
Unconditionally Secure Cryptography
Signature Schemes, User-Private Information Retrieval, and the

Generalized Russian Cards Problem

by

Colleen M. Swanson

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Computer Science

Waterloo, Ontario, Canada, 2013
c©Colleen M. Swanson 2013

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Waterloo's Institutional Repository

https://core.ac.uk/display/144146547?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

AUTHOR’S DECLARATION

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

We focus on three different types of multi-party cryptographic protocols. The first is
in the area of unconditionally secure signature schemes, the goal of which is to provide
users the ability to electronically sign documents without the reliance on computational
assumptions needed in traditional digital signatures. The second is on cooperative protocols
in which users help each other maintain privacy while querying a database, called user-
private information retrieval protocols. The third is concerned with the generalized Russian
cards problem, in which two card players wish to communicate their hands to each other
via public announcements without the third player learning the card deal. The latter two
problems have close ties to the field of combinatorial designs, and properly fit within the
field of combinatorial cryptography. All of these problems have a common thread, in that
they are grounded in the information-theoretically secure or unconditionally secure setting.

iii

Acknowledgements

I would like to thank my supervisor Douglas Stinson for his help and support throughout
my thesis work. I wish to thank my thesis committee for their comments and suggestions.

iv

Table of Contents

Author’s Declaration ii

Abstract iii

Acknowledgements iv

Chapter 1. Introduction 1
1.1. Unconditionally Secure Cryptography 3
1.2. Combinatorial Designs 9
1.3. Thesis Outline 19

Chapter 2. Unconditionally Secure Signature Schemes Revisited 20
2.1. Introduction 20
2.2. Overview of Contributions 22
2.3. Preliminaries 23
2.4. Formal Security Model 25
2.5. Dispute Resolution 28
2.6. A Formal Treatment of Dispute Resolution 33
2.7. Basic USS Scheme Construction and Analysis 37
2.8. USS Schemes with Key Insulation 44
2.9. Construction: USS Scheme with Key Insulation 49
2.10. Discussion and Comparison with Related Work 57
2.11. Concluding Remarks and Future Work 60

Chapter 3. Extended Combinatorial Constructions for Peer-to-peer User-Private
Information Retrieval 61

3.1. Introduction 61
3.2. Overview of Contributions 62
3.3. Our P2P UPIR Model 63
3.4. Previous Work: Using Configurations 67
3.5. Using More General Designs 69
3.6. Privacy Against Other Users 73
3.7. Discussion and Comparison with Related Work 93
3.8. Concluding Remarks and Future Work 95

v

Chapter 4. Combinatorial Solutions Providing Improved Security for the Generalized
Russian Cards Problem 96

4.1. Introduction 96
4.2. Overview of Contributions 97
4.3. Preliminary Notation and Examples 99
4.4. Informative Strategies 100
4.5. Secure Strategies 103
4.6. Simultaneously Informative and Secure Strategies 111
4.7. A Variant of the Russian Cards Problem 117
4.8. Discussion and Comparison with Related Work 120
4.9. Concluding Remarks and Future Work 124

Bibliography 126

Appendix A. Analysis of USS Constructions 131

vi

CHAPTER 1

Introduction

At the heart of cryptography is the desire to establish secure communication between
one or more parties; cryptographic protocols (or systems) are the proffered solutions to
specific instances of this problem. In general, cryptographic protocols may be categorized
both according to the type of secrets, or keying information, the involved parties (or users)
must possess, and according to the type of security the protocol affords, in particular the
resources of the adversary the protocol claims to be secure against.

With respect to keying information, protocols may be grouped into two settings, sym-
metric and public-key. In symmetric cryptography (which is also called secret-key cryptog-
raphy), communicating users rely on some shared secret or secret key ; in this setting, the
same key is used both to disguise and subsequently reveal the communicated information.
In public-key cryptography (which is also called asymmetric cryptography), each user has
a key pair, one part of which may be made public, termed a public key, and a second part,
termed a private key, which should be known only to the user in question. In a typical
example of the public-key setting, a user Bob disguises his message to Alice using her
public key, and Alice then uses her private key to reveal the message.

Unsurprisingly, how we define the notion of a “secure” protocol depends heavily on
the specifics of the given problem scenario, including the goals of the parties involved and
our understanding of an adversary—his capabilities and goals—which we describe in a
threat or adversarial model. Broadly speaking, there are two main approaches to security
analysis, depending on the resources afforded the adversary, namely computational and
unconditional.

A common approach is to consider the computational security of schemes, in which the
adversary is assumed to have limited computational resources available, such as bounded
memory and computing power. Informally, when we discuss security in this setting, we de-
sire that relevant attacks be computationally infeasible for an adversary to launch, meaning
that the adversary has only a small chance of success. In the realm of provable security,
a subclass of computational security, we rest our security arguments on the assumption
that a particular problem is suitably hard for an adversary to solve (given his bounded
resources), and show that breaking the security of the given scheme amounts to solving
the hard problem. Typical examples of hard problems include factoring large composite
numbers and computing discrete logarithms in certain groups.

1

The adversarial approach taken in this thesis, however, is that of unconditionally or
information-theoretically secure cryptography. In this setting, we assume the adversary
has access to unlimited computational resources. In particular, we can no longer use the
expected amount of work (or estimated time) needed to complete an attack as a measure of
security. In this respect, public-key protocols properly fit within the computational security
setting; as the public and private components of a key pair are used for complementary
functions—to disguise and reveal—an adversary with unlimited resources can always launch
a “brute force” attack on the system using knowledge gleaned from the public key. Hence,
unconditionally secure protocols rely on either shared secrets, as in the symmetric setting,
or require a distributed setting, in which users each have access to different shares, or
portions, of the secret information used in the set-up phase.

Information-theoretically secure cryptography explores what types of protocols are pos-
sible if we remove the standard computational assumptions as to the physical capabilities
of our adversaries. In particular, if we remove our reliance on the supposed hardness of
various problems, what may be achieved? In this sense, information-theoretically secure
cryptography fits well in the context of post-quantum cryptography—cryptography that
remains secure in the advent of quantum computers—now a popular area of research.
Whether or not one subscribes to the belief that a large quantum computer is on the hori-
zon, or merely wishes to ensure the security of information in the long term (independent of
any breakthroughs in solving difficult open problems), the study of unconditionally secure
cryptography is certainly interesting from a theoretical perspective and has the potential
to be of real-world importance.

Moreover, information-theoretically secure cryptography is a broad discipline that re-
lies heavily on theoretical mathematics, drawing from such realms as information theory,
probability theory, and combinatorics. As such, many of the results may be appreciated
for the beauty of the underlying mathematics as well as for applicability to the real world.

In this thesis, we focus on three different types of multi-party cryptographic protocols.
The first is in the area of unconditionally secure signature schemes, the goal of which
is to provide users the ability to electronically sign documents without the reliance on
computational assumptions needed in traditional digital signatures. The second is on
cooperative protocols in which users help each other maintain privacy while querying a
database, called user-private information retrieval protocols. The third is concerned with
the generalized Russian cards problem, in which two card players wish to communicate
their hands to each other via public announcements without the third player learning the
card deal. The latter two problems have close ties to the field of combinatorial designs,
and properly fit within the field of combinatorial cryptography. All of these problems are
grounded in the information-theoretically secure or unconditionally secure setting.

In the remainder of this chapter, we begin with an introduction to unconditionally
secure cryptography and define some basic cryptographic primitives that will prove useful.
For clarity, the primitives we discuss are given in both the computational and unconditional

2

security contexts. We then provide the relevant background from the field of combinatorial
designs.

1.1. Unconditionally Secure Cryptography

Our approach is motivated by the classic approach to secrecy introduced by Shan-
non [64]. In particular, the security analysis of all our protocols is phrased in terms of
probability distributions on the information available to the various parties. As such, we
feel it is useful to include a brief introduction to unconditional security. The concepts dis-
cussed in this section are standard in the field; much of the material and notation follows
the presentation in Stinson [69] and Katz and Lindell [45].

In unconditionally secure cryptographic protocols, the adversary’s advantage in break-
ing a given scheme should be limited to some prespecified probability. That is, the infor-
mation available to an adversary A after the protocol is completed should not allow A to
do more than guess at the secrets protected by the scheme, and the success probability of
this guess is fixed no matter the computational resources of A.

For example, suppose we have a cryptosystem with a finite set of possible plaintexts
P , a finite set of possible ciphertexts C, a finite set of possible keys K and encryption and
decryption rule sets E = {eK : P → C}K∈K and D = {dK : C → P}K∈K, respectively.
Each key K ∈ K corresponds to an encryption rule eK ∈ E and decryption rule dK ∈ D
satisfying dK(eK(x)) = x for every plaintext x ∈ P . Here we consider cryptosystems in
which a key K ∈ K is used only once. The goal of a cryptosystem is to allow a user Alice to
send a message to another user Bob over an insecure channel, such that an eavesdropping
adversary Eve cannot determine the message, but Bob can. Here we assume that Alice
and Bob use a predetermined key K ∈ K that is kept secret from Eve. In particular, this
is a symmetric cryptosystem. In analyzing the properties of such a scheme, we concern
ourselves with Eve’s ability, on seeing some ciphertext c ∈ C, to determine a corresponding
plaintext x.

Here probability theory comes into play. Eve has unlimited computational resources,
so we must consider Eve’s a priori knowledge of the scheme, in particular how likely
individual plaintexts, keys, and ciphertexts are to occur, and her a posteriori knowledge,
namely the observed ciphertext c. Eve can use this knowledge to determine the likelihood
that c corresponds to a given plaintext message x. She can do this for all possible messages
in P and the resulting set of probabilities represents the advantage Eve has in guessing the
message corresponding to c. In particular, if the a posteriori probability that a plaintext
is x (given Eve’s knowledge of c) is the same as the a priori probability that the plaintext
is x, then we have perfect secrecy, a concept introduced by Shannon [64].

Formally, we express these concepts in terms of discrete random variables and probability
distributions. The following concepts from elementary probability theory are useful.

3

Definition 1.1. A discrete random variable, say Y, is a finite set Y and a probability
distribution on Y that associates each element y ∈ Y with a probability. We use Pr[Y = y]
to denote the probability that the random variable Y has value y and require Pr[Y = y] ≥ 0
for every y ∈ Y . The probability distribution satisfies

∑
y∈Y Pr[Y = y] = 1.

Let X and Y be probability distributions on finite sets X and Y , respectively.

Definition 1.2. The joint probability distribution on X and Y, denoted Pr[X = x,Y = y],
is the probability that X has value x and Y has value y. The conditional probability
distribution on X given Y, denoted Pr[X = x | Y = y] is the probability distribution of X
when Y is known to be a particular value y. In particular, we have the following formula
relating the joint and conditional probabilities:

Pr[X = x,Y = y] = Pr[X = x | Y = y]× Pr[Y = y].

Definition 1.3. The random variables X and Y are said to be independent if

Pr[X = x,Y = y] = Pr[X = x]× Pr[Y = y]

for all x ∈ X, y ∈ Y .

A useful result relating conditional probability distributions is Bayes’ Theorem:

Theorem 1.1 (Bayes’ Theorem). If Pr[Y = y] > 0, then

Pr[X = x | Y = y] =
Pr[X = x]× Pr[Y = y | X = x]

Pr[Y = y]
.

In terms of the cryptosystem above, we define random variables P, K, and C denoting
the set of plaintexts, keys, and ciphertexts, respectively. Here P and K are assumed to be
independent random variables; together the associated probability distributions determine
the probability distribution on C. Eve’s a priori knowledge of the scheme is represented
by these probability distributions. Once Eve observes a ciphertext c, she can use the
conditional probability distribution Pr[P = x | C = c] to determine the probability that c
corresponds to a given message x ∈ P . We have the following formal definition of perfect
secrecy:

Definition 1.4. A cryptosystem satisfies perfect secrecy if

Pr[P = x | C = c] = Pr[P = x]

for all x ∈ P and all c ∈ C.

In fact, a cryptosystem satisfies perfect secrecy if and only if the random variables P
and C are independent.

We can apply these notions to the security analysis of other types of cryptographic
protocols, again by considering the information available to an adversary after a protocol

4

execution and comparing probability distributions. That is, we can use probability distri-
butions to formally express the advantage of an adversary in guessing the relevant secret.
The concept of perfect secrecy also applies: if the probability that the relevant secret takes
on value s given the adversary’s observations is the same as the a priori probability that
the secret is s for all possible secrets s, then we have perfect secrecy.

Unsurprisingly, many of the security arguments in the realm of unconditionally secure
cryptography have a similar flavor, taking on the form of analyzing probability distributions
with respect to the information available to an adversary before and after a protocol
execution. The proof that the one-time pad cryptosystem satisfies perfect secrecy is a
classic example of this type of argument, so we include it here.

Example 1.1 (One-time pad cryptosystem). Let n ≥ 1 be an integer and let P = C = K =
(Z2)n. For K, x ∈ (Z2)n, define both the encryption rule eK(x) and decryption rule dK(x)
to be the sum of K and x modulo 2. Suppose every key K is used with equal probability.

In particular, this cryptosystem is perfectly secure. The key observation is that for each
pair (x, c) ∈ P × C, there is a unique key K ∈ K such that eK(x) = c. Fix an arbitrary
ciphertext c ∈ (Z2)n. Then

Pr[C = c] =
∑

K∈(Z2)n

Pr[K = K]× Pr[P = dK(c)]

=
1

2n

∑
K∈(Z2)n

Pr[P = dK(c)]

=
1

2n

∑
x∈(Z2)n

Pr[P = x]

=
1

2n

and

Pr[C = c | P = x] = Pr[K = (c− x) mod 2] =
1

2n
.

This yields

Pr[P = x | C = c] =
Pr[C = c | P = x]× Pr[P = x]

Pr[C = c]
= Pr[P = x]

for all x ∈ P and c ∈ C, as desired.

1.1.1. Cryptographic primitives. In this section, we introduce the cryptographic prim-
itives message authentication codes and digital signatures.

We first discuss a useful security concept, that of negligible success probability. In
general, for a cryptographic primitive to be secure, we want the probability of a successful
attack to be negligible, which is typically understood to mean that the success probability

5

of an attacker is smaller than any inverse polynomial in a security parameter k. That is,
we formalize the notion of negligible as follows.

Definition 1.5. Let f be a non-negative function of k. If for every positive polynomial
p(·), there exists an N such that for all integers k > N , it holds that f(k) < 1

p(k)
, then we

say that the function f is negligible.

A message authentication code is a special type of keyed hash family ; we introduce these
concepts with the computational setting in mind and then move to the unconditionally
secure setting.

Definition 1.6. A keyed hash family is a tuple (X, Y,K,H), where the following hold:

1. X is a set of possible messages.
2. Y is a finite set of possible authentication tags.
3. K, the keyspace, is a finite set of possible keys.
4. For each K ∈ K, there is a hash function hK ∈ H, where hK : X → Y .

Definition 1.7. A message authentication code (MAC) is a keyed hash family (X, Y,K,H)
that satisfies the following property, known as computation-resistance:

• Given zero or more pairs of the form (xi, hK(xi)) ∈ X × Y and assuming K is not
known, it is computationally infeasible to compute any pair (x, hK(x)) for any x 6=
xi for all i. That is, an attacker without knowledge of K should have a negligible
probability of success in creating such a pair.

A message authentication code (X, Y,K,H) is typically used to allow a sender, Alice,
to send a message over an insecure channel to a receiver, Bob. In particular, Alice and
Bob share a secret K ∈ K, and Alice sends her message, say x ∈ X, together with the
corresponding authentication tag, hK(x), to Bob. Upon receipt, Bob is sure both that the
message has not been altered and that Alice is the person who actually sent the message.
As Alice and Bob have a shared secret key, MACs are an example of a symmetric or
secret-key cryptographic primitive.

If an adversary A can produce a message x and corresponding authentication tag hK(x)
for some previously unseen message x, i.e., if the MAC does not satisfy computation-
resistance, we call the pair (x, hK(x)) a MAC forgery. In creating such a forgery, we can
specify the amount of control the adversary A has over the pairs (xi, hK(xi)) to which
he has access. If A can successively pick the messages xi after seeing the corresponding
authentication tags for his previous selections, but has no control over x, then forgery
(x, hK(x)) is an existential forgery under adaptive chosen-message attack. If the adversary
has (at least some) control over x, then (x, hK(x)) is a selective forgery under adaptive
chosen-message attack. Both of these are typical attack scenarios on protocols in traditional
public-key cryptography.

6

In the unconditionally secure setting, a key is typically used to produce just one authen-
tication tag. In attempting to produce a MAC forgery (x, hK(x)), the adversary typically
has access to either one valid pair (x1, hK(x1)) (a substitution attack), or access to no valid
pairs (an impersonation attack).

We observe that since Alice and Bob both know the secret K, either party can produce
a valid pair (x, hK(x)). Alice can deny having sent a given message and corresponding
authentication tag by claiming that Bob could just as easily have created the pair. That
is, MACs cannot be used in situations where the ability to repudiate sending a message
is undesirable. In addition, the purpose of a MAC is to establish message integrity and
sender identity between Alice and Bob, not to convince outside parties. Only those who
know the secret K can determine whether a given message/authentication tag pair is valid
under K and only Alice and Bob should know K.

These properties are important when we consider digital signatures, which are meant
to emulate traditional pen-and-paper signatures in the digital world. In the paper world,
we have the following desirable properties: we want signatures to be unique and difficult
for others to reproduce or forge, we want to be confident that no one can sign a document
and then later deny or repudiate his signature, and we want to be confident that if we
accept someone’s signature as being real or valid, the signature is transferable in the sense
that other people will also accept this signature as valid.

Typically, a digital signature involves a private signing algorithm, which a signer uses
to sign messages, and a public verification algorithm, with which anyone can verify the
validity of a signature on a particular message. That is, digital signatures are an example
of cryptographic primitives in the asymmetric or public-key setting. Formally, we can
define a signature scheme in traditional public-key cryptography in the following manner.

Definition 1.8. A signature scheme is a tuple (X,Σ,Gen, Sign,Vrfy) satisfying the follow-
ing:

1. X is a finite set of possible messages.
2. Σ is a finite set of possible signatures.
3. The key-generation algorithm Gen takes as input 1k, where k is a security parameter,

and outputs a pair of keys (pk , sk), where pk is the public key and sk is the private
key.

4. The signing algorithm Sign takes a private key sk and a message x ∈ X as input, and
outputs a signature σ ∈ Σ, denoted as Signsk(x).

5. The deterministic verification algorithm Vrfy takes a message x ∈ X , a signature
σ ∈ Σ, and a public key pk as input, and outputs either valid or invalid , denoted as
Vrfypk(x, σ).

It is required that, for every k, for every pair (pk , sk) output by Gen(1k), and for every
x ∈ X , it holds that

Vrfypk (x, Signsk(x)) = valid .

7

Furthermore, the algorithms Gen, Sign, and Vrfy should be polynomial-time algorithms.

Remark 1.1. The signing algorithm in Definition 1.8 may be deterministic or randomized.

We say a signature pair (x, σ) is valid if Vrfypk(x, σ) = valid . Stated informally, the
security properties a signature scheme should satisfy are listed below.

1. Unforgeability : Except with negligible probability (with respect to the given security
parameter k), it should not be possible to create a valid signature without knowledge
of the corresponding private key. This corresponds to the real-world notion that each
person should have a unique signature that is difficult for others to reproduce.

2. Non-repudiation: Except with negligible probability (with respect to the given security
parameter k), a signer should be unable to repudiate a legitimate signature that he
has created.

3. Transferability : Except with negligible probability (with respect to the given security
parameter k), if a verifier accepts a signature, he can be confident that any other
verifier will also accept it.

We can formally model attacks on signature schemes by a game in which the adversary
is given access to a collection of valid signature pairs via a signing oracle. Here, a signing
oracle can be thought of as a “black box” that outputs valid signature pairs. The adversary
wins the game if he successfully outputs a valid signature pair on some message x for which
he has not already seen a corresponding signature. We give a formal definition for this
game and a corresponding definition of security as follows.

Definition 1.9. Let Π = (X,Σ,Gen, Sign,Vrfy) be a signature scheme with security pa-
rameter k and let A be a (polynomial-time) adversary. We define the following signature
game Sig-forgeA,Π(k):

1. Gen(1k) is run to obtain the pair (pk , sk).
2. The adversary A is given pk and oracle access to Signsk . This oracle, which we denote

by SignOsk , takes as input a message x′ ∈ X of A’s choice and outputs a signature
Signsk(x′) ∈ Σ. We let Q denote the set of messages that the adversary A submitted
as queries to the oracle SignOsk .

3. The adversary A outputs a signature pair (x, σ).
4. The output of the game is defined to be 1 if and only if the following two conditions

are met:
(a) x /∈ Q and
(b) Vrfypk(x, σ) = valid .

Definition 1.10. Let Π = (X,Σ,Gen, Sign,Vrfy) be a signature scheme with security pa-
rameter k. We say Π is existentially unforgeable under adaptive chosen-message attack if
for all polynomial-time adversaries A, there exists a negligible function ε such that

Pr
[
Sig-forgeA,Π(k) = 1

]
≤ ε(k).

8

We make a few final remarks on signature schemes in the traditional public-key setting,
in order to set the stage for our study of unconditionally secure signatures in Chapter 2.
So long as the signature scheme in use is unforgeable (i.e., as in Definition 1.10), then
transferability and non-repudiation are also satisfied. A direct consequence of the public
nature of the verification algorithm and the unforgeability property of the signature scheme
is that it is easy to tell whether or not a given signature is valid. A signer who attempts to
repudiate a given valid signature will not be believed, as forgeries cannot realistically be
produced. Moreover, once a person has verified the validity of a given signature pair, he
can be confident that everyone else will agree as to the validity of the signature, since the
same check will be used. As we will see in Chapter 2, the validity of signatures (and hence
the properties of unforgeability, non-repudiation, and transferability) is not as obvious in
the unconditionally secure setting, in which the adversary has unlimited computational
resources.

1.2. Combinatorial Designs

In this section, we present fundamental definitions and results from the theory of com-
binatorial designs, which are used in Chapter 3 and Chapter 4. In particular, we present
only results that are needed in later chapters. For general references on this material, we
refer the reader to Stinson [68] and Colbourn and Dinitz [11]. We use notation and results
from Stinson [68] throughout. Proofs of standard results are omitted and unless otherwise
noted can be found in Stinson [68] or Colbourn and Dinitz [11].

Definition 1.11. A set system or design is a pair (X,B) such that the following are
satisfied:

1. X is a set of elements called points, and
2. B is a collection (i.e., a multiset) of nonempty proper subsets of X called blocks.

In the rest of this section, we abuse notation by writing blocks in the form abc instead
of {a, b, c}. In addition, we make use of the following notation: for a positive integer t and
a set X of size v, we let

(
X
t

)
denote the set of

(
v
t

)
t-subsets of X.

Definition 1.12. The degree of a point x ∈ X is the number of blocks containing x. If all
points have the same degree, r, we say (X,B) is regular (of degree r).

Definition 1.13. The rank of (X,B) is the size of the largest block. If all blocks contain
the same number of points, say k, then (X,B) is uniform (of rank k).

Definition 1.14. Let (X,B) be a set system. The dual of (X,B) is the set system (B, X),
where y ∈ B is contained in x ∈ X if and only if x is contained in y in (X,B).

Definition 1.15. A covering design is a set system in which every pair of points occurs
in at least one block.

9

Example 1.2. A covering design.

X = {1, 2, 3, 4, 5, 6, 7} and B = {13, 23, 157, 124, 347, 356, 2567, 14567}.

Definition 1.16. A pairwise balanced design (or PBD) is a set system such that every
pair of distinct points is contained in exactly λ blocks, where λ is a fixed positive integer.
Note that any PBD is a covering design.

Example 1.3. A PBD with λ = 2.

X = {1, 2, 3, 4, 5} and B = {12, 25, 135, 145, 1234, 2345}.

Definition 1.17. Let (X,B) be a regular and uniform set system of degree r and rank k,
where |X| = v and |B| = b. Then we say (X,B) is a (v, b, r, k)-1-design.

Remark 1.2. The notation for a (v, b, r, k)-1-design (X,B) reflects the fact that each point
occurs in a constant number of blocks. Such a design (X,B), sometimes referred to simply
as a 1-design, is a special case of a t-design, which we introduce for t ≥ 2 in Definition 1.24.

Example 1.4. A (5, 5, 3, 3)-1-design.

X = {1, 2, 3, 4, 5} and B = {123, 451, 234, 512, 345}.

1.2.1. Balanced Incomplete Block Designs and Configurations.

Definition 1.18. Let v, k, and λ be positive integers such that v > k ≥ 2. A (v, k, λ)-
balanced incomplete block design (or (v, k, λ)-BIBD) is a set system (X,B) such that the
following are satisfied:

1. |X| = v,
2. each block contains exactly k points, and
3. every pair of distinct points is contained in exactly λ blocks.

Theorem 1.2. Let (X,B) be a (v, b, r, k, λ)-BIBD. Then every point has degree

r =
λ(v − 1)

k − 1

and the number of blocks is precisely

b =
vr

k
=
λ(v2 − v)

k2 − k
.

Remark 1.3. We sometimes make all five parameters explicit by writing (v, b, r, k, λ)-BIBD
instead of (v, k, λ)-BIBD.

Remark 1.4. A (v, b, r, k, λ)-BIBD can be viewed as a (v, b, r, k)-1-design in which every
pair of points occurs in exactly λ blocks. Equivalently, a (v, b, r, k, λ)-BIBD is a PBD that
is regular and uniform of degree r and rank k.

Theorem 1.3. (Fisher’s Inequality) In any (v, b, r, k, λ)-BIBD, b ≥ v.

10

Example 1.5. A (10, 15, 6, 4, 2)-BIBD.

X = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
and

B = {0123, 0147, 0246, 0358, 0579, 0689, 1258,

1369, 1459, 1678, 2379, 2489, 2567, 3478, 3456}.

Definition 1.19. A (v, k, λ)-BIBD is simple if every block occurs with multiplicity one.

Definition 1.20. A (v, k, λ)-BIBD in which every pair of blocks intersect in at most two
points is supersimple.

Definition 1.21. A symmetric BIBD is a BIBD in which b = v.

Theorem 1.4. In a symmetric BIBD, any two blocks intersect in exactly λ points.

Definition 1.22. A Steiner triple system of order v, denoted STS(v), is a (v, 3, 1)-BIBD.

Remark 1.5. It is well known that an STS(v) exists if and only if v ≡ 1, 3 mod 6, v ≥ 7.

Example 1.6. An STS(7).

X = {0, 1, 2, 3, 4, 5, 6} and B = {013, 124, 235, 346, 045, 156, 026}.

Definition 1.23. A (v, b, r, k)-configuration is a (v, b, r, k)-1-design such that every pair of
distinct points is contained in at most 1 block.

Example 1.7. A (9, 9, 3, 3)-configuration.

X = {1, 2, 3, 4, 5, 6, 7, 8, 9} and B = {147, 258, 369, 159, 267, 348, 168, 249, 357}.

Remark 1.6. A (v, b, r, k)-configuration with v = r(k − 1) + 1 is a (v, b, r, k, 1)-BIBD.

1.2.2. t-designs.

Definition 1.24. Let v, k, λ, and t be positive integers with v > k ≥ t. A t-(v, k, λ)-design
is a set system (X,B) such that the following are satisfied:

1. |X| = v,
2. each block contains exactly k points, and
3. every subset of t distinct points from X occurs in precisely λ blocks.

Definition 1.25. A t-(v, k, λ)-design (X,B) is simple if every block in B occurs with
multiplicity one.

Remark 1.7. A 2-(v, k, λ)-design is just a (v, k, λ)-BIBD.

Definition 1.26. The design formed by taking λ copies of every k-subset of a v-set as
blocks is a t-

(
v, k, λ

(
v−t
k−t

))
-design, called a trivial t-design.

The following theorems are standard results for t-designs:

11

Theorem 1.5. Let (X,B) be a t-(v, k, λ)-design. Let Z ⊆ X such that |Z| = i < t. Then
(X\Z, {B\Z : Z ⊆ B ∈ B}) is a (t− i)-(v − i, k − i, λ)-design.

Theorem 1.6. Let (X,B) be a t-(v, k, λ)-design. Let Y ⊆ X such that |Y | = s ≤ t. Then
there are precisely

λs =
λ
(
v−s
t−s

)(
k−s
t−s

)
blocks in B that contain Y .

Corollary 1.7. Let (X,B) be a t-(v, k, λ)-design and suppose 1 ≤ s ≤ t. Then (X,B) is
an s-(v, k, λs)-design, where

λs =
λ
(
v−s
t−s

)(
k−s
t−s

) .
Theorem 1.8. Let (X,B) be a t-(v, k, λ)-design. Let Y ⊆ X and Z ⊆ X such that
Y ∩ Z = ∅, |Y | = i, |Z| = j, and i+ j ≤ t. Then there are precisely

λji =
λ
(
v−i−j
k−i

)(
v−t
k−t

)
blocks in B that contain all the points in Y and none of the points in Z.

Example 1.8. A 3-(8, 4, 1)-design.

X = {0, 1, 2, 3, 4, 5, 6, 7} and

B = {3456, 2567, 2347, 1457, 1367, 1246, 1235, 0467, 0357, 0245, 0236, 0156, 0134, 0127}.

Definition 1.27. A t-(v, k, 1)-design is called a Steiner system with parameters t, k, v and
is denoted by S(t, k, v).

Remark 1.8. A Steiner triple system of order v, or STS(v), is an S(2, 3, v), i.e., a Steiner
system in which k = 3.

Definition 1.28. A large set of t-(v, k, 1)-designs is a set {(X,B1), . . . , (X,BN)} of t-
(v, k, 1)-designs (all of which have the same point set, X), in which every k-subset of X
occurs as a block in precisely one of the Bis. That is, the Bis form a partition of

(
X
k

)
.

Remark 1.9. It is easy to prove that there must be exactly N =
(
v−t
k−t

)
designs in a large

set of t-(v, k, 1)-designs.

Remark 1.10. There are v − 2 designs in a large set of STS(v). It is known that a large
set of STS(v) exists if and only if v ≡ 1, 3 mod 6 and v ≥ 9.

Example 1.9. A large set of STS(9) [49].

X = {1, 2, 3, 4, 5, 6, 7, 8, 9} and B1, . . . ,B7,

where the 7 block sets B1, . . . ,B7 are given by the rows of the following table:

12

123 145 169 178 249 257 268 348 356 379 467 589
124 136 158 179 235 267 289 349 378 457 468 569
125 137 149 168 238 247 269 346 359 458 567 789
126 139 148 157 234 259 278 358 367 456 479 689
127 135 146 189 239 248 256 347 368 459 578 679
128 134 159 167 236 245 279 357 389 469 478 568
129 138 147 156 237 246 258 345 369 489 579 678

1.2.3. Some Constructions of t-designs. We now discuss some existence results and
constructions for t-designs. In general, constructing t-designs is a difficult problem. In the
following, we give a brief overview of each construction; details may be found in either
Stinson [68] or Colbourn and Dinitz [11], unless otherwise noted.

1.2.3.1. Projective planes.

Definition 1.29. A (q2 + q+ 1, q+ 1, 1)-BIBD is called a finite projective plane of order q.

Remark 1.11. Projective planes are symmetric BIBDs.

Suppose q is a prime power. Projective planes of order q can be constructed by con-
sidering the one-dimensional and two-dimensional subspaces of (Fq)3. In particular, each
two-dimensional subspace A gives rise to a block B consisting of all one-dimensional sub-
spaces contained in A. This construction yields the following result:

Theorem 1.9. A finite projective plane of order q exists for every prime power q ≥ 2.

This construction method generalizes to higher dimensions, yielding symmetric BIBDs
whose blocks are hyperplanes in the associated geometry.

Theorem 1.10. There exists a symmetric
(
qd+1−1
q−1

, q
d−1
q−1

, q
d−1−1
q−1

)
-BIBD for every integer

d ≥ 2 and prime power q ≥ 2.

1.2.3.2. Large sets of Steiner triple systems. There is a nice construction of large sets of
Steiner triple systems of order v for certain choices of v. This construction is due to
Schreiber [61] and it is also presented by Wilson [81]; our presentation follows that of
Wilson [81]. We need v to satisfy the following condition:

• If p is a prime divisor of (v − 2), then the order of (−2) modulo p is congruent to 2
modulo 4.

Let G be an abelian group (written additively) of order v− 2, where v− 2 satisfies the
condition given above. In particular, v − 2 is not divisible by 2 or 3.

Let A be the collection of all triples A = {x, y, z} where x+ y + z = 0 and x, y, z ∈ G
are distinct. Note that a pair {x, y} is contained in some 3-subset A of A exactly when

13

the solution z to x+ y + z = 0 is not equal to x or y. In particular, the zero element of G
occurs with every other nonzero element of G in precisely one 3-subset A ∈ A, since 2 does
not divide the order of G. Consider the set of pairs {x, y} which are not contained in some
3-subset A of A; we call these uncovered pairs. The pair {x, y} is uncovered precisely when
2x+ y = 0 or x+ 2y = 0. In other words, pairs of the form {(−2)−1x, x} and {x,−2x} for
x 6= 0 ∈ G do not appear in any 3-subset of A.

Let Γ be the graph whose vertices are the nonzero elements of G and whose edge set is
determined by the uncovered pairs. In particular, Γ is the union of disjoint cycles, where
the length of the cycle containing a given x ∈ G is the smallest positive integer ` such
that (−2)`x = x in G. That is, the length of the cycle containing x is the (multiplicative)
order of (−2) modulo m, where m is the (additive) order of x in G. Writing the prime
factorization of m as pα1

1 p
α2
2 · · · pαrr , the order of (−2) modulo m is the least common

multiple of the orders of (−2) modulo pαii for 1 ≤ i ≤ r. The last observation we need is
that the order of (−2) modulo pαii is a nonnegative power of pi times the order of (−2)
modulo pi. This is precisely what we need to see that these cycles have length congruent
to 2 modulo 4, given the condition on the prime divisors of (v − 2).

Now, since Γ consists of cycles of even length, we can partition the edge set into two
disjoint perfect matchings, say M1 and M2. We proceed by coloring all edges in M1 blue
and all edges in M2 red.

We are now ready to construct an STS(v), which we denote by S(0) = (X,B), on the
point set X = {∞1,∞2} ∪G. Let B consist of the following blocks:

• B0 = {∞1,∞2, 0},
• each 3-subset A ∈ A,
• for every blue edge xy ∈M1, we have a block Bxy = {∞1, x, y}, and
• for every red edge xy ∈M2, we have a block Bxy = {∞2, x, y}.

We then let G act on S(0) additively to obtain the other v − 3 Steiner triple systems.
That is, for each element g ∈ G, we use a permutation on X that fixes the points ∞1 and
∞2 and for every x ∈ G maps x 7→ x + g. This yields a Steiner triple system of order v,
which we denote by S(g).

The fact that these are Steiner triple systems of order v is easy to check. The fact
that these triple systems partition

(
X
3

)
is a consequence of our divisibility assumptions on

(v − 2). In brief, subsets of the form {∞1,∞2, g} occur only in S(g) for g ∈ G. Recalling
that 3 is not a divisor of the order of G, we have that subsets of distinct triples {x, y, z}
of elements of G occur in S(g) exactly when x+ y + z = 3g. The crucial fact that subsets
of the form {∞1, x, y} and {∞2, x, y} occur in exactly one of the S(g) is equivalent to the
fact that the length of each cycle in Γ is congruent to 2 modulo 4; for details, we refer the
reader to Wilson [81].

Example 1.10. Let X = Z7 ∪ {∞1,∞2}. In this case the construction method above
yields a graph Γ which is a single cycle of length 6. We can then use Γ to pick matchings

14

M1 = {13, 45, 26} and M2 = {15, 46, 23}. This yields the following large set of STS(9):

S(0) : ∞1∞20 016 025 034 124 356 ∞115 ∞123 ∞146 ∞213 ∞226 ∞245
S(1) : ∞1∞21 120 136 145 235 460 ∞126 ∞134 ∞150 ∞224 ∞230 ∞256
S(2) : ∞1∞22 231 240 256 346 501 ∞130 ∞145 ∞161 ∞235 ∞241 ∞260
S(3) : ∞1∞23 342 351 360 450 612 ∞141 ∞156 ∞102 ∞246 ∞252 ∞201
S(4) : ∞1∞24 453 462 401 561 023 ∞152 ∞160 ∞113 ∞250 ∞263 ∞212
S(5) : ∞1∞25 564 503 512 602 134 ∞163 ∞101 ∞124 ∞261 ∞204 ∞223
S(6) : ∞1∞26 605 614 623 013 245 ∞104 ∞112 ∞135 ∞202 ∞215 ∞234

1.2.3.3. Inversive planes. We show there exists a 3-(q2 + 1, q + 1, 1)-design for all prime
powers q by constructing an inversive plane; we briefly sketch this construction here. Let q
be a prime power. Recall that the group GL(2, q) is the general linear group of all invertible
matrices of dimension 2 over Fq. The center of GL(2, q) is the group of all scalar matrices
of dimension 2 over Fq. The projective linear group PGL(2, q) is the quotient of GL(2, q)
by its center.

Let X = Fq2 ∪ {∞} and Y = Fq ∪ {∞}. Then (X, orbit(Y)) is a 3-(q2 + 1, q + 1, 1)-
design, namely, an inversive plane, where orbit(Y) is the orbit of subsets obtained by
letting PGL(2, q2) act on Y . That this construction is a 3-design follows from the fact
that PGL(2, q2) is a sharply 3-transitive group acting on X; this means that for any choice
of distinct x1, x2, x3 ∈ X and distinct y1, y2, y3 ∈ X, there is exactly one element g in
PGL(2, q2) such that for 1 ≤ i ≤ 3, the result of g acting on xi is yi.

In particular, this construction yields an infinite family of 3-designs. We have the
following theorem:

Theorem 1.11. For all prime powers q, there exists a 3-(q2 + 1, q + 1, 1)-design.

1.2.3.4. Hadamard designs.

Definition 1.30. A Hadamard design is a symmetric (4n− 1, 2n− 1, n− 1)-BIBD.

Hadamard designs are conjectured to exist for every n ≥ 2. We present a construction
for an infinite family of Hadamard designs based on quadratic residue difference sets in Fq
for a prime power q satisfying q ≡ 3 mod 4. We need the following definitions:

Definition 1.31. Suppose G is a finite group of order v, written additively. Let k and λ
be positive integers such that v > k ≥ 2. A (v, k, λ)-difference set in G is a subset D ⊆ G
that satisfies the following conditions:

1. |D| = k,
2. the multiset {x− y : x, y ∈ D, x 6= y} contains every nonzero element of G exactly λ

times.

15

Definition 1.32. Let D be a (v, k, λ)-difference set in a group G. For any g ∈ G, the
set g + D is called a translate of D. The collection of all translates of D is called the
development of D, denoted Dev(D).

The development of a difference set D in an abelian group G can be used to construct
a symmetric BIBD. The following result is standard:

Theorem 1.12. Let D be a (v, k, λ)-difference set in a group G. Then (G,Dev(D)) is a
symmetric (v, k, λ)-BIBD.

Let q be an odd prime power and let QR(q) = {x2 : x ∈ Fq, x 6= 0} be the set of
quadratic residues of Fq. Then in particular, QR(q) is a difference set in Fq with the
following parameters whenever q ≡ 3 mod 4:

Theorem 1.13. Let q be a prime power such that q ≡ 3 mod 4. Then QR(q) is a
(q, q−1

2
, q−3

4
)-difference set in the additive group Fq.

This yields the following infinite family of Hadamard designs:

Corollary 1.14. Let q be an odd prime power such that q ≡ 3 mod 4. Let X = Fq and
B = Dev(QR(q)). Then (X,B) is a symmetric (q, q−1

2
, q−3

4
)-BIBD.

Example 1.11. Let q = 11. Then QR(q) = {1, 3, 4, 5, 9} is an (11, 5, 2)-difference set D.
Taking the development of D yields an (11, 5, 2)-BIBD (X,B), where X = {0, . . . , 9,∞}
and B is the following collection of blocks:

{13459, 2456∞, 03567, 14678, 25789, 3689∞, 0479∞, 0158∞, 01269, 1237∞, 02348}.

1.2.4. Transversal Designs.

Definition 1.33. Let t, v, k, and λ be positive integers satisfying k ≥ t ≥ 2. A transversal
design TDλ(t, k, v) is a triple (X,G,B) such that the following properties are satisfied:

1. X is a set of kv elements called points,
2. G is a partition of X into k subsets of size v called groups,
3. B is a set of k-subsets of X called blocks,
4. any group and any block contain exactly one common point, and
5. every subset of t points from distinct groups occurs in precisely λ blocks.

Definition 1.34. A TDλ(t, k, v) is simple if there are no repeated blocks.

Many of the standard results for t-designs can be extended to transversal designs. The
following terminology and results are useful:

Definition 1.35. Let (X,G,B) be a TDλ(t, k, v) and write G = {Gj : 1 ≤ j ≤ k}. Suppose
Z ⊆ X such that |Z| = i ≤ k and |Z ∩ Gj| ≤ 1 for 1 ≤ j ≤ k. We say Z is a partial
transversal of G. If i = k, then we say Z is a transversal of G.

16

Definition 1.36. For a partial transversal Z of G, we let GZ = {Gj ∈ G : Z ∩ Gj 6= ∅}
denote the set of groups that intersect Z. If Y , Z ⊆ X are partial transversals of G such
that GZ ∩GY = ∅, we say Y , Z are group disjoint.

Theorem 1.15. Let (X,G,B) be a TDλ(t, k, v) and write G = {Gj : 1 ≤ j ≤ k}. Suppose
Z ⊆ X is a partial transversal of G such that |Z| = i < t. Let

G ′ = {Gj ∈ G : Z ∩Gj = ∅}
and

X ′ =
⋃
Gj∈G′

Gj.

Then (X ′,G ′, {B\Z : Z ⊆ B ∈ B}) is a TDλ(t− i, k − i, v).

Theorem 1.16. Let (X,G,B) be a TDλ(t, k, v). Suppose Y ⊆ X such that |Y | = s ≤ t
and Y is a partial transversal of G. Then there are exactly λs = λvt−s blocks containing
all the points in Y .

Proof. Fix a subset of t−s groups disjoint from Y , say G′1, . . . , G
′
t−s. Consider a t-subset X

consisting of all the points from Y and one point from each of G′1, . . . , G
′
t−s. In particular,

there are vt−s such t-subsets X, and each such X occurs in precisely λ blocks. Note that
every block that contains Y is a transversal of G, so every such block contains exactly one
such t-subset X. Therefore Y occurs in precisely λvt−s blocks, as desired. �

Theorem 1.17. Let (X,G,B) be a TDλ(t, k, v). Suppose Y , Z ⊆ X are group disjoint
partial transversals of G such that |Y | = i, |Z| = j, and i+ j ≤ t. Then there are exactly

λji = λvt−i−j(v − 1)j

blocks in B that contain all the points in Y and none of the points in Z.

Proof. Consider the set of groups GZ that intersect Z. There are (v − 1)j subsets X such
that X consists of all the points from Y and one point from each group in GZ , but X
contains no points from Z. Each such (i + j)-subset X occurs in precisely λi+j blocks by
Theorem 1.16. Therefore there are λi+j(v − 1)j = λvt−i−j(v − 1)j blocks that contain all
the points of Y but none of the points of Z. �

We can also apply the notion of large sets to transversal designs:

Definition 1.37. A large set of TDλ(t, k, v) on the point set X and group partition G is a
set {(X,G,B1), . . . , (X,G,BN)} of TDλ(t, k, v) in which every set of k points from distinct
groups of X occurs as a block in precisely one of the Bis.

Remark 1.12. It is easy to see that there must be N = vk

λvt
transversal designs in a large

set of TDλ(t, k, v).

Transversal designs are equivalent to orthogonal arrays :

17

Definition 1.38. Let t, v, k, and λ be positive integers satisfying k ≥ t ≥ 2. An orthogonal
array OAλ(t, k, v) is a pair (X,D) such that the following properties are satisfied:

1. X is a set of v elements called points,
2. D is a λvt by k array whose entries are elements of X, and
3. within any t columns of D, every t-tuple of points occurs in precisely λ rows.

Example 1.12. An OA1(2, 4, 3).
1 1 1 1
1 2 3 3
1 3 2 2
2 1 2 3
2 2 1 2
2 3 3 1
3 1 3 2
3 2 2 1
3 3 1 3

It is easy to see the correspondence between orthogonal arrays and transversal designs.
Suppose (X,D) is an OAλ(t, k, v). We define a bijection φ between the rows rj of D and
the blocks Bj of a TDλ(t, k, v) as follows. For each row rj = [xj1xj2 · · ·xjk] of D, let

φ(rj) = {(xj1, 1), (xj2, 2), . . . (xjk, k)} = Bj

define a block Bj. Define Gi = {1, . . . , v}× {i} for 1 ≤ i ≤ k. Then (X ×{1, . . . , k},G,B)
is a TDλ(t, k, v) with G = {Gi : 1 ≤ i ≤ k} and B = {Bj : 1 ≤ j ≤ λvt}.

Example 1.13. The blocks of the TD1(2, 4, 3) obtained from the OA1(2, 4, 3) in Exam-
ple 1.12:

B1 : (1, 1) (1, 2) (1, 3) (1, 4)
B2 : (1, 1) (2, 2) (3, 3) (3, 4)
B3 : (1, 1) (3, 2) (2, 3) (2, 4)
B4 : (2, 1) (1, 2) (2, 3) (3, 4)
B5 : (2, 1) (2, 2) (1, 3) (2, 4)
B6 : (2, 1) (3, 2) (3, 3) (1, 4)
B7 : (3, 1) (1, 2) (3, 3) (2, 4)
B8 : (3, 1) (2, 2) (2, 3) (1, 4)
B9 : (3, 1) (3, 2) (1, 3) (3, 4)

The above construction method can be reversed for an arbitrary TDλ(t, k, v), say
(X,G,B). To see this, note that we can relabel the points such that X = {1, . . . , v} ×
{1, . . . , k} and G = {Gi : 1 ≤ i ≤ k}. Then the fact that any block and any group must
contain exactly one common point implies that for each B ∈ B, we can form the k-tuple
(b1, . . . , bk), where bi ∈ B∩Gi for 1 ≤ i ≤ k. We can form an orthogonal array OAλ(t, k, v)
by taking all of these k-tuples as rows.

18

Definition 1.39. A large set of OAλ(t, k, v) on the point set X is a set of OAλ(t, k, v),
say {(X,D1), . . . , (X,DN)}, in which every k-tuple of elements from X occurs as a row in
precisely one of the Dis. That is, the Dis form a partition of the set Xk of k-tuples with
entries from X.

Remark 1.13. It is easy to see that there must be N = vk

λvt
orthogonal arrays in a large

set of OAλ(t, k, v).

A useful type of orthogonal array is a linear array, especially for constructing large sets:

Definition 1.40. Let (X,D) be an OAλ(t, k, v). We say (X,D) is linear if X = Fq for
some prime power q and the rows of D form a subspace of (Fq)k of dimension logq|D|.

Linear orthogonal arrays (and hence the corresponding transversal designs) are easy to
construct. In particular, the following is a useful construction method.

Theorem 1.18. Suppose q is a prime power and k and ` are positive integers. Suppose M
is an ` by k matrix over Fq such that every set of t columns of M is linearly independent.
Then (X,D) is a linear OAq`−t(t, k, q), where D is the q` by k matrix formed by taking all
linear combinations of the rows of M .

Let q be a prime power and for every x ∈ Fq, let ~x = [1, x, x2, . . . , xt−1] ∈ (Fq)t for some
integer t ≥ 2. Construct the t by q matrix M by taking the columns to be the vectors (~x)T

for every x ∈ Fq, where here (~x)T means the transpose of ~x. Applying Theorem 1.18 to M
yields the following result:

Corollary 1.19. Let t ≥ 2 be an integer and let q be a prime power. Then there exists a
linear OA1(t, q, q).

The following result is immediate.

Corollary 1.20. Let t ≥ 2 be an integer and let q be a prime power. Then there exists a
linear TD1(t, q, q).

We now discuss how to construct a large set of linear orthogonal arrays from a “starting”
linear orthogonal array. Suppose (X,D) is a linear OAλ(t, k, v). We can obtain a large set
of orthogonal arrays (and therefore transversal designs) from (X,D) by taking the set of
cosets of D in (Fq)k. In particular, D is a subspace of (Fq)k, so the cosets of D form a
partition of (Fq)k.

1.3. Thesis Outline

The remaining three chapters are devoted to our three research problems: Chapter 2
is on unconditionally secure signatures, Chapter 3 is on user-private information retrieval,
and Chapter 4 is on the generalized Russian cards problem. A few elementary results
from linear algebra, which are needed for the security proofs of our signature schemes, are
included in Appendix A.

19

CHAPTER 2

Unconditionally Secure Signature Schemes Revisited

2.1. Introduction

Unconditionally secure signature (USS) schemes provide the ability to electronically
sign documents without the reliance on computational assumptions needed in traditional
digital signatures. That is, USS schemes are the analogue of digital signatures in the un-
conditionally secure cryptographic setting. The construction of such schemes is interesting
not only from a theoretical perspective, but also from the viewpoint of ensuring security
of information in the long term or designing schemes that are viable in a post-quantum
world.

In traditional digital signatures, as mentioned in Section 1.1.1, each user has a pair
consisting of a secret signing algorithm and a public verification algorithm. Since user
verification algorithms are public, anyone can verify whether a given signature was created
by the claimed signer. Unlike digital signatures, USS schemes require that verification
algorithms are not public—for any possible signer, each user must have a different secret
verification algorithm corresponding to that signer. The consequence is that USS schemes
necessarily have a limited number of users, and hence a limited number of entities with
the ability to verify a given signature, each with their own special test. Thus, any viable
security definition for a USS scheme must carefully treat the subject of what constitutes
a valid signature. That is, it is important to distinguish between signatures that are cre-
ated using a user’s signing algorithm and signatures that may satisfy one or more user
verification algorithms. Current research [38–40,58,65] has proposed various models for
unconditionally secure signature schemes, but these models do not fully treat the implica-
tions of having multiple verification algorithms or analyze the need for (and trust questions
associated with) having a dispute resolution mechanism. We address both of these issues
in this chapter.

Much of the material in this chapter appears in the paper “Unconditionally Secure Signature Schemes
Revisited” [76], published in ICITS 2011.

20

Historically, there have been several attempts to create unconditionally secure con-
structions that satisfy security properties required for digital signatures, including non-
repudiation, transferability, and unforgeability. Chaum and Roijakkers [8] introduced un-
conditionally secure signatures, proposing an interactive scheme that does not have trans-
ferability. Another approach to creating unconditionally secure signatures has been to en-
hance existing unconditionally secure message authentication codes (MACs), making these
codes more robust in a signature setting. MACs clearly do not provide non-repudiation,
as the sender and receiver compute authentication tags using the same algorithm. In addi-
tion, the need for a designated sender and receiver further limits the applicability of such
schemes in a general signature setting.

Much research has been devoted to the removal of the standard MAC trust assumptions,
in which both sender and receiver are assumed to be honest. In A2-codes [43,66,67], the
sender and receiver may be dishonest, but there is a trusted arbiter to resolve disputes; in
A3-codes [6,18,44], the arbiter is no longer trusted prior to dispute resolution, but is trusted
to make an honest decision in the event of a disagreement. Johansson [44] used A3-codes to
improve the construction of Chaum and Roijakkers by making it non-interactive, but the
signatures produced by the scheme are not transferable, as the use of a designated receiver
limits the verification of the signature to those who have the appropriate key. Multi-receiver
authentication codes (MRAs) [17] and multi-receiver authentication codes with dynamic
sender (DMRAs) [59] use a broadcast setting to relax the requirement for designation of
receivers, and also, in the latter case, senders. These codes are not appropriate outside of
a broadcast setting, however, as neither non-repudiation nor transferability are satisfied.

Unsurprisingly, the first security models for unconditionally secure signature schemes,
including Johansson [44] and Hanaoka et al. [38,39], drew upon the standard MAC security
models. Shikata et al. [65] introduce a model using notions from public-key cryptography,
which was later adopted in the work by Hara et al. [40] on blind signatures. Safavi-Naini et
al. [58] present a MAC-based model meant to encompass the notions developed by Shikata
et al. In this work, we present a new security model. Our model is more general than the
MAC-based models of Hanaoka et al. [38,39] and Safavi-Naini et al. [58] and covers the
attacks described in these works. Like that of Shikata et al. [65], our work is based on
security notions from traditional public-key signature systems. However, our model differs
from those in the existing literature in its careful treatment of the concept of a “valid”
signature. Our aim is to provide a rigorous and natural security model that covers all
reasonable attacks.

In addition, we analyze a construction of Hanaoka et al. [38] in our model and provide
a proof of security. We remark that while Hanaoka et al. make claims about the security of
this construction in their model, they do not provide an analysis. In fact, security proofs
are not provided for most of the constructions given in existing research. Thus, we feel it
is useful to include our analysis of a basic unconditionally secure signature construction in
our security model.

21

Our basic notion of security is easily extendable to a system with dispute resolution,
which we argue is a necessary component of any USS scheme. Furthermore, our treatment
of dispute resolution allows us to give formal definitions of non-repudiation and transfer-
ability. We show that a USS scheme that satisfies our unforgeability definition and has an
appropriate dispute resolution method also satisfies non-repudiation and transferability,
both of which are required properties for any reasonable signature scheme. Finally, we
define various dispute resolution methods and examine the amount of trust each requires.

An advantage of our security framework for USS schemes is its flexibility; standard
security properties from the literature, such as strong key insulation [23,24], can be incor-
porated into our basic model in a natural way. In key-insulated signature schemes, con-
structions are designed to be robust against signing-key exposure; this is done by splitting
a user’s signing information between a physically secure device (which stores the user’s
master key) and an insecure device (which is responsible for actually signing messages
using temporary signing keys). We explore the notion of unconditionally secure strong
key-insulated signatures in Sections 2.8 and 2.9, drawing from the work of Seito et al. [63]
and Seito and Shikata [62] on unconditionally secure key-insulated multi-receiver authen-
tication codes and key agreement. In particular, we give a formal extension of our security
model to the strong key-insulation setting and present a construction that is secure in a
restricted version of our model.

2.2. Overview of Contributions

The main contributions of this chapter are as follows.

• We present a new, natural security model for USS schemes based on security notions
from traditional public-key signature systems. As such, our model is more general
than the MAC-based models of Hanaoka et al. [38, 39] and Safavi-Naini et al. [58].
Although Shikata et al. [65] also use notions from traditional public-key cryptography,
our model differs from previous models in that it provides a rigorous treatment of the
concept of “valid” signatures.
• We introduce the concept of authentic, acceptable, and fraudulent signatures. This

new terminology allows us to distinguish between signatures produced by the signer’s
signing algorithm, signatures accepted by a verifier’s verification algorithm, and sig-
natures that are accepted by a verifier’s verification algorithm but were not produced
by the signer’s signing algorithm.
• We define various dispute resolution methods and examine the amount of trust each

requires. We show that under the split trust assumption normally given in the litera-
ture, typical suggested dispute resolution methods prove not to be sound. That is, we
demonstrate the existence of a special type of forgery called a dispute-enabled forgery
in these cases.
• We incorporate dispute resolution into our basic security model. We examine de-

sirable properties for a dispute resolution mechanism and introduce the notion of

22

completeness, which implies authentic signatures are accepted by the dispute resolu-
tion method, and soundness, which implies that signatures that are not authentic are
rejected by the dispute resolution method.
• We provide formal definitions of transferability and non-repudiation in the context

of dispute resolution, and examine the relationship between these two properties and
unforgeability.
• We analyze a construction of Hanaoka et al. [38] in our model and provide a proof of

security.
• We define unconditionally secure signature schemes with key insulation, or KI-USS

schemes, and extend our security model to this setting. Moreover, we present a con-
struction that satisfies a restriction of our definition of unforgeability for key-insulated
signature schemes, which is an extension of the notion of strong key insulation to the
information-theoretically secure setting.

2.2.1. Chapter outline. In Section 2.3, we give a basic definition of a USS scheme,
before moving to an informal treatment of the desired security properties. We then define
a formal security model in Section 2.4. We introduce the notion of dispute resolution and
give examples of possible dispute resolution methods in Section 2.5; we then formally define
dispute resolution in Section 2.6 and explore the impact of dispute resolution on our basic
security notions of unforgeability, non-repudiation, and transferability. We analyze the
construction of Hanaoka et al. [38] in Section 2.7. In Sections 2.8 and 2.9, we give a formal
treatment of USS schemes with strong key insulation and then we present our construction.
In Section 2.10, we compare our work with that of previous literature. Finally, we give
some concluding remarks in Section 2.11.

2.3. Preliminaries

We require the following definitions.

Definition 2.1. An unconditionally secure signature scheme (or USS scheme) Π consists
of a tuple (U ,X ,Σ,Gen, Sign,Vrfy) satisfying the following:

• The set U = {U1, . . . Un} consists of n possible users, X is a finite set of possible
messages, and Σ is a finite set of possible signatures.
• The key-generation algorithm Gen takes as input 1k, where k is a security parameter,

and outputs the signing algorithm Sign and the verification algorithm Vrfy.
• The signing algorithm Sign : X × U → Σ takes a message x ∈ X and a signer Uζ ∈ U

as input, and outputs a signature σ ∈ Σ. For each Uζ ∈ U , we let Signζ denote the
algorithm Sign(·, Uζ).
• The verification algorithm Vrfy : X × Σ × U × U → {True,False} takes as input a

message x ∈ X , a signature σ ∈ Σ, a signer Uζ ∈ U , and a verifier Uν ∈ U , and
outputs either True or False. For each user Uν , we let Vrfyν denote the algorithm
Vrfy(·, ·, ·, Uν).

23

It is required that, for every k, for every pair (Sign,Vrfy) output by Gen(1k), for every
pair Uζ , Uν ∈ U , and for every x ∈ X , it holds that

Vrfyν
(
x, Signζ(x), Uζ

)
= True.

Remark 2.1. We are treating deterministic signature schemes only, in the sense that Sign
and Vrfy are deterministic, although the above definition can easily be extended to the
randomized setting. In practice, we typically also want Sign and Vrfy to be polynomial-
time algorithms for efficiency. The point of USS schemes is to guarantee security against
powerful adversaries, even those who are computationally unlimited.

We now define the concepts of authentic, acceptable, and fraudulent signatures. Dis-
tinguishing these three concepts is one of the main themes of this chapter.

Definition 2.2. A signature σ ∈ Σ on a message x ∈ X is ζ-authentic if σ = Signζ(x).

Definition 2.3. A signature σ ∈ Σ on a message x ∈ X is (ζ, ν)-acceptable if we have
Vrfyν(x, σ, Uζ) = True.

Definition 2.4. A signature σ ∈ Σ on a message x ∈ X is (ζ, ν)-fraudulent if σ is (ζ, ν)-
acceptable but not ζ-authentic.

Remark 2.2. In practice, we assume the existence of a trusted initializer TI, who takes
responsibility for scheme set up and key distribution. That is, TI runs Gen(1k) and securely
distributes signing and verification keys to the appropriate users. Participants cannot
create their own signing information and distribute corresponding verification keys to the
other users, as in this case each user Uζ would be able to create a (ζ, ν)-fraudulent signature
for all Uν ∈ U . While it might be possible to avoid this problem by using a “group
computation” approach to create and distribute the necessary scheme information, for
simplicity we assume the existence of a TI.

2.3.1. Security notions. Informally, a secure signature scheme should satisfy the follow-
ing three properties:

1. Unforgeability : Except with negligible probability (with respect to the given security
parameter k), it should not be possible to create a “valid” signature without the
corresponding signing algorithm.

2. Non-repudiation: Except with negligible probability (with respect to the given security
parameter k), a signer should be unable to repudiate a legitimate signature that he
has created.

3. Transferability : Except with negligible probability (with respect to the given security
parameter k), if a verifier accepts a signature, he can be confident that any other
verifier will also accept it.

One objective of this paper is to formalize these notions in the unconditionally secure
setting; we provide precise definitions in Sections 2.4 and 2.5. In contrast to the usual

24

public-key setting, the requirements of non-repudiation and transferability are not guar-
anteed in a USS scheme that satisfies the above intuitive notion of unforgeability. For
“ordinary” digital signatures, non-repudiation is a consequence of unforgeability: a sig-
nature is considered “valid” if it passes a verification test, and it should be infeasible for
anyone to create such a signature without knowledge of the secret signing algorithm. Thus,
assuming the signing algorithm is not known to some third party, the signer cannot create
a signature and later repudiate it. Transferability of digital signatures is guaranteed since
there is a single, public verification algorithm.

In USS schemes, the concept of a “valid” signature requires clarification. Given suf-
ficient computation time, a verifier is always capable of finding a signature that passes
his own, secret verification test, so we cannot define the validity of a signature based on
whether it passes a given user’s verification algorithm. Indeed, there must be signatures
that pass a given user’s verification algorithm but that could not have been created with
the signer’s signing algorithm; otherwise the scheme does not satisfy unforgeability. Sim-
ilarly, each verifier’s verification algorithm must be different, or a given verifier may be
able to present a signature acceptable to any verifier who possesses the same verification
algorithm. A “valid” signature, then, must be created using the signer’s signing algo-
rithm, and it should be infeasible for anyone to create a signature that appears valid to
other, non-colluding users, or the scheme does not have the properties of unforgeability,
non-repudiation, and transferability. In particular, we have the following observations.

Theorem 2.1. A necessary condition for a USS scheme to satisfy unforgeability is the
existence of (ζ, ν)-fraudulent signatures for ζ 6= ν.

Proof. Given sufficient computation time, a verifier Uν can use his verification algorithm
to create a (ζ, ν)-acceptable signature for any ζ 6= ν. If there are no (ζ, ν)-fraudulent
signatures, then all signatures produced in this fashion must be ζ-authentic, and therefore
they are successful forgeries. �

Theorem 2.2. A USS scheme that satisfies unforgeability must also satisfy Vrfyν(·, ·, ·) 6=
Vrfy`(·, ·, ·) for ν 6= `.

Proof. Suppose that Vrfyν(·, ·, ·) = Vrfy`(·, ·, ·) where ν 6= `. Given sufficient computation
time, Uν can create a (ζ, ν)-acceptable signed message, (x, σ). Because Vrfyν(·, ·, ·) =
Vrfy`(·, ·, ·), it follows immediately that (x, σ) is (ζ, `)-acceptable. This implies that the
user U` will accept (x, σ) as a valid signature, but (x, σ) was not created by Uζ . �

2.4. Formal Security Model

We now develop a formal security model for USS schemes. Our security definition is
comparable to the notion of signatures secure against existential forgery under adaptive
chosen message attacks in the case of public-key signature schemes. However, our definition
takes into account the distinctive characteristics of the unconditional security setting, in

25

particular the existence (and necessity) of fraudulent signatures and multiple verification
algorithms.

We specify two types of existential forgery. In our setting, an “existential” forgery
is either a (ζ, ν)-fraudulent signature created without the help of the verifier Uν , or a ζ-
authentic signature created without the help of the signer Uζ . If a USS scheme is secure,
then both of these types of forgeries should be infeasible for an adversary to create.

We need the following oracles for our security definition:

• The SignO` (·) oracle; this oracle takes as input a message x and outputs an `-authentic
signature for the message x.
• The VrfyO` (·, ·, ·) oracle; this oracle takes as input a signature pair (x, σ) and a signer
Uζ , and runs user U`’s verification algorithm on input (x, σ, Uζ), outputting True or
False.

Definition 2.5. Let Π = (U , X,Σ,Gen, Sign,Vrfy) be a USS scheme with security param-
eter k, let the set C ⊆ U be a coalition of at most ω users, and let ψS and ψV be positive
integers. We define the following signature game Sig-forgeC,Π(k) with target signer Uζ and
verifier Uν :

1. Gen(1k) is run to obtain the pair (Sign,Vrfy).
2. The coalition C is given bounded access to the oracles SignO` (·) and VrfyO` (·, ·, Uζ) for
` satisfying U` /∈ C. In particular, C is allowed a total of ψS and ψV queries to the
SignO and VrfyO oracles, respectively, with at most ψS/(n− |C|) queries to SignO` (·)
for each ` satisfying U` /∈ C. It should be noted that C has unlimited access to the
signing and verification algorithms of any U` ∈ C. We let Q denote the set of messages
that the coalition submitted as queries to the oracles SignOζ (·). Note that Q does not

contain messages submitted as queries to SignO` (·) for ` 6= ζ.
3. The coalition C outputs a signature pair (x, σ).
4. The output of the game is defined to be 1 if and only if one of the following conditions

is met:
(a) Uν /∈ C and σ is a (ζ, ν)-fraudulent signature on x; or
(b) Uζ /∈ C, x /∈ Q, and σ is a ζ-authentic signature on x.

Definition 2.6. Let Π = (U , X,Σ,Gen, Sign,Vrfy) be a USS scheme with security param-
eter k and let ε(k) be a negligible function of k. We say Π is (ω, ψS, ψV , ε)-unforgeable if
for all coalitions C of at most ω possibly colluding users, and all choices of target signer
Uζ and verifier Uν , it holds that

Pr
[
Sig-forgeC,Π(k) = 1

]
≤ ε(k).

Remark 2.3. Another option is to include a FraudO(ζ,ν)(·) oracle; this oracle takes as input
a message x and outputs a (ζ, ν)-fraudulent signature on x. Providing certain (ζ, ν)-
fraudulent signatures to the adversary could only increase his chances of ultimately con-
structing a new (ζ, ν)-fraudulent signature. Thus this would constitute a stronger security

26

model than the one we consider. On the other hand, it is hard to envisage a practical
scenario where an adversary would have this kind of additional information about a veri-
fier whom the adversary is attempting to deceive. Therefore we do not include the FraudO

oracle in our basic model of USS schemes. However, it would be straightforward to modify
our model to include these oracles, if desired.

We observe that a scheme meeting the unforgeability requirement of Definition 2.6
satisfies our intuitive notions of non-repudiation and transferability. We explain these re-
lationships in the following observations, noting that formal definitions of non-repudiation
and transferability are intrinsically linked to the dispute resolution process, and so are pro-
vided later, in Section 2.5. We will formalize these observations in Theorems 2.9 and 2.10.

Observation 2.3. An (ω, ψS, ψV , ε)-unforgeable USS scheme Π provides non-repudiation.

Proof. Suppose that Π is (ω, ψS, ψV , ε)-unforgeable. Then Uζ cannot repudiate a given ζ-
authentic signature σ, as Definition 2.6 guarantees that σ can be created without Uζ only
with negligible probability (as Condition 4(b) of Definition 2.5 holds only with negligible
probability). Thus Uζ cannot claim that other users may have created σ. The other
possibility for a signer Uζ to repudiate a signature on a message given to Uν is if the
signature is (ζ, ν)-fraudulent. Definition 2.6 also implies that Uζ cannot create a (ζ, ν)-
fraudulent signature (even with the help of ω−1 other users not including Uν) except with
negligible probability, as Condition 4(a) of Definition 2.5 is assumed to not hold (except
with negligible probability). �

Observation 2.4. An (ω, ψS, ψV , ε)-unforgeable USS scheme Π provides transferability.

Proof. In order for a signature σ to be non-transferable from Uν to U`, the signature σ must
be (ζ, ν)-acceptable, but not (ζ, `)-acceptable, where ν 6= `. If σ were ζ-authentic, it would
also be (ζ, `)-acceptable. Therefore σ must be (ζ, ν)-fraudulent. However, Definition 2.6
implies a (ζ, ν)-fraudulent signature cannot be created without the assistance of Uν , except
with negligible probability. �

From the point of view of a verifier, a scheme meeting Definition 2.6 gives reasonable
assurance of the validity of a received signature. If a verifier Uν receives a signature pair
(x, σ) purportedly from Uζ , then Uν accepts the signature so long as σ is (ζ, ν)-acceptable
for the message x. In this case, there are only two possibilities: either σ is ζ-authentic
or (ζ, ν)-fraudulent for the message x. If σ is ζ-authentic, then a coalition that does not
include the signer Uζ has only a negligible probability of creating σ by Condition 4(b) of
Definition 2.5. If σ is (ζ, ν)-fraudulent, then Condition 4(a) of Definition 2.5 guarantees
that a coalition that does not include Uν cannot create σ, except with negligible probability.

27

2.5. Dispute Resolution

Given that each verifier has his own distinct verification algorithm, a USS scheme must
necessarily handle the event of a disagreement. That is, since there is no public verification
method as in traditional digital signatures, a USS scheme must have a mechanism to
determine the authenticity of a signature when some subset of users disagree whether
a given signature should be accepted. In particular, dispute resolution is necessary to
convince an outsider of the authenticity of a disputed signature. In traditional digital
signatures, there are no outsiders to the scheme, in the sense that everyone has access
to the public verification method. In our setting, however, the number of participants
(and therefore their access to verification algorithms) is limited. Dispute resolution is a
method that effectively deals with the need for resolution of disagreements in, for example,
a court setting. Typically, dispute resolution involves all the users voting on the validity
of a signature, or alternatively, a trusted arbiter stating whether a signature is valid.

The manner in which a dispute resolution mechanism may be invoked necessarily af-
fects the security of the overall scheme. In particular, we should not allow users to invoke
the dispute resolution mechanism an arbitrary number of times. If users have unlimited
access, it may be possible for a coalition to use dispute resolution as a type of verification
oracle against a target signer Uζ . As this is undesirable, we need to limit access to dispute
resolution in a reasonable way. One simple possibility is to limit dispute resolution to
once per scheme. That is, once dispute resolution has been invoked, we require that the
users request the TI to generate new signing and verification keys. This may be reason-
able because dispute resolution necessarily implies the existence of a lying (or otherwise
compromised) user, and we find it unlikely that users will want to continue the current
scheme with the dishonest (or compromised) user in question; we discuss these concepts
in more detail in Remark 2.4. That said, it may be desirable to include a mechanism by
which to determine and punish cheaters—such a mechanism may be useful if multiple calls
to the dispute resolution are desired, or to determine which users should not be included
in a scheme reset.

We focus on the case in which dispute resolution causes a scheme reset. We begin with
some basic concepts and then provide and analyze examples of possible dispute resolution
mechanisms. Ideally, the dispute resolution process validates a signature if and only if the
signature is authentic, i.e., the signature was produced by the purported signer. This leads
to the following definitions.

Definition 2.7. A dispute resolution method DR for a USS scheme Π is a procedure
invoked when a pair of users U`, U`′ ∈ U disagrees as to the validity of a given signature
(x, σ), purportedly signed by Uζ . Here U` (respectively, U`′) may be any user in U , including
Uζ . The procedure DR consists of an algorithm DR that takes as input a signature pair
(x, σ) and a purported signer Uζ , and outputs a value in {Valid , Invalid}, subject to the
following rules:

28

1. If DR outputs Valid , then (x, σ) must subsequently be accepted as a ζ-authentic
signature on x by all users.

2. If DR outputs Invalid , then (x, σ) must subsequently be rejected by all users.

We remark that the algorithm DR may have access to additional (secret) scheme informa-
tion, as specified by the particular dispute resolution method.

The following definitions capture the desirable properties of a given DR.

Definition 2.8. Soundness. Let Π be a USS scheme and let DR be a dispute resolution
method for Π. We say DR is sound if, whenever σ is not a ζ-authentic signature on x,
then DR

(
(x, σ), Uζ

)
outputs Invalid .

Definition 2.9. Completeness. Let Π be a USS scheme and let DR be a dispute resolution
method for Π. We say DR is complete if, whenever σ is a ζ-authentic signature on x, then
DR
(
(x, σ), Uζ

)
outputs Valid .

Definition 2.10. Correctness. Let Π be a USS scheme and let DR be a dispute resolution
method for Π. If DR is both sound and complete, we say DR is correct.

Remark 2.4. A correct dispute resolution method DR is useful in terms of identifying
and punishing users who are cheating (or alternatively whose secret information has been
compromised). To see this, suppose that a signature σ with purported signer Uζ is given
to DR by two users U` and U`′ . Without loss of generality, suppose U` claims σ should
be accepted and U`′ claims σ should be rejected. Then if the output of DR is Valid ,
soundness implies that σ is ζ-authentic. In this case, the user U`′ is either dishonest or
otherwise compromised. If, on the other hand, the output of DR is Invalid , completeness
implies that σ is not ζ-authentic. In this case, the user U` is either dishonest or otherwise
compromised. Here, by otherwise compromised, we are recognizing the possibility that
a user’s secret information may become unintentionally known to an adversary (i.e., a
coalition of dishonest users), but the user in question is honest. This might happen, for
example, due to insecure storage of signing and/or verification keys.

We define three dispute resolution methods and examine the level of honesty required
in each scheme. In particular, we wish to define trust assumptions sufficient to ensure the
correctness of these dispute resolution methods. That is, we consider the degree of trust a
group of users should have in order to use a particular dispute resolution method.

Definition 2.11. We have the following dispute resolution methods, assuming a disputed
signature σ on message x with purported signer Uζ :

• Omniscient Arbiter (OA) Dispute Resolution: Designate an arbiter equipped with
all of the USS scheme set-up information. The signature σ is considered valid if the
arbiter, using his knowledge of all the signing and verification algorithms, accepts the
signature as authentic. Here we assume the arbiter is honest.

29

• Verifier-equivalent Arbiter (VEA) Dispute Resolution: Designate an arbiter equipped
with his own verification algorithm, VrfyA, (i.e., the arbiter is a glorified verifier).
The arbiter tests the authenticity of the signature σ by running VrfyA(x, σ, Uζ); the
signature is considered valid if VrfyA(x, σ, Uζ) outputs True. Here we assume the
arbiter is honest. We remark that the arbiter may or may not be a normal user in
the scheme, although assuming the arbiter is honest may be more reasonable if the
arbiter is not otherwise involved with the scheme.
• Majority Vote (MV) Dispute Resolution: Here we resolve disputes by having the

users vote on the validity of the signature σ. Each user is responsible for running his
verification algorithm on (x, σ, Uζ) and casting a valid vote if his verification algorithm
outputs True and an invalid vote otherwise. The signature is considered valid if a
prespecified threshold of valid votes are cast; here we consider the case of a majority
threshold and assume all users vote. We assume that a majority of users are honest.

In the case of OA dispute resolution, it is clear that we require the arbiter to be honest,
as he has all the necessary information to sign and verify documents on behalf of other
users. That is, a USS scheme Π with OA dispute resolution clearly cannot satisfy any
unforgeability condition unless the arbiter is honest, as the arbiter has all the necessary
information to sign messages on behalf of users. Moreover, provided that the arbiter is
honest, this dispute resolution method is both sound and complete, as the arbiter is able
to determine the authenticity of a given signature and behave appropriately. In fact, the
correctness of OA dispute resolution with an honest arbiter is independent of the security
of the underlying scheme. Correctness implies the arbiter’s ability to identify signatures
that are ζ-authentic for the purported signer Uζ , which is independent from the problem of
preventing other users from creating a ζ-authentic signature without Uζ ’s help. However,
it is of course still the case that correct dispute resolution is only useful in conjunction
with an unforgeable USS scheme. To summarize, we have the following result:

Theorem 2.5. Let Π be a USS scheme and let DR be an OA dispute resolution method
for Π with an honest arbiter. Then DR is correct.

Remark 2.5. Although in this chapter we focus on deterministic signature schemes, an
interesting observation with respect to OA dispute resolution arises in the case of ran-
domized signature schemes. In particular, if the signature scheme is randomized, then the
arbiter may have to be computationally unbounded in order to perform dispute resolution.
That is, if a purported signer claims a disputed signature is not valid, the arbiter may have
to search an exponential space. This issue does not arise if the purported signer does not
dispute the validity of the signature, however, as in this case the signer can simply reveal
the randomness used to produce the disputed signature.

In the following two theorems, we present trust assumptions sufficient to achieve cor-
rectness in VEA and MV dispute resolution. For these methods, it is necessary to consider
the security properties of the underlying signature scheme Π.

30

Theorem 2.6. Let Π be an (ω, ψS, ψV , ε)-unforgeable USS scheme and let DR be a VEA
dispute resolution method for Π with an honest arbiter. Then DR is correct in the presence
of a coalition of users of maximum size ω, except with negligible probability.

Proof. Suppose we have a disputed signature σ on message x with purported signer Uζ .
The arbiter A outputs Valid if and only if σ is (ζ,A)-acceptable.

Given that the underlying scheme Π satisfies our unforgeability definition, a coalition
of maximum size ω cannot produce a signature that is (ζ,A)-fraudulent without A’s help,
except with negligible probability. That is, an honest arbiter A outputs Valid exactly when
σ is ζ-authentic (except with negligible probability). �

Theorem 2.7. Let Π be an (ω, ψS, ψV , ε)-unforgeable USS scheme and let DR be an MV
dispute resolution method for Π. Then DR is correct in the presence of a coalition of
dishonest users of maximum size min

{
ω,
⌊
n−1

2

⌋}
, except with negligible probability.

Proof. Suppose we have a disputed signature σ on message x with purported signer Uζ .
Consider a coalition C of size at most min

{
ω,
⌊
n−1

2

⌋}
. If x is ζ-authentic, then any

honest U` /∈ C will cast a valid vote. The coalition C can attempt to ensure that x is
rejected by having each member cast an invalid vote, but as long as a majority of users are
honest, x will be accepted by the dispute resolution process. If x is not ζ-authentic, then
since Π is (ω, ψS, ψV , ε)-unforgeable, we have that x is not (ζ, `)-fraudulent for any honest
U` /∈ C except with negligible probability. That is, any honest U` will (with overwhelming
probability) cast a invalid vote. The members of C can attempt to have x accepted by
having each member cast a valid vote, but given that a majority of users are honest, this
approach works with only negligible probability. �

Remark 2.6. The proof of Theorem 2.6 establishes that the correctness of the VEA dispute
resolution method depends on how easy it is in the underlying scheme Π to construct
signatures which are (ζ,A)-acceptable for users Uζ ∈ U . In particular, it is easy to see
that if Π does not satisfy Definition 2.6 for some ω with respect to output 4(a) of the
security game Sig-forgeC,Π(k) (as defined in Definition 2.5), then the VEA method fails to
be correct, even with an honest arbiter. In addition, if we consider the maximum ω for
which Π satisfies the above unforgeability criterion, it is easy to see that the VEA method
fails to be correct in the presence of more than ω colluding users. Similar observations
hold for Theorem 2.7 with respect to the MV dispute resolution method.

As observed above, we achieve correctness of the VEA dispute resolution method by
assuming that the arbiter is honest. Achieving soundness and completeness is not as clear
if we weaken this honesty requirement, however. In the typical VEA dispute resolution
methods considered in current literature [40,58,65], the arbiter is assumed to be a glori-
fied verifier, with the same type of keying information as an arbitrary verifier. The arbiter
is assumed to follow the rules of the dispute resolution method honestly and is otherwise
treated as a normal user in the context of the security model, i.e., he is allowed to be

31

dishonest otherwise. That is, the arbiter is allowed to be a member of the coalition at-
tempting to create a forgery, but he is expected to follow the dispute resolution process
itself honestly. We refer to this set of trust assumptions as the split trust assumption. We
argue that the split trust assumption is problematic, however, and should likely be aban-
doned. In particular, if we consider VEA dispute resolution where we allow the arbiter to
be part of a given coalition, then soundness is no longer guaranteed.

The arbiter’s distinct role in the dispute resolution method necessitates a more careful
study of the arbiter, and therefore treating the arbiter as a normal verifier in the context
of the security model is insufficient. While it is obvious an arbiter who is dishonest during
dispute resolution can cause a fraudulent signature to be deemed valid, we cannot allow
the arbiter to be dishonest before dispute resolution either, contrary to the claims of
Safavi-Naini et al. [58] and Shikata et al. [65]. In particular, the VEA dispute resolution
method does not achieve soundness under the split trust assumption due to the existence
of a new type of forgery introduced by the dispute resolution process, which we term a
dispute-enabled forgery :

Definition 2.12. Let Π be a USS scheme and let DR be a dispute resolution method for
Π. We say a signature σ on a message x ∈ X is a dispute-enabled forgery for signer Uζ if
σ is not ζ-authentic, but DR

(
(x, σ), Uζ

)
outputs Valid .

In fact, the proof of Theorem 2.6 indicates why the split trust assumption is problematic:
an honest arbiter A outputs Valid during dispute resolution if and only if the signature
is (ζ,A)-acceptable for purported signer Uζ . But if we allow A to be dishonest prior to
dispute resolution, then A can produce a signature x that is (ζ,A)-fraudulent. In this case,
A’s verification algorithm outputs True on input x with signer Uζ , so x is a dispute-enabled
forgery. We remark that the case of MV may be viewed as a generalized version of VEA
dispute resolution and the security concerns are similar.

The main observation is that a cheating arbiter A (or, in the case of MV dispute
resolution, a collusion of a majority of verifiers) can successfully forge a (ζ, ν)-fraudulent
signature for any cooperating user Uν . Hence, VEA and MV dispute resolution do not
protect the signer against a dishonest arbiter (or a dishonest majority of verifiers) under
the split trust assumption, since dispute-enabled forgeries exist. From the perspective of
signer security, the split trust assumption is certainly not reasonable.

From the perspective of verifier security, it is interesting to note that both the VEA and
MV methods are acceptable under the split trust assumption. This is a consequence of the
fact that both the VEA and MV methods are complete provided that the dispute resolution
process itself is performed honestly. We show in Theorems 2.9 and 2.10 that completeness
is sufficient for an (ω, ψS, ψV , ε)-USS scheme Π with dispute resolution DR to provide non-
repudiation and transferability. That is, the VEA and MV methods do not require the
arbiter(s) to be honest prior to dispute resolution in order to achieve non-repudiation and
transferability. As seen above, however, the VEA and MV methods require the arbiter(s)

32

to be honest prior to dispute resolution in order to achieve soundness. In this sense, we
see that VEA and MV dispute resolution under the split trust assumption provide similar
verifier security to OA dispute resolution with an honest arbiter (in that non-repudiation
and transferability are assured), but they fail to provide similar signer security (in that
unforgeability is not assured).

Nonetheless, we argue that a more reasonable approach to dispute resolution is to
assume the possibility of cheating both before and during dispute resolution. In this case,
we see that for the VEA method, we must have an honest arbiter A, and for the MV
method, we require that a majority of users are honest.

With these examples in mind, we give a formal treatment of dispute resolution in the
following section.

2.6. A Formal Treatment of Dispute Resolution

The possibility of dispute-enabled forgeries requires an extension to the unforgeability
requirement of a USS scheme. Although unforgeability (unlike non-repudiation and trans-
ferability) is not intrinsically linked to the dispute resolution process, we need to ensure
that the dispute resolution process itself does not weaken the overall security of the scheme.

Definition 2.13. Let Π be a USS scheme and let DR be a dispute resolution method for Π.
We extend the signature game Sig-forgeC,Π(k) to the signature game DR-Sig-forgeC,Π(k)
by adjusting Definition 2.5 as follows. We make the following changes to Step 4:

4. We add the following to the list of possible conditions for which the output of the
game is 1:
(c) Uζ /∈ C, σ is not ζ-authentic, but DR

(
(x, σ), Uζ

)
outputs Valid .

Definition 2.14. Let Π = (U ,X ,Σ,Gen, Sign,Vrfy) be a USS scheme with security param-
eter k and let DR be a dispute resolution method for Π. Let ε(k) be a negligible function
of k. We say the pair (Π,DR) is DR-unforgeable with parameters (ω, ψS, ψV , ε) if for all
coalitions C of at most ω possibly colluding users, and all choices of target signer Uζ and
verifier Uν , it holds that

Pr[DR-Sig-forgeC,Π(k) = 1] ≤ ε(k).

Remark 2.7. Here we model an attack in which a call to dispute resolution necessitates
an immediate scheme reset. If we wish to account for the possibility of multiple calls to the
dispute resolution method, we can allow C bounded access to a new oracle, the DR(·, ·, ·)
oracle, which takes as input a signature pair (x, σ) and a signer Uζ and simulates the
dispute resolution method DR on input (x, σ, Uζ), outputting either Valid or Invalid .

We now observe that given an underlying scheme Π satisfying our original definition of
unforgeability (Definition 2.6), we can achieve our stronger definition of DR-unforgeability
by choosing a sound dispute resolution method DR.

33

Theorem 2.8. Let Π be an (ω, ψS, ψV , ε)-unforgeable USS scheme and let DR be a sound
dispute resolution method for Π. Then the pair (Π,DR) is DR-unforgeable with parame-
ters (ω, ψS, ψV , ε).

Proof. Since Π is (ω, ψS, ψV , ε)-unforgeable, we see that a coalition C of at most ω users
cannot produce signatures satisfying Conditions 4(a) or 4(b) of Definition 2.13 except with
negligible probability. If, in addition, the dispute resolution method DR is sound, then
DR outputs Invalid when given a signature that is not ζ-authentic for (any choice of)
target signer Uζ , so C cannot produce a signature satisfying Condition 4(c). �

Remark 2.8. Condition 4(c) of Definition 2.13 says that a possible successful output of
the game DR-Sig-forgeC,Π(k) is a dispute-enabled forgery. Definition 2.14 implies that
with high probability, the coalition C is unable to find a dispute-enabled forgery. In other
words, the coalition C is able to produce a signature compromising the soundness of the
dispute resolution method DR with only negligible probability.

We now discuss the properties of non-repudiation and transferability. As previously
mentioned, both of these properties are intrinsically linked to dispute resolution. That
is, the outcome of the chosen dispute resolution method determines the success or failure
of these attacks. In particular, we show that completeness is sufficient to achieve both
non-repudiation and transferability.

We remark that in order for the dispute resolution method to be invoked in the first
place, there must be disagreement as to the validity of a given signature σ. In a repudiation
attack, the signer Uζ gives a (ζ, ν)-acceptable signature σ to the verifier Uν (i.e., σ appears
valid to Uν) and then later denies the validity of σ. In this case, the signer Uζ and the
target verifier Uν will invoke the dispute resolution method. Similarly, for a transferability
attack, a verifier Uν transfers a signature σ that is (ζ, ν)-acceptable (i.e., σ appears valid
to Uν) to another user U`, who rejects σ as invalid. Thus, the dispute resolution method
is again invoked, this time by users Uν and U`. In this case, Uν is assumed to be honest,
but we remark that it is also possible that U` is honest, in the sense that U` may genuinely
believe the signature in question to be invalid. That said, it is also possible for U` to be
part of the attempt to “trap” Uν (independently of whether or not the given signature is
rejected by U`’s verification algorithm). We now provide formal definitions of these two
attacks.

Definition 2.15. Let Π = (U ,X ,Σ,Gen, Sign,Vrfy) be a USS scheme with security param-
eter k and let DR be a dispute resolution method for Π. Let the set C ⊆ U be a coalition of
at most ω users, and let ψS and ψV be positive integers. We define the following signature
game RepudiationC,Π(k) with signer Uζ ∈ C and target verifier Uν satisfying Uν /∈ C:

1. Gen(1k) is run to obtain the pair (Sign,Vrfy).
2. The coalition C is given bounded access to the oracles SignO` (·) and VrfyO` (·, ·, Uζ) for
` satisfying U` /∈ C. In particular, C is allowed a total of ψS and ψV queries to the

34

SignO and VrfyO oracles, respectively, with at most ψS/(n− |C|) queries to SignO` (·)
for each ` satisfying U` /∈ C. It should be noted that C has unlimited access to the
signing and verification algorithms of any U` ∈ C.

3. The coalition C outputs a signature pair (x, σ).
4. The output of the game is defined to be 1 if and only if one of the following conditions

are met:
(a) σ is (ζ, ν)-fraudulent and the dispute resolution method DR (as invoked by Uζ

and Uν) rejects σ as Invalid .
(b) σ is ζ-authentic and the dispute resolution method DR (as invoked by Uζ and

Uν) rejects σ as Invalid .

Definition 2.16. Let Π = (U ,X ,Σ,Gen, Sign,Vrfy) be a USS scheme with security param-
eter k and let DR be a dispute resolution method for Π. Let ε(k) be a negligible function
of k. We say the combined scheme (Π,DR) satisfies non-repudiation with parameters
(ω, ψS, ψV , ε) if for all coalitions C of at most ω possibly colluding users, and for all choices
of signer Uζ and target verifier Uν , it holds that

Pr[RepudiationC,Π(k) = 1] ≤ ε(k).

In the following theorem, we demonstrate that a dispute resolution method DR that
is complete, when combined with a underlying USS scheme Π that is unforgeable, suffices
to ensure non-repudiation attacks are (highly) unlikely to succeed.

Theorem 2.9. Let Π be an (ω, ψS, ψV , ε)-unforgeable USS scheme and let DR be a com-
plete dispute resolution method for Π. Then (Π,DR) provides non-repudiation.

Proof. Assume Π does not provide non-repudiation; that is, the game RepudiationC,Π(k)
outputs 1 with non-negligible probability. Suppose RepudiationC,Π(k) with signer Uζ and
target verifier Uν outputs 1. Then C has created a (ζ, ν)-acceptable signature pair (x, σ),
such that the dispute resolution method DR (as invoked by Uζ and Uν) rejects σ as Invalid .

Now, σ is either ζ-authentic or (ζ, ν)-fraudulent. If σ is (ζ, ν)-fraudulent, then Condi-
tion 4(a) of Definition 2.5 holds, so the output of Sig-forgeC,Π(k) with target signer Uζ ∈ C
and verifier Uν /∈ C is 1 (with non-negligible probability). That is, Π is not (ω, ψS, ψV , ε)-
unforgeable. If σ is ζ-authentic, then DR rejected a ζ-authentic signature and therefore
the dispute resolution method is not complete. �

Definition 2.17. Let Π = (U ,X ,Σ,Gen, Sign,Vrfy) be a USS scheme with security param-
eter k and let DR be a dispute resolution method for Π. Let the set C ⊆ U be a coalition of
at most ω users, and let ψS and ψV be positive integers. We define the following signature
game Non-transferC,Π(k) with signer Uζ and target verifier Uν , where Uν /∈ C:

1. Gen(1k) is run to obtain the pair (Sign,Vrfy).

35

2. The coalition C is given bounded access to the oracles SignO` (·) and VrfyO` (·, ·, Uζ) for
` satisfying U` /∈ C. In particular, C is allowed a total of ψS and ψV queries to the
SignO and VrfyO oracles, respectively, with at most ψS/(n− |C|) queries to SignO` (·)
for each ` satisfying U` /∈ C. It should be noted that C has unlimited access to the
signing and verification algorithms of any U` ∈ C.

3. The coalition C outputs a signature pair (x, σ).
4. The output of the game is defined to be 1 if and only if the following conditions are

met:
(a) σ is (ζ, ν)-fraudulent and the dispute resolution method DR, as invoked by Uν

and some user U` ∈ U , outputs Invalid .
(b) σ is ζ-authentic and the dispute resolution method DR, as invoked by Uν and

some verifier U` ∈ C, outputs Invalid .

Remark 2.9. The distinction between the two cases in part 4 of Definition 2.17 is with
respect to the integrity of the users who invoke the dispute resolution method. In the first
case, it is possible that an honest verifier U` /∈ C for whom σ is not (ζ, `)-fraudulent may
be involved, hence (unwittingly) aiding the coalition in trapping the target verifier Uν . If
σ is ζ-authentic, then there is no such user, as all honest verifiers would accept σ, so a
member of the coalition C must participate in invoking dispute resolution.

Definition 2.18. Let Π = (U ,X ,Σ,Gen, Sign,Vrfy) be a USS scheme with security pa-
rameter k and let DR be a dispute resolution method for Π. Let ε(k) be a negligible
function of k. We say the combined scheme (Π,DR) satisfies transferability with parame-
ters (ω, ψS, ψV , ε) if for all choices of signer Uζ and target verifier Uν , it holds that

Pr[Non-transferC,Π(k) = 1] ≤ ε(k).

The following theorem is similar to Theorem 2.9 and gives the corresponding result for
transferability.

Theorem 2.10. Let Π be an (ω, ψS, ψV , ε)-unforgeable USS scheme and let DR be a com-
plete dispute resolution method for Π. Then (Π,DR) satisfies transferability.

Proof. Suppose Π does not provide transferability and assume the game Non-transferC,Π(k)
outputs 1, with signer Uζ and target verifier Uν /∈ C. Then C output a signature pair (x, σ)
such that σ is (ζ, ν)-acceptable and the dispute resolution method (as invoked by Uν and
some user U`) rejected σ as Invalid .

Now, σ is either (ζ, ν)-fraudulent or ζ-authentic. If the former holds, then Condi-
tion 4(a) of Definition 2.5 is met. That is, the output of Sig-forgeC,Π(k) with target
signer Uζ and verifier Uν is 1 (with non-negligible probability), so Π is not (ω, ψS, ψV , ε)-
unforgeable. If the latter holds, then the dispute resolution method rejected a ζ-authentic
signature and is therefore not complete. �

36

Together, Theorems 2.8, 2.9, and 2.10 provide sufficient conditions for a USS scheme
Π and a dispute resolution method DR to satisfy the desired properties of unforgeability,
non-repudiation, and transferability. In particular, it suffices to take Π to be (ω, ψS, ψV , ε)-
unforgeable and DR to be sound and complete (i.e., correct). Furthermore, we remark that
Condition 4b of Definition 2.15 and Condition 4b of Definition 2.17 both correspond to a
demonstration of the lack of completeness of the associated DR. That is, in a scheme that
satisfies non-repudiation or transferability, it must be infeasible to find a signature pair
that acts as a witness to the lack of completeness of the associated DR.

2.7. Basic USS Scheme Construction and Analysis

Current literature favors constructions using multivariate polynomials. We consider the
security of the construction from Hanaoka et al. [38] in our security model. We reiterate
that Hanaoka et al. [38] do not provide a proof of security for this construction in their
model.

2.7.1. Key pair generation. Let Fq be a finite field with q elements such that q > n.
(In practice, we pick q to be much larger than n.) The TI picks n verification vectors
~v1, . . . , ~vn ∈ (Fq)ω uniformly at random for users U1, . . . , Un, respectively, subject to one
additional constraint. For technical reasons, we assume the verification vectors ~v1, . . . , ~vn ∈
(Fq)ω satisfy the additional property that for any subset of size ω + 1, the corresponding
subset of size ω + 1 formed from the new vectors [1, ~v1], . . . , [1, ~vn] ∈ (Fq)ω+1 is a linearly
independent set. (This linear independence assumption is used in the security proof in
Section 2.7.3.) We assume user identities U1, . . . , Un have a representation as elements in
Fq in some suitable (and public) way.

The TI constructs the polynomial F (x, y1, . . . , yω, z) as

F (x, y1, . . . , yω, z) =
n−1∑
i=0

ψ∑
k=0

ai0kx
izk +

n−1∑
i=0

ω∑
j=1

ψ∑
k=0

aijkx
iyjz

k,

where the coefficients aijk ∈ Fq are chosen uniformly at random.

For each user Uζ for 1 ≤ ζ ≤ n, the TI computes the signing key sζ(y1, . . . , yω, z) =
F (x, y1, . . . , yω, z)|x=Uζ

and the verification key ṽζ(x, z) = F (x, y1, . . . , yω, z)|(y1,...,yω)= ~vζ
.

For each user, the TI distributes the verification vector ~vζ , the signing key sζ(y1, . . . , yω, z),
and the verification key ṽζ(x, z) to the corresponding user Uζ ∈ U . It is assumed the TI can
communicate with the users via secure channels and deletes the information afterwards.

37

2.7.2. Signature generation and verification. For a message m ∈ Fq, a user Uζ gen-
erates a signature σ by

σ(y1, . . . , yω) = sζ(y1, . . . , yω, z)|z=m .

To verify a signature pair (m,σ) from Uζ , a user Uν checks that

σ(y1, . . . , yω)|(y1,...,yω)= ~vν
= ṽν(x, z)|x=Uζ ,z=m

.

Remark 2.10. The parameter ω in the construction determines the maximum number
of colluders the scheme protects against and the parameter ψ determines the maximum
number of signatures each user can produce without revealing their signing information.
This is discussed in detail in the security analysis, but for clarity we briefly sketch how the
construction relates to these bounds. In particular, each signing key sζ is a polynomial of
degree ψ in z, so users cannot produce more than ψ signatures without revealing sζ . In
addition, if a coalition C consists of ω+1 users or more, then the verification keys {ṽh}Uh∈C
suffice to reconstruct F . This follows because F is a linear polynomial in Fq[x, z][y1, . . . , yω],
and each verification key is a point on F (y1, . . . , yω). In this case the coalition has ω + 1
linearly independent linear equations in ω + 1 unknowns, and so C can solve for F .

2.7.3. Security analysis. Given q, we define the security parameter to be k, where
k = log2 q. We consider the game Sig-forgeC,Π(k) and calculate the probability that the
output is 1. In particular, we consider the probability that the coalition C produces a
signature pair (m,σ) satisfying Conditions 4(a) and 4(b) of Definition 2.5 separately. Here
we prove the scheme is unforgeable with respect to coalitions C of size at most ω, where
C is allowed ψS = (n− ω)ψ oracle queries to SignO (where ψ is the total number of SignOh
oracle queries allowed for each user Uh /∈ C), and where the number of VrfyO queries,
say ψV , is arbitrary. (As shown in the following theorem, the probability that C creates
a successful forgery depends on this value ψV .) That is, we allow C to have at most ω
members and to have access to ψ sample signatures from each user Uh /∈ C. (This is
consistent with the fact that in this USS scheme, each user is allow to produce at most ψ
signatures, so the bound on oracle access to SignOh for each user Uh /∈ C must be ψ.)

Theorem 2.11. Under the above assumptions, C outputs a signature pair (m,σ) in the
game Sig-forgeC,Π(k) of Definition 2.5 satisfying Condition 4(a) with probability at most

1
q−ψV −1

and Condition 4(b) with probability at most 1
q−ψV

.

Proof. Recall the assumption that the verification vectors ~v1, . . . , ~vn ∈ (Fq)ω satisfy the
additional property that for any subset of size ω+ 1, the corresponding subset of size ω+ 1
formed from the new vectors [1, ~v1], . . . , [1, ~vn] ∈ (Fq)ω+1 is a linearly independent set. We
use this fact throughout the proof.

We wish to consider the strongest possible coalition C. To this end, we consider a
coalition of size ω whose verification vectors form a linearly independent set. Lemma A.1
implies that this is always possible. Without loss of generality, assume our adversaries are

38

C = {U1, . . . , Uω}, with target signer Uζ and target verifier Uν . The coalition C outputs a
signature pair (m,σ) with claimed signer Uζ .

For ease of notation, define y0 = 1 and let ~y denote the vector (y0, y1, . . . , yω). Then
we have

F (x, ~y, z) =
n−1∑
i=0

ω∑
j=0

ψ∑
k=0

aijkx
iyjz

k.

We sometimes refer to the user Uh’s augmented verification vector [1, ~vh] = (1, vh,1, . . . , vh,ω)
as (vh,0, . . . , vh,ω).

The polynomial F is determined by the n(ω+ 1)(ψ+ 1) unknown coefficients aijk. The
coalition C has access to the following information:

1. The verification keys ṽ1, . . . , ṽω. We have, for Uh ∈ C,

ṽh(x, z) = F (x, ~y, z)|~y= ~vh
=

n−1∑
i=0

ω∑
j=0

ψ∑
k=0

aijkx
ivh,jz

k

Noting that ṽh is a polynomial with terms of the form (cik)h x
izk for 0 ≤ i ≤ n − 1

and 0 ≤ k ≤ ψ, we see that the coalition C has access to n(ψ + 1)(ω) equations Cikh
in the unknowns aijk, where

Cikh : ai0k +
ω∑
j=1

aijkvh,j = (cik)h

for some (known) element (cik)h ∈ Fq.
We note that these equations

{Cikh : 0 ≤ i ≤ n− 1, 0 ≤ k ≤ ψ, 1 ≤ h ≤ ω} (1)

form a linearly independent set, as the rank of
{

(1, ~v1), . . . , (1, ~vω)
}
⊆ (Fq)ω+1 is ω.

More details are provided in Appendix A.1.
2. The signing keys s1, . . . , sω. We have, for Uh ∈ C,

sh(~y, z) = F (x, ~y, z)|x=Uh
=

n−1∑
i=0

ω∑
j=0

ψ∑
k=0

aijkU
i
hyjz

k.

Noting that sh is a polynomial with terms of the form (djk)h yjz
k, for 0 ≤ j ≤ ω and

0 ≤ k ≤ ψ, we have that C has access to (ω + 1)(ψ + 1)(ω) equations Djkh in the
unknowns aijk, where

Djkh :
n−1∑
i=0

aijkU
i
h = (djk)h

for some (known) element (djk)h ∈ Fq.

39

Now, these equations, together with the equations from (1), are not a linearly in-
dependent set, due to the relationships between users’ signing and verification keys.
More specifically, for any users Uh and Uh′ , we have

sh(~y, z)|~y= ~vh′
= ṽh′(x, z)|x=Uh

. (2)

Equation (2) implies that for each Uh′ ∈ C and each choice of 0 ≤ k ≤ ψ, we have a
set of ω relations among the ω + 1 equations {Djkh : 0 ≤ j ≤ ω}.
Thus, the information gleaned from the coalition’s signing information is contained in
the set

{Djkh : 0 ≤ k ≤ ψ, 1 ≤ h ≤ ω}. (3)

3. Up to ψ signatures σh,k′ from each user Uh /∈ C, on messages mh,k′ of C’s choice, where
1 ≤ k′ ≤ ψ, with the exception that C can only access a signature σζ,k′ on a message
mζ,k′ 6= m with target signer Uζ . Thus C has access to n− ω signatures of the form

σh,k′(~y) = sh(~y, z)|z=mh,k′ =
n−1∑
i=0

ω∑
j=0

ψ∑
k=0

aijkU
i
hyj (mh,k′)

k .

Note that σh,k′ is a polynomial with terms of the form (bj)h,k′ yj. Then C has access

to (ω + 1)(ψ)(n− ω) equations Bjhk′ in the unknowns aijk, where

Bjhk′ :
n−1∑
i=0

ψ∑
k=0

aijkU
i
h(mh,k′)

k = (bj)h,k′

for some (known) element (bj)h,k′ ∈ Fq.
In a manner similar to the above analysis, we observe that

σh,k′(~y)|~y= ~vh′
= ṽh′(x, z)|x=Uh,z=mh,k′

(4)

for each Uh′ ∈ C. Thus it suffices to consider the set

{B0hk′ : 1 ≤ k′ ≤ ψ} (5)

for each Uh /∈ C.
4. Up to ψV query results from the oracle VrfyOh for Uh /∈ C. In the following, we first

consider the attack scenario without VrfyO queries and then move to incorporate these
queries into the analysis.

To summarize, the information obtained by the coalition C is contained in equation
sets (1) and (3), together with, for each Uh /∈ C, equation set (5). These equations form
a linearly independent set; we provide the proof in Appendix A.1. We have a total of
nωψ + nω + ω + ψn equations, which implies we have n − ω free variables in the given
linear system.

40

With the given information, C can consider the polynomials F ′(x, ~y, z) consistent with
the known information about F (x, ~y, z). If a given polynomial F ′ is consistent with the
known information about F , we say F ′ satisfies property (∗). We let

F =
{
F ′(x, ~y, z) : F ′ satisfies (∗)

}
.

From above, we have |F| = qn−ω.

Case 1: Uζ /∈ C, Uν ∈ C
In this case, the goal of C is to produce a ζ-authentic signature; we wish to give an

upper bound on C’s probability of success, so we consider the most advantageous method by
which C can create such a signature. If C creates a ζ-authentic signature (m,σ) consistent
with C’s known information, then this is equivalent to C finding Uζ ’s signing key, sζ(~y, z).
This follows because C would then have access to ψ+ 1 points σ(~y), σζ,1(~y), . . . , σζ,ψ(~y) on
sζ(~y, z), which is a polynomial of degree ψ in z.

The above observation implies we can calculate the probability of success as∣∣{F ′(x, ~y, z) ∈ F : F ′(Uζ , ~y, z) = F (Uζ , ~y, z)
}∣∣∣∣{F ′(x, ~y, z) ∈ F}∣∣ .

Using the same notation as before, if F ′(Uζ , ~y, z) = F (Uζ , ~y, z), we have the ψ+1 additional
equations {D0kζ : 0 ≤ k ≤ ψ}, rendering the equations {B0k′ζ : 1 ≤ k′ ≤ ψ} redundant.
We can show the resulting set is linearly independent, so we have one additional restriction
on F ′. Recalling that we chose F ′ from a space of size qn−ω initially, the coalition C’s
probability of success is

qn−ω−1

qn−ω
=

1

q
.

Now, suppose C also has access to the VrfyO oracle. We observe that if the query (m,σ)
to VrfyOh′ results in True (for some Uh′ /∈ C), and (m,σ) is consistent with C’s information
about F , then C has successfully determined Uζ ’s signing key, sζ(~y, z). To see this, first note
that if (m,σ) is consistent with C’s information about F , then σ(~y) = F ′(x, ~y, z)|x=Uζ ,z=m

for some F ′ ∈ F . This implies F ′(x, ~y, z)|x=Uζ ,z=m
agrees with F (x, ~y, z)|x=Uζ ,z=m

on

the ω + 1 points ~v1, . . . , ~vω, ~vh′ . Since by assumption the augmented verification vectors
[1, ~v1], . . . , [1, ~vω], [1, ~vh′] ∈ (Fq)ω+1 are linearly independent, we have

F ′(x, ~y, z)|x=Uζ ,z=m
= F (x, ~y, z)|x=Uζ ,z=m

.

In other words, (m,σ) is a ζ-authentic signature. (This result is a consequence of basic
linear algebra; we provide the relevant theory in Lemma A.2 of the Appendix.)

Now, any F ′ ∈ F also satisfies

F ′(x, ~y, z)|x=Uζ ,z=mζ,k′
= F (x, ~y, z)|x=Uζ ,z=mζ,k′

41

for 1 ≤ k′ ≤ ψ and distinct messages mζ,k′ 6= m. That is, we have a total of ψ + 1 points
at which F ′(x, ~y, z)|x=Uζ

and F (x, ~y, z)|x=Uζ
agree as polynomials in z. Since F ′ and F are

polynomials of degree ψ in z, this is sufficient to conclude

F ′(x, ~y, z)|x=Uζ
= F (x, ~y, z)|x=Uζ

= sζ(~y, z),

as desired. The probability of C finding sζ , however, is the probability of C choosing the
correct F ′, which, as we show below, is 1

q−ψV
, where ψV is the number of queries to VrfyO

with result False.

We now consider ψV queries to VrfyO with result False, supposing each query is con-
sistent with C’s view of the function F . We observe that each negative query eliminates
(at most) one potential signing key for Uζ . Given that the condition for success does not
depend on the particular target verifier’s verification key, ~vν , we can calculate the proba-
bility of success as before, this time allowing for information gleaned from the ψV negative
queries. We write s̄ζ

1, . . . , s̄ζ
ψV for these eliminated signing keys, and for readability, we

write F ′ζ(~y, z) for F ′(x, ~y, z)|x=Uζ
.

We first need to calculate
∣∣{F ′(x, ~y, z) ∈ F : F ′ζ /∈ {s̄ζ1, s̄ζ

2, . . . , s̄ζ
ψV }
}∣∣, i.e., the num-

ber of possible functions F ′ consistent with C’s view of F . We have∣∣{F ′ ∈ F : F ′ζ /∈ {s̄ζ1, s̄ζ
2, . . . , s̄ζ

ψV }
}∣∣

=
∣∣{F ′ ∈ F}∣∣− ∣∣{F ′ ∈ F : F ′ζ ∈ {s̄ζ1, s̄ζ

2, . . . , s̄ζ
ψV }
}∣∣ .

We assume the events F ′ζ = s̄ζ
1, . . . , F ′ζ = s̄ζ

ψV are disjoint, since if s̄ζ
i = s̄ζ

j for some
1 ≤ i, j ≤ ψV , this is equivalent to fewer verification oracle queries. Following the same
reasoning as before, we then have∣∣{F ′ ∈ F : F ′ζ /∈ {s̄ζ1, s̄ζ

2, . . . , s̄ζ
ψV }
}∣∣ =

∣∣{F ′ ∈ F}∣∣− ψV∑
i=1

∣∣{F ′ ∈ F : F ′ζ = s̄ζ
i}
∣∣

= qn−ω − ψV qn−ω−1

= qn−ω−1(q − ψV).

We therefore calculate C’s probability of success as:∣∣{F ′(x, ~y, z) ∈ F : F ′ζ /∈ {s̄ζ1, s̄ζ
2, . . . , s̄ζ

ψV }, F ′ζ = sζ
}∣∣∣∣{F ′(x, ~y, z) ∈ F : F ′ζ /∈ {s̄ζ1, s̄ζ2, . . . , s̄ζψV }

}∣∣
=

∣∣{F ′(x, ~y, z) ∈ F : F ′ζ = sζ
}∣∣∣∣{F ′(x, ~y, z) ∈ F : F ′ζ /∈ {s̄ζ1, s̄ζ2, . . . , s̄ζψV }

}∣∣
=

qn−ω−1

qn−ω−1(q − ψV)
=

1

q − ψV
.

42

Case 2: Uζ /∈ C, Uν /∈ C
Now suppose Uν /∈ C. Ostensibly the goal of C is to produce a (ζ, ν)-acceptable sig-

nature. Note that in order for a signature pair (m,σ) with claimed signer Uζ to pass Uν ’s
verification check, (m,σ) must satisfy σ(~y)|~y= ~vν

= ṽν(x, z)|x=Uζ ,z=m
. In particular, if (m,σ)

is consistent with both Uν ’s verification key and with F , then the same analysis as in the
previous case implies that (m,σ) is a ζ-authentic signature, and indeed that C has deter-
mined sζ . Thus, the set of known information (∗) does not help create a (ζ, ν)-fraudulent
signature. For the case of creating a (ζ, ν)-fraudulent signature, the most powerful collu-
sion C includes the signer Uζ , which we consider next.

Case 3: Uζ ∈ C, Uν /∈ C
Here C’s goal is to produce a (ζ, ν)-fraudulent signature. Since the polynomial F and

the set of verification vectors ~v1, . . . , ~vn ∈ (Fq)ω are chosen independently, we see that the
signing keys of C and sample signatures from Uh /∈ C have no bearing on the probability
distribution for the key ~vν .

Recall that for any subset of the set {~v1, . . . , ~vn} of size ω+1, the corresponding subset of
size ω+1 formed from the new vectors [1, ~v1], . . . , [1, ~vn] ∈ (Fq)ω+1 is a linearly independent
set. Therefore, knowledge of the keys ~vh for Uh ∈ C does affect the probability distribution
for the key ~vν . In particular, C is aware that [1, ~vν] 6=

∑ω
j=1 kj[1, ~vj] for any choice of{

k1, . . . , kω ∈ Fq :
∑ω

j=1 kj = 1
}

. That is, given ~v1, . . . , ~vω, there are qω − qω−1 choices for
~vν , any of which are equally likely. We write V for the set of possible vectors ~vν .

Now suppose we want to create a (ζ, ν)-fraudulent signature σ′(~y) on a message m.
Suppose σ(~y) = b0 +

∑ω
j=1 bjyj is the ζ-authentic signature on m. Then writing

σ′(~y) = b′0 +
ω∑
j=1

b′jyj,

we need σ(~vν) = σ′(~vν), but (b0, . . . , bω) 6= (b′0, . . . , b
′
ω).

In other words, C needs to find a nonzero vector ~β = (b0 − b′0, . . . , bω − b′ω) satisfying
~β · [1, ~vν] = 0. The probability of success is then calculated as

max~β

∣∣{~vν ∈ V : ~β · [1, ~vν] = 0
}∣∣∣∣{~vν ∈ V }∣∣ ≤ max~β

∣∣{~vν ∈ (Fq)ω : ~β · [1, ~vν] = 0
}∣∣∣∣{~vν ∈ V }∣∣

=
qω−1

qω − qω−1
=

1

q − 1
.

We now consider VrfyO queries. We observe that a positive VrfyOν query (m,σ) allows
the coalition C to win the game Sig-forgeC,Π(k), so we consider the probability of success

given ψV negative VrfyOν queries, since this gives the best chance of success. (Note that it is

43

also possible, albeit extremely unlikely, that a positive VrfyOν query here results in a forgery
that is ζ-authentic. The coalition C also wins in this instance, but we are not concerned
with ζ-authentic forgeries here, as the best approach to producing these types of forgeries
is analyzed in Case 1.)

We let V ′ be the set of possible vectors ~vν given the new knowledge gleaned from the

ψV negative query vectors ~β1, . . . , ~βψV . That is,

V ′ =
{
~vν ∈ V : ~β1 · [1, ~vν] 6= 0, . . . , ~βψV · [1, ~vν] 6= 0

}
.

Now,∣∣{~vν ∈ V ′}∣∣ =
∣∣{~vν ∈ V }∣∣− ∣∣{~vν ∈ V : ~β1 · [1, ~vν] = 0 or · · · or ~βψV · [1, ~vν] = 0

}∣∣
≥
∣∣{~vν ∈ V }∣∣− ∣∣{~vν ∈ (Fq)ω : ~β1 · [1, ~vν] = 0 or · · · or ~βψV · [1, ~vν] = 0

}∣∣
≥
∣∣{~vν ∈ V }∣∣− ψV∑

i=1

∣∣{~vν ∈ (Fq)ω : ~βi · [1, ~vν] = 0
}∣∣

= (qω − qω−1)− ψV qω−1

= qω−1(q − ψV − 1).

The probability of success is then calculated as

max~β

∣∣{~vν ∈ V ′ : ~β · [1, ~vν] = 0
}∣∣∣∣{~vν ∈ V ′}∣∣ ≤ max~β

∣∣{~vν ∈ (Fq)ω : ~β · [1, ~vν] = 0
}∣∣∣∣{~vν ∈ V ′}∣∣

≤ qω−1

qω−1(q − ψV − 1)
=

1

q − ψV − 1
.

This completes the proof. �

Remark 2.11. The linear independence assumption in the above construction is not nec-
essary, as observed by Hanaoka et al. [38], but it does simplify the security analysis. If
the linear independence assumption is not satisfied, we must take into account the rank of
{~vh : Uh ∈ C}, which may be strictly less than ω. In this case, the coalition C has less in-
formation, but the proof is similar. We can also increase the robustness of the construction
against verification oracle queries by using a polynomial F (x, y1, . . . , yω+τ , z) of the same
form as above, where τ > 0. This achieves security as outlined in Theorem 2.11, where
the coalition has, in addition, achieved up to τ successful verification oracle queries. This
technique is used by Shikata et al. [65] in their construction, although it is not explained.

2.8. USS Schemes with Key Insulation

Key exposure is a major concern in any cryptosystem. In traditional public-key cryp-
tography, Dodis et al. [23] introduced the notion of key insulation, in which a user’s secret
information is split between a physically secure (and perhaps computationally limited)

44

device, H, and an insecure device with temporary secret keys that are refreshed at in-
tervals with information sent by H. These notions have been applied to signatures in the
traditional setting by Dodis et al. [24] and to unconditionally secure multi-receiver authen-
tication codes and key agreement by Seito et al. [63] and Seito and Shikata [62]. In this
section, we concern ourselves with key exposure of a user’s signing information. Our main
goal is to provide an example of how our basic USS security model might be extended to
incorporate more complicated security notions, such as key insulation. Our definitions are
extensions of those provided by Seito et al. [63] and Seito and Shikata [62] to the signature
setting, keeping in mind the original goals of Dodis et al. [24].

The basic idea is as follows. A user’s signing information is split into a “master” signing
key stored on a secure device, temporary secret-signing keys, which are derived from an
initial secret (stored on an insecure device), and key-updating information (which is sent at
intervals from the secure device). For each signer, we want the scheme to be robust against
exposure of either that user’s master signing key or some (strict) subset of the user’s
temporary signing keys, but not both. The overall scheme should be secure provided these
exposure criteria hold for all honest users; this property is called strong key insulation.

We begin by providing a formal definition of an unconditionally secure signature scheme
with key insulation (KI-USS) in Section 2.8.1. In Section 2.8.2, we give an extension of our
basic security model from Section 2.4 to the key-insulation setting. Once we have estab-
lished our formal security notions and model, we give an extension to the USS construction
from Hanaoka et al. [38] (which we analyzed in Section 2.7) in Section 2.9. The extension is
inspired by a multi-receiver authentication code construction presented by Seito et al. [63].

2.8.1. Preliminary definitions. We require the following definitions.

Definition 2.19. An unconditionally secure signature scheme with key insulation (or KI-
USS scheme) Π consists of a trusted initializer TI, a set U of n users, a set H of n secure
devices, and a tuple of seven spaces (T ,X ,Σ,V , I,MK,SK), together with algorithms
Gen and

{
Signζ ,Vrfyζ ,MKUpdζ , SKUpdζ

}
1≤ζ≤n, satisfying the following:

• The set U = {U1, . . . Un} consists of n possible users.
• H = {H1, . . . , Hn} is a set of n secure devices, where each Hi ∈ H is the secure device

for user Ui ∈ U .
• T = {0, 1, 2, . . . , N} is a set of time periods.
• X is a finite set of possible messages.
• Σ is a finite set of possible signatures.
• V is a finite set of possible (secret) verification information.
• I is a finite set of possible secret-key-updating information (to keep track of time

periods).
• MK is a finite set of possible (secret) master keys.
• SK is a finite set of possible secret signing keys. The set SKt is the set of possible

signing keys at time period t.

45

• The key-generation algorithm Gen takes as input 1k, where k is a security parameter,
and the total number of time periods N and outputs a master secret key mk ∗ :=
(mk 1, . . . ,mkn) ∈ MKn and initial signing key information sk∗ :=

(
sk 0

1, . . . , sk 0
n

)
∈

SKn, together with verification keys {vζ ∈ V : 1 ≤ ζ ≤ n}.
• For each Uζ ∈ U , the master-key-updating algorithm MKUpdζ : MK×T → I for user
Uζ takes as input Uζ ’s master key mk ζ , and a time period t ∈ T , and returns secret

key-updating information mk
(t−1,t)
ζ ∈ I. The key-updating information mk

(t−1,t)
ζ ∈ I

is used by Uζ in order to update his signing key from time period t− 1 to time period
t, as described by the next algorithm SKUpdζ .
• For each Uζ ∈ U , the signing-key-updating algorithm SKUpdζ : T × SK × I → SK

takes as input a time period t ∈ T , a secret signing key sk
(t−1)
ζ for time period t− 1,

and secret key-updating information mk
(t−1,t)
ζ , and returns a signing key sk tζ ∈ SKt

for time period t.
• For each Uζ ∈ U , the signing algorithm Signζ : T ×X ×SK → Σ takes as input a time

period t ∈ T satisfying t > 0, a message x ∈ X , and a signing key sk tζ ∈ SK, and

returns a signature σ ∈ Σ. We let Signtζ denote the algorithm Signζ
(
t, ·, sk tζ

)
.

• For each Uζ ∈ U , the verification algorithm Vrfyζ : X ×T ×Σ×U×V → {True,False}
takes as input a message x ∈ X , a time period t ∈ T , a signature σ ∈ Σ, a signer
Uν ∈ U , and verification key vζ ∈ V , and outputs either True or False. For each user
Uζ , we let Vrfytζ denote the algorithm Vrfyζ (·, t, ·, ·, vζ).

Scheme Phases:

1. Key Generation phase. The TI runs Gen and securely distributes
(
mk ζ , sk 0

ζ , vζ
)

to the
corresponding user Uζ for all Uζ ∈ U . The TI then deletes all keys from his memory.
The user Uζ places his master key mk ζ on his secure device Hζ and then deletes mk ζ
from his memory.

2. Update phase. To update signing information for a user Uζ from time period t− 1 to

period t, the secure device Hζ runs MKUpdζ(mk ζ , t) and sends the output mk
(t−1,t)
ζ

to Uζ via a secure channel. The user Uζ then runs SKUpd(t, sk
(t−1)
ζ ,mk(t−1,t)), which

outputs sk tζ , the signing key for the new time period t. The user Uζ then deletes sk
(t−1)
ζ

and mk (t−1,t) from his memory.
3. Signing phase. To sign a message x ∈ X during a time period t, a user Uζ runs his

signing algorithm Signtζ(x), which outputs a signature σ ∈ Σ. The user Uζ then forms
the signature triple (x, t, σ).

4. Verification phase. To verify a signature triple (x, t, σ) from a signer Uν , a user Uζ runs
his verification algorithm Vrfytζ (x, σ, Uν). If the output of Vrfytζ (x, σ, Uν) is True, then
Uζ believes that the signature pair was actually produced by Uν ’s signing algorithm
during time period t as claimed.

46

It is required that, for every k, for every N , for every set
{
Signζ ,Vrfyν : 1 ≤ ζ, ν ≤ n

}
output by Gen

(
1k, N

)
, for every pair Uζ , Uν ∈ U , and for every x ∈ X and t ∈ T such

that t > 0, it holds that
Vrfytν

(
x, Signtζ(x), Uζ

)
= True.

Remark 2.12. We are treating deterministic signature schemes only, in the sense that
all algorithms except Gen are deterministic, although the above definition can easily be
extended to the randomized setting.

2.8.2. Security model. The concepts of authentic, acceptable, and fraudulent signatures
are defined as before.

Definition 2.20. A signature σ ∈ Σ on a message x ∈ X during a time period t ∈ T is
ζ-authentic if σ = Signtζ(x).

Definition 2.21. A signature σ ∈ Σ on a message x ∈ X during a time period t ∈ T is
(ζ, ν)-acceptable if Vrfytν (x, σ, Uζ) = True.

Definition 2.22. A signature σ ∈ Σ on a message x ∈ X during a time period t ∈ T is
(ζ, ν)-fraudulent if σ is (ζ, ν)-acceptable but not ζ-authentic.

Informally, we wish to guard against two types of possible key exposure for each honest
user U`. We want the scheme to be secure against either (but not both) of the following
attacks on honest users U` ∈ U :

• Signing key exposure: Compromise of user U`’s signing keys from the insecure device
for up to γ time periods
• Master key exposure: Compromise of U`’s secure device, where mk ` is stored.

We need to define the following oracles. The first two of these oracles are used to model
possible key exposure for honest users, and the latter two are direct generalizations of the
signing and verification oracles used for regular USS schemes.

• The SigningExposureO(·, ·) oracle; this oracle takes as input a user U` ∈ U and a time
period t ∈ T (where t > 0) and outputs U`’s signing information for period t, namely
Signt`(·). This oracle is used to model compromise of U`’s insecure device for up to γ
time periods, where U`’s temporary signing keys are stored.
• The MasterExposureO(·) oracle; this oracle takes as as input a user U` ∈ U and

outputs U`’s master key mk `. This oracle is used to model compromise of U`’s secure
device, where the master key mk ` is stored.
• The SignO` (·, ·) oracle; this oracle takes as input a message x ∈ X and time period
t ∈ T and outputs an `-authentic signature on the message x for time t.
• The VrfyO` (·, ·, ·, ·) oracle; this oracle takes as input a signature triple (x, t, σ) (i.e., a

message x ∈ X , a time period t ∈ T , and a signature σ ∈ Σ) and a signer Uζ , and
runs user U`’s verification algorithm on input (x, t, σ, Uζ), outputting True or False.

47

We now define the formal model as follows:

Definition 2.23. Let Π be a KI-USS scheme (with notation as defined in Definition 2.19),
with security parameter k. Let C ⊆ U be a coalition of at most ω users and let ψS, ψV ,
and γ be positive integers. We define the following signature game KI-Sig-forgeC,Π(k) with
target signer Uζ and verifier Uν :

1. Gen
(
1k
)

is run to obtain the pair (mk∗, sk∗).
2. The coalition C is given bounded access to the following oracles: MasterExposureO(·),

SigningExposureO(·, ·), SignO` (·, ·), and VrfyO` (·, ·, ·, ·). The rules for oracle access are
as follows:
(a) For each U` /∈ C, the coalition C is permitted only one of the following:

• SigningExposureO (U`, t) for up to γ time periods t ∈ T \{0};
• MasterExposureO (U`).

We let T ′ =
{
t ∈ T : C has accessed SigningExposureO (Uζ , t)

}
.

(b) The coalition C is given bounded access to the SignO` (·, ·) and VrfyO` (·, ·, ·, Uζ)
oracles for ` satisfying U` /∈ C. In particular, C is allowed a total of ψS and ψV
queries to the SignO and VrfyO oracles, respectively, with at most ψS/(n− |C|)
queries to SignO` (·) for each ` satisfying U` /∈ C. It should be noted that C has
unlimited access to the signing and verification algorithms of any U` ∈ C. For
each time period t ∈ T , we let Qt denote the set of messages that the coalition
submitted as queries to the SignOζ (·, t) oracle. Note that Qt does not contain

messages submitted as queries to SignO` (·, t) for ` 6= ζ.
3. The coalition C outputs a signature triple (x, t, σ).
4. The output of the game is defined to be 1 if and only if one of the following conditions

is met:
(a) Uν /∈ C and σ is a (ζ, ν)-fraudulent signature on x for period t; or
(b) Uζ /∈ C and σ is a ζ-authentic signature on x for period t, where x /∈ Qt and

t /∈ T ′.

Definition 2.24. Let Π be a KI-USS scheme (with notation as defined in Definition 2.19)
with security parameter k and let ε(k) be a negligible function of k. We say Π is strongly
(ω, γ, ψS, ψV , ε)-unforgeable if for all coalitions C of at most ω users, and all choices of
target signer Uζ and verifier Uν , it holds that

Pr
[
KI-Sig-forgeC,Π(k) = 1

]
≤ ε(k).

Given the nature of signing key exposure, it is reasonable to consider a scenario in
which two or more consecutive time periods are compromised by the adversary. In this
case, it is quite possible (or even likely) that the adversary gains access not only to the
signing keys from the exposed periods, but also the key-updating information sent from the
user’s secure device between those compromised time periods. To protect against this, it is
useful to consider the notion of secure key updates [23], which says that the combination

48

of signing information from two consecutive exposed periods t − 1 and t, together with
the key-updating information between these periods, should be equivalent to the signing
information from these two periods alone.

Definition 2.25. Let Π be a strongly (ω, γ, ψS, ψV , ε)-unforgeable KI-USS scheme. Sup-
pose a coalition C of at most ω users plays the signature game of Definition 2.23, with
the modification that any time C accesses the oracles SigningExposureO (U`, t− 1) and
SigningExposureO (U`, t) for a user U` /∈ C and two consecutive time periods t − 1 and

t, the coalition C receives the additional information mk
(t−1,t)
` , together with U`’s signing

information from periods t− 1 and t. If Π satisfies Definition 2.24 with this new signature
game, we say that Π has secure key updates.

2.9. Construction: USS Scheme with Key Insulation

We now give an extension to the USS construction from Hanaoka et al. [38], which
we analyzed in Section 2.7. The extension presented here uses ideas from a multi-receiver
authentication code construction presented by Seito et al. [63].

The construction given here is very similar to the basic construction given in Section 2.7,
except that we need our polynomial construction to be divided into two pieces, so that we
can split each user’s signing algorithm into an initial signing key which is stored on the
user’s insecure device and a master signing key which is stored on the user’s secure device.

To that end, we use a polynomial F of the same form as the basic construction and a
polynomial mk , which has a similar form as F but is extended to take into account time
periods. The polynomials F and mk are used to construct (by substituting a user’s identity
into these polynomials, as before) each user’s initial signing key and master signing key,
respectively. A user’s overall signing information for a particular time period is the sum of
these two polynomials evaluated at the user’s identity and the given time period.

2.9.1. Key pair generation. Let q be a prime power such that q > n. (In practice, we
pick q to be much larger than n.) Let Fq be a finite field with q elements. The TI picks n
verification vectors ~v1, . . . , ~vn ∈ (Fq)ω uniformly at random for users U1, . . . Un, respectively,
subject to one additional constraint. For technical reasons, we assume the verification
vectors ~v1, . . . ~vn ∈ (Fq)ω satisfy the additional property that for any subset of size ω + 1,
the corresponding subset of size ω + 1 formed from the new vectors [1, ~v1], . . . , [1, ~vn] ∈
(Fq)ω+1 is a linearly independent set. We assume user identities U1, . . . , Un and time
periods {1, . . . , N} have a representation as elements in Fq in some suitable (and public)
way.

The TI constructs two polynomials:

49

1. The polynomial F (x, y1, . . . , yω, z), where

F (x, y1, . . . , yω, z) =
n−1∑
i=0

ψ∑
k=0

ai0k0x
izk +

n−1∑
i=0

ω∑
j=1

ψ∑
k=0

aijk0x
iyjz

k,

where the coefficients aijk0 ∈ Fq are chosen uniformly at random.
2. The polynomial mk(x, y1, . . . , yω, z, t), where

mk(x, y1, . . . , yω, z, t) =
n−1∑
i=0

ψ∑
k=0

γ∑
`=1

ai0k`x
izkt` +

n−1∑
i=0

ω∑
j=1

ψ∑
k=0

γ∑
`=1

aijk`x
iyjz

kt`

For each user Uζ for 1 ≤ ζ ≤ n, the TI computes the initial signing key

sk 0
ζ(y1, . . . , yω, z) = F (x, y1, . . . , yω, z)|x=Uζ

,

the master signing key

mk ζ(y1, . . . , yω, z, t) = mk(x, y1, . . . , yω, z, t)|x=Uζ
,

and the verification key

ṽζ(x, z, t) = F (x, y1, . . . , yω, z)|(y1,...,yω)= ~vζ
+ mk(x, y1, . . . , yω, z, t)|(y1,...,yω)= ~vζ

.

It is assumed the TI sends sk 0
ζ , mk ζ , ~vζ , and ṽζ to the corresponding user via a secure

channel and deletes the information from his memory afterwards. The user Uζ places his
master signing key mk ζ(y1, . . . , yω, z, t) on his secure device Hζ and deletes this information
from his memory.

2.9.2. Updating phase. To update his signing key from a time period t0 to the next
time period t1, a user Uζ requests key-updating information from the secure device Hζ .
The device Hζ computes

mk
(t0,t1)
ζ (y1, . . . , yω, z) := mk ζ(y1, . . . , yω, z, t)|t=t1 − mk ζ(y1, . . . , yω, z, t)|t=t0

and sends this polynomial via a secure channel to Uζ .

The user Uζ then computes

Sign
(t1)
ζ (y1, . . . , yω, z) = Sign

(t0)
ζ (y1, . . . , yω, z) + mk

(t0,t1)
ζ (y1, . . . , yω, z),

where the signing key for time period t = 1 is defined by

Sign
(1)
ζ = sk 0

ζ(y1, . . . , yω, z) + mk
(0,1)
ζ (x, y1, . . . , yω, z).

Remark 2.13. For a given time period t0 > 0, user Uζ ’s signing key is as follows:

Sign
(t0)
ζ (y1, . . . , yω, z) = F (x, y1, . . . , yω, z)|x=Uζ

+ mk(x, y1, . . . , yω, z, t)|x=Uζ ,t=t0
.

50

2.9.3. Signature generation and verification. For a message m ∈ Fq during time
period t0, Uζ generates a signature by

σ(y1, . . . , yω) = Sign
(t0)
ζ (y1, . . . , yω, z)

∣∣
z=m

.

To verify a signature pair (t0, σ) from Uζ on a message m, a user Uν checks that

σ(y1, . . . , yω)|(y1,...,yω)= ~vν
= ṽν(x, z, t)|x=Uζ ,z=m,t=t0

.

Remark 2.14. As in the basic construction, the parameter ω determines the maximum
number of colluders the scheme protects against and the parameter ψ determines the max-
imum number of signatures (on unique messages) each user can produce without revealing
their signing information. Similarly, the parameter γ is the maximum number of time
periods for which a user Uh’s temporary signing key can be compromised (so long as Uh’s
master signing key is not exposed).

2.9.4. Security analysis. We consider the security of this construction in a restricted
model, specified as follows. We letQ denote the set of messages that the coalition submitted
as queries to the SignOζ oracle. We then replace Condition 4(b) of Definition 2.23 with the
following:

4(b) Uζ /∈ C and σ is a ζ-authentic signature on x for period t, where x /∈ Q and t /∈ T ′.

This weakened condition allows forgeries (x, t, σ) for signer Uζ in the case where a ζ-
authentic signature for some time t′ 6= t is known (and Uζ ’s signing key for time period t has
not been exposed). We can mitigate the impact of this type of forgery in our construction
by assuming messages m contain effective dates for signatures. In this sense, an adversary
can create a new signature on m for a different time period once he has seen the first
signature on m, but the effective date of the signature will remain the same, i.e., this type
of forgery will be detectable.

Given q, we define the security parameter to be k, where k = log2 q. We consider the
game KI-Sig-forgeC,Π(k) and calculate the probability that the output is 1. In particular, we
consider the probability that the coalition C produces a signature triple (m, t′, σ) satisfying
Conditions 4(a) and 4(b) of Definition 2.23 separately. Here C is allowed, for each Uh /∈ C,
either γ queries to SigningExposureO(Uh, ·) or the single query MasterExposureO(Uh),
but not both. We prove the scheme is unforgeable with respect to coalitions C of size at
most ω, where C is allowed ψS = (n − ω)ψ oracle queries to SignO (where ψ is the total
number of SignOh oracle queries allowed for each user Uh /∈ C), and where the number of
VrfyO queries, say ψV , is arbitrary. (As shown in the following theorem, the probability
that C creates a successful forgery depends on this value ψV .) That is, we allow C to have
at most ω members and to have access to ψ sample signatures from each user Uh /∈ C.
(This is consistent with the fact that in this USS scheme, each user is allow to produce at
most ψ signatures, so the bound on oracle access to SignOh for each user Uh /∈ C must be
ψ.)

51

Theorem 2.12. Under the above assumptions, C outputs a signature triple (m, t′, σ) in
the game KI-Sig-forgeC,Π(k) of Definition 2.23 satisfying Condition 4(a) with probability

at most 1
q−ψV −1

and Condition 4(b) with probability at most 1
q−ψV

.

Proof. Recall the assumption that the verification vectors ~v1, . . . , ~vn ∈ (Fq)ω satisfy the
additional property that for any subset of size ω+ 1, the corresponding subset of size ω+ 1
formed from the new vectors [1, ~v1], . . . , [1, ~vn] ∈ (Fq)ω+1 is a linearly independent set. We
use this fact throughout the proof.

We consider the strongest possible coalition C. To this end, we consider a coalition
of size ω whose verification vectors form a linearly independent set. Lemma A.1 implies
that this is always possible. Without loss of generality, assume our adversaries are C =
{U1, . . . , Uω}, with target signer Uζ and target verifier Uν . We assume that the coalition C
outputs a signature (t′, σ) for some choice of time period t′ and message m, with claimed
signer Uζ .

For ease of notation, define y0 = 1 and let ~y denote the vector (y0, y1, . . . , yω). Let
G(x, ~y, z, t) denote F (x, ~y, z) + mk(x, ~y, z, t). Then

G(x, ~y, z, t) =
n−1∑
i=0

ω∑
j=0

ψ∑
k=0

γ∑
`=0

aijk`x
iyjz

kt`.

We sometimes refer to a user Uh’s augmented verification vector [1, ~vh] as (vh,0, . . . , vh,ω).

The polynomial F is determined by the n(ω + 1)(ψ + 1)(γ + 1) unknown coefficients
aijk`. The coalition C has access to the following information:

1. The verification keys ṽ1, . . . , ṽω. We have, for Uh ∈ C,

ṽh(x, z, t) = G(x, ~y, z, t)|~y= ~vh
=

n−1∑
i=0

ω∑
j=0

ψ∑
k=0

γ∑
`=0

vh,jaijk`x
izkt`.

Noting that ṽh is a polynomial with terms of the form (cik`)h x
izkt` for 0 ≤ i ≤ n− 1,

0 ≤ k ≤ ψ, and 0 ≤ ` ≤ γ, we have that C has access to n(ψ + 1)(γ + 1) equations
Cik`h in the unknown coefficients aijk` for each Uh ∈ C, where

Cik`h :
ω∑
j=0

vh,jaijk` = (cik`)h

for some (known) (cik`)h ∈ Fq. We note these equations

{Cik`h : 0 ≤ i ≤ n− 1, 0 ≤ k ≤ ψ, 0 ≤ ` ≤ γ, 1 ≤ h ≤ ω} (6)

form a linearly independent set, since the rank of {(1, ~v1), . . . , (1, ~vω)} ⊆ (Fq)ω+1 is ω.

52

2. The signing information for each Uh ∈ C. That is, the initial signing keys sk 0
h(~y, z) =

F (Uh, ~y, z), and the master signing keys mkh(~y, z, t) = mk (Uh, ~y, z, t).
Rewriting these equations, we have

sk 0
h(~y, z) =

n−1∑
i=0

ω∑
j=0

ψ∑
k=0

U i
haijk0yjz

k,

and

mkh(~y, z, t) =
n−1∑
i=0

ω∑
j=0

ψ∑
k=0

γ∑
`=1

U i
haijk`yjz

kt`.

Note that sk 0
h and mkh are polynomials with terms of the form (djk`)h yjz

kt`, for
0 ≤ j ≤ ω, 0 ≤ k ≤ ψ, and 0 ≤ ` ≤ γ. So C has access to (ω + 1)(ψ + 1)(γ + 1)
equations Djk`h in the unknown coefficients aijk` for each Uh ∈ C, where

Djk`h :
n−1∑
i=0

U i
haijk` = (djk`)h

for some (known) (djk`)h ∈ Fq. Now, these equations, together with the equations
from (6), are not a linearly independent set, due to the relationships between users’
signing and verification keys. More specifically, for any users Uh and U ′h, we have

sk 0
h(~y, z)

∣∣
~y= ~vh′

+ mkh(~y, z, t)|~y= ~vh′
= ṽh′(x, z, t)|x=Uh

. (7)

Equation (7) implies that for each Uh ∈ C and each choice of k and `, for 0 ≤ k ≤ ψ and
0 ≤ ` ≤ γ, we have a set of ω relations among the ω+1 equations {Djk`h : 0 ≤ j ≤ ω}.
Thus, the information gleaned from the coalition’s signing information is contained in
the set

{D0k`h : 0 ≤ k ≤ ψ, 0 ≤ ` ≤ γ, 1 ≤ h ≤ ω} . (8)

3. Key exposure information for honest users. For each Uh /∈ C, we allow the coalition
either signing key exposure or master key exposure (but not both for a given user).
For a given Uh /∈ C, this information takes one of the following forms.
• Signing key exposure for Uh /∈ C:

C has access to Sign
th1
h , . . . , Sign

thγ
h , where th1 , . . . , thγ are valid time periods. We

have, for a given time period thd (where 1 ≤ d ≤ γ),

Sign
thd
h (~y, z) = G(Uh, ~y, z, thd)

=
n−1∑
i=0

ω∑
j=0

ψ∑
k=0

γ∑
`=0

aijk`U
i
h (thd)

` yjz
k.

Note that Sign
thd
h is a polynomial with terms of the form (ejk)

thd yjz
k for 0 ≤ j ≤ ω

and 0 ≤ k ≤ ψ, so the coalition C has access to equations Ejkthd in the unknown

53

coefficients aijk`, where

Ejkthd :
n−1∑
i=0

γ∑
`=0

aijk`U
i
h (thd)

` = (ejk)
thd

for some (known) (ejk)
thd ∈ Fq. In a manner similar to the previous analysis, we

observe the relation

Sign
thd
h (~y, z)

∣∣∣
~y= ~vh′

= ṽh′(x, z, t)|x=Uh,t=thd

for any pair of users Uh and Uh′ . Thus, considering Uh′ ∈ C and fixing k, we
have a set of ω relations among the ω + 1 equations

{
Ejkthd : 0 ≤ j ≤ ω

}
. This

implies that any new information gained by signing key exposure for the user Uh
is contained in the set{

E0kthd
: 0 ≤ k ≤ ψ, 1 ≤ d ≤ γ

}
. (9)

• Master key exposure for Uh /∈ C:

mkh(~y, z, t) =
n−1∑
i=0

ω∑
j=0

ψ∑
k=0

γ∑
`=1

U i
haijk`yjz

kt`.

Now, mkh is a polynomial with terms of the form (djk`)` yjz
kt`, for 0 ≤ j ≤ ω,

0 ≤ k ≤ ψ, and 1 ≤ ` ≤ γ. So C has access to (ω + 1)(ψ + 1)(γ) equations Djk`h

in the unknown coefficients aijk` for each Uh /∈ C, where

Djk`h :
n−1∑
i=0

U i
haijk = (djk`)h

for some (known) (djk`)h ∈ Fq. As before, the relation between users’ signing and
verification keys implies that it suffices to consider the set

{D0k`h : 0 ≤ k ≤ ψ, 1 ≤ ` ≤ γ} (10)

for the user Uh.
4. Signing oracle queries for each user Uh /∈ C. The coalition C has access to ψ sign-

ing oracle queries for each user Uh /∈ C. We first observe that for both types of key
exposure, the result of a signing oracle query on message m for a period t0 contains
enough information for C to determine the signature on m for all other time peri-
ods. This is easy to see for the case of master key exposure, since C can compute
F (x, y, z)|x=Uh,z=m

by subtracting mkh(~y, z, t)|z=m,t=t0 from the signature. This is the
case for signing key exposure so long as the coalition C maximizes its information by
requesting a signature for a time period for which C does not already have the signing
key. In this case, C knows a signature on m in γ + 1 time periods, so he can solve
for G(x, ~y, z, t)|x=Uh,z=m

, as this is a polynomial of degree γ in t. Therefore the time
period requested in a signature oracle query is irrelevant to this analysis; for simplicity

54

we use th as a placeholder for the time period in requested signatures from signer Uh.

That is, C has access to up to ψ signatures σh,k′ from each user Uh /∈ C, on mes-
sages mh,k′ of C’s choice, where 1 ≤ k′ ≤ ψ, with the exception that C can only access
a signature σζ,k′ on a message mζ,k′ 6= m with signer Uζ .
Each requested signature has the form

σh,k′ = G(x, ~y, z, t)|x=Uh,z=mh,k′ ,t=th

=
n−1∑
i=0

ω∑
j=0

ψ∑
k=0

γ∑
`=0

aijk`U
i
h (mh,k′)

k (th)
` yj.

Note that σh,k′ is a polynomial with terms of the form (bj)h,k′ yj for 0 ≤ j ≤ ω, so C
has access to equations Bjhk′ , where

Bjhk′ :
n−1∑
i=0

ψ∑
k=0

γ∑
`=0

aijk`U
i
h (mh,k′)

k (th)
` = (bj)h,k′

for some (known) (bj)h,k′ ∈ Fq. As before, we have

σthh,k′(~y)
∣∣
~y= ~vh′

= ṽh′(x, z, t)|x=Uh,z=mh,k′ ,t=th

for each Uh′ ∈ C. Thus it suffices to consider the set

{B0hk′ : 1 ≤ k′ ≤ ψ} (11)

for each Uh /∈ C.
5. Up to ψV query results from the oracle VrfyOh for Uh /∈ C. In the following, we discuss

the attack scenario without VrfyO queries. Incorporating these queries into the analysis
follows as in the proof of Theorem 2.11.

To summarize, the information obtained by the coalition C is contained in the following
sets of equations: sets (6) and (8), together with, for each Uh /∈ C, one of set (9) or
set (10) (depending on the type of key exposure), and set (11). These equations do form
a linearly independent set; we provide the proof in Appendix A.2. We have a total of
nω(ψ+ 1)(γ + 1) +ω(ψ+ 1)(γ + 1) + (n−ω)γ(ψ+ 1) + (n−ω)ψ equations, which implies
that we have n− ω free variables in the given linear system.

With the given information, C can consider the polynomials G′(x, ~y, z, t) consistent
with the known information about G(x, ~y, z, t). If a given polynomial G′ is consistent with
the known information about G, we say G′ satisfies property (∗). We let

G = {G′(x, ~y, z, t) : G′ satisfies (∗)} .
From above, we have |G| = qn−ω.

Case 1: Uζ /∈ C, Uν ∈ C

55

In this case, the goal of C is to produce a ζ-authentic signature (m,σ) for some time
period t′ (for which C does not already have the corresponding signing key). We first
observe that producing a ζ-authentic signature for such a time period t′ is equivalent
to producing Uζ ’s general signing key Signζ(~y, z, t) = G(x, ~y, z, t)|x=Uζ

. Once we have this

result, the rest of the proof for this case is almost identical to that provided in Theorem 2.11,
so we do not provide the details here.

To see this, suppose C produces a ζ-authentic signature (m,σ) for time period t′ 6= tζi
for 1 ≤ i ≤ γ consistent with C’s information. Then C has access to a total of ψ+1 points
(namely, the signatures on m and on mζ,1, . . . ,mζ,ψ) on G(x, ~y, z, t)|x=Uζ ,t=t′

, which is a

polynomial of degree ψ in z. Thus C can solve for

Signt
′

ζ (~y, z) = G(x, ~y, z, t)|x=Uζ ,t=t′
,

so C knows Uζ ’s signing key for the time period t′. There are then two cases to consider,
depending on which type of key exposure C has for the target signer Uζ :

1. Suppose C has signing key exposure against Uζ for γ time periods tζ1 , . . . , tζγ . Then C

knows Signt
′

ζ , Sign
tζ1
ζ , . . . , Sign

tζγ
ζ , i.e., γ+1 points on Signζ(~y, z, t), which is a polynomial

of degree γ in t. So C can solve for Signζ(~y, z, t).
2. Suppose C has master key exposure for Uζ , so C knows mk ζ(~y, z, t). Then

Signt
′

ζ (~y, z)− mk ζ(~y, z, t)|t=t′ = (G−mk)(x, ~y, z, t)|x=Uζ ,t=t′
= F (x, ~y, z)|x=Uζ

.

That is, C knows both F (x, ~y, z)|x=Uζ
and mk ζ(~y, z, t), the sum of which yields

Signζ(~y, z, t).

Case 2: Uζ /∈ C, Uν /∈ C and Case 3: Uζ ∈ C, Uν /∈ C
The case where Uζ /∈ C, Uν /∈ C and the case where Uζ ∈ C, Uν /∈ C follow the same

argument as for the basic USS scheme provided in the proof of Theorem 2.11, so we do
not reproduce the proof here. �

Theorem 2.13. The above scheme has secure key updates.

Proof. This is easy to see from the scheme definition. For a given user Uh, consider the

signing information Sign
th1
h and Sign

th2
h from the two consecutive periods th1 and th2 . We

see that
Sign

th2
h − Sign

th1
h = mk

(th1 ,th2)

h ,

which is the key-updating information from period th1 to th2 . �

56

2.10. Discussion and Comparison with Related Work

We have discussed related work in some detail throughout the chapter, but in this sec-
tion, we give a brief overview of the field and touch on the differences between our work
and that in the literature. As mentioned in Section 2.1, there has been a lot of research
devoted to constructing unconditionally secure signatures since Chaum and Roijakkers [8]
first introduced the concept. A popular approach has been to enhance existing uncondi-
tionally secure message authentication codes (MACs) [38, 39, 44, 58] in order to ensure
non-repudiation, transferability, and unforgeability are satisfied.

Recently, Roeder et al. [57] introduced the notion of multi-verifier signatures, which
are somewhat similar to unconditionally secure signatures in flavor; however, they are
only computationally secure. Roeder et al. explore using enhanced MACs to create more
efficient signature schemes in the computational setting, as a result proposing multi-verifier
signatures. The basic idea is that a signer has pairwise shared keys with a finite number
of verifiers, but does not know which key is shared with which verifier. This prevents the
signer from knowing the identity of the verifier who would accept a particular fraudulent
signature.

In the unconditionally secure setting, much of the work on security models for USS
schemes [38, 39, 44, 58] draws upon standard MAC security models, with only one [65]
drawing on notions from traditional public-key cryptography. In comparison to other
works, our approach is most similar to that of Shikata et al. [65], whose model is also
designed as an extension of public-key signature security notions. We compare our model
with that of Shikata et al. in Section 2.10.1. Our model differs from those in the existing
literature in its careful treatment of ζ-authentic and (ζ, ν)-fraudulent signatures. Moreover,
our treatment of dispute resolution for USS schemes goes far beyond previous work, as no
other paper analyzes dispute resolution methods in any detail or formally defines non-
repudiation and transferability.

The Hara et al. model [40] for unconditionally secure blind signatures is essentially
the same as the Shikata et al. model [65] with an added blindness condition. Hara et al.
separate the unforgeability definition of Shikata et al. into a weaker notion of unforgeability
and an additional non-repudiation requirement. The non-repudiation requirement actually
treats more cases than a simple non-repudiation attack (as the success of the attack is not
dependent on dispute resolution), so the reason for this separation is unclear. Hara et al.
also allow the signer to be the target verifier, which is not explicitly allowed in the Shikata
et al. model, and so they add a separate unforgeability definition for this case.

The models of Hanaoka et al. [38,39] and Safavi-Naini et al. [58] are based on security
notions from message authentication codes (MACs). Hanaoka et al. treat only a limited
attack scenario (which is covered by our model), including impersonation, substitution, and
transfer with a trap, and they do not include a verification oracle. Safavi-Naini et al. treat
a similar range of attacks as our model, specified through denial, spoofing, and framing

57

attacks, and allow both signature and verification oracles, but do not make the distinction
between ζ-authentic and (ζ, ν)-fraudulent signatures. Furthermore, our model is more
concise, as the denial attack covers a signer trying to repudiate a signature, whereas we
show that it is unnecessary to treat non-repudiation as a separate part of an unforgeability
definition. In addition, not all attack scenarios included in our definition are covered by the
Safavi-Naini et al. model. For instance, the attack consisting of signer Uζ ∈ C with target
verifier Uν , where C creates a (ζ, ν)-fraudulent signature, is not considered. The Safavi-
Naini et al. model considers this scenario only in the case where an arbiter is involved and
rejects the signature (i.e. a denial attack). In certain applications (e.g., e-cash) we do not
want the signer to be able to create a (ζ, ν)-fraudulent signature, regardless of whether a
dispute resolution mechanism is invoked.

The concept of key insulation was introduced for traditional public-key cryptosystems
and digital signatures by Dodis et al. [23, 24]. The definition given for KI-USS schemes
in Section 2.8 draws from the work Seito et al. [63] and Seito and Shikata [62] on un-
conditionally secure key-insulated multi-receiver authentication codes and key agreement,
respectively. Our definition is consistent with the work of Dodis et al. [24] on key-insulated
signatures in the traditional public-key cryptography setting. Where possible, we have
simplified the definitions and notation. For example, we assume key-updating occurs once
every time period and uses information on the insecure device from the previous time pe-
riod. The definitions given by Seito et al. [63] and Seito and Shikata [62] do not specify the
use of consecutive time periods for key-updating. The model for KI-USS schemes given in
Section 2.8 incorporates the notion of strong key insulation introduced by Dodis et al. [23]
and is a natural extension of our basic USS security model.

The proof of security for Hanaoka et al.’s [38] construction given in Section 2.7 is a useful
addition to the literature, given the tendency to forego security proofs due to lack of space.
The security analysis is particularly useful in understanding the motivation behind the
given multivariate polynomial construction. Moreover, this construction, combined with
the techniques used by Seito et al [63] for key-insulated multi-receiver authentication codes,
lends itself quite naturally to the KI-USS scheme presented in Section 2.9. This method of
constructing the KI-USS scheme, which we discuss in more detail in the relevant section,
has the nice consequence that the security argument reduces to the security argument for
the basic USS scheme.

2.10.1. Comparison with Shikata et al.’s model. In this section, we discuss several
aspects of the model of Shikata et al. [65] and how our approach differs from theirs.

1. Shikata et al.’s model [65] is limited to a single-signer scenario. We consider a more
general model in which any participant can be a signer.

2. In Definition 2 [65], a signed message (x, σ) is defined to be valid if it was created
using the signer’s signing algorithm. Then, in their “Requirement 1”, which includes
notions for verifiability, dispute resolution, and unforgeability, it is stated that (x, σ)

58

is valid if and only if Uν ’s verification algorithm outputs True when given (x, σ) as
input. This requirement is problematic, since Uν can use knowledge of his verification
algorithm to find a pair (x, σ) that has output True; such a pair is then “valid.”
However, this means that a receiver can create valid signatures, and consequently the
signature scheme does not provide unforgeability. Shikata et al. relax this condition
in Requirement 2 by allowing a small error probability that an “invalid” signature
is accepted by a given verifier. However, this does not rectify the aforementioned
problem, as the probability space in this definition is unspecified.

3. Shikata et al.’s [65] definitions of existential forgery and existential acceptance forgery
(Definitions 3 and 4, respectively) are rather complicated. It seems that the notion
of “existential forgery” corresponds to our definition of a ζ-authentic signature. The
coalition that creates this signature should not include Uζ . The notion of “existential
acceptance forgery” apparently is dependent upon the coalition that creates it. If Uζ is
in the coalition, then an existential acceptance forgery would most naturally coincide
with our definition of a (ζ, ν)-fraudulent signature. If Uζ is not in the coalition, then
it would more likely mean a (ζ, ν)-acceptable signature. In each case, the coalition
creating the signature should not include Uν . These definitions are a bit confusing,
and we believe that the concepts of authentic, acceptable, and fraudulent signatures
are helpful in phrasing clear and concise definitions.

4. In Theorem 2 [65], it is stated without proof that a signature scheme that is “exis-
tentially acceptance unforgeable” is necessarily “existentially unforgeable.” Roughly
speaking, this is logically equivalent to the statement that an adversary that can
create an existential forgery can also create an existential acceptance forgery. This
statement seems rather obvious, but we need to also consider the coalitions that are
creating these signatures. The adversary creating the existential forgery (i.e., a ζ-
authentic signature) could be any coalition C that does not include Uζ . A ζ-authentic
signature is an existential acceptance forgery for any user Uν 6∈ C ∪ {Uζ}. However, a
problem arises if C consists of all users except for Uζ . In this situation, a ζ-authentic
signature created by C is not an existential acceptance forgery for any user. This
situation is not accounted for in Theorem 2 of Shikata et al.’s work [65], and therefore
it does not suffice to consider only existential acceptance forgeries. We remark that
our approach is consistent with that used to define A2-codes [67], in which neither
the sender nor the receiver is trusted, and so attacks solely against a target signer
are considered. To be specific, Simmons [67] treats R0 attacks, impersonation by the
receiver, and R1 attacks, substitution by the receiver. Allowing attacks in which all
verifiers collude against a target signer is a generalization of this approach.

5. Notwithstanding the previous points, the definition of “strong security” by Shikata et
al. [65] (Definition 9) is very similar to our properties 4(a) and 4(b) of Definition 2.5,
except that Definition 9 only covers existential acceptance forgeries. In order to com-
pare our model with that of Shikata et al. [65], we consider the following three attack
scenarios, where Uζ denotes the signer and Uν denotes a verifier:

59

case A: Neither Uζ nor Uν is in the coalition C, and C creates a (ζ, ν)-fraudulent
signature.

case B: Uζ is not in the coalition C, and C creates a ζ-authentic signature.
case C: Uζ ∈ C, Uν 6∈ C, and C creates a (ζ, ν)-fraudulent signature.
In our security definition (Definition 2.5), property 4(a) is equivalent to the union of
case A and case C, and property 4(b) is equivalent to case B. Now, Definition 9 [65]
considers two attacks: property 1) is the union of cases A and B, but does not include
the case where there is no target verifier, as discussed in the previous point; and
property 2) is case C.

6. Finally, we give a more complete treatment of dispute resolution than is presented by
Shikata et al. [65].

2.11. Concluding Remarks and Future Work

We have presented a new security model for unconditionally secure signature schemes,
one which fully treats the implications of having multiple verification algorithms. In par-
ticular, we have given a formal discussion of dispute resolution, a necessary component
of any USS scheme, and analyzed the effect of dispute resolution on unforgeability. We
have provided formal definitions of non-repudiation and transferability, and given sufficient
conditions for a USS scheme to satisfy these properties. Moreover, we have analyzed the
trust assumptions required in typical examples of dispute resolution. We have given an
analysis of Hanaoka et al.’s construction [38] in our security model. Finally, we have pro-
vided an extension of our basic framework to the setting of key insulation and presented
a construction, inspired by the original construction of Hanaoka et al. [38] and the work
of Seito et al. [63] and Seito and Shikata [62], which satisfies a restricted version of our
security definitions.

One possible avenue for future work is to construct a KI-USS scheme that meets our
full security definition. In addition, it may be an interesting problem to extend the notion
of key insulation to incorporate verification keys as well as signing keys. In the current
work, we protect against exposure of each user’s signing keys, but we do not protect
against exposure of each user’s verification keys. Given the nature of unconditionally
secure signatures, protecting against the loss of verification keys is advisable.

Another potential extension is in the area of unconditionally secure blind signatures,
in which the signer does not know what message he is signing. Practical applications for
blind signatures include e-cash, in which a user would like the bank to validate his e-coin
(i.e., sign the e-coin), but does not want the bank to be able to trace his spending. Current
work in this area [40] is built on earlier security models for USS schemes and hence does
not treat the issues described above. The existing scheme, moreover, is complicated and
difficult to analyze. Defining an appropriate dispute resolution mechanism in this setting,
moreover, is an interesting intellectual exercise, as it is likely that multiple calls to dispute
resolution should be allowed without initiating a scheme reset.

60

CHAPTER 3

Extended Combinatorial Constructions for Peer-to-peer
User-Private Information Retrieval

3.1. Introduction

We consider the case of a user who wishes to maintain privacy when requesting docu-
ments from a database. One existing method to address this problem is private information
retrieval (PIR) [9]. In PIR, the content of a given query is hidden from the database, but
the identity of the user making the query is not protected. In our work, we focus on an
interesting alternative to PIR dubbed user-private information retrieval (UPIR), intro-
duced by Domingo-Ferrer et al. [28]. UPIR, however, is only nominally related to PIR,
in that it seeks to provide privacy for users of a database. In UPIR, the database knows
which records have been retrieved, but does not know the identity of the person making
the query. The problem that we address, then, is how to disguise user profiles from the
point of view of the database. Moreover, UPIR is a method to solve this privacy problem
in a manner independent of the database. We do not assume that the database is part of
the scheme set-up or altering its normal behavior with respect to serving user queries.

We draw some of our terminology from Pfitzmann [53]. Here we understand anonymity
as the state of not being identifiable within a set of subjects, and the anonymity set is the
set of all possible subjects. By untraceable queries from the point of view of the database,
we mean that the database cannot determine that a given set of queries belongs to the
same user. One interesting caveat, which is addressed below, is that a set of queries might
be deemed to come from the same user based on the subject matter of those queries. If
the subject matter of a given set of queries is esoteric or otherwise unique, the database
(or some other adversary) can surmise that the identity of the source is the same for all
(or most) queries in this set; we call such a set of queries linked. In the case of linked
queries, we wish to provide as much privacy as possible, in the sense that we wish the
database to have no probabilistic advantage in guessing the identity of the source of a
given set of linked queries. In this way, we can say the user making the linked queries still
has pseudonymity—his identity is not known.

Much of the material in this chapter appears in the paper “Extended combinatorial constructions for peer-
to-peer user-private information retrieval” [77], published in Advances in Mathematics of Communications,
vol. 6, pp. 479–497 (2012).

61

With this terminology in mind, we might better explain UPIR as a method of database
querying that is privacy-preserving and satisfies the following properties from the point of
view of the database:

1. For any given user Ui, some (large) subset of all users U is the query anonymity set
for Ui;

2. User queries are anonymous;
3. User queries are untraceable;
4. Given a set of queries that is unavoidably traceable due to subject matter, the person

making the query is protected by pseudonymity.

In addition to these basic properties of user privacy against a database, we may wish
to provide user privacy against other users. Ideally, a UPIR scheme provides the same
privacy guarantees against other users as against the database, but as we discuss in this
chapter, this usually cannot be attained in practice.

Previous work [27, 28, 71, 73] has focused on the use of a P2P network consisting of
various encrypted “memory spaces” (i.e., drop boxes), to which users can post their own
queries, submit queries to the database and post the respective answers, and read answers
to previously posted queries. That is, in the P2P UPIR setting, we have a cooperating
community of users who act as proxies to submit each other’s queries to the database; the
database itself is an independent entity not assumed to actively cooperate with the UPIR
scheme. In particular, a class of combinatorial designs known as configurations (defined in
Definition 1.23) have been suggested by Domingo-Ferrer, Bras-Amorós et al. [27,28,71,73]
as a way to specify the structure of the P2P network. In this work, we focus on P2P UPIR
and consider the application of other types of designs in determining the structure of the
P2P network. We introduce new P2P UPIR protocols and explore the level of privacy
guarantees our protocols achieve, both against the database and against other users.

3.2. Overview of Contributions

The main contributions of our work are as follows.

• We establish a strengthened model for P2P UPIR and clarify the privacy goals of such
schemes using standard terminology from the field of privacy research.
• We provide an analysis of the protocol introduced by Domingo-Ferrer and Bras-

Amorós [27, 28], as well as its subsequent variations. In particular, we reconsider
the choice to limit the designs used as the basis for the P2P UPIR scheme to configu-
rations. We provide a new attack on user privacy against the database, which we call
the intersection attack, to which the above protocol variations are vulnerable.
• We introduce two new P2P UPIR protocols (and variations on these), and give an

analysis of the user privacy these protocols provide, both against the database and

62

against other users. Our protocols utilize more general designs and resist the inter-
section attack by the database. In particular, our protocols provide more flexibility in
designing the P2P network.
• We consider the possible trade-offs of using different types of designs in the P2P

UPIR setting, both with respect to the overall flexibility of the scheme as well as user
privacy. Our protocols provide viable design choices, which can allow for a dynamic
UPIR scheme (i.e., one in which users are permitted to enter and leave the system),
or provide increased privacy against other users.
• We consider the problem of user privacy against other users in detail. In particular,

we relax the assumptions of previous work, by allowing users to collaborate outside
the parameters of the P2P UPIR scheme; that is, we consider a stronger adversarial
model than previous work. We analyze the ability of different types of designs to
provide user privacy against other users, and explore how well our protocol resists
an intersection attack launched by a coalition of users on linked queries. Finally,
we introduce methods to improve privacy against other users without compromising
privacy against the database.

3.2.1. Chapter outline. For terminology related to combinatorial designs, we refer the
reader to Section 1.2. In Section 3.3, we give a model for P2P UPIR schemes and provide
the relevant privacy goals. We then review previous work in Section 3.4 and give attacks
on these protocols in Section 3.4.1. We introduce our protocols in Section 3.5 and give
an analysis of the privacy guarantees our protocols provide against the database. In Sec-
tion 3.6, we analyze the ability of our protocols to provide user privacy against other users
and consider ways to improve this type of privacy. We discuss related work in Section 3.7
and we conclude in Section 3.8.

3.3. Our P2P UPIR Model

A P2P UPIR scheme consists of the following players: a finite set of possible users
U = {U1, . . . , Uv}, the target database DB, and an external observer, O. We assume all
communication in a P2P UPIR scheme is encrypted, including communication between
the users and DB.

In a basic P2P UPIR scheme, users have access to secure drop boxes known as memory
spaces. More precisely, a memory space is an abstract (encrypted) storage space in which
some subset of users can store and extract queries and query responses; the exact structure
of these spaces is not specified. We let S = {S1, . . . , Sb} denote the set of memory spaces,
and we let Ki denote the (symmetric) key associated with Si, for 1 ≤ i ≤ b. We assume that
encryption keys for memory spaces are only known to a given subset of users, as specified
by the P2P UPIR protocol. For the sake of simplicity, we assume that these keys are
initially distributed in a secure manner by some trusted external entity (not the database
DB). However, the precise method by which these keys are distributed is not relevant to

63

the results we prove in this research. Similarly, the choice of symmetric encryption scheme
used in the P2P UPIR scheme is not relevant; we assume computational security for this
aspect of the scheme. If two distinct users Ui, Uj ∈ U have access to a common memory
space, then we say Ui and Uj are neighbors. Similarly, the neighborhood of a user Ui is
defined as the set of all neighbors of Ui, and it is denoted as N(Ui).

When a user Ui wishes to send a query q to DB, we say Ui is the source of the query.
Rather than sending the query directly to DB, the user Ui writes an encrypted copy of
q, together with a requested proxy Uj, to a memory space S`. Here Uj is the proxy for
Ui’s query q, and consequently Uj must know the encryption key K` corresponding to the
memory space S`. The user Uj decrypts the query, re-encrypts q under a secret key shared

with DB, say Kj
DB, and forwards this re-encrypted query eKj

DB
(q) to DB. DB sends back

a response, which Uj first decrypts, then re-encrypts under K` and records in the memory
space S`. We give a schematic of the information flow of a basic P2P UPIR scheme in
Figure 1.

Figure 1. Schematic of Information Flow

User Ui Memory Space S` Proxy Uj DB

query q and
proxy Uj

eK`(q), Uj−−−−−→ (eK`(q), Uj) stored
eK`(q)−−−−−→ reads q

from S`

eKj
DB

(q)
−−−−−→ processes q

reads r
from S`

eK`(r)←−−−−− eK`(r) stored
eK`(r)←−−−−− receives r

from DB

eKj
DB

(r)
←−−−−− response r

3.3.1. Attack model. We consider each type of player as a possible adversary A. We
assume that A has full knowledge of the P2P UPIR scheme specification, including any
public parameters, as well as any secret information assigned to A as part of the P2P
UPIR scheme. In addition, we assume A does not conduct traffic analysis. The following
definition is useful.

Definition 3.1. Consider a set of one or more users C. The query sphere for C is the set
of memory spaces that C can (collectively) access via the P2P UPIR scheme.

In addition to the above, we make the following assumptions about each specific type
of adversary A:

• Suppose A is the database DB. As stated above, we assume that DB does not observe
information being posted to or read from memory spaces. In addition, we assume that
DB does not collaborate with any users and answers queries honestly. We note DB
necessarily observes the content of all queries and the proxy of each query.

64

• Suppose A consists of a user or a subset of colluding users C ⊂ U . We assume users
are honest-but-curious. Users in C can communicate outside of the given P2P UPIR
scheme and collaborate using joint information. The users of C can see the content of
any queries within C’s query sphere, but cannot identify the original source of these
queries.
• Suppose A is an external adversary O. An external observer O can see the encrypted

content of memory spaces. We consider the possibility of key leakage as the main
attack launched by O. This refers to a party gaining access to a memory space key
outside of the P2P UPIR scheme specification (e.g., by social engineering or other
means).

Although we do not specifically treat traffic analysis as an attack, we wish to avoid a
trivial analysis of traffic entering and leaving a given memory space. That is, we assume
that memory spaces have encryption and decryption capabilities, so that a user acting as
a proxy may decrypt and re-encrypt a given query within its associated memory space,
before forwarding the query to the database.

3.3.2. Privacy and adversarial goals in P2P UPIR. In considering the privacy guar-
antees for a user Ui, we assume either the database DB or a group of other users may try to
determine whether Ui is the source of a given set of queries, or try to establish whether or
not a given set of queries originates from the same source. We need the following definition:

Definition 3.2. We say two or more queries q1, q2, . . . are linked if, given the subject
matter, one can infer that the queries are likely to be from the same source.

We also consider the possibility of an external observer O gaining information that
compromises the privacy of Ui. We recognize the following goals for Ui’s privacy:

• Confidentiality : the content of Ui’s queries is protected;
• Anonymity : the identity of a query source is protected;
• Untraceability : a user’s query history cannot be reconstructed as having originated

from the same user;
• Pseudonymity in the presence of linked queries : given a set of linked queries, the

identity of the source is protected.

We now analyze each type of adversary A with respect to the above privacy goals:

• Suppose A is the database DB. We are not concerned with confidentiality against
DB, but rather anonymity, untraceability, and pseudonymity in the presence of linked
queries. The goal of the database is to create a profile of Ui. That is, the database
wants to establish the set of queries for which Ui is the source. The database also
attempts to trace user query histories; that is, DB wants to establish that a given set
of queries came from the same source, even if DB cannot determine the identity of the
source.

65

• Suppose A consists of a user or a subset of colluding users C ⊂ U . The coalition C
collaborates to try to determine the query history of another user Ui /∈ C. Here we are
interested in maintaining anonymity, untraceability, and pseudonymity in the presence
of linked queries against C. We are also interested in maintaining confidentiality, in
the sense that C should not have access to the content of queries outside the query
sphere for C.
• Suppose A is an external adversary O. The goal of O is to compromise both the

confidentiality and the anonymity of Ui. External adversaries may try to compromise
the encryption mechanism of the memory spaces.

In the rest of this chapter, we focus on the database DB and user coalitions as adversaries.
In particular, we are concerned with ensuring unconditional security with respect to the
properties of anonymity, untraceability, and pseudonymity.

We are now almost ready to consider the P2P UPIR protocols of Domingo-Ferrer,
Bras-Amorós et al. [27, 28], as well as the subsequent modification of Stokes and Bras-
Amorós [71,73]. Both these protocols and ours draw heavily from the field of combinatorial
designs. The requisite background knowledge on combinatorial designs is presented in
Section 1.2.

3.3.3. P2P UPIR using combinatorial designs. We model a P2P UPIR scheme using
a combinatorial design. That is, we consider pairs (U ,S) (where as before, |U| = v and
|S| = b), such that each memory space, or block, consists of k users and each user, or
point, is associated with r memory spaces. That is, we assume that the pair (U ,S) is a
(v, b, r, k)-1-design.

We can also view the b memory spaces as points and define v blocks, each of which
contains the memory spaces to which a given user belongs. This yields the dual design
(S,U), which is a (b, v, k, r)-1-design.

Domingo-Ferrer, Bras-Amorós et al. [27, 28] consider trivial solutions to P2P UPIR,
namely those satisfying b = 1 or b =

(
v
2

)
, in great detail. In the first case, we have a

single shared memory space to which all users have access. While this solution has certain
advantages with respect to privacy in front of other users (in that users have the same view
of the network as the database), the disadvantages include a loss of confidentiality in front
of other users, lack of scalability, and increased likelihood of key leakage. In the second
trivial solution, each pair of users shares a unique memory space. This solution makes
key leakage and loss of confidentiality in front of other users less of a concern, but is less
efficient in terms of key management and network performance, and has the disadvantage
that the two users belonging to a shared memory space necessarily know the identity of
the source whenever this memory space is used. In particular, these reasons motivate the
use of more general designs to specify the network structure.

66

3.4. Previous Work: Using Configurations

We briefly review the P2P UPIR scheme proposed by Domingo-Ferrer et al. [28] and the
proposed modification of Stokes and Bras-Amorós [73]. We fix a (v, b, r, k)-configuration
(U ,S). As before, we have a finite set of users U = {U1, . . . , Uv}, a database DB, and a
finite set of memory spaces S = {S1, . . . , Sb}.

Each user has access to r memory spaces, and each memory space is accessible to
k users. Each memory space is encrypted via a symmetric encryption scheme; for each
memory space, only the k users assigned to that memory space are given the key. The
following protocol [28] assumes the user Ui has a query to submit to the database:

Protocol 1. Domingo-Ferrer–Bras-Amorós–Wu–Manjón (DBWM) Protocol
We fix a (v, b, r, k)-configuration.

1. The user Ui randomly selects a memory space S` to which he has access
2. The user Ui decrypts the content on the memory space S` using the corresponding

key. His behavior is then determined by the content on the memory space as follows:
(a) The content is garbage. Then Ui encrypts his query and records it in S`.
(b) The content is a query posted by another user. Then Ui forwards the query to

the database and awaits the answer. When Ui receives the answer, he encrypts
it and records it in S`. He then restarts the protocol with the intention to post
his query.

(c) The content is a query posted by the user himself. Then Ui does not forward the
query to the database. Instead Ui restarts the protocol with the intention to post
his query.

(d) The content is an answer to a query posted by another user. Then Ui restarts
the protocol with the intention to post his query;

(e) The content is an answer to a query posted by the user himself. Then Ui reads
the query answer and erases it from the memory space. Subsequently Ui encrypts
his new query and records it in S`.

The modification proposed by Stokes and Bras-Amorós [73] replaces 2(c) as follows:

Protocol 2. DBWM–Stokes (DBWMS) Protocol

2(c) If the content is a query posted by the user himself, then Ui forwards the query to the
database with a specified probability p. If Ui forwards the query to the database, he
records the answer in S`. The user Ui restarts the protocol with the intention to post
his current query.

Remark 3.1. This protocol is ambiguous as stated by Stokes and Bras-Amorós. The intent
of the system is that users periodically run the protocol with “garbage” queries, in this
way collecting the answers to their previous queries. We refer the reader to the original
protocol specifications [28,73] for more details.

67

Stokes and Bras-Amorós [71,73] argue that the finite projective planes are the optimal
configurations to use for P2P UPIR. Their argument is that privacy against the database
is an increasing function of r(k− 1), since there are r(k− 1) users in the anonymity set of
any given user Ui. That is, the query profile of Ui is diffused among r(k − 1) other users
in the neighborhood of Ui. Now, since r(k − 1) ≤ v − 1 in a configuration, the authors
consider configurations satisfying r(k− 1) = v− 1, which yield the finite projective planes.
In our protocols, introduced in Section 3.5, we also have neighborhoods of maximum size,
without limiting ourselves to configurations. We also ensure that the database DB has no
advantage in guessing the identity of the source of any given query.

3.4.1. Attacks. We consider the privacy properties of the DBWM and DBWMS protocols
with respect to the database, before offering an improved protocol in Section 3.5. We fix
a (v, b, r, k)-configuration, where v is the number of users and b is the number of memory
spaces. We associate a block with each memory space, where the block consists of the
users that have access to the memory space.

The weakness of the DBWM and DBWMS protocols lies in the possibility of a user’s
query history being identifiable as originating from one user. That is, if a series of queries
is on some esoteric subject, the adversary (such as the database) can surmise that the
source of these queries is the same. As before, we refer to such queries as linked.

Stokes and Bras-Amorós [73] noticed a weakness in the DBWM protocol when a pro-
jective plane is used as the configuration, that is, when v = r(k− 1) + 1. In this case, each
user Ui has a neighborhood consisting of all other users. Then, given a large enough set of
linked queries, the only user who never submits one of these linked queries is the source,
Ui. Therefore, the database can eventually identify Ui as the source. Stokes and Bras-
Amorós [73] introduced Protocol 2 to circumvent this attack. Subsequent to our research,
Stokes and Bras-Amorós [72] noted this weakness applies more generally to (v, k, 1)-BIBDs.

We introduce another type of attack, which we call the intersection attack, in keeping
with standard terminology from the field of privacy research [54]. This attack only applies
to configurations satisfying v > r(k−1)+1, as it requires that all users have neighborhoods
of cardinality less than v − 1. The idea behind the intersection attack is that, given a
query q1 submitted by proxy Uj, an attacker can, by analyzing the neighborhood of Uj,
compute a list of possible sources Q1. If the attacker has access to a set of linked queries
q1, q2, . . . , qn, and the neighborhoods of these users do not consist of all users in the system,
the intersection of the possible source sets Q1, Q2, . . . , Qn can perhaps identify the source
(or narrow down the list of possible sources). We demonstrate this attack in the following
example.

Example 3.1. Suppose v = 12 and b = 8 and we have the following blocks (memory
spaces):

{U1, U2, U3} {U4, U5, U6} {U7, U8, U9} {U10, U11, U12}
{U1, U4, U7} {U2, U5, U10} {U3, U8, U11} {U6, U9, U12}

68

Note this is a (12, 8, 2, 3)-configuration. We consider the DBWM protocol here; that is,
we assume that the proxy of a given query is always different from the source of the query.
Now suppose three queries are transmitted from users U2, U11, and U8.

• If the proxy is U2, then the source Ui ∈ {U1, U3, U5, U10}.
• If the proxy is U11, then the source Ui ∈ {U3, U8, U10, U12}.
• If the proxy is U8, then the source Ui ∈ {U3, U7, U9, U11}.

Suppose that the subject of the queries is similar, so it can be inferred that the source of
the three queries is probably the same user. Then it is easy to identify the source of the
queries:

Ui ∈ {U1, U3, U5, U10} ∩ {U3, U8, U10, U12} ∩ {U3, U7, U9, U11},
so Ui = U3. Clearly, user privacy with respect to the database is not achieved here.

We do not claim that the above-described attack always works for any configuration; it is
easy to come up with examples where the attack does not work. For example, suppose that
N(Ui)∪{Ui} = N(Uj)∪{Uj} for two distinct users Ui and Uj. Then it is impossible for DB
to determine whether Ui or Uj is the source of a sequence of linked queries. Independently
of this research, Stokes and Bras-Amorós [72] noted that by choosing the configuration
carefully, it is possible to ensure the neighborhood-to-user mapping is not unique, and to
guarantee a specified lower bound on the number of possible users for a given neighborhood.

Observe that the intersection attack is not useful when one uses a finite projective
plane as the configuration and users are allowed to submit their own queries. This follows
because, at each stage of the intersection attack, the set of possible sources includes all
users in the set system. In the next section, we formalize this observation and discuss the
use of more general types of designs in P2P UPIR protocols that resist the intersection
attack in a very strong sense.

3.5. Using More General Designs

As observed in Section 3.4, in order to achieve user privacy with respect to the database,
we need to allow users to sometimes transmit their own queries. We suggest a different
solution to the problem than that given by Bras-Amorós et al., however. In particular,
we see no reason to limit the P2P network topology to configurations. Bras-Amorós et al.
indicate the use of configurations as a method to increase service availability and decrease
the number of required keys. Indeed, configurations have been proposed as key rings in
wireless sensor networks by Lee and Stinson [48] due to memory constraints of sensor
nodes. However, storage constraints are not so much an issue in P2P UPIR. We therefore
consider the possibility of using other types of designs.

We make use of memory spaces that “balance” proxies for every source. We suggest to
use a balanced incomplete block design (BIBD) for the set of memory spaces. We show
that these designs provide optimal resistance against the intersection attack.

69

Our scheme also differs from DBWMS in the treatment of proxies. In the previous
schemes, the identity of a proxy is not specified by the source. Queries are simply forwarded
to the database by the user who most recently checked the corresponding memory space.
We propose that each source designates the proxy for each query. This enables us to
balance the proxies for each possible source, thereby providing “perfect” anonymity with
respect to the database. Moreover, we do not assume that each memory space holds only a
single query; rather, we assume that memory spaces are capable of storing multiple queries.

Protocol 3. Proxy-designated BIBD Protocol (Version 1)
We fix a (v, b, r, k, λ)-BIBD. To submit a query, a user Ui uses the following steps:

1. With probability 1/v, user Ui acts as his own proxy and transmits his own query to
the DB.

2. Otherwise, user Ui chooses uniformly at random one of the r memory spaces with which
he is associated, say S`, and then he chooses uniformly at random a user Uj ∈ S`\{Ui}.
Finally, user Ui requests that user Uj act as his proxy using the memory space S`.

Protocol 4. Proxy-designated BIBD Protocol (Version 2)
We fix a (v, b, r, k, λ)-BIBD. To submit a query, a user Ui uses the following steps:

1. With probability 1/v, user Ui chooses to act as his own proxy. User Ui then writes the
query uniformly at random to one of the r memory spaces with which he is associated,
and transmits his own query to DB.

2. Otherwise, user Ui chooses uniformly at random one of the r memory spaces with which
he is associated, say S`, and then he chooses uniformly at random a user Uj ∈ S`\{Ui}.
Finally, user Ui requests that user Uj act as his proxy using the memory space S`.

Remark 3.2. We note that Protocol 4 differs from Protocol 3 only in the first step.

Remark 3.3. We assume users check memory spaces regularly and act as proxies as re-
quested within a reasonable time interval.

Remark 3.4. We make the assumption that, when a source Ui requests Uj to be his proxy,
everyone in the associated memory space knows that this request has been made, but no
one (except for Ui) knows the identity of the source.

Remark 3.5. The choice between Protocol 3 and Protocol 4 impacts the amount of privacy
the scheme provides against other users. This is discussed in Section 3.6.

We analyze the situation from the point of view of the database. For the rest of the
chapter, we let variables S,P,M be random variables denoting the source, proxy, and
memory spaces, respectively.

Theorem 3.1. From the point of view of the database, the Proxy-designated BIBD Proto-
cols (Protocols 3 and 4) satisfy Pr[S = Ui | P = Uj] = Pr[S = Ui] for all Ui, Uj ∈ U .

70

Proof. First, the schemes ensure that Pr[P = Uj | S = Ui] = 1/v for all Ui, Uj ∈ U . To
see this, first note that Ui picks himself as the source with probability 1/v. In Protocol 3,
Ui then submits his query directly to the database. In Protocol 4, Ui picks one of the r
memory spaces with which he is associated uniformly at random and then acts as his own
proxy. So in both cases, we have

Pr[P = Ui | S = Ui] =
1

v
.

Then in both protocols, with probability (v − 1)/v, user Ui picks a memory space S`
(with Ui ∈ S`) uniformly at random, followed by a proxy Uj associated with S`. The
probability that a fixed Uj with i 6= j acts as proxy can be computed as follows.

For i 6= j, we have

Pr[P = Uj | S = Ui] =
v − 1

v

∑
S` : Ui,Uj∈S`

Pr[M = S`] Pr[P = Uj |M = S`]

=
v − 1

v

∑
S` : Ui,Uj∈S`

1

r(k − 1)
=

(
v − 1

v

)(
λ

r(k − 1)

)
=

1

v
.

We see that Pr[P = Uj] = 1/v for all Uj ∈ U , since

Pr[P = Uj] =
∑
Ui∈U

Pr[P = Uj | S = Ui] Pr[S = Ui] =
1

v
.

Now we have

Pr[S = Ui | P = Uj] =
Pr[P = Uj | S = Ui] Pr[S = Ui]

Pr[P = Uj]
= Pr[S = Ui],

so the identity of the proxy gives no information about the identity of the source. �

We observe that this analysis is independent of any computational assumptions, so the
security is unconditional. Since we have achieved a perfect anonymity property, it follows
that no information is obtained by analyzing linked queries.

Example 3.2. To illustrate, consider a projective plane of order 2 with the following blocks:

{U1, U2, U3} {U1, U4, U5} {U1, U6, U7} {U2, U4, U6}
{U2, U5, U7} {U3, U4, U7} {U3, U5, U6}

We note that this is a (7, 3, 3, 3, 1)-BIBD. Suppose that the first query uses block
{U2, U4, U6} with proxy U4, and the second query uses block {U2, U5, U7} with proxy
U2. From the first query, DB knows that one of three blocks were used: {U1, U4, U5},
{U2, U4, U6}, or {U3, U4, U7}. However, Pr[S = Ui | P = U4] = Pr[S = Ui] for all possible
sources Ui, so DB has no additional information about the identity of the source, given
that P = U4. From the second query, DB knows that one of three blocks were used:

71

{U1, U2, U3}, {U2, U4, U6}, or {U2, U5, U7}. Again, Pr[S = Ui | P = U2] = Pr[S = Ui] for all
possible sources Ui, so DB has no additional information about the identity of the source,
given that P = U2. So even if DB suspects that both queries came from the same source,
he has no way to identify the source.

3.5.1. Extensions. We can consider using less structured designs than BIBDs, such as
pairwise balanced designs or covering designs. It turns out that we can still achieve perfect
anonymity with respect to DB, because our anonymity argument remains valid provided
that Pr[P = Uj | S = Ui] = 1/v for all Ui, Uj ∈ U .

We next give a generalized protocol based on an arbitrary covering design. That is, we
do not require constant block size k or constant replication number r.

Protocol 5. Proxy-designated Covering Design Protocol (Version 1)
We fix a covering design. To submit a query, a user Ui performs the following steps:

1. User Ui chooses the designated proxy Uj uniformly at random. If Ui = Uj, then Ui
submits his query directly to DB and skips Step 2.

2. If Ui 6= Uj, then user Ui chooses uniformly at random one of the memory spaces that
contains both Ui and Uj, say S`. Then Ui requests that user Uj act as his proxy using
memory space S`.

Protocol 6. Proxy-designated Covering Design Protocol (Version 2)
We fix a covering design. To submit a query, a user Ui performs the following steps:

1. User Ui chooses the designated proxy Uj uniformly at random. (The user Ui may
choose himself as the proxy Uj.)

2. User Ui chooses uniformly at random one of the memory spaces that contains both Ui
and Uj, say S`. Then Ui requests that user Uj act as his proxy using memory space
S`.

Remark 3.6. If the covering design is a BIBD, then Protocol 5 is equivalent to Protocol 3
and Protocol 6 is equivalent to Protocol 4.

Remark 3.7. We must have a covering design to ensure that a suitable memory space S`
always exists in Step 2 of Protocols 5 and 6.

Remark 3.8. As in Protocols 3 and 4, we assume users check memory spaces regularly,
and act as proxies as requested within a reasonable time interval. We also assume, as
before, that when source Ui requests that Uj 6= Ui be his proxy, everyone in the associated
memory space knows that this request has been made, but no one (except for Ui) knows
the identity of the source.

Theorem 3.2. From the point of view of the database, for a given query, the Proxy-
designated Covering Design Protocols (Protocols 5 and 6) satisfy Pr[S = Ui | P = Uj] =
Pr[S = Ui] for all Ui, Uj ∈ U .

72

Proof. Step 1 of both Protocol 5 and Protocol 6 ensures that Pr[P = Uj | S = Ui] = 1/v
for all Ui, Uj ∈ U . Similarly, we can see that

Pr[P = Uj] =
∑
Ui∈U

Pr[P = Uj | S = Ui] Pr[S = Ui] =
1

v

for all Uj ∈ U . We once again have

Pr[S = Ui | P = Uj] =
Pr[P = Uj | S = Ui] Pr[S = Ui]

Pr[P = Uj]
= Pr[S = Ui],

so the identity of the proxy gives no information about the identity of the source. �

As before, we observe that this analysis is independent of any computational assump-
tions, so the security is unconditional. Since we have achieved a perfect anonymity property,
no information is obtained by analyzing linked queries.

3.5.2. Dynamic P2P UPIR schemes. One benefit of using less structured designs than
BIBDs is that the scheme can be dynamic. That is, we can add and remove users, which
allows greater flexibility in practice.

To delete a user Ui from Protocols 5 and 6, we simply remove Ui from all the memory
spaces with which he is associated. To avoid Ui from reading any more queries written to
these memory spaces, we also need a rekeying mechanism to update the associated keys.
The same external entity that distributed the initial set of keys could be responsible for
rekeying. The end result is a covering design with one fewer users than before.

To add a user Unew in Protocols 5 and 6, we may use the following method. We first
find M = {Sh1 , . . . , Sh`} ⊆ S such that Sh1 ∪ · · · ∪ Sh` = U . That is, we need a set of
memory spaces whose union contains all current users. A greedy algorithm could be used
to accomplish this task, although the resultant set M would likely not be optimal (in the
sense that ` would likely not be as small as possible). Indeed, finding the minimum such
set is NP-hard. (This is the minimum cover problem, which is problem SP5 in Garey and
Johnson [36].)

Once we have identified a suitable set M, we simply add Unew to each memory space
in M, and give Unew the associated keys. In addition, we need a mechanism by which
to inform all users of Unew’s presence in the scheme. The resulting set system is still a
covering design—one which contains one more user than before.

3.6. Privacy Against Other Users

In this section, we consider our Protocols 3, 4, 5, and 6 in the context of analyzing user
privacy against other users. We remind the reader of Remarks 3.4 and 3.8: we assume that
when a source Ui requests that Uj be his proxy, everyone in the associated memory space

73

knows that this request has been made, but no one (except for Ui) knows the identity of
the source.

We observe that if we have the cooperation of the database DB, we can achieve pri-
vacy against other users in a computational sense by making use of standard encryption
protocols. That is, if the database is willing and has established a public key, a user
wishing to forward a query q to DB can first encrypt q, together with a symmetric key
Kq of his choosing, under DB’s public key, and then proceed with the protocol as usual.
The designated proxy then forwards the entire encrypted message to DB. Upon receiving
this message, DB can decrypt, compute the response r to q, and send the encryption of
r under the symmetric key Kq back to the proxy, who then posts the encrypted response
to the appropriate memory space as before. The users of the chosen memory space, in
particular, will be unable to read the content of any queries for which they are not the
source (subject to the computational security of the chosen symmetric encryption scheme
used with DB). This technique then provides confidentiality against other users, so the loss
of privacy against other users in UPIR is effectively circumvented.

We now analyze the privacy of a given user relative to other users of the scheme in
the original UPIR specification, in which we do not assume the database DB cooperates
as described above. As we see in this analysis, if we wish to provide privacy against
other users, a design that has more structure than a general covering design becomes
useful. In particular, we observe that the use of a regular PBD (see Definition 1.16) in
Protocols 5 and 6 is desirable. It is in general difficult to provide privacy against other
users, however, since by design users must be able to see the content of their associated
memory spaces. In this section, we simplify the analysis by assuming that sources are
equiprobable; we leave the generalization of the analysis in the absence of this assumption
as future work.

It is helpful to begin with an example:

Example 3.3. Consider the projective plane from Example 3.2 and suppose we use Pro-
tocol 3. Suppose that user U4 is requested to act as proxy for a query in memory space
{U1, U4, U5} by source U1. User U4 knows that the source must be U1 or U5 (since he
did not make the request himself). User U5, however, knows that the source must be U1

because

1. U5 did not make the request himself, and
2. U4 would not post a request to himself to transmit a query—he would just go ahead

and transmit it himself.

We can generalize the concept from Example 3.3. Observe that in Protocols 3 and 5, the
requested proxy can rule out one possible source, and anyone else in the memory space (who
is not the source) can rule out two possible sources. If we consider Protocols 4 and 6, then
users can rule out only one possible source (namely, themselves). That is, Protocols 4 and 6
improve the information-theoretic privacy guarantees of the scheme with respect to the

74

viewpoint of other users. However, we remark that in these versions, when a source acts as
his own proxy, other users associated with the chosen memory space can see the content of
the query. In Protocols 3 and 5, if a user Ui is both the source and proxy of a given query,
then Ui is the only user who sees the content of that query. Hence it may still be desirable
to use Protocols 3 and 5, if additional confidentiality is required.

An interesting related question is, when a particular user Ut sees a query q posted to
the memory space S` that is not his own, whether or not Ut has a probabilistic advantage
in guessing the source of q. The following theorems show that, in order to minimize
any such advantage, it is helpful to use a regular PBD in our protocols. We begin by
considering Protocol 5, the Proxy-designated Covering Design Protocol in which a source
never designates himself as proxy in a memory space:

Theorem 3.3. Let (X,A) be a regular PBD of degree r. Assume (X,A) is used in the
Proxy-designated Covering Design Protocol (Protocol 5) and assume that Pr[S = Ui] = 1/v
for all Ui ∈ U . Suppose Ut ∈ S` sees a query q posted to S` with proxy Uj ∈ S` that is not
his own. Then, from the point of view of Ut, for a given query q and Ui ∈ S` such that
i 6= t, it holds that

Pr[S = Ui |M = S`,P = Uj,S 6= Ut] =

0 if i = j

1
|S`|−1

if t = j (⇒ i 6= j)
1

|S`|−2
if i, t 6= j

.

Proof. We first note that the protocol definition ensures that when i = j, we have

Pr[S = Ui |M = S`,P = Uj,S 6= Ut] = 0.

We now consider the case i 6= j. We set λij = |{Sq : Ui, Uj ∈ Sq}| = λ. Thus, we have

Pr[M = S`,P = Uj | S = Ui,S 6= Ut] = Pr[M = S`,P = Uj | S = Ui]

= Pr[M = S` | P = Uj,S = Ui] Pr[P = Uj | S = Ui]

=
1

λij(v − 1)
=

1

λ(v − 1)
.

Then, because i 6= t, we have

Pr[S = Ui | S 6= Ut] =
Pr[S 6= Ut | S = Ui] Pr[S = Ui]

Pr[S 6= Ut]

=
Pr[S = Ui]∑

Uh∈U
h6=t

Pr[S = Uh]

=
1

v − 1
.

75

This gives

Pr[S = Ui |M = S`,P = Uj,S 6= Ut]

=
Pr[S = Ui | S 6= Ut] Pr[M = S`,P = Uj | S = Ui,S 6= Ut]

Pr[M = S`,P = Uj | S 6= Ut]

=
Pr[S = Ui | S 6= Ut] Pr[M = S`,P = Uj | S = Ui]∑

Uh∈S`
h6=t,j

Pr[S = Uh | S 6= Ut] Pr[M = S`,P = Uj | S = Uh]

=

1
(v−1)2λ∑

Uh∈S`
h6=t,j

1
(v−1)2λ

=

{
1

|S`|−1
if t = j

1
|S`|−2

if t 6= j
,

as desired. �

We can generalize Theorem 3.3 to a coalition of users C rather than just a single user,
as stated in the following theorem. The proof is very similar to the proof of Theorem 3.3.

Theorem 3.4. Let (X,A) be a regular PBD of degree r. Assume (X,A) is used in the
Proxy-designated Covering Design Protocol (Protocol 5) and assume that Pr[S = Ui] = 1/v
for all Ui ∈ U . Let C be a coalition of users and suppose (some subset of) C sees a query
q posted to S` with proxy Uj ∈ S` that was not posted by a member of C. Then, from the
point of view of C, for a given query q and Ui ∈ S` such that Ui /∈ C, it holds that

Pr[S = Ui |M = S`,P = Uj,S /∈ C] =

0 if i = j

1
|S`\C|

if Uj ∈ C (⇒ i 6= j)
1

|S`\C|−1
if Uj /∈ C and i 6= j

.

Proof. We first note that the protocol definition ensures that when i = j, we have

Pr[S = Ui |M = S`,P = Uj,S /∈ C] = 0.

We now consider the case i 6= j. We set λij = |{Sq : Ui, Uj ∈ Sq}| = λ. Thus, we have

Pr[M = S`,P = Uj | S = Ui,S /∈ C] = Pr[M = S`,P = Uj | S = Ui]

= Pr[M = S` | P = Uj,S = Ui] Pr[P = Uj | S = Ui]

=
1

λij(v − 1)
=

1

λ(v − 1)
. (12)

76

Then because Ui /∈ C, we have

Pr[S = Ui | S /∈ C] =
Pr[S /∈ C | S = Ui] Pr[S = Ui]

Pr[S /∈ C]

=
Pr[S = Ui]∑

Uh∈U\C Pr[S = Uh]

=
1

v − |C|
.

This gives

Pr[S = Ui |M = S`,P = Uj,S /∈ C]

=
Pr[S = Ui | S /∈ C] Pr[M = S`,P = Uj | S = Ui,S /∈ C]

Pr[M = S`,P = Uj | S /∈ C]

=
Pr[S = Ui | S /∈ C] Pr[M = S`,P = Uj | S = Ui]∑

Uh∈S`\C
h6=j

Pr[S = Uh | S /∈ C] Pr[M = S`,P = Uj | S = Uh]

=

1
(v−|C|)(v−1)λ∑

Uh∈S`\C
h6=j

1
(v−|C|)(v−1)λ

=

{
1

|S`\C|
if Uj ∈ C

1
|S`\C|−1

if Uj /∈ C
,

as desired. �

Theorem 3.3 implies that for Ut ∈ S`, if Ut sees a query q with proxy Uj posted to the
memory space S` that is not his own, any of the remaining |S`\{Uj, Ut}| users in S` are
equally likely to be the source. Similarly, in Theorem 3.4, we observe that from the point
of view of a coalition C, the set of possible sources is S`\(C∪Uj), and of these possibilities,
any user is equally likely.

We now give the parallel results for Protocol 6, the Proxy-designated Covering Design
Protocol, in which a source is allowed to act as his own proxy. In this case, a single user Ut
(or a coalition C) can no longer completely eliminate the possibility of the proxy Uj being
the source. However, as the following theorems show, the likelihood of the proxy Uj being
the source is not the same as the likelihood of Ui 6= Uj being the source. Indeed, it is far
less likely that Uj is acting as both proxy and source for q in this situation. Intuitively, if
a user Ui is acting as both source and proxy, he has r possible memory spaces to choose
from, whereas if Ui chooses another user Uj as proxy, he has only λ many memory spaces
to choose from.

Theorem 3.5. Let (X,A) be a regular PBD of degree r. Assume (X,A) is used in the
Proxy-designated Covering Design Protocol (Protocol 6) and assume that Pr[S = Ui] = 1/v

77

for all Ui ∈ U . Suppose Ut ∈ S` sees a query q posted to S` with proxy Uj ∈ S` that is not
his own. Then, from the point of view of Ut, for a given query q and Ui ∈ S` such that
i 6= t, it holds that

Pr[S = Ui |M = S`,P = Uj,S 6= Ut] =

1

|S`|−1
if t = j (⇒ i 6= j)

λ
λ+r(|S`|−2)

if i = j (⇒ t 6= j)
r

λ+r(|S`|−2)
if i 6= j, t 6= j

.

Proof. We first calculate Pr[M = S`,P = Uj | S = Ui,S 6= Ut], where Ui ∈ S`.
We again set λij = |{Sq : Ui, Uj ∈ Sq}|. In particular, since (X,A) is a PBD of degree

r, we have

λij =

{
r if i = j
λ if i 6= j

.

We have

Pr[M = S`,P = Uj | S = Ui,S 6= Ut] = Pr[M = S`,P = Uj | S = Ui]

= Pr[M = S` | P = Uj,S = Ui] Pr[P = Uj | S = Ui]

=

(
1

λij

)(
1

v

)
. (13)

Then we have Pr[S = Ui | S 6= Ut] = 1
v−1

and this gives

Pr[S = Ui |M = S`,P = Uj,S 6= Ut]

=
Pr[S = Ui | S 6= Ut] Pr[M = S`,P = Uj | S = Ui,S 6= Ut]

Pr[M = S`,P = Uj | S 6= Ut]

=
Pr[S = Ui | S 6= Ut] Pr[M = S`,P = Uj | S = Ui]∑

Uh∈S`
h6=t

Pr[S = Uh | S 6= Ut] Pr[M = S`,P = Uj | S = Uh]

=

1
v(v−1)λij∑

Uh∈S`
h6=t

1
v(v−1)λhj

=

{ λ
λij(|S`|−1)

if t = j
λr

λij

(
λ+r(|S`|−2)

) if t 6= j ,

which yields the desired result. �

Theorem 3.5 also generalizes nicely to coalitions:

Theorem 3.6. Let (X,A) be a regular PBD of degree r. Assume (X,A) is used in the
Proxy-designated Covering Design Protocol (Protocol 6) and assume that Pr[S = Ui] = 1/v
for all Ui ∈ U . Let C be a coalition of users and suppose (some subset of) C sees a query

78

q posted to S` with proxy Uj ∈ S` that was not posted by a member of C. Then, from the
point of view of C, for a given query q and Ui ∈ S` such that Ui /∈ C, it holds that

Pr[S = Ui |M = S`,P = Uj,S /∈ C] =

1

|S`\C|
if Uj ∈ C (⇒ i 6= j)

λ
λ+r(|S`\C|−1)

if Uj /∈ C, i = j
r

λ+r(|S`\C|−1)
if Uj /∈ C, i 6= j

.

Proof. We first calculate Pr[M = S`,P = Uj | S = Ui,S /∈ C], where Ui ∈ S`. We again
set λij = |{Sq : Ui, Uj ∈ Sq}|. Since (X,A) is a PBD of degree r, we have

λij =

{
r if i = j
λ if i 6= j

.

We have

Pr[M = S`,P = Uj | S = Ui,S /∈ C] = Pr[M = S`,P = Uj | S = Ui]

= Pr[M = S` | P = Uj,S = Ui] Pr[P = Uj | S = Ui]

=

(
1

λij

)(
1

v

)
.

Then we have Pr[S = Ui | S /∈ C] = 1
v−|C| and this gives

Pr[S = Ui |M = S`,P = Uj,S /∈ C]

=
Pr[S = Ui | S /∈ C] Pr[M = S`,P = Uj | S = Ui,S /∈ C]

Pr[M = S`,P = Uj | S /∈ C]

=
Pr[S = Ui | S /∈ C] Pr[M = S`,P = Uj | S = Ui]∑

Uh∈S`\C Pr[S = Uh | S /∈ C] Pr[M = S`,P = Uj | S = Uh]

=

1
v(v−|C|)λij∑

Uh∈S`\C
1

v(v−|C|)λhj

=
1

λij
∑

Uh∈S`\C λhj

=

{ λ
λij |S`\C|

if Uj ∈ C
λr

λij

(
λ+r(|S`\C|−1)

) if Uj /∈ C ,

which yields the desired result. �

Remark 3.9. Theorems 3.3–3.4 apply to Protocol 3 and Theorems 3.5–3.6 apply to Pro-
tocol 4. This follows immediately, since a BIBD is also a regular PBD of degree r.

We observe that Theorems 3.3–3.4 and Theorems 3.5–3.6 demonstrate that the use of
a regular PBD increases privacy against other users. This is because, from the point of
view of another user Ut (or coalition of users C), only three possible probabilities arise in

79

the conditional source distribution if a regular PBD is used, thereby preventing Ut (or C)
from being able to distinguish between users within each of these sets. In particular, if a
regular PBD is not used, the parameter λij is not a constant determined by whether i = j
or not, but instead may vary across all pairs Ui, Uj ∈ U .

3.6.1. Linked queries and coalitions of users. Users can also launch an intersection
attack against a series of linked queries, similar to the intersection attack launched by
DB against the DBWM and DBWMS protocols (Protocols 1 and 2). The difference here
is that users have access to the content of queries via the shared memory spaces; that
is, users of a given memory space know which queries have been posted to that memory
space, whereas the database only knows the identity of the proxy. In particular, since more
information is available to users than to the database, it is correspondingly more difficult
to provide privacy in the presence of linked queries against coalitions of users, than against
the database.

Example 3.4. Consider the projective plane from Example 3.2 and suppose we use Pro-
tocol 4. Suppose that U1 is the source of two linked queries, where the first query uses
memory space {U1, U2, U3} and the second query uses memory space {U1, U4, U5}. Now
suppose that users U2 and U5 collude. From the first query, user U2 knows that the source
Ui ∈ {U1, U3} (regardless of the proxy). From the second query, user U5 knows that the
source Ui ∈ {U1, U4} (regardless of the proxy). If users U2 and U5 collude, then they can
identify U1 as the source.

In general, we can consider a sequence of ρ linked queries made by the same (unknown)
user, and a coalition C of at most c users that is trying to identify the source of the ρ
queries. We introduce the following terminology.

Definition 3.3. Consider a set of ρ linked queries and fix a maximum coalition size c. If
there are always at least κ users who could possibly be the source (regardless of the queries
and coalition) then we say that the scheme provides (ρ, c, κ)-anonymity.

Remark 3.10. Of course we want κ ≥ 2 because the source might be identified if κ = 1.

In general, analyzing the security of our protocols against coalition attacks on linked
queries is difficult and depends on the block intersection properties of the underlying design.
Moreover, the notion of (ρ, c, κ)-anonymity does not take into account the probabilistic
advantage a coalition C has in guessing the source of a series of linked queries based on
the memory spaces used and the identities of the proxies. In this section, we consider some
special cases in which it is easy to determine the level of (ρ, c, κ)-anonymity provided and
discuss the advantage coalitions have in determining the source of a series of linked queries.

First, however, we make some general observations about our protocols with respect
to the expected distribution of proxies. These observations lead to an attack similar to
the projective plane attack [73] mentioned in Section 3.4.1 and the predecessor attack on

80

Crowds [56,82,83], which we discuss in Section 3.7. In particular, the source Ui of a series
of linked queries acts as his own proxy fewer times than any other user Uj ∈ U\{Ui} over
the course of those linked queries on average. Therefore, a coalition C of users can, given
sufficiently many linked queries, identify the source with some probability that approaches
1. The number of linked queries necessary to successfully perform this attack (with some
appropriately small error probability) can be estimated using Chernoff bounds [52], if
desired. This attack is an obvious consequence of the following theorem:

Theorem 3.7. Assume we use a regular PBD of degree r in Protocol 5 or 6 and assume
that Pr[S = Ui] = 1/v for all Ui ∈ U . Consider a user Ui and a memory space S` satisfying
Ui ∈ S`. Let q1, . . . , qρ be a series of queries with source Ui posted to S`. In Protocol 5,
the user Ui never designates himself as proxy in a memory space, whereas every other user
Uj 6= Ui ∈ S` acts as a proxy for Ui an average of ρ

(
r

λ(v−1)

)
times over the course of the

ρ queries. In Protocol 6, Ui acts as his own proxy an average of ρ
v

times, and every other

user Uj 6= Ui ∈ S` acts as proxy an average of ρ
(
r
λv

)
times.

Proof. We assume Uj ∈ S`.
For both Protocols 5 and 6, we have

Pr[S = Ui,M = S`] = Pr[M = S` | S = Ui] Pr[S = Ui]

=
1

rv
.

Now we consider Protocol 5. For i 6= j, we have

Pr[P = Uj,S = Ui,M = S`] = Pr[M = S`,P = Uj | S = Ui] Pr[S = Ui]

=
1

λv(v − 1)
(by Equation (12)).

This gives

Pr[P = Uj | S = Ui,M = S`] =
Pr[P = Uj,S = Ui,M = S`]

Pr[S = Ui,M = S`]

=

(
1

λv(v−1)

)
(

1
rv

)
=

r

λ(v − 1)
.

This gives the desired result for Protocol 5.

For Protocol 6, we have

Pr[P = Uj,S = Ui,M = S`] = Pr[M = S`,P = Uj | S = Ui] Pr[S = Ui]

=
1

λijv2
(by Equation (13)).

81

This gives

Pr[P = Uj | S = Ui,M = S`] =
Pr[P = Uj,S = Ui,M = S`]

Pr[S = Ui,M = S`]

=

(
1

λijv2

)
(

1
rv

)
=

r

λijv

=

{
1/v if i = j
r/λv if i 6= j

.

This gives the desired result for Protocol 6. �

We now consider “coalitions” consisting of a single user (i.e., the case c = 1). For
anonymity against other users, it is advantageous to use a BIBD with λ = 1:

Lemma 3.8. Suppose the BIBD chosen for Protocol 4 satisfies λ = 1. Then we achieve
(ρ, 1, k − 1)-anonymity for any ρ.

Proof. Suppose Ui sees a sequence of ρ linked queries from the same source. Then in
particular, the queries must all involve the same memory space, because λ = 1. The result
then follows from Theorem 3.5. �

On the other hand, the security of Protocol 4 against a single user might be completely
eliminated if we use a design with λ > 1. For example, suppose we use a BIBD with λ = 2
in which every pair of blocks intersects in at most two points (i.e., a supersimple BIBD, as
defined in Definition 1.20). Consider two users Ui and Uj. There exist two memory spaces,
say S1 and S2, where S1 ∩ S2 = {Ui, Uj}. Suppose Ui observes two linked queries, say q1

and q2, that involve S1 and S2, respectively. Then Ui can deduce that Uj is the source.

Remark 3.11. The result of Lemma 3.8 does not apply to Protocol 3. This is because
in Protocol 3, given a series of linked queries posted to a given memory space, the only
user who never acts as proxy for one of these queries is the query issuer, as discussed in
Theorem 3.7.

Remark 3.12. Lemma 3.8 states that after observing a series of ρ linked queries, a user
Ut can narrow down the set of possible sources to k− 1 other users. This is not to say that
Ut has no advantage in guessing the source. In particular, as Theorem 3.7 indicates, the
source is probabilistically under-represented as proxy. That is, given a large enough ρ, the
user Ut has the ability to distinguish the source based on the observed proxy distribution.

We now analyze (ρ, c, κ)-anonymity for small values of ρ. Here it is helpful to consider
certain types of designs that have useful properties relating to block intersections. In

82

Section 3.6.2, we consider a more general approach to mitigate intersection attacks in the
Proxy-designated Covering Design Protocols (Protocols 5 and 6).

The case ρ = 1 (i.e., security against a single query) is easy to analyze:

Lemma 3.9. We achieve (1, c, k − c − 1)-anonymity in Protocol 3, where c ≤ k − 3. In
Protocol 4, we achieve (1, c, k − c)-anonymity, with the requirement that c ≤ k − 2.

Proof. We first consider Protocol 3. Let C be a coalition of size at most c and let Sh be
the memory space used for the query q1. Then |C ∩ Sh| ≤ c. C can rule out as possible
sources the users in C ∩ Sh as well as the proxy Uj (provided that Uj 6∈ C ∩ Sh). Since
|Sh\(C ∪ {Uj})| ≥ k − c− 1, the result follows. An obvious requirement here is c ≤ k − 3.

For Protocol 4, all other users with access to the given memory space can only eliminate
themselves as the possible source of the query. This improves the information-theoretic
security for user privacy against other users, as we now have |Sh\C| ≥ k − c. An obvious
requirement here is c ≤ k − 2. �

Moreover, Theorems 3.4 and 3.6 give the advantage a coalition C of size c has in guessing
the identity of the actual source from the set of possible sources.

For the case ρ = 2, it is helpful to consider BIBDs with a special intersection property.

Lemma 3.10. Suppose the BIBD of Protocols 3 and 4 satisfies the additional property that
any two blocks intersect in at least µ points. Consider two linked queries, q1 and q2. Then
we achieve (2, c, µ − c − 2)-anonymity, where c ≤ µ − 4, in Protocol 3. In Protocol 4, we
achieve (2, c, µ− c)-anonymity, with the requirement c ≤ µ− 2.

Proof. Let C be a coalition of size at most c and let Sh1 be the memory space used for the
query q1 and Sh2 be the memory space used for q2. Let Ui be the proxy for q1 and let Uj
be the proxy for q2.

In Protocol 3, we have∣∣(Sh1\ (C ∪ {Ui})
)
∩
(
Sh2\ (C ∪ {Uj})

)∣∣ =
∣∣(Sh1 ∩ Sh2) \ (C ∪ {Ui, Uj})

∣∣ ≥ µ− c− 2,

so we achieve (2, c, µ− c− 2)-anonymity. An obvious requirement here is c ≤ µ− 4.

In Protocol 4, we have∣∣(Sh1\C) ∩ (Sh2\C)
∣∣ =

∣∣(Sh1 ∩ Sh2)\C∣∣ ≥ µ− c,
so we achieve (2, c, µ− c)-anonymity. Here, an obvious requirement is c ≤ µ− 2. �

We can apply Lemma 3.10 to the case of a symmetric BIBD, in which any two blocks
intersect in exactly λ points, as noted in Theorem 1.4. This achieves the following result:

Corollary 3.11. Suppose the BIBD chosen for Protocol 3 or 4 is a symmetric (v, v, k, k, λ)-
BIBD. Then Protocol 3 provides (2, c, λ−c−2)-anonymity for any c ≤ λ−4 and Protocol 4
provides (2, c, λ− c)-anonymity for any c ≤ λ− 2.

83

We can derive the advantage a coalition C has in guessing the source of a series of two
linked queries q1 and q2. This can be generalized to ρ linked queries in the obvious way,
but in general the number of possible sources is likely to decrease quickly when more than
one or two memory spaces are involved. We state our results in Theorems 3.12 and 3.13;
these results can be applied to Lemma 3.10 and Corollary 3.11 in order to determine the
coalition C’s advantage in guessing the source of two linked queries.

First, we establish the following useful notation to discuss two linked queries q1 and
q2, which we use in both Theorems 3.12 and 3.13. In both, we assume that there are two
linked queries q1 and q2, where query q1 is posted to S`1 with proxy Uj1 ∈ S`1 and query q2

is posted to S`2 with proxy Uj2 ∈ S`2 . We use random variables S1, M1, and P1 to denote
the source, memory space, and proxy with respect to query q1 and random variables S2,
M2, and P2 to denote the source, memory space, and proxy with respect to query q2. In
addition, we define the following events:

1. Let Q1 denote the event M1 = S`1 and P1 = Uj1 .
2. Let Q2 denote the event M2 = S`2 and P2 = Uj2 .
3. For Uh ∈ U , let Eh denote the event S1 = S2 = Uh.

Theorem 3.12. Let (X,A) be a regular PBD of degree r. Assume (X,A) is used in the
Proxy-designated Covering Design Protocol (Protocol 5) and assume that Pr[S = Ui] = 1/v
for all Ui ∈ U . Let C be a coalition of users and suppose (some subset of) C sees two
linked queries q1 and q2 that were not posted by a member of C, where q1 is posted to S`1
with proxy Uj1 ∈ S`1 and q2 is posted to S`2 with proxy Uj2 ∈ S`2 . Then, from the point of
view of C, for Ui /∈ C, it holds that

1. If Ui /∈ S`1 ∩ S`2 or if i ∈ {j1, j2}, then

Pr[Ei | Q1, Q2; S1 = S2 /∈ C] = 0.

2. If Ui ∈ S`1 ∩ S`2 and i /∈ {j1, j2}, then

Pr[Ei | Q1, Q2; S1 = S2 /∈ C] =
1∣∣(S`1 ∩ S`2)\(C ∪ {Uj1 , Uj2})∣∣ .

Proof. We proceed as in the proof of Theorem 3.4. As before, a user Ui cannot be the
source for a given query if he is also the proxy, so we restrict ourselves to the case of users
Ui /∈ C satisfying i /∈ {j1, j2}.

We then calculate

Pr[Q1, Q2 | S1 = S2 /∈ C;Ei] = Pr[Q1, Q2 | S1,S2 /∈ C;Ei]

= Pr[Q1 | S1 /∈ C,S1 = Ui] Pr[Q2 | S2 /∈ C,S2 = Ui]

=

{
0 if Ui /∈ S`1 ∩ S`2(

1
λ(v−1)

)2

otherwise
.

84

Note that the above computation implies, as expected, that if Ui /∈ S`1 ∩ S`2 ,
Pr[Ei | Q1, Q2; S1 = S2 /∈ C] = 0.

For the case Ui ∈ S`1 ∩ S`2 , we have

Pr[S1 = S2 /∈ C] =
∑
Uh /∈C

Pr[Eh]

=
∑
Uh /∈C

Pr[S1 = Uh] Pr[S2 = Uh]

=
∑
Uh /∈C

1

v2

=
v − |C|
v2

.

This last computation allows us to determine

Pr[Ei | S1 = S2 /∈ C] =
Pr[S1 = S2 /∈ C | Ei] Pr[Ei]

Pr[S1 = S2 /∈ C]

=
Pr[Ei]

Pr[S1 = S2; S1,S2 /∈ C]

=
1

v − |C|
.

Finally, for Ui /∈ C satisfying Ui ∈ S`1 ∩ S`2 , we have

Pr[Ei | Q1, Q2; S1 = S2 /∈ C]

=
Pr[Ei | S1 = S2 /∈ C] Pr[Q1, Q2 | S1 = S2 /∈ C;Ei]

Pr[Q1, Q2 | S1 = S2 /∈ C]

=

(
1

v−|C|

)(
1

λ(v−1)

)2∑
Uh∈(S`1∩S`2)\C

h6=j1,j2
Pr[Eh | S1 = S2 /∈ C] Pr[Q1, Q2 | S1 = S2 /∈ C;Eh]

=

(
1

v−|C|

)(
1

λ(v−1)

)2

∑
Uh∈(S`1∩S`2)\C

h6=j1,j2

(
1

v−|C|

)(
1

λ(v−1)

)2

=
1∣∣(S`1 ∩ S`2)\(C ∪ {Uj1 , Uj2})∣∣ .

This completes the proof. �

85

Theorem 3.13. Let (X,A) be a regular PBD of degree r. Assume (X,A) is used in the
Proxy-designated Covering Design Protocol (Protocol 6) and assume that Pr[S = Ui] = 1/v
for all Ui ∈ U . Let C be a coalition of users and suppose (some subset of) C sees two
linked queries q1 and q2 that were not posted by a member of C, where q1 is posted to S`1
with proxy Uj1 ∈ S`1 and q2 is posted to S`2 with proxy Uj2 ∈ S`2 . Then, from the point of
view of C, for Ui /∈ C, it holds that

1. If Ui /∈ S`1 ∩ S`2, then

Pr[Ei | Q1, Q2; S1 = S2 /∈ C] = 0.

2. If Ui ∈ S`1 ∩ S`2 and Uj1, Uj2 /∈ (S`1 ∩ S`2)\C, then

Pr[Ei | Q1, Q2; S1 = S2 /∈ C] =
1∣∣(S`1 ∩ S`2)\C∣∣ .

3. If Ui ∈ S`1 ∩ S`2 and precisely one of Uj1, Uj2 ∈ (S`1 ∩ S`2)\C, then

Pr[Ei | Q1, Q2; S1 = S2 /∈ C] =

λ

λ+r
(
|(S`1∩S`2)\C|−1

) if i ∈ {j1, j2}
r

λ+r
(
|(S`1∩S`2)\C|−1

) if i /∈ {j1, j2}
.

4. If Ui ∈ S`1 ∩ S`2 and Uj1, Uj2 ∈ (S`1 ∩ S`2)\C, then

Pr[Ei | Q1, Q2; S1 = S2 /∈ C] =

λ2

λ2+r2
(
|(S`1∩S`2)\C|−1

) if i = j1 = j2

λ

2λ+r
(
|(S`1∩S`2)\C|−2

) if i ∈ {j1, j2}, j1 6= j2

r

2λ+r
(
|(S`1∩S`2)\C|−2

) if i /∈ {j1, j2}, j1 6= j2

r2

λ2+r2
(
|(S`1∩S`2)\C|−1

) if i /∈ {j1, j2}, j1 = j2

.

Proof. We proceed as in the proof of Theorem 3.6. We first calculate

Pr[Q1, Q2 | S1 = S2 /∈ C;Ei],

where Ui /∈ C. We again set λij = |{Sq : Ui, Uj ∈ Sq}|. Since (X,A) is a PBD of degree r,
we have

λij =

{
r if i = j
λ if i 6= j

.

We then calculate

Pr[Q1, Q2 | S1 = S2 /∈ C;Ei] = Pr[Q1, Q2 | S1,S2 /∈ C;Ei]

= Pr[Q1 | S1 /∈ C,S1 = Ui] Pr[Q2 | S2 /∈ C,S2 = Ui]

=

{
0 if Ui /∈ S`1 ∩ S`2

1
λij1λij2v

2 otherwise .

86

Note that the above computation implies, as expected, that if Ui /∈ S`1 ∩ S`2
Pr[Ei | Q1, Q2; S1 = S2 /∈ C] = 0.

For the case Ui ∈ S`1 ∩ S`2 , as in the proof of Theorem 3.12, we have

Pr[S1 = S2 /∈ C] =
v − |C|
v2

and Pr[Ei | S1 = S2 /∈ C] =
1

v − |C|
.

Finally, for Ui /∈ C satisfying Ui ∈ S`1 ∩ S`2 , we have

Pr[Ei | Q1, Q2; S1 = S2 /∈ C]

=
Pr[Ei | S1 = S2 /∈ C] Pr[Q1, Q2 | S1 = S2 /∈ C;Ei]

Pr[Q1, Q2 | S1 = S2 /∈ C]

=

(
1

v−|C|

)(
1

λij1λij2v
2

)
∑

Uh∈(S`1∩S`2)\C Pr[Eh | S1 = S2 /∈ C] Pr[Q1, Q2 | S1 = S2 /∈ C;Eh]

=

(
1

v−|C|

)(
1

λij1λij2v
2

)
∑

Uh∈(S`1∩S`2)\C

(
1

v−|C|

)(
1

λhj1λhj2v
2

)
=

1

λij1λij2
∑

Uh∈(S`1∩S`2)\C

(
1

λhj1λhj2

)

=

λ2

λij1λij2|(S`1∩S`2)\C| if Uj1 , Uj2 /∈ (S`1 ∩ S`2)\C
λ2r

λij1λij2

(
λ+r(|(S`1∩S`2)\C|−1)

) if precisely one of Uj1 , Uj2 ∈ (S`1 ∩ S`2)\C
λ2r

λij1λij2

(
2λ+r(|(S`1∩S`2)\C|−2)

) if Uj1 , Uj2 ∈ (S`1 ∩ S`2)\C, j1 6= j2

λ2r2

λij1λij2

(
λ2+r2(|(S`1∩S`2)\C|−1)

) if Uj1 , Uj2 ∈ (S`1 ∩ S`2)\C, j1 = j2

.

This completes the proof. �

Another extension to the concept of (ρ, c, κ)-anonymity is to consider an average-
case analysis of privacy against other users. Thus far, we have analyzed the worst-case
scenario—the minimum level of privacy the scheme achieves against any possible coalition.
While this is useful in some respects, schemes suffering powerful worst-case scenario attacks
might actually perform quite well against a typical (i.e., random) coalition. In particular,
if a scheme needs to be concerned about random coalitions of users, such an average-case
analysis might prove informative, as the following example shows.

Example 3.5. Suppose we use a symmetric (v, v, k, k, 3)-BIBD in Protocol 6. Consider
linked queries q1 and q2 submitted by Ui, with corresponding memory spaces Sh1 and Sh2 .
By Theorem 1.4, since the BIBD is symmetric, we have |Sh1 ∩ Sh2 | = 3. That is, there are

87

exactly two other users, say Uj and Ut, in both Sh1 and Sh2 . This implies that there is only
one coalition of users of size 2 that can identify Ui as the source. If we consider random
coalitions, the probability that a random coalition of size 2 consists of {Uj, Ut} is 1

/(
v−1

2

)
.

Let us consider other coalitions of size 2. Suppose C = {Uj, U`}, for some user U` 6=
Ut, Ui. Then C knows the source is either Ut or Ui. There are v − 3 such coalitions. The
analysis for C containing Ut but not Uj is similar. If we consider C = {U`, U`′} such that
Ut, Uj /∈ C, the most advantageous coalition satisfies (without loss of generality) U` ∈ Sh1 ,
U`′ ∈ Sh2 . In this case, C sees both q1 and q2 and can conclude that the source is one of
{Ui, Uj, Ut}. There are (k − 3)2 such coalitions. Other coalitions of size 2 either see only
one of {q1, q2}, in which case the analysis reduces to that of Theorem 3.4 or 3.6, or neither
of the linked queries, in which case C can do nothing.

We extend this average-case analysis for ρ = 2 to a general symmetric (v, k, λ)-BIBD
and coalitions C of size c in the following example. The analysis provided can be used
to compute the performance of Protocol 6 against an average coalition when a symmetric
BIBD is used.

Theorem 3.14. Suppose we use a symmetric (v, k, λ)-BIBD in Protocol 6. Consider linked
queries q1 and q2 submitted by Ui, with corresponding memory spaces Sh1 and Sh2. Suppose
we have a coalition C of size c. We have the following breakdown of possible coalitions C
that can occur:

1. There are a total of 2
(
v−k
c

)
−
(
v−2k+λ

c

)
coalitions C that do not see both q1 and q2. In

particular, there are
(a)

(
v−2k+λ

c

)
coalitions such that C sees neither of the queries, and

(b) 2
((
v−k
c

)
−
(
v−2k+λ

c

))
coalitions such that C sees only one of the queries.

2. The remaining coalitions C see both q1 and q2. In particular, there are
(a)

(
λ−1
t

)(
v−λ
c−t

)
coalitions such that C has exactly t members in Sh1 ∩ Sh2, where here

t satisfies 1 ≤ t ≤ λ− 1, and
(b)

(
v−λ
c

)
−2
(
v−k
c

)
+
(
v−2k+λ

c

)
coalitions such that C∩ (Sh1 ∩Sh2) = ∅, but C∩Sh1 6= ∅

and C ∩ Sh2 6= ∅.

Now, if we have a symmetric BIBD, we have |Sh1 ∩ Sh2| = λ, by Theorem 1.4. Con-
sidering the breakdown of coalitions C given in Theorem 3.14, we make the following ob-
servations about the capabilities of each of these coalitions with respect to linked queries
q1 and q2. First, coalitions C that cannot view either of the queries are unable to launch
an attack in the first place. For coalitions that see exactly one of the queries, the analysis
reduces to that of a single query. In particular, such a coalition knows the source is one
of the |Shj\C| other users in the given memory space Shj . We can use Theorem 3.6 to
determine C’s advantage in guessing the identity of the source.

Now suppose the coalition can view both q1 and q2. In all such cases, C can determine
that Ui ∈ (Sh1 ∩Sh2)\C. Theorem 3.13 can be used to determine the coalition’s advantage

88

in guessing the source Ui. In particular, for coalitions that have exactly t members in
Sh1 ∩ Sh2 , where t satisfies 1 ≤ t ≤ λ− 1, we have |(Sh1 ∩ Sh2)\C| = λ− t. The only other
possible type of coalition C that can view q1 and q2 has no member in both Sh1 and Sh2 ,
but has at least one member in each of these memory spaces. For this type of coalition,
we have |(Sh1 ∩ Sh2)\C| = λ.

Example 3.6. Consider the finite projective plane of order 17, which is a symmetric
(307, 18, 1)-BIBD. Consider linked queries q1 and q2 submitted by Ui, with correspond-
ing memory spaces Sh1 and Sh2 . Using the analysis in Example 3.14, we consider security
against a coalition of size 2. We have the following breakdown of coalitions:

• There are
(
v−2k+λ

c

)
= 36856 coalitions that see neither q1 nor q2.

• There are 2
((
v−k

2

)
−
(
v−2k+λ

2

))
= 9520 coalitions that see only one query qj ∈ {q1, q2}.

These coalitions are able to narrow down the list of possible sources to Shj\C. We
note that |Shj\C| ≥ k − 2 = 16.

• There are
(
v−λ
c

)
− 2
(
v−k
c

)
+
(
v−2k+λ

c

)
= (k − λ)2 = 289 coalitions that see both q1 and

q2. These coalitions can identify the source Ui.

The probability that a random coalition of size 2 can identify the source is therefore
approximately 0.006.

3.6.2. Two methods to increase privacy. We discuss two methods for increasing pri-
vacy against coalitions of users, namely incorporating t-anonymity sets and query hops
into our protocols.

3.6.2.1. t-anonymity sets. Beyond the limited cases described above, it is difficult to an-
alyze the privacy guarantees of the proxy-designated BIBD and covering design protocols
in the presence of linked queries. In particular, it becomes difficult to analyze the case of
intersections of three or more memory spaces, and the size of these intersections probably
decreases quickly. We might, however, wish to provide privacy for ρ > 2. One possible
solution is to introduce the notion of built-in permanent anonymity sets for each user.
That is, suppose the set of users U is partitioned into anonymity sets T1, . . . Tg, where each
T` consists of at least t users. We further assume that the set system satisfies the property
T`∩Sj ∈ {∅, T`} for all `, j. We call such a construction a covering design with t-anonymity
sets.

Theorem 3.15. Fix a partition T = {T1, . . . Tg} of the set of users U , such that each T`
consists of at least t users. Then we can construct a covering design with t-anonymity sets.

Proof. We can construct a covering design with t-anonymity sets by the following method.
First, we construct a covering design on a set of g points, say X = {x1, . . . , xg}. We then
define a bijection σ between the set of g points and the g anonymity sets, so σ(X) = T .
Finally, for each x` ∈ X , we replace the point x` by the anonymity set σ(x`) = T`′ , where
1 ≤ `′ ≤ g. This yields a covering design satisfying the desired property. �

89

Theorem 3.16. Fix a covering design with permanent anonymity sets of minimum size
t. Then we achieve (ρ, c, t− c− ρ)-anonymity in Protocol 5 and (ρ, c, t− c)-anonymity in
Protocol 6:

Proof. Let C be a coalition of size at most c and consider a set of linked queries q1, . . . , qρ.
Let Sh` be the memory space used for the query q` and let Uh` denote the proxy for q`, for
1 ≤ ` ≤ ρ.

In Protocol 5, we have∣∣(Sh1\ (C ∪ {Uh1})
)
∩
(
Sh2\ (C ∪ {Uh2})

)
∩ · · · ∩

(
Shρ\(C ∪ {Uqρ})

)∣∣
= |(Sh1 ∩ Sh2 ∩ · · · ∩ Shρ)\(C ∪ {Uh1 , Uh2 , . . . , Uhρ})| ≥ t− c− ρ.

In Protocol 6, we have

|(Sh1\C) ∩ (Sh2\C) ∩ · · · ∩ (Shρ\C)| = |(Sh1 ∩ Sh2 ∩ · · · ∩ Shρ)\C| ≥ t− c.
This completes the proof. �

The idea of using permanent anonymity sets changes the trust requirements of the
scheme. In particular, Ui must trust the users contained in Ti to a greater extent than
users in U\Ti, since members of Ti necessarily have access to Ui’s query sphere. That is,
there is no confidentiality among members of an anonymity set.

3.6.2.2. Query hops. Another possible method to increase privacy against other users,
which we briefly discuss here, involves the introduction of query hops into the protocols.
That is, we can consider allowing a designated proxy to rewrite a given query to another
memory space, rather than simply forwarding the query to DB. We can establish a prob-
abilistic approach, such that a designated proxy Uj forwards the query to DB with some
fixed probability p; otherwise Uj rewrites the query uniformly at random to one of his
associated memory spaces. When a response is received, a user simply posts the response
back to the memory space where it was read from. This can continue until the query
response reaches the source. In this case, it is easy to see that, on average, a query is
posted 1/p times. This method removes the certainty a curious user has that the source
of a given query is associated with the memory space in which that query is written. It is
an interesting problem to analyze the privacy guarantees such a scheme provides against
other users.

Here we consider an implementation of the protocol using a BIBD for the underlying
P2P network. The protocol and analysis can be generalized to other types of designs (in
the same manner as for Protocols 3–4), but we choose a BIBD for simplicity. Formally, we
have the following query submission protocol:

Protocol 7. Multi-hop BIBD Protocol
We fix a (v, b, r, k, λ)-BIBD and let p be a fixed probability. Users submit queries according
to the following steps:

90

1. When a user Ui wishes to send a query q to DB, he chooses to act as his own proxy
with probability 1/v. User Ui then writes the query q uniformly at random to one
of the r memory spaces with which he is associated, with himself listed as proxy.
Otherwise, Ui chooses uniformly at random one of the r memory spaces with which he
is associated, say S`, and then he chooses uniformly at random a user Uj ∈ S`\{Ui}.
Finally, user Ui requests that user Uj act as his proxy using the memory space S`.

2. When a user Uj sees that he is a requested proxy for query q in S`, the user Uj submits
q directly to DB with probability p. Otherwise Uj executes Step 1, acting in the role
of the source.

Suppose we have a query q posted to memory space S` with proxy Uj. We represent this
event as a tuple (q, S`, Uj). We refer to each time a designated proxy Uj executes Step 1
(and rewrites a query q) as a hop. Let H be a random variable denoting the hop count.
For a given query tuple (q, S`, Uj), we let H(q, S`, Uj) denote the number of hops the query
q has already taken. That is, we set H(q, S`, Uj) = 0 when the query q is first submitted
by the source Ui and we increment the hop count by one every time a designated proxy
rewrites the query. In particular, we are interested in computing the probability that a
given query tuple (q, S`, Uj) satisfies H(q, S`, Uj) = 0, i.e., the probability that this is the
first time the query q has been written to a memory space. We sometimes abuse notation
and write H(q) for H(q, S`, Uj) when the particular memory space S` and proxy Uj used
is not relevant.

We show the probabilistic advantage a user Ut has in guessing the source of a given
query in the following theorem:

Theorem 3.17. Fix a (v, k, λ)-BIBD in Protocol 7 and assume that Pr[S = Ui] = 1/v for
all Ui ∈ U . Suppose Ut ∈ S` sees a query q posted to S` with proxy Uj ∈ S` that is not his
own. Then, from the point of view of Ut, for a given query q and Ui ∈ U\{Ut}, it holds
that

Pr[S = Ui | (Q,M,P) = (q, S`, Uj)] =

1−p
v−1

+ p
k−1

if Ui ∈ S` and t = j
1−p
v−1

+ pλ
λ+r(k−2)

if Ui ∈ S` and i = j
1−p
v−1

+ pr
λ+r(k−2)

if Ui ∈ S` and i, t 6= j
1−p
v−1

if Ui ∈ U\S`

.

Proof. For a population of N queries q1, . . . , qN with H = 0, the expected number of queries
with H = ` is N(1− p)` . That is, the expected number of queries that are generated from
q1, . . . , qN is N

∑∞
`=0(1− p)` = N/p. This yields

Pr[H = 0 | (Q,M,P) = (q, S`, Uj)] =
N(
N

p

) = p.

91

Consider a user Ut ∈ S` who observes the query tuple (q, S`, Uj). Then by Theorem 3.5
we have, for Ui 6= Ut such that Ui ∈ S`,

Pr[S = Ui | (Q,M,P) = (q, S`, Uj),H = 0] =

1

k−1
if t = j

λ
λ+r(k−2)

if i = j
r

λ+r(k−2)
if i, t 6= j

.

In addition, it is clear from the protocol description that a query tuple (q, S`, Uj) with
nonzero hop count provides no additional information to Ut as to the identity of the source
of q; that is, for all Ui ∈ U\{Ut}, we have

Pr[S = Ui | (Q,M,P) = (q, S`, Uj),H 6= 0] =
1

v − 1
.

We can compute the conditional distribution on possible sources Ui 6= Ut by taking the
weighted average of the above two probability distributions. That is,

Pr[S = Ui | (Q,M,P) = (q, S`, Uj)] =

1−p
v−1

+ p
k−1

if Ui ∈ S` and t = j
1−p
v−1

+ pλ
λ+r(k−2)

if Ui ∈ S` and i = j
1−p
v−1

+ pr
λ+r(k−2)

if Ui ∈ S` and i, t 6= j
1−p
v−1

if Ui ∈ U\S`
This completes the proof. �

Remark 3.13. We can generalize Theorem 3.17 to coalitions C of c users by using the
results of Theorem 3.6, if desired.

Theorem 3.17 indicates that as the probability p of forwarding queries directly to the
database approaches zero, the probability distribution on the v − 1 possible sources other
than Ut approaches the uniform distribution. That is, the greater the likelihood that
queries will be written to multiple memory spaces before being forwarded to the database,
the less the advantage of Ut in identifying the source, and correspondingly, the harder the
attack on linked queries described in Section 3.6.1 is to perform. Of course, we cannot
completely avoid this attack on linked queries, because as before, we expect the source of a
series of linked queries to appear less frequently as proxy than every other user. We make
this explicit by generalizing Theorem 3.7 to the multi-hop BIBD protocol setting in the
next result.

Theorem 3.18. Fix a (v, k, λ)-BIBD in Protocol 7 and assume that Pr[S = Ui] = 1/v for
all Ui ∈ U . Consider a user Ui and a memory space S` satisfying Ui ∈ S`. Let q1, . . . , qρ
be a series of queries with source Ui posted to S`. The user Ui acts as his own proxy an
average of ρ

(
p
v

+ 1−p
k

)
times, and every other user Uj 6= Ui ∈ S` acts as proxy an average

of ρ
(
pr
λv

+ 1−p
k

)
times.

92

Proof. We assume Uj ∈ S`. Consider a single query q. For Protocol 7, we remark that
when H = 0, we have the same analysis as in Theorem 3.7. In particular, we have

Pr[P = Uj | S = Ui,M = S`,H = 0] =
Pr[P = Uj,S = Ui,M = S` | H = 0]

Pr[S = Ui,M = S` | H = 0]

=

{
1
v

if i = j
r
λv

if i 6= j
.

When H 6= 0, however, the proxy distribution is uniform, so we have

Pr[P = Uj | S = Ui,M = S`,H 6= 0] =
1

k
.

Recall, as shown in the proof of Theorem 3.17, Pr[H = 0 | (Q,M,P) = (q, S`, Uj)] = p.
Therefore, we have

Pr[P = Uj | S = Ui,M = S`] =

{
p
v

+ 1−p
k

if i = j
pr
λv

+ 1−p
k

if i 6= j
.

This completes the proof. �

3.7. Discussion and Comparison with Related Work

The concept of P2P UPIR was introduced by Domingo-Ferrer and Bras-Amorós [27]
and later extended by Domingo-Ferrer et al. [28]. Stokes and Bras-Amorós [71, 73] note
weaknesses in the original protocol and propose their own version. We give both the
original DBWM Protocol (Protocol 1) and modified version by Stokes and Bras-Amorós
(Protocol 2) in Section 3.4, and discuss the differences between these protocols and our own
in detail. Furthermore, we give a detailed model for P2P UPIR in Section 3.3 and point
out relevant differences with respect to related work; we reiterate that a major difference
in our security model is that we assume users can communicate outside of the P2P UPIR
protocol.

As already observed, previous work focuses on using configurations for the underlying
P2P network, and Stokes and Bras-Amorós [71,73] argue that the finite projective planes
are the optimal choice. The relevant mathematical problems and analysis with respect to
combinatorial configurations are given in detail by Bras-Amorós et al. [5]. Subsequent to
our work [77], Stokes and Bras-Amorós [72] survey how to choose configurations for the
DBWMS Protocol (Protocol 2). Much of this material [5,71–73] also appears in Stokes’
Ph.D. dissertation [70].

In particular, Stokes and Bras-Amorós discuss configurations which have n-anonymous
neighborhoods, based on the well-known concept of k-anonymity [78] and similar to our
notion of t-anonymity sets. The authors consider n-anonymity for n < v with respect
to the database (as opposed to perfect anonymity, or v-anonymity, which we consider)
and propose using transversal designs with λ = 1 (defined in Section 1.2.4) to achieve

93

n-anonymity. Stokes and Farrás [74] build on our work [77] and that of Stokes and Bras-
Amorós [72] and once again present combinatorial configurations (specifically, BIBDs and
transversal designs with λ = 1) as the optimal choice for the underlying P2P network. We
remark that both of these works [72,74] assume that users can communicate only within
shared memory spaces, which is the motivation behind limiting the P2P network topology
to designs with λ = 1. The protocols provided by these authors are vulnerable to the same
intersection attacks by coalitions of users we describe in Section 3.6, provided we allow for
communication between users outside the confines of the chosen configuration.

Other methods of obfuscating query profiles using user collaboration have been pro-
posed; we briefly discuss the most relevant here. Reiter and Rubin [56] introduced Crowds,
which is similar in flavor to the multi-hop BIBD protocol (Protocol 7). In Crowds, a group
of users send their web server requests to some other user with a fixed probability pf and
submit the request to the end server themselves with probability 1 − pf . Similarly, users
who receive a request forward this request to another user with probability pf and to the
end server otherwise. Responses are sent back along the same path. Crowds differs from
the P2P UPIR model in that there are no memory spaces, and consequently users know
who has forwarded them a particular query. The predecessor attack on Crowds, which
is identified by Reiter and Rubin [56] and discussed in detail by Wright et al. [82, 83],
is a weakness of the protocol against coalitions of other users. The attack is based on
the observation that the request initiator is more likely to appear directly before the first
attacker on the path than any other user. Therefore, given sufficiently many rounds, a
coalition of users can successfully identity the initiator of a recurring connection with high
probability, where a recurring connection is some repeated request to an end server that
can be uniquely identified by the attackers. This is similar to the attacks on linked queries
in our P2P UPIR protocols we discuss in Section 3.6.

Castellà-Roca et al. [7] present a protocol that uses a similar model to that of UPIR,
but only superficially analyzes the level of privacy achieved. This protocol uses a central
node and cryptographic primitives in order for groups of n users to submit a set of n queries
on behalf of each other; groups can only be formed once sufficiently many memberships
requests have been received and are dissolved after each round of queries. Viejo and
Castellà-Roca [80] present a protocol in which users exchange queries with their friends
on an existing social network which has private relationships, i.e., the network topology is
unknown. The protocol has built-in incentives to ensure good behavior among users, and
the end result is that the query profile of a given user is dispersed among his neighbors.
Other work [25, 42, 60, 79] explores privacy-preserving mechanisms involving submission
of random queries to distort user query profiles. GoogleSharing [37] re-routes user requests
to Google through proxies.

Domingo-Ferrer [26] has developed the concept of coprivacy, which uses game-theoretic
notions to analyze user cooperation in maintaining privacy. Specifically, Domingo-Ferrer
considers protocols which are coprivate in that an individual user’s best option to maintain

94

his own privacy is to help other users’ preserve their privacy. The author applies the the-
ory of co-privacy to the setting of both P2P UPIR and online social networking. Recently,
Domingo-Ferrer and González-Nicolás [29] extend this game-theoretic approach to ana-
lyzing P2P UPIR protocols (termed P2P profile obfuscation protocols in this work). The
authors establish an entropy-based metric for user privacy and give conditions under which
it is rational for individual users to help other users maintain privacy. Along similar lines,
Rebollo-Monedero et al. [55] consider query profile obfuscation through query exchange
between two users, carefully modelling user privacy in terms of the Shannon entropy of the
users’ apparent query profiles and defining optimization strategies for determining which
queries should be exchanged.

3.8. Concluding Remarks and Future Work

In this chapter, we have given an overview and analysis of current research in UPIR,
including introducing an attack by the database on user privacy. We have established a
new model for P2P UPIR and considered the problem of user privacy against other users
in detail, going well beyond previous work. We have given two new P2P UPIR protocols
(and generalizations of these) and provided an analysis of the privacy properties provided
by these protocols. In particular, our protocols have the nice property that security against
the database is unconditional, in the sense that from the database’s perspective, each user
is equally likely to be the source of a given query (or set of linked queries). In addition,
our protocols take advantage of the wide variety of available combinatorial designs. Doing
so provides flexibility in the set-up phase, allowing for a choice between having a dynamic
scheme (in which users are permitted to enter and leave the system), or providing increased
privacy against other users.

Future work includes developing realistic cryptographic primitives for achieving the
security assumptions made in our P2P UPIR protocols, such as the need for users to be
unaware of which other user posted a given query to a shared memory space, and incor-
porating traffic analysis into the adversarial model. Moreover, developing more effective
methods to mitigate attacks by user coalitions on linked queries is desirable. To this end, a
more in-depth analysis of the relationship our protocols have with other profile obfuscation
schemes in the literature might be informative, in particular with respect to the implica-
tions our mathematical analysis has on the efficiency of attacks and suggested preventative
measures.

Another interesting avenue is to consider using transversal designs to construct the
underlying P2P network, an idea contemplated by Stokes and Farrás [74] for λ = 1. In
particular, using transversal designs (not necessarily with λ = 1) might be a good way
to achieve scalability of the system to handle large groups of users, while still retaining
acceptable levels of anonymity with respect to the database.

95

CHAPTER 4

Combinatorial Solutions Providing Improved Security for the
Generalized Russian Cards Problem

4.1. Introduction

Suppose X is a deck of n cards, and we have three participants, Alice, Bob and Cathy.
Let a + b + c = n and suppose that Alice is dealt a hand of a cards, Bob is dealt a hand
of b cards and Cathy is dealt a hand of c cards. These hands are random and dealt by
some entity external to the scheme. We denote Alice’s hand by HA, Bob’s hand by HB

and Cathy’s hand by HC . Of course it must be the case that HA ∪ HB ∪ HC = X. We
refer to this as an (a, b, c)-deal of the cards.

As before, for a positive integer t, let
(
X
t

)
denote the set of

(
n
t

)
t-subsets of X. An

announcement by Alice A is a subset of
(
X
a

)
. It is required that when Alice makes an

announcement A, the hand she holds is one of the a-subsets in A. The goal of the scheme
is that, after a deal has taken place and Alice has made an announcement, Bob should be
able to determine Alice’s hand, but Cathy should not be able to determine if Alice holds
any particular card not held by Cathy. These notions will be formalized as we proceed.
We focus on the scenario of Bob learning Alice’s hand, although the original version of this
problem is for Bob and Alice to learn each other’s hand. We omit the latter case, since for
any protocol whereby Bob may learn Alice’s hand, Bob may then announce Cathy’s hand
publicly. This second step provides sufficient information for Alice to determine Bob’s
hand, without giving Cathy any more information than she previously had.

This problem was first introduced in the case (a, b, c) = (3, 3, 1) in the 2000 Moscow
Mathematics Olympiad. Since then, there have been numerous papers investigating the
problem (called the Russian cards problem) and generalizations of it, which we discuss in
some detail in Section 4.8. Some are interested in card deal protocols that allow players
to agree on a common secret without a given eavesdropper being able to determine this
secret value. This area of research is especially interesting in terms of possible applications
to key generation [3,31–35,47,51]. Others are concerned with analyzing variations of the
problem using epistemic logic [15, 19–21]. Duan and Yang [30] and He and Duan [41]
consider a special generalization, with n − 1 players each dealt n cards, and one player

Much of the material in this chapter appears in the paper “Combinatorial solutions providing improved
security for the generalized Russian cards problem” [75], published in Designs, Codes and Cryptography
(2012).

96

(the intruder) dealt one card; the authors give an algorithm by which a dealer, acting as a
trusted third party, can construct announcements for each player. There have been some
papers that take a combinatorial approach [1,3,4,12]. In addition, there has been recent
work [13,22] in which protocols consisting of more than once announcement by Alice and
Bob are considered, which is a generalization of the problem which we consider here, and
one paper [14] that builds on our work.

We take a combinatorial point of view motivated by cryptographic considerations. To
be specific, we provide definitions based on security conditions in the unconditionally secure
framework, phrased in terms of probability distributions regarding information available
to the various players (analogous to Shannon’s definitions relating to perfect secrecy of
a cryptosystem). In particular, we provide a formal mathematical presentation of the
generalized Russian cards problem. We introduce rigorous mathematical definitions of
security, which in turn allow for systematic and thorough analysis of proposed protocols.
We give necessary conditions and provide constructions for schemes that satisfy the relevant
definitions. Here there is a natural interplay with combinatorics, particularly the field of
combinatorial designs.

4.2. Overview of Contributions

The main contributions of our work are as follows:

• We provide a formal mathematical presentation of the generalized Russian Cards prob-
lem. In particular, we define an announcement strategy for Alice, which designates
a probability distribution on a fixed set of possible announcements Alice can make,
say A1,A2, . . . ,Am. In keeping with standard practice in cryptography (i.e., Kerck-
hoffs’ principle), we assume that Alice’s announcement strategy is public knowledge.
Security through obscurity is not considered an effective security method, as secrets
are difficult to keep; providing security under the assumption the adversary has full
knowledge of the set-up of the given scheme is therefore the goal. This allows us to
define the communication complexity of the protocol to be dlog2me bits, since Alice
need only broadcast the index i of her chosen announcement, which is an integer be-
tween 1 and m. In order to minimize the communication complexity of the scheme,
our goal will be to minimize m, the number of possible announcements.
• We distinguish between deterministic strategies, in which the hand HA held by Alice

uniquely determines the index i that she will broadcast, and non-deterministic, pos-
sibly even biased announcement strategies. We are especially interested in strategies
with uniform probability distributions, which we refer to as equitable strategies.
• We examine necessary and sufficient conditions for a strategy to be informative for

Bob (i.e., strategies that allow Bob to determine Alice’s hand). In particular, we
give a lower bound on the number of announcements m for informative strategies
and provide a nice combinatorial characterization of strategies that meet this bound,
which we term optimal strategies.

97

• We provide the first formal security definitions that account for both weak and perfect
security in an unconditionally secure framework. Current literature focuses on weak
security. Here weak and perfect security are defined with respect to individual cards.
If a scheme satisfies weak security (which we term weak 1-security), Cathy should not
be able to say whether a given card is held by Alice or Bob; if a scheme satisfies perfect
security (which we term perfect 1-security), each card is equally likely to be held by
Alice. When Alice’s strategy is equitable, we show an equivalence between perfectly
secure strategies and sets of 2-designs on n points with block size a.
• We use constructions and results from the field of combinatorial designs to explore

equitable strategies that are simultaneously informative and perfectly secure. In par-
ticular, we analyze the case c = a−2 in detail, and show that strategies for (a, b, a−2)-
deals that are simultaneously informative and perfectly secure must satisfy c = 1. We
also show a precise characterization between Steiner triple systems and informative,
perfectly secure (3, n− 4, 1)-deals.
• We generalize our notions of weak and perfect security, which focus on the probability

that individual cards are held by Alice, and consider instead the probability that a
given set of δ cards is held by Alice; we refer to these notions as weak or perfect δ-
security. We consider equitable strategies and show an equivalence between perfectly
δ-secure strategies and (c + δ)-designs on n points with block size a. For equitable,
informative, perfectly (a − c − 1)-secure strategies, we achieve parallel results to the
a − c = 2 case, showing c = 1 and demonstrating an equivalence between these
strategies and Steiner systems S(a− 1, a, n).
• We show how to use a t-(n, a, 1)-design to construct equitable (a, b, c)-strategies that

are informative for Bob and perfectly (t − c)-secure against Cathy for any choice of
c satisfying a − c ≥ t. In particular, this indicates that if an appropriate t-design
exists, it is possible to achieve perfect security for deals where Cathy holds more
than one card. We present an example construction, based on inversive planes, for
(q+1, q2−q−2, 2)-strategies which are perfectly 1-secure against Cathy and informative
for Bob, where q is a prime power. This is the first strategy presented in the literature
that is informative for Bob and achieves perfect 1-security against Cathy for c > 1.
• We discuss a variation on the generalized Russian cards problem, where the card deck

is first split into a piles, and Alice and Cathy’s hands consist of at most one card
from each pile, with Bob receiving the remaining cards. This variant admits a nice
solution using transversal designs with λ = 1 that achieves weak (a− 2c)-security. In
particular, this solution is easy to construct and is optimal with respect to both the
number of announcements and level of security achieved.

4.2.1. Chapter outline. We define the basic framework for the generalized Russian cards
problem, establish the relevant notation, and provide example solutions in Section 4.3. In
Section 4.4, we study and define the notion of an informative strategy. We then move to
a formal discussion of secure strategies in Section 4.5, defining and studying the security
of individual cards in Section 4.5.1 and the security of multiple cards in Section 4.5.2. In

98

Section 4.6, we explore strategies that are simultaneously informative and either weakly
or perfectly δ-secure, discussing construction methods and examples in Section 4.6.1. In
Section 4.7 we discuss a variant of the generalized Russian cards problem and present a
solution using transversal designs. We discuss related work in Section 4.8. Finally, we give
some concluding remarks in Section 4.9.

4.3. Preliminary Notation and Examples

Alice will choose a set of announcements, say A1,A2, . . . ,Am, such that every HA ∈
(
X
a

)
is in at least one of the m announcements. For HA ∈

(
X
a

)
, define g(HA) = {i : HA ∈

Ai}. Alice’s announcement strategy, or more simply, strategy, consists of a probability
distribution pHA on g(HA), for every HA ∈

(
X
a

)
. The set of announcements and probability

distributions are fixed ahead of time and they are public knowledge. We use the phrase
(a, b, c)-strategy to denote a strategy for an (a, b, c)-deal. In addition, we assume without
loss of generality that pHA(i) > 0 for all i ∈ g(HA). To see this, note that if pHA(i) = 0 for
some HA ∈

(
X
a

)
and i ∈ g(HA), this means Alice will never choose Ai when she holds HA.

But since the set of announcements and probability distributions are public knowledge,
Cathy also knows this, so there is no reason to have included HA in the announcement Ai.

When Alice is dealt a hand HA ∈
(
X
a

)
, she randomly chooses an index i ∈ g(HA)

according to the probability distribution pHA . Alice broadcasts the integer i to specify her
announcement Ai. Because the set of announcements and probability distributions are
fixed and public, the only information that is broadcast by Alice is the index i, which is
an integer between 1 and m. Therefore we define the communication complexity of the
protocol to be dlog2me bits. In order to minimize the communication complexity of the
scheme, our goal will be to minimize m, the number of possible announcements.

If |g(HA)| = 1 for every HA, then we have a deterministic scheme, because the hand
HA held by Alice uniquely determines the index i that she will broadcast. That is to say,
in a deterministic scheme, for any given hand, there is only one possible announcement
that is permitted by the given strategy.

More generally, suppose there exists a constant γ such that |g(HA)| = γ for every HA.
Further, suppose that every probability distribution pHA is uniform, i.e., pHA(i) = 1/γ for
every HA and for every i ∈ g(HA). We refer to such a strategy as a γ-equitable strategy. A
deterministic scheme is just a 1-equitable strategy.

Example 4.1. Let X = {0, . . . , 6}. Figure 1 presents a partition of
(
X
3

)
that is due to

Charlie Colbourn and Alex Rosa (private communication). This yields a deterministic
(3, 3, 1)-strategy having m = 6 possible announcements.

Example 4.2. Let X = {0, . . . , 6}. In Figure 2, we present a set of ten announcements
found by Don Kreher (private communication). It can be verified that every 3-subset of X
occurs in exactly two of these announcements. Therefore we have a 2-equitable (3, 3, 1)-
strategy.

99

i Ai
1 {0, 1, 3}, {1, 2, 4}, {2, 3, 5}, {3, 4, 6}, {0, 4, 5}, {1, 5, 6}, {0, 2, 6}
2 {0, 2, 3}, {1, 3, 4}, {2, 4, 5}, {3, 5, 6}, {0, 4, 6}, {0, 1, 5}, {1, 2, 6}
3 {0, 2, 4}, {0, 3, 5}, {1, 2, 3}, {0, 1, 6}, {1, 4, 5}, {2, 5, 6}
4 {0, 1, 2}, {2, 3, 4}, {4, 5, 6}, {1, 3, 5}, {0, 3, 6}
5 {1, 2, 5}, {0, 5, 6}, {1, 4, 6}, {0, 3, 4}, {2, 3, 6}
6 {3, 4, 5}, {0, 1, 4}, {0, 2, 5}, {2, 4, 6}, {1, 3, 6}

Figure 1. A deterministic (3, 3, 1)-strategy having a set of six possible announcements

i Ai
1 {2, 5, 6}, {2, 3, 4}, {1, 4, 5}, {1, 3, 6}, {0, 4, 6}, {0, 3, 5}, {0, 1, 2}
2 {2, 5, 6}, {2, 3, 4}, {1, 4, 6}, {1, 3, 5}, {0, 4, 5}, {0, 3, 6}, {0, 1, 2}
3 {3, 4, 5}, {2, 4, 6}, {1, 3, 6}, {1, 2, 5}, {0, 5, 6}, {0, 2, 3}, {0, 1, 4}
4 {3, 4, 5}, {2, 4, 6}, {1, 5, 6}, {1, 2, 3}, {0, 3, 6}, {0, 2, 5}, {0, 1, 4}
5 {3, 4, 6}, {2, 3, 5}, {1, 4, 5}, {1, 2, 6}, {0, 5, 6}, {0, 2, 4}, {0, 1, 3}
6 {3, 4, 6}, {2, 3, 5}, {1, 5, 6}, {1, 2, 4}, {0, 4, 5}, {0, 2, 6}, {0, 1, 3}
7 {3, 5, 6}, {2, 4, 5}, {1, 3, 4}, {1, 2, 6}, {0, 4, 6}, {0, 2, 3}, {0, 1, 5}
8 {3, 5, 6}, {2, 4, 5}, {1, 4, 6}, {1, 2, 3}, {0, 3, 4}, {0, 2, 6}, {0, 1, 5}
9 {4, 5, 6}, {2, 3, 6}, {1, 3, 4}, {1, 2, 5}, {0, 3, 5}, {0, 2, 4}, {0, 1, 6}
10 {4, 5, 6}, {2, 3, 6}, {1, 3, 5}, {1, 2, 4}, {0, 3, 4}, {0, 2, 5}, {0, 1, 6}

Figure 2. An equitable (3, 3, 1)-strategy having a set of ten possible announcements

The following notation will be useful in formally defining informative and secure strate-
gies A. For any subset Y ⊆ X and any announcement Ai ∈ A, define

PA (Y, i) = {HA ∈ Ai : HA ∩ Y = ∅} .
That is, PA (Y, i) is the set of hands of Ai that do not intersect the subset Y . When the
strategy A is clear from context, we write PA (Y, i) as P (Y, i)

4.4. Informative Strategies

In this section, we formalize the notion of strategies that are informative for Bob, which
we first introduced in Section 4.2. We first consider an (a, b, c)-deal from Bob’s point of
view, after hearing Alice’s announcement. Suppose that HB ∈

(
X
b

)
and i ∈ {1, . . . ,m}.

Then
P (HB, i) = {HA ∈ Ai : HA ∩HB = ∅} .

That is, P (HB, i) denotes the set of possible hands that Alice might hold, given that Bob’s
hand is HB and Alice’s announcement is Ai. Note that if Alice chooses the announcement

100

Ai, then P (HB, i) 6= ∅, as Alice’s strategy requires that her hand be an element of Ai.
Alice’s strategy is informative for Bob provided that

|P (HB, i)| ≤ 1 (14)

for all HB ∈
(
X
b

)
and for all i. In this situation, if Bob holds the cards in HB and Alice

broadcasts i, then Bob can determine the set of a cards that Alice holds.

If for a particular announcementAi and any hand HB ∈
(
X
b

)
, we have that |P (HB, i)| ≤

1, we say that Ai is an informative announcement. This terminology is in keeping with
previous work, which considers protocol characteristics only on the level of individual
announcements.

The following result was shown by Albert et al. [1], albeit using different terminology:

Theorem 4.1. The announcement Ai is informative for Bob if and only if there do not
exist two distinct sets HA, H ′A ∈ Ai such that |HA ∩H ′A| ≥ a− c.

Proof. Suppose there exist two distinct sets HA, H
′
A ∈ Ai such that |HA ∩H ′A| ≥ a − c.

We have that |HA ∪H ′A| ≤ 2a − (a − c) = a + c = n − b. Hence, there exists HB ∈
(
X
b

)
such that HB ∩ (HA ∪H ′A) = ∅. Then {HA, H

′
A} ⊆ P (HB, i) , which contradicts (14).

Conversely, suppose {HA, H
′
A} ⊆ P (HB, i), where HA 6= H ′A. Then |HA ∪H ′A| ≤

n− b = a+ c, and hence |HA ∩H ′A| ≥ a− c. �

It follows from Theorem 4.1 that the (3, 3, 1)-strategies presented in Examples 4.1 and
4.2 are both informative for Bob, because |HA ∩H ′A| ≤ 1 whenever HA and H ′A are two
distinct sets in the same announcement.

We also have the following necessary condition.

Corollary 4.2. Suppose there exists a strategy for Alice that is informative for Bob. Then
a > c.

Furthermore, when a > c, we can derive a lower bound on the size of Alice’s announce-
ment.

Theorem 4.3. Suppose a > c and there exists a strategy for Alice that is informative for
Bob. Then m ≥

(
n−a+c

c

)
.

Proof. Let X ′ ⊆ X where |X ′| = a − c. There are precisely
(
n−a+c

c

)
a-subsets of X that

contain X ′. These a-subsets must occur in different announcements, by Theorem 4.1.
Therefore m ≥

(
n−a+c

c

)
. �

In view of the above theorem, an (a, b, c)-strategy for Alice that is informative for Bob is
said to be optimal if m =

(
n−a+c

c

)
. In fact, we can give a nice combinatorial characterization

of such optimal strategies. First we make the following observation, which follows directly
from Theorem 4.1 and the definition of a t-design.

101

Corollary 4.4. Suppose a > c and each announcement in an (a, b, c)-strategy is a t-
(n, a, 1)-design, where t ≤ a− c. Then the strategy is informative for Bob.

We have the following combinatorial characterization of optimal strategies:

Theorem 4.5. Suppose that a > c. An optimal (a, b, c)-strategy for Alice that is informa-
tive for Bob is equivalent to a large set of t-(n, a, 1)-designs, where t = a− c.

Proof. Suppose there exists a large set of (a − c)-(n, a, 1)-designs. Recall from Defini-
tion 1.28 that the set of all blocks sets (i.e., possible announcements) in this large set form

a partition of
(
X
a

)
and that there are precisely

(
n−a+c)

c

)
designs in such a set. Then it is easy

to see that this immediately yields an optimal (a, b, c)-strategy for Alice that is informative
for Bob.

Conversely, suppose there is an optimal (a, b, c)-strategy for Alice that is informative
for Bob. We need to show that every announcement is an (a− c)-(n, a, 1)-design. Denote
t = a − c and let X ′ ⊆ X, |X ′| = t. From the proof of Theorem 4.3, the a-subsets
containing X ′ occur in

(
n−a+c

c

)
different announcements. However, there are a total of(

n−a+c
c

)
announcements, so every announcement must contain a block that contains X ′. �

An optimal (3, 3, 1)-strategy would have m = 5. From Theorem 4.5, the existence of
such a strategy would be equivalent to a large set of five STS(7), or Steiner triple systems
of order 7. As mentioned in Remark 1.10, it is known that this large set does not exist.
However, from Example 4.1, we obtain a (3, 3, 1)-strategy for Alice with m = 6 that is
informative for Bob. Thus we have proven the following.

Theorem 4.6. The minimum m such that there exists a (3, 3, 1)-strategy for Alice that is
informative for Bob is m = 6.

It is possible to have informative (a, b, c)-strategies using announcements which are
t-designs with λ > 1. In particular, Theorem 4.1 indicates that the block intersection
properties of the chosen design are relevant to whether or not the strategy is informative.
If every announcement is a symmetric BIBD, for example, then the strategy is guaranteed
to be informative when a− c > λ. This is because the intersection of any two blocks in a
symmetric BIBD contains exactly λ points, as stated in Theorem 1.4.

We make one more observation relating combinatorial designs and informative strate-
gies.

Lemma 4.7. Suppose a > c and each announcement Ai in an (a, b, c)-strategy A is a
ti-(n, a, λi)-design, where ti ≥ a−c. If A is informative for Bob, then ti = a−c and λi = 1
for all i.

102

Proof. Consider an announcement Ai ∈ A. If λi > 1, then there exist two blocks whose
intersection has cardinality at least ti ≥ a − c. This contradicts Theorem 4.1, so λi = 1,
as desired.

If ti > a− c, then from Theorem 1.6, there are

v − (ti − 1)

k − (ti − 1)
> 1

blocks that contain ti − 1 fixed points. Since ti − 1 ≥ a− c, this contradicts Theorem 4.1,
so ti = a− c, as desired. �

4.5. Secure Strategies

In this section, we formalize the notion of strategies that are secure against Cathy,
which we first introduced in Section 4.2. Suppose that Alice makes an announcement Ai
while trying to conceal information about her hand from Cathy. Necessarily Alice’s hand
is an a-subset in Ai. In fact, Cathy knows that Alice’s hand must be one of the a-subsets
in the set P (HC , i) = {HA ∈ Ai : HA ∩ HC = ∅}. Therefore Cathy does obtain some
partial information about Alice’s hand. However, it might be possible to prevent Cathy
from determining whether any individual card (or perhaps some subset of cards) in X\HC

is held by Alice or by Bob. For readability, we first treat the security of individual cards
in Section 4.5.1, before generalizing to the security of multiple cards in Section 4.5.2.

4.5.1. Security of individual cards. We define two notions for the security of individual
cards with respect to Cathy:

Definition 4.1.

1. Alice’s strategy is weakly 1-secure against Cathy provided that, for any announcement
Ai, for any HC ∈

(
X
c

)
such that P (HC , i) 6= ∅, and for any x ∈ X\HC , it holds that

0 < Pr [x ∈ HA | i,HC] < 1.

Weak security means that, from Cathy’s point of view, any individual card in X\HC

could be held by either Alice or Bob.
2. Alice’s strategy is perfectly 1-secure against Cathy provided that for any announcement
Ai, for any HC ∈

(
X
c

)
such that P (HC , i) 6= ∅, and for any x ∈ X\HC , it holds that

Pr [x ∈ HA | i,HC] =
a

a+ b
.

Perfect security means that, from Cathy’s point of view, the probability that any
individual card in X\HC is held by Alice is a constant. This probability must equal
a/(a+ b) because Alice holds a of the a+ b cards not held by Cathy.

It is obvious that perfect 1-security implies weak 1-security.

103

Remark 4.1. The condition P (HC , i) 6= ∅ is included to account for the possibility that
an announcement Ai is not compatible (i.e., will never be announced) with certain hands
HC held by Cathy. That is, we wish to ensure that the conditional probability Pr[x ∈ HA |
i,HC] is defined.

We have the following elementary result:

Lemma 4.8. Consider an (a, b, c)-strategy A that is weakly 1-secure. Then for all Ai ∈ A
and x ∈ X, we have P ({x}, i) 6= ∅.

Proof. We proceed by contradiction. Suppose P ({x}, i) = ∅ for some Ai ∈ A and x ∈ X.
Then x occurs in every hand of Ai. That is, if Alice announces Ai, then Alice must
hold x. In particular, this implies that Cathy’s hand, say HC , does not contain x and
Pr [x ∈ HA | i,HC] = 1. �

The conditions for weak and perfect 1-security depend on the probability distributions
pHA and the possible announcements. We derive simpler, but equivalent, conditions of a
combinatorial nature when Alice’s strategy is equitable. First we state and prove a useful
lemma which establishes that in an equitable strategy, from Cathy’s point of view, any
hand HA ∈ P (HC , i) is equally likely.

Lemma 4.9. Suppose that Alice’s strategy is γ-equitable, Alice’s announcement is Ai,
HC ∈

(
X
c

)
and HA ∈ P (HC , i). Then

Pr [HA | HC , i] =
1

|P (HC , i)|
. (15)

Proof. We have

Pr [HA | HC , i] =
Pr [HA, HC , i]

Pr [HC , i]
.

We can compute

Pr [HA, HC , i] = Pr [HC | HA, i] Pr [i | HA] Pr [HA]

=
1(
b+c
c

) × 1

γ
× 1(

n
a

) .
Similarly, we have

Pr [HC , i] =
∑

H′A∈P(HC ,i)

Pr [HC | H ′A, i] Pr [i | H ′A] Pr [H ′A]

= |P (HC , i)| ×
1(
b+c
c

) × 1

γ
× 1(

n
a

) .
The result follows. �

Theorem 4.10. Suppose that Alice’s strategy is γ-equitable. Then the following hold:

104

1. Alice’s strategy is weakly 1-secure against Cathy if and only if, for any announcement
Ai, for any HC ∈

(
X
c

)
such that P (HC , i) 6= ∅, and for any x ∈ X\HC, it holds that

1 ≤ |{HA ∈ P (HC , i) : x ∈ HA}| ≤ |P (HC , i)| − 1.

2. Alice’s strategy is perfectly 1-secure against Cathy if and only if, for any announcement
Ai and for any HC ∈

(
X
c

)
such that P (HC , i) 6= ∅, it holds that

|{HA ∈ P (HC , i) : x ∈ HA}| =
a |P (HC , i)|

a+ b

for any x ∈ X\HC.

Proof. Since (15) holds, it immediately follows that

Pr [x ∈ HA | i,HC] =
|{HA ∈ P (HC , i) : x ∈ HA}|

|P (HC , i)|
. (16)

Using Equation (16), we observe that

0 <
|{HA ∈ P (HC , i) : x ∈ HA}|

|P (HC , i)|
< 1

holds if and only if

1 ≤ |{HA ∈ P (HC , i) : x ∈ HA}| ≤ |P (HC , i)| − 1.

This gives the first condition of the theorem.

Define rx = |{HA ∈ P (HC , i) : x ∈ HA}|. Alice’s strategy is perfectly 1-secure against
Cathy if and only if the value Pr [x ∈ HA | i,HC] is independent of x. From (16), this
occurs if and only if rx is independent of x. We have that∑

x∈X\HC

rx = a |P (HC , i)| .

There are a + b terms rx in the above sum. These terms are all equal if and only if they
all have the value r = a |P (HC , i)| /(a + b). This proves the second condition of the
theorem. �

Remark 4.2. The above characterization of weak 1-security for equitable strategies is
equivalent to axioms CA2 and CA3 in [1]. The characterization of perfect 1-security for
equitable strategies is equivalent to axiom CA4 in [4].

It can be verified that the (3, 3, 1)-strategy in Example 4.2 is perfectly 1-secure against
Cathy. However, the (3, 3, 1)-strategy in Example 4.1 is only weakly 1-secure against Cathy.

Here is a sufficient condition for an equitable strategy to be perfectly 1-secure against
Cathy.

Lemma 4.11. Suppose that each announcement Ai in an equitable (a, b, 1)-strategy A is
a 2-(n, a, λi)-design. Then the strategy is perfectly 1-secure against Cathy.

105

Proof. Consider an announcement Ai ∈ A and a possible hand HC = {y} for Cathy. There
are

|P (HC , i)| = λi

(
n(n− 1)

a(a− 1)
− n− 1

a− 1

)
blocks in Ai that do not contain y. Each point x ∈ X\{y} is contained in precisely

|{HA ∈ P (HC , i) : x ∈ HA}| = λi

(
n− 1

a− 1
− 1

)
of these blocks.

Then for any x ∈ X\{y}, we have

|P (HC , i)|
|{HA ∈ P (HC , i) : x ∈ HA}|

=
n− 1

a
=
a+ b

a
,

so Condition 2 of Theorem 4.10 is satisfied. �

In fact, the condition that every announcement Ai be a 2-(n, a, λi)-design is also a nec-
essary condition for an equitable (a, b, 1)-strategy to be perfectly 1-secure, as the following
Theorem shows.

Theorem 4.12. Suppose we have an equitable (a, b, 1)-strategy A that is perfectly 1-secure
against Cathy. Then every announcement Ai ∈ A is a 2-(n, a, λi)-design.

Proof. First observe that since Cathy holds only one card, Lemma 4.8 immediately implies
that any element x ∈ X is a possible hand for Cathy. Consider an announcement Ai ∈ A.
We proceed by showing that every pair of distinct elements x, y ∈ X occurs in a constant
number of hands of Ai.

Let x ∈ X. Define rx to be the number of hands of Ai containing x. We proceed by
counting rx in two different ways. On the one hand, we immediately have

rx = |Ai| − |P ({x}, i)| . (17)

On the other hand, we can relate rx to P ({y}, i) for any y 6= x ∈ X as follows. Since
the strategy is perfectly 1-secure, x occurs a constant number of times in P ({y}, i), namely
a
a+b
|P ({y}, i)| times. In particular, this is the number of times x occurs in a hand of Ai

without y. That is, letting λxy denote the number of times x occurs together with y in a
hand of Ai, we have

rx = λxy +
a

a+ b
|P ({y}, i)| . (18)

This gives us

|Ai| = λxy +
a

a+ b
|P ({y}, i)|+ |P ({x}, i)| . (19)

106

Now, following the same logic for y, we also have

|Ai| = λxy +
a

a+ b
|P ({x}, i)|+ |P ({y}, i)| . (20)

Equating Equations (19) and (20) shows that |P ({x}, i)| is independent of the choice
of x ∈ X. That is, rx is independent of x (by Equation 17), so every point of X occurs in
a constant number of hands of Ai, say r hands. Moreover, Equation 18 then gives

λxy = r − a

a+ b
|P ({y}, i)| = r − a

a+ b
(|Ai| − r) ,

so λxy is independent of x and y. That is, every pair of points x, y ∈ X occurs a constant
number of times, which we denote by λi. This implies Ai is a 2-(n, a, λi)-design. �

As we will see once we have generalized our security notions to account for multiple
cards, the relationship between combinatorial designs and strategies that satisfy our notions
of perfect security is quite deep.

4.5.2. Security of multiple cards. We can generalize the definitions of weak and perfect
1-security to weak and perfect δ-security in the natural way.

Definition 4.2. Let 1 ≤ δ ≤ a.

1. Alice’s strategy is weakly δ-secure against Cathy provided that for any δ′ such that
1 ≤ δ′ ≤ δ, for any announcement Ai, for any HC ∈

(
X
c

)
such that P (HC , i) 6= ∅, and

for any δ′ distinct elements x1, . . . , xδ′ ∈ X\HC , it holds that

0 < Pr [x1, . . . , xδ′ ∈ HA | i,HC] < 1.

Weak security means that, from Cathy’s point of view, any set of δ or fewer elements
from X\HC may or may not be held by Alice.

2. Alice’s strategy is perfectly δ-secure against Cathy provided that for any δ′ such that
1 ≤ δ′ ≤ δ, for any announcement Ai, for any HC ∈

(
X
c

)
such that P (HC , i) 6= ∅, and

for any δ′ distinct elements x1, . . . , xδ′ ∈ X\HC , it holds that

Pr [x1, . . . , xδ′ ∈ HA | i,HC] =

(
a
δ′

)(
a+b
δ′

) .
Perfect security means that, from Cathy’s point of view, the probability that any set
of δ or fewer cards from X\HC is held by Alice is a constant.

It is obvious that perfect δ-security implies weak δ-security.

Remark 4.3. The condition P (HC , i) 6= ∅ is included to account for the possibility that
an announcement Ai is not compatible with certain hands HC held by Cathy.

The conditions for weak and perfect δ-security depend on the probability distributions
pHA and the possible announcements. As before, we will derive simpler, but equivalent,
conditions of a combinatorial nature when Alice’s strategy is equitable.

107

Theorem 4.13. Suppose that Alice’s strategy is γ-equitable. Then the following hold:

1. Alice’s strategy is weakly δ-secure against Cathy if and only if, for any δ′ such that
1 ≤ δ′ ≤ δ, for any announcement Ai, for any HC ∈

(
X
c

)
such that P (HC , i) 6= ∅, and

for any δ′ distinct elements x1, . . . , xδ′ ∈ X\HC, it holds that

1 ≤ |{HA ∈ P (HC , i) : x1, . . . , xδ′ ∈ HA}| ≤ |P (HC , i)| − 1.

2. Alice’s strategy is perfectly δ-secure against Cathy if and only if, for any announcement
Ai and for any HC ∈

(
X
c

)
such that P (HC , i) 6= ∅, it holds that

|{HA ∈ P (HC , i) : x1, . . . , xδ ∈ HA}| =
(
a
δ

)
|P (HC , i)|(
a+b
δ

)
for any δ distinct elements x1, . . . , xδ ∈ X\HC.

Proof. Let 1 ≤ δ′ ≤ δ.

Since (15) (from Lemma 4.9) holds, it immediately follows that

Pr [x1, . . . , xδ′ ∈ HA | i,HC] =
|{HA ∈ P (HC , i) : x1, . . . , xδ′ ∈ HA}|

|P (HC , i)|
. (21)

Using Equation (21), we observe that

0 <
|{HA ∈ P (HC , i) : x1, . . . , xδ′ ∈ HA}|

|P (HC , i)|
< 1

holds if and only if

1 ≤ |{HA ∈ P (HC , i) : x1, . . . , xδ′ ∈ HA}| ≤ |P (HC , i)| − 1.

This gives the first condition of the theorem.

For the second condition of the theorem, we first remark that, if the given security
property holds for δ, it will automatically hold for δ′ such that 1 ≤ δ′ ≤ δ. This is because
the security property for δ says that every δ-subset occurs the same number of times within
a certain set of blocks of size |P (HC , i)|. That is, we have a t-design with t = δ. Now,
by Corollary 1.7, every t-design is a t′-design for all t′ ≤ t. Thus it suffices to show that,
for any announcement Ai and for any HC ∈

(
X
c

)
such that P (HC , i) 6= ∅, and for any δ

distinct elements x1, . . . , xδ ∈ X\HC , that

|{HA ∈ P (HC , i) : x1, . . . , xδ ∈ HA}| =
(
a
δ

)
|P (HC , i)|(
a+b
δ

)
holds if and only if

Pr [x1, . . . , xδ ∈ HA | i,HC] =

(
a
δ

)(
a+b
δ

) .
Define rx1,...,xδ = |{HA ∈ P (HC , i) : x1, . . . , xδ ∈ HA}|. Alice’s strategy is perfectly δ-

secure against Cathy if and only if the value Pr[x1, . . . , xδ ∈ HA | i,HC] is independent of

108

the δ-subset {x1, . . . , xδ}. From (21), this occurs if and only if rx1,...,xδ is independent of
the δ-subset {x1, . . . , xδ}. We have that∑

D∈(X\HCδ)

rD =

(
a

δ

)
|P (HC , i)| .

There are
(
a+b
δ

)
terms rD in the above sum. These terms are all equal if and only if they

all have the value r =
(
a
δ

)
|P (HC , i)|

/(
a+b
δ

)
. This completes the proof. �

Theorem 4.14. Suppose that each announcement Ai in an equitable (a, b, c)-strategy A is
a t-(n, a, λi)-design. Then the strategy is perfectly (t− c)-secure against Cathy.

Proof. Consider an announcement Ai ∈ A and a possible hand HC for Cathy. Since c ≤ t,
Theorem 1.8 implies there are

|P (HC , i)| =
λi
(
n−c
a

)(
n−t
a−t

) =
λi
(
a+b
a

)(
n−t
a−t

)
blocks in Ai that do not contain any of the points of HC .

Let δ ≤ t−c. Then Theorem 1.8 also implies that each set of δ points x1, . . . , xδ ∈ X\HC

is contained in precisely

|{HA ∈ P (HC , i) : x1, . . . , xδ ∈ HA}| =
λi
(
n−δ−c
a−δ

)(
n−t
a−t

) =
λi
(
a+b−δ
a−δ

)(
n−t
a−t

)
of these blocks.

Thus, for any set of δ points x1, . . . , xδ ∈ X\HC , we have

|P (HC , i)|
|{HA ∈ P (HC , i) : x1, . . . , xδ ∈ HA}|

=
(a+ b)!(a− δ)!
a!(a+ b− δ)!

=

(
a+b
δ

)(
a
δ

) ,
so Condition 2 of Theorem 4.13 is satisfied. �

For deals satisfying c = 1, we have the following necessary condition for an equitable
strategy to be perfectly δ-secure.

Theorem 4.15. Suppose we have an equitable (a, b, 1)-strategy A that is perfectly δ-secure
against Cathy. Then every announcement Ai ∈ A is a (δ + 1)-(n, a, λi)-design.

Proof. We proceed by induction on δ. The base case (δ = 1) is shown in Theorem 4.12.

Consider an announcement Ai ∈ A. For a subset Y ⊆ X, let λY denote the number of
hands of Ai that contain Y . We show Ai must be a (δ + 1)-design as follows.

109

Suppose we have Y ⊆ X, where |Y | = δ + 1. Pick an element y ∈ Y . Since c = 1,
we have by Lemma 4.8 that {y} is a possible hand for Cathy. Since A is equitable and
perfectly δ-secure, we have (by Theorem 4.13)

|{HA ∈ P ({y}, i) : Y \{y} ⊆ HA}| =
(
a
δ

)
|P ({y}, i)|(
a+b
δ

) .

Moreover, since perfect δ-security implies perfect 1-security, |P ({y}, i)| is independent of
y, as shown in the proof of Theorem 4.12. That is, the number of hands of Ai that contain
the δ-subset Y \{y} but do not contain y is independent of the choice of Y and y ∈ Y , i.e.
is some constant, say s.

Now, A must be perfectly (δ − 1)-secure (since A is perfectly δ-secure), so by the
inductive hypothesis, Ai is a δ-(n, a, λ′i)-design for some λ′i. Therefore, the number of
hands of Ai that contain the δ-subset Y \{y} is precisely λ′i.

We have

λY \{y} = λY +

(
a
δ

)
|P ({y}, i)|(
a+b
δ

)
⇐⇒ λ′i = λY + s.

Therefore, λY is some constant independent of Y , so every (δ + 1)-subset occurs in a
constant number of hands of Ai, say λi. This implies Ai is a (δ + 1)-(n, a, λi)-design, as
desired. �

We are now ready to give a combinatorial characterization of general (a, b, c)-strategies
that are equitable and perfectly δ-secure for some δ ≥ 1.

Theorem 4.16. Suppose we have an equitable (a, b, c)-strategy A that is perfectly δ-secure
against Cathy. Then every announcement Ai ∈ A is a (c+ δ)-(n, a, λi)-design.

Proof. We proceed by induction on c. The base case c = 1 is shown in Theorem 4.15.
Recall that for a strategy A, an announcement Ai ∈ A, and a subset Y ⊆ X, we make the
strategy A explicit in the notation P(Y, i) by writing PA(Y, i).

Let y ∈ X and define X ′ = X\{y}. Define an (a, b, c− 1)-strategy A′ by

A′ = {A′i : A′i = PA ({y}, i) , Ai ∈ A} .

We now show A′ is perfectly δ-secure. Suppose Cathy holds a (c − 1)-subset Y ⊆ X ′

satisfying PA′ (Y, i) 6= ∅ for some A′i. In particular, note that if no such A′i exists, then A′
is trivially perfectly δ-secure.

Consider a δ-subset Z ⊆ X ′\Y = X\(Y ∪{y}). We wish to count the number of hands
in PA′ (Y, i) that contain Z. Now, PA′ (Y, i) = PA (Y ∪ {y}, i), so PA (Y ∪ {y}, i) 6= ∅ and

110

hence Y ∪{y} is a possible hand for Cathy in the original strategy A. Since A is perfectly
δ-secure, we see that (by Theorem 4.13)

|{HA ∈ PA (Y ∪ {y}, i) : Z ⊆ HA}| =
(
a
δ

)
|PA (Y ∪ {y}, i)|(

a+b
δ

) ,

which together with the fact that PA′ (Y, i) = PA (Y ∪ {y}, i), immediately implies A′ is
perfectly δ-secure. Moreover, since A′ is a perfectly δ-secure (a, b, c− 1)-strategy, we have
by the inductive hypothesis that every announcement A′i ∈ A′ is a (c−1 + δ)-(n−1, a, λi)-
design for some λ′i (where λ′i may depend on i).

That is, every (c − 1 + δ)-subset of X\{y} occurs in λ′i hands of A′i = PA ({y}, i).
Since we chose y to be an arbitrary element of X, this implies A is a (c− 1 + δ)-perfectly
secure (a, b + c − 1, 1)-strategy. Then the base case (Theorem 4.15) implies that every
announcement Ai ∈ A is a (c + δ)-(n, a, λi)-design for some λi (where λi may depend on
i), as desired. �

Theorem 4.16 immediately implies the following bound on the security parameter δ for
equitable strategies:

Corollary 4.17. Suppose we have an equitable (a, b, c)-strategy A that is perfectly δ-secure
against Cathy. Then δ ≤ a− c.
Remark 4.4. If we have an equitable (a, b, c)-strategy A that is perfectly δ-secure against
Cathy, where δ = a − c, then each announcement Ai ∈ A is an a-design. In fact, since
every a-subset of X must appear a constant number of times in each Ai, we see that each
Ai is a trivial a-design. In this case, we see Alice’s strategy is not informative for Bob.

Together, Theorem 4.14 and Theorem 4.16 show a direct correspondence between t-
designs and equitable announcement strategies that are perfectly δ-secure for some δ sat-
isfying δ ≤ t− c. We state this result in the following Theorem for clarity.

Theorem 4.18. A γ-equitable (a, b, c)-strategy A on card deck X that is perfectly δ-secure
against Cathy is equivalent to a set of (c + δ)-designs with point set X and block size a
having the property that every a-subset of X occurs in precisely γ of these designs.

4.6. Simultaneously Informative and Secure Strategies

In general, we want to find an (a, b, c)-strategy (for Alice) that is simultaneously in-
formative for Bob and (perfectly or weakly) δ-secure against Cathy. We first consider
informative strategies that provide security for individual cards and then consider infor-
mative strategies that provide security for multiple cards.

The following was first shown by Albert et al. [1] using a different proof technique:

Theorem 4.19. If a ≤ c + 1, then there does not exist a strategy for Alice that is simul-
taneously informative for Bob and weakly 1-secure against Cathy.

111

Proof. In view of Corollary 4.2, we only need to consider the case a = c + 1. In this case,
any two a-subsets in an announcement must be disjoint, by Theorem 4.1. For any an-
nouncement Ai and any x ∈ X, the definition of weak 1-security necessitates the existence
of a block in Ai that contains x. It therefore follows that every Ai forms a partition of X
into n/a blocks.

Now, suppose that Alice’s announcement is Ai and Cathy’s hand is HC . There exists
at least one HA ∈ Ai such that HA ∩ HC 6= ∅. Now, |HC | < |HA|, so there is a point
x ∈ HA\HC . The existence of this point violates the requirement of weak 1-security. �

It is worth observing that a strategy that is not informative for Cathy implies, for any
announcement Ai by Alice and possible hand HC ∈

(
X
c

)
such that P (HC , i) 6= ∅ , that

|P (HC , i)| ≥ 2. That is, there must exist distinct HA, H
′
A ∈ P (HC , i). Following the same

technique as in the proof of Lemma 4.1, this implies |HA ∩H ′A| ≥ a − b. If in addition
the strategy is informative for Bob, by Lemma 4.1 we have a− c > |HA ∩H ′A| ≥ a− b, so
c < b. This gives us the following result (which is also discussed by Albert et al. [1]):

Theorem 4.20. If c ≥ b, then there does not exist a strategy for Alice that is simultaneously
informative for Bob and weakly 1-secure against Cathy.

We now focus on (3, n − 4, 1)-deals and examine the relationship between informative
and perfectly 1-secure strategies and Steiner triple systems. We begin with some existence
results for optimal strategies.

Theorem 4.21. Suppose (a, b, c) = (3, n − 4, 1), where n ≡ 1, 3 mod 6, n > 7. Then
there exists an optimal strategy for Alice that is informative for Bob and perfectly 1-secure
against Cathy.

Proof. If n ≡ 1, 3 mod 6, n > 7, then there exists a large set of disjoint STS(n) on an n-set
X (as mentioned in Remark 1.10). Theorem 4.5 establishes that the resulting strategy is
informative for Bob, because no announcement Ai (the set of blocks of an STS(n)) contains
two blocks that intersect in more than one point. Perfect 1-security follows immediately
from Lemma 4.11. Note that this strategy is optimal, since every a-subset occurs in exactly
one announcement. �

Example 4.3. Consider the large set of STS(9) from Example 1.9. Theorem 4.5 and
Theorem 4.11 imply this set of announcements is an optimal (3, 5, 1) strategy that is
perfectly 1-secure against Cathy and informative for Bob.

In the case n = 7, there does not exist a large set of STS(7), so we cannot construct
an optimal (3, 3, 1)-strategy. However, Example 4.2 provides us with an equitable strategy
with m = 10 and γ = 2 that is informative for Bob and perfectly 1-secure against Cathy.
This is because every announcement in this strategy is an STS(7) and every 3-subset occurs
in exactly two announcements. Examples from the literature for this case typically only
provide weak 1-security. Atkinson et al. [4] give a solution for the perfect 1-security case

112

that requires a much larger communication complexity m and also involves a complicated
procedure in order to avoid card bias.

The following is an immediate consequence of Theorem 4.12 and Lemma 4.7.

Corollary 4.22. Suppose (a, b, c) = (3, n− 4, 1) and suppose that Alice’s strategy is equi-
table, informative for Bob, and perfectly 1-secure against Cathy. Then every announcement
is a Steiner triple system.

In fact, any (a, b, a − 2)-strategy that is informative, equitable, and perfectly 1-secure
also satisfies c = 1 (and hence a = 3).

Theorem 4.23. Consider an (a, b, c)-deal such that a−c = 2. Suppose that Alice’s strategy
is equitable, informative for Bob, and perfectly 1-secure against Cathy. Then a = 3 and
c = 1.

Proof. Theorem 4.16 implies that every announcement is an (a − 1)-design. Since c ≥ 1,
we have a − 1 ≥ a − c, so we may apply Lemma 4.7. This implies a − 1 = a − c, so we
have c = 1, as desired. �

We present an interesting example in the case a = 4, c = 2.

Example 4.4. It was proven by Chouinard [10] that there is a large set of 2-(13, 4, 1)-
designs. There are

(
11
2

)
= 55 designs in the large set. This yields a deterministic (4, 7, 2)-

strategy that is informative for Bob. We can easily determine the security of the scheme
against Cathy. Suppose that Alice’s announcement is Ai and Cathy’s hand is HC = {y, z}.
There is a unique block in Ai that contains the pair {y, z}, say {w, x, y, z}. There are
three blocks that contain y but not z, and three blocks that contain z but not y. Since
Ai contains 13 blocks, it follows that the set P ({y, z}, i) consists of six blocks. Within
these six blocks, w and x occur three times, and every point in X\{w, x, y, z} occurs twice.
Therefore, we have

Pr[w ∈ HA | HC] = Pr[x ∈ HA | HC] =
1

2
and

Pr[u ∈ HA | HC] =
1

3
for all u ∈ X\{w, x, y, z}. If a (4, 7, 2)-strategy were perfectly 1-secure against Cathy
(which is impossible, in view of Theorem 4.23), we would have

Pr[u ∈ HA | HC] =
4

11
for all u ∈ X\HC .

113

We can generalize Theorem 4.23 and Corollary 4.22. That is, strategies that are eq-
uitable, informative for Bob, and perfectly (a − c − 1)-secure against Cathy must satisfy
c = 1 and each announcement must be an (a− 1)-(n, a, 1)-design, also known as a Steiner
system S(a− 1, a, n).

Theorem 4.24. Consider an (a, b, c)-deal. Suppose that Alice’s strategy is equitable, in-
formative for Bob, and perfectly (a− c− 1)-secure against Cathy. Then c = 1.

Proof. The proof is identical to the proof of Theorem 4.23. �

Corollary 4.25. Consider an equitable (a, b, 1)-strategy that is informative for Bob and
perfectly (a − 2)-secure against Cathy. Then every announcement is a Steiner system
S(a− 1, a, n).

Proof. The fact that every announcement is an (a − 1)-design follows immediately from
Theorem 4.16. To see that λ = 1, we may apply Lemma 4.7. This is easy to see, however:
since every (a− 1)-subset occurs λ times, the fact that the strategy is informative for Bob
implies λ = 1. �

Example 4.5. The construction given in Example 4.6 is actually an example of a 2-
equitable (4, 3, 1)-strategy that is informative for Bob and perfectly 2-secure against Cathy.
(The fact that the scheme is perfectly 2-secure follows from Theorem 4.14.) As expected,
each announcement is an S(3, 4, 8).

The results in Corollaries 4.22 and 4.25 and Theorems 4.23 and 4.24 were first shown
using a much more complicated proof technique in Swanson and Stinson [75]. In fact,
we can use Theorem 4.16 and Lemma 4.7 to derive the following bound on the security
parameter δ for perfectly δ-secure and informative strategies, which helps put the above
results in context.

Corollary 4.26. Suppose we have an equitable (a, b, c)-strategy that is perfectly δ-secure
against Cathy and informative for Bob. Then δ ≤ a− 2c.

Proof. If the strategy is perfectly δ-secure, then by Theorem 4.16, every announcement is a
(c+δ)-design. Now, if c+δ < a− c holds, then δ < a−2c, as desired. If c+δ ≥ a− c, then
since the strategy is informative for Bob, we can apply Lemma 4.7. This yields c+δ = a−c,
so we have δ = a− 2c in this case. �

4.6.1. Construction methods and examples. Theorem 4.14 indicates that we can
use t-designs to construct equitable strategies that are perfectly δ-secure against Cathy for
some δ. In fact, so long as we use t-designs with λ = 1 and a− c ≥ t, such a strategy will
also be informative for Bob (Corollary 4.4). This is a very interesting result, as we can use
a single “starting design” to obtain equitable strategies that are informative for Bob and
perfectly δ-secure against Cathy. We give a general method for this next. First we require
some definitions.

114

Definition 4.3. Suppose that D = (X,B) is a t-(v, k, λ)-design. An automorphism of D is
a permutation π of X such that π fixes the multiset B. The collection of all automorphisms
of D is denoted Aut(D); it is easy to see that Aut(D) is a subgroup of the symmetric group
S|X|.

Theorem 4.27. Suppose D = (X,B) is a t-(n, a, 1)-design. Then there exists a γ-equitable
(a, n − a − c, c)-strategy with m announcements that is informative for Bob and perfectly
(t− c)-secure against Cathy for any choice of c such that a− c ≥ t, where m = n!/|Aut(D)|
and γ = m

/(
n−t
a−t

)
.

Proof. Let the symmetric group Sn act on D. We obtain a set of designs isomorphic to
D, which are the announcements in our strategy. Since each announcement is a t-(n, a, 1)-
design, the resulting scheme is perfectly (t − c)-secure against Cathy by Theorem 4.14.
Furthermore, since a− c ≥ t and λ = 1, no two blocks have more than a− c− 1 points in
common, so Theorem 4.1 implies the scheme is informative for Bob.

The total number of designs m is equal to n!/|Aut(D)| (as this is the index of Aut(D) in
Sn). To see that γ = m

/(
n−t
a−t

)
, consider a fixed t-subset A of X. Then in particular, there

are
(
n−t
a−t

)
possible blocks of size a that contain A. Now, every one of the m designs contains

exactly one of these
(
n−t
a−t

)
blocks, and these

(
n−t
a−t

)
blocks occur equally often among the m

designs. Thus, a given block B occurs in m
/(
n−t
a−t

)
of the designs, as desired. �

Example 4.6. It is known that there is a 3-(8, 4, 1)-design having an automorphism group
of order 1344. (See, for example, result 13 of Section 1.4 of Dembowski [16].) Theorem 4.27
thus yields a 6-equitable (4, 3, 1)-strategy with 30 announcements that is informative for
Bob and perfectly 1-secure against Cathy. However, in this particular case, we can do
better. Don Kreher (private communication) has found a set of ten 3-(8, 4, 1)-designs on a
set of points X = {0, . . . , 7} such that every 4-subset of X occurs in exactly two of these
designs. Therefore we have a 2-equitable (4, 3, 1)-strategy with ten announcements that is
informative for Bob and perfectly 1-secure against Cathy. The set of 3-(8, 4, 1)-designs can
be constructed as follows: Begin with a 3-(8, 4, 1)-design having the following set A0 of 14
blocks:

{3, 4, 5, 6}, {2, 5, 6, 7}, {2, 3, 4, 7}, {1, 4, 5, 7}, {1, 3, 6, 7}, {1, 2, 4, 6}, {1, 2, 3, 5},
{0, 4, 6, 7}, {0, 3, 5, 7}, {0, 2, 4, 5}, {0, 2, 3, 6}, {0, 1, 5, 6}, {0, 1, 3, 4}, {0, 1, 2, 7}.

Define the permutation π = (0, 1)(2)(3, 4, 6, 7, 5) and let π (and its powers) act on A0.

Remark 4.5. The technique described in Theorem 4.27 shows how to use a single “starting
design” D on n points to construct a strategy that inherits its properties from D. That
is, the strategy obtained by letting the symmetric group Sn act on D will be informative
and perfectly δ-secure if D is an informative announcement that satisfies Condition 2 of
Definition 4.2 for the fixed announcement D.

115

We can use the same method as in Theorem 4.27 to construct equitable (a, b, c) strate-
gies that are perfectly δ-secure against Cathy, informative for Bob, and allow Cathy to hold
more than one card. Such a solution to the generalized Russian cards problem has not yet
been presented in the literature. We next give an infinite class of equitable and perfectly
1-secure strategies where Cathy holds two cards.

Example 4.7. Consider the inversive plane with q = 23; this is a 3-(65, 9, 1)-design. (See
Section 1.2.3.3.) The construction method in Theorem 4.27 yields an equitable (9, 55, 1)-
strategy that is perfectly 2-secure against Cathy and informative for Bob and (more inter-
estingly) a (9, 54, 2)-strategy that is perfectly 1-secure against Cathy and informative for
Bob.

It is known that 3-(q2 + 1, q + 1, 1)-designs (or inversive planes) exist whenever q is a
prime power, as stated in Theorem 1.11. This gives us the following result.

Corollary 4.28. There exists an equitable (q + 1, q2 − q − 2, 2)-strategy that is informative
for Bob and perfectly 1-secure against Cathy for every prime power q ≥ 4.

We now discuss some other constructions of strategies using results from design theory,
including some applications of Remark 4.5.

It is clear that we can use any Steiner triple system, or 2-(n, 3, 1)-design, as a starting
design to obtain an equitable (3, n−4, 1)-strategy that is informative for Bob and perfectly
1-secure against Cathy. As mentioned in Section 1.2.1, an STS(n) exists if and only if
n ≡ 1, 3 mod 6, n ≥ 7. We state this result in the following Corollary.

Corollary 4.29. There exists an equitable (3, n−4, 1)-strategy for Alice that is informative
for Bob and perfectly 1-secure against Cathy for any integer n such that n ≡ 1, 3 mod 6,
n ≥ 7.

As discussed in Theorem 4.21, if we can construct a large set of 2-(n, 3, 1)-designs, this
set forms an optimal strategy that is informative and perfectly 1-secure, and a large set of
STS(n) exists whenever n ≡ 1, 3 mod 6 and n > 7. However, there are certain choices of
n for which there is a particularly nice construction for a large set of STS(n), such that it
would be easy for Alice and Bob to create this large set on their own. For details of this
construction, we refer the reader to Section 1.2.3.2.

Two other types of designs that can be used to construct informative and perfectly
1-secure strategies where Cathy holds one card are hyperplanes in projective spaces and
Hadamard designs. For a discussion of these constructions, we refer the reader to Sec-
tion 1.2.3.1 and Section 1.2.3.4, respectively. We have the following results.

Corollary 4.30. There exists an equitable
(
qd−1
q−1

, qd − 1, 1
)

-strategy that is informative for

Bob and perfectly 1-secure against Cathy, where q ≥ 2 is a prime power and d ≥ 2 is an
integer.

116

Proof. By Theorem 1.10, there exists a symmetric
(
qd+1−1
q−1

, q
d−1
q−1

, q
d−1−1
q−1

)
-BIBD D for every

prime power q ≥ 2 and integer d ≥ 2. The design D is a hyperplane in a projective space
(or, in the case d = 2, a finite projective plane). Let the symmetric group Sn act on D as
in the proof of Theorem 4.27, where n = (qd+1 − 1)/(q − 1), to obtain Alice’s strategy.

Lemma 4.11 immediately implies that this strategy is perfectly 1-secure against Cathy.
To see that this strategy is informative, recall that the intersection of two blocks in a
symmetric BIBD has size λ = (qd−1− 1)/(q− 1). It is easy to see that the strategy will be
informative provided a− c > λ, which is the case here. �

Corollary 4.31. There exists an equitable
(
q−1

2
, q−1

2
, 1
)
-strategy that is informative for Bob

and perfectly 1-secure against Cathy, where q ≡ 3 mod 4 is an odd prime power.

Proof. By Corollary 1.14, there exists a symmetric
(
q, q−1

2
, q−3

4

)
-BIBD D for every odd

prime power q such that q ≡ 3 mod 4. The design D is a Hadamard design. Let the
symmetric group Sq act on D as in the proof of Theorem 4.27 to obtain Alice’s strategy.

Lemma 4.11 immediately implies that this strategy is perfectly 1-secure against Cathy.
To see that this strategy is informative, recall that the intersection of two blocks in a
symmetric BIBD has size λ = (q − 3)/4. It is easy to see that the strategy will be
informative provided a− c > λ, which is the case here. �

4.7. A Variant of the Russian Cards Problem

In this section, we consider a variation of the generalized Russian cards problem, in
which we change the manner in which the cards are dealt. Our motivation for restricting the
deal is to widen the solution space. Since the generalized Russian cards problem requires
a suitable set of t-designs to maximize security against Cathy—and constructing t-designs
for t > 2 is in general quite difficult—we explore certain types of deals where suitable
constructions are more readily available. An added advantage of our deal restriction is
that in this new framework, we can view Alice’s hand as an a-tuple over an alphabet
of size v. If Alice’s hand represents a secret key, this variation is more in keeping with
traditional key agreement schemes in cryptography, as typically secret keys are tuples
rather than sets.

Suppose our deck X consists of n = va cards, where v and a are positive integers
such that v > a. Rather than allowing Alice, Bob, and Cathy to have any hand of the
appropriate size, we first split the deck X into a piles, each of size v. Alice is given a hand
HA of a cards, such that she holds exactly one card from each pile. Cathy’s hand HC of
c cards is assumed to contain no more than one card from each pile. The remainder of
the deck becomes Bob’s hand, HB. Observe that we can use the same framework for this
problem as for the original; we have only placed a limitation on the set of possible hands
Alice, Bob, and Cathy might hold. The necessary modifications to the security definitions
and the definition of an informative strategy are straightforward.

117

This variant admits a nice solution using transversal designs ; we refer the reader to
Section 1.2.4 for the relevant definitions and a discussion of these designs. In the context
of a transversal design TDλ(t, a, v), we can view the piles of cards as the groups G1, . . . , Ga

of the design. In this case, Alice’s hand is a transversal and Cathy’s hand is a partial
transversal of G1, . . . , Ga. Note that Cathy therefore only considers transversals as possible
hands for Alice. When we discuss weak (or perfect) δ-security, we are interested in the
probability (from Cathy’s point of view) that Alice holds partial transversals of order δ.

We first show Theorem 4.1 holds for this variant of the Russian cards problem:

Theorem 4.32. The announcement Ai is informative for Bob if and only if there do not
exist two distinct sets HA, H

′
A ∈ Ai such that |HA ∩H ′A| ≥ a− c.

Proof. Suppose there exist two distinct sets HA, H
′
A ∈ Ai such that |HA ∩H ′A| ≥ a − c.

We proceed by constructing a card deal consistent with the announcement Ai such that
{HA, H

′
A} ⊆ P (HB, i) , which implies the announcement is not informative for Bob.

Write |HA ∩H ′A| = `. Let Alice’s hand be HA, so it is possible for Alice to announce
Ai. Let Cathy’s hand contain all the cards in H ′A that are not also contained in HA; this
is possible since c ≥ a − `. Then Bob’s hand HB contains all the remaining cards. In
particular, we have HB ∩ (HA ∪H ′A) = ∅, so {HA, H

′
A} ⊆ P (HB, i), as desired.

Conversely, suppose {HA, H
′
A} ⊆ P (HB, i), where HA 6= H ′A. Then |HA ∪H ′A| ≤

n− b = a+ c, and hence |HA ∩H ′A| ≥ a− c. �

In light of Theorem 4.32, the following result is straightforward.

Theorem 4.33. Consider an (a, b, c)-deal following the above rules and suppose that each
announcement in an equitable (a, b, c)-strategy is a TD1(t, a, v) satisfying t ≤ a− c. Then
the strategy is informative for Bob.

We can use an argument similar to that of Theorem 4.3 to derive a lower bound on the
size of Alice’s announcement.

Theorem 4.34. Suppose a > c and there exists a strategy for Alice that is informative for
Bob. Then the number of announcements m satisfies m ≥ vc.

Proof. Fix a set of cards X ′ of size a − c, no two of which are from the same pile. There
are vc possible hands for Alice that contain X ′. These hands must occur in different
announcements, by Theorem 4.1 (which holds for this variation of the problem). Therefore
m ≥ vc. �

As before, we refer to a strategy that meets this bound as optimal. We have the
following result, which is similar Theorem 4.5.

Theorem 4.35. Suppose that a > c. An optimal (a, b, c)-strategy for Alice that is infor-
mative for Bob is equivalent to a large set of TD1(t, a, v), where t = a− c.

118

Proof. Suppose there exists a large set of TD1(a− c, a, v). Recall from Definition 1.37 that
the set of all blocks sets (i.e., possible announcements) in this large set form a partition
of the set of all transversals and that there are precisely vc designs in such a set. Then
it is easy to see that this immediately yields an optimal (a, b, c)-strategy for Alice that is
informative for Bob.

Conversely, suppose there is an optimal (a, b, c)-strategy for Alice that is informative
for Bob. We need to show that every announcement is a TD1(a− c, a, v). As in the proof
of Theorem 4.34, fix a set of cards X ′ of size a− c, no two of which are from the same pile.
The vc possible hands for Alice that contain X ′ must occur in different announcements.
However, there are a total of vc announcements, so every announcement must contain
exactly one block that contains X ′. �

The following result shows how transversal designs with arbitrary t can be used to
achieve weak δ-security for permissible parameters δ ≤ t − c. As in Definition 1.36, for a
transversal design TDλ(t, a, v), say (X,G,B), and a partial transversal Y of G, we let GY

denote the set of groups of the transversal design that have nonempty intersection with
the partial transversal Y .

Theorem 4.36. Consider an (a, b, c)-deal following the above rules and suppose that each
announcement in an equitable (a, b, c)-strategy is a TDλ(t, a, v). Then the strategy is weakly
(t− c)-secure against Cathy.

Proof. Fix an announcement Ai for Alice. Suppose Ai is a TDλ(t, a, v), say (X,G,B).
Consider a possible hand HC for Cathy. In particular, HC is a partial transversal of the
groups G1, . . . , Ga ∈ G.

Since c ≤ t, Theorem 1.17 implies there are

|P (HC , i)| = λvt−c(v − 1)c

blocks in Ai that do not contain any of the points of HC .

Consider a partial transversal Y of order δ ≤ t − c. Since Y is not necessarily group
disjoint from HC , we must consider the number of groups which intersect both Y and
HC . In particular, the δ-subset Y never occurs with any other cards from GY ∩ GHC , by
definition of transversal designs.

Let ` = |GHC\GY |. That is, ` is the number of groups that do not intersect Y , but
from which Cathy has cards. Write z1, . . . , z` for Cathy’s cards from these ` groups. We
wish to compute the number of blocks which contain all the points in Y but miss all of
the points of HC . This is the same as the number of blocks that contain all the points
in Y but miss all the points in {z1, . . . , z`}. Since ` + δ ≤ t, by Theorem 1.17, we have
λvt−`−δ(v − 1)` such blocks.

119

That is, a given set of points x1, . . . , xδ ∈ X\HC that might be held by Alice is contained
in precisely

|{HA ∈ P (HC , i) : x1, . . . , xδ ∈ HA}| = λvt−`−δ(v − 1)`

of the blocks in P (HC , i), where ` =
∣∣GHC

∖
G{x1,...,xδ}

∣∣ .
Thus, for any partial transversal of δ distinct points x1, . . . , xδ ∈ X\HC , we have

|{HA ∈ P (HC , i) : x1, . . . , xδ ∈ HA}|
|P (HC , i)|

=
λvt−`−δ(v − 1)`

λvt−c(v − 1)c
=

1

vδ+`−c(v − 1)c−`
,

so Condition 1 of Theorem 4.13 is satisfied. �

Remark 4.6. We do not achieve perfect (t−c)-security in Theorem 4.36 because the num-
ber of hands of P (HC , i) containing a given partial transversal Y of δ distinct points, where
δ ≤ t− c, depends on ` = |GHC\GY |. In fact, we cannot expect to achieve better security
than that of the construction given in Theorem 4.36 for this variant of the generalized
Russian cards problem. This is because the rules for the deal imply that for each pile from
which Cathy holds a card, Cathy knows that Alice holds one of the other (v − 1) cards,
and for every other pile, Cathy knows only that Alice holds one of the other v cards.

As discussed in Section 1.2.4, large sets of transversal designs TDλ(t, k, v) are easy to
construct when you have a linear TDλ(t, k, v) “starting design”. As stated in Corollary 1.19,
a linear TD1(t, q, q) exists whenever the point set X = (Fq)2 and q is a prime power. The
construction method for such a transversal design is simple; we refer the reader to the
relevant discussion in Section 1.2.4 on Theorem 1.18 and Corollaries 1.19 and 1.20.

In particular, we can construct a linear TD1(t, a, q) for a prime power q ≥ a by first
constructing a TD1(t, q, q) and then (if necessary) deleting q−a groups. This yields a wide
range of informative and weakly (t− c)-secure (a, n− a− c, c)-strategies for card decks of
size n = aq and any choice of c satisfying a− c ≥ t. If we take t = a− c, these strategies
are optimal. We summarize this result in the following theorem.

Theorem 4.37. Consider the above variant of the generalized Russian cards problem. Let
q be a prime power such that q ≥ a. Then there exists an equitable (a, aq−a−c, c)-strategy
that is optimal, informative for Bob, and weakly (a− 2c)-secure against Cathy.

4.8. Discussion and Comparison with Related Work

As mentioned in Section 4.1, there are have been many papers studying the Russian
cards problem and generalizations of it. Some are interested in card deal protocols that
allow players to agree on a common secret without a given eavesdropper being able to
determine this secret value. This area of research is especially interesting in terms of
possible applications to key generation [2, 3, 31–35, 47, 51]. Fischer and Wright [32–35]
have been especially prolific on this topic, following the paper by Fischer et al. [31], which
began the investigation into secret bit transmission protocols based on card deals amongst

120

three players. A useful concept for secret bit transmission is that of a key set, which is a
set K of two cards held by two different players A and B. A key set is said to be hidden
if, from Eve’s point of view, either player is equally likely to hold a given card in K [31].

Fischer and Wright [32] consider multi-party secret key exchange, where a deck of cards
is split among k+ 1 participants in a specified manner, with one participant singled out as
the eavesdropper Eve. The idea is that Eve, who is computationally unlimited, should not
be privy to a secret key established among the k other players using public announcements;
the protocols established build on the notion of hidden key sets. Fischer and Wright ex-
tended this work in later papers [34], including using game-theoretic techniques to analyze
strategies among key set protocols [33], and providing a formal security model for the
problem [35]. Mizuki et al. [51] and Koizumi et al. [47] continued work on key exchange
using key set protocols.

Other papers are concerned with analyzing variations of the problem using epistemic
logic [15,19–21]. van Ditmarsch [20,21] presents a comprehensive analysis of the original
Russian cards problem (with parameters (3, 3, 1)), including some discussion on removing
the requirement for complete public knowledge of the protocol. That is, van Ditmarsch
considers cases where it is unknown whether or not the two players actually know each
other’s hands and that the protocol is finished. As this is not in keeping with Kerckhoffs’
principle, we do not consider this case. van Ditmarsch et al. [19] implement a protocol and
compare results using various epistemic model checkers. Finally, Cyriac and Krishnan [15]
use dynamic epistemic logic to show that there exists no single-announcement solution
for the original Russian cards problem, and that if the adversary has a sufficiently large
number of cards, no two-announcement solution exists for the generalized Russian cards
problem of the form (k, k, `).

Recently, Duan and Yang [30] and He and Duan [41] consider a special generalization,
with n − 1 players each dealt n cards, and one player (the intruder) dealt one card; the
authors give an algorithm by which a dealer, acting as a trusted third party, can construct
announcements for each player.

Of more relevance to us is the recent research that takes a combinatorial approach [1–
4, 12], on which we now focus. Albert et al. [1] consider the card problem from both
epistemic logic and combinatorial perspectives, establishing axioms CA1, CA2, and CA3
that are roughly equivalent to our requirements for a protocol to be informative and weakly
1-secure in the γ-equitable case. The difference is that the authors [1] treat security on the
announcement level; that is, they identify various announcements as good if the relevant
properties hold for any possible hand for Alice in the given announcement. No assumption
is made that, for every possible hand for Alice, an announcement is defined, or that a good
announcement even exists. Our definitions, on the other hand, require that Alice have a
(secure) announcement for every possible hand HA ∈

(
X
a

)
. In particular, we argue that it

is not possible to formally define or discuss the security of a scheme using definitions that
focus on individual announcements.

121

Albert et al. [1] present several useful results, some of which we have cited in this work,
on the relationships between the parameters a and c, and b and c, as well as bounds on the
minimum and maximum number of hands in a good announcement. The focus is on the
level of announcements throughout; the authors argue that, to minimize information gained
by Cathy, the size of the announcement should be maximized. Moreover, the authors show
good announcements exist for some special cases, including using block designs for the
case (a, 2, 1), when a ≡ 0, 4 mod 6 (corresponding to the Steiner triple systems), and using
Singer difference sets for the case (a, b, c), where a and c are given, and b is sufficiently
large. A few other small cases are also given.

Atkinson et al. [4] extend these notions to include a new axiom, CA4, which roughly
corresponds to our notion of perfect 1-security. That is, the authors recognize the possibility
of card occurrence bias in a good announcement, which gives Cathy an advantage in
guessing Alice’s hand. Axiom CA4 introduces the requirement that, in the set of hands
Cathy knows are possible for Alice, each card Cathy does not hold occurs a constant number
of times. In this setting, the authors use binary designs to construct a good announcement
(also satisfying CA4) for parameters of the form

(
2k−1, 2k−1 − 1, 1

)
, where k ≥ 3. Atkinson

et al. also consider the problem of unbiasing an announcement by applying a protocol that
takes the existence of bias into account. An example of two possible methods for achieving
this are given for the parameter set (3, 3, 1). Our approach is much simpler and yields nice
solutions for the (3, 3, 1) case. In particular, we require fewer announcements and thereby
less communication complexity. We remark that this work by Atkinson et al. [4] is the
only work treating security notions stronger than weak 1-security of which we are aware,
other than our paper [75] and subsequent work by Cordón-Franco et al. [14].

Albert et al. [2,3] investigate the problem of Alice and Bob communicating their hands
in light of two different security goals with respect to Cathy. The first goal, that Cathy
does not learn the fate of any given card with certainty, or that the protocol itself is card
safe, is similar to our notion of weak 1-security. The analysis includes a sum announcement
protocol which is card safe for the case (k, k, 1), where k ≥ 3; that is, both players announce
the sum of their cards modulo 2k + 1.

The second, more relaxed goal is that Cathy does not learn the entire card deal (but
may determine ownership of some subset of the cards), or that the protocol is state safe. In
this setting, a state informative and state safe protocol consisting of three announcements
is given for the card deal (2, 2, 1), and the authors observe that no shorter protocol exists.

The main idea behind a state safe protocol is that this relaxed security condition may
be sufficient for Alice and Bob to establish a secret bit. In particular, Albert et al. delve into
the realm of epistemic logic and consider a proposition p such that it is public knowledge
that Alice and Bob know the value of p, but Cathy does not know the value of p. Here the
main concern is with propositions p describing the card deal, and the basic idea is that a
protocol which is state informative is also bit informative with respect to p. Moreover, in
this context, state safe and bit safe are equivalent; the proof is given by Albert et al. [2].

122

Albert et al. [2,3] also pose the question of whether the existence of a bit informative
protocol implies the existence of a state informative protocol and conjecture that the answer
is affirmative. A discussion of of parameters (a, b, c) for which bit exchange protocols exist
is included (namely a, b > c or a > b = c > 0 or b > a = c > 0). The protocols themselves
are closely related to the work of Fischer et al. [31] and Fischer and Wright [35], and are
based on the simple observation that if c = 0, Alice and Bob know the card deal already,
and therefore can establish a secret bit relative to whether “Alice holds card x” for any
card x. If c 6= 0, then Alice can announce some subset D of cards, and hope that Bob can
honestly respond “I hold all but one of D”. In this case, Alice and Bob both know which
card from D is held by Alice, thereby establishing the secret bit. If Bob does not hold
all but one card in D, then Alice and Bob can throw the cards in D away until they are
dealing with the situation c = 0 or they otherwise know the card deal (which can happen
when c = 1, depending on how D is chosen).

Cordón-Franco et al. [12] focus on the case c = 1, and present a protocol in which Alice
and Bob announce the sum of their hands modulo a given (public) integer. The authors
deal with the case of the modulus being either n (the size of the deck) or the least prime
p larger than n, and show that, by choosing one of these protocols as appropriate, deals of
the form (a, b, 1) (where a, b ≥ 3) are secure (in the weak 1-secure sense) and informative.
That is, Alice and Bob learn each other’s cards, but afterwards Cathy does not know with
certainty if Alice (or Bob) holds any particular individual card not in Cathy’s hand. This
approach yields strategies for a wide variety of parameters, but these strategies satisfy only
weak 1-security.

In addition, there has been recent work [13,22] in which protocols consisting of more
than once announcement by Alice and Bob are considered, which is a generalization of
the problem which we consider here. van Ditmarsch and Soler-Toscano [22] show that no
good announcement exists for card deals of the form (4, 4, 2) using bounds from Albert et
al. [1]. The authors instead give an interactive protocol that requires at least three rounds
of communication in order for Alice and Bob to learn each other’s hands; their protocol
uses combinatorial designs to determine the initial announcement by Alice and the protocol
analysis is done using epistemic logic.

Cordón-Franco et al. [13] consider four-step solutions for the generalized Russian cards
problem with parameters (a, b, c) such that c > a. Although Cordón-Franco et al. [13]
present a “protocol”, their solution is not a protocol in the typical sense of the word, as it
is unclear if the protocol is executable or not. The authors demonstrate the existence of
a necessary construction for their protocol when the card deal parameters satisfy specific
conditions, but do not address the feasibility of finding such constructions in practice. In
particular, the security of the protocol itself relies heavily on the ability of the players to
pick such a construction uniformly at random from all possible constructions. Since it is
unclear if this is feasible, the protocol is questionable, albeit theoretically interesting in
that it attempts to treat cases where c > a.

123

Cordón-Franco et al. [14] further elaborate on protocols of length two and our notion of
weak k-security. The authors present a geometric protocol based on hyperplanes that yields
informative and weakly k-secure equitable (a, b, c)-strategies for appropriate parameters.
In particular, this protocol allows Cathy to hold more than one card.

This chapter draws material from Swanson and Stinson [75], but we greatly extend
and simplify the results. In particular, our main result establishing an equivalence between
equitable perfectly δ-secure strategies and suitable sets of (c + δ)-designs with point set
X and block size a, stated in Theorem 4.18, is new, as are most of the auxiliary results
presented in Section 4.5. We show new results connecting informative strategies and t-
designs in Section 4.4, which together with the new material in Section 4.5, allows us
to simplify the proofs for results connecting certain types of perfectly δ-secure deals and
Steiner systems, originally shown in Swanson and Stinson [75].

Most of the material on construction methods and examples for simultaneously in-
formative and secure strategies, presented in Section 4.6.1, is new, and the construction
technique using a “starting design” is a generalization of the technique given by Swanson
and Stinson [75]. This generalized construction technique allows us to answer in the affir-
mative the open question on the existence of perfectly secure and informative strategies for
deals in which Cathy holds more than one card. The equivalence we have shown between
such strategies and t-designs, together with the difficulty of constructing t-designs for t > 2
in general, motivated the proposed variant of the generalized Russian cards problem, dis-
cussed in Section 4.7. This variant allows us to take advantage of transversal designs,
which are in general much easier to construct than t-designs.

4.9. Concluding Remarks and Future Work

We have presented the first formal mathematical presentation of the generalized Russian
cards problem, and have provided rigorous security definitions that capture both basic and
extended versions of weak and perfect security notions. Using a combinatorial approach,
we are able to give a nice characterization of informative strategies having optimal com-
munication complexity, namely the set of announcements must be equivalent to a large set
of t-(n, a, 1)-designs, where t = a− c. We also characterize γ-equitable strategies that are
perfectly δ-secure for some δ, showing an equivalence between such a strategy and a set
of (c+ δ)-designs on n points with block size a, where this set must satisfy the additional
property that every a-subset of X occurs in precisely γ of these designs.

Moreover, we show how to use a “starting” t-(n, a, 1)-design to construct equitable
(a, b, c)-strategies that are informative and perfectly (t − c)-secure against Cathy for any
choice of c satisfying a− c ≥ t. In particular, this indicates that if an appropriate t-design
exists, it is possible to achieve perfect security for deals where Cathy holds more than one
card. We present an example construction, based on inversive planes, for (q+1, q2−q−2, 2)-
strategies which are perfectly 1-secure against Cathy and informative for Bob, where q is
a prime power.

124

In addition, we discuss a variation of the Russian cards problem which admits nice
solutions using transversal designs. The variant changes the manner in which the cards are
dealt, but the resulting problem can be solved using large sets of transversal designs with
λ = 1 and arbitrary t, which are easy to construct. In particular, this solution is optimal
in terms of the number of announcements and provides the strongest possible security for
appropriate parameters. That is, for card decks of size aq, where q ≥ a is a prime power,
we achieve (a, aq − a − c, c)-strategies that are optimal, informative for Bob, and weakly
(a− 2c)-secure against Cathy.

There are many open problems in the area, especially for deals with c > 1. Given the
general difficulty of constructing t-designs for t > 2 and λ = 1, we see that constructing
perfectly δ-secure and informative strategies for c > 1 is a difficult combinatorial problem.
A more promising direction for the case c > 1 may be strategies that are weakly δ-secure
for δ > 1, a concept we introduced and which has received some attention in current
literature [14]. In particular, further characterizing such strategies using combinatorial
notions might prove informative.

125

Bibliography

[1] Albert, M.H., Atkinson, M.D., van Ditmarsch, H.P., Handley, C., Aldred, R.E.L.: Safe communication
for card players by combinatorial designs for two-step protocols. Australasian Journal of Combinatorics
33, 33–46 (2005) 97, 101, 105, 111, 112, 121, 122, 123

[2] Albert, M.H., Cordón-Franco, A., van Ditmarsch, H.P., Fernández-Duque, D., Joosten,
J.J., Soler-Toscano, F.: Secure communication of local states in multi-agent systems.
http://personal.us.es/hvd/newpubs/fLiSsecretl.pdf (2010), extended version of [3] 120, 121, 122, 123

[3] Albert, M.H., Cordón-Franco, A., van Ditmarsch, H.P., Fernández-Duque, D., Joosten, J.J., Soler-
Toscano, F.: Secure communication of local states in interpreted systems. In: Abraham, A., Corchado,
J.M., Rodŕıguez-González, S., Santana, J.F.D.P. (eds.) Distributed Computing and Artificial Intelli-
gence (DCAI 2011). Advances in Soft Computing, vol. 91, pp. 117–124. Springer (2011) 96, 97, 120,
121, 122, 123, 126

[4] Atkinson, M.D., van Ditmarsch, H.P., Roehling, S.: Avoiding bias in cards cryptography. Australasian
Journal of Combinatorics 44, 3–18 (2009) 97, 105, 112, 121, 122

[5] Bras-Amorós, M., Stokes, K., Greferath, M.: Problems related to combinatorial configurations with
applications to P2P-user private information retrieval. In: Mathematical Theory of Networks and
Systems (MTNS 2010). pp. 1267–1271 (2010) 93

[6] Brickell, E.F., Stinson, D.R.: Authentication codes with multiple arbiters (extended abstract). In:
Günther, C.G. (ed.) Advances in Cryptology – EUROCRYPT ’88. Lecture Notes in Computer Science,
vol. 330, pp. 51–55. Springer (1988) 21

[7] Castellà-Roca, J., Viejo, A., Herrera-Joancomart́ı, J.: Preserving user’s privacy in web search engines.
Computer Communications 32(13–14), 1541–1551 (2009) 94

[8] Chaum, D., Roijakkers, S.: Unconditionally secure digital signatures. In: Menezes and Vanstone [50],
pp. 206–214 21, 57

[9] Chor, B., Goldreich, O., Kushilevitz, E., Sudan, M.: Private information retrieval. In: Foundations
of Computer Science (FOCS ’95). p. 41. IEEE Computer Society (1995) 61

[10] Chouinard II, L.G.: Partitions of the 4-subsets of a 13-set into disjoint projective planes. Discrete
Mathematics 45(2–3), 297–300 (1983) 113

[11] Colbourn, C.J., Dinitz, J.H.: The CRC Handbook of Combinatorial Designs. Chapman & Hall/CRC,
2nd edn. (2006) 9, 13

[12] Cordón-Franco, A., van Ditmarsch, H.P., Fernández-Duque, D., Joosten, J.J., Soler-Toscano, F.: A
secure additive protocol for card players. Australasian Journal of Combinatorics 54, 163–176 (2012)
97, 121, 123

[13] Cordón-Franco, A., van Ditmarsch, H.P., Fernández-Duque, D., Soler-Toscano, F.: A colouring pro-
tocol for the generalized Russian cards problem. CoRR abs/1207.5216 (2013) 97, 123

[14] Cordón-Franco, A., van Ditmarsch, H.P., Fernández-Duque, D., Soler-Toscano, F.: A geometric pro-
tocol for cryptography with cards. CoRR abs/1301.4289 (2013) 97, 122, 124, 125

[15] Cyriac, A., Krishnan, K.M.: Lower bound for the communication complexity of the Russian cards
problem. CoRR abs/0805.1974 (2008) 96, 121

[16] Dembowski, P.: Finite Geometries. Springer-Verlag, New York (1968) 115

126

[17] Desmedt, Y., Frankel, Y., Yung, M.: Multi-receiver/multi-sender network security: efficient authen-
ticated multicast/feedback. In: IEEE International Conference on Computer Communications (IEEE
INFOCOM ’92). vol. 3, pp. 2045–2054. IEEE Computer Society Press (1992) 21

[18] Desmedt, Y., Yung, M.: Abritrated unconditionally secure authentication can be unconditionally
protected against arbiter’s attacks (extended abstract). In: Menezes and Vanstone [50], pp. 177–188
21

[19] van Ditmarsch, H.P., van der Hoek, W., van der Meyden, R., Ruan, J.: Model checking Russian cards.
Electronic Notes in Theoretical Computer Science 149(2), 105–123 (2006) 96, 121

[20] van Ditmarsch, H.P.: The Russian cards problem. Studia Logica 75(1), 31–62 (2003) 96, 121
[21] van Ditmarsch, H.P.: The case of the hidden hand. Journal of Applied Non-Classical Logics 15(4),

437–452 (2005) 96, 121
[22] van Ditmarsch, H.P., Soler-Toscano, F.: Three steps. In: Leite, J., Torroni, P., Ågotnes, T., Boella,

G., van der Torre, L. (eds.) Computational Logic in Multi-Agent Systems (CLIMA XII). Lecture
Notes in Computer Science, vol. 6814, pp. 41–57. Springer (2011) 97, 123

[23] Dodis, Y., Katz, J., Xu, S., Yung, M.: Key-insulated public key cryptosystems. In: Knudsen [46], pp.
65–82 22, 44, 48, 58

[24] Dodis, Y., Katz, J., Xu, S., Yung, M.: Strong key-insulated signature schemes. In: Desmedt, Y. (ed.)
Public Key Cryptography (PKC 2003). Lecture Notes in Computer Science, vol. 2567, pp. 130–144.
Springer (2003) 22, 45, 58

[25] Domingo-Ferrer, J., Solanas, A., Castellà-Roca, J.: h(k)-private information retrieval from privacy-
uncooperative queryable databases. Journal of Online Information Review 33(4), 720–744 (2009) 94

[26] Domingo-Ferrer, J.: Coprivacy: Towards a theory of sustainable privacy. In: Domingo-Ferrer, J.,
Magkos, E. (eds.) Privacy in Statistical Databases (PSD 2010). Lecture Notes in Computer Science,
vol. 6344, pp. 258–268. Springer (2010) 94

[27] Domingo-Ferrer, J., Bras-Amorós, M.: Peer-to-peer private information retrieval. In: Domingo-Ferrer,
J., Saygin, Y. (eds.) Privacy in Statistical Databases (PSD 2008). Lecture Notes in Computer Science,
vol. 5262, pp. 315–323. Springer (2008) 62, 66, 93

[28] Domingo-Ferrer, J., Bras-Amorós, M., Wu, Q., Manjón, J.A.: User-private information retrieval based
on a peer-to-peer community. Data & Knowledge Engineering 68(11), 1237–1252 (2009) 61, 62, 66,
67, 93

[29] Domingo-Ferrer, J., González-Nicolás, Ú.: Rational behavior in peer-to-peer profile obfuscation for
anonymous keyword search. Information Sciences 185(1), 191–204 (2012) 95

[30] Duan, Z., Yang, C.: Unconditional secure communication: a Russian cards protocol. Journal of
Combinatorial Optimization 19, 501–530 (2010) 96, 121

[31] Fischer, M.J., Paterson, M.S., Rackoff, C.: Secret bit transmission using a random deal of cards. In:
Discrete Mathematics and Theoretical Computer Science. DIMACS, vol. 2, pp. 173–181. American
Mathematical Society (1991) 96, 120, 121, 123

[32] Fischer, M.J., Wright, R.N.: Multiparty secret key exchange using a random deal of cards. In: Feigen-
baum, J. (ed.) Advances in Cryptology – CRYPTO ’91. Lecture Notes in Computer Science, vol. 576,
pp. 141–155. Springer (1991) 96, 120, 121

[33] Fischer, M.J., Wright, R.N.: An application of game theoretic techniques to cryptography. In: Discrete
Mathematics and Theoretical Computer Science. DIMACS, vol. 13, pp. 99–118. American Mathemat-
ical Society (1993) 96, 120, 121

[34] Fischer, M.J., Wright, R.N.: An efficient protocol for unconditionally secure secret key exchange. In:
ACM-SIAM Symposium on Discrete algorithms (SODA ’93). pp. 475–483. Society for Industrial and
Applied Mathematics (1993) 96, 120, 121

[35] Fischer, M.J., Wright, R.N.: Bounds on secret key exchange using a random deal of cards. Journal of
Cryptology 9(2), 71–99 (1996) 96, 120, 121, 123

127

[36] Garey, M.R., Johnson, D.S.: Computers and Intractability; A Guide to the Theory of NP-
Completeness. W. H. Freeman & Co., New York, NY, USA (1990) 73

[37] GoogleSharing: Keep your search history yours. http://www.googlesharing.net/googlesharing/, ac-
cessed February 1, 2013 94

[38] Hanaoka, G., Shikata, J., Zheng, Y., Imai, H.: Unconditionally secure digital signature schemes
admitting transferability. In: Okamoto, T. (ed.) Advances in Cryptology – ASIACRYPT 2000. Lecture
Notes in Computer Science, vol. 1976, pp. 130–142. Springer (2000) 20, 21, 22, 23, 37, 44, 45, 49, 57,
58, 60

[39] Hanaoka, G., Shikata, J., Zheng, Y., Imai, H.: Efficient and unconditionally secure digital signatures
and a security analysis of a multireceiver authentication code. In: Naccache, D., Paillier, P. (eds.)
Public Key Cryptography (PKC 2002). Lecture Notes in Computer Science, vol. 2274, pp. 64–79.
Springer (2002) 20, 21, 22, 57

[40] Hara, Y., Seito, T., Shikata, J., Matsumoto, T.: Unconditionally secure blind signatures. In: Desmedt,
Y. (ed.) Information Theoretic Security (ICITS 2007), Lecture Notes in Computer Science, vol. 4883,
pp. 23–43. Springer (2009) 20, 21, 31, 57, 60

[41] He, J., Duan, Z.: Public communication based on Russian cards protocol: A case study. In: Wang,
W., Zhu, X., Du, D.Z. (eds.) Combinatorial Optimization and Applications (COCOA 2011). Lecture
Notes in Computer Science, vol. 6831, pp. 192–206. Springer (2011) 96, 121

[42] Howe, D., Nissenbaum, H.: TrackMeNot: Resisting surveillance in web search. In: Lessons from
the Identity Trail: Anonymity, Privacy, and Identity in a Networked Society, pp. 417–436. Oxford
University Press (2009) 94

[43] Johansson, T.: On the construction of perfect authentication codes that permit arbitration. Lecture
Notes in Computer Science, vol. 773, pp. 343–354. Springer (1993) 21

[44] Johansson, T.: Further results on asymmetric authentication schemes. Information and Computation
151(1–2), 100–133 (1999) 21, 57

[45] Katz, J., Lindell, Y.: Introduction to Modern Cryptography. Cryptography and Network Security,
Chapman & Hall/CRC (2008) 3

[46] Knudsen, L.R. (ed.): Advances in Cryptology – EUROCRYPT 2002, Lecture Notes in Computer
Science, vol. 2332. Springer (2002) 127, 129

[47] Koizumi, K., Mizuki, T., Nishizeki, T.: Necessary and sufficient numbers of cards for the transforma-
tion protocol. In: Chwa, K.Y., Munro, J.I. (eds.) Computing and Combinatorics (COCOON 2004).
Lecture Notes in Computer Science, vol. 3106, pp. 92–101. Springer (2004) 96, 120, 121

[48] Lee, J., Stinson, D.R.: A combinatorial approach to key predistribution for distributed sensor net-
works. In: IEEE Wireless Communications and Networking Conference (WCNC 2005). pp. 1200–1205.
IEEE Computer Society Press (2005) 69

[49] Mathon, R., Street, A.P.: Partitions of sets of designs on seven, eight and nine points. Journal of
Statistical Planning and Inference 58(1), 135–150 (1997) 12

[50] Menezes, A., Vanstone, S.A. (eds.): Advances in Cryptology – CRYPTO ’90, Lecture Notes in Com-
puter Science, vol. 537. Springer (1991) 126, 127

[51] Mizuki, T., Shizuya, H., Nishizeki, T.: A complete characterization of a family of key exchange
protocols. International Journal of Information Security 1(2), 131–142 (2002) 96, 120, 121

[52] Motwani, R., Raghavan, P.: Randomized Algorithms, chap. Tail Inequalities, pp. 67–73. Cambridge
University Press (1995) 81

[53] Pfitzmann, A., Hansen, M.: A terminology for talking about privacy by data minimization:
Anonymity, unlinkability, undetectability, unobservability, pseudonymity, and identity management.
http://dud.inf.tu-dresden.de/literatur/Anon Terminology v0.34.pdf (2010), v0.34 61

128

[54] Raymond, J.F.: Traffic analysis: Protocols, attacks, design issues, and open problems. In: Federrath,
H. (ed.) Designing Privacy Enhancing Technologies, Lecture Notes in Computer Science, vol. 2009,
pp. 10–29. Springer Berlin Heidelberg (2001) 68

[55] Rebollo-Monedero, D., Forné, J., Domingo-Ferrer, J.: Query profile obfuscation by means of optimal
query exchange between users. IEEE Transactions on Dependable and Secure Computing 9(5), 641–
654 (2012) 95

[56] Reiter, M.K., Rubin, A.D.: Crowds: anonymity for web transactions. ACM Transactions on Informa-
tion and System Security (TISSEC) 1(1), 66–92 (1998) 81, 94

[57] Roeder, T., Pass, R., Schneider, F.: Multi-verifier signatures. Journal of Cryptology 25, 310–348
(2012) 57

[58] Safavi-Naini, R., McAven, L., Yung, M.: General group authentication codes and their relation to
“unconditionally-secure signatures”. In: Bao, F., Deng, R.H., Zhou, J. (eds.) Public Key Cryptography
(PKC 2004). Lecture Notes in Computer Science, vol. 2947, pp. 231–247. Springer (2004) 20, 21, 22,
31, 32, 57

[59] Safavi-Naini, R., Wang, H.: Broadcast authentication in group communication. In: Lam, K.Y.,
Okamoto, E., Xing, C. (eds.) Advances in Cryptology – ASIACRYPT ’99. Lecture Notes in Com-
puter Science, vol. 1716, pp. 399–411. Springer (1999) 21

[60] Sánchez, D., Castellà-Roca, J., Viejo, A.: Knowledge-based scheme to create privacy-preserving but
semantically-related queries for web search engines. Information Sciences 218, 17–30 (2013) 94

[61] Schreiber, S.: Covering all triples on n marks by disjoint steiner systems. Journal of Combinatorial
Theory, Series A 15(3), 347–350 (1973) 13

[62] Seito, T., Shikata, J.: Information-theoretically secure key-insulated key-agreement. In: IEEE Infor-
mation Theory Workshop (ITW 2011). pp. 287–291. IEEE Computer Society Press (2011) 22, 45, 58,
60

[63] Seito, T., Aikawa, T., Shikata, J., Matsumoto, T.: Information-theoretically secure key-insulated
multireceiver authentication codes. In: Bernstein, D.J., Lange, T. (eds.) Progress in Cryptology –
AFRICACRYPT 2010. Lecture Notes in Computer Science, vol. 6055, pp. 148–165. Springer (2010)
22, 45, 49, 58, 60

[64] Shannon, C.E.: Communication theory of secrecy systems. Bell system technical journal 28(4), 656–
715 (1949) 3

[65] Shikata, J., Hanaoka, G., Zheng, Y., Imai, H.: Security notions for unconditionally secure signature
schemes. In: Knudsen [46], pp. 434–449 20, 21, 22, 31, 32, 44, 57, 58, 59, 60

[66] Simmons, G.J.: Message authentication with arbitration of transmitter/receiver disputes. In: Chaum,
D., Price, W.L. (eds.) Advances in Cryptology – EUROCRYPT ’87. Lecture Notes in Computer
Science, vol. 304, pp. 151–165. Springer (1987) 21

[67] Simmons, G.J.: A cartesian product construction for unconditionally secure authentication codes that
permit arbitration. Journal of Cryptology 2, 77–104 (1990) 21, 59

[68] Stinson, D.R.: Combinatorial Designs: Constructions and Analysis. Springer-Verlag (2003) 9, 13
[69] Stinson, D.R.: Cryptography: Theory and Practice. Discrete Mathematics and its Applications,

Chapman & Hall/CRC, 3rd edn. (2006) 3
[70] Stokes, K.: Combinatorial structures for anonymous database search. Ph.D. dissertation, Universitat

Rovira i Virgili, Tarragona (2011) 93
[71] Stokes, K., Bras-Amorós, M.: Optimal configurations for peer-to-peer user-private information re-

trieval. Computers & Mathematics with Applications 59(4), 1568–1577 (2010) 62, 66, 68, 93
[72] Stokes, K., Bras-Amorós, M.: Combinatorial structures for an anonymous data search protocol. In:

Workshop on Computational Security. Centre de Recerca Matemàtica (CRM), Barcelona, Spain (2011)
68, 69, 93, 94

129

[73] Stokes, K., Bras-Amorós, M.: On query self-submission in peer-to-peer user-private information
retrieval. In: Truta, T.M., Xiong, L., Fotouhi, F., Orsborn, K., Stefanova, S. (eds.) Privacy and
Anonymity in Information Society (PAIS ’11). pp. 7:1–7:5. ACM (2011) 62, 66, 67, 68, 80, 93

[74] Stokes, K., Farràs, O.: Linear spaces and transversal designs: k-anonymous combinatorial configu-
rations for anonymous database search notes. Designs, Codes and Cryptography pp. 1–22 (2012) 94,
95

[75] Swanson, C.M., Stinson, D.R.: Combinatorial solutions providing improved security for the general-
ized Russian cards problem. Designs, Codes and Cryptography pp. 1–23 (2012) 96, 114, 122, 124

[76] Swanson, C.M., Stinson, D.R.: Unconditionally secure signature schemes revisited. In: Fehr, S. (ed.)
Information Theoretic Security (ICITS 2011). Lecture Notes in Computer Science, vol. 6673, pp.
100–116. Springer (2011) 20

[77] Swanson, C.M., Stinson, D.R.: Extended combinatorial constructions for peer-to-peer user-private
information retrieval. Advances in Mathematics of Communications 6, 479–497 (2012) 61, 93, 94

[78] Sweeney, L.: k-anonymity: A model for protecting privacy. International Journal of Uncertainty,
Fuzziness and Knowledge-Based Systems 10(05), 557–570 (2002) 93

[79] Toubiana, V., Subramanian, L., Nissenbaum, H.: TrackMeNot: Enhancing the privacy of web search.
CoRR abs/1109.4677 (2011) 94

[80] Viejo, A., Castellà-Roca, J.: Using social networks to distort users’ profiles generated by web search
engines. Computer Networks 54(9), 1343–1357 (2010) 94

[81] Wilson, R.: Some partitions of all triples into steiner triple systems. In: Berge, C., Ray-Chaudhuri,
D. (eds.) Hypergraph Seminar, Lecture Notes in Mathematics, vol. 411, pp. 267–277. Springer (1974),
10.1007/BFb0066198 13, 14

[82] Wright, M., Adler, M., Levine, B.N., Shields, C.: An analysis of the degradation of anonymous
protocols. In: Network and Distributed System Security Symposium (NDSS 2002). The Internet
Society (2002) 81, 94

[83] Wright, M.K., Adler, M., Levine, B.N., Shields, C.: The predecessor attack: An analysis of a threat to
anonymous communications systems. ACM Transactions on Information and System Security (TIS-
SEC) 7(4), 489–522 (2004) 81, 94

130

APPENDIX A

Analysis of USS Constructions

We need the following lemmas:

Lemma A.1. Let n ∈ N and consider the set of n+ 1 vectors

R = {~ri = (ri,1, . . . , ri,n) ∈ (Fq)n : i = 1, . . . , n+ 1} .
If the set of vectors

{
~ri
′ = (1, ri,1, . . . , ri,n) ∈ (Fq)n+1 : i = 1, . . . , n+ 1

}
form a linearly in-

dependent set, then there exists a subset R′ ⊂ R of linearly independent vectors of size n.

Proof. Consider the matrix

M =

1 r1,1 r1,2 . . . r1,n

1 r2,1 r2,2 . . . r2,n
...

...
...

...
1 rn+1,1 rn+1,2 rn+1,n

 .

Let Mij denote the (i, j) minor matrix of M . Then calculating the determinant of M
by expansion along the first column, we have

det(M) =
n+1∑
i=1

(−1)i+1det(Mi,1). (22)

Recall M is invertible, so det(M) 6= 0. Thus (22) implies det(Mk,1) 6= 0 for some
k ∈ {1, . . . n}. We conclude that the matrix Mk,1 is invertible, so the desired subset R′

exists. �

Lemma A.2. Let n ∈ N and let F and F ′ be polynomials in y1, . . . , yn of the form a0 +∑n
i=1 aiyi over Fq. Suppose F ′ and F agree on the n+ 1 vectors

R = {~ri = (ri,1, . . . , ri,n) ∈ (Fq)n : i = 1, . . . , n+ 1} .
If the set of vectors

{
~ri
′ = (1, ri,1, . . . , ri,n) ∈ (Fq)n+1 : i = 1, . . . , n+ 1

}
form a linearly in-

dependent set, then F ′ = F .

Proof. Define linear homogeneous polynomials G, G′ ∈ Fq[y0, . . . , yn] such that

G(y0, . . . , yn)|y0=1 = F (y1, . . . , yn)

131

and
G′(y0, . . . , yn)|y0=1 = F ′(y1, . . . , yn).

We have (G − G′) (1, ri,1, . . . , ri,n) = 0 for 1 ≤ i ≤ n + 1. In particular, this forms a
homogeneous linear system of n+ 1 equations in the n+ 1 unknowns a0, . . . , an. Since the
vectors {(1, ri,1, . . . , ri,n) ∈ (Fq)n+1 : i = 1, . . . , n+ 1} are linearly independent, it follows
that G−G′ is the zero polynomial, so G = G′. Hence F = F ′, as desired. �

A.1. Basic Construction: Proof of Linear Independence. We use assumptions and
notation as in the proof of Theorem 2.11. Recall that the information obtained by the
coalition C is contained in equation sets (1) and (3), together with, for each Uh /∈ C,
equation set (5). We have a total of nωψ + nω + ω + ψn equations, which would imply
there are at least n− ω free variables in the given linear system.

We proceed by showing that allowing C access to an additional n − ω equations (in
the form of sample signatures from each user not in C) suffices to solve the linear system.
This implies the linear independence of the original set of equations, as desired.

Lemma A.3. Let Uh /∈ C. Suppose C has access to an additional h-authentic signature
from Uh on some message mh,ψ+1 satisfying mh,ψ+1 6= mh,k for 1 ≤ k ≤ ψ. Then this is
equivalent to C having access to all of the signing information from Uh.

Proof. This follows immediately from the fact that Uh’s signing algorithm sh(~y, z) is a
polynomial of degree ψ + 1 in z. �

Lemma A.3 implies that the system of equations

{Cikh : 0 ≤ i ≤ n− 1, 0 ≤ k ≤ ψ, 1 ≤ h ≤ ω} ∪ {D0kh : 0 ≤ k ≤ ψ, 1 ≤ h ≤ n}
is equivalent to the original system of equations known to C, plus n− ω additional equa-
tions

{
B0h(ψ+1) : Uh /∈ C

}
(obtained from an extra h-authentic signature on some new

message mh,ψ+1 for each Uh /∈ C). In the following lemma, we show this new set is linearly
independent, and therefore the linear independence of the original set follows.

Lemma A.4. The coefficient matrix formed from the equations

{Cikh : 0 ≤ i ≤ n− 1, 0 ≤ k ≤ ψ, 1 ≤ h ≤ ω} ∪ {D0kh : 0 ≤ k ≤ ψ, 1 ≤ h ≤ n}
has nonzero determinant.

Proof. The coefficient matrix E is a block matrix of the form

E =

[
A 0
C D

]
,

where A and D are square matrices. Thus the determinant of the coefficient matrix, det(E),
is defined by det(E) = det(A) det(D). We show that det(E) 6= 0.

132

Here the submatrix [
A 0

]
is derived from the equations {D0kh : 0 ≤ k ≤ ψ, 1 ≤ h ≤ n}, where

A =

Vn 0 · · · 0
0 Vn · · · 0
...

...
. . .

...
0 0 · · · Vn

is a diagonal matrix with (ψ + 1) Vandermonde matrices Vn on the diagonal. That is, we
have

Vn =

1 U1 · · · Un−1

1

1 U2 · · · Un−1
2

...
...

. . .
...

1 Un · · · Un−1
n

 .
To see that A is invertible, note that det(A) =

∏(ψ+1)
i=1 det(Vn) 6= 0.

The submatrix [
C D

]
is derived from the equations {Cikh : 0 ≤ i ≤ n− 1, 0 ≤ k ≤ ψ, 1 ≤ h ≤ ω}. The matrix D
is defined by

D =

v1,1 I v1,2 I · · · v1,ω I
v2,1 I v2,2 I · · · v2,ω I

...
...

. . .
...

vω,1 I vω,2 I · · · vω,ω I

 ,
where I is the n(ψ + 1)× n(ψ + 1) identity matrix.

The fact that det(D) 6= 0 follows immediately from the the linear independence of the
coalition’s verification keys, {~vh : 1 ≤ h ≤ ω}. �

Remark A.1. The security analysis for a general coalition (whose verification keys may
or may not be linearly independent) is very similar. Recall the assumption that the n
elements ~v1, . . . ~vn ∈ (Fq)ω satisfy the additional property that for any subset of size ω+ 1,
the corresponding subset of size ω + 1 formed from the new vectors [1, ~v1], . . . , [1, ~vn] ∈
(Fq)ω+1 is a linearly independent set. Consider a possible coalition C of size ω, where
V = {~vh : Uh ∈ C} is the set of C’s verification keys. Then Lemma A.1 implies that, for
any ~vr /∈ V , we can pick a subset of size ω with full rank from V ∪ {~vr}.

There are then two cases. Either the set V has rank ω, so that V forms a basis for
(Fq)ω, or the additional vector ~vr is needed to form a basis. In the former case, the analysis
is as above. In the latter, the span of V is a subspace of (Fq)ω of dimension ω − 1. The
linear system corresponding to C’s information has n − (ω − 1) free variables, which can
be shown using a linear algebra trick similar to the one used above.

133

In fact, if we did not have any additional assumptions on user verification keys (other
than that they are chosen uniformly at random from (Fq)ω), the proof follows much as
before. A coalition C’s information in this case depends on the rank of V , i.e., the linear
system has n− r free variables, where r = rank(V).

A.2. Key Insulation Construction: Proof of Linear Independence. We use as-
sumptions and notation as in the proof of Theorem 2.12. Recall that the information
obtained by the coalition C is contained in the following sets of equations: sets (6) and (8),
together with, for each Uh /∈ C, one of set (9) or set (10) (depending on the type of key
exposure), and set (11). We have a total of nω(ψ + 1)(γ + 1) + ω(ψ + 1)(γ + 1) + (n −
ω)γ(ψ + 1) + (n − ω)ψ equations, which implies that we have n − ω free variables in the
given linear system.

We use the same method as in Section A.1; we include the argument here for complete-
ness. We proceed by showing that allowing C access to an additional n− ω equations (in
the form of sample signatures from each each user not in C) suffices to solve the linear
system. This implies the linear independence of the original set of equations, as desired.

Lemma A.5. Let Uh /∈ C. Suppose C has access to an additional h-authentic signature
from Uh on some message mh,ψ+1 satisfying mh,ψ+1 6= mh,k for 1 ≤ k ≤ ψ in addition to
either master key or signing key exposure from Uh. Then this is equivalent to C having
access to all of the signing information from Uh.

Proof. Consider a user Uh /∈ C. Then C has access to up to ψ sample signatures from Uh
on distinct messages mh,k for 1 ≤ k ≤ ψ, which yield the equations {B0hk′ : 1 ≤ k′ ≤ ψ}.
Suppose C has access to one additional signature from Uh, yielding the additional equation
B0h(ψ+1).

Now suppose C has achieved master key exposure for Uh. Then the coalition C has
access to the set {D0k`h : 0 ≤ k ≤ ψ, 1 ≤ ` ≤ γ}. Let

Bh = {D0k`h : 0 ≤ k ≤ ψ, 1 ≤ ` ≤ γ} ∪ {B0hk′ : 1 ≤ k′ ≤ ψ} .
We show that the coalition having access to the set Bh∪{B0h(ψ+1)} is equivalent to C know-
ing all of the signing information for Uh, namely the set {D0k`h : 0 ≤ k ≤ ψ, 0 ≤ ` ≤ γ}.
First note that these two sets are both of cardinality (ψ + 1)(γ + 1).

It is easy to see that the equations in Bh ∪ {B0h(ψ+1)} may be written as a linear
combination of the equations in {D0k`h : 0 ≤ k ≤ ψ, 0 ≤ ` ≤ γ}. To see that Bh∪{B0h(ψ+1)}
suffices to derive the signing information of Uh, note that there are ψ+1 equations {B0hk′ :
1 ≤ k′ ≤ ψ + 1} in the ψ + 1 unknowns {D0k0h : 0 ≤ k ≤ ψ}. (The linear independence
of these equations is guaranteed so long as the messages chosen for the sample signatures
from Uh are distinct.)

Now suppose C has signing key exposure for Uh instead of master key exposure. Let

B′h = {E0kthd
: 0 ≤ k ≤ ψ, 1 ≤ d ≤ γ} ∪ {B0hk′ : 1 ≤ k′ ≤ ψ}.

134

It is easy to see that the equations in Bh∪{B0h(ψ+1)}may be written as a linear combination
of the equations in {D0k`h : 0 ≤ k ≤ ψ, 0 ≤ ` ≤ γ} and that these two sets have the same
cardinality. To see that Bh∪{B0h(ψ+1)} suffices to derive the signing information of Uh, note

that there are ψ + 1 equations {B0hk′ : 1 ≤ k′ ≤ ψ + 1} and γ(ψ + 1) equations
{
E0kthd

:

0 ≤ k ≤ ψ, 1 ≤ d ≤ γ
}

in the (ψ + 1)(γ + 1) unknowns {D0k`h : 0 ≤ k ≤ ψ, 0 ≤ ` ≤ γ}.
(The linear independence of these equations is guaranteed so long as the messages chosen
for the sample signatures from Uh are distinct.) �

The following lemma completes the result:

Lemma A.6. The coefficient matrix formed from the equations

{Cik`h : 0 ≤ i ≤ n− 1, 0 ≤ k ≤ ψ, 0 ≤ ` ≤ γ, 1 ≤ h ≤ ω}
∪ {D0k`h : 0 ≤ k ≤ ψ, 0 ≤ ` ≤ γ, 1 ≤ h ≤ n}

has nonzero determinant.

Proof. The coefficient matrix E is a block matrix of the form

E =

[
A 0
C D

]
,

where A and D are square matrices. Thus the determinant of the coefficient matrix, det(E),
is defined by det(E) = det(A) det(D). We show that det(E) 6= 0.

Here the submatrix [
A 0

]
is derived from the equations {D0k`h : 0 ≤ k ≤ ψ, 0 ≤ ` ≤ γ, 1 ≤ h ≤ n}, where

A =

Vn 0 · · · 0
0 Vn · · · 0
...

...
. . .

...
0 0 · · · Vn

is a diagonal matrix with (ψ + 1)(γ + 1) Vandermonde matrices Vn on the diagonal. That
is, we have

Vn =

1 U1 · · · Un−1

1

1 U2 · · · Un−1
2

...
...

. . .
...

1 Un · · · Un−1
n

 .
To see that A is invertible, note that det(A) =

∏(ψ+1)(γ+1)
i=1 det(Vn) 6= 0.

The submatrix [
C D

]

135

is derived from the equations {Cik`h : 0 ≤ i ≤ n− 1, 0 ≤ k ≤ ψ, 0 ≤ ` ≤ γ, 1 ≤ h ≤ ω}. The
matrix D is defined by

D =

v1,1 I v1,2 I · · · v1,ω I
v2,1 I v2,2 I · · · v2,ω I

...
...

. . .
...

vω,1 I vω,2 I · · · vω,ω I

 ,
where I is the n(ψ + 1)(γ + 1)× n(ψ + 1)(γ + 1) identity matrix.

The fact that det(D) 6= 0 follows immediately from the the linear independence of the
coalition’s verification keys, {~vh : 1 ≤ h ≤ ω}. �

136

	Front matter
	Author's Declaration
	Abstract
	Acknowledgements
	Chapter 1. Introduction
	1.1. Unconditionally Secure Cryptography
	1.2. Combinatorial Designs
	1.3. Thesis Outline

	Chapter 2. Unconditionally Secure Signature Schemes Revisited
	2.1. Introduction
	2.2. Overview of Contributions
	2.3. Preliminaries
	2.4. Formal Security Model
	2.5. Dispute Resolution
	2.6. A Formal Treatment of Dispute Resolution
	2.7. Basic USS Scheme Construction and Analysis
	2.8. USS Schemes with Key Insulation
	2.9. Construction: USS Scheme with Key Insulation
	2.10. Discussion and Comparison with Related Work
	2.11. Concluding Remarks and Future Work

	Chapter 3. Extended Combinatorial Constructions for Peer-to-peer User-Private Information Retrieval
	3.1. Introduction
	3.2. Overview of Contributions
	3.3. Our P2P UPIR Model
	3.4. Previous Work: Using Configurations
	3.5. Using More General Designs
	3.6. Privacy Against Other Users
	3.7. Discussion and Comparison with Related Work
	3.8. Concluding Remarks and Future Work

	Chapter 4. Combinatorial Solutions Providing Improved Security for the Generalized Russian Cards Problem
	4.1. Introduction
	4.2. Overview of Contributions
	4.3. Preliminary Notation and Examples
	4.4. Informative Strategies
	4.5. Secure Strategies
	4.6. Simultaneously Informative and Secure Strategies
	4.7. A Variant of the Russian Cards Problem
	4.8. Discussion and Comparison with Related Work
	4.9. Concluding Remarks and Future Work

	Bibliography
	Appendix A. Analysis of USS Constructions

