
Addressing the Issues of
Coalitions and Collusion
in Multiagent Systems

by

Reid C. Kerr

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Computer Science

Waterloo, Ontario, Canada, 2013

c© Reid C. Kerr 2013

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

In the field of multiagent systems, trust and reputation systems are intended to as-
sist agents in finding trustworthy partners with whom to interact. Earlier work of ours
identified in theory a number of security vulnerabilities in trust and reputation systems,
weaknesses that might be exploited by malicious agents to bypass the protections offered
by such systems. In this work, we begin by developing the TREET testbed, a simulation
platform that allows for extensive evaluation and flexible experimentation with trust and
reputation technologies. We use this testbed to experimentally validate the practicality
and gravity of attacks against vulnerabilities. Of particular interest are attacks that are
collusive in nature: groups of agents (coalitions) working together to improve their ex-
pected rewards. But the issue of coalitions is not unique to trust and reputation; rather, it
cuts across a range of fields in multiagent systems and beyond. In some scenarios, coali-
tions may be unwanted or forbidden; in others they may be benign or even desirable.
In this document, we propose a method for detecting coalitions and identifying coalition
members, a capability that is likely to be valuable in many of the diverse fields where
coalitions may be of interest. Our method makes use of clustering in benefit space (a high-
dimensional space reflecting how agents benefit others in the system) in order to identify
groups of agents who benefit similar sets of agents. A statistical technique is then used
to identify which clusters contain coalitions. Experimentation using the TREET platform
verifies the effectiveness of this approach. A series of enhancements to our method are
also introduced, which improve the accuracy and robustness of the algorithm. To demon-
strate how this broadly-applicable tool can be used to address domain-specific problems,
we focus again on trust and reputation systems. We show how, by incorporating our
work into one such system (the existing Beta Reputation System), we can provide resis-
tance to collusion. We conclude with a detailed discussion of the value of our work for
a wide range of environments, including a variety of multiagent systems and real-world
settings.

iii

Acknowledgements

First and foremost, I must thank my wife, Victoria Larke, for the astonishing amount of
support she has provided in this process (and in the rest of life, too!) Embarking on a
project such as this, and at this stage, is far more than an academic decision; it impacts
every aspect of life for the entire family. In the most literal sense, this work could never
have come to fruition without her support and encouragement, and her willingness to
carry so much of the load for our family, so that I could devote time to this project. Of
course, Vicky means far more to me than this—as I said in my Master’s thesis, I can’t
possibly express how she has enriched my life, and I would not be the person that I am
today without her. Victoria is an extraordinary person, and I am grateful every day that
she chose to share her life with me.

A work such as this takes a significant amount of time, and a great deal of life ‘hap-
pens’ in the process. Most notable in our lives were the death of my father, Boyd; the
birth of one beautiful daughter, Catherine; and the death of a second beautiful daughter,
Elizabeth, who didn’t quite make it into the world. I can’t properly acknowledge those
who have contributed to this work, and to our lives, without noting this context.

I need to thank Catherine, although she would not yet understand why. There is no
way I could begin to describe what she has brought into our lives. Regarding this work, I
will only say thank you for being so understanding on those many occasions when Daddy
had to work on his ‘pieces’, and for bringing so much comfort to Mummy and Daddy in
times of great sadness.

No words can adequately express my gratitude to my parents, Boyd and Laura Kerr.
Their love and support, their strength of character, and their guidance, have shaped the
person that I am, and the life that I am so fortunate to have. I marvel today at how they
were able to raise me to have high expectations for what I might accomplish, but without
imposing the slightest pressure to pursue any path other than the one that I felt would
make me happy. In my life as a parent, I aspire to their example. I will return to say
more about my father at the end of this section.

As I noted in my Master’s thesis, John and Lorraine Larke are a wonderful counterex-
ample to the in-law stereotype. I am thankful for their love and generosity of spirit; their
willingness to help at times when the demands of life mount has made this process, and
life in general, easier for us.

To the many people who reached out to us in difficult times, we will be forever grate-
ful. Your love and concern have helped more than you could know. In particular, I wish
to thank Graham and Isabel Stephens, who just days after suffering the devastating loss

iv

of their newborn son Nathaniel, reached out to help us cope with our own loss. To this
day, I stand in awe of their strength, compassion, and generosity. Although I have never
met Isabel in person, our ongoing dialog by email has been central to my own healing.
My gratitude is inexpressible.

Of course, I owe immense gratitude to my supervisor, Professor Robin Cohen. Robin
is well known for being unmatched as a coach and mentor, and here I can only add my
complete agreement, and my thanks. I have been incredibly fortunate to benefit from her
dedication, and the amount of time and energy she puts into both helping her students
achieve success, and ensuring the quality and value of our research. Those who have not
worked directly with Robin may be less aware of her deep concern for the personal well-
being of her students, which runs counter to the stereotype of the graduate supervisor.
I am among the many students who have witnessed, and benefitted from this concern,
and for this too, I am grateful.

I would also like to thank the members of my committee, Professor Beth Jewkes,
Professor Audun Jøsang, Professor Kate Larson, and Professor Pascal Poupart, for their
insights and careful consideration of my work. Professor Jøsang’s research has provided
inspiration for this project, and his words of encouragement have been greatly appre-
ciated. I have been fortunate to take graduate classes with both Kate and Pascal, and
I have benefited from their intelligence, dedication, and academic leadership. Kate has
also been very supportive on a personal level, especially in our times of difficulty, and for
this I am very grateful.

Universities are immense bureaucracies, and simple graduate students cannot navi-
gate them successfully without a great deal of help from members of the administrative
staff. I would particularly like to thank Jessica Miranda, Paula Roser, Wendy Rush, and
Margaret Towell for their assistance and patience.

I would like to acknowledge the generous support of the Natural Sciences and Engi-
neering Research Council of Canada (NSERC); this funding made it possible for me to
entertain this project. I would also like to thank David Cheriton, both for his generous
financial support, and for taking an interest in my work, and for his words of encourage-
ment.

This work could not have taken place without flexibility and accommodation from
my employer. I am deeply grateful to my academic Chairs, first Angela Zigras, and more
recently Marianne Marando, for helping make this possible. Marianne has also gone
above and beyond the call of duty to be supportive of our family during challenging
times over the last few years; thank you.

v

My father, Boyd, was the only family member who read my Master’s thesis in its en-
tirety. Of course, I didn’t expect my family members to read it—it was long and technical,
and outside their spheres. My father, though, a retired police officer, had both the intel-
lectual curiosity, and the deep love for me and interest in what I was doing, to read it
cover to cover.

Dad died while I was completing the research for this project. I feel his loss tremen-
dously, every day, but especially today.

My father did not have the good fortune of higher education, but he was a deep
thinker, and had great wisdom. In the last weeks of his life, as cancer was ravaging his
body, he wrote a document describing what he thought might await him, and all of us,
when we die. Knowing Dad, he might have written it more to comfort us, than out of a
need for self expression. In any case, I know that his words have brought great comfort
to those who have read them, when faced with the mortality of their own loved ones. I
think it would make my Dad happy to have his words published, and possibly read by
those few souls brave enough to wade into this thesis. Thus, I include them here.

Theory on Death and Dying
Heaven and Hell

Boyd Walter Kerr

When I was a young boy I became aware that people died. When I learned that we
were all going to die I started to have very serious concerns and an interest in the subject.
This was partly because of curiosity but mostly because of fear.

When I started to Sunday school they talked about dying but not the actual act. Even
to a child they painted some unrealistic pictures of Heaven and Hell. No one ever wanted
to talk about death and dying, probably because they didn’t know themselves. As I grew
older I realized that I would have to come to my own conclusions about actually dying
and the Hereafter.

As a teenager I had a discussion with my Mother (a very religious woman) about
the Hereafter and she strongly believed in it. She knew it wasn’t this idealistic place
where everything was beautiful and the streets were paved with gold. She believed that
when we died our souls left us and went to Heaven to remain with God in a place free
of pain and sorrow. I told her that I thought that after death there was no Hereafter,

vi

only nothingness. My Mother became very upset with me for thinking like that and told
me it is not enough to lead a good life, but that I had to believe in the Hereafter too
to be a Christian, and believe in going to Heaven as part of believing in God. This got
me to thinking, not just about dying but about the Hereafter. I felt that people were so
egocentric they had to believe in the Hereafter because they couldn’t think of a world
without them in it.

As I got older and saw a lot of dying and death I began to realize that the body
had just been a shell that held the real person. The real person was their brainwaves,
personality, their thoughts, how they lived. These things make up the soul that leaves
the body at death. Where do they go? The Bible is quite vague on this, except for a
few clues. It seems to say that if you are a good person, in action, thoughts and deeds,
believe in God and Heaven your spirits and energy will join God in Heaven to do good. If
you are a person who has not always lead a sin free life (like most of us), you can repent
and turn your life around in thought and deed and believe in God. Your soul, spirit and
energy can also go to Heaven and work in harmony with God, to do good deeds.

It is not difficult to believe in God, prayer and the Hereafter if you notice all the
unexplained things that happen in our lives every day. We can only guess, what our
souls, spirit and energy are. Because we cannot see our souls, spirit and energy it makes
it difficult to believe that they are there. We know there is all kinds of energy that cannot
be seen but has been proven to be there. I believe this energy is forever and ever, and
like the universe, goes on for eternity. It is a very small step to believe that the soul,
spirit and energy of man joins a much larger power, in a place called Heaven and joins
together to do things with other souls we have known and loved.

The Bible is also very vague about Hell. It would lead us to believe that people who
are committed to a lifetime of sin and never repent are destined to go to Hell. Their
bad spirits and energy will join with Satan and continue on to do bad deeds, but their
spirits will clash and there will be disorder and disruption, causing pain and sorrow to
themselves and everything they influence.

Now, what will we find in Heaven when we cross over? The Bible has been vague
there as well. I believe we will find the spirits of our loved ones, people we knew and
people we would like to have known. They could be in the form of the person we once
knew or some beautiful energy form. We will all join our spirits and energy with God’s
and do good deeds on earth and in Heaven. Our combined energy and force will be on
a mission to persuade people to lead better lives, think better thoughts, do better deeds
and by doing so rid the world of Satan and all his followers. I am sorry the biggest
mystery of life is death. The answer can never be given to the living.

vii

Whatever God has in store for me, I am not afraid of crossing over and joining all
those who have gone before me, and starting the next part of my existence. I will be
there to watch over you and meet you when you cross over.

viii

Dedication

For Catherine, who brings indescribable joy to our lives.

For Elizabeth, who couldn’t stay with us, but who fills our hearts with so much love.

For the little boy and little girl whose arrival we anticipate with such great hope.

ix

Table of Contents

List of Tables xv

List of Figures xvi

List of Algorithms xx

1 Introduction 1

2 Related Work 10

2.1 Trust and Reputation . 10

2.1.1 Direct experience . 11

2.1.2 Witness information . 12

2.1.3 Mechanism design . 14

2.2 Coalition formation and stability . 16

2.3 Multiagent Plan Recognition . 18

2.4 Community finding/Social network analysis 21

2.5 Recommender systems/Collaborative filtering 23

2.5.1 Combatting shills in recommender systems 25

2.6 Sybil attacks . 29

2.7 Conclusion . 30

x

3 TREET: The Trust and Reputation Experimentation and Evaluation Testbed 31

3.1 The ART Testbed . 33

3.2 The TREET Testbed . 35

3.2.1 Conception and Goals . 36

3.2.2 Scenario . 38

3.2.3 Architecture . 39

3.2.4 Simulation Execution . 44

3.2.5 Initial Test Set . 46

3.2.6 Use and License . 46

3.3 Discussion . 47

4 “Smart Cheaters”: Substantiating Vulnerabilities in Trust and Reputation
Systems 49

4.1 Vulnerabilities in TRSes . 51

4.2 Trust and Reputation Systems Evaluated 52

4.3 Experimental Method . 55

4.4 TRS performance in the ‘normal’ case . 57

4.5 Attack Implementation . 59

4.5.1 Playbooks . 60

4.6 Single-agent Attacks . 61

4.6.1 Sybil attacks . 61

4.6.2 The Reputation Lag attack . 63

4.6.3 The Re-entry attack . 65

4.6.4 The Value Imbalance attack . 65

4.6.5 Security by Obscurity?: The Multi-tactic Agent 67

4.7 Coalition Attacks . 69

4.7.1 Ballot-stuffing . 70

4.7.2 Bad-mouthing . 71

4.8 Conclusions . 72

4.8.1 Moving Forward: The Issues of Coalitions and Collusion 73

xi

5 Coalition Detection and Identification 75

5.1 The Nature of Cooperation . 76

5.2 Benefit . 77

5.2.1 Benefit Graph . 77

5.2.2 Similarity of benefit . 79

5.2.3 Benefit Space . 81

5.3 Algorithm . 81

5.3.1 Clustering in benefit space . 81

5.3.2 The Clustering Step . 84

5.3.3 Characterizing Clusters . 85

5.4 Experimental Results . 87

5.4.1 Method . 87

5.4.2 Results . 90

5.4.3 Exploring other key parameters . 95

5.4.4 Pathological cases . 106

5.5 Discussion . 109

6 Refinements and Enhancements 111

6.1 Recursive refinement of coalitions . 111

6.1.1 Purity . 112

6.1.2 Recursive refinement . 115

6.1.3 Results . 116

6.2 Iterative refinement . 118

6.2.1 Termination? . 122

6.2.2 Progress . 123

6.2.3 Algorithm . 127

6.2.4 Results . 127

6.2.5 Implications: The importance of similarity 129

xii

6.3 Improved clustering . 130

6.3.1 A new method for optimizing the number of clusters 133

6.3.2 Multi-clustering . 135

6.4 Improved characterization algorithm . 137

6.4.1 The problem . 138

6.4.2 The solution: an improved characterization algorithm 140

6.4.3 Addressing difficult cases . 141

6.4.4 From here . 147

7 The Time Dimension, and Dynamic Coalitions 149

7.1 Speed of convergence . 149

7.2 Dynamic Coalitions . 150

7.2.1 Results . 151

7.3 A new feature set: TF-IDF . 154

7.3.1 TF-IDF . 155

7.3.2 TF-IDF and coalition detection . 156

7.3.3 Results . 157

7.4 Discussion . 160

8 Applying Coalition Detection: A Collusion-Resistant Reputation System 161

8.1 Collusion-Resistant Beta Reputation System 162

8.2 Experimental results . 164

8.2.1 Bad-mouthing . 164

8.2.2 Ballot-stuffing . 166

8.2.3 Experimental parameters . 168

8.3 Discussion . 168

8.3.1 Requirements for a ‘collusion-proof’ system 169

8.3.2 Requirement 1: Faithful fulfillment 171

8.3.3 Ensuring collusion is disadvantageous 174

8.4 Conclusion . 176

xiii

9 Discussion, Future Work and Conclusion 177

9.1 Discussion . 177

9.2 Future Work . 179

9.3 Conclusion . 184

References 187

xiv

List of Tables

4.1 Sales/profit (per capita) for randomly cheating sellers, compared to hon-
est sellers. 59

4.2 Sales/profit (per capita) for sellers using Proliferation. 63

4.3 Sales/profit (per capita) for sellers using Reputation Lag. 65

4.4 Sales/profit (per capita) for sellers using Re-entry. 66

4.5 Sales/profit (per capita) for sellers using Value Imbalance. 67

4.6 Sales/profit (per capita) for Multi-tactic sellers. 68

4.7 Sales/profit (per capita) for Ballot-stuffers. 71

4.8 Sales/profit (per capita) for Bad-mouthers. 72

5.1 Performance when no coalitions present. 92

6.1 Agent counts by class and cluster; silhouette score of 0.00904. 131

6.2 Agent counts by class and cluster; silhouette score of 0.00758. 132

8.1 Performance of Beta/Collusion-Resistant Beta, against bad-mouthing. . . . 165

8.2 Performance of Beta/Collusion-Resistant Beta, against ballot-stuffing. . . . 166

xv

List of Figures

2.1 A bad-mouthing situation. 23

3.1 The TREET Architecture. 40

4.1 TRAVOS against randomly cheating sellers 58

4.2 BRS, vs. Proliferation . 62

4.3 Tran and Cohen, vs. Reputation Lag . 64

4.4 Yu and Singh, vs. Re-entry . 66

4.5 BRS, vs. Value Imbalance . 67

4.6 Trunits, vs. Multi-tactic . 69

4.7 TRAVOS, vs. Ballot-stuffing . 71

4.8 BRS, vs. Bad-mouthing . 72

5.1 A benefit graph. 78

5.2 One dimension of the benefit space. 82

5.3 A second dimension of the benefit space. 82

5.4 Two dimensions of the benefit space. 83

5.5 Bad-mouthing: Detection performance, with single coalition present. . . . 91

5.6 Ballot-stuffing: Detection performance, with single coalition present. . . . 92

5.7 Bad-mouthing: Coalition detection accuracy, multiple coalitions. 93

5.8 Bad-mouthing: False positives, multiple coalitions. 93

5.9 Ballot-stuffing: Coalition detection accuracy, multiple coalitions. 94

xvi

5.10 Ballot-stuffing: False positives, multiple coalitions. 94

5.11 Bad-mouthing: Performance with uniform probability of cheating. 96

5.12 Ballot-stuffing: Performance with uniform probability of cheating. 96

5.13 Bad-mouthing: Performance with random probability of cheating. 97

5.14 Ballot-stuffing: Performance with random probability of cheating. 97

5.15 Bad-mouthing: Performance with uniform probability of collusive behaviour. 98

5.16 Ballot-stuffing: Performance with uniform proportion of collusive behaviour. 99

5.17 Bad-mouthing: Performance with random probability of collusive behaviour.100

5.18 Ballot-stuffing: Performance with random proportion of collusive behaviour.100

5.19 Bad-mouthing: Performance with random collusive probability, by agent’s
individual probability. 101

5.20 Ballot-stuffing: Performance with random collusive proportion, by agent’s
individual probability. 101

5.21 Bad-mouthing: Performance with variable buying rates. 103

5.22 Ballot-stuffing: Performance with variable buying rates. 103

5.23 Ballot-stuffing: Performance with variable buying rates, using normaliza-
tion. 104

5.24 Bad-mouthing: Performance as population size changes. 105

5.25 Ballot-stuffing: Performance as population size changes. 105

5.26 A ring structure for ballot-stuffing. 107

5.27 Ballot-stuffing: Performance against ring structure. 108

5.28 Bad-mouting: Performance against singletons. 108

5.29 Ballot-stuffing: Performance against singletons. 109

6.1 Bad-mouthing: Purity, with multiple coalitions. 113

6.2 Bad-mouthing: Purity over those labelled as coalition members. 114

6.3 Ballot-stuffing: Purity over those labelled as coalition members. 115

6.4 Bad-mouthing: Purity over detected members, recursive algorithm. 117

6.5 Ballot-stuffing: Purity over detected members, recursive algorithm. 117

xvii

6.6 Bad-mouthing: Rand index over detected members, non-recursive algo-
rithm. 118

6.7 Bad-mouthing: Rand index over detected members, recursive algorithm. . 119

6.8 Ballot-stuffing: Rand index over detected members, non-recursive algo-
rithm. 119

6.9 Ballot-stuffing: Rand index over detected members, recursive algorithm. . 120

6.10 Distribution of sample means, benefit to other group members. 121

6.11 A hypothetical subset of agents. 123

6.12 Ballot-stuffing: Iterative refinement performance, multi-coalition case. . . 129

6.13 Bad-mouthing: Iterative refinement performance, multi-coalition case. . . 129

6.14 Two alternate clustering of the same data. 133

6.15 Performance using characterization to select the best clustering. 134

6.16 Performance using multi-clustering. 137

6.17 Bad-mouthing: performance of multi-clustering algorithm, with initial
characterization method from Section 5.3.3. 138

6.18 The sampling process. 139

6.19 Characterization. 140

6.20 Bad-mouthing: performance of multi-clustering algorithm, with improved
characterization algorithm. 141

6.21 Bad-mouthing: Performance with random probability of collusive behaviour.143

6.22 Ballot-stuffing: Performance with random proportion of collusive behaviour.144

6.23 Bad-mouthing: Performance with random collusive probability, by agent’s
individual probability. 144

6.24 Ballot-stuffing: Performance with random collusive proportion, by agent’s
individual probability. 145

6.25 Original algorithm: Bad-mouthing detection performance against small
coalitions. 146

6.26 Improved multi-clustering algorithm: Bad-mouthing detection perfor-
mance against small coalitions. 146

xviii

6.27 Original algorithm: Ballot-stuffing detection performance against small
coalitions. 147

6.28 Improved multi-clustering algorithm: Ballot-stuffing detection perfor-
mance against small coalitions. 147

7.1 Detection accuracy by round, as information is accumulated. 150

7.2 Detection accuracy, dynamic coalitions. 152

7.3 Purity, dynamic coalitions. 153

7.4 Purity, with recursive refinement, for dynamic coalitions. 154

7.5 Rand index, with recursive refinement, for dynamic coalitions. 155

7.6 Bad-mouthing: performance of ‘TF-IDF’ vs. ‘raw’ benefit. 158

7.7 Bad-mouthing: performance of ‘TF-IDF’ vs. ‘raw’ benefit, by individual
bad-mouthing rate . 159

7.8 Ballot-stuffing: performance of ‘TF-IDF’ vs. ‘raw’ benefit. 159

8.1 Bad-mouthing: performance of BRS without coalition detection. 165

8.2 Bad-mouthing: performance of BRS with coalition detection. 166

8.3 Ballot-stuffing: performance of BRS without coalition detection. 167

8.4 Ballot-stuffing: performance of BRS with coalition detection. 167

xix

List of Algorithms

5.1 Coalition Detection and Identification . 88
6.1 Recursive refinement . 115
6.2 Iterative Refinement . 128
6.3 Characterization For Cluster Count . 134
6.4 Multi-clustering Coalition Detection and Identification 136
6.5 Multi-clustering Coalition Detection and Identification with Improved Char-

acterization . 142

xx

Chapter 1

Introduction

In the field of Artificial Intelligence, the term agent refers to a piece of software that
performs actions on behalf of a user, typically with a high degree of autonomy [78]. The
area of multiagent systems is concerned with environments where multiple, independent
entities (primarily agents) interact with one another [67, 78].

While multiagent systems are often classified as either cooperative (where agents
work together towards a common goal) or non-cooperative/competitive (where self-
interested agents pursue their own agendas, possibly at the expense of other agents)
[67], the reality is often more complex. For example, electronic marketplaces (composed
of agents that buy and sell goods) are prominent examples of multiagent systems. Such
environments might be classified as non-cooperative—each agent is a self-interested util-
ity maximizer—but each agent also depends on other agents, its buying/selling partners,
to achieve its goals. In such a scenario, being cooperative (in the form of behaving
honestly) may be critical to success—honest agents may be more likely to find trading
partners in the future. (While we focus on agent-oriented scenarios here, the same dis-
cussion often applies to human actors.)

In multiagent systems such as the one described above, an agent’s success may also
depend to a large degree on the reliability or trustworthiness of the agents with whom
it chooses to interact. In the marketplace example, success may hinge on trading with
reliable agents. For this reason, there has been considerable research in the area of trust
and reputation. Trust and reputation systems (TRSes) are tools that are intended to aid
agents in selecting trustworthy partners. These systems typically provide means for an
agent to identify potential partners who are reliable, and/or to avoid agents who are
expected to be unreliable.

1

While TRSes are intended to provide protection from dishonest or unreliable agents,
it is often the case that malicious agents can bypass those protections. In earlier work
[37], we identified a catalog of theoretical vulnerabilities in existing TRSes, weaknesses
that can allow dishonest agents to cheat other agents without the TRS preventing or
punishing the action. Such vulnerabilities are of grave concern, potentially rendering
TRSes ineffective or even counterproductive. In the early chapters of this thesis, we
investigate the feasibility of attacks that prey on such vulnerabilities.

In Chapter 2, we begin by examining the principal approaches taken by TRS design-
ers, and considering a number of noteworthy proposals. (We also explore numerous
other fields related to the work presented in this document.)

Then, beginning in Chapter 3, we embark on an experimental investigation of vulner-
abilities in TRSes. In Chapter 3, we develop TREET, a testbed for experimentation and
evaluation of TRSes. Such a testbed is a critical piece of infrastructure in exploring the
security (or lack thereof) of TRSes, and TREET is unique in its ability to allow a wide
range of general-purpose investigation. TREET provides a flexible simulated marketplace
environment, suitable for conducting a wide range of trust and reputation experiments.
Agents (making use of arbitrary behaviours/strategies) and TRSes (from a wide range of
formulations) can be implemented in TREET, and their behaviour/performance can be
evaluated under a variety of conditions.

Using TREET, in Chapter 4 we develop agents that make use of malicious strategies,
designed to take advantage of vulnerabilities commonly present in TRSes. A variety of
such strategies are tested, against a number of noteworthy TRSes; the malicious agents
are overwhelmingly successful. These experiments reveal both the pervasiveness and the
profoundness of vulnerabilities, and the practicality of attacks against them.

Of the attacks demonstrated in Chapter 4, of particular interest are those that are
collusive in nature—strategies executed by a group of multiple agents working in cooper-
ation with one another (a coalition) to circumvent the system. The issues of cooperation,
coalitions, and collusion are especially interesting, for two reasons:

• First, vulnerability to coalitions is widespread in TRSes, as has been frequently
noted by trust and reputation researchers (e.g., [4, 13, 31]). While some meth-
ods have been identified to counter other vulnerabilities, the problems posed by
coalitions have been largely unsolved.

• Second, coalitions present issues for many domains, far beyond trust and reputa-
tion. (We discuss examples later in this chapter.) Tools to cope with these issues
may have value in a variety of fields.

2

For these reasons, we focus our attention on these issues for the remainder of this docu-
ment.

Cooperation is a complex phenomenon. In situations like the marketplace example
described above, agents may display a high degree of mutually beneficial behaviour,
despite being autonomous and independent; such behaviour may derive from agents’
strategic decisions, as a consequence of tools designed to induce honest behaviour (e.g.,
TRSes), and/or from the fact that agents have been designed to be intrinsically trustwor-
thy. Such behaviour is commonly observed, and is often desirable.

Cooperation between agents may go further, however. Beyond the independent-but-
mutually-beneficial activity described above, agents may seek to coordinate their activ-
ities in some way, with the expectation that coordinated effort will further their goals
(whether shared or independent). Coordinated activities may seek to increase agents’
scores in a game, enhance profits, improve competitive positions, provide protection
from other agents, damage competitors, etc., depending on the scenario. We refer to a
group of agents working together to increase the benefits they receive as a coalition.1

There are (at least) three ways in which coalitions might aid one another, and in so
doing increase the benefits accrued by each:

1. Coalition members might simply favour each other (for example, by selecting each
other as partners more than outsiders, or by engaging in acts that have aid each
other);

2. Coalition members might follow strategies/tactics of coordinated actions, which
increase rewards to the group (for example, executing ‘plays’ in sporting events or
games);

3. Coalition members might share information with one another, which might other-
wise be unavailable (for example, insider trading, or revealing the cards that are
held during a poker game).

1A coalition is often defined in the literature as simply a group of agents (particularly a group of agents
that are cooperating in some way), without further specification [2, 3, 14, 44, 21, 53, 67, 82].

In some cases, definitions are more elaborate and domain specific. For example, in the study of coalition
formation, a full specification for a coalition might include details such as the resources possessed and how
those resources might be allocated amongst different agents. The issue of what a coalition is, however, is
still ultimately ‘a subset of agents’ [66].

A definition of coalition formation (and implicitly of a coalition) which is appropriate for our problem:
“Coalition formation (CF) is the coming together of a number of distinct, autonomous agents in order to
increase their individual gains by collaborating.” [12]

3

(In a coalition of rational self-interested agents, it should be the case that each entity
expects to increase his own, individual benefit by participating in the coalition. It may
not be the case, however, that each coalition member is observed to directly benefit—
some members may be seen to profit greatly, while others are not. We make the common
transferable utility assumption [67], however: that members of a coalition are free to
share the gains from their activity, in this case outside the system (i.e., unobserved).)

Coordinated activity by a team may be benign, or even desirable. For example, con-
sider a scenario where each agent is assigned large objects that it must move from one
location to another. While there is no requirement that agents form teams (and no need
to ‘register’ teams with any authority), teams of agents may be able to move the objects
much more efficiently than individual agents, benefitting all agents involved. Further,
there is no harm caused to others in the environment by agents coordinating their ac-
tivities. A similar example is the ‘neighbourhood watch’ program, where individuals
cooperate for their mutual security, but no harm is done to others.

In many other scenarios, however, agents may cooperate to further their own inter-
ests, despite the fact that this may be unwelcome or forbidden. For example, agents may
cooperate in a game such as poker (which is intended to be played individually) to in-
crease their winnings, at the expense of other players. Such harmful activities are often
considered forms of cheating; we refer to them specifically as collusion.

Whether the activity of coalitions is seen to be benign or harmful, welcome or forbid-
den, will vary from domain to domain. Similarly, the steps one might hope to take—for
example, to encourage or prevent coalitions—are also likely to be domain specific. Capa-
bilities that are likely to be valuable in many domains, however, are the ability to detect
the presence of teams, and/or to identify team members.2 One might, for example, need
to allocate security resources, and a knowledge of the the presence of ‘neighbourhood
watch’ cells might make this allocation more effective. In contrast, one might wish to
know which agents are colluding in a game, so that they can be penalized, expelled, etc.
(We discuss more detailed examples later in this document.)

The goal of later chapters in this document is to establish techniques to detect the
presence of coalitions, and identify team membership. Our aim is to develop methods
that are broadly applicable to a range of activities and scenarios. It is worth noting that
identifying teams is likely to be more difficult (and potentially more valuable) where
such teams are unwelcome; colluding agents are unlikely to advertise their membership

2For brevity, we informally use the term ‘detect’ to refer to both the detection of coalitions and the
identification of members, together. Where the distinction is important, we note it specifically.

4

in a team, and may actively seek to conceal their cooperation. Our work is particularly
interested in such scenarios.

One can envision many real-world situations where detection of coalition activity, and
identification of coalition members, is important. Notable examples include:

• As discussed above, collusion is a major problem for trust and reputation systems,
and our inspiration for conducting this research. Trust and reputation thus serves
as the example domain in which we apply our techniques in this document. Two
forms of collusion are well-known here [13]:

– Ballot-stuffing occurs when coalition agents give false positive reviews to their
teammates, in order to inflate the reputations of the recipients. This inflated
reputation is then used to induce other (outsider) agents to select the agent
with the inflated reputation, instead of a competitor.

– Bad-mouthing occurs when coalition agents give false negative reviews to
competitors of teammates, in order to damage the reputation of the competi-
tors. By doing so, the coalition again hopes to increase the likelihood that a
coalition member will be selected, rather than a competitor.

• ‘Shilling’ and ‘Astroturfing’, activities designed to create the (false) impression of
widespread public support (or opposition) for a position, product, etc. In many
online communities, participants rely on the opinions of others when attempting
to choose (or avoid) products to purchase, politicians to support, etc. False opin-
ions offered by coalition members attempt to influence purchasers/voters/etc. into
taking the desired action [26, 35]. While we can observe the postings/reviews, we
cannot directly observe whether the posting or the writer is legitimate.

This activity may occur in settings where a formal ratings systems is used, such as
Amazon or TripAdvisor. In this context, the rating system is similar to a reputation
system, and the ‘shilling’ activity is similar to ballot stuffing. The term astroturfing,
however, refers more broadly to forum messages, blog postings, free-form textual
reviews, etc.

• Insurgent activity in a military setting, or terrorism. Battlefield scenarios have been
examined by recent work by artificial intelligence researchers in behaviour and
plan recognition [68, 71]. Members of such a coalition may attempt to ‘blend in’
with the population, so we cannot directly observe group membership.

5

• In games such as ‘first-person shooters’ (FPSes) and ‘massively-multiplayer online
role-playing games’ (MMORPGes), individual players may join into teams to gain
competitive advantage over others. These venues may share similarities to the
military scenarios noted above. In some games, teams are formal constructs, and
no detection would be necessary. In others, however, no such recognized team
structure exists.

• Collusion in games, particularly forms of gambling such as poker, is a significant
problem. In fact, given the boom in online gambling, such cheating has been re-
ported by the mainstream media (e.g., [33]).

• Within an economy, certain businesses may cooperate in order to further the goals
of each. Some forms of such cooperation may be desirable (e.g., strong relation-
ships between suppliers and purchasers), while others may be illegal (e.g., anti-
competitive behaviour such as price fixing).

• One can conceive of applications in cooperative multiagent systems as well. For
example, cooperating agents (e.g., robots) may have very limited communication
capacity. It may be useful for an agent to be able to identify those other agents that
are coordinating to accomplish a task; this may inform both its choice of action
(which may depend on what the coalition of agents is doing) and its choice of
potential partners (which may depend on the availability of agents, and hence on
their membership in the team).

This list illustrates both the richness, and the real-world importance of the issue. Note
that we do not prescribe any particular solution based on the identification; domain
expertise is likely required to determine an appropriate course of action. One might
seek, for example, to penalize coalitions, to ‘undo’ the effects of collaboration, to expel
coalition members from the system, to shift resource allocations to take into account the
activities of coalitions, etc.

While considering this range of scenarios, it is worthwhile to note certain features
of the problem. In certain scenarios, while group membership is unknown, both the
goal and the tactics might be understood in advance. If we have a complete set of
possible tactics (a plan library), the problem of identifying teams might make use of
multiagent plan recognition techniques (e.g., [68, 70, 72]). These proposals consist
largely of pattern matching the actions of individuals against the known libraries of team
plans. When the actions of a subset of agents provide a strong match against a plan in
the library, we can infer that the agents constitute a coalition.

6

In many cases, however (including the types of scenarios with which we are primarily
concerned) we cannot presume possession of a comprehensive known plan library. This
issue was highlighted during the investigation of security vulnerabilities documented in
Chapter 4. During our research, we uncovered new attacks, highlighting the difficulty of
developing a comprehensive library, and similarly, the danger in depending on the fact
that a library is complete. Indeed, passing familiarity with news reports on scams and
fraud, on computer crime and security breaches, etc., reveals an astonishing ability for
adversaries to find new strategies to prey on the unwary—the strategy space is so large
that it makes potential attacks difficult to foresee. When unknown plans exist, existing
multiagent plan recognition techniques are not directly applicable.

Other distinguishing characteristics of our scenarios should be noted. First, we can
observe each individual identity in the environment (although we might not know who
is actually controlling the identity, e.g., in the case of a user account). Second, while
certain actions are observable, others are not. In particular, we have no access to com-
munications between colluding parties, nor knowledge of their sharing of resources or
benefits outside the system. (This has the consequence that our detection methods must
be based on points 1 and 2 from the list presented earlier in this chapter (favouring one
another, and engaging in coordinated efforts); the third (sharing information) is not part
of our analysis.)

Given this understanding of the problem, in Chapter 5 we explore the nature of coop-
eration, arriving at the conclusion that benefit is the defining feature of coalitions, and
that similarity of benefit is a powerful indicator of coalition activity. We introduce a ben-
efit space representation of agents, where agents are mapped into the high-dimensional
space according to how they benefit other agents. This representation is not domain
specific, and is likely to be applicable to a wide variety of applications. Clustering can
then be used in benefit space to identify groups of agents that are similar in terms of
who they are benefiting. The clusters obtained constitute a set of candidate coalitions;
we then apply a statistical technique to characterize those clusters, determining which
of them constitute actual coalitions. The steps of mapping to benefit space, clustering,
and then characterizing constitute our basic detection algorithm. This algorithm is eval-
uated using the TREET platform. Groups pursuing collusive strategies, in a variety of
configurations, are embedded into larger populations. A wide variety of tests, exploring
a number of issues and parameters, are used to demonstrate the accuracy of the method.

While the algorithm introduced in Chapter 5 achieves impressive results, there is
still room for improvement, and still cases which prove challenging. In Chapter 6, we
introduce a number of refinements that improve the accuracy and robustness of the al-

7

gorithm. Included here are: a recursive method of refinement, which enhances the algo-
rithm’s ability to separate multiple coalitions from one another; an improved method for
determining the appropriate number of clusters to choose, based on our own character-
ization method; a means of applying multiple clustering methods in parallel, and being
able to automatically choose the best result; and finally, an improved characterization
method, which improves upon the one introduced in Chapter 5. Again, the refinements
are subjected to a variety of tests, demonstrating significant improvement over the basic
algorithm from Chapter 5.

In Chapter 7, we introduce the time dimension to our analysis. First, we investigate
the speed of convergence using our technique, revealing that detection accuracy is high
even when limited information has been accumulated. Then, we explore the important
issue of dynamic coalitions. In many domains, coalitions are likely to be unstable, and
membership may change often; we would like to be able to identify coalition members
accurately, despite this. We address this issue by introducing a ‘forgetting factor’ as data
is accumulated. Our tests show this approach to be effective. Finally, we incorporate the
timing and situation in which transactions occur into our analysis, creating a measure of
benefit modelled after the TF-IDF (‘term frequency–inverse document frequency’) mea-
sure [64] used in information retrieval. This measure improves detection accuracy in
some circumstances, over the ‘raw’ benefit measures used earlier.

In Chapter 8 we return to the problem that originally inspired our work: the vulner-
ability of TRSes to collusion. We introduce an enhanced version of the well-known Beta
Reputation System [29], in which we apply our coalition detection techniques, and take
corrective action when coalitions are detected. This approach proves extremely effective,
neutralizing and even punishing collusive activity.

This work constitutes an accomplishment of critical value towards addressing an issue
that, despite its importance, has seen very little progress to date. In Chapter 9 we con-
clude with a discussion of the applicability of this work, and of future research directions.

Our work represents a major step towards addressing the issues of coalitions and col-
lusion in multiagent systems. In contrast to research in areas such as coalition formation
(which considers the decision-making of coalition members from an economic perspec-
tive), we instead address the challenging problem of coalition detection, presenting what
we believe to be the first broadly-applicable technique to accomplish this. Given the lack
of real-world datasets with labelled colluders, we offer an extensive set of tests using the
TREET testbed to validate our method. We introduce a number of refinements, which
further improve the accuracy and robustness of our method. We are able to demonstrate

8

how our work can be of use in a specific scenario (in this example, trust and reputa-
tion systems) in order to address domain-specific issues stemming from coalitions and
collusion. In all, however, our methods have broad applicability for many scenarios in
which the possible presence of unknown coalitions within a larger population may be of
concern, including a variety of multiagent systems and real-world settings. As such, our
work offers contributions for a wide range of researchers.

9

Chapter 2

Related Work

Although our problem has received little direct study, there is a broad range of areas that
have some relation to our work.

Trust and reputation systems are both the inspiration and the example application for
our work, and so we begin this chapter with an overview of that field. Afterward, we
highlight a number of other areas that share some relationship with our topic.

2.1 Trust and Reputation

Trust and reputation systems (TRSes) in multiagent systems aim to help agents choose
trustworthy partners and/or avoid untrustworthy ones. Typically, agents provide reviews
of their experiences with other participants; when deciding whether or not to trust a
potential partner, an agent can make use of the information in these reviews.

In earlier work, we shed light on the importance of security in trust and reputa-
tion systems [38] and identified a number of theoretical security vulnerabilities that are
pervasive in TRSes [37]. (These vulnerabilities are explored experimentally in Chapter
4.) In particular, vulnerability to collusive attacks is ubiquitous, and serious. There is
widespread acknowledgement by researchers of the vulnerability of trust and reputation
proposals to coalitions/collusion (e.g., [4, 13, 31]). While efforts are made to cope with
unreliable reviews, systems are often susceptible to two well-known forms of collusion
[13]:

• Ballot-stuffing, where coalition agents give false positive reviews to their team-
mates, in order to inflate the reputations of the recipients.

10

• Bad-mouthing, where coalition agents give false negative reviews to competitors,
to damage the targets’ reputation.

The goal of both of these attacks is to improve team members’ reputations relative to
competitors, and thus improve the members’ chances of being selected by other agents.

Unfortunately, trust and reputation researchers have made little progress against this
problem. Because of the importance of collusion to TRSes, and because such systems
have been well-studied, we use them here as the example domain in which we demon-
strate our techniques.

In this section, we survey the range of approaches taken by TRS designers, and exam-
ine a number of specific proposals, with particular attention given to the issues presented
by coalitions.

2.1.1 Direct experience

In one category of systems, described as direct experience models [63], agents rely solely
on their own past interactions with a target agent in evaluating its likely future trustwor-
thiness. Examples of such systems include the work of Marsh [46], Griffiths [22], and
Tran and Cohen [75, 76].

The work of Marsh [46] was seminal in the area of trust and reputation, proposing
that agents might estimate the trustworthiness of others, based on their own experi-
ence of the other agents’ behaviour. In Marsh’s model, an agent a will cooperate with
another agent b if a’s trust value for b exceeds a certain threshold. After the experience
(should a choose to cooperate with b), a will update his view of b’s trustworthiness based
on the new information. Marsh also proposed that such modelling might be situation
dependent—that a may view b’s trustworthiness differently, depending on the nature of
the task. For example, a might trust b for minor tasks, but not enough to cooperate on
more important tasks.

Griffiths [22] expanded on Marsh’s model by decomposing trust into multiple dimen-
sions. For example, a may have a high degree of trust that b will deliver goods on time,
but may have a low degree of trust in the quality of product that will be delivered.

The Tran and Cohen model [75, 76] makes use of reinforcement learning, as agents
seek to learn over time who is trustworthy. Each agent maintains a set of expected
outcomes for each possible action (here, choice of product and partner), based on past

11

experience. An agent chooses from among the available actions so as to maximize the
expected value. After an action is taken, the real outcome is used to update the expected
outcome for that action, before the next such choice is made. With high probability,
agents will exploit the marketplace, choosing partners from among the agents that are
believed to be trustworthy. Occasionally, however, an agent will choose to explore the
market instead, choosing an agent of unknown trustworthiness, with the goal of identi-
fying new trustworthy partners. Over time, the buyer will learn which agents can (and
cannot) be trusted, and which ones give the best value for any given product.

Direct experience systems have a number of advantages; most relevant here is that
they are essentially impervious to forms of collusion like those we have noted. Because
an agent relies only on its own direct experience when evaluating a potential partner,
other members of a coalition cannot directly impact that evaluation. Direct experience
models are relatively uncommon, however, because they suffer a number of important
limitations. In particular, agents in such a system are much slower to learn who is
(un)trustworthy, because they do not have the benefit of other agents’ experience. Ac-
cordingly, these systems are largely outside our focus.

2.1.2 Witness information

In comparison, the majority of trust and reputation proposals are witness information
systems [63], where agents incorporate information provided by others (referred to as
reviewers, witnesses, recommenders, etc.) when evaluating the trustworthiness of a target
agent (e.g, using a probabilistic model). Representative examples of such systems include
the work of Yu and Singh [83], the Beta Reputation System [29], and Travos [73].

Typically, agents in witness information systems can learn the trustworthiness of po-
tential partners much faster than in direct information systems, because they have a
much greater pool of experience upon which to draw. Unfortunately, they are also quite
vulnerable to inaccurate information provided by reviewers.

Reviews may be unreliable for a number of benign reasons: for example, the reviewer
may have limited experience itself, it may have very different tastes or expectations than
the agent requesting reviews, etc. Reviewers may also provide intentionally misleading
reviews, whether for strategic reasons, or simply out of malice. Attempts have been made
to compensate for the varying credibility of reviews, as discussed below.

The Yu and Singh model [83] makes use of referral networks in which agents, when
evaluating a target agent’s trustworthiness, can request recommendations from neigh-

12

bouring agents. Each agent has a set of other agents (its acquaintances) for which it
models trustworthiness, based on its own experiences of those agents’ behaviour. When
a request is made to an agent a for a recommendation for target agent t, a may an-
swer from its own experience (if t is an acquaintance), or may forward the request to
a neighbour. The Yu and Singh model is novel in its use of the Dempster-Shafer theory
of evidence to evaluate the likelihood that a target agent is trustworthy, which allows
agents to distinguish between the case where an agent t is known to be untrustworthy,
and the case where t is simply unknown to be trustworthy (due to lack of evidence).

The Beta Reputation System (BRS) [29] makes use of the well-known beta probabil-
ity distribution to estimate the probability that a target agent t will be trustworthy. Given
counts of the previous number of successes r (i.e., honest actions) and failures s (dishon-
est actions) by target agent t, the mean of the resulting beta distribution estimates the
probability that t will be honest on future transactions:

P(honesty) =
r+1

r+ s+2
(2.1)

(A transaction that is partially satisfactory might be reflected by using fractional ‘counts’
for r and s. For example, if a transaction was 70% satisfactory, this may be reflected by
adding 0.7 to the r total, and 0.3 to s.)

To incorporate the experience of others, the evaluating agent a can request reviews of
t from other agents with which a has relationships; each review consists of the counts r
and s that the reviewing agent has accumulated. The simplest way of incorporating these
reviews is to simply sum the r and s values from each of the reviews received (along with
a’s own counts).

Noting that the reviews received may not be entirely reliable, the authors propose a
system called reputation discounting, where reviews received by a from b are adjusted
depending on a’s experience of b’s trustworthiness. A subsequent proposal [79] intro-
duces a system where potentially-unreliable reviews are filtered out based on statistical
properties. When considering an entire set of reviews, those reviews that are extremely
positive or negative (relative to the bulk of reviews) can be considered suspicious, and
are disregarded.

The TRAVOS system follows BRS’s example, making use of the beta distribution in a
very similar manner. To this foundation, TRAVOS introduces two features. First, agents
only look to other agents for reviews of a target agent t if they do not have enough direct

13

experience to judge t ’s trustworthiness themselves. Second, TRAVOS uses a different
method of evaluating the trustworthiness of reviews. For each reviewing agent b, agent
a maintains a record of b’s past accuracy. When a receives a new review of target t from
b, the weight given to that review is determined by the accuracy of the reviews b pro-
vided in the past. After a has completed its interaction with t, it updates its records of b’s
accuracy based on the result.

As noted, these proposals provide methods of dealing with potentially unreliable re-
views. However, these defences seem intended primarily to cope with unreliable review-
ers that act independently, rather than as coordinated teams. For example, the later BRS
proposal [79] acknowledges its inability to cope with large proportions of unreliable
reviews (even from independent reviewers); coordinated teams might overwhelm the
system. Under TRAVOS, an accurate recommendation is one which corresponds closely
to the ultimate behaviour of the target; in the case of ballot-stuffing, for example, both
the recommendation and the behaviour of the target may be positive, which actually
serves to increase the credibility of the ballot-stuffer. While these proposed defences are
quite effective for their intended purposes, the do not stretch well to the coalition prob-
lem we now address.

2.1.3 Mechanism design

The classes of trust and reputation systems described above are essentially predictive
in nature; whether or not they take an explicitly probabilistic perspective, they attempt
to project the future behaviour of agents based on their past behaviour. In contrast, a
third, and much smaller, group of proposals attempt not to evaluate the trustworthiness
of agents, but rather to use mechanisms to elicit honest behaviour in a marketplace trust
scenario. One example is the work of Braynov and Sandholm [7, 8] (which attempts
to set the rules of the marketplace so that an agent’s profit-maximizing strategy is to
honestly declare its trustworthiness).

A mechanism that ensures trustworthiness would be ideal—if no agent had reason to
be dishonest, then predictive models would be unneeded. Unfortunately, the mechanisms
proposed, while provably correct, depend on assumptions and conditions that make them
inapplicable for real-world use. For example, the Braynov and Sandholm work requires
that agents know each others’ cost functions, a highly unrealistic prospect. Further,
this work does not ensure that agents behave in an honest and trustworthy manner,

14

only that they honestly declare how trustworthy they are; it is difficult to envision this
being applied in real marketplaces. Further, such proposals typically make no mention
of collusion, giving no reason to believe that they are resistant.

Important work on the problem of ensuring honest reviews has been done by Jurca
and Faltings. In early work [30], a mechanism is proposed where a reviewer is paid a
small sum for a review, only if his review matches the previous review (by a different
agent) of the same good/vendor. The idea is that if an agent gives honest reviews, it is
more likely that its review will match the previous one, increasing the payment expec-
tation. Unfortunately, the authors note that the system is subject to collusion: if many
agents give dishonest reviews, then dishonesty yields the highest expected payment.

In a later proposal [31], a collusion resistant scheme is developed. Similarly to the
earlier work, agents are paid for reviews in some cases. Here, however, payments are
only made if the number of positive reviews so far is a specific value. For an agent to be
paid for a positive report, the number of positive reviews so far (from all agents) must
be the number with the maximum probability given that you actually had a positive ex-
perience (relative to the probability of having that number of positive reviews if you had
actually had a negative experience). It is suggested that the system is collusion resistant
because a coalition would find it problematic to time their reviews in order to be paid,
without complete information about the reviews given by non-coalition agents. Under
such circumstances, an agent may not be paid for most reviews, but still maximizes its
expectation by reviewing honestly. The authors go on to consider a number of scenarios,
and while the system is not perfectly collusion-proof, it does provide significant protec-
tion when a portion of the population tells the truth.

While this work represents a significant step, it has limitations. First, no considera-
tion seems to have been given to collusion involving reviewees, in addition to reviewers
(which is a standard part of many collusive attacks). It requires assumptions such as that
the quality of the product being reviewed remains constant; in a case where reviewees
are part of the coalition, they can manipulate product quality, undermining the system.
Further, it is not budget balanced, requiring input of funds to work.

Earlier work of ours, on the Trunits systems [37, 43], has a mechanistic effect. The
original Trunits system [37] (subsequently labelled ‘Basic Trunits’, to distinguish it from a
later proposal) introduced the idea that trust could be represented using numerical units,
similar to a currency. The quantity of trunits possessed reflects a seller’s trustworthiness.
A seller can only engage in a sale if she is considered sufficiently trustworthy (i.e., has
sufficient trunits). If the seller enters into the sale, then the required quantity of trunits is

15

placed in escrow, pending completion of the sale and a review by the buyer. If the review
is negative, then the seller loses the trunits, and hence, the seller’s ability to engage in
future sales is reduced. If the review is positive, the trunits are returned to the seller,
along with a reward of a small additional number of trunits, increasing the seller’s ability
to engage in future sales. The effect on future sales provides the incentive for honesty.

Basic Trunits faces certain issues. In particular, there is the startup problem: how
do agents obtain an initial quantity of trunits? (If they are provided with an initial sum
when they create their account, a dishonest agent can simply open many accounts, and
cheat freely with the trunits.) Further, when an agent possesses more trunits than she
needs (e.g., when an operating surplus is acquired, or when an agent plans to exit the
marketplace), then she can use the unneeded trunits to cheat without consequence.

Commodity Trunits [43] was introduced to address these problems. Under this sys-
tem, trunits are tradable: they can be bought and sold on an open market. This addresses
the ‘start-up problem’ (because agents can purchase trunits when needed), and the ‘sur-
plus trunit’ problem (because the system is designed so that selling trunits is more prof-
itable than using them to cheat.) However, it requires a trunit marketplace to be created
and maintained.

Unfortunately, both of these systems are vulnerable to collusion. Ballot-stuffing can
be used to generate additional trunits, which can be used to engage in sales (or under
Commodity Trunits, sold)1. Bad-mouthing can remove potential competitors by reducing
their trunit balances (or cost them money, under Commodity Trunits).

2.2 Coalition formation and stability

An area of long-standing and continuous research (e.g., [18]), and one with obvious
topical relationship to our work, is that of coalition formation and stability within the
field of multiagent systems. The problem of coalition identification differs fundamentally
in nature from our own, however.

The issues of coalition formation and stability are often approached from a game-
theoretic perspective [53, 66], exploring the conditions under which coalitions form,
algorithms for formation, and requirements for a coalition to persist.

1Commodity Trunits can, in fact, provide some protection against ballot-stuffing, but this requires the
reward for honesty to be set very low. This reduces the incentive for honesty, and makes it difficult for
sellers to grow their business without the input of large quantities of capital to acquire trunits.

16

Researchers consider coalitional games, where outcomes consist of the coalition(s)
that form, and the joint actions taken by the coalition(s) as a whole. More directly related
to our work, researchers also investigate coalition activity within non-cooperative games:
self-interested agents may find it advantageous to cooperate with other such agents, in
the pursuit of their own interests [66].

The solution concepts fundamental to much work in coalition formation and stability
are based in the idea that a coalition forms to improve the prospects of its members; a
coalition is stable if no agent has an incentive to defect based on the utility it receives
[44]. There are a variety of solution/stabililty concepts used to evaluate coalitions, in-
cluding [53]:

• Nash Equilibrium, a configuration in which each agent is maximizing its own utility,
given the strategies of the other agents.

• The Core (a coalitional analog to Nash Equilibrium), where no (sub)coalition can
deviate from a coalition and improve the total payout to the subcoalition’s mem-
bers.

• The Stable Set, a set of payoff configurations Y for a coalition, where no payoff
configuration within Y makes every member better off than another configuration
in Y , and for any configuration outside Y , there is a configuration in Y where every
member is better off.

• The Bargaining Set, where for any unsatisfied coalition member x who makes an
argument claiming that all of the coalition members are better off if they exclude y,
y can make a counter argument claiming that by excluding x instead, the remaining
members would be better off than by excluding y.

• The Kernel, where for any argument agent x makes that agent y is receiving too
great a payout (and hence, by kicking out y, x could claim a greater payout), y can
make a similar counterargument against x.

While this list is not exhaustive, it illustrates the nature of work in this field. One
might consider that, in order to detect coalitions, one might look for sets of agents sat-
isfying these concepts. Unfortunately, there are a number of requirements and common
assumptions made in this work, which are not met in the scenarios with which we are
concerned. Examples include:

17

• It is commonly assumed that the capabilities of agents are known to one another
[66]. This is not necessarily true, for example, in a marketplace (where a buyer may
not know what quality of products (or even which products) a seller produces), or
on a battlefield (where a combatant’s capabilities may not be evident until they are
demonstrated).

• It is commonly assumed that the value earned by a coalition does not depend on
the actions of any agents outside the coalition [44]. This is clearly not the case
when, for example, coalition agents are trading with non-coalition agents.

• The definitions above show that we often need information about the distribution
of payouts within a coalition to apply these concepts. In the scenarios with which
we are concerned, such payments outside the playing field are explicitly unobserv-
able. Moreover, the ‘payout’ may come in non-monetary terms (e.g., increased
reputation, improved security, etc.) Unfortunately, we have no information about
agents’ utility functions, so we cannot evaluate these ‘payouts’.

• Because it is difficult to evaluate benefits such as reputation and improved security,
it is difficult to apply solution concepts requiring us to, for example, determine the
value of a coalition that excludes a particular agent.

While these game theoretic principles may not be applicable as we focus on detection
of coalitions, they may be useful in future work: for example, moving past detection into
the development of systems that take corrective action.

2.3 Multiagent Plan Recognition

Another area which appears, at first glance, to be closely related to our work is that
of multiagent plan recognition. Work in this area considers scenarios where multiple
agents are attempting to execute a joint plan; the actions of the agents can be observed,
but the plan cannot. The goal is to infer the plan being executed from the observations.
If the agents break into subteams in order to execute portions of the plan, it may also
be desirable to detect the splitting and merging events, as well as the composition of the
subteams.

Multiagent plan recognition follows closely on a large body of work in the area of
(single agent) plan recognition (e.g., [10, 34]). The work of Kautz [34] develops a com-
mon theme: the observed actions of the subject are matched against a known library of

18

plans, to determine the best match. Here, events (both plans and actions) are hierar-
chically structured, with plans containing actions and subplans. The recognition task is
to describe the end event (the ‘root’ of the plan tree) based on the observed events (ac-
tions). Kautz’s approach is entirely logical, making use of first order predicate calculus
and reasoning to reach conclusions from observed facts.

While there has been extensive work in (single agent) plan recognition, it has been
noted (e.g., [71]) that there has been a limited quantity of work on multiagent plan
recognition.

The work of Tambe [72] is a noteworthy example. In this paper, the author proposes
that explicit use of team models enables more effective team tracking. Tambe notes that
tracking using joint models has advantages over tracking each individual separately: it
can reduce the search space in recognizing actions, and it can more easily cope with
changes in team membership.

Tambe’s RESC (‘REal-time Situated Committments’) approach, originally developed
for tracking individuals, makes use of a runnable model of the target. Given a starting
state, the model is run, and the prediction compared with the actual actions of the target.
It may be the case that the action corresponds with multiple possible execution paths; in
this case, one is chosen heuristically. If the later observation shows a deviation (i.e., that
the wrong choice was made at this point), then a ‘real-time repair’ operation is executed,
correcting for the error.

Applied to teams, RESC uses models consisting of both team state and team operators.
The joint team state consists of a shared part (common to all participants, e.g., mission),
and a divergent part (applicable to individuals, e.g., position). For ease of tracking,
rather than monitoring the divergent components for each member individually, a single
paradigmatic agent is selected to represent the team. If a team splits into subteams, a
paradigmatic member is selected to represent each. Tracking then proceeds similarly to
the single entity case, with one change: if a tracking failure occurs, it must be determined
if the failure relates to the entire team, or to a subteam, before repair can take place.

While described somewhat differently, this method follows the same basic principle
outlined above: a library of known plans (in this case, embodied in a model of the target)
is searched (in this case, in a real-time, backtracking manner).

Later work in this area was conducted by Sukthankar and Sycara. In one proposal
[68], the authors address plan recognition of a small combat team in a battlefield sce-
nario. In this scenario, the identities and positions of team members are known, as

19

well as the positions of other environmental features. A library of all possible tactical
behaviours is known. Two techniques are then used:

• Hand-authored spatial templates are created representing the relative positions of
team members at some point in each tactic. These spatial templates can be scaled,
rotated, etc. For efficient search, a randomized technique is used, RANSAC. A
simple overview of how a single position is evaluated: 1) Choose two entities at
random; 2) Find all templates that match the two entities, considering possible
transforms; 3) For each matching template, calculate the expected positions of
the other entities; 4) For each entity that is close (within some threshold) to its
expected position, consider it a ‘vote’. 5) The matching template (and hence, tactic)
is the one with the most votes.

• In some situations (particularly, in two-person teams) spatial relationships are in-
sufficient to recognize a behaviour. Here, a temporal component is added, consid-
ering the relative positions of the entities over a window of time. A hidden Markov
model is then used to match these observations to a behaviour.

Subsequently, the authors consider the issue of dynamic teams, where teams split
to perform subtasks, merge, etc. [71]. Here, traces of agent positions over time are
used to identify behaviours. A known set of team behaviours is used to derive a set of
movement constraints. The goal is to determine the behaviour of each team, and the
assignment of each agent to a team, for each time step observed. Exhaustively matching
all possible behaviours and team assignments against all agents in every time step would
be infeasible. Instead, the authors start with a static state, and find potential teams by
spacial arrangements alone, as described above. Then, the movement of agents over
time are examined to confirm or discard the potential assignments.

The approach outlined above might best be described as behaviour recognition, rather
than plan recognition. To identify plans, the authors use an approach derived from the
hierarchical plan matching used in single-agent plan recognition [70]. This is essentially
a search task, but the search space is reduced by pruning branches based on resource
requirements, temporal dependencies, etc.

The authors also address something they call policy recognition [69]. Here, it is rec-
ognized that plan recognition based on long traces of activity (for example, using hidden
Markov models) may be problematic: often plans are interrupted, reconsidered, etc.
Instead, they seek to identify policies, which they describe as broad (over all possible
states), but shallow (not detailed), as compared to plans (which are deep (looking far

20

into the future) and narrow). Here, they use a simple probabilistic model, assigning evi-
dence from observed events to support known policies. They also use supervised learning
(a support vector machine), using training data with known policy labels.

Existing multiagent plan recognition work, while important, focuses on different sce-
narios than those with which we are concerned. For example, such proposals typically
assume that the membership of the team (or teams) is known, and seek to identify the
plans used by the team (e.g., [32]), or how the team has organized itself internally to
execute a plan. In our work, team membership is unknown, and discovering it is our
goal. As outlined above, existing work typically presumes the existence of a model of
the team or known library from which the agent(s) in question draw their plans; our
work assumes that we have no model or knowledge of plans. Moreover, in the scenarios
we target (e.g., marketplaces), there may be a very large number of participating agents;
there may be zero, one, or many coalitions at work—big or small—within the larger pop-
ulation, and we have no advance knowledge of the numbers or of the configuration. In
contrast, work in this area typically centres on a single (known) team, or environments
where two (known) teams constitute the entire population.

2.4 Community finding/Social network analysis

An area which has received a great deal of attention is that of community finding in
social networks. This work attempts to identify subsets of populations that constitute
‘communities’ unto themselves. The most prominent work in this area appears to be that
of Girvan and Newman (e.g., [19, 51]). This work, which is representative of the area,
is based on the observation that social networks consist of smaller groups (communities)
that are densely connected; these communities are connected to the larger network by
a small number of links. To identify communities, one can eliminate the (few) links to
the outside network, leaving the connected communities intact. To identify the links to
cut, the authors make use of a number of ‘betweenness’ measures, which reflect the role
of each link. For example, to compute edge betweenness, the shortest path from every
vertex to every other vertex is computed, and the number of times each link is traversed
is counted. Links that connect communities to the outside network will be traversed far
more often than links within a community.

It is tempting to think of coalition detection as an instance of the community finding
problem: essentially, we are seeking to find groups of affiliated agents within a larger

21

population, based on their interactions. In reality, though, the problem of coalition de-
tection differs in fundamental ways from that of community finding, making it difficult
to apply proposals from that area to our problem. In fact, the properties that are funda-
mental to community finding (e.g., frequency of interaction, connectivity, etc.) can be of
little use, or even entirely misleading, when attempting to identify coalitions. Recall that
in our marketplace scenario, when coalitions engage in strategies such as bad-mouthing
and ballot-stuffing, they are attempting to improve the reputations of member agents,
relative to that of competitors. They do so in order to win additional sales, from agents
outside own group. If ballot-stuffing or bad-mouthing is successful, a relatively small
number of collusive actions may win many sales from outsiders. Here, the frequency of
interaction will be high between members and non-members (perhaps even higher than
amongst members); connectivity with outsiders will similarly be high. Measures such
as these, which are so useful for community finding, provide little insight into coalition
activity.

The difference is very clear when one considers bad-mouthing. Figure 2.1 depicts a
simple situation where one coalition, consisting of agents A, B, and C is present. Two
agents, coalition member C and non-member D, are offering the same product for sale,
which agent E (also an outsider) seeks to purchase. E will evaluate the reputations of
each agent in selecting whether to buy from C or D.

A and B, seeking to support their teammate C, engage in bad-mouthing: they give
false negative reviews to D, in order to damage the reputation of C’s competitor. Based
on this, E is likely to choose C instead of D.

Note that the coalition members have (very successfully) engaged in collusive activ-
ity, despite the fact that there is no interaction or connectivity between any of the coalition
members. This illustrates an essential difference between community finding and coali-
tion detection: in community finding the key issue is who is interacting with whom,
while in coalition detection (as explored in Chapter 5), the important issue is who is
benefitting whom.

These properties are examined in greater detail in Section 5.2.

Palshikar and Apte present what they identify as a coalition detection method for
stock market trading [54]. This work is probably best classified as community finding,
however: they seek groups with high levels of interaction between them. Essentially,
the authors seem to have made the assumption that in the context of stock trading,
communities should be viewed as coalitions.

22

A

B

DC

E

Negative

Negative

?

Coalition

Figure 2.1: A bad-mouthing situation.

2.5 Recommender systems/Collaborative filtering

The research that is perhaps most similar to ours appears to have come in the field
of recommender systems and collaborative filtering, an area with a long research history
(e.g., [20, 57, 59]). Recommender systems aid users in making selections, by making
recommendations based on the opinions of others. Recommender systems are commonly
encountered on the internet today, providing recommendations on books, music, movies,
etc. While such systems might make use of actual purchase data, most often they are
based on the stated opinions of users: each user provides explicit opinions on a range of
items, with these opinions being used to make future recommendations.

Two primary approaches are used [11]:

1. User-based algorithms find other users (neighbours) with similar opinions to the
user in question (i.e., they have offered similar opinions on some of the same

23

items), and then find items that the neighbours have liked or disliked, under the
assumption that the user might share the neighbours’ tastes.

2. Item-based algorithms find, for each item, a set of similar items, based on their
receipt of similar ratings. When a user expresses like or dislike for an item, the
assumption is made that they may also like/dislike the similar items.

Clear similarities exist between recommender systems and reputation systems. In
particular, both rely on the opinions of others to help an agent make selections. Similarly,
both types of systems share vulnerability to malicious users that express false opinions
in the hopes of manipulating others; further, in both cases malicious users will prefer to
avoid detection.

Recently, much research has targeted the problem of shilling—the creation of false
user profiles/accounts containing ratings intended to manipulate the results of the rec-
ommendation algorithms (e.g., [9, 11, 48, 49, 47, 50, 65, 80]). Two general types of
attacks are noted: push attacks, intended to increase the recommendations of an item,
and nuke attacks, intended to decrease recommendations. These correspond roughly to
ballot-stuffing and bad-mouthing, respectively. There are important differences, how-
ever, stemming from differences in scenario, which we outline below.

In both reputation systems and recommender systems, agents make use of the opin-
ions of others. These opinions are used in quite different ways, however. In a reputation
system, an agent might make use of all of the ratings rendered by other users; alter-
natively, it might select or weight ratings based on a number of possible factors: its
relationship with and confidence in the reviewers, the past accuracy of the reviewers,
the statistical properties of the reviews (e.g., is the review an outlier from the other re-
views), etc. In contrast, the recommendations of a recommender system are based on the
reviews of those considered to have similar tastes to the user (i.e., those having rendered
similar opinions). These are fundamentally different criteria. Note, too, that in a reputa-
tion system, it is often up to the individual agent to determine which reviews/reviewers
to consider, and how to use them in the decision-making process. In contrast, recom-
mender systems make the recommendations for the user, without the user needing to (or
being able to) evaluate the different reviews.

These differences lead themselves to different attack strategies. To ballot-stuff or bad-
mouth in a reputation system, a coalition might (for example): offer large numbers of
reviews to sizeably increase reputation; create many new accounts for the sole purpose
of making a single ballot-stuffing/bad-mouthing review; offer many honest reviews to

24

build credibility before engaging in ballot stuffing; recommend other teammates as re-
viewers (in a referral network) so that others might transitively trust the teammates. By
comparison, an attacker in a recommender system seeks to build shill profiles that will be
as similar to (honest) users as possible, so as to strongly impact their recommendations
[48].

A shill profile will typically consist of ratings of the following items [50]:

• A target item, the item chosen to be pushed or nuked;

• Filler items, other items rated by the profile. Filler items/reviews are selected in
an attempt to have strong influence (i.e., strong similarity) with users whom the
attacker wishes to influence.

To avoid being obvious, filler items are typically rated randomly, using several strategies,
including [50]:

• Random attacks, where each item is rated randomly (using a Gaussian distribution)
around the overall mean rating across all items;

• Average attacks, where each item is rated randomly around the mean for that par-
ticular item;

• Bandwagon attacks, similar to random attacks but with certain popular items rated
maximally, to increase correspondence with honest raters.

2.5.1 Combatting shills in recommender systems

We note several important contributions to countering the problem of shills.

Chirita et al. [11] present an early attempt at coping with this issue. Their approach
makes use of statistical properties to identify shill profiles, so that they can be removed
from the recommendation process. Among the measures they use are number of predic-
tion differences (the number of changes in the predictions a system would make if the
profile was removed from the system), standard deviation in a user’s ratings, and degree
of agreement with other users. They also construct a new measure, called Rating Devia-
tion from Mean Agreement (RDMA). RDMA for a given user j is calculated as follows:

RDMA j =
∑

N j
i=0
|ri, j−Avgi|

NRi

N j

25

a) for each product i, the deviation between the user’s rating and the average rating is
computed, and then divided by the total number of ratings for the product (with the
goal that highly reviewed items, for which a single additional review will have little
influence, contribute less to RDMA); b) the values for all products are averaged. Chirita
et. al then propose a simple algorithm where accounts with very high (or low) values of
these key metrics are labelled as shills. As noted in [48], this approach has some success
in detecting attacks dense with profiles, but less effective in detecting small or sparse
attacks.

Burke et al. [9] make use of similar statistics to Chirita et al., but instead of us-
ing an ad hoc algorithm, make use of supervised learning to detect shills. While this
method achieves some success, and copes well with sparse/small attacks, it has obvious
limitations. First, it requires sufficient labelled training data, which is difficult to acquire.
Second, it fails to detect behaviours that may be valid attacks, but were not present in the
training set. This is especially important where attackers are actively trying to disguise
their activity.

Mehta et al. [48] take a different approach. They note that shill profiles (by con-
struction) are similar to many real users; however, in contrast to the normal variability
in the opinions of real users, shill profiles are extremely similar to one another. The au-
thors make use of Principal Component Analysis (PCA). PCA reduces dimensionality by
projecting data (in this case, profiles of opinions) to a low dimensional space, where the
axes selected capture the maximum variation. By taking the first principal component,
and selecting the variables with the lowest coefficients, one can select profiles with the
lowest covariance with other users. These profiles are most likely to be shills. In ex-
periments, by eliminating the top 5% of profiles, they achieved over 90% accuracy in
eliminating shills. (We note that in this case, the only consequence in ‘eliminating’ a
shill was that their opinion would not be used to generate recommendations. This has
little consequence for the owner of the profile, so a false positive is not of grave concern.
In our scenarios, where more serious action might be taken, 90% accuracy is probably
inadequate.)

Sandvig et al. [65] propose the construction of a recommender system that is re-
sistant to shills. Rather than making recommendations based directly on users’ ratings,
they instead use the apriori algorithm to generate association rules, sets of items that
commonly are rated together. When a user has rated one item, recommendations are
generated based on the association rules. This approach was shown to be fairly resistant
to shills. However, because some items do not occur frequently enough with others to
generate association rules, many items can never be recommended.

26

Resnick and Sami [58] also introduce a system intended to limit the effects of shills,
which can be applied to existing recommender systems. In this proposal, each rater j
has a reputation score, computed based on the degree to which future raters of prod-
ucts agree with the ratings given by j. The recommendations given by the system are a
weighted average of the predictions given before j’s rating is considered, and the predic-
tion made when j’s rating is incorporated; the weight given to the latter is dependent on
j’s reputation. The authors show that influence is maximized by giving accurate ratings,
and that the impact of shills is limited, subject to certain assumptions (such as the use of
an optimal recommendation system, and limits on the number of accounts that can be
created).

Mehta and Nejdl [50] make use of a ‘soft clustering’ technique, Probabilistic Latent
Semantic Analysis (PLSA) to cope with shills. PLSA is a Bayesian network technique using
latent variables to explain co-occurence. In this case, when users have given many similar
ratings to many of the same items, this coincidence of opinion will be seen as likely to
have been generated by a common ‘source’, represented by a latent variable. PLSA has
been used as a means of collaborative filtering; here, each latent variable might represent
a shared interest or common community. (Note that this is a form of clustering; all of
the profiles related to a latent variable constitute a cluster.) Used in this way, PLSA has
been seen to be quite resistant to shills, although the reason for this has been debated.

The authors note, however, that this technique can also be used to detect shills: a
latent variable representing a shared ‘interest’ might instead by a shill. Noting, again,
that shill profiles have very little covariance in their ratings, they measure the ‘tightness’
of each cluster (using Mahalanobis distance) [50]. The cluster with the smallest distri-
bution can be considered to consist of shills. Whether or not shills are present, or how
many groups of shills, appear to be unanswered questions.

These approaches have important similarities to our work, in that they focus on de-
tecting coordinated attacks (at times even using clustering). Indeed, there is much in
this work that can inform our own. There are important differences, however. Some of
those differences have been noted in the discussion above; we note others here:

• Leading approaches to detecting shills in recommender systems focus on the ex-
treme consistency of composition (behaviour) of the shill profiles. Shill accounts
are only effective if they are similar to real users; outliers will have little influ-
ence. In contrast, in the scenarios we target, members of a coalition may have
behaviours that are very different from other users, and very different from other
coalition members. For example, within a marketplace some coalition members

27

may actively ballot-stuff in large quantities, some may only sell products without
giving reviews at all, and some may balance ballot-stuffing with other activities. In
a battlefield scenario, some agents may be active attackers, while others take on
supporting roles.

• To achieve similarity to real users, a shill profile often must have a significant num-
ber of filler items, which then form the basis for detection. In our scenarios, no
such ‘filler’ is necessary; for example, an agent can offer a review (which might
carry significant impact) without having made any other recommendations.

• Typically, each (shill) account can only rate a given item once. In reputation sys-
tems, one account might provide many reviews of another agent. Considering our
broader range of scenarios, one agent might engage in many acts that benefit an-
other agent.

• Similarly, a group of shill accounts typically targets only one (or perhaps a small
number of) items; targeting too many items might reduce similarity to real users,
and hence effectiveness. In contrast, within a marketplace members of a coalition
might freely ballot-stuff for many of its members, while bad-mouthing others. (Fur-
ther, this activity need not be symmetric or ‘fair’ in any way, because the agents can
share revenues ‘behind the scenes’.)

• Following from the above point, the recommender systems work seeks to cope
with a single ‘attack’ launched by multiple accounts, whereas our work attempts to
detect coalitions engaged in broader cooperative action. Each account/profile in
a shill attack is typically only used for one attack, while in our work, we are also
interested in longer-term coordinated activity.

• In the recommender systems work, users do not interact with one another (at least,
not as part of the filtering/recommendation system itself). Instead, each user is
simply a data point, used during computation of recommendations. In many of the
scenarios we target (e.g., reputation systems for marketplaces), there is substantial
interaction between participants. This type of domain allows for repeated inter-
action, acquisition of direct experience, the ability to react to other participants
behaviours, etc.

• Very specific attack profiles have been identified for recommender systems, because
the systems are well known and the goals of attackers are very specific. In our
scenarios, we cannot be confident that we have a thorough set of known attacks.

28

2.6 Sybil attacks

A topic that relates directly to our own is that of Sybil attacks [15]. In a Sybil attack, a
single entity makes use of multiple identities or accounts, in order to improve its situation
in some way. Sybil accounts can be used, for example, to engage in ballot-stuffing or
bad-mouthing—the collusive reviews would thus appear to be coming from multiple
identities rather than a single entity, which can make them more effective.

Sybil attacks have received substantial research attention. Levine et al [45] present
a survey of approaches to dealing with the problem of Sybil attacks. Many proposals
depend on certification of identity by some trusted authority. While this provides strong
protection against Sybil attacks, it is impractical for many of the application domains
that we target.

There has been a particular focus on Sybil attacks in the context of peer-to-peer net-
works. This focus has inspired proposals that may be directly applicable to that domain,
but of limited usefulness elsewhere. For example, many have proposed systems where
the capabilities of a network node (e.g., its computational power or network bandwidth)
are tested, based on the assumption that an entity sharing its resources amongst nu-
merous Sybil identities will demonstrate lesser capabilities than an authentic node (e.g.,
[5, 62]).

Many approaches focus on differences between Sybil identities and authentic entities.
This would include the ‘resource test’ proposals mentioned above, but extends beyond
such approaches. For example, the authors of SybilGuard [85], note that authentic enti-
ties form relationships with one another, but that it is much less common for relationships
to exist between authentic users and Sybil accounts—it takes deception on the part of
the Sybil identity to lure an authentic user into such a relationship. This leads to graph
structures where groups of Sybil agents are connected to the larger population by a rel-
atively small number of links (called attack edges). SybilGuard (and the later SybilLimit
[84]) limit the effectiveness of creating Sybil accounts by, in simple terms, treating all
accounts that traverse the same attack edge as part of the same group of Sybil identities.
Attack edges are identified using a form of random walk. SybilDefender [77] applies a
very similar method. SRNC (‘Sybil Resisting Network Clustering’) [81] identifies attack
edges by computing the shortest path between each pair of nodes, and identifying the
edges that are most frequently traversed. (Note that this is closely related to techniques
for community finding, discussed above.) Then, SRNC prevents communication along
those edges, to inhibit the activity of Sybils.

Other approaches rely on specifics of the application domain. For example, Piro et

29

al [55] propose a system to detect Sybil accounts in mobile ad hoc networks. A key
feature of such networks is that entities move in space. Essentially, this proposal treats
identities that are usually seen to be geographically close to one another, as likely to be
Sybil accounts—one entity (in one place) masquerading as multiple identities.

Sybil attacks are important to our own work: they constitute attempts by multiple
identities to improve the mutual benefit of the group, exactly the type of behaviour
with which we are concerned. However, Sybil attacks are limited in ways that we cannot
expect our coalitions to be, and likewise, existing approaches to coping with Sybil attacks
do not address our more general problem. For example, coalitions in our problem are
likely to be real entities, and thus have relationships with many other authentic identities.
(It was noted earlier that our coalitions are likely to be very well connected.) This fact
renders the common graph-based approaches ineffective for our problem. Further, our
goal is a system that is applicable across a range of domains; solutions that are dependent
on specific scenario properties will not accomplish this.

In fact, we consider Sybil attacks2 to be special cases of the larger issue of coalitions:
the Sybil accounts, being controlled by a single entity, can be viewed as a very well-
coordinated, very loyal coalition.

2.7 Conclusion

This survey highlights the importance of coalitions in areas such as trust and reputation;
it also illustrates that related work in various research fields does not offer a solution to
the problem we seek to address.

In the next chapter, we begin our investigation by describing the experimental plat-
form used to explore key issues, and to validate our work.

2More specifically, we refer here to Sybil attacks where the attacker attempts to use certain of the
accounts to benefit other of the accounts, e.g., by manipulating reputation scores. In Chapter 4, we
identify uses of Sybil accounts that are not collusive in nature.

30

Chapter 3

TREET: The Trust and Reputation
Experimentation and Evaluation
Testbed1

The area of multiagent systems is concerned with scenarios where a number of agents
(who may be acting on behalf of different users) must interact in order to achieve their
goals; often, an agent must depend on other agents in order to achieve its objectives. In
such scenarios, trust can be an important issue—an agent’s ultimate success may depend
on its ability to choose trustworthy agents with which to work. For this reason, trust
and reputation systems (TRSes)2 have received much attention from researchers. Such
systems seek to aid agents in selecting dependable partners (or in avoiding undependable
ones).

A particular focus for researchers has been on the electronic marketplace scenario, a
well-established and important example of a multiagent system. In this setting, agents
act as traders, buying and selling amongst one another. The ability to find trustworthy
partners is critical to an agent’s success, because an untrustworthy agent may deliver an
inferior good (or fail to deliver at all), or may not pay for goods purchased. The nature
of electronic marketplaces complicates the evaluation of trustworthiness: identity is dif-
ficult to establish (because new accounts can be created easily), agents may not engage

1Earlier versions of the work in this chapter have appeared at IFIPTM [40], and in the journal, Electronic
Commerce Research [42].

2For convenience, we use the abbreviation TRS, for ‘Trust/Reputation System’, in reference to both trust
systems and reputation systems.

31

in repeated transactions together (because of the size of the market and the diversity of
products), and an agent may have an advantage over another during a transaction (for
example, when a buyer must pay in full before a seller ships (or fails to ship) the good).

Along with the multitude of TRS proposals have come a similarly large number of
methods to evaluate the proposals. It has been widespread practice for researchers in
the field to develop their own tests; typically, these are ‘one-off’ evaluations, each used
to validate a single new proposal. (Subsequently, such proposals might appear as com-
parison data points in the evaluation of later proposals—albeit using the later authors’
own self-devised tests.) Some authors have used mathematical analysis to substantiate
certain desirable properties of their systems (e.g., [36, 29]). More commonly, researchers
have conducted simulations (using a scenario of the authors’ own devising) to show the
value of their model (e.g., [73, 83, 76]). Typically, the new proposal is pitted against the
authors’ implementations of an existing model (or small set of models).

There is nothing fundamentally unreasonable about either of these approaches, in
the absence of established testing tools. In practice, however, evaluation has proven to
be challenging, in a number of ways:

1. It should come as little surprise that such tests, devised by authors themselves,
often appear to favour the authors’ own work. This is not to suggest any misdeeds
on the part of these authors; rather, when designing a system, it is natural to have
a particular scenario in mind, and for subsequent tests to reflect that scenario.

2. Because each evaluation is different, results presented by different authors are not
comparable.

3. The evaluations presented are often quite brief, leading one to question whether
the results thoroughly reveal the performance of the systems in question. Indeed,
our investigations (which have been published [41], and are detailed in the next
chapter) revealed numerous ways in which existing systems (including those cited
above) can be defeated—issues that were not revealed in the authors’ own analy-
ses. These issues highlight the need for more thorough, objective testing of TRSes,
ideally using tools that allow comparison and reproducibility of test results.

4. Perhaps most importantly, the evaluations typically used obscure critical problems
that have received insufficient attention to date by trust and reputation researchers.
Simulations typically make use of agents that are simple or naive in their dishonest
activities. For example, many simulations (e.g., [73, 83]) are populated by random
selections of agents that either always cheat or always behave honestly, or by agents

32

whose cheating is governed by simple probability distributions, where each time
step is independent of previous ones. Further, the agents act alone, rather than
coordinating their efforts in any way. Such simulations ignore the possibility that
cheaters might behave in a more sophisticated manner—for example, trying to
identify and exploit a specific weakness in the system—providing little comfort to
those who might wish to consider these proposals for real-world use.

In earlier work [36], we identified a number of common vulnerabilities that might
allow attackers to defeat the protection offered by TRSes, and argued the critical impor-
tance of security in TRSes. Subsequent work [41] (described in the next chapter) has
demonstrated the practicality of such attacks by soundly defeating a number of notewor-
thy TRS proposals. These results demonstrate the need for more rigorous tests, and more
objective tests, of TRSes.

3.1 The ART Testbed

A standardized, common evaluation tool can potentially address the issues noted above.
Members of the trust and reputation community have invested significant effort in de-
veloping a standardized simulation: the Agent Reputation and Trust (ART) testbed [17].
A primary purpose of ART is to serve as a competition platform, and it has served this
purpose well [74], having been used for competitions at a number of conferences. While
ART is a valuable contribution, a number of design choices make it less appropriate for
broad use in the experimental evaluation of TRSes.

In ART, agents are art experts, each with varying levels of expertise in different eras.
Agents are periodically asked to appraise pieces of art by clients. The accuracy of the
appraisals given to clients determines how much business each agent will receive in the
future, according to a fixed formula used by the testbed. The agent can choose how
much to invest in generating its appraisal—greater investment yields greater accuracy. If
an agent is asked to evaluate a piece from an era about which he is not knowledgeable,
he can seek appraisals from other agents. Agents can also share information with one
another about the reliability of other agents’ appraisals.

ART is very well-designed for its primary purpose: evaluating competitive agents
(making use of a number of abilities) who interact directly with one another, in a small
social trust scenario. ART has a number of desirable properties for a testbed:

• It offers a well-specified, standardized testing scenario and set of rules.

33

• It allows new agents to be easily implemented and plugged into the system; agents
can then be used by others for future experimentation.

• It provides objective metrics for comparison between systems.

That said, ART has a number of features that make it less suited for general-purpose trust
and reputation experimentation:

• Under ART, the distinction between buying and selling agents is unclear, making
some forms of experimentation problematic. The ultimate purchasers of appraisals
(the ‘clients’) are buyers, and as such, agents serve as sellers for these transac-
tions. Note, however, that the clients’ method of choosing appraisers (based on
past performance) is fixed by the ART specification, precluding experimentation
with buyer-side modelling of sellers for these transactions; similarly, it obviates in-
vestigation of sellers modelling potentially unreliable buyers. In contrast, as agents
buy and sell appraisals with one another, each agent acts as both buyer and seller.
Success under these circumstances requires a multitudes of diverse skills: deter-
mining when to make do with your own knowledge, and when to seek help; deter-
mining how much to invest in appraisals; determining whom to trust when seeking
appraisals; and determining whether or not to be honest when another agent asks
you for help. While this is a demanding test, and one appropriate for a competition
testbed, it can also obscure the role of each individual skill in an agent’s perfor-
mance. This makes it difficult to isolate individual marketplace components for
evaluation. For example, if a researcher wishes to evaluate the performance of a
system intended to allow sellers to model untrustworthy buyers, it may not be use-
ful to have the results clouded by the same agent’s performance in the unrelated
task of deciding whether or not to make honest sales to other agents.

• In its role as a competition testbed, ART requires a very well-defined scenario.
Unfortunately, this requirement seems to limit the flexibility of the system for ex-
perimentation. For example, the ART architecture allows decentralized (where
each agent maintains its own database of reputation values for others) and di-
rect experience models, but precludes testing of centralized models (where one
central store of reputation information is used), because the method of sharing
information amongst agents is specified by the testbed. It also prevents experimen-
tation with models that regulate an entire marketplace (e.g., mechanism-design
based approaches). Moreover, features of the chosen scenario prevent investiga-
tion of important issues. For example, each appraisal has a fixed price under ART,

34

preventing exploration of vulnerabilities such as Value Imbalance (where a seller
builds reputation by honestly executing small-value sales, then uses the reputation
gained to cheat on larger ones [36]). The quality of an agent’s appraisal is reflected
in clients’ decisions in the next timestep, preventing exploration of vulnerabilities
such as Reputation Lag (where a seller can cheat a large number of sellers for
a period of time before his reputation is updated to warn other potential victims
[36]).

• ART provides a heterogeneous environment where agents share reputation infor-
mation with agents using different trust and reputation models. To permit com-
munication between agents with different internal models, the format of commu-
nication is determined by the ART specification. This imposes a specific trust rep-
resentation for communication between agents (if not for agents’ internal use); the
imposed format may not map well to the TRS’s native representation, potentially
disadvantaging the TRS.

Some authors (e.g., [24, 25]) have noted the limitations of ART for evaluating their
own work.

3.2 The TREET Testbed

In this section we describe TREET, the Trust and Reputation Experimentation and Evalu-
ation Testbed. TREET was formulated to support diverse, flexible experimentation with
TRSes, and more thorough, objective evaluation of such systems. (The results obtained
using TREET, detailed in the next chapter and throughout much of the remainder of this
document, demonstrate its value for these purposes.) In contrast to the competition fo-
cus of ART, TREET is designed specifically to support general-purpose experimentation
and evaluation of trust and reputation technologies.

The TREET platform has a number of important advantages making it well suited for
its intended purposes, including:

• It models a general marketplace scenario, allowing systems to be tested under real-
istic conditions. This includes reasonably large marketplace populations, turnover
in the agent population, a large number of products/prices, etc.

• It is modular, allowing new TRSes, buying and selling agents, instrumentation, etc.,
to be added easily.

35

• It can support a wide range of trust/reputation approaches (for example, both
centralized and decentralized models). It does not impose any particular view of
trust on agents, nor does it impose a particular protocol or trust representation on
agents.

• It allows collusion to be incorporated into agent behaviour.

• It allows individual marketplace ‘components’ to be tested in isolation. For ex-
ample, it allows the protection a TRS provides buyers from cheating sellers to be
evaluated, without being obscured by other potentially irrelevant issues (for exam-
ple, whether or not sellers are dishonest with one another). In contrast, the success
of an agent in ART requires competence in a number of abilities.

• Given the standardized platform, as new agents/TRSes are developed, they can be
evaluated against all existing implementations; at the same time, new implementa-
tions constitute new tests for all of the existing systems. In this way, a continually
improving battery of rigorous tests might be developed, which can be used by re-
searchers to evaluate their work.

• Standardization also allows for objective benchmarking, permitting meaningful
comparison between systems. Moreover, the availability of components will allow
for results to be reproduced by other investigators.

The specifics of TREET are detailed below.

3.2.1 Conception and Goals

We sought to formulate a testbed that would support flexible experimentation and mean-
ingful evaluation of trust and reputation technologies. Complete marketplaces may have
many TRS components, from a range of possibilities: agents who have individual (and
heterogeneous) internal models of other agents’ trustworthiness, networks of agents that
share reputation information, centralized repositories of reputation data, market-wide
mechanisms that regulate trading between agents, etc. A potential adopter of a TRS may
have to choose between multiple proposals, despite the fact that the proposals use very
different methods internally. An adopter may have to assemble multiple TRS technolo-
gies to meet the needs of their complete working system, and may need to understand
how well these components work together. For these (and other) reasons, a testbed will

36

ideally support experimentation with a wide variety of such components. Thus, we set
out to design an architecture that was quite flexible.

At the same time, too general a testbed formulation might also be difficult to apply in
practical terms. At best, it may be of little benefit to the researcher, leaving much work
to be done simply in preparing the testing platform. Worse, a formulation that is too
general can make evaluation of TRSes and comparison of results problematic: different
researchers are likely to use very different instantiations of the testbed scenario, raising
many of the same issues as the author-devised testing that has occurred to date. For
this reason, we have specified a well-defined scenario that we believe is useful for a
wide range of experimentation. We believe that this is an appropriate and useful balance
between flexibility and standardization.

Nature of Tests

For a competition testbed, it is sufficient to supply the testing platform itself; competitors
supply the agents, which seek to defeat one another. In contrast, a testbed intended
for evaluation and benchmarking requires meaningful tests for candidates to perform.
In some fields (for example, performance benchmarking of computer components), a
typical approach would be to develop a set of standardized tasks to perform, with well-
defined metrics (e.g., execution time) used for comparison. Ideally, the tasks would
be representative of real-world demands. For TRSes, however, it is difficult to envision
representative ‘tasks’ that do not involve actual interaction with other agents. The most
illuminating tests are likely to be those conducted in a realistic scenario, interacting with
other agents. Thus, in our formulation, tests consist of (at least) two components: a
well-defined marketplace scenario, and a population of agents. The TRS technology in
use might be a third component (e.g., in the case of centralized systems), or might be
incorporated into the behaviour of the agents themselves.

This formulation provides a great deal of flexibility, as well as the ability to test specific
components under controlled circumstances. For example, to test TRSes that attempt to
allow buyers to cope with cheating sellers, a test would consist of a set of market param-
eters, and a population of sellers with specific cheating behaviours. These components
are experimental controls; each TRS would then be tested against the same scenario,
allowing comparison of the results. (This approach is used in the next chapter.) In com-
parison, to test TRSes that allow sellers to cope with untrustworthy buyers, each test
would include a different set of buying agents.

Beyond the benefits noted above, this approach has a number of advantages. First, as

37

agents are developed (both TRS technologies, and ‘tests’), they can be made available to
other researchers. This allows the test suite to grow, increasing in thoroughness and rigor,
as understanding of TRSes increases. (The cheating agents described in this document
constitute an initial set of tests.) Second, the standardization of the platform and the
availability of agents allows results to be reproduced by other researchers.

3.2.2 Scenario

We sought to develop a reasonably general scenario, one in which a variety of roles and
strategies can be evaluated. For tests to be meaningful, the platform should model as
realistic a scenario as practically possible. In the following, the parenthesized values
are default settings representative of a reasonable scenario. (These values were used
in published experiments [41].) A test specification would include a set of parameter
values; the values can be adjusted as desired for experimentation.

We model an ‘advertised-price’ marketplace: sellers offer goods for sale, and buyers
choose whether or not to make purchases, and from whom. A fixed set of products
(1000) is available for sale. Because we wish to study trust primarily, and not other
price-/cost-based forms of competition, there is an established market price for each
good: every seller charges that same price for a given good. A typical marketplace will
have more inexpensive items for sale than expensive ones. To reflect this, the price of
each good is randomly determined using the right half of a Gaussian distribution (i.e.,
the median occurs at $0, and probability decreases as price increases).

A seller incurs cost in producing or acquiring each good that he sells. This is a pri-
mary motivation for cheating—to avoid incurring this cost, and thereby increase profit.
Again, to keep focus on issues of trust and reputation, rather than profit margins, all
sellers incur the same cost to produce each product (75% of selling price).3 Similarly,
a buyer who wishes to avoid being cheated can simply refuse to make any purchases.
Doing so, however, means that she is doing without products that she needs, incurring a
loss of sorts. Thus, each product has a utility value (110% of selling price) that a buyer
realizes if a needed product is acquired successfully, which provides motivation to make
purchases.4 It is assumed that all participants have access to the cost and utility values

3TREET also allows a commission to be charged for each sale (0% by default). The commission is
charged based on the sale price, regardless of whether the seller chooses to fulfill the sale honestly or not.
This feature allows investigation into issues such as impeding ballot-stuffing by making it costly to engage
in fabricated transactions, because each such transaction will incur a commission.

4While these parameters are configurable, cost should be strictly less than selling price, and utility
should be strictly greater than selling price, or the motivation to engage in sales is not present.

38

for each good. These factors support investigation of a variety of aspects of trust and rep-
utation; for example, both buyers’ modelling of sellers, and sellers’ modelling of buyers
can be examined.

Each seller is assigned a random number of products that she is able to produce,
selected from a uniform distribution (maximum of 10). To reflect the greater availability
of less expensive products, the products are again randomly assigned using the right half
of a Gaussian distribution (i.e., the median occurs at the least expensive product, with
declining probability as price increases).

A simulation run can be populated by an assortment of agents, as desired by the
researcher, or as defined in a test specification.

Marketplaces are often dynamic—traders join and leave regularly. This is important
for TRSes, because new agents are unknown (and have no knowledge of other agents),
and departing agents result in obsolete knowledge. For efficiency, agents join/exit the
market at specific intervals (100 days). After each such interval, each agent departs the
marketplace with a fixed probability (0.05). That said, it may be undesirable for the
performance of TRSes to be clouded by changes in market size (e.g., profits increasing
because the number of buyers increases.) Thus, for every departing agent, one agent of
the same type joins, keeping the participant count constant.

3.2.3 Architecture

TREET is designed to be quite versatile for experimentation, within the constraints of the
defined scenario. The architecture is depicted in Fig. 3.1. In this diagram, BA and SA
refer to Buying Account and Selling Account respectively. BE and SE refer to Buying En-
tity and Selling Entity respectively. All components labelled in italic text are components
that are intended to be provided/modified by investigators making use of the testbed.
The grey box denotes those components that are observable by marketplace participants,
although this does not imply complete visibility. For example, seller accounts may be
visible to buyer accounts, but this does not imply that all seller account data is visible.
(E.g., the user ID of the account would be visible, but the amount of money held by an
account might be private.) Such limitations are described in more detail below.

Each complete run of the testbed is represented by a SimulationRun, into which the
necessary arguments and objects are passed. A SimulationRun is responsible for setup
and configuration of a run—creation of the product set, initialization of components,
etc.—and initiating the Simulation Controller. A set of numerous tests can be executed
by creating multiple instances of SimulationRun.

39

Figure 3.1: The TREET Architecture.

40

A Simulation Controller is responsible for actual execution of a simulation run. The
controller triggers each of the day’s events in turn, signalling the appropriate parties
when they are required to take action. For example, the controller cues sellers to make
product offers at the appropriate times, cues buyers to select products/sellers when offers
have been posted, etc.

The scenario makes use of a single centralized marketplace, represented by a Mar-
ketplace object; this is consistent with the centralized model employed for marketplaces
such as eBay. All offers, acceptances, and payments are made through the Marketplace.
All accounts reside in the Marketplace, and requests to open accounts are processed
through it.

One important aspect of TREET is the role of TRSes and agents. Some TRSes are
implemented entirely centrally, some entirely within the agents; many fall between these
two extremes. The option in TREET to use both agents (represented by accounts and
entities, as described below), and TRS objects, facilitates a wide range of approaches. A
TRS object implements those components of a TRS that are shared by multiple agents.
For example, in a model that makes use of a centralized repository of reputation infor-
mation, the TRS object would provide that service. TRS objects are useful even in fully
decentralized systems, if only to coordinate trust-related actions. For example, when a
buyer requests reviews from other buyers, this request could be processed through the
TRS object, whose role is simply to co-ordinate such communication.

Some important points should be made regarding TRSes. First, as depicted in the
diagram, multiple TRSes may be in use simultaneously, for example, by a heteroge-
neous population of agents. Second, in order to implement a system for experimenta-
tion, matching TRS objects and entities typically must be developed—a researcher must
create both the TRS, and entities that ‘know how to use’ the TRS. The role of each type
of component, and the nature of interaction between TRS and entity, is at the discretion
of the researcher, allowing great flexibility in implementing TRSes and agent behaviours.
For example, in a completely decentralized model, entities may do all reputation track-
ing and computation; in this case, the TRS might simply serve as the communication
channel between agents. At the other extreme, with a completely centralized model,
the TRS may perform all reputation-related functions, while entities simply make use
of the services provided. TREET supports this diversity, which seems to provide a great
deal of flexibility, without undue complication. Third, in some cases (e.g., a market-wide
mechanism), a TRS is tightly integrated into the operation of the marketplace itself. For
example, Basic Trunits [36] controls what offers may be made by sellers. TREET allows
for a single ControllingTRS to be installed in the marketplace. When a ControllingTRS is
present, it can control which offers are permitted to be posted by sellers, modify those

41

offers, control whether a buyer will be permitted to make a certain purchase, etc. In the
absence of a ControllingTRS, the marketplace executes all offers/purchases/etc. without
interference. Finally, note that both buyers and sellers can make use of TRSes. This al-
lows for experimentation and evaluation of, for example, TRSes that help sellers to select
buyers that will provide honest or favourable reviews.

Note that no particular trust representation, or communication protocol is enforced
between agents. In fact, it is up to the designer of the TRS component, along with the
associated agents, to determine exactly how (or whether) communication takes place be-
tween agents. This provides support for a wide range of approaches to trust. Note, too,
that communication between heterogeneous agents can be supported. Certainly, map-
ping from one agent’s trust representation to another’s may be necessary, but the method
for doing so is up to the designer of the TRS component used for communication. (This,
in turn, also allows experimentation with different means of allowing heterogeneous
agents to interact.)

Support for Investigating Coalitions and Collusion

Another important feature of TREET is the separation of the agent roles into two com-
ponents: accounts and entities. Accounts represent actual user accounts within the mar-
ketplace; these are the identities that are observable by other parties in the market.
Entities, however, represent the actual agents performing actions by using the accounts.
Entities are not observable by marketplace participants, reflecting the fact that identity
is difficult to establish, particularly in large electronic marketplaces. This distinction is
important for a number of reasons. It allows entities to interact with the marketplace
(via accounts) without revealing their true identities to other marketplace participants,
important in modelling many real-world scenarios. It allows the re-entry phenomenon
to be incorporated into experiments (where agents can simply open new user accounts
to shed a disreputable identity). It allows for a single agent to control multiple user ac-
counts (as they may in real-world scenarios), as used in attacks demonstrated in the next
chapter. It also allows for investigation of collusion. In the case of perfectly loyal and
coordinated collusion, a single entity can represent the entire coalition; in the case of
less perfect coalitions, entities can be implemented that communicate with one another
outside the observable marketplace.

Buying and selling accounts are shown as distinct in our architecture diagram, as
are buying and selling entities. TREET supports this strict separation, which is useful
for some forms of experimentation. (For example, one might wish to charge different

42

amounts for opening buying and selling accounts.) In the interest of flexibility, however,
TREET also allows a single account to be used for both buying and selling, and a single
entity to act as both buying and selling entity. Whether or not these dual roles are
permitted may be configured by parameter. This flexibility allows, for example, the study
of forms of collusion such as ballot stuffing, by permitting entities to play the role of both
buyer and seller.

For different components of the testbed to communicate with one another, certain
aspects of communication must be standardized. In TREET, communication for actual
market transactions (i.e., actual purchases) is defined by the specification: the syntax
and semantics of product offers, offer acceptances, etc. These are items that are likely to
be standardized in a real marketplace situation. Note, however, that the characteristics
of communications between TRS components (e.g., exchange of reputation information
between agents) are not imposed by the specification, instead left to be determined by
those implementing TRS/agents for the system. This ensures maximum flexibility and
fair treatment of different TRS approaches. Illustrating this flexibility, in the next chap-
ter this architecture is used to evaluate five noteworthy TRSes [73, 83, 36, 29, 76]. This
set comprises a wide range of (very different) approaches to trust/reputation, includ-
ing direct experience, witness information, and centralized mechanisms; for each model,
agents were able to represent and communicate trust in the native form as described by
the authors, without conforming to a specification imposed by the testbed. This demon-
strates the versatility of the platform.

To support flexibility of experimentation and evaluation, TREET must also support
flexibility of measurement, as researchers investigate a wide range of issues. This support
is provided by Instrumentation modules. Each instrumentation object is provided with
the identity and group-membership of every entity, the ownership of every account, and
the details of every sale completed. With this data, Instrumentation objects can provide
arbitrary output and metrics, from detailed turn-by-turn or sale-by-sale information, to
heavily summarized aggregate data. For example, a default Instrumentation class that
accumulates sales/profit/cheating statistics over time, by agent group, was used in the
experiments in the next chapter. Researchers are also free to develop their own. Multiple
Instrumentation objects may be in use during a simulation. Instrumentation modules
also serve an important role in test suites, determining whether a test has been passed
or failed.

Several other details are worth noting:

• Buyers do not know of selling accounts until that seller makes an offer. Sellers
do not know of the existence of a buying account until it makes itself known by

43

accepting an offer.

• At the time of making an offer, sellers do not know or control whether an offer will
be accepted, or by whom.

• A seller can only physically provide products that she is able to produce. A seller is
able to advertise and sell (dishonestly) any product, however.

• It is possible for an agent to connect to multiple TRS objects. This allows experi-
mentation with situations where, for example, an agent might make use of shared
reputation information with trusted neighbours, as well as accessing data in a cen-
tralized repository (i.e., a different TRS).

• Entities can create new accounts at will. TREET provides the ability to charge a fee
for each account opened; the fee is determined by the ControllingTRS, if one is in
use. Entities can query to determine the fee, before deciding whether to create an
account.

• A ControllingTRS has the ability to close accounts, rendering them unusable by
their owners.

• Entities are not resource-constrained—they have unlimited money available. In-
stead, we track each entity’s net financial position, the sum of all monetary gains
and losses, so we can determine how effective the entity’s strategy has been.

3.2.4 Simulation Execution

Each round represents one day. Each round consists of the following steps (co-ordinated
by the System Controller):

1. All participants are notified that a new round is beginning, so that they may do any
needed processing/initialization. Such initialization might include reseting internal
data structures, opening new accounts, etc.

2. After entering into a sale, a buyer will not know whether or not he has been cheated
until after some number of days has passed, reflecting processing, shipping, etc;
we refer to the rendering of feedback after this lag (default of 14 days) as the
completion of the sale. At the beginning of each day, each buyer is notified whether
each completing sale was executed honestly or not, representing ‘delivery’ of the

44

item.5 The buyer’s net utility is updated to reflect the result: the utility is equal to
the full utility for the product times the degree of fulfillment. (Note that a buyer
only earns utility for a product that meets an assigned need (see Step 6); if it buys
an unneeded product, it receives zero utility.)

3. After learning about the outcome of each completing transaction, the buyer deter-
mines its satisfaction with the transaction (in the manner determined by the agent
designer, and expressed in the representation appropriate for the TRS in use). Each
buyer has the opportunity to submit feedback to all TRSes to which it belongs (ap-
plicable to those TRSes that require agents to report results, rather than those in
which agents respond to queries). It is also prompted to submit feedback to the
ControllingTRS (if one is in use.)

4. Each seller is prompted to submit feedback to all TRSes to which it belongs, and to
the ControllingTRS, as above.

5. Each market participant, including each TRS in use, is prompted to process all
feedback that it has received in this round.

6. Each buyer’s needs are determined for the day. Each buyer is randomly assigned a
set of products (default, of up to 5) that it needs to purchase that day; again, these
are selected using the right half of a Gaussian distribution, so there is a greater
likelihood of needing lower-priced items.

7. Each seller is prompted to make offers, submitting them to the marketplace. No
limits are placed on sellers’ capacity or inventory; only one offer per product is
allowed for a given account. If a ControllingTRS in use, it may reject offers in the
set submitted by a seller. After submitting its offers, the seller is returned a list of
the offers that were accepted for posting by the marketplace/ControllingTRS. If it
wishes to, it can then modify its offers and post a new set, replacing the previous
set. This cycle can be repeated as many times as needed, until the seller is satisfied.

8. Buyers select the products they wish to purchase, from which sellers, by consulting
the posted offers. Buyers are free to consult their TRSes in so doing. For each
purchase they decide to make, an offer acceptance is communicated to the corre-
sponding seller account, via the marketplace. The acceptance of an offer can be

5The degree of fulfillment is represented by a value in the range [0, 1], with 1 representing complete
fulfillment, and 0 representing complete lack of fulfillment, e.g., not shipping the good at all. In our
experiments, sellers selected between these two extremes, but researchers are free to implement other
behaviours.

45

rejected by the ControllingTRS. A seller can also refuse to make the sale to the
buyer (e.g., if the buyer has a bad reputation for giving poor reviews); it can con-
sult its TRSes in making this decision. The buyer is notified if the purchase was
successful; if not, it can try again. This cycle can be repeated as many times as
needed, until the buyer is satisfied.

9. For each sale that the seller agrees to make, it decides whether or not to fulfill it
honestly or dishonestly. The cost to the seller for providing the good is equal to
the full cost of the product times the degree of fulfillment (as described above).
Acceptances are communicated to the marketplace, which forwards each to the
corresponding buyer account.

10. Payment is transferred from the buyer account to the seller account, for each sale.

11. Each sale’s status (honest or dishonest) is communicated by the seller to the mar-
ketplace for storage. This value is not observable by any other marketplace partici-
pant, until the buyer is notified during Step 1 of a later round.

12. All participants are notified that the round is ending, so that they may do any
needed processing/cleanup.

3.2.5 Initial Test Set

Much of the value to be gained from an evaluation testbed such as this is the value of
the tests: their difficulty, their breadth, and their representativeness of the sorts of issues
TRSes might face in a real environment. As an initial set of tests, those agents described
in the next chapter will be provided (including those used in our published investigations
[41]). These agents employ a number of different tactics, and were designed to test the
robustness of TRSes that attempt to cope with dishonest sellers. This test set is far more
extensive and difficult than any we have seen used for evaluation of TRSes to date;
as demonstrated (in published work [41], and in the next chapter), this set of attacks
was quite devastating to the set of TRSes evaluated—all of the TRSes were defeated by
numerous attacks.

3.2.6 Use and License

TREET is meant to provide an experimentation platform for researchers. Thus, TREET
will be released as open source software, so that researchers can freely use and modify

46

it for their own purposes. A key goal for TREET, however, is to provide objective, repro-
ducible, and increasingly thorough evaluation of TRSes. To that end, there will be some
requirements for publishing of results, enforced by the software license, to support the
vision for TREET and its value to the trust and reputation community. In particular:

• For authors to state that their test results were obtained using TREET, the plat-
form and test software must be unmodified, and runtime parameters must be fully
specified;

• The authors’ code (in particular, the implementation of their agents) must be made
publicly available, so that results can be independently reproduced and evaluation,
and so that the test set can expand in the future.

While we are reluctant to impose any restrictions on use, we believe that the value of
TREET to the community would be undermined without them.

3.3 Discussion

As noted earlier, TREET models a centralized marketplace scenario. We are careful
to note the distinction between decentralized marketplaces, and decentralized TRSes.
TREET provides no impediments to the use of decentralized TRSes, which can be readily
implemented. We note, as well, that while the Marketplace is centralized, there is little
about the architecture that prevents experimentation with decentralized marketplaces
(e.g., a peer-to-peer network where agents sell directly to one another). In this perspec-
tive, the ‘marketplace’ is an abstract notion, representing the means by which offers are
accepted, payments are made, etc., within the decentralized system. In this scenario,
no centralized TRS would be used. Opening an account, in this case, represents the act
of an agent creating a new identity; the marketplace does not limit the creation of ac-
counts, nor communicate their existence to other agents until they reveal themselves by
offering/buying products. The one notable violation of the decentralized marketplace
perspective is that of offer advertisement. Under TREET, each offer that a seller makes
is posted centrally, for all buyers to see; this is analogous to all offers being broadcast
throughout a decentralized system. If this limitation is acceptable, then TREET may be
suitable for experimentation with decentralized marketplaces.

TREET was inspired by the desire to study the security of trust and reputation systems.
It provides (at minimum) a platform for researchers to try to defeat existing trust and

47

reputation technologies. We must be careful to distinguish, however, between defeat-
ing a TRS, and defeating TREET itself. While TREET attempts to provide checks against
some forms of ‘inappropriate’ use (for example, ‘forging’ an offer by another entity), it
is easy to envision ways in which one might bypass these protections. For example, one
might create a TRS that is rigged to steal identities and provide them to colluding agents
to be used for crimes. Given the nature of the platform, and the fact that developers
have access to the source code, it is trivial to ‘defeat’ the platform. Such activities are
well outside the intended purpose of this platform, and provide no insight into trust and
reputation. This is one reason that the TREET license insists upon public availability of
researchers’ code in order for them to be able to publish results: to allow peers to verify
that the results reflect legitimate insight into trust and reputation.

The TREET testbed allows a breadth of experimentation and a thoroughness and
objectivity of evaluation that have previously been unavailable from publicly-available,
standardized testing tools. As demonstrated in the next chapter, the design of this testbed
is a proven one. It has been used to shed light on important issues that had previously
been unexplored experimentally—in particular, the degree to which existing TRS pro-
posals can withstand cheating agents that actively attempt to circumvent the protections
of the system. The platform has shown itself to be flexible, supporting experimentation
with TRSes using a variety of approaches.

TREET is intended to allow more thorough testing than has typically been performed
for TRSes in the past. As TRS researchers develop new agents, the test suite will grow,
increasing the rigor of the evaluations, and the insights provided. TREET’s terms-of-use
have been designed to support this vision.

We believe TREET to be an important tool in itself, and a significant step towards
improving the evaluation of TRSes. Future extension and refinement of the platform,
and of the accompanying test suites, will only increase its value to the community, and
its usefulness in furthering the cause of security in trust and reputation system.

48

Chapter 4

“Smart Cheaters”: Substantiating
Vulnerabilities in Trust and Reputation
Systems1

In the field of multiagent systems, the success of an agent may depend on its ability
to choose reliable partners; for this reason, trust and reputation systems have received
significant attention from researchers. A particular focus has been on the electronic mar-
ketplace scenario, a well-established and important example of a multiagent system. In
this setting, agents act as traders, buying and selling amongst one another. The ability
to find trustworthy partners is critical to an agent’s success, because an untrustworthy
agent may deliver an inferior good (or fail to deliver at all), or may not pay for goods
purchased. The nature of electronic marketplaces complicates the evaluation of trust-
worthiness: identity is difficult to establish (because new accounts can be created eas-
ily), agents might not engage in repeated transactions together (because of the size of
the market and the diversity of products), and one agent might have an advantage over
another during a transaction (for example, when a buyer must pay in full before a seller
ships the good (or not)). A variety of approaches have been proposed to cope with these
difficulties; we outline several such approaches in the next section.

The fundamental motivation for work on trust and reputation systems (TRSes) is the
understanding that some individuals may be dishonest. Typical proposals seek to provide
some measure of protection for market participants against such dishonest traders—most

1Much of the work detailed in this chapter appeared at AAMAS [41]; the results here have been ex-
panded and updated.

49

frequently, the proposals attempt to predict to what degree an agent will execute trans-
actions honestly in the future. Work in this area often adopts a limited perspective, how-
ever. While it is assumed that agents may attempt to exploit each other, little considera-
tion is given to the possibility that the agents may attempt to exploit the system itself. In
fact, existing systems commonly suffer from vulnerabilities—weaknesses that may allow
an unscrupulous trader to undermine or bypass the protection offered by the system.2

In earlier work [36], we presented a catalogue of such vulnerabilities—opportunities for
agents to cheat other users without the system preventing it, and without the agent be-
ing penalized. In either case, such vulnerabilities represent fundamental breaches in the
protection offered by the system.

We have contended [39] that security is a critical issue for designers of trust and rep-
utation systems—if vulnerabilities exist that allow agents to achieve increased profit by
cheating, we should expect profit-maximizing agents to take advantage of them. Never-
theless, this issue seems to have received little attention in the trust community. This is
borne out, for example, in the simulations typically used by authors to evaluate their pro-
posals. For example, many proposals are validated using simulations (e.g., [73, 76, 83])
populated by random selections of agents that behave consistently, or by agents whose
cheating is governed by simple probability distributions, where each time step is inde-
pendent of previous ones.

In this chapter, we examine the issue of vulnerabilities in TRSes. In particular, we
experimentally demonstrate the practicality and gravity of attacks on TRSes, by develop-
ing agents that purposefully and successfully employ cheating tactics designed to thwart
such systems. Importantly, we demonstrate that these agents can cheat successfully with-
out knowledge of the specific TRS in use, or even the general nature of the system. This
undermines the notion of ‘security by obscurity’ for TRSes: ignorance of the system does
not prevent an agent from cheating successfully. While central in illuminating the issue
of security for TRSes, we also expect this research to be useful in the evaluation of future
systems.

2We wish to be clear about our notion of ‘attacks’. In this work, we do not refer to conventional attacks
on the system implementation itself (for example, breaching the computer running a TRS, and modifying
the software.) Rather, we refer only to attacks composed of actions within the system itself (for example,
carefully-chosen combinations of honest and dishonest transactions.)

50

4.1 Vulnerabilities in TRSes

In earlier work [36], we identified the theoretical possibility of a number of vulnerabili-
ties in TRSes, although such vulnerabilities had not been demonstrated.

Reputation Lag: A common policy in many electronic marketplaces is that the buyer
pays before the seller ships the good. In this scenario, a seller is likely to know that
he intends to cheat from the moment he receives payment. The buyer, however, will
not know for some time afterward, because of processing, shipping time, etc. Under
some TRSes, this presents an opportunity for a seller: he can cheat a virtually unlimited
number of times before his reputation is updated to warn buyers of the new cheating
activity.

Value Imbalance: In some TRSes, all reviews are weighted equally, regardless of the
value of the transactions. This presents an opportunity: a seller can honestly execute
small sales, then use the reputation gained to cheat on very large ones.

Re-entry: It is broadly accepted that in electronic marketplaces, we cannot assume
that the identities of traders can be established. Users can create new accounts freely;
in large markets, it is infeasible to verify the identity of every trader. This presents the
opportunity for a dishonest trader to shed his bad reputation, starting fresh by opening
a new account. This is particularly dangerous in systems that treat unknown sellers as
preferable to disreputable ones.

Initial Window: In some TRSes, buyers rely only on their own experience in evaluat-
ing sellers. Once a buyer has found trustworthy sellers, this policy works well. Unfortu-
nately, the buyer is vulnerable until he finds those trustworthy sellers—he does not have
enough information to avoid cheaters.

Exit: If a seller cheats, it may damage his reputation, and hinder his ability to engage
in future sales. If the seller is planning to leave the market, however, he has no further
need for his good reputation. Thus, he can cheat freely, to the maximum extent possible,
without consequence. This is an extremely difficult problem to combat, and affects most
TRSes.

In addition, there are known attacks that involve the coordinated effort of multiple
parties (or usage of multiple accounts by a single party):

Ballot stuffing (e.g., [13]): A set of agents may give falsely give each other very
positive reviews (or a number of positive reviews), in order to inflate their reputations.
This artificially enhanced reputation can then be used to win sales, at the expense of
competing agents.

51

Bad mouthing (e.g., [13]): As with ballot-stuffing, a set of agents coordinates their
efforts, but in this case, falsely negative reviews are used to damage the reputation of
competitors. This allows the conspiring agents to win sales over those competitors.

Sybil [15]: In the Sybil attack, a single entity creates numerous accounts, for pur-
poses such as ballot-stuffing or bad-mouthing. When sybil attacks are used for such
purposes, we would consider these simply to be special cases of ballot-stuffing or bad-
mouthing. Beyond these, we have noted two other important effects of Sybil accounts in
this domain, discussed in Section 4.6.1.

4.2 Trust and Reputation Systems Evaluated

We sought both to validate the practicality of our attacks against a range of systems, and
to evaluate the security of noteworthy TRSes. In the interest of fairness, we selected
models that self-identified as applicable to marketplaces. We briefly outline our choices
here; a more detailed description of each TRS can be found in Chapter 2.

Tran and Cohen

The work of Tran and Cohen [76] is representative of a direct experience model: agents
make use only of their own experience in evaluating the trustworthiness of others. Tran
and Cohen employ reinforcement learning—over time, the buyer will learn which agents
can (and cannot) be trusted, and which ones give the best value for any given prod-
uct. Here, we consider only the evaluation of sellers by buyers under Tran and Cohen’s
system.

We have noted [36] that this model is likely vulnerable to the initial window problem;
in a very large marketplace, this is likely to be especially problematic, because repeated
transactions are rare between traders. It suffers from the re-entry problem (because
unknown sellers are favored over disreputable ones), and the exit problem. This model
is immune to ballot-stuffing and bad-mouthing (due to its reliance on direct experience);
it is vulnerable to some effects of the Sybil attack, however, as noted in Section 4.6.1.

The Beta Reputation System

In contrast to Tran and Cohen, the Beta Reputation System (BRS) [29] represents a
witness information model: agents employ not only their own experience in evaluating a

52

seller, but also reports made by other agents. BRS uses the well-known beta probability
distribution to estimate the probability that the seller will be honest on a future sale.

In witness information models, lying is always a potential issue: how can one know
whether to trust another buyer’s report or not? In the original paper [29], the authors
propose a system where the reports from each buyer are discounted, based on the recip-
ient’s faith in the sender, before they are incorporated into the final estimate. Later, in
[79], another system is proposed, where agent’s reports are discarded if they are statis-
tical outliers (i.e., if they are so far outside the distribution of most agent’s experiences,
so as to be suspect).

This model appears to be vulnerable to reputation lag (because agents rely on the
recommendations of others, which do not immediately reflect cheating) and re-entry
(because the beta distribution favours unknown sellers over those with more failures
than successes). It is expected to be vulnerable to value imbalance (since transactions are
counted equally regardless of value). It also suffers from the exit problem. As is typically
true of witness information models, BRS is likely to be vulnerable to bad-mouthing and
ballot-stuffing, and the effects of Sybil attacks.

TRAVOS

TRAVOS [73] is a later proposal that is closely related to BRS, differing primarily in how
it approaches handling the reports of others. Each review is discounted based on the ac-
curacy of previous information provided by the reviewing agent, before being combined
into the final prediction. In addition, agents using TRAVOS rely on their own experience,
rather than reviews from others, if they have sufficient information.

Given the similarity to BRS, we would expect this system to have similar performance
and a similar vulnerability profile. As will be shown below, however, the different han-
dling of direct experience/witness information yields different performance. Moreover,
we include the model because it reflects a common thread of recent proposals: offer-
ing new methods of coping with inaccurate reports, while using established methods to
compute trustworthiness of partners. This trend has important implications, which we
discuss later in the chapter.

Yu and Singh

The proposal of Yu and Singh [83] is also a predictive model. It makes use of a dif-
ferent probability model than other proposals, however: the Dempster-Shafer theory of

53

evidence.

Under this proposal, like TRAVOS, an agent relies on its own experience if it believes
it is sufficient. When necessary, an agent solicits information from its neighbors. If the
neighbor cannot provide information, it may refer the agent to one of its own neighbors.

We have noted [36] that this model is appears to be subject to the re-entry prob-
lem (because unknown agents are intentionally treated differently from dishonest ones),
reputation lag (to the degree it relies on witness information), value imbalance (because
updates are not weighted to reflect transaction value), and the exit problem. As is typical
for witness information models, it would also appear to be vulnerable to ballot-stuffing,
bad-mouthing, and the effects of Sybil attacks.

Basic Trunits

Basic Trunits [36] stands in contrast from these systems, in that it is a transactional
system in which the market operator intervenes, controlling an agent’s ability to engage
in transactions. Trust is represented using numerical units (trunits), which are required
to engage in a sale. If the seller executes the sale honestly, his trunit balance grows; if
he is dishonest, he loses the trunits that secured the sale. Thus, honesty enables further
sales (and profits) in the future, while dishonesty curtails future sales—an incentive for
honesty.

We have noted [36] that Basic Trunits is resistant to a number of vulnerabilities, but
does suffer from the exit problem. It also faces other issues: how does one acquire an
initial quantity of trunits? The obvious solution is to give a new seller an initial quantity
of trunits. Unfortunately, this opens the system to re-entry.3

Basic Trunits is vulnerable to ballot-stuffing (which allow additional truants to be
created) and bad mouthing (which can hinder competitors’ ability to sell), as well as
other Sybil effects. Basic Trunits is also vulnerable to another problem not noted above,
called surplus trust. Each time a seller executes an honest sale, he gains additional trunits.
If his sales are constant, however, he may not need these extra trunits to conduct this
honest business. Thus, he can cheat with these extra trunits, without consequence.

3A solution to the startup/re-entry problems is provided by Commodity Trunits [43], an extension to
Basic Trunits that allows trunits to be purchased and sold. Commodity Trunits requires the operation of a
separate trunits marketplace, however, which introduces complicating factors that make it less appropriate
for this investigation. Beyond re-entry, it also shares a very similar vulnerability profile to Basic Trunits;
for this reason, we consider only Basic Trunits here.

54

4.3 Experimental Method

Our experiments are performed by marketplace simulation, using the TREET testbed
described in Chapter 3. Except where noted, the default parameters specified in Chapter
3 are used.

A single TRS is in use in each simulation run. There are four sets of agents in the
market during each run: buyers(100), honest sellers (250), randomly cheating sellers
(250, each assigned a different probability of cheating, drawn from a uniform distribu-
tion over [0,1)), and agents implementing the cheating strategy we wish to evaluate
(250). This mixture ensures a variety of agents for buyers to encounter, provides sell-
ers with competition from sellers using different approaches, and provides comparison
groups to evaluate performance.4

Each round consists of one day. After entering into a sale, a buyer will not know
whether or not he has been cheated until after some number of days (14) has passed,
reflecting processing, shipping, etc; we refer to the rendering of feedback after this lag
(14 days) as the completion of the sale. At the beginning of each day, buyers discover
whether each completing sale was executed honestly or not. Because we seek to validate
attacks on TRSes (and we concern ourselves here only with attacks mounted by sellers),
we wish to evaluate their effectiveness in the worst-case scenario (i.e, the best case for
the TRS). Thus, in those systems in which buyers report their experiences with sellers,
they always do so honestly.

Sellers decide what products to offer, and publicly post those offers. No limits are
placed on sellers’ capacity or inventory. For each product that it needs to buy, a buyer
can evaluate each of the offers (i.e., evaluate the trustworthiness of each seller, using the
system in place), before making a selection.

Sellers are informed of accepted offers, and paid. Each seller at this point decides
whether or not to be honest. If she is honest, then she incurs the cost of furnishing
the product (i.e., it is ‘shipped out’ that day). If she is dishonest, we assume maximal
cheating: no good is shipped, and no cost is incurred. The buyer will learn the results
after the lag has lapsed.

Marketplaces are often dynamic—traders join and leave regularly. This is important
for TRSes, because new sellers are unknown, and departing sellers result in obsolete

4It might be argued that cheaters comprise too great a fraction of our marketplace. We note, however,
that: a) if cheating is successful, then cheating will be encouraged, resulting in high rates of dishonesty; b)
the protection offered by existing proposals should not be fragile in the face of the very cheating against
which they are meant to defend.

55

knowledge. For efficiency of simulation, agents join/exit the market at specific intervals
(100 days). On each day, each agent departs the marketplace with a fixed probability
(0.05). That said, we do not want the effectiveness of our systems to be clouded by
changes in market size (e.g., profits increasing because the number of buyers increases.)
Thus, for every departing agent, one agent joins, keeping the participant count constant.
Note that only buyers and honest sellers join and depart by this mechanism; dishonest
agents stay to try to continue cheating, opening and closing accounts as their strategies
dictate.

Attacker model

Here, we specify additional key points regarding the capabilities of sellers. At the time
of making an offer, sellers do not know or control whether an offer will be accepted, or
by whom. A seller can only provide products that she is able to produce. She is able
to advertise and offer (dishonestly) any product, however. Sellers can freely create new
accounts at will. An unavoidable consequence is that the same seller can control and
operate multiple accounts at the same time. (Note that even if a seller opens multiple
accounts, the set of products she can produce remains unchanged.)

TRS Implementation

All of the systems were implemented essentially as described by the authors, except as
noted here. First, while the authors of these systems describe the calculation of reputa-
tion scores (for example, the expected probability of honesty), some do not describe the
actual usage of this value in selecting a seller. In these cases, we have made the reason-
able assumption that buyers choose the sellers with the highest scores (e.g., the one with
the highest probability of being honest). Second, while these proposals specify how to
combine ratings from multiple reviewers, which reviewers to solicit (e.g., the neighbors
of an agent) may not be specified. To ensure the toughest tests for our attacks, and to
investigate the soundness of each system’s underlying evaluation of potential trustees,
we assume the ideal case of complete connectivity: every agent receives reviews from
every other agent (and can discount/disregard them as desired).

Reviewers may lie. Some of these systems make more of an effort to deal with the
reliability of ratings than others—indeed, this has been a specific focus of research effort.
As above, we assume the ideal case: buyers are perfectly honest in their reports to one

56

another. If a system is to be resistant to manipulation, it should certainly be so when
noise/deception is eliminated from reviews.

Beyond what is specified here, where models require parameters we have used num-
bers provided by the authors in their own works wherever possible. Where no such
numbers are provided, we have used reasonable values. Our TRAVOS implementation
makes use of its integrated system for evaluating reviews. By comparison, in our BRS
implementation all reviewers are considered to be reputable (i.e., reviews are not dis-
counted), for several reasons: a) buyers and sellers are separate, and it was not clear
how reputation scores for buyers might be established; b) all reviewers are honest, in
our tests; c) this provides contrast with the TRAVOS system, allowing us to investigate
the impact of attempting to cope with dishonest reviews.

4.4 TRS performance in the ‘normal’ case

First, we consider the performance of the TRSes in the ‘normal’ case, where simple at-
tackers make no effort to exploit vulnerabilities in the TRS itself. Figure 4.1 depicts the
operation of TRAVOS over time in the situation typically used for evaluation: where sim-
ple sellers cheat randomly. (The chart depicts one simulation run. Lines represent the
total sales (in dollars) and profits for each group of agents for each day, smoothed for
presentation by taking totals at 30 day intervals; profits = sales − costs incurred by the
seller. Profit denotes the amount of money earned by sellers—indicative of the motiva-
tion to engage in the particular behaviour. Sales figures represent the amount spent by
buyers with sellers in the particular behaviour group.) In this situation, the model op-
erates ‘as it should’—cheating quickly drops to very low levels, relative to honest sales.
It is important to note the lines for profit. Recall that there are equal numbers of agents
in each group of sellers. If the total profit for cheaters were higher than that for hon-
est sellers, on average an agent would make more money by cheating than by being
honest—dishonesty would be encouraged. Here, however, honesty is more profitable
than cheating.

The performance for the other TRSes is similar in this situation. Throughout the
chapter, we omit separate charts for each TRS, for the sake of brevity. Instead, we provide
key data in numerical, tabular form, using charts only where illustration is informative.
All tables report results over the second half (days 501 - 1000) of each simulation—after
convergence to reasonably stable levels of sales for honest/dishonest sellers, reflecting
long-term behavior.

57

0	

100,000	

200,000	

300,000	

400,000	

500,000	

600,000	

0	 200	 400	 600	 800	 1000	

$,
	 (T

ot
al
,	 a
t	 3

0	
ro
un

d	
in
te
rv
al
s)
	

	

Round	

Honest	 Sellers	 -‐	 Sales	

Honest	 Sellers	 -‐	 Profit	

Random	 Cheaters	 -‐	 Sales	

Random	 Cheaters	 -‐	 Profit	

Figure 4.1: TRAVOS against randomly cheating sellers

Table 4.1 reflects the operation (over ten trials) of all models when faced with simple
randomly-cheating sellers. In this table (and similar tables throughout the chapter), the
middle column (‘Cheater profit’) represents the average profit per cheating agent, relative
to those of an honest seller. Positive percentages mean that on average, a cheating seller
earns more than an honest seller; for example, +25% would indicate that on average,
cheaters make 25% more profit than honest sellers. Similarly, negative numbers indicate
that on average, a cheater earns less than an honest seller.

On any trial, it would be troubling if cheating agents earned more than honest ones—
this would suggest that a profit-maximizing agent should choose to cheat rather than be
honest. The last column of the table (‘Trials failed by TRS’) indicates the percentage
of trials where the TRS ‘failed’: where cheaters earned more, on average, than honest
agents.

As with Figure 4.1, Table 4.1 shows the systems largely working as intended: honesty
is more profitable than (random) cheating. Several points should be noted, however.
First, cheating is not completely eliminated by any of the models. A key reason for this
is the departure of known agents, and the entrance of new agents, which hinders the
ability of systems to learn who (not) to trust. In addition, it is sometimes the case that
for a given product, there may be no honest seller available. Moreover, some cheating
agents will have very low (randomly assigned) cheating probabilities, and may not cheat
frequently enough to be removed from consideration.

Basic Trunits fares extremely well here, reducing cheating to very low levels. This

58

Table 4.1: Sales/profit (per capita) for randomly cheating sellers, compared to honest
sellers.

TRS
Cheater profit Trials failed by TRS

(relative to honest) (% of 10 trials)
Tran & Cohen +58.39% 100%
Beta -47.38% 0%
TRAVOS -15.76% 10%
Yu & Singh -8.80% 0%
Basic Trunits -85.65% 0%

is because cheating agents quickly remove themselves from the market by losing their
trunits. In contrast, the Tran and Cohen model fares badly here. This is a particularly
difficult test for this model; relying only on direct experience, the model has trouble
coping with both the turnover of agents, and the large proportion of cheaters in the
market. (It also does not cope well with a large variety of products.)

These results validate both the operation of the models as expected, and the simula-
tion scenario.

4.5 Attack Implementation

While a number of vulnerabilities have been theoretically identified, they do not con-
stitute attacks in themselves. Rather, an attack is an actual method that exploits these
vulnerabilities. As noted below, we may think of attacks as plays: sequences of events,
with a desired outcome. An attack may take advantage of multiple vulnerabilities. In this
section, we outline attacks that we constructed, evaluate their effectiveness, and discuss
several issues raised.

It must be noted that our system can provide existential evidence only. Success in
employing a tactic implies that a vulnerability exists in the system. Failure, in contrast,
does not mean that no vulnerability exists, only that our agents as implemented did not
successfully exploit one.

59

4.5.1 Playbooks

Our work employs a technique presented previously (e.g., [6, 60]), that of a playbook.
Our agents seek to employ profitable strategies (cheating or otherwise), strategies con-
sisting of sequences of actions. Unfortunately, there is an enormous number of possible
sequences of actions that an agent might execute; it is difficult to learn strategies from
amongst the set of all possible arbitrary sequences. As a solution, two proposals suggest
the use of plays: pre-defined sequences of actions. Agents would have a ‘book’ full of
known plays; selecting which play to employ at any given moment becomes the prob-
lem. This, too, presents an issue: the difficulty in directly specifying policies for which
play to employ at which time, due to the enormous state space of the scenario. Each
proposal takes a different approach to this issue.

The work of Ros et al. [60] employs Case-Based Reasoning. For the given scenario, a
number of important features are defined that express aspects of any given state. Then,
a number of example situations are created, consisting of a set of feature values and the
correct choice of play for that situation. To select the appropriate play for a real situation,
the agent chooses the play whose situation has the highest similarity score to the current
state.

In contrast, Bowling et al. [6] suggest a technique which attempts to choose good
plays for achieving a desired outcome. For each play, we track the number of times it has
been executed, and the reward that has been earned each time it has been used. To select
a play, a probability distribution is calculated over each applicable play: the probability
of choosing a play is proportional to the reward earned using it in the past.

While our work makes use of plays, we were able to cheat very effectively without
needing to use techniques such as these to choose between plays; our approach is de-
tailed in Section 4.6.5.

Many of the attacks described below take input parameters. For example, when ex-
ecuting the reputation lag attack, for how long should one be honest, and then for how
long should one cheat? One might envision using a learning algorithm to optimize these
parameter values during execution. This is a tricky optimization problem, however, for
a number of reasons. First, we have sparse data. We can gain very few samples of prof-
itability at various parameter settings while the market is running. Second, the data
is noisy. As shown in the charts above, sales and profits move in apparently random
manner. Third, the function for which we are trying to optimize is constantly changing,
as buyers are constantly updating the reputation values. We note, however, that we our
goal was not to develop damage-maximizing behaviours, but simply to establish the exis-

60

tence of practical attacks. For such existential proof, simpler approaches were sufficient,
as demonstrated in the reminder of this chapter.

For these reasons, and given that this was the first attempt at implementing such at-
tacks, we instead arbitrarily chose seemingly-reasonable parameter values. It is, perhaps,
telling that our attacks were successful with simple behaviors, arbitrary parameters set,
and no attempt (even by hand) to optimize parameter values.

4.6 Single-agent Attacks

In this section, we focus on attacks that can be launched by a single entity (although
possibly making use of multiple accounts.) Such attacks are simpler, in the sense that
coordination and cooperation between entities is not required.

4.6.1 Sybil attacks

As explained in Chapter 2, Sybil attacks [15] consist of the creation of many false ac-
counts by a single actor. In general, it is not possible to prohibit the creation of multiple
accounts, so the impacts of Sybil accounts must be carefully considered. Sybil accounts
are typically used to alter reputation scores (using a tactic such as ballot-stuffing or
bad-mouthing). We begin our consideration of the larger issues of ballot-stuffing and
bad-mouthing (whether executed by coalitions, or by single agents using Sybil accounts)
later in this chapter. Here, we outline two other important ways in which Sybil accounts
can be used, which we identified during experimentation.

The Proliferation Attack

When faced with multiple sellers, each with the same rating (specifically, the maximum
across sellers), TRSes will typically choose randomly/arbitrarily between the sellers. To
gain an advantage, a seller simply opens a multitude of accounts, and attempts to sell
the same products through each of them. Consider the case where a product has only
two sellers, both unknown to the buyer. If each makes one offer, then each has a 0.5
probability of winning the sale. However, if a dishonest seller offers the product through
nine separate accounts, his probability of winning the sale increases to 9/10 = 0.9. This
might not consistute ‘cheating’, in the sense of a seller cheating a buyer—in fact, the

61

attacker gains an advantage even if she honestly provides the purchased good to the
buyer. Rather, the seller cheats other sellers out of potential sales, which most would
also consider to be problematic. (This form of dishonesty is the basis for many attacks
on TRSes, including collusive attacks such as ballot-stuffing and bad-mouthing.) We
call this attack proliferation, after the marketing notion of ‘product proliferation’: having
more products on the shelves results in more sales.

This attack is extremely simple to launch, and extremely effective. Figure 4.2 de-
picts the results of this attack against BRS. (The sales revenue for random cheaters
has also been included, for comparison, but random cheaters’ profit has been omit-
ted to avoid clutter.) The attack is devastating, with attackers dominating the market-
place.(Remember that the number of honest and attacking agents is the same, with the
same product distribution.) As shown in Table 4.2, this attack is extremely successful
against all systems tested.

0	

100,000	

200,000	

300,000	

400,000	

500,000	

600,000	

0	 200	 400	 600	 800	 1000	

$,
	 (T

ot
al
,	 a
t	 3

0	
ro
un

d	
in
te
rv
al
s)
	

	

Round	

Honest	 Sellers	 -‐	 Sales	

Honest	 Sellers	 -‐	 Profit	

Prolifera:on	 Sellers	 -‐	 Sales	

Prolifera:on	 Sellers	 -‐	 Profit	

Random	 Cheaters	 -‐	 Sales	

Figure 4.2: BRS, vs. Proliferation

The Countermeasures Effect

This attack sheds light on another use for Sybil accounts, which we have not seen noted,
one we call Countermeasures. Many TRSes rely on gaining experience with honest sellers,
to identify safe buyers. Even if cheaters behave naively, this can be a difficult process.
However, an agent can employ this proliferation idea to further complicate the process.
Consider again the situation where there is one honest seller of a product, and one

62

Table 4.2: Sales/profit (per capita) for sellers using Proliferation.

TRS
Cheater profit Trials failed by TRS

(relative to honest) (% of 10 trials)
Tran & Cohen +400.70% 100%
Beta +245.98% 100%
TRAVOS +226.09% 100%
Yu & Singh +435.69% 100%
Basic Trunits +411.20% 100%

dishonest one, but this time, the cheating seller plans not to deliver the product. If
each offers the product once, then the buyer has a 0.5 chance of picking the honest
seller. If this happens, not only does the buyer benefit from the honest sale, but he gains
information—he now has made progress in identifying a trustworthy seller. This will
undermine the cheater’s efforts in the future. But now, consider the case where the seller
offers the product through nine separate accounts. Now, not only does the buyer have a
0.9 chance of being cheated, but he also has only a 0.1 chance of identifying the honest
seller! This makes it much more likely that the seller will be able to continue cheating in
the future. Worse still, the seller doesn’t even gain any useful information about which
sellers to avoid, because the seller will simply open another account, and abandon the
old one.

The Countermeasures effect is incorporated into some of our other attacks, noted
below.

4.6.2 The Reputation Lag attack

In this attack, the seller behaves honestly for a period (45 days), and then cheats for
a period (15 days—the ‘lag’ before an act of cheating impacts reputation). After the
cheating period, the seller abandons the accounts, and opens new ones. This attack
takes advantage of reputation lag and re-entry, in particular.

Figure 4.3 depicts the use of this attack against the model of Tran and Cohen [76]. In
this figure, each series represents the moving average over two intervals, rather than the
raw total for each interval; this smooths out oscillations due the periodic honesty, then
cheating, of the sellers. Two features are evident in this chart. First, the performance

63

of the system improves over time, as trustworthy sellers are found; in fact, the sales of
honest sellers quickly surpass those of the Reputation Lag sellers. But second, and more
importantly, profits of the Reputation Lag sellers remain higher than those of the honest
sellers. This reflects the fact that the cheaters have higher profit margins than honest
sellers, because they incur no cost when they fail to deliver a product.

As shown in Table 4.3, BRS and TRAVOS fared better than expected against this
attack. On early iterations, cheaters were successful. It appears that on subsequent itera-
tions, both systems had already identified trustworthy sellers, which should occur quickly
in a (perfect) witness information model. These known good sellers were preferred over
unknown (re-entering) ones. TRAVOS does fare worse than BRS, however, a pattern we
will notice throughout our results, despite their similarities. TRAVOS agents only trust
each individual reviewer’s reports to the degree that the reviewer has shown itself to be
reliable. Where reviewers may lie, this would likely prove beneficial. Here, where all
agents report honestly, it slows the acceptance of useful information.

Basic Trunits performed poorly against this attack. This might be puzzling, as nor-
mally Trunits is resistant to reputation lag—trunits for each transaction are placed in
escrow pending completion of the sale. Re-entry is a big part of the attack, however, and
this implementation of Basic Trunits is quite vulnerable due to the initial sum of trunits
provided to new sellers.

0	

50,000	

100,000	

150,000	

200,000	

250,000	

300,000	

350,000	

400,000	

0	 200	 400	 600	 800	 1000	

$,
	 (T

ot
al
,	 a
t	 3

0	
ro
un

d	
in
te
rv
al
s,
	

m
ov
in
g	
av
er
ag
e	
ov
er
	 2
	 in
te
rv
al
s)
	

	

Round	

Honest	 Sellers	 -‐	 Sales	

Honest	 Sellers	 -‐	 Profit	

Reputa;on	 Lag	 Sellers	 -‐	 Sales	

Reputa;on	 Lag	 Sellers	 -‐	 Profit	

Random	 Cheaters	 -‐	 Sales	

Figure 4.3: Tran and Cohen, vs. Reputation Lag

64

Table 4.3: Sales/profit (per capita) for sellers using Reputation Lag.

TRS
Cheater profit Trials failed by TRS

(relative to honest (% of 10 trials)
Tran & Cohen +138.40% 100%
Beta -3.87% 20%
TRAVOS -8.25% 20%
Yu & Singh +315.27% 100%
Basic Trunits +85.88% 100%

4.6.3 The Re-entry attack

This attack is similar to the one above, except the agent never attempts to be honest.
He simply opens an account, uses it to cheat for a period, then abandons it to open
another. This attack is intended to exploit those systems that allow unknown sellers to
trade effectively.

The execution of this attack, against the Yu and Singh model [83], is depicted in Fig-
ure 4.4. (Note that the profit and revenue lines for the Re-Entry sellers are superimposed
in this chart—the cheaters never execute an honest transaction, so they incur no cost.)
The results against all systems are shown in Table 4.4. This attack is very successful
against every system, even those that defended against reputation lag. A key reason for
this is the countermeasures phenomenon cited above. Since each cheating seller has no
intention of delivering the product, he offers every product for sale (even those he can-
not produce). This prevents the buyers from identifying honest sellers that they can rely
on in the future. This is particularly hard on Tran and Cohen, where each buyer must
find honest sellers by individual experience.

4.6.4 The Value Imbalance attack

In this attack, the seller attempts to be honest on small transactions to gain reputation,
then cheat on large ones to gain extra profit. Unlike the previous attack, this is not
periodic. Instead, the seller attempts to maintain a minimum threshold ratio of honest
sales (75%) to dishonest sales, with the idea of maintaining a reasonably high level of
reputability throughout.

65

0	

100,000	

200,000	

300,000	

400,000	

500,000	

600,000	

700,000	

800,000	

0	 200	 400	 600	 800	 1000	

$,
	 (T

ot
al
,	 a
t	 3

0	
ro
un

d	
in
te
rv
al
s)
	

	

Round	

Honest	 Sellers	 -‐	 Sales	

Honest	 Sellers	 -‐	 Profit	

Re-‐entry	 Sellers	 -‐	 Sales	

Re-‐entry	 sellers	 -‐	 Profit	

Random	 Cheaters	 -‐	 Sales	

Figure 4.4: Yu and Singh, vs. Re-entry

Table 4.4: Sales/profit (per capita) for sellers using Re-entry.

TRS
Cheater profit Trials failed by TRS

(relative to honest) (% of 10 trials)
Tran & Cohen +5,658.44% 100%
Beta +242.93% 100%
TRAVOS +235.25% 100%
Yu & Singh +253.13% 100%
Basic Trunits +347.01% 100%

This attack is successful against BRS (Figure 4.5): cheating is somewhat more prof-
itable than honesty (and with much lower investment/sales volume). Further, as noted
above, this attack was based on arbitrary parameter settings. It may fare even better
with tuning of the parameters. Table 4.5 shows this attack to be effective against most
systems. Basic Trunits fares well because each update is proportional to the value of the
sale.

Here, the difference between BRS and TRAVOS is even more pronounced. Beyond
the effect noted above, it appears that another factor is at play here. Once a TRAVOS
agent has enough experience with that seller, it relies only on that direct experience. This
appears to slow their response when agents’ behavior changes—an agent does not learn
from others’ warnings when a seller has begun to cheat, and so must learn it directly.

66

0	

50,000	

100,000	

150,000	

200,000	

250,000	

300,000	

350,000	

400,000	

450,000	

0	 200	 400	 600	 800	 1000	

$,
	 (T

ot
al
,	 a
t	 3

0	
ro
un

d	
in
te
rv
al
s)
	

	

Round	

Honest	 Sellers	 -‐	 Sales	

Honest	 Sellers	 -‐	 Profit	

Value	 Imbalance	 Sellers	 -‐	 Sales	

Value	 Imbalance	 sellers	 -‐	 Profit	

Random	 Cheaters	 -‐	 Sales	

Figure 4.5: BRS, vs. Value Imbalance

Table 4.5: Sales/profit (per capita) for sellers using Value Imbalance.

TRS
Cheater profit Trials failed by TRS

(relative to honest) (% of 10 trials)
Tran & Cohen +231.18% 100%
Beta +51.72% 100%
TRAVOS +182.03% 100%
Yu & Singh +194.38% 100%
Basic Trunits -51.37% 0%

We believe this is compelling evidence that these techniques are practical: every sys-
tem tested was vulnerable to multiple attacks that made cheating more profitable than
honesty.

4.6.5 Security by Obscurity?: The Multi-tactic Agent

While any given attack described above can be launched successfully against certain
TRSes, it may be less effective against others. Researchers might be tempted to suggest
that, because a seller might not know what system is in use, she might not be able
successfully select an effective tactic. Here, we hope to dispel this notion. The question

67

is, can an agent successfully manage a portfolio (or playbook) full of attacks without
knowledge of which TRS is in use?

We had initially intended to use learning techniques to choose between attacks (as
noted in Section 4.5.1). We found a much simpler approach to be effective, however. We
note two important points. First, as noted above, accounts cannot be tied to real identity,
so an agent is free to open multiple accounts. There is no reason why an agent cannot
open several accounts simultaneously to launch several attacks. Second, there is little to
lose in launching an unsuccessful attack. Sellers offer goods for sale, which the buyers
may or may not select. If a seller is seen as disreputable, he does not suffer any direct
financial penalty—being bypassed for sales is the indirect penalty. Thus, there is no rea-
son the seller cannot keep multiple accounts open, using each one for a different attack
in parallel. The successful attacks generate profit, while the unsuccessful ones essentially
result in dormant accounts. Hence, we do not need to choose between attacks—the more
successful attacks will generate more activity on their own.

In implementing this method, we used all of the single-agent attacks (reputation
lag, re-entry, value imbalance) except proliferation—it was so successful on its own,
it would have rendered the results meaningless. The execution of the suite of attacks
together against Basic Trunits is depicted in Figure 4.6; the results against all systems are
shown in Table 4.6. In every case, the profitability from cheating is dramatically higher
than honesty. This is an extremely important result: every system considered could be
soundly defeated, without knowledge of the TRS in use, by employing straightforward
tactics with no special optimization. This is a clear indication that security requires more
attention from researchers.

Table 4.6: Sales/profit (per capita) for Multi-tactic sellers.

TRS
Cheater profit Trials failed by TRS

(relative to honest) (% of 10 trials)
Tran & Cohen +7568.62% 100%
Beta +367.06% 100%
TRAVOS +587.42% 100%
Yu & Singh +782.37% 100%
Basic Trunits +874.68% 100%

68

0	

100,000	

200,000	

300,000	

400,000	

500,000	

600,000	

0	 200	 400	 600	 800	 1000	

$,
	 (T

ot
al
,	 a
t	 3

0	
ro
un

d	
in
te
rv
al
s,
	 	

m
ov
in
g	
av
er
ag
e	
ov
er
	 2
	 in
te
rv
al
s)
	

	

Round	

Honest	 Sellers	 -‐	 Sales	

Honest	 Sellers	 -‐	 Profit	

Mul:-‐tac:c	 Sellers	 -‐	 Sales	

Mul:-‐tac:c	 sellers	 -‐	 Profit	

Random	 Cheaters	 -‐	 Sales	

Figure 4.6: Trunits, vs. Multi-tactic

4.7 Coalition Attacks

In Section 4.6, we considered attacks that could be launched by a single entity. Now,
we consider another class of attack: those that may be launched by multiple entities
working in cooperation. Cooperation, in itself, is not necessarily bad; indeed, there are
many scenarios in the real world in which cooperation is welcome and encouraged. In
contrast, we focus on cooperation which is not welcome or well-intentioned: coordinated
activity intended to thwart the operation of TRSes. We consider the two well-known
forms of collusion used to target TRSes: ballot-stuffing and bad-mouthing.

As noted above, ballot-stuffing and bad-mouthing can be executed by a single entity
making use of Sybil accounts. Here, we are concerned with the potential of an attack to be
successfully launched; whether the cooperating accounts are owned by one individual,
or many, has little bearing on the potential of the attack. (One might consider a set
of Sybil accounts to simply be a very well-coordinated coalition.) For this reason, we
consider the use of Sybils to be simply a special case of coalition activity.

Coalition attacks such as these require the involvement of both buyers and sellers—
buying accounts are used to attempt to manipulate the reputation of selling accounts,
while the selling accounts are used to earn money by executing sales. For this reason,
the test configuration in this section differs slightly from that above: coalition members
control accounts that are used for both buying and selling. The buying behaviour of
coalition members is explained in the attack descriptions, below.

69

4.7.1 Ballot-stuffing

The Ballot-stuffing agents attempt to inflate the reputation of other coalition members by
engaging in fake transactions with teammates, and giving positive reviews. As with other
buying agents, the coalition members are assigned a set of products that they legitimately
need to buy each turn. Some of the products needed will be available from coalition
members, but many will not. To make these purchases, the members use the current TRS
in the same way as any other buyer: determine who is the most trustworthy, according
to the TRS, and buy from that agent. In addition to these needed purchases, however,
coalition members engage in an additional number of fake, ballot-stuffing purchases
with teammates. (In this test, ballot-stuffing purchases constituted an additional 50% of
purchases, beyond legitimate needs.)

Apart from the ballot-stuffing activity, coalition member are completely ‘honest’. When
making legitimate purchases, they give honest reviews. When selling, they faithfully de-
liver the good to the purchaser. Their only ‘dishonest’ activity is the attempt to win
additional sales by using false reviews.

Figure 4.7 depicts the performance of the TRAVOS system against ballot-stuffing. One
point should be noted. The sales revenue for Ballot-stuffers is extremely high, dwarfing
all of the other series. This is a result of the fake, ballot-stuffing transactions, which are
included in the sales figures (in addition to the ‘real’ sales). Ballot-stuffing transactions
do not directly result in profit, however, so the profit series accurately reflects the gains
earned by the ballot-stuffers—which are substantially higher than those of honest sellers.

Table 4.7 illustrates the performance of all systems when faced with ballot-stuffing.
(Note that the Tran and Cohen model is omitted from this table, and that of the following
section. Because this model relies only on direct experience, there is no ‘system’ which
can be ballot-stuffed, making this attack inapplicable.) All of the systems fair poorly—
despite the fact that every sale is honestly fulfilled by the cheaters. Beta, which continues
to rely on witness information throughout its operation, suffers worst from this attack.
TRAVOS and Yu and Singh, by comparison, perform somewhat better because buyers
rely more on their own experience as it is gained. Trunits also fairs somewhat better
because the additional trunits earned by ballot-stuffing only allow sellers to engage in
more simultaneous sales; this advantage does not directly allow them to win sales from
honest sellers who also possess sufficient trunits.

70

0	

500,000	

1,000,000	

1,500,000	

2,000,000	

2,500,000	

3,000,000	

3,500,000	

4,000,000	

4,500,000	

0	 200	 400	 600	 800	 1000	

$,
	 (T

ot
al
,	 a
t	 3

0	
ro
un

d	
in
te
rv
al
s)
	

	

Round	

Honest	 Sellers	 -‐	 Sales	

Honest	 Sellers	 -‐	 Profit	

Ballot-‐stuffers	 -‐	 Sales	

Ballot-‐stuffers	 -‐	 Profit	

Random	 Cheaters	 -‐	 Sales	

Figure 4.7: TRAVOS, vs. Ballot-stuffing

Table 4.7: Sales/profit (per capita) for Ballot-stuffers.

TRS
Cheater profit Trials failed by TRS

(relative to honest) (% of 10 trials)
Beta +905.30% 100%
TRAVOS +382.83% 100%
Yu & Singh +150.01% 100%
Basic Trunits +164.38% 100%

4.7.2 Bad-mouthing

The bad-mouthing agents behaved similarly to those described above. However, no
additional, ‘fake’ purchases were made for bad-mouthing purposes. Instead, the bad-
mouthing agents simply purchased the products they actually needed, but gave (falsely)
negative reviews to non-members. This approach is the most conservative for bad-
mouthing—the agents do not incur the cost of making ‘fake’ bad-mouthing purchases of
unneeded products—but also limits the number, and hence the damage, of bad-mouthing
reviews. (Additional, fake purchases are certainly an option, however.) It may be sur-
prising then, that even this conservative approach constitutes such a devastating attack.

Figure 4.8 illustrates the performance of Beta against the bad-mouthing agents. This
attack is even more profitable than the previous one; the impact of the negative reviews

71

seems to be greater than (additional) positive reviews. As can be seen in Table 4.8, all
systems were catastrophically impacted. Trunits suffers particularly badly; in this Basic
Trunits implementation, a seller who has lost his trunits cannot acquire more, so bad-
mouthing can effectively remove competitors from the marketplace entirely.

0	

500,000	

1,000,000	

1,500,000	

2,000,000	

2,500,000	

0	 200	 400	 600	 800	 1000	

$,
	 (T

ot
al
,	 a
t	 3

0	
ro
un

d	
in
te
rv
al
s)
	

	

Round	

Honest	 Sellers	 -‐	 Sales	

Honest	 Sellers	 -‐	 Profit	

Bad-‐mouthers	 -‐	 Sales	

Bad-‐mouthers	 -‐	 Profit	

Random	 Cheaters	 -‐	 Sales	

Figure 4.8: BRS, vs. Bad-mouthing

Table 4.8: Sales/profit (per capita) for Bad-mouthers.

TRS
Cheater profit Trials failed by TRS

(relative to honest) (% of 10 trials)
Beta +1,007.22% 100%
TRAVOS +433.00% 100%
Yu & Singh +835.97% 100%
Basic Trunits +129,119.18% 100%

4.8 Conclusions

We implemented a number of cheating attacks that prey upon the vulnerabilities in trust
and reputation systems, vulnerabilities that for the most part, had previously been iden-
tified only in theory. These attacks are composed solely of conventional transactions that

72

are permissible within a marketplace, and that could be executed by virtually any trader.
To the best of our knowledge, this is the first demonstration that multiple vulnerabilities
do exist, and can be exploited in practice. Moreover, while we have selected a small
number of TRSes for this study, we have no reason to believe that other systems will
prove impervious to these attacks. Indeed, the survey presented in our earlier work [36]
suggests that these vulnerabilities are ubiquitous. One might find surprising the ease of
execution, and the effectiveness of the attacks. If such attacks can be launched so eas-
ily, we must expect that traders can and will take advantage of them. If attackers can
thwart the protections offered by TRSes, then the real-world value of such systems is
undermined.

Certain TRSes are resistant to certain attacks. The question must be asked, can an
agent manage a playbook of attacks in order to be successful against a system, without
advance knowledge of the system in place? For the first time, we have demonstrated
that the use of a simple technique allows effective cheating without any knowledge of
the system in use; this technique was extremely successful in breaching the defenses of
every TRS tested.

4.8.1 Moving Forward: The Issues of Coalitions and Collusion

Our results strongly suggest that the security of trust and reputation systems (and cer-
tainly these specific vulnerabilities) require much more attention from researchers. De-
veloping a perfectly secure system, one that addresses all such vulnerabilities, is an open
problem, and beyond the scope of this document. Instead, throughout the remainder of
this work, we focus our attention on the specific issue of coalitions, and on the types of
attacks that coalitions may execute.

As demonstrated in this chapter, individual agents are certainly capable of launching
successful attacks. Despite this, we have elected to focus on coalition behaviour, for a
number of reasons:

• First, for each of the single-agent attacks, reasonable approaches have been pro-
posed (e.g., [16]) to deal with the vulnerability. For example:

– To limit the attractiveness of Sybil attacks, one might charge fees for the cre-
ation of accounts [45].

– To prevent value imbalance attacks, one can tie the impact or weight of each
review to the value of the transaction (e.g., [37]).

73

– To combat reputation lag, one can ensure that some ‘portion’ of the seller’s
reputation must be ‘allocated’ for the duration of each sale, so that the same
reputation cannot be used to simultaneously entice many buyers into making
purchases [37].

– To hinder re-entry, one can ensure that new accounts are treated similarly to
maximally-disreputable accounts (e.g., [87, 43]).

Certainly, it is true that no system has yet successfully incorporated protection
against all such vulnerabilities, but tools such as these may help yield a solution.

In contrast, there has been very little progress towards solutions to coalition at-
tacks, motivating us to focus on such issues.

• Most of the single-agent attacks are issues very specific both to the trust and rep-
utation domain, and to specifics of TRS formulations. In contrast, as outlined in
Chapter 1, cooperation and coalitions are widespread issues impacting numerous,
quite varied domains. Techniques to address the issues of coalitions and collusion
might have applicability far beyond trust and reputation, greatly increasing their
value.

For these reasons, the remainder of this document focuses on coalitions and collusion.
In the next chapter, we begin to develop techniques for detecting the presence of coali-
tions and identifying coalition members—a potentially-useful tool for many purposes,
including coping with collusion in trust and reputation systems.

74

Chapter 5

Coalition Detection and Identification

As explained in Chapter 4, there are numerous vulnerabilities common to trust and rep-
utation systems (TRSes). Some of those vulnerabilities, which can be exploited by in-
dividuals, tend to arise from specific properties of given TRSes, or features of the trust
and reputation scenario itself. In contrast, those vulnerabilities that can be exploited by
coalitions seem to be more broadly inherent to multiagent systems in general; as noted
in Chapter 1, coalition activity can be an issue in a wide variety of domains. In an effort
to initiate solutions to these important concerns, we turn our attention throughout the
remainder of this document to coalitions and collusion.

In considering these issues, an instinctive response might be to attempt to prevent co-
operation from taking place, or at least prevent it from succeeding. Throughout most of
this document, however, we take a different approach. Given the many, varied scenarios
impacted by coalitions, it seems unlikely that a single preventative solution would apply
to all, or even several of them. Moreover, depending on the scenario, cooperation may
be benign or even welcome—preventing such activity would be undesirable.

Instead, we focus here on developing techniques to detect coalitions and identify coali-
tion members. This ability is more likely to have broad applicability and utility. Our tech-
nique is not specific to the trust and reputation domain. On the contrary, our methods
are based on properties that are fundamental to the nature of cooperation itself, rather
than characteristics of specific scenarios or systems. For this reason, we believe that our
approach will be directly applicable to a variety of multiagent domains.

While the ability to detect and identify coalitions is likely to be valuable in its own
right, it can also represent an important step towards taking further, domain-specific
measures to deal with the issues raised by coalitions. For example, in Chapter 8 we

75

use the techniques developed over the next several chapters to implement a reputation
model that is resistant to collusion.

In this chapter, we introduce the conceptual foundation of our approach, and de-
velop the core algorithm used for coalition detection and identification. In subsequent
chapters, we examine a number of enhancements and refinements to the algorithm, im-
proving performance and addressing a number of special or difficult circumstances.

While we believe our techniques to be broadly applicable, a concrete scenario is re-
quired for explanation and demonstration. Accordingly, throughout this document we
continue to make use of the marketplace trust and reputation scenario.

5.1 The Nature of Cooperation

As noted in Chapter 1, our goal is to develop techniques that are effective even when we
have no advance knowledge of the strategies that coalitions might pursue: we cannot
rely upon a known plan library. To accomplish this, we must make use only of observ-
able actions, yet without matching them against known patterns—we must rely on more
fundamental properties.

To gain insight, we first return to our discussion from Chapter 2, of the community
finding problem in social network analysis. As noted, there are key differences between
this problem and our own, and thus the measures typically used for community finding
are not generally informative when trying to identify coalitions.

For example, connectivity is limited in its ability to reveal coalitions. Coalition agents
are likely to be very well connected, having interactions both within and outside their
coalitions—the graph of links between agents might even be complete. Similarly, one
might look to frequency of interaction, under the assumption that the closer the relation-
ship between agents, the greater the number of interactions between them. As a tactic
such as ballot-stuffing illustrates, however, this may not hold: the very purpose of this
tactic is to use a relatively small number of ballot-stuffing transactions to win many sales
from outsiders.

Taking a step back from the specifics of trust and reputation, however, insight can be
gained: features such as these have limited benefit for coalition identification, because they
have little connection to the fundamental nature of cooperation. Cooperation is not simply
a matter of having a relationship with someone, for example, or interacting with them.

We are much more likely to have success in detecting coalition activity, if we focus on
characteristics central to cooperation itself:

76

1. The nature of actions: Cooperative actions tend to be beneficial, or helpful.

2. The targets of actions: Cooperative actions tend to target teammates with those
benefits. The fundamental purpose of cooperation is the furthering of group goals,
and/or, the individual goals of coalition members—helping each other.

Of course, in some circumstances these features may be subtle or complex. For ex-
ample, cooperative actions may not directly benefit other members, but rather harm
outsiders. Such actions, however, indirectly benefit coalition members—for example,
weakening an opponent results in a stronger position for coalition members.

Because benefit seems to be essential to the existence of coalitions, we use it as the
basis of our techniques.

5.2 Benefit

In the scenarios with which we are concerned, there are observable interactions between
agents (or observable actions, which will have impacts on other agents). Having only
these observable actions for information, we need to consider the benefit (or harm)
implicit in them. For example, in the trust and reputation scenario, paying someone for
a purchase, or giving a positive review might be an act of benefit. In an online game,
giving an item to another player, or healing another player, might be acts of benefit.
For any given domain, identifying and quantifying the degree of benefit implicit in each
action is likely to require expertise in that domain; we discuss applicable domains, and
potential measures of benefit, in Chapter 9.

5.2.1 Benefit Graph

With a set of agents, and interactions between agents, a digraph is a natural represen-
tation. An example of such a graph, for a simple hypothetical situation, is depicted in
Figure 5.1. Each vertex is an agent, and each edge indicates benefit bestowed upon the
destination agent by the origin agent, with the edge weight indicating the ‘quantity’ of
benefit. (This might be, for example, the number of beneficial actions, or the value of
the benefit. Again, determining appropriate measures of benefit likely requires domain
expertise.) We refer to this as a benefit graph.

77

A C

B

D

G

E

F

8
6

7

4

7 7

9

2

2

2

6

Figure 5.1: A benefit graph.

In this representation, graphical approaches immediately come to mind. Unfortu-
nately, it appears that obtaining results directly from the graph may be challenging, for
some of the same reasons noted in our discussion of community finding (Section 2.4).1

For example, in the situation depicted in Figure 5.1, although it is not directly observ-
able (and hence, not depicted in the graph), agents A, B, and C are colluding: A and C
are ballot stuffing to improve B’s reputation, so that B can win additional sales.

It is not obvious that properties of the graph will reveal the presence of the coali-
tion. The weights of edges between coalition members are not greater than between
non-members. The level of activity between the coalition members is not greater than
between other subsets of agents in the graph: for example, consider the set {B,E,G},
as compared to {A,B,C}. The presence of sources and sinks is not indicative of coali-
tion membership. (The coalition contains no sinks; C is a source, but so is E). In fact,

1Although we consider a graph of benefit here, and community finding typically considers a graph of
interaction, similar issues are encountered in attempting to work directly with the graph.

78

although A and B are teammates, and responsible for all of the collusive actions in this
situation, they are not even connected in the graph. While we do not discount the possi-
bility that useful insight can be gained by operating directly on the graph, we have found
a different perspective to be effective.

5.2.2 Similarity of benefit

Typically, a self-interested agent will be part of a coalition because it believes it will
receive benefit from doing so. (An agent might participate because, for example, it has
been coerced to do so. It can still be argued, however, that there is benefit in such a case:
the agent avoids the damage it might incur if it did not cooperate.) We presume that
each agent is individually rational, and will only be part of a coalition if it expects a net
benefit from doing so.

This does not imply that every coalition member will realize observable benefit. For
example, due to circumstances, failures in coordination, etc., a plan may fail. More
to the point, it may be the case that most or all coalition members benefit, but that
not all of the benefit flows are observable—some benefit may be transferred privately
between members. Considering our example, note that A and C do not receive any
observable benefit from ballot-stuffing for B. Instead, it is likely that all three agents
share in the proceeds of their activity, but the payments from B to A and C are not
observable. (If B simply received benefit, and didn’t make any contributions, then B
would not be desired as a teammate by others in the group.) Note, however, that the
agent making such payments is also rational—B must expect to accrue benefits at least
as great as the payments it makes.

Similarly, we would not expect coalition members to do substantial harm to one an-
other. Certainly, an agent might harm a teammate accidentally, or might do it to avoid
the appearance that they are in the same coalition. Note, however, that the former case
should not occur frequently, and in the latter case, the net positive benefits should out-
weigh the harm.

To be clear, we make two points:

• Members typically expect that the benefits realized by the coalition as a whole will
be greater than the benefits received by the members if they had not coordinated
their activity—if this were not the expectation, members may not wish to belong to
the coalition.

79

– If the activities of a coalition do not result in increased benefit to the coalition
as a whole—i.e., the coalition is unsuccessful—then the coalition may not be
of concern to those developing, operating, or participating in a multiagent
system.

• While coalition members may be able to make unobservable transfers of benefit be-
tween members, it is assumed that the additional benefit accrued by collaboration
is observable in some way.2

In the situations with which we are concerned, this is a reasonable assumption.
Coalitions seek to gain net benefit from or relative to outsiders (e.g., to earn ad-
ditional profits from outsiders, or to improve competitive position relative to out-
siders); improving the net position of the coalition requires taking observable ac-
tions (making sales, attacking enemies, etc.). For example, in the marketplace
example, we cannot directly observe ‘secret’ payments between coalition members.
We can, however, observe the actions that increase/decrease reputation, which is
used to earn additional profits from outsiders.

Key insights

The key insights here are that, although coalition agents may interact often with out-
siders:

• Coalition agents are likely to engage in actions that benefit other coalition mem-
bers;

• Coalition agents are more likely to engage in actions that harm outsiders, than they
are to harm coalition members;

• Because coalition members tend to help the same set of agents (coalition partners)
and tend to harm the same set of agents (outsiders), there is likely to be identifiable
behavioural similarity in terms of benefit/harm.

2This assumption does not imply that it will be easy to identify the actions that constitute benefit.
For example, if attempting to identify coalitions in a battlefield scenario, identifying what constitutes
beneficial, harmful, and incidental acts is likely to be difficult. Even so, the actions will still be observable.

80

5.2.3 Benefit Space

We define the benefit space as a high-dimensional space reflecting the degree of benefit
(and/or harm) rendered to each agent in the system. Specifically, given N total entities
in the system, the benefit space B is a space RN , where the value in each dimension
βi represents an amount of net benefit (i.e., total benefit minus total harm) to entity i.
Positive values represent positive benefit, while negative values represent net harm.

Each entity maps to a point in the benefit space, according to the amount of net
benefit it has rendered to each entity in the system. Thus, a given agent a can be reflected
by the vector:

b(a)≡ (β1(a),β2(a), ...βN(a)) (5.1)

Members of a coalition are likely to be similar, in terms of the sets of agents that
they benefit, and the sets that they harm. Thus, we would expect them to be close in this
benefit space (even it they do not interact directly at all). Here, we have used a Euclidian
distance as our dissimilarity measure, where the distance between a and b is:

da,b =
√
(β1(b)−β1(a))2 + · · ·+(βN(b)−βN(a))2 (5.2)

5.3 Algorithm

Overview

Our detection and identification algorithm, then, is a two step process.

1. First, we map agents into benefit space, which helps to reveal the structure of
coalitions. We exploit similarity in behaviour to identify possible (or candidate)
coalitions, using clustering.

2. Then, we use a statistical approach to characterize these candidate coalitions, to
determine whether a cluster actually constitutes a coalition.

5.3.1 Clustering in benefit space

With this representation, it is natural to consider clustering in order to identify sets of
agents that are close in the benefit space. Clustering is an unsupervised method of finding

81

sets of similar patterns; it has a long history in a variety of application areas [27]. There
is likely to be much noise in a sample (for example, as agents do things that benefit
those that are not part of its coalition, such as making honest sales to outsiders). Our
results show, however, that collaborative activity does, in fact, produce detectable signal
in many cases.

We illustrate this by returning to our earlier example, depicted in Figure 5.1. Recall
that the weight of each edge represents the benefit rendered by one agent to another.
First, we map each of the agents along one dimension, the benefit to agent B. This is
portrayed in Figure 5.2. In this (and the following figures), the red crosses represent

0	 1	 2	 3	 4	 5	 6	 7	 8	 9	

Benefit	 to	 B	

Figure 5.2: One dimension of the benefit space.

agents A and C, the ones making ballot-stuffing transactions; the remaining points repre-
sent the other agents. Note that A and C are close to one another in this dimension—they
have both benefited B substantially. Other agents are also close to A and C in this dimen-
sion, however—D and E have also benefited B to a large degree. This is an example of
the type of noise mentioned earlier. Without knowing the labels, we cannot separate the
colluders from the outsiders in this dimension.

We can consider another dimension, this time benefit to agent F , depicted in Figure
5.3. In this dimension, there is even less separation between agents.

0	 1	 2	 3	 4	 5	 6	 7	 8	

Benefit	 to	 F	

Figure 5.3: A second dimension of the benefit space.

82

If we consider multiple dimensions, however, the situation improves. Figure 5.4 de-
picts only two dimensions, both βB and βF , simultaneously. Here, clear separation be-

0	

1	

2	

3	

4	

5	

6	

7	

8	

0	 1	 2	 3	 4	 5	 6	 7	 8	 9	

Be
ne

fit
	 to

	 F
	

Benefit	 to	 B	

Figure 5.4: Two dimensions of the benefit space.

tween colluding agents and outsiders is evident. Agents A and C are similar enough to
each other, and dissimilar enough to other agents, that a cluster stands out. Note that
A and C can be identified as being potential teammates, despite the fact that there is no
interaction between them, and no edge connecting them in the graph. Considering more
dimensions can make the distinction between colluders and non-colluders even clearer.
As long as there is enough separation in enough dimensions, a standard clustering mech-
anism can be used to identify possible coalitions.

Two points should be noted.

• First, although A and C are identified as being similar in Figure 5.4 (and thus, a
possible coalition), B is not been included in this group: while it has been the

83

recipient of ballot-stuffing, it has not engaged in any transactions itself in these di-
mensions, so its behaviour is not seen as similar to A and C. Of course, in reality we
would not limit our analysis to only two arbitrary dimensions, but rather consider
all dimensions.

• Second, and related, is that a cluster may or may not be a true coalition. Consider-
ing Figure 5.4, we see another obvious cluster in the top of the chart, one that is not
composed of colluders. This highlights that, once clusters have been found, further
work is required to characterize the activity of each cluster: are cluster members
cooperating, or do they, for example, simply have similar preferences?

5.3.2 The Clustering Step

A standard clustering algorithm is applied to find sets of agents that are close in benefit
space, reflecting similarity in whom they favour. Here, we have used k-means clustering.3

This results in a partitioning of the population P into a set of clusters {C1,C2, ...,Cn},
which we refer to as candidate coalitions. Each cluster is then characterized, as explained
in the next section.

Determining the number of clusters

By the very nature of the problem, we are unlikely to know in advance how many (or
even if) coalitions are present in the population. Certainly, this is valuable information for
our algorithm to discover; moreover, it is a complicating factor because some clustering
algorithms (including k-means) do not determine the number of clusters, but rather
require the desired number of clusters to be set as an input parameter.

To determine the appropriate number of clusters4, we iteratively run k-means with
successively larger number of clusters k. (Here, we tried as many as ten clusters.) Then,
for each resulting set of clusters, we compute the silhouette score [61] for the partition-
ing. Silhouette provides a measure of the quality of a clustering, without knowledge of

3We make use of some machine learning components, including the k-means implementation, from
WEKA [23].

4Note that the ‘appropriate number of clusters’ does not necessarily equate to the number of coalitions
present in the population. For example, there may be groups of participants that exhibit similar behavior,
but which are not necessarily coalitions.

The ‘appropriate number of clusters’, then, is the number that best fits the natural structure present.

84

the hidden classes of the objects, by evaluating how well the clustering ‘fits’ the structure
of the data. To calculate a silhouette score [61]:

1. For each object i, calculate s(i) as follows:

(a) Calculate a(i), the average dissimilarity (distance) between i and all other
members of i’s cluster.

(b) For every other cluster C, calculate d(i,C), the average distance between i and
members of cluster C; set b(i) to the minimum such distance.

(c) Then,

s(i) =
b(i)−a(i)

max(a(i),b(i))
(5.3)

2. The silhouette score is the average s(i) over all objects i.

Silhouette scores fall in the range [-1, 1]. For each object i, the closer i is to members of
its cluster (i.e., the smaller a(i) is), and the further it is from members of the next nearest
cluster (i.e., the greater b(i) is), the larger the resulting s(i). Thus, larger silhouette
scores represent a better ‘fit’ between a clustering and the natural structure of the data.

For all of the numbers of clusters k tried, the clustering that yields the highest silhou-
ette score is then chosen as the best set of clusters.

5.3.3 Characterizing Clusters

While we would expect members of a coalition to be similar in benefit space, similarity
does not necessarily imply that a set of agents is a coalition. Considering a marketplace
scenario, for example, buyers who favor a particular set of sellers may be close in ben-
efit space, but may not be colluding—instead, they may simply share similar tastes, or
have found the same set of reliable sellers. Thus, we consider the clusters found to be
candidate coalitions; in our second step, candidates are characterized to detect coalitions.

We might expect a true coalition T to be more ‘self-serving’ (i.e., benefiting each
other more than outsiders) than a ‘normal’ group G (i.e., a set of agents which is not
a coalition). In this case, we would expect the benefit flowing from members of T to
members of T to be greater than the benefit flowing from members of G to members of
G. Conversely, we might expect a coalition to damage outsiders more than a ‘normal’
group would. Here, given a population P (and recalling that harm can be represented

85

as negative benefit), we would expect the benefit flowing from T into P \ T to be less
than the benefit flowing from G into P\G. The first of these behaviors describes helping
allies, while the second describes harming enemies.

Testing for self-serving behaviour

We apply these principles to characterize candidate coalitions. First, we test for ‘team-
mate supporting’ (or ‘self-serving’) behavior. Consider any given set of agents S, where
m = |S|. In our representation, benefit is directed (i.e., βa(b) might not equal βb(a)),
so there are m(m− 1) ‘relationships’ between agents in S. We can compute the average
benefit (per relationship) flowing from agents in S, to agents in S by:

β̄S =
∑i∈S ∑ j∈S, j 6=i β j(i)

m(m−1)
(5.4)

We use Formula 5.4 to find β̄C, the average benefit within C.

To know whether the computed value is abnormally high, we need a benchmark to
which to compare it. For this, we take random samples of m agents (drawn from the
entire population P, including agents in C). For each sample G, we compute β̄G, by again
using Formula 5.4. Performing this computation for a large number of samples (here, we
use 100), we estimate the mean and standard deviation over β̄G.

With information about the distribution of β̄G , we can estimate the probability of
obtaining a measure as high as β̄C by chance, using the normal distribution. If this
probability is too low, we conclude that members of C are benefitting each other far
more a typical group of agents, and that C thus contains a coalition.5 The threshold
probability below which clusters are considered to contain coalitions (α) is a parameter:
lower values reduce the risk of false positives, while increasing the risk of false negatives.
In our tests, we used α = 0.001.

5We only apply this technique to clusters no larger than half the size of the population. Clusters larger
than this are ignored. There are two key reasons for this. First, we identify coalitions essentially by the fact
that their behaviour deviates from the ‘norm’, i.e., non-colluding behavior. When coalition size exceeds
half of the population, then non-colluding behaviour is no longer the norm; in this case, the tests can
generate misleading results. Second, coalitions consisting of the majority of the members in a population
are likely to be poorly-kept secrets, and need no special detection methods.

86

Testing for enemy-harming behaviour

Second, we test for ‘enemy harming’ behavior. Again, for any set of agents S (of size m),
we can compute the average net benefit flowing from agents in S to outsiders:

β̄S̄ =
∑i∈S ∑ j∈P\S β j(i)

m|P\S|
(5.5)

We use Formula 5.5 to compute β̄C̄. Then, as above, we repeatedly draw random se-
lections G of m agents, and use Formula 5.5 to compute β̄Ḡ. We compute the mean
and standard deviation of β̄Ḡ over the samples, and use these statistics to determine the
probability of encountering a value as low as β̄C̄ (i.e., abnormally low net benefit), in the
same manner described above. If the probability is less than α, we consider the cluster
to contain a coalition.

Classification

If a cluster is recognized by either or both of these tests to contain a coalition, we label
all agents in that cluster as coalition members.

We summarize the algorithm fully in Algorithm 5.1, for clarity, and for future refer-
ence.6 (Informally, we henceforth refer to this algorithm simply as a ‘coalition detection
algorithm’).

5.4 Experimental Results

5.4.1 Method

Ideally, we would have real-world data with which to evaluate our technique. Unfortu-
nately, real-world colluders do not willingly reveal themselves as such, making it prob-
lematic to obtain labelled data that might be used for validation. Thus, simulation data
was used to validate our technique for the electronic marketplace scenario; data was
generated using the TREET testbed (described in Chapter 3).

6Although excluded from Algorithm 5.1 for clarity, note that the distributions generated in step 3a can
be cached for the input data set, and re-used for any cluster C of the same size.

87

Algorithm 5.1 Coalition Detection and Identification

1. Map agents to points in benefit space.

2. Clustering: Apply k-means clustering, to identify groups of agents that are similar
in terms of whom they benefit; use silhouette to choose the optimal number of
clusters.

3. Characterization: For each cluster C:

Characterize C as a coalition if its benefit to members is unusually high, or its
benefit to outsiders is unusually low, as follows:

(a) Repeatedly select random sets of agents G (of size |C|) from the population,
and for each G, calculate β̄G (the average benefit from G to its own members)
and β̄Ḡ (the average benefit from G to outsiders).

(b) If β̄C is unusually high (given the distribution from the random samples G), or
if β̄C̄ is unusually low (given the distribution of from the random samples G):

• Classify C as a coalition, and all members as coalition members.

Otherwise:

• Classify C as a non-coalition, and all members as non-coalition-members.

88

In our simulations, the marketplace was populated with agents who make use of
the Beta Reputation System (BRS) [29] in order to find trustworthy sellers and avoid
unreliable ones. BRS was selected for several reasons:

• BRS is well known and understood, and frequently cited by researchers in the field.

• BRS represents an ‘arms length’ choice; although it is difficult to see how the choice
of TRS might influence these results, selecting a system of our own design might
cast doubt on the findings.

• Most importantly, the choice of reputation system is largely immaterial for this
study. Our concern is not whether the TRS is effective in preventing the collusive
attacks. (As shown in Chapter 4, all of the systems studied are ineffective in this
regard.) Rather, we are considering acts of benefit/harm between agents. The
principles used for detection are independent of the TRS used.

Except where noted, the simulations were configured as follows. Agents acted as
both buyers and sellers. The majority of the population consisted of ‘honest’ agents who
fulfill every sale they make honestly, and provided accurate reviews of other agents. Into
this larger honest population, we inserted coalitions of various sizes making use of either
bad-mouthing or ballot-stuffing to improve their competitive position. (The coalition
agents were otherwise honest, fulfilling all sales diligently.) The total population size in
each run was 1000 agents. In any given trial, from 0 to 4 coalitions are present. A variety
of coalition sizes were tested, from 25 to 200 members, as reflected in the figures. For
each combination of parameter values, 10 trials were run; the figures reported reflect
the aggregate results across trials.

In our environment, a number of measures of benefit and harm can be identified,
e.g., number of purchases, dollar value of purchase, number of positive reviews, average
review score, etc. Here, we use only one of the available measures: the net sum of the
review values given (counting a positive review as +1 and a negative review as −1),
weighted by the dollar value of the transaction. This captures both benefit (positive
reviews) and harm (negative reviews), as well as treating higher-value transactions as
more important than lower-value ones.

The simulator provides us with labelled data: each agent is known to be either part
of a coalition, or not. We remove these class labels before applying our technique. After-
ward, we compute the accuracy of our technique by comparing our output to the actual
classes of the agents.

89

5.4.2 Results

Single coalition

In the first set of tests, we evaluate the technique where exactly one coalition is present
in the population. (Our technique does not make use of this fact, however—the same
approach is applied, regardless of the number of coalitions actually present.)

First, we consider coalition members engaged in bad-mouthing. Agents did not make
additional purchases in order to bad-mouth competitors; instead, coalition members
bought the products that they actually needed, but if they purchased from a competi-
tor, they gave a negative review. (This constitutes a conservative form of bad-mouthing,
where no additional money is ‘wasted’ on fake purchases of unneeded products.) When
the same product was available from both coalition members and non-members, mem-
bers had no preference to buy from one or the other—in these tests we sought to detect
bad-mouthing itself, and did not wish to introduce the possibility that agents were de-
tected based on preferential buying from teammates. These results are shown in Figure
5.5, which contains three series. The first, ‘Average overall accuracy’, shows the percent-
age (across all trials) of agents that were accurately classified as either coalition members
or non-members. By this metric, performance was excellent.Unfortunately, this measure
can be misleadingly high, especially when the number of colluders is low. For example,
where 25 colluders are present in a population of 1000, simply labelling all agents as
non-colluders yields an overall accuracy of (1000−25)/1000 = 0.975.

The second series, ‘Average coalition accuracy’, depicts the fraction of coalition mem-
bers that were accurately labelled as such. (Note that this is equivalent to recall.)
Note that while overall accuracy is misleadingly high, coalition accuracy clearly shows
that some colluders were missed for the smallest coalition size. This reflects a pattern
throughout the experiments, in fact: the algorithm performs well in general, but finds
very small coalitions challenging to detect.

The third series, ‘Average false positives’ shows the number of non-coalition members
that were mistakenly identified as coalition members.7 This is an extremely important

7One might use the well-known measure, precision, to measure the proportion of true positives to false
positives, and we could have done so here. Our primary concern, however, is the risk that non-coalition
agents might be incorrectly classified as coalition members. Precision uses the total number of positive
classifications as the denominator—it reflects the probability that an agent accused of being part of a
coalition is actually a member (i.e., P(M|C)), where M denotes actually being a coalition member, and
C denotes being classified as a member. 1− precision would thus reflect the probability that an accused
agent is not a coalition member (i.e., P(∼ M|C)). In contrast, our ‘average false positives’ measure uses

90

measure—wrongly accusing someone of collusion might be worse than missing a real
colluder. Note that there were no false positives at all, except for a small number with
the smallest coalition size.

Overall, the results on bad-mouthing are very strong.

0%	

20%	

40%	

60%	

80%	

100%	

0	 50	 100	 150	 200	

Pe
rc
en

ta
ge
	 o
f	 a

pp
lic
ab

le
	 a
ge
nt
s	

Coali2on	 Size	

Average	 overall	 classifica6on	 accuracy	

Average	 coali6on	 accuracy	

Average	 false	 posi6ves	

Figure 5.5: Bad-mouthing: Detection performance, with single coalition present.

One might wonder whether, because all sellers were acting honestly, if bad-mouthing
agents stand out because of their negative reviews. Accordingly, we investigated the case
where only ballot-stuffing is used. Here, the coalition members give accurate reviews
of non-members. In addition to their normal purchases of needed products, coalition
members engage in up to an extra 25% ballot-stuffing purchases from teammates. The
results are depicted in Figure 5.6. Overall, we note excellent detection performance
(nearly as strong as for bad-mouthing); in this case, there are no false positives at all.

Zero coalitions

While performance is strong with exactly one coalition, it may be the case that there is
no coalition present in a given population. Such situations provide a good test of the

the total number of non-coalition agents as a denominator—it reflects the probability that a non-member
be classified as a coalition member (i.e., P(C| ∼ M)), which more accurately reflects our concern. This
measure is also well defined when our algorithm (conservatively) refrains from classifying any agents as
coalition members.

91

0%	

20%	

40%	

60%	

80%	

100%	

0	 50	 100	 150	 200	

Pe
rc
en

ta
ge
	 o
f	 a

pp
lic
ab

le
	 a
ge
nt
s	

Coali2on	 Size	

Average	 overall	 classifica6on	 accuracy	

Average	 coali6on	 accuracy	

Average	 false	 posi6ves	

Figure 5.6: Ballot-stuffing: Detection performance, with single coalition present.

algorithm’s resistance to false positives. The results are shown in Table 5.1; virtually no
false accusations were made.

Table 5.1: Performance when no coalitions present.

Case Trials Pop. False pos. Rate
Bad-mouthing 60 1000 0 0
Ballot-stuffing 60 1000 12 0.0002

Multiple coalitions

Just as a population might contain no coalitions, it might also contain multiple coalitions.
To validate the algorithm’s ability to handle multiple groups, we ran trials with up to 4
coalitions.8 The results for bad-mouthing are displayed in Figures 5.7 (average coalition
detection accuracy) and 5.8 (average false positives); those for ballot-stuffing are shown
in Figures 5.9 (coalition detection) and 5.10 (false positives).

8As explained in ‘Characterizing Clusters’, we do not apply our characterization technique where the
number of coalition members exceeds half of the population. Thus, certain parameter combinations (e.g.,
4 coalitions of size 200 each = 800) were not included in our experiments, and do not appear in the
figures.

92

0%	

20%	

40%	

60%	

80%	

100%	

0	 50	 100	 150	 200	

Pe
rc
en

ta
ge
	 o
f	 a

pp
lic
ab

le
	 a
ge
nt
s	

Coali2on	 Size	

1	 coali/on	

2	 coali/ons	

3	 coali/ons	

4	 coali/ons	

Figure 5.7: Bad-mouthing: Coalition detection accuracy, multiple coalitions.

0%	

20%	

40%	

60%	

80%	

100%	

0	 50	 100	 150	 200	

Pe
rc
en

ta
ge
	 o
f	 a

pp
lic
ab

le
	 a
ge
nt
s	

Coali2on	 Size	

1	 coali/on	

2	 coali/ons	

3	 coali/ons	

4	 coali/ons	

Figure 5.8: Bad-mouthing: False positives, multiple coalitions.

Several overall patterns can be noted in this set of charts.9 First, overall performance
is quite strong, in all cases. As revealed in the single-coalition cases, coalition detection
performance is again better for bad-mouthing than for ballot-stuffing; similarly, the gen-
eral pattern of weaker performance on smaller coalitions is again evident in the ballot-

9There is a high degree of intrinsic randomness in our scenario. For example, the random determination
of which agents can produce which products has an impact on purchasing patterns. This randomness is
evident in these and other charts throughout this document—there is fluctuation in series, despite the fact
that each data point represents an average over 10 trials.

93

0%	

20%	

40%	

60%	

80%	

100%	

0	 50	 100	 150	 200	

Pe
rc
en

ta
ge
	 o
f	 a

pp
lic
ab

le
	 a
ge
nt
s	

Coali2on	 Size	

1	 coali/on	

2	 coali/ons	

3	 coali/ons	

4	 coali/ons	

Figure 5.9: Ballot-stuffing: Coalition detection accuracy, multiple coalitions.

0%	

20%	

40%	

60%	

80%	

100%	

0	 50	 100	 150	 200	

Pe
rc
en

ta
ge
	 o
f	 a

pp
lic
ab

le
	 a
ge
nt
s	

Coali2on	 Size	

1	 coali/on	

2	 coali/ons	

3	 coali/ons	

4	 coali/ons	

Figure 5.10: Ballot-stuffing: False positives, multiple coalitions.

stuffing data. There are virtually no false positives in the bad-mouthing results (with the
exception of the single-coalition case already noted) or in the ballot-stuffing results.

Perhaps most importantly, note that there is no clear correlation between number
of coalitions and performance: increasing the number of coalitions does not have the
detrimental impact on performance that one might expect. (For ballot-stuffing, the multi-
coalition cases have lower detection rates than the single coalition cases; note, however,
that performance on the 2-coalition cases is worse than the 3- and 4-coalition cases.)

94

5.4.3 Exploring other key parameters

In a domain such as this, there are a multitude of different scenario parameters; while
many are unlikely to play a role in detection accuracy, others may be potentially impor-
tant. Here, we consider a number of key parameters, and explore their impact on the
performance of our algorithm.

Sensitivity to cheating agents

In the previous section, we sought to focus on collusive activity itself, without introduc-
ing other factors that might obscure the issue. Thus, in previous tests all agents fulfilled
sales honestly—when a good was sold, it was faithfully delivered. (This is distinct from
collusive reviews, which involve dishonesty in reporting past experience, not in fulfilling
sales.) One might wonder, however, if the absence of cheating may be a factor in our
strong detection performance (particularly in the case of bad-mouthing, where reviewers
falsely claim to have witnessed dishonesty). To examine this issue, we ran additional tri-
als where every agent (coalition members and non-members) was assigned a probability
with which they cheated on sales (i.e., agreed to sell a product, but then failed to deliver
the promised good).

In the first set of tests, every agent had the same probability of cheating on any
individual sale; trials were run for a variety of different probabilities. The results for bad-
mouthing are depicted in Figure 5.11, and those for ballot-stuffing in Figure 5.12. (As
can be seen in the graph, we stopped short of having agents cheat with 100% probability.
A marketplace where every agent cheats on every sale is non-functional, and any results
would be suspect.) Two coalitions were present in each trial, with coalitions sizes of 50
and 100 (shown as separate series) used for comparison.

Several features should be noted. First, overall performance is excellent; the perfor-
mance on ballot-stuffing is slightly worse then for bad-mouthing, continuing a trend we
have seen in earlier results. Second, there is little obvious correlation between cheating
probability and performance. There appears to be a small deterioration in performance
for bad-mouthing, as cheating rates approach their maximum level. Note, however, that
such a deterioration is not obvious in the ballot-stuffing case. (Further, we note that
accuracy against bad-mouthing is still strong, even at the highest cheating levels.)

It is unlikely, however, that every agent will cheat with the same probability. It is
more interesting to consider the realistic case where different agents cheat with different

95

0%	

20%	

40%	

60%	

80%	

100%	

0	 0.15	 0.3	 0.45	 0.6	 0.75	

Pe
rc
en

ta
ge
	 o
f	 a

pp
lic
ab

le
	 a
ge
nt
s	

Probability	 of	 chea3ng	

Avg.	 coali5on	 accuracy	 (coali5on	 size=50)	

Avg.	 coali5on	 accuracy	 (coali5on	 size=100)	

Avg.	 false	 posi5ves	 (coali5on	 size=50)	

Avg.	 false	 posi5ves	 (coali5on	 size=100)	

Figure 5.11: Bad-mouthing: Performance with uniform probability of cheating.

0%	

20%	

40%	

60%	

80%	

100%	

0	 0.15	 0.3	 0.45	 0.6	 0.75	

Pe
rc
en

ta
ge
	 o
f	 a

pp
lic
ab

le
	 a
ge
nt
s	

Probability	 of	 chea3ng	

Avg.	 coali5on	 accuracy	 (coali5on	 size=50)	

Avg.	 coali5on	 accuracy	 (coali5on	 size=100)	

Avg.	 false	 posi5ves	 (coali5on	 size=50)	

Avg.	 false	 posi5ves	 (coali5on	 size=100)	

Figure 5.12: Ballot-stuffing: Performance with uniform probability of cheating.

probabilities. In particular, because our method is based on similarity, one might ques-
tion whether coalitions can be effectively identified if agents are very dissimilar in their
cheating behaviour. Thus, we ran further tests, where each agent’s cheating probability
was drawn from a Gaussian distribution. The mean cheating probability was 0.5, while
a range of different standard deviations were used. If a value greater than 1 was drawn,
it was treated as 1; similarly, negative values were treated as 0. Standard deviations
of up to 0.3 were used—at 0.3, the entire range [0,1] is well covered. The results for
bad-mouthing are shown in Figure 5.13, and those for ballot-stuffing in Figure 5.14.

96

0%	

20%	

40%	

60%	

80%	

100%	

0	 0.1	 0.2	 0.3	

Pe
rc
en

ta
ge
	 o
f	 a

pp
lic
ab

le
	 a
ge
nt
s	

Standard	 devia4on	 in	 chea4ng	 probability	

Avg.	 coali3on	 accuracy	 (coali3on	 size=50)	

Avg.	 coali3on	 accuracy	 (coali3on	 size=100)	

Avg.	 false	 posi3ves	 (coali3on	 size=50)	

Avg.	 false	 posi3ves	 (coali3on	 size=100)	

Figure 5.13: Bad-mouthing: Performance with random probability of cheating.

0%	

20%	

40%	

60%	

80%	

100%	

0	 0.1	 0.2	 0.3	

Pe
rc
en

ta
ge
	 o
f	 a

pp
lic
ab

le
	 a
ge
nt
s	

Standard	 devia4on	 in	 chea4ng	 probability	

Avg.	 coali3on	 accuracy	 (coali3on	 size=50)	

Avg.	 coali3on	 accuracy	 (coali3on	 size=100)	

Avg.	 false	 posi3ves	 (coali3on	 size=50)	

Avg.	 false	 posi3ves	 (coali3on	 size=100)	

Figure 5.14: Ballot-stuffing: Performance with random probability of cheating.

Detection accuracy is excellent, in both cases, and no correlation between variability
in cheating and performance is evident.

Sensitivity to the quantity of cooperative behaviour

While cheating appears to have little impact on performance, there is another issue which
is likely to be of greater importance: the degree or quantity of cooperative behaviour. Our

97

method identifies coalitions using the similarity of beneficial activity; it is reasonable to
suspect that its accuracy may be affected by the quantity of such activity.

We ran a series of tests with different rates of collusive behaviour; in this first set,
the probability/proportion10 of engaging in a collusive transaction was the same for
every coalition member. For bad-mouthing, the probabilities tested covered the entire
probability range [0,1]. For ballot-stuffing, agents engaged in up to an additional 30%
ballot-stuffing transactions, above their legitimate needs. (We had obtained strong re-
sults in our earlier tests, at a rate of 25%.) The results for bad-mouthing are depicted in
Figure 5.15, and those for ballot-stuffing in Figure 5.16.

0%	

20%	

40%	

60%	

80%	

100%	

0	 0.25	 0.5	 0.75	 1	

Pe
rc
en

ta
ge
	 o
f	 a

pp
lic
ab

le
	 a
ge
nt
s	

Probability	 of	 bad-‐mouthing	 on	 needed	 product	

Avg.	 coali4on	 accuracy	 (coali4on	 size=50)	

Avg.	 coali4on	 accuracy	 (coali4on	 size=100)	

Avg.	 false	 posi4ves	 (coali4on	 size=50)	

Avg.	 false	 posi4ves	 (coali4on	 size=100)	

Figure 5.15: Bad-mouthing: Performance with uniform probability of collusive be-
haviour.

As we have seen previously, performance is generally better for bad-mouthing than for
ballot-stuffing. More importantly, though, is that we see what we would intuitively ex-
pect: as the quantity of collusive behaviour decreases, the detection accuracy decreases.
(Despite this, note that false-positives remain extremely low, an important result.) Per-
formance does not decrease linearly, however. Instead, there appears to be something of
a threshold relationship, which is particularly evident in the bad-mouthing data.

While it is expected that low levels of collusive behaviour will be difficult to detect,
improving performance here is a goal of refinements presented in Chapter 6.

10For convenience, from this point we simply refer to ‘rate’, rather than ‘probability/proportion’.

98

0%	

20%	

40%	

60%	

80%	

100%	

0	 0.1	 0.2	 0.3	

Pe
rc
en

ta
ge
	 o
f	 a

pp
lic
ab

le
	 a
ge
nt
s	

Quan3ty	 of	 ballot-‐stuffing	 transac3ons,	 as	 propor3on	 of	 legi3mate	 purchases	

Avg.	 coali3on	 accuracy	 (coali3on	 size=50)	

Avg.	 coali3on	 accuracy	 (coali3on	 size=100)	

Avg.	 false	 posi3ves	 (coali3on	 size=50)	

Avg.	 false	 posi3ves	 (coali3on	 size=100)	

Figure 5.16: Ballot-stuffing: Performance with uniform proportion of collusive behaviour.

Sensitivity to randomness in the quantity of cooperative behaviour

Again, as with cheating, it is unlikely that all agents will collude at exactly the same rate.
Thus, we conducted further tests, where the rate of collusive activity for each agent was
randomly drawn from a Gaussian, as was done earlier for cheating rates. Trials were run
with a range of different standard deviations. For the bad-mouthing case, a mean of 0.5
was used; results are depicted in Figure 5.17. For ballot-stuffing, a mean of 0.25 was
used, with results shown in Figure 5.18.

As one might expect, performance degrades as the amount of variation in collusive
activity increases. The obvious conclusion is that agents with different rates of collu-
sive activity are less ‘similar’, and thus less likely to be detected by our method. This
conclusion is premature, however. When the rate for each agent is drawn from a Gaus-
sian, some agents will get a higher rate, and some a lower rate. Is it the variability that
foils detection, or is it simply that those agents with lower rates are less likely to be
detected?11

To explore this issue, we analyzed the results of the previous trials in a different way.
Figures 5.19 and 5.20 depict the same results as Figures 5.17 and 5.18, except this time,

11In fact, in many of our test cases, agents will receive a collusion rate of 0. Consider the case where
the mean of the Gaussian is 0.5, and the standard deviation is 0.3. We would expect approximately 4.8%
of the agents to receive values of 0 or less (which are treated as zeros). Because these agents are, in
fact, coalition members, failures to detect them count as a false negatives. There is an obvious argument,
however, that an agent that engages in no collusive activity need not be labelled as a coalition member.

99

0%	

20%	

40%	

60%	

80%	

100%	

0	 0.1	 0.2	 0.3	

Pe
rc
en

ta
ge
	 o
f	 a

pp
lic
ab

le
	 a
ge
nt
s	

Standard	 devia4on	 in	 bad-‐mouthing	 probability	

Avg.	 coali3on	 accuracy	 (coali3on	 size=50)	

Avg.	 coali3on	 accuracy	 (coali3on	 size=100)	

Avg.	 false	 posi3ves	 (coali3on	 size=50)	

Avg.	 false	 posi3ves	 (coali3on	 size=100)	

Figure 5.17: Bad-mouthing: Performance with random probability of collusive be-
haviour.

0%	

20%	

40%	

60%	

80%	

100%	

0	 0.05	 0.1	 0.15	

Pe
rc
en

ta
ge
	 o
f	 a

pp
lic
ab

le
	 a
ge
nt
s	

Standard	 devia4on	 in	 ballot-‐stuffing	 propor4on	

Avg.	 coali3on	 accuracy	 (coali3on	 size=50)	

Avg.	 coali3on	 accuracy	 (coali3on	 size=100)	

Avg.	 false	 posi3ves	 (coali3on	 size=50)	

Avg.	 false	 posi3ves	 (coali3on	 size=100)	

Figure 5.18: Ballot-stuffing: Performance with random proportion of collusive behaviour.

agents are mapped to the x-axis not by the standard deviation parameter for the trial, but
instead by their individual randomly-assigned collusion rate. Note that different agents
from the same trial will be mapped to different x-axis coordinates. (For display, collusion
rates were discretized, with bins of 0.05 in width.)

It is interesting to note that Figures 5.19 and 5.20 reflect the same threshold char-
acter as Figures 5.17 and 5.18. This indicates that an agent’s individual collusion rate

100

0%	

20%	

40%	

60%	

80%	

100%	

0	 0.1	 0.2	 0.3	 0.4	 0.5	 0.6	 0.7	 0.8	 0.9	 1	

Pe
rc
en

ta
ge
	 o
f	 a

pp
lic
ab

le
	 a
ge
nt
s	

Probability	 of	 bad-‐mouthing	 on	 needed	 product	

Avg.	 coali6on	 accuracy	 (coali6on	 size=50)	

Avg.	 coali6on	 accuracy	 (coali6on	 size=100)	

Avg.	 false	 posi6ves	 (coali6on	 size=50)	

Avg.	 false	 posi6ves	 (coali6on	 size=100)	

Figure 5.19: Bad-mouthing: Performance with random collusive probability, by agent’s
individual probability.

0%	

20%	

40%	

60%	

80%	

100%	

0	 0.1	 0.2	 0.3	 0.4	 0.5	 0.6	

Pe
rc
en

ta
ge
	 o
f	 a

pp
lic
ab

le
	 a
ge
nt
s	

Ballot-‐stuffing	 propor5on	

Avg.	 coali4on	 accuracy	 (coali4on	 size=50)	

Avg.	 coali4on	 accuracy	 (coali4on	 size=100)	

Avg.	 false	 posi4ves	 (coali4on	 size=50)	

Avg.	 false	 posi4ves	 (coali4on	 size=100)	

Figure 5.20: Ballot-stuffing: Performance with random collusive proportion, by agent’s
individual probability.

is key to determining whether it is detected. Agents that fall below the threshold are
unlikely to be detected, and agents above the threshold likely to be detected, regardless
of the standard deviation parameter for the trial, and despite the collusion rates of other
coalition members.

This result is perhaps surprising. It is also informative. It suggests that, to improve

101

detection accuracy, sensitivity to low levels of collusive behaviour is more important than
robustness in the face of variability.

One must note, however, that variability does play a role. Detection accuracy in the
cases with variability is, in fact, worse than in the cases without variability. Comparing
Figure 5.20 with Figure 5.16, one can see that detection levels are lower.12 Comparing
Figure 5.19 with Figure 5.15, one can see that the threshold has been pushed to the
right—when variability is present, higher collusive rates are required for detection.

As noted above, improving performance when levels of collusion are low (and vari-
able) is a goal of enhancements presented in Chapter 6.

Sensitivity to buying rate

Because our method depends on similarity, we have explored two key dimensions in
which agents might be dissimilar—frequency of cheating, and collusion rate. There is
another important such dimension: the overall frequency with which agents make pur-
chases. The number of products needed to purchase is randomly determined each turn,
for each agent. The expected value of the distribution used, however, has been the same
for every agent: each agent averages 5 products per turn. If agents buy at different rates,
this may hinder detection. Consider a case, for example, where each agent engages in
an additional 25% ballot-stuffing purchases, beyond legitimate needs. If agent A makes
4 legitimate purchases per turn on average, and agent B makes 8, then agent B will also
engage in twice as many ballot-stuffing transactions as A (2 vs. 1), despite A and B
having the same ‘collusion rate’.

We explored this issue by running a number of tests where agents have varying (le-
gitimate) buying rates. The buying rate for each agent was drawn from a Gaussian
distribution with a mean of 5. Trials were run with a range of different standard devia-
tions. The results for bad-mouthing appear in Figure 5.21, and those for ballot-stuffing
in Figure 5.22.

Interestingly, the bad-mouthing and ballot-stuffing cases differ dramatically. Detec-
tion of bad-mouthing appears little-affected by variability in buying rate. In contrast, for
ballot-stuffing coalition detection drops significantly and false positives spike on trials
with high variability.

12The results in Figure 5.20 also appear more erratic than those in Figure 5.16. This does not imply that
detection accuracy is erratic, however. Recall that the collusion rates are drawn from a Gaussian, centred
on 0.25. This means that there are relatively few agents present at the higher collusion rates, resulting in
the jaggedness in the right-most reaches of the series.

102

0%	

20%	

40%	

60%	

80%	

100%	

0	 0.25	 0.5	 0.75	 1	 1.25	 1.5	

Pe
rc
en

ta
ge
	 o
f	 a

pp
lic
ab

le
	 a
ge
nt
s	

Standard	 devia4on	 in	 buying	 rate	

Avg.	 coali4on	 accuracy	 (coali4on	 size=50)	

Avg.	 coali4on	 accuracy	 (coali4on	 size=100)	

Avg.	 false	 posi4ves	 (coali4on	 size=50)	

Avg.	 false	 posi4ves	 (coali4on	 size=100)	

Figure 5.21: Bad-mouthing: Performance with variable buying rates.

0%	

20%	

40%	

60%	

80%	

100%	

0	 0.25	 0.5	 0.75	 1	 1.25	 1.5	

Pe
rc
en

ta
ge
	 o
f	 a

pp
lic
ab

le
	 a
ge
nt
s	

Standard	 devia4on	 in	 buying	 rate	

Avg.	 coali4on	 accuracy	 (coali4on	 size=50)	

Avg.	 coali4on	 accuracy	 (coali4on	 size=100)	

Avg.	 false	 posi4ves	 (coali4on	 size=50)	

Avg.	 false	 posi4ves	 (coali4on	 size=100)	

Figure 5.22: Ballot-stuffing: Performance with variable buying rates.

Given the real-world likelihood that buying rates will differ between traders, this is
an important issue. Fortunately, there is a reasonably simple solution.

Normalization of activity In the analysis of an agent’s activity, we are interested in
whether it favours particular agents more than others; the overall level of activity is
of much less concern. As such, to improve the quality of data before analysis, we can
normalize it to minimize the impact of varying levels of overall activity (here, purchasing

103

rates). Until this point, our analysis has been based on absolute quantities of benefit: for
any given agent a, the have used the (raw) amount of benefit it bestows upon agent i,
βi(a). Now, we divide this raw quantity of benefit by the total benefit agent a generates:

βi(a)
∑ j∈P β j(a)

(5.6)

where, again, P is the entire population of agents. Thus, the benefit values used in anal-
ysis represent the fraction of each agent’s overall activity—each agent’s characterization
is normalized to the same level of activity.

Returning to the case depicted in Figure 5.22 (where ballot stuffing agents vary in
buying rates), we employ normalization in our detection algorithm. The results are
depicted in Figure 5.23.

0%	

20%	

40%	

60%	

80%	

100%	

0	 0.25	 0.5	 0.75	 1	 1.25	 1.5	

Pe
rc
en

ta
ge
	 o
f	 a

pp
lic
ab

le
	 a
ge
nt
s	

Standard	 devia4on	 in	 buying	 rate	

Avg.	 coali4on	 accuracy	 (coali4on	 size=50)	

Avg.	 coali4on	 accuracy	 (coali4on	 size=100)	

Avg.	 false	 posi4ves	 (coali4on	 size=50)	

Avg.	 false	 posi4ves	 (coali4on	 size=100)	

Figure 5.23: Ballot-stuffing: Performance with variable buying rates, using normaliza-
tion.

Compared to performance without normalization, detection accuracy has dramati-
cally improved; false positives have been eliminated entirely.

Normalization is simple, yet powerful. Moreover, we encountered no cases during our
experimentation where it had detrimental effects. Thus, normalization is used through-
out the remainder of this document (except where specifically noted.)

104

Scalability

One final question relates to scalability: how will performance change as the population
size changes? To explore this issue, we ran trials with population sizes ranging from 500
to 5000, with a coalition of size 50.

0%	

20%	

40%	

60%	

80%	

100%	

0	 500	 1000	 1500	 2000	 2500	 3000	 3500	 4000	 4500	 5000	

Pe
rc
en

ta
ge
	 o
f	 a

pp
lic
ab

le
	 a
ge
nt
s	

Popula2on	 size	

Avg.	 coali4on	 accuracy	

Avg.	 false	 posi4ves	

Figure 5.24: Bad-mouthing: Performance as population size changes.

0%	

20%	

40%	

60%	

80%	

100%	

0	 500	 1000	 1500	 2000	 2500	 3000	 3500	 4000	 4500	 5000	

Pe
rc
en

ta
ge
	 o
f	 a

pp
lic
ab

le
	 a
ge
nt
s	

Popula2on	 size	

Avg.	 coali4on	 accuracy	

Avg.	 false	 posi4ves	

Figure 5.25: Ballot-stuffing: Performance as population size changes.

Results for bad-mouthing, shown in Figure 5.24, are excellent, and performance is
unaffected even as population ranges over an order of magnitude.

105

While performance for ballot-stuffing has typically been slightly weaker than for bad-
mouthing, Figure 5.25 may still be surprising. Ballot-stuffing detection accuracy dete-
riorates significantly as the overall population size increases. An examination of this
problem, and refinements to our algorithm which improve on this performance, are pre-
sented in Chapter 6.

5.4.4 Pathological cases

Our algorithm detects coalitions by the similarity of their behaviour (and by the differ-
ence between coalition activity and ‘normal’ activity). It is possible to conceive of certain
‘pathological’ cases however, where coalition members are able to benefit one another,
but not look ‘similar’ in doing so. Such cases may be of interest because coalitions seeking
to avoid detection may attempt to make use of them.

Here, we identify two potential such cases, and examine the performance of our
algorithm when faced with them.

Ring structure

A well-coordinated coalition might seek to develop a ring structure similar to that de-
picted in Figure 5.26. Agents A and B ballot-stuff only for C and D, C and D ballot-stuff
only for E and F , and so on. In this way, every agent benefits members of the coalition,
and every agent receives benefit from members. However, A and B attempt to avoid
looking similar to other agents in the coalition, because they are the only two who are
ballot-stuffing C and D. (We will refer the a set of agents who are ballot-stuffing for the
same targets (e.g., A and B) as a link; the number of agents in each link is the width of
the ring, while the number of links is the circumference).

Will this structure avoid detection? It is worth noting that, while the agents in one
link (e.g., A and B) and not ballot-stuffing for the same agents as other links, they are
very similar with each other in terms of who they are benefiting. (The coalition might try
to minimize this by severely limiting the width of the ring. However, this has the simul-
taneous effect of limiting the amount of benefit each agent can receive.) Moreover, while
agents in different links are not ballot-stuffing the same target agents, their behaviour
may still be very dissimilar from ‘normal’ agents outside the coalition.

To explore this, we ran tests pitting the detection algorithm against coalitions using
a ring structure. One coalition was present in each trial, with coalition sizes of 50 and

106

C

D

E F

G

H

BA

Figure 5.26: A ring structure for ballot-stuffing.

100 used. A range of different circumferences were used across trials. (Thus, the width
of the rings varied as well, where width ≈ |C|/ circumference.) The results are shown in
Figure 5.27, where the x-axis is the ring circumference used.

Note that the range of tests included very wide (100 agents / 5 circumference = 20
width) and very narrow (50 agents / 20 circumference = 2.5 width) rings. Detection
accuracy is very strong throughout, and no false positives are present.

Singletons

Another attempt to potentially avoid detection might be the use of what we refer to as
singleton accounts: ‘fake’ accounts that are used only for a small number of bad-mouthing
or ballot-stuffing transactions (here, one), and then abandoned. The singleton accounts
do no other buying or selling. This behaviour is easily executed in marketplaces where
identities can’t be established, and new accounts can be created freely—conditions that
exist in many real-world systems.

We conducted tests where coalitions consisted both of a number of ‘real’ members
(50% of each coalition), and a number of singleton accounts (50%). Each singleton

107

0%	

20%	

40%	

60%	

80%	

100%	

5	 10	 15	 20	

Pe
rc
en

ta
ge
	 o
f	 a

pp
lic
ab

le
	 a
ge
nt
s	

Circumference	

Avg.	 coali3on	 accuracy	 (coali3on	 size=50)	

Avg.	 coali3on	 accuracy	 (coali3on	 size=100)	

Avg.	 false	 posi3ves	 (coali3on	 size=50)	

Avg.	 false	 posi3ves	 (coali3on	 size=100)	

Figure 5.27: Ballot-stuffing: Performance against ring structure.

account was used for one collusive transaction, which occurred on a randomly selected
round between the 10th and the 300th. ‘Real’ coalition members behaved normally, bad-
mouthing or ballot-stuffing as in previous tests. The results are shown in Figures 5.28
(bad-mouthing) and 5.29 (ballot-stuffing).

0%	

20%	

40%	

60%	

80%	

100%	

50	 100	 150	 200	

Pe
rc
en

ta
ge
	 o
f	 a

pp
lic
ab

le
	 a
ge
nt
s	

Coali2on	 size	

Avg.	 coali3on	 accuracy	 (`real'	 members)	

Avg.	 coali3on	 accuracy	 (singletons)	

Avg.	 false	 posi3ves	 (`real'	 members)	

Avg.	 false	 posi3ves	 (singletons)	

Figure 5.28: Bad-mouting: Performance against singletons.

In each figure, the heavy black line shows the detection accuracy for the ‘real’ mem-
bers. Performance here is strong, and very similar to that for a ‘normal’ coalition without

108

0%	

20%	

40%	

60%	

80%	

100%	

50	 100	 150	 200	

Pe
rc
en

ta
ge
	 o
f	 a

pp
lic
ab

le
	 a
ge
nt
s	

Coali2on	 size	

Avg.	 coali3on	 accuracy	 (`real'	 members)	

Avg.	 coali3on	 accuracy	 (singletons)	

Avg.	 false	 posi3ves	 (`real'	 members)	

Avg.	 false	 posi3ves	 (singletons)	

Figure 5.29: Ballot-stuffing: Performance against singletons.

singletons—compare to Figures 5.7 and 5.9.13

The second series in each figure shows the detection accuracy for the singleton ac-
counts. Performance is very strong. False positives are absent, in every test.

As noted, these pathological cases might be seen as opportunities for coalitions to
avoid detection; our results suggest that such tactics will have limited success.

5.5 Discussion

The performance of our algorithm is impressive, particularly considering that novelty of
this problem. As revealed in the previous section, however, there are several circum-
stances that make coalition detection more challenging:

• Low levels of collusive activity (both due to low collusion rates, and in the case of
ballot-stuffing, due to small coalitions);

• Significant variability in the rate of collusive activity;
13Note that here, ‘real’ members, constitute only 50% of each coalition; a coalition of size 100 here has

the same number of ‘real’ members as a coalition of size 50 in Figures 5.7 and 5.9. Here, the only case
where the algorithm struggles is for ballot-stuffing coalitions of size 50; this is equivalent to a coalition of
size 25 in Figure 5.9, which revealed that ballot-stuffing detection is limited for such small coalitions.

109

• Increasing size of the overall population (in the case of ballot-stuffing).

In the next chapter, we develop enhancements and refinements to our method, with the
goal of improving performance when faced with such circumstances.

It is worth noting that our algorithm detects groups of agents that are providing
more net benefit to each other than other sets of agents. We might call this a de facto
coalition. It may arise because the group is an actual coalition, intentionally acting in
concert. Such a situation might possibly arise, however, due to other circumstances: for
example, a group of agents may have closely aligned needs and capabilities, and favor
each other for this reason. We make no attempt to distinguish between these cases (i.e.,
to determine intent), and the importance of this issue is likely to be scenario-specific.
We do note, however, the close correspondence between actual coalitions and detected
coalitions in our results.

Conversely, an actual coalition might be ineffective—perhaps members act too little
to benefit one another (e.g., low collusion rate), or they coordinate poorly. Such a group
might not be detected, despite technically being a coalition. Is this a problem? The
answer may depend on the scenario; in our marketplace setting, perhaps not. It may
be that the lesser degree of activity, which makes these harder to detect, also limits the
benefit derived.

110

Chapter 6

Refinements and Enhancements

The method described in Chapter 5 (Algorithm 5.1) represents a first step toward the
detection and identification of coalitions within a larger population. While the algorithm
exhibits strong detection performance and resistance to false positives, opportunities ex-
ist for improvement. In this chapter, we explore a number of potential enhancements, to
improve the accuracy and robustness of the method, and to further broaden its applica-
bility.

In previous chapters, we sought to be as thorough as practically possible in the pre-
sentation of experimental results. From this point onward, for brevity (and the benefit
of our reader) we present only those results that are noteworthy or illuminating.

6.1 Recursive refinement of coalitions

In Chapter 5, we focused on one key issue: were coalition members (and non-members)
successfully classified as such? Here, we turn to a second concern: are members of the
same coalition grouped together? In some scenarios, it may be sufficient to simply know
whether an agent is part of a coalition, without knowing that agent’s partners. There are
likely to be scenarios, however, where it is desirable to identify the memberships of sep-
arate teams. For example, in a game or battlefield scenario, identifying the membership
of a team might aid in subsequent analysis of the tactics the team is employing.

In this section, we examine the accuracy of our core algorithm not only for identifying
whether individual agents are members of coalitions (as explored in Chapter 5), but also

111

for grouping members according to the coalitions to which the belong. We introduce
a technique to improve on this accuracy, resulting in a recursive refinement algorithm.
Before proceeding, we examine the performance of Algorithm 5.1 again, introducing
metrics that reflect this issue.

6.1.1 Purity

To evaluate performance in grouping agents, a suitable metric is required. Measurements
employed in the previous chapter are problematic here, because there is no natural or-
dering or naming of coalitions. For example, we cannot ask, “what percentage of the
members of coalition 2 were identified as belonging to coalition 2?”, because the identi-
fier ‘2’ is meaningless. Instead, we might attempt to come up with suitable labels for the
coalitions identified; that is essentially the basis for the measure, purity [1].

Purity is a measure from the field of clustering, which seeks to measure the degree to
which each cluster consists of a single, ‘pure’ type. A measure such as this can be used
when one has access to the true class of each object for evaluation purposes (as we do
here); without such knowledge, one may be limited to evaluations based solely on the
structure of the unlabelled data.

The purity of a cluster is the proportion of objects within that cluster that have the
same class as the majority class1 within that cluster. For example, if a cluster of size 100
contained 40 elements of class A, 50 elements of class B, and 10 elements of class C, the
majority class would be B, and the purity of the cluster would be 50/100 = 0.5. A cluster
consisting entirely of members of a single class has a purity of 1 (i.e., it is ‘pure’).

The overall purity of a clustering (across all clusters), then, is the proportion of agents
that have the same class as the majority for the cluster to which they have been assigned.
A purity of 1 would indicate that every cluster consists purely of a single type.

Purity is a useful measure here: it reflects the proportion of agents that were grouped
with members of their team.

Here, we revisit the situations depicted in Figures 5.7, Figures 5.9, where there are
multiple coalitions engaged in bad-mouthing (on needed transactions only) and ballot-
stuffing (an additional 25% above legitimate purchases), respectively. To illustrate our

1Here, class refers to the true type of the object. In our case, the members of each coalition would
constitute one class (as would the remaining non-members). For example, in a case with two coalitions,
members of the first coalition would be one class, members of the second coalition would be a second
class, and non-members would be a third.

112

concern here, consider a case where there are two coalitions present, A and B. According
to the measures used in Chapter 5, the algorithm would be successful if agents from A
and B were placed into clusters that were labelled as coalitions, even if, for example,
agents from A and B were placed into the same cluster. We turn our attention now to
success in identifying team membership.

Figure 6.1 depicts the same trial and analysis run as Figure 5.7 (bad-mouthing), but
this time showing purity. Recall from Figure 5.7 that coalition detection was extremely
accurate, approaching 100% in all trials. Figure 6.1 reveals that, while the algorithm
was fairly successful at separating members of different teams, it does not approach the
coalition detection performance. Purity is clearly higher for trials with fewer coalitions
present; more coalitions provide more opportunities to group agents incorrectly.

0.0	

0.2	

0.4	

0.6	

0.8	

1.0	

0	 50	 100	 150	 200	

Pu
rit
y	

Coali,on	 Size	

1	 coali/on	

2	 coali/ons	

3	 coali/ons	

4	 coali/ons	

Figure 6.1: Bad-mouthing: Purity, with multiple coalitions.

Unfortunately, while these results are strong, they are also misleadingly high. This is
because colluders make up a relatively small portion of the entire population. Consider,
for example, the case where there are 50 colluders and 950 non-members in a popu-
lation. Simply placing all of these agents into a single cluster would yield a purity of
950/1000 = 0.95. The inclusion of non-members into our purity scores, then, obscures
the true performance at separating coalitions from one another. Moreover, while we
are interested in whether coalition members are grouped together, we are unconcerned
about how the non-members (who are not labelled as coalition members) are grouped:
only clusters that are identified as coalitions are returned as such in our results, and other
clusters are discarded. Thus, it is more informative to disregard those not classified as
members, and to calculate purity over only those groups classified as coalitions.

113

Figure 6.2 shows the same bad-mouthing case as Figure 6.1 above, but purity is
calculated only over those agents classified as coalition members. (The series for single-
coalition trials has been omitted, because it is trivial by this measure.) The series are
similar in shape to those in Figure 6.1, but the scores are clearly lower—partitioning
teams effectively is challenging.

0.0	

0.2	

0.4	

0.6	

0.8	

1.0	

0	 50	 100	 150	 200	

Pu
rit
y	

Coali,on	 Size	

2	 coali/ons	

3	 coali/ons	

4	 coali/ons	

Figure 6.2: Bad-mouthing: Purity over those labelled as coalition members.

An examination of the detailed clustering data shows that separation failures typically
arise due to multiple entire coalitions being grouped together as one (rather than agents
from multiple coalitions being shuffled across several clusters).

Figure 6.3 depicts the same trial and analysis run as Figure 5.9 (ballot-stuffing),
again, with purity calculated only over those classified as coalition members. Results
here are quite strong.2

One may wonder why separation performance is better in the ballot-stuffing case
than the bad-mouthing case. A key factor is that agents engaged in ballot-stuffing are
targeting members of their own group, and thus target entirely different agents than
other coalitions. In contrast, bad-mouthing coalitions are targeting outsiders; they may
be targeting many of the same agents as other coalitions, looking similar in the process.

2The observant reader may notice that the results here are actually higher than the coalition detection
accuracy shown in Figure 5.9, and wonder, ‘how can we group a higher percentage successfully than
we detected in the first place?’ Note that these purity results only include those classified as coalition
members—false negatives are not incorporated into the figures.

114

0.0	

0.2	

0.4	

0.6	

0.8	

1.0	

0	 50	 100	 150	 200	

Pu
rit
y	

Coali,on	 Size	

2	 coali/ons	

3	 coali/ons	

4	 coali/ons	

Figure 6.3: Ballot-stuffing: Purity over those labelled as coalition members.

6.1.2 Recursive refinement

As noted above, failures to effectively partition coalitions tend to occur because multiple
coalitions have been grouped together into a single cluster. In seeking to effectively sep-
arate these groups, it is natural to consider applying the very same algorithm we have
used to separate groups already. Thus, we developed an algorithm (6.1) which recur-
sively applies our detection algorithm to detected clusters.

Algorithm 6.1 Recursive refinement

1. Run the coalition detection algorithm (e.g., Algorithm 5.1) on the input set of
agents, yielding a set of coalitions C1,C2, ...Ck.

2. For each detected coalition Ci:

• Run Recursive refinement using the set of agents in Ci as the input set.

– If a set of coalitions is returned, add that set to the result set.
– Otherwise, add the original coalition to the result set.

3. Return the result set.

Recursive refinement can only take already-detected coalitions, and further decom-

115

pose them. It cannot introduce new false positives, beyond those of the non-recursive
algorithm: any agent passed into a recursive call was already labelled as a coalition mem-
ber by the caller; similarly, it cannot correct for false negatives. (Note that it is possible
for the recursive algorithm to remove false positives, by further decomposing a cluster
that contains both coalition members and non-members.)

Stopping

The prospect of a recursive algorithm making use of clustering may seem problematic.
When a clustering algorithm is used, it will return a set of clusters, regardless of the
nature of the data. Won’t the recursive algorithm cluster indefinitely (until clusters of
size 1 are obtained)?

Here, our characterization method (developed in Section 5.3.3) provides an effec-
tive stopping rule. Consider first the case where a recursive call is made on a cluster
containing two coalitions, A and B. If the clusterer effectively separates A and B, the
characterization method is likely to show that agents in A favour themselves more than
outsiders (i.e., those in B), and vice versa: two coalitions will be detected. In contrast
consider the case where a cluster consisting entirely of one coalition, C, is passed into
a recursive call. Regardless of the clustering obtained, the characterization method is
unlikely to detect that agents in a cluster (i.e., some members of C) favour each other
more than they favour ‘outsiders’ (i.e., the remaining members of C)—no coalitions will
be detected. Thus, when no coalitions are detected, recursion stops.

6.1.3 Results

Recursive refinement was applied to the same data as the non-recursive Algorithm 5.1
(from Figures 6.2 and 6.3, above). The results are shown in Figures 6.4 and 6.5.

Comparing these results to the non-recursive algorithm, dramatic improvements can
be seen. This is not the whole story, however. Purity tells us whether members of the
different classes have been separated, not whether members of the same class have been
grouped together. One might wonder whether the recursive algorithm achieves high
purity values simply by separating the agents into an (unnecessarily) large number of
clusters. (Note that a purity value of 1 can be trivially obtained simply by placing every
agent into a separate group; each cluster will be entirely ‘pure’.)

116

0.0	

0.2	

0.4	

0.6	

0.8	

1.0	

0	 50	 100	 150	 200	

Pu
rit
y	

Coali,on	 Size	

2	 coali/ons	

3	 coali/ons	

4	 coali/ons	

Figure 6.4: Bad-mouthing: Purity over detected members, recursive algorithm.

0.0	

0.2	

0.4	

0.6	

0.8	

1.0	

0	 50	 100	 150	 200	

Pu
rit
y	

Coali,on	 Size	

2	 coali/ons	

3	 coali/ons	

4	 coali/ons	

Figure 6.5: Ballot-stuffing: Purity over detected members, recursive algorithm.

Rand Index

In order to determine success at grouping members of the same coalition together, we
consider a new metric. A measure that is conceptually similar to purity, but which penal-
izes for unnecessary clusters, is Rand index (RI) [56]. For every possible pairing of agents
(a,b) in population P, RI considers whether the right separation ‘choice’ was made: if a
and b are members of the same class, they should be together in the same cluster, while
if they are of different classes, they should be in separate clusters. RI is the proportion of

117

such choices which are correct. Very simply, if we consider a clustering of P and denote
the number of correct decisions d, then:

RI =
d(
|P|
2

) (6.1)

An RI of 1 indicates that different groups have been entirely separated into different
clusters, and the members of each group are entirely contained within a single cluster—
i.e., that the clustering exactly corresponds to the true classes of the objects.

Figures 6.6 and 6.7 compare RI for the non-recursive and recursive algorithms respec-
tively, for the bad-mouthing case. Figures 6.8 and 6.9 present the ballot-stuffing case.
(As above, RI is calculated only over those agents classified as coalition members.)

0.0	

0.2	

0.4	

0.6	

0.8	

1.0	

0	 50	 100	 150	 200	

Ra
nd

	 In
de

x	

Coali-on	 Size	

2	 coali/ons	

3	 coali/ons	

4	 coali/ons	

Figure 6.6: Bad-mouthing: Rand index over detected members, non-recursive algorithm.

Two points should be noted. First, the recursive algorithm results in far better RI
scores, indicating that it is doing a substantially better job of identifying team mem-
bership. Second, the recursive algorithm is achieving improved purity scores without
introducing large numbers of unnecessary clusters.

6.2 Iterative refinement

In this section, we explore the issue of moving into more appropriate clusters individual
agents that have been mis-grouped (which may occur, albeit infrequently, as discussed in

118

0.0	

0.2	

0.4	

0.6	

0.8	

1.0	

0	 50	 100	 150	 200	

Ra
nd

	 In
de

x	

Coali-on	 Size	

2	 coali/ons	

3	 coali/ons	

4	 coali/ons	

Figure 6.7: Bad-mouthing: Rand index over detected members, recursive algorithm.

0.0	

0.2	

0.4	

0.6	

0.8	

1.0	

0	 50	 100	 150	 200	

Ra
nd

	 In
de

x	

Coali-on	 Size	

2	 coali/ons	

3	 coali/ons	

4	 coali/ons	

Figure 6.8: Ballot-stuffing: Rand index over detected members, non-recursive algorithm.

the previous section). This entire section should be viewed as a sidebar. In fact, we ulti-
mately conclude that what might seem intuitively useful (an iterative form of refinement)
will not be successful. We use this result to reinforce the importance of similarity-based
detection, which we then return to in Section 6.3, for accurate detection. As such, that
section can easily be read immediately following Section 6.1.

Recursive refinement can further break down clusters, in order to improve separation

119

0.0	

0.2	

0.4	

0.6	

0.8	

1.0	

0	 50	 100	 150	 200	

Ra
nd

	 In
de

x	

Coali-on	 Size	

2	 coali/ons	

3	 coali/ons	

4	 coali/ons	

Figure 6.9: Ballot-stuffing: Rand index over detected members, recursive algorithm.

of different teams. Beyond this, however, it cannot make changes to the memberships
of the clusters themselves. For example, consider the case where most of the members
of coalition A are grouped into a single cluster, but a small number of members were
mistakenly grouped with cluster B, or were mistakenly excluded from the detected coali-
tions entirely. Ideally, we would be able to correct for these errors, by moving individual
agents into the appropriate clusters.

A natural approach for doing so would be to consider each agent individually, and,
if that agent looks to have been placed in an inappropriate group, to move it to a more
suitable cluster. We refer to this approach as iterative refinement.

If we plan to move agents individually, how do we know to which cluster a given
agent should be assigned? Considering again our characterization method (developed
in Section 5.3.3) can yield insight. In Figure 6.10, we portray the ‘within’ test (helping
teammates); the ‘exiting’ test (benefiting outsiders less, or harming them) is symmetric.
To characterize a cluster C of size n, we first repeatedly take random selections G of
n agents from the population, and calculate the mean benefit members of G bestow
upon one another. This yields a distribution of sample means, the normal curve shown
in Figure 6.10. Then, we calculate the average benefit that members of the candidate
cluster C give to one another. The p-value is the area under the normal curve to the right
of C’s mean benefit. Given the distribution of sample means, the p-value represents the
probability, for a randomly selected group of agents, of getting a mean at least as large
as the one for C. The farther to right, the lower the p-value, and hence, the stronger the
evidence that the result was not obtained by chance (i.e., the stronger the evidence that C

120

α

Threshold

Benefit to members of group

Figure 6.10: Distribution of sample means, benefit to other group members.

contains a coalition.) If the p-value is less than our chosen α (the threshold probability),
we conclude that cluster contains a coalition. There is a threshold level (known as a
critical value) for average benefit, then, where values falling below the threshold result
in p-values greater than α, and values greater than the threshold result in p-values less
than α; we have illustrated this threshold in the figure.

It is trivial, yet important to note that the average benefit for C is composed of the
individual benefit values for members of C. If C’s average benefit is to the right of the
threshold, many or all of the members of C will individually have values falling to the
right of the threshold as well.

Now we examine the case where agents have been mis-grouped, and we are trying to
iteratively fix the assignments. First, consider an agent a that is a member of the coalition
contained in C, but who was mistakenly placed in different cluster. As a true member of
the coalition, a is likely to be benefitting members of C more than non-member agents—

121

a is likely to fall to the right side of the distribution. In fact, if the average amount of
benefit a bestows on members of C falls to the right of the threshold, then it is reasonable
to think that a, too, may actually be a member of the coalition contained in C. Thus, we
might add a to C.

Now, consider a non-member agent b who was mistakenly grouped with the coalition
in cluster C. b is unlikely to be benefiting members of the coalition in C much more than
a ‘typical’ agent would, and is very unlikely to be benefitting members as much as the
members themselves would be. If b benefits members of C little enough that he falls to
the left of the threshold, then it is reasonable to suspect that b does not, in fact, truly
belong to the coalition. It follows that we might remove b from C.

This is the general basis for our iterative refinement algorithm: If an agent inside
a cluster provides benefit below the threshold, remove it from the cluster; if an agent
outside a cluster provides benefit beyond the threshold level, then add it to the cluster.
(In fact, if there are multiple candidate coalitions present, we move an agent to the
cluster for which it is furthest past the threshold. We explore the algorithm in greater
detail below.)

6.2.1 Termination?

While we have sketched out a general basis for iterative refinement, important issues
have yet to be addressed: in particular, how do we know that the algorithm will termi-
nate? In fact, this turns out to be a problem. (We have also postposed discussion of the
issue of how to decide which agent to move next, a secondary concern.)

Consider a hypothetical case of four agents, depicted in Figure 6.11. The edge weights
in the graph indicate the amount of benefit flowing from the source to the destination.
Suppose the threshold quantity of benefit required is 10. (For simplicity, we assume the
same threshold for all cluster sizes.) At the beginning, there are three agents contained
in the cluster: {b,c,d}. b’s average benefit (per edge) to cluster members is (11+10)/2 =
10.5 as is c’s; d’s average benefit to members is (15+15)/2 = 15. All three members have
averages above the threshold.

Now, consider agent a, currently an outsider. His average benefit to coalition members
is (12+ 9+ 12)/3 = 11. This value is above the threshold, so a is added to the cluster,
which now consists of {a,b,c,d}.

With the addition of a, we now need to recompute the benefit for each of the existing
members. b and c have averages of (11+10+4)/3≈ 8.33; d’s average is (15+15+15)/3=
15. b and c now fall below the threshold, so they are removed, yielding a cluster of {a,d}.

122

a

cb

d

15

15

15

9

11

11

10

10

12
124

4

Initial
cluster

Figure 6.11: A hypothetical subset of agents.

Again, the averages for the cluster need to be recomputed. a’s average is simply
9/1 = 9, while d’s is 15/1 = 15. a’s average falls below the threshold, so it is removed,
yielding a cluster of only {d}.

With this removal, however, we need to reconsider b and c. The average benefit to
members of the cluster from b is now 11/1 = 11, while c’s is the same. Both b and c are
now above the threshold, so they are added, yielding a cluster of {b,c,d}.

Unfortunately, this cluster assignment is the same one we began with: we have en-
countered a cycle. Because of this, we cannot guarantee termination—in fact, experi-
ments have shown that cycles frequently occur in practice.

6.2.2 Progress

Ideally (and to ensure termination), for an iterative optimization algorithm, we would
have a well-defined objective function and a notion of progress. Unfortunately, this is
problematic in this case.

123

Why minimizing p-value doesn’t work

We have noted that lower p-values indicate stronger evidence for the presence of a coali-
tion, and that the individual members’ contributions combine to determine the p-value.
This might lead one to think that minimizing p-value, meaning the strongest possible
evidence, might equate to an optimal solution. This is not the case, however.

To illustrate, consider a simplified3 case of a coalition C with 3 members, a, b, and c,
which contribute average benefits to the coalition of 8, 10, and 12 respectively. Suppose
that the threshold to be classified as a coalition is 6. The average benefit over a, b, and
c is (8+ 10+ 12)/3 = 8; this value exceeds the threshold, so C would be classified as a
coalition. But now, what if we remove a from the cluster? The resulting average for b
and c, (10+ 12)/2 = 11, is now further past the threshold, resulting in a lower p-value.
Removing a thus results in a cluster with stronger evidence of being a coalition—but
has excluded true coalition members (in this case, a) in the process. Clearly, this is not an
improved result.

Total Margin

The problem in Section 6.2.1 is that when considering an agent’s addition or removal
from a cluster, we examine benefit in the context of a single agent. As such, we focused
first on only what that agent has done, not what has been done to it. Consider again the
situation in Figure 6.11, and our first step, when we added a. When making this decision,
we considered only the benefit flowing from a to members of the cluster, but this is only
half the story. We did not incorporate benefit from cluster members to a, which carries
equal weight in computing the cluster’s average benefit and p-value (as calculated using
the method from Section 5.3.3, and used in Algorithm 5.1).

Before the addition of a, the per-edge average for the cluster was (11+11+15+15+
10+ 10)/6 = 12. After a’s addition, the average was (11+ 11+ 15+ 15+ 10+ 10+ 4+
12+9+15+4+12)/12≈ 10.67. Although the benefit from a was above the threshold, its
addition lowered the overall average.

As noted above, the fact that a’s inclusion lowers the overall average is not necessarily
a problem, and a should not be excluded on that basis. But a’s inclusion did more than
lower the average: it had the side effect of expelling two other agents, b and c. Such side
effects cause problems such as cycles.

3Details such as a digraph with edge weights are not necessary to illustrate the point here.

124

To avoid such issues, we sought a measure that would consider both the number
of agents that belong in the cluster, and the degree to which each agent surpasses the
threshold. We refer to amount by which an agent surpasses the threshold (i.e., the agent’s
average benefit to others in the cluster, minus the threshold), as its margin. The higher
the margin, the stronger the suspicion that the agent belongs in that particular cluster.
As an objective function, we seek to maximize the total margin for a cluster. When
we consider a possible additional/removal of an agent to/from a cluster, we consider the
change in total margin (i.e., both the benefit flow from that agent, and that to the agent.)

Adding an agent with a positive margin (e.g., one that exceeds the threshold), in-
creases total margin for the cluster, even if it would lower the overall average for the
cluster. Similarly, removing an agent with a negative margin (e.g., one that falls below
the threshold) increases it.

Total margin also copes well with situations like those in Figure 6.11. The total
margin at the beginning, before the addition of a:

Member Average benefit to cluster Margin
b 10.5 0.5
c 10.5 0.5
d 15 5

Total - 6

If a were to be added, the total margin would be:

Member Average benefit to cluster Margin
a 11 1
b 8.33 -1.67
c 8.33 -1.67
d 15 5

Total - 2.66

Thus, a would not be added, because the total margin would decrease. Essentially, in
situations such as this, using total margin allows us to make choices: is it better to
include a, or {b,c}?

We can guarantee that with this approach, total margin is monotonically increasing
(i.e., progress is made) with each step, by only making moves that increase total margin.

125

(We have taken the greedy choice, always choosing the move that results in the largest
increase in total margin.) Thus, we can ensure termination.

We cannot guarantee that using total margin in this way arrives at a globally optimal
solution. In fact, there are likely to be many local maxima because, as seen in our
example, including certain agents often means excluding others; the inclusion of the
other agent may have lead to an entirely different allocation. Unfortunately, there are
other issues.

Limitations of total margin There are two key problems with using total margin as
the basis of iterative refinement, the first conceptual, the second more practical:

1. To avoid cycles, we base our decisions on not only what the agent has done, but
what is done to it by others in the cluster. While there may be algorithmic advan-
tage to doing so, one could argue that it is problematic to characterize an entity’s
behaviour (i.e., accuse them of being a colluder) based substantially on the actions
of others.

2. Empirically, the results using this method were extremely poor. As noted, we cannot
guarantee that this algorithm arrives at a global maximum; more to the point, we
cannot guarantee that a local (or even global) maximum results in a clustering that
matches the true coalitions. This is likely related to the first point.

Other means of ensuring termination

We are left with a quandary: considering only the benefit given by an agent (and not that
received) potentially results in cycles, while considering both benefit given and received
results in poor allocations. Judging the latter problem more severe than the former, we
returned to considering only the benefit given by agents.

Without the ability to rely on an objective function to ensure termination, another
means was needed. To guarantee termination, we simply need to avoid cycles. This can
be accomplished by simply restricting repeated moves by an agent.

While cycles can have periods of two moves, they can also be longer; longer cycles
were encountered during experimentation. It seems reasonable to attempt to prevent
cycles of two moves at first, and only turn to longer cycles if needed.

The approach we adopted was to render an agent inactive after a move for the next
2m moves, where m is the number of times the agent had been moved during refinement.

126

Thus, after a first move, it would only be inactive for 2 turns, thwarting a two-move cycle.
After a second move (meaning that a cycle longer than 2 moves might have occurred),
it is frozen for 4 turns, and so on. This method allows for increasingly long cycles to
be broken, and lets agents other than those in the cycles to have an opportunity to be
moved.

The method described guarantees termination: even under continuing, long cycles,
agents will eventually be frozen for more turns than there are agents in the system.

We detail the algorithm below. This algorithm is another form of refinement that
might be applied to the results of, e.g., Algorithm 5.1.

6.2.3 Algorithm

In Algorithm 6.2, we use the term ‘margin’ for brevity; here we refer simply the average
benefit given by the agent, minus the threshold. It does not include the benefit received
by the agent. Note, too, that it is presented in simple form for clarity. In reality, the mar-
gin calculations from step 1 are cached for as long the membership of an agent’s cluster
remains unchanged.)

6.2.4 Results

To demonstrate the performance of this algorithm, we first consider its application to the
same multi-coalition ballot-stuffing test depicted in Figures 5.9 and 5.10. In Figure 6.12
we show the performance of both Algorithm 5.1 without refinement, and with iterative
refinement. For clarity, the trials for varying numbers of coalitions (0 through 4) have
been collapsed into single series.

Iterative refinement does increase the detection rate, a desirable result. It also results
in a not-insignificant increase in the number of false positives.

For contrast, we consider its application to the bad-mouthing test from the same
section (Figures 5.7 and 5.8). The results for iterative refinement are depicted in Figure
6.13. Here, the detection rate has substantially deteriorated. Worse still, there are an
enormous number of false positives.

127

Algorithm 6.2 Iterative Refinement

1. Run the coalition detection algorithm (e.g., Algorithm 5.1) on the input.

2. Set all agents to ‘active’ status.

3. Repeat until no more moves are made:

(a) Set ‘best move’ to null.

(b) For each agent a:

i. If a is inactive and the required number of turns have passed, set it to
active.

ii. If a is active:
• If a is in a cluster that has been characterized as a coalition, calculate

its current margin. If not, set its current margin to 0.
• For every cluster C:

– Calculate the margin if a were to join C.
– Calculate the change in margin: margin if C were joined, less the

current margin.
– If this change in margin is better than for the best move, store mov-

ing a to C as the new best move.

(c) For the agent a having the ‘best move’:

• Move a from its current cluster, to its new cluster.
• Mark a as inactive for the next 2m turns, where m is the number of times

a has been moved during refinement.

128

0%	

20%	

40%	

60%	

80%	

100%	

25	 50	 75	 100	 125	 150	 175	 200	

Pe
rc
en

ta
ge
	 o
f	 a

pp
lic
ab

le
	 a
ge
nt
s	

Coali2on	 Size	

Avg.	 coali4on	 accuracy	 (without	 refinement)	

Avg.	 coali4on	 accuracy	 (with	 refinement)	

Avg.	 false	 posi4ves	 (without	 refinement)	

Avg.	 false	 posi4ves	 (with	 refinement)	

Figure 6.12: Ballot-stuffing: Iterative refinement performance, multi-coalition case.

0%	

20%	

40%	

60%	

80%	

100%	

25	 50	 75	 100	 125	 150	 175	 200	

Pe
rc
en

ta
ge
	 o
f	 a

pp
lic
ab

le
	 a
ge
nt
s	

Coali2on	 Size	

Avg.	 coali4on	 accuracy	 (without	 refinement)	

Avg.	 coali4on	 accuracy	 (with	 refinement)	

Avg.	 false	 posi4ves	 (without	 refinement)	

Avg.	 false	 posi4ves	 (with	 refinement)	

Figure 6.13: Bad-mouthing: Iterative refinement performance, multi-coalition case.

6.2.5 Implications: The importance of similarity

Unfortunately, the poor performance seen is Figure 6.13 is mirrored in a significant num-
ber of trials. Thus, we do not recommend use of the iterative refinement algorithm.
While we do not discount the possibility that iterative refinement algorithms might yield
breakthroughs in the future, we have turned our attention elsewhere at present.

Our iterative refinement algorithm is particularly prone to false positives: outside

129

agents are encountered who are greatly benefitting coalition members. This is likely
due to the effects of the coalitions’ collusive activity itself. Successfully ballot-stuffing or
bad-mouthing wins additional purchases (and positive reviews) from outsiders, which
registers as benefit. If enough sales are won, the benefit totals from outside purchasers
may be large.

While this is a negative result, it holds an important positive implication. These
results suggest that there is more to the nature of cooperation, and hence to the detection
of coalitions, than simply benefit flows themselves. Similarity of behaviour appears to
be fundamental, suggesting that the clustering step of our algorithm is essential. This
finding should be noted by those, in future, who might consider approaches to coalition
detection that do not incorporate clustering.

6.3 Improved clustering

Having outlined how recursive refinement can be employed to improve team member-
ship identification, we now turn our focus to improving the ability of our algorithm to
detect coalitions, particularly under difficult circumstances. In the remainder of this
chapter, we propose further enhancements to Algorithm 5.1, to improve accuracy and
robustness.

We return now to the ballot-stuffing scalability test depicted in Figure 5.25. Recall
that, while performance against bad-mouthing was excellent throughout, performance
against ballot-stuffing deteriorated significantly as the agent population increased.

While exploring this issue, an examination of the detailed analysis records was in-
formative. In particular, it was observed that when classification errors were made, the
‘misses’ were usually the result of bad clustering:

• False negatives occurred when the clustering algorithm did not successfully sepa-
rate the coalition members from the mass of non-members. (It was not generally
the case that clusters consisting entirely of coalition members were incorrectly clas-
sified as non-coalitions.)

• False positives (although very few) typically occured when some non-members
were mistakenly grouped into a cluster with coalition members. (It was generally
not the case that an entire cluster consisting of purely non-members was mistakenly
classified as a coalition.)

130

Table 6.1: Agent counts by class and cluster; silhouette score of 0.00904.

Cluster number Non-colluders Coalition 1 Coalition 2
0 1 0 0
1 28 0 0
2 4871 50 50

Given a clustering problem, one might immediately seek to use a different clustering
method, or a different set of features. (We do discuss these options later in this doc-
ument.) However, an exploration of why we were missing was revealing. Recall that
Algorithm 5.1 clusters the data with a successively larger number of clusters; to choose
the optimal number of clusters, we select the set with the highest silhouette score, as
explained in Section 5.3.2. Unfortunately, silhouette decreases in usefulness as the agent
population increases.4 Data from one of the trials (where two coalitions of size 50 were
present) will illustrate. First, in Table 6.1 we present the cluster composition and score
when three clusters were used.5 Here, the clusterer has not separated the coalition
agents from the bulk of the larger population.

Compare these to the results when nine clusters are used, shown in Table 6.2. Here,
the clusterer has successfully separated the coalitions from the other agents, into pure
clusters. Note, however, that the silhouette score for the nine-cluster case is lower than
that for the three-cluster case. Our current algorithm (5.1) would select the 3-cluster
assignment, and would subsequently fail to detect the coalitions. Note that this failure is
entirely the result of the choice of number of clusters: the clustering method was capable
of delivering the desired separation.

The key problem

Based on this, one might conclude that silhouette is ineffective, and seek to replace
it with another such metric to choose the correct number of clusters. While this may
improve performance (an exhaustive exploration of other measures is beyond the scope

4We mean only to say that silhouette’s usefulness decreases for our usage, not that it is ineffective in
general for larger populations!

5Note that the cluster counts shown in the table are based on the agents’ true classes. This data is used
for evaluation purposes only—it is not available to the algorithm during analysis.

131

Table 6.2: Agent counts by class and cluster; silhouette score of 0.00758.

Cluster number Non-colluders Coalition 1 Coalition 2
0 1 0 0
1 4 0 0
2 2663 0 0
3 153 0 0
4 0 50 0
5 1 0 0
6 164 0 0
7 1914 0 0
8 0 0 50

of this work), there is reason to believe that looking beyond existing such metrics will be
more fruitful for our purposes.

Silhouette seeks to measure how well a clustering ‘fits’ the structure of the data—all of
the data. In contrast, we are unconcerned about how the cluster treats the non-member
data; our overriding concern is simply that coalitions be separated from non-coalitions
(and grouped together).

Recall that measures of cluster quality seek to balance conformity to the data against
the number of clusters: fewer clusters are preferred to large numbers of clusters, unless
a larger number conforms substantially better to the structure of the data. It is likely the
case that the 3-cluster allocation above provides better fit with all of the data than the
9-cluster allocation. A (conceptual) diagram of a hypothetical case, presented in Figure
6.14, illustrates this point.

In this diagram, the colours indicate the type of the object (black represents non-
colluders, and green and red represent two different coalitions.) Of course, the type is
not visible to the clusterer. The clustering on the left, using fewer clusters, provides a
good fit with the overall structure of the data, and likely matches what a human would
judge to be the groups in the data. The clustering on the right is probably worse for the
entire set of data: many more clusters are used, but without significantly better fit to the
shape of the data. However, the clustering on the right is preferable for our purposes,
because the coalitions have been separated from the rest of the population.

It is for this reason that other standard measures of clustering quality, while poten-

132

Figure 6.14: Two alternate clustering of the same data.

tially useful, are unlikely to be optimal for our purposes.

6.3.1 A new method for optimizing the number of clusters

To develop a superior method for optimizing the number of clusters, we turn to our own
tools.

The characterization method we developed in Section 5.3.3 has shown itself to be
highly resistant to false positives: typically, if a cluster is classified as a coalition, then it
legitimately consists of coalition members. This means that when our characterization
algorithm detects a coalition, those coalition members were separated from the rest of the
population into a cluster. It follows that our characterization algorithm can be used to
judge the quality of a clustering for our purposes: Because the method is resistant to
false positives, it is likely that the more coalition members we find, the better separation we
achieved.

Thus, we replace silhouette scoring in the clustering step of our algorithm (5.1) with
the method described in Algorithm 6.3.

Making this change, we apply the new algorithm (i.e., Algorithm 5.1 with the use
of silhouette replaced by this new method to find the number of clusters) again to the
ballot-stuffing scalability test from Figure 5.25. The results are shown in Figure 6.15,
with the performance of the Silhouette-based algorithm included for comparison. There

133

Algorithm 6.3 Characterization For Cluster Count

1. For each clustering result R:

(a) Apply the characterization method to each cluster C in R; the score for C is the
number of agents classified as coalition members.

(b) The total score for clustering R is the sum for all clusters C.

2. Choose the clustering with the highest score.

is a substantial increase in coalition detection accuracy. There has also been an increase
in false positives—selecting clusterings based on maximizing the number of positives
does increase the possibility of false positives—but the levels are still very low. Overall,
performance has significantly improved.

This new method for choosing the best clustering, based on characterization, is used
throughout the remainder of this document, except where noted.

0%	

20%	

40%	

60%	

80%	

100%	

0	 500	 1000	 1500	 2000	 2500	 3000	 3500	 4000	 4500	 5000	

Pe
rc
en

ta
ge
	 o
f	 a

pp
lic
ab

le
	 a
ge
nt
s	

Popula2on	 Size	

Avg.	 coali4on	 accuracy	 (using	 Silhoue>e)	

Avg.	 coali4on	 accuracy	 (using	
characteriza4on)	

Avg.	 false	 posi4ves	 (using	 Silhoue>e)	

Avg.	 false	 posi4ves	 (using	 characteriza4on)	

Figure 6.15: Performance using characterization to select the best clustering.

134

6.3.2 Multi-clustering

Note that, in step 1 of the improved method for determining the number of clusters
(Algorithm 6.3), we did not say ‘for each choice of number of clusters’, but rather, ‘for
each clustering result’. If we seek a clustering that maximizes the number of coalition
members detected, we need not be limited to only using a single clustering method.
Rather, we can easily apply multiple clustering methods, and choose the result which
gives us the greatest number of positives, regardless of which clusterer generated it.6

We will refrain from exploring a lengthy list of clustering methods; while a number
were explored, none had clearly superior performance. Here, we limit our discussion to
one that was found to be particularly complimentary to k-means: hierarchical cluster-
ing, specifically the ‘single-link’ method [28]. In this method, the dataset is initialized
by placing each element into a separate cluster. Then, we repeatedly choose the two
remaining clusters that are closest, and merge them. (In the single-link method, ‘closest’
is defined as the minimum distance between any point in the first cluster, and any point
in the second cluster.) We continue to merge clusters until we have reached the desired
number.7

In experiments, we found that k-means provided superior separation on some cases,
and the hierarchical algorithm on others. However, in combination, they are extremely
powerful. Our multi-clustering technique is presented in Algorithm 6.4. (Although not
reflected in this algorithm summary, in practice, characterization can be performed ef-
ficiently by caching or precomputing the distributions of β̄G and β̄Ḡ for given cluster
sizes.)

While we used k-means and hierarchical clusterers in our implementation, other
methods could be readily included.

Results

We apply this method to the same situation depicted in Figure 6.15, where only k-
means clustering was used. The results are shown in Figure 6.16, with the results for

6We still limit ourselves to similarity-based clustering methods, however, rather than any arbitrary
means of ‘slicing up’ the population. Based on the results in Section 6.2, there is reason to believe that
similarity is an essential characteristic of coalitions, and so it continues to be the basis of our algorithms.

7Obtaining clusterings for a varying number of clusters can be implemented fairly efficiently using this
method. For example, if we wanted to try numbers of clusters ranging from 2 to 10, we could simply begin
by repeating the merge step until 10 clusters were remaining. Then, a single merge operation yields the
set for 9 clusters, and so on.

135

Algorithm 6.4 Multi-clustering Coalition Detection and Identification

1. Map agents to points in benefit space.

2. For each clustering method M:

(a) Clustering: For each number of clusters k to be tried:

i. Apply clustering method M (for k clusters) to the input data set, obtaining
clustering result R.

ii. Characterization: For each cluster C in R:
Characterize C as a coalition if its benefit to members is unusually high,
or its benefit to outsiders is unusually low, as follows:
A. Repeatedly select random sets of agents G (of size |C|) from the pop-

ulation, and for each G, calculate β̄G (the average benefit from G to
its own members) and β̄Ḡ (the average benefit from G to outsiders).

B. If β̄C is unusually high (given the distribution from the random sam-
ples G), or if β̄C̄ is unusually low (given the distribution of from the
random samples S)G
• Classify C as a coalition, and all members as coalition members.
Otherwise:
• Classify C as a non-coalition, and all members as non-coalition-

members.
iii. If the number of colluders detected for R is the largest yet encountered,

store the resulting coalitions as the best set Rbest .

3. Return the best set of coalitions obtained, Rbest .

136

the k-means-only method included for comparison. Coalition detection accuracy is out-
standing; while all of the false-positives from the k-means algorithm are included in the
multi-clustering results as well, levels are still very low. The multi-clustering algorithm
represents a dramatic improvement over the k-means-only version (which was, itself, a
significant improvement over the silhouette-based approach.)

0%	

20%	

40%	

60%	

80%	

100%	

0	 500	 1000	 1500	 2000	 2500	 3000	 3500	 4000	 4500	 5000	

Pe
rc
en

ta
ge
	 o
f	 a

pp
lic
ab

le
	 a
ge
nt
s	

Poplua2on	 Size	

Avg.	 coali4on	 accuracy	 (Mul4-‐clustering)	

Avg.	 coali4on	 accuracy	 (k-‐means)	

Avg.	 false	 posi4ves	 (Mul4-‐clustering)	

Avg.	 false	 posi4ves	 (k-‐means)	

Figure 6.16: Performance using multi-clustering.

6.4 Improved characterization algorithm

The multi-clustering technique introduced in the previous section shows great potential
for detection. However, relying on the characterization method (described in Section
5.3.3) as much as it does, it also reveals a flaw in that method (which was not an issue
when Algorithm 5.1 was used with silhouette score). Figure 6.17 shows the results when
the multi-clustering algorithm is applied to the bad-mouthing test case in which different
trials have different bad-mouthing rates (i.e., the same test used in Figure 5.15). (In this,
and subsequent charts, trials for coalitions of size 50 and 100 have been combined into
single series, for clarity.) Performance here is horrific, with an immense false-positive
rate.

137

0%	

20%	

40%	

60%	

80%	

100%	

0	 0.25	 0.5	 0.75	 1	

Pe
rc
en

ta
ge
	 o
f	 a

pp
lic
ab

le
	 a
ge
nt
s	

Probability	 of	 bad-‐mouthing	 on	 needed	 product	

Avg.	 coali4on	 accuracy	

Avg.	 false	 posi4ves	

Figure 6.17: Bad-mouthing: performance of multi-clustering algorithm, with initial char-
acterization method from Section 5.3.3.

6.4.1 The problem

Examination of the detailed analysis logs shed light on the issue. False positives tended
to occur when:

• There was at least one coalition present in the population; and

• There was a large cluster consisting entirely of non-colluders.

Under these circumstances, the large cluster was often mistakenly classified as a coalition
by the characterization method.8 An example will help to illustrate why.

Consider a scenario where, in a population of 1,000, there are 200 ballot-stuffers (a
group we will call C). One of the clusters within our clustering consists entirely of 400
non-colluders. Recall that, to characterize this cluster (which we will call D) using the
method of Section 5.3.3, we take repeated random samples G of size 400, and for each

8This problem did not crop up when using Algorithm 5.1 with silhouette scoring. As noted in Section
6.3, silhouette was quite ‘conservative’ in favouring clusterings that resulted in fewer colluders being
detected; similarly, it avoided situations in which this problem arises. The use of characterization to
optimize the number of clusters, and the use of multi-clustering, is much more ‘aggressive’, accepting
greater risk of false positives in order the increase the ability to detect colluders. The improvement made
in this section reduces this risk dramatically, however, allowing us to use this more aggressive approach
without high false positive rates.

138

G, calculate how much members of G benefit each other, on average, and how much they
benefit outsiders. Using these samples we get a distribution of the sample means.

To determine if D is a coalition, we compute the average benefit members give to each
other, and the average benefit they give to outsiders. If the benefit to members is high
(or the benefit to outsiders low), relative to the distribution over G, then we conclude
that the group is favouring its own members, and classify it as a coalition.

Now, consider the sampling process, as depicted in Figure 6.18. Because we are
sampling a large portion of the population (400 out of 1000), samples G will often have
many members of C inside them, and many members outside them. Consider one sample
G, and an arbitrary pair of agents {a,b ∈C,a ∈ G,b /∈ G}, as illustrated in the diagram.
Because a and b are ballot-stuffing, they benefit each other more than ‘typical’ agents.
Because a is in G and b is outside G, this counts towards the measure of benefit flowing
from G to outsiders: it inflates it, above the level of ‘typical’ agents. Because there will be
many such pairs, in most of the samples, the overall benefit flowing to outsiders, across
samples, is substantially inflated.

GC

b

a

Figure 6.18: The sampling process.

When it comes time to characterize D, the situation illustrated in Figure 6.19 arises.
Because C was separated from D by the clusterer, all of the colluding agents (all pairs
{a,b}) are entirely outside of D. When we calculate the benefit flowing from D to out-
siders, then, it is that of non-colluding, ‘typical’ agents. However, because the sampling
average was so inflated, D falls far below the average over the samples G. D looks like
it is benefitting outsiders far less than a ‘random’ coalition would, and hence, is wrongly
classified as a coalition.

139

DC

b

a

Figure 6.19: Characterization.

6.4.2 The solution: an improved characterization algorithm

Seen this way, the solution to the problem is fairly direct: clusters should be characterized
compared to ‘typical’ agents, not to colluders. As such, we simply exclude suspected
coalitions when taking samples for characterization.

This creates a chicken-or-egg problem: how can we exclude suspected coalitions from
characterization, when we need to characterize a cluster to determine if it is a coalition?
Our solution relies on two properties:

1. Large clusters are more likely to be impacted by this problem than small clusters,
because larger samples are more likely to contain significant numbers of coalition
members. Thus, we characterize clusters from the smallest to the largest, adding
each detected coalition to the ‘exclude list’ as we proceed.

2. While larger clusters tend to be affected more than smaller ones, it is still often
true that a smaller cluster is impacted by a larger coalition. However, we note
that the sampling problem causes non-coalitions to be classified as coalitions (false
positives); there is no corresponding phenomenon that causes coalitions to be mis-
takenly classified as non-coalitions (false negatives). Put another way, removing
agents from the sample ‘pool’ may result in classifications switching from positive
to negative, but usually does not result in switches from negative to positive. Thus,
making a second pass over the list, with the exclusion list generated in the first pass
(and removing clusters from the list that no longer ‘fail’ the characterization test),

140

is generally sufficient to eliminate false positives.9

We incorporate this improved characterization method into our multi-clustering al-
gorithm (6.4), resulting in Algorithm 6.5. (Changes from Algorithm 6.4 are shown in
boldface.)

Reduction in false positives

We return to the case where we encounter extreme levels of false positives using Algo-
rithm 6.4 (Figure 6.17), but this time applying the improved algorithm (6.5). The results
are shown in Figure 6.20. False positives have been nearly eliminated.

0%	

20%	

40%	

60%	

80%	

100%	

0	 0.25	 0.5	 0.75	 1	

Pe
rc
en

ta
ge
	 o
f	 a

pp
lic
ab

le
	 a
ge
nt
s	

Probability	 of	 bad-‐mouthing	 on	 needed	 product	

Avg.	 coali4on	 accuracy	

Avg.	 false	 posi4ves	

Figure 6.20: Bad-mouthing: performance of multi-clustering algorithm, with improved
characterization algorithm.

6.4.3 Addressing difficult cases

In Section 5.5, a number of circumstances were noted to be difficult for the (initial)
detection algorithm (5.1). Earlier in this section, the issue of increasing population sizes
was addressed. Now, with this improved algorithm (6.5) in hand, we return to the other
cases. First, we consider the issue of varying rates of collusion.

9One might, for certainty, continue to make passes over the clusters until a static state is reached, but:
a) this is likely unnecessary—in most cases, two passes should be sufficient; b) we offer no guarantees that
this approach would terminate.

141

Algorithm 6.5 Multi-clustering Coalition Detection and Identification with Improved
Characterization

1. Map agents to points in benefit space.

2. For each clustering method M:

(a) Clustering: For each number of clusters k to be tried:

i. Apply clustering method M (for k clusters) to the input data set, obtaining
clustering result R.

ii. Initialize set of suspected coalitions Csuspect to empty
iii. Repeat twice:

• Characterization: For each cluster C (from smallest to largest) in R:
Characterize C as a coalition if its benefit to members is unusually
high, or its benefit to outsiders is unusually low, as follows:

A. If C is in Csuspect , remove it
B. Repeatedly select random sets of agents G (of size |C|) from (pop-

ulation \Csuspect) , and for each G, calculate β̄G (the average benefit
from G to its own members) and β̄Ḡ (the average benefit from G to
outsiders).

C. If β̄C is unusually high (given the distribution from the random sam-
ples G), or if β̄C̄ is unusually low (given the distribution of from the
random samples G):
– Classify C as a coalition, and all members as coalition members;

add C to Csuspect

Otherwise:
– Classify C as a non-coalition, and all members as non-coalition-

members.
• If the number of colluders detected for R is the largest yet encoun-

tered, store the resulting coalitions as the best set Rbest .

3. Return the best set of coalitions obtained, Rbest .

142

Varying rates of collusive activity

Applying the new algorithm (6.5) to the test in which bad-mouthing rates (Figures 5.17
and 5.19) and ballot-stuffing rates (Figures 5.18 and 5.20) vary per agent, yields the
results shown in Figures 6.21 and 6.22, respectively. Again, trials for clusters of size
50 and 100 have been combined into single series, for clarity; the performance of the
original algorithm (5.1) has been included for comparison.

In both cases, the multi-clustering algorithm provides substantially better coalition
detection, with no increase in false positives.

0%	

20%	

40%	

60%	

80%	

100%	

0	 0.05	 0.1	 0.15	 0.2	 0.25	 0.3	

Pe
rc
en

ta
ge
	 o
f	 a

pp
lic
ab

le
	 a
ge
nt
s	

Standard	 devia4on	 in	 bad-‐mouthing	 probability	

Avg.	 coali4on	 accuracy	 (original	 algorithm)	

Avg.	 coali4on	 accuracy	 (improved	 mul4-‐
clustering)	

Avg.	 false	 posi4ves	 (original	 algorithm)	

Avg.	 false	 posi4ves	 (improved	 mul4-‐
clustering)	

Figure 6.21: Bad-mouthing: Performance with random probability of collusive be-
haviour.

Low levels of collusive activity

As we learned in Figures 5.19 and 5.20, however, detection performance seems to relate
more to individual agents’ collusion rates, than to the variability parameter for a given
trial. Figures 6.23 and 6.24 show detection performance broken down on the x-axis by
the collusion rates of individual agents. (As in Chapter 5, for display, collusion rates
were discretized, with bins of 0.05 in width.) In the bad-mouthing case (Figure 6.23),
the threshold has moved dramatically to the left: the multi-clustering algorithm is suc-
cessfully detecting agents at much lower levels of collusive activity. In the ballot-stuffing
case (Figure 6.24), we see a slight shift to the left, as well as much stronger performance
across the entire range of ballot-stuffing activity.

143

0%	

20%	

40%	

60%	

80%	

100%	

0	 0.05	 0.1	 0.15	

Pe
rc
en

ta
ge
	 o
f	 a

pp
lic
ab

le
	 a
ge
nt
s	

Standard	 devia4on	 in	 ballot-‐stuffing	 propor4on	

Avg.	 coali3on	 accuracy	 (original	 algorithm)	

Avg.	 coali3on	 accuracy	 (improved	 mul3-‐
clustering)	

Avg.	 false	 posi3ves	 (original	 algorithm)	

Avg.	 false	 posi3ves	 (improved	 mul3-‐
clustering)	

Figure 6.22: Ballot-stuffing: Performance with random proportion of collusive behaviour.

0%	

20%	

40%	

60%	

80%	

100%	

0	 0.25	 0.5	 0.75	 1	

Pe
rc
en

ta
ge
	 o
f	 a

pp
lic
ab

le
	 a
ge
nt
s	

Probability	 of	 bad-‐mouthing	 on	 needed	 product	

Avg.	 coali4on	 accuracy	 (original	 algorithm)	

Avg.	 coali4on	 accuracy	 (improved	 mul4-‐
clustering)	

Avg.	 false	 posi4ves	 (original	 algorithm)	

Avg.	 false	 posi4ves	 (improved	 mul4-‐
clustering)	

Figure 6.23: Bad-mouthing: Performance with random collusive probability, by agent’s
individual probability.

Small coalitions

Having improved the algorithm’s performance on other cases noted in Section 5.5 to
be challenging, we turn to the remaining issue: small coalitions. Figures 5.7 and 5.9
presented the coalition detection accuracy of the original algorithm (5.1) for coalitions
as small as 25 members. Performance was quite strong against bad-mouthing, but there
was a marked deterioration in ballot-stuffing detection for smaller coalitions. Now, we

144

0%	

20%	

40%	

60%	

80%	

100%	

0	 0.15	 0.3	 0.45	 0.6	

Pe
rc
en

ta
ge
	 o
f	 a

pp
lic
ab

le
	 a
ge
nt
s	

Ballot-‐stuffing	 propor5on	

Avg.	 coali4on	 accuracy	 (original	 algorithm)	

Avg.	 coali4on	 accuracy	 (improved	 mul4-‐
clustering)	

Avg.	 false	 posi4ves	 (original	 algorithm)	

Avg.	 false	 posi4ves	 (improved	 mul4-‐
clustering)	

Figure 6.24: Ballot-stuffing: Performance with random collusive proportion, by agent’s
individual probability.

explore the issue further, considering coalitions ranging in size from five to 25 members,
and applying the improved multi-clustering algorithm (6.5).

Bad-mouthing: While Algorithm 5.1 performed well for ballot-stuffing coalitions as
small as 25 members, Figure 6.25 shows that detection performance does, indeed, de-
cline for the smallest of groups. (We present only the coalition detection accuracy results
throughout this section, for brevity; false positive rates were vanishingly small, in all
cases.)

In comparison, Figure 6.26 shows excellent performance, even for the smallest of
coalitions.

Ballot-stuffing: The improvement is even more dramatic in the base of ballot-stuffing.
Figure 6.27 shows the limited performance of the Algorithm 5.1; in contrast, Figure 6.28
achieves complete accuracy.

The improvements made in this chapter appear to have remedied the weakness of the
algorithm to small coalitions.

The improved multi-clustering algorithm (6.5), which demonstrates strong perfor-
mance even in difficult circumstances, is used throughout the remainder of this docu-

145

0%	

20%	

40%	

60%	

80%	

100%	

0	 5	 10	 15	 20	 25	

Pe
rc
en

ta
ge
	 o
f	 a

pp
lic
ab

le
	 a
ge
nt
s	

Coali2on	 Size	

1	 coali/on	

2	 coali/ons	

3	 coali/ons	

4	 coali/ons	

Figure 6.25: Original algorithm: Bad-mouthing detection performance against small
coalitions.

0%	

20%	

40%	

60%	

80%	

100%	

0	 5	 10	 15	 20	 25	

Pe
rc
en

ta
ge
	 o
f	 a

pp
lic
ab

le
	 a
ge
nt
s	

Coali2on	 Size	

1	 coali/on	

2	 coali/ons	

3	 coali/ons	

4	 coali/ons	

Figure 6.26: Improved multi-clustering algorithm: Bad-mouthing detection perfor-
mance against small coalitions.

ment, unless otherwise noted.

146

0%	

20%	

40%	

60%	

80%	

100%	

0	 5	 10	 15	 20	 25	

Pe
rc
en

ta
ge
	 o
f	 a

pp
lic
ab

le
	 a
ge
nt
s	

Coali2on	 Size	

1	 coali/on	

2	 coali/ons	

3	 coali/ons	

4	 coali/ons	

Figure 6.27: Original algorithm: Ballot-stuffing detection performance against small
coalitions.

0%	

20%	

40%	

60%	

80%	

100%	

0	 5	 10	 15	 20	 25	

Pe
rc
en

ta
ge
	 o
f	 a

pp
lic
ab

le
	 a
ge
nt
s	

Coali2on	 Size	

1	 coali/on	

2	 coali/ons	

3	 coali/ons	

4	 coali/ons	

Figure 6.28: Improved multi-clustering algorithm: Ballot-stuffing detection perfor-
mance against small coalitions.

6.4.4 From here

While the refinements presented in this chapter have significantly improved performance,
and addressed the cases found challenging by our original algorithm, opportunities still
exist for further gains. In the next chapter, we introduce the time dimension to our anal-
ysis. This allows us to explore other aspects of coalition detection, and to pursue further

147

enhancements.

148

Chapter 7

The Time Dimension, and Dynamic
Coalitions

To this point, all of our analysis has been done at one ‘snap-shot’ in time—specifically,
we have compiled all data during each simulation run, and analyzed it after the 1000th

round. A number of questions, and possibilities, arise when we consider the time element
of marketplace operation. We explore several such issues here.

7.1 Speed of convergence

Just as it may be useful to detect coalitions, it may also be useful to do so quickly.
For example, if we are hoping to detect colluders in a marketplace, the sooner we find
them, the sooner we might take corrective action. Thus far, our methods have shown a
strong accuracy in detecting coalitions; here we consider how quickly (or, with how little
information) it can achieve that accuracy.

To explore this issue, we conducted experiments where benefit data was aggregated
round-by-round, and detection was performed at the end of each round. Figure 7.1
presents the performance of the improved multi-clustering algorithm (6.5) over an ex-
ample set of trials, in each of which a single bad-mouthing coalition of size 100 was
present in a population of 1000. As in previous tests, the coalition members only bad-
mouthed when purchasing products for legitimate needs. Round number is mapped to
the x-axis—the chart depicts performance as time progresses. (Because we are interested

149

in the speed with which detection performance reaches its typical long-term level, only
the initial rounds of the trials are shown.)

0%	

20%	

40%	

60%	

80%	

100%	

0	 5	 10	 15	 20	 25	 30	 35	 40	

Pe
rc
en

ta
ge
	 o
f	 a

pp
lic
ab

le
	 a
ge
nt
s	

Round	

Avg.	 coali4on	 accuracy	

Avg.	 false	 posi4ves	

Figure 7.1: Detection accuracy by round, as information is accumulated.

Note that in our simulations, there is a delay (14 rounds) between the time of pur-
chase (i.e., when payment is made), and the time at which the good is received and
evaluated (and hence, would turn up in reviews). Thus, no detection is possible until
review data first becomes available in round 15 (i.e., for purchases made in round 1).

As can be seen in Figure 7.1, the very first detection occurs in round 19, with only
four rounds’ worth of data. Performance is limited with so little data, however: there are
some false positives present in the first few rounds of detection, and coalition detection
accuracy is low. By round 27, however (only 12 rounds after data first started to be accu-
mulated), classification accuracy has converged to customary levels. This is encouraging,
indicating that classifications can be made quite quickly.

7.2 Dynamic Coalitions

As we consider the operation of a marketplace over time, it is natural to consider the
behaviour of coalitions over time as well. As we seek to identify coalition membership,
perhaps the most interesting question might be, what if coalition membership changes?

Indeed, depending on the nature of the coalition, changes in membership may be
quite likely. A strongly coordinated coalition (in the extreme case, a set of accounts

150

all controlled by one entity) might be entirely stable; in contrast, a casual group of
self-interested individuals, who collaborate only out of convenience, may be subject to
frequent change. Agents may join coalitions, switch between coalitions, or stop collabo-
rating and continue as individuals.

To determine current memberships at any given moment, one might restrict analysis
to very recent information, discounting older (and possibly obsolete) data. As we have
seen in the previous section, however, some quantity of information is required before
reasonably accurate classifications can be made—relying only on the most recent data
may prove inadequate.

A solution to this problem, which has been used frequently in the area of trust and
reputation, is the use of a forgetting factor (e.g., [29, 52, 86, 88]). Essentially, the weight
of each review is reduced with passage of time; historical information is incorporated
into analysis, but more recent information is favoured.

We follow the form of forgetting factor introduced by Jøsang [29]. In our implemen-
tation, at any given moment a benefit score b is used in analysis, where b is a weighted
sum of the most recent information, and accumulated historical information. Specifically,
for every source agent a, and every target agent i, the benefit score b used in time step n
is

bi,n(a) = wcβi,n(a)+wpbi,n−1(a) (7.1)

(recalling that βi,n(a) is the amount of benefit flowing from agent a to agent i, here in
time step n) where wc and wp are the weights applied to current information and past
information respectively. Where wp<1, each act of benefit will decrease in importance
with each additional time step. The benefit scores b are the inputs to the detection
algorithm, rather than the raw benefit values β .

7.2.1 Results

We apply this approach to a scenario where the membership of ballot-stuffing coalitions
changes as time progresses, as shown in Figure 7.2. In this test, there are two coalitions
of size 100 present. In addition, there are 100 ‘inactive’ colluders present as well—
agents that do not currently belong to a coalition, but may join one at a later time—for
a total of 300 potential colluders, in a population of 1000. For ease of interpretation,
colluders change memberships at two points during the simulation run: in round 400,
and round 800. At that time, 50 members leave each coalition, to be replaced by 50
new members. A member departing a coalition may join the other coalition, or may

151

become inactive; similarly, a member joining a coalition may have come from the other
coalition, or may have come from the pool of inactives. In this test, we consider it correct
to classify currently-inactive members as non-colluders, because they have no coalition
membership at the present time.

For efficiency, we aggregate benefit (which we refer to as polling) every tenth round,
rather than every round.1 The improved multi-clustering algorithm (6.5) was used, and
weights of wc = 1.0 (current) and wp = 0.8 (past) were used. (This means that data would
carry a weight of 1 in the period in which it occurs, 0.8 one period later, 0.82 = 0.64 two
periods after it occured, and so on.)

0%	

20%	

40%	

60%	

80%	

100%	

0	 200	 400	 600	 800	 1000	

Pe
rc
en

ta
ge
	 o
f	 a

pp
lic
ab

le
	 a
ge
nt
s	

Round	

Avg.	 coali2on	 accuracy	

Avg.	 false	 posi2ves	

Figure 7.2: Detection accuracy, dynamic coalitions.

As can be seen in Figure 7.2, there are sudden drops in detection accuracy, and in-
creases in false positives, immediately following the changes in coalition membership in
rounds 400 and 800. This is expected—an agent may have left a coalition, for example,
but he will need to engage in some transactions before this new strategy is visible to
others. Note, however, that detection accuracy jumps back to near-optimal levels very
quickly after each change in coalition memberships. False positives return to very low
levels as well, albeit not as quickly as detection accuracy is restored.

1Here, we do not refer to the efficiency of the algorithm itself, but rather, the efficiency of our exper-
imental setup. Our testbed is designed to write simulation data to file (rather than having it analyzed
online during simulation operation); this is necessary, if we are to be able to subsequently analyze the data
with a variety of algorithms. Polling requires (large) files capturing all transaction data to be written at
every polling interval; analysis subsequently requires every such file to be read in its entirely. Thus, polling
(particularly a high polling frequency) dramatically increases I/O time, in a way that need not occur in
practice.

152

As explained in Section 6.1, detection accuracy and false positives address whether
or not an agent has individually been classified as a colluder, but do not consider the
grouping/separation of agents. Here, then, these measures speak primarily to the issue
of whether an agent has stopped or started colluding.

Of course, an important aspect of dynamic coalitions is that members also move from
one coalition to another. To determine our degree of success in detecting these changes
in membership, we look again to purity. Figure 7.3 depicts the purity results for the
analysis shown in Figure 7.2.

0%	

20%	

40%	

60%	

80%	

100%	

0	 200	 400	 600	 800	 1000	

Pe
rc
en

ta
ge
	 o
f	 a

pp
lic
ab

le
	 a
ge
nt
s	

Round	

Purity	

Figure 7.3: Purity, dynamic coalitions.

Two points are evident in this figure. First, there is a drop in purity after rounds
400, and 800, as coalition membership is shuffled; purity subsequently increases as the
detection algorithm makes use of new information. Second, the purity scores are not
particularly strong. (Consider that if we placed all 300 colluders (two active coalitions
of 100, and 100 inactive agents) into the same coalition, the result would be a purity of
100/300≈ 0.33.) For this reason, the pattern noted in the first point is much subtler than
for detection accuracy.

These purity results are not unexpected, however. As noted in Section 6.1, the al-
gorithm (without further refinement) has limited success in separating coalitions from
one another; this was the very inspiration for recursive refinement. We applied recursive
refinement (Algorithm 6.1), then, to our analysis, yielding the purity results in Figure
7.4.

153

0%	

20%	

40%	

60%	

80%	

100%	

0	 200	 400	 600	 800	 1000	

Pe
rc
en

ta
ge
	 o
f	 a

pp
lic
ab

le
	 a
ge
nt
s	

Round	

Purity	

Figure 7.4: Purity, with recursive refinement, for dynamic coalitions.

Here, we see very strong performance. Purity drops each time members move be-
tween coalitions, but is restored very quickly to near-optimal levels. With the application
of recursive refinement, our method separates members of coalitions well, and adapts
swiftly to changes in coalition membership.

Nevertheless, as noted in Section 6.1, purity only tells part of the story: whether
members of different coalitions have been separated. Rand index sheds light on the issue
of whether members of the same coalition have been grouped together (an important
concern, albeit one that is not as critical as purity). Figure 7.5 shows the RI results after
the application of recursive refinement.

These results, taken in combination with those for purity, indicate that members of
different coalitions are separated into different clusters in almost all cases, and in the
majority of cases, members of the same coalition are placed into the same cluster.

7.3 A new feature set: TF-IDF

Introducing the time dimension provides the opportunity to deepen our analysis of agent
behaviour. Most of the preceding chapters have focused on techniques to analyze benefit
data; now we revisit the question, how can we measure benefit? Of course, we are still
limited to the same set of observable actions as before, but the timing of such actions
provides additional information: actions may be more or less beneficial, depending on

154

0%	

20%	

40%	

60%	

80%	

100%	

0	 200	 400	 600	 800	 1000	

Ra
nd

	 In
de

x	

Round	

Figure 7.5: Rand index, with recursive refinement, for dynamic coalitions.

their timing, and the situation at the time they occur.

For example, consider two agents a and b, each attempting to make sales. Further,
consider that a has made very few sales to date (say, five, all with positive reviews), and
hence has very little reputation. In contrast, b has made 1000 sales (each with a positive
review). Now, consider that these agents are the beneficiaries of ballot-stuffing. In most
reputation systems, the incremental benefit of one additional positive review will be
higher for a (who has very few such reviews) than for b. Note too, that a (ballot-stuffing)
purchase probably constitutes a large portion of a’s sales for that period—because he has
little reputation, he wins few sales. An additional purchase from b, however, is probably
just one of many such sales. Thus, the sale is of much more benefit to a, and it is also
more unusual.

At a later moment in time, after a has won many sales and reached a level of success
comparable to b, an additional (ballot-stuffing) sale will no longer be so unusual—nor
so beneficial.

7.3.1 TF-IDF

The notion of unusualness is reminiscent of the TF-IDF (term frequency-inverse docu-
ment frequency) measure [64] well known in information retrieval. When considering a
document within a corpus, TF-IDF seeks to determine the importance of a given word to
that document (for example, to attempt to characterize the content of that document or

155

to identify key topics within it.) The ‘TF’ portion, term frequency, refers to the number of
times that the word in question appears in the document2—the reasonable presumption
is made that the more frequently a word appears in a document, the more representative
it might be of that document’s content. For example, if the word ‘weed’ appeared once
in a document, it might have little to do with that document’s theme: for instance, the
author may have used the expression ‘grow like a weed’. In contrast, if ‘weed’ appeared
15 times, it would be much more likely to indicate that the document is weed-related:
invasive weeds, weed control, etc.

Counter to this, is the fact that some words occur very frequently, but carry little infor-
mation about the content of a document: e.g., ‘the’, ‘go’, ‘one’, etc. Thus, the importance
of term frequency is reduced for words that have high ‘document frequency’, meaning
they occur frequently in the corpus. IDF, the inverse document frequency is the (inverse)
proportion of documents in the corpus that contain the word in question.3

TF-IDF, the product of term frequency and inverse document frequency, then, pro-
vides a score indicative of how important or noteworthy a word is to a document.

7.3.2 TF-IDF and coalition detection

The concepts of TF-IDF also apply to our problem. We are trying to characterize the
behaviour of agents, similar to how TF-IDF can be used to characterize the content of
documents. Until now, we have considered the quantity of beneficial actions occurring
between agents; this represents the the ‘TF’ portion—but only to a point. As explained in
Section 5.2.3, we have used ‘net benefit’ as our measure: benefit minus harm. From a TF-
IDF perspective, beneficial actions and harmful actions need to be considered separately
because, for example, positive reviews of a given target agent may be common, but
negative ones might be unusual. Further, to know if a’s negative review of b is unusual,
we need to know what constitutes ‘unusual’: we have not considered the ‘IDF’ issue at
all.

On this basis, we developed a benefit measure similar to TF-IDF. Where TF-IDF uses
counts of words/documents, however, we do not use the most direct analogs (e.g., counts
of actions/agents), for two reasons. First, as we noted earlier, domain expertise is re-
quired to identify those actions that are truly beneficial in a given scenario. In a given

2In fact, term frequency is normalized for document length, so it is more accurate to say ‘the number
of times the word appears in the document, as a proportion of the total words’.

3In fact, the logarithm of IDF is used, so that reasonably frequently occurring words (e.g., ‘five’) aren’t
given substantially higher weights than very common words (e.g., ’the’).

156

domain, counts of actions might be the best measure (e.g., number of reviews), or ac-
tions might have different weights (e.g., review score, or dollar value of transaction).
Second, in a busy, well-connected marketplace, it may be the case that most agents have
interacted with one another: counts of the number of agents are of little utility. Thus, we
have defined our formula such that any measure of benefit β can be used.

bi,n(a) denotes the benefit score used in analysis, at time step n, for the benefit flowing
from agent a to agent i. In each time step, the new benefit score is calculated by adding
an update, ∆b, to the benefit score from the last time step:

bi,n(a) = bi,n−1(a)+∆bi,n(a) (7.2)

Implicit, here, is the fact that we now allow multiple dimensions per agent. For
example, in our application, there were two separate dimensions for each target agent:
benefit and harm. Formally, the b values should also be subscripted by the number of
dimensions being tracked per agent pair, but we have omitted this for clarity of notation.

The calculation of the updates ∆b is where the TF-IDF-like computation occurs:

∆bi,n(a) = βi,n(a)∗ log
∑ j∈P,k∈P |βk(j)|

∑ j∈P βi(j)
(7.3)

Essentially, the ‘TF’ component is the amount of benefit (or harm) flowing from a to
i in the most recent time period, βi,n(a). The ‘DF’ component is the amount of benefit
(or harm) flowing from all agents in population P to agent i, as a proportion of the total
benefit amongst all agents in the system. (DF includes all recorded transactions, not just
those from the most recent time period. Note that acts of benefit are still likely to have
positive values, and acts of harm are likely to have negative values. It is for this reason
that we take the absolute value when summing the grand total of all actions.) The TF
portion represents the amount of benefit/harm flowing from a to i; multiplying it by
the inverse DF reduces the weight of the TF portion, to the degree that similar actions
towards i have been common in the past.4

7.3.3 Results

We tested this measure to determine if it could improve detection performance, beyond
the ‘raw’ benefit scores used previously. In previous tests, enhancements had pushed

4Again, a forgetting factor can be applied to b values and β values from past time steps, in order to
favour recent activity.

157

many of our benchmarks to the point where there was little opportunity to make (or
at least, little opportunity to discern) substantial performance improvements. Thus, we
have developed two new test scenarios that combine several complicating factors.

In these tests, there are two small coalitions present (of size 25). Agents cheat with
varying probability by individual (mean probability 0.25, with standard deviation of 0.2),
and also vary individually in their overall buying rates (mean of 4, standard deviation of
1). Collusion rates are also variable by individual (bad-mouthing: mean of 0.3, standard
deviation of {0.025, 0.05, 0.1} on different trials; ballot-stuffing: mean of 0.2, standard
deviation of {0.05, 0.1, 0.15} on different trials).

We made use of the Algorithm 6.5; the results using our ‘TF-IDF’ measure are com-
pared to those using ‘raw’ benefit. Figure 7.6 depicts performance in the bad-mouthing
case.

0%	

20%	

40%	

60%	

80%	

100%	

0	 0.025	 0.05	 0.075	 0.1	

Pe
rc
en

ta
ge
	 o
f	 a

pp
lic
ab

le
	 a
ge
nt
s	

Standard	 devia4on	 in	 bad-‐mouthing	 probability	

Avg.	 coali4on	 accuracy	 (using	 TF-‐IDF)	

Avg.	 coali4on	 accuracy	 (using	 raw	 benefit)	

Avg.	 false	 posi4ves	 (using	 TF-‐IDF)	

Avg.	 false	 posi4ves	 (cusing	 raw	 benefit)	

Figure 7.6: Bad-mouthing: performance of ‘TF-IDF’ vs. ‘raw’ benefit.

There is a clear, substantial improvement in detection performance.

As we have done previously, we show the same results, but broken down by individual
bad-mouthing rate, in Figure 7.7. The threshold has moved substantially to the left using
TF-IDF, meaning that colluders are being detected at much lower individual collusion
rates.

The results against ballot-stuffing are shown in Figure 7.8. Here, the performance
using raw benefit exceeds that using TF-IDF. Obviously, this is not the ideal result, but
there is still interesting potential here, as discussed below.

158

0%	

20%	

40%	

60%	

80%	

100%	

0	 0.2	 0.4	 0.6	

Pe
rc
en

ta
ge
	 o
f	 a

pp
lic
ab

le
	 a
ge
nt
s	

Probability	 of	 bad-‐mouthing	 on	 needed	 product	

Avg.	 coali2on	 accuracy	 (using	 TF-‐IDF)	

Avg.	 coali2on	 accuracy	 (using	 raw	 benefit)	

Figure 7.7: Bad-mouthing: performance of ‘TF-IDF’ vs. ‘raw’ benefit, by individual bad-
mouthing rate

0%	

20%	

40%	

60%	

80%	

100%	

0	 0.05	 0.1	 0.15	

Pe
rc
en

ta
ge
	 o
f	 a

pp
lic
ab

le
	 a
ge
nt
s	

Standard	 devia4on	 in	 ballot-‐stuffing	 propor4on	

Avg.	 coali3on	 accuracy	 (using	 TF-‐IDF)	

Avg.	 coali3on	 accuracy	 (using	 raw	 benefit)	

Avg.	 false	 posi3ves	 (using	 TF-‐IDF)	

Avg.	 false	 posi3ves	 (cusing	 raw	 benefit)	

Figure 7.8: Ballot-stuffing: performance of ‘TF-IDF’ vs. ‘raw’ benefit.

Multi-measure detection

As explained in Section 6.3.2, we are able to use multiple clustering methods in parallel:
because our characterization method is resistant to false positives, we can maximize
detection by choosing the result with the largest number of detected colluders.

Looking at Figure 7.8, we can see that the same situation holds: although TF-IDF did

159

not provide improvements in detection, it did not introduce significant false-positives, ei-
ther. The fact that TF-IDF does improve detection in some situations, without appearing
to introduce false positives, suggests that it may be useful to combine TF-IDF with other
measures. In addition to using multiple clustering algorithms in parallel (as in Algorithm
6.5), we might also use multiple benefit measures in parallel. In this way, we might ob-
tain improved performance in many situations (like Figure 7.6), but without detrimental
impact in others. Exploration of this is future work.

7.4 Discussion

Consideration of the time dimension both introduces new issues, and provides new op-
portunities for increasingly sophisticated detection methods.

Beyond the issues discussed above, two other conclusions might be drawn from our
results using the ‘TF-IDF’ measure.

First, it seems evident that improved measures of benefit have the potential to im-
prove performance. The importance of developing such measures, and of domain exper-
tise in identifying them, seems clear.

Second, these results hold implications for the application of our work to other do-
mains. While derived from the same data, raw benefit and TF-IDF are entirely different
measures. That both would provide strong results validates the ability of our method to
handle a variety of data representations. This suggests promise for applying our tech-
niques in other domains: our methods may, in fact, cope with data generated in different
scenarios, just as they have done for very different measures generated from the same
scenario.

160

Chapter 8

Applying Coalition Detection: A
Collusion-Resistant Reputation System

We now return to the original problem that inspired our investigation of coalition de-
tection: the vulnerability of trust and reputation systems (TRSes) to collusive attacks.
As demonstrated in Chapter 4, there is widespread vulnerability amongst TRSes to bad-
mouthing and ballot-stuffing attacks: coalitions employing these tactics are much more
profitable than non-colluding agents, meaning that there is an incentive to engage in
such activity.

In this chapter, we present a reputation system that is resistant to such collusive
attacks. To develop such a system, one might construct an entirely new mathematical
model; the principles of our work (such as the importance of similarity, and of mutually
beneficial benefit flows) might be the fundamental basis of such a system. A likely goal
would be for the system to be ‘collusion proof’, in the sense that it could be proven that
collusion was less profitable than independence, so that there would be a disincentive for
collaboration. (We discuss issues around the development of such a system later in this
chapter.) Here, however, we take a different approach: incorporation of our coalition
detection method into an existing TRS, to make it resistant to collusion. We do so to
illustrate one potential usage of the tool we have developed, and specifically, to show
how our generally-applicable tool (coalition detection) can be applied to domain-specific
problems. Our focus here is on electronic marketplaces.

161

8.1 Collusion-Resistant Beta Reputation System

We make use of the Beta Reputation System (BRS) [29] (as we have in preceding chap-
ters), because it is frequently cited and well studied. Further, its clear and direct formu-
lation make it quite compatible with the incorporation of a system such as our detection
algorithm.1

As noted in Chapter 4, BRS in its original form is vulnerable to ballot-stuffing and
bad-mouthing.

In BRS, agents make use of their own experience in evaluating the trustworthiness
of others, but also make use of advice provided by other agents. In presenting BRS, the
authors note that advice received from other agents may not be reliable. For example,
when agent X requests advice from agent Y about target agent T , Y ’s review may not
reflect T ’s true character. A system for coping with this issue is presented, reputation
discounting, where X ’s faith in Y ’s review of T is dependent on X ’s experience of Y ’s
trustworthiness. [29]

The system we propose here is consistent with this reputation discounting in prin-
ciple, although the mechanism is different. Reputation discounting suggests that we
should place less faith in information provided by agents if we don’t know them to be
trustworthy. Here, we take the position that if we believe agents to be colluders, we can-
not trust them at all. We propose that, beyond each agent relying on its own experience
of those agents providing reviews, it also take into account the findings of the coalition
detection algorithm (here, the improved multi-clustering algorithm, 6.5). Specifically, at
each desired interval (e.g., once per day), the detection algorithm is run on all reviews
that have been registered in the past. If coalitions are detected, reviews likely to be
resulting from collusive behaviour are discounted. Specifically:

• If a coalition is detected, we cannot trust the reviews that suspected members have
given in the past, because each such review may be a collusive action.2 We cannot
determine with certainly exactly how long the collusive activity has been occurring,

1As we have done throughout this work, we have assumed complete connectivity—that all agents
receive reviews from all other agents. Equivalently, for our purposes, we could assume that a central
repository holds all reviews.

2While a detected coalition is a group that is treating its members substantially better than it is treating
outsiders, we have made no guarantee that such a detected coalition is necessarily malicious. Despite
this, because we have no means of inferring intention, we conservatively treat all detected coalitions as
suspicious.

162

nor exactly who might be the beneficiaries or victims, so we disregard all previous
reviews given by suspected colluders.

• At the same time, if a coalition is detected, we cannot trust the reviews that sus-
pected members have received in the past. Some of the reviews might have been
collusive actions, in the form of ballot-stuffing. Others, however, may be legitimate
reviews from non-members, but have come on sales gained due to successful collu-
sive activity. As such, these too represent an unfair advantage. Thus, we disregard
all previous reviews received by suspected colluders.

We incorporate these policies into BRS, resulting in what we refer to as the Collusion
Resistant Beta Reputation System.

These actions are more drastic than reputation discounting—suspected colluders lose
all of their reputation, as well as all of the impact of their reviews. This may seem
potentially unfair, given the prospect of false positives, but there are numerous factors
suggesting these concerns may be misplaced:

• First, as demonstrated, the detection algorithm is quite resistant to false positives.

• Overall, the system provides agents with protection, which makes the marketplace
more attractive. Buyers are protected from being drawn into making purchases
from colluding agents with potentially malicious motives, while sellers are pro-
tected from losing sales to colluders. This provides an incentive for (honest) agents
to participate, despite the risk of false positives.

• As will be seen in the experimental results, honest sellers are still very profitable.
(Our system does not reduce the overall number of sales, but may simply redis-
tribute those sales as reputations are adjusted.)

• Finally, and perhaps most importantly, fairness is not of utmost importance. It
is worthwhile to recall that many TRSes, including BRS, can be implemented as
distributed systems in which agents (here, buyers) individually evaluate the trust-
worthiness of other agents (here, sellers). Such a buyer is primarily concerned with
his own protection, not with ensuring equitable treatment of all sellers. Thus, our
system is compatible with the goals of those agents who might employ it.

Certainly, other implementations with less drastic corrective actions might be attractive;
exploration of such possibilities is potential future work.

163

8.2 Experimental results

To evaluate this system, we constructed a set of trials similar to those in Section 4.7.
Here, we are interested only in the performance of the TRS (as opposed to, for example,
exploring the nature of the attack relative to other possible behaviours). Thus, trials are
configured as follows:

• All agents in the system (colluders and non-colluders) make use of the TRS in place
for the trial (either the original Beta formulation, or the Collusion-Resistant Beta
system.)

• All agents engage in both buying and selling.

• There are 500 non-colluding agents present, and a single coalition of size 100.

• For each TRS, 10 trials are run with bad-mouthing agents, and 10 with ballot-
stuffers.

• As in Section 4.7, in the bad-mouthing trials, colluders bad-mouth on all needed
purchases; in the ballot-stuffing trials, colluders have ballot-stuff proportions of
0.5.

• Other than the collusive actions, agents are otherwise honest—they fulfill sales
faithfully.

Because of differences in configuration and agent population, these results are not com-
parable to those from Section 4.7. We discuss the issue of parameter choice further,
following the experimental results.

8.2.1 Bad-mouthing

The performance of the TRSes against bad-mouthing is shown in Table 8.1. As in Chapter
4, the first column of the table represents the profit (per agent) of colluders, relative
to non-colluders. We would hope this value would be negative: when colluders earn
less than non-colluders, then collusion is unattractive. The second column shows the
percentage of trials in which colluders earn more than non-colluders (‘failures’).

Using Beta without coalition detection, colluders are dramatically more profitable.
In contrast, the use of coalition detection not only negates the effects of collusion, but

164

actually penalizes those who attempt to engage in it. The inclusion of coalition detection
makes collusion dramatically less attractive.

Table 8.1: Performance of Beta/Collusion-Resistant Beta, against bad-mouthing.

TRS
Colluder profit Trials failed by TRS

(relative to honest) (% of 10 trials)
Beta +429.48% 100%
Collusion-Resistant Beta -87.03% 0%

Figure 8.1 depicts the operation, during one bad-mouthing trial, of Beta without
coalition detection. The colluders quickly gain a sustained advantage, attaining dramat-
ically higher sales and profit levels. In contrast, Figure 8.2 depicts a corresponding trial
when Beta is supplemented with coalition detection. Colluders have an early advantage,
as the effects of their bad-mouthing are helping them to win sales. Very quickly, how-
ever, enough data is accumulated to allow accurate coalition detection—the situation is
flipped, with non-colluders dominating the marketplace.

0	

5,000	

10,000	

15,000	

20,000	

25,000	

0	 200	 400	 600	 800	 1000	

$,
	 (P

er
	 c
ap

ita
,	 a
t	 3

0	
ro
un

d	
in
te
rv
al
s)
	

Round	

Honest	 Sellers	 -‐	 Sales	

Honest	 Sellers	 -‐	 Profit	

Bad-‐mouthers	 -‐	 Sales	

Bad-‐mouthers	 -‐	 Profit	

Figure 8.1: Bad-mouthing: performance of BRS without coalition detection.

165

0	

2,000	

4,000	

6,000	

8,000	

10,000	

12,000	

0	 200	 400	 600	 800	 1000	

$,
	 (P

er
	 c
ap

ita
,	 a
t	 3

0	
ro
un

d	
in
te
rv
al
s)
	

Round	

Honest	 Sellers	 -‐	 Sales	

Honest	 Sellers	 -‐	 Profit	

Bad-‐mouthers	 -‐	 Sales	

Bad-‐mouthers	 -‐	 Profit	

Figure 8.2: Bad-mouthing: performance of BRS with coalition detection.

8.2.2 Ballot-stuffing

Table 8.2 shows the performance, over 10 trials, of each TRS when faced with ballot-
stuffing. (Note that unlike our bad-mouthing agents, the ballot-stuffers generate fake
purchases while pursuing their strategy—thus, these sales/profit figures include the buy-
ing activity as well as the selling.) As with bad-mouthing, when coalition detection is not
used, coalition members make more money than non-members. With coalition detection
in use, the opposite is true, making collusion unattractive.

Table 8.2: Performance of Beta/Collusion-Resistant Beta, against ballot-stuffing.

TRS
Colluder profit Trials failed by TRS

(relative to honest) (% of 10 trials)
Beta +158.92% 100%
Collusion-Resistant Beta -63.78% 0%

Figure 8.3 portrays the operation of Beta (without coalition detection) during one
trial. The situation is fairly similar to that for bad-mouthing: colluders quickly gain an
advantage, which is retained throughout operation. Figure 8.4 shows a corresponding
trial where coalition detection was incorporated into Beta. As in the bad-mouthing case,
the early advantage of the colluders is quickly reversed.

166

0	

5,000	

10,000	

15,000	

20,000	

25,000	

0	 200	 400	 600	 800	 1000	

$,
	 (P

er
	 c
ap

ita
,	 a
t	 3

0	
ro
un

d	
in
te
rv
al
s)
	

Round	

Honest	 Sellers	 -‐	 Sales	

Honest	 Sellers	 -‐	 Profit	

Ballot-‐stuffers	 -‐	 Sales	

Ballot-‐stuffers	 -‐	 Profit	

Figure 8.3: Ballot-stuffing: performance of BRS without coalition detection.

0	

2,000	

4,000	

6,000	

8,000	

10,000	

12,000	

14,000	

16,000	

18,000	

20,000	

0	 200	 400	 600	 800	 1000	

$,
	 (P

er
	 c
ap

ita
,	 a
t	 3

0	
ro
un

d	
in
te
rv
al
s)
	

Round	

Honest	 Sellers	 -‐	 Sales	

Honest	 Sellers	 -‐	 Profit	

Ballot-‐stuffers	 -‐	 Sales	

Ballot-‐stuffers	 -‐	 Profit	

Figure 8.4: Ballot-stuffing: performance of BRS with coalition detection.

The introduction of coalition detection to BRS has provided agents with substantial
protection against colluders. Further, agents are actually penalized for collusion—which
provides a strong disincentive for such activity.

167

8.2.3 Experimental parameters

As we have seen in preceding chapters, there is an enormous parameter space: coalition
sizes, number of coalitions, collusion rates, variability in collusion rates, cheating rates,
variability in collusion rates, etc. We could fill many pages exploring these parameters,
but fortunately, this is not necessary. Under any of the circumstances in which our al-
gorithm successfully distinguished between colluders and non-colluders (as explored in
earlier chapters), the system here would likewise detect the colluders, and thus be able
to counter the effects of the collusive behaviour.

8.3 Discussion

Despite impressive performance, we do not suggest that this system is a perfect, collusion-
proof system. Rather, we have presented it as an example. It is intended to illustrate how
our work might be used directly, in one of the domains to which it might apply, to address
issues posed by coalitions.

Indeed, for a TRS to be truly ‘collusion proof’, it must be proven that collusion cannot
take place (or at least, that collusion is less beneficial than non-collusive behaviour, so
that rational agents will choose not to collude). No such system has yet been developed
which is applicable for marketplace use. This suggests the difficulty in developing such
a system.

Our detection algorithm is unlikely to become the basis for a provably collusion-proof
mechanism, because we cannot give hard guarantees of the probability with which col-
luders might be detected. That said, principles of our work might provide the foundation
of such a system. In particular, we have noted that similarity seems to be essential to
cooperation. A TRS that, for example, discounts the values of reviews to the degree that
the reviewers’ opinions are similar, might have promise.

There are a number of requirements that a well-functioning and ‘collusion-proof’ TRS
would need to fulfill. In fact, while we propose no such system here, we have identified
certain constraints on the properties of such a system—constraints which restrict possible
formulations. We sketch some noteworthy constraints here.

168

8.3.1 Requirements for a ‘collusion-proof’ system

An attempt to develop a ‘collusion-proof’ system might be approached from the perspec-
tive of game theory and mechanism design. Game theory is “the mathematical study of
interaction among independent, self-interested agents” [67]. Mechanism design, a field
within game theory, is particularly concerned with designing the rules of games so that
agents, in seeking to maximize their own rewards, make the choices that are desired by
the system designer [67].

In the typical approach, mechanism designers would not seek to prohibit collusion
from occurring. Rather, designers would seek to develop marketplace rules under which
non-collusive behaviour always results in greater expected reward than collusive be-
haviour (i.e., that non-collusive strategies are dominant strategies), so that rational, self-
interested agents would choose not to collude.

This is very challenging for a TRS, in part because there are two distinct, yet interre-
lated types of activities, and we wish to exert control over both of them. First, there are
the actions themselves (here, sales): we want agents who are making sales to fulfill each
faithfully, providing the promised good. Second, there are the reviews of those actions:
we want agents to provide honest (and non-collusive) reviews. Moreover, while distinct,
these activities are fundamentally intertwined—for example, if reviews are not honest,
then a seller may not feel compelled to fulfill sales faithfully.

Under the system we desire, then, (at least) two properties must hold:

1. It must be provable that under all conditions3 (whether acting alone or in cooper-
ation with others), fulfilling sales faithfully is expected to be more profitable than
failing to do so;

2. It must be provable that under all conditions3, the expected gain from collusion is
less than that from acting individually.

Measurable expectation

Implicit in these properties is the requirement that the expectation associated with var-
ious actions must be measurable. This may sound like a trivial requirement, but in fact,
most TRS formulations do not allow expected gain to be determined in general.

3More specifically, it must be provable subject to the conditions or assumptions under which the mech-
anism is claimed to apply. Designers often specify constraints or assumptions that must hold for the
mechanism to operate properly.

169

For example, consider a (common) structure where each agent has a reputation score,
and the agent with the highest score is selected. If I am honest (or ballot-stuff), and gain
one additional positive review, what is the effect on my future expectation? The answer
is entirely dependent on the situation. If my reputation score is less than the highest of
my competitors, and the additional positive review does not allow me to surpass that
competitor, then the additional review does not change my (immediate) expectation
at all. (It may have value in the future, but this, too, is problematic to project, if we
cannot forecast the future with certainty.) If I was already the leader, then the result is
the same: the outcome of the next sale does not change. On the other hand, if I was
previously trailing the leader, and the additional review allows me to pull ahead, then
my increase in expectation might be enormous: not only will I win the next sale, but
the enhanced reputation from that sale may allow me to win further sales (and hence,
more positive reviews), and so on. Under such a system, determining the change in
expectation (especially at design time) due to a positive review is challenging.

There are (at least) two ways in which one might attempt to design a system in which
the rewards/penalties from positive/negative reviews are measurable:

• A system might be developed where trust has intrinsic, measurable value. In this
way, the reward from gaining (or losing) trust can be directly evaluated. This was
the approach taken in earlier work of ours, the Commodity Trunits system [43].

Trunits are units of trust, which are gained through positive reviews, and lost
through negative reviews. Trunits can be bought and sold. These two points, taken
together, mean that the reward/penalty from receiving a review can be established
precisely: the market value of the trunits gained/lost. This allows evaluation of
actions such as honest sales, and ballot-stuffing reviews.

Unfortunately, Trunits does not fully meet our requirements, because the reward
from giving a review cannot be readily established. For example, if I engage in
a bad-mouthing transaction, I may cause a competitor to lose trunits (and hence,
money), but that action does not necessarily increase my reward. I may or may not
improve my chance of winning future sales, because the targeted competitor may
or may not decide to continue selling products after being victimized.

• A system might explicitly use a probability function to determine every agent’s
individual probability of winning a sale; such a probability function would likely
take into account agents’ previous histories of reviews. In this way, the effect of
a review on reward can be determined: we can consider an agent’s probability
of winning the next sale before the review, and after the review, and calculate

170

the change of expectation. Both ballot-stuffing and bad-mouthing transactions are
factored in, because both appear in the review histories.

(Note that we are only identifying characteristics that could make expectation measur-
able. We are not proposing specific such models, nor are we claiming that these charac-
teristics alone would make a system ‘collusion-proof’.)

Approach

We presume that no detection system is in use; as noted above, it is very difficult to
establish probabilities of detection, which would make it difficult to render the types
of proofs required. Thus, the system must ensure that collusive actions do not result
in greater profit than non-collusive ones, but without knowledge of which actions are
collusive, or which agents are colluders. From a mechanism design perspective, the
goal would be to design rules that intrinsically result in non-collusive behaviour being
more profitable than collusion, without consideration of the possibly-collusive intentions
of traders. As noted, one possibility might be to treat actions differently depending on
the degree of similarity of the agents’ histories. For example, one might give reviews
from agents with similar histories less weight than for those of agents with dissimilar
histories. In this way, the impact of collusion might be reduced (because the collusive
actions are similar), but there is no knowledge or consideration of the the real intentions
or affiliations of agents during operation.

In a large marketplace with many agents, the number of possible sequences of events
is enormous. Attempting to construct proofs that consider sequences of multiple transac-
tions, then, is difficult at best. A more manageable approach is to consider any arbitrary,
individual transaction, and to prove that after the transaction, the state of the market-
place continues to be such that properties 1 and 2 will hold. This is the perspective we
take here.

8.3.2 Requirement 1: Faithful fulfillment

Consider an agent who is about to engage in a sale, and is contemplating whether or not
to fulfill the sale honestly. The seller will receive the selling price S, as revenue, but will
also incur cost C. We can decompose C into two factors: CP, the cost to furnish the good
(i.e., to produce it, or to purchase it for resale), and CT , the costs associated in executing
the transaction (primarily commission and/or fees, in the marketplace environment).

171

To simplify, we assume that CP and CT are constant proportions of selling price S, rP ∈
[0,1] and rT ∈ [0,1] respectively. (This assumption is not entirely unrealistic. Vendors
often apply the same, or similar, markup percentages across the products they sell, and
transaction costs such as commissions are often directly proportional to selling price.)

The profit on the sale, if the seller executes it faithfully, is

S(1− rP− rT) (8.1)

If the seller decides to cheat, we assume she does so maximally (i.e., does not even
ship the good), and avoids the cost CP entirely. Thus, the profit if the agent decides to
cheat is

S(1− rT) (8.2)

Subtracting the first from the second, it is clear that, on the immediate sale, cheating is
more profitable:

S(1− rT)−S(1− rP− rT) = SrP (8.3)

The cost to acquire/produce goods is often quite a high percentage of selling price, so
the difference is substantial. This fact is the very reason why TRSes are applied in mar-
ketplaces: cheating will yield a higher profit on that specific transaction. TRSes, however,
can address this advantage by ensuring that the impact of this decision is felt in future
transactions. If a seller cheats, she may earn more money immediately, but may lose
future sales—in total, the cheating act may result in less profit rather than more.

Thus, we consider the effects on future sales. We begin by considering a hypothetical
system where the effects of the positive/negative reviews are felt entirely in the next
transaction (i.e., that cheating on sale t affects the probability of winning sale t +1, but
does not affect t + 2 or beyond). If the seller is honest on the current sale t (a case
which we denote by H), then her probability of winning the next sale t + 1 is P(win|H),
while if she is dishonest, the probability of winning is P(win|¬H). (Of course, P(win|H)+
P(win|¬H)= 1.) Details of P(win) are discussed later in this section, but are not important
for this analysis. For simplicity, we assume that both sales are of the same price.4

4We might, for example, have separate reputation ratings for different products or different tiers of
prices, so the reputation earned from this sale can only be used for future sales at the same selling price.
Alternatively, we might simply use a TRS that is immune to value imbalance—in this case, the selling
prices on different sales might vary (and the analysis might be complex), but the ultimate outcome would
parallel that outlined here.

172

In considering the possibility of a system where the impact of honesty/dishonesty is
felt entirely within the next transaction, if we assume the most favourable treatment for
an honest seller, then P(win|H) = 1 (and hence, P(win|¬H) = 0).

The seller’s expected profit includes both the amount earned for sale t (as above), as
well as her expectation for sale t+1 depending on her choice. We wish honesty (on every
transaction) to be more profitable than cheating on any transaction. Thus, we compare
the profit from honesty with the two possible cases where cheating occurs. In the first,
the seller is dishonest on t (and because P(win|¬H) = 0, does not win t + 1).5 In the
second case, the seller is honest on t, but dishonest on t +1.

Consider the first case, where the seller may be dishonest on t. For honesty to be
more profitable than dishonesty, it must the case that

S(1− rP− rT)+P(win|H)S(1− rP− rT) > S(1− rT)+P(win|¬H)S(1− rT)

S(1− rP− rT)+(1)S(1− rP− rT) > S(1− rT)+(0)S(1− rT)

2(1− rP− rT) > 1− rT

1−2rP− rT > 0 (8.4)

Solving for rP:

rP <
1− rT

2
(8.5)

Considering the range of values for rT is informative. If rT was at its maximum of
1 (we presume agents don’t sell at prices below transaction cost), it must be the case
that rP < 0— production cost must be less than 0, which is extremely unlikely. Consid-
ering the other (more reasonable) extreme of the range, rT = 0 (e.g., no commission is
charged), results in rP < 0.5. This would require that on every transaction and for every
seller, the seller’s cost for the product was less than 50% of selling price, or stated an-
other way, that sellers always apply more than a 100% markup on their cost. This cannot
be guaranteed, especially if competition is present—in fact, this condition does not hold
for many real world products/marketplaces.

Consider now the second case, where the seller may be honest on t but dishonest on

5Note that this then precludes the case where the seller is dishonest on t, and then honest on t +1.

173

t +1. For honesty to be more profitable than dishonesty, it must be the case that

S(1− rP− rT)+P(win|H)S(1− rP− rT) > S(1− rP− rT)+P(win|H)S(1− rT)

S(1− rP− rT)+(1)S(1− rP− rT) > S(1− rP− rT)+(1)S(1− rT)

S(1− rP− rT) > S(1− rT)

Srp < 0 (8.6)

This would require the cost of production to be negative, which is untrue by as-
sumption (and generally, in practice). Thus, by contradiction, honesty cannot be more
profitable than dishonesty in this case.

Both cases yield essentially the same result. The conclusion (subject to our assump-
tions) is that even with the most favourable treatment for honesty, honesty cannot be
guaranteed to be more profitable than dishonesty, if the payoff for honesty occurs only
within a single round after the transaction. The reward for honesty must extend multiple
transactions into the future.

8.3.3 Ensuring collusion is disadvantageous

Thus, we turn our attention to a hypothetical system where the effects of a positive
review are felt for multiple future transactions. This is typical of many TRSes, in fact: a
positive review is added to one’s history, where it is used in all future purchase decisions.
We consider such a system from the perspective of the second requirement, that collusive
activity should not be advantageous.

We now subscript Pi(win) to indicate the probability of winning sale i. Consider some
sale t, and the impact of its result on winning future sales i > t. If the seller were not to
win t (e.g., the seller decided not to participate, or another agent was selected), he would
still have some probability Pi(win) of winning each future sale i. But now, consider the
case where the seller wins and receives a positive review on sale t. This review would be
incorporated into his history, potentially affecting his probability of winning each future
sale i. We denote the change, as a result of the positive review, in the seller’s probability
to win sale i, as ∆Pi(win). The seller’s change in future expectation (assuming honesty on
each sale, a required property for our system), then, as a result of the positive review on
t, is

∆E = ∆Pt+1(win)S(1− rP− rT)+∆Pt+2(win)S(1− rP− rT)+ · · · (8.7)

174

Now, consider the case that the positive review received on sale t was a ballot-stuff.
For ballot-stuffing to be less profitable than refraining from ballot-stuffing, it must be the
case that

C > ∆Pt+1(win)S(1− rP− rT)+∆Pt+2(win)S(1− rP− rT)+ · · ·

C >
∞

∑
i=t+1

∆Pi(win)S(1− rP− rT) (8.8)

for the cost C incurred in the process of ballot-stuffing. This might simply be the cost of
a fake ballot-stuffing transaction, SrT , or we may have other fees in place (e.g., member-
ship fees, etc.)

Note that Equation 8.8 is an infinite series. The probability function will have to
be very carefully constructed to make sure that the summation is less than C, which
is constant—even very small values of ∆Pi(win) can cause the series to run to infinity.
Mathematically, there are several ways this might be avoided, including:

• Construct Pi(win) so that ∆Pi(win) = 0 for i beyond some k. This might come in the
form of a ‘window’, a number of rounds beyond which reviews are discarded.

• Construct Pi(win) so that ∆Pi(win) is negative for some i, balancing out the positive
values. It seems very strange, however, to have positive reviews reducing the prob-
ability of winning, especially because we have no certainty that any given review
was the result of a ballot-stuff.

• Construct Pi(win) so that ∆Pi(win) decays as i increases, so that the summation
asymptotically approaches some constant k <C.

All of these prospects seem challenging, but the difficulty may be worse than first
realized. The reputation earned on sale t impacts the expectation for all i > t. But con-
sider sale t +1: if the seller wins that sale as well (with increased probability due to the
positive review on t), then the reputation from t + 1 will also impact every sale i > t + 1.
∆Pt+2(win), then, is impacted by reviews on t and t + 1, and so on: ∆Pi(win) may be af-
fected by positive reviews gained on all transactions {t, t +1, . . . , i−1}. Recall that all of
these reviews may have been acquired directly as a result of the ballot-stuff on t, with-
out which the seller might not have won t + 1. This might make it extremely difficult
to construct Pi(win) according to any of the options above. For example, is it reasonable
to set ∆Pi(win)= 0 for i beyond some k, if the seller receives a positive review on sale i−1?

175

There are certain to be other requirements as well, but these two constraints signif-
icantly limit the set of possible solutions, at least for formulations of the sort that we
outline. To ensure that both honesty and non-collusive behaviour are advantageous,
the system designer must ensure that the effects of reviews are felt for more than one
turn, but at the same time must limit the duration of such effects, even as reputation
potentially grows dramatically.

8.4 Conclusion

A TRS in which collusion is provably disadvantageous is the ideal, but such a solution is
likely to be difficult to obtain.

In contrast, while our collusion-resistant TRS approach does not readily allow such
proofs, our results suggest it may be very effective in practice. The collusion detection
algorithm has shown itself to be effective under a wide range of circumstances; moreover,
punishment for collusion under our system is severe enough to deter many would-be
colluders.

176

Chapter 9

Discussion, Future Work and
Conclusion

In closing, we reflect on the novelty of our work in comparison with that of other re-
searchers, we identify a number of possible directions for future research, and we sum-
marize the specific contributions offered by this thesis.

9.1 Discussion

When first considering the problem of coalition detection, it appears to be closely re-
lated to other research areas; in fact, it may seem to be simply a particular instance
or special case of an established research problem. Looking deeper, however, it be-
comes clear that there are essential differences between the problem we study, and
those currently addressed in other fields. In fact, while some research areas study ‘coali-
tions’/‘teams’/‘communities’/etc. by name, our work addresses fundamentally different
problems and scenarios.

Game theorists have studied coalitions and coalitional games extensively, but from an
entirely different perspective than our own. For example, work in this area typically fo-
cuses on questions such as: given information about payouts, utility functions, available
resources, etc., what coalition will form?’ In contrast, in the scenarios with which we are
concerned, we are unlikely to have any such information. One might try to draw connec-
tions between the scenarios, such as linking the notion of ‘benefit’ with ‘payout’, but this
is problematic. For example, in electronic marketplace settings, what is the ‘payout’ of

177

bad-mouthing activity? The actual act of bad-mouthing does not impact coalition mem-
bers directly at all (only the targets’ reputations are directly affected) and will not be
felt immediately. Instead, any payout to the coalition will be realized in the future—if at
all—over an indeterminate period and with unknown quantity. This is just one example
of the areas of divergence between game theoretic work and our own.

Multiagent plan recognition seeks to identify the plan(s) in use by a team, while po-
tentially identifying sub-teams as well. This work typically assumes access to a complete
plan library and knowledge of team membership—the key questions here is, what is the
team doing? In contrast, we assume no access to such a library, and no knowledge of
team membership—the key question for us becomes, who is the team?

Community finding research seeks to identify smaller subsets of populations that con-
stitute communities unto themselves. Superficially, this looks very similar to our prob-
lem. However, community finding researchers typically view interaction as the hallmark
of community, while benefit is the central characteristic of cooperation. Interaction and
benefit are not the the same, and in fact, need not even be connected. Members may
benefit one another greatly without interacting at all (e.g., by bad-mouthing). Thus,
existing community finding work is not directly applicable to our problem.

Our work represents an important step towards addressing the issues of coalitions and
collusion: the ability to detect coalitions, and identify members, can allow measures to
be taken that are appropriate to the situation. While our work was inspired by problems
encountered in trust and reputation, and can be directly applied there, our work is not
a trust and reputation proposal. Just as the issues of coalitions and collusion cut across
many areas of multiagent systems (and the real world), the ability to detect coalitions
(and our method for doing so) is likely to be applicable to many domains. The reputation
system explored in Chapter 8 is just one example of how our methods might be applied
to domain-specific problems. This work is likely to be interest in many of the areas of
multiagent systems where the possible presence of unknown coalitions is of concern.

In the following section, we note a number of areas for future exploration. But even
as one considers how to proceed in conducting this research, it is also interesting to
consider how one might proceed in using this research. Presumably, one seeks to detect
coalitions because one intends to do something with that information. The intended
uses, however, may vary as much as the scenarios to which this work might be applied.
As noted, selecting appropriate uses is likely to require domain expertise. In Chapter 8,
we demonstrated one such usage: taking measures to ‘correct’ the unreliable information
introduced by collusive manipulation. As the operator of a system, one might also use the
information to, for example, penalize or fine coalition members, eject coalition members,

178

take action to compensate victims of collusion, etc. But the uses for a coalition detection
system are potentially much broader than this. For example, an individual participating
in a game or contest might use such a system to determine which competitors were
acting in teams, in order to make strategic decisions (or simply to ‘know what one is up
against’). Alternatively, an individual might make use of such information in deciding
if they wish to participate at all. An operator of a system may wish to use this tool to
substantiate that no (detectable) coalitions are present in the system, in order to improve
credibility and attract participants.

It might be unsatisfying to say (or read) that domain expertise is required to identify
appropriate actions. Nevertheless, considering even the small sampling of possible uses
noted here, and possible domains discussed in the next section, it should be clear that
this is truly the case.

9.2 Future Work

We believe this to be the first work proposing broadly-applicable methods of detecting
coalitions. As such, while a range of issues have been explored, there are many potential
directions for future research. Here, we identify several noteworthy areas for continuing
exploration.

Overlapping coalitions

In our work, we have assumed that agents belong to at most one coalition. This assump-
tion is likely valid for many real-world coalitions and agents. Our algorithms, then, make
use of hard partitioning between coalitions. The prospect exists, however, for agents who
try to improve their position by belonging to multiple coalitions simultaneously. To ad-
dress this issue, a first step would be to explore the use of ‘fuzzy’ clustering algorithms
[27], which rather than returning a partitioning of agents, return a probability function
over every agent-cluster pairing.

Disjoint sets of agents

An important area for investigation is situations where the sets of ‘benefit givers’ and
‘benefit receivers’ are disjoint.

179

In the example scenarios used when discussing trust and reputation systems for elec-
tronic marketplaces, agents may act as both buyers and sellers— each agent can give ben-
efit (money and/or reviews), as well as receive it. This is reflective of many real-world
marketplaces; it is also applies to numerous domains of interest: battlefields, games, etc.

In some scenarios, however, the sets of givers and receivers of benefit may be strictly
disjoint. For example, in a marketplace there may be a strict partitioning between buy-
ers and sellers. A more commonly-seen example is that of online reviews on web sites
such as Amazon or TripAdvisor. Here, the items being reviewed (products, or hotels,
for example) are a separate set from the entities providing reviews (e.g., consumers,
or visitors). A coalition detection system would likely be of great value in combatting
coordinated efforts to manipulate scores. Our current work would require modification
to do so, however. Our characterization algorithm identifies coalitions by determining
whether agents in a group benefit one another substantially more than outsiders. This
approach is inapplicable when those giving and receiving benefit are disjoint: a group
of ‘givers’ can’t benefit themselves, because they do not receive benefit. Under these cir-
cumstances, a new characterization approach is required. One possibility might be to not
only use similarity for clustering, but to use the degree of similarity to identify coalitions.
Non-colluders making legitimate sales are likely to have reasonably varied purchasing
patterns, but colluders engaged primarily in manipulating reviews may target unusually
small/similar sets of products.

Agglomerative refinement

In Chapter 6.1, we propose a recursive refinement algorithm that allows the decompo-
sition of clusters, to achieve more effective separation between members of different
coalitions. As Figures 6.7 and 6.9 reveal, while separating members of different coali-
tions effectively, the recursive technique simultaneously does an admirable job of keeping
members of the same coalition together. As shown in Figure 7.5, however, there is room
here for performance to be further improved. One approach might be an agglomerative
algorithm which, once decomposition has been completed, merges clusters that appear
to consist of members of the same coalition.

Further enhancements

In our work, we make use of two different clustering methods (k-means and hierarchical)
and two different means of measuring benefit (‘raw’ benefit, and our ‘TF-IDF’ approach).

180

As noted, there are many other clustering methods (and similarity measures, beyond
Euclidean distance) that may be useful. Similarly, there are potentially many other ways
of measuring benefit, even within the marketplace trust and reputation scenario. More-
over, in Section 6.3.2 we demonstrated how multiple clustering algorithms can be used
simultaneously; in Section 7.3.3 we highlighted how the same approach could be used
for multiple measures of benefit (or multiple similarity measures). Exploring a variety of
different clustering methods, benefit measures, similarity measures, etc., is likely to yield
further performance improvements.

Furthermore, it is likely that the running time of our algorithm can be improved. For
example, benefit space has a large number of dimensions. It is likely that some of these
dimensions are more useful than others in identifying the behaviour of agents. Dimen-
sionality reduction and feature selection techniques might be applied here, to reduce the
computation required.

Application to other domains

As noted throughout this document, we believe our approach to be applicable to a broad
range of distinct domains.

While our work was inspired by problems in trust and reputation, and TRSes were
the example domain in this document, our method is not fundamentally based on the
characteristics of that domain. Certainly, we developed measures of benefit that were
appropriate to that scenario—any such domain would require the same—but beyond
this, the method is largely independent of, and ignorant of, the application scenario. A
benefit measure from any domain could be used to map agents into benefit space; from
here, the algorithm would proceed in exactly the same way as it has in this document.
Our results in Section 7.3.3 support this idea: two entirely different benefit formulations
both yielded strong results.

Of course, this is no guarantee that our techniques will be successful in any given
domain. Indeed, success would require that:

• Key forms of benefit (specifically, the means by which a coalition advances its own
purposes at the expense of outsiders) must be associated with observable actions.
This is true in the case of trust and reputation; is is likely true for other domains as
well, as we argue below.

• The quantity of collusive action required for the group to benefit meaningfully must
be large enough to be detectable.

181

Returning to some of the possible applications cited in Chapter 1, we note actions
and measures that might meet the above requirements. Of course, we are not experts in
these domains, so we have limited insight into useful measures of benefit. Based on this
limited knowledge, however, we suggest possible measures, to illustrate the potential
applicability of our methods.

• In forms of gambling such as poker, collusion can yield significant advantages. For
example, coalitions in poker can unfairly increase their winnings by betting against
outsiders more aggressively than partners, ensuring that only the teammate with
the strongest cards contests each hand (so that for a team of size n, each outsider’s
individual hand is competing with the coalitions ‘best of n’ hand). In this case,
benefit would be observable: betting against someone would constitute an act of
harm or aggression, while folding (i.e., dropping out without betting) would be a
lack of harm (i.e., a form of benefit.)

• In contemporary insurgent/battlefield scenarios, it may be difficult to determine
the allegiances of entities. There may be small groups of combatants obscuring
their identities within a larger population, for example. It is possible that there are
more than two groups of belligerents, as well. In a scenario like this, certain forms
of benefit/harm seem obvious (and observable): for example, firing a weapon at
someone is a clear act of harm. There are subtler observable actions, however,
that are likely to indicate benefit/support, or harm/aggression, as well. For exam-
ple moving in the same direction (e.g., moving in formation) might be a form of
support, while moving on intersecting paths might indicate aggression. Shooting
while another entity moves (i.e., ‘covering fire’) might be a form of benefit, as might
moving to a wounded entity’s position.

• In online games, many of the same principles noted above might apply. In such
environments, though, acts of benefit/harm might be even more obvious. For ex-
ample, many such games allow players to perform acts of healing on other players
who are wounded—a clearly observable form of benefit. Giving equipment or sup-
plies would be a form of benefit, while stealing would be a form of harm.

• In multi-party negotiations or diplomacy, advocating a point or action that is helpful
to others may be a form of benefit (and/or harm to those whom the action does
not help), while opposing such a point would be the opposite.

• In the commercial sphere, there are multitudes of possibly beneficial/harmful ac-
tions, depending on the situation. For example, supporting and/or adopting cer-
tain standards (e.g., Blu-Ray vs. HD-DVD) might benefit some companies, while

182

harming others. Licensing patents might be an act of benefit; refusing such license
agreements, and/or law suits, would be clear acts of harm.

• In the types of cooperative multiagent systems noted in Chapter 1, there are likely
to be clearly observable forms of benefit, as well: assisting an agent in a task,
cooperating with another agent to achieve a mutually beneficial goal, etc.

It seems probable that our work will be applicable in a wide range of domains; this list is
limited primarily by our own experience and imagination. Exploration of other domains
is a key goal for future work, both to validate the broad applicability of our model, and
to gain insights that may aid in its continuing improvement.

Real-world experimentation

Ideally, we would perform experiments using real-world data to validate our techniques.
As noted, however, obtaining real-world data for our scenario is problematic: colluders
in real-world marketplaces are not eager to identify themselves as such, and without
labelled data, measuring accuracy is a problem. Unfortunately, it is not feasible to run a
substantial, real-world marketplace for the purpose of gathering experimental data.

As we look to other application domains, however, real world experimentation seems
much more practical. Experiments with live users playing games (e.g., poker, or FPSes)
could be conducted, with subsets of players assigned to known coalitions. Such experi-
ments might even be performed on a large scale, if they are conducted on the internet.

Multiagent plan recognition, and plan libraries

While we have outlined a variety of potential applications above, this work may present
new research opportunities, as well. For example, while our work does not rely on known
plan libraries, and in itself makes no effort to identify behaviours, it might be helpful for
such purposes. One may wish to determine not only who is colluding, but also what
strategies/tactics are in use. For instance, one might possess a partial plan library, and
with knowledge of coalition membership, one might be able to identify some of the
strategies in use. Alternatively, the ability to detect coalitions may allow for previously-
unknown plans to be discovered, based on analysis of the actions of the identified agents.

Our work may help in another way to identify strategies in use. One key difference
between our work, and that in the area of multiagent plan recognition, is our assumption

183

that there may be small coalitions embedded in a large population. In contrast, multia-
gent plan recognition work typically assumes that team membership is known; pattern
matching is then used to identify the plan in use. In principle, it seems that one might use
the same pattern-matching approach to identify small teams within a large population:
matches would be likely to correspond to real teams executing a plan, while non-matches
would be discarded. Unfortunately, this approach will be extremely computationally ex-
pensive, with even relatively small populations. A better approach might be to use our
work as a first stage, in order to identify possible teams, and then use the multiagent plan
recognition tools to match the actions of the identified teams against the plan library. In
this way, the search space could be dramatically reduced, and the capabilities of the plan
recognition algorithms expanded.

9.3 Conclusion

We believe that this document presents the first coalition detection and identification
method in the literature that is likely to be broadly applicable across multiagent domains.
The accuracy and robustness demonstrated in our validations are impressive, particularly
given the novelty of the problem we seek to address. Contributions of this work include:

• TREET, the Trust and Reputation Experimentation and Evaluation Testbed, a plat-
form allowing far more flexible experimentation and extensive evaluation than any
tool previously available to trust and reputation researchers. This tool has value
in the design, validation, and improvement of trust and reputation technologies.
(Chapter 3)

• An experimental substantiation of practical attacks against vulnerabilities in TRSes.
This novel work demonstrated that such weaknesses are pervasive, and substantial.
(Chapter 4)

• The introduction of the idea that benefit, and similarity of benefit, is central to the
detection of coalitions. (Section 5.2)

• The benefit space representation of agents, which allows agents who are similar in
terms of who they are benefiting to be identified, e.g., by clustering. This repre-
sentation (and the algorithms that make use of it) seem likely to be applicable to a
variety of distinct domains. (Section 5.2.3)

184

• A characterization algorithm that allows groups of similar agents to be judged as
either a coalition, or not a coalition. This algorithm was demonstrated to be very
reliable, and particularly resistant to false positives. (Sections 5.3.3, 6.4.2)

• A technique for detecting coalitions based on clustering in benefit space and char-
acterization, which does not rely on any knowledge of coalition configurations or
strategies. This technique, the first general-purpose tool of its kind, has proven ex-
tremely accurate in testing. The combination of clustering in benefit space and
characterization allows us to build an accurate classifier without training data.
(Section 5.3)

• A recursive refinement algorithm that substantially improves the ability to separate
agents from different coalitions into different clusters. This refinement technique
allows clusters to be recursively subdivided—our characterization algorithm pro-
vides the basis for an effective stopping rule. (Section 6.1)

• A new method (specific to our purpose) to better determine the optimal number
of clusters in a benefit data set, based on the characterization algorithm. (Section
6.3.1)

• A multi-clustering technique, which makes use of the false-positive-resistance of
the characterization algorithm to allow multiple clustering methods to be used on
any given benefit dataset, and the best result to be automatically selected. This
approach, along with the clustering-optimization technique mentioned in the pre-
vious point, dramatically improved accuracy. (Section 6.3.2)

• A method for continuing to accurately identify coalition members and membership,
even as agents’ involvement with and membership in coalitions changes over time,
based on the use of a forgetting factor. (Section 7.2)

• A new method for measuring benefit which is specific to the trust and reputation
domain, using an approach modelled after the TF-IDF measure from information
retrieval. (Section 7.3)

• A proposal for integrating multiple measures of benefit into the coalition detection
process, based on the multi-clustering technique noted above. (Section 7.3.3)

• A collusion-resistant TRS, based on the incorporation of our coalition detection
methods into the Beta Reputation System. This TRS was shown to be extremely
effective in countering collusive activity; we are aware of no such TRS that has
demonstrated this capability. (Chapter 8)

185

Our work represents significant strides towards addressing an issue that, despite its im-
portance, has seen little progress. This work is likely to have value for both research, and
real-world application.

186

References

[1] Charu C Aggarwal. A human-computer interactive method for projected clustering.
Knowledge and Data Engineering, IEEE Transactions on, 16(4):448–460, 2004.

[2] Robert J Aumann and Jacques H Dreze. Cooperative games with coalition struc-
tures. International Journal of game theory, 3(4):217–237, 1974.

[3] B.Douglas Bernheim, Bezalel Peleg, and Michael D Whinston. Coalition-proof nash
equilibria i. concepts. Journal of Economic Theory, 42(1):1 – 12, 1987.

[4] Rajat Bhattacharjee and Ashish Goel. Avoiding ballot stuffing in ebay-like reputa-
tion systems. In P2PECON ’05: Proceeding of the 2005 ACM SIGCOMM workshop on
Economics of peer-to-peer systems, pages 133–137, New York, NY, USA, 2005. ACM
Press.

[5] Nikita Borisov. Computational puzzles as sybil defenses. In Peer-to-Peer Comput-
ing, 2006. P2P 2006. Sixth IEEE International Conference on, pages 171–176. IEEE,
2006.

[6] Michael Bowling, Brett Browning, and Manuela Veloso. Plays as effective multi-
agent plans enabling opponent-adaptive play selection. In Proceedings of Interna-
tional Conference on Automated Planning and Scheduling (ICAPS’04), 2004. in press.

[7] S. Braynov and T. Sandholm. Trust revelation in multiagent interaction, 2002.

[8] Sviatoslav Braynov and Tuomas Sandholm. Incentive compatible mechanism for
trust revelation. In AAMAS ’02: Proceedings of the first international joint conference
on Autonomous agents and multiagent systems, pages 310–311, New York, NY, USA,
2002. ACM Press.

187

[9] R. Burke, B. Mobasher, C. Williams, and R. Bhaumik. Classification features for
attack detection in collaborative recommender systems. In Proceedings of the 12th
ACM SIGKDD international conference on Knowledge discovery and data mining, page
547. ACM, 2006.

[10] Sandra Carberry. Techniques for plan recognition. User Modeling and User-Adapted
Interaction, 11(1-2):31–48, 2001.

[11] P.A. Chirita, W. Nejdl, and C. Zamfir. Preventing shilling attacks in online recom-
mender systems. In Proceedings of the 7th annual ACM international workshop on
Web information and data management, page 74. ACM, 2005.

[12] Viet Dung Dang, Rajdeep K Dash, Alex Rogers, and Nicholas R Jennings. Overlap-
ping coalition formation for efficient data fusion in multi-sensor networks. In Pro-
ceedings of the National Conference on Artificial Intelligence, volume 21, page 635.
Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT Press; 1999, 2006.

[13] C. Dellarocas. Immunizing online reputation reporting systems against unfair rat-
ings and discriminatory behavior. In Proceedings of the 2nd ACM conference on
Electronic commerce, pages 150–157. ACM, 2000.

[14] Gabrielle Demange. Intermediate preferences and stable coalition structures. Jour-
nal of Mathematical Economics, 23(1):45 – 58, 1994.

[15] J. Douceur. The sybil attack. Peer-to-peer Systems, pages 251–260, 2002.

[16] Eric Friedman, Paul Resnick, and Rahul Sami. Manipulation-resistant reputation
systems. Algorithmic Game Theory, pages 677–697, 2007.

[17] Karen K. Fullam, Tomas B. Klos, Guillaume Muller, Jordi Sabater, Andreas Schlosser,
Zvi Topol, K. Suzanne Barber, Jeffrey S. Rosenschein, Laurent Vercouter, and Marco
Voss. A specification of the agent reputation and trust (art) testbed: experimenta-
tion and competition for trust in agent societies. In AAMAS ’05: Proceedings of the
fourth international joint conference on Autonomous agents and multiagent systems,
pages 512–518, New York, NY, USA, 2005. ACM.

[18] W.A. Gamson. A theory of coalition formation. American sociological review,
26(3):373–382, 1961.

[19] M. Girvan and M.E.J. Newman. Community structure in social and biological net-
works. Proceedings of the National Academy of Sciences, 99(12):7821, 2002.

188

[20] D. Goldberg, D. Nichols, B.M. Oki, and D. Terry. Using collaborative filtering to
weave an information tapestry. Communications of the ACM, 35(12):70, 1992.

[21] Valentin Goranko. Coalition games and alternating temporal logics. In Proceedings
of the 8th conference on Theoretical aspects of rationality and knowledge, TARK ’01,
pages 259–272, San Francisco, CA, USA, 2001. Morgan Kaufmann Publishers Inc.

[22] Nathan Griffiths. Task delegation using experience-based multi-dimensional trust.
In AAMAS ’05: Proceedings of the fourth international joint conference on Au-
tonomous agents and multiagent systems, pages 489–496, New York, NY, USA, 2005.
ACM Press.

[23] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann,
and Ian H Witten. The weka data mining software: an update. ACM SIGKDD
Explorations Newsletter, 11(1):10–18, 2009.

[24] Chung-Wei Hang, Yonghong Wang, and Munindar P. Singh. An adaptive proba-
bilistic trust model and its evaluation. In AAMAS ’08: Proceedings of the 7th in-
ternational joint conference on Autonomous agents and multiagent systems, pages
1485–1488, Richland, SC, 2008. International Foundation for Autonomous Agents
and Multiagent Systems.

[25] Maaike Harbers, Rineke Verbrugge, Carles Sierra, and J. Debenham. The examina-
tion of an information-based approach to trust. In P. Noriega and J. Padget, edi-
tors, International Workshop on Coordination, Organization, Institutions and Norms
(COIN), pages 101–112, Durham University, Durham, 2008.

[26] A. Harmon. Amazon glitch unmasks war of reviewers. The New York Times, 14,
2004.

[27] AK Jain, MN Murty, and PJ Flynn. Data clustering: a review. ACM computing surveys
(CSUR), 31(3):264–323, 1999.

[28] Anil K Jain and Richard C Dubes. Algorithms for clustering data. Prentice-Hall, Inc.,
1988.

[29] Audun Jøsang and Roslan Ismail. The beta reputation system. 15th Bled Electronic
Commerce Conference e-Reality: Constructing the e-Economy, June 2002.

[30] R. Jurca and B. Faltings. An incentive compatible reputation mechanism, 2003.

189

[31] Radu Jurca and Boi Faltings. Collusion-resistant, incentive-compatible feedback
payments. In EC ’07: Proceedings of the 8th ACM conference on Electronic commerce,
pages 200–209, New York, NY, USA, 2007. ACM.

[32] G.A. Kaminka, M. Fidanboylu, A. Chang, and M.M. Veloso. Learning the sequential
coordinated behavior of teams from observations. Lecture notes in computer science,
pages 111–125, 2003.

[33] Jonathan M. Katz. Hold ’em, fold ’em, cheat ’em. Slate.com,
(http://www.slate.com/id/2112213), 2005.

[34] H.A. Kautz. A formal theory of plan recognition and its implementation. Reasoning
about plans, 125, 1991.

[35] Nancy Keates. Deconstructing tripadvisor. June 2007.

[36] Reid Kerr and Robin Cohen. Modeling trust using transactional, numerical units.
In PST ’06: Proceedings of the Conference on Privacy, Security and Trust, Markham,
Ontario, Canada, October 2006.

[37] Reid Kerr and Robin Cohen. Trunits: A monetary approach to modeling trust in
electronic marketplaces. In Proceedings of the Fifth International Joint Conference
on Autonomous Agents and Multiagent Systems (AAMAS’06) Workshop on Trust in
Agent Societies, Hakodate, Japan, 2006.

[38] Reid Kerr and Robin Cohen. Towards provably secure trust and reputation systems
in e-marketplaces. In AAMAS ’07: Proceedings of the 6th international joint confer-
ence on Autonomous agents and multiagent systems, pages 1–3, New York, NY, USA,
2007. ACM.

[39] Reid Kerr and Robin Cohen. Towards provably secure trust and reputation systems
in e-marketplaces. In Proceedings of the Sixth International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS’07), Honolulu, Hawaii, USA,
2007.

[40] Reid Kerr and Robin Cohen. An experimental testbed for evaluation of trust and
reputation systems. In Proceedings of the Third IFIP WG 11.11 International Confer-
ence on Trust Management (IFIPTM’09), West Lafayette, Indiana, USA, 2009.

[41] Reid Kerr and Robin Cohen. Smart cheaters do prosper: Defeating trust and repu-
tation systems. In Proceedings of AAMAS’09, Budapest, Hungary, 2009.

190

[42] Reid Kerr and Robin Cohen. TREET: The Trust and Reputation Experimentation
and Evaluation Testbed. Electronic Commerce Research, 10(3):271–290, 2010.

[43] Reid Kerr and Robin Cohen. Trust as a tradable commodity: A foundation for safe
electronic marketplaces. Computational Intelligence, 26(2):160–182, 2010.

[44] M. Klusch and A. Gerber. Issues of dynamic coalition formation among rational
agents, 2002.

[45] B.N. Levine, C. Shields, and N.B. Margolin. A survey of solutions to the sybil attack.
University of Massachusetts Amherst, Amherst, MA, 2006.

[46] S. Marsh. Formalising trust as a computational concept, 1994.

[47] Bhaskar Mehta and Thomas Hofmann. Ieee data eng. bull.; a survey of attack-
resistant collaborative filtering algorithms. 31(2):14–22, 2008.

[48] Bhaskar Mehta, Thomas Hofmann, and Peter Fankhauser. Lies and propaganda:
detecting spam users in collaborative filtering. In IUI ’07: Proceedings of the 12th
international conference on Intelligent user interfaces, pages 14–21, New York, NY,
USA, 2007. ACM.

[49] Bhaskar Mehta and Wolfgang Nejdl. Attack resistant collaborative filtering. In SIGIR
’08: Proceedings of the 31st annual international ACM SIGIR conference on Research
and development in information retrieval, pages 75–82, New York, NY, USA, 2008.
ACM.

[50] Bhaskar Mehta and Wolfgang Nejdl. Unsupervised strategies for shilling detection
and robust collaborative filtering. User Modeling and User-Adapted Interaction, 19(1-
2):65–97, 2009.

[51] M.E.J. Newman and M. Girvan. Finding and evaluating community structure in
networks. Physical review E, 69(2):26113, 2004.

[52] Zeinab Noorian, Stephen Marsh, and Michael Fleming. Multi-layer cognitive filter-
ing by behavioral modeling. In The 10th International Conference on Autonomous
Agents and Multiagent Systems, volume 2, pages 871–878, 2011.

[53] M.J. Osborne and A. Rubinstein. A course in game theory. The MIT press, 1994.

[54] Girish Keshav Palshikar and Manoj M. Apte. Collusion set detection using graph
clustering. Data Min. Knowl. Discov., 16(2):135–164, 2008.

191

[55] C. Piro, C. Shields, and B.N. Levine. Detecting the sybil attack in mobile ad hoc
networks. In Securecomm and Workshops, 2006, pages 1–11. IEEE, 2006.

[56] William M Rand. Objective criteria for the evaluation of clustering methods. Jour-
nal of the American Statistical association, 66(336):846–850, 1971.

[57] P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and J. Riedl. Grouplens: An open
architecture for collaborative filtering of netnews. In Proceedings of the 1994 ACM
conference on Computer supported cooperative work, pages 175–186. ACM New York,
NY, USA, 1994.

[58] Paul Resnick and Rahul Sami. The influence limiter: provably manipulation-
resistant recommender systems. In Proceedings of the 2007 ACM conference on
Recommender systems, pages 25–32. ACM, 2007.

[59] Paul Resnick and Hal R Varian. Recommender systems. Communications of the
ACM, 40(3):56–58, 1997.

[60] Raquel Ros, Manuela Veloso, Ramon López de Mántaras, Carles Sierra, and
Josep Lluis Arcos. Retrieving and reusing game plays for robot soccer. In Ad-
vances in Case-Based Reasoning. 8th European Conference on Case-Based Reasoning
(ECCBR-06), Fethiye, Turkey, September 4-7, 2006, volume 4106 of Lecture Notes in
Artificial Intelligence, pages 47–61. Springer, 2006.

[61] P Rousseeuw. Silhouettes: A graphical aid to the interpretation and validation of
cluster analysis. Journal of Computational and Applied Mathematics, 20(1):53–65,
1987.

[62] Hosam Rowaihy, William Enck, Patrick McDaniel, and Thomas La Porta. Limiting
sybil attacks in structured p2p networks. In INFOCOM 2007. 26th IEEE International
Conference on Computer Communications. IEEE, pages 2596–2600. IEEE, 2007.

[63] Jordi Sabater and Carles Sierra. Review on computational trust and reputation
models. Artif. Intell. Rev., 24(1):33–60, 2005.

[64] Gerard Salton and Michael J McGill. Introduction to moderm information retrieval,
1983.

[65] JJ Sandvig, B. Mobasher, and R. Burke. Robustness of collaborative recommenda-
tion based on association rule mining. In Proceedings of the 2007 ACM conference
on Recommender systems, page 112. ACM, 2007.

192

[66] O. Shehory and S. Kraus. Feasible formation of coalitions among autonomous
agents in nonsuperadditive environments. Computational Intelligence, 15(3):218–
251, 1999.

[67] Yoav Shoham and Kevin Leyton-Brown. Multiagent systems: Algorithmic, game-
theoretic, and logical foundations. Cambridge University Press, 2008.

[68] Gita Sukthankar and Katia Sycara. Robust recognition of physical team behaviors
using spatio-temporal models. In AAMAS ’06: Proceedings of the fifth international
joint conference on Autonomous agents and multiagent systems, pages 638–645, New
York, NY, USA, 2006. ACM.

[69] Gita Sukthankar and Katia Sycara. Policy recognition for multi-player tactical sce-
narios. In AAMAS ’07: Proceedings of the 6th international joint conference on Au-
tonomous agents and multiagent systems, pages 1–8, New York, NY, USA, 2007.
ACM.

[70] Gita Sukthankar and Katia Sycara. Robust and efficient plan recognition for dy-
namic multi-agent teams. In AAMAS ’08: Proceedings of the 7th international joint
conference on Autonomous agents and multiagent systems, pages 1383–1388, Rich-
land, SC, 2008. International Foundation for Autonomous Agents and Multiagent
Systems.

[71] Gita Sukthankar and Katia Sycara. Activity recognition for dynamic multi-agent
teams. ACM Transactions in Intelligent Systems Technology, 3(1):18:1–18:24, oct
2011.

[72] M. Tambe. Tracking dynamic team activity. In Proceedings of the National Conference
on Artificial Intelligence, pages 80–87, 1996.

[73] W. T. Teacy, Jigar Patel, Nicholas R. Jennings, and Michael Luck. Travos: Trust and
reputation in the context of inaccurate information sources. Autonomous Agents
and Multi-Agent Systems, 12(2):183–198, 2006.

[74] W. T. L. Teacy, T. D. Huynh, R. K. Dash, N. R. Jennings, M. Luck, and J. Patel. The
ART of IAM: The winning strategy for the 2006 competition. In Proceedings of the
Sixth International Joint Conference on Autonomous Agents and Multiagent Systems
(AAMAS’07) Workshop on Trust in Agent Societies, Honolulu, Hawaii, USA, 2007.

[75] Thomas Tran and Robin Cohen. A learning algorithm for buying and selling agents
in electronic marketplaces. In AI ’02: Proceedings of the 15th Conference of the

193

Canadian Society for Computational Studies of Intelligence on Advances in Artificial
Intelligence, pages 31–43, London, UK, 2002. Springer-Verlag.

[76] Thomas Tran and Robin Cohen. Improving user satisfaction in agent-based elec-
tronic marketplaces by reputation modelling and adjustable product quality. In
AAMAS ’04: Proceedings of the Third International Joint Conference on Autonomous
Agents and Multiagent Systems, pages 828–835, Washington, DC, USA, 2004. IEEE
Computer Society.

[77] W. Wei, F. Xu, C. Tan, and Q. Li. Sybildefender: A defense mechanism for sybil
attacks in large social networks. 2013.

[78] Gerhard Weiss, editor. Multiagent Systems: A Modern Approach to Distributed Arti-
ficial Intelligence. MIT Press, Cambridge, MA, USA, 1999.

[79] Andrew Whitby, Audun Josang, and Jadwiga Indulska. Filtering out unfair ratings
in bayesian reputation systems. In Proceedings of the 7th Int Workshop on Trust in
Agent Societies, 2004.

[80] G. Wu, D. Greene, B. Smyth, and P. Cunningham. Distortion as a validation criterion
in the identification of suspicious reviews. 2010.

[81] L. Xu, S. Chainan, H. Takizawa, and H. Kobayashi. Resisting sybil attack by social
network and network clustering. In Applications and the Internet (SAINT), 2010
10th IEEE/IPSJ International Symposium on, pages 15–21. IEEE, 2010.

[82] Junichi Yamamoto and Katia Sycara. A stable and efficient buyer coalition forma-
tion scheme for e-marketplaces. In Proceedings of the fifth international conference
on Autonomous agents, AGENTS ’01, pages 576–583, New York, NY, USA, 2001.
ACM.

[83] Bin Yu and Munindar P. Singh. Distributed reputation management for electronic
commerce. Computational Intelligence, 18(4):535–549, 2002.

[84] Haifeng Yu, Phillip B Gibbons, Michael Kaminsky, and Feng Xiao. Sybillimit: A
near-optimal social network defense against sybil attacks. In Security and Privacy,
2008. SP 2008. IEEE Symposium on, pages 3–17. IEEE, 2008.

[85] Haifeng Yu, Michael Kaminsky, Phillip B. Gibbons, and Abraham Flaxman. Sybil-
guard: defending against sybil attacks via social networks. SIGCOMM Comput.
Commun. Rev., 36(4):267–278, August 2006.

194

[86] Giorgos Zacharia and Pattie Maes. Trust management through reputation mecha-
nisms. Applied Artificial Intelligence, 14(9):881–907, 2000.

[87] Giorgos Zacharia, Alexandros Moukas, and Pattie Maes. Collaborative reputation
mechanisms in electronic marketplaces. In HICSS ’99: Proceedings of the Thirty-
second Annual Hawaii International Conference on System Sciences-Volume 8, page
8026, Washington, DC, USA, 1999. IEEE Computer Society.

[88] Jie Zhang and Robin Cohen. Evaluating the trustworthiness of advice about seller
agents in e-marketplaces: A personalized approach. Electronic Commerce Research
and Applications, 7(3):330–340, 2008.

195

	List of Tables
	List of Figures
	List of Algorithms
	Introduction
	Related Work
	Trust and Reputation
	Direct experience
	Witness information
	Mechanism design

	Coalition formation and stability
	Multiagent Plan Recognition
	Community finding/Social network analysis
	Recommender systems/Collaborative filtering
	Combatting shills in recommender systems

	Sybil attacks
	Conclusion

	TREET: The Trust and Reputation Experimentation and Evaluation Testbed
	The ART Testbed
	The TREET Testbed
	Conception and Goals
	Scenario
	Architecture
	Simulation Execution
	Initial Test Set
	Use and License

	Discussion

	``Smart Cheaters'': Substantiating Vulnerabilities in Trust and Reputation Systems
	Vulnerabilities in TRSes
	Trust and Reputation Systems Evaluated
	Experimental Method
	TRS performance in the `normal' case
	Attack Implementation
	Playbooks

	Single-agent Attacks
	Sybil attacks
	The Reputation Lag attack
	The Re-entry attack
	The Value Imbalance attack
	Security by Obscurity?: The Multi-tactic Agent

	Coalition Attacks
	Ballot-stuffing
	Bad-mouthing

	Conclusions
	Moving Forward: The Issues of Coalitions and Collusion

	Coalition Detection and Identification
	The Nature of Cooperation
	Benefit
	Benefit Graph
	Similarity of benefit
	Benefit Space

	Algorithm
	Clustering in benefit space
	The Clustering Step
	Characterizing Clusters

	Experimental Results
	Method
	Results
	Exploring other key parameters
	Pathological cases

	Discussion

	Refinements and Enhancements
	Recursive refinement of coalitions
	Purity
	Recursive refinement
	Results

	Iterative refinement
	Termination?
	Progress
	Algorithm
	Results
	Implications: The importance of similarity

	Improved clustering
	A new method for optimizing the number of clusters
	Multi-clustering

	Improved characterization algorithm
	The problem
	The solution: an improved characterization algorithm
	Addressing difficult cases
	From here

	The Time Dimension, and Dynamic Coalitions
	Speed of convergence
	Dynamic Coalitions
	Results

	A new feature set: TF-IDF
	TF-IDF
	TF-IDF and coalition detection
	Results

	Discussion

	Applying Coalition Detection: A Collusion-Resistant Reputation System
	Collusion-Resistant Beta Reputation System
	Experimental results
	Bad-mouthing
	Ballot-stuffing
	Experimental parameters

	Discussion
	Requirements for a `collusion-proof' system
	Requirement 1: Faithful fulfillment
	Ensuring collusion is disadvantageous

	Conclusion

	Discussion, Future Work and Conclusion
	Discussion
	Future Work
	Conclusion

	References

