on MonetDB, it is focused on column store organization
while our system focuses on row store organization.

DejaVu [25] extends the MySQL relational database engine and exploits its pluggable
storage engine API. Both streaming and historical data sources can be easily attached
into a common query engine. Deja Vu provides Live Stream Store and Archived Stream
Store, that work seamlessly to achieve both stream and archive data access. Live Stream
Store is an in-memory store to accept push-based inputs. It essentially acts like a queue,
providing live events into the query processing engine as they arrive. Live input events
can also be fully or selectively materialized into an Archived Stream Store, which addition-
ally provides features such as data compression and efficient access for historical pattern
matching queries. Similar to Moirae [13], Deja Vu also faces the problem about system re-
sponsiveness. To address this problem, Deja Vu proposes recent event buffering and query
result caching [24] for pattern correlation queries. For recent event buffering, it introduces
the Recent Buffer that is an in-memory data structure that mediates between the live and
archived event stores. By caching the most recent stream tuples, it provides the “hottest”
subset of the archive with the same access costs and paths as for the stream data, thereby
avoiding costly disk reads on recently archived data. Furthermore, it provides the means
to perform bulk inserts into the archive event store. For query result caching, it is based on

16

Figure 2.2: DataDepot warehouse model

the observation that the recency region of a live match usually intersects with the recency
regions of other live matches, so that an archive match could be used by multiple live
matches. The query result caching resembles materialized views in our work. However,
DejaVu only focuses on declarative pattern matching techniques over live and archived
streams of events, while our work more generally consider sequential queries, temporal
queries, relational queries and so on.

DataDepot [30] is an SDW whose architecture is depicted in Figure 2.2. It uses Daytona
[35] as its underlying database. The user writes a set of configuration files containing the
definitions of the raw and derived tables, and every time the source table changes, the
derived tables need to be updated. The update manager is responsible to schedule the
derived tables’ updates with the scheduling algorithm in [32]. In DataDepot, both source
and derived tables are horizontally partitioned on a timestamp attribute. As newer data

17

Figure 2.3: Examples for DataDepot Partition Dependencies

arrive, new partitions are created as is necessary to store the data. Similar to Moirae [13]
and Deja Vu [25], DataDepot also requires efficient system responsiveness. In DataDepot,
the responsiveness is mostly achieved by materialized views. To ensure efficient updates on
materialized views, for each source table, DataDepot lets the user provide a lower bound
and an upper bound of range of source partitions that affect data in a destination partition
of the derived table. These bounds are expressed as source lower bound (SLB) and source
upper bound (SUB) functions. Figure 2.3 provides two examples to explain SLB and SUB.
In the first example, suppose the source table S has 5 1-hour partitions and the Derived
table D is computed based on the three latest S’s partitions. Therefore, SLB and SUB is
expressed as p − 2 and p. In the second example, suppose S has 6 1-hour partitions and
D has three 2-hour partitions. D’s partition is computed from the relationship SLB = 2p
and SUB = 2p+1. Based on the user provided SLB and SUB, DataDepot avoids accessing
the whole historical storage thus improves the system responsiveness. The importance of
partition dependencies during view maintenance will be shown in the pattern matching
example in Section 3.2.1, in which we will see that if the user don’t provide the SLB, we
have to recompute from the very beginning of the source partitions to get the materialized
view. Two additional techniques are used to improve system responsiveness: variable
partitioning and real-time scheduling. DataDepot uses variable partitioning to manage
the historical table with the most recent portion of the table finely partitioned (say, 5
minutes) and the older part coarsely partitioned (say, one day). The second technique is a
real-time scheduling algorithm [32] to minimize the weighted staleness (difference between
the current time and the most recent data in a table) of a streaming warehouse.

2.4 UDFs and UDAs

Since our system is built on PostgreSQL, we explain PostgreSQL’s UDFs in this sec-
tion. PostgreSQL provides four kinds of UDFs to extend SQL’s functionality: query lan-
guage functions (written in SQL); procedural language functions (written in, for example,

18

PL/PGSQL); internal functions, and C-language functions [4]. Compared to query lan-
guage functions, procedural languages aren’t built into the PostgreSQL server; they must
be provided with loadable modules. In addition, PostgreSQL also provides UDAs. Aggre-
gate functions in PostgreSQL are expressed in terms of state values and state transition
functions. That is, an aggregation operates by using a state value that is updated as each
successive input row is processed. To define a new aggregate function, one selects a data
type for the state value, an initial value for the state, and a state transition function to
express the state value’s change as new rows are processed [4].

ATLaS is a language that improves the power and extensibility of traditional query
languages in DBMS [49]. It aims at supporting efficient database-centric data mining ap-
plications and adds to SQL the ability to define new UDAs and Table Functions. This
improves users’ freedom to express their applications. ATLaS’s UDAs are very similar to
PostgreSQL’s UDAs. ATLaS’s UDAs uses a local table to maintain the state values, which
is similar to PostgreSQL’s state value. Each UDA consists of three blocks: INITIALIZE,
ITERATE and TERMINATE, which is similar to PostgreSQL’s initcond, sfunc and final-
func. However, a big advantage of ATLaS is that its UDAs implement a stream-oriented
computation model to accept a stream as input and produce a stream as output. It can
support online aggregations while PostgreSQL’s UDA can’t. This make ATLaS suitable
for online aggregations in stream applications. However, both PostgreSQL and ATLaS’s
UDAs are row-based (update state values as each successive input row is processed) while
our system can support partition-based processing.

19

Chapter 3

Overview of ViewDF Framework

In this chapter, we give an overview of the ViewDF framework and system architecture.
Figure 3.1 illustrates the components of the system. From Figure 3.1, we can see that the
entire system is encapsulated as a box accepting data, queries and ViewDFs. The entire
system consists of two large components: (1) ViewDF framework (2) Underlying database
management system (DBMS). We will explain these components in the following sections.

3.1 Underlying DBMS

The whole system assumes an underlying DBMS, which answers queries and stores source
tables and materialized views. The source tables are generated from the arriving data
which is usually collected from append-only data feeds such as sensor, RFID, financial
transactions or social media stream. We assume that the schema of each data feed includes
a timestamp attribute and the data feeds arrive in order. For handling out-of-order data
in stream warehouses, we can easily incorporate the solutions from [43, 40].

All of the source tables and materialized views are physically (or logically) partitioned
using the timestamp attribute from the data feeds. We require that the data arrives at
the system in the form of batch insertions, e.g., once a whole partition of tuples, which
is different from the event systems’ stream of events one by one. The partition lengths of
source tables typically correspond to the data feed arrival frequencies, which in practice
range from one or several minutes to several hours. We assume new data arrive periodically
and existing data do not change in the future. Every time a whole partition of tuples arrives,
the underlying DBMS creates a source partition and load the data in the new batch into

20

Figure 3.1: Overview of the ViewDF system

21

it. There are no deletions and modifications on the source partitions. The creation of one
new partition (or several new partitions) of a source table will trigger the generation of a
new partition of materialized view, which are handled by ViewDF framework, as we will
discuss shortly. In Figure 3.1, we can see there is a relationship between the partitions of
source table and materialized view. Every time a new batch of data arrives, a new source
partition, say S4, will be generated, which in turn will trigger the generation of M4.

In addition, we also maintain a CATALOG table to record the name of the source
tables and materialized views, their first partition’s timestamp, the previous partition’s
subscript. The reason that we maintain the catalog table will be discussed shortly.

3.2 ViewDF Framework

As shown in Figure 3.1, ViewDF is a view specification and maintenance framework. Specif-
ically, it contains three small components: (1) View query repository, (2) ViewDF repos-
itory, and (3) View maintainer. Users can submit specified views into the system in two
ways: as view queries1 or directly as ViewDFs that specify how to compute new parti-
tions in an incremental way. The queries are stored in the View query repository and
the ViewDFs are stored in the ViewDF repository. In addition to allowing users to specify
ViewDFs directly, our system can also automatically translate a broad class of view queries
into ViewDFs that enable efficient IVM. Therefore, a crucial component of the framework
is the Query-to-ViewDF translator, which automatically generates ViewDFs that encode
incremental view maintenance techniques based on view queries. Details about Query-
to-ViewDF translator will be given in Chapter 4. In the following subsections, we will
illustrate two view specifications (view queries and ViewDFs) and the function of view
maintainer.

3.2.1 View Queries

This section discusses queries whose results will be automatically maintained as views.
We elaborate view queries for sliding window aggregation and pattern matching in this
subsection.

1Note that view queries are different from normal queries. View queries need to be pre-processed by
ViewDF framework and then executed by the underlying DBMS, while normal queries are directly executed
by the underlying DBMS.

22

(1) Sliding window aggregation: The user’s query for the sliding window aggregation
in the motivating example is as follows.

CREATE VIEW View1 AS

SELECT src, dest, sum(loss) as sum_loss

FROM S [WINDOW 60 minutes]

GROUP BY src, dest

We assume an SQL-like syntax extended with a WINDOW clause, which defines the
length of the sliding window as 60 minutes. The WINDOW clause is essentially a shorthand
for two timestamp predicates that define the time range of data of interest.

(2) Pattern matching: We provide an example to explain the syntax for pattern match-
ing queries. In the example, we use the same source partitions as in the motivating example.
Suppose we want to maintain a materialized view over S, call it V iew2, that contains, for
any given minute, all the source-destination pairs that have reported a high loss value (say,
at least ten) for at least four consecutive measurements (at least four consecutive minutes
if the source partition is generated once a minute). Additionally, we want to report the
number of consecutive measurements with high loss and the total loss during this interval
in the materialized view. We can view this example query as a patten matching query and
the pattern the query wants to look for is: a high loss value for at least four consecutive
measurements.

The query is shown below, assuming a syntax similar to recently-proposed event pro-
cessing languages SASE+ [6]. The syntax of the query is as follows. In the first line, the
query specifies the view name, V iew2. The second and the third line are the SELECT
clause and FROM clause that have the same syntax as traditional SQL. In the fourth line,
the PATTERN clause specifies a sequence pattern, “a,b,c,d+” in the example query for
“at least four consecutive measurements”. In the PATTERN clause, d+ indicates a Kleene
plus operator to represent one or more consecutive occurrences and a, b, c represent one
occurrence. The WHERE clause uses the variables in the PATTERN clause to specify
predicates on individual variable as well as across multiple variables. Finally, the pattern
query can also include other statements from the traditional SQL, such as GROUP BY
and ORDER BY. We will provide more details about the query in Chapter 4.

CREATE VIEW View2 AS

SELECT timestamp, src, dest, count(*) as count, sum(loss) as sum_loss

FROM S

23

PATTERN (a, b, c, d+)

WHERE a.loss > 10

AND b.loss > 10

AND c.loss > 10

AND d[1].loss > 10

AND d[i].loss > 10

GROUP BY src, dest

Specifically, our system specifies the requirements on SELECT and WHERE clauses
for the language as follows:

1. In the WHERE clause:

(a) We allow the user to specify predicates on a single variable as well as across
multiple variables. A predicate on a single variable only contains one variable
from the SELECT clause, for example, a.loss > 10 in the example query. A
predicate across multiple variables can contain multiple variables from the SE-
LECT clause, for example, b.loss > a.loss. For simplicity, we only support
two consecutive variables’ comparison with the variable appears later in the
PATTERN clause (b) on the left side and the earlier variable (a) on the right
side.

(b) For Kleene Closure (The variable with a Kleene plus operator, d+ in the ex-
ample query), we support getting the first and ith occurrence of the Kleene
Closure state by attaching the state name with “[1]” and “[i]” (d[1] and d[i] in
the example). We also support getting the previous occurrence of the Kleene
Closure state by attaching the state with “[i-1]” (d[i− 1] for example). In addi-
tion, we support getting aggregation (we only support average, sum and count)
on the Kleene Closure state. For example, the user can specify the predicate
“d[i] > avg(d[..i])” which means the ith occurrence of d state must be larger
than the average of the previous occurrences of d state where “d[..i]” means all
the previous occurrences of d state.

2. In the SELECT clause:

(a) We support all the things that SQL can include in the SELECT clause.

(b) We do not support getting the first, ith and previous occurrence that is sup-
ported in the WHERE clause for the Kleene Closure state.

24

(c) We only support getting aggregation (only sum, count, average) on the events
that match the whole pattern. We don’t support getting aggregation on each
matching part. For example, assume sequence “a,b,c,d1,d2” is a sequence that
satisfies the example pattern matching query, we support getting aggregation for
the whole sequence but we don’t support getting aggregation on the subsequence
“d1,d2” which matches only the d part.

3.2.2 ViewDFs

The users can also submit view specification in ViewDFs that specify how to compute new
partitions in an incremental way. The following is the ViewDF for the query in the moti-
vating example. There are three main components in the ViewDF query: the INITIALIZE
statement, which defines the first partition of the view, the UPDATE statement, which
defines the content of the ith partition of the view, and the PARTITION BY statement,
which specifies the partition length. The partition length is determined by the data arrival
rate. Note that the CREATE VIEW statement in ViewDF is different from the traditional
CREATE VIEW statement in the DBMS. The traditional CREATE VIEW statement de-
fines a view of a query with the view not physically materialized, while the CREATE VIEW
statement in ViewDF create materialized views. For the following ViewDF, the data ar-
rives in a whole partition every 1 minute. The reason that we add “where sum loss > 0”
in the UPDATE statement of V iew1 is because we want to exclude the tuples that exist
in the expired window, but not in the new window.

CREATE VIEW View1 AS

INITIALIZE View1[k] AS

SELECT src, dest, sum(loss) as sum_loss

FROM S [k-60 .. k]

GROUP BY src, dest;

UPDATE View1[i] AS

SELECT * FROM

(

SELECT src,dest,sum(loss) as sum_loss FROM(

SELECT src,dest,sum(loss) as loss FROM S[i] GROUP BY src,dest

UNION ALL

SELECT src,dest,sum(loss)*(-1) as loss FROM S[i-60]

GROUP BY src,dest

UNION ALL

25

SELECT * from View1[i-1]) as X

GROUP BY src,dest) as Y

WHERE sum_loss>0;

PARTITION BY 1 minute

The generation of new partitions of source tables will trigger the generation of new
partitions of materialized views. As there can be several concurrent generations of new
partitions, a scheduler is needed to limit the number of concurrent updates and determine
which table should be scheduled next. Our system can easily integrate the scheduler de-
signed in [32]. When a new partition of view is scheduled to be created, the view maintainer
component runs the SQL statements from the corresponding ViewDF against the database.
Specifically, we will check whether this is the first time to generate V iew1 partition. If
it is, the view maintainer will execute the INITIALIZE statement in the ViewDF. Or the
view maintainer will execute the UPDATE statement. Note that ViewDF is different from
the recursive query in the traditional DBMS. Although both maintain temporary tables
and execute the same query for many times, ViewDF maintain the temporary tables as
materialized views in order for later usage while recursive queries only temporarily use the
intermediate table, and in each recursive step, it will replace the contents of the working
table with the contents of the intermediate table, then empty the intermediate table. The
partition subscripts referenced in the INITIALIZE and UPDATE statement are resolved
to the physical relations based on the information provided in the catalog table before
the system executes these two statements. For example, S[i] means the ith partition of
the source table and will be resolved to the specific name of the source partition. We
will illustrate the details of checking whether it is first time generation and the partition
subscript resolution in Chapter 4. The output of these two statements will be loaded into
new partitions of the materialized view.

In the following paragraphs, we show that ViewDF can be used to express the algorithms
for incremental materialized view maintenance for SPJ queries (queries with select, project
and join operators).

For select view, a select view is defined by the expression V = σC(Y)(R), where C is a
boolean expression defined on Y ⊆ R. As we partition the source table and materialized
view based on timestamp, every time a new source partition R[i] arrives, instead of re-
computing all the source partitions and get the final materialized view, we generate a new
materialized view partition V iew8[i] only based on R[i]. The ViewDF can be expressed
as:

CREATE VIEW View8 AS

26

INITIALIZE View8[k] AS

SELECT *

FROM R[k]

WHERE C(Y)

UPDATE View8[i] AS

SELECT *

FROM R[i]

WHERE C(Y)

For project view, a project view is defined by the expression V =
∏

X(R), where X ⊆ R.
As we partition the source table and materialized view based on timestamp, every time a
new source partition R[i] arrives, instead of recomputing all the source partitions and get
the final materialized view, we generate a new materialized view partition V iew9[i] only
based on R[i]. The ViewDF can be expressed as:

CREATE VIEW View9 AS

INITIALIZE View9[k] AS

SELECT X

FROM R[k]

UPDATE View9[i] AS

SELECT X

FROM R[i]

For join view, a join view is defined by the expression V = R1 ./ R2, assuming R1

and R2 join on attribute list Attr. As we partition the source table and materialized view
based on timestamp, every time a new source partition R1[i] and R2[i] arrives, instead of
recomputing all the source partitions and get the final materialized view, we generate a
new materialized view partition V iew10[i] only based on R1[i] R2[i]. Note that the join
here is different from the normal join in the database. It is like a full partition-wise join
[3] because both table R1 and R2 are co-partitioned on the same key “timestamp” and the
join can be executed in partition level with one partition join result unaffected by other
partition join results. The ViewDF can be expressed as:

CREATE VIEW View10 AS

INITIALIZE View10[k] AS

SELECT *

FROM R1[k] inner join R2[k] on R1[k].Attr = R2[k].Attr;

27

UPDATE View10[i] AS

SELECT *

FROM R1[i] inner join R2[i] on R1[i].Attr = R2[i].Attr;

A combined SPJ query is defined by the expression V =
∏

X(σC(Y)(R1 ./ R2)), assum-
ing R1 and R2 join on attribute list Attr. As we partition the source table and materialized
view based on timestamp, every time a new source partition R1[i] and R2[i] arrives, instead
of recomputing all the source partitions and get the final materialized view, we generate a
new materialized view partition V iew11[i] only based on R1[i] R2[i]. The ViewDF can be
expressed as:

CREATE VIEW View11 AS

INITIALIZE View11[k] AS

SELECT X

FROM R1[k] inner join R2[k] on R1[k].Attr = R2[k].Attr

WHERE C(Y);

UPDATE View11[i] AS

SELECT X

FROM R1[i] inner join R2[i] on R1[i].Attr = R2[i].Attr

WHERE C(Y);

3.2.3 Interfaces for Other Systems

ViewDFs can also easily express the optimizations incorporated in DBToaster [7, 9] and
[45]. We will illustrate these ViewDFs in Chapter 4. For DBToaster, we will demonstrate
that as long as the viewlet transforms2 are provided, we can easily express DBToaster’s
idea by ViewDFs. We will also show how to use ViewDFs to express the optimizations for
sliding window aggregation [9, 45].

2We will explain viewlet transforms in chapter 4.

28

Chapter 4

Query-to-ViewDF Translation

This chapter provides algorithms for the Query-to-ViewDF translation. Our algorithms
can automatically translate various queries/operators including pattern matching queries
and sliding window aggregation into ViewDFs that encode incremental materialized view
maintenance. For pattern matching queries, we make full use of Finite State Machine(FSM)
and automatically generate auxiliary views to greatly increase the processing speed of
pattern matching. For sliding window aggregation, instead of recomputing from the whole
window, we provide ViewDFs to express the incremental maintenance.

4.1 Pattern Matching

This section provides algorithms to automatically translate from users’ pattern matching
queries to ViewDFs that encode incremental view maintenance. We use the pattern match-
ing query discussed in Section 3.2.1 as an example. For the input data, we ensure there is
only one tuple for each source-destination pair in each partition. A naive way to update
V iew2 when a new batch of packet loss measurements arrives is to re-run the pattern query.
As V iew2 requires maintenance of at least four consecutive measurements with high loss,
the naive way needs to revisit the previous source partitions to find if there are at least
four consecutive measurements. Because V iew2 requires “at least” four, it is unclear if it
is necessary to revisit the previous 4, or 5, or even 100 or more source partitions. Unlike
sliding window aggregation in the motivating example in which we know we can revisit the
previous 60 partitions, for the pattern matching example, we even do not know how many
previous partitions to revisit because there is no specific number provided. In addition,
another drawback for the naive way is that, it will not only find those source-destination

29

pairs that have reported at least four consecutive high-loss measurements as of the current
time, but also all such intervals that happened in the past!

For incremental maintenance strategy, we define a “helper” view Helper that keeps
track of all source-destination pairs with at least one high-loss measurement, as well as
the number of consecutive high-loss measurements for each such pair. We partition the
Helper view and V iew2 by minute. When a new partition of V iew2[i] needs to be cre-
ated, we first create a new partition of the helper view Helper[i] by visiting its previous
partition Helper[i − 1] and updating the high-loss measurement counts based on newly
arrived measurements in S[i]. The incremental maintenance strategy can be expressed
as: Helper[i] = Helper[i − 1] + S[i]. We then generate V iew2[i] by selecting from the
helper view Helper[i] all those source-destination pairs that have at least four consecutive
high-loss measurements at the current time.

It is easy for ViewDF to express this optimization by considering partitions and queries
that define their contents, which is similar to the way of using ViewDF to express the
optimization of sliding window aggregation discussed in Chapter 3. The problems are how
to generate ViewDF to encode the incremental maintenance strategy, and what should be
maintained in the Helper view. We provide algorithms to make full use of finite-state ma-
chine (FSM), which is a mathematical model of computation used to design both computer
games and sequential logic circuits, to solve these problems. The specific procedure is:

1. First generate an FSM based on users’ view queries;

2. Generate ViewDF based on FSM;

3. Runtime translation.

In the next two subsections, we elaborate on the algorithms implementing this proce-
dure using the view query provided in Section 3.2.1 as an example.

4.1.1 FSM Generation

This section discribes an algorithm for FSM generation (Algorithm 1) and explains the
algorithm using the example view query. Algorithm 1 accepts user’s view query Q as input
and outputs the generated FSM F and an auxiliary list auxlist which contains the needed
maintained values in the helper view. Formally an FSM F = (S[], E[][]) consists of a set
of States, S and a set of directed edges with a set of formulas E. The output FSM for the

30

Figure 4.1: FSM generated for the example query

Table 4.1: Basic Formulas on Edges

E[0][1] E[1][2] E[2][3] E[3][4] E[4][4]
loss > 10 loss > 10 loss > 10 loss > 10 loss > 10

above query using Algorithm 1 is illustrated in Figure.4.1. The states S[] and edges with
predicates E[][] are generated based on the following rules.

States. S[] is constructed from the PATTERN clause in the query as shown in Line
3-10 in Algorithm 1. In addition, for every query, we add state S[0] as the beginning state,
that is, the state before any input has been processed. In the example view query, S[] is
constructed from “PATTERN(a,b,c,d+)”. Combined with S[0], S[] consists of 5 states:
S[0], a, b, c, d+. In Figure 4.1, we can see that these states are arranged as a linear
sequence with each state represented as a circle. There are two types of states: singleton
state (which does not contains a ‘+’ in the PATTERN clause) and Kleene Closure state.
For the example query, a, b, c are singleton states while d+ is a Kleene Closure state. The
difference between these two types of states is whether the state contains self edge or not,
which will be discussed in the next paragraph.

Edges and Predicates. Each state is associated with a number of edges, representing
the actions that can be taken and the checking predicates at the state. In Algorithm 1,
E[i][j] represents the edge between state S[i] and S[j]. If one tuple in source partition k
stays in state S[i], when the corresponding tuple in the new source partition k + 1 arrives
with the value satisfying the formulas in E[i][j], then we say the tuple’s state moves from
state S[i] to S[j] (for simplicity, we say S[i] moves to S[j] in the following paragraphs) and
the formulas in E[i][j] are called state transition predicates. For a singleton state S[i], it

31

can only move to the next state if the tuple satisfies E[i][i + 1], or move to the beginning
state S[0] if E[i][i+ 1] is not satisfied. For a KleeneClosure state S[j], apart from moving
to the next state S[j + 1] and S[0],it can also move to S[j] itself when E[j][j] is satisfied.
E[j][j] is called a self edge. In summary, there are three types of edges: a proceed edge
denoted as E[i][i + 1], a self edge denoted as E[i][i], and a backtrack edge denoted as
E[i][0] indicating state S[i] goes back to S[0], which usually occurs when the formulas on
the corresponding edges cannot be satisfied or the whole match is finished.

The state transition predicates are constructed from the predicates in WHERE clause
(from line 11 in Algorithm 1). One thing to note is that, as every state has a backtrack
edge, we ignore the backtrack edge generation in Algorithm 1. For each pred, we can get
its left operand and right operand (denoted as lOperand and rOperand in Algorithm 1),
e.g., for a.loss > 10, a.loss is the left operand and 10 is the right operand. In addition,
we maintain an auxiliary list (denoted as auxlist in Algorithm 1 which contains the in-
termediate variables that need to be maintained in the Helper view. The corresponding
predicate is constructed based on the following set of rules:

1. If pred only contains one state S[p], for line 12-31 in Algorithm 1, we illustrate
different sub-conditions as follows:

(a) The lOperand in pred does not contain [i]: for example, a.loss > 10. This
condition is shown in line 30, in which a proceed edge E[p− 1][p] is generated.
As there can be more than one predicate that satisfy this condition, in line 30,
we append the predicate to E[p− 1][p].

(b) The lOperand in pred contains [i]: this condition means pred is a predicate on
the self edge for the Kleene Closure state (shown in line 13-28) because there
is no subscription [i] for singleton state. Therefore, we generate the self edge
E[p][p] shown in line 14. This condition contains the following sub-conditions.

i. The rOperand contains [..i−1]: for example, d[i].loss > avg(d[..i−1].loss).
This condition means that there is a comparison between the ith occurrence
of Kleene Closure state and the aggregation of the previous occurrences
of the Kleene Closure state. In this condition, we need to maintain the
corresponding aggregation value in the auxlist (shown in lines 15-19) so
that we can incrementally maintain the materialized view. In the proposed
example, we need to maintain sum(loss) and count of d’s occurrences for all
the previous loss value for state ‘d’ in order to compute the average. For
predicate like d[i].loss > sum(d[..i − 1].loss) and d[i].loss > count(d[..i −
1].loss), we only need to maintain sum(loss) or count of d’s occurrences for

32

all the previous occurrences of state ‘d’. In the following algorithms, for
simplicity, we only list the algorithms for sum and count.

ii. The rOperand contains [i − 1]: for example, d[i].loss > d[i − 1].loss. This
condition means that there is a comparison between the current value and
the previous value. We need to maintain the previous value in the auxlist
(shown in line 20-23) so that we can avoid revisiting the previous source
partition. In the proposed example, we need to maintain the loss value in
the previous source partition in the auxlist.

iii. The rOperand contains [1]: for example, d[i].loss > d[1].loss. This condi-
tion means that there is a comparison between the current value and the
value of the first occurrence of the Kleene Closure state. We need to main-
tain the value of the first occurrence in the auxlist (shown in lines 24-27)
so that we can avoid revisiting the source partition which contains the first
occurrence. In the proposed example, we need to maintain the loss value in
the source partition which contains the first occurrence in the auxlist.

iv. The rOperand does not contain any of above three: for example, d[i].loss >
10. In this case, we do not need to maintain any value in the auxlist.

2. If pred contains two states S[p] and S[p−1] shown in lines 32-36, then it is a proceed
edge from S[p − 1] to S[p]. In this condition, we need to maintain the S[p − 1]’s
corresponding value in auxlist. For example, predicate b.loss > a.loss contains two
states a and b. We need to maintain the loss value of a in the auxlist.

Based on the above rules, the predicates on edges for Figure 4.1 are in Table 4.1 and
the auxlist does not need to contain anything.

4.1.2 FSM-based ViewDF

We provide the algorithm for ViewDF generation in Algorithm 2 and explain it using
the provided view query in Section 3.2.1. Algorithm 2 accepts user’s query Q, the FSM
F (S[], E[][]) , auxlist and the name of the materialized view mv as input, and outputs the
final ViewDF query V iewDFQ which encodes the incremental view maintenance strategy.
The FSM F (S[], E[][]) and auxlist are generated by Algorithm 1.

33

Algorithm 1: Generate FSM Algorithm
Input: A user’s query Q
Output: an FSM F (S[], E[][]), auxlist
1: S[0] = begin state;
2: j = 1;
3: for all variable v in PATTERN clause do
4: S[j] = v;
5: S[j].isKleeneClosure = false;
6: if v.contains(’+’) then
7: S[j].isKleeneClosure = true;
8: end if
9: j++;

10: end for
11: for all predicate pred in WHERE clause do
12: if pred referencing one state S[p] alone then
13: if pred.lOperand.contains(’[i]’) then
14: E[p][p].append(pred.subString(pred.indexOf(’.’)));
15: if pred.rOperand.contains(’[..i-1]’) then
16: aggrName = rOperand.subString(0,rOperand.indexOf(’(’));
17: stateAttribute = rOperand.subString(rOperand.indexOf(’.’),

rOperand.indexOf(’)’));
18: auxlist.add(aggrName(S[p].stateAttribute));
19: end if
20: if pred.rOperand.contains(’[i-1]’) then
21: stateAttribute = rOperand.subString(rOperand.indexOf(’.’));
22: auxlist.add(S[p].stateAttribute);
23: end if
24: if pred.rOperand.contains(’[1]’) then
25: stateAttribute = rOperand.subString(rOperand.indexOf(’.’));
26: auxlist.add(S[p].stateAttribute);
27: end if
28: end if
29: else
30: E[p− 1][p].append(pred.subString(pred.indexOf(’.’)));
31: end if
32: if pred referencing two states S[p] and S[p− 1] then
33: E[p− 1][p].append(pred.subString(pred.indexOf(’.’)));
34: stateAttribute = rOperand.subString(rOperand.indexOf(’.’));
35: auxlist.add(S[p− 1].stateAttribute);
36: end if
37: end for

34

Algorithm 2: ViewDF Generation

Input: A user’s query Q, an FSM F (S[], E[][]), auxlist, name of the materialized view mv
Output: A ViewDF query V iewDFQ
1: $select-list = SELECT clause in Q;
2: $last-state = S[S.length-1];
3: $num-state = S.length;
4: for all term t in $select-list do
5: if t.isAggregation() then
6: auxlist.add(t);
7: else
8: $non-aggr-list.add(t);
9: end if

10: end for
11: $helper-select-list = $non-aggr-list + currentState + auxlist;
12: Write(“CREATE VIEW Helper AS”);
13: Write(“INITIALIZE Helper[k] AS”);
14: Write(“SELECT $non-aggr-list, 1 as currentState, ”);
15: for all term v in auxlist do
16: if v.contains(“sum”) then
17: Write(“v.subString(v.indexOf(’(’), v.indexOf(’)’)) as sum”);
18: else if v.contains(“count”) then
19: Write(“1 as count, ”);
20: else
21: Write(“v”);
22: end if
23: end for
24: Write(“FROM S[k] WHERE E[0][1]”);
25: Write(“UPDATE Helper[i] AS”);
26: Write(“SELECT $non-aggr-list, case”);
27: for all i=1 to num-state do
28: if S[i].isKleeneClosure then
29: Write(“when prevState=S[i] and E[i][i] then prevState ”);
30: end if
31: Write(“when prevState=S[i] and E[i][i+1] then prevState+1 ”);
32: end for
33: Write(“end,”);

35

34: for all term v in auxlist do
35: if v.contains(“sum”) then
36: Write(“sum+v.subString(v.indexOf(’(’), v.indexOf(’)’)) as sum”);
37: else if v.contains(“count”) then
38: Write(“1+count as count”);
39: else
40: Write(“v”);
41: end if
42: end for
43: Write(“FROM(”);
44: Write(“SELECT ”);
45: for all term n in $non-aggr-list do
46: Write(“New.n, ”);
47: end for
48: Write(“Prev.currentState as prevState, ”);
49: Write(“auxlist”);
50: Write(“FROM S[i] as New Natural Left Outer Join Helper[i− 1] as Prev WHERE

E[0][1]) AS Temp”);
51: Write(“WHERE currentState!=0”);
52: Write(“CREATE VIEW mv AS”);
53: Write(“INITIALIZE mv[k] AS”);
54: Write(“SELECT $select-list”);
55: Write(“FROM Helper[k]”);
56: Write(“WHERE currentState = $last-state”);
57: Write(“UPDATE mv[i] AS”);
58: Write(“SELECT $select-list”);
59: Write(“FROM Helper[i]”);
60: Write(“WHERE currentState = $last-state”);

In the algorithm, we first get the $select-list from the SELECT clause in the user’s
view query. In the example query, “src, dest, count(*) and sum(loss)” are the elements in
the $select-list. For each element in the $select-list, we check whether it is an aggregation
(lines 4-9). If it is, we will add the element to the auxlist (e.g., count(*) and sum(loss)
in the example) which will later be used as the schema of the Helper table. If it is not,
we will add the element to the $non-aggr-list (e.g., src, dest in the example). Finally, we
determine Helper table’s schema $helper-select-list by combining the $non-aggr-list, auxlist

36

and another attribute currentState shown in line 11. The reason that we add currentState
is that it is a necessary intermediate variable for the incremental view maintenance; it
records the state that the event stays in the matching in order for us to quickly find the
corresponding state and predicates in the FSM.

After getting the necessary (line 12), we begin the ViewDF code generation. The
generated code consists of two parts: INITIALIZE and UPDATE. In the INITIALIZE
part, the ViewDF initializes the maintained Helper table Helper[k]. In Helper[k], we
maintain the attributes in the $non-aggr-list, currentState and auxlist when the E[0][1] is
satisfied, shown in line 14-24. In the UPDATE part shown from line 25, every time a new
source partition arrives, we need to generate a new Helper partition Helper[i] based on
Helper[i− 1] and the new source partition S[i] shown in Line 50. In Helper[i]’s SELECT
clause, we keep the $non-aggregate-list unchanged and generate new currentState based
on new values in S[i] and prevState which is currentState in Helper[i − 1], as shown in
line 26-33. Note that we treat differently for Kleene Closure state and non-Kleene Closure
state because Kleene Closure state contains both self edge and proceed edge. For both
Kleene Closure and non-Kleene Closure state, when the predicates on the proceed edge
are satisfied, currentState will move to the next state prevState+ 1. For Kleene Closure
state, when the predicates on the Self edge are satisfied, currentState remain unchanged.
We process the terms in the auxlist in lines 34-42. We can see for sum and count, since
we maintain the sum and count in the Helper[i− 1], we can easily get the sum and count
for Helper[i], meanwhile avoid revisiting the previous source partitions.

Based on the Helper table’s maintained attributes, we can easily generate mv[i] by
selecting the needed attributes from Helper[i] with currentState equals to the last state
in the FSM, which means that the specific pattern has been found and can be maintained
in the materialized view. The code is shown in line 52-60.

After replacing E[0][1], $helper-select-list, $non-aggregate-list, S[i], E[i][i] with the
corresponding lists and predicates, the automatically generated ViewDF for the proposed
view query is:

CREATE VIEW Helper AS

INITIALIZE Helper[k] AS

SELECT timestamp,src,dest,1 AS currentState, 1 AS count, loss AS sum_loss

FROM S[k]

WHERE loss>10

UPDATE Helper[i] AS

SELECT timestamp,src,dest,

37

case when prevState=0 and loss>10 then prevState+1

when prevState=1 and loss>10 then prevState+1

when prevState=2 and loss>10 then prevState+1

when prevState=3 and loss>10 then prevState+1

when prevState=4 and loss>10 then prevState end,

sum_loss+loss as sum_loss, 1+count as count

FROM

(

SELECT

New.timestamp, New.src as src, New.dest as dest,

Prev.currentState as prevState, count, sum_loss

FROM

S[i] as New Natural

Left Outer Join Helper[i-1] as Prev

WHERE New.loss>10

)AS Temp

WHERE currentState!=0

CREATE VIEW mv AS

INITIALIZE mv[k] AS

SELECT timestamp, src, dest, count, sum_loss

FROM Helper[k]

WHERE currentState=4

UPDATE mv[i] AS

SELECT timestamp, src, dest, count, sum_loss

FROM Helper[i]

WHERE currentState=4

One thing to note for the generated ViewDF is that we use CASE to provide conditional
execution. Another way to express ViewDF forHelper table for the given view query can be
with many unions expressed as follows. The following query is not automatically generated
from Algorithm 2. It is presented only for comparison.

CREATE VIEW Helper AS

INITIALIZE BK[k] AS

SELECT timestamp,src,dest,1 AS prevState, 1 as count, loss as sum_loss

38

FROM S[k]

WHERE loss>10

UPDATE BK[i] AS

SELECT New.timestamp, New.src as src, New.dest as dest,

Prev.currentState as prevState, count, sum_loss

FROM S[i] as New Natural

Left Outer Join Helper[i-1] as Prev

WHERE loss>10

CREATE VIEW Helper AS

INITIALIZE Helper[k] AS

SELECT timestamp,src,dest,1 AS currentState, 1 AS count, loss AS sum_loss

FROM S[k]

WHERE loss>10

UPDATE Helper[i] AS

SELECT timestamp, src, dest, prevState+1, count+1, sum_loss+loss

FROM BK[i]

WHERE currentState!=4 and loss>10

UNION

SELECT timestamp, src, dest, prevState, count+1, sum_loss+loss

FROM BK[i]

WHERE currentState=4 and loss>10

However, for the ViewDF with many unions, the query execution plan needs to scan
the table many times (number of unions) which is very time consuming, while using CASE
to provide conditional execution requires only one table scan. Therefore, we use CASE to
provide conditional execution in Algorithm 2.

4.1.3 Runtime Translation

In this section, we discuss how to resolve the partition subscripts in the INITIALIZE or
UPDATE statement to their physical tables. In our implementation, we partition both
the source table and materialized view by timestamp which is UNIX time. Based on the
concept of inheritance, we first create a parent table with the name p and the correspond-
ing schema. Then when a new partition needs to be initialized or updated, we create a
separate table (per partition) that inherits the parent table p. We name each partition by
attaching parent table’s name p with the partition number. As mentioned in Chapter 3,

39

Algorithm 3: Runtime Translation
Input: A ViewDF query V iewDFQ
Output: An executable ViewDF query V iewDFQ exe
1: Subscript oldsub = 0;
2: Subscript prev sub = 0;
3: Subscript newsub = 0;
4: Partition name lname;
5: Physical Partition pname;
6: for all sentence in V iewDFQ do
7: if sentence.contains(’[’) and sentence.contains(’]’) then
8: oldsub = sentence.subString(sentence.indexOf(’[’), sentence.indexOf(’]’));
9: lname = get the name before ’[oldsub]’;

10: prev sub = select s from CATALOG where n = lname;
11: newsub = replace i or k in oldsub with prev sub+1;
12: pname = lname + ” ” + newsub;
13: sentence = replace lname[oldsub] with pname;
14: end if
15: Write sentence to V iewDFQ exe;
16: end for

we maintain a CATALOG table to record the name of the physical tables n and the pre-
vious partition’s subscript s. Every time a new partition of a table T needs to be created,
the partition number of T is generated by increasing sT with 1 where sT represents the
previous partition’s subscript for T , initialized as 0 when there is no partition of T .

When a new partition of a source table or a materialized view needs to be created, the
partition subscripts referenced in the INITIALIZE or UPDATE statement are resolved to
their physical tables. For example, assuming the source table’s name is S, when the new
partition of the source table arrives, the partition’s name is S (sS + 1), where sS is the
subscript of the previous partition of S. Then we update sS to be sS + 1. For materialized
view with name mv, when a new partition needs to be generated, the partition’s name is
mv (smv + 1), where smv is the subscript for the previous partition of mv. Note that since
the partition size of the source table and materialized view can be different, their partition
numbers (even two partitions with the same timestamp) can be different. The algorithm
for resolving the partition subscripts is provided in Algorithm 3 based on the procedures
that we described.

40

4.2 Sliding Window Aggregation

In this section, we show how ViewDF can be used to express the sliding window aggrega-
tion queries. Sliding window aggregation is a large class of continuous queries in SDWs.
Complete re-evaluation is the naive and straightforward approach to process sliding win-
dow aggregation queries. The idea is simple: every time a window is complete, we compute
the result over all tuples in the window. Although this could be sufficient for tumbling
and hopping windows, i.e., windows that slide per one, or more than one, full window
size at a time, it is far from optimal when it comes to the more common and challenging
case of overlapping sliding windows, that is, windows slide less than one window size at a
time. In this case, complete re-evaluation will process the same data over and over again.
For example, for a window with size n minutes and the window slides 1 minute per time,
the same tuple will be processed n times until it finally expires from the window. In this
thesis, we only consider overlapping sliding windows. In this section, we will show how
ViewDF can be used to express the efficient way of processing sliding window aggregation
queries proposed in [9, 45]. In addition, we also propose our own optimization expressed
by ViewDF.

The basic idea of Liarou et al [45] approach was discussed in Chapter 2. To repeat,
it consists of four steps: 1) Split the input stream into n basic windows, 2) Process each
basic window separately and store the partial results, 3) Merge partial results from each
basic window, 4) Slide to prepare for the next basic window. As the partial results are
stored, we don’t need to recompute every tuple from scratch for the next sliding window.
One thing to note is that the size of the basic window is equal to the sliding length of the
window. For example if the window slides 1 minute each time, the size of the basic window
will be 1 minute.

Arasu et al [9] propose several types of data structures called synopses to store enough
states to efficiently compute various sliding window aggregates. Figure 4.2 illustrates a
prefix synopses that stores pre-computed values over prefixes of the stream. Different
lengths of prefix synopses are maintained. To compute f over a sliding window of size
ns at time t, i.e., f(t − ns, t]), we only need to compute f([1, t]) − f([1, t − ns]). This
synopsis is suitable for subtractable aggregate functions such as SUM and COUNT. An
interval synopses is used with distributive aggregates that are not subtractable, such as
MIN and MAX [9]. Figure 4.3 shows an interval synopses to compute MAX over a window
size of 7s. In Figure 4.3, we can see the four rectangles in the two upper lines represent
four interval synopses. The rectangle in the first upper line represents a synopses with a
4-second interval and the three rectangles in the second upper line represent synopses with
a 2-second interval. In order to compute the max value at time t, i.e., max(t − 7s, t], we

41

Figure 4.2: A prefix synopsis

only need to compute the max values from three rectangles with red numbers shown in
Figure 4.3. In general, the length of the interval synopses can be 2i with i a non-negative
integer. In this way, we avoid recomputing the max value from scratch. The synopses will
be maintained as auxiliary materialized views in our framework. We will explain the prefix
synopses using a query with sum and interval synopses using a query with max.

We highlighted our proposed optimization for sliding window operation in Chapter 1.
The basic idea is: we make full use of the previous materialized view partition, add the
contribution of the new data and subtract the contribution of the expired data.

In the following paragraphs, we will use the following two queries to explain how we use
ViewDF to express the three optimizations discussed above for sliding window aggregation
queries.

select src, dest, sum(loss) from S group by src, dest;

select src, dest, max(loss) from S group by src, dest;

The source table S has the same schema as in the motivating example. For the first
and second queries, we want to materialize a view containing the total packet loss (for first
query) or maximum loss (for second query) for each source-destination pair over a sliding
window of 60 minutes, updated every minute to reflect the windowed total as of that
minute. We assume there is one source partition arriving every minute and the window
contains 60 source partitions. Every minute, the window slides one partition. One thing
to note is that, in each partition, there can be more than 1 tuple for each source and
destination pair.

42

Figure 4.3: An interval synopsis

For the first query, the ViewDF for the idea in Liarou et al’s proposal [45] is as follows.
As the window slides one partition each minute, the size of the basic window should be
one partition. Therefore, we split the window into 60 partitions, get the sum of the loss for
each partition, and store the partial results in the auxiliary partitions (denoted as aux[i]
in the following ViewDF query). Then we generate one partition of V iew3 by merging
the results in aux[i]. For the execution of the following ViewDF query, we don’t begin
the INITIALIZE part until the first window is full. Only for the first window, we need to
process every partition. We process the next window in the UPDATE part, in which we
only need to compute the newest basic window (newest partition) and combine with the
pre-computed results from the non-expired basic windows. For all the following ViewDFs,
we use “...” to omit the repeated operations.

CREATE VIEW aux3 AS

INITIALIZE aux3[k] AS

select src,dest,sum(loss) as loss from S[k-59] group by src,dest;

...

select src,dest,sum(loss) as loss from S[k] group by src,dest;

UPDATE aux3[i] AS

select src,dest,sum(loss) as loss from S[i] group by src,dest;

CREATE VIEW View3 AS

INITIALIZE View3[k] AS

43

select src,dest,sum(loss) as sum_loss from(

select * from aux3[k-59]

union all

...

union all

select * from aux3[k]) as X

group by src,dest;

UPDATE View3[i] AS

select src,dest,sum(loss) as sum_loss from(

select * from aux3[i-59]

union all

...

union all

select * from aux3[i]) as X

group by src,dest;

For the first query, the ViewDF corresponding to Arasu et al [9] proposal is as follows.
As sum is a subtractable aggregation function, we store the prefix synopses in the auxiliary
partitions (denoted as aux[i] in the following ViewDF query). From the ViewDF query,
we can see the content in aux[k] is very different from the content in [45]’s ViewDF query.
The latter only stores the sum value for the S[k] partition while the former stores the
sum value from the very beginning of the source partition to S[k] partition. For efficiency,
we don’t recompute every partition to get aux[k]. Instead, we compute aux[k] based on
aux[k − 1] and S[k]. For the execution of the following ViewDF query, we don’t begin
the INITIALIZE part until the first window is full. Only for the first window, we need to
process every partition. We process the next window in the UPDATE part, in which we
only need to compute the newest prefix synopses (from the very beginning to the newest
partition) and subtract corresponding prefix synopses. The reason that we add “where
sum loss > 0” in the UPDATE statement of V iew4 is because we want to exclude the
tuples that exist in the expired window, but not exist in the new window.

CREATE VIEW aux4 AS

INITIALIZE aux4[k] AS

select src,dest,sum(loss) as loss from S[k-59] group by src,dest;

...

select src,dest,sum(loss) as loss from(

select * from aux4[k-1]

44

union all

select src,dest,sum(loss) as loss from S[k] group by src,dest) as X

group by src, dest;

UPDATE aux4[i] AS

select src,dest,sum(loss) as loss from(

select * from aux4[i-1]

union all

select src,dest,sum(loss) as loss from S[i] group by src,dest) as X

group by src, dest;

CREATE VIEW View4 AS

INITIALIZE View4[k] AS

select * from aux4[k];

UPDATE View4[i] AS

select * from

(

select src,dest,sum(loss) as sum_loss from(

select * from aux4[i]

union all

select src,dest,loss*(-1) as loss from aux4[i-60]) as X

group by src,dest

) as Y where sum_loss>0;

For the first query, the ViewDF for our optimization is as follows. Instead of accessing
the most recent 60 minutes of data in S and recomputing the total loss for each source-
destination pair, we take the total packet loss computed over the previous window, add
the loss from the current minute, and subtract the oldest loss measurement from the
previous window which is outside the current window. The formula can be expressed as:
V iew3[i] = V iew3[i − 1] + S[i] − S[i − 60]. The subscripts for V iew3 and S denote the
partition’s number. For the execution of the following ViewDF query, again, we don’t
begin the initialize part until the first window is full. Only for the first window, we need
to process every partition similar to the naive way of complete re-evaluation. We omit
the INITIALIZE part in the following ViewDF because it is the same as the one in the
ViewDF for [45]. The reason that we add “where sum loss¿0” in the UPDATE statement
of V iew5 is because we want to exclude the tuples that exist in the expired window, but
not exist in the new window.

CREATE VIEW View5 AS

45

INITIALIZE View5[k] AS

select src,dest,sum(loss) as sum_loss from(

select * from aux5[k-59]

union all

...

union all

select * from aux5[k]) as X

group by src,dest;

UPDATE View5[i] AS

select * from

(

select src,dest,sum(loss) as sum_loss from(

select src,dest,sum(loss) as loss from aux5[i] group by src,dest

union all

select src,dest,sum(loss)*(-1) as loss from aux5[i-60]

group by src,dest

union all

select * from View5[i-1]) as X

group by src,dest

) as Y where sum_loss>0;

For the second query, as our optimization is based on adding the contribution of new
data and subtracting the contribution of old data, it is only useful for subtractable aggrega-
tion. Therefore, it cannot be used for the aggregation functions that are not subtractable,
such as MAX and MIN. Therefore, we only use ViewDF to express the other two proposals.

For the second query, the ViewDF for Liarou et al [45] proposal is as follows. We
split the window into 60 partitions, get the max value for each source-destination pair in
each partition and store the partial results in the auxiliary partitions (denoted as aux[i]
in the following ViewDF query). Then we generate one partition of V iew3 by merging
the results in aux[i]. For the execution of the following ViewDF query, we don’t begin the
initialize part until the first window is full. Only for the first window, we need to process
every partition similar to the naive way of complete re-evaluation. We process the next
window in the UPDATE part, in which we only need to compute the max value in the
newest basic window (newest partition) and combine with the pre-computed results from
the non-expired basic windows.

CREATE VIEW aux6 AS

46

INITIALIZE aux6[k] AS

select src,dest,max(loss) as loss from S[k-59] group by src,dest;

...

select src,dest,max(loss) as loss from S[k] group by src,dest;

UPDATE aux6[i] AS

select src,dest,max(loss) as loss from S[i] group by src,dest;

CREATE VIEW View6 AS

INITIALIZE View6[k] AS

select src,dest,max(loss) as max_loss from(

select * from aux6[k-59]

union all

...

union all

select * from aux6[k]) as X

group by src,dest

UPDATE View6[i] AS

select src,dest,max(loss) as max_loss from(

select * from aux6[i-59]

union all

...

union all

select * from aux6[i]) as X

group by src,dest

4.3 DBToaster

DBToaster [7] provides a higher-order IVM as described next. They make use of discrete
forward differences (delta queries) recursively, on multiple levels of derivation. That is,
they use delta queries (“first-order deltas”) to incrementally maintain the view of the
input query, then materialize the delta queries as views, maintain these views using delta
queries over the delta queries (“second-order deltas”), and continue alternating between
materializing views and deriving higher-order delta queries for maintenance. We use the
following example to explain this and show our ViewDF can also express this higher-order
IVM.

Consider a query Q that counts the number of tuples in the product of relations R and
S. We want to maintain Q’s result in V iew7 under insertion. We use ∆R (resp. ∆S)

47

to represent the change to a view as one tuple is inserted into R (resp. S). We can use
∆RQ and ∆SQ (both are“first-order deltas”) to maintain the view of Q. In addition, we
use ∆R∆SQ and ∆S∆RQ (both are “second-order deltas”) to materialize ∆SQ and ∆RQ.
As ∆R∆SQ and ∆S∆RQ’s values are constant (1 in this example), the recursion stops. In
total, in order to maintain V iew7, we maintain the four views: ∆RQ, ∆SQ, ∆R∆SQ and
∆S∆RQ. We can simultaneously maintain all these views using each other, without the
recomputation of the product of R and S. Specifically, the dependencies are as follows.

• Initialize
∆SQ = count(R) (4.1)

∆RQ = count(S) (4.2)

∆R∆SQ = ∆S∆RQ = 1 (4.3)

• On insert into R
Qnew = Qold + ∆RQ (4.4)

∆SQnew = ∆SQold + ∆R∆SQ = ∆SQold + 1 (4.5)

∆RQnew = ∆RQold + ∆R∆RQ = ∆RQold + 0 (4.6)

• On insert into S
Qnew = Qold + ∆SQ (4.7)

∆RQnew = ∆RQold + ∆S∆RQ = ∆RQold + 1 (4.8)

∆SQnew = ∆SQold + ∆S∆SQ = ∆SQold + 0 (4.9)

We can see Q’s maintenance is based on ∆RQ or ∆SQ on insertion into R or S, and
∆SQ and ∆RQ are materialized based on ∆R∆SQ and ∆S∆RQ. We use the following table
to illustrate the maintained view for Q. Time 0 represents the initial state without any
insertion. At time 0, relation R has 3 tuples and S has 4 tuples. From equations 3.1 and
3.2, we know ∆SQ = count(R) = 3 and ∆RQ = count(S) = 4. Initially, we compute the
number of tuples for Q by multiplying count(R) and count(S) and getting 12. When there
is an insertion into relation S at time 1, based on equation 3.7, we can get Q’s result by
computing Qnew = Qold +∆SQ = 12+3 = 15 instead of recomputing the produce of R and
S. Note that the add operator is much cheaper than the multiply operator. Meanwhile,
we update the ∆RQ and ∆SQ based on equations 3.8 and 3.9. When there is an insertion
into relation R at time 2, based on equations 3.4, 3.5 and 3.6, we can easily get the Q’s
result.

Based on equations 3.4-3.6, we write a ViewDF for insertion to R as follows. Equation
3.5’s ViewDF is:

48

Table 4.2: DBToaster materialize the product of two relations R and S

time insert into ——R—— ——S—— Q ∆RQ ∆SQ ∆S∆RQ and ∆R∆SQ
0 - 3 4 12 4 3 1
1 S 3 5 15 5 3 1
2 R 4 5 20 5 4 1

CREATE VIEW Helper_S AS

INITIALIZE Helper_S[k] AS

SELECT count(*) as count

FROM R

UPDATE Helper_S[i] AS

SELECT count + 1 as count

FROM Helper_S[i-1]

Equation 3.6’s ViewDF is:

CREATE VIEW Helper_R AS

INITIALIZE Helper_R[k] AS

SELECT count(*) as count

FROM S

UPDATE Helper_R[i] AS

SELECT count + 0 as count

FROM Helper_R[i-1]

Equation 3.4’s ViewDF for V iew7 is:

CREATE VIEW View7 AS

INITIALIZE View7[k] AS

SELECT count(*) as count

FROM R*S

UPDATE View7[i] AS

SELECT Q.count + R.count as count

FROM View7[i-1] as Q, Helper_R[i-1] as R

Based on equations 3.7-3.9, we write a ViewDF for insertion to S as follows. Equation
3.8’s ViewDF is:

49

CREATE VIEW Helper_R AS

INITIALIZE Helper_R[k] AS

SELECT count(*) as count

FROM S

UPDATE Helper_R[i] AS

SELECT count + 1 as count

FROM Helper_R[i-1]

Equation 3.9’s ViewDF is:

CREATE VIEW Helper_S AS

INITIALIZE Helper_S[k] AS

SELECT count(*) as count

FROM R

UPDATE Helper_S[i] AS

SELECT count + 0 as count

FROM Helper_S[i-1]

Equation 3.7’s ViewDF for V iew7 is:

CREATE VIEW View7 AS

INITIALIZE View7[k] AS

SELECT count(*) as count

FROM R*S

UPDATE View7[i] AS

SELECT Q.count + S.count as count

FROM View7[i-1] as Q, Helper_S[i-1] as S

This example presents single-tuple update. Viewlet transforms are not limited to this
but support bulk updates. For bulk updates for this example, we need to change equations
3.4 and 3.7 to the following in which nR and nS represent the number of tuples inserted
into relation R and S:

Qnew = Qold + ∆RQ ∗ nR (4.10)

Qnew = Qold + ∆SQ ∗ nS (4.11)

50

Chapter 5

Experiments

We implemented all the techniques discussed in the previous chapters using Java and
PostgreSQL’s procedural language PL/PGSQL. In this chapter, we report on experiments
that compare our proposed approach with the existing algorithms for pattern matching
and sliding window aggregation. All the experiments are performed on a workstation with
a AMD Phenom(tm) II X4 955 3200 Mhz processor and 8 GB memory running Linux 4.1.
We use PostgreSQL as the underlying DBMS and set the size of the shared memory used
by the database server to 600MB.

5.1 Data Generation

We generate the data for the source partitions by Java with the schema (src:String,
dest:String, loss:Integer). We first write all the needed data to a file and then use PL/PGSQL
to load the data from the file to the corresponding table. We create a database called
“viewdf” in which we create three empty parent tables (source table, auxiliary table and
materialized view table). For pattern matching, the schema of the materialized view is
src:String, dest:String, count:Integer, sum loss:Integer. The schema of the auxiliary table
depends on different algorithms because different algorithms for pattern matching main-
tain different intermediate variables in the auxiliary tables. We will provide the schema
of the auxiliary table in the next section. For sliding window aggregation, the schema of
the materialized view is src:String, dest:String, sum loss:Integer, and the schema of the
auxiliary table is src:String, dest:String, loss:Integer. Every time we need to create a new
partition, we trigger a PL/PGSQL function to create a child table from the corresponding

51

parent table (inherit the corresponding schemas), and then either copy the data from the
file to the child table or inserting data to the child table by executing a ViewDF query.

Since we have experiments that compare different algorithms under different selectiv-
ities1, we need to generate loss values that distributed in different intervals as the user
requests. We achieve this by generating random numbers for the loss values in specific
ranges.

In addition, we have different requirements for the data in the source partitions. For
the experiment on pattern matching, we generate only one tuple for each src/dest pair in
every source partition. For the experiment on sliding window aggregation, we generate 10
tuples for each src/dest pair in every source partition.

5.2 Pattern Matching

5.2.1 Algorithms

In order to compare different algorithms for pattern matching, we first illustrate these
algorithms using the example pattern matching query provided in Section 3.1.1.

Direct: We implement the naive method (Section 4.1) to update V iew2 when a new
batch of packet loss measurements arrives. We call this “Direct” in the following experi-
ments. The specific implementation is to re-run the pattern query. Since it is not known
how many previous partitions should be revisited, we provide a variable called scope to
represent the number of previous partitions to revisit and give it different values in the
following experiments. Direct will not only find those source-destination pairs which have
reported at least four consecutive high-loss measurements as of the current time, but also
all such intervals that happened in the past. To solve this problem, we check the source-
destination pairs that have reported at least four consecutive high-loss measurements to
see whether they happen as of the current time or not.

Incremental Strategy: We implement the incremental maintenance strategy pro-
posed in Section 4.1 (first generate new Helper view partition based on previous Helper
view partition, then generate new V iew2 partition based on the latest Helper view parti-
tion) by the following three different algorithms.

1. Hardcode: In this algorithm, we use JDBC to connect to PostgreSQL and maintain
first red, red ct and sum loss in the Helper view partition. first red keeps track

1Selectivity will be explained in the next section

52

of the timestamp of the first red measurement that satisfies four consecutive reds
up to now (We call the measurement with loss value larger than 10 “red” measure-
ment), red ct counts the number of red measurements in the current interval and
sum loss sums up the loss values over the current interval. Therefore, the schema
of the auxiliary table (Helper view) is src:String, dest:String, first red:timestamp,
red ct:Integer and sum loss:Integer. Every time a new source partition S[i] arrives,
we generate the new partition Helper[i] by visiting Helper[i− 1] and S[i]. The rea-
son that we call this algorithm Hardcode is that, different from ViewDF proposed
in Section 4.1 to automatically figure out what to maintain in the Helper view, this
algorithm expects the user to figure out what to maintain in the Helper view. As it
is not automatic for the pattern matching queries, we call it “Hardcode”.

The algorithm for Hardcode algorithm is in Algorithm 4. Specifically, for a src-dest
pair tuple t in S[i],

(a) t is a red tuple:

i. If t exists in Helper[i− 1] and first red for t in Helper[i− 1] is a non-zero
value V , which means there are consecutive red measurements since time
V until now, then the matching can continue.

ii. Else, we need to begin a new run for pattern matching.

(b) If t is not a red tuple, there is no need to store this tuple in Helper[i]. This
is because the example pattern matching query maintains materialized views
that contain more than four consecutive reds as of the current time while tuple
t destroys the consecutiveness.

2. ViewDF union: We call the ViewDF with many unions in Section 4.1.2 “ViewDF union”.
The schema of the auxiliary table (Helper view) is src:String, dest:String, prevS-
tate:Integer, count:Integer and sum loss Integer.

3. ViewDF: We call the last ViewDF in Section 4.1.2 “ViewDF”. The schema of the
auxiliary table (Helper view) is the same as ViewDF union’s.

5.2.2 Experiment Results

We conduct the following experiments to compare different algorithms for pattern matching
from different aspects. All the experiments are based on the example pattern matching
query provided in Section 3.1.1. All the results are average values after we run each
experiment 50 times.

53

Algorithm 4: Algorithm for Hardcode

Input: partition S[i] and partition Helper[i− 1]
Output: partition Helper[i]
1: statement stmt;
2: ResultSet rs = stmt.executeQuery(“select * from S[i] order by src,dest”);
3: ResultSet rs2 = stmt.executeQuery(“select * from Helper[i-1] order by src,dest”);
4: while rs.next() do
5: while rs2.next() do
6: tuple t = rs.getTuple();
7: if t is a red tuple then
8: if t exists in rs2 AND t.first red! = 0 then
9: red ct = rs2.get(red ct);

10: sum loss = rs2.get(sum loss);
11: red ct+=1;
12: sum loss+=rs.get(loss);
13: else
14: red ct=1;
15: sum loss = rs.get(loss);
16: first red = currentTimestamp;
17: end if
18: Write t to a file helper
19: end if
20: end while
21: end while
22: load data from file helper to partition Helper[i]

Scalability

In this experiment, we compare the execution time of the four algorithms (Direct, ViewDF union,
ViewDF and Hardcode) to show ViewDF’s scalability. Figure 5.1 shows the time compari-
son of these methods for varying number of tuples in the source tables when the selectivity
(ratio between the number of red tuples and the total number of tuples in the source table)
is 0.1 and the scope for Direct is 20. From Figure 5.1, we can see the execution time of ev-
ery method increases linearly when the number of tuples in the source partitions increases.
Direct’s execution time is worse than all the other methods. This is because Direct needs
to recompute over all the needed source partitions while other three methods use Helper
view to avoid the recomputation. ViewDF union’s execution time is much larger than
Hardcode and ViewDF. This is because ViewDF union with several unions needs to scan

54

Figure 5.1: Pattern Matching: comparison between Direct, Hardcode, ViewDF union and
ViewDF under different number of tuples in the source partition

the source table many times while Hardcode and ViewDF only need to scan once. ViewDF
is a little better than Hardcode, because Hardcode needs to move two cursors (rs and rs2 in
the pseudocode) and process the cursor-pointed data using JDBC while ViewDF depends
on the underlying DBMS to generate an optimized query execution plan. The result can
show ViewDF’s scalability. Figure 5.1 show that when the number of tuples in source table
is 106, the execution time for ViewDF is only 5 seconds, which is very efficient.

Scope

In this experiment, we compare the execution time of the four algorithms by varying the
scope from 5 to 100 to show the efficiency of the three algorithms with incremental strategy.
Figure 5.2 shows the time comparison among these methods when the number of tuples
in the source partitions is 106 and the selectivity is 0.1. We can see that, when the scope
increases, Direct’s execution time increases linearly while the execution time of other meth-
ods keeps nearly constant. This is because Direct needs to recompute over all the needed
source partitions while the other three methods use Helper view to avoid recomputation.

55

Figure 5.2: Pattern Matching: comparison between Direct, Hardcode, ViewDF union and
ViewDF under different scopes

Therefore, when the scope increases, Direct needs to recompute more source partitions.
The experiment result can show the efficiency of the other three algorithms. We conclude
that algorithms with incremental strategy can improve the performance.

Selectivity

We also conduct an experiment in which we compare these methods’ execution time under
different selectivity when the number of tuples in the source partition is 106 and the scope
for Direct is 4. This experiment aims to test the overhead of the three algorithms with
incremental strategy. The results are shown in Figure 5.3 which shows that execution time
of each method increases as the selectivity increases. This is because we need to maintain
more results in the Helper and materialized view. However, Direct increases much slower
than the others. This is because when selectivity increases, Direct only maintains more
results in the materialized view while other three algorithms need to maintain more results
in both Helper and materialized view. The Helper view maintenance is the overhead of
the other three algorithms. Therefore, when the selectivity equals to 0.7, ViewDF union’s

56

Figure 5.3: Pattern Matching: comparison between Direct, Hardcode, ViewDF union and
ViewDF under different selectivities

execution time is larger than Direct’s, and when the selectivity equals to 0.9, Hardcode’s
execution time is larger than Direct’s.

5.3 Sliding Window Aggregation

5.3.1 Algorithms

In order to compare different algorithms for sliding window aggregation, we first illustrate
these algorithms using the two example queries provided in Section 4.2 (one is maintaining
sum loss and the other is maintaining max loss in the materialized view).

Algorithms for sum loss

1. DataCell: We implement the method of Liarou et al [45] by executing the ViewDFs
for aux3 and V iew3 for the sum loss query and call it “DataCell Sum”, since this

57

method is built on the DataCell architecture. The specific procedures for Data-
Cell Sum for the sum loss query are: split the window into 60 partitions, get the sum
of the loss for each partition and store the pre-aggregation results in the auxiliary
partitions, and then generate one partition of V iew3 by merging the results in the
auxiliary partitions. The reason that we must do pre-aggregation for each source
partition is that there are more than one tuple for each src/dest pair in each source
partition.

2. Direct Sum: The implementation of Direct Sum for the sum loss is almost the same
as DataCell Sum except that Direct Sum does not store the pre-aggregation results
in the auxiliary partitions. Therefore, every time a new materialized view partition
needs to be generated, Direct Sum needs to recompute the sum of the loss for the
previous source partitions while DataCell Sum can use the existing pre-aggregation
results in the auxiliary partitions.

3. Prefix: We implement the method of Arasu et al [9] by executing the ViewDFs
for aux4 and V iew4 for the sum loss query and call it “Prefix”, because sum is a
subtractable aggregation function and we store the prefix synopses in the auxiliary
partitions denoted as aux[i]. Therefore, every time a new materialized view partition
needs to be generated, Prefix can compute view[i] by subtracting aux[i − win size]
from aux[i] instread of recomputing from scratch.

4. ViewDF Sum: We call our optimization for the sum loss query “ViewDF Sum”
and execute the ViewDFs for aux5 (the same as aux3) and V iew5. The specific
procedures are: instead of accessing the most recent 60 minutes of data in S and
recomputing the total loss for each source-destination pair, we take the total packet
loss computed over the previous window, add the loss from the current minute, and
subtract the oldest loss measurement from the previous window which is outside the
current window.

5. Hardcode Sum: We use JDBC to connect to PostgreSQL and implement our op-
timization “ViewDF Sum”. We maintain the sum loss in the auxiliary partition
aux[i]. Every time a new materialized view needs to be generated, we generate three
cursors to point to the current auxiliary partition aux[i], the expired auxiliary parti-
tion aux[i−win size] and the previous materialized view partition view[i−1]. Then
we use the cursor-pointed data to generate view[i] by adding view[i − 1] with the
loss from aux[i] and subtracting the loss from aux[i − win size]. The specific rules
for Hardcode Sum algorithm are as follows. For a src-dest pair tuple t in aux[i],

58

(a) If t exists in aux[i−win size] and view[i− 1], then we add t.loss in view[i− 1]
with t.loss in aux[i], subtract t.loss in aux[i − win size], and write the result
to a file. After all the tuples in aux[i] is processed, we copy the content in the
file to view[i].

(b) If t does not exist in aux[i − win size] and view[i − 1], we directly write the
tuple’s value in to the file.

Algorithms for max loss

1. DataCell Max: We implement the method of Liarou et al in [45] by executing the
ViewDFs for aux6 and V iew6 for the max loss query and call it “DataCell Max”. The
specific procedures for DataCell Max for the max loss query are: split the window
into 60 partitions, get the max of the loss for each partition and store the pre-
aggregation results in the auxiliary partitions, and then generate one partition of
V iew6 by merging the results in the auxiliary partitions.

2. Direct Max: The implementation of Direct Max for the max loss is almost the same
as DataCell Max except that Direct Max does not store the pre-aggregation results
in the auxiliary partitions. Therefore, every time a new materialized view partition
needs to be generated, Direct Sum needs to recompute the pre-aggregation results for
the previous base partitions while DataCell Max can use the existing partial results
in the auxiliary partitions.

3. Hardcode Max: We use JDBC to connect to PostgreSQL, implement the same
logic as V iew6 but outside the database and call it “Hardcode Max”. Hardcode Max
maintains the pre-aggregation results for every basic window in the auxiliary parti-
tions and an array max loss[] consisting of the intermediate values for every src/dest
pair’s max loss. Then Hardcode Max scans every auxiliary partition and update the
intermediate values in the max loss[].

5.3.2 Experiment Results

We conduct the following experiments to compare different algorithms for sliding window
aggregation to maintain sum loss and max loss in the materialized view. All the exper-
iments are based on the two example queries in Section 4.2. All the results are average
values after we run each experiment 50 times.

59

Figure 5.4: Sliding Window Operation for sum loss for non-first window: comparison be-
tween DataCell Sum, Direct Sum, Prefix, ViewDF Sum and Hardcode Sum under different
number of tuples in the source partition

Scalability for Sum

In this experiment, we implemented sliding window aggregation for sum loss by Data-
Cell Sum, Direct Sum, Prefix, ViewDF Sum and Hardcode Sum. We compare these algo-
rithms’ execution time to show ViewDF Sum’s scalability. Figure 5.4 shows the execution
time comparison among these methods under different number of tuples in the source
partition when the window size is 10. Figure 5.4 shows that the execution time of each
method increases linearly when the number of tuples in the source partitions increases.
Direct Sum’s execution time is much larger than all the other methods, because it needs to
recompute the sum of the loss for the previous source partitions while others can use the
existing pre-aggregation results in the auxiliary partitions. The execution time for Prefix,
ViewDF Sum and Hardcode Sum is almost the same while DataCell Sum’s execution is
larger than these three. This is because DataCell Sum needs to merge the results in all of
the 10 auxiliary partitions while other three only needs to access two or three auxiliary or
materialized partitions. In addition, from Figure 5.4, we can see that, when the number of

60

Figure 5.5: Sliding Window Operation for sum loss for first window: comparison between
DataCell Sum, Direct Sum, Prefix, ViewDF Sum and Hardcode Sum under different tuples

tuples in source table is 107 (106 different source-destination pairs with each pair consists
of 10 tuples), the execution time for ViewDF Sum is only 34.39 seconds, which is quite
efficient.

The execution time for different methods in Figure 5.4 is for the non-first window
aggregation. Sum loss in the first window is computed from the INITIALIZE statement
in the ViewDFs, while sum loss in the non-first window is computed from the UPDATE
statement in the ViewDFs. Therefore, the execution time of the first and non-first window
is different. The execution time for the first window aggregation are shown in Figure
5.5. The execution time of all the methods for the first window aggregation is far larger
than for the non-first window aggregation. This is because the first window aggregation
needs to access all the 10 source partitions while the non-first window aggregation needs to
access much smaller number of partitions (Prefix, ViewDF Sum and Hardcode Sum need
to access two or three auxiliary or materialized view partitions. DataCell Sum needs to
access 10 auxiliary partitions instead of source partitions). One exception is Direct Sum,
whose execution time for the first window aggregation is the same as the non-first window
aggregation, because both needs to access 60 source partitions. The execution time of

61

Figure 5.6: Sliding Window Operation for sum loss: comparison between DataCell Sum,
Direct Sum, Prefix, ViewDF Sum and Hardcode Sum under different window sizes

DataCell Sum, Direct Sum, ViewDF Sum and Hardcode Sum is the same, because they
use the same execution statements. The execution time of Prefix is a little larger than
others because Prefix maintains the prefix auxiliary partitions for the source partitions
(each prefix auxiliary partition’s computation needs to base on a source partition and the
previous auxiliary partition) while other methods maintain computes an auxiliary partition
only based on one source partition.

Window Size for Sum

We then compare the execution time of the above methods (DataCell Sum, Direct Sum,
Prefix, ViewDF Sum and Hardcode Sum) under different window sizes when the number
of tuples in the base partition is 107. The results are shown in Figure 5.6. We can see
that as the window size increases, the execution time of Direct Sum and DataCell Sum
increases almost linearly while other three methods’ execution times are nearly constant.
This is because both Direct Sum and DataCell Sum need to access the most recent win size
partitions and recompute the result while other methods only need to access two or three

62

Figure 5.7: Sliding Window Operation for max loss: comparison between DataCell Max,
Direct Max and Hardcode Max under different tuples

auxiliary or materialized view partitions. The execution time of Direct Sum is larger than
DataCell Sum’s because Direct Sum needs to recompute the sum of the loss for the previous
source partitions while DataCell Sum can use the existing pre-aggregation results in the
auxiliary partitions. Note that all the execution time in Figure 5.6 is for non-first window
aggregation.

Scalability for Max

In this experiment, we implemented the sliding window aggregation for max loss by Data-
Cell Max, Direct Max and Hardcode Max. Figure 5.7 shows the execution time comparison
among these methods under different number of tuples in the source partition when the
window size is 10. The execution time of each method increases linearly when the number
of tuples in the source partitions increases. Direct Max’s execution time is much larger
than the other two methods, because Direct Sum needs to recompute the max of the loss
for the previous source partitions while others can use the existing pre-aggregation results
in the auxiliary partitions. The execution time for Direct Max and Hardcode Max is al-

63

Figure 5.8: Sliding Window Operation for max loss: comparison between DataCell Max,
Direct Max and Hardcode Max under different window sizes

most the same, because they execute the same statements. In addition, when the number
of tuples in source table is 107, the execution time for ViewDF Sum is only 48.68 seconds,
which is quite efficient.

The execution time for different methods in Figure 5.7 is for the non-first window ag-
gregation. Since all three methods use the same execution statements for the first window,
their execution time for the first window aggregation is the same. Since there is no dif-
ference between the execute time of Direct Max in the first window and non-first window
aggregation, all the three methods’ execution time can be seen from the execution time of
Direct Max in Fig. 5.7.

Window Size for Max

We then compare the execution time of the above methods (DataCell Max, Direct Max
and Hardcode Max) under different window sizes when the number of tuples in the base
partition is 107. The results are shown in Figure 5.8. As the window size increases,

64

the execution time of all the methods increases linearly, because all the methods need to
access the most recent win size partitions and recompute the result. The execution time
of Direct Max is larger than the other two because Direct Max needs to recompute the
max of the loss for the previous source partitions while others can use the existing pre-
aggregation results in the auxiliary partitions. Note that all the execution time in Figure
5.8 is for non-first window aggregation.

65

Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this thesis, we presented ViewDF: a flexible framework for incremental maintenance of
materialized views in SDW systems that generalizes existing techniques and enables new
optimizations for views defined with operators that are common in stream analytics. We
proposed a special view definition (ViewDF) to enhance the traditional way of creating
views in SQL by being able to specifying the contents of new view partitions over time and
reference any partition of any table. We show that the declarative approach can naturally
express incremental maintenance algorithms for relational queries as well as other types of
queries that frequently appear in stream analytics such as sliding window aggregates and
pattern matching. We implemented a prototype system based on this idea, which allows
users to write ViewDFs directly and can automatically translate a broad class of users’
normal queries into ViewDFs. Experiments show that our proposed system can greatly
improve view maintenance time.

6.2 Future Work

There are some interesting directions for future work:

1. In the thesis, we assume that data arrives in order of timestamp. However, in a
stream environment, it is very often that data arrives out-of-order. In the future, we
want to develop techniques to handle out-of-order data.

66

2. One interesting direction for future work is to develop multi-query optimization
strategies for ViewDFs so that related views may be updated together more effi-
ciently than one-by-one.

3. Another direction is to extend the ViewDF framework to views partitioned on mul-
tiple attributes, not just time.

4. Currently, we have different methods for pattern matching and sliding window ag-
gregation. In the future, we want to develop a cost-based optimizer to select the best
method for a specific configuration.

5. In a distributed environment, naive materialized view maintenance approach has to
store needed source partitions together on one machine so that it is not necessary to
fetch source partitions from other machines to compute the new materialized view
partition. ViewDF only needs to ensure that the necessary partitions are stored
together on one machine, which is much easier to achieve. For example, in order to
compute the sum of loss for each source-destination pair in a sliding window of 60
minutes, naive approach has to store all the 60 source partitions together. ViewDF
only needs to store the expired source partition S[i− 60], previous materialized view
V iew[i− 1] and the latest source partition S[i] together on one machine. From this,
we can see ViewDF framework is better suited for distributed environment. In the
future, we want to deploy our setting into distributed environments and explore other
strategies to improve the efficiency of distributed query processing.

67

References

[1] http://blogs.msdn.com/b/streaminsight/.

[2] http://dev.mysql.com/doc/refman/5.5/en/adding-functions.html.

[3] http://docs.oracle.com/cd/e11882 01/server.112/e25523/part warehouse.htm.

[4] http://www.postgresql.org/.

[5] http://www.streambase.com/.

[6] J. Agrawal, Y. Diao, D. Gyllstrom, and N. Immerman. Efficient pattern matching
over event streams. In Proceedings of ACM SIGMOD International Conference on
Management of Data, pages 147–160, 2008.

[7] Y. Ahmad, O. Kennedy, C. Koch, and M. Nikolic. Dbtoaster: higher-order delta
processing for dynamic, frequently fresh views. Proceedings of the VLDB Endowment,
5(10):968–979, 2012.

[8] Arvind Arasu, Brian Babcock, Shivnath Babu, Mayur Datar, Keith Ito, Rajeev Mot-
wani, Itaru Nishizawa, Utkarsh Srivastava, Dilys Thomas, Rohit Varma, and Jennifer
Widom. Stream: The stanford stream data manager. IEEE Data Engineering Bul-
letin, 26(1):19–26, 2003.

[9] Arvind Arasu and Jennifer Widom. Resource sharing in continuous sliding-window
aggregates. In Proceedings of the Thirtieth International Conference on Very Large
Data Bases, pages 336–347, 2004.

[10] B. Babcock, M. Datar, and R. Motwani. Load shedding for aggregation queries over
data streams. In Proceedings of the 20th International Conference on Data Engineer-
ing, pages 350–361, 2004.

68

[11] Shivnath Babu, Utkarsh Srivastava, and Jennifer Widom. Exploiting k-constraints to
reduce memory overhead in continuous queries over data streams. ACM Transactions
on Database Systems, 29(3):545–580, 2004.

[12] H. Balakrishnan, M. Balazinska, D. Carney, U. Çetintemel, M. Cherniack, C. Convey,
E. Galvez, J. Salz, M. Stonebraker, N. Tatbul, et al. Retrospective on aurora. The
VLDB Journal, 13(4):370–383, 2004.

[13] M. Balazinska, Y.C. Kwon, N. Kuchta, and D. Lee. Moirae: History-enhanced moni-
toring. In Proceedings of the Third Conference on Innovative Data Systems Research,
pages 375–386, 2007.

[14] J.A. Blakeley, P.A. Larson, and F.W. Tompa. Efficiently updating materialized views.
ACM SIGMOD Record, 15(2):61–71, 1986.

[15] P. Boncz, T. Grust, M. van Keulen, S. Manegold, J. Rittinger, and J. Teubner. Mon-
etdb/xquery: a fast xquery processor powered by a relational engine. In Proceedings
of ACM SIGMOD International Conference on Management of Data, pages 479–490,
2006.

[16] Ahmet Bulut and Ambuj K Singh. Swat: Hierarchical stream summarization in large
networks. In Proceedings of the 19th International Conference on Data Engineering,
pages 303–314, 2003.

[17] Ahmet Bulut and Ambuj K Singh. A unified framework for monitoring data streams
in real time. In Proceedings of the 21st International Conference on Data Engineering,
pages 44–55, 2005.

[18] B. Cadonna, J. Gamper, and M.H. Böhlen. Sequenced event set pattern matching. In
Proceedings of the 14th International Conference on Extending Database Technology,
pages 33–44, 2011.

[19] B. Chandramouli, J. Goldstein, and S. Duan. Temporal analytics on big data for web
advertising. In Proceedings of the 28th International Conference on Data Engineering,
pages 90–101, 2012.

[20] S. Chandrasekaran, O. Cooper, A. Deshpande, M.J. Franklin, J.M. Hellerstein,
W. Hong, S. Krishnamurthy, S.R. Madden, F. Reiss, and M.A. Shah. Telegraphcq:
continuous dataflow processing. In Proceedings of ACM SIGMOD International Con-
ference on Management of Data, pages 668–668, 2003.

69

[21] Sirish Chandrasekaran. Query processing over live and archived data streams. 2005.

[22] A. Demers, J. Gehrke, M. Hong, M. Riedewald, and W. White. Towards expressive
publish/subscribe systems. In Proceedings of International Conference on Extending
Database Technology, pages 627–644. Springer, 2006.

[23] Alan Demers, Johannes Gehrke, Biswanath Panda, Mirek Riedewald, Varun Sharma,
Walker M White, et al. Cayuga: A general purpose event monitoring system. In
Proceedings of the Third Innovative Data Systems Research, pages 412–422, 2007.

[24] N. Dindar, P.M. Fischer, M. Soner, and N. Tatbul. Efficiently correlating complex
events over live and archived data streams. In Proceedings of the 5th ACM Interna-
tional Conference on Distributed Event-based System, pages 243–254, 2011.

[25] N. Dindar, B. Güç, P. Lau, A. Ozal, M. Soner, and N. Tatbul. Dejavu: declarative
pattern matching over live and archived streams of events. In Proceedings of ACM
SIGMOD International Conference on Management of Data, pages 1023–1026, 2009.

[26] Luping Ding, Nishant Mehta, Elke Rundensteiner, and George Heineman. Join-
ing punctuated streams. In Proceedings of International Conference on Extending
Database Technology, pages 519–520. Springer, 2004.

[27] M.J. Franklin, S. Krishnamurthy, N. Conway, A. Li, A. Russakovsky, and N. Thom-
bre. Continuous analytics: Rethinking query processing in a network-effect world. In
Proceedings of the 4th Conference on Innovative Data Systems Research, 2009.

[28] Thanaa M Ghanem, Moustafa A Hammad, Mohamed F Mokbel, Walid G Aref, and
Ahmed K Elmagarmid. Incremental evaluation of sliding-window queries over data
streams. IEEE Transactions on Knowledge and Data Engineering, 19(1):57–72, 2007.

[29] T.M. Ghanem, A.K. Elmagarmid, P.Å. Larson, and W.G. Aref. Supporting views in
data stream management systems. ACM Transactions on Database Systems, 35(1):1,
2010.

[30] L. Golab, T. Johnson, J.S. Seidel, and V. Shkapenyuk. Stream warehousing with
datadepot. In Proceedings of ACM SIGMOD International Conference on Manage-
ment of Data, pages 847–854, 2009.

[31] L. Golab, T. Johnson, S. Sen, and J. Yates. A sequence-oriented stream warehouse
paradigm for network monitoring applications. In Proceedings for Passive and Active
Measurement, pages 53–63, 2012.

70

[32] L. Golab, T. Johnson, and V. Shkapenyuk. Scalable scheduling of updates in stream-
ing data warehouses. IEEE Transactions on Knowledge and Data Engineering,
24(6):1092–1105, 2012.

[33] Lukasz Golab and Theodore Johnson. Consistency in a stream warehouse. In Pro-
ceedings of the 5th Conference on Innovative Data Systems Research, pages 114–122,
2011.

[34] Lukasz Golab and M Tamer Özsu. Data stream management. Synthesis Lectures on
Data Management, 2(1):1–73, 2010.

[35] Rick Greer. Daytona and the fourth-generation language cymbal. ACM SIGMOD
Record, 28(2):525–526, 1999.

[36] A. Gupta and I.S. Mumick. Materialized views: techniques, implementations, and
applications. MIT Press, 1999.

[37] Daniel Gyllstrom, Jagrati Agrawal, Yanlei Diao, and Neil Immerman. On supporting
kleene closure over event streams. In Proceedings of the 24th International Conference
on Data Engineering, pages 1391–1393, 2008.

[38] Dirk Habich, Wolfgang Lehner, and Michael Just. Materialized views in the presence of
reporting functions. In Proceedings of the 18th International Conference on Scientific
and Statistical Database Management, pages 159–168, 2006.

[39] J-H Hwang, Magdalena Balazinska, Alexander Rasin, Ugur Cetintemel, Michael
Stonebraker, and Stan Zdonik. High-availability algorithms for distributed stream
processing. In Proceedings of the 21st International Conference on Data Engineering,
pages 779–790, 2005.

[40] Sailesh Krishnamurthy, Michael J Franklin, Jeffrey Davis, Daniel Farina, Pasha
Golovko, Alan Li, and Neil Thombre. Continuous analytics over discontinuous
streams. In Proceedings of ACM SIGMOD International Conference on Management
of Data, pages 1081–1092, 2010.

[41] Jin Li, David Maier, Kristin Tufte, Vassilis Papadimos, and Peter A Tucker. No pane,
no gain: efficient evaluation of sliding-window aggregates over data streams. ACM
SIGMOD Record, 34(1):39–44, 2005.

[42] Jin Li, David Maier, Kristin Tufte, Vassilis Papadimos, and Peter A Tucker. Semantics
and evaluation techniques for window aggregates in data streams. In Proceedings of

71

ACM SIGMOD International Conference on Management of Data, pages 311–322,
2005.

[43] Ming Li, Mo Liu, Luping Ding, Elke A Rundensteiner, and Murali Mani. Event stream
processing with out-of-order data arrival. In Proceedings of the 27th International
Conference on Distributed Computing Systems Workshops, pages 67–67, 2007.

[44] E. Liarou and M.L. Kersten. Datacell: Building a data stream engine on top of a
relational database kernel. In Proceedings of the 35th International Conference on
Very Large Data Bases PhD Workshop, 2009.

[45] Erietta Liarou, Stratos Idreos, Stefan Manegold, and Martin Kersten. Enhanced
stream processing in a dbms kernel. In Proceedings of the 16th International Confer-
ence on Extending Database Technology, pages 501–512, 2013.

[46] T. Palpanas, R. Sidle, R. Cochrane, and H. Pirahesh. Incremental maintenance for
non-distributive aggregate functions. In Proceedings of the 28th International Confer-
ence on Very Large Data Bases, pages 802–813, 2002.

[47] K.A. Ross, D. Srivastava, and S. Sudarshan. Materialized view maintenance and in-
tegrity constraint checking: Trading space for time. ACM SIGMOD Record, 25(2):447–
458, 1996.

[48] Reza Sadri, Carlo Zaniolo, Amir Zarkesh, and Jafar Adibi. Expressing and optimiz-
ing sequence queries in database systems. ACM Transactions on Database Systems,
29(2):282–318, 2004.

[49] H. Wang and C. Zaniolo. Atlas: A native extension of sql for data mining. In
Proceedings of the 3rd SIAM International Conference on Data Mining, pages 130–
141, 2003.

[50] Andrew Witkowski, Srikanth Bellamkonda, Hua-Gang Li, Vince Liang, Lei Sheng,
Wayne Smith, Sankar Subramanian, James Terry, and Tsae-Feng Yu. Continuous
queries in oracle. In Proceedings of the 33rd International Conference on Very Large
Data Bases, pages 1173–1184, 2007.

[51] E. Wu, Y. Diao, and S. Rizvi. High-performance complex event processing over
streams. In Proceedings of ACM SIGMOD International Conference on Management
of Data, pages 407–418, 2006.

72

[52] Y. Xing, S. Zdonik, and J.H. Hwang. Dynamic load distribution in the borealis stream
processor. In Proceedings of the 21st International Conference on Data Engineering,
pages 791–802, 2005.

[53] J. Yang and J. Widom. Incremental computation and maintenance of temporal ag-
gregates. In Proceedings of the 17th International Conference on Data Engineering,
pages 51–60, 2001.

73

	List of Tables
	List of Figures
	Introduction
	Background
	Problem Definition
	Motivation: Sliding Window Aggregation
	Contributions and Organization

	Related Work
	Incremental View Maintenance
	Sequence-Oriented Query Processing
	Pattern Matching
	Sliding Window Operation

	Stream Data Warehouse
	UDFs and UDAs

	Overview of ViewDF Framework
	Underlying DBMS
	ViewDF Framework
	View Queries
	ViewDFs
	Interfaces for Other Systems

	Query-to-ViewDF Translation
	Pattern Matching
	FSM Generation
	FSM-based ViewDF
	Runtime Translation

	Sliding Window Aggregation
	DBToaster

	Experiments
	Data Generation
	Pattern Matching
	Algorithms
	Experiment Results

	Sliding Window Aggregation
	Algorithms
	Experiment Results

	Conclusions and Future Work
	Conclusions
	Future Work

	References

