
Novelty Detection by

Latent Semantic Indexing

by

Xueshan Zhang

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Master of Mathematics

in

Statistics

Waterloo, Ontario, Canada, 2013

c© Xueshan Zhang 2013

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Waterloo's Institutional Repository

https://core.ac.uk/display/144146571?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,

including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii



Abstract

As a new topic in text mining, novelty detection is a natural extension of information

retrieval systems, or search engines. Aiming at refining raw search results by filtering out

old news and saving only the novel messages, it saves modern people from the nightmare of

information overload. One of the difficulties in novelty detection is the inherent ambiguity

of language, which is the carrier of information. Among the sources of ambiguity, synonymy

proves to be a notable factor. To address this issue, previous studies mainly employed

WordNet, a lexical database which can be perceived as a thesaurus. Rather than borrowing

a dictionary, we proposed a statistical approach employing Latent Semantic Indexing (LSI)

to learn semantic relationship automatically with the help of language resources.

To apply LSI which involves matrix factorization, an immediate problem is that the

dataset in novelty detection is dynamic and changing constantly. As an imitation of real-

world scenario, texts are ranked in chronological order and examined one by one. Each text

is only compared with those having appeared earlier, while later ones remain unknown.

As a result, the data matrix starts as a one-row vector representing the first report, and

has a new row added at the bottom every time we read a new document. Such a changing

dataset makes it hard to employ matrix methods directly. Although LSI has long been

acknowledged as an effective text mining method when considering semantic structure, it

has never been used in novelty detection, nor have other statistical treatments. We tried

to change this situation by introducing external text source to build the latent semantic

space, onto which the incoming news vectors were projected.

We used the Reuters-21578 dataset and the TREC data as sources of latent semantic

information. Topics were divided into years and types in order to take the differences

between them into account. Results showed that LSI, though very effective in traditional

information retrieval tasks, had only a slight improvement to the performances for some

data types. The extent of improvement depended on the similarity between news data

and external information. A probing into the co-occurrence matrix attributed such a

limited performance to the unique features of microblogs. Their short sentence lengths and

restricted dictionary made it very hard to recover and exploit latent semantic information

via traditional data structure.

iii



Acknowledgements

The beginning of this study was accidental. During a seminar on domain adaptation

for learning in changing environments, the speaker raised an example of Amazon user

reviews. His purpose was to show that people used different vocabularies for books and

refrigerators, but the texts appeared on screen, with some words highlighted in red and

green in the middle of a slide full of mathematical formulas, suddenly aroused my long-

time passion for language, and the wild idea that I could do something to influence netizen

opinions and behaviours by statistics. Technical development had vastly popularized the

usage of internet in China; together brought a period of chaos since many people suddenly

found they had the chance and freedom to speak to millions. Rationality and the respect

to diverse opinions, which are critical in the development of a civil society, gave place

to emotional reactions and verbal attacks. I was thinking that if the minority rational

opinions which were overwhelmed could be picked out and read by more people, their

ways of looking at a problem might not be limited to those angry words prevalent in the

current internet environment. I chatted with Professor Mu Zhu, my supervisor, about

my thoughts, more as a vision of future work which was too far from my current field of

study. However, right on that night, Mu sent me a long email suggesting statistical novelty

detection and clustering, the research of the former finally led to this paper. Though some

remedial work on natural language processing was necessary, the majority of this project

was an application of my familiar statistical methods. I thank Mu sincerely not only for

his insights into the nature of statistics, which were acknowledged by a lot many students,

but - most importantly - his concrete encouragements to students to pursue what they

truly love, without which I could not understand what was the feeling to do something one

really likes, nor could I find the linkage between my leisure interests and my major study.

If Mu was the one who opened the door for me, then my friend Wu Lin paved the way.

As a novice who abruptly entered the vast territory of text mining, I was totally lost at the

beginning since even the very basic thing: the data format, was different from those I was

used to; not to mention the multitude of possible preprocessing treatments which turned

lines of words into clean matrices. Wu shared his years of text mining experience with me,

tutoring me in popular text models as well as python programming. When I dealt with

iv



foreign database proficiently at the end of my research, I felt heartily grateful to his timely

help.

I would also thank Professor Ghodsi and Professor Yingli Qin for their assistance and

valuable advice on my thesis. As a preliminary attempt, this piece of work is far from

perfect, but your help made it closer.

The thesis marks the end of my two-year study in Waterloo, which could not be as

smooth as it was without the consistent support from Mary Lou Dufton. She gave me an

enthusiastic welcome when I arrived alone in this foreign city, and has always been there

when I need help.

I owe a debt of gratitude to my friends in Waterloo who made my life colourful and

let me fall in love with Canada. Many thanks to Liang Li, who helped me not only

throughout the study, but is always available even across the Pacific. Finally, I owe my

deepest gratitude to my parents who brought life and love to me, and bear the feeling of

missing only to let me chase my heart.

v



To my parents

vi



Table of Contents

List of Tables ix

List of Figures x

1 Introduction 1

2 Novelty Detection 6

2.1 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Unit of Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.1 TREC Novelty Track Data . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.2 Reuters-21578 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Data Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.5 Performance Measure: Average Precision . . . . . . . . . . . . . . . . . . . 12

vii



3 Kernel Methods 16

3.1 Vector Space Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 Novelty Metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3 Kernel Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.4 Designing the Semantic Kernel . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.4.1 Weighting Matrix: Inverse Document Frequency . . . . . . . . . . . 20

3.4.2 Proximity Matrix: Latent Semantic Indexing . . . . . . . . . . . . . 22

4 Experiments 27

4.1 System Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2 Experiment Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5 Discussions 35

References 37

viii



List of Tables

2.1 Fact table 1 of the TREC data . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Fact table 2 of the TREC data . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Calculation of average precision . . . . . . . . . . . . . . . . . . . . . . . . 15

4.1 Experiment description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2 Result of LSI types ranked in topic similarity . . . . . . . . . . . . . . . . . 30

4.3 Result of all LSI types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.4 Evaluation of different methods’ leading advantages . . . . . . . . . . . . . 34

ix



List of Figures

2.1 Illustration of a novelty detection operation . . . . . . . . . . . . . . . . . 12

2.2 Artificial example of some hit curves . . . . . . . . . . . . . . . . . . . . . 13

3.1 Example of LSI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.1 Result of LSI types differing in topic similarity . . . . . . . . . . . . . . . . 31

4.2 Rank of different methods’ leading advantages . . . . . . . . . . . . . . . . 33

x



Chapter 1

Introduction

Novelty detection is a new topic in text mining. Pioneered by Yi Zhang’s work [34] in

2002, it can be viewed as a natural extension of information retrieval systems, or search

engines. It is inspired by the practical need that when tracking news events, discussions,

scientific proceedings, or social network news feed, people often prefer a refined search

result consists exclusively of the very latest updates, while all known, repetitive pieces are

sifted out. However, the current search engine selects its results based only on the candidate

documents’ relevance to the query, without any consideration on novelty. Therefore, a user

often have to face dozens of news articles, coming from different news agencies but reporting

the same event backgrounds and repeating preliminary findings, while the truly up-to-the-

minute advance is lying somewhere in the mess, taking forever to find. This predicament,

called information overload, is hardly a stranger to any contemporary person.

Novelty detection aims to help out by filtering out old information with the aid of

reading history and, most importantly, a measurement of novelty. The key problems lie

in the definition and quantification of newness. It is immediate to see that novelty is

not an objective concept with direct mathematical description. It varies from people to

people, and from topic to topic. Basically, the sources of variability and subjectivity can

be concluded as follows.
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Firstly, different people have different background knowledge to a same subject, which

will surly have an effect on the judgement of novelty. Such variety is due to educational

level, personal interest, or just accidental factors. Personal traits and individual under-

standing of new information may play a role as well.

For example, when judging the newness of an economics article reporting the recently

proposed BRICS Development Bank, there may be at least three responses. For those

readers who even do not know what BRICS stands for, the entire passage, including a

title picture of BRICS member country presidents’ photos, a report on the agreement of

establishing a new development bank, and a brief introduction to BRICS countries at the

end, is all brand-new. For frequent readers in international affairs, the last part may be a

platitude: they are only interested in the new bank and its possible influence. If some of

them happened to miss the March news in Asia, the face of China’s new president would

be a surprise. These are just a few possible cases. Real situation will certainly be more

diversified.

Therefore, a single novelty recommendation cannot satisfy everybody. The system

should be personalized, which could be achieved by recording personal reading history

on the local computer or a cloud account and employing adaptive filtering which takes

reader feedbacks into consideration. Some explorations have also been made on setting

dynamic threshold by [34] and [25]. In our system, which is a moderate first attempt, we

simplified the situation by fixing the reading history, assuming that the input texts are all

the information that a user will have, and produce our results based exclusively on these

data.

Secondly, people have varied criteria and requirement for novelty on different topics,

based on topic types, importance, even the media where the topic is reported.

For instance, in a disputation on an abortion pill, when the debate is held at national

level and debaters involved House representatives, the president and the opposition party,

with the practice of other countries such as France, Germany, and the attitude of Roman

Catholic Church are quoted as support, a message that a figure of authority has finally

taken his stance - even though his/her opinion itself may be exactly the same as an existing
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view of others - are usually regarded as new, since here the speakers weigh as much as the

content of the speech. However, if the debate happens on the Internet among common

people, then the opinions will be much more important than the speakers. That an ordinary

person simply clicked “like” without posting any original ideas should not bring a novelty

alert to the followers of the discussion.

In consequence, a mature novelty detection system should carefully analyse the features

of different subjects and return specialized reports. It calls for an understanding of the

characteristics of traditional media topics and Internet posts, as well as knowledge in

psychology. This may as well be set as one of the ultimate goals of a novelty detection

system.

The last but not the least, language, as the carrier of information, has its inherent

ambiguity. It proves to be not only a challenge in novelty detection, but a knotty point

in all text mining tasks and one of the core problems of natural language processing. We

briefly list some sources of ambiguity or their corresponding natural language processing

research topics below.

• Word level:

– Synonymy and polysemy.

– Word structure. Grammatical conjugation.

• Sentence level:

– Part-of-speech tagging.

– Syntactical parsing.

• Passage or corpus level:

– Lexical similarity.

– Coreference identification. Cross-document coreference study.
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In this thesis, we would like to focus our discussion on synonymy and polysemy. Words

are the bricks of passages, as well as the most fundamental component of meanings. In

novelty detection, polysemy is seldom a problem. Since each topic is restricted to its own

area, a word often has only one definite meaning. However, its twin brother: synonymy,

proves to a notable factor which determines performance. Here is an example taken from

two successive news reports from Xinhua News Service on Princess Diana’s car accident.

19970831 01:10 am Diana was fatally injured and later died in a hospital early

Sunday in a car accident in Paris

19970831 01:29 am Princess Diana Dead in Paris Car Crash

Apparently, the information in the second sentence is entirely included in the first

report. However, if one apply cosine similarity to these two sentences directly (using bag-

of-words expression and term frequency-inverse document frequency weights, which will

be discussed in detail in Chapter 3), he/she may find a similarity score as merely 0.13.

That is because in the plain vector-space-model, only the terms that directly appear in a

sentence are given positive weights; those do not show up just have weights zero. There-

fore, only when two sentences have exactly the same word, the word’s weights would be

counted in the cosine score, or the appearance of a word in one sentence would be totally

cancelled out just because it does not occur in the other sentence as well. Let us look at

the above example. If we use 0-1 to represent a word’s presence, then parts of the vector

representations would look like this.

Princess Diana died dead Paris car accident crash

Sentence 1 0 1 1 0 1 1 1 0

Sentence 2 1 1 0 1 1 1 0 1
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From the above table we know: only the weights of Diana, Paris, and car partic-

ipate in the calculation of similarity score. Even though died and dead, accident and

crash have exactly the same meanings, their appearances were cancelled out because of

no co-occurrence. Although a word stemmer can help us with verb conjugations, it does

nothing with verb-adjective changes as well as synonyms. Therefore, an effective synonym-

matching algorithm would enhance the accuracy of text similarity measures, thus boost

the performance of the whole system.

In the Novelty Track of the 2002-2004 Text Retrieval Conference (TREC), participants

from Carnegie Mellon University [6] and Chinese Academy of Sciences [24][32] attempted

to deal with this problem by adding WordNet [30], a lexical database which can be per-

ceived as a thesaurus. It contains 155,287 words organized in a network with nodes as

117,659 sets of cognitive synonyms. Distances between nodes can be used as a measure

of similarity. These teams achieved moderate results; however, the effect of introducing

the WordNet module remained unknown. Since each team had different pre-processing

techniques, novelty measures, and selection rules, we could not find any pair of teams

which adopted the same approaches in all components but only differed in whether used

the WordNet. On the other hand, as statisticians, we prefer learning from data, instead of

borrowing an existing dictionary.

In this thesis, we tried to address the synonymy problem by the well-established statis-

tics method: Latent Semantic Indexing using the framework of kernels for texts. External

databases, such as the Reuters-21578, were introduced to derive the latent semantic struc-

ture. We also ameliorated some technical treatments to the datasets to improve statistical

soundness.

The layout of this thesis is as follows. Chapter 2 provides a detailed introduction to

novelty detection. Chapter 3 illustrates the kernel framework we adopted and builds the

kernel function step by step. Chapter 4 states our experiments and their results. The last

chapter concludes the thesis by a discussion.
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Chapter 2

Novelty Detection

2.1 Problem Description

In practice, a complete novelty detection process has two steps:

1. Given a topic, return all relevant texts.

2. Rank all relevant texts in chronological order. Examine them one by one. For any

text, given only the texts that have been seen before, determine whether it contains

novel information.

Obviously, the two steps are distinct in nature. The first one is a traditional infor-

mation retrieval problem, requiring an evaluation of the texts’ relevance to the query.

The second one resembles a filtering task, in which all previous information is used as

the mesh of a sieve to sift out repetitive texts and retain new ones. Accordingly, these two

tasks should be treated separately. This thesis focuses on the latter. From now on, when

we mention “Novelty Detection”, we mean specifically the second problem.
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An important note should be made here at the beginning of our discussion. The novelty

detection is essentially an on-line problem, which is different from the majority of statistical

learning tasks that we are familiar with. In the latter, the data set is fixed. It comes

as an intact matrix on which statistical distribution is modelled or algebra operation is

conducted. However, in novelty detection, the data set is growing over time. It starts as

a one-row matrix representing the very first report on a topic. Every time we identify a

text as novel or repetitive, it is added as a new row to the matrix. Therefore, if regular

statistical learning methods such as matrix factorization are applied directly, the changing

data set would require frequent re-factorization, which is neither efficient nor effective.

Such a situation greatly limits the range of novelty detection algorithms. In the past

studies, treatments were largely confined to simple vector comparison. Methods involving

matrix operation which have proven to be very effective in text mining, such as Latent

Semantic Indexing (LSI), had never been employed. In this thesis, we attempted to propose

a possible solution to the predicament: introducing external text data to establish a latent

semantic space, on which we projected the incoming news files.

Here is another note before the formal discussion. Novelty detection in sequenced

text data and novelty detection for the identification of outliers or abnormalities are two

disparate subjects. The latter, as discussed in [14], [15], [26], and [21], works on static

unordered datasets in classification or identification systems. It aims to detect whether

an input is homogeneous with the training data which is known to a classifier. After the

earlier discussion, we can clearly tell that this is an entire different task from the novelty

detection problem that we are dealing with.

With these in mind, we can proceed to get our hands dirty by beginning the introduction

on problem setting.

2.2 Unit of Detection

We chose to perform novelty detection on sentence level. Although document is the natural

unit of written language, it is not ideal in novelty mining. As pointed out in the TREC
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experience [22] [31] [23], every document contains some new information, especially in the

news domain. As a consequence, a novelty detection system would return most of the

documents, leaving readers the task to manually identify the novel parts in these passages,

no matter whether the fractions of them are large or not. This is certainly not the scenario

we want.

Therefore, sentence was adopted as the unit of retrieval. The TREC Novelty Track

dataset, which we used, was prepared in the following fashion. Firstly, documents for

a chosen topic were retrieved based on relevance (Step 1 in 2.1), ranked in time order,

and then split into sentences. Each sentence was assigned a number composed of the

published date and time of its source document, as well as the sequence of the sentence in

the document. As a result, sentences coming from earlier documents were ranked at the

front. When coming from the same documents, sentences were ranked in written order.

On this sentence dataset, the human assessors of the TREC Novelty Track took a step

further to pick out relevant sentences, and judged their novelty. Our experiment aimed to

model their judgement of novelty based on the choice of relevant sentences.

2.3 Datasets

We used two datasets in the entire study. The main dataset came from the 2003-2004

TREC Novelty Track, which is the most reliable database in novelty detection. Another

dataset, Reuters-21578, was adopted as external information to boost the performance of

Latent Semantic Indexing.

2.3.1 TREC Novelty Track Data

After Yi Zhang’s pioneer work in 2002, the Text REtrieval Conference (TREC) held three

Novelty Tracks from 2002 to 2004 in a row. These competitions not only popularized the

research subject, but established many standards that were followed by later studies. One
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of them was the 2003-2004 TREC Novelty Track dataset (referred to as the TREC data

below).

As we have seen in Chapter 1, the determination of “ground truth” for novelty de-

tection is a tough problem. The TREC data did a good job. After an unsuccessful first

trial in 2002, the event organizers in the National Institute of Standards and Technology

(NIST) adopted the AQUAINT Corpus of English News Text [11] in the 2003 and 2004

conferences. This collection is more than suitable in that it consists of news articles from

three main news agencies with overlapping time periods: New York Time News Service

(Jun 1998 - Sep 2000), Associated Press Worldstream News Service (Jun 1998 - Sep 2000),

and Xinhua News Service (Jan 1996 - Sep 2000). Therefore, it contains similar reports

from different sources to the same event: an ideal copy of the real life situation faced by

novelty detection. The organizers selected 50 topics per year: 100 in total. Each topic is

an independent unit. A first assessor composed the topic query and descriptions, chose

sentences according to the process in 2.2, and assessed the sentences’ novelty. A second

assessor would evaluate the novelty again independently. Most of the second assessors in

2003 and all of them in 2004 had compiled their own topics, thus were experienced in the

selection. The assessor effect was carefully analyzed by NIST researchers in event sum-

maries [22] [31] [23], according to which the human assessors had reached a reasonable level

of agreement (some statistics in Table 2.2). In the final dataset, the judgements of the pri-

mary assessor were taken as ground truth for evaluation. The second assessors’ judgement

was not published, and was used as a ceiling for system performance in the conferences.

2003 2004 Total

Event 28 25 53

Opinion 22 25 47

Total 50 50 100

Table 2.1: Fact table 1 of the TREC data. Numbers of event and opinion topics.

In addition, topics were divided into two types: event and opinion. In 2003, 28 topics

were events; 22 were opinions. In 2004, each counted a half: 25. (Table 2.1) Event topics
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included cloning of the sheep Dolly, the bombing at the 1996 Olympics in Atlanta, etc.

Opinion topics were about controversial subjects such as gun control, same-sex marriage

and the Lewinsky scandal. The examples on abortion pills and Diana’s accident in Chapter

1 was just taken from the real dataset. From Table 2.2, we can tell that these two types

varied in statistics, which may imply some difference in novelty selection as we discussed

in Chapter 1. We will take this into account in the following studies.

Task Topic Type 2003 2004

Relevant All topics 0.39 0.20

Events 0.47 0.25

Opinions 0.38 0.15

Relevant agreement All topics 0.69 0.60

Events 0.82 0.68

Opinions 0.63 0.50

Novelty All topics 0.68 0.40

Events 0.61 0.38

Opinions 0.73 0.42

Novelty agreement All topics 0.56 0.35

Events 0.65 0.45

Opinions 0.48 0.29

Table 2.2: Fact table 2 of the TREC data. Median fraction of sentences which were relevant

and novel, and proportion of agreement by the secondary assessor.

2.3.2 Reuters-21578

The Reuters-21578 [12] (referred to as Reuters below) was published in 1990 for the first

time containing 21,578 documents that appeared on the Reuters Newswire in 1987. Further

formatting, data cleaning, and tagging was carried out from 1990 to 1996. It is one of the

standard collections in text categorisation. The version we adopted was a part of the
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Natural Language Toolkit (NLTK) package in Python, known as the “ApteMod” corpus.

It has 10, 788 documents in total. As one of the most popular versions, this sample

ameliorates the high skewness in the original data source to some extent. In our study,

we ignored the category tags, using only the text content as background information from

which to learn language knowledge.

2.4 Data Pre-processing

We performed the standard pre-processing operations for texts data. Steps are listed as

follows.

1. Stripping all the punctuation and capitalisation.

2. Tokenisation. Sentences were broken into single words.

3. Stop word removal. Commonly used English words, such as “the”, “has”, “to”

were removed, since they hardly contain useful information in sentence comparison.

For the TREC data, we used the stop word list on [1]. For Reuters, the original

list in NLTK package was applied. In addition, we removed all single-letter words in

both datasets.

4. Number removal for Reuters. We kept all numbers in the TREC data, since

numbers such as ages, dates, population are informative; but for Reuters, the back-

ground data, these numbers are useless.

5. Stemming. As discussed in Chapter 1, grammatical conjugation, inflection and

derivation stand among sources of language ambiguity. Stemmers are designed to re-

duce the inflected and derived words to their root form. It may not be performed by

mapping each word to its exact morphological root in the dictionary, but by simply

deleting specific suffixes. For instance, in the Porter Stemmer we adopted [17], the

ending ”-y” is replaced with ”-i”; endings ”-e”, ”-ed”, and ”-s” are stripped. As a re-

sult, word ”early” becomes ”earli”; ”bridge” turns into ”bridg”; ”beautiful” matches
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with ”beauty” since they are both changed into ”beauti”; ”look” and ”looked” both

become ”look”.

After these preparations, we were ready to apply the kernel framework. Before entering

a detailed discussion in Chapter 3, let us first take a look at the performance measure.

2.5 Performance Measure: Average Precision

We chose average precision as our measurement of evaluation. Prevalent in Information

Retrieval fields, this quantity resembles the ROC curve in spirit. The subsequent discus-

sion follows Mu Zhu’s article [36].

Relevant: L

Novel: N
Hits: h(t)

Detected: t

(π = N
L
)

Figure 2.1: Illustration of a novelty detection operation. Among L collections, N are novel.

A system detects t out of L, of which h(t) are truly novel, i.e. the “hits”.

A typical detection operation can be illustrated as Figure 2.1. Among the total col-

lection of L sentences, N are novel. A novelty detection system identifies t, of which h(t)

12



are confirmed as correct. They are called “hits”. The algorithm does this by assigning a

novelty score to each sentence and ranking them. The higher the score, the more likely the

sentence is what we want. Then after a threshold is given by system users, those sentences

with above-threshold novelty scores are returned.

0.25L 0.5L 0.75L L

t

0.25N

0

0.5N

0.75N

N

hP (t)

hR(t)

hB(t)

h(t)

hA(t)

t∗

hP (t): Perfect curve

hR(t): Random curve

hA(t):

hB(t):

Typical hit curves

Legend:

cross at t∗

Figure 2.2: Artificial example of some hit curves. The curve hP (t) corresponds to perfect

detection; hR(t) is produced by random selection. Curves hA(t) and hB(t) stand for typical

hit curves produced in reality. Neither one has an uniform advantage; note that they cross

each other at t∗.

If we pretend to detect only the most likely sentence at the first round; then add the

next most promising one, one by one, we will get a hit curve by drawing h(t) against t.

Figure 2.2 shows some typical (though hypothetical) hit curves. The dotted orange curve

on the top, hP (t), is an ideal curve corresponding to a perfect detection: all novel items
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are ranked before non-novel ones, thus every sentence detected is an actual hit until all

novel ones are exhausted. The dotted blue curve at the bottom, hR(t), is produced by

random selection. The two curves in the middle: the blue solid one hA(t) and the green

dashed one hB(t), stand for typical detection algorithms. Neither of them has an uniform

advantage over the other. Although hB(t) climbs faster at the beginning, it is surpassed by

hA(t) after their crossing at t∗. Of course, we would prefer an algorithm whose hit curve

maintains a quick increasing rate - better be above all other curves for any t.

Unfortunately, this is hardly the case happening in reality. For most of the time, we have

to compare two intersecting curves or even more. Such comparison can be troublesome

and time-consuming, especially at the development stage when we are fine-tuning the

algorithms. Therefore, a simple numeric performance measure is preferred. Such is the

motivation of recall, precision, and their close relative: average precision.

Here is the definition of recall and precision. Let

y =

1 if ω is relevant

0 otherwise
and ŷ =

1 if the algorithm detects ω

0 otherwise.

Then

Recall = Pr(ŷ = 1|y = 1) and Precision = Pr(y = 1|ŷ = 1).

At a particular detection level of t, the two measurements are simply

r(t) =
h(t)

N
and p(t) =

h(t)

t
.

Because of the well-known recall-precision trade-off [36], the two measurements are hard

to be optimized at the same time. Generally, r(t) increases with t while p(t) decreases

with t. As an inconvenient consequence, both recall and precision must be considered

simultaneously in algorithm evaluation. Therefore, a single numeric metric which integrates

the two measurements, namely average precision, is proposed, and has become the most

popular performance measure.
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The definition of average precision is as follows:

AP =
L∑

t=1

p(t)∆r(t).

As an example, table 2.3 is helpful for understanding.

Score Rank t Hit h(t) p(t) r(t) ∆r(t)

1 1 1 1 1/1 1/N 1/N

2 2 1 2 2/2 2/N 1/N

3 3 0 2 2/3 2/N 0/N

4 4 0 2 2/4 2/N 0/N

5 5 1 3 3/5 3/N 1/N
...

...
...

...
...

...
...

AP =

(
1

1
× 1

N

)
+

(
2

2
× 1

N

)
+

(
2

3
× 0

N

)
+

(
2

4
× 0

N

)
+

(
3

5
× 1

N

)
+ · · · .

Table 2.3: Calculation of average precision for a hypothetical algorithm

In conclusion, average precision is proposed in need of a single-number numeric per-

formance measure which can be calculated regardless of a particular threshold. Such

properties are highly desirable in algorithm evaluation and comparison. Therefore, we will

adopt average precision as our measure of performance in the subsequent study.
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Chapter 3

Kernel Methods

Kernel methods for text data is introduced in [21]. We employed it as a handy framework

to integrate the vector space model, choice of inverse document frequency, with Latent

Semantic Indexing.

3.1 Vector Space Model

With the pre-processed dataset (Chapter 2.4) in hand, an important question is how to

convert these lines of text to a form that we are familiar with. Vector space model, or bag-

of-words approach, is used most commonly today. Although relatively simple, it proves

to be a powerful representation of language contents. Moreover, it takes one of our most

acquainted formats: the matrix.

A note should be made here to avoid confusion. In Chapter 2.2, we chose sentence as

the unit of detection. To keep our terms consistent with those commonly used in vector

space model, we may use document to refer to the unit of input, which is sentence. In fact,

after the original articles were broken into sentences, each sentence can be perceived as an

independent document. These sentences together form the input of the following model.
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As its name suggests, the vector space model represents every input sentence as a

vector. Each element is associated with a unique word, or called term exchangeably. The

value is how many times this word appears in the sentence, named term frequency. When

processing a number of inputs, a dictionary recording all the words appearing in these

sentences is needed. In reality, where new sentences are coming in as real-time updates,

the dictionary is usually comprehensive and predefined. However in our experiment, the

complete dataset was already in hand, thus we could build a dictionary whose index only

includes the words that are used in a topic. Correspondingly, all the sentences in a topic

are referred to as a corpus.

When the dictionary is ready, a sentence in a corpus can be mapped to a vector in a

space in which each dimension corresponds to one term in the dictionary

φ : d 7−→ φ(d) = (tf(t1, d), tf(t2, d), . . . , tf(tT , d)) ∈ RT ,

where tf(ti, d) is the term ti’s frequency in the document d. T is the size of the dictionary

as well as the number of dimensions in the image space. As the words used in a sentence

are usually very small compared to the dictionary size, the vector is often sparse with most

of its entries equal to 0.

Sentences mapped to this space form a term-document matrix

D =


tf(t1, d1) tf(t2, d1) . . . tf(tT , d1)

tf(t1, d2) tf(t2, d2) . . . tf(tT , d2)
...

...
. . .

...

tf(t1, dL) tf(t2, dL) . . . tf(tT , dL)

 ,

whose rows are indexed by the documents and whose columns are indexed by the terms.

The total number of sentences in the current collection is denoted as L.

3.2 Novelty Metric

One of the key questions in novelty detection is how to determine the novelty score. Among

the 2002-2004 TREC Novelty Track and subsequent studies, cosine similarity was most

17



frequently used to construct the metric.

Given a document di+1 and its previous documents d1, . . . , di, the novelty score of di+1

can be defined as

N(di+1) = 1− max
1≤j≤i

cos(φ(di+1), φ(dj)) = 1− max
1≤j≤i

〈φ(di+1), φ(dj)〉
||φ(di+1)|| · ||φ(dj)||

,

where 〈·, ·〉 is the inner-product; || · || is the norm in the vector space.

In some research, sentences that are not identified as novel are removed from the col-

lection. That is, di+1 is only compared with a subset of novel sentences in d1, . . . , di. Such

a practice comes from the requirement of many real-world on-line systems: due to a mul-

titude of incoming documents and limited storage, only necessary information is stored.

However, at the development stage, this procedure causes difficulty.

Firstly, to spot novel sentences, a threshold is needed, which is undesirable for the

purpose of comparing algorithms. For different algorithms, the thresholds under which

they perform best may differ wildly. To conduct a fair comparison, we need to experiment

firstly with thresholds for each algorithm to find their most suitable ones, which adds to

the complexity of our experiments. Moreover, by adopting the LSI approach in 3.4.2, we

actually already have a tuning parameter: the number of chosen singular vectors. Adding

the threshold as a second parameter requires a grid search in parameter tuning, which

raises the time cost considerably. These extra efforts may obscure the original purpose of

our experiment as well.

Secondly, by doing so, the system’s earlier performance will largely affect its later

judgements. If sentence S is novel but neglected by the system, then the next sentence

similar to S would be identified as novel, although it may just be a repetition of S. A lapse

at the beginning may cause a huge difference in the system’s whole performance, which is

not fair.

Therefore, we retained all read documents in the system since we hardly had a storage

burden for the experiment dataset. For any document, it was compared with all previous

sentences. By doing so, we not only focused ourselves on algorithm comparison, but also

reduced the effect of false judgement to the minimum.
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3.3 Kernel Function

Sometimes, the observations show a much clearer pattern after space transformation. When

inner product is defined on the image space, it is desirable that we can get it directly from

the data without computing the mapping explicitly. This is the role of a kernel function.

Kernel Function [21] A kernel is a function κ that for all x, z ∈ X satisfies

κ(x, z) = 〈φ(x), φ(z)〉,

where φ is a mapping from X to an (inner product) feature space F

φ : x 7−→ φ(x) ∈ F.

For text data, φ maps a document d to φ(d) in the vector space RT , thus the vector

space kernel is

κ(d1, d2) = 〈φ(d1), φ(d2)〉 =
T∑

j=1

tf(tj, d1) tf(tj, d2).

A kernel matrix can be created as

K = DD′,

whose (i, j)th entry gives κ(di, dj), which is just the cosine similarity between di and dj.

3.4 Designing the Semantic Kernel

Though convenient, the vector space model has three main shortcomings. Firstly, it ne-

glects word order, thus some grammatical relations are lost. Secondly, all terms are given

equal weights. Although high-frequency words in the stop word list are removed, the rest

of the terms still differ in overall frequency, thus have differences in importance. Thirdly, as

demonstrated in the example of Diana’s Car Accident in Chapter 1, the plain vector space
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model does not consider information passed by synonymy. In computing cosine similarity,

only terms that are non-zero in both documents are counted. If a synonymy pair is used

separately in two sentences, their existences will just cancel out. Among these three draw-

backs, the first one is inherent in the vector space representation. We aimed to ameliorate

the other two using the semantic kernel that we will introduce in the next.

Consider a linear transformation of the vector φ(d):

φ̃(d) = φ(d)S.

The corresponding kernel took the form

κ̃(d1, d2) = 〈φ̃(d1), φ̃(d2)〉 = φ(d1)SS′φ(d2)
′

We called S as the semantic matrix. It could be created as a composition of several steps.

To tackle the latter two problems mentioned at the beginning of this section, we constructed

S as

S = RP.

Here, R was a diagonal weighting matrix indicating the relative importance of different

words, and P was a proximity matrix giving the semantic distances between different words

in the corpus.

3.4.1 Weighting Matrix: Inverse Document Frequency

Inverse document frequency is one of the most intuitive quantities to measure the amount of

information a word contains. Consider the two words “model” and “shrinkage”. Obviously,

the former appears much more often in a common language database than the latter. For

an article containing “model”, we cannot determine whether it is talking about engineering,

mathematics, or finance; but if it contains “shrinkage” instead, then it is probably a piece

on statistics. Therefore, we can weight a word’s importance by counting in how many

documents it appears. The frequency should be an inverse of importance.
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Document Frequency

df(t)
def
= |{d; tf(t, d) 6= 0}|.

Inverse Document Frequency

w(t) = idf(t)
def
= log

L

|{d; tf(t, d) 6= 0}|+ 1
,

where L is the corpus size. The number ‘1’ is added to the denominator to avoid a division-

by-zero. The logarithm function is used to adjust the scale: by doing this, the maximum

inverse document frequency would be approximately twice as the average. The base of the

log function does not matter. In our experiments, we used the natural logarithm.

Substitute this definition of w(t) into R:

R =


w(t1)

w(t2)
. . .

w(tT )

 .

The kernel function became

κ̃(d1, d2) = φ(d1)RR′φ(d2)
′ =

T∑
j=1

w(tj)
2tf(tj, d1)tf(tj, d2),

as a weighted multiplication of φ(d1) and φ(d2). We called tf(t, d)×w(t) = tf(t, d)× idf(t)

as the tf-idf weight of term t in document d.

Generally, inverse document frequency is calculated with respect to the whole corpus:

specifically to the novelty detection problem, to the whole topic. This is the practice

adopted in all past studies. However, we suspected that this operation would lead to

over-fitting. When document di is being read, we do not know anything about di+1 to dL.

Computing the inverse document frequency of terms in di using the information in later

sentences equals to “peeking” at these data that are waiting to be detected.
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Based on the above consideration, it is better to calculate the inverse document fre-

quency from some background data. Although Reuters was introduced as external source

in the later section, it was mainly on financial news while the TREC focused on political

and social events. Considering that the TREC topics were consistent in flavour in 2003 and

2004, we chose to utilize the topic themselves as the source of this background information.

The 100 topics were divided into two parts by year; topics in the same year were treated

as a big corpus to calculate the yearly overall inverse document frequency, which was used

for the other year’s topics. In short, the 2003 topics were weighted by the corresponding

terms’ inverse document frequency in 2004, and vice versa.

3.4.2 Proximity Matrix: Latent Semantic Indexing

In the last section, the weighting matrix R was diagonal, thus the effect of right-multiplying

it to the term-document matrix was clear: to convert a simple vector multiplication to a

weighted one. However, the proximity matrix, P, could be any matrix, hence its mathe-

matical meaning was obscure. To better interpret it, we expanded the expression

κ̃(d1, d2) = φ(d1)RPP′R′φ(d2)
′,

and got

κ̃(d1, d2) =
T∑

k=1

[
T∑
i=1

T∑
j=1

w(ti)w(tj)pikpkjtf(ti, d1)tf(tj, d2)

]

=
T∑
i=1

T∑
j=1

[
w(ti)w(tj)tf(ti, d1)tf(tj, d2)

(
T∑

k=1

pikpkj

)]
.

As a result,
T∑

k=1

pikpkj

played a role in adjusting the significance of tf-idf(ti, d1) × tf-idf(tj, d2). If we took the

elements in P as distances, then it could be understood as a sum of the lengths of all
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possible routes from term i to term j via one other term (including themselves) as transit,

which coincided with our understanding of a “proximity” matrix.

Latent Semantic Indexing (LSI) is a prominent machine learning method to reveal the

semantic relationship between different terms in a corpus. It was inspired by the need in

Information Retrieval. A document may describe the same concept as the query only using

different terms, thus a synonym matching is desirable. Roughly speaking, the LSI projects

words and documents onto a latent semantic space where items with similar meanings are

closer by making the best use of Singular Value Decomposition (SVD). We will illustrate

this idea in detail using an example borrowed from the original paper in which LSI was

proposed [7].

Here were nine sentences categorized into two fields and a query phrase. The first

five sentences, marked as the “a” group, talked about human computer interaction which

exactly matches the query. The latter four sentences, called the “b” group, were used as

reference and lay in the domain of graph theory. Words appearing in more than one sen-

tence were highlighted. If a word-for-word comparison was carried out, then only sentences

a1, a2, and a4 were likely to be returned since they shared the exact terms used in the

query; a3 and a5 would be missed.
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Query Human computer interaction

a1 Human machine interface for Lab ABC computer applications

a2 A survey of user opinion of computer system response time

a3 The EPS user interface management system

a4 System and human system engineering testing of EPS

a5 Relation of user-perceived response time to error measurement

b1 The generation of random, binary, unordered trees

b2 The intersection graph of paths in trees

b3 Graph minors IV: Widths of trees and well-quasi-ordering

b4 Graph minors: A survey

To simplify, we only used the term-document matrix containing these highlighted words;

inverse document frequency was not multiplied. We denoted this matrix as D. The latent

semantic indexing conducted singular value decomposition on D′:

D′ = UΛV′.

Then, we projected the original document and term vectors onto the space spanned by Uk

and Vk. Uk and Vk were the first k dimensions of U and V. We chose k = 2 for the

convenience of graph presentation.

d 7−→ φ(d) Uk, term 7−→ V′k φ(term).

Figure 3.1 showed the geometric representation for terms and documents on the pro-

jected space.
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Figure 3.1: Example of LSI. Documents are represented as filled squares; terms are open

circles; the query is the star mark. The documents and terms appearing only in group

“a” are drawn in green; those in group “b” are red; term “survey” which is used in both

groups is purple; the query is black. We can see that there is a natural cluster of these

two groups. The query lies closer to the points in group “a”. Even documents a3 and a5

which do not share common words with the query are in its vicinity.

From Figure 3.1, we could see that the terms and documents were naturally clustered

into two groups, which coincided with their appearance in the original categorization.
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Furthermore, the query “human computer interaction” lay in the vicinity of group “a”,

but far from group “b”. Even documents a3 and a5 which did not share any common

terms with the query were close to it in the figure. Actually, documents a1 to a5, but not

b1 to b4, were in the cone area with a cosine of 0.9 to the query [7]. We could fairly hope

that it would be promising to achieve our goal of synonymy matching by LSI.

As discussed in 2.1, we could not apply LSI directly to the changing term-document

matrix in novelty detection. Instead, an external matrix, denoted as D̃, was utilized to

derive the latent semantic space.

D̃′ = ŨΛ̃Ṽ′

Putting everything together, our final expression of document d was

d 7−→ φ(d) Ridf Ũk,

where Ridf was the inverse document frequency weighting matrix designed in 3.4.1; Ũk was

the proximity matrix by which documents were projected onto the semantic space learned

from external knowledge; k was determined by the cumulative proportion of Λ̃’s diagonal

elements. The final kernel function held the form

κ̃(d1, d2) = φ(d1) Ridf ŨkŨ
′
k R′idfφ(d2).
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Chapter 4

Experiments

4.1 System Summary

Here we summarize the system we constructed in the previous chapters.

System 1 Inverse Document Frequency

1: for year y ∈ {2003, 2004} do

2: Calculate Ridf

3: for topic i in the other year do

4: Extract submatrix Ridf{y→i} whose columns have terms in Dict(i)

5: end for

6: end for
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System 2 Latent Semantic Indexing

1: Choose the external source to apply LSI

2: Build tf-idf matrix D̃ for the selected dataset

3: for topic i = 1 to 100 do

4: Extract submatrix D̃(i) whose columns have terms in Dict(i)

5: D̃(i)′ = Ũ(i)Λ̃(i)Ṽ(i)′

6: end for

System 3 Main

1: for topic i = 1 to 100 do

2: for document l = 1 to Li do

3: Pre-process dl

4: Build dictionary Dict(i)

5: end for

6: for document l = 1 to Li do

7: dl 7−→ φ(dl) = (tf(t1, dl), . . . , tf(tTi
, dl))

8: if topic i is in year 2003 then

9: φ(dl)← φ(dl)Ridf{2004→i}

10: else

11: φ(dl)← φ(dl)Ridf{2003→i}

12: end if

13: φ(dl)← φ(dl)Ũ
(i)
k

14: N(dl) = 1−max1≤j≤l−1 cos(φ(dl), φ(dj))

15: end for

16: AP(i) =
∑Li

l=1 p(l)∆r(l)

17: end for

4.2 Experiment Description

In this study, we attempted to answer two questions:
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1. Does Latent Semantic Indexing really help in Novelty Detection?

2. If so, what kind of language information is most effective in constructing the latent

semantic space?

Based on the above motivations, we tried four different ways to choose the dataset for

LSI, which were listed in Table 4.1. In the table, “E” denoted event topics; “O” stood

for opinion ones. Thus “2003E” meant event topics in 2003. When LSI of type “same”

was conducted, the tf-idf input in 2003E was projected onto the space formed by 2004E

dataset. The rest could be interpreted in the same manner. In the bottom line, “na” stood

for the baseline situation where no LSI was conducted and novelty scores were computed

on plain tf-idf vectors.

2003E 2003O 2004E 2004O

Reuters Reuters Reuters Reuters Reuters

same 2004E 2004O 2003E 2003O

all 2004 2004 2003 2003

other 2004O 2004E 2003O 2003E

na n.a. n.a. n.a. n.a.

Table 4.1: Experiment description: corresponding LSI datasets for topics in each category.

For each of the 20 combinations above, we chose the dimension of Ũk by the following

rule. Denote Λ̃ in SVD as

Λ̃ = diag(λ1, λ2, . . . , λr),

where r was the norm of Λ̃; λ1, λ2, . . . , λr were non-negative.

Then k was selected as

k = minm, s.t.
λ1 + · · ·+ λm
λ1 + · · ·+ λr

> p.

Four different levels of p were tried: 0.75, 0.80, 0.85, 0.90.
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4.3 Results

From raw results, we found that the level of p only affected the average precisions’ absolute

values, but did not show a remarkable influence on their relative patterns. Therefore, we

used the mean average precision of different levels to simplify the following presentation.

As LSI was utilized to offer language proximity information to the experiment dataset,

it was intuitive to guess that the more alike the two datasets were, the better the detection

became. In fact, we did observe such a pattern when comparing LSI types of “same”, “all”

and “other” shown as follows.

prop (全部)

平均值项:AvePrc列标签
行标签 2003E 2004E 2003O 2004O 2003 2004 E O
reuters 0.7636 0.5899 0.8092 0.5752 0.7864 0.5825 0.6768 0.6922
same 0.7803 0.6016 0.8070 0.5700 0.7936 0.5858 0.6910 0.6885
all 0.7773 0.6018 0.8095 0.5667 0.7934 0.5842 0.6896 0.6881
other 0.7753 0.5991 0.8079 0.5578 0.7916 0.5785 0.6872 0.6829
na 0.7721 0.6050 0.8135 0.5776 0.7928 0.5913 0.6886 0.6956

  AvePrc 2003E 2004E 2003O 2004O 2003 2004 E O
  same 0.7803 0.6016 0.8070 0.5700 0.7936 0.5858 0.6910 0.6885
  all 0.7773 0.6018 0.8095 0.5667 0.7934 0.5842 0.6896 0.6881
  other 0.7753 0.5991 0.8079 0.5578 0.7916 0.5785 0.6872 0.6829
  na 0.7721 0.6050 0.8135 0.5776 0.7928 0.5913 0.6886 0.6956

  AvePrc 2003E 2004E 2003O 2004O 2003 2004 E O
  same 0.7803 0.6016 0.8070 0.5700 0.7936 0.5858 0.6910 0.6885
  all 0.7773 0.6018 0.8095 0.5667 0.7934 0.5842 0.6896 0.6881
  other 0.7753 0.5991 0.8079 0.5578 0.7916 0.5785 0.6872 0.6829

  AvePrc 2003E 2004E 2003O 2004O 2003 2004 E O
  Reuters 0.7636 0.5899 0.8092 0.5752 0.7864 0.5825 0.6768 0.6922

  same 0.7803 0.6016 0.8070 0.5700 0.7936 0.5858 0.6910 0.6885

  all 0.7773 0.6018 0.8095 0.5667 0.7934 0.5842 0.6896 0.6881

  other 0.7753 0.5991 0.8079 0.5578 0.7916 0.5785 0.6872 0.6829

  na 0.7721 0.6050 0.8135 0.5776 0.7928 0.5913 0.6886 0.6956

0.8000

Average Precision

Table 4.2: Result of LSI types differing in topic similarity. Categories “2003E”, “2003O”,

“2004E”, “2004O” show the mean of respective average precisions. Categories “2003”,

“2004” are the mean results in each year. Categories “E” and “O” are the mean results in

each topic type.

Gray scale shows relative size of numerical values in the same column: full gray scale

marks the largest; white means the smallest. It is clear that for all categories except

“2003O”, utilizing LSI from topics with the same type leads to the highest average precision;

“all” ranks in the middle; while “other” is the last.

In Figure 4.1 and Table 4.2, the mean average precisions of each category described in

4.2 were listed. Yearly average and type average were also calculated. We could see the

clear decreasing pattern shown when the similarity between LSI data type and experiment

data type droped. “2003O” turned out to be the only exception. In fact, from the Fact

Table 2.2 in 2.3, it was obvious that the agreement ratios on novel sentence judgements

between two human assessors were much lower in the opinion topics than event ones. In
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2003, the rate was 65% for events but 48% for topics. In 2004, it was 45% for events ver-

sus 29% for topics. This indicated that the detection on opinions might be a tough problem.

0.5500

0.6000

0.6500

0.7000

0.7500

0.8000

same all other

Average Precision

Infomation Type

2003E

2004E

2003O

2004O

2003

2004

E

O

Figure 4.1: Result of LSI types differing in topic similarity. Categories “2003E”, “2003O”,

“2004E”, “2004O” show the mean of respective average precisions. Categories “2003”,

“2004” are the mean results in each year. Categories “E” and “O” are the mean results

in each topic type. Apparently, all categories’ average precisions decrease as the topic

similarity drops from “same” to “all” to “other”, with “2003O” as the only exception.

The Reuters data was one of the easiest-to-get text databases. Although it was used

prevalently in text categorization, its LSI effect to our experiment topics was hard to
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predict, because most of its documents fell in the domain of finance news. Though cate-

gories like “organization” and “people” existed, their index codes turned out to be items

like “European Investment Bank” and “Prime Minister Brian Mulroney of Canada”. Al-

though some opinion topics featuring in finance discussions might favour such background

information, the overall result for Reuters LSI did not turn out to be optimistic, shown in

Table 4.3 together with our baseline “na” situation.

prop (全部)

平均值项:AvePrc列标签
行标签 2003E 2004E 2003O 2004O 2003 2004 E O
reuters 0.7636 0.5899 0.8092 0.5752 0.7864 0.5825 0.6768 0.6922
same 0.7803 0.6016 0.8070 0.5700 0.7936 0.5858 0.6910 0.6885
all 0.7773 0.6018 0.8095 0.5667 0.7934 0.5842 0.6896 0.6881
other 0.7753 0.5991 0.8079 0.5578 0.7916 0.5785 0.6872 0.6829
na 0.7721 0.6050 0.8135 0.5776 0.7928 0.5913 0.6886 0.6956

  AvePrc 2003E 2004E 2003O 2004O 2003 2004 E O
  same 0.7803 0.6016 0.8070 0.5700 0.7936 0.5858 0.6910 0.6885
  all 0.7773 0.6018 0.8095 0.5667 0.7934 0.5842 0.6896 0.6881
  other 0.7753 0.5991 0.8079 0.5578 0.7916 0.5785 0.6872 0.6829
  na 0.7721 0.6050 0.8135 0.5776 0.7928 0.5913 0.6886 0.6956

  AvePrc 2003E 2004E 2003O 2004O 2003 2004 E O
  same 0.7803 0.6016 0.8070 0.5700 0.7936 0.5858 0.6910 0.6885
  all 0.7773 0.6018 0.8095 0.5667 0.7934 0.5842 0.6896 0.6881
  other 0.7753 0.5991 0.8079 0.5578 0.7916 0.5785 0.6872 0.6829

  AvePrc 2003E 2004E 2003O 2004O 2003 2004 E O
  Reuters 0.7636 0.5899 0.8092 0.5752 0.7864 0.5825 0.6768 0.6922

  same 0.7803 0.6016 0.8070 0.5700 0.7936 0.5858 0.6910 0.6885

  all 0.7773 0.6018 0.8095 0.5667 0.7934 0.5842 0.6896 0.6881

  other 0.7753 0.5991 0.8079 0.5578 0.7916 0.5785 0.6872 0.6829

  na 0.7721 0.6050 0.8135 0.5776 0.7928 0.5913 0.6886 0.6956

0.8000

Average Precision

Table 4.3: Result of all LSI types. The performance of Reuters was not satisfactory. Its

best scores turned out to be in “2004O” and “O”, where Reuters > same > all > other,

however none of them beat na the baseline. Compared with this, LSI using the TREC

data was a little better: in groups “2003E”, “2003”, and “E”, the LSI outperformed the

vanilla case.

From Table 4.3, we could see that when measured by average precision, Reuters, as well

as the other LSI methods, did not show the overall advantage we might expect. The best

performance of Reuters was in groups “2004O” and “O”, where it surpassed all previous

LSI datasets, but still fell a little behind of the baseline. However, it was cheerful to find

that although in many groups the vanilla cases of na had the highest score, we did have

three categories where LSI proved to be helpful. They were groups “2003E”, “2003”, and

“E”, in which “2003E” was the best. In these categories, the average precision produced

by LSI methods showed a small advantage over the vanilla case.

Although Reuters did not meet our expectation in the category-level, it turned out to

be rather effective in boosting those topics that actually benefited from it. To measure

the advantage that a method had on the topics it was good with, we picked out all the
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topics that it was in the lead, and calculated the weighted sum of differences between this

method’s topic average precision and its closet component’s. The weights were the corre-

sponding topic’s corpus size. To our surprise, we found that Reuters jumped to the top

in this round. In Figure 4.3 and Table 4.4, results under different LSI proportions were

listed, as well as their averages. We could see that the Reuters not only took the lead

in the relative ranking in Figure 4.3 , but also proved to have an obvious advantage in

absolute numeric values in Table 4.4.

1

2

3

4

5
Ave 75% 80% 85% 90%

Rank

LSI Proportion

Reuters

Same

All

Other

NA

Figure 4.2: Rank of different methods’ advantages in the topics that they topped. Coloured

lines were drawn to show the methods’ performance under different LSI proportions and

their averages. The Reuters dominated in the cases of 75%, 90% as well as the average,

and achieved the second in other proportions.
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Ave 0.75 0.8 0.85 0.9
A 3 1 3 4 3
R 1 2 2 2 1
S 5 6 6 5 5
ALL 6 5 5 6 6
O 4 4 1 1 4
NA 2 3 4 3 2

Ave 75% 80% 85% 90%
Reuters 1 1 2 2 1
Same 4 5 5 4 4
All 5 4 4 5 5
Other 3 3 1 1 3
NA 2 2 3 3 2

Ave 75% 80% 85% 90%
  Reuters 0.0217 0.0185 0.0190 0.0228 0.0220
  Same 0.0067 0.0075 0.0102 0.0080 0.0142
  All 0.0030 0.0077 0.0148 0.0071 0.0127
  Other 0.0136 0.0095 0.0286 0.0261 0.0150
  NA 0.0152 0.0164 0.0170 0.0161 0.0180

Table 4.4: Evaluation of different methods’ advantages in the topics that they topped.

Results under different LSI proportions were listed, and their averages were on the leftmost

column. The Reuters dominated in the cases of 75%, 90% as well as the average, and

achieved the second in other proportions.
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Chapter 5

Discussions

In this thesis, we made some exploratory attempts on removing the synonymy obstacle in

novelty detection by introducing Latent Semantic Indexing. External data sources were

employed, such as Reuters-21578 and parts of the TREC data which were complementary

with the experiment topics. Although Latent Semantic Indexing proved to be an effective

tool in general text mining contexts, it only showed limited improvements on some of the

topics, which was quite out of our expectation. In this chapter, we try to propose a possible

explanation to this result.

In the Latent Semantic Indexing system summarized in 4.1, the singular value decom-

position operation was not done on the original matrix D̃, but its submatrix D̃(i) which

only contained those columns whose corresponding terms appeared in the dictionary of

topic i, namely Dict(i) . We designed this step due to two reasons. The first was the mem-

ory and storage limits. The original tf-idf matrix of Reuters dataset had 10788 documents

and 29786 words. It was hard to do SVD on such a high dimensional space. Secondly,

even though a SVD was conducted and the experiment dataset was projected onto this

original semantic space, those dimensions with terms out of Dict(i) would just remain zero.

Therefore, the submatrix D̃(i) was extracted to replace D̃’s role in LSI.

However, this practice may lead to a loss of some critical semantic information in de-

riving the synonymy structure for novelty detection documents. Note that the left singular
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vectors Ũ of D̃′ are actually the eigenvectors of D̃′D̃:

D̃′D̃ = ŨΛ̃2Ũ′.

While the (i, j)th entry of D̃′D̃ can be written out as

(D̃′D̃)ij =
L̃∑
l=1

tf(ti, d̃l)tf(tj, d̃l).

That is, only when there exists a document where the ith and jth terms co-occur, the

(i, j)th entry of D̃′D̃ is non-zero. In short, D̃′D̃ describes the co-occurrence pattern in the

corpus, based on which the latent semantic structure is derived.

Recall our understanding of the proximity matrix. The strength of two terms’ correla-

tion was depicted by all the possible paths connecting them via other terms. These transit

terms are important in that they can link two terms that have not occurred together but

co-occur with the same third word respectively. In novelty detection, synonyms hardly

appear together in the same document since documents are read in the unit of sentences,

which are usually pithy. Instead, they tend to occur in different lines of input, relying on

the “link” terms to unveil their relationship. Since topic dictionaries often contain much

limited terms than a general corpus, many “link” terms may be lost when the Reuters

space was truncated to another much smaller one. This may lead to failures to identify

synonymy pairs in the subsequent SVD, resulting in unsatisfactory performances.

From this study, we gained a precious experience that sentence data, especially the

microblogs, has a huge difference from the traditional datasets. Their short lengths, lack

of contexts, as well as incomplete grammatical components make them an unique challenge.

The classical vector space model which omits word order and grammatical information may

not suit this new kind of text data. Innovative data structure, such as graph models, is

in need. Luckily, some promising attempts have been made in this field. For instance, in

K. Ganesan, C. Zhai, and J. Han’s paper [10], a graphical method, called Opinosis, was

developed to record the subject-verb-object structure of incoming sentences in order to

produce abstractive summary. These novel representations may truly open a brand-new

era for novelty detection.
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