
Dispersion-cancelled imaging with

chirped laser pulses

by

Michael Mazurek

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Master of Science

in

Physics

Waterloo, Ontario, Canada, 2013

c© Michael Mazurek 2013



I hereby declare that I am the sole author of this thesis, except where noted. This is a true

copy of the thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii



Abstract

This thesis deals with chirped-pulse interferometry, an interferometric imaging tech-

nique with a resolution which is unaffected by the normally detrimental effects of sample

dispersion. The thesis begins with some important background definitions and concepts.

The properties of ultrafast laser pulses are discussed, and the nonlinear process of sum-

frequency generation is defined. Three different interferometric imaging systems intro-

duced, namely optical coherence tomography, quantum optical coherence tomography, and

chirped-pulse interferometry. Understanding the first two techniques is key to realizing the

benefits provided by the third.

In the first experiment a chirped-pulse interferometer is used to image the cells of an

onion. This is the first time that a dispersion-cancelled technique has been used to image

the interior structure of a biological sample. Laser pulses centred on 810 nm with 90 nm

full-width at half-maximum bandwidth are chirped with a spatial light modulator in a

4f-system to create a superposition of frequency-anticorrelated pulses. The chirped pulses

are sent into a Michelson interferometer with a sample of onion in one arm. The cellular

structure of the onion is imaged to a depth of 0.5 mm with a resolution of 3.2 ± 0.6µm.

The introduction of 132 fs2 of quadratic dispersion in front of the sample does not affect

the resolution of the image. A three-dimensional image of the sample’s internal structure

is created.

The second experiment uses a nonlinear chirping function to produce a narrower inter-

ference signal in a chirped-pulse interferometer than that given by linearly-chirped pulses;

this competes with the inherently narrower signal seen in quantum optical coherence to-

mography systems. The nonlinear chirping function theoretically narrows the interference

signal by 30%, matching the width of the quantum signal. Experimentally, a narrowing

of 17% was observed. The nonlinear chirping function was shown to cancel the 132 fs2 of

unbalanced quadratic dispersion as effectively as the linear function.

One of the main sources of background noise in a chirped-pulse interferometer is a

narrow-band component of sum-frequency generated light from the interferometer’s intense

reference beam. This background is at the same frequency and has the same bandwidth
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as the signal. A third experiment is proposed in which the light in the sample and ref-

erence arms of the interferometer is chirped independently. If the light in both arms is

a superposition of frequency-anticorrelated pulses with different average frequencies the

interferometer should still be dispersion-cancelling, but the narrowband background will

shift spectrally from the signal.

iv



Acknowledgements

I first thank Kevin Resch who has been a great supervisor. He is always available and

willing to discuss research, and I am looking forward to working with him while I pursue

my Ph.D. I thank the other two members of my advisory committee, Dida Bizheva and

Jonathan Baugh. I especially thank Dida for sharing her knowledge of optical coherence

tomography and always offering her help. I also thank Matteo Mariantoni for agreeing to

be on my examining committee.

All of the members of my research group have helped me over the last two years. Robert

Prevedel assisted me the most when I first started in the group. He passed on a wealth of

information in my first few months and he was always willing to answer my many questions

about stuff in the lab. Kurt Schreiter was always willing to talk about the experiment,

and his knowledge of LabVIEW came in handy more than once. Jonathan Lavoie gave

me countless tips on alignment techniques, and he knows how to find absolutely anything

in the lab. I had many useful discussions about chirped pulses with both Jon Lavoie and

John Donohue. I thank all members of my group, including Deny Hamel, Kent Fisher,

Megan Agnew, Lydia Vermeyden and Krister Shalm for always being available to bounce

ideas off of.

I thank the Ontario Centres of Excellence, Canadian Foundation for Innovation, Quan-

tumWorks, Industry Canada, and the Ontario Ministry of Research and Innovation for

funding the experiments in this thesis. I also personally thank the National Science and

Engineering Council of Canada, which funded me during my Master’s.

Finally I thank my family, including my parents Cheryl and Dave and my sister Liz for

their love and support.

v



Table of Contents

List of Tables ix

List of Figures x

1 Background 1

1.1 Low-coherence laser pulses . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Mathematical description of electric field . . . . . . . . . . . . . . . 1

1.1.2 Pulse propagation through dispersive media . . . . . . . . . . . . . 3

1.1.3 Interference and coherence length . . . . . . . . . . . . . . . . . . . 5

1.1.4 Custom pulse-shaping . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Second-order nonlinear materials . . . . . . . . . . . . . . . . . . . . . . . 9

1.2.1 Phase-matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3 Optical coherence tomography . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3.1 Quantum optical coherence tomography . . . . . . . . . . . . . . . 14

1.3.2 Chirped-pulse interferometry . . . . . . . . . . . . . . . . . . . . . . 18

2 Dispersion-cancelled biological imaging with quantum-inspired interfer-

ometry 22

2.1 Notes and acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . 22

vi



2.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4.1 Theoretical description. . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4.2 Experimental setup and characterization. . . . . . . . . . . . . . . . 28

2.4.3 Dispersion-cancelled biological imaging. . . . . . . . . . . . . . . . . 30

2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.6 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.7 Supplementary Information . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.7.1 Artifacts in Quantum and Chirped-pulse optical coherence tomography 35

2.7.2 Wavelength shift in CPI with BARC-pulse . . . . . . . . . . . . . . 40

3 Nonlinear chirping function for resolution improvement in CPI 44

3.1 Resolution disparity between CPI and QOCT . . . . . . . . . . . . . . . . 44

3.1.1 Nonlinear chirp for narrower CPI signal . . . . . . . . . . . . . . . . 45

3.1.2 Experimental test of nonlinear chirp . . . . . . . . . . . . . . . . . 49

3.2 QOCT with imperfect frequency correlations and fast detectors . . . . . . 54

3.2.1 Definition of “single-photon bandwidth” in QOCT . . . . . . . . . . 58

3.2.2 Four interesting limits and comparison to CPI . . . . . . . . . . . . 60

4 Signal improvement to CPI 63

4.1 Offset-CPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.1.1 Simulation of OCPI . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.1.2 Implementation of linear chirp . . . . . . . . . . . . . . . . . . . . . 69

5 Conclusion 72

vii



APPENDICES 74

A Measurement of unbalanced interferometer dispersion 75

B Griffin-10 alignment technique 78

References 82

viii



List of Tables

3.1 Widths of CPI signals from different chirping functions. . . . . . . . . . . . 51

3.2 Widths of artifact-free CPI signals from different chirping functions. . . . . 52

3.3 Characteristics of the QOCT signal with imperfect frequency correlations

and artifact filtering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

ix



List of Figures

1.1 Electric field of a chirped laser pulse. . . . . . . . . . . . . . . . . . . . . . 5

1.2 Interferometer for measuring coherence time. . . . . . . . . . . . . . . . . . 6

1.3 4f system with SLM for applying a custom frequency dependent phase to a

laser pulse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Sum-frequency generation with noncollinear input fields in a uniaxial non-

linear crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.5 A white-light interferometer for optical coherence tomography. . . . . . . . 13

1.6 A Hong-Ou-Mandel interferometer . . . . . . . . . . . . . . . . . . . . . . 15

1.7 A chirped-pulse interferometer. . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1 An optical-coherence-tomography system based on chirped-pulse interfer-

ometry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2 Axial scans of the coverglass sample using transform-limited and BARC pulses. 29

2.3 Two-dimensional images of an onion sample. . . . . . . . . . . . . . . . . . 31

2.4 A three-dimensional image of an onion sample. . . . . . . . . . . . . . . . . 32

2.5 Interfering paths that lead to artifacts in QOCT and CPI. . . . . . . . . . 36

2.6 Cause of the dispersion-dependent frequency shift in CPI with the BARC-

pulse. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.1 Simulation of CPI signal with nonlinearly- and linearly-chirped pulses . . . 48

x



3.2 Comparison of CPI signals produced with linearly-chirped, nonlinearly-chirped,

and transform-limited pulses . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3 Comparison of artifact-free CPI signals produced with linearly-chirped, nonlinearly-

chirped, and transform-limited pulses . . . . . . . . . . . . . . . . . . . . . 53

3.4 A set-up for producing a HOM peak. . . . . . . . . . . . . . . . . . . . . . 55

4.1 CPI set-up with spectrally separated signal and background. . . . . . . . . 64

4.2 OCPI set-up with stable time-delay difference. . . . . . . . . . . . . . . . . 66

4.3 Simulated OCPI signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.4 Grating-based compressor and stretcher . . . . . . . . . . . . . . . . . . . . 70

A.1 Measurement of quadratic dispersion from 6 mm of BK7. . . . . . . . . . . 77

B.1 Layout of KM-Labs Griffin-10 Ti:Sapphire laser . . . . . . . . . . . . . . . 79

xi



Chapter 1

Background

1.1 Low-coherence laser pulses

The experiments in this thesis used a pulsed titanium:sapphire laser which produced broad-

band laser pulses centred around 800 nm. Broadband laser pulses have short coherence

times, and hence they are useful for interferometric imaging techniques as they can pro-

duce narrow interference signals. In the following section some important properties of

low-coherence laser pulses are defined, and techniques to modify their length and shape

are discussed.

1.1.1 Mathematical description of electric field

The electric field is described in the time domain by a real function E(t). The field also has

a complex representation in the frequency domain, E(ω), given by the Fourier transform

of the time-dependent function [6]:

E(ω) = F (E (t)) =

∫ ∞
−∞

dtE(t)e−iωt = |E(ω)| eiφ(ω) (1.1)
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The inverse transform can be performed to obtain E(t) from E(ω):

E(t) =
1

2π

∫ ∞
−∞

dω E(ω)eiωt (1.2)

For convenience, the electric field can be split into two components, E+(ω) and E−(ω),

corresponding to positive and negative frequencies, respectively:

E±(ω) =

{
E(ω) for ± ω ≥ 0

0 for ± ω < 0
(1.3)

In the time domain, the electric field can then be written as a sum of two complex terms

such that E(t) = E+(t) + E−(t) where

E+(t) =
1

2π

∫ ∞
0

dω E+(ω)eiωt (1.4)

E−(t) =
1

2π

∫ 0

−∞
dω E−(ω)eiωt (1.5)

The positive part of the complex electric field, E+(t), can be written as a real amplitude

multiplied by a complex phase:

E+(t) =
1

2
E(t)eiψ(t)eiωlt (1.6)

The carrier frequency of the pulse is ωl, and it is chosen to minimize the variation of

the nonlinear phase term ψ(t). It can be shown [6] that the pulse has an instantaneous

frequency, ω(t), defined as

ω(t) = ωl +
d

dt
ψ(t) (1.7)
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1.1.2 Pulse propagation through dispersive media

As a pulse propagates through an optical medium of length L it acquires a frequency-

dependent phase k(ω)L, and the output field can be related to the input as

Eout(ω) = e−ik(ω)LEin(ω) (1.8)

where the material’s wavevector, k(ω), is given by

k(ω) =
ωn(ω)

c
(1.9)

The material’s index of refraction is n(ω) and c is the speed of light in vacuum. The

wavevector can be Taylor-expanded about the pulse carrier frequency ωl:

k(ω) =
∞∑
n=0

bn(ω − ωl)n (1.10)

The coefficients bn are given by

bn =
1

n!

dn

dωn
φ(ω)

∣∣∣∣
ω=ωl

(1.11)

The n = 0 term adds a constant phase and does not otherwise affect the pulse. The

constant b1 is called the group-delay dispersion (GDD) and it adds a constant delay to

the pulse in the time domain. The b2 term is called the group-velocity dispersion (GVD)

and it adds a time-delay which is linearly dependent on frequency. This has the effect of

either stretching or compressing the pulse in the time-domain but otherwise maintaining

the shape of the amplitude envelope E(t). The higher-order terms also add frequency-

dependent delays and can change the shape of the envelope.

As an example, consider a pulse with a Gaussian electric field envelope, described by

E+(ω) =

{
e−

(ω−ω0)2

4σ2 for ω ≥ 0

0 for ω < 0
(1.12)
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The pulse’s spectral intensity, I(ω), is the squared-magnitude of the spectral amplitude,

|E(ω)|2. Hence I(ω) = e−
(ω−ω0)2

2σ2 . The pulse’s spectral bandwidth is defined as the root-

mean-square width of the spectral intensity, σ. The pulse is now propagated through an

optical medium of length L and wavevector k(ω) = k0 + α(ω − ω0) + β(ω − ω0)2. The

complex electric field of the pulse sent into to the medium is given by

E+
in(t) =

1

2π

∫ ∞
0

dω E+(ω)eiωt (1.13)

≈ 1

2π

∫ ∞
−∞

dω e−
(ω−ω0)2

4σ2 eiωt (1.14)

=

√
σ2

π
e−t

2σ2

eiω0t (1.15)

where the approximation in the second step can be made if the pulse center frequency ω0

is sufficiently greater than σ, such that the e−
(ω−ω0)2

4σ2 ≈ 0 when ω < 0. The input field has

a carrier frequency ω0, and a length in time proportional to σ−1. The output field is given

by

E+
out(t) ≈

1

2π

∫ ∞
−∞

dω e−
(ω−ω0)2

4σ2 e−ik(ω)Leiωt (1.16)

=

√
σ2

π(4iβσ2 + 1)
e
− (t−αL)2σ2

1+(4βLσ2)2 e
i
4(t−αL)2βLσ4

1+(4βLσ2)2 ei(ω0t−k0L) (1.17)

The group-delay term has delayed the output field by a time αL, and the GVD term has

stretched the pulse in time by a factor
√

1 + (4βLσ2)2. Note that the sign of β does not

affect the length of the output pulse. The input pulse is transform limited since its length in

time is the shortest it can be, given its spectral bandwidth. The carrier frequency is still ω0,

but the pulse now has a time-dependent instantaneous frequency given by differentiating

the complex-phase terms of (1.17):

ω(t) = ω0 + (t− αL)
8βLσ4

1 + (4βLσ2)2
(1.18)

The instantaneous frequency increases linearly in time; this is called a chirped pulse (Fig-
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Figure 1.1: Electric field of a chirped laser pulse. The pulse has been chirped with positive
GVD, and the instantaneous frequency of the pulse increases linearly with time.

ure 1.1). If the quadratic dispersion term is large enough to stretch the input pulse to

many times its transform-limited length, (i.e., if βL� 1/σ2), the instantaneous frequency

can be simplified to

ω(t) ≈ ω0 +
t− αL

2βL
(1.19)

1.1.3 Interference and coherence length

Consider the interferometer in Figure 1.2. The input pulse in mode 1 has a positive-

frequency electric field component of E+
1 (ω) ≈ e−

(ω−ω0)2

4σ2 eiφ(ω), where the approximation is

necessary because the right-hand side of the expression includes negative frequencies, while

the left-hand side does not. The pulse has a spectral bandwidth of ω, and an undetermined

complex phase φ(ω).

The pulse is split on a 50:50 beamsplitter and the light reflected into mode 2 acquires

a phase eiπ = −1. The light in both arms is reflected from a mirror and returns to the

beamsplitter. The light in mode 3 acquires an extra time delay τ , represented by the phase

eiωτ . Modes 2 and 3 are combined on the beamsplitter, and the light in mode 3 acquires a
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τ

σσ
1

2

3

4

Figure 1.2: Interferometer for measuring coherence time. An pulse with bandwidth σ is
incident on a 50:50 beamsplitter and each half of the split pulse travels in one arm of a
Michelson interferometer. One arm of the interferometer contains a moveable mirror which
is used to unbalance the path lengths of the interferometer by a distance cτ . The intensity
of light exiting the interferometer is measured as a function of the delay time, τ .

phase eiπ from the reflection. The field in mode 4 is the sum of these fields, given by

E4(ω) =
1√
2
E2(ω)− 1√

2
E3(ω) = −1

2
E1(ω)

(
1 + eiωτ

)
(1.20)

The measured intensity in mode 4 is the squared-magnitude of the field, |E4(ω)|2, integrated

over all frequencies [6]:

I4(τ) =
1

2

∫
dω e−

(ω−ω0)2

2σ2 (1 + cosωτ) (1.21)

=
√

2πσ2
(

1 + e−
τ2σ2

2 cosω0τ
)

(1.22)

The interference signal has a constant-background term and a cosine-modulated interfer-

ence term. The gaussian envelope of the interference term has an RMS width of στ = 1/σ.

This width is the coherence time of the pulse. To obtain an interference signal narrower

than στ , light with a broader bandwidth must be used. Note that the phase on the input
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pulse, φ(ω), is not present in the expression for the interference signal. Hence, changing

the shape of the input pulse in the time-domain does not affect the coherence time of the

pulse.

1.1.4 Custom pulse-shaping

One way to change the temporal profile of a laser pulse is to send it through a dispersive

material, although this does not give one very much control over the pulse shape. It may

be desirable to have the ability to add an arbitrary phase φ(ω) to a pulse, and one way of

doing so is to use a spatial light modulator (SLM) in a 4f set-up [16, 26, 32] as depicted in

Figure 1.3. A pulse impinges on a grating, and the individual frequency components of the

pulse are diffracted [6]. If the pulse is incident on the grating at an angle β from normal

incidence, the frequency component ω′ will be diffracted at an angle β′, given by

sin β′ − sin β =
2πc

ω′d
=
λ′

d
(1.23)

where d is the spacing between grooves in the grating and λ′ is the wavelength corresponding

to frequency ω′. After being diffracted the pulse is deflected from a prism mirror to a curved

mirror with focal length f . The distance along the optic axis from the grating to the mirror

is a distance f , so the mirror collimates the beam. The light travels a distance 2f to a

second curved mirror where it is focused down to a second grating which recombines the

light into a single spatial mode. The SLM is a one-dimensional array of liquid crystals

with refractive indices which are controlled by an applied voltage across each crystal. Each

crystal is independently controlled and can apply a phase between 0 and 2π to light passing

through it. The SLM is positioned halfway between the two mirrors and hence each crystal

applies a phase only to the narrow range of frequencies passing through it. With this system

an arbitrary phase φ(ω) can be applied to the pulse.

7



SLM

2f

G1 G2M1 M2

Figure 1.3: 4f system with SLM for applying a custom frequency dependent phase to a
laser pulse. The input pulse is diffracted at grating G1 and, after being redirected with
a prism mirror, is collimated by mirror M1 with focal length f . The collimated beam
passes through an SLM then hits M2 which is a distance 2f from M1. The pulse is focused
down onto G2 where all frequencies are recombined into a single spatial mode. Each liquid
crystal in the SLM is independently controlled and applies a phase shift between 0 and 2π
to the light passing through it, hence an arbitrary phase φ(ω) can be applied to the pulse.
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1.2 Second-order nonlinear materials

When an electric field E(t) interacts with a material it induces a polarization P (t) in

the material [4]. Making the assumptions that the material is lossless, dispersionless, and

responds instantaneously to the electric field, the polarization can be represented by

P (t) = χ(1)E(t) + χ(2)E2(t) + χ(3)E3(t) + . . . (1.24)

where χ(1) is a constant known as the linear susceptibility, and χ(n) are n-th-rank tensors

called the n-th-order nonlinear optical susceptibilities when n > 1. The χ(n) terms are

material-dependent and they relate the strength of the material’s response to the n-th-

order terms of the electric field. These terms are represented as scalars in this discussion,

for simplicity. The electric field of two monochromatic plane waves of frequencies ω1 and

ω2 is given by [4]

E(t) = E1e
−iω1t + E2e

−iω1t + c.c. (1.25)

where E1 and E2 are the amplitudes of the waves. A field of this form will induce a

second-order polarization of

P (2)(t) = χ(2)E2(t) (1.26)

= χ(2)[E2
1e
−2iω1t + E2

2e
−2iω2t + 2E1E2e

−i(ω1+ω2)t

+ 2E1E
∗
2e
−i(ω1−ω2)t + c.c.] + 2χ(2) [E1E

∗
1 + E2E

∗
2 ]

(1.27)

The first two terms oscillate with frequencies 2ω1 and 2ω2, and these describe a process

known as second-harmonic generation, in which light is created at these doubled frequen-

cies. The second two terms oscillate with frequencies ω1 + ω2 and ω1 − ω2, and these are

related to the processes sum-frequency generation (SFG) and difference-frequency genera-

tion.

Here we will focus on SFG. Each of the waves ω1, ω2, and ω3 = ω1 + ω2 will have a

momentum wavevector in the nonlinear material ki = niωi/c where ni is the material’s
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refractive index at the i-th frequency. The wavevector mismatch, ∆k is defined as

∆k = k1 + k2 − k3 (1.28)

It can be shown [4] that the intensity of SFG light at the frequency ω3 = ω1 + ω2 is given

by

Iω3 = AL2sinc2

(
∆kL

2

)
(1.29)

where A is a constant proportional to the intensities of the input fields E1 and E2 as well

as the strength of the second-order nonlinearity, χ(2). L is called the interaction length;

it is the length over which the two fields overlap inside the nonlinear crystal. For small

values of L the intensity of the field increases quadratically with L. However, the efficiency

of the SFG process quickly drops to zero as ∆kL becomes large.

1.2.1 Phase-matching

For better SFG efficiencies it is desirable for ∆k to be small so the input fields can interact

over a longer region L. The above discussion can be generalized to describe SFG with

noncollinear input beams in birefringent nonlinear materials [4]. A birefringent material has

a refractive index that is dependent on the polarization of the electric field. A birefringent

uniaxial material is defined by an optic axis; light with ordinary polarization is polarized

perpendicularly to the plane created by the propagation vector ~k and the optic axis, and

light with polarization in this plane is said to have extraordinary polarization. A uniaxial

material and exhibits refractive indices no and ne for light that is polarized in the ordinary

and extraordinary directions, respectively.

Figure 1.4 depicts an SFG set-up with noncollinear fields in a negative uniaxial crystal

(where ne < no). The two input fields have ordinary polarization, and the noncollinear

angle between their propagation directions is 2ψ. The output field has extraordinary po-

larization, and propagates in the ẑ-direction. The electric field with frequency ωi has

wavevector ~ki, and, for small noncollinear angles, the wavevector mismatch can be approx-

imated by the mismatch in the ẑ-direction. The condition for perfect phase-matching is

10



Figure 1.4: Sum-frequency generation with noncollinear input fields in a uniaxial nonlinear
crystal. Two fields with wavevectors ~k1 and ~k2 enter a nonlinear material with noncollinear
angle 2ψ between them. The material has an optic axis ~c, an angle θ from the wavevector
of the upconverted light, ~k3.

then

ne3ω3 = (no1ω1 + no2ω2) cosψ (1.30)

If the angle between the material’s optic axis and a field’s propagation vector ~k is θ, the

refractive index for the extraordinary polarization will be [4]

1

ne(θ)2
=

sin2(θ)

n̄2
e

+
cos2 θ

n2
o

(1.31)

The parameter n̄e is the principal extraordinary index, which is the value of ne when

θ = π/2. Substituting (1.31) into (1.30) gives

ne3(θ)ω3 = (no1ω1 + no2ω2) cosψ (1.32)

which can be rearranged to give

sin2 θ =

1
(no(ω1)ω1+no(ω2)ω2)2 cos2 ψ

− 1
n2
o(ω3)ω2

3

1
ω2

3

(
1

n̄2
e(ω3)

− 1
n2
o(ω3)

) (1.33)

Hence the wavevector mismatch can be minimized by tuning the crystal angle θ and the

noncollinear angle Ψ.
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1.3 Optical coherence tomography

Optical coherence tomography (OCT) is an interferometric imaging technique which can

be used to reconstruct the three-dimensional interior structure of a sample [9, 23, 31, 33].

A basic OCT set-up is shown in Figure 1.5. Light of bandwidth σ enters a Michelson

interferometer which contains a sample in one arm (mode 1) and a moveable delay mirror

in the other (mode 3). Light enters the sample and is reflected from different layers within

the sample. The light from both interferometer arms is recombined on the beamsplitter,

and the intensity of light in mode 3 is measured as a function of the delay τ in the reference

arm. An interference pattern will be measured when the interferometer path lengths are

balanced to within the coherence length of the source light, 1/σ. For a sample with multiple

internal reflecting interfaces, interference patterns will be observed at many values of τ

corresponding to the positions of these interfaces. If the sample is moved laterally on a

stage, many adjacent axial depth scans can be performed, and the results stitched together

to form a two- or three-dimensional image of the internal sample structure.

Assuming that the light source has a gaussian frequency spectrum, the incoming electric

field can be expressed in the frequency domain as E(ω) = Ee−(ω−ω0)2/4σ2
, where ω0 is the

center frequency, σ is the pulse bandwidth, and E is a complex amplitude. The light in mode

1 reflects from a layer a distance L below the sample surface, and the light in mode 2 reflects

from the mirror which adds a delay τ . The sample has a wavevector of light k(ω) which

can be expanded about the center frequency ω0 to give k(ω) ≈ k0 +α(ω−ω0)+β(ω−ω0)2.

The phase acquired in mode 1 is represented by φ1(ω) = 2k(ω)L and φ2(ω, τ) = ωτ is the

phase on the light in mode 2. The field in mode 3 is the sum of the fields in modes 1 and

2, E3(ω, τ) = E(ω)eiφ1(ω) +E(ω)eiφ2(ω,τ), and the measured signal, I(τ), is the intensity in

mode 3 given by:

I(τ) =

∫
dω |E3(ω, τ)|2 (1.34)

=
1

2
|E|2

∫
dωe−

(ω−ω0)2

2σ2
∣∣1 + cos

(
2L(k0 − αω) + (2Lα− τ)ω + 2Lβ(ω − ω0)2

)∣∣
(1.35)
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Figure 1.5: A white-light interferometer for optical coherence tomography. A laser with
bandwidth σ is incident on a 50:50 beamsplitter. Half of the light reflects from a depth L
inside a sample with wavevector k(ω), and the other half is delayed in the reference arm
by a time τ . The light is recombined on the beamsplitter, and the signal is measured with
a square-law detector. An interference pattern will be measured when the path lengths of
the interferometer arms are balanced to within the coherence time of the light, 1/σ.
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Evaluating this signal gives an interference pattern which has an envelope proportional to

the following gaussian function:

exp

[
−τ

2

2

σ2

√
1 + ε2σ4

]
(1.36)

where the simplification ε = 2Lβ has been used.

The signal’s width is a minimum when no unbalanced second-order dispersion is present,

and it has a value of ∆τsignal = 1/σ. To increase the resolution of a white-light interferom-

eter, a higher-bandwidth source can be used. However, in the high-dispersion limit where

ε2σ4 � 1, the signal width is ∆τsignal = εσ2. Hence using a higher-bandwidth source will

amplify the negative effects of the second-order dispersion, which can have the undesirable

effect of decreasing the interferometer resolution.

1.3.1 Quantum optical coherence tomography

Quantum optical coherence tomography (QOCT) is an interferometric imaging technique [1,

19, 20] which produces a signal with a width inversely proportional to the bandwidth of the

interfered light, but which is insensitive to the presence of unbalanced quadratic dispersion

in the interferometer [27, 28]. QOCT uses a Hong-Ou-Mandel (HOM) interferometer [12],

which interferes pairs of frequency-entangled photons; the two photons in each pair travel

through different arms of the interferometer, where they are recombined on a beamsplitter.

If the two photons arrive at the beamsplitter at different times, they will each be inde-

pendently reflected or transmitted with probability 1/2. If they arrive at the same time,

however, they will interfere and “bunch”, meaning that they will both exit from the same

beamsplitter mode [12]. The QOCT signal is measured by placing single photon detectors

in each output of the beamsplitter and recording the number of detection coincidences as

a function of the time delay. This produces a dip when the interferometer path lengths are

balanced.

Figure 1.6 depicts a HOM interferometer. The photon pairs are produced by sponta-

neous parametric down-conversion (SPDC), a process in which a single (pump) photon of

frequency ω3 is split into two lower-energy photons with frequencies ω1 and ω2. Due to

14
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Figure 1.6: A Hong-Ou-Mandel interferometer. A narrowband laser of frequency 2ω0

pumps a nonlinear crystal to produce broadband photon pairs (with state |ψ1,2〉) via sponta-
neous parametric down-conversion. For each pair of photons produced, one travels through
the sample arm of the interferometer and one travels through the reference arm. The dis-
persive element in the sample arm adds a phase k(ω)L, and the reference arm adds a delay
ωτ . When the path lengths of the interferometer are balanced the photons bunch at the
beamsplitter and are emitted as a pair into either mode 3 or 4, and no coincidence counts
are registered by the detectors.
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energy conservation, ω1 + ω2 = ω3. The two-photon state |ψ1,2〉 produced is

|ψ1,2〉 =

∫
dω1dω2f(ω1, ω2)|ω1〉|ω2〉 (1.37)

where f(ω1, ω2) is the two-photon joint spectrum. For degenerate SPDC the two downcon-

verted photons have frequencies centered at ω0, and their joint spectrum can be modelled

as [24]:

f(ω1, ω2) = exp

[
−(ω1 − ω0)2

4σ2

]
exp

[
−(ω2 − ω0)2

4σ2

]
exp

[
−(ω1 + ω2 − 2ω0)2

4σ2
c

]
(1.38)

The parameter σc can be thought of as the bandwidth of the pump photon, and this

determines the strength of correlation between the two downconverted photons. When

σc/σ � 1, the third exponential becomes extremely narrow, and the relation ω1 +ω2 = 2ω0

is enforced. In the opposite limit where σc/σ � 1, the joint spectrum becomes separable

in the variables ω1 and ω2, and the photons become completely uncorrelated in frequency.

We will show below that the QOCT signal is insensitive to quadratic dispersion in the high-

correlation limit (i.e., when a narrowband pump photon is downconverted into a broadband

photon pair). The bandwidths of the downconverted photons are related, but not equal,

to σ. To read the bandwidth of photon 1, for example, photon 2 must be traced out of

the state |ψ1,2〉. In the high-correlation limit σc/σ � 1, the bandwidth of photon 1 is then

σ1 = σ/
√

2. In the low-correlation limit, tracing out photon 2 has no effect on photon 1,

and a measurement would show that σ1 = σ. A detailed discussion of the single-photon

bandwidths can be found in section 3.2.1.

The photons can take two paths through the interferometer that lead to coincidence

counts – both photons are either transmitted or reflected at the beamsplitter with am-

plitudes Att(ω1, ω2, τ) and Arr(ω1, ω2, τ). Since the detectors count photon numbers, the

coincidence signal is proportional to the square of the sum of these amplitudes [24]:

C(τ) =

∫∫
dω1dω2 |Att(ω1, ω2, τ) + Arr(ω1, ω2, τ)|2 (1.39)

The amplitudes depend on the phase acquired by each photon as it passes through the

16



interferometer. Applying the same phases as for the white-light interferometer above, but

dropping the group-delay term (which only shifts the signal in the delay τ), the amplitudes

are

Att(ω1, ω2, τ) = f(ω1, ω2)eiε(ω1−ω0)2+i(ω2−ω0)τ (1.40)

Arr(ω1, ω2, τ) = −f(ω2, ω1)eiε(ω2−ω0)2+i(ω1−ω0)τ (1.41)

where ε = βL is the quadratic phase introduced by the material in the sample arm.

Using the symmetry of the two-photon bandwidth function, f(ω1, ω2, τ) = f(ω2, ω1, τ),

and evaluating the integral gives a coincidence signal of:

C(τ) ∝ 1−

√
2σ2 + σ2

c

2σ2 + σ2
c + 4ε2σ4σ2

c

e
− τ

2

2

2σ2(2σ2+σ2
c )

(2σ2+σ2
c+4ε2σ4σ2

c ) (1.42)

This signal is a gaussian which has been subtracted from a constant background of coinci-

dence counts. This produces a dip which has a width in time of:

∆τ =
1√
2σ

√
1 +

4ε2σ4σ2
c

2σ2 + σ2
c

(1.43)

In the high-correlation limit, we have that σc/σ � 1 and σc/(εσ
2) � 1. Furthermore, in

this limit the single-photon bandwidth is σsp = σ/
√

2 leading to a width of ∆τ = 1/2σsp.

When the two photons are highly anticorrelated in frequency, the QOCT signal is insensi-

tive to the presence of unbalanced quadratic dispersion. Furthermore, it is interesting to

note that, for light sources with the same single-photon bandwidths, QOCT has a better

resolution than WLI by a factor of two.

QOCT has two major disadvantages, the first being the QOCT signal is limited to

very low powers. SPDC is a very inefficient process, as typically only 1 in every 106 − 108

photons will be downconverted into a pair. Furthermore, photon pairs must be produced

at a rate such that, with a high probability, at most only one photon pair will arrive

at the detectors in the time period of the coincidence detection window. The fastest

detectors currently available have coincidence windows on the order of 100 ps. The best
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rates for the production and detection of entangled photon pairs is on the order of 106

pairs per second [2, 8]. The second disadvantage of QOCT is the presence of additional

interference features in the signal called artifacts which can appear when a multilayer

sample is imaged. The origin of these artifacts can be thought of as interference between

the constant backgrounds of coincidence counts caused by reflections from different sample

layers, and this interference can be either constructive or destructive (or somewhere in

between). Artifacts occur between every pair of “real” signals corresponding to actual

sample interfaces, and thus their number grows quadratically with the number of sample

interfaces. In theory, artifacts can be filtered from the QOCT signal by using fast detectors

with coincidence windows on the order of 10 fs, but this is infeasible with current technology.

An in-depth discussion of the cause of artifacts in QOCT can be found in Section 2.7.1.

1.3.2 Chirped-pulse interferometry

Chirped pulse interferometry (CPI) is the time-reversed, classical analogue of QOCT.

Frequency-anticorrelated pairs of laser pulses impinge on a beamsplitter, are sent through

an interferometer, and are overlapped inside a nonlinear crystal where they undergo SFG [13,

24]. The signal produced by the setup in Figure 1.7 produces a dip when the interferometer

arms are balanced. When the frequency anticorrelations are strong the dip is insensitive

to unbalanced quadratic dispersion in the interferometer.

The frequency-anticorrelated pulses needed for CPI are created by oppositely chirp-

ing two halves of a laser pulse which has been split in half. If the pulses are chirped

via the quadratic phase φ±(ω) = ±A(ω − ω0)2, their frequencies will vary linearly with

time, following the function ω(t) ≈ ω0 ± t/(2A). The pulses are recombined on the input

beamsplitter of the interferometer such that the center frequency ω0 of both halves arrives

at the beamsplitter at the same time. When the magnitude of chirp stretches the pulse

to many times more than its transform-limited length (i.e., when A � 1/σ2), the instan-

taneous frequencies of the two pulses will sum to a narrow band of frequencies centered

around 2ω0. When the interferometer arms are balanced, there are two processes which

will produce this SFG light at 2ω0; either antichirped light from the sample arm upconverts

with chirped light from the reference arm, or vice versa. A source of background is SFG
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τ

L

k(ω)

Figure 1.7: A chirped-pulse interferometer. A CPI set-up can be viewed as a time-reversed
HOM-interferometer. Chirped and antichirped laser pulses are overlapped on a beam-
splitter such that both beamsplitter outputs contain a superposition of a chirped and an
antichirped laser pulse. The pulses are overlapped such that at any point along the su-
perposition, the sum of the instantaneous frequencies is 2ω0. After travelling through the
interferometer the light is recombined on a nonlinear crystal where it undergoes SFG. The
CPI signal is the intensity of SFG light near 2ω0 as a function of the time delay τ .
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light that is created by summing light that comes from the same interferometer arm. Due

to conservation of momentum, this background will be in a different spatial mode than

the CPI signal, and it can be filtered out spatially. This background has narrowband and

broadband components created by upconverting oppositely- and identically-chirped com-

ponents of the pulse, respectively. The broadband component of the background can be

additionally filtered from the signal with a spectrometer. The CPI signal is the intensity of

SFG light measured as a function of reference-arm delay, and the electric field amplitude

of this light is given by the convolution of the fields in the sample and reference arm:

Esignal(ω) ∝
∫
dω′E1(ω′)E2(ω − ω′) (1.44)

The chirped and antichirped fields are given by E±(ω) = Ee−
(ω−ω0)2

4σ2 eiφ±(ω), and the fields

collect the usual phases from the sample and reference arms. Hence, E1 and E2 are given

by:

E1(ω) = [E+(ω) + E−(ω)] eiε(ω−ω0)2

(1.45)

E2(ω) = [E+(ω)− E−(ω)] eiωτ (1.46)

(1.47)

where once again the group delay term has been dropped and ε = Lβ. The SFG field is

then:

Esignal(ω, τ) ∝
∫
dω′
{
E+(ω′)E+(ω − ω′) + E−(ω′)E−(ω − ω′)

+ E−(ω′)E+(ω − ω′)− E+(ω′)E−(ω − ω′)
}
eiε(ω

′−ω0)2

ei(ω−ω
′)τ

(1.48)

≈
∫
dω′ [E−(ω′)E+(ω − ω′)− E+(ω′)E−(ω − ω′)] eiε(ω′−ω0)2

ei(ω−ω
′)τ (1.49)

The first two terms in (1.48) describe a broadband SFG background, and the remaining

two terms describe higher-intensity, narrowband SFG at 2ω0. The narrowband light forms

the majority of the signal at frequencies near 2ω0, and if the SFG is spectrally filtered
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near 2ω0, the SFG field can be approximated by dropping the broadband terms. The CPI

signal is thus the measured intensity of the narrowband light, which is expressed as:

I(τ) =

∫
dω |Esignal(ω, τ)|2 (1.50)

Evaluating the integrals and taking the large-chirp limit where A� 1/σ2 is satisfied gives

a CPI signal of:

I(τ) ∝ 1− exp

[
−τ

2

2

8σ6(1 + 2(2A2 + ε2)

16A2σ4 + (1 + 8ε2σ4)2

]
(1.51)

which is a constant background with a dip at τ = 0, similar to the QOCT signal. The

width of this dip is:

∆τ =
1√
2σ

√
1 + 4ε2σ4

(
2 + 16ε2σ4

1 + 16A2σ4 + 8ε2σ4

)
(1.52)

The resolution-degrading effects of dispersion are minimized by chirping the two beams.

When the chirp is much larger than the unbalanced dispersion (i.e., when A� ε), the CPI

dip-width is ∆τ = 1/
√

2σ, which is insensitive to quadratic dispersion.

CPI has an advantage over QOCT in that it can be much more efficient. In practice,

SFG can have very high efficiency with short laser pulses, but SPDC can not. Further-

more, the maximum power of the CPI signal isn’t limited by coincidence detection. Early

demonstrations of CPI produced a signal with an intensity that was ∼ 107 times greater

than that acheivable with QOCT [13, 15]. Artifact signal features are present in CPI, how-

ever they are spectrally separated from the main CPI signal at 2ω0. Hence, as explained

in Section 2.7.1, they can be easily filtered from the signal with a spectrometer.
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Chapter 2

Dispersion-cancelled biological

imaging with quantum-inspired

interferometry

2.1 Notes and acknowledgements

In this chapter we use a chirped-pulse interferometry system to image a biological sample,

namely, the cells of an onion. This is a proof-of-principle experiment with the goal of

demonstrating the first dispersion-cancelled image of the interior of a biological sample.

We were able to image the interior structure of an onion to a depth of about 0.5 mm with

a resolution of a few microns. The image resolution wasn’t degraded by the quadractic

dispersion introduced from a 3-mm-thick BK7 glass window placed in front of the sample.

Furthermore, we were able to filter all artifacts out of our signal, allowing us to produce

clear, uncluttered images.

Notice

The content of this chapter has been published in:
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M. D. Mazurek, K. M. Schreiter, R. Prevedel, R. Kaltenbaek, and K. J. Resch. Dispersion-

cancelled biological imaging with quantum-inspired interferometry. Scientific Reports 3,

1582

Author Contributions

Kevin Resch and Rainer Kaltenbaek conceived of the experiment.

Kurt Schreiter, Rainer Kaltenbaek, and Robert Prevedel set up the pulse shaper

and cross correlator and performed preliminary experiments.

Kurt Schreiter wrote the control software and calibrated the SLM.

Michael Mazurek modified the setup and performed the experiments and simulations

presented here, and along with Robert Prevedel analyzed the data.

Michael Mazurek and Kevin Resch wrote the first draft of the manuscript.

All authors contributed to the final version.

2.2 Overview

Quantum information science promises transformative impact over a range of key tech-

nologies in computing, communication, and sensing. A prominent example uses entangled

photons to overcome the resolution-degrading effects of dispersion in the medical-imaging

technology, optical coherence tomography. The quantum solution introduces new chal-

lenges: inherently low signal and artifacts, additional unwanted signal features. It has

recently been shown that entanglement is not a requirement for automatic dispersion can-

cellation. Such classical techniques could solve the low-signal problem, however they all still

suffer from artifacts. Here, we introduce a method of chirped-pulse interferometry based

on shaped laser pulses, and use it to produce artifact-free, high-resolution, dispersion-

cancelled images of the internal structure of a biological sample. Our work fulfills one of

the promises of quantum technologies: automatic-dispersion-cancellation interferometry in

biomedical imaging. It also shows how subtle differences between a quantum technique

and its classical analogue may have unforeseen, yet beneficial, consequences.
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2.3 Introduction

Quantum information science promises powerful and unconventional capabilities across a

broad range of technologies. An important example relates to the imaging technology, op-

tical coherence tomography (OCT). OCT can noninvasively reconstruct the 3-dimensional

structure of tissue with micron resolution [23]; it is emerging as an important clinical tool

with diverse medical applications. OCT can diagnose retinal diseases such as glaucoma,

analyze artherosclerotic tissues within arteries, and detect early-stage cancerous lesions in

breast tissue [9, 33]. In addition, OCT has found application in precision laser machin-

ing [31]. Since OCT relies on low-coherence interferometry, its axial resolution is limited by

the coherence length of the light, inversely proportional to the bandwidth. The coherence

length determines ultimate resolution, however material dispersion can limit the practical

one.

Fundamental studies in quantum optics showed that interference with energy-time en-

tangled photon pairs [12] exhibits inherent robustness against unbalanced dispersion [27,

28]. Even-order effects of dispersion, including the dominant group-velocity dispersion, are

automatically cancelled, effectively solving the dispersion problem. This dispersion can-

cellation is automatic since one does not need to precisely measure and compensate the

dispersion. When energy-time entanglement is strong, but not perfect, the effect is more

accurately described as automatic even-order dispersion reduction since the dispersion is

dramatically reduced, not cancelled [24]. OCT based on entangled-photon interferometry

was proposed to harness automatic dispersion cancellation [1]. This quantum-optical coher-

ence tomography (QOCT) has two significant barriers to practical implementation. Firstly,

the reliance on producing and resolving individual photon pairs places stringent limits on

the QOCT signal using state-of-the-art systems [2, 8]. Secondly, in samples with multiple

interfaces, QOCT produces a signal for each interface and an additional, artifact feature

for each unique pair of interfaces [1, 20, 29]; the number of artifacts grows quadratically

with the number of interfaces, cluttering the image of complex samples. QOCT was first

used to perform an axial scan of a coverslip [20] and later applied to measure the surface

topography of a gold-coated onion sample [19]. The gold coating was essential to increase

reflectivity but rendered the technique impractical for in vivo applications; furthermore,
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it prevented imaging the sample’s internal structure, which is one of the main benefits of

OCT and necessary for most medical applications.

Recently, several different approaches have shown that dispersion cancellation does

not require entanglement, but can also be observed in classical systems [3, 7, 11, 13, 25].

While all of these methods could, in principle, solve the low-signal problem of QOCT, each

suffers from unwanted artifacts. Here we focus on one of these techniques, chirped-pulse

interferometry (CPI). A method for identifying artifacts in CPI has been demonstrated,

but it requires multiple axial scans of a sample and is thus inherently slow [15].

In the present work, we describe and demonstrate a new method for CPI using a single

beam of shaped laser pulses. Our method produces background-free, dispersion-cancelled

signals, completely free of artifacts without multiple scans. We apply this technique to

image a biological sample, demonstrating dispersion cancellation and observing the sam-

ple’s internal structure. CPI overcomes both limitations of QOCT while retaining its

advantages, demonstrating its potential for future practical application.

2.4 Results

2.4.1 Theoretical description.

CPI uses classical light with strong frequency anti-correlations. To create these anti-

correlations, we constructed a 4-F pulse shaper with a spatial light modulator (SLM) [32,

16]. In CPI, this method has distinct advantages over pulse-stretching techniques with bulk

optics [22, 17], including: straightforward optimization of the chirp parameter [24], better

stability and efficiency, and more complex pulse shapes. We apply a frequency-dependent

phase shift to the laser pulses, φ(ω) = −A(ω−ω0)|ω−ω0|, where A is a positive constant.

The absolute value distinguishes this from the quadratic phase leading to linear chirp:

φ(ω) applies a linear chirp to red-shifted frequencies (ω < ω0) and an equal, opposite chirp

(antichirp) to blue-shifted frequencies (ω > ω0). The resulting pulse has frequency ω0 at

its lagging edge, and instantaneous frequencies in the preceding part of the pulse obey the

function ω(t) ≈ ω0 ± t
2A

(−∞ < t ≤ 0). These are the frequency anti-correlations needed
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for CPI. We refer to this as a Blue-Antichirped-Red-Chirped (BARC) pulse.

CPI can be understood by considering the schematic in Figure 1a. Light in the upper

arm of the interferometer travels through a dispersive material of length L as well as a

distance L1 − L through free space; light in the lower arm travels a distance L2 through

free space. The dispersive material in the upper arm has a wavevector of light that can be

expanded about frequency ω0 as k(ω) = k(ω0) +α(ω−ω0) +β(ω−ω0)2 + . . . , where α and

β describe the group delay and group velocity dispersion, respectively. At any time, two

laser beams with frequencies ω0+∆ and ω0−∆ enter the interferometer with corresponding

amplitudes E(∆) and E(−∆). After travelling through the interferometer they overlap at

the nonlinear crystal for sum-frequency generation (SFG). Two paths produce SFG with

frequency 2ω0; either blue-shifted light travels the upper arm and red-shifted light travels

the lower arm, or vice versa. The amplitudes for these two paths interfere to give a signal

S(∆, τ) = |E(∆)E(−∆)|2 (1 + cos [φ+(∆, τ)− φ−(∆, τ)]), where τ = (L2−L1 +L)/c is the

time delay between the two paths [13]. To second order in the wave-vector and ignoring a

global phase, the respective phases of the two paths are, φ±(∆, τ) = L(±α∆ +β∆2)∓∆τ .

The final signal results from integrating ∆ over the pulse bandwidth, forming a peak at

τ = αL [14]. Since unbalanced dispersion contributes the same phase β∆2 to each path,

the effect cancels out of the final signal; this is automatic dispersion-cancellation. With

imperfect anti-correlations, dispersion cancellation persists if the unbalanced dispersion is

much less than the chirp parameter, A [24].

Ideally, each interference signal would correspond to an interface in the sample. How-

ever, in both QOCT [20] and CPI [15] an additional artifact signal appears halfway be-

tween the signals arising from each pair of interfaces. In complex samples, artifacts can

outnumber the features from real interfaces, seriously impeding reconstruction and inter-

pretation. The origin of the artifacts in these two techniques are subtly, but importantly

different (see Figure 2.5). Artifacts in CPI are a result of interference in the SFG light

at frequencies blue-shifted or red-shifted from the operating frequency, 2ω0, by an amount

∆ω = ∆τ/(4A), where ∆τ is the time-delay difference between the two sample interfaces.

Spectral filtering of the SFG can remove all artifacts arising from pairs of interfaces sep-

arated by more than some minimum delay. The analogous method of artifact removal in

QOCT requires coincidence detection with tens of femtoseconds time-resolution, which is
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Figure 2.1: An optical-coherence-tomography system based on chirped-pulse interferom-
etry. a A simplified schematic of CPI. A common-mode pair of classical beams with
anticorrelated frequencies impinges on a beamsplitter and the two resulting paths overlap
in a β-barium borate (BBO) crystal for sum-frequency generation (SFG) after one path
experiences a variable delay, τ , and the other passes through a dispersive material which
has frequency-dependent wave-vector k(ω). The frequency offset, ∆, is swept over the
bandwidth of the input pulses. The CPI signal then is the intensity of the SFG light near
2ω0 as a function of τ . This signal is inherently robust against unbalanced dispersion. b
The experimental implementation. Broadband pulses from a titanium:sapphire laser pass
through a 4-F pulse-shaper, [32, 16] the light is then split into a beam that reflects from
the sample in the focus of a lens, and a beam that travels a variable-length delay. The
delay and the x- and y-positions of the sample are motorized. A stack of BK7 glass in the
reference arm introduces dispersion equal to that of the static optical elements in the sam-
ple arm, including the BK7 window and water layer in the sample holder, but excluding
the samples themselves. The pulse shaper compensates for this static, balanced dispersion
throughout the experiment such that the laser pulse is transform limited at the nonlinear
crystal. The pulse shaper can add an additional phase shift, φ(ω), to produce the BARC
pulse shape at the crystal. Inserting an extra 3 mm-thick BK7 window in the sample arm
introduces a controlled amount of unbalanced dispersion. Light from the two interferom-
eter arms is focused onto a nonlinear crystal and undergoes non-collinear SFG. The SFG
light passes through a spatial filter and a monochromator, and the signal is measured as a
function of time delay using a photomultiplier. Illustration of the cross-sections of the two
samples, c microscope coverglass slides and d a piece of onion. Each sample was held in a
lens tube, and placed behind a layer of distilled water and a 1 mm thick BK7 window; the
2.7 mm water layer prevented drying of the onion sample.
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extremely difficult in practice.

2.4.2 Experimental setup and characterization.

Our experimental set-up is shown in Figure 2.1b. We used this system to image a stack of

two microscope coverglass slips (Figure 2.1c) and an onion (Figure 2.1d). First, we focus

on the coverglass sample to benchmark our system performance. We measure the SFG

power as a function of time delay, τ , with two types of pulses, a transform-limited (TL)

pulse and the BARC pulse. Using the TL pulse is equivalent to OCT with background-free

autocorrelation [21], which does not suffer from artifacts but is not dispersion cancelling.

In order to remove artifacts from signals acquired with BARC pulses the SFG signal is

sent through a 0.35 nm bandwidth filter. See Methods for more details.

The data measured using TL and BARC pulses are shown in Figures 2.2a and b,

respectively. Black (red) lines show data without (with) unbalanced dispersion from 3 mm

BK7 in the sample arm, where the light passes twice through the glass. The left-most

four peaks correspond to the front and back surfaces of the first and second coverglass

pieces. The average delay between the first (second) two peaks is 248±4µm (236±4µm).

Dividing by the group index ng = 1.517 of the coverglass gives thicknesses of 163µm and

156µm for the two slides, in good agreement with 164 ± 3µm and 157 ± 3µm measured

with a caliper. We subtracted a constant 1.6 mm from the delay-arm motor position in the

unbalanced-dispersion data to compensate for the group delay from the additional glass so

corresponding peaks could be overlayed for comparison.

Figures 2.2a and b show that no additional artifact features arise going from a TL

to a BARC pulse. In section 2.7.1, we show the maximum layer separation giving rise

to artifacts is 3µm, narrower than the peak widths, 4.2µm. As expected, any resolvable

artifacts are filtered out of our signal.

The average signal peak width for the TL pulses is 3.6±0.2µm (FWHM) which broad-

ened by 106% to 7.4 ± 0.6µm by the dispersion. Uncertainties represent the standard

deviations of the five peak widths. In contrast, the BARC-pulse produced average signal

widths of 4.2± 0.1µm that broadened by only 7% to 4.5± 0.2µm, demonstrating disper-

sion cancellation. The measured peak widths for the TL and BARC pulses are in good
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Figure 2.2: Axial scans of the coverglass sample using a transform-limited pulses and b
BARC pulses. Each set of data shows five distinct peaks; the left-most four arise from
the front and back surfaces of each of the two coverglass slides while the final right-most
peak is from the BK7 base of the sample holder. Each peak is associated with a real
interface and the BARC-pulse signal shows no additional features as compared with a.
Thus any artifacts have been effectively removed by our filtering technique. The black
(red) data were taken without (with) the removable 3 mm BK7 in the sample arm. The
numerical labels denote each peak width in microns (FWHM). The peaks in a from the
transform-limited pulses were broadened by 106% from the unbalanced dispersion, while
that in b from the BARC pulses were broadened by just 7%. Dispersive broadening can be
observed directly by zooming in on the pair of peaks near motor position 0.25 mm shown in
the insets. These data demonstrate automatic dispersion cancellation in our chirped-pulse
interferometer.
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agreement with the theoretical calculations of 3.4µm and 4.1µm, respectively, using the

60 nm acceptance bandwidth of our system. The peak width of the BARC-pulse signal

is broadened compared to the TL pulses as a result of the narrow filtering of the SFG; if

a broader bandwidth was measured instead, the widths become equal, but artifacts can

reappear. The dispersion cancellation observed cannot be explained by the slightly broader

BARC-pulse signal in the balanced dispersion case. If one used a TL pulse yielding a 4.2µm

peak width in the absence of dispersion, equal to the width to our BARC-pulse signal, we

calculate that two passes through 3 mm BK7 glass would broaden the signal to 5.8µm, a

38% increase. Our BARC-pulse signal is broadened by 7%, thus the dispersion cancellation

is significant even when compared with this conservative benchmark.

2.4.3 Dispersion-cancelled biological imaging.

We prepared a sample of onion as depicted in Figure 2.1d and took a set of axial (z) scans,

moving the sample in the y-direction between scans. The data are displayed in Figure 2.3,

where the four panels a, b, d, and e show cases with and without dispersion (3 mm BK7) for

both TL and BARC pulses. The vertical axes are the delay-arm motor positions and the

horizontal axes show the transverse y-positions. The images show the cellular structure of

the onion deep into the sample and are artifact-free. Beside each image, we show a single

axial scan taken at the y-position marked by the red line in each plot. The TL-pulse signal

peaks are dramatically broadened when unbalanced dispersion is added, but the BARC-

pulse peak widths are unchanged, directly demonstrating automatic dispersion cancellation

in our image. In order to compare the effect of dispersion over the entire images produced

by the TL pulses and BARC pulses, we recorded the widths of signal peaks throughout the

images and display corresponding histograms in Figures 2.3c and f. The TL-pulse peaks

broadened by 61% from an average of 3.6 ± 0.5µm to 5.7 ± 1.2µm, where uncertainties

are the standard deviations of each distribution. The BARC-pulse peak widths increased

by only 4% from 4.2 ± 0.8µm to 4.3 ± 0.6µm, less than the standard deviation. Hence,

dispersion is cancelled througout the BARC-pulse images.

To further show the capability of our method, we took a set of axial (z) scans over a grid

of x- and y-positions of a different onion sample prepared in the same manner as before,
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Figure 2.4: A three-dimensional image of an onion sample. Using BARC pulses with no
unbalanced dispersion, we took a set of axial (z) scans at a grid of x- and y-positions on
an onion sample. Panels a, b, and c show 2D cross-sectional images of our 3D data in the
xz, yz, and xy planes depicting the cellular structure. In panel d, we show a 3D rendering
of the surface layer of cells extracted from our data. The grid spacing is 50µm, and the
transparent red planes correspond to the slices shown in panels a, b, and c.
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using the BARC pulses with no unbalanced dispersion. From this data, we extracted

2D cross-sections of the sample shown in Figures 2.4a–c and the 3D cell wall structure

of the top layer of cells is shown in Figure 2.4d. Thus CPI, with its inherent dispersion

cancellation, is suitable for practical 3D imaging of biological samples.

2.5 Discussion

We have demonstrated dispersion-cancelled, artifact-free, optical-coherence-tomography

imaging of a biological sample. For future work, incorporating a nonlinear material with

larger nonlinearity and acceptance bandwidth [21, 18] will improve the system, increas-

ing acquisition rates and image resolution. Dispersion-cancelled OCT with chirped-pulse

interferometry draws upon insights from quantum information science. Exploiting sub-

tle differences in the analogous roles played by different physical parameters between the

techniques allowed problems inherent to the quantum scheme to be solved in the clas-

sical technology; what is very hard, or even technologically impossible, in the quantum

device becomes straightforward in CPI. Our results remove the technological barriers to

dispersion-cancelled biological imaging and underscore the importance of understanding

classical analogues to quantum mechanical effects.

2.6 Methods

Pulses from a titanium:sapphire laser (808 nm, 90 nm FWHM) pass through a 4-F pulse

shaper incorporating a spatial light modulator (CRi SLM-640-D-VN) [32, 16], also see [26]

for details. The SLM served two purposes, compressing the pulses by compensating for

balanced dispersion in the setup, and applying the BARC-phase φ(ω) = −A(ω−ω0)|ω−ω0|,
where A = 2500 fs2 and λ0 = 2πc/ω0 = 809.60 nm. The shaped pulses were split on

a beamsplitter with 16 mW sent to the sample and 24 mW into a variable-delay line (a

retroreflector on a motorized stage). A 3 mm thick BK7 glass window could be inserted

into the sample arm to introduce unbalanced dispersion of β = 132 fs2. A small onion

sample was placed inside a 1′′ lens tube, submerged in water, covered with a 1 mm-thick
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BK7 window (Figure 2.1d), and mounted on a motorized x-y stage. A washer separated

the onion and BK7 window by 2.7 mm. A 19 mm achromatic lens on a motorized stage

focused the beam inside the sample to a spot size of approximately 6µm. The delay-

arm and sample-arm beams were focused using a 75 mm achromatic lens onto a 0.5 mm

BBO crystal, cut for type-I SFG. The beam separation at the lens was 14 mm. The

SFG signal was collimated and sent through a monochromator (Princeton Instruments

Acton Advanced SP2750A) and detected with a single-photon-counting photomultiplier

(Hamamatsu H10682-210). The monochromator was centred at 404.80 nm when the TL-

pulse was used, and 404.64 nm when the BARC-pulse was used, to account for a small shift

in the signal frequency induced by the added dispersion (see Figure 2.6). The acceptance

bandwidth of the monochromator was 0.35 nm in both cases. This filtering of the SFG

light was performed in order to remove artifacts from signals acquired with BARC pulses.

Axial depth scans were taken by moving the retro-reflector and recording the photomul-

tiplier signal every 0.4µm. For the cover-glass samples, the delay-stage speed was 0.5 mm/s

and the delay stage scanned a range of 700µm. For the 2D onion data, axial scans were

taken over an 800µm range in the y-direction with one scan every 4µm. The delay-stage

speed was 0.1 mm/s and it was scanned over a total range of 600µm. The acquisition time

per image was 1 hour.

For the histograms in Figure 2.3, all peaks from each axial scan were fitted provided

their amplitudes were between 250 and 6000 counts per delay-stage step, so that their

widths were not obscured by noise or detector saturation. Each histogram was fit with a

Gaussian peak to estimate the mean and variation of the peak widths in each image.

The 3D onion data was taken over a range of 300µm, 500µm, and 350µm in the x,

y, and z directions, respectively. One axial scan was taken every 10µm in the x and y

directions. Every five data points in the z direction were binned to provide a point every

2µm. Smoothing and threshold algorithms were applied to the raw data to create the 2D

images. The 3D structure was visualized with the Imaris (Bitplane, Inc.) software after an

FFT bandpass filter was applied. The delay-stage speed was 0.3 mm/s and data acquisition

took 2.5 hours.
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2.7 Supplementary Information

2.7.1 Artifacts in Quantum and Chirped-pulse optical coherence

tomography

Conventional time-domain optical coherence tomography (OCT) is based on white-light

interferometry [9]. The signal produced from such an interferometer exhibits an interference

feature whenever the group delay for the reference arm matches that in the sample arm

for one of the interfaces in the sample. Thus for a sample with N interfaces, one expects

N features in the resulting interferogram.

Quantum-optical coherence tomography (QOCT) [1] and a previous implementation of

chirped-pulse interferometry (CPI) [15] behave differently in that they produce not only

these features, but also additional features which we refer to as artifacts. Due to the

very strong analogy between QOCT and CPI, the origins of these artifacts are similar,

but there are important differences, both fundamental and practical. As we will show in

the following, this subtle difference allows for a relatively simple way for suppressing the

artifacts in CPI while a corresponding approach in QOCT proves to be impossible with

state of the art technology.

Figure 2.5a depicts a QOCT system based on a Hong-Ou-Mandel interferometer [12].

Pairs of energy-time entangled photons are generated by spontaneous parametric down-

conversion (SPDC) of a narrow band pump laser. Perfectly energy-time entangled photons

have the property that photon pairs are produced simultaneously, but without an absolute

time reference. In other words, one cannot predict when one will detect one of the photons

from each pair. However, once one photon is detected, the other will be detected at the

same time. As a result of this property, interference with energy-time entangled photons

depends only on the difference in detection times, not on the absolute detection time.

In its most simple form, Hong-Ou-Mandel interference occurs when the delays between

the two arms of the interferometer are balanced and the photons arrive at the detectors

simultaneously; when there are multiple interfaces in one of the arms, one expects inter-

ference whenever the delay in the reference arm matches that from one of the interfaces.
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Figure 2.5: Interfering paths that lead to artifacts in QOCT and CPI. a depicts a QOCT
setup. When the path length of the reference arm is the average of the paths in the sample
arm for the two interfaces, two indistinguishable early/late coincidences will occur. The
indistinguishable paths in CPI are shown in b. The SFG signal from these two paths will be
the same frequency when the delay matches the average of the delays for the two interfaces
in the sample arm, leading to an artifact between the “real” features corresponding to the
two sample interfaces.
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This interference gives rise to signal features at the same delays as standard white-light

interferometry [1], and they correspond to the actual interfaces in the sample.

Artifacts, on the other hand, arise from the interference when the photons do not arrive

at the detectors simultaneously, but rather with a well defined time difference. The upper

diagram in Fig. 2.5a depicts one path leading to an early photon at output 1 and a late

photon at output 2. If the delay for light reflecting from the first interface is τ1, then the

expected time difference in the detections is τ1 − τ . The lower diagram shows a different

path leading to an early detection at output 1 and a late one at output 2. If the delay

from the second interface is τ2, then the time difference is τ − τ2. These time differences

are equal when

τ1 − τ = τ − τ2 (2.1)

τ = (τ1 + τ2) /2. (2.2)

When the reference arm delay is set to the average of the delays for the two interfaces,

the time differences between the detections for these two paths are equal. In this case,

the paths are indistinguishable, leading to two-photon interference and the corresponding

formation of artifacts [29, 1, 20]. We can express this time difference between the early

and late photon detections as ∆τ = (τ1 − τ2) /2.

Unlike the signals in the HOM interferometer corresponding to actual interfaces, the

amplitude of these artifacts is phase sensitive. Depending on the phase, the amplitude of

each artifact can be positive, negative, or even vanish completely. If an artifact occurs

at the same position as the signal from a real interface, and if the amplitude is negative,

an artifact can even cancel a real signal. For a simple two-interface structure, like the

one shown in Fig. 2.5, there is only a single artifact, but the number of artifacts grows

as the number of distinct pairs of interfaces N(N − 1)/2, quadratically for large N . In

complex samples, the high number of artifacts poses a significant challenge for QOCT

because artifacts may be mistaken for or cancel real signals.

If one could limit observations to only those photon pairs that are exactly coincident,

then one could, in principle, avoid artifacts altogether. However, since detector jitter and

coincidence windows for state-of-the-art detectors are typically on the order of a few hun-
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dred picoseconds, only those artifacts from interface pairs with a distance on the centimeter

length scale could be avoided in this way. One would need to reduce that timescale to tens

of femtoseconds (three orders of magnitude better than state-of-the-art) to avoid artifacts

for interface-pairs separated by distances on the micrometer length scale relevant for OCT

imaging.

Now consider Fig. 2.5b which depicts the same, double-interface sample in CPI based

on BARC-pulses. For large chirp, the BARC-pulse can be viewed as a superposition where

the red-shifted part of the spectrum (ω < ω0) is linearly chirped such that ωR(t) = ω0 + 1
2A
t

for t < 0, where A is a positive number, and the blue-shifted half of the spectrum (ω > ω0)

is anti-chirped such that ωB(t) = ω0 − 1
2A
t for t < 0. We expect the lagging edge of the

pulse to have instantaneous frequency ω0 and to arrive at t = 0 with the rest of the pulse

arriving earlier, i.e., at negative times t.

For CPI, peaks will appear in the signal whenever the two interferometer arms are

balanced. For a multi-interface sample, multiple peaks will appear as the reference arm is

scanned; these peaks are in the same locations as the dips in the HOM signal [15].

To understand the origin of the artifacts in CPI, we consider the two paths shown in

Fig. 2.5b. In the upper diagram, the blue part of the spectrum reflects from the front

interface and experiences a delay τ1 on its way to the crystal, the red part of the spectrum

traverses the reference path and experiences a delay τ . The expected frequency of the SFG

signal for this path is ωB(t+ τ1) +ωR(t+ τ) = 2ω0 + 1
2A

(τ − τ1). Similarly, the frequency of

the SFG signal for the path in the lower diagram is ωB(t+τ)+ωR(t+τ2) = 2ω0+ 1
2A

(τ2−τ).

These frequencies are equal when, τ = (τ1 + τ2) /2, i.e., when the reference delay is equal

to the average of the delays for the front and back surfaces; this condition is identical to

the one for artifacts in QOCT.

An essential difference is that the physical signature for the artifact in CPI is a frequency

shift with respect to 2ω0 in the SFG signal rather than a difference in relative arrival time

of the photons as in QOCT. If we set τ = (τ1+τ2)
2

, we can calculate the expected frequency

shift for artifacts with respect to 2ω0, the frequency of the signals corresponding to actual
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interfaces:

∆ω =
1

2A

(τ1 − τ2)

2
. (2.3)

Note that swapping the roles of the red and blue parts of the spectrum leads to a second

artifact at the same delay position but with an opposite frequency shift of −∆ω.

The artifact signatures in CPI have the same dependence on path delays as in QOCT,

except that they are converted into a frequency shift depending on the chirp parameter,

A. Artifacts will be visible in the CPI interferogram if the corresponding frequency shift

lies within the monochromator acceptance bandwidth ∆Ω around 2ω0. Substituting ∆ω ≤
∆Ω/2 into Eq. 2.3 gives

|τ1 − τ2| ≤ 2A∆Ω (2.4)

|τ1 − τ2| ≤
8πcA∆Λ

λ2
0

(2.5)

For our experiment, A = 2500 fs2, the acceptance bandwidth of our monochromator

is ∆Λ = 0.35 nm, and the central wavelength at which we apply the BARC-phase is

λ0 = 809.6 nm. With these parameters, one arrives at |τ1 − τ2| . 10 fs, corresponding to a

3µm separation in motor position, or, when an index of refraction nonion = 1.3 is assumed,

an absolute separation of 2.3µm between the sample layers. Hence, we only expect to see

artifacts from interfaces closer than 2.3µm inside the sample, which is below the resolution

of our interferometer.

We see that while a suppression of artifacts is impossible in QOCT using state-of-

the-art technology, it is comparatively easy to achieve in CPI using BARC pulses. It is

interesting to note that artifact filtering in CPI only works when the pulse exhibits finite,

or imperfect, frequency correlations. This is the experimentally relevant regime since, in

practice, the correlation can never be perfect. In the limit A→∞, the frequency shift ∆ω

goes to zero, meaning that artifact features will essentially occur at the same frequency

as the signal and the suppression of artifacts via spectral filtering will become unfeasible.

The intermediate regime where A is large enough to cancel the effects of dispersion, yet

small enough to allow a measurable spectral separation of artifacts from signal therefore
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Figure 2.6: Cause of the dispersion-dependent frequency shift in CPI with the BARC-pulse.
a and b depict the two interfering paths which lead to the CPI signal. The dispersive
element compresses the blue half of the pulse for the paths in a, and lengthens the red
half for the paths in b. In each case, the red half of the pulse is longer than the blue half
when the pulses recombine on the nonlinear crystal. The net effect is that blue frequencies
combine with slightly greater red frequencies than if there was no dispersion, leading to an
overall blue shift in the signal.

proves to be ideally suited for our technique.

2.7.2 Wavelength shift in CPI with BARC-pulse

CPI using BARC-pulses exhibits a small dispersion-dependent wavelength shift that affects

the central frequency and bandwidth of the SFG signal. The origin of the wavelength shift

can be understood from the diagram shown in Figure 2.6.

The initial pulse is a superposition of a chirped “red” half of the pulse and an antichirped

“blue” half. We assume that the pulses are in the large-chirp limit so that the red half

has an instantaneous frequency ωR(t) = ω0 + 1
2A
t, for −∞ < t ≤ 0, where A is a real,

positive number; similarly the blue half has instantaneous frequency ωB(t) = ω0− 1
2A
t, for

−∞ < t ≤ 0.

To illustrate this effect, Figure 2.6 depicts the two processes leading to narrow band
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SFG from a single-interface sample. In Figure 2.6a, the antichirped blue half traverses

the upper path while the chirped red half takes the lower; in Figure 2.6b, the roles are

reversed. A purely quadratic dispersive element is located in the upper arm, which applies

a frequency-dependent phase φ(ω) = β(ω − ω0)2, with β real and positive. We assume

that β � A so that the dispersion is small compared to the chirp parameter as is required

for dispersion cancellation [24]. The effect of the material dispersion will further stretch a

chirped pulse or compress an anti-chirped pulse.

We can determine the mean SFG frequency as a function of delay for the two amplitudes

by simply adding the instantaneous frequencies for the two pulses in each of the cases shown

in Figure 2.6. They are:

ωSFG,a(τ) = 2ω0 −
1

2(A− β)
t+

1

2A
(t+ τ) (2.6)

ωSFG,b(τ) = 2ω0 +
1

2(A+ β)
t− 1

2A
(t+ τ), (2.7)

for the paths shown in Figures 2.6a and b respectively. We expect interference when the

sum frequencies corresponding to these two paths are equal. Setting the two frequencies

equal and solving for τ gives

τ =
tβ2

(A− β)(A+ β)
, (2.8)

which leads to τ = 0 to first order in β. Therefore, we expect interference when the

interferometer paths are balanced as long as the additional dispersion is small. Substituting

τ = 0 into our expression for ωSFG,a yields:

ωSFG,a = 2ω0 −
1

2(A− β)
t+

1

2A
t. (2.9)

The last two terms constitute a frequency shift with respect to the expected 2ω0. Calcu-

lating the shift to first order in β gives:

∆ω = − tβ

2A2
. (2.10)
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Because the dispersive element causes a small difference in the chirp rates of the two pulses,

we expect a time-dependent shift in the SFG frequency. Note that such a frequency shift

is not expected using the original method of CPI [13, 14], and the shift arises from the

asymmetry of the BARC-pulses. Because the centre of the pulse is at some negative t, we

expect a positive frequency shift.

We estimate the size of the shift in the following way. The electric field envelope of

each half of the shaped pulse is modelled by a Gaussian e−t
2/(2
√

2Aσω)2
for t ≤ 0 (the field

is 0 for t > 0), where σω is the RMS frequency-bandwidth of the pulse’s electric-field.

When τ = 0, these pulses overlap in the crystal (one from each interferometer arm), and

the intensity of the SFG signal has approximately the temporal envelope
∣∣∣e−t2/(2Aσω)2

∣∣∣2 for

t ≤ 0.

Half of our SFG signal is produced from light arriving before some time tavg. The value

for tavg can be found as the solution to:∫ tavg

−∞
e−2t2/(2Aσω)2

dt =

∫ 0

tavg

e−2t2/(2Aσω)2

dt (2.11)

which is tavg ≈ −0.67Aσω. From this we estimate the frequency shift:

∆ω = 0.34
βσω
2A

(2.12)

In terms of the wavelength shift ∆λ that is:

∆λ = −0.17
βσλ
A

(
λsignal
λpulse

)2

, (2.13)

where λsignal is the centre wavelength of the SFG signal when there is no unbalanced

dispersion, λpulse is the centre wavelength of the BARC pulse, and σλ is the RMS frequency-

bandwidth of the pulse’s electric-field, in units of wavelength.

Assuming an input pulse centred at λpulse = 809.60 nm with 60 nm FWHM bandwidth

(corresponding to our system acceptance bandwidth), a chirp parameter A = 2500 fs2,

3 mm BK7 in the sample arm (β = 132 fs2), and a signal wavelength λsignal = 403.80 nm

42



gives an expected wavelength shift of ∆λ = −0.2 nm, explaining the small blue shift

observed experimentally.
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Chapter 3

Nonlinear chirping function for

resolution improvement in CPI

3.1 Resolution disparity between CPI and QOCT

As shown in sections 1.3.1 and 1.3.2, the signal in a QOCT system is narrower than the

CPI signal if the single-photon bandwidth of the source light is the same in both systems.

For light sources with gaussian spectra, this difference is a factor of
√

2. The origin of

this difference can perhaps best be understood by considering both systems in the limit

of perfect frequency anticorrelations. The two-photon bandwidth function for an SPDC-

produced two-photon state with perfect anticorrelations is (1.38) in the limit σc →∞:

f(ω1, ω2) = exp

[
−(ω1 − ω0)2

8σ2
sp

]
exp

[
−(ω2 − ω0)2

8σ2
sp

]
δ(ω1 + ω2 − 2ω0) (3.1)

Since this expression is for the high-correlation limit, the substitution σ →
√

2σsp has been

made. The number of coincidence detection events as a function of time-delay is given by

performing the ω2 integral of (1.39):

C(τ) ∝
∫
dω1e

− (ω1−ω0)2

2σ2
sp [1− cos (2(ω1 − ω0)τ)] (3.2)
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which can be evaluated to give a dip at τ = 0 with width 1/2σsp.

Now consider the system in Figure 2.1a which has two lasers of frequency ω0 ± ∆ as

inputs to the interferometer at any one time. As shown in section 2.4.1 the SFG signal pro-

duced by such a frequency pair is given by S(∆, τ) = |E(∆)E(−∆)|2 (1 + cos [φ+(∆, τ)− φ−(∆, τ)])

where E(∆) is the electric field amplitude of the lasers. If all values of the offset ∆ are

swept over, the intensity of the measured signal will be:

I(τ) =

∫
d∆ |(E(∆)E(−∆)|2 (1 + cos (2∆(αL− τ))) (3.3)

If the lasers have the same single-photon bandwidth as the QOCT system described above

(i.e., E(∆) = e−∆2/4σ2
sp) then (3.3) is

I(τ) =

∫
d∆e

− ∆2

σ2
sp (1 + cos (2∆(αL− τ))) (3.4)

This expression is almost identical to (3.2) except that the gaussian multiplying the cosine

term is narrower by a factor of
√

2. This is precisely the factor by which the CPI signal

is broader than the QOCT signal. The integrand in (3.3) is proportional to the square of

the laser intensities; squaring a gaussian intensity function returns another gaussian which

is narrower by a factor of
√

2. If the lasers had an intensity function which was constant

in ∆, (i.e., if the bandwidth function had a “top-hat” profile, as opposed to a gaussian)

squaring the intensities would return a bandwidth function with the same width. This

would produce a CPI signal with a
√

2 resolution improvement [15].

3.1.1 Nonlinear chirp for narrower CPI signal

The above discussion made the argument that a source with a top-hat-shaped spectral

bandwidth function would produce a CPI signal which is narrower in time than one with a

gaussian spectral function. The source considered was a pair of monochromatic lasers with

frequencies ω0±∆ with a top-hat spectral function E(∆). This source also has a temporal

function with a top-hat shape if ∆ is varied linearly in time. In this section we derive a

nonlinear chirping function which will stretch a transform-limited gaussian pulse into one

45



which has a constant intensity along the length of the chirped pulse, and we simulate the

expected width of a CPI signal produced with this function.

Consider a pulse with spectrum I(ω) which is chirped nonlinearly, i.e., the instantaneous

pulse frequency ω(t) does not depend linearly on t. For the range of frequencies between

ω and ω+ ∆ω the pulse has been stretched by some factor n(ω), and as such the intensity

at these frequencies has been decreased by this same factor. If it takes a time ∆t for the

frequency to change by ∆ω, then the relation ∆t/∆ω ∝ n(ω) is true. If the ratio I(ω)/n(ω)

is constant the pulse will have a constant intensity in the time domain. Hence n(ω) ∝ I(ω),

and in the limit where ∆t and ∆ω are infinitesimally small:

dt

dω
= AI(ω) (3.5)

where A is a constant related to the total length of the chirped pulse. If the instantaneous

pulse frequency increases montonically along the length of the pulse, rearranging the above

and integrating gives:

t(ω) =

∫ t

0

dt = A

∫ ω

−∞
I(ω)dω (3.6)

If the pulse spectrum is gaussian, and given by I(ω) = e−
(ω−ω0)2

2σ2 , the right side of the

equation becomes

t(ω) = A

∫ ω

−∞
dω e−

(ω−ω0)2

2σ2 (3.7)

=
A

2
+

A√
2πσ2

∫ ω

ω0

dω e−
(ω−ω0)2

2σ2 (3.8)

=
A

2
+

A√
π

∫ Ω

0

dΩ e−Ω2

(3.9)

=
A

2

(
erf

(
ω − ω0√

2σ2

)
+ 1

)
(3.10)

In the second step the constant A has been redefined such that A
∫ ω0

−∞ I(ω)dω = A/2, and

in the third step the substitution Ω = (ω−ω0)/
√

2σ2 is made. In the fourth step we apply

the definition
∫ x

0
e−x

2
dx = erf(x). The phase φ(ω) required to stretch a transform-limited
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pulse into one with delays obeying the above expression for t(ω) can now be found by

using the relation dφ
dω

= t(ω) [6]. If we make the simplifying assumption that the frequency

element ω0 will undergo no time-delay, we have:

φ(ω) =

∫ ω

ω0

dω t(ω) (3.11)

Evaluating the above integral, and once again redefining A to absorb all multiplicitive

constants gives:

φ(ω) = A

[
e−x

2 − 1√
π

+ x erf(x)

]
; x =

ω − ω0√
2σ2

(3.12)

This phase will stretch a transform-limited gaussian pulse centered at ω0 with bandwidth

σ into one which has an intensity which is constant in time. A superposition of two

oppositely-chirped laser pulses will exhibit the required frequency anticorrelations needed

for dispersion cancellation, and should give a CPI signal which is narrower than what would

be obtained with linearly-chirped pulses.

A simulation was run to see the expected effects of the nonlinear chirp on the width of

the CPI signal, and the results are in Figure 3.1. Three peaks were simulated, two with

nonlinearly-chirped pulses and one with a linearly-chirped pulse. To represent the phase

that could be applied in an experiment, a BARC-chirp was used, i.e., frequencies above

the center frequency ω0 were chirped with positive dispersion, and frequencies below ω0

were antichirped with negative dispersion. The phase functions used in the simulation to

apply the chirp were

φlinear(ω) = Alin.(ω − ω0)|ω − ω0| (3.13)

φnonlinear(ω) = Anonlin.

[
e−x

2 − 1√
π

+ x erf(x)

]
|x|
x

; x =
ω − ω0√

2σ2
(3.14)

CPI signals from nonlinearly-chirped pulses with chirping parameters Anonlin. = 100

and Anonlin. = 500 were simulated. The signal from a linearly-chirped pulse with Alin. =

13, 000 fs2 was also simulated. The parameter Anonlin. = 100 was chosen as this is near

the maximum nonlinear chirp that can be applied by the SLM. Anonlin. = 500 was chosen
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Figure 3.1: Simulation of CPI signal with nonlinearly- and linearly-chirped pulses. The
red and black points represent the signal from nonlinearly-chirped pulses, and the green
points are the signal from a linearly-chirped pulse. The peaks were normalized so their
backgrounds were at a constant level of 0.5. The nonlinearly-chirped pulses have a narrower
interference signal than the linearly-chirped pulse.
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to see if stretching the pulse by a greater amount could further narrow the CPI signal,

and Alin. = 13, 000 fs2 was chosen to create a chirped pulse with a similar length as the

pulse with the stronger of the two nonlinear chirps. The simulated pulses had a centre

frequency of 810 nm and a FWHM spectral bandwidth of 80 nm. The signal was simulated

and filtered with a broad bandwidth of 50 nm so the background could be observed, and

the filtered signals were normalized to have the same background level. The simulation

did not include phase-matching, and the broadband second-harmonic-generation terms

(i.e., the first two terms in (1.48)) are included in the filtered signal. This is why the

background is approximately two-thirds of the peak heights. The filtered signals were fit

with gaussian functions, and the nonlinearly-chirped-pulse peaks have widths of 1.84µm

and 1.82µm. The narrower peak was the one with the higher chirping parameter. The

linearly-chirped-pulse peak has a width of 2.56µm, which is 39% and 41% broader than

the nonlinearly-chirped-pulse peaks, respectively. The simulation suggests that chirping

nonlinearly will narrow the CPI signal by a factor of
√

2.

3.1.2 Experimental test of nonlinear chirp

The experimental set-up in Figure 2.1b was used to compare the CPI signals produced

with linearly- and nonlinearly-chirped pulses, as well as transform-limited pulses. In order

to reduce the effects of phase-matching in the nonlinear crystal, a 0.1-mm piece of BBO

was used for SFG, as opposed to the 0.5-mm piece used for the experiments in Chapter 2.

The chirping functions applied to the SLM were those in (3.13) and (3.14).

The CPI signal was measured with a CCD camera in a spectrometer (Princeton In-

struments PIXIS:2K in a Princeton Instruments Acton Advanced SP2750A) and integrated

over a broad bandwidth to observe the constant background of the CPI signal (Figure 3.2).

It is interesting to note that the background is not constant, but slowly decreases in in-

tensity as the reference-arm mirror moves away from the location of the CPI peak. There

is a simple reason for this discrepancy: as the mismatch between the interferometer arms

increases, the upconverted light is at frequencies further away from 2ω0. As the nonlinear

crystal is aligned to optimize for SFG at 2ω0, the SFG efficiency decreases as τ moves away

from τ = 0, and the height of the background decreases.
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Figure 3.2: Comparison of CPI signals produced with linearly-chirped, nonlinearly-chirped,
and transform-limited pulses. The SFG intensity was measured with a CCD camera and
integrated over an 18 nm bandwidth. Since such a large intensity was integrated over, a
background with approximately the same intensity as the CPI peak is seen when chirped
pulses are used. The data in a was taken without any unbalanced quadratic dispersion
in the interferometer, and the data in b was taken after a 3-mm-thick piece of BK7 glass
was inserted into the sample arm. A constant background from the CCD camera was
subtracted from each set of data, and the data were normalized to ease visual comparison
of the peak widths. The black squares represent the data taken with nonlinearly-chirped
pulses, red with linearly-chirped pulses, and green with transform-limited pulses. The grey
lines are gaussian fits of the peaks. The nonlinearly-chirped pulses produce a narrower
peak than the linearly-chirped and transform-limited pulses. Both chirped pulses exhibit
dispersion-cancellation.
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Chirping function
Peak FWHM (µm)

0 mm BK7 3 mm BK7

Nonlinear 3.0± 0.1 3.1± 0.1

Linear 3.6± 0.1 3.8± 0.1

None 3.95± 0.01 7.7± 0.1

Table 3.1: Widths of CPI signals from different chirping functions. The reported widths
are the FWHM of the gaussian fits of the peaks in Figure 3.2. The reported errors are the
standard error of the fits.

The data in Figure 3.2 show that the CPI signal produced by the nonlinearly chirped

pulses is narrower than that produced by the linearly chirped ones. When there is no dis-

persion present, linearly-chirped pulses produce a 3.6-µm-wide peak which is 20% broader

than the 3.0-µm-wide peak produced when the nonlinear chirp is used. When 3 mm of

BK7 is added to one arm of the interferometer, both peaks exhibit dispersion cancel-

lation. The linearly-chirped-pulse peak broadens by 6% to a width of 3.8µm, and the

nonlinearly-chirped-pulse peak broadens by 3% to 3.1µm. In contrast, a peak produced

with a transform-limited pulse broadens by over 90% (from 3.95µm to 7.7µm) when the

BK7 is added. Hence the nonlinearly-pulses cancel dispersion just as effectively as the

linearly-chirped ones.

The nonlinearly-chirped-pulse peaks are narrower than the linearly-chirped-pulse and

transform-limited-pulse peaks, but not by the factor of
√

2 as predicted by the simulation.

This could be due to the fact that the pulses do not have perfectly gaussian spectra.

Another reason might be the pixelation of the SLM. Since the SLM is an array of liquid

crystals, it does not apply a perfectly smooth chirping phase to the light passing through

it. This can also partially explain the oscillations seen in the background, as simulations

including the SLM pixelation showed this behaviour.

While the data in Figure 3.2 shows that the nonlinear chirping function will produce

narrower peaks than the linear one, such a system can still produce artifacts if imaging
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Chirping function
Peak FWHM (µm)

0 mm BK7 3 mm BK7

Nonlinear 3.97± 0.01 4.03± 0.02

Linear 4.71± 0.02 4.70± 0.01

None 3.56± 0.01 8.13± 0.03

Table 3.2: Widths of artifact-free CPI signals from different chirping functions. The re-
ported widths are the FWHM of the gaussian fits of the peaks in Figure 3.3. The reported
errors are the standard error of the fits.

samples with multiple layers. To ensure that no artifacts will be present in the CPI signal,

the background must be completely filtered out. Figure 3.3 shows the same data as in

Figure 3.2 where the background has been filtered out by only integrating the SFG intensity

over a small bandwidth of 0.35 nm, centered on 405.46 nm. The CPI signal peaks have been

fitted with gaussian functions, the widths of which are summarized in Table 3.1.2. While

filtering out the background does increase the width of the CPI signal when either chirping

function is used, the nonlinearly-chirped pulses still produce narrower peaks than the

linearly-chirped ones. Both chirping functions cancel the quadratic dispersion introduced

by the 3-mm-thick BK7 window.

The laser pulses used for this experiment had a FWHM bandwidth of 93 nm and were

centered at 810 nm. The center chirp frequency ω0 was set to correspond to the wavelength

λ0 = 810.6 nm. The linear chirping function had the parameter Alin. = −3000 fs2. The

parameters for the nonlinear chirp were Anonlin. = −115 and σFWHM = 80 nm, where

σFWHM = 2
√

2 ln(2)σ is the full-width at half-maximum of a gaussian spectrum with

bandwidth σ. The parameter Anonlin. was chosen to produce a pulse with a similar length

in time as the linearly chirped one, then the bandwidth parameter σ was fine-tuned to

minimize oscillations seen in the background of the CPI signal. The phase-matching of

the SFG process is imperfect, and as a result, the effective bandwidth of the system is less

than the laser bandwidth. This is a possible explanation for the discrepancy between the
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Figure 3.3: Comparison of artifact-free CPI signals produced with linearly-chirped,
nonlinearly-chirped, and transform-limited pulses. The SFG intensity was measured with
a CCD camera and integrated over a 0.35 nm bandwidth. The narrow filtering removes
the background – and hence artifacts – from the signal. The data in a was taken without
any unbalanced quadratic dispersion in the interferometer, and the data in b was taken
after a 3-mm-thick piece of BK7 glass was inserted into the sample arm. A constant back-
ground from the CCD camera was subtracted from each set of data, and the data were
normalized to ease visual comparison of the peak widths. The black squares represent
the data taken with nonlinearly-chirped pulses, red with linearly-chirped pulses, and green
with transform-limited pulses. The grey lines are gaussian fits of the peaks. Filtering the
CPI signal slightly broadens the nonlinearly- and linearly-chirped-pulse peaks, although
the nonlinear chirp still exhibits a resolution-advantage over the linear chirp. Both chirped
pulses exhibit dispersion-cancellation.

53



measured laser bandwidth and the optimal bandwidth parameter for the nonlinear chirping

function.

3.2 QOCT with imperfect frequency correlations and

fast detectors

As explained in section 2.7.1, artifacts in the QOCT signal occur between every pair of

sample interfaces. These artifacts are caused by interference between photon-coincidence-

detection events resulting from photons which are reflected from different layers within

the sample. In theory, artifacts can be filtered from the QOCT signal if the coincidence-

detection window can be shorted to the tens-of-femtoseconds scale (although current tech-

nology limits coincidence windows to a few hundred picoseconds). To accurately compare

QOCT to CPI, the following calculation determines the expected signal for a QOCT system

which exhibits imperfect frequency correlations and uses detectors which are fast compared

to the coherence time of the photons. The specific goal of this section is to see how the

resolution and dispersion-cancelling properties of a QOCT system would be affected if ar-

tifacts could be filtered from the signal, or if a state with imperfect frequency correlations

was used.

We will consider a modified QOCT setup with an extra beamsplitter before the detec-

tors (Figure 3.4). When the path lengths of the interferometer are balanced photons will

bunch at the first beamsplitter; if they are sent into mode 3′ they are split at the second

beamsplitter (the pair will travel through mode 4′ with probability 1/2, in which case both

photons are lost and no coincidence events are counted). Hence, by placing one detector

in each of modes 3 and 4, a coincidence peak will be observed, as opposed to a dip.

The two-photon state |ψ1,2〉 produced from SPDC with a pump photon with frequency

2ω0 is

|ψ1,2〉 =

∫
dω1dω2f(ω1, ω2)|ω1〉|ω2〉 (3.15)
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Figure 3.4: A set-up for producing a HOM peak. Photon pairs bunch into modes 3’ and 4’
at the first beamsplitter. A second beamsplitter in mode 3’ splits bunched photons pairs
into modes 3 and 4. The detectors in modes 3 and 4 register a coincidence peak as opposed
to a dip when the interferometer arms are balanced.

where f(ω1, ω2) is the two-photon joint spectrum, and is given by

f(ω1, ω2) = exp

[
−(ω1 − ω0)2

4σ2

]
exp

[
−(ω2 − ω0)2

4σ2

]
exp

[
−(ω1 + ω2 − 2ω0)2

4σ2
c

]
(3.16)

The parameter σ in the first two exponentials is related to the bandwidth of a single

photon from the pair (which is more carefully defined in section 3.2.1 below), and σc is

a measure of the strength of frequency correlation, which is related to the bandwidth of

the pump photon. If σc � σ the third exponential becomes very narrow and the relation

ω1 +ω2 = 2ω0 is enforced. In the other limit where σc � σ, the photons become completely

uncorrelated in frequency.

To obtain an expression for the number of coincidence-detection events we first define

the joint probability P3,4(t1, t2) of one photon being in each of modes 3 and 4 at times t1

and t2, respectively [28]

P3,4(t1, t2, τ, ε) ∝ 〈E−3 (t1)E−4 (t2)E+
3 (t1)E+

4 (t2)〉 (3.17)

where E±i (t) ∝
∫
dωi
√
ωiâ
∓
i (ωi)e

∓ωit are the forwards and backwards propagating electric
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field operators for the i-th mode, and â−i (ω) and â+
i (ω) are the respective annhilation

and creation operators for photons in mode i and with frequency ω [28]. The τ and ε

dependence is presently hidden in the creation and annhilation operators for modes 3 and

4 which will pick up phases dependent on both τ and ε as the state |ψ1,2〉 is propagated

through the interferometer to the detectors. The window for coincidence detection can be

modelled by a function g(t1 − t2) which depends on only the difference in arrival times of

the photons at each detector; the function is peaked when t1− t2 = 0, and it decays to zero

on either side of this peak. The total number of recorded coincidences C(τ, ε) is found by

integrating the coincidence-window-modulated joint-probability distribution over all times

t1 and t2 [28]:

C(τ, ε) ∝
∫∫

dt1dt2 g(t1 − t2)P3,4(t1, t2, τ, ε) (3.18)

To evaluate the joint-probability function P3,4(t1, t2, τ, ε), the state |ψ1,2〉 is propagated

through the interferometer from the source to the detectors. The dispersive element in

mode 1 contributes a quadratic phase of φ1(ω) = ε(ω − ω0)2 and the time-delay τ in

mode 2 is represented by the phase φ2(ω) = −ω2τ . Hence, immediately before the first

beamsplitter, the state is:

|ψ1,2〉 =

∫
dω1dω2 f(ω1, ω2)eiφ1(ω1)−iφ2(ω2)â+

1 (ω1)â+
2 (ω2)|0〉1|0〉2 (3.19)

At the first beamsplitter, the creation operators are transformed as

â+
1 (ω)→ 1√

2

[
â+

3′(ω1) + â+
4′(ω1)

]
(3.20)

â+
2 (ω)→ 1√

2

[
â+

3′(ω1)− â+
4′(ω1)

]
(3.21)

Coincidences are only measured when both photons travel through mode 3′ to the second

beamsplitter, hence we drop the â+
4′(ωi) terms and, making the second transformation
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â+
3′(ω)→ 1√

2

[
â+

3 (ω1)− â+
4 (ω1)

]
, we have

|ψ3,4〉 =
1

4

∫∫
dω1dω2e

iε(ω1−ω0)2

e−iω2τf(ω1, ω2)
[
â+

3 (ω1)− â+
4 (ω1)

] [
â+

3 (ω2)− â+
4 (ω2)

]
|0〉3|0〉4
(3.22)

We are now ready to evaluate the joint probability function. Absorbing the
√
ωi terms into

the two-photon bandwidth function gives:

P3,4(t1, t2, τ, ε) ∝
∫∫∫∫

dω3′dω4′dω3dω4〈ψ3,4|a+
3 (ω′3)a+

4 (ω′4)a−3 (ω3)a−4 (ω4)|ψ3,4〉 (3.23)

=
∞∑
n=0

∫∫∫∫
dω3′dω4′dω3dω4〈ψ3,4|a+

3 (ω′3)a+
4 (ω′4)|n〉〈n|a−3 (ω3)a−4 (ω4)|ψ3,4〉

(3.24)

=

∣∣∣∣∫∫ dω3dω4〈0|a−3 (ω3)a−4 (ω4)|ψ3,4〉
∣∣∣∣2 (3.25)

where the identity is inserted in the second step and the last step follows from the fact that

|ψ3,4〉 contains no more than one photon in each of modes 3 and 4. Since annihilating one

photon from each mode can only leave the vacuum state, the n 6= 0 terms can be dropped

from the sum [28].

The matrix element in (3.25) is evaluated by inserting the explicit expression for |ψ3,4〉

〈0|a−3 (ω3)a−4 (ω4)|ψ3,4〉 =

∫∫
dω1dω2

{
〈0|a−3 (ω3)a−4 (ω4)f(ω1, ω2)eiφ1(ω1)−iφ2(ω2)

×
[
â+

3 (ω1)− â+
4 (ω1)

] [
â+

3 (ω2)− â+
4 (ω2)

]
|0〉3|0〉4

} (3.26)

= −f(ω3, ω4)
[
eiφ1(ω3)−iφ2(ω4) + eiφ1(ω4)−iφ2(ω3)

]
(3.27)

where in the second step we invoke the symmetry of the two-photon bandwidth function

f(ω1, ω2) = f(ω2, ω1). Finally we are ready to evaluate (3.18), which has now become:

C(τ, ε) ∝
∫∫

dt1dt2e
− (t1−t2)2

2σ2
t

∣∣∣∣∫∫ dω3dω4f(ω3, ω4)
[
eiφ1(ω3)−iφ2(ω4) + eiφ1(ω4)−iφ2(ω3)

]∣∣∣∣2
(3.28)
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If we use g(t1, t2) = e
− (t1−t2)2

2σ2
t for the coincidence gating function, evaluating the above

gives:

C(τ, ε) ∝ A1e
− τ

2τ2
1 + A2e

− τ

2τ2
2 (3.29)

where

A1 =

√
1

σ2
c + 2σ2 [1 + 4ε2σ2(σ2 + σ2

c ) + (2σ2 + σ2
c )σ

2
t ]

(3.30)

A2 =

√
1

σ2
c + 2σ2 [1 + 4ε2σ2(σ2(1 + σ2

cσ
2
t ) + σ2

c ) + (2σ2 + σ2
c )σ

2
t ]

(3.31)

τ1 =

√
1

2σ2
+ 4ε2σ2

(
1− 1

2σ2 + σ2
c

)
+ σ2

t (3.32)

τ2 =

√
2σ2 + σ2

c + 4ε2σ4σ2
c

4σ4 + 2σ2σ2
c

+
2ε2σ2

1 + 2σ2σ2
t

(3.33)

3.2.1 Definition of “single-photon bandwidth” in QOCT

To compare the resolutions of different imaging techniques fairly, each system must have a

well-defined single-photon bandwidth. After this bandwidth is set, different systems with

the same single-photon bandwidths can be fairly compared. For WLI and CPI systems it is

straightforward to read the single-photon bandwidth directly from the spectral function of

the source light. This is not so simple with QOCT, however. The joint-spectrum f(ω1, ω2)

(1.38) used in the definition of the two-photon state used for QOCT does not clearly

indicate the bandwidth of each photon independently. In the section below we define the

single-photon bandwidth of a two-photon state, and relate it to the parameters σ and σc

in the expression for the joint-spectrum.

Experimentally, the single photon bandwidth of a two-photon state can be measured by

taking one photon and measuring its bandwidth with a spectrometer. This is represented

mathematically by tracing out one of the photons in the two-photon state and calculating

the intensity of the remaining photon as a function of frequency.
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The density matrix of a pair of photons generated by SPDC is written as

ρ1,2 =

∫
dω′1dω

′
2dω1dω2f

∗(ω′1, ω
′
2)f(ω1, ω2)|ω1〉|ω2〉〈ω′1|〈ω′2| (3.34)

where f(ω1, ω2) is the two-photon joint-spectrum and the ∗ denotes the complex conjugate.

After tracing out photon two, the state, ρ1 of the remaining photon is:

ρ1 = Tr2(ρ1,2) (3.35)

=

∫
dω′′2〈ω′′2 |ρ1,2|ω′′2〉 (3.36)

=

∫
dω′′2

∫
dω′1dω

′
2dω1dω2f

∗(ω′1, ω
′
2)f(ω1, ω2)|ω1〉〈ω′1|δ(ω2 − ω′′2)δ(ω′2 − ω′′2) (3.37)

=

∫
dω′′2

∫
dω′1dω1f

∗(ω′1, ω
′′
2)f(ω1, ω

′′
2)|ω1〉〈ω′1| (3.38)

=

∫
dω1dω

′
1F (ω1, ω

′
1)|ω1〉〈ω′1| (3.39)

The resulting spectrum of the single-photon is found by measuring the expectation

value of the number operator n̂ = â†â as a function of frequency.

I(ω) ∝ 〈n̂(ω)〉 (3.40)

= Tr(â†(ω)â(ω)ρ1) (3.41)

= F (ω) (3.42)

where F (ω) is the same function appearing in Eq. 3.39 evaluated at ω1 = ω′1 = ω. Hence

F (ω) is the single-photon spectrum of photon one. Using the assumption that the original

two-photon state has a frequency correlation function

f(ω1, ω2) = exp

[
−(ω1 − ω0)2

4σ2

]
exp

[
−(ω2 − ω0)2

4σ2

]
exp

[
−(ω1 + ω2 − 2ω0)2

4σ2
c

]
(3.43)

gives the single-photon intensity spectrum F (ω) = e
−−(ω1−ω0)2

2

(2σ2+σ2
c )

σ2(σ2+σ2
c ) . The single-photon
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bandwidth, σsp, can be read off from this equation to give

σ2
sp = σ2 σ

2 + σ2
c

2σ2 + σ2
c

(3.44)

We see that the single-photon bandwidth is affected by the strength of correlations

between the two photons. If the two photons are uncorrelated in frequency (i.e., σc � σ)

we have σsp = σ. In the opposite case, in the limit of perfect correlation between the two

photons’ frequencies, (i.e., σc � σ), we see that σsp → σ/
√

2. In this case, tracing out

photon two gives a narrower bandwidth for photon one.

Now a direct comparison can be made between QOCT systems which exhibit different

two-photon correlation strengths. By ensuring the single-photon bandwidth is constant,

the effect of the correlation strength on the resolution of a QOCT system can be seen.

3.2.2 Four interesting limits and comparison to CPI

Now that we have an analytical expression for the measured coincidences as a function of

the time-delay, we can examine the signal’s properties in the limits where infinitely fast or

slow detectors are used, and when the photon pairs are perfectly frequency anticorrelated

or completely uncorrelated. The widths of the two gaussians in (3.29) are related to τ1 and

τ2, and their values in the above mentioned limits are summarized in Table 3.3.

The first row of the table is the limit of perfect correlations and slow detectors, which

gives a constant background with a peak of width 1/2σsp. If slow detectors are still used

and a state with no frequency correlations is chosen (second row of the table), the signal is

still a peak rising from a constant background, but the width and visibility of the peak are

now sensitive to dispersion. When photon pairs with completely uncorrelated frequencies

are used the minimum signal width broadens to 1/
√

2σsp. These two results are what one

would obtain by taking the corresponding limits of (1.42), which was derived with the

assumption that the detectors are very slow.

The bottom two rows of Table 3.3 are the limits of using infinitely fast detectors. In this

limit the constant background is completely filtered out of the signal, and the two Gaussian
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Situation τ1 τ2 A2/A1

σc → 0, σt →∞ ∞ 1
2σsp

1

σc →∞, σt →∞ ∞ 1√
2σsp

√
1 + 4ε2σ4

sp

√
1

1+4ε2σ4
sp

σc → 0, σt → 0 1
2σsp

√
1 + 16ε2σ4

sp
1

2σsp

√
1 + 16ε2σ4

sp 1

σc →∞, σt → 0 1√
2σsp

√
1 + 8ε2σ4

sp
1√

2σsp

√
1 + 8ε2σ4

sp 1

Table 3.3: Characteristics of the QOCT signal with imperfect frequency correlations and
artifact filtering. The temporal widths of the two gaussians which make up the QOCT
signal in (3.29) are given in the limits of infinitely short and long coincidence detection
windows for two-photon states which exhibit perfect frequency anticorrelations and no
frequency correlations. The third column gives the ratio of the amplitudes of the two
Gaussians. In the two cases where τ1 → ∞, this ratio relates to the visibility of the peak
rising from the constant background.

terms in (3.29) become identical. This reason the background is filtered out of the signal

is because infinitely fast detectors can only register coincidences if the two photons arrive

at the detectors at the same time, which can only happen when the interferometer arms

are balanced, or when τ = 0. The signal is now a single Gaussian peak with a dispersion-

dependent width. The signal from perfectly-anticorrelated photon pairs has a minimum

width 1/2σsp compared to 1/
√

2σsp for the signal from completely uncorrelated photon

pairs.

The behaviour of the QOCT and CPI signals are similar when very high frequency-

correlations are present. If artifacts are not filtered out, both signals will perfectly cancel

dispersion. When the nonlinear chirping function is used in CPI, both signals will have a

width of 1/2σ. If the artifacts are filtered from the QOCT signal by using infinitely-fast

detectors, the signal is no longer dispersion-cancelling, but it has the same minimum width.

It is interesting to note that in CPI the artifact-free signal has a minimum width of 1/
√

2σ.

The reason for this broadening can be seen by examining the expression for the SFG-
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field amplitude given by

Esignal(ω, τ) ≈
∫
dω′ [E−(ω′)E+(ω − ω′)− E+(ω′)E−(ω − ω′)] eiε(ω′−ω0)2

ei(ω−ω
′)τ (3.45)

where the field terms E±(ω) are the positively- and negatively-chirped pulses:

E±(ω) ∝ e−
(ω−ω0)2

4σ2 e±iφchirp(ω) (3.46)

The effect of filtering the SFG field narrowly around 2ω0 can be seen by evaluating (3.45)

at 2ω0. If the phase φchirp is the nonlinear chirp defined in (3.12) the chirping terms will

cancel each other out and the signal is given by

Esignal(2ω0, τ) ≈
∫
dω′ e−

(ω′−ω0)2

2σ2 eiε(ω
′−ω0)2

ei(2ω0−ω′)τ (3.47)

The chirp has no effect on the SFG light at 2ω0, and hence cannot affect the width of the

CPI signal. Interestingly, the same reasoning can be applied to see why the CPI signal

does not cancel dispersion as effectively if it is filtered very narrowly.
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Chapter 4

Signal improvement to CPI

One step towards increasing the power of the CPI signal is to improve the efficiency of

the SFG process. A method of accomplishing this is to use a longer nonlinear crystal

(which still allows phase-matching over the bandwidth of the source light) so the interaction

time between beams from each interferometer arm is larger [4]. However, using a longer

crystal will also increase the amount of background light, namely the narrowband SFG light

created from the sum of the chirped and antichirped components coming from the same

interferometer arm. Since this light is in a different spatial mode than the CPI signal, it is

normally filtered spatially. However, if a longer nonlinear crystal is used the noncollinear

angle between the two beams inside the crystal will have to be decreased, reducing the

effectiveness of this spatial filtering. Furthermore, the longer nonlinear crystal will increase

the intensity of the background and signal SFG light by similar amounts. Hence, while

increasing the length of the nonlinear crystal used in a CPI set-up will increase the total

intensity of the CPI signal light, it may also have the undesirable effect of increasing the

measured background by a larger amount.

4.1 Offset-CPI

The above discussion assumes that both arms of the interferometer contain pulses which

are chirped about the same center frequency. For example, if this center frequency was
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τ2

2ω2

2ω1

ω1+ω2

τ

τ1

Figure 4.1: CPI set-up with spectrally separated signal and background. The sample and
reference arms of the interferometer contain superpositions of a chirped and an antichirped
pulse. The pulses are superposed with a delay between their ω0 frequency components of
τ1 and τ2 so they have average frequencies ω1 and ω2 for the sample and reference arms,
respectively. The CPI signal is at a frequency ω1 + ω2, while the narrowband components
of the background is at frequencies 2ω1 and 2ω2.

ω0, both the background and signal would be at frequency 2ω0. If the light in both arms

was chirped about different center frequencies, say ω1 and ω2, then the signal would be

at frequency ω1 + ω2, and the background light from both interferometer arms would be

at the frequencies 2ω1 and 2ω2. With such a set-up, spectral filtering could be used in

conjunction with spatial filtering to remove the background from the signal. We call such

a system an offset-CPI (OCPI) system.

A hypothetical OCPI set-up is shown in Figure 4.1. Each arm of the interferometer

contains a superposition of a chirped and an antichirped pulse where the ω0 frequency

component of the antichirped pulse is delayed relative to the ω0 component of the chirped

pulse. For the sample and reference arms these delays are τ1 and τ2, respectively. These

time delays move the center frequency of each superposition away from ω0 and if the

difference between τ1 and τ2 is large enough, the narrowband component of the background

can be easily separated from the OCPI signal with a spectrometer.

The electric fields in the sample and reference arms are E1(ω) and E2(ω), respectively,
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given by:

E1(ω) =
[
E+(ω) + E−(ω)eiωτ1

]
eiε(ω−ω0)2

(4.1)

E2(ω) =
[
E+(ω) + E−(ω)eiωτ2

]
eiωτ (4.2)

where ε is the amount of unbalanced quadratic dispersion present in the sample arm, τ

is the time-delay introduced by the moveable mirror in the reference arm, and E±(ω) =

Ee−
(ω−ω0)2

4σ2 eiφ±(ω) are the fields of the chirped and antichirped pulses. The electric field

Esignal(ω) of the OCPI signal is the convolution of E1 and E2. Dropping the terms leading

to broadband SFG (as done in (1.49)) gives:

Esignal(ω) ≈
∫
dω′ [E−(ω)E+(ω − ω′) + E+(ω)E−(ω − ω′)] eiε(ω′−ω0)2

ei(ω−ω
′)τ (4.3)

The total CPI signal can be found by integrating the intensity of the SFG field over all

frequencies, i.e., Isignal(τ) =
∫
|Esignal(ω)|2 dω. Evaluating this integral and taking the

large-chirp limit where both conditions Aσ2 � 1 and A/ε � 1 are satisfied gives the

following:

Isignal(τ) ∝ 1 + cos (ω0(τ1 − τ2)) e−(τ− τ1−τ22 )
2
σ2

(4.4)

This signal has a similar form to the CPI signal in (1.51). The OCPI signal is formed from

a constant background with a gaussion of width ∆τ = 1/
√

2σ added to it. The gaussian

is multiplied by the phase-dependent term cos (ω0(τ1 − τ2)), however, which determines if

the interference in the interferometer is constructive, destructive, or somewhere in-between.

The argument of the cosine is the time-delay difference (τ1 − τ2) multiplied by the center

pulse frequency ω0, so in order to produce a measurable signal an OCPI set-up must

introduce the time-delays in a way that is stable on the order of the laser wavelength.

A proposal for an OCPI set-up with the required stability is seen in Figure 4.2. A laser

pulse is split and each half is chirped with either positive or negative dispersion. The pulse

polarizations are rotated to 45◦ and the antichirped pulse travels through a birefringent

crystal which delays the vertical component of the pulse, but not the horizontal one.

Introducing the time delays τ1 and τ2 in this way is stable because fluctuations in the

crystal’s position will affect both time delays equally, and hence not affect their difference.

65



2ω1

ω1+ω2

2ω2

Birefringent
material

τ

+A
(ω
-ω
0
)2

-A(ω-ω
0 ) 2

HWP
Polarizer

Figure 4.2: OCPI set-up with stable time-delay difference. A horizontally-polarized pulse
is split on a 50:50 beamsplitter, one half is chirped with positive dispersion and the other
is antichirped with an equal but opposite amount of negative dispersion. Both pulse
polarizations are rotated by 45◦ by half-wave plates, and the vertically-polarized component
of the antichirped pulse is delayed relative to the horizontally-polarized component by a
birefringent material. The pulses are then combined on a polarizing beamsplitter and sent
into the interferometer. The polarization in each interferometer arm is once again rotated
by 45◦ and then sent through a horizontal polarizer. The light then travels through the
interferometer and is recombined on a nonlinear crystal where it undergoes SFG.

If the chirped and antichirped beams are then recombined on a polarizing beam-splitter the

outputs of the beamsplitter will contain superpositions of chirped and antichirped pulses

with different centre frequencies.

The magnitude of the separation of the narrowband background and the signal is found

by first remembering that the instantaneous frequency of a chirped pulse follows the func-

tion ω(t) = ω0 + t/2A. If a chirped pulse with no time-delay is superposed with an

antichirped pulse which has been delayed by a time τ the average frequency of the super-

position will be

ωavg(t) =
1

2

[(
ω0 +

t

2A

)
+

(
ω0 +

t− τ
2(−A)

)]
= ω0 +

τ

2A
(4.5)
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Delaying the antichirped pulse relative to the chirped pulse by a time τ increases the

average frequency of the superposition. The narrowband component of the SFG light

created by upconverting this pulse will be at a frequency 2ω0 + τ/A.

4.1.1 Simulation of OCPI

A simulation was performed to investigate the properties of an OCPI signal. 90 nm FWHM

bandwidth pulses centred around 810 nm were used in the simulation. The linear chirping

functions φ±(ω) = ±A(ω − ω0)2 with A = 50, 000 fs2 were used. The pulses in the sample

arm of the interferometer were combined with a time delay τ1 = −251 fs, and the pulses in

the reference were combined with a delay τ2 = 251 fs. Both the narrowband and broadband

background components of the SFG light created from the pulse in the reference arm were

included in the simulation. The background from the sample-arm pulse was not included,

as this typically has a very small intensity for samples with low reflectivity. The simulated

OCPI signal was measured at 405 nm with a bandwidth of 0.05 nm. The narrowband

component of the background was at 404.8 nm and was thus successfully filtered out of the

OCPI signal. The simulation was run twice, with 0 fs2 and 150 fs2 of unbalanced dispersion

present in the sample arm. For comparison, the signal produced with transform-limited

pulses was simulated as well. The background light from the reference arm was not included

in the simulation using the transform-limited pulses. The results of the simulation are in

Figure 4.3.

The peaks from the simulation were fit with gaussians, and the FWHM of these gaus-

sians were used to determine the widths of the peaks. The OCPI peak broadens from

6.5 ± 0.1µm to 7.9 ± 0.1µm when the quadratic dispersion is included in the simulation.

The peak from the transform-limited pulse broadens from 2.3µm to 8.5µm. The reported

errors are the standard errors in the fits; the fits of the transform-limited-pulse peaks had

standard errors for the FWHM on the order of 10−10 µm. The simulation shows that filter-

ing artifacts from the OCPI signal broadens it in relation to the transform-limited-pulse

peak, however, in the presence of dispersion, OCPI can give a narrower signal than the

transform-limited pulses.
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Figure 4.3: Simulated OCPI signal. The red and black squares are the simulated OCPI sig-
nal with 0 fs2 and 150 fs2 of unbalanced quadratic dispersion, respectively. The antichirped
pulse was delayed relative to the chirped pulse in the sample and reference arms by −251 fs
and 251 fs, respectively. The green and blue squares are the signal from transform-limited
pulses, with and without unbalanced quadratic dispersion. The peaks were normalized to
aid visual comparison of their widths.
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4.1.2 Implementation of linear chirp

One way to linearly chirp a pulse with negative quadratic dispersion is to use a grating-

based compressor (Figure 4.4). A grating compressor consists of two parallel gratings

separated by a distance b, and a mirror. A light pulse is incident on the first grating at

an angle β from normal incidence, and the different frequency components of the pulse are

diffracted at an angle β′ given by the grating equation (1.23). The grooves of the grating

are separated by a distance d. The dispersed light hits a second grating, and the frequency

components are all diffracted in the same direction. A mirror reflects the light back off the

two gratings, and the individual frequencies are recombined into a single beam.

The path length L(ω) that light takes through the compressor is given by [6]

L(ω) =
b

cos β′
[1 + cos(β + β′)] (4.6)

The total phase φ acquired by light passing through the compressor is

φ(ω) =
ω

c
L(ω)− 2π

b

d
tan β′ (4.7)

where the second term is due to a phase of 2π caused by each ruling of the second grating [6,

30]. This phase can be differentiated twice to give

d2φ

dω2
= − 4π2bc

ω3d2 cos3 β′
(4.8)

Thus the grating compressor adds negative GVD to a laser pulse travelling through it. The

grating stretcher acts on the same principle as the compressor, however a 1:1 telescope is

placed between the two gratings. This telescope inverts the sign of the dispersion, and

hence pulses travelling through the stretcher are positively chirped. The curved mirrors in

Figure 4.4 form this telescope. Mirrors are used as opposed to lenses so no extra dispersion

is added by the lens material. The relevant parameter b is not the distance between the

two gratings, but the distance between the second grating and the virtual image formed

behind the second grating.
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b

b
2f

 
β β'

Figure 4.4: Grating-based compressor and stretcher. The compressor consists of two par-
allel gratings. An input pulse is incident on the first grating at an angle β from normal
incidence, and is diffracted by the frequency-dependent angle β′, given by (1.23). The light
is collimated on the second grating, then back-reflected at a mirror. The returning pulse
is at a slightly different height than the incoming light, and is picked off by a mirror. Red-
shifted frequencies take an overall shorter path through the compressor than blue-shifted
frequencies, creating an antichirped pulse. The separation b of the gratings determines the
magnitude of the applied dispersion. The pulse stretcher works on the same principle as
the compressor except a 1:1 telescope is placed between the two gratings, inverting the
sign of the dispersion and creating a chirped pulse. Two curved mirrors with focal length
f are placed a distance 2f apart to form this telescope.
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The third-derivative of the phase applied by the compressor is given by

d3φ

dω3
= − 3

ω

(
1 +

λ
d

(
λ
d
− sin β

)
1−

(
λ
d
− sin β

)) d2φ

dω2
(4.9)

where λ = 2πc/ω. To determine the relative importance of the third-order term of the

expansion of φ(ω), it is compared to the second-order term at frequencies near the edge of

the pulse bandwidth by the ratio [6]

R =

∣∣∣∣b3(ω − ω0)3

b2(ω − ω0)2

∣∣∣∣ ≈ σ

ω

(
1 +

λ
d

(
λ
d
− sin β

)
1−

(
λ
d
− sin β

)) (4.10)

where σ is the bandwidth of the pulse, and the coefficients b1 and b2 are defined in (1.11).

Grating-based strecher and compressor pairs were used to linearly chirp pulses in the first

implementations of CPI [13, 14, 15], and they worked well for these experiments. However

these experiments used laser pulses with bandwidth on the order of 10 nm, and hence the

third-order term was insignificant compared to the second-order term. With the larger

bandwidth of the laser used in the experiments in this thesis, however, the third-order

dispersion from these grating-based elements becomes significant, and this has the effect

of adding many extraneous features to the CPI signal. There is little freedom in tuning

the parameters in (4.10); λ and d are fixed, and it is desirable for σ to be large so the

interferometer will have good resolution. The incidence angle β can only be tuned within

a very narrow range as the gratings quickly lose efficiency as β deviates from its optimal

value.

An optical element known as a grism is the combination of a diffraction grating with

a prism. A grating is placed adjacent to one face of the prism, and light enters the prism,

is diffracted by the grating, and then exits the prism. Grism-based compressors (compres-

sors where the gratings have been replaced with grisms) have been demonstrated to have

independently tunable values of second- and third-order dispersion [10, 5]. Compressors

and stretchers using grisms are currently being investigated, with the goal of designing

systems that add purely quadratic dispersion to a pulse. Hopefully such systems will allow

an OCPI system with broadband pulses to be experimentally tested.
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Chapter 5

Conclusion

This thesis focused on the dispersion-cancelled imaging technique chirped-pulse interfer-

ometery. In Chapter 2 we used this technique to image the internal structure of a biological

sample. The required frequency anticorrelations for dispersion cancellation were created by

chirping a single light beam with a spatial light modulator in a 4-F system. Chirping the

light in this manner produced a signal peak, as opposed to a dip, and allowed all artifacts

to be filtered from the signal.

In Chapter 3 pulses were chirped with a nonlinear function before entering the inter-

ferometer. It was straightforward to apply the phase for this nonlinear chirp by using the

spatial light modulator. Experimentally, applying the nonlinear chirp improved the inter-

ferometer resolution by only about half of the expected amount, and it was shown that

nonlinearly-chirped pulses cancel dispersion as effectively as linearly-chirped ones. A next

step for this experiment would be to use a spatial light modulator with a finer resolution.

This would allow the chirping phase to be applied more accurately, and could lead to better

system resolution.

Chapter 4 contains a proposal for an experiment to spectrally separate the narrow-

band component of the background in a chirped-pulse interferometer from the signal. A

calculation and a simulation were performed which suggest that the proposed technique

could still produce a dispersion-cancelled signal from which artifacts could be filtered. To

produce linearly-chirped pulses, grating-based pulse compressors and stretchers were first
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investigated. While these grating-based dispersers work well for narrowband pulses, the

amount of third-order dispersion they introduce becomes signficant for broadband light.

Grism-based dispersers are currently being investigated, which allow the applied second-

and third-order dispersion to be tuned independently of each other, unlike grating-based

set-ups.
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Appendix A

Measurement of unbalanced

interferometer dispersion

While one of the main appeals of CPI is that it produces a dispersion-cancelled signal,

a CPI system will operate best if there is no extraneous unbalanced quadratic dispersion

in the set-up. Since the amount of dispersion which can be cancelled is limited by the

amount the pulses are stretched, it is beneficial to have a way to measure the unbalanced

dispersion present in the set-up in order to minimize it.

Consider a CPI set-up where the pulses are chirped by an SLM in a 4f-system (Fig-

ure 2.1) with phase φchirp = A(ω − ωc)|ω − ωc|. Pulses chirped with this phase have an

average frequency ωc, i.e., any given point along the superposition contains the two fre-

quencies ωc ±∆ω. The sample arm of the interferometer contains a dispersive element of

length L with a wavevector k(ω). The wavevector for frequencies near the center frequency

ωc is

kωc(ω) ≈ k|ωc +
dk

dω

∣∣∣∣
ωc

(ω − ωc) +
1

2

d2k

dω2

∣∣∣∣
ωc

(ω − ωc)2 (A.1)

= kωc + αωc(ω − ωc)2 + βωc(ω − ωc)2 (A.2)

Light at frequency ωc will experience a time-delay of τωc = 2αωcL as it travels through the
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sample arm of this interferometer, where the factor of 2 is due to the double-pass of the

dispersive element. Similarly, moving the retroreflector a distance Lref delays the light in

the reference arm by τref = 2Lref/c. The CPI signal is observed when the interferometer

path lengths are balanced for the center frequency ωc, or when αωcL = Lref/c. This

equation can be rearranged and differentiated as shown below:

Lref = cLαωc (A.3)

=⇒ dLref = cL
dα

dωc
dωc = 2cLβωc (A.4)

If the center frequency ωc of the input light is varied, a plot of the motor position versus

the center frequency will have a slope of 2cLβωc . If a CPI system is used to image a

dispersion-less sample (such as a mirror) this method can be used to measure the amount

of unbalanced quadratic dispersion present in the set-up.

To test this method, the quadratic dispersion introduced by a 6-mm piece of BK7 glass

was measured. The position of the CPI peak as a function of the center chirp frequency

was measured twice, once with the BK7 inserted and once with it removed. The center-

chirp wavelength was varied from 794 nm to 820 nm by changing the chirping function

in the SLM. A plot of the difference in the measured peak-positions gives the dispersion

introduced by the glass and this is shown in Figure A.1. The delays measured both with

and without the BK7 are plotted as well. Each line was fit with a linear function, and the

slope is related to the unbalanced quadratic dispersion in the interferometer at the center

frequency, ω0 = 2.34 fs−1, which corresponds to a wavelength of 806 nm. The plot of the

delay-differences has a slope of 265 ± 7 fs2 which is the amount of quadratic dispersion

introduced by a double-pass through the BK7. The thickness of the BK7 was measured

with a micrometer to be 6.07±0.01 mm which should have a quadratic dispersion of 266 fs2,

within the error of the measured value. The data taken without the BK7 has a slope of

−84 ± 5fs2 indicating that, at the time of this experiment, optics in the reference arm

introduced 168 fs2 more quadratic dispersion than the optics in the sample arm.
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Figure A.1: Measurement of quadratic dispersion from 6 mm of BK7. The CPI peak
position (with a constant delay subtracted) is plotted against the center frequency of the
chirping function. The red squares are the data taken with a 6-mm thick BK7 optic in the
interferometer’s sample arm, the green squares are the data with the BK7 removed, and
the black squares are the difference between the delays with and without the BK7. The
slope of the data taken without the BK7 represents the amount of unbalanced dispersion
in the CPI set-up, and the slope of the delay difference represents the amount of quadratic
dispersion introduced by the BK7 element.
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Appendix B

Griffin-10 alignment technique

The laser used for the experiments in this thesis was the Griffin-10 Ti:Sapphire laser, built

by KM-Labs. Occasionally the laser has to be completely realigned. The most difficult

part of the realignment is to initiate continuous-wave (CW) lasing, which must be done

before the laser can be aligned for modelocking. Here I’ve reproduced a list of steps for

aligning the laser for CW lasing, after the pump beam has been aligned. The technique

for aligning the pump beam can be found on page 25 of the Griffin-10 Ti:Sapphire Laser

Instruction Manual, which can always be found near the laser. The manual contains a list

of steps to align the laser for CW lasing, and I have reproduced steps 1-9 and 13-14 here for

completeness. The technique I use deviates from the manual instructions in steps 10-12,

and I learned this technique after speaking with a technician from KM-Labs. Figure B.1

depicts the set-up of the laser; this figure has been reproduced from the laser instruction

manual.

The procedure for aligning the Griffin-10 for CW follows. The list of steps is meant to

be read with reference to Figure B.1, as the number designations for the optics in the laser

cavity are often referred to.

1. Ensure that the green pump laser is at minimum power.

2. Verify that the green beam is aligned, as indicated in the previous section (page 25

of the laser instruction manual).

78



Figure B.1: Layout of KM-Labs Griffin-10 Ti:Sapphire laser. This figure has been repro-
duced from the KM-Labs Griffin-10 Ti:Sapphire Laser Instruction Manual.
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3. Remove the alignment tool from before the lens and open the iris aperture (11) in

front of the output coupler.

4. Check that the IR fluorescence spot reflected off of mirror (4) is intercepted by the

first prism (7), the fold mirror (10), the second prism (8), and the end high reflector

(9). Because the wavelengths are spread out at the second prism (8) and the laser

typically operates in the near IR, only a small portion of the visible fluorescence spot

will be intercepted by the second prism.

5. Check that the co-propagating IR fluorescence and green beam are incident upon the

ouput coupler (1).

6. Ensure that there is a beam block behind the second curved mirror (11).

7. Turn up the green pump power to 5 watts. “Over-pumping” will make it easier to

initiate lasing; but once you achieve lasing, turn the pump power down to ∼4.5 W.

8. You should notice where the pump beam passes through the crystal by observing the

bright red fluorescence path.

9. You should observe red fluorescence reflected from the second curved mirror (6)

focuses ∼10 cm past the output coupler (1) outside the Griffin-10 box. Also, fluores-

cence from the first curved mirror (4) focuses to a horizontal line at the position of

the “far” prism (8).

10. Adjust curved mirrors to ensure the beam is level. Adjust first curved mirror (4) so

the beam is 59 mm high before the prism arm mirror (10). Adjust the second curved

mirror (6) to make the beam height 59 mm in front of the output coupler.

11. (a) Move the second curved mirror (6) to the CW position (micrometer reading of

5.50 mm). At this point the crystal (5) and the lens (3) probably don’t need to

be moved. Check the back-reflection from the output coupler (1). Two spots

should be observed on a card placed before the second prism (8). One spot is

large with ∼1 cm diameter and the other is small. Center the small spot (which

is the reflection from the output coupler (1)) in the large spot (which is the
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reflection from the first curved mirror (4). It is important to ensure that the

heights of the two spots are the same.

(b) The two prisms should be moved further in than for their modelocking positions.

∼80% of the large spot should pass through the first prism (7), and ∼50% of

the visible focused line should pass through the second prism (8).

12. Intentionally misalign the retro-reflection from mirror (9) horizontally, then, using an

index card, align it vertically with the incoming spot. Next, align the retro-reflection

horizontally. Alternately adjust the retro-reflection off mirrors (1) and (9) until lasing

is acheived.

13. Optimize the power and mode by alternately tweaking the hoizontal and vertical tilt

on both end mirrors (1 and 9) and then adjust the translation micrometers for the

lens, second curved mirror (6), and the crystal.

14. Repeat the optimization of each of these components, in a cyclic process, several

times.

After the laser has been optimized for CW operation, it can be aligned for mode-locked

(i.e., pulsed) operation by following the steps beginning on page 28 of the laser instruction

manual.
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