
A Study of Fouling on Ceramic 

Ultrafiltration Membranes by Model 

Solutions and Natural Waters 
 

 

 

by 

 

 

Leila Munla 
 

 

A thesis 

presented to the University of Waterloo 

in fulfillment of the 

thesis requirement for the degree of 

Doctor of Philosophy 

in 

Civil Engineering 

 

 

 

Waterloo, Ontario, Canada, 2013 

 

 

© Leila Munla 2013



 

  ii 

AUTHOR'S DECLARATION 

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any 

required final revisions, as accepted by my examiners. 

I understand that my thesis may be made electronically available to the public. 

  



 

  iii 

Abstract 

Over the last decade polymeric membranes have emerged as an economically viable treatment option 

to produce drinking water. Due to higher capital costs, the use of ceramic membranes has generally 

been limited to industrial applications that deal with challenging water quality. Ceramic membranes 

are superior to polymeric membranes in their physical and chemical resistance, which allows for 

higher fluxes and backwash pressures as well as rigorous chemical cleaning. As a result, these 

membranes can potentially operate for longer periods of time, which can decrease the lifetime cost of 

the membrane. Furthermore, decreased production costs coupled with an increased desire for 

economical sustainability may open the door for the use of ceramic membranes in drinking water 

treatment, particularly for highly polluted waters. 

 

The loss of membrane permeability as a result of fouling remains one of the biggest challenges for 

sustainable membrane operation.  Therefore, a thorough understanding of fouling behavior and the 

identification of key foulants is essential for optimizing membrane performance.  However, fouling 

has not been researched in detail for ceramic membranes in drinking water treatment, particularly 

ultrafiltration, since most research has focused on ceramic microfiltration membranes combined with 

coagulation.   

 

The thesis is divided into four main stages.  The first stage involved developing a factorial design to 

establish a procedure to determine sustainable flux that can adequately compare the fouling between a 

ceramic and polymeric membrane without compromising the functional potential or operating 

parameters of either membrane. In this stage, the significance of three different variables (interval 

length, increment increase, and a hydraulic backwash) in determining sustainable flux were 

statistically analyzed following a factorial design and consequently included or removed from the 

sustainable flux determination approach. The increment increase was not significant while the 

backwash was the most significant variable. The method established was used in later experiments to 

allow for a comparison of fouling behavior and performance between a polymeric and ceramic 

membrane. 

 

The second stage investigated the fouling behavior of flat-sheet ceramic membranes with model 

solutions at constant pressure to identify foulants of concern and likely fouling mechanisms for 
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ceramic membranes as well as perform surface characterization techniques not possible with tubular 

membranes. In this stage the contributions of different model foulants (bovine serum albumin i.e. a 

protein, alginate i.e. a carbohydrate, humic acid, and colloidal silica) to reversible and irreversible 

fouling on a flat-sheet ceramic membrane at constant pressure were quantitatively evaluated. Both 

single foulant solutions and all possible combinations of mixtures of model foulants were 

investigated.  The bovine serum albumin and humic acid were main contributors to hydraulically 

irreversible fouling and their removal mechanism is postulated to be largely through adsorption. 

Colloidal silica was the most influential factor governing fouling behavior and diminished the 

irreversible fouling effect of these organics, thus increasing hydraulic reversibility. Additionally, 

synergistic fouling effects were also observed. 

 

The third stage investigated the same model solutions with tubular ceramic membranes at constant 

flux to determine the fouling behavior under different conditions and quantitatively assess the 

effectiveness of different fouling mitigation techniques. The rate of fouling was very high for bovine 

serum albumin but extremely low for humic acid; however, they both showed high irreversible 

fouling. The results obtained were consistent with the previous stage using flat-sheet ceramic 

membranes; particularly regarding the significant role colloidal silica plays in fouling. The ability to 

compare these two very different configurations and operating parameters is largely due to the use of 

a hydraulic backwash in both configurations. Therefore, this highlights the importance of 

investigating fouling reversibility, especially in simplified experiments.  

 

The last stage investigated tubular ceramic fouling behavior and organic matter rejection with surface 

water at constant flux. Tubular ceramic membrane fouling behavior was investigated for river water. 

A very high initial organic carbon removal was observed at the initial stages of filtration and after 

each backwash cycle indicating a high affinity of organics to the membrane surface as well as 

partially reversible adsorption. Humic acid rejection decreased throughout the filtration cycle. On the 

contrary, biopolymer rejection remained constant indicating size exclusion as a primary removal 

mechanism. After several modifications to the design and setup, the sustainable flux method 

established in Stage 1 could not be applied to the ceramic membrane or to the polymeric membrane 

using highly turbid water; a few hypotheses were made as to why this occurred. It is likely that one or 

more variables that were not included in the sustainable flux method were influencing the fouling rate 
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over time. Overall, the robustness of ceramic membranes opens the door for some creative fouling 

mitigation techniques to be used such as backwash pulses and chemical maintenance cleaning.  
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Chapter 1 
Introduction and Research Objectives 

 

 

1.1 Statement of problem 

The use of polymeric membranes in drinking water treatment has gained wide acceptance as an 

effective technology. More recently, ceramic membranes are raising interest in this field due to their 

unique physical properties, which may prove to be valuable in moving towards more robust and 

sustainable treatment methods. The main advantages of ceramic membranes lies in their strong 

mechanical, thermal, and chemical stability, which make them ideal for industrial applications such as 

in food and beverage production.  However, these characteristics can also prove valuable in drinking 

water treatment applications due to their robustness and in particular the higher fluxes and backwash 

pressures that can be applied. Unfortunately, a major limitation preventing their widespread use over 

polymeric membranes in drinking water treatment is cost.  Nevertheless, the cost of production due to 

technological advances has substantially decreased (Heidenreich 2011). Furthermore, their higher 

capital cost is compensated by lower operating costs due to higher permeabilities and longer lifetimes 

(Garmash et al. 1995). As a result, ceramic membranes are becoming cost-competitive even at full-

scale operations and may potentially become the more economical alternative to polymeric 

membranes, which are now well established in drinking water treatment (Lehman et al. 2008). 

However, the major foulants and fouling mechanisms have not been investigated in detail for ceramic 

membranes in drinking water treatment applications.  

 

Fouling remains the largest challenge for membranes in surface water filtration, and membrane 

characteristics can have a significant impact on the extent and type of fouling. Fouling can decrease 

membrane efficiency, increase operating costs, and ultimately decrease the lifetime of the membrane. 

Therefore, appropriate and effective fouling mitigation tools can play an integral role in maintaining 

stable and sustainable operation. 

 

Foulant studies use many different approaches and operating conditions. Bench-scale experiments 

using model solutions are mostly operated at constant pressure as flux is monitored over time. 
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However, full-scale plants operate at constant flux that has different hydrodynamic conditions, which 

can potentially influence fouling behavior. Additionally, most experiments are limited to investigating 

only single solutions of model substances as opposed to combinations of two or more. In order to 

infer relevant fouling behavior similar to surface water quality, single solutions are far too simplistic. 

Therefore, investigating mixtures of foulants is desirable when using model solutions but is often not 

done.  

 

Although model solution experiments allow for a great deal of control over the quality of the 

feedwater and composition, they are unable to represent the complexity of organic matter and colloids 

in raw surface water. The challenge in using natural water lies in characterizing the different 

components of the raw water and relating it to subsequent fouling behavior. Improved surface water 

quality characterization techniques, such as Liquid Chromatography Organic Carbon Detection (LC-

OCD), can help bridge the gap between model solutions and natural water and possibly decrease the 

need to resort to model solution experimentation to investigate membrane fouling behavior. 

 

The incorporation of a backwash procedure into membrane operation dramatically reduces membrane 

fouling, which allows for long-term sustainable operation, and minimizes the need for chemical 

cleaning. Membranes are typically backwashed at frequent intervals at full-scale plants to control 

fouling over time. Backwashing is a key component for long-term sustainable operation by removing 

hydraulically reversible fouling. However, many times bench scale experiments do not incorporate a 

backwash procedure to identify the extent of hydraulically reversible and irreversible fouling. 

Without this key information, extrapolating fouling behavior to full-scale operation becomes a 

difficult task. Thus, reversibility of fouling should constitute a key component of any membrane 

fouling investigation.  

 

Currently, large-scale ceramic membrane filtration plants for drinking water treatment are limited to 

Japan, which uses Metawater membranes. The main limitation is that only microfiltration membranes 

are available from this manufacturer and is often combined with coagulation pretreatment. 

Coagulation has a significant effect on the water chemistry and can influence the interaction of the 

water constituents with the membrane surface. Furthermore, this is the most commonly researched 

ceramic membrane for drinking water treatment, which leaves a significant gap in research outside of 
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this specific membrane composition and configuration preceded by coagulation. Another research gap 

is that there have been very few studies investigating fouling with ceramic ultrafiltration membranes. 

 

A comprehensive understanding of problematic foulants allows for optimized operation, which could 

ultimately translate into decreased costs due to the minimization of chemicals or treatment processes 

required. Considering that very few studies have investigated the primary foulants in ceramic 

membranes for drinking water treatment, it is important to identify and characterize their effects 

before membrane pretreatment can be optimized. Since the surface chemistry and membrane 

properties are quite different in polymeric membranes to that of ceramic membranes, the major 

foulants may vary drastically.  

 

 

1.2 Research objectives and scope 

The objectives of this research were to identify and characterize the fouling observed in an 

ultrafiltration ceramic membrane under conditions anticipated in drinking water treatment and to gain 

a fundamental understanding of the fouling behavior of major foulants. The membrane material and 

characteristics, as well as the operating conditions, such as backwashing and cleaning regimes, can 

influence the susceptibility of these membranes to different types of fouling. Therefore, to optimize 

membrane performance for surface water treatment, the primary foulants need to be identified and 

characterized. Although most studies have chosen to implement a pretreatment prior to ceramic 

filtration, this study focuses on identifying major foulants using direct filtration only. 

 

The specific objectives of this research were to: 

 

1) Assess the advantages of applying ceramic membranes for drinking water treatment as 

compared to polymeric membranes by establishing a procedure to adequately compare 

fouling between a polymeric and ceramic membrane without compromising the functional 

potential or operating parameters of either membrane 

a. Use a factorial design that takes into account the relevant operating parameters to 

experimentally determine sustainable flux 
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b. Establish a method to analyze the data from these experiments to determine 

sustainable flux 

 

 

 

2) Quantitatively evaluate the extent that different foulants, both model and natural, contribute 

to reversible and irreversible fouling on an ultrafiltration ceramic membrane 

a. Identify the susceptibility of this particular ceramic membrane material to specific 

types of foulants focusing primarily on particulates and natural organic matter  

b. Quantitatively assess the effectiveness of a hydraulic backwash in removing 

reversible fouling  

c. Quantitatively evaluate the ability of cleaning regimes in removing irreversible 

fouling 

 

3)  

a. Characterize the effect of fouling on the surface characteristics and morphology of 

the membrane and suggest likely fouling mechanisms 

b. Contribute to the fundamental understanding of foulants and fouling mechanisms on 

ceramic membranes 

 

4) Contribute to the assessment of ceramic membranes as a suitable and economical choice for 

drinking water treatment and evaluate the potential operational advantages of ceramic 

membranes in a drinking water treatment setting 

 

 

1.3 Thesis structure 

The thesis is divided into four main stages; generally each stage builds upon the previous. The 

chapters were written in journal article format. Chapter 4 has already been published, Chapter 5 was 

submitted to a scientific journal in May 2013, while Chapter 3 and Chapter 6 may be considered for 

publication.  
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Chapter 1: introduces the research statement and specific objectives of the research presented. 

 

Chapter 2: is a short background section that covers general information that is relevant to the 

research but not discussed in the other chapters. Literature results related to specific experiments are 

already contained in those chapters. 

 

Chapter 3: presents the results of the first stage, which uses a factorial design to establish a 

sustainable flux procedure to allow for the comparison of fouling behavior between a polymeric and 

ceramic membrane. 

 

Chapter 4: presents the results of the second stage, which investigates the fouling behavior of flat-

sheet ceramic membranes at constant pressure using four different model solutions representing 

foulants that have been identified as problematic for polymeric membranes in drinking water 

treatment. Foulants of concern were identified and the reversibility of fouling was quantified. Surface 

characterization of the virgin ceramic membrane, as well as the contact angle of the fouled membrane 

surface was performed to determine the effect of fouling on the membrane surface characteristics.  

 

Chapter 5: presents the results of the third stage, which investigates the fouling behavior of a tubular 

ceramic membrane at constant flux with the same four model solutions used in Chapter 4. These 

results are compared to those obtained in the flat-sheet experiments. The effectiveness of hydraulic 

backwashing and chemical cleaning regimes for removing reversible and irreversible fouling are also 

quantitatively assessed.  

 

Chapter 6: presents the results of the final stage, which investigates the fouling behavior of a tubular 

ceramic membrane with surface water operating at constant flux. Foulants of concern are evaluated 

using natural organic matter characterization techniques and their contributions to reversible and 

irreversible fouling are quantitatively determined using a hydraulic backwash and cleaning regimes. 

 

Chapter 7: summarizes the research work with a focus on significant conclusions and contributions 

and discusses recommendations and potential applications of the ceramic membrane in drinking water 

treatment 

.  
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Chapter 2 
Background Information 

 
This section provides background information on membranes and a brief review on the literature with 

a focus on ceramic membrane filtration for drinking water treatment. The literature discussion is 

mainly on that which is not included in other chapters since each chapter already contains a literature 

review that is relevant to that specific set of objectives and experimental results.  

 

 

2.1 Membrane filtration processes 

In drinking water treatment applications there are currently four major membrane separation 

processes used: microfiltration (MF), ultrafiltration (UF), nanofiltration (NF), and reverse osmosis 

(RO). The characteristics of these membrane types are summarized in Table 2.1. These four 

membrane types are generally categorized into low-pressure (MF/UF) and high-pressure (NF/RO) 

membranes.   

 

Table 2.1: Overview of pressure-driven membrane processes and their characteristics* 

 MF UF NF RO 

Permeability 
(l/h.m2.bar) > 1,000 10 – 1000 1.5 – 3.0 0.05 – 1.5 

Applied 
Pressure 

0.1 – 2 bar 
10 – 100 kPa 

0.1 – 5 bar 
10 – 500 kPa 

3 – 20 bar 
300 – 1000 kPa 

5 – 120 bar 
5000–120000 kPa 

Pore size (nm) 
or MWCO 100 – 10000 

2 – 100 
> 1000 Da 

0.5 – 2 
200 – 400 Da 

< 0.5 
50 – 200 Da 

Rejection/ 
Application 

Particle/turbidity, 
bacteria, algae, 

protozoa 

Small colloids, 
macromolecule, 

viruses 

Dissolved organic 
matter, multivalent 

ions (softening) 

Monovalent ions 
(desalination) 

Separation 
Mechanism 

Sieving/size 
exclusion 

Sieving/size 
exclusion 

Sieving, charge 
effects 

Differences in 
solubility or diffusivity 

* Adapted from Van der Bruggen et al. (2003). 
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The retention rating or the size of the material retained by the membrane can be expressed as pore 

size or molecular weight cutoff (MWCO). Pore size and its distribution is determined using a variety 

of methods such as microscopic techniques (atomic force microscopy, scanning electron microscopy), 

bubble-point technique, mercury porosimetry, solute transport, thermometry, permporometry, and 

others (Lee et al. 2002; Nakao 1994; Singh et al. 1998).  On the other hand, MWCO is a measure of 

the atomic weight or mass (expressed in daltons) of the material retained.  The MWCO is defined as 

the molecular weight of the solute that exhibits a rejection of 90% by the membrane.  This value gives 

only a rough indication of the membranes characteristics and rejection potential due to differences in 

molecular shapes and possible steric interactions (Van der Bruggen et al. 2003). Furthermore, 

manufacturers often provide MWCO values from solute rejection tests that use uncharged 

macromolecules such as proteins, dextrans, and PEGs, thereby not accounting for possible rejection 

through electrostatic repulsion (Cho et al. 2000). In addition to membrane pore size, several other 

membrane surface properties such as hydrophobicity, surface charge, and surface roughness affect the 

performance of the membrane system.  

 

Membrane systems can be operated under either constant flux or constant pressure mode.  Constant 

pressure filtration has been shown to create cake layers with higher resistances than during constant 

flux operations (Carrère et al. 2001; Decloux and Tatoud 2000; Defrance and Jaffrin 1999; Field et al. 

1995). However, Vyas et al. (2002) observed that irreversible fouling was greater under constant flux 

mode than that in constant pressure mode. Although constant pressure operation may be simpler to 

apply in a lab setting, most full-scale membrane systems for drinking water treatment operate with 

constant flux to ensure sufficient production.   

 

 

2.2 Fouling 

The main challenge for membranes in drinking water treatment is the accumulation of foulants, near, 

on, or within the membrane, which can heavily impact sustainable operation and operating cost.  

Membrane fouling causes an increase in transmembrane pressure (at constant flux), as a result of 

particles accumulating on the surface, forming a cake layer, or the adsorption of both suspended 

particles and dissolved material (AWWA 2005). Fouling is characterized by whether it can be 

removed (reversible or irreversible), by the material causing it (particulate, dissolved, organic, or 
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biological), and by the mechanism of formation (pore adsorption, cake formation or pore blockage) 

(MWH 2005). The extent to which fouling occurs is dependent on the source water characteristics 

(such as organic matter concentration and characteristics, pH, ionic strength, and calcium 

concentration) and the membrane surface properties (zeta potential, roughness, pore size, and 

hydrophobicity) (Howe and Clark 2002).  

 

 

2.2.1 Types of fouling 

The different types of fouling that can be categorized in membrane processes include 

colloidal/particulate fouling, organic fouling, microbial fouling, and inorganic fouling. Colloidal and 

organic fouling are the most relevant types of fouling for low-pressure membrane surface water 

applications. 

 

Colloidal/particulate fouling 

Colloidal and particulate fouling is caused by the deposition and accumulation of suspended and 

colloidal solids in the feed water on the membrane surface or inside the pores, resulting in the 

reduction of permeate flux. Colloids are fine suspended particles (nm to µm range) and their presence 

in natural surface water is ubiquitous. Colloidal foulants in UF membranes include inorganic (clays, 

silica, salt precipitates, and metal oxides), organic (natural and synthetic substances), and biological 

matter (bacteria, viruses, and proteins) (AWWA 2005). Colloidal matter is typically charged in 

aqueous solutions due to the presence of charged functional groups on the surface of the colloid or 

through the adsorption of ions from the surrounding water. The resulting cake structure porosity and 

the hydraulic resistance are influenced by the surface charge of the colloids.   

 

Organic fouling 

Another major cause of fouling in membrane filtration of natural waters is dissolved naturally 

occurring organic substances. The rejection of natural organic matter (NOM) by membranes is 

primarily a physical removal process, however, the charged functional groups of both the membrane 

and NOM can also impact rejection (Cho et al. 2000). While the majority of dissolved NOM will pass 

through MF/UF membranes due to their smaller size, organic constituents can still contribute 

significantly to fouling by plugging membrane pores, adsorbing to the internal matrix of the 
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membrane, and forming a cohesive gel on the cake layer (AWWA 2005). The mechanisms of NOM 

fouling are very complex and the rate and extent is influenced by factors such as membrane 

characteristics, properties of organic matter, feedwater solution characteristics, and membrane module 

hydrodynamics (Aoustin et al. 2001; AWWA 2005).  

 

Certain factions of NOM in surface water may have a higher fouling potential than others, however, 

the identification of which particular fraction has the highest potential has been inconsistent.  Several 

studies have attributed the greatest fouling components of NOM to be colloidal and the hydrophilic 

neutral fraction of NOM (Fan et al. 2001; Howe and Clark 2002; Lee et al. 2008). Carroll et al. 

(2000) concluded that the low molecular weight and neutral hydrophilic fraction of NOM caused the 

most fouling.  Fan et al. (2001) classified potential foulants in the order of hydrophilic neutral > 

hydrophobic acids > transphilic acids > hydrophilic charged.  The fouling potential of each fraction 

will also vary depending on different membrane types investigated. The adsorption of NOM has been 

reported to be higher on hydrophobic membranes than on hydrophilic membranes (Fan et al. 2001; 

Gray et al. 2007; Howe and Clark 2002; Jucker and Clark 1994; Jung and Kang 2003; Jung et al. 

2006; Lee et al. 2008). Jung and Kang (2003) suggested the use of hydrophilic membranes for 

reduced membrane fouling rates due to their reduced adsorption capacity towards both hydrophobic 

and hydrophilic organics.   

 

Microbial/biological fouling 

Biofouling occurs as a result of the accumulation and growth of living organisms (bacteria, algae, and 

fungi) at the membrane surface or within the pores. As the bacteria multiply they produce 

extracellular polymeric substances (EPS) which form a viscous biofilm, which reduces permeability, 

causes flux decline, and causes pore blocking. This type of fouling can be well controlled in the 

operation of low-pressure membranes by frequent hydraulic backwashing as well as chemical 

maintenance cleaning.  

  

Inorganic fouling 

Scaling on the membrane occurs due to the precipitation or crystallization of salts on the membrane 

surface or inside the pores. This occurs when the ion concentration of inorganic precipitates and 

metals exceed their solubility limit due to their accumulation near the membrane surface.  The 

precipitation of inorganic scalants can reduce the permeate flux, damage the membrane surface and 
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cause irreversible pore blocking. This type of fouling can also be well controlled through targeted 

chemical cleaning. 

 

 

2.2.2 Fouling mechanisms 

The characteristics of both the membrane and the foulants have an important impact on the resulting 

fouling mechanisms. The fouling mechanisms can be categorized as pore constriction, intermediate 

pore blocking, complete pore blocking, and cake layer formation. This concept is based on the 

modeling of particulates as spheres. 

 

Standard pore blocking/Pore constriction 

Standard pore blocking occurs when the diameter of the particle is smaller than that of the pore and is 

consequently deposited on the membrane by attaching internally to the pore walls of the membrane. 

The resulting constriction of the pores decreases the overall pore volume and causes flux decline. 

 

Complete pore blocking 

Pore blocking occurs when the feedwater contains particles with similar or larger diameters to the 

membrane pores. Each particle arriving to the membrane participates in blocking some pore or pores 

with no superposition of particles. The blocked pores reduce the pore volume and cause rapid and 

severe flux decline.   

 

Intermediate pore blocking 

Intermediate pore blocking occurs when each particle reaching the membrane may block the 

membrane pores (i.e. complete pore blocking) or also attach to other particles on the membrane 

surface.   

 

Cake layer formation  

The formation of a cake layer occurs when the feedwater contains particles that are too large to enter 

the pores and are deposited on the surface of the membrane. This cake layer creates additional 

resistance during filtration that increases transmembrane pressure (during constant flux operation).  
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2.2.3 Removal mechanisms 

The primary mechanism for particle removal in membrane filtration (MF/UF) is straining through 

size exclusion, but removal can also occur by adsorption or as a result of cake formation. In some 

cases when the particle size is close to the membrane retention rating, interactions between the 

particles and membrane can impact removal (MWH 2005).  

 

Size exclusion, which is the dominant removal mechanism in membrane filtration, occurs when 

particles or solutes larger than the membrane pore size are retained. Since membranes have a 

distribution of pore sizes, particles both larger and smaller than the nominal retention rating may be 

rejected. Additionally, large proteins or other macromolecules that are spherical in solution may 

become linear when forced through a membrane under pressure (MWH 2005).    

 

The interactions between particles and the membrane can affect rejection and contribute to non-ideal 

filtration particularly when the particle size is similar to the membrane pore size. Since membrane 

surfaces are typically negatively charged, particles with a negative charge often observe higher 

retentions than uncharged or positively charged particles with similar sizes. This occurs due to 

electrostatic interaction, which prevents the particle from passing through the membrane even if its 

physical size would allow it to (MWH 2005). Therefore, although the rejection is primarily a physical 

removal process that is dependent on the chemical’s molecular size, the charged functional groups of 

both the membrane and solute can also have a significant impact on rejection (Cho et al. 2000).  

 

Adsorption can play a significant role during the initial stages of filtration (Bellona et al. 2004; 

Nghiem et al. 2005). However, once the adsorption capacity of the membrane is exhausted, 

adsorption ceases to be an effective mechanism in long-term operation unless it is reversible through 

hydraulic backwashing (MWH 2005). Nevertheless, the foulants adsorbed on the membrane surface 

can modify the initial membrane characteristics and consequently impact subsequent membrane 

performance.  

 

Similar to adsorption, cake formation, which is the accumulation of solids on the membrane surface 

due to straining, will impact the membrane’s surface characteristics and acts as a filtration medium by 

providing an additional mechanism for rejection. The cake layer builds over filtration time and can be 

partially or completely removed during backwashing.   
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2.3 Fouling countermeasures 

2.3.1 Backwashing 

Incorporating a backwash (BW) step into the operation cycle of the membrane can dramatically 

reduce membrane fouling. Backwashing controls the deposition and accumulation of solids on the 

membrane surface by removing the surface cake that develops during the filtration cycle.  Both liquid 

and gas backwashing can be employed with low-pressure membranes.  The frequency of BW can 

range between 30 and 120 minutes for most low-pressure systems and usually lasts from 1 to 5 

minutes (AWWA 2005; MWH 2005). Periodic backwashing improves membrane permeability and 

reduces fouling, thus leading to optimal, stable hydraulic operating conditions. Additionally, 

combined with air sparging in submerged membrane reactors, the flux can be increased up to fivefold 

(Hilal et al. 2005).  

 

The frequency of backwashing is not only dependent upon the feedwater quality (e.g. total suspended 

solids) but can be influenced by the imposed operating flux. It has been suggested that if the 

membrane were operated at lower fluxes, less energy would be required to control fouling and less 

chemical cleaning would be needed (Fane et al. 2005). The efficiency of this technique often depends 

on both the type of suspension being filtered and the type of fouling that occurs. For ceramic 

membranes the BW pressure is typically 20 to 40 psi higher than the feed pressure or 2 to 3 times the 

transmembrane pressure (Hsieh 1996). Higher BW pressures for polymeric membranes are limited by 

the polymeric membrane properties and tend to be much lower. Foulant removal through effective 

backwashing can control fouling in ceramic membranes and consequently reduce the operating costs. 

 

 

2.3.2 Chemical cleaning 

Chemical cleaning is performed once the BW cycle is ineffective in removing the clogged or 

adsorbed material on the membrane and restoring the flux to an acceptable level. The manufacturer 

usually gives a preset maximum limit for the transmembrane pressure for a particular membrane.  The 

frequency of recovery cleaning with chemicals ranges from a few days to several months depending 

on the membrane system characteristics and source water quality (MWH 2005). However, this step is 

preferably avoided or minimized due to the use of chemicals and temporary loss in production. 
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Shorter, more frequent maintenance cleans using lower chemical concentrations are also used and can 

often be an effective tool in controlling fouling. There are five categories of chemicals that can be 

applied to remove the fouling materials from the membrane and restore flux. These categories are 

summarized in Table 2.2. 

 

Table 2.2: Major categories of membrane cleaning chemicals* 

Category Major Functions Typical Chemicals Primary Foulant 
Targeted 

Caustic Hydrolysis, solubilization NaOH Organic and 
microbial 

Oxidants/Disinfectants Oxidation, disinfection NaOCl, Ozone, H2O2 
Organic & 
microbial 

Acids Solubilization Citric, Nitric, Oxalic 
acid 

Scales, metal 
dioxides, & 

inorganic deposits Chelating Agents Chelation Citric acid, EDTA 
Surfactants Emulsifying, dispersion Surfactants, detergents Biofilms 

* Adapted from Liu et al. (2001) 

 

 

2.4 Polymeric membranes 

Polymeric membranes largely dominate the application of membrane filtration in drinking water 

treatment (de la Rubia et al. 2006; Lee and Cho 2004; Loi-Brügger et al. 2006). The physical and 

chemical properties of the membrane material strongly influence the performance of the membrane.  

Ideally, the membrane material can produce high fluxes without fouling, is physically durable, 

chemically stable, non-biodegradable, chemically resistant, and inexpensive (MWH 2005). The most 

common membrane materials used in water treatment are polypropylene, polyvinylidene fluoride 

(PVDF), polysulfone, polyethersulfone, and cellulose acetate. Most of the time these membranes are 

modified by blending bulk polymers with hydrophilic polymers to provide better antifouling 

properties (Mallevialle et al. 1996). Hydrophilic polymers tend to have ionized functional groups, 

polar groups, like oxygen-containing and hydroxyl groups.  PVDF membranes are widely used in 

many UF processes due to their excellent oxidative, thermal and hydrolytic stability as well as good 

mechanical and film-forming properties (Yan et al. 2005). However, their tendency to foul due to 

their intrinsic hydrophobicity limits their use without surface or bulk polymer modification. Although 

these surface modifications may enhance surface properties such as fouling resistance, they may also 
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negatively impact membrane characteristics such as pore size distribution as well as degrade the 

mechanical, thermal, and/or chemical stability (Hester and Mayes 2002). Additionally, the added 

layers may lack long-term stability resulting in decreased hydrophilicity over time (Zhao et al. 2008).  

 

In drinking water treatment applications common membrane configurations are spiral wound, hollow 

fiber, and tubular. Hollow fiber membrane configurations, which can be backwashed, are particularly 

popular for low pressure membrane filtration applications. Tubular membrane configurations can be 

composed of polymeric or ceramic material.  

 

 

2.5 Ceramic membranes 

Ceramic membranes are available as metal oxides, composites, and sintered clay.  The most 

commonly used membranes are composed of metal oxides such as aluminum oxide or alumina (α-

Al2O3 and γ-Al2O3), titanium dioxide (TiO2), zirconium dioxide (ZrO2), and silicon dioxide (SiO2) or 

a combination of these. Ceramic membranes, similar to polymeric membranes, are usually 

constructed from multiple layers into an asymmetric, multi-channel element. The asymmetric 

structure consists of a supporting system with large pores (to decrease flow resistance) with adequate 

mechanical strength on top of which are layers with gradually decreasing pore size (Burggraaf and 

Cot 1996). The shape of these membranes is usually a tubular configuration with the membrane 

surface cast on the inside wall on top of the support material.  The tube can be round or hexagonal 

with multiple channels that can vary in shape. New products are moving towards smaller open 

channel diameters with more channels in an element (Hsieh 1996, Heidenreich 2011). Other available 

configurations include hollow fiber and flat-sheet ceramic membranes (Figure 2.1). The types of 

modules can either be a multi-channel monolithic or one consisting of multiple membrane elements.  

An operational advantage of a module having multi-channel monolithic elements is that installation 

and maintenance are much easier (Hsieh 1996). Additionally, this configuration allows for effective 

cleaning through backwashing and the ability to tolerate much higher loads of suspended materials 

(Kanaya et al. 2007; Loi-Brügger et al. 2007). However, their main disadvantage is their low packing 

density, which is constantly being addressed by manufacturers through several ranges of channel 

shapes and number of channels (Figure 2.1) (Heidenreich 2011). 
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Figure 2.1: Images of different types of ceramic membranes1 

From left to right: multi-channel monolithic membrane element by Metawater, membrane module consisting of 
several elements arranged in a stainless steel housing by TAMI, tubular membranes showing different numbers 
and shapes of flow channels by TAMI, hollow fiber ceramic membrane by Hyflux, tubular star-shaped channels 
by Fairey Industrial Ceramics. 

 

 

Ceramic membranes have several advantages over polymeric membranes particularly in industrial 

applications that operate at extreme conditions and require aggressive cleaning at extreme pHs and/or 

temperatures. Although these advantages would still be relevant in a drinking water treatment setting, 

their high production costs have generally limited their application to industrial processes.  The 

advantages of ceramic membranes are summarized in (Table 2.3). Increased chemical resistance 

allows for higher concentrations and longer exposure times to chemicals and thus, more efficient 

foulant removal without compromising the integrity of the membrane, which could decrease the 

membrane’s lifetime. Furthermore, the higher permeability allows for higher fluxes at lower 

pressures. The high mechanical strength of ceramic membranes also allows for higher backwash 

pressures and potentially more effective hydraulic fouling mitigation techniques without the need for 

chemicals. All of these advantages can translate into decreased operating and lifetime costs, thus 

offsetting the initial capital cost of manufacturing or procuring ceramic membranes. 

                                                        
1 http://www.ngk.co.jp/english/research/ecology.html 

http://www.membranesystem.co.in/oil_grease_sep.html 
http://www.membranesystem.co.in/oil_grease_sep.html 

http://tami.exportpages.com/productdetail/1066202374-1.htm 

http://www.membrane-guide.com/membrane-directory/europe/nederland-membraanfiltratie.htm 

http://www.membrane-guide.com/inorganic-membranes/ceramic-membranes/uk-ceramic-membrane.htm 

Accessed April 17, 2013 
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Table 2.3: Advantages and disadvantages of ceramic membranes*   

Advantages Disadvantages 

- Mechanical strength: can withstand very high 
pressures (10-90 bars), which allows for high backwash 
pressures. 

- Chemical resistance: resistant to high chemical 
concentrations and all pH levels.  Allows for more 
rigorous cleaning without degrading the membrane  

- Thermal stability: can withstand very high 
temperatures (greater than 100°C)  

- High permeability: due to very high hydrophilic 
surface. Allows for higher possible fluxes.  

- Lifetime: have a longer lifetime (>10 yrs) than 
polymeric membranes (3 – 6 yrs)  

- Narrow pore size distribution: separation efficiency 
based on steric exclusion is high due to greater 
selectivity 

- Brittleness: sensitive to crack formation 

- Cost: the high manufacturing costs of 
ceramic membranes is the main limitation 
for their use in drinking water treatment, 
which is why they are generally limited to 
treating and recovering high value-added 
products like industrial effluents, food, 
beverages, pharmaceuticals, etc. 
However, the cost over the last decade 
has significantly decreased due to 
technological advances in membrane 
materials and manufacturing processes 
and is expected to continue to decrease. 

*Adapted from Hsieh (1996) 

 

 

An important advantage of ceramic membranes in drinking water treatment is their chemical 

resistance, which can play a critical role in maintaining the integrity of the membrane as well as 

impact the membrane’s lifetime. Some investigators have observed the significant impact that 

chemical cleaning can have on polymeric membranes. Abdullah and Bérubé (2012) observed that 

over time, extended exposure to sodium hypochlorite could significantly degrade the 

physical/chemical characteristics of the polymeric membrane and likely decrease the operating 

lifetime. The surface characteristics of a modified hydrophilic PVDF membrane, after longer 

exposures to sodium hypochlorite, showed that large portions of the hydrophilic additive are 

removed, which could make the membrane more vulnerable and susceptible to fouling due to the 

increased affinity of certain foulants to the membrane (such as proteins) (Abdullah and Bérubé 2012). 

Levitsky et al. (2011) also observed increased protein fouling for a polyethersulphone membrane 

after sodium hypochlorite cleaning. This further highlights the long-term benefits of using ceramic 

membranes particularly if organic matter is an issue and frequent chemical cleanings might be 

necessary. Furthermore, it allows for increased chemical use in backwashes with ceramic membranes 

if necessary and if chemical cost is not a concern.  
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Guerra et al. (2012) investigated the impact of operating conditions for an alumina ultrafiltration 

membrane (0.01µm) filtering surface water. Although increased fouling occurred at higher fluxes, it 

was argued that in order to take full advantage of the ceramic membrane’s properties, it would still be 

best to operate at higher fluxes despite increased fouling, instead of lower fluxes to minimize the 

fouling rate. Additionally, increased backwash frequency was found to be beneficial. Therefore, the 

authors suggested that future research should focus on optimizing backwash conditions so that flux 

decline and irreversible fouling is minimized while still meeting production goals and costs. 

Furthermore, the emphasis should be primarily focused on strategies for removing fouling within an 

economic objective or framework.  

 

Very little information is available on ceramic membrane fouling by typical foulants encountered in 

drinking water treatment.  Most of the information available from other applications using ceramic 

membranes is not applicable to drinking water treatment due to the different operating conditions and 

feed characteristics used. Other applications, such as the food industry, primarily operate using 

crossflow configurations and employ batch operations, often without backwash cycles (e.g. Daufin et 

al. 2001; Hsieh 1996; Mourouzidis-Mourouzis and Karabelas 2006; Weber et al. 2003). Therefore, 

the conclusions regarding fouling and fouling rates are not easily transferable. 

 

 

2.6 Application of ceramic membranes in drinking water treatment 

Although there is limited research available on the performance of ceramic membranes for drinking 

water treatment, there have been several promising results. Due to the particularly different surface 

characteristics of ceramic to polymeric membranes, specific foulants and fouling mechanisms will not 

necessarily apply to both materials. The following discussion summarizes several studies that have 

applied ceramic membranes for the filtration of natural waters. It is important to note that most 

studies combined coagulation pretreatment with a MF ceramic membrane. Combining coagulation 

with filtration can help decrease fouling for both polymeric and ceramic membranes by minimizing 

pore blocking and pore adsorption and allow stable operation due to pure cake filtration as well as 

improve rejection (e.g. viruses) to increase permeate quality (Carroll et al. 2000; Lerch et al. 2005; 

Matsushita et al. 2005).   
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Full-scale drinking water treatment plants in Japan using Metawater ceramic membranes operate at 

moderate fluxes without any chemically enhanced backwash (CEB) (Loi-Brügger et al. 2006). 

Metawater membranes are monolitihic MF membranes (0.1 µm) composed of Al2O3. Standard 

operating conditions of a full scale ceramic membrane drinking water treatment plant in Japan (10 

MGD or 1620 m3/h) practicing coagulation and flocculation prior to MF use a coagulant dose of 0.75 

mg Al+3/L and use a rapid and slow mixing tank in series with a retention time of 10 to 20 minutes 

without the need for a sedimentation step (Kanaya et al. 2007). Most studies using ceramic 

membranes for drinking water treatment applications have used the Metawater membranes. 

According to the literature, the iso-electric point of Al2O3 can be between 8-9.4 (Table 2.4). Although 

some surface waters such as the Grand River (Ontario) can have a pH of approximately 8, the 

widespread use of coagulation as a pretreatment will likely require a pH adjustment making the 

feedwater slightly acidic. Therefore, these membranes will likely have a positive charge unlike other 

ceramic membrane materials, such as SiC (Table 2.4). In the case of ceramic membranes composed 

of mixtures, it would be difficult to estimate the surface charge of the membrane without directly 

measuring it. However, it is extremely challenging to measure the surface charge of tubular 

membranes, which is likely why there is very limited information available in the literature.  

 

 

Table 2.4: The iso-electric point of different ceramic membrane materials 

Material Iso-electric point 
Al2O3 8-9.4 1,2,3 
TiO2 5.1-6.4 1,2 
ZrO2 6.3-7.1 1, 4, 5 
SiC 2.5-3.5 3, 6, 7 

1 Kosmulski (2009) 
2 Mullet et al. (1997) 
3 Wang and Hirata (2004) 
4 Leong et al. (1993) 
5 Mao et al. (1994) 
6 Sano et al. (1996) 
7 Yeh and Wan (1994) 
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Konieczny et al. (2006) used two MF membranes (0.1 and 0.2 µm) (Kerasep® by Orelis SA – 

composed of a monolithic support layer of TiO2/Al2O3 and an active layer of ZrO2/TiO2) to compare 

synthetic humic acid (7 and 10 mg/L) removal by coagulation alone, MF alone, and coagulation 

followed by membrane filtration. The membrane filtration process was operated using a crossflow 

configuration at constant pressure. Total organic carbon (TOC) removals with the combined 

coagulation – MF process (100% removal) were higher than coagulation alone. Although the MF 

membranes both showed complete TOC removal as well, they exhibited significantly greater flux 

declines. This indicates that removal by MF alone is not sustainable. Furthermore, the addition of 

coagulation prior to membrane filtration showed improved and more stable fluxes. The complete 

removal of the humic acids by MF membranes was unexpected but the mechanism of humic acid 

removal was not investigated. It is likely some form of binding interaction with the membrane surface 

(metal oxide surface chemistry of ceramic membrane). Overall, combining coagulation with MF did 

seem to improve membrane performance but it would be of interest to run long-term filtration 

experiments (they only filtered for 300 minutes) and incorporate backwash cycles (Konieczny et al. 

2006).    

 

A study by de la Rubia et al. (2006) used a 15 kDa UF ceramic membrane (Orelis SA – composed of 

a mixture of Al2O3/ZrO2/TiO2) to filter a synthetic humic acid solution (10 mg/L) at different pH 

levels and varying ionic strengths. A molecular weight distribution of the humic acid showed that the 

majority (~70-75%) of the humic acid was larger (30 kDa) than the MWCO of the membrane (15 

kDa).  At a pH value of 7.9 and with a low ionic strength, a 99% rejection of dissolved organic carbon 

(DOC) was observed. At higher ionic strengths, the DOC rejection decreased to 74%.  These results 

indicated that the pH and the ionic strength affect the UF of the humic acid solution by changing the 

surface properties of both the ceramic membrane and humic solution.   

 

Loi-Brügger et al. (2006) used a 0.1 µm MF membrane (Metawater – composed of Al2O3) operated at 

constant flux in a dead-end filtration mode with regular backwashes at varied intervals to filter raw 

surface water. Raw water with a DOC of 2-3.5 mg/L was coagulated with 3.5 mg Al+3/L and resulted 

in a DOC reduction of 20-35%. This DOC removal is surprisingly low compared to the results by 

Konieczny et al. (2006), which could be due to either the feed water or the different membranes used. 

The results of this pilot study indicated that with proper coagulation and a CEB, neither temperature 

variations nor turbidity peaks (up to 100 FNU, which is equivalent to NTU) disrupted stable 



 

  20 

membrane performance. If membrane operation was kept at fluxes below 200 LMH, the application 

of CEB was not necessary but could be useful in the case of high organic loadings or to extend the 

interval between more rigorous chemical cleanings. Ultimately it is a tradeoff between chemical 

consumption, power consumption, and chemical cleaning intervals. It is difficult to compare the 

membrane performance and DOC removals of this study to that by Konieczny et al. (2006) due to the 

significant differences in filtration mode and feed water quality.   

 

Lerch et al. (2005) observed the importance of optimizing coagulation conditions using a setup 

similar to Loi-Brügger et al. (2006).  The Metawater MF membrane (composed of Al2O3) was 

operated at a flux of 80 LMH and showed no significant influence of coagulant dosage on the 

permeability decline of the membrane (Lerch et al. 2005).  One hypothesis was that the percentage 

retention of TOC by the coagulation/flocculation unit was too low to prevent the adsorption of 

organics on the membrane surface (especially humic substances).  Once the operating conditions were 

modified to where co-precipitation or sweep coagulation of the organics could occur, coupled with a 

doubling of the coagulant dosage, the permeability decline was virtually eliminated. Therefore, 

optimization of the pretreatment step is crucial for an effective fouling mitigation tool.  

 

Bottino et al. (2001) used a 0.2 µm MF ceramic membrane (Membralox by Pall – composed of 

Al2O3) for the treatment of raw lake water with no pretreatment.  In this investigation, a cross-flow 

configuration at constant pressure was used and due to the recirculation of the retentate into the feed, 

the turbidity continued to gradually increase over the filtration run (0.5 – 80 NTU).  After 80 hours 

the flux decreased rapidly from the initial 600 LMH, and slowly leveled off at around 200 LMH. The 

turbidity, total suspended solids, microorganisms, algae, and some disinfection by-product (DBP) 

precursors were completely rejected while TOC and chloroform rejection was 64% and 56% 

respectively. The high TOC removal could be due to formation of a cake layer that resulted in 

increased removal of contaminants; therefore, retention may not be consistent and vary between the 

beginning and end of each filtration run.  

 

Zhu et al. (2012) observed that coagulation is an effective pretreatment for the control of ceramic MF 

(Metawater – composed of Al2O3) fouling. Additionally, there seemed to be a “transmembrane 

pressure (TMP) turning point” in which once this point was exceeded, both the reversible and 

irreversible fouling rate dramatically increased making it more difficult to thoroughly clean the 
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membrane even with chemical cleaning. Dissolved and colloidal organic matter, as well as inorganic 

ions contributed the greatest to irreversible fouling. Since three membrane sizes were used (0.1, 0.5, 

and 1 µm) and the 0.1 µm experienced the lowest fouling rate, followed by the 0.5 µm membrane, the 

authors hypothesized that foulants with a size between 0.5-1 µm likely played an important role in 

irreversible fouling. It was also observed that sodium hypochlorite solution washing recovered more 

flux than citric acid. 

 

Several studies have shown that in-line coagulation is just as effective, if not more so, than 

flocculation/sedimentation in maintaining stable operation (Cho et al. 2005; Fujiura et al. 2006; 

Lehman et al. 2007; Yonekawa et al. 2004). This is in part due to the fact that the coagulation rate is 

very fast and the aggregates rapidly reach sizes larger than the membrane’s pore size soon after 

coagulant addition. Matsushita et al. (2005) showed that virus removal using coagulation – ceramic 

MF (Metawater – composed of Al2O3) was a tradeoff between coagulant dose and time. For in-line 

filtration, coagulant dose was significantly more important than coagulation time, and using in-line 

systems can save considerable space compared to flocculation tanks. However, to properly assess the 

economical benefits of in-line filtration coupled with higher coagulant doses, further investigation 

into the effects on subsequent fouling of the membrane and flux decline would be needed. 

Consequently, although in-line coagulation at higher coagulant doses may have its benefits, drinking 

water treatment systems need to be robust and prepared to handle varying feedwater characteristics 

such as turbidity spikes.  

 

Few papers have compared the performance of polymeric membranes to ceramic membranes for 

drinking water treatment purposes.  In a study by Bodzek and Konieczny (1998), both ceramic (MF 

and UF) (Kerasep® by Orelis SA – composed of a support layer TiO2/Al2O3 and active layer 

ZrO2/TiO2) membranes and a polymeric (0.2 µm polypropylene) membrane were used to investigate 

their potential application for disinfection of natural waters. Both membrane types exhibited effective 

removal of bacteria and turbidity (Bodzek and Konieczny 1998). However, TOC removals for the 

ceramic membranes (~30%) were higher than the polymeric membrane (~12%). Furthermore, the 

TOC removal by the UF ceramic (300 kDa) was only 1% higher than the ceramic MF membranes, 

suggesting that some rejection of the organic matter may be occurring through adsorption onto the 

membrane. 
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Guerra and Pellegrino (2012) compared a UF ceramic membrane (CerCor® by Corning Inc. – 

composed of Al2O3) and a UF polyethersulfone polymeric membrane under similar hydrodynamic 

conditions to filter a solution of bentonite to simulate water with a high concentration of particulates. 

The ceramic membrane had a lower rate of fouling at higher peclet (Pe) numbers compared to the 

polymeric membrane (Pe is a number used to describe the hydrodynamic conditions within the 

membrane channel; it relates the rate of advection of a flow to its rate of diffusion). Furthermore, a 

preliminary cost analysis using the results did show that both polymeric and ceramic membranes have 

higher costs at lower fluxes (same Pe number) with a minimum cost at 100 and 125 LMH. The 

authors suggested that in order to fully reap the advantages of ceramic membranes and to minimize 

their greater cost over polymeric membranes, ceramic membranes should be operated at as high a flux 

as possible while still maintaining the ability to recover the fouling that occurs. 

 

Lee and Cho (2004) used two polymeric (8 kDa UF and 250 Da NF) and two ceramic UF (8 and 1 

kDa) (TAMI – composed of TiO2) membranes to compare their removals of NOM and haloacetic 

acid formation potential. The results showed that the ceramic membranes had several advantages: 

they exhibited the potential to more effectively remove DBP precursors than NOM in terms of DOC 

versus the tested polymeric membranes, and the ceramic membranes also exhibited higher 

permeability than the equivalent polymeric membranes (Lee and Cho 2004). 

 

Hofs et al. (2011) compared the performance and fouling of several different ceramic membranes 

(TiO2, ZrO2, Al2O3, and SiC) to a polymeric membrane under the same flux and BW procedure. 

Higher removals of NOM and UV254 were observed for the different ceramic membranes (around 

30%) compared to the polymeric membrane (13-25%). Additionally, the TiO2 and SiC showed the 

lowest TMP increase due to low reversible and irreversible fouling. 

 

Lee et al. (2013) compared the fouling mechanisms by Suwannee River Humic Acid (SRHA) and 

polyethylene glycol (PEG) for a flat-sheet ceramic MF (0.2 µm) membrane (TAMI – composed of a 

support layer of Al2O3/ZrO2/TiO2 and an active layer of TiO2) and two polymeric MF membranes 

made from PVDF (0.22 µm) and polycarbonate (0.2 µm). The majority of fouling for the ceramic 

membrane consisted of physically removable resistances (i.e. backwashable) and with a much smaller 

percentage of fouling requiring chemical cleaning as compared to the polymeric membranes. This 
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was concluded to likely be due to the more hydrophilic nature of ceramic membranes and the earlier 

occurrence (despite similar pore sizes) of cake formation. 

 

Newer research shows the versatility of the application of ceramic membranes in drinking water. For 

example, Alpatova et al. (2013) used a hybrid ozonation pretreatment for a 1 kDa UF ceramic 

membrane (TAMI – composed of Al2O3 and TiO2) to investigate the effect of ozone dose on fouling 

and the removal of DBP precursors, as well as antibiotics. This combination would not be possible 

due to the sensitivity of polymeric membranes to ozone. It was observed that ozone helped control 

fouling and showed significant reductions in TOC and specific UV absorbance (SUVA); however, 

high TOC and alkalinity adversely affected the ability of the ozone to control fouling. Additionally, 

the promising results observed could make this combination a potentially effective tool for removing 

DBP precursors and possibly micropollutants such as pharmaceuticals. 

 

Some studies have also investigated the application of ceramic ultrafiltration (80 nm pore size made 

with a silica support coated with alumina) as a pretreatment to reverse osmosis (Dramas and Croué 

2012) as well as the use of ultrasound to minimize fouling with a 0.2 µm MF membrane composed of 

Al2O3 (by Anodisc™) (Gao et al. 2012). 

 

From the studies discussed above, there are several surprising results particularly with respect to TOC 

removals. Despite these promising results, further investigation is needed. 

 

 

2.7 Summary of research needs 

The application of ceramic membranes to drinking water treatment is an area that has not been 

researched in depth. The types of foulants and extent of fouling as well as fouling mechanisms when 

filtering natural waters needs to be identified. Additionally, if model solutions are investigated, 

appropriate concentrations reflective of natural waters need to be used. Furthermore, the 

incorporation of combinations of model foulants occurring in natural waters is significantly lacking 

but necessary. 
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Most research on fouling of ceramic membranes in drinking water treatment has focused on MF 

membranes, usually combined with coagulation pretreatment. The addition of coagulants complicates 

the identification of foulants in natural water and the associated fouling mechanisms. Therefore, 

direct membrane filtration can provide an approach to identify foulants in natural water. Once 

foulants have been identified an optimal pretreatment can be chosen if necessary. Furthermore, 

particularly for the application of ceramic membranes to drinking water treatment, an emphasis needs 

to be placed on researching the reversibility of fouling by incorporating a hydraulic backwash in the 

experimental design.  

 

 

  



 

  25 

Chapter 3 
Stage 1: Developing a Sustainable Flux Methodology 

 

3.1 Introduction 

Since the application of ceramic membranes to drinking water treatment is an area that has not been 

well researched, the types of foulants and fouling behavior, as well as fouling mechanisms when 

filtering natural waters requires more in-depth investigation. The majority of research on fouling of 

ceramic membranes in drinking water treatment has focused on microfiltration (MF), which is often 

combined with coagulation pretreatment. The addition of coagulants changes the water chemistry and 

thus affects the interaction of foulants with the membrane surface, which can alter the type of fouling 

behavior. Therefore, direct membrane filtration without any pretreatment, as performed in this 

research, is optimal for identifying foulants specific to ceramic membranes, which can be essential 

information for selecting an effective pretreatment.   

 

Currently, there is a shift towards minimizing chemical usage and increasing the membrane’s lifetime 

to achieve greater economic and operational sustainability. Studies investigating the importance of 

operating at critical or sustainable flux suggest that operating at fluxes where low rates of fouling are 

observed can potentially minimize the extent of irreversible fouling, and thus decrease the frequency 

of cleaning. However, the approach to determining these lower, sustainable fluxes is not well defined 

and the accuracy of the results has not been appropriately tested. Since the operating flux can have a 

significant impact on fouling rates, foulants, and fouling mechanisms, consistent operational 

standards are needed if two different membrane systems are being compared based on performance.  

Employing the concept of sustainable flux and establishing a method with which to determine it can 

accurately compare the two different membrane materials with respect to fouling at a sustainable 

mode of operation. 

 

It is useful to compare the ceramic membrane performance to that of polymeric membranes, since this 

is the current norm in drinking water treatment plants. Therefore, it will be essential to utilize an 

appropriate method to compare the fouling rates observed in both membranes. Such a comparison is 

challenging due to the differences in membrane material as well as operating conditions. Since the 
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ceramic membrane will likely have a much higher operating flux than the polymeric membrane, it 

would not reflect realistic conditions if both membranes were operated at the same flux. The concept 

of sustainable flux can be used in this scenario to provide a platform for the comparison of these two 

membranes with respect to fouling while operating at a realistic and sustainable rate. The sustainable 

flux distinguishes between low and higher fouling rates and is somewhat subjective. The value is 

dependent on membrane and feed characteristics, as well as the process design and operational 

requirements, such as an acceptable cleaning frequency. Therefore, this value is case specific and 

pilot trials can be used to determine the relationship between the flux and fouling rate for a particular 

set of circumstances, which can be further evaluated to establish a sustainable flux for a commercially 

competitive design and operation (Bacchin et al. 2006, Pearce and Field 2007). However, the 

approach or method to determine this sustainable flux needs to be developed.  

 

 

3.2 Sustainable flux 

One of the main objectives of membrane filtration is stable operation with minimal or at least an 

acceptable level of fouling. Sustainable flux allows the membrane filtration process to operate at 

fluxes that result in low levels of fouling, which ultimately increases the lifespan of the membrane 

and decreases the frequency of cleaning. It also allows for the comparison of fouling between two 

different membrane systems, by setting the same objectives in terms of acceptable fouling without 

compromising the operational parameters of the two membrane systems. This is important because in 

some studies that compare different membranes, the goal is to create identical hydrodynamic 

conditions, which can be both difficult and not reflective of full-scale operation. Furthermore, such 

conditions do not necessarily take advantage of the ability of ceramic membranes to operate at higher 

fluxes than polymeric membranes. 

 

 

3.2.1 Defining sustainable flux 

The concept of sustainable flux is derived from the idea of critical flux, which describes the 

relationship between flux and the rate of fouling in a controlled steady state environment (Pearce and 

Field 2007). Initially, critical flux definitions were theoretical; the flux at which the hydrodynamic 
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force transporting the particle toward the membrane pore is exactly balanced by the opposing back-

transport forces (Field et al. 1995; Lahoussine-Turcaud et al. 1990). Field et al. (1995) defined 

critical flux as “a flux below which a decline of flux with time does not occur; above it fouling is 

observed”. There are two forms of this flux: strong and weak. The strong form is the flux at which the 

transmembrane pressure (TMP) begins to deviate from the linear pure water line. For the weak form, 

very rapid fouling is assumed on start-up and so the flux-TMP relationship is below that of the pure 

water line. Therefore, the critical flux (weak form) in this case would be the point at which this line 

becomes non-linear. In practice, however, this definition is not necessarily appropriate for all 

membrane applications, particularly drinking water treatment.  

 

Generally, the original definition of critical flux (strong or weak form), does not apply to natural feed 

waters and non-steady state modes of operation. The difficulty in determining the critical flux for 

natural waters is due to both the mode of operation and the nature of the feed water.  Most 

ultrafiltration (UF) and MF membranes in the water industry are operated using dead end filtration 

(also known as direct flow filtration) as opposed to cross-flow filtration since it is less energy 

intensive.  However, dead end filtration is only a pseudo steady state operation and will have different 

fouling characteristics than the steady state operation of cross-flow filtration (Pearce and Field 2007). 

Since there is some unavoidable fouling in non-steady state operations even at low fluxes, there is a 

trade-off between this mode and the higher energy costs in cross-flow.   

 

The nature of the feedwater is an additional challenge due to the polydisperse particle sizes in natural 

water, the statistical nature (and distribution) of back-transport flow paths, and TMP changes along 

the length of a hollow fiber (Zhang and Song 2000). Furthermore, the occurrence of local 

supercritical fluxes have been demonstrated even when the membrane system was operated at global 

subcritical conditions (Cho and Fane 2002). This occurs as a result of heterogeneous fouling in the 

membrane, which causes a distribution of local fluxes. Additionally, low-pressure membrane 

filtration of natural waters usually results in perceptible increases in TMP with filtration time, even if 

operated at fluxes well below the design production for the system (Choi and Dempsey 2005). As a 

result of these observations, it is unlikely that a unique critical flux with absolutely no fouling at 

subcritical fluxes exists for typical operation of membranes in drinking water treatment applications. 

Hence, a more practical approach for natural waters would be to operate at conditions that result in 
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only slow fouling. Therefore, the focus now shifts towards differentiating between slow fouling and 

rapid fouling as opposed to slow fouling and no fouling.   

 

In some cases, the critical flux has been redefined to indicate that it is the flux above which there is a 

rapid increase in the rate of fouling (Chan et al. 2002; Cho and Fane 2002; Espinasse et al. 2002; 

Huisman et al. 1999). Since this flux does not actually reflect the true definition of critical flux, the 

term “apparent critical flux” has sometimes been used to signify that deposition may still occur below 

this flux but it is relatively slow (Bacchin et al. 2006; Chan et al. 2002).  An extension of this idea is 

the concept of sustainable flux, above which the rate of fouling is economically and environmentally 

unsustainable (Bacchin et al. 2006). For instance, an economically sustainable flux is one that meets a 

cost objective over the projected life of the membrane plant (Pearce and Field 2007). Therefore, the 

concept of sustainable flux can be used for comparing two different membrane systems by unifying 

them through a common treatment objective in order to directly assess their performance.  

 

It is clear that the methods to determine and quantify the sustainable flux can vary and are not well 

defined. Consequently, the definition of sustainable flux is not very strict or rigorous and is largely 

dependent upon the objectives of the designer and operator of the plant. Therefore, a more in depth 

investigation to establish a well-defined approach to quantifying the sustainable flux is needed.   

 

 

3.2.2 Methods for sustainable flux determination 

The term critical flux has been misused in several cases, and often the label ‘apparent critical flux’ 

has been applied to indicate some divergence from the original definition. Although sustainable flux 

encompasses a range of possible fluxes (depending on performance objectives) and “apparent critical 

flux” would fall within this range, the terms are used in the literature almost interchangeably. For 

consistency with the cited papers, the terms used by the authors in these papers are used in the 

following discussion. Several different experimental approaches have been used to identify the 

sustainable flux. The most common method is either stepwise increases in the permeate flux or TMP 

and maintaining each for a certain amount of time. For example, Choi and Dempsey (2005) used 

stepwise increases in permeate flux and maintained each flux for 10 minutes, while continuously 

recording the flux and TMP. Similarly, the TMP can be increased stepwise at regular intervals and 
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held at 20 or 30-minute durations for each step.  Chan et al. (2002) examined the linearity in the plot 

of TMP averaged over each 15-minute flux step versus the applied flux. The last value of flux 

remaining on the straight line was considered to be the apparent critical flux. In Figure 3.1, the 

authors determined that the apparent critical flux was approximately 30 LMH, which corresponds to 

the approximate location of the last data point forming a linear slope.    

 

 

Figure 3.1: TMP and observed rejection vs. flux (Source: Chan et al. 2002) 

 

 

In another flux stepping experiment, Choi (2003) separated the results according to their different 

flux-TMP behavior. The results were divided into a lower flux group (with little to no fouling) and a 

higher flux group. The author used dP/dJ (change in pressure over change in flux) to differentiate 

between these two groups but did not explicitly define a specific cut-off point.  Then, each group was 

regressed to get the linear equation of the line and the intersection of these two lines was considered 

to be the critical flux (Figure 3.2) (Choi 2003). The limitation in this method is that once the flux 

exceeds this critical point, the resulting effect on TMP behavior is not necessarily linear. Therefore, 

linear regression may not accurately account for the behavior observed.   
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Figure 3.2: TMP vs flux to evaluate the critical flux (Source: Choi 2003) 

 

 

Chiu and James (2006) recognized that critical flux would not be applicable to the complexity of 

wastewater filtration and used the term sustainable flux, which they defined as the flux that allows 

acceptable operating periods without the need for cleaning. In their experiment, the transmembrane 

pressure was increased at fixed time intervals of 30 minutes prior to the onset of non-linearity in the 

increase of permeate flux. Once this point was reached, the time interval was decreased to 15 minutes. 

The experiments continued until a maximum TMP of 1.2 bar was reached. The sustainable flux 

(Figure 3.3) was then determined to be the average between the last time independent flux step (linear 

flux-TMP behavior i.e. does not deviate from pure water flux) and the first time dependent step (non-

linear behavior) (Chiu and James 2006; Gesan-Guiziou et al. 2002). Overall, these experiments chose 

sustainable fluxes at points near the onset of non-linearity.  The method of choice, however, was 

arbitrary.  
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Figure 3.3: Sustainable flux determination using flux curves (Source: Chiu and James 2006) 

 

 

In conclusion, it is evident that several methods have been used for determining critical or sustainable 

fluxes. The most common type is flux or pressure stepping and measuring the effect on performance. 

The length of each time interval was also inconsistent, however, they are comparable to the length of 

filtration runs between hydraulic cleanings in full-scale UF or MF facilities (usually between 15 

minutes to 1 hour). Furthermore, the data analyses methods are not well defined and vary 

significantly.  

 

 

3.3 Materials and methods 

The objective of the first stage of this study was to establish a procedure to compare these two 

membrane materials without compromising the functional potential or operating parameters of either 

membrane. The challenge arises from the potentially significantly different operating fluxes of a 

ceramic and polymeric membrane as well as their different configurations. Consequently, by drawing 

upon the concept of critical flux, a parameter with which to compare the rate of fouling in both 
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membranes is possible. However, since the definition of sustainable flux is somewhat user defined 

and the methodology of determination is subjective, the intent of this stage was to develop an 

appropriate procedure through a factorial design for this particular set of experiments.  

 

Source water quality was characterized using several parameters: temperature, pH, turbidity, total and 

dissolved organic carbon, the UV absorbance at 254 nm, hardness (Mg+2/Ca+2), alkalinity, and 

fluorescence to characterize the natural organic matter in the water. Turbidity was measured using a 

calibrated turbidimeter and the Standard Methods #2130.  Alkalinity and hardness were determined 

using titration as outlined in method Standard Methods #2320 and #2340 respectively. UV 

absorbance at 254 nm was determined using a spectrophotometer (HP 8453, Palo Alto, CA) with a 1 

cm quartz cell. No sample preparation is required prior to measurement.  Specific UV absorbance 

(SUVA) is an indicator of the aromaticity of the organic matter and was calculated using the 

following equation: 

 

€ 

SUVA (L /mg*L) =UV254 (cm
−1) * 100

DOC (mg /L)  
Equation 3.1 

 

 

The total and dissolved organic matter (TOC and DOC, respectively) was measured using the OI-

Analytical TOC analyzer (Model 1010, College Station, TX). The analysis follows the wet-oxidation 

method outlined in Standard methods (2005).  DOC samples were filtered through a 0.45 µm 

polyethersulfone filter prior to analysis.  

 

Grand River water was used for all the experiments and a 200 µm prefilter (reusable filtration 

cartridge – 10 gpm - Cole Palmer) was the only pretreatment. The water was stored at 4°C for a 

maximum of 2 weeks to minimize inconsistencies in the raw water quality due to organic matter 

degradation. 
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3.3.1 Factorial design 

The primary objective of this stage was to build upon previous methodologies in order to establish an 

appropriate and suitable procedure to determine a representative sustainable flux and compare the rate 

of fouling in the ceramic and polymeric membrane.  

 

In order to determine the rate of fouling in the membranes, changes in TMP are measured at constant 

flux operation. The sustainable flux can be determined from the rate of fouling, which is given by the 

derivative of the transmembrane pressure, dTMP/dt, for constant flux experiments. Several studies 

have observed significant differences above and below clearly defined fluxes. This distinct point 

indicates the transition from a membrane process that is operationally and economically sustainable to 

one that is unsustainable (Bacchin et al. 2006). It is important that the criteria chosen is appropriate 

for the application since duration times of filtration can differ greatly.  Therefore, the acceptable 

fouling rate needs to be sustainable over the desired time scale of filtration.  

 

Several different approaches have been utilized to identify the sustainable flux. The most common 

method was either stepwise increases in the permeate flux or TMP and maintaining each for a certain 

amount of time. The approach used in this study was flux stepping and the TMP was monitored and 

recorded with a pressure transducer (Cole Palmer, 4-20 mA).  Since flux stepping maintains constant 

fluxes during a given step, it is more applicable in full-scale systems where a consistent output is 

required.  Furthermore, since vacuum pumping drives the polymeric membrane filtration, it is 

designed for constant fluxes and cannot be operated at constant pressures.  Therefore, to ensure both 

membrane systems are evaluated using the same method, the flux stepping approach is most suited 

for this study. As demonstrated in Figure 3.4, the flux is kept constant while the TMP is measured for 

each predetermined interval length. Although this method may seem straightforward, several 

variables such as the length of each time interval, the increments between each interval, and the use of 

a backwash between each interval can all influence the resulting sustainable flux. Therefore, the 

membrane needs to undergo adequate fouling during the sustainable flux determination experiment to 

accurately reflect longer filtration time fouling behavior.  
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Figure 3.4: An example of the TMP and flux changes occurring over time with the flux stepping 
method  

 

 

In order to investigate the importance and impact of the previously mentioned variables, a factorial 

experiment was designed (Table 3.1). Then a series of experiments running at different combinations 

of high and low levels of the relevant variables (Table 3.1) were performed as outlined in Table 3.2. 

The water used for this experiment was taken from the Grand River at the Kaufmann Flats in 

Waterloo, Ontario, Canada during October 2008. The experiments were operated at room temperature 

(~20°C); however, temperature was still recorded to monitor any possible changes and the flux data 

was temperature corrected to 20°C. To avoid any bias in the sequence of experimental tests, the 

sequence of runs was randomized.  Two center point runs (CPR) were also performed with an interval 

length of 20 minutes, an increment increase of 75%, and with backwash either on or off.  
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Table 3.1: Variables investigated for sustainable flux experiments 

Parameters High Level Low Level 

1   Interval length 30 minutes 10 minutes 

2   Increment increase 100% * 50% * 

3   Backwash Yes No 

* Percent of starting flux value 

 

 

Table 3.2: Factorial experimental design to investigate variable in sustainable flux experiments 
using three different parameters. 23 design 

Run Parameters 

1 2 3 

1 + + + 

2 + + - 

3 + - - 

4 - - - 

5 - + + 

6 - - + 

7 - + - 

8 + - + 

CPR 1 0 0 Yes 

CPR 2 0 0 No 

+ : high level, - : low level, CPR: center point run 

 

 

The length of each time interval in most studies has varied between 10 and 30 minutes (Choi and 

Dempsey 2005; Espinasse et al. 2002; Gesan-Guiziou et al. 2002). Choosing the increase in flux after 

each time interval is challenging and since the ceramic membrane can operate at significantly higher 

fluxes, the initial flux, the increase in flux, and final flux will differ. Therefore, a constant percentage 

increase from a starting flux was used instead of a specific absolute value. Although backwashing has 

generally not been included in previous sustainable flux studies, it was incorporated in these 
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experiments to investigate the effect it would have. The backwash was performed every 30 minutes, 

even for the shorter time interval of 10 minutes (i.e. after every three filtration cycles).  This was done 

because otherwise backwashing would not have been practical due to long fill times of the polymeric 

membrane housing after the backwash, which may require up to 10 minutes. Overall, the factorial 

design outlined in these experiments will indicate the effect and statistical significance of these three 

variables on the determined sustainable flux.  

 

Once the full factorial design was completed and the sustainable flux methodology was determined 

through statistical analysis, a long-term experiment was run over 5 days. This step served as 

methodology verification that the sustainable flux determined would allow the membrane to operate 

sustainably for several days. A single batch of water taken from one location at the same time was 

used to determine the sustainable flux, then the membrane was chemically cleaned, and then it was 

operated at that sustainable flux for 5 days. A hydraulic backwash was also performed every 30 

minutes during the long-term filtration experiment.  

 

 

3.3.2 Data analysis 

Once the experiments were completed there were several ways to analyze the data to determine the 

sustainable flux of the system. Although these methods were somewhat arbitrary, they all chose 

apparent critical fluxes or sustainable fluxes at points near the onset of non-linearity.  

 

Once the flux and TMP measurements were collected, the first step was to graph the average TMP for 

each constant flux condition versus the permeate flux, or vice versa. From this graph, an increase in 

the slope of the line was observed once a critical value was exceeded. An example of this increase is 

shown in Figure 3.5 where just below 50 LMH the rate of fouling markedly increases.  
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Figure 3.5: An example of how the sustainable flux is determined using the TMP and flux data 
acquired from the flux stepping method  

 

 

To validate and confirm this methodology, a long-term experiment was performed once the 

sustainable flux was determined for a specific batch of water; the membrane was operated at this flux 

for 5 days. In order to identify foulants, the water composition of the feed water, permeate, and 

backwash were analyzed.  

 

 

3.3.3 Polymeric membrane setup 

The polymeric membrane used was a hollow fiber polyvinylidene fluoride (PVDF) UF polymeric 

membrane (General Electric) with a MWCO of approximately 400 kDa. Additional information on 

the membrane is provided in Table 3.3. The backwash cycle included a hydraulic backwash with the 

permeate combined with air sparging, which consisted of a 20 second reverse flow with air, followed 

by 25 seconds to drain the tank, then 10 minutes of tank fill time. The process was automated using a 

programmable logic controller. The membrane was cleaned between each sustainable flux experiment 

by soaking for 5 hours in a 200 mg/L sodium hypochlorite (NaOCl) solution followed by citric acid 
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(5 mg/L), with a rinsing after each cleaning solution.  A picture of the setup is shown in Appendix A 

Figure 1. 

 

 

Table 3.3: Polymeric membrane properties 

Configuration Hollow fiber (outside in) 

Nominal Membrane Surface area 0.047 m2 

Molecular weight cut-off 400 kDa 

Max transmembrane pressure 62 kPa (9 psi) 

Max operating temperature 40°C 

Operating pH range 5-9 

 

 

3.4 Results of the sustainable flux factorial 

The water used for this experiment was taken from the Grand River at the intake to the Manheim 

treatment plant in Waterloo, Ontario, Canada during February 2009. The water quality parameters 

tested are summarized in Table 3.4. The water quality is within the typical range for this river. The 

results of all the runs of the factorial design are summarized in Table 3.5. The flux stepping results 

and sustainable flux determination figures for each factorial design run are included in Appendix B. 

The interval length at a high level (i.e. 30 minutes) had a negative effect on the resulting sustainable 

flux, i.e. it resulted in lower sustainable flux determinations. Therefore, longer intervals provided 

increased time for the membrane to undergo fouling and consequently increased the resulting mean 

TMP values at each interval. When a hydraulic backwash was used (i.e. high level), there was a 

positive effect on the resulting sustainable flux. Since the backwash procedure targets the removal of 

hydraulically reversible fouling, some fouling is recovered with each backwash, thus allowing for a 

higher sustainable flux to be achieved overall. It is of interest to note that the extent of fouling 

removed with a backwash was not consistent and backwashing seemed to be more effective at higher 

fluxes. This is due to the fact that at lower fluxes where the overall rate of fouling is slower, the 

majority of the fouling is a result of hydraulically irreversible fouling. 
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Table 3.4: Water quality of Grand River 

pH 8.1 

Turbidity (NTU) 3.6 

TOC (mg C/L) 6.4 

DOC (mg C/L) 6.2 

UV254 (cm-1) 0.188 

SUVA (L/mg*L) 3.0 

Conductivity (µS/cm) 413 

Alkalinity (mg/L CaCO3) 167 

Hardness (mg/L CaCO3) 208 

 

 

Table 3.5: Sustainable flux determined for each run of the factorial design 

 Variables 

Run Interval Length 
(min) 

Increment Increase 
(%) Backwash Sustainable Flux 

(LMH) 

1 30 100 Yes 69 
2 30 100 No 48 
3 30 50 No 48 
4 10 50 No 63 
5 10 100 Yes 81 
6 10 50 Yes 87 
7 10 100 No 70 
8 30 50 Yes 80 

CPR 1 20 75 No 58 
CPR 2 20 75 Yes 86 

CPR: Center Point Run 
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Table 3.6: ANOVA table for determining significant variables in the factorial design 

Source Sum of 
squares df Mean 

Square F-value p-value 
Prob > F  

Model 1459.38 6 243.23 19.65 0.0166 Significant 
A-Interval 

Length 231.13 1 231.13 18.68 0.0228 Significant 

B-Increment 
Increase 6.13 1 6.13 0.49 0.5324 Not significant 

C-Backwash 595.12 1 595.12 48.09 0.0061 Significant 
AB 15.12 1 15.12 1.22 0.3496 Not significant 
AC 21.13 1 21.13 1.71 0.2825 Not significant 
BC 45.12 1 45.12 3.65 0.1522 Not significant 

Curvature 122.42 2 61.21 4.95 0.1123 Not significant 
Residual 37.12 3 12.37    

Lack of Fit 0.12 1 0.12 6.757E-3 0.9420 Not significant 
Pure Error 37 2 18.50    
Cor Total 1618.92 11     

 

 

In Table 3.6, ANOVA analysis of the model and the different terms are evaluated in order to 

determine which terms are significant in the model (significance level of 0.05). Values of "Prob > F" 

less than 0.0500 indicate model terms are significant, which in this case, A (Interval length) and C 

(Backwash) are significant model terms.  Values greater than 0.1000 indicate the model terms are not 

significant, which in this case, B (Increment increase) and any interactions between the variables (i.e. 

AB, AC, and BC) are not considered significant. The curvature F-value of 4.95 implies the curvature 

(as measured by difference between the average of the center points and the average of the factorial 

points) in the design space is not significant relative to the noise. The Lack of Fit F-value of less than 

0.01 implies the Lack of Fit is not significant relative to the pure error, which is desirable.   

 

Even if no center point runs were performed, a normal probability plot can indicate the factors that 

are significant by observing any deviations from the linear plot. As can be seen in Figure 3.6, the 

interval length and the backwash are the only two factors that deviate from the straight line.  
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Figure 3.6: Half-normal plot of factorial experimental results 

A: interval length; B: Increment increase; C: Backwash. Blue indicates negative effect and orange 
indicates a positive effect on the sustainable flux 
 

 

 

Therefore, using statistical analysis the two factors that were considered significant in this model 

were the interval length and the use of backwash between each interval (Table 3.6). However, the 

third variable examined in the factorial experiment, the increment increase between each interval, was 

not found to be statistically significant, and thus had a minimal impact on the outcome of the 

sustainable flux. Therefore, to save time in such experiments, it is better to have longer interval times 

to adequately reflect fouling data at that flux instead of a greater number of flux intervals.  

 

To establish whether the backwash might be skewing the results, the runs with no backwash can be 

observed. For example from Table 3.5, Runs 2 and 3 have an identical sustainable flux, despite Run 2 

using larger increment increases. Similarly, Runs 4 and 7 have similar sustainable fluxes as well. 

Therefore, even in the absence of a backwash, a change in the increment increase resulted in only a 

small or negligible effect on the resulting sustainable flux determined.  
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Therefore, the method decided on for the determination of sustainable flux is as follows: 

- 30 minute intervals 

- Followed by a backwash 

- With an increment increase of 100% of the initial flux  

 

 

3.5 Long-term operation at sustainable flux with a polymeric membrane 

3.5.1 TMP profile 

A long-term experiment operating at sustainable flux was performed to verify the sustainable flux 

method established. A new water samples was used for this experiment and was taken from the Grand 

River at the intake to the Manheim treatment plant in Waterloo, Ontario, Canada during February 

2009. To determine the sustainable flux for the long-term experiment flux stepping was used and the 

results are shown in Figure 3.7. Figure 3.8 shows the sustainable flux determination approach, which 

estimates the sustainable flux to be at 75 LMH. It is important to remember that the value obtained is 

specific to the water being tested and a different value will likely be obtained with a different water 

quality i.e. Grand River water sampled on a different day. This result is similar to Run 1 (Table 3.5), 

which used the same experimental approach and determined a sustainable flux of 69 LMH.  

Therefore, this result fell within the expected range for this type of water quality.  

 

Figure 3.9 shows the TMP increase over the 5 day period. This increase is very small, starting at 

approximately 2.5 psi and does not surpass 4.5 psi, which is 50% of the maximum TMP for this 

polymeric membrane. Additionally, there is only a slight decrease in flux from 75 LMH to 67 LMH 

by the end of the fifth day. The results indicate that the sustainable flux method is appropriate to 

operate the polymeric membrane sustainably for several days with an acceptable fouling rate.  
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Figure 3.7: Flux stepping results of sustainable flux determination test for long-term 
experiment 

 

Figure 3.8: Sustainable flux determination for long-term experiment 
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Figure 3.9: TMP and flux over 5 days at sustainable flux with the polymeric membrane setup 

 

 

3.5.2 Fluorescence 

Fluorescence samples were taken at the start of the long-term experiment and then every 24 hours. 

From Table 3.7 it can be seen that scattering decreases in the permeate, which is a reflection of 

particles in the water. This result is also reflected by the decrease in turbidity from the raw water of 

~3.5 to less than 0.5 NTU. Protein-like material also seems to be slightly removed (Figure 3.10), 

however, it is present in much smaller concentrations than either fulvic or humic acid, therefore, the 

percentage removal only gives a rough indication as to the ability of the membrane to reject this 

foulant. Humic and fulvic acid were not rejected. These results are confirmed by the minimal DOC 

removal shown in the permeate, with DOC values ranging from 5.8-6.2 (raw DOC is 6.2). 

Additionally, the SUVA value did not decrease in the permeate indicating that humic concentrations 

remained the same. The results also do indicate some slight changes in the NOM composition over 

the 5 day period, which may be due to natural variation in the water sample or some expected 

degradation occurring over time. 
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Table 3.7: Main peak intensity values of fluorescence EEMs (excitation/emissions) of raw, 
permeate, and backwash water throughout the 5 day experiment 

  Fulvic Acid 
(330/420) 

Humic Acid 
(280/460) 

Protein 
(280/330) 

Scattering 
(260/520) 

1st Hour 
Raw 601 473 74 385 

Permeate 595 459 53 133 
BW 576 475 67 809 

Day 2 
Raw 579 468 62 492 

Permeate 598 493 58 159 
BW 591 468 71 449 

Day 3 
Raw 592 481 64 423 

Permeate 583 475 57 163 
BW 576 449 74 404 

Day 4 
Raw 629 502 70 500 

Permeate 627 512 54 163 
BW 620 490 80 479 

Day 5 
Raw 641 516 82 306 

Permeate 611 482 57 181 
BW 614 476 76 279 

 

Figure 3.10: Rejection of fulvic acid, humic acid, protein-like, and scattering/turbidity from 
fluorescence excitation/emission 
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3.6 Conclusions 

A factorial experiment was designed to establish the variables that are statistically significant in 

determining the sustainable flux using a polymeric membrane. Of the three variables investigated, 

backwashing and the interval length were significant, while the increment increase between flux steps 

was not significant. Therefore, the method to be used to determine sustainable flux for future 

experiments is: 

- 30 minute intervals 

- Followed by a backwash 

- With an increment increase of 100% of the initial flux 

 

The established method was verified by operating the polymeric membrane at the determined 

sustainable flux successfully over 5 days without exceeding 50% of the polymeric membrane’s 

maximum TMP. Fluorescence results confirmed the removal of particles, however, as expected, 

minimal NOM was removed by the membrane. 
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Chapter 4 
Stage 2: Reversible and Irreversible Fouling of Ultrafiltration 

Ceramic Membranes by Model Solutions 

 

A version of this chapter titled “Reversible and Irreversible Fouling of Ultrafiltration Ceramic 

Membranes by Model Solutions” has been published in the Journal of American Water Works 

Association2. Cited references are in the consolidated list of references at the end of the thesis.  

 

This chapter/article discusses the results of model solution fouling behavior using flat-sheet ceramic 

membranes and investigates fundamental fouling behavior of ceramic membranes as well as surface 

characterization techniques. 

 

Summary  

Although ceramic membranes are of increasing interest for drinking water treatment, there is little 

information available regarding their fouling behavior in this context. The objective of the current 

investigation was to understand the fouling behavior of ceramic membranes on a more fundamental 

level with foulants that have been identified as problematic for polymeric membranes in drinking 

water treatment. All solutions showed cake filtration except humic acid and the combination of humic 

acid and bovine serum albumin (BSA), which showed intermediate and complete blocking filtration, 

respectively. Silica played a substantial role in increasing the rates of flux decline. BSA was the only 

foulant that significantly increased the hydrophobicity of the membrane, suggesting that the contact 

angle of the fouled membrane is not an indication of fouling severity or reversibility. Synergistic 

fouling effects were observed when the model solutions were combined. These results will be helpful 

for the application of ceramic membranes in drinking water treatment. 

 
Keywords: biopolymers, chemical cleaning, contact angle, drinking water treatment, hydraulically 
reversible and irreversible fouling, model solutions 

                                                        
2 Reprinted from Journal AWWA Vol. 104 No.10 by permission. Copyright © 2013 the American Water Works 
Association. (October 2012) (online only) 104(10):E540-E554 
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4.1 Introduction 

The use of polymeric membranes has been accepted in drinking water applications as an effective and 

sustainable treatment option. More recently, ceramic membranes are showing promise in this field 

because of their unique physical properties, which may be advantageous in moving towards a more 

robust treatment. Ceramic membranes can withstand higher pressures, are significantly more resistant 

to chemicals, and have a longer service life than polymeric membranes (Harman et al. 2010). Their 

surface is naturally quite hydrophilic, which is a membrane surface property that is desirable because 

of its correlation with lower fouling rates (Aoustin et al. 2001) and because it also imparts high 

permeabilities. The biggest challenge with operating membranes is fouling, which limits productivity 

and can reduce membrane lifetime. Therefore, effective fouling control methods, which are related to 

membrane properties, are crucial to a membrane’s efficiency and longevity. Since ceramic 

membranes have thus far been largely limited to industrial and food applications, foulants of concern 

in typical drinking water treatment applications have not been studied in depth. However, some 

studies have shown the potential of ceramic membranes to perform better than polymeric membranes 

in drinking water treatment (Lee and Cho 2004; Bodzek and Konieczny 1998).  

 

The unique properties of ceramic membranes may be advantageous as can be seen from a study by 

Konieczny et al. (2006) that used ceramic microfiltration (MF) membranes (active layer titanium 

dioxide/zirconium dioxide; pore size 0.1 and 0.2 µm) and compared total organic carbon (TOC) 

removal of synthetic humic acid solutions by coagulation alone, MF alone, and coagulation followed 

by membrane filtration. Despite the large pore size, complete removal of TOC was observed with MF 

alone and with coagulation–MF, which was higher than coagulation alone. However, the MF 

membranes alone exhibited significantly greater flux declines. These unexpected results indicate the 

need for further investigation into the fouling properties of ceramic membranes in drinking water 

treatment. 

 

Few studies have compared the performance of polymeric membranes with ceramic membranes for 

drinking water treatment. However, several studies using ceramic membranes for different purposes 

have shown higher removal of natural organic matter (NOM) than would be expected based on the 

molecular weight cutoff (MWCO) of the ceramic membrane. The MWCO provides only an estimate 

of the size of the molecules rejected by the membrane. It does not account for differences in size and 

shape of molecules with the same molecular weight. In a study by Bodzek and Konieczny (1998), 
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both ceramic (MF and ultrafiltration [UF], 300-kDa) membranes and an MF polymeric membrane 

(polypropylene) were used to investigate their potential application for pathogen removal in natural 

waters. Although turbidity removals were similar for all membranes, the TOC removals for the 

ceramic membranes were higher than for the polymeric membrane. The TOC removal by the UF 

ceramic membrane was only slightly higher than the ceramic MF membranes; this is likely an 

indication of high preferential adsorption of organic matter onto ceramic membrane surfaces given 

that MF/UF membranes are not designed to target TOC removal. Lee and Cho (2004) used a tight UF 

(8-kDa) polymer membrane (polyamide) and two tight (8- and 1-kDa) ceramic UF (titanium dioxide) 

membranes to compare removals of NOM. The results showed that the ceramic membranes had 

several advantages: they exhibited the potential to more effectively remove dissolved organic carbon 

as well as higher permeabilities. 

 

The unexpectedly high TOC removals observed with ceramic membranes in these studies require 

further investigation. It is possible that the higher removals were the result of initial adsorption on the 

membrane and might not have continued in longer experiments. An investigation into the reversibility 

of the foulants would also have been of interest and would have given additional insight into the 

fouling behavior observed. Considering that the composition of TOC can vary greatly, it is important 

to investigate removals and fouling potential of different TOC fractions for ceramic membranes to 

determine the most likely foulants as well as their reversibility.  

 

NOM has been identified as a major contributor to polymeric membrane fouling (Yamamura et al. 

2007; Fan et al. 2001; Hong and Elimelech 1997). However, the identification of the particular 

fraction of NOM that has the highest fouling potential has been inconsistent among different 

membranes. Peiris et al. (2010) identified colloidal/particulate substances as contributors to reversible 

fouling, whereas humic substances and protein-like matter were main contributors to irreversible 

fouling in a tight UF (60- and 20-kDa) polymeric membrane. Humic substances, proteins, and 

polysaccharides have also been identified in other studies as irreversible foulants through membrane 

adsorption and pore-blocking (Aoustin et al. 2001; Fan et al. 2001; Gray et al. 2011; Jermann et al. 

2008a). Although colloidal particulates alone are generally associated with reversible fouling, 

synergistic interactions with NOM have not been greatly investigated and could in fact contribute to 

irreversible fouling (Peldszus et al. 2011; Jermann et al. 2008b). The importance of biopolymers in 

UF membrane fouling was observed by Hallé et al. (2009) when biofilter pretreatments with 
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increased biopolymer removal translated into decreased rates of fouling for a polyvinylidene fluoride 

(PVDF) UF membrane. Therefore, biopolymers, humic substances, and colloidal particulates have all 

been linked to fouling for polymeric UF membranes, which may or may not be similar for ceramic 

membranes. 

 

The objective of this study was to investigate the fouling behavior of ceramic membranes using 

model solutions representative of foulants in drinking water sources alone and in combination. The 

effectiveness of hydraulic backwashing to identify reversible and irreversible foulants was also 

investigated because this can be a crucial factor for sustainable operation in drinking water treatment 

plants. Additionally, the surface properties of fouled and virgin membranes were analyzed to gain 

additional insight into the fouling behavior. 
 

 

4.2 Materials and methods 

4.2.1 Setup and experimental approach 

Flat-sheet, disc-shaped ceramic membranes (DisRam, TAMI Industries, France) (47 mm in diameter) 

with a surface area of 0.0131 m2 were used in constant pressure filtration experiments. Flat-sheet 

ceramic membranes were used to allow for surface characterization analysis, which is extremely 

difficult or not possible with other typical ceramic membrane configurations (generally tubular). 

Properties of the membranes used in this study are summarized in Table 4.1. Pictures of the 

membrane and setup are also included in Appendix A Figures 2 to 4. The membranes were 

pressurized with nitrogen gas, and the permeate flow was measured using a mass balance. Model 

solutions were filtered for 60 min at several pressures: 20, 30, and 40 psi (138, 207, and 276 kPa) for 

single solutions, at 40 psi for combinations, and at 20 and 40 psi for the solution containing all model 

substances. The solutions were filtered through three different cleaned membranes. The cleaning 

procedure, which is described in more detail later, was composed of sodium hypochlorite (NaOCl), 

sodium hydroxide (NaOH), and citric acid. At the end of the filtration cycle, two of these membranes 

were hydraulically backwashed, followed by a clean water permeability test. The contact angle of all 

three membranes was measured, providing results for fouled membranes before and after backwash. 

After contact angle measurements were completed, all membranes were chemically cleaned. 
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Table 4.1: Summary of virgin ceramic membrane properties 
MWCO a 300 kDa 

Active layer a ZrO2/TiO2 

Support layer a TiO2 

Max operating pressure a 4 bar (58 psi) 

Membrane surface area a 0.00131 m2 

Virgin contact angle b 22° ± 0.5 

Average roughness b 50 nm ± 8 

Mean pore radius 16.4 nm ± 1 c 
13.6 nm ± 0.7 d 

a Given by manufacturer (TAMI Industries) 
b Measured in this experiment 
c Calvo et al. (2008) using Scanning Electron Microscopy  
d Calvo et al. (2008) using Liquid-Liquid Displacement Porosimetry 
 

 

An inherent disadvantage of the ceramic membranes used for this study was the wide range of 

permeabilities within and between batches of membrane discs. Manufacturing standards allow for up 

to 40% variation in clean water permeability as long as an acceptable MWCO is achieved, according 

to the Association Française de Normalisation Standard NF X 45-103. Without previous screening of 

the membrane samples used, this would have posed a major challenge in obtaining reproducible and 

comparable flux decline curves during the fouling experiments. The approach taken, therefore, was to 

use only membranes with no more than a 15% deviation from the average clean water flux (CWF); as 

a result only six membranes in total were used for all experiments. Therefore, membranes were 

reused after each cleaning cycle when the CWF was fully recovered. The CWF of each membrane 

throughout these experiments was determined after each full cleaning cycle and before running 

fouling experiments; all membranes stayed within 15% of the average CWF during the entire study. 

In addition, all flux decline curves were run in triplicate, and membrane discs were selected randomly 

throughout to avoid bias. To allow for comparison, flux decline curves were normalized by plotting 

the relative flux, which is the observed flux divided by the CWF of that particular membrane (i.e., 

relative flux = J/CWF).  

 

Backwashing was performed with ultrapure water for 5 min in order to collect a sufficient amount of 



 

  52 

sample for analysis. Backwashing was run at the same pressure as filtration pressure. This was 

followed by a CWF measurement. Permeate was not used for backwashing due to limitations in the 

setup and inadequate permeate yield after 1 h. Some studies have found that the use of ultrapure or 

demineralized water instead of permeate water can enhance the effectiveness of backwashing in 

controlling fouling of both polymeric and ceramic UF membranes (Li et al. 2010; Abrahamse et al. 

2008). The backwashing step was used to distinguish between reversible and hydraulically 

irreversible fouling. An additional 5-min backwash was performed to determine the importance of 

backwashing duration on flux recovery for a limited number of model solution experiments.  

 

The chemical cleaning procedure used in this study was similar to that used for other ceramic 

membranes (Metawater, Japan). The cleaning method consisted of three cleaning solutions starting 

with NaOCl (3,000 mg/L), followed by NaOH (0.1 M), and ending with citric acid (1%), each with a 

soak time of 5 hours. The membranes were rinsed between each cleaning step with ultrapure water. 

The cleaning method originally suggested by the membrane manufacturer (TAMI) was not used due 

to its drastic nature (high concentrations of basic and acidic chemicals at high temperatures), which is 

not practical or necessary in a drinking water treatment facility. 
 

 

4.2.2 Model solutions 

The model substances investigated were a protein (bovine serum albumin [BSA], 5 mg/L), a 

polysaccharide (sodium alginate, 5 mg/L), an NOM fraction (humic acid, 5 mg/L), and an inorganic 

colloid (silica, [Ludox ® HS-30 colloidal silica] 200 mg/L). All model substance properties were 

supplied by Sigma Aldrich and their properties are summarized in Table 4.2. The pH of the solutions 

was between 5.7 and 6.3. Sodium alginate is a hydrophilic polysaccharide that is produced by algae 

and bacteria. Humic acid is a hydrophobic fraction of NOM, and BSA is a hydrophobic animal 

protein that is commonly used to represent protein-like foulants in surface water. Yuan and Zydney 

(1999) determined the apparent-molecular-weight distribution for this humic acid for approximately 

60% > 50 kDa and for approximately 30% at ≈ 300 kDa, the latter fraction being in the same range as 

the MWCO of the ceramic membrane used in this study. The colloidal silica was supplied as a 30% 

w/w colloidal suspension having a density of 1.21 g/mL at 25°C. The surface area of the silica 

particles was 200 m2/g and the average hydrodynamic size was ~9 nm (given by the manufacturer). 
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The size was chosen because small colloids in the size range of 3–20 nm have been identified as 

important membrane foulants (Howe and Clark 2002). The concentration of the colloidal silica was 

selected following a review of the literature. When nanofiltration/reverse osmosis membranes were 

used, the silica particle sizes ranged from 100 to 300 nm and concentrations were ~200 mg/L (Lee et 

al. 2005, Vrijenhoek et al. 2001). For UF membranes, the silica particle sizes ranged from ~12 to 100 

nm, and the concentrations were 0.4 to 0.5% wt. (Wu et al. 1999; Chen et al. 1997). The turbidity of 

the 200 mg/L silica solutions used in these experiments was less than 0.5 NTU.  

 

The feed solutions were prepared by adding 5 mL from a 1g/L stock solution into every liter of feed 

solution. The TOC of each individual single solution was 1.5, 2.5, and 2 mg C/L for alginate, BSA, 

and humic acid, respectively. Therefore, in mixtures, the TOC concentrations were higher than in 

single solutions. However, the concentration of the individual component remained constant between 

individual solutions and in mixtures thereby allowing for a direct comparison of the effect of an 

individual component in different mixtures.  

 

In addition to providing important insights into fouling behavior, the investigations with these model 

substances are relevant to natural waters low in concentrations of divalent cations. Future work will 

examine the effect of dissolved calcium on fouling. 

 

Table 4.2: Summary of model substance properties 

Model 
Substance Foulant Type Average Molecular 

Weight (kDa) 
Carbon 

Content (%) 
Bovine Serum 
Albumin (B) protein 671 0.461 

0.473 

Humic Acid (H) NOM fraction ~ 701 0.311 
0.43 

Sodium Alginate 
(A) polysaccharide 30-1004 0.293 

Silica (S) inorganic colloid ~ 9 nm average 
hydrodynamic size2 

Not 
applicable 

1 Xiao et al. (2009) 
2 Given by manufacturer Sigma Aldrich  
3 Measured 
4 Katsoufidou et al. (2007) 
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4.2.3 Surface characterization 

The contact angle was measured using a 10-µL drop of ultrapure water (DSA100, KRÜSS GmbH, 

Germany). The average of five measurements was taken on each membrane within the first second of 

contact between the water drop and the membrane surface. The height–width method provided in the 

instrument software was used to analyze the contact angle. In this standard method, it is assumed that 

the contact angle for small drops is not influenced by the absolute drop size. The contact angle is 

calculated from: 

 
θ = cos−1 1− h

Rmax

"

#
$

%

&
'       Equation 4.1 

 

in which h is the height of the drop and Rmax is the maximum radius of the drop. It is particularly 

important to analyze the first contact moment since the contact angle decreases rapidly as the drop 

vanishes into the membrane due to the hydrophilicity of the ceramic membrane.  

 

The roughness of the membrane was measured using atomic force microscopy (Digital Instruments 

Nanoscope® multimode aromic force microscope, Veeco, Ontario, Canada).  A cross-section scan 

size of 5 µm x 5 µm was taken at 10 different locations on the membrane in contact mode. The 

scanned images were plane-fitted and flattened with a second order polynomial approximation, which 

removes any curvature or slope induced by the scanner. The z-range, root mean square, and average 

roughness of all 10 cross sections were averaged. The settings were a scan rate of 0.5 kHz, silicon 

nitride tip (spring constant is 0.12 N/m, frequency is 14–26 kHz, and a cantilever thickness is 0.4–0.7 

µm), tip velocity of 1 µm/s, integral gain of 2, proportional gain of 3, and deflection setpoint of 0V. 
 

 

4.2.4 Data analysis 

The flux decline curves were analyzed using blocking laws (Hermia, 1982) to determine the fouling 

mechanism. 

  

Φ

⎟
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⎞
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⎝

⎛=
dV
dt

dV
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β2
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which can be rewritten as 

)(loglog)(log 2

2

dV
dt

dV
td

Φ+= β
 

Equation 4.3 

 

in which t is time (s), V is volume (L), 

€ 

β  is blocking law filtration coefficient (units vary depending 

on 

€ 

Φ), and 

€ 

Φ is blocking law filtration exponent (unitless). Values of 

€ 

Φ that are 0, 1, 1.5, and 2 

correspond to cake, intermediate, standard (pore constriction), and complete blocking filtration 

respectively.  

 

Total membrane resistance can be determined using Darcy’s Law:  

Rt =
ΔP
µ J                                                             Equation 4.4

 

If all fouling is assumed to be a result of cake filtration then cake resistance can be calculated using: 

Rc =Rt −Rm                                                           Equation 4.5 

and the specific cake resistance can be calculated using the flux decline results: 

 αc =
Rc A
CV                                                            Equation 4.6

 

 

Where Rt is the total fouling resistance, ∆P is the transmembrane pressure drop, µ is the water 

viscosity, J is the permeate flux, Rc is cake resistance, Rm is the membrane resistance, α is specific 

cake resistance, A is the membrane surface area, C is the concentration, and V is the volume filtered.   

 

The cake compressibility n can be estimated as follows (Foley 2006): 



 

  56 

   
nPΔ= 0αα  Equation 4.7 

 

in which α is specific cake resistance, 

€ 

α0  is a constant related primarily to the size and shape of the 

particles forming the cake, 

€ 

ΔP  is pressure drop across the membrane, and n is the cake 

compressibility index, which ranges from zero (incompressible cake) to 1 or greater (for a highly 

compressible cake).  

 

The quantities can be estimated by calculating the specific cake resistance from flux decline curves at 

several pressures using equations 4.4 to 4.6 and plotting the linearized form of Eq. 4.7 as represented 

by Eq 4.8: 

 Pn Δ+= logloglog 0αα  Equation 4.8 

 
 

4.3 Results and discussion 

 

4.3.1 Virgin membrane properties 

The virgin ceramic membranes (Table 4.1) have an average roughness of 50 nm, a root mean square 

of 65 nm, and a z-range of 450 nm. An image of the membrane surface taken with the atomic force 

microscopy is shown in Figure 4.1. These values are much higher than those for polymeric 

membranes of similar MWCO (Haberkamp et al. 2008). The contact angle of the virgin ceramic 

membrane was quite low (22°± 0.5), pointing to its hydrophilic nature. In contrast, contact angles for 

polymeric membranes are usually much higher, e.g., 75° for PVDF and 65° for polycarbonate 

membranes (Yao et al. 2010), and 64° for PVDF and 53° for a hydrophilized polyethersulfone 

membrane (Haberkamp et al. 2008). These differences in surface properties of the ceramic membrane 

used in this study compared with commonly used polymeric membranes may lead to differences in 

interactions with organic and inorganic foulants and thus affect fouling behavior. Additional virgin 

membrane properties are summarized in Table 4.1. The zeta potential of the virgin ceramic membrane 
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was measured once at a pH of 5.5 and found to be negative; due to the complexity of the 

measurement, it was not replicated. 

 

 

Figure 4.1: Image of flat-sheet disc-shaped ceramic membrane and a 15 µm cross-section of the 
membrane surface taken with atomic force microscopy 
 
 

4.3.2 Fouling behavior 

The flux decline curves in Figure 4.2 and Figure 4.3 provide an initial insight into the overall fouling 

behavior of typical model foulants. To distinguish between contributions of hydraulically reversible 

and irreversible fouling to these curves, a hydraulic backwash of the fouled membranes was 

performed (for details see Section 4.3.4: Effect of backwashing). Contributions to chemically 

irreversible fouling were identified after additional chemical cleaning (for details see Section 4.3.5: 

Chemically irreversible fouling).   

 

The single solution flux decline curves (Figure 4.2) show that silica has the highest initial rate of 

fouling at all pressures. Although the concentration of silica was higher than that of the other model 

compounds, the fouling rates for silica were in the same general range as the other compounds. 

Alginate, BSA, and humic acid have similar initial fouling rates at 30 and 40 psi (Figure 4.2 parts b 

and c). However, at the end of the 40 psi test, the rate of flux decline with alginate appeared to be 

somewhat greater than that of the other substances. Humic acid and BSA seemed to reach a pseudo-

steady state at approximately 10% of the clean water flux. At 20 psi (Figure 4.2 part a) humic acid 

fouling behavior differs, showing a slow but almost constant rate of flux decline, which may be 

related to its fouling mechanism, discussed in Section 4.3.3. The higher final flux for BSA and the 
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continuation of alginate fouling are consistent with results for a polymeric membrane found by Zhang 

et al. (2006), who identified polysaccharides as the major foulants—not proteins.  

 

When the model solutions are combined with one another, all the solutions with silica demonstrate 

higher rates of fouling (Figure 4.3 part a). Colloids alone form a cake layer that is porous and highly 

permeable. However, when coupled with smaller organics (such as BSA and alginate), the cake 

resistance increases as a result of the combined fouling, which can hinder the back diffusion of 

foulants into the bulk solution, thus creating higher foulant concentrations at the membrane surface 

(Law et al. 2010). Another possible explanation is that the organic molecules serve as “glue” for the 

silica particles and through filling holes in the cake layer a more condensed cake layer is formed. 

Therefore, the higher fouling rates with silica are likely caused by the formation of a thicker and 

denser cake layer, thus increasing the overall membrane resistance at a faster rate. Also, the relatively 

high roughness of the membrane (around 50 nm) possibly enhances the fouling as a result of the 

accumulation of the silica particles in the valleys (Al-Amoudi, 2010). The effect of silica on the 

fouling rates is further demonstrated in Figure 4.4 by showing the average final relative flux versus 

average total volume filtered. In Figure 4.4, part a, it can be seen that once silica is added, it shifts and 

compresses the grouping to the bottom left by decreasing the total volume filtered and decreasing the 

average final relative flux, which is reflected by higher rates of flux decline experienced for solutions 

with silica. Figure 4.4 part b, looks at only solutions with silica, and from here a less significant effect 

of alginate on decreasing the average final relative flux and the average total volume filtered can be 

observed. Synergistic fouling effects when model solutions are combined were also observed by 

Jermann et al. (2008a) for a polymeric UF membrane.  
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Figure 4.2: Relative flux decline for single solutions over 1 h at (a) 20, (b) 30, and (c) 40 psi.  
The relative flux, which is the flux divided by the clean water flux (CWF) for that specific membrane, is plotted 
over the total volume filtered over 1 h; each flux decline curve is for one replicate; fluxes are temperature 
corrected to 20°C.  BSA: Bovine Serum Albumin. 
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Figure 4.3: Relative flux decline over 1 h for combinations of model foulants. (a) effect of silica 
and (b) effect of humic acid.  
For each solution three clean membranes were used to run three 1-h experiments. All three runs had a final 
flow within 15% of one another and a total volume filtered within less than 10% of one another. Although only 
one run is shown for the combination solutions, it is representative of the fouling behavior observed for all 
three runs of a particular solution Not all combination solutions filtered are shown. Fluxes have been 
temperature corrected to 20°C. A: Alginate; B: Bovine Serum Albumin; H: Humic acid; S: Silica. 
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Figure 4.4: Average final relative flux versus average total volume filtered at 40 psi for 1 h (a) 
all solutions and (b) only solutions with silica (b is a close-up of left oval in part a).  
Error bars indicate range of values (n=3) except for single solutions (n=1). A: Alginate; B: Bovine Serum 
Albumin; H: Humic acid; S: Silica. 
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4.3.3 Blocking filtration laws  

Flux decline curve analysis using Hermia’s model (Eq. 4.3) indicated that cake layer filtration was 

virtually instantaneous for almost all solutions (data not shown). This is similar to the observation by 

Lee et al. (2008) that cake formation occurred almost immediately with NOM filtration using 

polymeric UF membranes.  

 

Humic acid alone showed an exponent of approximately 1 (n= 2) at 30 and 40 psi (Figure 4.5), which 

correlates to intermediate blocking filtration. This is an extension of complete blocking filtration as it 

allows for the superposition of particles in addition to pore-blocking. This may be the result of a 

greater affinity of humic acid molecules to each other than to the membrane surface and/or 

electrostatic repulsion between the negatively charged humic acid and the membrane surface. 

However, Costa et al. (2006) observed complete pore blocking with cellulose acetate UF membranes 

(filtration exponent of 2) when filtering humic acid, although at concentrations significantly higher 

than in this study (1,000 mg/L). The results between the different repetitions as well as pressures for 

humic acid filtration are consistent (Figure 4.5).  

 

The only combination solution without instantaneous cake filtration was BSA combined with humic 

acid (BH; Figure 4.5). The average filtration exponent of 2.7 (n = 3) indicated complete blocking 

filtration, which normally causes rapid and severe flux decline. However, in this case, the rate of flux 

decline for BH was the lowest of all solutions, with the highest total volume filtered and one of the 

highest final flows (Figure 4.4). This inconsistency may be the result of the limitations of applying a 

model that was developed for spherical particles to dissolved macromolecules such as those in these 

experiments. Further observations showed that the membrane with the highest permeability among 

the three membranes used for each solution experienced cake layer formation earlier and after less 

total volume filtered. This observation is consistent with experiments by Costa et al. (2006) and 

Howe et al. (2007) that showed the onset of cake filtration earlier for the more permeable membrane. 
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Figure 4.5: Fouling mechanism determination for humic acid alone (H) and humic acid 
combined with bovine serum albumin (BH). 

Recall Equation 4.3: )(loglog)(log 2

2

dV
dt

dV
td

Φ+= β
 

Equation 4.3. Therefore, the slope of the line is 

Φ, which is the blocking law filtration exponent (a line with Φ = 1 is provided for reference). 
 

 

4.3.4 Effect of backwashing 

Both a hydraulic backwash (BW) and chemical cleaning are used to remove the foulants and recover 

performance. Fouling that can be removed with a hydraulic backwash is considered hydraulically 

reversible (the remaining fouling is hydraulically irreversible). Fouling that can be removed with a 

chemical cleaning step is chemically reversible fouling (the remaining fouling is considered 

chemically irreversible).  
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Backwashing was used to determine the hydraulic reversibility of different model foulants and their 

combinations. Backwashing was performed using ultrapure water for 5 minutes at the same pressure 

as filtration. An increase in backwashing time by an additional 5 minutes showed only a marginal 

increase in flux recovery (2% on average, data not shown). Figure 4.6 shows flux recovery following 

a BW as a function of the average final flux before backwashing. Solutions with high hydraulically 

reversible fouling were characterized by rapid flux declines, whereas solutions with high 

hydraulically irreversible fouling had a much slower flux decline.  

 

The fouling observed is clearly not simply a function of the TOC concentration present in the 

mixture. For example, comparing AS to AHS shows similar fouling behavior despite almost twice as 

much TOC in the AHS mixture. Therefore, this illustrates that there is no obvious effect due to the 

TOC concentration being higher in mixtures and that the TOC concentration may only be a factor 

contributing to fouling. To evaluate reproducibility flux decline curves for each solution were 

repeated 2-3 times. Ranges (i.e. minimum and maximum values) as opposed to standard deviations 

are shown for the individual data points in all figures in Chapter 4 because the number of replicates 

for each solution was too low to calculate a standard deviation. Comparisons are being made between 

major groupings where differences are clearly evident, even when taking into account the ranges 

associated with the individual data points. Additional statistical significance tests were therefore not 

performed. 
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Figure 4.6: Average flux recovered with hydraulic backwash (BW) versus average final relative 
flux for all solutions at 40 psi.  
Error bars indicate range of values for x-axis (n=3) and y-axis (n=2). A: Alginate; B: Bovine Serum Albumin; 
H: Humic acid; S: Silica; J: Flux, CWF: clean water flux. 

 

 

Among the single solutions, the highest percentage flux recovery and therefore hydraulic reversibility 

was observed for silica despite its having the highest rate of fouling and lowest final relative flux. The 

lowest percentage flux recovery was with humic acid followed by BSA. Given that humic acid, BSA, 

or the two combined showed significant hydraulically irreversible fouling, the likely fouling 

mechanism for these substances is adsorption. Similarly, Peiris et al. (2010) identified 

colloidal/particulate substances as contributors to reversible fouling, whereas humic substances and 

protein-like matter were identified as contributors to irreversible fouling in a tight UF polymeric 

membrane.  
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Yuan and Zydney (1999) found that up to 80% of the clean water flux was recovered on a polymeric 

MF (nominal pore size 0.16 µm, polyethersulfone) membrane by wiping off the membrane surface 

with paper towels to remove the yellowish deposit left by humic acid. They concluded that the 

majority of fouling was thus located on the upper surface of the membrane as opposed to deeper in 

the pore structure. Although Yuan and Zydney’s cleaning method differed from the current study, it 

can be assumed that a hydraulic backwash would at least partially remove the cake layer and recover 

some of the clean water flux. Since backwashing could not remove humic fouling in these 

experiments, it is unlikely that the majority of fouling is on the upper surface of the ceramic 

membrane; a result quite different from Yuan and Zydney (1999). Possible explanations are either 

strong bonding with the membrane or deep penetration into the pores. One hypothesis is that the high 

hydrophilic surface of the membrane decreases the strength of hydrophobic interactions and increases 

electrostatic repulsion between the membrane surface and humic acid, thereby discouraging the 

aggregation of the humic acid molecules on the membrane surface. However, at higher pressures the 

convective deposition is stronger and might outweigh the effect of the membrane surface–foulant 

interactions. This may explain why the rate of humic acid fouling increases dramatically with 

increasing filtration pressure (Figure 4.2). Therefore, despite lower rates of fouling associated with 

humic acid as discussed previously, humic acid fouling can lead to unsustainable operation as a result 

of high hydraulically irreversible fouling and thus a greater need for chemical cleaning. 

 
Xiao et al. (2009) determined the affinity for a hydrophilically enhanced PVDF membrane as follows: 

humic acid > protein (BSA) > polysaccharide (dextran). This order is similar to the relative extent of 

hydraulically irreversible fouling caused by single model solution filtration discussed here.  

 

Once the solutions were combined, the hydraulically irreversible fouling was similar to that observed 

for BSA and humic acid except when silica was present. Figure 4.6 illustrates the dramatic effect 

silica has on decreasing the hydraulically irreversible fouling, in which the results can be separated 

into two distinct clusters: hydraulically reversible and hydraulically irreversible fouling. If silica was 

not present, a maximum of 10% of the fouling was hydraulically reversible (except for alginate and 

the alginate/BSA/humic acid [ABH] combination). The lowest hydraulically irreversible fouling was 

observed either when all the model solutions were combined, or with BHS. The effect of alginate is 

more subtle (see dotted oval in Figure 4.6); the solutions with alginate are slightly shifted to the left, 

indicating decreased average final relative flux (i.e., higher total fouling). Although approximately 
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40% of the fouling with alginate alone was hydraulically reversible, this decreased significantly when 

combined with humic acid (4%) or with BSA (6%). Considering these results, it is interesting that the 

ABH combination is more similar to alginate than either humic acid or BSA. This indicates that the 

interactions between the foulants can be as important as the interactions between the foulants and the 

membrane surface. Although this finding may be intuitive and a few studies have also observed the 

importance of interactions between foulants for polymeric membranes (Jermann et al. 2007), it has 

not been specifically investigated. To quantify the relative importance of interactions between 

foulants compared with interactions with the membrane surface is an area that requires further work.  

 

Overall, the addition of silica to any single solution or combination of solutions showed a dramatic 

increase in recovery, i.e., a decrease in hydraulically irreversible fouling. This was especially true 

when silica was added to humic acid or BSA and, in particular, the combination of both. Silica could 

possibly be inhibiting the ability of these components to interact and bond with the membrane 

surface. Therefore, silica consistently plays a positive role in creating a more backwashable foulant 

cake layer through interactions with the other model components.  

 

In order to determine the compressibility of the different model foulants and the influence of pressure, 

the cake compressibility index was calculated from a log–log plot of specific cake resistance versus 

pressure (Eqs 4.4 and 4.5). From Figure 4.7, it can be seen that humic acid cake resistance is 

significantly affected by increasing pressure; changes in cake resistance with pressure indicate a 

compressible cake. The other three solutions show little to no variation in cake resistance between 20 

and 40 psi, indicating that they do not form very compressible cakes and thus fouling is less affected 

by pressure. This is reflected in Figure 4.2, where the fouling trend for humic acid changes 

significantly, particularly between 20 and 30 psi. This may also partially be due to slower cake 

development at 30 and 40 psi for humic acid as seen in Figure 4.5. However, in most instances, cake 

filtration was instantaneous thus allowing for cake compressibility evaluation as outlined in 4.2. 
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Figure 4.7: Log-log plot of specific cake resistance for single solutions at different pressures.  

BSA: bovine serum albumin 

 

 

Table 4.3 summarizes the cake compressibility index for the single solutions from Figure 4.7. For 

incompressible cakes, n is theoretically zero, and it increases with more compressible cakes. 

Constituents in solutions with a higher compressibility coefficient are more likely to have a wider size 

distribution, with the majority consisting of larger macromolecules or particles, which would be more 

susceptible to distortion at higher pressures (Boerlage et al. 2003). A wider molecular size 

distribution of humic acid compared with sodium alginate has been measured by others (Sioutopoulos 

et al. 2010; Katsoufidou et al. 2007; Katsoufidou et al. 2005). The results of the current study are 

confirmed by those of Sioutopoulos et al. (2010) who found that humic acid deposits are more 

compressible (n = 0.7) compared with alginate deposits (n = 0.4) with a polymeric UF membrane. 

The difference in the actual numerical value of n may be caused by the different membrane material 
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and/or the high concentration of total dissolved solids in the solutions used by Sioutopoulos et al. 

(2010). Furthermore, in the Sioutopoulos et al. (2010) study alginate fouling was also more severe 

than humic acid fouling; however, these authors did not distinguish between hydraulically reversible 

and irreversible fouling. Jermann et al. (2007) determined that despite the increased fouling occurring 

with alginate, it was to a large extent hydraulically reversible; this is also similar to the behavior 

observed in the experiments presented in this study and in later studies by Katsoufidou et al. (2008, 

2010). 

 

Table 4.3: Calculations of cake compressibility index (n) and the 95% confidence interval for 
single solutions 

Model Foulant 

€ 

n   R2 
Silica 0.13 ± 0.03 0.886 

Humic Acid 2.7 ± 0.63 0.981 
Alginate -0.36 ± 0.16 0.950 

Bovine Serum Albumin 0.17 ± 0.06 0.290 
 

 

4.3.5 Chemically irreversible fouling 

The fouled membranes were cleaned with three solutions, starting with NaOCl, followed by NaOH, 

and finally citric acid, following a procedure recommended by a manufacturer that uses ceramic 

membranes for drinking water treatment (Metawater) (see Section 4.2.1) To evaluate the 

effectiveness of each cleaning step and therefore the extent of chemically irreversible and reversible 

fouling, the CWF was measured for some of the experiments after each cleaning step. Not all 

solutions could be investigated because this is a time-intensive procedure. With one exception, 

chemically irreversible fouling was minimal. Only the AHS combination caused significant 

chemically irreversible fouling (greater than 15%, results not shown). However, the CWF and 

therefore membrane performance was fully recovered after an additional cleaning cycle. This 

demonstrates that for ceramic membranes, more thorough chemical cleaning can be used to eliminate 

chemically irreversible fouling. This option is usually not available for polymeric membranes because 

they are less resistant to chemical cleaning.  
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In terms of chemically reversible fouling, Figure 4.8 shows that the greatest improvement was 

generally seen following NaOCl addition. However, this may be due to the fact that it was the first 

cleaning agent used. Further work is required to assess various cleaning sequences.  

 

 

Figure 4.8: Average percent flux recovery (of clean water flux) after hydraulic backwash and 
after each consecutive cleaning step starting with sodium hypochlorite (NaOCl) 
Error bars indicate range of values (n=3). A: Alginate; B: Bovine Serum Albumin; H: Humic acid; S: Silica 
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majority of the overall clean water flux recovery could be achieved with backwashing alone. When 
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the CWF for those solutions filtered at 20 psi only averaged around 90% (±2) compared with 99% 

(±4) at 40 psi.  

 

Caustic (i.e., NaOH) is especially important for the removal of humic substances. It increases the 

repulsion between the negatively charged functional groups, which results in a stretched, linear 

configuration of NOM, thus loosening the fouling layer and enhancing the efficacy of cleaning (Hong 

and Elimelech. 1997). Nevertheless, the caustic cleaning step did not prove to be advantageous when 

humic acid was present; i.e., the net recovery with NaOH did not differ between the ABHS and BHS 

solutions. This could be a result specific to these experiments, particularly when taking into 

consideration that the flux recovery achieved by the previous hypochlorite cleaning step was already 

high.  

 

The use of citric acid as a cleaning agent mainly targets the removal of scale, which is not an issue in 

the case of these experiments. Also, most, if not all, of the fouling was removed with the first two 

cleaning steps in these experiments, leaving little for the citric acid to do. 
 
 

4.3.6 Contact angle/hydrophobicity 

Contact angle measurements were carried out on both virgin and fouled membranes before and after 

backwash. Results reported in this article refer to the uppermost surface of a membrane and thus in 

the case of fouled membranes reflect the nature of the fouling layer rather than the membrane itself. 

The virgin membrane was very hydrophilic, with a contact angle of 22°. Detailed results comparing 

the contact angle before and after backwashing are not shown because, except for BHS, the 

alginate/humic acid combination (AH), and the alginate/BSA combination (AB), there were few 

differences. This may indicate that the composition of the foulant layer was largely unaffected by 

backwashing.  

 

Results in Figure 4.9 show the contact angle of the backwashed membranes as a function of flux 

recovery following backwash. As is apparent from the contact angle values, BSA alone caused a 

dramatic increase in hydrophobicity (80°) compared with the virgin membrane contact angle of 22°. 

In contrast, the membrane remained hydrophilic when filtering single-solute solutions of alginate, 

silica, and humic acid, which resulted in contact angles of 28, 31, and 22°, respectively.  
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Figure 4.9: Average contact angle versus the average percent flux recovery following hydraulic 
backwash (BW) at 40 psi. 
Error bars indicate range of values (n=2).  A: Alginate; B: Bovine Serum Albumin; H: Humic acid; S: Silica 

 

 

When combinations of model solutions are assessed, it is evident that all combinations with BSA had 

contact angles similar to BSA alone unless silica was present. In the latter cases, contact angles 

shifted to much lower values but were still higher than for the virgin membrane. Overall, once silica 

was added to any combination that included BSA, the contact angle was significantly decreased (to 

~40°), thus maintaining a more hydrophilic surface.  

 

When BSA was combined with humic acid (BH) and with alginate (AB), contact angles remained 

very hydrophobic, similar to BSA. For AB the contact angle increased from 71° before to 91° after 

backwash. This may be the result of the removal of alginate during the backwash cycle, thus 

indicating that alginate may have constituted the hydraulically reversible portion of the fouling layer. 
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Alternatively, when alginate was combined with humic acid, the contact angle of the fouled 

membrane before backwash was very hydrophobic (78°). This was unexpected because both alginate 

and humic acid alone maintain the hydrophilicity of the fouled membrane surface. Although this 

increase is largely rectified with a backwash (decreased to 32°), this does not translate into a more 

hydraulically reversible fouling layer compared with humic acid alone (only about 5% hydraulically 

reversible for both; Figure 4.9).  

 

The results shown in Figure 4.9 can be roughly divided into three main groupings; a humic grouping 

with low contact angles and high hydraulically irreversible fouling, a BSA grouping with high contact 

angles and high hydraulically irreversible fouling, and a silica grouping with low contact angles and 

low hydraulically irreversible fouling. Additionally, there is a BSA subgroup within the silica 

grouping. Furthermore, alginate is the only single solution to fall within this silica grouping. This 

trend is somewhat similar to Figure 4.4, in which solutions containing silica are positioned closely 

and the remaining solutions are distributed much farther apart. The results clearly illustrate the 

dominating effect that silica has in combination solutions on the contact angle and on the flux 

recoveries.  

 

Figure 4.9 shows that the hydrophobicity of the fouled membrane surface does not give an indication 

of the reversibility of fouling because humic acid and BSA both contributed to hydraulically 

irreversible fouling despite having drastically different contact angles. This trend can be further 

extended to chemically irreversible fouling, which was significant for the most hydrophilic fouled 

surface (AHS). Therefore, although hydrophilic membranes have been linked to lower rates of fouling 

(Aoustin et al. 2001), a fouled hydrophilic surface is not a reliable reflection of the severity of 

fouling. 

 

Since BSA is the only foulant resulting in a highly hydrophobic fouled membrane surface, the contact 

angle of a fouled membrane could provide some indication of the composition of the fouling layer. 

For AB, BH, ABH, and B, the high contact angles of the backwashed membranes suggest a 

significant proportion of BSA in the foulant layer. However, once silica is present, the contact angle 

is lower, suggesting that BSA is a smaller component of the fouling layer or perhaps a patchy foulant 

layer where some of the membrane surface is not fully covered. 
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Overall, the addition of silica had a favorable effect on maintaining a hydrophilic membrane surface; 

as mentioned previously, hydrophilic membrane surfaces have been linked to lower rates of fouling in 

the literature (Aoustin et al. 2001). Possible reasons that silica decreases hydraulically irreversible 

fouling while still maintaining a hydrophilic membrane surface may be the result of a rapid cake layer 

formation (as discussed previously), thus minimizing the ability of BSA and/or humic acid to adsorb 

on the membrane surface or plug the pores, or a preferential adsorption onto silica. Also, 

backwashing rarely had a significant effect on altering the contact angle of the fouled membranes. In 

most cases, however, if the backwash could recover a minimum of 40% of the flux, the contact angle 

would likely be no more than 40°. 
 
 

4.4 Conclusions 

In this investigation, model solutions were used to determine foulants of concern for a bench-scale 

UF ceramic membrane. The solutions of BSA, alginate, humic acid, and silica were used individually 

and in combinations to simulate likely foulants in a drinking water treatment setting. The main 

conclusions follow. 

 

§ Synergistic fouling effects were observed when model foulants were combined. 

§ Colloidal silica was the most influential factor governing fouling behavior. 

– Colloidal silica dramatically increased the overall fouling rate, but it enhanced the 

effectiveness of a hydraulic backwash by making the foulant layer more hydraulically 

reversible. 

– Foulant layers containing colloidal silica remained relatively hydrophilic, even in the 

presence of BSA, which was the only solution that greatly increased the hydrophobicity of 

the membrane 

§ Despite having lower rates of overall fouling, humic acid and BSA contributed the most to 

hydraulically irreversible fouling. Since the molecular weight of both substances is lower than 

the MWCO of the membrane, their removal mechanism is postulated to be largely through 

adsorption. 

§ All single solutions and combinations showed fouling by cake layer filtration—except for humic 

acid alone and humic acid combined with BSA—their fouling mechanism was intermediate and 

complete pore-blocking filtration, respectively. 
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§ A hydrophilic membrane surface after fouling is not necessarily a reflection of the extent or 

reversibility of fouling, because humic acid and BSA-fouled membranes had substantially 

different contact angles, although their fouling behavior was similar. 

§ Hydraulic backwashing had a negligible effect on the contact angle of the fouled membrane. 

§ Alginate did not have a discernable influence on the fouling behavior when combined with the 

other model foulants.  

 

Since hydraulically irreversible fouling is the main concern in full-scale operations, implementing 

pretreatment strategies that target irreversible foulants having characteristics similar to BSA and 

humic acid will enhance operational sustainability and allow for more effective and long-term foulant 

removal. Maintenance cleaning frequency as well as off-line chemical cleaning frequency could 

potentially be reduced, thus reducing chemical cost and loss of production. However, a more 

comprehensive investigation of fouling behavior, including work with real waters, is needed to gain a 

better understanding of the interactions between the different constituents of the feedwater and the 

membrane surface. 
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Chapter 5 
Stage 3: Fouling Behavior of Tubular Ceramic Ultrafiltration 

Membranes Using Model Solutions 

 

A version of this chapter was submitted to Water Research for review in May 2013.  Cited references 

are in the consolidated list of references at the end of the thesis. 

This chapter/article discusses the results of model solution fouling behavior obtained with a tubular 

ceramic ultrafiltration membrane.  

 

 

Summary 
This study investigated the fouling behavior of a tubular ceramic membrane using model solutions 

representative of foulants problematic in drinking water treatment. Organic and inorganic model 

foulants were filtered alone and in mixtures through a tubular ceramic ultrafiltration membrane at 

constant flux including backwashing. The results of the current study were also compared to a 

previous study using the same model foulants and membrane material but with a flat-sheet 

configuration operated at constant pressure and a hydraulic backwash. Overall, the main qualitative 

conclusions drawn from the previous studies held true; both bovine serum albumin and humic acid 

showed high hydraulically irreversible fouling, while silica alone and in mixtures had significantly 

less hydraulically irreversible fouling. Furthermore, the combination of all model foulants, alginate, 

bovine serum albumin, humic acid, and silica had very high overall fouling rates with high 

contributions from hydraulically reversible fouling and fairly low hydraulically irreversible fouling. 

This indicates that flat-sheet studies, which included a backwash, could be used meaningfully to study 

the fouling behavior of a tubular ceramic membrane, which is extremely difficult to perform surface 

characterization analysis on. Fouling mitigation techniques were also investigated to determine their 

applicability as an alternative approach to a full chemical cleaning.  
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5.1 Introduction 

Polymeric membranes have become an accepted technology for drinking water treatment. Ceramic 

membranes, however, have thus far been largely limited to industrial applications that require the 

filtration of more difficult water qualities. In these cases, the physical and chemical robustness of 

ceramic membranes is necessary and worth the higher membrane capital costs. The unique properties 

of ceramic membranes allow for higher pressures (both in filtration and backwashing) and higher 

chemical concentrations to be used, which contribute to their longer lifetimes over polymeric 

membranes (Fakhfakh et al. 2010; Harmann et al. 2010). A recent study (Guerra and Pellegrino 2012) 

has attempted to compare costs of operating ceramic versus polymeric membranes for drinking water 

treatment and has shown that they are now beginning to be considered as a viable alternative to 

polymeric membranes. Therefore, selecting an appropriate membrane will ultimately be case specific 

and dependent on the source water quality and, if applicable, other treatment processes already in 

place. Consequently, a strong understanding of which foulants are of concern and the extent of their 

fouling on a specific membrane is crucial to selecting a case-appropriate membrane. 

 

Model solutions are often used for controlled and simplified fouling studies to gather information on 

fundamental fouling behavior associated with a particular membrane and to identify the foulants of 

concern. While the objective of fundamental fouling studies may not always be intended to predict 

full-scale treatment behavior, there are a few key points that should be considered to maximize the 

potential applicability of fouling study results. For example, many studies focus on only one model 

foulant and do not consider combinations of model solutions. Research findings have shown that 

inorganic colloids influence fouling behavior through natural organic matter (NOM) interaction. 

Studies conducted by Jermann et al. (2008a and 2008b) showed that the presence of inorganic 

particles could play a significant role on the extent and reversibility of fouling. Another common 

limitation in fouling studies is the lack of a backwash component thereby not distinguishing between 

hydraulically reversible and irreversible fouling. While any fouling is undesirable in membrane 

filtration, the extent of hydraulically irreversible fouling is the most crucial. For these reasons it is 

vital that the fouling study design include backwashing as well as combinations of model foulants in 

order to represent full-scale operating conditions as closely as possible.  

 

Some studies with ceramic membranes have investigated total organic carbon (TOC) removal 

(Bottino et al. 2001; de la Rubia et al. 2006; Loi-Brugger et al. 2006).  Konieczny et al. (2006) 
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reported 100% TOC removal of synthetic humic acid using two microfiltration (0.1 and 0.2 µm) 

ceramic membranes (active layer of zirconium dioxide/titanium dioxide). Such unexpectedly high 

removals for a microfiltration membrane clearly indicate the need for further examination into the 

fouling behavior of ceramic membranes.  

 

In many cases when fouling behavior is investigated using model solutions, flat-sheet membranes 

operating at constant pressure are employed, which are conditions that are quite different than full-

scale drinking water treatment practices. Therefore, it is important to establish the extent to which 

flat-sheet study results can be used to predict fouling behavior under conditions more similar to full-

scale operation.  

 

The objective of this study was to determine the fouling behavior of a tubular ceramic membrane with 

organic and inorganic model foulants previously identified as problematic in drinking water 

membrane filtration; they were studied alone and in mixtures at constant flux. Additionally, the 

results of this study were compared to a previous study using flat-sheet ceramic membranes of the 

same material and constant pressure filtration. Furthermore, fouling control measures such as a single 

backwash, multiple backwashes and a chemical maintenance cleaning were investigated.  

 

 

5.2 Materials and methods 

5.2.1 Ceramic membrane properties and operation 

The membrane used was a tubular ceramic membrane (TAMI Industries, France) consisting of 3 

channels with a length of 25 cm, a molecular weight cut-off (MWCO) of 300 kDa and a surface area 

of 0.0094 m2. The support layer is pure titanium dioxide while the active layer is composed of a 

mixture of titanium dioxide and zirconium dioxide. The maximum operating pressure is 10 bar (145 

psi). Surface properties of the same membrane but a flat-sheet configuration were assessed in a 

previous study (Munla et al. 2012) and determined a virgin contact angle of 22° ± 0.5 and an average 

roughness of 50 nm ± 8. The same tubular membrane module was used for all experiments with a 

chemical cleaning performed between each experiment followed by a clean water permeability 
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(CWP) test to confirm the complete effectiveness of the cleaning procedure. The schematic of the 

membrane setup is shown in Figure 5.1.  

 

 

 

Figure 5.1: Schematic of tubular ceramic membrane setup at constant flux 

 

 

This setup was optimized using natural water experiments and this set of experiments was performed 

after the experiments in Chapter 6. 

 

The membrane was operated at a constant flux of 120 LMH for 2 hours consisting of four 30-minute 

filtration cycles in a dead end mode. The permeate was collected during each cycle and used for 

dissolved organic carbon (DOC) analysis. Each filtration cycle was followed by a backwash 

procedure, which consisted of a hydraulic pulse at 70 psi with ultrapure water for 15 seconds 

followed by an air flush at 30 psi for 5 seconds. After the fourth cycle of filtration was complete, a 

series of 6 backwash cycles (6-BW sequence) was performed, followed by a CWP test. Then a 
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maintenance clean using 1500 mg/L of NaOCl (half the concentration typically used during a regular 

full chemical cleaning) for 15 minutes was performed, which was also followed by a CWP test. These 

fouling mitigation techniques were not investigated in earlier studies using flat-sheet membranes 

(Chapter 4).  

 

The chemical cleaning procedure was similar to that employed for ceramic membranes manufactured 

by Metawater (previously NGK). The cleaning method consisted of sodium hypochlorite (3000 

mg/L), followed by NaOH (0.1M), and ending with citric acid (1%), each with a soak time of 5 hours. 

The membrane module was rinsed between each cleaning step with ultrapure water. The cleaning 

method suggested by the manufacturer, TAMI, was not used due to its drastic nature (high 

concentrations of basic and acidic chemicals at high temperatures), which is not practical or necessary 

in a drinking water treatment facility. 

 

5.2.2 Water quality analysis techniques 

Liquid Chromatography Organic Carbon Detection (LC-OCD) was used to qualitatively assess the 

composition of the permeates and backwash water when the model solutions were combined in order 

to differentiate between the various organic fractions. The LC-OCD instrument (DOC-Labor Dr. 

Huber, Karlsruhe, Germany) uses a size exclusion column (Toyopearl TSK HW-50S) with a 

fractionation range of 100-200,000 Da (Meylan et al. 2007). A phosphate buffer (0.02 M, pH 6.5) is 

used as the mobile phase. The sample is filtered through a 0.45 µm filter to remove particulates. The 

remaining DOC is then separated into five groups by chromatography according to their molecular 

size and subsequently detected by DOC and UV254 measurements: biopolymers (includes 

polysaccharides, polypeptides, proteins, organic colloids, and amino sugars), humic substances 

(humic and fulvic acids), building blocks (hydrolysates of humics), low molecular weight acids and 

neutrals (e.g. alcohols, aldehydes, ketones, and amino acids) (Cornelissen et al. 2008; Laabs et al. 

2006). Since smaller molecular size substances have more access to the internal pore volume of the 

column, the larger molecules will elute first followed by the smaller compounds (Batsch et al. 2005). 

An inherent advantage with LC-OCD analysis is that it is not time consuming and does not require 

extensive sample preparation that could potentially alter the NOM characteristics.  
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The total and dissolved organic matter (TOC and DOC, respectively) were measured using the OI-

Analytical TOC analyzer (Model 1010, College Station, TX). The analysis follows the wet-oxidation 

method outlined in Standard methods (2005).  DOC samples were filtered through a 0.45 µm 

polyethersulfone filter prior to analysis.  

 

 

5.2.3 Model foulant properties 

 The model substances investigated were a protein (bovine serum albumin [B], 5 mg/L), a 

polysaccharide (sodium alginate [A], 5 mg/L), a NOM fraction (Aldrich humic acid [H], 5 mg/L), and 

an inorganic colloid (silica [S], 200 mg/L). All model substance properties were obtained from Sigma 

Aldrich and are summarized in Table 5.1. The pH of all solutions was between 6-7. 

 

 

Table 5.1: Model foulant properties 

Model Substance Foulant Type Average Molecular 
Weight (kDa) 

Carbon Content 
(%) 

Bovine Serum Albumin (B) Protein 67 a 0.46 a 
0.47 b 

Humic Acid (H) NOM fraction 70 a 0.31 a 
0.4 b 

Sodium Alginate (A) Polysaccharide 30 – 100 0.29 b 

Silica (S) Inorganic ~ 9 nm average 
hydrodynamic size c NA 

NA—not applicable 
a Xiao et al. (2009) 
b Measured 
c From manufacturer Sigma Aldrich  
 

 

5.2.4 Mass balance 

A mass balance was performed for the different organic single model foulant solutions. A diagram of 

where the samples were taken is shown in Figure 5.2. Samples were taken from the feed, the 

permeate, the feed channel, and the backwash water once every cycle during the first 4 cycles of 

filtration. Samples were weighed to determine total volume and then analyzed with the LC-OCD to 
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calculate the mass.  The feed channel water (i.e. retentate) was taken separately in order to determine 

the mass that was rejected but did not contribute to reversible or irreversible fouling.  Mass balances 

were only performed on single solutions because the different organic foulants cannot be 

differentiated with TOC or LC-OCD (the peaks are not completely separated) analysis.  

 

The mass balance was established as follows: 

 

mfeed (1) = mperm (2) + madsorb, REV (3) + madsorb, IRR (4) + mretentate (5)   Equation 5.1 

 

where, the mretentate is the mass which is rejected and not reversibly or irreversibly adsorbed to the 

membrane and hence is not considered as contributing to fouling. All concentrations except for 

madsorb,IRREV were independently measured and subsequently converted to mass. 

The mass that is irreversibly fouled is calculated using: 

 madsorb, IRR =  mfeed - mperm - madsorb, REV - mretentate Equation 5.2

                  

The feed mass reflects 100% of the mass entering the system and was used as the basis to calculate 

the percentages of the other fractions accordingly. For example: 

 

                                              𝑚𝑎𝑠𝑠!"#"$#%#" =   
!"##!"#"$#%#"
!"##!""#

  𝑥  100     Equation 5.3 
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Figure 5.2: Diagram depicting the sample locations taken for the mass balance 

     

 

5.3 Results 

5.3.1 Fouling rates  

Four different model compounds were chosen to represent problematic foulants identified for 

polymeric membranes in drinking water.  The most common model substance used is humic acid, 

generally Aldrich, which is not ideal since it is soil-based but it is cheaper than Suwannee River 

humic acid, which is aquatic-based and more representative of humics that are likely present in 

surface waters. Alginate is also popularly used to represent a polysaccharide, especially to model 

extra polymeric substances (EPS), which is more typically an issue for wastewater treatment. Bovine 

serum albumin is also commonly used and cheap, and thus often used to represent proteins in water. 

These model foulants are discussed in more detail in Section 4.2.2. 
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The results obtained from the previous flat-sheet study using the same model solutions (Chapter 4) 

were compared to this study. Since both flat-sheet and tubular membranes were made from the same 

material with the same molecular weight cut-off and from the same manufacturer, it is likely that any 

variation in the type of fouling observed is primarily due to differences in the hydrodynamic 

conditions arising from a different membrane configuration and operating mode.   

 

Single solutions of each foulant, the combination of all the organic model foulants, and the 

combination of all the model foulants including the inorganic colloidal silica were investigated at 

constant flux.  Unlike the flat-sheet study, not all possible model foulant combinations were 

investigated with the tubular configuration due to time constraints. Initially, the single solutions were 

operated at a constant flux of 64 LMH, however, minimal fouling was observed for all solutions 

except for bovine serum albumin (Appendix C Figure 1). Therefore, the solutions were subsequently 

filtered but at a higher flux of 120 LMH in order to create sufficient fouling that could allow for 

proper fouling behavior analysis. Additionally, the resulting transmembrane pressures of 10 to 70 psi 

observed at a flux of 120 LMH for the tubular membrane were in a similar range of the pressures 

applied in the flat-sheet study (20 to 40 psi). 

 

Throughout the filtration cycle both hydraulically reversible and irreversible fouling occurs. Once a 

backwash is performed, the portion of fouling that is irreversible can be determined by the starting 

TMP of the next cycle (Figure 5.3). The following discussion examines the fouling trends for the 

hydraulically reversible (backwashable) and hydraulically irreversible (non- backwashable) foulants 

encountered with the different model solutions.  
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Figure 5.3: An illustration of how reversible and irreversible fouling is calculated.  

 

 

5.3.1.1 Hydraulically irreversible fouling rates 

The TMP increase in Figure 5.4, shows that bovine serum albumin resulted in a high rate of fouling 

over the four cycles investigated, most of which was hydraulically irreversible. The rate of 

hydraulically irreversible fouling increased with each cycle (from 8 then to 14 and then to 16 

psi/cycle), while the rate of hydraulically reversible fouling ranged from 0 to 6 psi/cycle (Figure 5.5). 

In this case, the rate of hydraulically reversible fouling increased when the rate of hydraulically 

irreversible fouling increased. However, this was not the case for humic acid, which was the only 

other solution that exhibited increasing rates of hydraulically irreversible fouling albeit at a much 

slower rate than bovine serum albumin (from 0.2 to 0.6 to 1.4 psi/cycle). For the other single 

solutions, alginate and silica, the rate of hydraulically irreversible fouling was very low with values at 

or below 1 psi/cycle.  
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These results are similar to the flat-sheet study, where humic acid and bovine serum albumin 

contributed mostly to hydraulically irreversible fouling, while silica and alginate contributed mostly 

to hydraulically reversible fouling. 

For the mixtures, the rates of hydraulically irreversible fouling were less than 1 psi/cycle with ABH, 

which had only a slightly higher fouling rate than ABHS. These results clearly point to a synergistic 

effect in that the irreversible fouling rates were not additive. On the contrary in the presence of other 

constituents bovine serum albumin’s contribution to irreversible fouling seemed to be largely 

mitigated.   

 

 

Figure 5.4: TMP profiles for the model solutions run through a tubular ceramic membrane at a 
constant flux of 120 LMH.  
A backwash was performed every 30 minutes and is indicated by a dashed line. ABH: Alginate, Bovine Serum 
Albumin, and Humic Acid mixture; ABHS: Alginate, Bovine Serum Albumin, and Humic Acid and Silica 
mixture.  
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Figure 5.5: The rate of hydraulically reversible and irreversible fouling for each model solution 
over three cycles. 
BSA: Bovine Serum Albumin; ABH: Alginate, Bovine Serum Albumin, and Humic Acid mixture; ABHS: 
Alginate, Bovine Serum Albumin, and Humic Acid and Silica mixture. 
 

 

5.3.1.2 Hydraulically reversible fouling rates 

For most solutions the majority of fouling occurring throughout each cycle was hydraulically 

reversible (Figure 5.5). During the first cycle, colloidal silica had the highest rate of hydraulically 

reversible fouling of all the single model foulant solutions. Nevertheless, the rate of hydraulically 

reversible fouling for silica only slightly increased (14 to 17 psi/cycle), indicating that once an initial 

foulant layer had formed subsequent fouling was reversible. The colloidal silica results observed in 

the current study differ from Jermann et al. (2008a and 2008b) who reported that kaolinite had a very 

low flux decline with a polyethersulfone 100 kDa flat-sheet membrane (hydrophobic). Since the 

MWCO of the membranes are on the same order of magnitude as in these experiments, possible 

explanations for this variation in results could be either due to the difference in membrane material 
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(i.e. more hydrophobic polymeric membrane vs. hydrophilic ceramic membrane), the size of the 

kaolinite (450 nm) compared to the size of silica (9 nm) used in the current study, or the difference in 

chemical composition of the kaolinite which is also partially an aluminum oxide. The size of the silica 

colloid chosen in this study was intended to induce fouling since this size range (3-20 nm) has been 

identified by Howe and Clark (2002) as a major foulant for natural colloids. It is similar in size to the 

pore size of the studied membrane, and this similarity in pore size has been identified as a 

contributing factor for polymeric membrane fouling. 

 

Alginate displayed similar behavior to silica (Figure 5.4 and Figure 5.5) but with slightly lower rates 

of hydraulically reversible (9 to 12.5 psi/cycle) and slightly higher rates of hydraulically irreversible 

fouling, which ultimately resulted in an almost identical overall fouling trend compared to silica by 

the fourth cycle (Figure 5.4). It is likely that the overall fouling rate of alginate would eventually 

exceed that of silica. Similar behavior was observed with the flat-sheet membranes in which alginate 

fouling was initially slower than some of the other model foulants but continued at a slow and steady 

rate even after the membrane had reached a pseudo steady state of fouling for the other foulants 

(Munla et al. 2012). 

 

The overall rate of humic acid fouling was very low in comparison to the other solutions (Figure 5.4). 

The rate of hydraulically reversible fouling remained at less than 1 psi/cycle but hydraulically 

irreversible fouling increased steadily at a low rate. Considering that the TMP only slightly increased 

to just above 10 psi even at the higher flux of 120 LMH, this behavior is quite similar to the humic 

acid behavior observed for the flat-sheet membranes at a constant pressure filtration at 20 psi (Figure 

4.2 part a). With the tubular membranes, the humic acid flux decline curve had an almost linear 

shallow slope as opposed to the typical curved shape observed for the other model solutions (Figure 

5.4). With the flat-sheet membrane study, humic acid fouling resembled the other model foulants at 

higher pressures (Figure 4.2 part c). Therefore, the fouling rate (i.e. change in TMP) would be 

expected to increase at higher fluxes for the tubular ceramic membrane.  Furthermore, it may be 

concluded that the probable fouling mechanism of humic acid for this tubular ceramic membrane is 

likely the same as for the flat-sheet membranes, which was postulated to be largely through 

adsorption (Munla et al. 2012). These results are analogous to those by Jermann et al. (2007) and 
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Katsoufidou et al. (2008, 2010) in which humic acid had a gradual flux decline for polymeric 

membranes with a comparable MWCO and at pressures similar to this ceramic membrane study. Both 

investigators also similarly observed higher fouling rates with alginate than humic acid.  

 

The model solution combinations investigated were mixtures of all organic model foulants (ABH) 

and the mixture of all the model foulants, both organic and inorganic (ABHS). The initial rate of 

hydraulically reversible fouling observed with ABH (16 psi/cycle) was higher than for any of the 

individual solutions (13.5 psi/cycle), but similar to alginate, the rate of ABH reversible and 

irreversible fouling increased with each cycle (up to 24 psi/cycle) (Figure 5.5). It can therefore be 

expected that over time, ABH fouling would continue to increase with each subsequent cycle. The 

rate of fouling increased dramatically once silica was included in the mixture (ABHS in Figure 5.4 

and Figure 5.5); however, this was largely hydraulically reversible fouling with only minimal 

contribution from hydraulically irreversible fouling. Although there was a small increase in the rate of 

hydraulically reversible fouling between cycle 1 and 2 (from 53 to 63 psi/cycle), there was no 

increase in the rate of reversible fouling in subsequent cycles. These results are similar to the behavior 

of silica alone where the majority of the irreversible fouling has occurred in the first cycle. Thus, 

silica seems to influence the fouling behavior by increasing the reversible fouling rates but decreasing 

the irreversible fouling rates. Therefore, it is anticipated that despite the high rate of fouling observed 

in each cycle, that ABHS filtration is more sustainable at a constant flux of 120 LMH, unlike bovine 

serum albumin, alginate or the ABH combination.  

 

Fouling was not additive in the case of these tubular membrane experiments since bovine serum 

albumin fouling alone reaches a similar TMP compared to the ABHS combination. However, the 

irreversible fouling was quite different for these two solutions (i.e. B alone and ABHS combination), 

which suggests that bovine serum albumin interacts with silica. Therefore, these results as well as 

those from the previous flat-sheet study (Munla et al. 2012) further highlight the need for more 

focused research on the foulant-foulant interactions as opposed to individual foulant-membrane 

interactions. Other studies have also observed interesting results that begin to highlight the 

importance of foulant-foulant interactions (Jermann et al. 2007, 2008a, 2008b; Katsoufidou et al. 

2005, 2007, 2008, 2010). Such research is especially important since the properties of the membrane 
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surface will change at the onset of fouling and most likely will never fully return to its original 

surface characteristics.  

 

Table 5.2 qualitatively summarizes the rate of fouling and hydraulic reversibility for the solutions in 

both the tubular and flat-sheet studies. With a few exceptions, the results are quite similar. The two 

main unexpected results observed in the tubular, constant flux experiments are the rapid rate of 

fouling with bovine serum albumin and the high hydraulic reversibility of ABH. Considering this 

outcome, it can be concluded that the flat-sheet experiments operated at constant pressure including a 

backwash, provided good qualitative data regarding fouling behavior that can be extrapolated to 

tubular membranes operating at constant flux with respect to the rate of fouling and hydraulic 

reversibility. These results are promising, however, further work using different membrane materials 

would need to be performed to verify this conclusion.  

 

Comparing results obtained with the tubular membrane and the previous flat-sheet study (Munla et al. 

2012) the following key observations can be made: 

- Colloidal silica fouling behavior was similar for both membrane configurations. 

- Humic acid caused the lowest overall rate of fouling for both membrane configurations, 

particularly at lower pressures. 

- Bovine serum albumin and alginate had similar overall fouling rates in the flat-sheet 

membranes study, and also in the first cycle of the tubular membrane study. Since a 

backwash was performed for the flat-sheet membranes, it was evident (and confirmed by the 

tubular membranes) that fouling with bovine serum albumin was largely hydraulically 

irreversible, whereas alginate fouling was mostly hydraulically reversible. Based on the flat-

sheet results, very different fouling trends were expected for these two foulants, which was 

then confirmed by the tubular membrane results.  

- The inclusion of a backwash procedure in the previous flat-sheet study was crucial in 

minimizing the limitation of that study, and thus was still able to give important information 

and highlight bovine serum albumin as a problematic foulant, which was confirmed by this 

study using a tubular membrane. 
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- ABH is also similar in fouling rate for both the flat-sheet (at 40 psi) and tubular 

configuration.  

- ABHS had the highest fouling rate in both configurations, which could indicate that foulant-

foulant interactions may be less affected by the different membrane configurations and 

operating procedures than expected. Furthermore, it may indicate that these foulant-foulant 

interactions are one of the most important and critical factors governing fouling behavior. 

Overall, the results are promising because they show consistency between the two different 

configurations (i.e. tubular vs. flat-sheet) and different operating conditions (i.e. constant flux vs. 

constant pressure). Qualitatively, the results observed in the previous flat-sheet study with the same 

model foulants can be extrapolated; for example, the effect of silica on the rate of fouling and 

reversibility of fouling is confirmed in this tubular study. Therefore, simplified fouling studies can be 

useful in establishing fundamental fouling knowledge for a particular membrane if a hydraulic 

backwash is included in the study. Nevertheless, experimental conditions that most closely resemble 

full-scale operation are always preferred. 

 

Table 5.2: A summary of the qualitative extent of the fouling rate and hydraulic reversibility 
with model solutions for both flat-sheet and tubular membranes 

 Rate of Fouling Hydraulic Reversibility 
A B H S ABH ABHS A B H S ABH ABHS 

Tubular M M-H 
to H L M-H M-H H M L L H H H 

Flat M L L M-H M-H H M L L H M H 
H: high; M: medium; L: low; A: Alginate; B: Bovine Serum Albumin; H: Humic acid; S: Silica 
Red indicates where the results between flat-sheet and tubular qualitatively deviated from each other 
 

Criteria for grouping into H, M, L 
 Tubular Flat-Sheet 

L M M-H H L M M-H H 
Rate of Fouling 

(psi/cycle or final 
relative flux) 

0-5 5-15 15-25 >25 0.1< 0.06-0.1 0.04-0.06 <0.04 

Hydraulic 
Reversibility 
(%CWP)* 

<50 50-75 75-90 >90 0-10 11-30 30-50 >50 

* Discussed in Section 5.3.2.1 
CWP: Clean Water Permeability 
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5.3.2 Fouling control  

5.3.2.1 Hydraulic backwash  

A hydraulic backwash is essential for sustainable membrane operation at any full-scale treatment 

plant and is thus an important parameter to incorporate into any fouling study that evaluates potential 

fouling behavior. In the current study, a hydraulic backwash was performed after each 30 minute 

filtration cycle for a total of four cycles. The results obtained with a hydraulic backwash are 

consistent with the results of the fouling rate analysis (Section 5.3.1). 

 

Figure 5.6 shows the percent recovery of the clean water permeability after each backwash and the 

extent of fouling by the end of each cycle. Therefore, the greater the distance between the point (at 

the end of each cycle) and the clean water permeability recovered with backwash, the greater the net 

recovery with a hydraulic backwash i.e. the greater the hydraulic reversibility of the fouling layer. 

Additionally, the decrease in permeability at the end of each cycle, from cycle to cycle, is an 

indication of the hydraulically irreversible fouling accumulating with each cycle. 

 

A decrease in the clean water permeability recovered with each consecutive cycle was observed in 

Figure 5.6 with all solutions except when colloidal silica was present (i.e. silica alone and ABHS). 

Considering that for these two solutions the majority of the hydraulically irreversible fouling occurred 

in the first filtration cycle, it would be expected that this stable rate of hydraulically reversible fouling 

would continue even after several more cycles (Figure 5.5). As a result, longer experiment duration 

times would not be as imperative for predicting long-term fouling behavior for these solutions. 

Therefore, although colloidal silica and ABHS exhibited high degrees of fouling at the end of each 

cycle it was also largely hydraulically reversible. Jermann et al. (2008b) also observed that kaolinite 

was completely reversible, however, the size of their kaolinite (450 nm) was much larger than the 

membrane pore size expected for the membrane they used (100 kDa) and much larger than the silica 

average hydrodynamic size of 9 nm used in the present study. Jermann et al. (2008a) observed that 

kaolinite could not prevent irreversible fouling by humic acid or alginate. This differed from the 

results in the current study in which the presence of colloidal silica minimized hydraulically 

irreversible fouling. The variation between these two results may be due to different inorganic particle 

sizes or setup differences.  
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Figure 5.6: Percent of initlal clean water permeability recovered after hydraulic backwashing 
The points indicate % of clean water permeability at the end of each fouling cycle and thereby the extent of 
fouling before backwash. The distance between the point and the top of the bar is an indication of the net clean 
water permeability recovered by a backwash (BW).  A: Alginate; B: Bovine Serum Albumin; H: Humic acid; S: 
Silica; ABH: Alginate, Bovine Serum Albumin, and Humic Acid mixture; ABHS: Alginate, Bovine Serum 
Albumin, and Humic Acid and Silica mixture.  

 

 

Alginate fouling was similar to colloidal silica and also largely reversible. However, alginate showed 

a downward trend in terms of the percent of the clean water permeability (%CWP) recovered by 

backwash similarly to the ABH combination, which decreased steadily with each consecutive cycle 

except for cycle 4 (Figure 5.6). Therefore, this may suggest that the hydraulically irreversible fouling 

rate is increasing for alginate and ABH and may even reach a steady state; however, additional 

filtration cycles would need to be performed to confirm this. Little to no %CWP was recovered with a 

backwash after humic acid and bovine serum albumin fouling (Figure 5.6). The same behavior was 

observed with the flat-sheet/constant pressure study, in which it was postulated that the majority of 

fouling with these model foulants was through adsorption. The results of the current study are 

0% 

10% 

20% 

30% 

40% 

50% 

60% 

70% 

80% 

90% 

100% 

A B H S ABH ABHS 

C
le

an
 W

at
er

 P
er

m
ea

b
ili

ty
  

BW1 BW2 BW3 6-BW sequence Cycle 1 End Cycle 2 End Cycle 3 End Cycle 4 End 



 

  94 

consistent with this hypothesis. Humic acid and bovine serum albumin had a high rate of continuing 

decline in the %CWP at the end of each cycle, which reflects a high and continuous rate of 

hydraulically irreversible fouling that is often associated with adsorption. The combination solutions 

highlight the significant influence that inorganic colloidal silica plays in the behavior of organic 

matter fouling. ABH showed a decreasing %CWP with each cycle (except for cycle 4) indicating 

slight irreversible fouling between each cycle. As mentioned earlier this could be an ongoing 

phenomenon, eventually resulting in severe fouling and increasing fouling rates (Figure 5.6). ABHS 

had the lowest %CWP at the end of each cycle; however, the majority of the CWP was recovered 

after each backwash at consistently high levels indicating that the fouling was almost entirely 

reversible.   

 

The results for hydraulically reversible fouling for the single model solutions observed for the current 

study using tubular membranes are quite similar to the previous flat-sheet study (Chapter 4). The two 

variations observed were that although the irreversible nature of bovine serum albumin was expected, 

the high fouling rate was not, and the hydraulic reversibility of ABH was higher than expected. 

However, considering the differences in operation (i.e. configuration, etc.), the results from the flat-

sheet study are qualitatively representative, which is very encouraging considering that surface 

characterization techniques on tubular ceramic membranes are extremely difficult to study and would 

require sacrificing the membrane.  Therefore, if a backwash component is incorporated into the 

experimental design, the fouling behavior of ceramic membranes can be studied using flat-sheet 

membranes of the same composition, MWCO, and manufacturer. The comparability is very likely to 

diminish once the composition and characteristics of the flat-sheet membrane surface differ from 

those of the tubular membrane. 

 

 

5.3.2.2 Alternative fouling mitigation techniques: Several backpulses and 
maintenance cleaning 

When a hydraulic backwash is insufficient or ineffective at removing fouling and recovering 

membrane performance (i.e. clean water permeability), a chemical cleaning procedure is often the 

next option. Another option that has not been explored to the author’s knowledge is running several 

hydraulic backwashes consecutively. The rationale for using this approach as opposed to a longer 
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backwash is that for ceramic membranes, due to their high stability, a high-pressure pulse backwash 

can be used, which can be advantageous in dislodging caked foulants on the membrane surface. This 

type of backwash is not used for polymeric membranes, which generally use a slower build up of 

backwash pressure with a pump. The benefit in using such a unique approach would be a quicker, 

chemical-free fouling removal option, particularly as the industry is moving towards more sustainable 

operations and minimizing chemical use. In the current study a series of 6 consecutive backwashes 

(6-BW sequence) was performed after the fourth cycle, followed by a clean water permeability test 

with ultrapure water to establish if there is a potential advantage in such an approach. In addition, a 

maintenance clean (a short 15 minute chemical soak with sodium hypochlorite) was done to 

determine if it could remove any further fouling that was not reversed with the additional 

backwashes. Another clean water permeability test was performed after this maintenance clean.  

 

Table 5.3 shows the percent of the clean water permeability recovered with each fouling mitigation 

tool. In most cases, except for alginate and bovine serum albumin, the 6-BW sequence seemed to 

provide at least some additional clean water permeability recovered compared to only one backwash. 

However, this particular approach was not optimized and it is possible that fewer backwashes would 

have provided the same benefit. If the advantage is from the high pressure pulsing it may be more 

economical and effective if several short pulses are performed as opposed to several full cycle 

backwashes. It is noteworthy that the additional backwashes showed a considerable added benefit 

(16% as opposed to almost zero for a single backwash) for humic acid. This result is encouraging and 

suggests that there may be some potential in creative backwash procedures. Further investigations 

into optimizing this technique are needed and the potential benefits demonstrated in this study 

indicate that such studies could be worthwhile.   

 

Table 5.3: %Net clean water permeability recovered* with hydraulic backwash 

 Alginate B Humic Silica ABH ABHS 
BW Cycle 1 52 -5 0 59 54 74 
BW Cycle 2 55 2 2 73 46 77 
BW Cycle 3 49 2 0 65 45 73 

6-BW sequence 48 5 16 76 60 82 
MC 15 73 34 1 3 3 

B: Bovine Serum Albumin; BW: Backwash; MC: Maintenance clean; 
*The net clean water permeability recovered is calculated by taking the CWP after a backwash and subtracting 
the CWP from the end of the last cycle 
 



 

  96 

The maintenance clean performed after the 6-BW sequence was most effective in recovering 

additional clean water permeability for humic acid and bovine serum albumin (Table 5.3). Alginate 

showed approximately 15% improvement to the clean water permeability after a maintenance clean.  

For inorganic colloidal silica and the combinations of ABH and ABHS, the maintenance clean did not 

add any significant further fouling removal, probably because most of the fouling was already 

recovered with the previous backwashes. These results suggest that even waters with a high fouling 

potential can be treated without a pretreatment step if a frequent chemical maintenance clean is 

performed. Considering the costs associated with a common pretreatment step such as coagulation 

due to infrastructure, chemical and residual treatment costs, this could translate into significant 

savings. Although frequent maintenance cleans are practiced with polymeric membranes, over time 

the chemical exposure can affect the physical/chemical characteristics of the membrane and 

ultimately, performance and lifetime (Abdullah and Bérubé 2012). However, ceramic membranes 

have an extremely high chemical stability and could withstand the chemical exposure without the 

negative side effects.  

 

Although the focus of this discussion is on removing fouling that has already occurred, the results of 

this study have implications for applying pretreatment methods to prevent hydraulically irreversible 

fouling. The benefit of the presence of inorganic silica colloids could potentially play an important 

role in providing a novel pretreatment process for such membranes through the addition of particles. 

If on the contrary, pretreatment focuses on removing particles, this may cause the membrane to be 

more vulnerable to hydraulically irreversible fouling, and therefore could hinder membrane 

performance as opposed to improving it. A cake layer composed of particles seems to be particularly 

responsive to the pulse action of the backwash, which would thus allow a series of backwashes to be a 

potentially effective fouling mitigation tool. 

 

 

5.3.3 Rejection  

The rejection results discussed are from data collected during the initial lower flux experiments (at 60 

LMH), since the analytical instrument was unavailable during the high flux experiments. The TOC 

values for the feed solutions of humic acid (70 kDa), bovine serum albumin (67 kDa), and alginate (3-

100 kDa) are 1.7, 2.3, and 1.4 mg C/L respectively. The permeate samples were collected throughout 
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each cycle and then analyzed. Table 5.4 shows the rejection of each organic model foulant in single 

solution for all four permeate cycles as well as the combinations.  

 

 

Table 5.4: Rejection of each model foulant when filtered individually for each permeate cycle 

Cycle Alginate B Humic Acid ABH ABHS 
1 ≥ 86% ≥ 91% ≥ 88% 52% 55% 
2 ≥ 86% ≥ 91% ≥ 88% 58% 55% 
3 ≥ 86% ≥ 91% 83% 64% 59% 
4 ≥ 86% 87% 85% 73% 62% 

B: Bovine Serum Albumin 
≥ is indicated for concentrations below the limit of quantification = 0.2 mg C/L 
The single solutions were analyzed using the TOC instrument and the combinations were analyzed using LC-
OCD 
 

 

The rejection for all single model foulants was quite high and greater than 80% in all cases even 

though the size of the foulants is smaller than the membrane MWCO. However, despite the similar 

removals for all three model foulants with the tubular membranes, it is unlikely that the removal 

mechanism is the same since both humic acid and bovine serum albumin resulted in high levels of 

hydraulically irreversible fouling.  Alginate rejection seems to remain relatively constant throughout 

all cycles. However, for humic acid and bovine serum albumin, by the fourth cycle rejection begins to 

decrease and this trend would be expected to continue considering the suspected fouling mechanism 

is adsorption, which can only occur temporarily at the beginning stages of filtration until adsorption 

sites are exhausted. Additional filtration cycles would be required to confirm this hypothesis. 

Konieczny et al. (2006) reported similarly high TOC removals of 100% of humic acid with 

microfiltration (MF). Considering that MF membranes are not expected to remove organics, 

adsorption is the most plausible removal mechanism. 

 

The rejection results are somewhat higher compared to the flat-sheet study where the average TOC 

rejection was approximately 80% for bovine serum albumin, 75% for alginate and 50% for humic 

acid (Munla et al. 2011). If the mass filtered per membrane surface area is compared, the tubular 

membrane received approximately 600 mg/m2 whereas the flat-sheet membrane was exposed to more 

than double that amount with approximately 1,300 mg/m2. Therefore, it is possible that during the 
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flat-sheet experiments the membrane’s adsorption capacity was reached or exceeded, thus resulting in 

lower TOC rejection of humic acid and bovine serum albumin.  

 

Silica is not included in Table 5.4 because inorganic concentrations cannot be measured by TOC 

analysis. However, a few preliminary supporting measurements of silica concentration were obtained 

through a commercial lab. The observed rejection ranged from 70-80% and silica concentration was 

increased in the backwash water. Considering that the size of the silica is averaged at 9 nm and a 

previous study by Calvo et al. (2008) measured a membrane pore size of 16.4 nm ±1 with scanning 

electron microscopy and 13.6 nm ± 0.7 with liquid-liquid displacement porosimetry for this 

membrane, a high silica rejection is unexpected. Possible explanations include aggregation of 

particles, thus increasing particle size, or if both the membrane and colloid are negatively charged 

there may also be an electrostatic repulsion effect at play. Some rejection may also occur as a result of 

the pore size distribution of the membrane as well as the colloidal particles, in which case some 

particles may be rejected through size exclusion. This particle size was specifically chosen to induce 

fouling because it is close to the pore size of the membrane, which has been associated with higher 

rates of fouling. However, in this study silica mainly contributed to hydraulically reversible fouling.  

 

From Table 5.4 it can be seen that the overall rejection of DOC increased for both ABHS and ABH, 

more so for the latter. Rejection for both combinations was approximately 60%, which is within the 

range of the results observed for the flat-sheet study (ABH ~ 50% and ABHS ~60-80%). However, it 

was much lower than the rejections observed for the individual solutions. LC-OCD analysis was used 

for the combination solutions ABH and ABHS at 120 LMH to qualitatively assess which of the 

foulants were being rejected. This result is relatively similar to Munla et al. (2011), in which a trend 

of lower rejections was observed for combinations of model foulants. One hypothesis is that in the 

presence of silica, the foulant layer is looser thus allowing more foulants to pass through the 

membrane; this is supported by the results in Munla et al. (2011) where the rejection of solutions with 

silica were generally lower. For ABH however, the rejection may be lower due to less pore 

constriction and more of a cake layer formation, which may prevent humic adsorption within the 

pores. This cake layer may also explain the high hydraulic reversibility of this combination solution 

(Figure 5.6). 
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The LC-OCD chromatograms for ABH and ABHS are shown in Figure 5.7. The different organic 

matter fractions are not baseline separated, however, they do have discernable peaks, particularly for 

the feed solutions. The LC-OCD chromatograms also confirm the use of BSA and alginate to 

represent biopolymers in natural water sources as they elute in the same time window biopolymers 

present in natural water elute. 

 

For ABH, (Figure 5.7 part a) it can be seen that the biopolymer (in this case comprised of alginate and 

bovine serum albumin) concentrations in the permeate seem to decrease with each cycle but on 

average humic acid removal remained stable. Therefore, since humic acid rejection remained fairly 

consistent between cycles, while alginate and bovine serum albumin seem to show increased rejection 

with time, it is possible that theses two foulants are involved in the fouling layer build-up, which 

subsequently increased overall rejection from 52% to 73%. 

 

For ABHS (Figure 5.7 part b) humic acid concentration was the lowest in the cycle 1 permeate. 

Therefore, rejection for humic acid was higher during the first cycle and then continued to decrease 

(peak in permeate increases), indicating likely initial adsorption. This trend is consistent with results 

of single humic acid filtration as shown in Table 5.4. Rejection of biopolymers (i.e. alginate and 

bovine serum albumin) remained quite constant throughout the cycles with only cycle 1 having a 

slightly higher concentration (i.e. lower rejection). Both simultaneously occurring opposite trends in 

concentration of these fractions resulted in a relatively constant DOC rejection over all four cycles 

(Table 5.4). The lower rejection for mixtures with silica was also observed for the flat-sheet study 

(Munla et al. 2011). One hypothesis is that silica interferes with humic acid adsorption either through 

interactions with the other model foulants or with the membrane surface itself.  
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Figure 5.7: LC-OCD chromatograms for the feed and permeates (P) for each of the four cycles 

a) ABH and b) ABHS filtration. 

(a) 

(b) 
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5.3.4 Mass balance results 

The results of the mass balance are shown in Figure 5.8 to Figure 5.10 for each individual organic 

foulant over four cycles. Since mass balances are inherently challenging, the focus of this discussion 

is on general trends observed. Generally, mass balance results are consistent with the other results 

reported herein. 

 

Figure 5.8 shows that BSA fouling was mostly irreversible fouling and had the highest irreversible 

fouling of all the organic model foulants. This is confirmed by the high rate of irreversible fouling 

(Figure 5.5), the backwash efficiency results (Figure 5.6), and the high rejection (Table 5.4). From 

cycle 1 to 4 slight increases in reversibility combined with decreasing irreversibility were observed, 

which could be due to less BSA adsorbing onto the membrane surface. Almost no BSA was found in 

the feed channel water, further supporting its high affinity to the membrane surface. 
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Figure 5.8: Bovine serum albumin mass balance results 

Figure 5.9: Alginate mass balance results (Cycle 2 is not included due to sample loss) 
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Figure 5.10: Humic acid mass balance results
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Figure 5.9 shows that among the model foulants alginate was the least present in the permeate, which 

is confirmed by its high rejection results (Table 5.4). The reversibility increased while the 

irreversibility decreased with each cycle. The amount concentrated in the feed channel water also 

decreased. 

 

Figure 5.10 shows that humic acid increased in the permeate with each cycle, which is reflected in the 

rejection results. The percent that was reversible remained consistent while the irreversibility 

decreased, which could be due to less adsorption onto the membrane surface and a greater amount 

being concentrated in the feed channel and to a lesser degree passing through the membrane. 

 

Overall, all model foulants showed some decrease in irreversibility with each cycle, which is likely 

the result of the formation of a cake layer on the membrane surface.  

 

 

5.4 Conclusions 

In this investigation model foulants of concern for drinking water were used to evaluate fouling for a 

ceramic tubular ultrafiltration membrane at constant flux using dead end mode operation and 

backwashing. These experiments were intended to gauge the extent to which the results of a previous 

flat-sheet study operated at constant pressure with the same model foulants were relevant for different 

membrane configurations or operating conditions. The main conclusions are: 

 

- For tubular membranes the bovine albumin serum single solution showed high fouling, which 

was almost entirely hydraulically irreversible fouling. However, when combined with other 

model foulants hydraulically irreversible decreased drastically. 

- Although the overall rate of humic acid fouling was the lowest among the model foulants, it 

was largely comprised of hydraulically irreversible fouling.  

- The mass balance results showed that the percent mass of all single organic model foulants 

contributing to irreversible fouling decreased over the first 4 cycles of filtration likely due to 

the formation of a cake layer, which thus decreased adsorption onto the membrane surface. 

- ABHS showed the greatest overall rate of flux decline but was largely comprised of 

hydraulically reversible fouling. The results for silica alone were similar. These results 
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support the importance of investigating the reversibility of fouling in experiments through 

backwashing.  

- Fouling behavior of the tubular ceramic membrane set-up operated at constant flux was 

consistent with results obtained with flat-sheet membranes operated at constant pressure (with 

the same membrane material, MWCO, and manufacturer) and a backwash. This is an 

important finding because the design, setup, and operation of flat-sheet membranes is much 

simpler and in particular, allows for surface characterization without sacrificing membrane 

modules. 

- Employing a unique approach that utilizes a sequence of several backwashes consecutively 

can be a potentially effective fouling mitigation tool. 

- A short maintenance clean with sodium hypochlorite was very effective in recovering 

additional clean water permeability for both humic acid and bovine serum albumin, which 

had the highest rates of hydraulically irreversible fouling. This suggests that if frequent 

maintenance cleans are performed, these ceramic membranes can potentially be used for 

waters with a high fouling potential without pretreatment. The significance of this finding 

translates into considerable savings on capital and operating costs.  

 

In drinking water treatment, foulant mitigation is crucial for sustainable operations and maximizing 

efficiency and membrane lifetimes. The challenge is in collecting accurate and representative fouling 

behavior data without having to run experiments at full scale. Future steps would be to relate the 

fouling behavior observed with model solutions, in particular the combinations, to surface water 

fouling behavior for both tubular and flat-sheet membranes. This would help identify possible gaps of 

using flat-sheet membranes at constant pressure.  Overall, the results from the current study are 

encouraging and hold promise for creative solutions to the issue of fouling of membranes in drinking 

water treatment. 
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Chapter 6 
Stage 4: Sustainable Flux Experiments and NOM Rejection in 

Natural Waters with a Tubular Ceramic Membrane 

This chapter may be considered for publication in the future. Cited references are included in the 

consolidated list of references at the end of the thesis. 

 

This chapter discusses results obtained from the long-term operation of a ceramic ultrafiltration at a 

sustainable flux using the method determined in Chapter 3. The discussion also focuses on the 

rejection of different organic matter fractions in surface water with the use of LC-OCD analyses. 

 

6.1 Introduction 

The sustainable flux method established in Chapter 3 for a polymeric membrane was applied to a 

tubular ceramic ultrafiltration membrane.  Ultimately, the goal was to run the tubular ceramic and 

polymeric membranes at their respective sustainable flux over 5 days using the same batch of water to 

compare the fouling behavior of both membranes. Furthermore, the rejection of different NOM 

fractions in natural waters was investigated to identify foulants of concern and compare the natural 

water results to the previous model foulant experiments using the same tubular ceramic membrane 

(Chapter 5).  

 

As research is never straightforward, this collection of experiments took this investigator on twists 

and turns and required the cunning of a Sherlock Homes type detective sleuth mind. Jsus (aka 

sustainable flux) was a dodgy character and often slipped right through the grip of scientific logic. 

Despite several attempts, each time with enhanced artillery, Jsus was never captured. But, some clues 

were left behind and the efforts were not all in vain.  

 

A significant portion of time was put into designing, implementing, and optimizing the tubular 

ceramic setup to operate at constant flux using a feedback loop. An intricate Labview program was 

designed to allow for a fully automated constant flux process. Inherently, with any new setup, several 

rounds of trial and error were required to reach an optimized and well performing setup and 
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procedure. Therefore, this process was also a design process that included implementation, 

modification, and optimization. The model solution experiments discussed in the previous chapter 

were performed after the work described in this chapter. 

 

 

6.2 Materials and methods 

The details of the tubular ceramic membrane, the final setup, and the TOC/DOC and LC-OCD 

instrument are provided in Section 5.2.2. A picture of the tubular membrane and the physical setup 

are provided in Appendix A Figure 5 and a screen shot of the Labview program is shown in Appendix 

D Figure 1. To maintain a constant flux operation, the Labview program monitored the permeate flux 

and adjusted the pump accordingly to maintain the flux within a desired flux range. 

 

Grand River water was used for all the experiments and a 200 µm prefilter (reusable filtration 

cartridge – 10 gpm - Cole Palmer) was the only pretreatment. The water was stored at 4°C for a 

maximum of 2 weeks to minimize inconsistencies in the raw water quality due to organic matter 

degradation.  

 

For each experiment, the sustainable flux was first determined using the methodology developed in 

Chapter 3. Remember that the sustainable flux determined is a function of the specific membrane and 

water quality tested. Then the membrane was operated at that sustainable flux for 5 days if possible. 

Throughout each experiment, the transmembrane pressure (TMP) and temperature were monitored, as 

well as water quality, which included LC-OCD, TOC/DOC and turbidity. Samples of the feed water, 

the permeate, and the backwash water were taken each day to monitor the water quality and the 

rejection of organic matter.  

 

Turbidity was measured using a calibrated turbidimeter and the Standard Methods #2130.  Alkalinity 

and hardness were determined using titration as outlined in method Standard Methods #2320 and 

#2340 respectively. UV absorbance at 254 nm was determined using a spectrophotometer (HP 8453, 

Palo Alto, CA) with a 1 cm quartz cell. No sample preparation is required prior to measurement.  

Specific UV absorbance (SUVA) is an indicator of the aromaticity of the organic matter and was 

calculated using equation 3.1. 
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A backwash procedure similar to that of another ceramic membrane manufacturer, Metawater, which 

currently provides ceramic membranes for drinking water was designed because the backwashing 

procedure for TAMI membranes is not established for drinking water treatment applications. This 

backwash was performed every 30 minutes. The procedure for the backwash, the 6-BW sequence and 

the maintenance clean is described in Section 5.2.1. To calculate the effectiveness of these fouling 

mitigation techniques: 

 

%𝑻𝑴𝑷𝒓𝒆𝒄𝒐𝒗𝒆𝒓𝒆𝒅   =   
𝑻𝑴𝑷𝒇𝒐𝒖𝒍𝒆𝒅!𝑻𝑴𝑷𝒄𝒍𝒆𝒂𝒏𝒆𝒅

𝑻𝑴𝑷𝒇𝒐𝒖𝒍𝒆𝒅
  𝒙  𝟏𝟎𝟎     Equation 6.1 

 

The TMP used was normalized by subtracting the starting TMP. 

 

A mass balance on biopolymers and humic acid was performed during the long-term sustainable flux 

experiment #4. A diagram of where the samples were taken is shown in Figure 5.2. Samples were 

taken from the feed, the permeate, the feed channel water, and the backwash water once every cycle 

during the first 4 cycles of filtration. Samples were weighed to determine total volume and then 

analyzed with the LC-OCD to calculate the mass.  The feed channel water (i.e. retentate) was taken 

separately in order to determine the mass that was rejected but does not contribute to reversible or 

irreversible fouling.  Calculations used in the mass balance are discussed in Section 5.2.4. 

 

 

6.3 Results 

 

6.3.1 The sustainable flux story: A series of confounding events 

This section discusses the results of several attempts to use the sustainable flux method established in 

Chapter 3 with the tubular ceramic membrane using surface water. Six sustainable flux method 

experiments were performed using Grand River water, four of which were run for several days. For 

sustainable flux experiments #1-4, water was taken from the Kaufmann Flats in Waterloo, while for 
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#5 and #6 it was taken from the intake at the Manheim Treatment Plant in Hidden Valley, Kitchener. 

The goal was to operate at a sustainable flux for 5 days without exceeding 50% of the ceramic 

membrane’s maximum operating transmembrane pressure (TMP), which is 72.5 psi (the maximum 

operating TMP given by the manufacturer is 10 bar or 145 psi). This allows for a comparison of 

fouling behavior and operating performance between the ceramic tubular membrane and the 

polymeric membrane within an acceptable fouling rate. 

 

Each experiment shed light on something new about the sustainable flux method, the tubular setup, or 

the membrane. The lessons learned led to appropriate modifications, followed by an additional 

experiment. Experiments #1-3 were preliminary experiments with the tubular ceramic membrane in 

order to optimize the setup (including the physical setup, the Labview program, and the backwash 

procedure). The results are described in more detail in Appendix D Section 1.0. After changes were 

made to the setup, flux stepping with ultrapure water was done to assess the stability of the flux 

without fouling and to establish that flux stepping can be performed with the tubular setup (Figure 

6.1). The setup was able to maintain the desired flux with ultrapure water within ±1 mL/min.  

 

 

 

Figure 6.1: Flux stepping with ultrapure water for the tubular ceramic membrane 
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6.3.1.1 Long-term sustainable flux experiment #4 

Once modifications and upgrades were made to the tubular ceramic membrane setup and operation, a 

long-term sustainable flux experiment was performed. For this experiment, the flux stepping method 

to determine sustainable flux started at a lower initial flux and used smaller flux increments than 

experiments #1-3 (42, 70, 90, 115, 140, 165, 185 LMH or 6, 11, 14, 18, 22, 26, 29 mL/min). The flux 

stepping results are shown in Figure 6.2. The sustainable flux determined was 141 LMH (22 mL/min) 

and is shown in Figure 6.3. This was the highest sustainable flux determined thus far, and considering 

the previous issues with long-term operation and that the fouling curve was quite steep, it seemed best 

to err on the side of caution. Therefore, the long-term experiment was operated at a slightly lower flux 

of approximately 128 LMH (20 mL/min).  

 

 

Figure 6.2: Flux stepping results for sustainable flux experiment #4 
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Figure 6.3: Sustainable flux determination for experiment #4 

 

 

The long-term experiment at a flux of 128 LMH showed a rather rapid rate of fouling and after 

approximately 17 hours the membrane was completely fouled and the experiment had to be stopped 

(Figure 6.4). After 12 hours the transmembrane pressure had already reached and exceeded 50% of 

the ceramic membrane’s maximum operating TMP (72.5 psi).  

 

The membrane was chemically cleaned at this point to restore the clean water permeability. Since 

enough water had been collected to operate the membrane over 5 days, there was still a lot of water 

remaining from the same batch of water collected. Therefore, another long-term experiment was 

performed at a much lower flux of 64 LMH (10 mL/min) to observe the fouling trend (Figure 6.4). At 

this flux, the membrane was able to operate for almost 3 days before it reached 50% of the ceramic 

membrane’s maximum operating TMP (72.5 psi).  
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Figure 6.4: Long-term experiment #4 at different fluxes 

 

 

Enough water was available to perform another long-term experiment at an even lower flux of 32 

LMH (5 mL/min) for around 106 hours. At this flux the fouling rate was initially low and the TMP 

remained below approximately 10 psi (Figure 6.4). However, halfway through this experiment, after 

60 hours, the fouling rate began to increase more rapidly. The TOC remained constant throughout the 

days for this batch of water while the turbidity slightly decreased from 3.6 to 2.8.  

 

 

Conclusions for experiment #4  

The results of these experiments clearly indicated that the method to determine a sustainable flux 

developed in Chapter 3 did not work for this ceramic membrane under these conditions. Such a 

conclusion was unexpected because the method is conceptually based and the sustainable flux 

determined is a direct function of a specific membrane and water quality. The aim of determining 

sustainable flux is simply to calculate a flux that is within a moderately acceptable rate of fouling. 
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Therefore, although the factorial design was performed using a polymeric hollow fiber membrane, it 

should in principle, work on any membrane with any water. A more in-depth discussion regarding 

this conclusion is covered in Section 6.3.2.  

 

 

6.3.1.2 Long-term sustainable flux experiment #5 

In this set of experiments, the plan was to operate the polymeric and ceramic membranes 

simultaneously with the same batch of water at the same flux. The polymeric membrane was used to 

determine the sustainable flux, which was the flux that was then used to run both membranes for 5 

days.  

 

The water quality for these side-by-side experiments was not typical and was challenging to treat due 

to the high turbidity (7-11 NTU). Further discussion of water quality and NOM rejection can be 

found in Section 6.3.3. Additionally, the winter of 2012 had many freeze/thaw events and planning 

experiments around unpredictable water quality was not an option. 

 

The sustainable flux method was performed with the polymeric membrane setup and determined to be 

64 LMH (Appendix D Figure 7). The polymeric membrane results are shown in Appendix D Figure 8 

and are also briefly discussed in the Appendix D Section 2.0. The results showed that the polymeric 

membrane was also unable to operate sustainably over 5 days and required regular maintenance 

cleanings. However, the sustainable flux methodology developed in Chapter 3 did not consider 

maintenance cleaning. Therefore, even for the polymeric membrane, the methodology to determine a 

sustainable flux does not seem to apply for all water qualities.  Further discussion on the sustainable 

flux methodology is included in Section 6.3.2. 

 

There were 3 different attempts at running at 64 LMH flux with the ceramic membrane, each with 

different operational settings. 
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1st attempt  at 64 LMH (10 mL/min) 

 

The first attempt of running at 64 LMH resulted in extremely high fouling rates (Figure 6.5). The 

fouling rate was 3 psi/h in the first 10 hours, 8.7 psi/h from 10 to 18 hours, 14.5 psi/h from 18 to 24 

hours, and 12.8 psi/h from 24 to 29 hours. At 18 and 24 hours a 6-BW sequence was performed and 

recovered 71% and 74% of the TMP respectively. The advantage of the ceramic membrane backwash 

is that it allows for a high-pressure pulse, which can be effective in dislodging the cake layer on the 

membrane surface. The effectiveness of this technique can be observed from the significantly 

decreased transmembrane pressure (Figure 6.5). However, the fouling rate continued to be very high 

and eventually this backwash sequence was needed again within 6 hours. The second 6-BW sequence 

performed showed a similar recovery followed by a similarly high fouling rate. 

 

At this point a maintenance clean or a full cleaning could have been beneficial but was not done. One 

reason is that the use of chemicals had not been incorporated in the initial design and the polymeric 

membrane had not needed a maintenance clean after the same hours of filtration. Therefore, a 

different approach was needed. The new approach was to investigate the impact of operational 

conditions on membrane fouling, since pursuing maintenance cleanings would not have had an 

impact on the fouling rate. 

 

 

Attempt #2: The 15-minute filtration cycle at 64 LMH (10 mL/min) 

The filtration cycle was shortened from 30 to 15 minutes, which would allow for four backwashes per 

hour as opposed to two. A much slower rate of fouling was observed with this approach (Figure 6.5); 

the fouling rate was 2 psi/h for the first 23 hours and 1.4 psi/h from 23 to 50 hours. The more frequent 

backwashes may have minimized the thickness of the cake (i.e. over an hour, more mass was 

removed). A maintenance clean was performed once a day i.e. after 23 and 50 hours, which recovered 

93% and 80% of the TMP, respectively. A maintenance clean was chosen over the 6-BW sequence 

because the frequency of backwashes had already been increased. This operational mode (i.e. regular 

maintenance cleans) seemed to be sustainable, which is similar to what was observed for the 

polymeric membrane. 
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Unfortunately, after 57 hours of filtration, the Labview program crashed and no data was being 

recorded from thereon. It also meant that there was no feedback loop from the flow meter and 

therefore, the pump continued running at the same setting. It was observed that the flux was 

maintained relatively close to the desired flux without the need for increased pump speeds despite 

increased transmembrane pressures. A closer inspection of previous data showed a similar trend, in 

which the average pump setting remained relatively stable until high rates of fouling were 

encountered. Therefore, the feedback loop from the flow meter to the pump was only critical in 

maintaining the desired flux if the fouling rate was high. However, the aim of these experiments was 

to operate at low fouling rates, which would make the need for this feedback loop less critical. By 

removing this feedback loop both the flux noise (Appendix D Figure 9) and overall fouling rate 

decreased (Figure 6.5). 

 

 

Attempt #3: Constant pump filtration with 30 minute cycles at 64 LMH (10 mL/min) 

Consequently, a final attempt at running a long-term experiment at a constant pump setting was 

performed at a flux of 64 LMH (Figure 6.5) with 30 minute filtration cycles. The rate of fouling was 

still less than the previous 2 attempts (Figure 6.5). The fouling rate was 0.4 psi/h for the first 19 

hours, 0.7 psi/h for 19 to 39 hours, 1.3 psi/h for 39 to 58 hours, and 2.1 psi/h for 58 to 70 hours. Total 

operation time lasted for almost 70 hours before all the collected water had been used. A 6-BW 

sequence was performed every 20 hours at 20, 40, and 60 hours into filtration and the TMP recovered 

was 91%, 90%, and 89%, respectively. Therefore, since a significant portion of the TMP was 

recovered with additional backwashes the majority of the fouling observed was actually hydraulically 

reversible. However, the rate of irreversible fouling did seem to be increasing with each consecutive 

day.  Over those 3 days the flux did not exceed 40 psi and the 6-BW sequence was successful in 

mitigating fouling, therefore, no chemical maintenance cleaning was required. Additionally, this 

attempt showed to be the most stable and least erratic in terms of TMP and flux fluctuations. It would 

be expected that if this experiment continued for another 2 days that the TMP would likely not exceed 

50% of the ceramic membrane’s maximum operating TMP or 72.5 psi. 

 

 

 



 

  116 

 

 
Figure 6.5: Long-term sustainable flux experiment #5 with different operating procedures at 64 
LMH (10 mL/min).  
Blue arrows indicate a 6-BW sequence and green arrows indicate a maintenance clean. 

 

 

Conclusions for experiment #5 

The main conclusions were: 

- It was possible to operate the ceramic membrane sustainably with the updated operating 

procedure 

- Operational conditions greatly influenced the membrane fouling rates, in particular the length 

of the filtration cycles and the pump setting 

- Fouling could be controlled by a 6-BW sequence or regular maintenance cleaning  

Another long-term experiment would be needed to confirm that changing the operational conditions 

(i.e. running at constant pump) would allow the sustainable flux method to work.  
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6.3.1.3 Long-term sustainable flux experiment #6: The Final Frontier 

The purpose of this sustainable flux experiment was to confirm whether or not the inability of the 

membrane to run sustainably at the calculated sustainable flux was a function of the system operation, 

the membrane, or the sustainable flux method. During this experiment, the feedback loop to the pump 

was not used, and only occasional, slight adjustments to the pump speed were required to maintain 

the desired flux and these were done manually.  

 

A sustainable flux stepping experiment was performed (Figure 6.6) and the sustainable flux 

determined was 109 LMH (17 mL/min) (Figure 6.7). At this flux, the membrane could only operate 

for a little over 13 hours before it was completely fouled (Figure 6.8). At this point a 6-BW sequence 

was performed and recovered 92% of the TMP. Note that the flux was also simultaneously decreased 

down to 77 LMH (12 mL/min). This flux was chosen because it was on the upper end of the “below 

sustainable flux” curve (Figure 6.7). The reason for this decrease is that since the membrane had 

fouled very rapidly at the previous flux of 109 LMH, no further information would be gathered by 

continuing to run at the same flux except to confirm that this flux is in fact unsustainable. This 

essentially confirmed that the approach to determine the sustainable flux did not work even with the 

improved set-up operation.  

 

The 6-BW sequence seemed to be initially effective at removing a considerable amount of fouling 

(Figure 6.8). Nevertheless, after around 22 hours another 6-BW sequence was performed because it 

seemed that once the TMP exceeded approximately 25-30 psi, the rate of fouling increased more 

rapidly. However, this time a much smaller percentage of the TMP was recovered (33%). At the time, 

it was hypothesized that the additional backwashes may be only effective after sufficient fouling had 

occurred, which would require higher transmembrane pressures to be reached before a 6-BW 

sequence would be necessary. Therefore, once significant fouling had occurred (TMP of ~60 psi), 

another 6-BW sequence was performed after 31 hours with only a slightly higher TMP recovery 

(50%). Consequently, a maintenance clean had to be performed after 32 hours.  
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Figure 6.6: Flux stepping results for sustainable flux experiment #6 

 

Figure 6.7: Sustainable flux determination for experiment #6 
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The flux had to be decreased again (down to 64 LMH) after 51 hours since the TMP had almost 

reached 50% of the ceramic membrane’s maximum operating transmembrane pressure (72.5 psi) in 

less than 24 hours. At this flux, a maintenance clean performed every 20 hours allowed for 

sustainable operation and the TMP remained below 40 psi for 5 days. Throughout these 5 days, the 6-

BW sequence was performed a few times, however, with little to no improvement. Table 6.1 

summarizes the TMP recovered with either a 6-BW sequence or a maintenance clean throughout the 

long term experiment. Overall, the average TMP recovered with a maintenance clean was 95% (±5) 

and 49% (±21) with the 6-BW sequence. Therefore, the maintenance clean was more effective and 

more consistent. 

 

 

 

Figure 6.8: TMP during long-term experiment #6 starting at 109 LMH (17 mL/min).  
Blue arrows indicate a 6 BW sequence, green arrows indicate a maintenance clean and orange arrows indicate 
a decrease in the operating flux (down to 77 LMH at 15 hours then down to 64 LMH at 50 hours). 
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Table 6.1:%TMP recovered with either a series of 6 backwashes or a maintenance clean 

Time (h) TMP recovered with a 6-BW 
sequence (%) 

TMP recovered with MC 
(%) 

13 92 - 
22 33 - 
31 50 - 
32 - 98 
42 70 - 
51 52 - 
54 - 97 
74 34 - 
75 - 96 
95 25 - 

103 42 - 
113 - 97 
135 - 86 
153 41 - 
155 - 96 

BW: Backwash 
MC: Maintenance clean 
 

 

Conclusions for experiment #6 

The main conclusions after this last long-term experiment were: 

- Despite operating the pump at a constant setting, the ceramic membrane could not operate 

sustainably at the determined sustainable flux of 109 LMH. Therefore, the root cause for why 

the sustainable flux method is unsuccessful is still not fully understood or known.  

- The 6-BW sequence was not necessarily an effective fouling mitigation method. This method 

may only be useful in cases in which the water is highly turbid, such as was observed in 

sustainable flux experiment #5 (Figure 6.5).  

- The maintenance clean, however, was consistently successful in recovering TMP and allowed 

for sustainable operation at 64 LMH for 5 days without exceeding 40 psi. Therefore, a regular 

maintenance clean can be effective at maintaining a sustainable fouling rate, particularly in 

the case of a high biopolymer concentration. Consequently, a chemically enhanced backwash 

could potentially be a useful fouling mitigation tool. 
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Overall, the outcomes of this experiment and the many previous attempts to operate at the determined 

sustainable flux for many days were not successful despite trying several different operating 

procedures and fouling control measures. Unfortunately, this made it difficult to compare the 

operation of the ceramic and polymeric membrane at their respective sustainable fluxes as had been 

initially planned.  

 

 

6.3.2 Discussion on the limitations of the sustainable flux method 

There are a few hypotheses as to possible reasons that may be contributing factors to the sustainable 

flux method not working in this scenario: 

 

- Different hydrodynamics for the polymeric membrane, which is a submerged module.  

- The rate of irreversible fouling is not constant or that it is exponential or cumulative. 

- The backwash procedure. 

o Possibility that high pressure backpulse used for the ceramic membrane allows it to 

be more effective, which delays the onset of fouling during the sustainable flux 

experiments and thus overestimates the sustainable flux.  

 

The sustainable flux method approach that is used in these experiments accounts for both reversible 

and irreversible fouling. At lower fluxes the TMP increases very little during each cycle, which 

indicates minimal reversible and irreversible fouling, and little to no TMP is recovered after 

backwash (some of the TMP increase between cycles during a flux stepping experiment is simply the 

result of the increased membrane resistance at higher operating fluxes). However, at higher fluxes, the 

majority of fouling is in fact hydraulically reversible and often the rate of this reversible fouling is so 

high that a consistent flux is difficult to maintain and the pump reaches its maximum speed very 

rapidly. Therefore, in this case, it is difficult to differentiate between the two types of fouling. The 

importance in differentiating between the two types of fouling can be seen from the model solution 

experiments in which the combination ABHS had an extremely high rate of hydraulically reversible 

fouling but little to no hydraulically irreversible fouling (Figure 5.5). Since the rate of hydraulically 

irreversible fouling was so small for ABHS, the flux could potentially be sustained over longer 
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filtration times. Consequently, a different approach that only accounts for hydraulically irreversible 

fouling could potentially be used. 

 

A closer look at the mathematical approach to determining the sustainable flux indicates that the 

mathematical approach is not the underlying issue. For example, the only flow that was capable of 

sustaining acceptable fouling rates over 5 days without any intervention was at 32 LMH (5 mL/min) 

during experiment #4 (Figure 6.4). From Figure 6.3 it can be observed that this flux is on the 

extremely low end of the “below sustainable flux” curve.  Similar results are observed for experiment 

#6 in which only a flux of 64 LMH (10 mL/min) could be sustained for 5 days but with the use of 

regular maintenance cleans (Figure 6.7 and Figure 6.8). The water quality of both of these was, 

however, quite different (discussed in Section 6.3.3). Therefore, a more sensitive mathematical 

approach would not necessarily have identified these lower fluxes as the sustainable flux. However, 

since there is more fouling occurring at higher fluxes, it may be beneficial to incorporate more data 

points by decreasing the flux increments at these higher fluxes. Thus, a more detailed fouling curve 

can be obtained if the sustainable flux required needs to be more precise. 

 

A possible alternative to this method would be to run at a particular flux over several cycles (as 

opposed to only one cycle), and doing this at several fluxes. This way a more representative picture of 

the fouling occurring can be obtained and rates of reversible and irreversible fouling can be calculated 

at different fluxes. The downside would be that this approach would take much longer and whether or 

not a chemical cleaning between each flux is needed would need to be considered. This method was 

not tested due to time constraints. However, the data obtained from the long-term experiments could 

be used to explain how such an approach might work. 

 

 The membrane resistance following backwash can be calculated from the first few cycles of each 

long-term experiment, thus giving the rate of irreversible fouling. The idea is that by determining the 

rate of irreversible fouling, an estimate can be made on the number of filtration hours that would have 

to occur before reaching a specific transmembrane pressure (or target TMP), at which a chemical 

cleaning would be required. In order to estimate the fouling behavior, a linear relationship (i.e. rate of 

fouling) is assumed. In this case, the estimated time to reach a specific or target TMP can be 

compared to the actual results of the long-term experiments at different fluxes (Table 6.2). The 

figures for the fouling rate estimations are included in Appendix D (Figures 10-16). For the long-term 
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sustainable flux experiment (LTJ) #4, at a flux of 128 LMH (20 mL/min), it was estimated that 

approximately 20 hours of filtration would be needed before reaching 50% of the ceramic 

membrane’s maximum operating transmembrane pressure or 72.5 psi (5 bar).  The actual time it took 

to reach that pressure was approximately 12 hours. At a flux of 64 LMH (10 mL/min), the predicted 

time to reach 72.5 psi was closer to approximately 100 hours, with the actual time being 

approximately 60 hours.  

 

For some experiments (e.g. LTJ #4 at 32 LMH, LTJ #5 with 15 minute filtration cycles, and LTJ #5 

at constant pump), the target TMP (i.e. 50% of the ceramic membrane’s maximum operating TMP of 

72.5 psi) was not reached within the filtration time available. Furthermore, during LTJ #5, different 

fouling mitigation techniques were used in addition to regular hydraulic backwashes, such as the 6-

BW sequence and maintenance cleans. Therefore, if the target TMP was lowered (and before these 

additional fouling mitigation techniques were used), then an estimate could be compared to the actual 

results. As a result, a target TMP of 30 psi was chosen for LTJ #4 at 32 LMH and LTJ #5 with 15 

minute filtration cycles, and a target TMP of 10 psi for LTJ #5 at the constant pump setting. The 

fouling rate predictions and the actual fouling data are summarized in Table 6.2. Additionally, to 

assess this estimation technique, the difference between the predicted value and the actual results is 

included.  

 

 

Table 6.2: Fouling rate prediction using membrane resistance after backwash 

 
 Experiment Flow in mL/min 

(Flux in LMH) 
Target TMP to 

reach (psi) 
Predicted 

(h) 
Actual 

(h) Difference 

LTJ #4 

Attempt #1 20 (128) 72.5 20 12 +8 
Attempt #2 10 (64) 72.5 100 60 +40 
Attempt #3 5 (32) 30 53 100 -47 

LTJ #5 

Attempt #1 10 (64) 72.5 15 12 +3 
Attempt #2: 15-min 

filtration cycle 9 (58) 30 33 18 +15 

Attempt #3: constant 
pump setting 9 (58) 10 7 12 -5 

LTJ #6  17 (109) 72.5 31 10 +21 
LTJ: Long-term sustainable flux experiment; All experiments have 30 minute filtration cycles unless otherwise 
stated 
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From Table 6.2, it is apparent that this fouling rate prediction method tends to overestimate the 

amount of filtration time before reaching a specific transmembrane pressure. This is likely the result 

of the method assuming a linear fouling rate, which is not valid as the fouling rate increases. 

Therefore, the fact that this method only accounts for irreversible fouling to predict long-term fouling 

has its limitations as well. However, it does give a relative indication of when severe fouling will 

occur. 

 

Ultimately, the root cause for the unsuccessful application of the sustainable flux method to the 

tubular ceramic membrane is still unknown. 

 

6.3.3 Rejection of different NOM fractions in surface water  

The water quality of the different experimental runs is summarized in Table 6.3. The LC-OCD 

chromatogram of the raw water for all the experimental runs is shown in Figure 6.9. Additional LC-

OCD chromatograms for permeates during experiment #3 and #5 are included in Appendix D 

(Figures 17 to 19). 

 

Table 6.3: Summary of raw water quality for all experimental runs* 

 #1 #3 #4 #5 #6 
pH 7.5 8.2 8.77 8.1 8.15 
Turbidity (NTU) 0.84 3.18 3.61 7-11 2 - 3 
TOC (mg C/L) 6.5 7.1 6.2 6-13 7.2 
DOC (mg C/L) 5.5 6.7 5.5 6-11 7.08 
Alkalinity (mg CaCO3/L) 198 180 170 160 168 
Hardness (mg CaCO3/L) 230 220 230  220 200 
Conductivity (mS/s) 600 595 620 589 635 
Biopolymers (µg C/L )1 495 661 215 188 844 
Humics (µg C/L )2 3324  3856 3664 3134 3457 
SUVA (L/mg.L) 3.5 3.65 4.19 3.3 2.76 
% Protein in biopolymers 26 27 n.q. n.q. 10 
* Experiment #2 is not included due to a high level of contamination present in the river water 
1 Average biopolymer concentration of the raw waters is 481 µg C/L 
2 Average humics concentration of the raw waters is is 3487 µg C/L 
n.q. not quantifiable (<1 ppb calculated) 
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The water quality for experiment #1, which was performed in July 2011, was typical for Grand River 

water, with an average biopolymer concentration, but with a very low turbidity. The humics 

concentration was slightly below average (Table 6.3).  

 

The water for experiment #3, taken during September 2011, had a relatively high concentration of 

biopolymers (with ~25% of it proteins – similar to experiment #1) and an average turbidity. It also 

had the highest humics concentration of all waters (Figure 6.10). 

 

Although the turbidity for experiment #4, taken during November 2011, was relatively similar to 

experiment #3, the biopolymer content was almost 70% less and there was no protein detected; 

therefore, this may have been a contributing factor to the higher sustainable flux value obtained in 

experiment #4 (141 LMH vs. 109 LMH).  

 

The raw water for experiment #5, taken during January 2012, had a relatively low biopolymer 

concentration (similar to that for experiment #4), however, for most days it also had an unknown peak 

in the low molecular weight region (Figure 6.11). Assumingly, this is from some contamination in the 

Grand River water, and it also seems to be declining the longer it is stored (i.e. with each consecutive 

day). Experiment #5 also had the lowest humics content and a very high turbidity. 

 

Water for experiments #4 (November) and #5 (January) were both taken in winter and both had low 

biopolymer concentrations compared to the other experiments and no protein content. However, the 

turbidity was much higher in experiment #5 compared to #4 and overall.  

 

Water for experiment #6, which was taken during April 2012, had the highest biopolymer 

concentration with 10% coming from proteins (Figure 6.12). 

 

Although adjustments to the setup were still being made during experiments 1 and 3, interesting 

results were obtained regarding rejection of NOM fractions with the tubular ceramic membrane.  
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Figure 6.9: LC-OCD chromatograms of raw waters for all experiments 

 

Figure 6.10: LC-OCD chromatograms for raw water during experiment #3 
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Figure 6.11: LC-OCD chromatograms for raw water in experiment #5 

Figure 6.12: LC-OCD chromatograms for raw water during experiment #6 (D: Day) 
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6.3.3.1 NOM rejection  

In experiment #1 a significant finding was the extremely high removal of all the organics during the 

initial stages of the first cycle (Figure 6.13). This suggests that organics have a strong affinity to the 

cleaned ceramic membrane surface. The second permeate cycle continued to have a good rejection of 

biopolymers but showed a drastic decrease for the humics.  
 

In experiment #3, NOM rejection at the beginning and end of the filtration cycle was investigated. 

The permeates at the beginning of the cycle were taken after a backwash (except for cycle 1, which 

was after the membrane had been chemically cleaned). Table 6.4 compares the DOC values of the 

beginning of the first cycle, and the beginning and end of the cycle for subsequent permeates. The 

first permeate sample taken at the beginning of cycle 1 had a very low DOC (0.85 mg C/L), and thus 

a very high rejection. The results in Figure 6.14 show the average rejection of different NOM 

fractions at the beginning and end of the cycle using LC-OCD and confirm the DOC results of Table 

6.4. The rejection at the beginning of the cycles showed an average 62% humics removal and 85% 

biopolymers removal. The difference between the rejection at the beginning and end of cycle was 

much larger for humic substances and other NOM fractions than it was for biopolymers. By the end 

of the filtration cycle the rejection of humics declined to below 20% while the biopolymer rejection 

averaged at 72% and remained relatively consistent. By the end of the cycle there was no removal of 

building blocks and little low molecular weight removal. The surprisingly high DOC rejections for 

the humics at the beginning of the cycle may be explained by a removal mechanism of adsorption, 

which is supported by the results obtained with the model foulant experiments (Table 5.4). 

Furthermore, the fact that humics rejection was higher at the beginning of the cycle than at the end of 

a cycle, even after several days of filtration, suggests that the humics adsorption is to some extent 

reversible (Figure 6.15 and Figure 6.16). 
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Figure 6.13: Raw and permeate LC-OCD chromatograms for cycle 1 and 2 for experiment #1 

 

 

Table 6.4: Summary of DOC (mgC/L) values for the permeates 

  Average of other permeates 

Raw Beginning of 1st 
Cycle Beginning of cycle End of Cycle 

6.9 0.85 2.5 6.2 
n=4 n=6 
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Figure 6.14: Comparison of rejections at the beginning to the end of the filtration cycle for 
experiment #3.  
The error bars indicate range of values (n=3) (cycle 2 and 3, and Day 3).  Note that the permeate at the 
beginning of cycle 1 is not included because it behaves differently than the following cycles as demonstrated in 
Figure 6.13. 

 

 

The general rejection trend over time was characterized by a very high rejection for all NOM 

fractions in the first cycle, followed by a decreased rejection in subsequent cycles and days (Figure 

6.15 and Figure 6.16). The extremely high rejection during the first cycle was also observed in the 

sustainable flux experiment #1 (Figure 6.13). Although the humics rejection at the beginning of the 

cycle continued to decrease with each filtration cycle, the biopolymer rejection remained relatively 

stable throughout the cycles, suggesting that the likely removal mechanism is through size exclusion.  
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Figure 6.15: Rejection at the beginning of the cycle during experiment #3 

Figure 6.16: Rejection at the end of the cycle during experiment #3 
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The rejection results for experiment #5 were taken during the 15 minute filtration cycle run (Figure 

6.17) and were taken a few cycles after the maintenance clean at the beginning of the cycle. The 

rejection trends are relatively similar to previous results (Figure 6.14). Therefore, despite the different 

operating parameters (i.e. shorter filtration cycles), the rejection trends remained consistent. The LC-

OCD chromatograms for the permeate during experiment #5 are shown in Appendix D Figure 19. 

 

The rejections of different NOM fractions during experiment #6 is shown in Figure 6.18. All 

permeate samples were taken during the third cycle after a chemical cleaning (Day 1) or maintenance 

clean (Day 2 and 3). It can be seen that for Day 1 and 3, the samples that are taken at the beginning of 

the cycle, the rejection is higher for humics initially. Nevertheless, there is a decrease in rejection 

from 82% down to 64% from Day 1 to 3, despite the samples being taken during a similar time 

window of a filtration cycle. This suggests that the maintenance clean, although effective, cannot 

fully remove humics adsorption. Therefore, there is likely a diminishing rejection with each 

consecutive cycle after a maintenance clean, which over time, even with regular maintenance cleans 

could ultimately lead to a need for a full chemical cleaning. Furthermore, after the first 5 minutes of 

filtration, the humics rejection dropped below 50%. This trend supports the results observed in 

previous experiments (Figure 6.14). Additionally, biopolymer rejection was consistently high 

between days and throughout the filtration cycle, and considering that the water collected for 

experiment #6 had the highest biopolymer concentration of all the experiments, the theory of rejection 

through size exclusion is supported. 

 

The rejection results for natural waters with tubular ceramic membranes are somewhat similar to the 

results obtained with both flat-sheet and tubular ceramic membranes using model solutions. 

Compared to the flat-sheet experiments, humics had a lower rejection than BSA or alginate. With the 

tubular experiments all model foulants showed a very high rejection, however, humic acid rejection 

seemed to have a decreasing trend (Table 5.4).  
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Figure 6.17: Ceramic rejection of different NOM fractions during experiment #5 with a 15 
minute filtration cycle 

Figure 6.18: Rejection for experiment #6  
Beg: beginning which is 1-4 minutes into filtration cycle; middle is 10-13 minutes into filtration cycle 
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Overall, the main conclusions that can be drawn from the LC-OCD results of the permeate are: 

 

§ The first filtration cycle has very high removals of all organic fractions, which suggests that 

there is a strong affinity of organics onto virgin ceramic membrane. 

§ Biopolymer rejection is stable and high throughout all filtration cycles, which indicates that 

size exclusion is likely the dominant removal mechanism. 

§ The removal of humics is much higher during the first cycle and at the beginning of each 

filtration cycle (following a backwash). 

• Rejection decreases from the beginning to the end of the filtration cycle and with 

each day. 

• Adsorption is likely the most dominant removal mechanism. 

• Some adsorption is reversible. 

 

 

6.3.3.2 NOM in backwash 

The backwash water was analyzed to determine which NOM components are removed with a 

hydraulic backwash. Table 6.5 summarizes the result from experiment #3 and shows that the 

composition of the backwash water remained relatively consistent. However, the first backwash is 

different and has less than half the DOC of the later backwashes. This trend is also consistent with the 

increased rejection observed in the first cycle. There is also a possibility that the membrane is initially 

conditioned with the foulants and eventually the cake layer builds and thus the backwash is more 

effective in subsequent cycles. 

 

The biopolymer and humics fraction do seem to be slightly increasing over time (Figure 6.19 and 

Table 6.5). As discussed for Figure 6.14, the backwash can impact subsequent rejection in early 

stages of filtration, particularly for humics. However, the biopolymers were the least affected and the 

rejection remained consistent between and throughout cycles, which was also indicated by the 

constant concentration of biopolymers in the backwash water after the initial 2 cycles (Table 6.5).  
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Table 6.5: The %NOM for different fractions in the backwash water for experiment #3* 

  Cycle   
 
 Raw 1 2 3 Avg of BW after 

cycle 31 Std. deviation 

DOC (mg/L) 6.9 1.3 2.9 2.9 3.2 0.2 
Biopolymers (%) 9 18 25 28 28 1.1 

Humics (%) 58 31 33 36 38 2.4 
Bldg. Blocks (%) 11 7 9 9 9 0.7 

LMW (n) (%) 12 13 12 14 8 2.6 
LMW (a) (%) 2 0 0 0 0 0.3 

* The hydrophobic portion of organic matter is not included, therefore, the organic matter fractions listed here 
do not add up to 100% 
1 n=4 

 

 

The LC-OCD results of the backwashes for experiment #5 with a 15 minute filtration cycle are shown 

in Figure 6.20. Unlike previous results with 30 minute filtration cycles (Figure 6.19), this experiment 

showed similar biopolymer concentrations in the backwash water and the feed water. Therefore, it is 

possible that the biopolymers did not concentrate as much during the 15 minute filtration cycle. 

Additionally, the biopolymer concentration for the water in experiment #5 was the lowest (Table 6.3).  

 

The LC-OCD backwash chromatograms for experiment #6 are shown in Figure 6.21, which shows 

higher biopolymer and humics removal at the beginning of the day. The concentrations are 

summarized in Table 6.6. These were single measurements, therefore, a significance test could not be 

performed. The result suggests that either there is less adsorption occurring on the membrane surface 

later on in the day or the backwash becomes less effective. Note that for all backwashes in this 

experiment, the feed channel water was not extracted prior to backwash (unlike experiment #4). 

Therefore, the concentration of biopolymers in the feed channel partially contributes to the elevated 

concentration of biopolymers observed in the backwash. Furthermore, there is probably very little of 

humics being removed during backwash. Figure 6.22 shows that the feed channel water does not have 

an increased concentration of humics compared to that of the raw water. Therefore, the decreased 

concentration of humics in the backwash compared to the feed water is likely simply a result of 

dilution, since the backwash is done with ultrapure water. 
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Figure 6.19: LC-OCD chromatograms for backwash water in experiment #3 

 

Figure 6.20: LC-OCD chromatograms for backwash water during experiment #5 with a 15 
minute filtration cycle. D: Day 
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Table 6.6: Concentration of biopolymers and humics in ugC/L in the backwash water at the 
beginning and end of the day for experiment #6 

 Day 1 Day 3 
 Raw  Beginning End Raw  Beginning End 
Biopolymers 655 3579 3192 734 4057 2430 

Humics 3412 2145 1760 3449 2812 1186 
 

 

 

 

Figure 6.21: LC-OCD chromatograms for backwash water in experiment #6  
Beg: Beginning; and D: Day 
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Figure 6.22: LC-OCD chromatograms for feed channel water during the mass balance in 
experiment #4  
FCW: Feed Channel Water 

 

 

Overall, the main conclusions that can be drawn from the LC-OCD results of the backwash water are 

as follows: 

 

§ Overall backwash composition remained relatively consistent. 

§ Shorter filtration cycles seemed to minimize biopolymer accumulation in the feed channel 

water. 

§ Humics adsorption is partially reversible. 

§ Biopolymers concentrate in the feed channel water.  
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6.3.4 Mass balance 

A mass balance was performed during experiment #4.  In order to quantitatively evaluate the changes 

occurring during the initial stages of filtration, samples were taken from the first 4 cycles of filtration 

during Day 1. The approach is described in detail in Section 5.2.4. 

 

Unfortunately, the first cycle had a citric acid contamination from the last cleaning step (of the 

chemical cleaning) and its peak is in the same range as that of the humic peak (at 43 minutes); this 

was the first time that this occurred. Therefore, it is best to disregard cycle 1 for this the mass balance 

as it skews the results. The biopolymer concentration of this raw water was also much lower than 

previous experiments. However, this was expected since the experiment was run during November 

and in the past, biopolymer concentrations for this water have been shown to be lower during the 

winter months (Peldszus et al. 2012).  

 

It is also important to note that after Experiment #3 the backwash tank was changed, which allowed 

the backwash pressure to be increased from 40 psi to 70 psi. 

 

Obtaining good mass balance results can be challenging due to many possible sources of error arising 

from sampling to instrumental error. One example is, in order to extract feed channel water prior to 

backwash, which would include mass of organic matter that was rejected but not adsorbed on the 

membrane, required the use of a syringe. This might inadvertently result in some permeate being 

pulled back from the housing and through the membrane into the feed channel, which may slightly 

simulate a backwash. Furthermore, the very small volume available (10 mL or less), restricted the 

analysis that could be performed; only LC-OCD analysis could be performed since it requires less 

sample volume but could also provide DOC values.  

 

From the mass balance results shown for biopolymers and humics (Figure 6.23), several interesting 

observations can be made. Biopolymer concentrations in the permeate remained constant at around 

30% in all cycles, which is consistent with previous rejection results. The irreversible fouling 

remained within the same range for all cycles. Only a small proportion of biopolymers contributed to 

irreversible fouling (4-10%), and is therefore likely getting irreversibly incorporated into the fouling 

layer. The biopolymer concentration in the feed channel water (FCW) increased with each cycle, 

suggesting that biopolymers contribute less and less to membrane fouling, because if it is in the 
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retentate, then it is not part of fouling. This increase is mirrored by a decrease in the concentration of 

biopolymers in the backwash water indicating that reversible fouling is decreasing rapidly within the 

first few cycles. 

 

Humics were mostly present in the permeate as was reflected in previous results, showing very low 

rejections (Figure 6.14). The much lower rejection of humics for surface water as compared to the 

model solution results (Table 5.4) is likely due to a function of both a higher concentration and flow 

for the surface water experiment. Additionally, the composition and characteristics of the humics in 

the model solution will differ from the humics in surface water and may be larger in size. 

Furthermore, the humics concentrations are also much higher than the biopolymer concentration in 

the feed water (Table 6.3), therefore, the mass involved in the reversible fouling for humic acids is 

higher than the mass of the biopolymers involved in reversible fouling. Also, there is no negative 

number, meaning that the total mass measured in the permeate, backwash, and FCW add up to less 

than the total feed mass.  

 

The FCW generally had similar concentrations to the raw water of all organic components except the 

biopolymers (Figure 6.22).  The biopolymer concentration was much higher in the FCW than the raw 

water as opposed to humics, which were lower in the FCW than the raw water (Figure 6.22). This 

suggests that the biopolymers were being rejected and becoming highly concentrated in the feed 

channel. It seems that the majority of the biopolymers were not adsorbed or incorporated in the 

fouling layer; they were simply rejected (Figure 6.23). This further suggests humics adsorption and 

that the biopolymers are largely rejected through size exclusion and likely do not contribute 

significantly to fouling. 
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Figure 6.23: Mass balance results for biopolymers and humics with LC-OCD analysis of natural waters in experiment #4. a) Biopolymers 

b) Humics  
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6.4 Conclusions   

Despite both setup and operational optimization, the sustainable flux method established earlier with 

a polymeric membrane did not work for this tubular ceramic membrane under the conditions 

employed or for the same polymeric membrane with highly turbid water. Considering that the 

underlying concepts behind determining the sustainable flux for a particular membrane and water 

quality are conceptually sound, and the results should be water and membrane specific, this outcome 

was unexpected. Consequently, there still remains a need for further investigations into the different 

factors or variables that need to be included or considered when developing a procedure to determine 

sustainable flux. Furthermore, this may help in determining the underlying causes or reasons why the 

sustainable flux method established from the factorial experiment was not applicable for all 

membranes or water qualities.  

 

From these results, several conclusions can be made: 

 

- Biopolymer rejection was constant throughout cycles and between days, implying size 

exclusion, which is consistent with the results from the model solution experiments. 

- There is a very high initial rejection of all organic matter at the onset of filtration indicating a 

high affinity of organics to the virgin ceramic membrane surface. 

- Humic acid rejection decreased throughout each filtration cycle and increased after 

backwash. This points to at least in some part reversible fouling behavior. Humic acid model 

fouling reversibility was generally low but improved with the 6-BW sequence, which 

confirms the slight reversibility of humic acid adsorption. Note that the humic acid in the 

model fouling is from Aldrich and the composition and characteristics of surface water 

humics can vary greatly. 

- The 6-backwash sequence proved to be most effective for a highly turbid water with a lower 

concentration of biopolymers. 

 

Ultimately in full-scale operation, the water quality will often vary from day to day or season-to-

season, especially if the primary source is surface water. Thus, operating at a sustainable flux may 

require constant readjustment, which may not be practical in full-scale treatment plants. Therefore, 

the ability to employ fouling mitigation tools such as more frequent backwashes (i.e. shorter filtration 
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cycles), several consecutive backwashes, or a maintenance clean without compromising membrane 

integrity or performance is vital to long-term sustainable operations. 
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Chapter 7 
Summary, Conclusions and Recommendations 

 

The results of the work discussed in this thesis largely focused on identifying foulants of concern for 

a ceramic ultrafiltration membrane that are often present in surface water using both model solutions 

and surface water.   

 

The research presented in this thesis is divided into four main stages. The first stage involved an 

investigation of different approaches to determine sustainable flux through a factorial design based on 

three main variables (Chapter 3). The purpose was to establish a method with which to compare the 

fouling behavior of two different membranes while operating at their own respective sustainable 

fluxes. This process helped identify which variables were most influential for sustainable flux 

determination. The aim was to maximize the efficiency of this method to accurately reflect fouling 

behavior and minimize the amount of time required to determine the sustainable flux. A unique aspect 

to this method was the incorporation of a backwash step, which is generally not included but common 

practice in full-scale drinking water treatment plants. By including a backwash between flux steps, 

the reversibility of fouling was integrated into the sustainable flux determination.  

 

The second stage investigated fundamental fouling behavior with a flat-sheet ceramic membrane with 

model solutions, combined with surface characterization (Chapter 4). This step was important 

because it laid the groundwork for future fouling behavior analysis in more complex scenarios. This 

is the only stage in which membrane surface characterization was performed, which was not an 

option for the tubular membrane without sacrificing the membrane. Since the flat-sheet membrane is 

of the same composition and molecular weight cut-off as the tubular membrane, it can be assumed 

that the interactions between the foulants and membrane surface would be similar and therefore, the 

results obtained for the flat-sheet membranes are anticipated to be applicable to the tubular 

membrane. Nevertheless, hydrodynamic conditions will differ due to configuration and different 

operating procedures. The model solution experiments investigated three organic compounds 

(alginate, bovine serum albumin, and humic acid) and an inorganic colloidal suspension of silica. 

These model foulants were filtered at different pressures for single solutions and at 40 psi for 
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combinations to simulate likely foulants in a drinking water treatment setting. Additionally, hydraulic 

backwash and chemical cleaning were investigated to identify hydraulically and chemically reversible 

and irreversible foulants. 

 

The third stage investigated the same model compounds used in Chapter 4 but with a tubular ceramic 

membrane employing constant flux, which is closer to membrane operations employed in full-scale 

practice. The main purpose of this step was to determine if the fouling behavior of these model 

solutions was similar in both the flat-sheet and tubular membrane configuration (Chapter 5). The 

results helped identify if representative fouling behavior could be obtained with simpler experiments 

that could be performed at lower costs and required less time. This stage also serves as an 

intermediary between the flat-sheet model solution experiments and the tubular surface water 

experiments.  

 

The fourth and last stage investigated the fouling behavior of a tubular ceramic membrane with 

surface water (Chapter 6). These experiments built on the fundamental fouling results from Chapter 4 

and Chapter 5 to identify foulants of concern that contribute to reversible and irreversible fouling. 

Different organic fractions were identified with the use of Liquid Chromatography with Organic 

Carbon Detection (LC-OCD). Natural organic matter in water can be extremely complex and waters 

with the same total organic carbon can result in different fouling trends. Therefore, the use of the LC-

OCD, which can differentiate between different organic matter fractions, was able to highlight the 

importance of properly characterizing the organic matter present in the water. Additionally, the 

sustainable flux method established in Stage 1 was attempted with the tubular ceramic membrane. 

The results were unexpected. 

 

 

7.1 Summary of findings and conclusions 

A summary of conclusions from individual chapters is discussed followed by overall conclusions, 

which examines the results and concepts derived from the research as a whole in order to identify 

overarching principles.  
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The concept of sustainable flux was applied in order to compare the performance of a polymeric and 

ceramic membrane (Chapter 3). A factorial design was used to develop the sustainable flux method 

using flux stepping. The following conclusions were made:  

 

§ Of the three variables investigated in the factorial design (interval length, increment increase 

between flux intervals, and the use of backwash between intervals), the interval length and 

backwash component were identified to be significant through statistical analysis, however, the 

latter had the most significant impact on the sustainable flux determination. 

§ An interval length of 30 minutes is needed in the sustainable flux approach to more accurately 

predict fouling behavior. 

§ The increment increase between flux steps is the least significant variable for determining 

sustainable flux.  

§ Therefore, the sustainable flux method resulting from this stage is flux stepping with intervals of 

30 minutes, with a 100%  (of initial flux) increment increase in flux between intervals, and a 

backwash between intervals. 

§ The sustainable flux methodology was verified using a polymeric ultrafiltration membrane 

filtering surface water. After the sustainable flux was established, the membrane was operated at 

this sustainable flux for a 5-day period, in which the transmembrane pressure (TMP) did not 

exceed 50% of the membrane’s maximum TMP. 

 

Four model solutions representing problematic foulants for polymeric membranes in drinking water 

treatment were filtered through a flat-sheet ceramic ultrafiltration membrane at constant pressure 

(Chapter 4). These model solutions comprised three different organic matter compounds and an 

inorganic colloid; they were filtered in single solutions and in all possible combinations. The 

following conclusions were made: 

 

§ Colloidal silica is significantly influential in determining the extent and type of fouling that 

occurs. It both increases the rate of fouling and the extent to which that fouling is 

hydraulically reversible. 

§ Humic acid and bovine serum albumin generally had slower rates of fouling but were largely 

hydraulically irreversible. The likely removal mechanism is through adsorption. 

§ In some cases synergistic fouling occurred when model foulants are combined. 
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§ When colloidal silica was included in the solution, the resulting foulant layer remained 

relatively hydrophilic, even in the presence of bovine serum albumin, which was the only 

solution that greatly increased the hydrophobicity of the membrane. 

§ All single solutions and combinations showed fouling by cake layer filtration, except for 

humic acid alone and humic acid combined with bovine serum albumin; the fouling 

mechanism was intermediate and complete pore blocking filtration, respectively. 

§ Although hydrophilic membrane surfaces have been linked to lower rates of fouling, a 

hydrophilic fouled membrane surface was neither a reflection of the extent or reversibility of 

fouling. 

 

Building on the previous model solution experiments, a tubular ceramic ultrafiltration membrane 

operating in dead-end mode and at constant flux was used to investigate fouling behavior (Chapter 5). 

The effectiveness of a unique backpulse approach as well as a maintenance clean were also 

incorporated into this stage. The following conclusions were made: 

 

§ The combination of all the organics and colloidal model foulants showed the highest rate of 

flux decline, similar to that observed with the flat-sheet membranes. Additionally, the fouling 

was mostly hydraulically reversible and the rate of fouling remained consistent throughout 

the cycles. 

§ When bovine serum albumin was filtered alone, the greatest overall rate of fouling was 

observed, with the majority of fouling being hydraulically irreversible. Therefore, some form 

of chemical cleaning would be required to mitigate this fouling. Nevertheless, the extreme 

fouling effect of bovine serum albumin was significantly reduced in the presence of other 

model foulants. 

§ Humic acid fouling was also largely hydraulically irreversible, however, the rate of fouling 

was very low.  

§ A unique backwash approach employing a series of 6 backpulses in succession is 

predominantly effective in the presence of a higher concentration of particles and organic 

matter.  

§ A maintenance clean with sodium hypochlorite is particularly effective in the event of humic 

acid or bovine serum albumin fouling.  



 

  148 

§ An important conclusion is that the results obtained from these experiments are qualitatively 

very similar to those obtained from the flat-sheet experiments. Therefore, this indicates that it 

is possible to study fundamental fouling behavior using less complex setups and still obtain 

representative fouling results, particularly if a backwash is incorporated into these 

experiments, which is often not done.  

 

The last stage built on all the previous experiments by using the sustainable flux method to 

investigate the fouling behavior of a tubular ceramic membrane with natural water (Chapter 6). The 

sustainable flux method was also used to compare to fouling behavior obtained with a polymeric 

membrane. The results of these experiments can also be related back to the model solution results in 

Chapter 4 and Chapter 5. The following conclusions were made: 

 

§ Even after several modifications were made to both setup and operation, the sustainable flux 

method established could not be applied to the tubular ceramic membrane. The method was 

also not applicable for the polymeric membrane for highly turbid water. This finding 

elucidates the need for more in-depth research into different or additional variables that may 

need to be included when determining sustainable flux.  

§ NOM rejection was also investigated using LC-OCD analysis, which provided interesting 

observations regarding fouling behavior. In all the experiments it was apparent that 

biopolymers are consistently rejected at a high percentage initially, and even after many days 

of filtration, thereby indicating a primary removal mechanism through size exclusion.  

§ All organic matter was highly rejected at the initial stages of filtration indicating a high 

affinity of organics to the membrane surface. Higher than expected total organic carbon 

removals were also observed for the model solution experiments. 

§ Humic acid rejection was initially high but rapidly decreased during the filtration cycle, 

indicating at least some hydraulically reversible adsorption of humic acid. This theory is 

further supported by the increased effectiveness of a series of 6 backpulses (as compared to a 

single backwash) to remove fouling by the model foulant humic acid in Chapter 5. 

Adsorption was postulated to be the primary removal mechanism for humic acid using model 

solutions. 

§ A series of 6 backpulses in succession can be especially effective when fouling is a result of 

highly turbid waters and possibly a lower concentration of biopolymers. 



 

  149 

§ A maintenance clean used at regular intervals may be essential for maintaining a sustainable 

flux, particularly in the case of a high concentration of biopolymers. This result highlights the 

potential application of chemically enhanced backwashes as a useful fouling mitigation tool 

for ceramic membranes. 

 

 

7.2 Experimental approach guidelines and recommendations  

It is important to run bench-scale experiments under conditions as similar to full-scale operation as 

possible. This is clearly not always realistic or feasible; consequently, the ideal should always be 

strived for if possible. Factors to consider when planning model solution fouling experiments and the 

ideal choice are given in Table 7.1. Additionally, the main drawback or limitation associated with not 

incorporating the ideal conditions is mentioned. This table can serve as a basic guideline.  

 

Table 7.1: Best practices approach to bench-scale studies for maximizing data from model 
solutions of low-pressure membranes in drinking water treatment (DWT) applications 

Factor Options Ideal Main drawback if not ideal 

Configuration 
Flat-sheet; 

tubular; hollow 
fiber 

Tubular or 
hollow-fiber 

Significant hydrodynamic differences can affect 
foulant-foulant & foulant-membrane interactions 

Operating 
condition 

Constant pressure; 
constant flux Constant flux 

Constant flux conditions are used in full-scale 
DWT plants and the hydrodynamic conditions 

will differ from constant pressure filtration  

Backwash 
procedure Yes or no Yes 

If hydraulically reversible foulants are not 
determined, it is not possible to predict 

sustainable operation and can make fouling data 
insignificant if applying it to DWT conditions 

Model 
solution 

concentrations 
A wide range 

Within range of 
typical surface 

water 
concentrations 

Extent of fouling can be over/under estimated.  

Number of 
model 

foulants used 

Single solutions; 
combinations of 
more than one 
model foulant 

Combinations of 
several foulants 

Foulant-foulant interactions can play a 
significant role in fouling behavior and single 

solutions only give information on foulant-
membrane interactions 

Membrane 
material Wide range 

As similar to 
current or 

expected in full-
scale DWT plant 

To a certain extent, membrane material can play 
a role in membrane fouling behavior, especially 
in shorter experiments, which may make results 

less relevant for practice 

Duration Can range from 
minutes to days Days 

High adsorption affinity of a model foulant can 
give misleading information regarding long-term 

rejection capabilities of the membrane 
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7.3 Overall significant conclusions and contributions 

Significant conclusions regarding ceramic membrane filtration for drinking water treatment were 

made in the course of this research. The key contributions of this research are: 

 

§ The use of the concept of sustainable flux to compare two extremely different membranes has 

not been previously investigated. Most comparison studies have operated the membranes at 

the same flux or have strived to operate at similar hydrodynamic conditions. The limitation 

with these mentioned approaches is that they would retract from the key advantage of the 

ceramic membrane’s ability to operate at higher fluxes and pressures. Therefore, the 

application of this concept for comparing a polymeric and ceramic membrane allows both 

membranes to operate as they normally would. 

 

§ Since the sustainable flux method could not be applied to the ceramic membrane as well as 

the polymeric membrane this indicates that more variables may need to be included in the 

sustainable flux methodology.  

 

§ Simplified studies such as the flat-sheet membrane experiments with model solutions can 

obtain representative qualitative fouling behavior of more complex and larger-scale 

systems/setups. However, a few essential factors in these types of experiments are the 

inclusion of a backwash, the use of representative foulant concentrations, the use of 

combinations of foulants, and the incorporation of a chemical cleaning regime.  

 

§ Since it is essential to minimize hydraulically irreversible fouling, implementing pretreatment 

strategies that target the removal of foulants having characteristics similar to that of proteins 

and humics will be crucial for long-term operational sustainability. Proteins, particularly 

without the presence of particulates seem to be especially troublesome.  

 

o Alternatively, the implementation of an efficient and optimized maintenance cleaning 

strategy may be just as effective depending on the water quality. 
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o Ultimately, to achieve an ideal treatment process a balance is needed between 

appropriate fouling mitigation techniques (i.e. pretreatment or backwashing) and 

chemical usage. 

 

§ The interactions between the water matrix components (e.g. silica and protein) are at least as 

important or maybe even more important in determining fouling behavior than the interaction 

of foulants with the membrane surface. However, this highly depends on the different water 

matrix constituents and further research is warranted. 

 

§ A series of 6 consecutive backpulses proved effective for a highly turbid water with a low 

biopolymer concentration. Since the ceramic membrane is quite robust, it allows for some 

creativity regarding fouling mitigation techniques, particularly backwashes and chemical 

cleaning. Therefore, this opens the door to some more unique future investigations. 

 

 

7.4 Implications and recommendations for future ceramic membrane work for 
drinking water treatment 

Several unexpected results along the course of this research clearly indicate that further work is still 

needed before ceramic membranes can really break into the drinking water treatment market and 

compete with polymeric membranes. 

 

An inherent disadvantage of ceramic membranes is their relatively large footprint due to smaller 

surface areas compared to polymeric membranes. As a result (and to potentially drive down costs of 

ceramic membranes), manufacturers have experimented with a plethora of configurations, anywhere 

from circular to rectangular to even star shaped feed channels, as well as hollow fiber membranes. 

These can affect the hydrodynamics and potentially the fouling behavior of the membrane. With 

polymeric membranes, configurations are generally flat-sheet or hollow fiber, and the complicating 

factor is the numerous membrane surface modifications. Furthermore, membrane properties such as 

the pore size distribution and surface charge can also play a role in fouling behavior and need to be 

studied in more detail, particularly for ceramic membranes.  
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Nevertheless, it can be argued that the virgin membrane properties may only have an initial influence 

on fouling, and once fouling occurs, the cake layer characteristics will dictate subsequent fouling 

behavior. Consequently, the myriad of polymeric membrane materials will likely have a lower impact 

on fouling throughout the membrane’s lifetime as opposed to the effects of configuration, which 

would be a continuous influence on fouling behavior throughout filtration.   

 

A unique advantage of the ceramic membranes is the ability to operate high-pressure backwashes that 

work like a pulsing action. From the results achieved using a sequence of 6 backpulses, as opposed to 

one extended backwash suggests that, particularly in highly turbid waters, a creative investigation of 

different backwash procedures and techniques could be beneficial.  

 

The ability of these ceramic membranes to tolerate higher pressures and more challenging water 

qualities makes them ideal candidates for severely polluted surface waters.  Therefore, these 

membranes may potentially find a specific niche in this area of drinking water treatment. Also, with 

the increased incidence of indirect water reuse and a decrease in the availability of easily treatable 

surface waters and groundwater, drinking water treatment processes need to be even more robust. 

Possible niche applications for ceramic membranes include brackish or highly turbid waters, 

backwash or concentrate water, and potentially in areas with extreme changes in water quality. 

Northern areas such as Alaska and northern Canada are the most sensitive to the effects of climate 

change and can in some cases experience severely challenging raw water quality for different reasons. 

With such a robust membrane, treatment goals could still be met without concern for the membrane’s 

integrity or lifetime.  

 

Ultimately, cost will always be a driving factor. Despite estimations that suggest that ceramic 

membranes are becoming cost competitive with polymeric membranes, the short-term, higher capital 

costs will often be enough of a deterrent for ceramic membranes. However, with the higher costs of 

ceramic membranes does come higher quality. Although risk can often be difficult to quantify, the 

uncertainty of water quality and quantity bring forth a new variable that needs to be considered when 

designing drinking water treatment plants and calculating lifetime costs. A robustness factor, which 

provides flexibility of the system, should be considered when accounting for risk. Overall, the 

opportunity for creative applications and techniques that can be used with ceramic membranes may 

be the key advantage in a time when the only certainty in the future of water is the uncertainty. 
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Appendix A 

Pictures of the Membranes Used and Their Setups 

 

 

 

 

 

Appendix A Figure 1: Picture of polymeric membrane setup 
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Appendix A Figure 2: Picture of the flat-sheet ceramic membrane and the housing 
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Appendix A Figure 3: Schematic of flat-sheet membrane filtration 

 

 

 

 
 

Appendix A Figure 4: Schematic of the flat-sheet membrane backwash 
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Appendix A Figure 5: Pictures of the tubular membrane and the setup 
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Appendix B 
Additional Figures for Chapter 3: Sustainable Flux Factorial 

Results 
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The results for Run 2 are in Chapter 3. 
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Appendix C 

Additional Information and Figures for Chapter 5: Tubular Ceramic 
Membranes with Model Solution Filtration 

 

 

 

Appendix C Figure 1: Transmembrane pressure profile for tubular ceramic membranes with 
model solutions at lower flux of 60 LMH  
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Appendix C Figure 2: A comparison of the fouling rate data for ABHS obtained between 
constant pressure and constant flux 
 
 

Appendix C Figure 2 shows the flux decline or the transmembrane pressure increase for the constant 

pressure (at 20 and 40 psi) and constant flux studies, respectively, versus the average total volume 

filtered per membrane surface area for the ABHS combination. This combination was investigated at 

both 20 and 40 psi for the flat-sheet study. The purpose of the figure is to illustrate the large 

difference in data that is collected between the flat-sheet study at constant pressure for 1 hour without 

backwashing compared to the current study using tubular membranes at constant flux with 

backwashing every 30 minutes. Since the corresponding flux or TMP is plotted as a function of 

volume and not time and since the same concentrations of model foulants were used in both studies, it 

is an indication of the comparable mass/quantity of model foulants that has reached the membrane 

surface. An important difference between these two operating procedures is that since the TMP is 

changing throughout the filtration cycle during constant flux filtration, the hydrodynamics are also 

continuously changing.   
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Appendix D 
Additional Information and Figures for Chapter 6: Tubular Ceramic 

Membranes with Natural Water 
 

 

 
Appendix D Figure 1: Labview screenshot for operating at constant pump.  
 
It takes approximately one minute from the time the pump is adjusted until the change is reflected in the 
permeate flux, therefore a “measurement delay” parameter, during which no additional pump changes can be 
made is included.  
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Appendix D 1.0 Preliminary sustainable flux experiments #1-3 

 

Appendix D 1.1 Sustainable flux experiment #1:  

This was the first experiment that was run with the tubular membrane and thus, the main issues 

encountered during this experiment were regarding the functionality of the setup. The biggest issue 

was related to the pump and flow. Although these experiments are discussed after the previous 

chapter on model solutions with tubular membranes, they were performed prior to the model solutions 

and the set-up was optimized using natural waters. 

 

Firstly, the pump is peristaltic and will inherently have inconsistent flows due to pulsing action; 

therefore, the system needs to be flexible for some minor variations in the flow. Additionally, once 

the pump flow is increased (as a result of the flow meter detecting a decrease in flow), it takes a 

minimum of 1-2 minutes before the permeate flow actually increases. This meant that a wait period 

needed to be incorporated into the Labview program once a pump adjustment had been made 

(Appendix D Figure 1). 

 

From Appendix D Figures 2 and 3 it can be observed that the flow is not very stable and can easily 

spike up and down. It is particularly sensitive at lower flows. At this point, adjustments were made to 

the setup to optimize the system and minimize the length of tubing that the water would need to travel 

from the feed tank to the flow meter on the permeate side of the membrane (Figure 5.1).  

 

Unfortunately, since adjustment were being made to the setup, a long-term experiment could not be 

run because the water had exceeded the recommended storage maximum time of 2 weeks.  
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Appendix D Figure 2: Flux stepping results for sustainable flux experiment #1  

Appendix D Figure 3: Sustainable flux determination for Experiment #1 
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Appendix D 1.2 Sustainable Flux Experiment #2:  

The results are not discussed because there was a contamination in the Grand River water and a long-

term experiment was not performed. Although no data is presented or discussed for this experiment, it 

is included here to prevent confusion or possible errors resulting from renumbering several files. 

 

 

Appendix D 1.3 Sustainable Flux Experiment #3:  

Flux stepping for this experiment is shown in Appendix D Figure 4. The sustainable flux was then 

determined to be 17 mL/min or 109 LMH (Appendix D Figure 5). The long-term sustainable flux 

experiment was then performed, however, the fouling rate was very rapid and therefore, the 

membrane could not be operated longer than 10 hours (Appendix D Figure 6). The flux also becomes 

quite erratic at the higher fouling rates. Therefore, some adjustments to the Labview program and the 

way the feedback loop works were made. From the pressure data, it seems that the pressure 

transducer reaches a maximum at around 27 psi although it is rated up to at least 100 psi. This was 

suspicious (also the pump is rated up to at least 100 psi) and after further investigation it seemed that 

the pressure transducer had been compromised and malfunctioning. Therefore, the pressure results are 

unreliable. Although the pressure transducer data cannot be used, it is not part of the feedback loop 

that controls the pump speed. Therefore, the fact that the pump could not operate sustainably past 10 

hours is still valuable information because it is a direct result of increased fouling.  

 

Since operating at a flux of 109 LMH caused the membrane to foul extremely fast and there was 

enough water for more experimentation, another long-term experiment was performed at a lower flux 

of 64 LMH (10 mL/min). This additional run could help confirm that the membrane could operate 

sustainably for several days. The membrane was still operating sustainably into the 3rd day when the 

computer crashed and unfortunately the data could not be retrieved and cannot be shown. 

Nevertheless, the data from the LC-OCD samples that were taken are still useful and discussed in 

Section 6.3.3.  

 

For the sustainable flux stepping method, only 4 data points could be used because the last flux step 

could not be maintained (50 mL/min or 320 LMH) (Appendix D Figure 5). Upon further observation 

of the results shown in Appendix D Figure 5 it seemed plausible that the sustainable flux had been 
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overestimated due to such few data points. Therefore, it was concluded that more data points were 

needed as well as a lower initial starting flux in order to acquire more detailed fouling data.  

 

 

Appendix D Figure 4: Flux stepping results for sustainable flux experiment #3 
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Appendix D Figure 5: Sustainable flux determination for experiment #3  

 

Appendix D Figure 6: Long-term Sustainable Flux Experiment #3 at 109 LMH (17 mL/min) 
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Conclusions 

The results of this sustainable flux experiment indicated the need for the following: 

 

- The pressure transducer was compromised and needed replacement.  

- The sustainable flux method needed to be adjusted to incorporate more flux increments and 

start at a lower initial flux.  

 

Ultimately, after this experiment it was concluded that the reason the membrane did not operate 

sustainably at the determined flux was method related and not membrane related.  
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Appendix D 2.0 Polymeric membrane results during experiment #5 

 

The flux used for both membranes during this experiment was determined by using the sustainable 

flux method with the polymeric membrane (Appendix Figure 7). It was assumed at this point that the 

method worked for the polymeric membrane (due to positive results in Chapter 3 with this 

membrane) and possibly not the ceramic membrane. The results of the polymeric membrane are 

difficult to interpret because they are impacted by the fact that the pump could not maintain the 

desired flux and since this could only be manually measured, constant adjustments to the pump were 

required. Furthermore, with the highly turbid water, fouling was much more extreme/rapid and the 

flux dropped significantly over short periods of time. Therefore, the TMP readings do not reflect 

constant flux since a constant flux could not be maintained once high fouling is experienced. Except 

for the initial 24 hours, the polymeric membrane experienced very high fouling rates, which could 

only be mitigated through regular maintenance cleans (Appendix D Figure 8). Nevertheless, 

maintenance cleans were not considered or incorporated into the development of the sustainable flux 

methodology. Therefore, since operation of the polymeric membrane without maintenance cleans was 

not sustainable it seems that the sustainable flux methodology developed in Chapter 3 is not 

appropriate even for the polymeric membrane. 

 

When backwash samples were taken, the tank was fully drained and filled with ultrapure water, then 

the permeate was backwashed through the membrane. This was done in order to determine which 

foulants were hydraulically reversible and to allow for a comparison to the ceramic membrane, which 

also uses ultrapure water for backwashing. This step resulted in noticeable TMP decreases (indicated 

by the blue arrows) that were greater than the normal backwash. When taking BW samples TMP 

decrease was 80% after 2 hours, 75% after 26 hours, 31% after 48 hours, and 34% after 71 hours. The 

first backwash sample was taken soon after filtration had started, therefore, there was not much time 

for fouling to accumulate and form a significant cake layer. This may explain why at 26 hours 

backwash sampling had a greater effect on the TMP. The next sample was taken shortly after a 

maintenance clean and the last sample was taken approximately 5 hours after a maintenance clean; 

therefore, again there was likely not as much time for cake accumulation. With a maintenance clean 

the TMP decrease was 68% after 45.5 hr, 72% after 67 hours, 72% after 72 hours, and 82% after 99 

hours. Therefore, it seems that an average of a 50-60% decrease in TMP with a maintenance clean 

can be expected under these conditions.  
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Appendix D Figure 7: Sustainable flux determination for experiment #5 with the polymeric 
membrane setup 
 

Appendix D Figure 8: TMP and flux data for the long-term experiment with the polymeric 
membrane setup. Blue arrows indicate when a backwash sample was taken and green arrows 
indicate a maintenance 
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Appendix D 3.0 Additional figures 

Appendix D Figure 9: The flow for all three attempts at sustainable flux experiment #5 

 

 

Appendix D Figure 10: Membrane resistance following backwash for experiment #4 at 20 
mL/min (128 LMH) 
 

y"="3.818222E*04x"+"1.795829E*03"
R²"="8.609467E*01"

0.00000"
0.00050"
0.00100"
0.00150"
0.00200"
0.00250"
0.00300"
0.00350"

0" 1" 2" 3" 4"M
em

br
an

e(
Re

si
st
an

ce
((1

/m
)(

Cycle(

0 

5 

10 

15 

20 

25 

30 

35 

40 

45 

50 

0 10 20 30 40 50 60 70 

Fl
ow

 (m
L

/m
in

) 

Time (hours) 

1st attempt with 30 min cycle 15 minute cycle Constant Pump Flow and 30 min cycle 



 

  208 

 

Appendix D Figure 11: Membrane resistance following backwash for experiment #4 at 10 
mL/min (64 LMH) 
 

 

Appendix D Figure 12: Membrane resistance following backwash for experiment #4 at 5 
mL/min 
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Appendix D Figure 13: Membrane resistance following backwash for experiment #5 at 10 
mL/min (64 LMH) 
 

 

Appendix D Figure 14: Membrane resistance following backwash for LTJ5 at 10 mL/min (64 
LMH) at constant pump setting 
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Appendix D Figure 15: Membrane resistance following backwash for experiment #5 at 10 
mL/min (64LMH) with 15 minute filtration cycles 
 

 

Appendix D Figure 16: Membrane resistance following backwash for experiment #6 at 17 
mL/min 
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Appendix D Figure 17: Experiment #3 permeates at the beginning of the cycle 

Appendix D Figure 18: Experiment #3 permeates at the end of the cycle 
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Appendix D Figure 19: Ceramic permeate chromatograms for experiment #5 with a 15 minute 
filtration cycle (D=Day) 
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