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Abstract

The security of digital Integrated Circuits (ICs) is essential to the security
of a computer system that comprises them. We present an improved attack
on computer hardware that avoids known defence mechanisms and as such
raises awareness for the need of new and improved defence mechanisms. We
also present a new defence method for securing computer hardware against
modifications from untrusted manufacturing facilities, which is of concern
since manufacturing is increasingly outsourced.

We improve upon time triggered based backdoors, inserted maliciously in
hardware. Prior work has addressed deterministic timer-based triggers —
those that are designed to trigger at a specific time with probability 1. We
address open questions related to the feasibility of realizing non-deterministic
timer-based triggers in hardware — those that are designed with a random
component. We show that such timers can be realized in hardware in a
manner that is impractical to detect or disable using existing countermea-
sures of which we are aware. We discuss our design, implementation and
analysis of such a timer. We show that the attacker can have surprisingly
fine-grained control over the time-window within which the timer triggers.
From the attacker’s standpoint our non-deterministic timer has key advan-
tages over traditional timer designs. For example the hardware footprint is
smaller which increases the chances of avoiding detection. Also our timer has
a much smaller time-window for which a volatile state needs to be maintained
which in turn makes the power reset defence mechanisms less effective.

Our proposed defence mechanism addresses the threat of a malicious
agent at the IC foundry who has information of the circuit and inserts covert,
malicious circuitry. The use of 3D IC technology has been suggested as a
possible technique to counter this threat. However, to our knowledge, there
is no prior work on how such technology can be used effectively. We propose
a way to use 3D IC technology for security in this context. Specifically, we
obfuscate the circuit by lifting wires to a trusted tier, which is fabricated sep-
arately. We provide a precise notion of security that we call k-security and
point out that it has interesting similarities and important differences from
k-anonymity. We also give a precise specification of the underlying computa-
tional problems and their complexity and discuss a comprehensive empirical
assessment with benchmark circuits that highlight the security versus cost
trade-offs introduced by 3D IC based circuit obfuscation.
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Chapter 1

Introduction

The security of computer hardware, particularly digital Integrated Circuits
(ICs), is an important aspect of the overall security of computer systems.
Of particular concern is the potential for insider-abuse [61] — the insertion
of malicious backdoors by trusted insiders that are involved in the manufac-
turing process of an IC. A backdoor allows an attacker to bypass system-
safeguards.

Hardware security has several similarities to software security. However,
as recent work points out [33], the compromise of hardware can be more
harmful than the compromise of software for two reasons. One is that attack
vectors are more persistent, given that hardware is not as easy to patch as
software. The other is that hardware is at the lowest level of the computer
system, and thereby, a vulnerability in hardware affects the software that
runs above it as well.

This thesis presents two new contributions in the context of hardware
security: (i) a non-deterministic timer, a new type of trigger used to attack
hardware that utilizes random events to evade current defence mechanisms;
and (ii) k-security, a defence mechanism that embeds security into the fabri-
cation process by leveraging 3D IC technology and thereby obfuscating the
circuit.

The rest of this chapter will introduce the non-deterministic timer and
k-security followed by Chapter 2 which introduces the necessary background
of hardware and reviews current research on security in the context of our
proposed contributions. In Chapter 3 and Chapter 4 we formally introduce
the theory and results of the non-deterministic timer and k-security respec-
tively, review strengths and weaknesses of our contributions in Chapter 5



and finally in Chapter 6 we conclude with a summary of our findings.

1.1 Attacks

Hardware attacks compromise the integrity of the IC. Specifically an adver-
sary can design his or her attack to leak information, degrade performance
and or modify the logical. To motivate the importance of hardware secu-
rity consider an orbital satellite with a maliciously compromised IC designed
to fail after one year of operation. This one incident, would cost millions
of dollars and the execution of the attack is possible due to the multiple
opportunities the design and fabrication process allow, as shown in Figure
2.1.

The insertion of a hardware backdoor is a particularly dangerous kind of
attack [74, 75]. Tt can be used by an attacker to affect a part, or even take
over the entire system. A backdoor is typically passive until it is triggered.
Once triggered, it performs some malicious action such as unauthorized priv-
ilege escalation or even destruction of hardware and software components. A
trigger is usually one of two types [74]: data-based or time-based. (A com-
bination of the two is also possible.) With the former, an attack is initiated
by a cheat-code, a sequence of bits embedded in the data or instruction
stream. With the latter, an attack takes place after the elapse of some time,
measured, for example, by CPU cycles.

While both data-based and time-based attacks can be destructive, time-
based triggers seem to be particularly dangerous because they do not require
any cooperation at run-time, whether accidental or intentional, from a higher-
level component such as software or a user. With a time-based attack, the
attacker typically embeds a timer that triggers the attack as part of the
malicious circuitry. As prior work observes [74], such a timer is simple to
implement in hardware.

Our proposed attack pertains to timer-based triggers. That is, attack-
triggers that are set off by a hardware circuit that implements a timer. We
distinguish two types of timers: deterministic and non-deterministic . A de-
terministic timer triggers at a time of the attacker’s choosing with probability
1. A non-deterministic timer does not; it has a random component to it. (A
deterministic timer is a special case of a non-deterministic timer.)

Given the potentially devastating effects of timer-based triggers, prior
work has considered how their effects can be mitigated. Waksman and Sethu-



madhavan [75] propose power-cycling the IC as a general countermeasure to
timer-based triggers.

Power cycling, in this context, is fine-grained and is not intended to
impede the running of higher-level software. Specifically, the execution of
instructions is interrupted briefly and some volatile state (e.g., content of
registers) is lost as a consequence of power cycling, but the persistent state
(e.g., content of caches and of non-volatile memory) is retained. The program
counter is saved to and restored from non-volatile memory. Waksman and
Sethumadhavan’s [75] empirical observation is that such power-cycling every
1,000,000 cycles results in negligible performance overhead.

They propose that such power-cycling be carried out at both the post-
fabrication testing and validation stage of the manufacturing process, and
in the field. They show that the former is effective in disabling a particular
kind of deterministic timer. We show that there exists a deterministic timer
that cannot be disabled by power-cycling in the post-fabrication testing and
verification stage, but can be rendered useless by power-cycling in the field
(see Section 3.1).

More importantly, prior work leaves open issues related to non-determin-
istic timer-based triggers. It has been conjectured that from the attacker’s
standpoint, such a trigger may be of limited value given the random compo-
nent — the attacker has insufficient control over when it triggers [75]. These
open issues are the focus of our attack.

We show that an attacker can realize a non-deterministic timer-based
trigger in hardware in a manner that is impractical to detect or disable using
existing countermeasures of which we are aware. Furthermore, we show that
an attacker can have surprisingly fine-grained control over the behaviour of
such timers. For example, an attacker can ensure that the timers in all
! instances of an IC trigger within the same small time-window, i.e., he
is able to ensure that the standard deviation of the timer is small around
its expectation. Alternately, an attacker can have such timers trigger at
different, seemingly random times.

From the standpoint of the attacker, our construction has other appeal-
ing features as well. (See Section 5 for a comprehensive discussion.) It is
carried out using digital components only, thereby refuting suggestions in

LAll in this context means a very high percent of ICs will trigger within a window. In
other words, since the trigger is non-deterministic there is a very small probability that
an IC may trigger outside of the window in question.



some prior work [75] that analog circuitry is necessary to exploit true ran-
domness. (Our construction requires true randomness — see Section 3.3.)
The timer is fully synthesizable, and therefore the attacker can insert such a
timer at any stage of the design and fabrication process for ICs, given access
to Non-Volatile (NV)-Memory. If the attacker inserts the timer in the design
stage, simulations with even unbounded resources cannot detect its presence.
(Simulation-based testing is customarily part of pre-fabrication testing.)

The size of the non-volatile state we need to maintain, and the corre-
sponding size of the NV-memory we need for the functioning of the timer, is
very small: only the state for a counter, i.e., a few bits. The time-window
of volatile state between updates to the non-volatile state is so small (two
orders of magnitude smaller than the frequency of power cycling that prior
work [75] considers) that it is impractical to power-cycle the circuit suffi-
ciently frequently to interrupt it.

Contributions Our research contribution is a design, implementation
and thorough analysis of a non-deterministic timer in hardware that can be
used to trigger backdoors in ICs. Our work demonstrates that non-deter-
ministic timer-based triggers, with dangerous characteristics, can be feasibly
realized by an attacker that has access to the IC manufacturing process. In
particular, compared to deterministic timer attacks, which have been the
focus of prior study, the non-deterministic timers are more pernicious for the
following reasons:

e Non-deterministic timers are immune to the post-fabrication test time
power cycling defence proposed by Waksman and Sethumadhavan [75]
that is effective against a class deterministic timer attacks.

e Deterministic timers that escape post-fabrication test time defence
mechanisms are easily disabled by even infrequent power cycling in
the field. On the other hand, non-deterministic timers can be defeated
only by very frequent power cycling, at rates high enough to be almost
impractical because of the significant performance penalty that they
impose. For example, a non-deterministic timer with an expected trig-
ger time of one year is only defeated if the chip is power cycled once
every 27 ps, while an equivalent deterministic timer is defeated even
if the chip is power cycled once every 50 minutes (see Case Study in
Section 3.4).

e Our implementation of the non-deterministic timer requires (perhaps
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counter-intuitively) fewer logic gates and fewer bits of NV memory
than an equivalent deterministic timer implementation. Thus, non-
deterministic attacks are more immune to detection techniques based
on IC fingerprinting and physical screening.

e Non-deterministic timers that exploit physical random processes (as
our attack does) behave very differently in pre-fabrication simulation
and validation tests than they do in the field. This fact has impor-
tant implications for the immunity of the non-deterministic timer at-
tack to pre-fabrication validation testing — the non-deterministic timer
never triggers in logic or circuit simulation tests. On the other hand,
deterministic timers do trigger and are consequently detected during
pre-silicon validation if the simulations are run for a sufficiently large
number of clock cycles.

A possible critique of non-deterministic timers is that the trigger time is,
by definition, a random variable and not a deterministic value. Non-deter-
ministic timers can therefore trigger, with some probability, during post-
fabrication testing, resulting in early detection. We show, however, that by
appropriate choice of design parameters, the probability of the non-determin-
istic timer triggering can be reduced to values as small as 10719 even if each
fabricated chip can be tested for 10 days before shipping to the customer. At
the same time, we show that the non-deterministic timer can be engineered
to trigger within short confidence intervals with high likelihood resulting in
very precise, controlled attacks — for example, more than 99.5% of the timers
trigger within 10 days of the expected trigger time for an attack designed to
trigger in one year (see Case Study in Section 3.3).

As such, our work is intended to alert hardware verification and test
engineers to the considerable threat to the safety of digital ICs from non-
deterministic timer based attacks, which have previously received little or
no attention because of their perceived impracticality. On the contrary, we
show that non-deterministic attacks are not only practical, but potentially
more pernicious than deterministic timer attacks.

1.2 Countermeasures

Countermeasures with respect to computer hardware security occur in one
of two forms deterrents and preventatives. Unfortunately deterrents often



present an initial investment of work to the adversary, but allows for a per-
manent solution with little to no extra cost in the long run. This is due to
the fact that adversary is privy to knowledge of the entire circuit, which fact
is likely responsible for the absence of more preventative methods. We pro-
pose our technique as a true form of prevention which is realized by hiding
knowledge of the entire circuit to the adversary by means of 3D integration.

Three-dimensional (3D) integration, an emerging IC manufacturing tech-
nology, is a promising technique to enhance the security of computer hard-
ware. A 3D IC consists of two or more independently manufactured ICs
that are vertically stacked on top of each other — each IC in the stack is
referred to as a tier. Interconnections between the tiers are accomplished
using vertical metal pillars referred to as through-silicon vias (TSV).

3D IC manufacturing can potentially enhance hardware security since
each tier can be manufactured in a separate IC foundry, and vertically stacked
in a secure facility. Thus, a malicious attacker at any one foundry has an
incomplete view of the entire circuit, reducing the attacker’s ability to alter
the circuit functionality in a desired manner.

Tezarron, a leading commercial provider of 3D stacking capabilities, has
alluded to the enhanced security offered by 3D integration in a white pa-
per [1]. The white paper notes that “A multi-layer circuit may be divided
among the layers in such a way that the function of each layer becomes ob-
scure. Assuming that the TSV connections are extremely fine and abundant,
elements can be scattered among the layers in apparently random fashion.”
However, the paper does not provide any formal notion of security for split
manufacturing, nor does it propose techniques to quantify security or achieve
a certain security level. These are the open challenges that our proposed de-
fence mechanism addresses in this paper.

Our threat model assumes a malicious attacker in an IC foundry who
wants to modify the functionality of a digital IC in a specific, targeted man-
ner. Skorobogatovin et al. [61] found an exploit on an Actel FPGA that leaks
secret information stored on the chip when a specific cheat code is observed
at the JTAG interface. Similarly, the attack proposed by King et al. [41]
modifies the state of hardware registers in a processor to raise the privilege
level of the attacker.

To effect a targeted attack, an attacker must first identify specific logic
gates or wires in the circuit that implement the functionality that he wants
to monitor and/or modify; for example, the gate or wire that corresponds
to the privilege bit for the privilege escalation attack proposed in [41]. A
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Figure 1.1: A two tier 3D IC. In this instance, the top tier is an inter-
poser, i.e., it only implements metal wires, while the bottom tier has both
transistors/gates and wires.

malicious foundry can trivially identify the functionality of every gate and
wire in the circuit if it gets to fabricate the entire chip, i.e., if a conventional
planar, 2D fabrication process is used. On the other hand, as we show in
this paper, 3D integration significantly reduces the ability of an attacker in
a malicious foundry to correctly identify gates or wires in the circuit that he
wants to attack.

The specific 3D integration technology that we exploit in this work, since
it is the only one that is currently in large volume commercial production [15],
splits a design into two tiers. The bottom tier consists of digital logic gates
and metal wires used to interconnect logic gates. The top tier, also referred
to as an interposer, only consists of metal wires that provide additional con-
nections between logic gates on the bottom tier.

The bottom tier — this tier is expensive to fabricate since it implements
active transistor devices and passive metal — is sent to an external, untrusted
foundry for fabrication. This is referred to as the untrusted tier. The top
tier implements only passive metal and can be fabricated at lower cost in a
trusted fabrication facility. We refer to this tier as the trusted tier.

Assume, for the sake of argument, that all interconnections between logic
gates are implemented on the trusted tier, the attacker (who only has access
to the untrusted tier) observes only a “sea” of disconnected digital logic
gates. From the perspective of the attacker, gates of the same type, for
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example all NAND gates, are therefore indistinguishable from each other.
(Assuming that the relative size or placement of gates reveals no information
about interconnections between gates. This is addressed later in the thesis.)
Assume also that the attacker wants to attack a specific NAND gate in the
circuit, and not just any NAND gate. The attacker now has two choices:
(a) the attacker could randomly pick one NAND gate to attack from the
set of indistinguishable NAND gates, and only succeed in the attack with
a certain probability; or (b) the attacker could attack all indistinguishable
NAND gates, primarily in cases where the attacker wants to monitor but not
modify gates in the circuit, at the expense of a larger malicious circuit and
thus, an increased likelihood of the attack being detected. In either instance,
the attacker’s ability to effect a malicious, targeted attack on the circuit is
significantly hindered. We argue that forcing the adversary to either guess
or spend more resources then they can afford, while still avoiding detection
is a preventative method. We refer to this technique as circuit obfuscation.

In general, we define a k-secure gate as one that, from the attacker’s
perspective, cannot be distinguished from k£ — 1 other gates in the circuit.
Furthermore, a k-secure circuit is defined as one in which each gate is at least
k-secure.

Contributions In this paper, we make the following contributions:

e We propose a concrete way of leveraging 3D IC technology to secure
digital ICs from an active attacker at the foundry. Whereas the use
of 3D IC technology has been mooted for security before, we are not
aware of prior work like ours that discusses how it can be used.

e We give a precise characterization of the underlying technical problems
and identify their computational complexity.

e We propose a meaningful way to characterize security that we call k-
security. It has appealing similarities to k-anonymity, but important
differences.

e We have devised an approach to addressing our problem of lifting wires,
which comprises a greedy heuristic to identify a candidate set of wires
to be lifted, and the use of a constraint (SAT) solver to compute k-
security.

e We have conducted a thorough empirical assessment of our approach
on benchmark circuits. We have also conducted a case-study of a DES

8



circuit that illustrates the inability of an attacker to effectively attack
circuits secured using 3D IC based obfuscation.



Chapter 2

Background and Related Work

In this chapter, we overview the IC manufacturing process (Section 2.1) and
discuss related work (Section 2.2) along two aspects: attacks and counter-
measures. Also, we place our work in the context of the related work.

2.1 Design and Fabrication Process

Computer hardware is the realization of digital logic in the form of an in-
tegrated circuit (IC) or a chip. In the design phase of an IC, the desired
behaviour of the digital logic is first described using a Hardware Description
Language (HDL), which is then synthesized into a network of digital logic
gates.

The network of interconnected digital logic gates is referred to as a netlist.
The gates and wires in the netlist are then placed and routed, respectively,
on the surface of the chip, which results in a circuit layout file that is passed
on to the IC fabrication facility (foundry). A simplified view of the IC design
and fabrication process is shown in Figure 2.1.

Before the design is sent to a foundry for fabrication, it is subjected to
pre-fabrication testing and validation. The traditional objective of this phase
is to ensure that the design meets functional and performance specifications.
The complexity of modern day ICs prohibits the use of formal verification
tools to exhaustively verify the entire state-space of the design. Instead,
simulation-based testing is used with the goal of covering a significant portion
of the state-space.

Fabricated ICs are subjected to post-fabrication testing and validation.

10
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Figure 2.1: The hardware fabrication process. Malicious circuitry may be
inserted at either the design and synthesis, or the fabrication phase. The
former may be detectable at either the pre- or post-fabrication testing and
validation phases. The latter is detectable at the post-fabrication phase only.

Due to cost concerns, only a relatively small portion of the state-space, com-
pared to pre-fabrication testing, can be verified during post-fabrication test-
ing. The traditional purpose of post-fabrication testing is to identify chips
that have random, non-malicious defects.

ICs of even moderate complexity can consist of millions of lines of HDL
code and millions of gates and wires. In a typical design flow, the HDL code
is programmed by teams of programmers in different parts of the world. In
addition, portions of the HDL may be purchased from external vendors. Fi-
nally, a large majority of IC design companies are fabless, i.e., they outsource
IC fabrication to a potentially untrusted third-party foundry. The complex-
ity and decentralized nature of the IC design and fabrication processes is the
primary reason for the increased threat of malicious hardware being inserted
in one or more stages of the design and fabrication flow.

Attacker Model Malicious circuitry can potentially be inserted at the
design/synthesis phase or the fabrication phase, or both, of the process shown
in Figure 2.1. The former involves an attacker modifying the HDL code or
the circuit netlist. The latter involves the attacker modifying the circuit
layout at the IC foundry.

Malicious hardware inserted during the design/synthesis stage must avoid
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detection during the pre- and post-fabrication testing process, while hardware
inserted in the fabrication process only needs to escape post-fabrication test-
ing. Although it might seem beneficial to only insert attacks post-fabrication,
we note that the attacker has less flexibility in modifying the layout file com-
pared to the HDL code or circuit netlist — once a layout file is sent from
the IC vendor to the foundry, any changes in the layout that change the
physical dimensions of the chip are immediately observable. Thus, the mali-
cious foundry is restricted to inserting attacks in the “dead space” — unused
silicon area between logic gates.

Our work proposes a non-deterministic timer attack that can be inserted
in the design or fabrication process of which the exact details are discussed
in Chapter 3. Our proposed defence mechanism only addresses the threat
from outsourcing the fabrication to an untrusted source of which the details
are discussed in Chapter 4.

2.2 Related Work

There is a considerable body of prior work on hardware security. Our work
pertains to the design of a non-deterministic timer that can be used to trigger
a maliciously inserted hardware backdoor and a defence mechanism that
adds security to the fabrication process of ICs in non-trusted facilities. We
discuss the related work in the context of both the proposed attack and
countermeasure. We also discuss prior research on the technology used in our
contributions, namely the use of True Random Number Generators (TRNGs)
and 3D IC technology.

2.2.1 Attacks

Broadly, an attack on computer hardware is the modification of the circuitry
so that it behaves in a manner not intended by the original designer. The
malicious circuitry is typically dormant till it is triggered. Three types of
triggers are discussed in prior work [75]: data based, timer based and hybrid
triggers. Jin et al. [37] describe the outcome of a competition in which
teams of researchers were tasked with inserting hardware attacks in the HDL
description of a cryptographic device. The hardware trojans that Jin et
al. describe all utilize either a data- or time-trigger to enable the malicious
backdoor circuit.
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Data-based triggers monitor internal wires of the circuit for specific bit
patterns, and trigger when this pattern is detected. King et al. [41] describe
an attack that is triggered by the receipt of an unsolicited network packet
containing a “magic” byte; this is an example of a data based trigger. On the
other hand, ticking time bombs trigger after a certain number of clock cycles
have elapsed. (A ticking time bomb is what we call timer-based trigger.)

The number of clock cycles elapsed before the time bomb is triggered can
be either deterministic [76, 75] or non-deterministic (as in this work). Wang
et al. [76] quantify the hardware resource utilization of a number of different
trigger implementations including a deterministic ticking time bomb and a
hybrid data and time trigger.

Once triggered, backdoors can either log and transmit sensitive informa-
tion, modify the circuit functionality, or modify performance specification
such as clock frequency and power dissipation [69]. A number of backdoor
attacks encompassing these broad categories have been proposed in the liter-
ature and we refer the reader to the work of Tehranipoor and Koushanfar for
more details [69]. We note that the proposed non deterministic timer based
trigger can, in theory, be used to activate any hardware backdoor.

2.2.2 Countermeasures

The most natural phases at which attack-mitigation can occur are the pre-
and post-fabrication testing and validation phases of Figure 2.1. Attack
mitigation techniques aim to detect or disable malicious circuitry. Indeed,
for an attack to be successful, it must evade detection or disablement at these
stages.

Hicks et al. [33] propose a pre-fabrication validation technique, referred to
as unused circuit identification (UCI), to detect pairs of wires in the design
that have the same logic value for all test inputs. The intervening logic
between these wires is then flagged as potentially malicious. UCI has since
been defeated [65], but we show an alternative exploit that is discussed in
more detail in Section 5.1.2.

Banga and Hsiao [10], and Zhang and Tehranipoor [81] propose using
equivalence checking and formal verification techniques to check the func-
tionality of a gate level netlist or HDL code against a formal specification. As
prior work [75] points out, such techniques are ineffective against timers. Fur-
thermore, as the trigger cannot be activated by external inputs and does not
by itself interact with the original design (although the backdoor it triggers
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presumably does), it is undetected by pre-fabrication equivalence checking
and formal verification.

Post-fabrication IC fingerprinting, i.e., measuring the physical character-
istics — power dissipation, clock frequency, temperature and electro-magnetic
(EM) signatures — of fabricated ICs and comparing them to a gold standard
has been proposed as a technique to detect malicious circuitry by a number
of prior researchers [3, 6, 38, 54, 78, 80]. These measurements are typically
noisy because of inherent variability in the fabrication process and limited
precision of measurement instruments. To escape detection, the impact of
malicious hardware on the physical characteristics of the IC should be small
enough to be statistically indistinguishable from measurement noise.

As we discuss in Section 5.1.4, IC fingerprinting appears to offer the most
promise in defending against our non-deterministic timer. However, as we
discuss there, some technical challenges need to be addressed before it can
be effective.

Waksman and Sethumadhavan [75] propose countermeasures specifically
to defend against hardware triggers. In particular, they note that any deter-
ministic timer based trigger must maintain some internal volatile state that
can be reset by intermittently power cycling the chip. As we point out in
Section 1.1, power cycling, in this context, is a limited operation by which
some volatile state such as register- and pipeline-contents are lost, but other
state such as cache- and non-volatile memory-contents are retained. Program
execution also stops briefly, and the program counter is saved to and restored
from non-volatile memory.

They propose also that any on-chip NV-memory used to maintain state
can be disabled during post-fabrication testing using a sufficiently large num-
ber of such power cycles. We discuss the ineffectiveness of these countermea-
sures against our timer in Section 3.1. The main issue here is the frequency
of power cycling — to disable our timer, it has to be two orders of magnitude
more frequent than prior work considers [75], a frequency that is impractical.

Use of TRNGS and NV Memory for Hardware Security  Hard-
ware TRNGs have been widely used in cryptographic primitives and security
protocols. A number of hardware TRNG implementations have been pro-
posed in the literature — for our proposed non-deterministic attack, we
focus on fully-synthesizable implementations that utilize digital logic only
and build upon the design suggested by Sunar et al. [67]. Recently, Wang
et al. [77] have proposed a non-volatile Flash memory based TRNG that
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could conceivably be used for a non-deterministic timer attack, but provides
lower throughput. In addition, an NV memory based malicious TRNG can
be disabled by the post-fabrication test time power cycling defence proposed
by Waksman and Sethumadhavan [75]. Finally, we note that the recently
proposed TARDIS technique [55] exploits randomness to measure time spent
in power off state, but has no direct relationship to our work.

3D Integration for Hardware Security Valamehr et al. [73] also exploit
3D integration capabilities to enhance the security of computer hardware,
although in a manner orthogonal to ours. Their proposal involves adding
a “control tier” on top of a regular IC to monitor the activity of internal
wires in the IC in a cost effective way. By monitoring internal wires on the
chip, the control tier is able to detect potentially malicious activity and take
appropriate recourse. Adding the monitors vertically on top of the IC to
be protected reduces the power and performance cost of monitoring the 1C.
Another technique along similar lines was proposed by Bilzor [14].

Or technique exploits 3D integration in a different way, i.e., we use it
to provide a malicious attacker in an IC foundry with an incomplete view
of the circuit netlist, thus deterring the attack. Although the potential for
this kind of defence mechanism has been alluded to before by Tezarron in
their white paper [71], ours is the first work to address this technique in any
consequential way.

Anonymizing Databases and Social Networks Our proposed defence
bears relationship to prior work on anonymizing databases and social network
graphs, but also has significant differences. A database is k-anonymous if
the information for each individual is indistinguishable from &£ — 1 other
individuals [68] in the database. The notion of k-anonymity for a social
network is similar, except that instead of operating on relational data, it
operates on a graph. Two individuals in a social network are indistinguishable
if their local neighbourhoods are the same [83].

In our setting, the similarity of the local neighbourhood of two gates is
only a necessary but not sufficient condition for indistinguishability. This is
because the attacker is assumed to have access to the original circuit netlist
and an incomplete view of the same netlist, and must thus match all gates
in the incomplete netlist to gates in the original netlist.

The circuit obfuscation problem also introduces a number of distinct prac-
tical issues. These include the additional information that might be conveyed
by the circuit layout (for example, the physical proximity of gates), and the
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role of the number of gate types in the technology library.
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Chapter 3

The Non-Deterministic Timer

In this chapter we formalize the exact attack model that pertains to our non-
deterministic timer attack, review the previous work on defence mechanisms
in Section 3.1. Then we present the theory that allows for a controllable
random timer in Section 3.2, in Section 3.3 we show the frame work of our
non-deterministic timer on real hardware and in Section 3.4 we analyze the
results and costs of the non-deterministic timer in comparison to the deter-
ministic timer.

Attacker Model The proposed non-deterministic timer is comprised of
two distinct hardware components, a circuit consisting of digital logic gates
(including ring oscillators), and NV-memory. The phase in which each of
these malicious components are inserted in the hardware depends on the
specific design flow adopted by the IC vendor. For example, in their deter-
ministic timer attack, Waksman and Sethumadhavan [75] assume collusion
between a malicious designer that inserts digital logic during the design/syn-
thesis phase and a malicious foundry that inserts NV-memory during fabri-
cation. The same scheme can be used by an attacker to insert the proposed
non-deterministic timer attack, as shown in Figure 2.1.

Alternatively, the attack could also be inserted entirely in the design/syn-
thesis phase or entirely in the fabrication phase. An attacker might prefer
the former for an IC design and fabrication flow in which CMOS compatible
NV-memory technology can be directly instantiated in the design. Such capa-
bilities are increasingly beginning to appear in IC foundry design kits [53, 62].
On the other hand, a fabrication phase only attack is also feasible if sufficient
dead space is available on the chip.
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In our analysis of the strength of the proposed attack, we have evalu-
ated all relevant pre- and post-fabrication countermeasures against malicious
hardware of which we are aware. We show that, regardless of the attack
model, a non-deterministic timer can be at least as, if not more pernicious
than a deterministic timer.

3.1 Deterministic Timers

In this section, we discuss deterministic timers. In Section 3.1.1, we discuss
the state of the art in deterministic timers, and a countermeasure from prior
work. In Section 3.1.2, we discuss a new kind of deterministic timer we have
conceptualized, and demonstrate that it cannot be disabled in the manner
that the timer from Section 3.1.1 can. In Section 3.1.3, we point out that such
deterministic timers introduce a trade-off between the size of non-volatile
state, and the time-window that volatile state has to be maintained.

3.1.1 State of The Art

A deterministic timer triggers after exactly ¢ clock cycles of chip operation.
All deterministic timer implementations of which we are aware, for example
the implementations proposed by Waksman and Sethumadhavan [75] and
Wang et al. [76], need access to non-volatile state. In a counter based timer,
for example, the current count is persistent state.

The simplest deterministic timer stores non-volatile state in on-chip volatile
memory. A simple defence against such a timer is to periodically turn off
the power to the chip. When the power is restored, the state in the volatile
memory is reset to a default value. This is referred to as power cycling. If
the number of clock cycles between successive power cycles, t,, is less than
the trigger time, ¢, then the timer never triggers.

In their work, Waksman and Sethumadhavan [75] consider a more power-
ful deterministic timer-based trigger that makes use of on-chip NV memory.
A drawback of using NV memory is that it has limited write durability. This
means that each bit in NV memory can only be written to a limited number
of times, after which it loses its ability to store data. Therefore, an attack,
to be practical, must be frugal in the number of updates it makes to its
non-volatile state.

To address the limited write durability of the NV memory, the timer
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proposed by Waksman and Sethumadhavan [75] uses the following protocol.
The state of the counter is stored in volatile memory. However, if the chip is
powered off, the volatile state is transferred to NV memory !. It is transferred
back to volatile memory when the chip is powered back on. To defend against
this attack, that work proposes an elegant defence mechanism. The chip is
repeatedly power cycled during post-fabrication testing. As the NV memory
is written to once in every power cycle, it burns out if the number of power
cycles exceeds its write durability. Thus the timer is rendered ineffective.

3.1.2 Modified Deterministic Timer Protocol

We now discuss a modification of the deterministic timer-based trigger pro-
posed by Waksman and Sethumadhavan [75], which makes the attack immune
to repeated power cycling during post-fabrication testing by sacrificing some
of the state. In the modified protocol, the NV memory is not written to
every time the chip is powered off. Instead, the NV memory is only updated
at regular intervals of time, which will drop the current volatile state during
a power cycle but will retain the previously stored state.

A simple implementation of the modified timer comprises both a volatile
timer and an NV timer that uses m bits of NV memory. The volatile timer
triggers after ¢, clock cycles, increments the NV timer and resets. The at-
tack is triggered when the NV timer reaches a value k, where k£ < 2™ — 1.
This protocol is illustrated in Figure 3.1 and 3.2 for clarity. Compared to
the deterministic timer of Waksman and Sethumadhavan [75], the NV mem-
ory is updated at most k times, regardless of how many times the chip is
power cycled. Therefore, the NV memory cannot be burned out during post-
fabrication testing. (Of course, we need to ensure that the number of writes
to each of the m bits is upper-bounded by the write durability. A sufficient
condition is that k is bounded by the write durability.)

While power cycling cannot be used to burn out NV memory in the
post-fabrication testing phase, it is still possible to defend against the attack
using power cycling in the field. This is another countermeasure proposed
by Waksman and Sethumadhavan [75]. In particular, if the number of clock
cycles between successive power cycles, t, < t,, the volatile counter will never
trigger and the NV memory will never get updated.

IThis scheme writes to the NV memory the minimum number times to avoid any loss
of state. In other words this scheme is the most frugal protocol that always maintains
state.
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We now consider a case study that demonstrates that for realistic at-
tack scenarios, even relatively infrequent power cycling can defend against a
deterministic timer attack.

We assume that the attacker wants the trigger to occur after the IC oper-
ates for one year in the field. We assume also, based on the characterization
of 30-nm NAND Flash technology by Cai et al. [20], that the NV memory
can tolerate 10,000 program/erase cycles. Based on these assumptions, the
NV memory can be written to at most once every 52 minutes (365 days /
10,000 writes). Therefore, power cycling the chip at any rate faster than once
every 52 minutes prevents the timer from going off.

To put this in perspective, Waksman and Sethumadhavan [75] have shown
that power cycling complex digital logic as frequently as once a second re-
sults in negligible performance impact. This case study illustrates that the
limited write durability of NV memory severely limits the effectiveness of
deterministic timer based triggers.
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3.1.3 NV Memory and Volatile State Window Trade-off

In this section, we continue our discussions of the deterministic timer-based
trigger from the previous section. Specifically, we observe that it introduces
a trade-off between the size of non-volatile state, and the time-window that
volatile state needs to be maintained.

Thus far in our discussions, we have implicitly assumed that binary en-
coding is used to store data in the NV memory. Thus, the Least Significant
Bit (LSB) in the NV memory changes value every time the count is updated.
Counting up to a value k results in k& writes to the LSB of the NV memory.

To reduce the length of the time-window of volatile state, redundant bits
in the NV memory can be used to reduce the number of times each bit in
the NV memory is written to while counting up to a value k. However, as
we express with the following lemma, it is easy to intuit a lower-bound on
the number of bits m required to represent k£ as a function of £ and the
write-durability of the NV memory, w.

Lemma 1. At least one bit of an m bit memory is written to at least % times
to count up to k. Therefore, m > g

We now analyze our scenario from the case study in the previous section.
We assume a desired trigger time of one year and an NV memory with a write
durability of 10,000 program/erase cycles. We pose the following question:
how many bits of NV memory are required that allow it to be written to only
once every second? Our intent with this question is to shrink the time-window
that volatile state is maintained in an attempt to evade the countermeasure
of power-cycling.

If the NV memory is updated every second, it will be written to &~ 3.154 x
107 in a year. Based on Lemma, 1, at least 3154 bits of NV memory are needed
to reduce the volatile state window to one second. This is a > 200x increase
in the number of bits compared to the prior case study where a compact
binary encoding was assumed.

NV memory has a different circuit structure compared to on-chip digital
logic or volatile memory. Therefore, larger NV memory increases the likeli-
hood of the attack being detected by visually inspecting a small number of
fabricated chips. In our proposed non-deterministic timer, we seek to use as
few bits of NV memory as possible.
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3.2 Non-Deterministic Timer

In this section, we present the design of our non-deterministic timer. Adopt-
ing the mindset of the attacker, we have two design goals. One is is to break
the apparent trade-off that we discuss in the previous section: between the
size of non-volatile storage (NV-memory), and the length of time that volatile
state has to be maintained. That is, we want the size of NV-memory to be
only the bare minimum. Yet, we would like the time that volatile state must
be maintained to be brief as well so that the timer is resistant to countermea-
sures that erase the volatile state, specifically power cycling. As we discuss
in the previous section, this design goal is related to the write durability of
the NV memory as well.

Our other design goal is to gain control over when the timer triggers.
Our non-deterministic timer is based on random events. So what we want
is sufficient control over the expectation and standard deviation of when the
timer triggers. We want, with high probability, the timer to trigger at a time
of our choosing.

In the next section, we discuss an implementation of our design. The
implementation requires that we address some technical challenges of its
own. We defer a discussion of those to the next section.

Our timer works as follows. We maintain a counter K to keep track of
when the timer should trigger. When K reaches a pre-defined value k, the
timer triggers.

We do not use a periodic clock to increment a counter, as in deterministic
timers. Instead, we assume access to a source of randomness. (We discuss
in the next section how we realize one in practice.) We conduct a series of
Bernoulli trials. Each such trial has one of only two outcomes: success or
failure. We increment K if and only if we have a successful trial.

We need persistent state to maintain the counter K, up to a value k,
only. Each of our Bernoulli trials is independent of the others, and their
probabilities are identically distributed. We can choose the probability of
success of a trial to be arbitrarily low to increase the expected number of
trials between successful events to be arbitrarily large. This way, we can
avoid over-utilization of the NV memory.

Other than the counter K, we need to maintain no state. The only actions
we perform between increments of K (updates to the non-volatile state) are
the Bernoulli trials, and a check of the outcome of each. There is no difference
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between Bernoulli trials before or after a power-cycle.

Single-event trigger To explain our design in more detail, we first con-
sider the somewhat simpler objective of a single-event trigger. That is, a
timer that triggers after one successful Bernoulli trial. If our design is used
for a single-event trigger, we can control the expectation, but not the stan-
dard deviation.

Let N € [1,00) be the random variable that measures the number of trials
up to and including the first success. We consider what the Probability Mass
Function (pmf), expectation, variance and standard deviation are for the
random variable N. For some value n that N can take, the pmf, denoted
f(n) maps n to the probability that N = n. The variance measures how
widely spread the values that NV takes with non-zero probability are, and the
standard deviation is the square root of variance. We have the following for
the pmf, expectation, variance and standard deviation, respectively, where
p is the probability that a Bernoulli trial succeeds. f(n) = p(1 — p)"~!,
E(N) = %, V(N) = %, and, 0 ~ %, for small p. For small p, the ratio
0/E(N) =~ 1 which indicates a wide distribution around the expected value.

As an example let F(N) = 1000, p = 0.001. In Figure 3.5, we show the
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corresponding pmf and the Cumulative Distribution Function (cdf). The cdf
is the probability that the random variable N takes a value at most n, for
various n (the horizontal axis in Figure 3.5). We observe from the cdf that
more than half of the timers are likely to go off before 750 trials, which is
less than the expected trigger time of 1000 trials.

The single event trigger has another drawback from the perspective of the
attacker: it has a high probability of detection during the post-fabrication
testing phase. Assume that the testing phase lasts for the first 100 trials.
From the cdf in Figure 3.5, we observe that there is a 9.5% chance of a timer
being triggered in this phase, thus compromising the attack. Even worse for
the attacker, if each fabricated IC is tested, the likelihood that the attack is
detected in at least one IC is even higher. If even 100 ICs are tested, the
attack is detected with probability 0.999.

We now discuss the multiple event trigger which results in a more favourable
distribution of attack time in terms of emulating a deterministic trigger and
reducing the likelihood of early detection.

Multiple-event trigger = We now analyze the statistics of waiting for k
successes, instead of a single success, before triggering the attack. Let N;
be a random variable that represents number of Bernoulli trials between the
(i—1)" and i** success. As before, let N represent the total number of trials
before k successes. We know that:

N;, for all i € [1, K], are independent and identically distributed random
variables with a distribution that was derived in the preceding discussion
on the single event trigger. As a consequence of the Central Limit Theorem
[52], the distribution of random variable N will, as k — oo, tend to a Normal
distribution with expectation

and standard deviation

k
O'N:\/EO']\LLZ£
p

We observe that standard deviation as a percentage of the expected num-
ber of trials after which the attack triggers depends on the value of k£ only. In
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Figure 3.5: The pmfs (left) and cdfs for three different timer designs. Each
trigger is designed to have an expectation F(N) = 1000. The deterministic
timer is shown as dotted, the single event trigger is shown in bold and the
multiple event non-deterministic timer is shown as solid, not bold.

particular, % = \/LE Thus, large values of k£ result in a narrow distribution
around the expected trigger time, while smaller values of k result in a wider
distribution. Thus, k is a knob that the attacker can control to effect an
attack that either resembles a deterministic attack (large k), or appears to
be seemingly random.

Figure 3.5 shows the pmf and cdf of attack time for a multiple event
non-deterministic timer (k = 100, p = 0.1 and E(N) = 1000), along with
the deterministic and single event trigger distributions for reference. Observe
from the figure, that the pmf and cdf of the multiple event timer are, qual-
itatively, much closer to that of a deterministic timer than that of a single
event timer.

In addition, compared to a single event trigger, the multiple event trigger
has a much lower likelihood of early detection. As before, if 100 trials are
used in post-fabrication testing, the probability that the attack is detected
on any given IC is only 1071, Thus, even if 100,000 ICs are fabricated and
each is tested, the attack is detected with probability of only ~ 107%,

We note that, in the discussion so far, we have used the abstract notion
of trials as a measure to time. This is easily converted to physical units by
noting the time period (in seconds) between successive trials. We discuss
this in more detail in the next section.
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3.3 Hardware Realization

We have implemented a hardware prototype of our non-deterministic timer
on an Altera Straix IV FPGA. In our implementation, we use conventional
digital logic components only — logic gates and registers that are readily
available in any digital IC fabrication process. The Stratix IV FPGA does
not have on-chip NV memory; we use conventional volatile memory blocks
instead. In practice, we expect that an NV memory technology, such as
NAND Flash, which is compatible with a standard IC fabrication process,
will be used to implement the timer.

The non-deterministic timer is programmed in Verilog HDL [72] and is
fully synthesizable. We use the Quartus II software suite to synthesize the
HDL into a netlist of gates which is then downloaded and programmed on
to the FPGA.

The non-deterministic timer comprises two sub-components: the TRNG
and the timer logic. The main challenge in the design is to implement a
TRNG that satisfies the following properties. First, the TRNG must harness
a truly random, physical noise source. A seeded pseudo-random number
generator, for example, cannot be used as it restarts from the same seed
after every power cycle. A resulting timer would have properties that are
very similar to a deterministic timer.

Second, the TRNG must be fully synthesizable and use standard digital
logic blocks only. This allows the attack to be inserted in any stage of the
design flow, from HDL programming to physical design and fabrication. Fi-
nally, the TRNG must have low power dissipation and a small area footprint
to avoid detection using IC fingerprinting techniques.

Our implementation of the TRNG is based on the work of Sunar et al. [67],
and the subsequent modification due to Wold and Tan [79]. The TRNG
exploits oscillator phase noise — small variations in the time period between
successive clock ticks of a digital clock generator — to generate a random
bit-stream. The oscillators are implemented as rings consisting of an odd
number of inverters connected back-to-back. These are referred to as ring
oscillators (RO). ROs are commonly used structures in digital ICs. They
are used not only for clock generation, but also for in-field monitoring and
testing [46]. Therefore, the ROs in the TRNG are unlikely to stand-out as
potentially malicious circuitry.

Using this implementation, we conduct experiments with a target trigger
time of 24 hours and compare the resulting distribution of trigger time with
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Figure 3.6: Circuit diagram of the TRNG that we implement.

theoretical predictions. We uses hypothesis testing to demonstrate a good
match between the theoretical predictions and experimental results.

3.3.1 TRNG Implementation

Figure 3.6 shows a circuit diagram of our TRNG implementation. As men-
tioned before, the TRNG utilizes ROs, each consisting of a ring of three
inverters, that generate noisy clock signals. Here noise refers to the position
of the positive and negative edges of the clock with respect to the reference
position of an ideal clock and is referred to as phase noise or jitter. Each RO
in our implementation consists of three inverters, and there are 16 parallel
ROs. Each RO generates an approximately 625 MHz clock signal — the clock
frequencies are not identical because of random physical variations between
the ROs [67].

The RO clocks are sampled by a 50 MHz system clock using a flip-flop.
This results in a stream of bits synchronized to the system clock. In the
absence of jitter, the bit-stream at the output of the flip-flop would be pseudo-
random in nature. However, in the presence of jitter, any edge of the system
clock that aligns sufficiently close to an edge of the RO clock results in a
truly random output.

The outputs of the sampling flip-flops are combined together using an
exclusive-or (xor) gate. This increases the number of truly random, as op-
posed to pseudo-random, bits in the output of the xor gate. Finally, the
bit-stream at the output of the xor gate is decimated, i.e., each chunk of
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1024 bits is xor-ed to produce only one random bit at the output. Decima-
tion guarantees that as long as at least one of the 1024 bits is truly random,
the output bit will also be truly random. As shown in Figure 3.6, only a
single xor gate is used to perform 1024:1 decimation.

In Section 3.4, we use the National Institute of Standards and Technology
(NIST) statistical test suite for random number generators to validate the
quality of the random bit-stream that we obtain from our TRNG implemen-
tation and show that it passes all NIST mandated tests. At least 16 parallel
ROs and 1024:1 decimation is required to pass all NIST tests. Designs with
fewer parallel ROs or lesser decimations failed one or more tests.

3.3.2 Timer Design

The random bit-stream from the TRNG is used as input to the timer logic
which we have also implemented on the FPGA. The timer collects r random
bits from the TRNG output and compares them with an r bit value that we
call a key.

If the bit-stream is truly random, the match succeeds with probability
p= 2—1T If there is a match, the count in the NV memory is incremented and
the attack is triggered when the count reaches k.

As each random bit take 1024 clock cycles to generate and r bits are
matched in each Bernoulli trial, the volatile state window, ¢,, for the non-
deterministic timer is 1024r clock cycles. In other words, power cycling the
chip at a rate faster than once every 1024r clock cycles ensures that the
non-deterministic timer never triggers. We show, however, that in practice,
the volatile state window is small. For practical attack scenarios, defending
against the attack requires the chip to be power cycled once every 16,000—
32,000 clock cycles.

To put the performance impact of power cycling every 16,000 clock cycles
in perspective, we note that for a processor running at 1 GHz, 16,000 clock
cycles corresponds to only 16 us of time. Putting an Intel mobile processor
in sleep state (i.e., powering down the chip) incurs a latency of 30us to
transition back to active mode [50]. This latency is over and above any
additional performance overheads incurred because of the power cycle, for
example because of loss of processor state. Thus the performance impact
of power cycling every 16,000 clock cycles is prohibitive and makes such a
defence infeasible to implement in practice.

The choice of r and k is governed by the following factors:
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e The expected trigger time, ¢, which is, t = % = k2"

e The standard deviation of trigger time, o;, which is, o, = ‘/7% =Vk2.

e Assuming a binary encoding of the count stored in NV memory, k
should be less than the NV memory write durability, w. Therefore,
kE<w.

e The volatile state window, t,. For our implementation, ¢, = 1024r.

Case Study: A Non-deterministic Timer As a basis for comparison,
we study the realization of a non-deterministic timer attack which triggers
(in expectation) after one year. As before, we assume an NV memory write
durability of 10,000 program /erase cycles. The same specifications were used
for the deterministic timer study in Section 3.1.2.

Assuming a 1 GHz system clock, the attack can be implemented using
r =27 (p=1/2") and k = 8498. The attack has an expected trigger time
of one year, a standard deviation of ~ 3.96 days, a volatile state window of
only 27.6us, and requires 14 bits of NV memory. Even if every fabricated
chip is tested for 10 days, the probability of the timer triggering during post-
fabrication testing is only 107%°. If 100, 000 chips are tested, the probability
of at least one timer triggering is still only 107%4.

As we discuss in Section 3.1.3, the same attack implemented with a deter-
ministic timer has a volatile state window of 52 minutes for the same amount
of NV writes, or requires at least a 114 MBits of NV memory for the same
volatile window.

3.4 Results

We discuss our experimental results obtained from the FPGA prototype of
the non-deterministic timer in three parts. We first evaluate the quality of
the random bit-streams produced by our TRNG implementation using the
NIST test suite. Next, we present data from a series of attacks in which we
programmed the non-deterministic timer prototype to trigger after 24-hours.
Finally, we discuss the hardware resource utilization of the non-deterministic
timer and compare with the resource utilization of a 32-bit RISC processor
implemented on the same FPGA.
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3.4.1 TRNG

A number of statistical tests have been proposed to quantify the random-
ness of a bit-stream, including the tests proposed by Knuth [42], the diehard
tests [49] and the NIST test suite [64]. The NIST suite makes use of 15 tests,
including a number of tests proposed in prior literature, that check various
properties of the random bit-stream. Recent work on random number gen-
eration using Flash memory [77] has used the NIST test suite for validation,
which is what we use in this paper.

The tests are run on a 1 Gbit bit-stream which is divided into 1000 chunks
of 1 Mbit each. The NIST test suite performs a hypothesis test — in this case
the null hypothesis being that the sequence of bits is indeed drawn from a
TRNG — on each chunk and computes the corresponding P-value. The test
suite then reports two metrics that we tabulate in Table 3.1: the proportion
of chunks that pass the hypothesis test (Proportion), and the uniformity of
P-values over all chunks (P-value). A bit-stream passes the NIST tests if
the proportion of chunks that pass the test are greater than 90%, and the
P-value is greater than 0.0001 for all tests.

NIST Sub-Test P-Value  Proportion
Frequency 0.536606  0.9904
Block Frequency 0.766441 0.9904
CumulativeSums 0.406370  0.9904
Runs 0.259361 0.9879
Longest Run 0.842729  0.9855
Rank 0.265811  0.9976
FFT 0.662496  0.9759
Non-Overlapping Template  0.799050 0.9855
Overlapping Template 0.380906  0.9928
Universal 0.526790 0.9904
Approximate Entropy 0.450891 0.9928
Random Excursions 0.162606  0.9841
Random Excursions Variant 0.711601  1.0000
Serial 0.402058 0.9855
Linear Complexity 0.707813 0.9976

Table 3.1: NIST test results for TRNG implementation (16 ROs, 3 wide,
1024 decimation). (See Section 3.4.1.)

Our TRNG implementation generates one random bit every 1024 clock
cycles. At the 50 MHz FPGA clock, this corresponds to a throughput of 48.8
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Kbits/second. For a practical implementation of the attack in a digital IC
with a 1 GHz clock, for example, the throughput will be ~ 1 Mbits/second.

3.4.2 Non-deterministic Timer

We expect real timer based attacks on ICs to have an expected trigger time in
the order of months or even years. However, to obtain statistically significant
data, we need to repeat the same experiment many times. Therefore, it was
impractical for us, given limited FPGA resources, to experiment with month
or year long attacks.

Predicted cdf(exp1) =——
Measured cdf(expl) —
o8 - Predicted cdf(exp2) ===
Measured cdf(exp2) -~

P kil
0 L L
4.15e+12 4.22e+12 4.29e+12 4.36e+12 4430412 450412

Figure 3.7: Measured and predicted cdfs for the timer experiments.

To validate the proposed attack, we ran experiments in which the ex-
pected trigger time is set to 24 hours. To illustrate the ability of the attacker
to control pmf and cdf of trigger time, we ran two experiments with the
same expected trigger time but different standard deviations. In Experiment
1, the standard deviation is set to 2.84 minutes to emulate a more deter-
ministic attack, while in Experiment 2, the standard deviation is set to 16
minutes. Each experiment is repeated 15 times to provide enough data for a
statistical hypothesis test.

The results of these experiments are shown in Figure 3.7 above, and Table
A.1 in the Appendix. The hypothesis test results validate that the sample
data is consistent with the distributions predicted analytically.

3.4.3 Hardware Resource Utilization

Table 3.2 shows the FPGA resources used by the non-deterministic timer
and, for comparison, the resource utilization of an equivalent deterministic
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LEs REGs ELC NV-Bits
TigerMIPS 12379 4578 148548 -
D-Timer 164 15 1983 (1.33%) 104
ND-Timer 99 o8 1246 (0.84%) 13

Table 3.2: FPGA resource utilization of an non-deterministic and determin-
istic timer (ND-Timer and D-Timer respectively), and a 32-bit RISC pro-
cessor. Resources are measured using logic elements (LE), registers (REG),
and equivalent logic cells (ELC'), where ELC' =12 x LE + REG.

timer and a 32-bit RISC processor [51]. The number of logic elements (LE)
and registers (REG) are obtained directly from FPGA synthesis results, while
the equivalent logic cells (ELC) represent an estimate of the gate counts of
these designs were they to be implemented in a custom digital IC [15].

The non-deterministic timer utilizes less than 1% of the hardware re-
sources of a simple RISC processor. In fact, the non-deterministic timer also
utilizes fewer logic resources (and NV bits) than an equivalent determinis-
tic timer. This is because the D-Timer requires two internal counters, one
each to track volatile and NV state, while the non-deterministic timer only
requires (besides the RO based TRNG) a comparator for key matching and
a single counter for the NV state.

3.4.4 Non- vs. Deterministic Timers

As we discuss in Section 3.1.3, a deterministic timer introduces a trade-off
between the size of the NV memory required and the volatile state window
which is resolved by the non-deterministic timer. In Figure 3.8, we compare
the amount of memory required by the deterministic and non-deterministic
timers, both volatile and non-volatile, as a function of the expected trigger
time of the attack. We keep the volatile state window the same for both
timers; i.e., they have the same susceptibility to a defence based on power
cycling. The amount of NV memory required by the deterministic timer
increases rapidly as the expected trigger time of the attack increases.

Similarly, Figure 3.9 shows the volatile state window for the deterministic
and non-deterministic timers as a function of the expected trigger time of the
attack. We keep the size of the NV memory the same for both timers. We
observe that the deterministic timer is significantly easier to defend using
power cycling compared to the non-deterministic timer.

32



r-bits (D-Timer) —— ‘,x»x
m-bits (D-Timer) - P
1006 | F-bits (ND-Timer) - ’/X"X
m-bits (ND-Timer) - o
X
X
X
. )
£ 10000 )
,x
X
X
X
X
100 ’—X
X
------ K—")( e
—5
e @
-
16408 1e+10 tes12 Testd _J

Clocks

Figure 3.8: The volatile and
NV  memory sizes, with the
same volatile state window, as a
function of the expected trigger
time for deterministic and non-
deterministic timers.

33

"t (D-Timer) —
t, (ND-Timer) -
1e+10
9 1ew08
8
o
1e+06
10000 [ 7

Figure 3.9: The volatile state win-
dow, with the same NV memory
size, as a function of the expected
trigger time for deterministic and
non-deterministic timers.



Chapter 4

3D-Security

This chapter first reviews 3D IC manufacturing in Section 4.1, which is a
sufficient technology to enable the hiding of wires, then we formalize the
specific attack model that k-security defends against in Section 4.2, formally
introduce the notion of k-security in Section 4.3, address additional steps
needed in the design/fabrication process to preserve k-security in Section
4.4 and finally we review the costs incurred by imposing k-security on a
benchmark circuit in Section 4.5.

4.1 3D IC Design and Fabrication

In this section, we overview the IC manufacturing process in the specific
context of 3D integration.

Digital ICs consist of a network of inter-connected digital logic gates.
Digital logic gates are built using complementary metal-oxide-semiconductor
(CMOS) transistors. In a conventional planar/2D IC, CMOS transistors, and
by extension digital logic gates, lie in a single layer of silicon. In addition,
there are several layers of metal wires used to inter-connect the gates.

3D integration enables the vertical stacking of two or more planar ICs.
Each IC in the vertical stack is referred to as a tier. Vertical interconnects
(TSVs) are provided to allow the transistors and metal wires in each tier to
connect to each other.

The initial motivation for 3D integration came from the potential re-
duction in the average distance between logic gates — in a 3D IC, the third,
vertical dimension can be used to achiever a tighter packing of logic gates [9].
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However, a number of issues, including high power density, temperature and
cost, have plagued high volume, commercial availability of logic-on-logic 3D
ICs [26].

A more practical 3D IC technology that has been demonstrated in a
commercial product (a Xilinx FPGA [15]) is shown in Figure 1.1. It consists
of two tiers. The bottom tier contains both transistors/gates and metal
wires, while the top tier, the interposer, contains only metal wires. The
two tiers are interfaced using uniformly spaced metallic bond-points. TSVs
make use of these bond-points to provide connections between wires in the
top and bottom tiers. This technology has also been referred to as 2.5D
integration [27].

Since the bottom tier consists of CMOS transistors, it is fabricated at
one of the few foundries worldwide with advanced lithographic capabilities
at high cost. The top tier, i.e., the interposer, only contains passive metal
and can be fabricated at significantly reduced cost [47].

Figure 4.1 shows a 3D IC design flow with appropriate modifications for
security. The design flow begins with the design specified using a hardware
description language (HDL), which is then synthesised to a net-list of gates.
The types of gates allowed in the gate net-list are specified in a technology
library.

In the wire lifting stage, the edges (or wires) in the net-list that are to
be implemented on the top tier are selected. These are referred to as lifted
wires. The rest of the net-list, implemented on the bottom tier, is referred
to as the unlifted net-list and consists of unlifted gates and unlifted wires.

The unlifted gates are then placed on the surface of the bottom tier, i.e.,
the (z,y) co-ordinates for each gate are selected. Unlifted wires are routed
using the bottom tier metal layers. Two bond-points are selected for every
lifted wire; one each for the two gates that the wire connects. The gates
are connected to the corresponding bond-points. Finally, lifted wires are
routed between pairs of bond-points in the top tier using the top tier routing
resources.

Finally, the two tiers are fabricated at separate foundries. The chips from
the two foundries are vertically stacked to create the final 3D IC chip that is
shipped to the vendor.
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Figure 4.1: Secure 3D IC design and fabrication flow.
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4.2 Attack Model

The attack model that we address for our notion of security is that of a
malicious attacker in the foundry.  This attack model has been com-
monly used in the hardware security literature because of the serious threat
it presents [36]. We further strengthen the attack by assuming a malicious
observer in the design stage, working in collusion with malicious attacker
in the foundry'. The malicious observer has full knowledge of the circuit
as it goes through the design process, but can not effect any changes. The
malicious attacker in the foundry can, on the other hand, effect changes in
the circuit layout before the chip is fabricated.

To defend against this attack, the following steps of the design and fab-
rication flow are assumed to be secure, i.e., executed by a trusted party:
(a) the wire lifting, placement and routing steps in the design, and (b) the
fabrication of the top tier (therefore also referred to as the trusted tier).

Discussion Two aspects of the attack and defence models deserve further
mention. First, we note that the attack model described above subsumes
a number of other practically feasible attack models. It is stronger than
a malicious attacker in the foundry working by himself. It is also stronger
than a malicious attacker in the foundry with partial design knowledge — for
example, the attacker is likely to know the functionality and input /output be-
haviour of circuit he is attacking (an ALU or a DES encryption circuit, etc.).
Providing the attacker with the precise circuit net-list can only strengthen
the attack.

Second, the steps in the design and fabrication process that are assumed
to be trusted are also relatively easy to perform in a secure manner, compared
to the untrusted steps. Wire lifting and placement /routing (in the design
stage) are performed using automated software tools, the former based on
algorithms that we propose in this paper, and the latter using commercially
available software from electronic design automation (EDA) vendors. In
comparison, writing the HDL code is manually intensive, time-consuming
and costly. Furthermore, only the top tier is fabricated in a trusted foundry.
The top tier only consists of passive metal wires that are inexpensive to
fabricated compared to the active CMOS transistors and metal wires in the
untrusted, bottom tier.

!'Note that 3D IC based circuit obfuscation cannot, and is not intended to, defend
against malicious attackers in the design stage who can alter the HDL or circuit net-list.
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4.3 Problem Formulation

In this section, we formulate the circuit obfuscation problem that we address
in this paper as a problem in the context of directed graphs. We begin by
discussing the example circuit for a full adder that we show in Figure 4.2.

Lifted Wires

Sub-Circuits
(a) Original Circuit (b) Obfuscated Circuit

Figure 4.2: Full adder circuit and it’s obfuscated version. Grey wires are
lifted.

Example As we mention in Section 4.2, in the most powerful attack model
we consider, an attacker is in possession of two pieces of information: the
originally designed (complete) circuit, and the layout of the circuit that is
sent to the foundry for fabrication, which we call the unlifted netlist. The
latter results from wires having been lifted from the former. The attacker’s
objective is to map the latter to the former. Specifically, he seeks a one-to-
one bijective mapping of gates in the circuit after wires have been lifted, to
the complete circuit.

From the defender’s perspective, then, for the circuit in Figure 4.2(a),
the question is which wires he should lift. Assume that we lift the wires
that are showed greyed out in Figure 4.2(b); that is, the wires A — {1, 2},
B — {1, 2}, Cn — {3,4}, 1— {3,4} and 3 — Cour.

Then, the two possible sub-circuits, one which comprises the gates {1, 2},
and the other which comprises {3,4} cannot be distinguished from one an-
other based on their connectivity. More specifically, at the level of individual
gates, gate 1 cannot be distinguished from 3, and 2 cannot be distinguished
from 4. Gate 5, on the other hand, is distinguishable from every other gate
as it is the only OR gate in the circuit. We assume also that the inputs and
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outputs, A, B, C)n, Cout can be distinguished as well.

One may argue that gate 1 is distinguishable from 3 based on the layout
(placement). That is, the layout may leak information about the mapping
of gates from the unlifted netlist to gates in the original circuit. This is
certainly true, and we address this in Section 4.4 with layout-anonymization.

The security of the circuit comes from the indistinguishability property
achieved by lifting wires, formally the security level is quantified by the exis-
tence of isomorphisms (mappings) between gates in the unlifted netlist and
distinct gates in the original netlist. We discuss below the exact notion of
security we adopt. Informally, an approach is to simply count the number
of such isomorphisms. In our example, we have 4 such mappings, and the
attacker is unable to distinguish the correct mapping from the others. In this
case, we would quantify the security level as 4. It is possible that in many
settings, such a notion of security is effective.

However, the above notion may be seen as too permissive. It can be ar-
gued that given the fact that across all mappings, gate 5 is mapped uniquely,
we have no security (i.e., security of 1). Indeed, this is the notion of secu-
rity we adopt — the minimum across all possible mappings of each gate.
This notion is more restrictive than the first, and is intended to capture the
intuition that the attacker is unable to distinguish even a single gate.

4.3.1 Formulation as a Graph Problem

We now formulate our problem as a graph problem.

Preliminaries A circuit can be perceived as a directed graph — gates are
vertices, and wires are edges. The direction of an edge into or out of a vertex
indicates whether it is an input or output wire to the gate that corresponds
to the vertex. If G is a graph, we denote its set of vertices as V[G], and its
set of edges as F[G]. Each vertex in the graph is associated with a color that
is used to distinguish types of gates (e.g, AND and OR) from one another.
Consequently, a graph G is a 3-tuple, (V| E, ¢), where V is the set of vertices,
E the set of edges and the function c¢: V' — N maps each vertex to a natural
number that denotes its color. Given a graph GG, we sometimes denote its set
of vertices, edges and colouring function as V|G|, E[G] and ¢[G] respectively.

For example, the circuit in Figure 4.2 and its unlifted portion can be
represented by the graphs in Figure 4.3.

Intuition If we perceive the circuits as graphs, then our underlying prob-
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() p

Figure 4.3: Full adder graphs: G is the full graph representation of the full
adder circuit, H is the remaining graph after wires have been lifted.

lem corresponds to a kind of subgraph isomorphism. Given two graphs
G1 = (V1, Ey,¢1),Gy = (Vy, By, co), we say that G is isomorphic to Gy if
there exists a one-to-one bijective mapping ¢: Vi — V5 such that (u,v) € E;
if and only if (p(u), p(v)) € Ey and ¢1(u) = ca(p(u)), c1(v) = ca(é(v)). That
is, if we rename the vertices in G according to ¢, we get Go. A specific such
mapping ¢ is called an isomorphism.

We say that G = (V1, E1, ¢1) is a subgraph of Gy = (Va, Ea, ¢o) if Vi C V5,
and (u,v) € Ey only if (u,v) € Ey. We say that G, is subgraph isomorphic
to Gy if a subgraph of Gy is isomorphic to G5. For example, in Figure 4.3, a
candidate subgraph isomorphism, ¢, is ¢(1) = U, ¢(2) =V, ¢(3) = X, ¢(4) =
W,¢(5) =Y.

Let G be the graph that represents the original circuit with all wires, and
H the graph of the circuit after wires have been lifted. Then, the attacker
knows that G is subgraph isomorphic to H. What he seeks is the correct
mapping of vertices in G to H (or vice versa). This is equivalent to him having
reconstructed the circuit, and now, he can effect his malicious modifications
to the circuit that corresponds to H.

From the defender’s standpoint, therefore, what we seek intuitively is that
there be several subgraph isomorphisms between G and H. As we mention
in Section 1, this then gives the kind of security in a k-anonymity sense —
the attacker cannot be sure which of the mappings is the correct one, and
therefore is able to reconstruct the circuit with probability 1/k only. As we
mention there and discuss in more detail in the related work Section, though
our notion of security has similarities to k-anonymity, there are important
differences, and we call it k-security instead.

There is a cost to security, which is the cost of removing edges (i.e.,
lifting wires). We assume that there is some function that, given a set of
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edges, outputs the cost.

Overall problem The overall problem of a defender, then, is to construct a
suitable H from G that gives him a k that is sufficiently large, while incurring
a cost of at most 7. That is, he seeks to identify a set of edges E' C E[G]
such that a(G, E') < n and o(G, E') > k, where « is the cost function, o is
the function that computes security, and 1 and k are this cost and security
thresholds, respectively. Henceforth, we use the acronym DAG for Directed
Acyclic Graph.

Definition 1 (Lirring). Lirrive = {(G,n, k) : G is a DAG, and there exists
E' C E[G] such that o(G, E') <n and o(G, E") > k}.

The above definition defines a language that corresponds to a decision
problem that we seek. The decision problem LiFTING is posed as a problem
of existence — whether there exists a set of edges E’ that can be lifted. We
assume access to oracles that compute o and 0. We assume that o can be
computed efficiently; we adopt the concrete function a(G, E') = |E’| in our
approach in Section 4.4. We discuss the computation of o below.

We point out that if LirTiING can be solved efficiently, given access to
oracles that compute o and o, we can identify a set of edges E’ to be lifted
efficiently as well. That is, given oracles that decide LirTing, and compute
a and o, an edge-set to be lifted can be computed in polynomial-time. The
reason is that Lirting € NP if we assume oracle access to «, o, and an E’ is
a certificate for an instance in LirTING.

Our overall problem, then is to devise a decision procedure for LIFTING.
To do so, we first discuss how we instantiate o below, and then consider the
computational complexity of deciding LirTING.

k-security =~ We now specify our notion of security. As we mention above,
it is related to subgraph isomorphism. We begin by specifying a subgraph
isomorphism problem that is relevant to our context.

Definition 2 (Circurr-Susiso). Circuvrr-Svsiso = {(G, H,u,v) : G and H
are DAGs such that |V[G]| = |[V[H]|, uw € V]G], v € V[H], and there ezists
R C E[G] and a mapping ¢: V|G] — V[H] such that ¢ is an isomorphism
for the graph (V[G], E|G] — R, c|[G]) to H, and ¢(u) = v}.

The above definition is a special case of the well known subgraph iso-
morphism problem [30]. Circurr-Susiso expresses the decision problem with
input two DAGs G, H and two vertices u € V[G] and v € V[H|. We need
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to determine whether that input has the properties the above definition ex-
presses: GG and H have the same number of vertices, and if we remove some
edges from G, we have a graph that is isomorphic to H such that under that
isomorphism, u is mapped to v.

Based on Circurr-Susiso above, we are now able to specify our notion of
k-security.

Definition 3 (k-security). Given a DAG G, u € V|G| and E' C E[G], let the
set S = {(G, H,u,v) : H=(V[G], E|G| — FE',|G]) ,v € V[G] and (G, H,u,v) €
Circurr-SuBiso}.
We say that (G, E') is k-secure if min |S| > k.

ueV|G]

As we indicate above, we denote as o(G, E’) the maximum k-security we
are able to achieve with G, F'.

Given G,u, E’, the set S in the above definition identifies those vertices
v from which v can map in a subgraph isomorphism. For every u, there
is at least one such v, which is w itself. The question is whether other v’s
exist, with which we can confuse the attacker in his attempts to distinguish
u. With the minimization, we take the smallest number of such v’s across
all u’s (vertices) in G.

In Figure 4.3, for example, we know that min |S| evaluates to 1, because
node 5 can be mapped to itself only. The corresponding sizes of the sets .S for
nodes 1, 2, 3 and 4, however, are 2. The reason is that each can be mapped
either to itself, or to another node.

Computational complexity = We now consider the computational com-
plexity of computing the maximum k-security, o, and of deciding LirTing. For
the former, we consider a corresponding decision problem, k-SEcUrITY-DEC =
{{G,E" k) : G is a DAG, E' C FE[G] and k € [1,|V[G]|], such that (G, E') is
k-secure}. That is, k-SecuriTy-DEC is the problem of determining whether
lifting F’ from G gives us a k-security of k.

We point out that if we have an oracle that decides k-SecuriTY-DEC, then
we can compute the maximum k-security we can get by lifting £’ from G
using binary search on k. That is, the problem of computing o is easy if
deciding k-SEcurITY-DEC is easy.

Theorem 1. k-SecuriTty-DEc € NP-complete.
To prove the above theorem, we need to show that k-SEcuriTy-DEC is in

NP, and that it is NP-hard. For the former, we need to present an efficiently
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(polynomial-size) certificate that can be verified efficiently. Such a certificate
is £ mappings each of which is a sub-isomorphism, for each pair of vertices
u,v € V[G]. Each such mapping can be encoded with size O(|V[G]|), and
there are k|V[G]|* such mappings, and therefore the certificate is efficiently-
sized. The verification algorithm simply checks that each mapping is indeed
a sub-isomorphism, which can be done efficiently.

To show that k-SEcuriTy-DEc is NP-hard, it suffices that we show that
Circurt-Susiso is NP-hard. We present the proof in the Appendix with a
reduction from a special case of subgraph isomorphism that is known to be
NP-complete.

As for LirTING, in our earlier discussions, we assumed oracle access to the
cost-function for lifting edges, o and the function for computing k-security,
o. As we mention above, we assume that « is efficiently computable; a
simple choice is a(G, E') = |E'|. That is, the cost of lifting a set of n edges
is n. Other choices are also possible, and leave an investigation into more
meaningful choices for a as future work.

To compute o efficiently, we need access to an oracle that can decide
problems in NP, because k-SEcurITY-DEC is NP-complete. Apart from the
difficulty of determining o given a set E’, we have also the problem of de-
termining an appropriate candidate set E’ to decide LiFTING. Without
assuming oracle access to o, we also observe that Lirring € NP. The cer-
tificate is simply the set of wires to remove E’ and the certificate used for
k-SecuriTy-DEc, which with the addition of E’ can still be efficiently encoded
with size O(|V[G]|?) and thus is still efficiently sized.

We suspect that Lirting is NP-complete but we leave this proof as topic
for future work. In fact we previously believed LirTing was not in NP which
explains why the rest of this work treats these two languages as separate
problems.

4.4 Approach

Having considered the computational complexity of the problem that under-
lies our work in the previous section, in this section, we propose a concrete
approach for it. As our discussions in the prior section reveal, there are two
parts to the solution: (a) computing the maximum k-security for (G, E'),
given the graph G that represents the complete circuit, and, (b) choosing the
set E'.
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We propose an approach for each in this section. For the problem of
computing security, we employ constraint-solving. We discuss this in Section
4.4.1. For the problem of choosing E’, we propose a greedy heuristic. We
discuss that in Section 4.4.2. We conclude with some practical considerations,
specifically, scalability and layout-anonymization in Section 4.4.3 .

4.4.1 Computing Security

As shown in Section 4.3, the problem of determining the security level of
circuit G, given the unlifted netlist H is NP-complete. Given the relationship
of the problem to subgraph isomorphism, a natural approach to solving this
problem would be to use graph (sub)isomorphism algorithms proposed in
literature — of these, the VF2 algorithm [24] has been empirically shown to
be the most promising [29]. However, in our experience, VF2 does not scale
for circuits with > 50 gates (more on scalability in Section 4.4.3).

Instead, motivated by the recent advances in the speed and efficiency of
SAT solvers, we reduce the sub-isomorphism problem to a SAT instance and
use an off-the-shelf SAT solver to decide the instance.

Reduction to SAT Given graphs G and H, we define a bijective mapping
¢ from the vertex set of H to the vertex set of G as follows: Boolean variable
¢;; is true if and only if vertex ¢; € H maps to a vertex r; € G. Here
V[G] = {Tl,Tg, ce 7T\V[G]|} and V[H] = {ql, qa, ... >Q\V[H]|}

We now construct a Boolean formula that is true if and only if graphs G
and H are sub-isomorphic for the mapping ¢. We will construct the formula
in parts.

First, we ensure that each vertex in G maps to only vertex in H:

vViH] VG Vg
Fr= 11 > (¢ [T ¢
i k£
and vice-versa:
[VIG]I IV[H]| [viH]|
Fy, = H Z Gij H Pk,
j i ki

Finally we need to ensure that each edge in H maps to an edge in GG. Let
E[H] = {e1,es,...,epm} and E[G] = {fi, fo,..., figie)}- Furthermore,
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let €L = <7'src(ek)77ndest(ek)> € E[H] and fk’ = <qsrc(fk)7Qdest(fk)> S E[G] This
condition can be expressed as follows:

|E[H]| | E[G]]

F3 = H Z ¢src(ek),src(fl) A ¢dest(ek),dest(fl)
k l

The formula F' that is input to the SAT solver is then expressed as a
conjunction of the three formulae above: F = F; A Fy A F3. The formula F
has O(|V[H]||V[G]|) variables and O(|E[H]||E[G]|) clauses.

4.4.2 Wire Lifting Procedure

To determine a candidate set of edges, F’, to lift, we employ a greedy heuris-
tic. Our heuristic is shown as Algorithm 1.

E' + E[G];
while |E'| > 0 do
s <+ 0;
foreach ¢ € £’ do
E' + E' —{e};
if o(G,E’) > s then
s+ o(G,E");
€p < €
E' + E' U{e};
if s < k then return £,
E' + E' —{ep};
return F’;

Algorithm 1: lift_wires(G, k)

In our heuristic, we begin with the best security we can achieve. This
occurs when we lift every edge in E[G]; that is, we set E’ to E[G] at the
start in Line 1. We then progressively try to remove edges from E’. We do
this if not lifting a particular edge e still gives us sufficient security.

That is, we iterate while we still have candidate edges to add back (Line
2). If we do, we identify the “best” edge that we can add back. We identify
this as e,. The best edge is the one that gives us the best security level if
removed from E’. If even the best edge e, cannot be removed from E’, then
we are done (Line 10).
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The heuristic does not necessarily yield an optimal set of edges. The
reason is that we may greedily remove an edge e; from E’ in an iteration of
the above algorithm. And in later iterations, we may be unable to remove
edges ey and e3. Whereas if we had left e; in E’, we may have been able to
remove both e, and e3. Note that removing as many edges from E’ is good,
because our cost is monotonic in the size of E’ (set of edges being lifted).

4.4.3 Practical Considerations

From a graph-theoretic perspective, the wire lifting procedure outlined pro-
vides a set of wires to lift that guarantees a certain security level. However,
two practical consideration merit further mention — the scalability of the
proposed techniques to “large” circuits, and the security implication of the
attacker having access to the layout of H, as opposed to just the netlist.

Scalability  Although the SAT based technique for computing security
scales better than the VF2 algorithm, we empirically observe that it times
out for circuits with > 1000 gates. To address this issue, we propose a circuit
partitioning approach that scales our technique to larger circuits of practical
interest. We note that circuit partitioning is, in fact, a commonly used
technique to address the scalability issue for a large number of automated
circuit design problems.

Algorithm 2 is a simplified description of the partitioning based wire
lifting procedure. The function partition(G) recursively partitions the vertex
set of the graph into P mutually exclusive subsets and returns subgraphs
{G1,Gs,...,Gp} of size such that they can be tractably solved by the SAT
based greedy wire lifting procedure. The final set of lifted wires includes
the union of all wires that cross partitions, and those returned by P calls to
Algorithm 1. We have used this technique to lift wires from circuits with as
many as 35000 gates (see Section 5.2.1).

{G41, Gy, ...,Gp} < partition(G)
Ep <« E— Uie[l,P] E;
for i € [1, P] do

Er « EgJlift wires(Gi, Sreq)
return Ep

Algorithm 2: lift_wires_big(G, s,¢q)
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Layout anonymization We have, so far, assumed that the unlifted circuit
H is a net-list corresponding to the unlifted gates and wires. However, in
practice, the attacker observes a layout corresponding to H, from which
he reconstructs the net-list of H. We therefore need to ensure that the
layout does not reveal any other information to the attacker besides the
reconstructed net-list.

Existing commercial layout tools place gates on the chip surface so as
to minimize the average distance, typically measured as the Manhattan dis-
tance, between all connected gates in the circuit netlist. Thus, if the complete
circuit G is used to place gates, the physical proximity of gates will reveal
some information about lifted wires — gates that are closer in the bottom
tier are more likely to be connected in the top tier. The attacker can use this
information to his advantage.

Instead of using the net-list G to place gates, we instead use the net-list H.
Since this net-list does not contain any lifted wires, these wires do not have
any impact on the resulting placement. Conversely, we expect the physical
proximity of gates to reveal no information about hidden wires in the top tier.
In Section 4.5, we empirically validate this fact. However, anonymizing the
layout with respect to the hidden wires does result in increased wire-length
between gates, which has an impact on circuit performance. This impact is
also quantified in Section 4.5.

4.5 Results

We conduct our experimental study to investigate security-cost trade-offs ob-
tained from the proposed techniques. All experimental results are obtained
using the ¢432 circuit from the ISCAS-85 benchmark suite [17] (a 27-channel
bus interrupt controller) which has ~ 200 gates which is physically imple-
mented with IBM 0.13p technology.  For 3D integration, bond points are
assumed to be spaced at a pitch of 4um, allowing for one bond-point per
16pm?. This is consistent with the design rules specified in the Tezzaron
0.13pm technology kit.

Circuit synthesis was performed using the Berkeley SIS tool [60]. Place-
ment and routing is performed using Cadence Encounter. Finally, we used
miniSAT as our SAT solver [63].
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4.5.1 Security-Cost Tradeoffs

Figure 4.4 graphs the security level for the ¢432 circuit as a function of E[H],
the number of unlifted wires in the untrusted tier. E[H] = 0 corresponds to
a scenario in which all wires are lifted, while E[H| = E[G] corresponds to a
case in which all wires are implemented in the untrusted tier.
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Figure 4.4: Maximum, average and minimum security levels for the c432
circuit using the proposed greedy wire lifting procedure and random wire
lifting.

Proposed Vs. Random Wire Lifting Figure 4.4 compares the pro-
posed greedy wire lifting technique with a baseline technique in which wires
are lifted at random. In both cases, we show the maximum, average and
minimum security achieved by these techniques over all runs.

Observe that greedy wire lifting provides significantly greater security
compared to random wire lifting. With 80 unlifted wires, the greedy solution
results in a 23-secure circuit, while all random trials resulted in 1-secure
(equivalently, completely insecure) circuits.

Number of Lifted Edges Vs. Security Figure 4.4 reveals that, for c432,
at least 145 of the 303 (=~ 47%) wires must be lifted to get any meaningful
degree of security. If any fewer wires are lifted, circuit obfuscation provides
no security at all. However, once more than this minimum number of wires
is lifted, the security offered increases quite rapidly.

Another observation that merits mention are the plateaus in security level,
for example between E[H] = 30 and E[H] = 55. In other words, in some
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(a) Original Circuit (b) Bottom Tier of 8-Secure (c¢) Top Tier of 8-Secure Cir-
Circuit cuit

Figure 4.5: Layout of ¢432 without any lifting (left), and the bottom (middle)
and top (right) tiers of an 8-secure version of ¢432. Green and red lines
correspond to metal wires.

cases, wires can be retained in the untrusted tier without any degradation in
security.

Impact of Layout Anonymization Figure 4.5 shows three layouts for
the c432 circuit. The far left corresponds to the original 1-secure c432 circuit
without any wire lifting. The other two layouts correspond to the top and
bottom tiers of an 8-secure version of ¢432 with ~ 66% lifted wires. Of
particular interest is the wire routing in the trusted top tier — because the
placement of the corresponding gates in the untrusted bottom tier have been
anonymized, the lifted wires are routed seemingly randomly. This is in stark
contrast to the wire routing in the original circuit that is far more structured.

Figure 4.6 shows the histogram of wire lengths for the three layouts shown
in Figure 4.5. Note that, in the original 1-secure circuit, a large majority of
wires are short; in other words, connected gates are placed closer together.
Wire lengths on the bottom untrusted tier of the 8-secure circuit also skew
towards shorter values — however, these wires are already observable to
the attacker and he gains no additional information from their lengths. On
the other hand, the wire length distribution of the top tier is more evenly
spread out. This reflects that fact that the physical proximity of gates in
the bottom tier reveals very little information about the lifted wires. Note
that the the distribution of wire lengths in the top tier reflects the fact that
the distribution of Manhattan distance between randomly placed points on
a plane is triangular.
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Figure 4.6: Comparison of the c432 circuit wire lengths the original 1-secure
circuit and the bottom and top tiers of the 8-secure circuit.

Area, Delay and Power Cost  Area, delay (inversely proportional to
clock frequency) and power consumption are important metrics of circuit
performance. 3D integration based circuit obfuscation introduces overheads
on all three metrics.

The area of a 3D circuit is determined by the larger of two areas: the area
consumed by the standard cells in the bottom tier, and the area consumed
by the bond-points required to lift wires to the top tier. The bond-point
density is limited by technology (1 bond-point per 16um? in our case) and
therefore more lifted wires correspond to increased area.

Delay and power are strong functions of wire length, since increased wire
length results in increased wire parasitics (capacitance and resistance). Lay-
out anonymization results in increased wire length as we have already noted.

Table 4.1 shows the area, power and delay for the c432 circuit for different
security levels. Compared to the original circuit, the 8-secure circuit has 1.6 x
more power consumption, 1.8x larger delay, and about 3x more area.

Choice of Technology Library  The technology library determines the
type of gates that are allowed in the circuit netlist. Diverse technology li-
braries with many different gate types allow for more optimization, but also
hurt security. Figure 4.7 shows the security levels achievable for ¢432 for five
different technology libraries with between three and seven gates.
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Figure 4.7: Comparison of the obtainable security levels for the ¢432 circuit
mapped with different technology libraries.

Table 4.1: Power, delay, wire length and area analysis for different levels of
security on the ¢432 circuit. 1* is the base circuit with no wires lifted and
48* has all of the wires lifted.

Power Delay Total Wire Total
Security Ratio Ratio Length (um) Area (um?)

1* 1.00 1.00 2739 1621

2 1.54  1.73 6574 4336

4 1.55 1.76 7050 4416

8 1.61 1.82 8084 4976

16 1.62 1.86 8161 5248
24 1.71 1.98 9476 6048
32 .73 1.99 9836 6368
48* 1.92 2.14 13058 8144

Table 4.2: Technology libraries used for the experiment in Figure 4.7. lib-x
corresponds to a library with x different gate types.

Library max(S;) |V(G)| |E(G)]

lib-3 48 209 303
lib-4 24 181 271
lib-5 13 169 259
lib-6 7 165 252
lib-7 4 159 246
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Chapter 5

Discussion

In this chapter we discuss alternative countermeasures, costs, precautions
and notions of security with respect to our contributions.

5.1 Non-Deterministic Timer

As mentioned before, countermeasures to detect or disable malicious circuits
can be deployed during both pre- and post-fabrication testing and validation.
We discuss our attack in the context of these countermeasures.

5.1.1 Pre-fabrication Simulation and Validation

Pre-fabrication simulations or, when possible, formal verification can be used
to detect differences between a circuit and its behavioral specification. How-
ever, logic simulation tools only follow discrete event semantics and do not
model physical phenomena such as noise. From the perspective of the pro-
posed non-deterministic timer attack, this is advantageous because the out-
put of the TRNG remains steady at logic zero for the entire length of the
simulation never resulting in a key match (see Figure 5.1). Thus, the at-
tack will never trigger in simulation, even if the circuit is simulated for any
number of clock cycles.

Deterministic timer attacks do not have the same distinguishing feature
— the deterministic timer attack does trigger in simulation, if the circuit is
simulated for a sufficiently large number of clock cycles.
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Figure 5.1: A test simulation done in Modelsim is shown as the top diagram
for a sample non-deterministic -timer using four ring oscillators ringXX. Note
how all the ring oscillators are in phase without any clock jitter. All the ring
sampling registers regXX are also in phase and thus the decimation of a even
number of rings will always be 0 = rand bit. The bottom diagram shows a
typical pattern for rand_bit gathered from the FPGA itself.

5.1.2 Logic Signature Detection

Hardware attacks that exhibit unique signatures during logic simulations
not exhibited by regular circuits might be more susceptible to detection dur-
ing pre-fabrication logic simulations. For example, the UCI approach [33]
attempts to identify unused circuits, and therefore potentially malicious, cir-
cuits in the netlist by flagging pairs of wires that have an input output
relationship, but always hold the same logic value in simulation.

UCT has been defeated [65], and the technique in that work can be used by
us as well to defeat UCI. Broadly, the technique is to identify an equivalent
circuit that is not identified by UCI as unused. An alternative approach is
to modify the functionality of the attack to perform a similar or equivalent
function that avoids the signature detection scheme. In the case of our non-
deterministic timer, we are able to modify the non-random behaviour in
simulation while still preserving the random behaviour at run time. This
allows us to defeat the UCI logic signature based technique as we indicate in
Figure 5.2.

As the figure indicates, we can have the TRNG output independent ran-
dom values in each sample, a dynamic key can be used to match against
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case(state) case(state)

2 . 2 .
3 SAMPLE : 3 SAMPLE :
4 begin 4 begin
5 key = count [7:0]; 5 if (count < 5 || key = 0)
6 if (rand [7:0] = key) 6 key <= key + 1;
7 begin 7 if (rand[7:0] = key)
8 count <= count + 1; 8 begin
9 end 9 count <= count + 1;
10 state <= DECIMATE; 10 end
11 end 11 state <= DECIMATE;
12 end

Figure 5.2: Two possible dynamic choices are shown for the key. The current
value of the count (left) and some function of the count and the current value
of the key (right). Adopting a non-constant key defeats logic-signature based
countermeasures such as UCI.

the random TRNG output instead of a fixed, static key. The dynamic key
sequence can be arbitrary and has no impact on the statistics of the trigger
time when deployed in the field.

We can see the key as being generated by a (simple) Finite State Machine
(FSM). It may use the current NV state (counter) as input, as we do in the
examples in Figure 5.2. Any FSM that results in at least one and at most
K — 1 key matches with the TRNG output in simulation (in this case, when
the key value equals 0) is a candidate implementation and results in between
one to K — 1 updates to NV state. Thus, the circuit is no longer dormant in
simulation. FSM obfuscation techniques [44] can be used to further disguise
the attack.

The resulting timer never triggers during simulations (as before), is un-
detected by dormant/unused circuit identification techniques like UCI, can
exhibit a wide range of logic signatures, and has exactly the same statistical
properties as the original attack shown in Figure 3.3 when deployed in the
field.

In Figure 5.2, we show two possible alternatives that the key is chosen
— a simple function of the current count that is maintained in the the NV
memory, and a simple function of the count and the current key.  The
reason for adopting a non-constant key is to defeat logic-signature based
countermeasures such as UCI [33].

The simulation that UCI performs will see the timer circuitry as active,
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and not unused, and therefore will not flag it as potentially malicious. The
reason we present two non-constant possibilities for the key is that the two
have different logic signatures, and therefore, more general than UCI, logic-
signature based countermeasures are defeated.

5.1.3 Hardware Signature Detection

The digital logic blocks used by the non-deterministic timer, i.e., compara-
tors, adders and FSMs, are commonly used in digital ICs and are unlikely to
be flagged as malicious circuitry. In addition to digital logic, the non-deter-
ministic timer uses two other components — ROs and NV memory.

Due to their versatility and simplicity, ROs are commonly used in digital
ICs for a variety of purposes which include on-chip monitoring of temper-
ature [39], process [13] and device aging [40], implementing replica timing
circuits [48], and random number generation for cryptographic primitives
and security protocols [18]. In the context of replica timing circuits, for ex-
ample, there would be one RO for every critical path on the chip, resulting in
thousands of on-chip ROs. Our work illustrates that these ubiquitous circuit
blocks can be exploited for malicious intent, and raises the bar on test and
validation teams to verify the functionality of each RO. However we note
that ROs are not the only source of randomness that can be exploited which
in turn further raises the bar for signature detection.

The NV memory can be inserted either post-fabrication by a malicious
foundry working in collusion with a malicious designer (the attack model
assumed by Waksman and Sethumadhavan [75]), or in the design phase if
a CMOS compatible NV memory technology is used. In the former case,
destructive chip testing can reveal the presence of NV memory, but this is a
time consuming and expensive process that can take up to a week and cost
up to $250, 000 per chip [45].

For chips in which NV memory is directly instantiated in the design phase,
an attacker can either attempt to make use of existing benign NV bits or add
additional bits for malicious purposes. In this context, it is interesting to note
that the first known instance of malicious circuitry detected in a commercial
product exploited the available NV registers in a military grade FPGA to
implement its attack [61].
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5.1.4 1IC Fingerprinting

IC fingerprinting [3, 6, 38, 54, 78, 80] appears to offer the most promise
in detecting our kind of timer. However, the small footprint may pose a
challenge to such detection techniques.

As we discuss in Section 3.4, the resource utilization of an non-deter-
ministic timer attack is lower than that of an equivalent deterministic timer
attack, both in terms of logic gates and and number of NV bits used. The
non-deterministic timer uses less than 1% of the logic resources used by a
simple RISC processor — modern day digital ICs can consist of tens or
even hundreds of such processors. Finally, the estimated gate count of the
non-deterministic timer attack, 1246, compares well to the “stealthy” attack
proposed by King et al. [35] that used 1341 logic gates. Nonetheless, in theory
at least, none of the malicious hardware attacks of which we are aware is
entirely immune to IC fingerprinting. We leave a thorough examination of
the practicality of such techniques to low-footprint malicious circuits such as
ours as a topic for future work.

5.1.5 Cryogenic Operation

Cooling a chip to low temperatures reduces thermal and phase noise (our
source of randomness), potentially preventing the timer from triggering.
Cryogenic cooling of ICs to temperatures as low as 4 K has been demon-
strated for specialized applications where cost is not a concern [31]. However,
the cost of cryogenic cooling in the field is prohibitive and thus impractical
as a defence mechanism for consumer ICs. Furthermore, cryogenic testing
during the post-fabrication validation and testing phase is not useful for early
detection since the attack is disabled at low temperatures.

5.2 k-security

5.2.1 Case Study: DES Circuit

We use a DES encryption circuit obtained from opencores.org to demon-
strate that applicability of our techniques, including circuit partitioning based
wire lifting, to larger circuits. The DES circuit takes as input a fixed-length
string of plain-text and transforms the string into cipher text using 16 rounds
of obfuscation, as shown in the block-level circuit diagram in Figure 5.3.
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opencores.org

The original, 1-secure implementation of DES that we synthesized has
~ 35000 logic gates, which results in an intractable SAT instance. However,
using recursive circuit partitioning, we are able to lift wires to obtain a 64-
secure implementation. We note that a security level of 16 is obtained in
the first few rounds of partitioning by removing only 13% of the wires, i.e.,
all wires that lie between successive DES rounds. This is because the circuit
description of each DES round is identical — thus, once the wires between the
rounds have been removed, each round can be confused for any other round.
The final 64-secure implementation has only 30% of the wires unlifted, and
consumes 2.38x the area of the original 1-secure circuit.

Plaintext
l P |

Round 01

Round 14

Round 15

T

Round 16

Me

'

Ciphertext

Figure 5.3: Block diagram of the DES encryption circuit.

Attack Scenario Boneh et al. [16] have shown that specific bits in a DES
implementation are particularly susceptible to fault attacks. For example, if
the attacker is able to insert an attack such that the LSB output of the 14"
round is stuck at logic zero, the secret key can be recovered using as few as
two messages.

Figure 5.4 shows how such an attack might be effected using a trigger (we
do not address here how this trigger may be activated) and three additional
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gates in an insecure (or 1-secure) circuit. When the trigger is set, the output
is set to zero, but is equal to the correct value when the trigger is at logic
ZEro.

Now, assume that wire lifting is performed to make the circuit 64-secure.
Given the set of lifted wires, we note that the LSB of the 14" round is,
in fact, 256-secure, i.e., there are 255 other gates in the circuit that are
indistinguishable from the LSB of the 14" round.

The attacker now has two choices. he can either attack one of the 256
options, which will only succeed for 1 out of 256 choices, or he can choose to
carry out a multiplexed attack on all 256 gates. This is shown in Figure 5.4.
In this attack, the trigger transmits a sequence of 8-bits that identify which
of the 256 signals the attacker wants to attack. These 8-bits feed an 8:256
demultiplexer that generates individual triggers for each of the 256 signals
that are indistinguishable.

The attacker can now iteratively insert attacks in each gate one at a time
and conceivably determine which iteration actually corresponds to the LSB
of the 14" round. However, in doing so, the attacker incurs two costs: (i)
the modified attack circuit now requires 1280 gates instead of just 3, a 420x
overhead; (ii) the attacker would require, in the worst case an extra 255
messages to recover the key.

Attacking a non-secure circuit

T Modified
Target
Target

Attacking a k-secure circuit

212
FSM e

.
A t2
w oD
targetl
O
target2

Attacking all k
possible targets

£255 —Do—D >
target2ss ——

Trigger

Figure 5.4: Attack scenarios of 1-secure and k-secure circuits.
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5.2.2 Hiding Wire Selections

As stated in Section 4.1 the selection process of the hidden wire set needs to
be secure. Specifically in some instances if the adversary were to know which
wires were lifted, the obfuscation of the gates may be compromised even
though the circuit remains k-secure. As an example revealing the hidden wire
set for the graph in Figure 5.5(a) would allow for the proper identification
of vertex 1 and 2. However knowing the removed wire set for the graph in
Figure 5.5(b) would not compromise the k-security of two since vertex 1 can
be confused with vertex 3 and vertex 2 can be confused with vertex 4.

A valid question arises from the use of a greedy algorithm: can an ad-
versary derive any useful information about which wires are lifted by having
knowledge about the greedy selection process? We do not have the answer to
that exact question for Algorithm 1, since there is a best order as to how the
edges are chosen. However a simple modification to the algorithm will ran-
domly select wires to add to the non-lifted set if k-security is still preserved.
This results of this algorithm agree with the results obtained in Section 4.5
but due to the random approach does not reveal any useful information about
the selection process.

oo o

Figure 5.5: Revealing the removed edge set (grey edges) would comprise
k-security for the left graph but not the right graph.

5.2.3 An Alternative Notion of Security

An alternative approach that the adversary could take is to find one isomor-
phism out of all the possible isomorphism uniformly at random and assume
that this isomorphism is the correct mapping. Given this approach a mean-
ingful notion of security would be to compute the probability of a gate being
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correctly identified. The complexity of this problem is thought to be more
difficult then k-security since every possible isomorphism would conceivably
need to be iterated to compute the probability.

Consider the following scenario where the defender chooses the hidden
wire set to minimize the chance of a random isomorphism correctly mapping
one or more gates, could the adversary then use this meta knowledge about
the selection process to help identify the hidden wire set? Further thought
could be given to this notion of security if it is believed that the adversary
will behave in the above manner.
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Chapter 6

Conclusions

We have investigated how realistic the threat from non-deterministic timer-
based triggers realized in hardware is. This is an open issue in existing work
on hardware security. We have designed, implemented and thoroughly ana-
lyzed such a timer. We have shown that an attacker can realize such a timer
feasibly. It has a small footprint and is therefore resistant to countermea-
sures such as IC fingerprinting. It also affords the attacker several appealing
properties. For example, he is able to control the time-window within which
the timer triggers with surprisingly granularity. Also, the timer is practi-
cal and effective with only a few bits of non-volatile storage, and a small
time-window in which we need to maintain volatile state.

We have also proposed the use of 3D integration circuit technology to
enhance the security of digital ICs via circuit obfuscation. The specific 3D
technology we exploit allows gates and wires on the bottom tier, and only
metal wires on the top. By implementing a subset of wires on the top tier,
which is manufactured in a trusted fabrication facility, we obfuscate the iden-
tity of gates in the bottom tier, thus deterring malicious attackers.

We introduced a formal notion of security for 3D integration based circuit
obfuscation and characterized the complexity of computing security under
this notion. We proposed practical approaches to determining the security
level given a subset of lifted wires, and of identifying a subset of wires to lift
to achieve a desired security level. Our experimental results on the c¢432 and
DES benchmark circuits allow us to quantify the power, area and delay costs
to achieve different security levels.

An obvious question is how does k-security protect against a non-deter-
ministic timer attack done from the foundry. The answer is that k-security
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will not impede the adversary from constructing the non-deterministic timer
since the only wires he/she needs to identify correctly are the power lines.
However in addition to inserting the timer the adversary will also insert some
malicious changes which will be difficult to implement due to k-security.
We conclude with the overall observation that non-deterministic timer-
based triggers pose a significant threat to the security of digital ICs and
as shown in the DES circuit case study, 3D IC based circuit obfuscation can
significantly reduce the ability of an attacker to carry out an effective attack.
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Appendix A

Non-Deterministic Timer

A.1 Additional Data

Clock Cycles Elapsed at Time T E(T)
4310601695232 23:56:52 1 2.05
4312852611072 23:57:37 2 3.07
4312979800064 23:57:39 3 3.15
4313141313536 23:57:42 4 3.24
4314477805568 23:58:09 5 3.96
4315219066880 23:58:24 [§ 4.44
4316670607360 23:58:53 7 5.27
4318743527424 23:59:34 8 6.71
4318743527424 23:59:34 9 6.71
4320404357120 24:00:08 10 7.86
4321153515520 24:00:23 11 8.44
4321940324352 24:00:38 12 9.00
4323020423168 24:01:00 13 9.66
4324269916160 24:01:25 14 10.49
4336227237888 24:05:24 15 14.58

Table A.1:

Clock Cycles Elapsed at Time T E(T)
4243684638720 23:34:33 1 0.84
4245332606976 23:35:06 2 0.90
4257367736320 23:39:07 3 1.44
4275229016064 23:45:04 4 2.64
4288744374272 23:49:34 5 3.88
4304409657344 23:54:48 6 5.62
4307356008448 23:55:47 7 5.97
4320939245568 24:00:18 8 7.62
4332075483136 24:04:01 9 8.99
4337718509568 24:05:54 10 9.67
4354048360448 24:11:20 11 11.42
4355995942912 24:11:59 12 11.59
4359474970624 24:13:09 13 11.91
4361189523456 24:13:43 14 12.06
4376770297856 24:18:55 15 13.20

15 non-deterministic timers set to trigger in 24 hours with a

standard deviation of 2.84 minutes (left) and 16 minutes (right). The re-
sulting distributions of the number of timers that finish by a certain time
were tested against the expected distribution with the 2 test, and yielded
P-values of 0.878 (left) and 0.985 (right). The random variable T" is the
number of finished timers. (See Section 3.2.)
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Appendix B

k-security

B.1 PI‘OOf Of CIRCUIT-SUBISO iS NP-hard

To prove that Circurr-Susiso is NP-hard, we first introduce two intermediate
languages Circurr-Susiso’ and Sus-Iso-9.

Definition 4 (Sus-1s0-9). Sus-Is0-9= {(G, H) : G and H be directed acyclic
graphs and H 1is further restricted to be a directed tree. Then there exists a
sub-graph of G that is isomorphic to H}.

SuB-Is0-9 is known to be NP-hard [30].

Definition 5 (Circurr-SuBiso’). Crrcuir-Suvsiso’ = {(G,H) : G and H
are DAGs such that |V[G]| = |V[H]|, and there ezxists R C E[G| and a
mapping ¢ : V[G] — V[H] such that ¢ is an isomorphism for the graph
(VIG], E|G] — R, c|G]) to H.

Theorem 2. Crrcurr-Susiso’ € NP-hard.

Proof. Given a string (G, H), we compute G’ = G. Let Vg be a set of new
vertices such that Vp N V[H]| = 0 and |Vg| = ||[V[G]| — |V[H]||. If G passes
the DAG test and H is a directed tree then compute V[H'| «— V[H] U Vy
and E[H'| <+ E[H]|. Otherwise construct H' such that |[V[H']| = |V[G]| + 1.
Now (G’, H') € Circurr-Susiso’ if and only if (G, H') € Sus-Iso-9. ]

Theorem 3. Circurr-Susiso € NP-hard.
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Proof. Given a string (G, H), we add a new vertex v, such that v, & V[G]U
V[H]. Then construct V[G'] < V[G] U {v,}, V[H'] < V[H] U {v,}, E[G] +
E[G|,E[H'] «+ E[H]. Now (G',H',v,,v,) € Circurr-Suiso if and only if
(G', H') € Circurr-SuBIiso’. O
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