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Abstract

Side-Channel Analysis plays an important role in cryptology, as it represents an im-
portant class of attacks against cryptographic implementations, especially in the con-
text of embedded systems such as hand-held mobile devices, smart cards, RFID tags,
etc. These types of attacks bypass any intrinsic mathematical security of the crypto-
graphic algorithm or protocol by exploiting observable side-effects of the execution of the
cryptographic operation that may exhibit some relationship with the internal (secret)
parameters in the device. Two of the main types of side-channel attacks are timing
attacks or timing analysis, where the relationship between the execution time and se-
cret parameters is exploited; and power analysis, which exploits the relationship between
power consumption and the operations being executed by a processor as well as the
data that these operations work with. For power analysis, two main types have been
proposed: simple power analysis (SPA) which relies on direct observation on a single
measurement, and differential power analysis (DPA), which uses multiple measurements
combined with statistical processing to extract information from the small variations in
power consumption correlated to the data.

In this thesis, we propose several countermeasures to these types of attacks, with the
main themes being timing analysis and SPA. In addition to these themes, one of our
contributions expands upon the ideas behind SPA to present a constructive use of these
techniques in the context of embedded systems debugging.

In our first contribution, we present a countermeasure against timing attacks where an
optimized form of idle-wait is proposed with the goal of making the observable decryption
time constant for most operations while maintaining the overhead to a minimum. We
show that not only we reduce the overhead in terms of execution speed, but also the
computational cost of the countermeasure, which represents a considerable advantage in
the context of devices relying on battery power, where reduced computations translates
into lower power consumption and thus increased battery life. This is indeed one of the
important themes for all of the contributions related to countermeasures to side-channel
attacks.

Our second and third contributions focus on power analysis; specifically, SPA. We ad-
dress the issue of straightforward implementations of binary exponentiation algorithms
(or scalar multiplication, in the context of elliptic curve cryptography) making a cryp-
tographic system vulnerable to SPA. Solutions previously proposed introduce a consid-
erable performance penalty. We propose a new method, namely Square-and-Buffered-
Multiplications (SABM), that implements an SPA-resistant binary exponentiation ex-
hibiting optimal execution time at the cost of a small amount of storage — O(

√
` ),

where ` is the bit length of the exponent. The technique is optimal in the sense that it
adds SPA-resistance to an underlying binary exponentiation algorithm while introducing
zero computational overhead.
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We then present several new SPA-resistant algorithms that result from a novel way
of combining the SABM method with an alternative binary exponentiation algorithm
where the exponent is split in two halves for simultaneous processing, showing that by
combining the two techniques, we can make use of signed-digit representations of the
exponent to further improve performance while maintaining SPA-resistance. We also
discuss the possibility of our method being implemented in a way that a certain level of
resistance against DPA may be obtained.

In a related contribution, we extend these ideas used in SPA and propose a technique
to non-intrusively monitor a device and trace program execution, with the intended
application of assisting in the difficult task of debugging embedded systems at deployment
or production stage, when standard debugging tools or auxiliary components to facilitate
debugging are no longer enabled in the device. One of the important highlights of this
contribution is the fact that the system works on a standard PC, capturing the power
traces through the recording input of the sound card.
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Chapter 1

Introduction

In Cryptology, the art and science of secret writing, there are two fundamental areas of
study and research: Cryptography and Cryptanalysis. In Cryptography, the goal is to
create systems, algorithms, and protocols to provide secrecy, integrity, and authentica-
tion mechanisms, in general applicable to Information Systems and Telecommunications
systems, as well as any system that stores, processes or communicates data with other
systems where confidentiality and integrity of the data may be required. Examples of
these are medical devices, control systems, home automation systems, smart cards, audio
and video devices, etc.

These goals are in general achieved through the use of some secret information, or
key, which is then used to perform some operations on the data for which it is believed, or
assumed, that it is infeasible to perform the inverse operation without knowledge of the
key, thus providing a certain intrinsic mathematical security to the method. This key
can be a shared secret between the sender and the intended recipient, like in symmetric
key cryptosystems, in which the same key is needed by the sender and the recipient. In
asymmetric key or public-key cryptosystems, the key is composed of two parts, one part,
the private key to be kept secret (and not shared, even with the legitimate party in the
communication), and the other part, the public key to be made publicly available.

Cryptanalysis aims to overcome, or break the cryptographic mechanisms; that is,
create techniques or mechanisms that allow us to nullify either one or all of the aspects
provided by cryptographic methods; of course, it is implicit in this notion that this
goal is to be achieved without knowledge of the key. Examples of these cryptanalytic
techniques are: methods to recover the presumably “unreadable” information that results
from applying an encryption technique; methods to forge information or tamper with
existing information in the presence of cryptographic methods to enforce integrity, such as
Digital Signatures or Message Authentication Codes ; methods to forge or alter the origin
or authorship of some information in the presence of cryptographic methods to provide
authentication, such as Digital Signatures or any of the various Origin Authentication
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techniques.

Cryptanalysis has classically attempted to break the intrinsic mathematical security
of the cryptographic techniques, usually by breaking some of the premises, or exploiting
a defect in implementations that fail to respect the premises on which such mathematical
security is based. For example, some cryptographic methods rely on the fact that it is
believed that no efficient integer factorization algorithms exist, or in any case, that none is
known and it is believed that this will continue to be the case for the foreseeable future.
Thus, it can be assumed that no adversary will be able to factor large numbers with
large factors. However, if a cryptographic algorithm erroneously uses small numbers, or
numbers with small factors, then no efficient algorithm is needed — a cryptanalyst can
easily exploit this defect in the implementation, trying all numbers for divisibility, until
they obtain the factorization.

Cryptanalysts have started to use more “outside the box” approaches, where they at-
tempt to get around the intrinsic mathematical security, instead of breaking it or breaking
some of the premises. Though many of these techniques rely on complex mathemati-
cal components to make the technique successful, they still attack the implementation
directly, rather than attacking the abstract/mathematical aspects of the design.

1.1 Side-Channel Analysis

One of the most dramatic examples of this class of cryptanalytic techniques, where the
implementation is more directly attacked, is the field of side-channel analysis or side-
channel attacks. These types of attacks aim to entirely bypass the intrinsic mathematical
security of a cryptographic system, algorithm, or protocol, by observing side-effects of
the cryptosystem’s implementation that may expose some correlation with internal secret
parameters. Cryptographic systems are almost always implemented through electronic
circuits (often on general-purpose computers), and thus, observable physical phenomena
or observable parameters of the process occur as a side-effect of executing the crypto-
graphic algorithm or protocol. If these observable phenomena or parameters have some
correlation with the data — which is to be expected from a normal implementation on
a normal electronic circuit — then such correlation constitutes leaked information that
could be used to recover secret data and thus break the system.

A typical example is timing attacks, in which measurement of the time it takes to
complete a decryption operation can lead to recovering the secret key, thus completely
breaking the security of the cryptosystem [47]. Power analysis is another typical exam-
ple, usually applied to smart cards and other embedded devices; in this case, the attack
relies on the correlation between the data and operations the processor is working with
and the power the device consumes — having physical access to the cryptographic device
(which is the case with smart cards, hand-held devices, etc.), an attacker can measure
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power consumption and recover the secret parameters of the cryptosystem [48]. A similar
technique uses electromagnetic (EM) emissions to exploit its correlation with the oper-
ations the processor is executing and the data on which it is operating [2, 29, 71]. For
both techniques, the statistical characteristics of the noise has been used to recover secret
data through the use of statistical detection and estimation techniques [10, 72, 55, 4].
The simultaneous use of multiple side-channels has been also proposed as a means to
increase the efficacy of the attacks [3].

Much research work has been done both in devising side-channel attack techniques
as well as devising countermeasures — that is, techniques to implement cryptosystems in
such a way that makes them resistant to side-channel attacks (see [26] and [25] for a recent
survey of existing techniques). Paul Kocher pioneered this area of research, presenting
timing attacks [47], power analysis [48], as well as some fundamental countermeasures.
Schindler presented a more specific timing attack [74], later refined and demonstrated
by Brumley and Boneh [8], presenting a timing attack on OpenSSL [23], a real-world
cryptographic system that is widely used for Internet applications — they showed that
these attacks can be effective even when applied to a remote system over the Internet.
They also presented several countermeasures and showed that these countermeasures are
effective against the presented attacks.

A more general form of side-channel analysis has been introduced in the recent years,
based on evaluating the mutual information between ciphertext bits and the measurement
through the side-channel [33]; the study shows that the mutual information reaches a
peak for the correct guess of the key (more specifically, a block of key bits of manageable
size). This class of side-channel attacks shows to be very powerful, in that it assumes
little knowledge about the implementation or a detailed model of the side-channel through
which information is being leaked. However, for cases where a model is known, or at least
it is known that a linear relationship exists between data and leaked information, it has
been shown that correlation analysis provides a more efficient attack mechanism [59, 80].

In terms of countermeasures, one obvious approach would be to entirely avoid any
side-channels; for example, one could shield or isolate the electronic circuits from the
outside environment in every conceivable way. If the circuit is physically contained
in, say, a metallic box or some shielding material, then the EM side-channel would be
closed, or at least hidden below noise level to a point that makes attacks extremely
difficult; empirical evidence shows that this may be the case with modern devices, as
suggested by Gebotys [31]. However, the effectiveness and resolution of attacks has
also increased (see for example [53] and [42]), making the argument less convincing as
time progresses. A large capacitor or internal battery could be used to “buffer” power
consumption and thus avoid any correlation with the internal operations of the processor,
effectively closing this side-channel.

In [48], Kocher et al. suggest the reduction of leaked signals through measures like
increased bus sizes, attempting to make Hamming weights for operands constant through-
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out the execution, and balancing changes from bit values. They somewhat dismiss these
measures arguing that it can be extremely complex to implement them and ensuring that
they are and remain effective. Gebotys [30] showed that instruction-level parallelism and
large bus sizes in modern embedded processors (2004) are indeed helpful in making DPA
attacks increasingly difficult. Still, this does not entirely negate Kocher et al. previous
claim.

Work has also been done both in developing techniques to design hardware in a way
that it reduces leaked signals (mostly EM emissions and power consumption) and in
developing attacks that circumvent these countermeasures [11, 49, 57, 52, 32]. The main
disadvantage with these approaches is that they would restrict cryptographic systems to
be implemented on specially designed hardware, instead of on general-purpose computers
or standard electronic circuits (e.g., FPGA).

We can observe that an important limitation with these engineering/technological
countermeasures is the fact that one has to very carefully design each new cryptosystem,
or each new implementation of a cryptosystem, to ensure that these countermeasures
are correctly implemented and properly operational. Also, there is the fact that these
countermeasures are specifically designed for known and specific classes of side-channel
attacks; this means that systems could be vulnerable to other side-channels, perhaps
not known at the time of implementation of the system.

An immediately obvious challenge related to this area is that of devising algorithms to
implement cryptographic protocols or cryptographic primitives in ways that are secure
in the presence of these types of attacks — that is, assuming that the side-channel is
present and accessible to an attacker. This is clearly a challenge, as side-effects of
the execution are inevitable and, as discussed above, very difficult to isolate through
engineering/technological means. Thus, a secure implementation must ensure that these
measurable side-effects occur either in identical ways regardless of the values of the secret
data or in ways that are unrelated to the data.

Since some of the vulnerabilities to side-channel attacks arise from data-dependent
optimizations in the algorithms, an obvious way to implement them in a secure way is to
remove those optimizations. Thus, an additional challenge arises — devising implemen-
tations that are both efficient and secure against side-channel attacks. This is the main
theme in the contributions presented in this thesis, which we now present.

1.2 Our Contributions

The contributions presented in this thesis relate to side-channel analysis from two distinct
perspectives: three of the contributions attempt to improve upon existing countermea-
sures against side-channel attacks; specifically, presenting faster or more computationally
efficient (and thus more power-efficient) countermeasures with respect to prior work. As
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a related contribution, we present a novel approach for non-intrusive program tracing in
which some of the main ideas behind power analysis are applied in a different context
and for a different purpose.

We briefly describe these four contributions:

• We proposed and evaluated an efficient countermeasure against timing attacks
through idle-wait after the cryptographic operation is completed, to hide any useful
timing patterns that an attack could exploit. The main aspect of this contribution
is that the idle-wait is adaptive, with the goal of reducing the overhead introduced
by the countermeasure. We also explore some aspects that have been overlooked
in previous studies related to this technique.

• We proposed an efficient exponentiation technique that is resistant to some forms
of power analysis, at the cost of a small amount of storage. The main idea in
this technique can be combined with several underlying exponentiation algorithms,
adding resistance to power analysis while introducing zero computational overhead.
As part of the study, the technique was combined with alternative exponentiation
algorithms, showing that we can further improve the efficiency of the method in
terms of computational cost.

• In a follow-up contribution, we further improved our power analysis countermea-
sure by combining it with a modified form of an existing exponentiation algorithm
(the modification being part of our contributions for this work), which in turn led
to several new algorithms resistant to power analysis while exhibiting increased
computational efficiency. This modification that we proposed is only feasible when
combining that method with our technique, and it is not applicable to the method
in its original form.

• We proposed, implemented and evaluated a novel approach for non-intrusive pro-
gram tracing of embedded devices through side-channel analysis. This technique
has obvious applications in the area of embedded systems, as it can assist in the
task of debugging at advanced stages of development or even after deployment. It
can also have potential applications in the context of embedded systems security;
in particular, it can increase the efficiency of existing attacks. It could also have
applications as a monitoring system that would detect anomalies in the execution,
thus acting as an intrusion detection system (IDS) [7] for embedded devices. This
approach would have an important advantage over existing IDS in that it is exter-
nal to the system being monitored, making it a tamper-proof device from the point
of view of remote attacks that operate by injecting unwanted code after the system
is operating.
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1.3 Organization of This Thesis

The rest of this thesis proceeds as follows: we first present an overview of the mathemat-
ical background and existing techniques related to the contributions presented. That is,
the background material presented in Chapter 2 covers all of the contributions. We do
not emphasize any limitations on existing techniques as part of Chapter 2.

Then, we include one chapter for each of the contributions being presented. Each
of these chapters is organized as follows: we first discuss any limitations on existing
techniques as well as any other aspects that justify or motivate the work being presented
in that chapter. We then present a summary of the contributions presented in that
chapter, including the “main” contribution and any secondary or minor contributions
that may be part of the work. After that, we present the details of the work presented
in the chapter. Depending on the particular chapter, this may include analytical deriva-
tions, proofs, experimental setup, etc. Each chapter closes with a brief discussion and
concluding remarks related to the work presented in that chapter.

In Chapter 7, we present a more general discussion related to all of the contributions.
As well, we discuss any future work that we believe could derive from our contributions
or that we may consider necessary as follow-up work that may confirm or expand the
value of our contributions. Finally, we present some conclusions and final thoughts.
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Chapter 2

Background

This chapter presents an overview of the mathematical background and existing tech-
niques related to the contributions that we present in this thesis. We will not focus on
the limitations or possible improvements to existing techniques, as these will be addressed
in each chapter, as part of the justification or motivation for the work being presented.

2.1 Cryptographic Primitives

Historically, cryptography has been seen as a mechanism to communicate in secrecy.
Encrypting phrases or numbers used to be the conventional idea of what one can achieve
through the use of cryptography. Modern cryptography, however, deals with a more com-
plex landscape in terms of applicability (e.g., telecommunications, electronic commerce,
ubiquity of computing devices) and available mechanisms (e.g., electronic circuits and
digital computers). Modern cryptographic techniques exist that deal with the goals of
secrecy or confidentiality, data integrity, authentication, and non-repudiability. The fol-
lowing cryptographic primitives, or combinations of them, provide techniques addressing
the above goals:

• Encryption (and its complementary operation, decryption)

• Cryptographic Hash functions or One-Way Functions

• Message Authentication Codes

• Digital signatures

These cryptographic primitives, at least when used in a practical context requiring
security guarantees, typically rely on two fundamental components: a cryptographic key,

7



typically a secret on which the security of the system relies; and a source of random or
pseudo-random data. Depending on the application, pseudo-random data may suffice,
but usually, we see the notion of cryptographic quality pseudo-random numbers generator
(PRNG), referring to strict requirements in terms of unpredictability of these pseudo-
random values as well as a strict lack of any discernible patterns in the sequence [81].

We will focus on encryption, and in particular, as we will discuss shortly, on public-key
or asymmetric encryption, since this is the area that is relevant to the contributions that
we present in this thesis. The interested reader may consult comprehensive references
such as [56], [66], or [78] for a more complete discussion on cryptographic primitives and
their uses.

Encryption provides secrecy or confidentiality in a context where one entity, the
sender, has some data that needs to be made accessible — sent — to another entity, the re-
cipient. Encryption works by applying a transformation to the input data, the plaintext,
to obtain the ciphertext. This transformation has the following properties:

• It is usually mathematical in nature, and almost always based on binary representa-
tion for any data, since modern cryptographic tools are intended for implementation
on computers or digital circuits.

• It involves the use of the cryptographic key. This could be seen as the transfor-
mation being a function of two arguments, namely, the plaintext and the key; or
it could be seen as a family of functions of a single input argument (the plaintext)
where each value of the key defines one of the functions.

• The output data or ciphertext should be “gibberish” (more formally, we could say
that it is a stream of data that should be indistinguishable from the output of a
source of random data) for anyone that does not possess the key. Putting aside
the sender, the legitimate recipient is in principle the only entity that possesses the
key.

• A related transformation, namely the decryption, is similarly defined. The recipient
uses this operation to transform the ciphertext back into the plaintext.

One important classification for encryption techniques relates to the keys used for
encryption and decryption. In symmetric key encryption, the same key is required for
both operations; thus, the sender and recipient must possess a shared secret, a piece of
data that no-one else has access to. The sender uses the key to encrypt the plaintext,
and the recipient uses the same key to decrypt the resulting ciphertext.

In asymmetric key or public-key cryptography, one key is used for encryption and a
different key is used for decryption, avoiding the requirement of a shared secret between
sender and recipient. We will focus on providing background for this technique, as our
contributions relate specifically to it. We present and discuss the details in the next
section.
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2.2 Public-Key and Elliptic Curve Cryptography

This section presents an overview of public-key cryptography and some of the important
algorithms that are used in practice.

2.2.1 Diffie-Hellman Key Exchange Protocol

In their influential 1976 paper New Directions in Cryptography [19], Diffie and Hellman
introduced the notion of public-key cryptography, a methodology that allows two parties to
communicate securely (i.e., using encryption) without having had any prior contact (e.g.,
to arrange on a secret encryption key to be used for the communication) and without
access to an alternate secure channel (possibly with reduced capacity, but enough to
securely transmit an encryption key).

The idea is that a cryptographic key is composed of two parts: an encryption or
public key, which can be (and in principle is) made publicly accessible, and a decryption
or private key, which must be kept secret by the recipient of the encrypted communi-
cations. Data encrypted with the encryption or public key can be decrypted using the
corresponding private key, and only with the corresponding private key. Clearly, the two
components of the key must be related, but this relationship must be such that given the
public key, it must be infeasible to efficiently determine the private key.

Though they did not provide any concrete method that implements this idea of public-
key cryptography, they did propose a methodology that allows two parties to securely
exchange a piece of information that can then be used as the encryption key with any
symmetric key cryptosystem, thus achieving the actual goal of allowing secure commu-
nication between parties that have not had any prior contact and without access to an
alternate secure channel.

The protocol is defined as follows: Let G be a cyclic group with multiplicative
notation, and let g be a generator of G. Parties A and B would execute the following
protocol, namely the Diffie-Hellman key exchange protocol, for the purpose of possession
of a shared secret:

• A randomly chooses value a (0 6 a < |G|)

• A computes ga and transmits it to B (possibly/presumably over an insecure chan-
nel)

• B randomly chooses value b (0 6 b < |G|)

• B computes gb and transmits it to A (possibly/presumably over an insecure chan-
nel)
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• Upon reception of A’s transmission, B computes (ga)b = gab

• Upon reception of B’s transmission, A computes (gb)
a

= gba = gab

• Shared secret is the element gab ∈ G

For the protocol to be secure, an attacker that observes the values ga and gb must not
be able to determine gab. This implies that the attacker must not be able to determine a
or b.1 The security of the protocol therefore relies on the difficulty to solve the discrete
logarithm problem for the group G. That is, given the values of g ∈ G and gx with
0 6 x < |G|, no efficient method is known to obtain the value of x. Of course, “efficient”
in this context is relative to the magnitude of the values (in particular, the order of
the group, |G|), and relates to the issue that if |G| is sufficiently small, then the value
of x can be easily obtained by trying all possible values in the range (0 to |G|). And
again, the notion of “sufficiently small” is relative to the computing power available to an
adversary — a factor that changes over time. Algorithms to solve the discrete logarithm
problem exist that are more efficient than brute force search for the solution, but they
are still inefficient enough that the above protocol is considered secure. The details
are beyond the scope of this thesis. The interested reader may consult [56] for more
information.

In a “classical” implementation, the group G would be the set Zp\{0}, where p is
a large prime number, and the group’s operation · is multiplication modulo p— that
is, a · b , a× b mod p, where the symbol × denotes integer multiplication, and the
notation x mod p refers to the least nonnegative integer value xp such that x = xp + kp
for some integer k (in practical terms, x mod p is the remainder of the division x÷ p— a
value between 0 and p−1). This “classical” form of the protocol, thus, involves computing
(modular) exponentiations with large exponents — a common theme among public-key
cryptosystems, as we will see from the next few sections.

Additional measures are needed to make the protocol secure against a variety of other
attacks and threats, but these are beyond the scope of this thesis.

2.2.2 RSA Public-Key Cryptosystem

RSA, proposed by Rivest, Shamir and Adleman in 1977 and published in 1978 [73] was
the first example of a public-key cryptosystem proposed in the open scientific community.
The security of this cryptosystem relies on the hardness of factoring large numbers. More
specifically, numbers with prime factorization consisting of only large numbers, such as
the product of two large primes.

1 The careful reader may observe that this is a necessary but not a sufficient condition — one could
conceivably determine gab from g, ga, and gb through some other means not involving determining the
values of a and b. However, it turns out that no efficient method is known to solve this problem either.
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The RSA cryptosystem is defined as follows: Let p and q be two large prime numbers,
and let m = pq. Let φ(m) be the Euler function for m, which in this case is given by
φ(m) = (p− 1)(q − 1) [44].

Setup phase:

• Recipient chooses at random two large prime numbers p and q of a specified size
(for example, 1024-bits each), computes the modulus m = pq, and chooses an
encryption exponent e relatively prime to φ(m) (a typical choice is a small prime
number, such as 216 + 1 = 65537)

• Recipient computes the decryption exponent d = e−1 (mod φ(m))

• Recipient publishes e and m— that is, the public key is the pair (e,m)

• Private key is d— in particular, recipient never reveals the values of p or q, so
he/she may choose to securely discard them.

Operation phase:

• Encryption: The encryption function E for a value x, with 0 6 x < m, under public
key (e,m) is given by E(x; e,m) = xe mod m

• Decryption: The decryption function D for a ciphertext y (which, if it is the result
of encrypting with public key (e,m), then we have the guarantee that 0 6 y < m)
is given by D(y; d,m) = yd mod m

The scheme works in that D(E(x; e,m); d,m) = x. We can easily verify this property:

D(E(x; e,m); d,m) = D(xe mod m; d,m)

= (xe mod m)d mod m

= (xe)d mod m = xe·d mod m

= x(e·d mod φ(m)) mod m (2.1)

= x (2.2)

Equation (2.1) follows from Euler’s Theorem (a generalization of Fermat’s Little The-
orem), from which we know that xa ≡ xb (mod m) if a ≡ b (mod φ(m)) [44]. The last
equality follows directly by construction of the parameters, since d is chosen to be the
inverse of e modulo φ(m), and thus e · d ≡ 1 (mod φ(m)).

A commonly used optimization takes advantage of the Chinese Remainder Theorem
(CRT) to implement the decryption operation as two exponentiations of half the size [44].
Indeed, given ciphertext y, we define the following auxiliary values: let yp = y mod p,
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yq = y mod q, dp = d mod (p− 1) and dq = d mod (q − 1). With this, we compute

xp = y
dp
p mod p and xq = y

dq
q mod q and obtain x using the CRT formula. Evaluating

these two exponentiations is more efficient than the original (single) exponentiation since
the size of the operands is smaller, and as we will see in §2.3.1, exponentiation involves
multiplication and squaring operations, which have runtime above linear time (usually
O(n2) or O(n1.585))

The security of RSA relies on the difficulty to factor large numbers; given m (which
is publicly available, given that it is part of the public key), if an adversary was able to
factor it to obtain p and q, then they could directly compute φ(m) and thus d, entirely
breaking the system.

We observe that, though an entirely different structure, with security relying on an
entirely different mathematical premise, RSA also uses modular exponentiation with large
exponent values — though e is in general small, d is always a large number (in the same
order of m), and even with the CRT optimization, the exponents are in the order of p
and q, which are by construction half the bit length of m.

2.2.3 ElGamal Public-Key Cryptosystem

Taher ElGamal [21] proposed a public key encryption scheme closely related to Diffie-
Hellman’s key exchange protocol. The extension was simple, but somewhat ground
breaking, in that it was the first cryptosystem in which the ciphertext is random (in
particular, it is not defined as a mathematical function of the plaintext, since each en-
cryption of the same plaintext with the same public key produces a different ciphertext).
Its security therefore relies on the difficulty of solving the discrete logarithm problem in
the group G, like the Diffie-Hellman protocol.

The setup of the cryptosystem is as follows (using the same notation and parameters
for Diffie-Hellman): Recipient chooses a random value α, which is the private key, and
computes gα, which is the public key. To encrypt plaintext x, a random value r is chosen,
and the values c1 = gr and c2 = x · (gα)r = x · gαr are computed. The ciphertext is the
pair (c1, c2). To decrypt, the recipient obtains (gαr)−1 using the private key to compute
c1
α (this step can be seen as part of a Diffie-Hellman key exchange protocol with a being

r and b being the private key α), and then obtain x = c2 · (gαr)−1.

2.2.4 Digital Signatures

Digital signature schemes are closely related to public key cryptosystems, in that a doc-
ument (seen in this context as a piece of data) is signed using a signing key, which is
private, and then can be verified using a verification key, which is publicly accessible.
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The operations typically involve exponentiation with large exponents, like operations
with public key cryptosystems.

We omit a more detailed description of digital signatures techniques, since it is beyond
the scope of this thesis. The interested reader can consult [56] or [39] for more details.
We just wish to emphasize the aspect that this important class of cryptographic primitive
also involves exponentiation with large exponents as a fundamental operation.

2.2.5 Elliptic Curve Cryptography

Though considered a class of cryptography on its own, elliptic curve cryptography (ECC),
concurrently proposed by Koblitz and Miller [46], [58], can be seen as a particular form
of public key cryptography, where the operations involved are done in the additive group
of points in an elliptic curve defined over an underlying finite field.2

The basic group operation (point addition), defined through a special mechanism
when the two operands are the same point (point doubling) on the curve E defined over
the field F (with char(F) > 3) as E/F : y2 = x3 + ax+ b is shown below:

Given points P = (x1, y1) and Q = (x2, y2) on the curve, with P + Q = (x3, y3) and
2P = (x4, y4), we have:

P +Q : x3 =

(
y2 − y1

x2 − x1

)2

− x1 − x2 (2.3)

y3 =

(
y2 − y1

x2 − x1

)
(x1 − x3)− y1 (2.4)

2P : x4 =

(
3x2

1 + a

2y1

)2

− 2x1 (2.5)

y4 =

(
3x2

1 + a

2y1

)
(x1 − x4)− y1 (2.6)

Since elliptic curves use additive notation for the group operation, we don’t use the
term exponentiation, but rather scalar multiplication as the equivalent operation. The
idea and the computational aspects are essentially identical, and as we will see, the
implementation issues, both on the efficiency side and on the security side (in particular
physical security with respect to side-channel analysis), are essentially identical. Thus,
throughout the rest of this thesis, we will refer to exponentiation in general, including
the case of scalar multiplication in ECC as an equivalent operation, since the difference
is simply notational.

2 Elliptic curves can be defined over any field, but to be useful as a cryptographic primitive, a finite
field has to be used.
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ECC is a very attractive alternative in general, but in particular for embedded sys-
tems and in general power- and resource-constrained devices, given its shorter key sizes
required for a given security level, which leads in general to reduced computations, and
thus lower power consumption, as well as reduced storage requirements.

2.3 Binary Exponentiation

As discussed in the previous sections, exponentiation with large exponents — or, in the
context of ECC, scalar multiplication with large scalar values — plays a crucial role in
cryptographic primitives, especially in public-key and ECC cryptosystems (including
digital signatures). Efficient algorithms have been proposed and are in general well
studied [34]. In this section, we present some of the basic exponentiation algorithms
that exploit the binary representation of the exponent to provide computationally efficient
solutions.

2.3.1 Binary Exponentiation Algorithms

Two main types of algorithms have been proposed that exploit the binary representation
of the exponent to provide efficient exponentiation. Both algorithms traverse the expo-
nent bits in sequence, and execute a square operation and a conditional multiplication
for each exponent bit. One of the algorithms traverses the exponent bits left-to-right
(MSB to LSB) using the property that, given the result of xa, we can easily obtain xa

′
,

where a′ is obtained by adding bit b at the right (LSB) of the exponent a; we notice
that a′ = 2a+ b, and thus

xa
′
= x2a+b = (xa)2 · xb (2.7)

We observe that xb can only be 1 or x, if the value of bit b is 0 or 1, respectively.
This means that this term can contribute with either a multiplication by the base, or
with a null operation (a multiplication by 1), and leads to the iterative square-and-
multiply algorithm (or its equivalent in the context of ECC, double-and-add) shown as
Algorithm 1, for an exponent of ` bits.

An alternative approach, traversing the exponent bits from right to left, is shown as
Algorithm 2. This technique, known simply as right-to-left binary exponentiation, takes
advantage of the property shown in Equation (2.8), for an `-bits exponent e with binary
representation b`−1 b`−2 · · · b2 b1 b0:

xe = x(
∑`−1
i=0 bi·2

i) = x

(∑`−1
i=0
bi=1

2i

)
=

`−1∏
i=0

bi=1

x(2i) (2.8)
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Algorithm 1: Square-and-Multiply (Left-to-Right Exponentiation)

Input: x; e = (b`−1b`−2 · · · b1b0)2

Returns: xe

begin
R ← 1;
for each bit bi (i from `− 1 down to 0) do

R ← R2;
if bi = 1 then

R ← R× x;
end

end

return R;
end

Algorithm 2: Right-to-Left Exponentiation

Input: x; e = (b`−1b`−2 · · · b1b0)2

Returns: xe

begin
S ← x; R ← 1;
for each bit bi (i from 0 up to `− 1) do

if bi = 1 then
R ← R× S;

end
S ← S2;

end

return R;
end
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Although there is a potential advantage for the left-to-right version in the context of
ECC (through the use of mixed additions), the right-to-left version has some potential
advantages as well; Fouque and Valette [27] point out that this version is resistant to
their proposed doubling attack, a technique that is successful against the left-to-right
version. Also, as we will discuss in §4.4, the right-to-left can be easily implemented as
a two-thread parallel algorithm.

2.3.2 Signed-Digit and NAF Representation of the Exponent

An important extension for both algorithms above comes from the use of signed-digit
representation of the exponent [5]. Of interest to us is the case of expressing an exponent
using signed digits representation as follows:

e =
∑̀
i=0

di2
i di ∈ {1, 0, 1} (2.9)

where, for convenience 1 , −1 when used to denote the value of a digit.

Signed-digit representation is redundant, and thus, multiple representations for the
same value can be found (for example, 111 and 1001 are both valid representations
of the value 7). If we introduce the constraint that no two contiguous digits can be
nonzero, we obtain the Non-Adjacent Form (NAF) representation, which is unique for
every represented value. Furthermore, this representation may require ` + 1 bits to
represent an `-bit binary number, but it has lowest Hamming Weight among all signed-
digit representations, with one third of the digits being nonzero on average [5] (see also
Lemma 5.4 and Appendix B for an alternative analysis). This aspect represents the main
advantage of using NAF representation for the exponent, since nonzero digits involve
conditional multiplications, and thus, a representation with lowest number of nonzero
digits leads to an important reduction in the number of multiplications.

The required modification to Algorithm 2 to work with signed-digit exponent is
straightforward, as can be easily seen from the signed-digit expansion:

e =
`−1∑
i=0

di 2
i =

`−1∑
i=0
di=1

2i −
`−1∑
i=0

di=1

2i =⇒ xe =

(∏
di=1

x(2i)

)
·

∏
di=1

x(2i)

−1

(2.10)

Algorithm 3 shows the right-to-left algorithm with exponent in NAF representation.

For cases where the cost of computing inverses is negligible, such as the case of
ECC [39], the algorithm could avoid the extra accumulator by proceeding as Algorithm 2,
but multiplying by the inverse of S at each iteration where di = 1.
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Algorithm 3: Right-to-Left Exponentiation with NAF Exponent

Input: x; e = (d`−1d`−2 · · · d1d0)
NAF

Returns: xe

begin
S ← x; R1 ← 1; R1 ← 1;
for each digit di (i from 0 up to `− 1) do

if di 6= 0 then
Rdi ← Rdi × S;

end
S ← S2;

end

return R1 × (R1)−1;

end

2.4 Side-Channel Analysis

The area of side-channel analysis or side-channel attacks was pioneered by Paul Kocher
during the mid and late 1990s [47, 48]. Side-channel attacks aim to entirely bypass
the intrinsic mathematical security of a cryptographic system, algorithm, or protocol,
by observing side-effects of the cryptosystem’s implementation that may expose some
correlation with internal secret parameters. Cryptographic systems are almost always
implemented through electronic circuits (often on general-purpose computers), and thus,
observable physical phenomena or observable parameters of the process occur as a side-
effect of executing the cryptographic algorithm or protocol. If these observable phenom-
ena or parameters have some correlation with the data — which is to be expected from a
normal implementation on a normal electronic circuit — then such correlation constitutes
leaked information that could be used to recover secret data and thus break the system.

Side-channel attacks are particularly suitable for (though not necessarily restricted
to) scenarios where attackers or potential attackers have physical access to the devices
implementing the cryptographic operations. This includes mobile devices, smart cards,
and in general any embedded devices that include cryptographic functionality.

Examples of these attacks (and indeed, the instances initially presented by Kocher)
include timing analysis and power analysis. Timing analysis or timing attacks rely on
the fact that the data with which the algorithms work affect the execution time in a way
that can be exploited to recover the secret parameters from measurements of execution
time. With power analysis, the relationship between the instructions being executed
by a processor and the power being consumed is exploited, as well as the relationship
between the data with which the processor is working and the power consumption. By
exploiting this relationship, the secret parameters can be recovered from one or multiple
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power traces — plots of instantaneous power consumption as a function of time. In the
next sections, we look into some of the aspects for each of these types of attacks.

2.5 Timing Analysis

The main idea behind timing analysis is exploiting the relationship between the data
involved in the operations and the variations in execution time. This data includes
both the cryptosystem’s parameters — in particular, the secret parameters — and the
ciphertext being decrypted.

For simplicity, we will focus on RSA decryption operations, for two reasons: (i) in
most cases, the secret parameter is the value of an exponent, so the idea is applicable
to other cryptosystems as well; and (ii) RSA involves details that introduce additional
vulnerabilities to timing attacks, so it is worth looking at these aspects. Depending on
the particular RSA implementation, the secret parameters may include the decryption
exponent d, or the modulus prime factorization, p and q. This depends mainly on the
types of optimizations used — e.g., straightforward square-and-multiply vs. Montgomery
modular multiplication and the CRT to execute two exponentiations modulo each of the
factors [56]. All of these optimizations have been used in actual RSA implementations,
and different attack techniques have been proposed for these cases [8].

In most cases, timing attacks use statistical processing on a large number of decryption
operations with data controlled by the attacker; this is the case due to two main reasons:
the attacker usually has no access to timing measurements of the intermediate operations,
and the total amount of time is approximately the same for every decryption. By using
statistical processing, the attacker can accurately measure the small variations caused
by the data (the ciphertexts). A second reason is that the use of statistical techniques
makes it possible for the attack to get around measurement errors and various random
delays contributing to the timing of the operation that are beyond the attacker’s control.

Specific attacks are designed for different implementations of the decryption opera-
tion; for the general case where modular exponentiations are implemented as a straight-
forward square-and-multiply, Paul Kocher describes an approach based on guessing one
bit at a time, and measuring the variance in the difference between the times measured for
the actual decryption operation and the operation “mimicked” by the attacker; when the
bit is guessed correctly, we have one additional iteration where both systems are working
with the same data, and thus, the measured variance is lower, allowing the attacker to
validate the guess for each bit of the decryption exponent [47].

Schindler [75] presented a more specific timing attack, applicable to implementations
that use Montgomery exponentiations combined with the CRT optimization for RSA de-
cryptions. The attack exploits a measurable difference in the decryption time when the
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ciphertext is close to a multiple of either p or q. This attack was later refined and demon-
strated by Brumley and Boneh [8], presenting a successful timing attack on OpenSSL [23],
a real-world cryptographic system that is widely used for Internet applications — they
showed that these attacks can be effective even when applied to a remote system over
the Internet.

An important common theme in these attacks is the ability on the part of the attacker
to measure statistical parameters from the collected measurements of the decryption time
over a somewhat long period of time, with data controlled by the attacker.

2.6 Power Analysis

With power analysis, one exploits the relationship between power consumption and the
instructions that a processor executes, as well as the data on which those instructions
operate. To this effect, an attacker measures current consumption (directly proportional
to power consumption, since the voltage is approximately constant) as a function of time
on the device during the execution of the cryptographic operation. This “plot” of power
consumption as a function of time is referred to as a power trace. Different techniques
exist, requiring either single or multiple power traces. We describe the main two types
of power analysis attacks in the next sections.

2.6.1 Simple Power Analysis

Simple power analysis (SPA) relies on data-dependent optimizations at a coarse-scale
level that introduce prominent features in the power traces that make a successful attack
possible with a single power trace.

Perhaps among the most dramatic examples are straightforward implementations
of binary exponentiation. Both exponentiation algorithms discussed in §2.3.1, in either
standard binary or NAF forms, exhibit the same vulnerability to SPA: the multiplication,
with a distinct and easily identifiable power consumption profile, is executed conditionally
on bits of the exponent, making it possible for an attacker to recover the exponent by
observing a single power trace of the device while it executes the exponentiation [48].
We recall from the previous sections that in public-key cryptosystems, the exponent is a
parameter that must be kept secret to ensure the security of the system.

We observe that the use of NAF does not eliminate the vulnerability to SPA; though
a power trace only allows the attacker to distinguish nonzero digits, without knowing
whether they are 1 or 1, the fact that only one third of the exponent bits are nonzero
on average means that the attack is slowed down, but the vulnerability is not necessarily
eliminated.
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2.6.2 Differential Power Analysis

Though the contributions presented in this thesis relate mostly to SPA, one of our pro-
posed techniques, an SPA-resistant algorithm (presented in Chapter 4), exhibits several
aspects that could make it suitable as a countermeasure against differential power analysis
(DPA). For this reason, we present a brief overview of this technique.

DPA aims at exploiting the relationship between the data that an instruction operates
with and the power being consumed by the processor. The additional difficulty is given by
the fact that differences in data produce very small variations in the power consumption,
almost inevitably below the level of measurement noise, and thus impossible to detect
from a single trace.

In DPA, multiple power traces of a cryptographic operation with the same key are
combined through digital signal processing and statistical processing to get around the
measurement noise — in a sense, we “average out” the effect of all other factors contribut-
ing to power consumption and the measurement noise.

To this effect, in the context of binary exponentiation where an attacker’s goal is to
recover the secret exponent, the attacker guesses one bit of the exponent at a time, and
executes the exponentiation based on that guess; the traces are partitioned based on
some binary feature of this “predicted” result, and all the traces from each partition are
aligned and added; if the guess is correct, there will be a component of the traces that will
exhibit correlation from trace to trace, and thus, a peak will show in the superposition
of the traces; otherwise, the traces will be entirely uncorrelated, since an incorrect guess
means that the data with which the two devices operate will be uncorrelated. This
directly allows the attacker to validate each guess, and ultimately recover the exponent.

Countermeasures typically involve some form of randomization, such that any corre-
lation between different traces is eliminated. This randomization could be in the data
(done in a way that could be undone after decryption is complete) or in the execution,
or both.

2.7 Statistical Pattern Recognition

One of the contributions presented in this thesis relies on statistical pattern recognition
techniques [82], with the goal of identifying, or rather, classifying power traces according
to a database of possible candidates, which allows us to recover the execution trace
through non-intrusive measurement.

For the cases where we do not count on analytic models for the probability distribu-
tion (which is the case in the work presented in Chapter 6), we can resort to techniques
based on databases of training samples, for which the classification is known with cer-
tainty. These training samples are in principle a set of values drawn from the probability

20



distribution for the process in question. Thus, they should be representative of the prob-
ability distribution of the process. The task of the classification system is described as
follows: Let X be a random variable corresponding to a feature vector with features
from a given sample associated with an unknown class C from a set of Q possible classes
C = {C1, C2, · · · , CQ}. The task of the pattern recognition system is that of obtaining

an estimate of C, denoted Ĉ, to which the feature vector X corresponds with highest a
posteriori probability:

Ĉ = arg max
Ck ∈C

{Pr {Ck | X}} (2.11)

Among the common techniques used to achieve this goal are Linear Discriminant
Functions and Nearest Neighbors. We discuss these in the next sections.

2.7.1 Linear Discriminant Functions

With Linear Discriminant Functions (LDF), the training phase of the system collects a
database of S labelled samples {X1,X2, · · · ,XS} of feature vectors (the label being the
class C to which the sample is known to correspond). For each class Ck, we compute
the sample average or centroid Ck as

Ck =
1

Sk

∑
Xi ∈Ck

Xi (2.12)

where Sk is the number of training samples labelled as Ck.

In the detection or classification phase, a given feature vector X is associated to
the class Ĉ that corresponds to the nearest centroid (usually Euclidean distance in the
multi-dimensional feature space is used):

Ĉ = arg min
Ck ∈C

{∥∥X−Ck

∥∥} (2.13)

To avoid expensive distance computations, each two centroids define an LDF that, when
evaluated at a given point, determines the centroid to which the point is closer. The
LDF corresponds to a hyperplane orthogonal to the line between the two centroids and
intersecting that line at the point equidistant from the centroids, providing an efficient
implementation mechanism.

2.7.2 Nearest Neighbors Rules

For the Nearest Neighbor (NN) rule, the classification phase associates a given feature
vector X to the class of its nearest neighbor among all training samples:

Ĉ = CI with I = arg min
16 i6S

{ ‖X−Xi‖ } (2.14)

21



The k-Nearest Neighbors (k-NN) rule [82] provides a higher level of robustness with
respect to noise in the measured features. Given a feature vector X, we obtain the k
nearest neighbors among all training samples, and the classification is done by majority
vote among the k labels of these nearest neighbors. That is, if the k nearest training
samples have labels {Cn1 , Cn2 , · · · , Cnk}, then feature vector X is associated to class C
given by

Ĉ = CI with I = arg max
n


k∑
i=1
ni=n

1

 (2.15)

A typical way to efficiently implement this rule is to compare square distances, instead
of the distance itself, to avoid square root computations. Since the function f(·) =

√
·

is a strictly increasing function, comparing square distances necessarily yields the same
result as comparing distances.

2.8 Spectral Analysis of Digital Signals

The contribution presented in Chapter 6 also uses digital signal processing (DSP) tech-
niques; specifically, spectral analysis. We present a brief overview of these techniques.

One of the fundamental concepts when applying spectral analysis to digital signals
is that of the Discrete Fourier Transform (DFT). Given a discrete-time signal x of finite
duration, represented by a sequence of N real values x = {x0, x1, · · · , xN−1

}, its DFT
X [70] is given by the sequence of N complex values X = {X0,X1, · · · ,XN−1}, where
each Xk is given by

Xk =
N−1∑
n=0

xn e−j 2πkn
N (2.16)

where j denotes the imaginary unit 3 (i.e., j2 = −1)

A straightforward implementation clearly takes O(N2) time to compute the DFT of
a sequence of N values. In practice, Fast Fourier Transform (FFT) is normally used,
being an efficient algorithm to compute the DFT. FFT exploits the symmetry in the
DFT to implement an in-place divide-and-conquer [14] algorithm and obtain the DFT in
O(N logN) time.

When processing a long (possibly continuous/endless) sequence that is split into seg-
ments for spectral analysis, a technique known as windowing [70] is often used to avoid
the effect of the discontinuities due to the endpoints of the sequence. This is done by

3 We use the standard “electrical engineering” notation j for the imaginary unit, to avoid the confusion
of i with the standard notation for electrical current or intensity.
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multiplying each of the N values by a window function that smoothes the signal at the
endpoints.

Many window functions are available, each with their trade-offs between benefits and
drawbacks. One of the commonly used window functions is the Hamming Window [70],
a raised cosine shape of N elements, H = {W0,W1, · · · ,WN−1}, where each Wk is given
by

Wk = 0.54− 0.46 cos

(
2πk

N − 1

)
(2.17)

With this, the processing involves computing the windowed version of the signal,
xw = {x0W0, x1W1, · · · , xN−1

WN−1}, and then computing the DFT of this resulting xw
signal.
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Chapter 3

An Adaptive Idle-Wait
Countermeasure Against Timing
Attacks on Public-Key
Cryptosystems

In this chapter, we present our first contribution, a countermeasure against timing attacks
on public-key cryptosystems. This work appeared as a Technical Report in the Centre
for Applied Cryptographic Research (CACR) as document CACR 2010-16 [61]. The
text and contents appearing in this chapter are based on this technical report.

3.1 Motivation

Timing attacks represent an important threat against public-key cryptosystems, not only
in cases where the attacker has physical access to the device holding the secret data, but
also for the general case of systems with functionality accessible remotely (e.g., accessible
through the Internet). This was demonstrated by the successful remote timing attack
by Brumley and Boneh [8].

The usually recommended countermeasure is a technique called blinding, in which the
ciphertext is “randomized” before being decrypted. In the case of RSA, with ciphertext
y (corresponding to plaintext x), this operation is done by choosing a random number
rb and obtaining a randomized ciphertext y′ = y · reb . This y′ is then decrypted — we
observe that any timing characteristics are now a function of y′, over which the attacker
has no control or even knowledge.

When decrypting y′, we obtain x′ = (y′)d = (y · reb)
d = yd ·re·db = x ·rb. Since we chose
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rb, we compute its inverse mod m so that we can obtain x (the actual, correct result of
the decryption for the supplied ciphertext).

As a slight optimization, it is suggested that the “random” values be obtained by
squaring the previous ones modulo m— from the point of view of the attacker, this can
not be distinguished from using true random values. Thus, rb, r

e
b , and r−1

b are precom-
puted, and with every decryption operation, simply square reb and r−1

b — the resulting
squares still have the property that when reb is decrypted, it produces the inverse of
the other value. Even with this optimization, this countermeasure has a non-negligible
performance penalty.

An alternative countermeasure consists of making the time of decryption operations
independent of the data through a delay in the form of an idle wait after the decryption
operation has been completed ([8] suggests this as a possibility, though not the preferred
defense). The idea is that after completing the decryption operation, the system would
not hand out the result immediately (which would reveal the duration of the decryption);
instead, the system would wait an additional amount of time, so that the total observed
decryption time is fixed, regardless of the ciphertext being decrypted. Though this
technique has been suggested in the existing literature, it has not been as well studied as
other countermeasures. From the point of view of performance, this idle-wait technique
has a subtle additional advantage, overlooked in previous studies: being idle wait, as soon
as the actual processing part of a decryption is completed, the processor is now free, and
thus it is available for other tasks to be executed, since the idle wait allows for concurrent
tasks to proceed [9]. This is clearly not the case when using blinding, in which the
performance penalty comes in terms of additional actual processing that prevents other
tasks from proceeding. Even in cases where multitasking is not an important factor,
the fact that idle-wait countermeasures involve a lower amount of actual processing still
represent an advantage in terms of power consumption, which could be an important
factor on battery-powered devices.

In cases where the cryptographic subsystem is part of a hard real-time system [51],
idle-wait countermeasures could be assisted by predictable timing architectures such as
PRET [68], where the software can specify parameters for hardware-assisted idle-wait
with high precision.

3.2 Our Contributions

In this work, we proposed and implemented an optimized form of this idle-wait coun-
termeasure, making the duration of the idle-wait adaptive, with the goal of minimizing
the performance penalty. As part of our study, we experimentally evaluated the effec-
tiveness of our proposed technique in terms of performance penalty, verifying that our
solution exhibits a smaller performance penalty than the usual blinding countermeasure.
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Though the countermeasure is in principle valid for most public-key cryptosystems, our
experimental setup is focused on RSA decryption operations.

As secondary contributions, the study includes the following:

• Straightforward implementations of idle-wait countermeasures, in any form, exhibit
a subtle vulnerability that could allow attackers to entirely bypass the idle-wait by
requesting concurrent operations and focus the attack on the throughput of decryp-
tion operations. This aspect has not been mentioned in any previous studies. As
part of our work, we identify this vulnerability, describe the details of an attack that
exploits it, and describe the correct way to implement idle-wait countermeasures
to avoid this vulnerability.

• We present an analytical derivation for the mutual information between the data
producing the leakage and the decryption time in the presence of our countermea-
sure, relative to the mutual information in the absence of countermeasures under
the assumption of Gaussian distribution for the decryption time. This in turn
shows and quantifies the decrease in mutual information introduced by our coun-
termeasure, highlighting an important slowdown factor for attacks based on mutual
information.

3.3 Adaptive Idle-Wait Countermeasure

In principle, for an idle-wait countermeasure to be effective, every decryption time must
be extended (through the idle-wait) so that the total time exceeds (or at least matches)
the decryption time for any other ciphertext. That is, if TDi denotes the decryption time
for ciphertext i ∈ CT , and TWi

denotes the amount of idle-wait applied after decryption
of ciphertext i, then it should hold that

TDi + TWi
> TDj ∀ i, j ∈ CT

Clearly, the use of idle-wait introduces a performance penalty (putting aside the mul-
titasking aspect, as mentioned in §3.1). However, as this study shows, the performance
penalty of idle-wait countermeasures may be comparable and even smaller than that of
blinding; not necessarily for all implementations, but we show that this is the case for
OpenSSL’s RSA implementation.

Additional performance gain can be obtained through an optimized version of this
countermeasure. The basic idea for the optimized countermeasure is to try to keep
the extra delay (the idle wait) to a minimum, while still hiding any variance or useful
patterns in the execution time.
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Let T denote the target execution time (i.e., the total observed time, including the
decryption time and the idle-wait time). The intuition is that it suffices that the target
execution time T be greater than the execution time for most ciphertexts. Thus, we
can make the parameter T adaptive with respect to the observed execution times of the
ciphertexts, making it converge to a target value, as a function of the collected statistics
of the measured decryption times. After the system has been operating for a while, this
parameter will remain virtually constant. This value is specified as a target percentile,
which can be an adjustable configuration parameter. This approach is described in the
next section.

3.3.1 Decryption Time Controlled by Target Percentile

We now explore the alternative of making the parameter T converge to a particular
percentile of the decryption time. For example, we could require that T corresponds to
percentile 99, such that only 1% of ciphertexts produce a decryption time that exceeds
the value of T . In other words, we set the value of T such that F (T ) = 0.99, where F (·)
is the Cumulative Distribution Function (CDF) of the random variable representing the
actual decryption time.

Since we do not have a priori knowledge or an analytical description of the CDF of
the decryption time, we use the decryption times of the requested operations to make
the value of T converge to the specified target. Many approaches can be used for this,
including the “brute force” solution of storing all decryption times in an ordered sequence,
to choose the value T corresponding to the given percentile. This, of course, would be
unacceptably inefficient in most cases.

We now present our proposed approach — a somewhat heuristic method which we
believe is appropriate for this scenario, given that it is simple to implement and efficient;
our results show that the method converges rather rapidly to the target percentile.

The idea is loosely based on the Newton-Raphson method for solving single-variable
equations [69]; the equation in our case is F (T ) = P , where we are trying to solve for the
unknown T given the target percentile P .1 Unlike in the Newton-Raphson method, we
can not compute the value of the function or its derivative; instead, we use the numerical
approximations given by the statistics collected from the decryption times. In particular,
we count the total number of decryptions, and count the number of instances in which
the decryption time was below our current approximation of T , denoted Tk (value of T
at iteration k). This gives us an approximation for the value of F (Tk). To approximate
the derivative, we use two additional thresholds, closely surrounding the value of T (for
example, if we have a target percentile of 99, then we could use thresholds corresponding

1 For simplicity, whenever a percentile is needed for formulas or derivations, we use a CDF value
between 0 and 1 as a percentile — as opposed to a value between 0 and 100
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to percentiles 98.5 and 99.5). These thresholds are denoted Hk (High threshold value
at iteration k) and Lk (Low threshold value at iteration k), and we count the number
of instances in which the decryption time was below each of these thresholds, to obtain
approximations for F (Lk) and F (Hk). The approximation for the derivative at Tk is
given by the slope of the straight line between these two surrounding thresholds, with
which we obtain our iterative update formula for T :

Tk+1 = Tk +
(FT − F̂ (Tk))(Hk − Lk)

F̂ (Hk)− F̂ (Lk)
(3.1)

where FT denotes the target percentile (e.g., 0.995), and F̂ denotes the approximation
for F (given the count of instances for which the decryption time has been below the
given argument).

Since the thresholds H and L are also the values corresponding to given percentiles,
we also work with approximations for those, and thus, we need to update them as well.
The approximation for the derivative at those values is given by the straight line going
from each of those points and the point at Tk, with which we obtain the iterative update
formulas for these thresholds:

Lk+1 = Lk +
(FTL − F̂ (Lk))(Tk − Lk)

F̂ (Tk)− F̂ (Lk)
(3.2)

Hk+1 = Hk +
(FTH − F̂ (Hk))(Hk − Tk)

F̂ (Hk)− F̂ (Tk)
(3.3)

Like in the Newton-Raphson method, we require an initial estimate not far from the
real solution to ensure convergence [69]. In our case, this estimate can be easily obtained
by storing all decryption times for an initial sequence of operations and sorting them to
determine the required percentile approximations. Alternatively, to avoid any storage
overhead, one could assume a normal distribution and estimate the mean and variance
from an initial sequence of values, simply by accumulating and counting, to avoid using
any storage. By keeping the sum of the first N values tk (1 6 k 6 N) and the sum of the
squares of these values we can obtain approximations for the mean µ̂t and the variance
σ̂t

2, as can be easily shown:

µ̂t =
1

N

N∑
k=1

tk

σ̂t
2 =

1

N

N∑
k=1

(tk − µ̂t)2 =
1

N

(
N∑
k=1

t2k +
N∑
k=1

µ̂t
2 − 2

N∑
k=1

tkµ̂t

)

=
1

N

(
N∑
k=1

t2k + Nµ̂t
2 − 2µ̂t

N∑
k=1

tk

)
=

1

N

(
N∑
k=1

t2k − Nµ̂t
2

)
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From these two parameters we obtain an approximation for any required target per-
centile [67].

3.3.2 Resistance to Any Possible Timing Attacks

Clearly, if the target percentile is set to 100, then the countermeasure will defeat any
timing attacks — known or otherwise. This follows directly from the fact that timing
measurements in such cases only reveal a constant value added to random measurement
noise, both of which are independent of the ciphertext and the decryption key. As our
results show, a setup using percentile 100 is feasible at a performance penalty comparable
to that incurred by blinding in OpenSSL. This result validates the idea of idle-wait as
countermeasure to timing attacks, and also provides a conservative setup for our proposed
method.

Better performance can be obtained if we want to defend against specific timing
attacks that are known, and for which a given percentile could be sufficient to hide all
the timing information that the specific attack requires. We will show an example of this
scenario (§3.4.3), in which we experimentally verify that our method, with a percentile
below 100, defeats the attack presented in [8].

3.3.3 Effect on Attacks Based on Mutual Information Analysis

In this section, we discuss the effect of our countermeasure on a broad class of attacks,
based on Mutual Information Analysis [33, 80]. We will evaluate the decrease of mutual
information between the data producing the leakage and the measurement taken through
the side channel (decryption time, in this case) in the presence of our countermeasure.

Let X denote the measurement taken by the attacker with no countermeasure present,
and let Y denote the data producing the leakage to the side-channel. The mutual
information is given by

I(X;Y ) = H(X)− H(X | Y )

where H(·) denotes the entropy of the given variable [18].

If we assume both X and X | Y to follow normal distributions, we can obtain the
associated entropies. Let X ∼ N (µ, σ2), with probability density function denoted Φ(x).
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Then,

H(X) = −
∫ ∞
−∞

Φ(x) ln Φ(x) dx

= −
∫ ∞
−∞

1√
2πσ2

e−
(x−µ)2

2σ2 ln

(
1√

2πσ2
e−

(x−µ)2

2σ2

)
dx

=

∫ ∞
−∞

1√
2πσ2

e−
(x−µ)2

2σ2

(
1

2
ln
(
2πσ2

)
+

(x− µ)2

2σ2

)
dx

=
ln (2πσ2) + 1

2
(3.4)

Let Xp denote the measurement with the countermeasure present at percentile p. We
evaluate its entropy; in this case, the integral is evaluated from T to ∞, where T is the
threshold corresponding to percentile p, and thus

∫∞
T

Φ(x) dx = 1− p

H(Xp) = −
∫ ∞
T

Φ(x) ln Φ(x) dx =

∫ ∞
T

Φ(x)

(
1

2
ln
(
2πσ2

)
+

(x− µ)2

2σ2

)
dx

=
ln (2πσ2)

2

∫ ∞
T

Φ(x) dx +
1

2σ2

∫ ∞
T

(x− µ)2Φ(x) dx

=
ln (2πσ2)

2
(1− p) +

1

2σ2

∫ ∞
T

(x− µ)2Φ(x) dx (3.5)

We apply integration by parts to the integral in Equation (3.5), with f(x) = (x− µ)
and g′(x) = (x− µ)Φ(x) ⇒ g(x) = −σ2Φ(x), to obtain∫ ∞

T

(x− µ)2Φ(x) dx = −σ2(x− µ)Φ(x)

∣∣∣∣∞
T

+ σ2

∫ ∞
T

Φ(x)dx

= σ2(T − µ)Φ(T ) + σ2(1− p) (3.6)

Combining equations (3.4), (3.5), and (3.6), we finally obtain

H(Xp) =
ln (2πσ2)

2
(1− p) +

1

2
(1− p) +

1

2
(T − µ)Φ(T )

= (1− p)H(X) +
1

2
(T − µ)Φ(T )︸ ︷︷ ︸ ≈ (1− p)H(X) (3.7)

= O
(
T e−T

2
)

Following a similar analysis, we obtain H(Xp | Y ) ≈ (1 − p)H(X | Y ); even though
the threshold for the given percentile is not necessarily the same, we expect it to be
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approximately the same in the general case.2 This means that

I(Xp;Y ) ≈ (1− p)H(X)− (1− p)H(X | Y ) = (1− p)I(X;Y ) (3.8)

That is, in the general case, the countermeasure with target percentile p leads to a
reduction of the mutual information by a factor close to 1 − p. We recall that p is in
principle chosen to be a value close to 1, and thus 1−p is a small value. This means that
we can expect any attacks based on Mutual Information Analysis to be slowed down by
a reasonably large factor for a typical value of p.

3.3.4 A Note on Implementing Idle-Wait Countermeasures

A naively implemented idle-wait countermeasure could be vulnerable to attacks that
could entirely bypass the idle-wait. Indeed, as mentioned in §3.1, as soon as a decryp-
tion is completed, the processor is now free, and thus available for other (concurrent)
tasks to proceed; if these tasks involve decryption operations requested concurrently by
the attacker, then it would be possible to measure the time from the beginning of one
operation to the beginning of the next operation, revealing the actual processing time,
and thus entirely bypassing the idle-wait.

Figure 3.1 demonstrates this aspect — solid lines denote an active decryption oper-
ation (i.e., processing is taking place); dashed lines indicate an idle wait, and crosses
indicate that the decryption operation is ready to begin, but can not yet, since the
processor is being used by another concurrent operation.

Figure 3.1: Throughput of Concurrent Decryption Operations.

We clearly see that, as long as the system is flooded with requests, such that at
all times there is one decryption operation taking place (assuming a single-processor),
then the sum of the frequencies of operations measured at each thread of execution
is the frequency of execution of the operations, or throughput. Given NT threads of
concurrent execution, let f be the total frequency or throughput, N the total number
of decryptions executed, fi the frequency of decryption executions at thread i, Ni the

2 Otherwise, we would be talking about a much more specific attack, and thus this analysis does not
apply; for such cases, the countermeasure can still be used, adjusting the percentile to the appropriate
level (see §3.4.3 for an example).
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number of decryptions completed by thread i, and TD the time it takes for all threads to
complete. Then

f =
N

TD
=

1

TD

NT∑
i=1

Ni =

NT∑
i=1

Ni

TD
=

NT∑
i=1

fi (3.9)

This allows us to determine the decryption time t (the actual time of execution, not
including the idle-wait stage) given the measurements ti for each thread i (notice that ti
does include the decryption time and the idle-wait):

t =
1

f
=

1
NT∑
i=1

fi

=
1

NT∑
i=1

1

ti

(3.10)

We also see that if the idle wait is long, more than two threads would be needed;
specifically, the minimum number of threads is given by

#Threads =

⌈
TP (x) + TI(x)

TP (x)

⌉
(3.11)

where TP (x) is the processing time (the time that it takes to complete the actual op-
eration), and TI(x) is the idle wait time. It is straightforward for the attacker to de-
termine this figure: an estimate of the average processing time is done locally; and
T (x) = TP (x) + TI(x) is measured by requesting decryption operations using a single
thread of execution.

All of the above applies to multi-core processors as well — the minimum number of
threads is now the minimum number per processor core. It is also straightforward to see
that if more threads are used, the frequency of operations observed on each thread will
be lower, but the sum of the frequencies will still be equal to the frequency of execution
of operations, or throughput.

Naturally, the attack in the presence of a poorly implemented idle-wait countermea-
sure is slower than the original attack, since the threads scheduling introduces additional
randomness in the timing of the operations, and thus, additional measurement noise.
Still, it is clear that the countermeasure should be considered ineffective if it is vulnera-
ble to this attack on the throughput.

Correct Implementation of Idle-Wait Countermeasures

The vulnerability described in the previous section can be easily avoided; a correct
implementation of an idle-wait countermeasure (adaptive or otherwise) should prevent
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any decryption from starting as long as any other decryption — including its idle-wait
phase — is still in progress. This means that the throughput of (concurrent) operations
is being forced to be equal to the decryption time as measured directly (i.e., including
the idle-wait), which defeats the timing attack if properly adjusted.

To this end, a mutex or some suitable synchronization mechanism could be used [9].
An interesting aspect is that this can be done while still maintaining the advantage of
leaving the processor free for other concurrent tasks to proceed [9].

3.4 Simulation Setup and Experimental Results

In this section, we present and discuss the experimental part of our study. The results
are based exclusively on simulations. The reason for this is that the idle-wait timer
resolution required for our proposed method is higher than currently available for typical
software implementations; and a hardware implementation is somewhat overkill for the
purpose of evaluating the effectiveness of our method.

3.4.1 Setup

The basic idea for the simulations is to take timing measurements by running the actual
decryption operation and then updating the value of T , using the technique described in
§3.3.1. We simulate the decryption followed by idle-wait, and measure the performance
penalty of our proposed method. To this end, we produce a sequence of randomly
generated values for the ciphertext, and measure the actual processing time for those.

The decryption operation is done through invocation of the appropriate OpenSSL
API function call, with blinding disabled [23], using /dev/urandom as the source of
randomness for the ciphertexts [81]. With this actual processing time, the simulation
can now determine the amount of idle-wait necessary, and with this, the average overhead
is obtained.

To optimize the simulations, the processing was split into two independent programs;
one program “profiles” the execution speed — generate random ciphertexts, measure the
execution time of the decryption, and store these execution times in data files. A second
program now uses the stored data, thus avoiding redundant invocations of decryptions,
and optimizing the process.

3.4.2 Results

The test platform was an AMD Quad-Core Phenom Processor, 64-bit at 2.5GHz, running
Ubuntu Linux 8.04, with gcc/g++ 4.2.4, and OpenSSL 0.9.8g. For the profiling, all
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Figure 3.2: Performance Penalty (in %) of Our Proposed Method.

graphical interface and networking was shut down, to avoid disrupting the measurements.
For the simulation part, this was not critical, as the processing time had been already
measured, and the program simply reads the values from a data file. The simulations
were done with a set of 1,000,000 (one million) values of ciphertext, with decryptions
done with a 1024 bits key, and the measurements done using the CPU clock cycle counter
(sub-nanosecond resolution).

Performance Penalty

The measured blinding overhead for OpenSSL, using 1024-bit keys, is 3.1%. This is
consistent with the reported range of 2 to 10% [8]. For the performance penalty of our
proposed method, we adjusted the target percentile between 99.5 and 100.3 Figure 3.2
shows the results for all the simulations.

3.4.3 Resistance to Timing Attacks

Figure 3.2 shows a crucial piece of evidence in favor of our proposed method regarding
resistance to timing attacks, as discussed in §3.3.2: for percentile 100, the performance
penalty is only 3.45%; as already discussed, setting the target percentile at 100 defeats
any possible attack based on measurement of time, since the observed decryption time
would be independent of the ciphertext and the decryption key. The corresponding

3 For percentile 100, a different method to update T was used, since the general iterative method
would fail; also, obtaining the value for percentile 100 is much simpler than for the general case.

35



performance penalty is within the lower half of the reported range, and barely above the
figure that we measured for our test platform.

It is important, however, to notice that this is the case for RSA, where the decryption
exponent is fixed; since the performance penalty is clearly related to the variance of the
decryption time, it is to be expected that this figure will be higher for techniques where
the decryption exponent is variable, such as Diffie-Hellman. We did not include these
measurements in our study. Also, timing-based cache attacks could incur a considerably
large variance, requiring a high performance penalty for any idle-wait countermeasures
to be effective. We did not consider this class of attack in this study.

Case-Study: Resistance Against a Concrete Attack

As additional evidence in favor of our method, we evaluated the resistance against a
known and effective timing attack, with the goal of demonstrating that additional effi-
ciency can be obtained if we need to defend against known attacks only — not an un-
reasonable design criterion, given that the method can be easily readjusted, should new,
more effective attacks were discovered after it was deployed.

The attack is that presented by Brumley and Boneh in [8]; we simulated the attack
by generating all the ciphertexts that would be required (see [8] for details); since we
only want to verify that all the decryption times fall within a certain percentile, we
made use of the actual values of p and q, instead of executing the attack to guess the
bits — clearly, a successful attack would need to use precisely these ciphertexts, as any
incorrectly guessed bit would cause the attack to be ineffective for all the following bits.
Thus, it makes sense and it is fair to make use of the known factorization {p, q}, even if
a real attack would not have such information.

We verified that the attack is successfully defeated with a target percentile of 99.99
(with a corresponding performance penalty of 1.53%); with these settings, we get a value
of T = 736.4µs, which covers the decryption times for the attack ciphertexts. Figure 3.3
shows the decryption times for the profiling data (randomly selected ciphertexts) and for
the attack ciphertexts.

Even though strictly speaking, we need to cover all ciphertexts to guarantee that we
defeat the attack, in a practical sense, the attack would be defeated with a percentile
of 99.9, with a corresponding performance penalty of 1.45%; it is not clearly visible
in Figure 3.3, but only two ciphertexts exceed percentile 99.9. It is reasonable to
assume that an attack like this one, statistical in nature, would be defeated if only a
negligible fraction of the required measurements survives the barrier imposed by the
countermeasure.
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Figure 3.3: Decryption Times – OpenSSL API without Blinding.

3.5 Discussion and Concluding Remarks

The results from our experimental setup confirm the validity and show important aspects
of the proposed technique and its implementation. We verified the technique’s resistance
against known attacks, and we see that it does offer good performance, in that it exhibits
a performance penalty below that of the blinding countermeasure for a reasonably high
security level. In the highest security setting, where we guarantee that any possible timing
attack would be defeated, the performance penalty is comparable to that of blinding.

We emphasize again that even for comparable performance penalties, our method
has an additional advantage, at least for software implementations: during the idle-wait
phase, the processor is available for other tasks to proceed; this is not the case for
blinding, in which the performance penalty is given in terms of actual processing that
prevents other concurrent tasks from proceeding. This could be an important advantage
on systems where multi-tasking is a requirement for the server where the cryptosystem is
operating. We also highlighted the additional advantage that with less actual processing
required, the system is more efficient in terms of power consumption — a potentially
important issue for, e.g., battery-powered devices. Though blinding could have an
advantage in cases where other side-channel attacks such as Power Analysis are a threat,
for many situations, remote timing attacks may be the only plausible side-channel attack,
and thus our countermeasure would be perfectly suitable.

The method was also shown to be effective in terms of security, in that it was verified
that the countermeasure could defeat any possible timing attack, with a performance
penalty comparable to that of blinding; it was also shown that the countermeasure
defeats a known timing attack with a performance penalty considerably below that of
blinding.

On a more theoretical side, we presented analytical evidence that the countermeasure
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should be effective against attacks based on Mutual Information Analysis; we showed
that any such attacks would be slowed down by a reasonably high factor at a reasonable
performance penalty. These types of attacks would of course be completely defeated if
we use percentile 100, in which case the mutual information would be reduced to zero.

Perhaps one important aspect that could require improvement relates to the prac-
tical issue of availability of idle-wait facilities with the required accuracy for software
implementations; we observe that there is no fundamental reason why these can not
be available; it is simply a matter that at the present time, they are not for the com-
mon software platforms. It is perhaps worth noting that a busy-wait countermeasure
would not be unreasonable for a software implementation, which would address this is-
sue; we could use the CPU cycle counter on modern processors — with sub-nanosecond
resolution — as the basis for a busy-wait loop after the decryption operation; we sacrifice
the benefit of the idle-wait in terms of multitasking performance, but we do keep in mind
that the performance penalty is still below the performance penalty with blinding (or
comparable, for the highest security setting). However, for software implementations
with currently available idle-wait facilities — which have lower resolution than required
for our method — we notice that the security level would be unaffected, since the mea-
sured time is now the required time plus a random value that is uncorrelated to the
amount of idle-wait that we introduce. Performance could be negatively affected, of
course; but again, this would be compensated by the multi-tasking aspect of idle-wait
countermeasures.
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Chapter 4

Square and Buffered Multiplications

In this chapter, we present our second contribution, an SPA-resistant exponentiation
method with optimal execution time, at the cost of a small amount of storage — O(

√
` ),

where ` is the bit length of the exponent. The method is optimal in the sense that it
adds SPA-resistance to an underlying exponentiation algorithm with zero computational
overhead. This work appeared as a printed article in the Journal of Cryptographic
Engineering [63] as well as on the CACR web site, as technical report CACR 2011-03 [64].
The text and contents appearing in this chapter are based on these works.

4.1 Motivation

Many SPA-resistant algorithms have been proposed. However, they all exhibit consid-
erable performance penalties since SPA relies on data-dependent optimizations, usually
at coarse-scale level, and existing solutions remove some of these natural optimizations
from the algorithm.

For example, the simplest solution to the vulnerability described in §2.6.1 for the case
of binary exponentiation is to execute the multiplication unconditionally, and discard the
result when it is not needed [15]. This way, we achieve a constant execution path — that
is, a sequence of executed instructions that is independent of the secret data. Algorithm 4
shows an example of this technique, applied to the left-to-right algorithm, to obtain an
algorithm known as square-and-always-multiply.

The disadvantage is obvious: a strong performance penalty is imposed on the algo-
rithm, as a considerable number of unnecessary multiplications 1 are executed — in the
case of a standard binary representation of the exponent, `/2 extra multiplications are

1 Unnecessary from the point of view of performance, in that these multiplications are not required
to obtain the correct result.
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Algorithm 4: SPA-Resistant Exponentiation Algorithm.

Input: x; e = (b`−1b`−2 · · · b1b0)2

Returns: xe

begin
R ← 1;
for each bit bi (i from `− 1 down to 0) do

TMP [0] ← R2;
TMP [1] ← TMP [0]× x;
R ← TMP [bi];

end

return R;
end

executed on average; if using NAF representation for the exponent, 2`/3 extra multipli-
cations are executed on average.

Marc Joye proposed a scheme that reduces this penalty [45] (later generalized in [12]),
but it still exhibits a potentially high performance penalty, depending on the implemen-
tation of the underlying multiplication and squaring procedures. Indeed, the scheme
proposed in [45] is based on a rearrangement of the loops that avoids operations where
the result is discarded — however, this is achieved by implementing the squaring opera-
tions as a multiplication where the two operands are the same value. Depending on the
implementation, there is a potential for a considerable speedup in squarings with respect
to multiplication; with integer arithmetic, a factor of up to 2 (typically in the order of
1.5 in actual implementations), given that redundancy in the operands can be exploited.
This potential speedup is completely unutilized in [45] and [12].

An additional problem with the scheme presented in [45] is that in the context of ECC,
adding two different points and adding two points that are the same (i.e., doubling) are
two different operations in practice [39], and thus, a difference is expected to be observed
on power traces during the execution of scalar multiplications, making the technique
less effective in the context of ECC operations. The use of Edwards curves [20] would
represent an exception to this issue. However, Edwards curves are not part of any
standards, and thus they are probably uncommon in actual practical applications.

Ha and Moon [37] presented a scheme resistant to DPA, and combined it with a
simple SPA-resistant approach. The SPA-resistant algorithm is essentially equivalent
to the square-and-always-multiply technique, and the benefit that they obtain is only
observed when combined with the DPA-resistance component. Still, the efficiency that
they report for an exponent in NAF representation is comparable with the efficiency
when using standard binary representation for the exponent, clearly indicating that their
SPA-resistant component is sub-optimal.
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Sun et al. [79] proposed a novel and very ingenious scheme resistant to SPA, in which
the exponent is split in two halves and blocks of two bits — one bit from each half — are
combined together for processing; however, the algorithm does involve operations where
the result is discarded (albeit, a smaller fraction than in the case of the square-and-always-
multiply technique), which necessarily means that is not optimal. Furthermore, their
method is specific to standard binary representation of the exponent, which is consider-
ably less efficient than a solution using NAF representation; though it can be adapted
to NAF, the complexity of the implementation would increase; more importantly, the
fraction of operations where the result is discarded is considerably higher when using
NAF representation for the exponent, making their method fundamentally incompatible
with NAF. Incidentally, our proposed method can be combined with the method pro-
posed in [79], which would increase efficiency even further; indeed, a non-SPA-resistant
version of their method (one in which operations with no effect are not executed, instead
of executed to then discard the result) is slightly more efficient (in terms of execution
time) than the standard binary exponentiation (with exponent in either binary or NAF
representation). Combining this method with our proposed method would provide resis-
tance to SPA without any single operation where the result is discarded. We will discuss
these aspects in §4.3.2. Moreover, when combining these two techniques, we can take
advantage of signed-digit representations to further increase efficiency — something that
can not be done with the technique by Sun et al. in its original form, as it is fundamen-
tally incompatible with the use of signed-digit representations. We will discuss this in
Chapter 5.

4.2 Our Contributions

In this work, we presented an SPA-resistant algorithm with optimal execution time, at
the cost of a small amount of storage — O(

√
` ), where ` is the bit length of the expo-

nent. The method is optimal in the sense that it adds SPA-resistance to an underlying
exponentiation algorithm with zero computational overhead. We present the method in
its basic form, using right-to-left binary exponentiation as the underlying exponentiation
algorithm, and then we combine it with the algorithm proposed by Sun et al., showing
that we obtain better performance with respect to their algorithm in its original form,
while maintaining resistance to SPA.

The scope of our contribution does not cover resistance against template attacks [10].
A simple modification to the algorithm could suffice to guarantee such resistance, but
this would require further investigation, and this aspect was not covered in the study
presented here.

The method is suitable for embedded devices with moderately constrained resources;
since it requires a small amount of storage, it may not be suitable for highly-constrained
devices such as RFID devices, and possibly for smart cards as well. For most hand-held

41



devices, including mobile devices, the cost of the method in terms of storage should be
well within the capabilities of the device, making the method suitable for this class of
device.

As secondary contributions, this work includes the following aspects:

• A two-thread parallel implementation of the algorithm is proposed; this is an
interesting optimization in that it is suitable for many modern embedded processors
that are multi-core, as well as desktop and server processors, which are virtually
with no exception multi-core. Two threads is not too demanding, so the technique
should be suitable for a wide range of available processors.

• We present a correct analytical derivation of the space required for a buffer to
adapt an input with events occurring at random times and an output with either
constant rate (the average rate) or at random, uncorrelated times with the same
average rate. To the best of our knowledge, this derivation has not been done in
the literature, and an incorrect proof is presented in [83] — they seek a result in
asymptotic, big-Oh notation as a function of n, and to obtain the sought result,
they assign a fixed value to n, completely invalidating the argument.

• A potential additional contribution, though not properly studied and evaluated in
this work, adds DPA-resistance to the exponentiation algorithm with zero compu-
tational overhead. This would represent an important advantage with respect to
most existing DPA-resistant algorithms, in which a performance penalty is involved
due to randomization of the data. The contribution, thus, consists of a preliminary
idea that needs to be studied. Still, the idea is original and the claim is reasonable,
even if it does require further study.

4.3 Our Proposed Method: SABM

We now present our proposed approach and discuss some of its aspects, as well as a
comparison to previous solutions.

4.3.1 Square and Buffered Multiplications

In the right-to-left algorithm (Algorithm 2) described in §2.3.1, a set of values are mul-
tiplied together to obtain the result. The key observation that allows us to achieve a
constant execution path at coarse-level while maintaining optimality in execution time is
the fact that these values need not be multiplied at the time that they are obtained. This
allows us to buffer the execution of these multiplications, to hide any temporal patterns
that would be visible through a power trace of the execution.
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In its basic form, our proposed algorithm is an extension of the right-to-left algo-
rithm; the difference being a buffer placed between the source of values to be multiplied
together and the component that actually performs the multiplications. Whenever the
exponent bit is 1, we send the value of S through a buffer; values enter at the times
the corresponding bit is processed, but they exit at a constant rate, making power traces
for different exponents identical. We thus obtain a square-and-buffered-multiplications
(SABM) algorithm.

In an extreme (and simplified) scenario, one could store all the values that need to
be multiplied together, and then, after all the squarings are done, one executes all the
multiplications; this, of course, would require an unnecessarily high amount of storage.
Instead, as we will discuss in §4.3.4, a small amount of storage, O(

√
` ), is necessary to

implement a buffer so that the multiplications are interleaved with the squarings and
executed at a constant rate — the average rate of ones in the exponent.

Algorithm 5 shows a sketch of our proposed SABM algorithm for exponent in standard
binary representation. It is shown in a simplified form (in particular, the conditional on
the exponent bit) for the purpose of illustrating the idea. See next section for a discussion
on this aspect. For NAF, the average rate of nonzeros would be one third; thus, the
condition for executing the multiplication or division would be i being divisible by 3.

Algorithm 5: Square-and-Buffered-Multiplications (SABM) Algorithm.

Input: x; e = (b`−1b`−2 · · · b1b0)2

Returns: xe

begin
S ← x;
R ← 1;
for each bit bi (i from 0 up to `− 1) do

if bi = 1 then
S → BuffS;

end
S ← S2;
if i is even then

Tmp ← BuffS;
R ← R× Tmp;

end

end

return R;
end

The line Tmp ← BuffS denotes assignment of a single element, extracted from the
buffer, into Tmp.
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It is assumed that the cost, in terms of execution time, to perform buffer operations
is negligible compared to the operations involved in the exponentiation; this assumption
is reasonable, since squarings and multiplications can have execution cost proportional
to the square of the bit length of the elements (which is in general large), whereas
operations on buffers typically can be implemented in constant time, with very short
actual execution time. This has two important implications; one of them relates to
the issue of preventing information leakage to the power trace by the buffer operations,
which will be discussed in the next section. And also, for the purpose of evaluating
the computational cost of our method, only the number of squarings and the number of
multiplications are considered — a standard assumption in the context of cryptographic
computations.

We notice that the algorithm, as shown above, does not address the possibility of
buffer underflow; to avoid this issue, the buffer is pre-filled to half its capacity before
starting the multiplications (this will be discussed more in detail in §4.3.4, and was
omitted in Algorithm 5 for simplicity).

Avoiding Power Analysis on Buffer Operations

We now discuss the strategy and the assumptions that guarantee that no information
is leaked to power traces for SPA to exploit the buffer operations. We notice that
DPA would be successful at exploiting this aspect, since different operations, with some
correlation between multiple power traces, is involved for the cases where exponent bits
are 0 vs. cases of exponent bits being 1. However, we observe that standard DPA
countermeasures (which would be needed in most cases anyway) would suffice to avoid
this problem.

The key observation is that not only buffer operations are very inexpensive, in that
they typically execute in constant time, with a very low number of operations; addition-
ally, we notice that the actual data (the value being inserted in the buffer, e.g., a large
integer, or a point on an elliptic curve) does not have to be copied or moved; only a
reference to it (implemented for instance as a pointer in languages such as C or C++, or
as a reference in languages such as Java) needs to be inserted in the buffer, making the
operation truly negligible in terms of computational cost and power consumption.

If we statically allocate the storage space for the buffer, and set it up as a structure
similar to a circular linked list (details are discussed below), then only a handful of
pointer assignments is required — typically word or double-word data that processors
natively handle (i.e., typically fit within the processor’s bus).

This allows us to assert the guarantee that no leakage to power traces occur due to
the buffer operations, based on either one of the following premises:

• If we can make the assumption that the cost of a few pointer assignments is truly
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negligible and infeasible to observe through Analysis on a single power trace, then
this directly translates into the guarantee that no information is leaked.

• If the above assumption does not hold for the particular architecture or attack
model (for example, if the memory is external to the CPU and draws power from a
separate line to which the attacker has access), then the fact that the computational
cost of the pointer operations for buffer insertions is negligible makes it reasonable
to set up an additional buffer for “fake” insertions — when the exponent bit is 0,
we insert into this “fake” buffer. Since these values are discarded, this additional
buffer does not have to be large (capacity for just one or two elements could suffice).
Alternatively, we could simply set up a small set of pointer variables so that the
exact same sequence of pointer assignments can be executed when the exponent bit
is 0. Either way, we make each iteration strictly identical regardless of the value of
the exponent bit. We could set up the two buffers (or the two sets of pointers) as
an array of two elements, so that we use the exponent bit for subscripted (indexed)
access, thus guaranteeing that the sequence of executed instructions is identical,
simply operating with different data, as opposed to conditionally executing one
path or the other. For simplicity, we omit this detail in all remaining algorithms
and figures where buffering is involved, and simply show it as a conditional insertion
on the buffer.

The data structure used to this effect operates as follows: the buffer storage space may
be represented as a linked list (though all the elements could be allocated as a single block,
as opposed to each element being independently and dynamically allocated). Figure 4.1
illustrates this; in the diagram, Li denotes the storage location for the (physical) ith

element of the buffer, and S(k) denotes the storage location for S at iteration k (notice
that as the algorithm progresses, the correspondence changes as elements are assigned to
the buffer; so, in the diagram, it is just a coincidence that each of the S(k) items shown
corresponds to Lk).

Figure 4.1: Data Structure for Buffer Storage Space.

Figure 4.2 illustrates the usage of the buffer — also a linked-list structure; in the
example shown, storage locations L2, Ln−1, and Ln correspond to the three elements
that have been inserted in the buffer (to be multiplied together).
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Figure 4.2: Data Structure for Buffer Usage.

Insertion in the buffer is done by “disconnecting” the pointers from the storage space
linked-list and inserting it (through reassignment of the appropriate pointers) to the
linked-list corresponding to the buffer. Removal from the buffer (which requires releasing
the storage location being used) is done by disconnecting the element from the buffer and
inserting at any logical position in the storage space linked-list (e.g., it could be after the
current element, or after L1, etc.).

We notice that the values stored will be overwritten several times, since the buffer
size is smaller than the exponent length; this is not a problem, since we only need the
value of S at the current iteration if the exponent bit (or combination of bits) is nonzero,
in which case we “disconnect” the element from the storage space linked-list to insert it
in the buffer; hence, it will not be overwritten until it has been processed and removed
from the buffer. We also observe that there shall always be enough elements available
in the storage space linked-list, since the buffer size is always specified so that buffer
overflow does not occur (or occurs with a probability arbitrarily low).

Lastly, two aspects need to be taken into account when actually implementing this
technique, to make the execution path of every iteration identical, regardless of whether
the value of S is inserted in the buffer or not: since insertion in the buffer requires a few
pointer operations, we should set up an additional set of pointers for “fake” insertions
in the buffer; that is, when the exponent bit is 0, the same sequence of pointer assign-
ments can be executed on these additional pointers. And also, we observe that at every
iteration, the new value of S must be always stored in the “next” location in the linked
list (following the pointer to next element), even though it is only necessary when the
element needs to be inserted in the buffer.

A Side-Effect of Optimal Execution Time

We observe that in the presence of SPA, our method reveals the number of nonzero bits in
the exponent. This is a natural side-effect of the method being optimal while processing
individual exponent bits, and should not be a reason for concern — the amount of leaked
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information is small enough that it should not compromise the security of the system.2

Consider, in the binary case, what happens if the attacker learns that k bits are nonzero;
there are

(
`
k

)
possible exponent values, instead of 2`, reducing the entropy of the exponent

by the log of the fraction (negative log, if we talk about a reduction by a positive amount).

∆He;k = − log2

((
`

k

)
2−`
)

(4.1)

We consider the weighted average of this reduction in entropy (weighted by the probability
of each number of nonzero bits) to determine the reduction in the exponent entropy ∆He

as:

∆He = −
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k=0

P{k} log2
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)

(4.2)

We observe that for the binary case, with p = 1
2

, we have
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From Equation (4.3), we see that the argument of log2 in Equation (4.2) is precisely
the probability of k nonzero bits, and we easily recognize the sum in Equation (4.2)
as the entropy of the probability mass function [18]. Since the values of ` that we
consider are large, the distribution is closely approximated by a normal distribution
N (`p, `p(1−p)) [67]. In the case of standard binary exponent, N (`/2, `/4), with entropy
HΦ in bits given by
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∑
k

1√
2π`/4

e−
(k−`/2)2

2`/4 log2

(
1√

2π`/4
e−

(k−`/2)2

2`/4

)
=

∑
k

1√
2π`/4

e−
(k−`/2)2

2`/4

(
1
2

log2(2π`/4) + (k−`/2)2

2`/4
· log2 e

)
=

1

2
log2

(
πe `

2

)
(4.4)

As an example, for a 1024-bit exponent in standard binary representation, we see that
leaking the number of nonzero bits in the exponent reduces its entropy by just 6 bits.
The amount of information leaked when using NAF is even smaller, since the variance
for the case of NAF is lower. We omit the details here, but §4.3.4 deals with this
aspect — intuitively, this has to be the case, since for large values of `, approximation by
a normal distribution is valid, but the range of values for NAF is limited to a maximum
of `/2 nonzero bits, unlike for the binary case; this suggests that the variance has to be
lower for the NAF case.

2 This assumes that for an attacker with a given level of computing power, the key sizes are high
enough that after reducing the search space by this small amount, exhaustive search is still out of reach.
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4.3.2 Simultaneous Processing of Half-Exponents

As mentioned in §4.1, our SABM algorithm can be combined with the method proposed
by Sun et al. [79]. In their method, the exponent is split into two halves, and these are
processed simultaneously. There are two key details in their method: (a) Each two bits
involve a single multiplication, since they use four “accumulators” (one for each combi-
nation of the two bits); and (b) the results of multiplications where the two exponent bits
are zero are discarded; but the fraction of two-bit combinations that are both zeros is 1

4

of the length of the exponent on average, reducing the impact of this inefficiency on the
overall performance. Furthermore, we observe that a non-SPA-resistant version of their
method (one in which operations that have no effect on the final result are not executed)
is more efficient (in terms of execution time) than the standard binary exponentiation.
Thus, combining their algorithm with our proposed technique would provide resistance
to SPA without any single operation where the result is discarded, providing increased
efficiency with respect to the basic form of the SABM algorithm.

If we implement our proposed method using the algorithm by Sun at al. as a replace-
ment for the right-to-left binary exponentiation, we avoid the multiplications correspond-
ing to the two bits being zero; instead, we buffer all multiplications, thus making the
entire execution independent of the exponent bits, yet optimizing away the unnecessary
multiplications. An additional advantage when combining Sun’s method with our pro-
posed technique is that with this method, the exponent length is reduced to half, which
means that our storage requirement is reduced by a factor of

√
2 . Algorithm 6 shows

the details of this alternative implementation of our method; notice that the average
rate of multiplications is 3

4
, since a multiplication occurs for every bit pair with at least

one nonzero.

4.3.3 Comparison to Existing Solutions

Algorithm SABM executes in optimal time (optimal number of operations) in the sense
that no unnecessary operations are executed; indeed, no result of any operation is
discarded, meaning that the minimum number of operations required to obtain the correct
result is performed. Also importantly, every operation is executed in its optimal form;
that is, every square operation is done with an optimized procedure for squaring, and
not as a multiplication routine where the two operands are equal. This constitutes an
important advantage with respect to existing solutions, where a performance overhead
exists with respect to the optimized (and vulnerable to SPA) forms of the algorithm.

The optimality of our method is of course relative to the underlying exponentiation
technique — when used in combination with the standard binary exponentiation, our
algorithm is optimal in the sense that it adds resistance to SPA with zero computational
overhead; that is, it executes the exact same number of squarings and the exact same
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Algorithm 6: SABM with Simultaneous Processing of Half-Exponents.

Input: x; e = (b`−1b`−2 · · · b1b0)2

with ` divisible by 2
Returns: xe

begin
S ← x;
R01 ← 1;
R10 ← 1;
R11 ← 1;
`′ ← `/2;

for each bit pair b`′+ibi (i from 0 up to `′ − 1) do
if b`′+ibi 6= 00 then
〈S, b`′+ibi〉 → BuffS;

end
S ← S2;
if i is not divisible by 4 then
〈Tmp, bHbL〉 ← BuffS;
RbHbL ← RbHbL × Tmp;

end

end

R01 ← R01 ×R11;
R10 ← R10 ×R11;

repeat `′ times:
R10 ← (R10)2;

;

return R01 ×R10;
end
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number of multiplications as either the left-to-right or right-to-left optimized versions that
are vulnerable to SPA attacks. Similarly, when used in combination with the technique
proposed in [79], it maintains resistance to SPA while eliminating every unnecessary
operation in their algorithm.

Table 4.1 summarizes the differences in performance with respect to existing solutions,
showing the Square-and-Multiply (SAM) performance as a baseline. By convention,
squaring routines execute in 1 unit of time; results are shown for the assumption that
multiplication routines execute in 1.2 units of time, a reasonable figure as an average
ratio for practical implementations with prime field arithmetic [39]. Values in Table 4.1
are average amount of units of time to execute an exponentiation with an `-bit exponent.

Binary NAF

S-A-M 1.6` 1.4`

S-A-A-M 2.2` 2.2`

Joye 1.8` 1.6`

Sun et al. 1.6`+ O(1) – –

SABM 1.6` 1.4`

SABM + Sun 1.45`+ O(1) – –

Table 4.1: Performance Comparison of Exponentiation Algorithms.

4.3.4 Storage Requirements

We now discuss the storage requirements for our method to work without producing
buffer overflows or underflows. Both conditions are critical for the security of the system;
an instance of buffer overflow would require that a multiplication takes place immedi-
ately, when in principle one should not have taken place. Buffer underflow would make
the algorithm skip a multiplication when one should have taken place. In both cases,
we would leak partial information about the exponent to the power trace, since the at-
tacker can determine the number of nonzero bits in the exponent portion that has been
processed.

Let the exponent be an `-bit random variable (either in binary or NAF representa-
tion), with probability p that a bit is nonzero — in the case of binary representation, p is
1
2

; with NAF, p is 1
3

. Let k be the number of nonzero bits in the exponent; clearly, for
the binary case this random variable k follows the binomial distribution B(`, p), which,
for sufficiently large values of ` can be approximated by N (`p, `p(1− p)) [67].

In the case of NAF representation, the distribution is not binomial, since constraints
between contiguous bits exist. Nonetheless, for large values of `, it can also be approxi-
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mated by a normal distribution. A closed-form description of this distribution is given
in [5], from which it can be observed that for large values of `, the variance is 2`

27
. For

convenience, we use N (`p, `ζp) as the normal approximation covering both cases; for
standard binary, ζp = 1

4
; for NAF, ζp = 2

27
:

Pr {k = k} ≈ 1√
2π`ζp

e
− (k−`p)2

2`ζp (4.5)

In Equation (4.5), the term (k−`p) represents deviation from the mean — multiplications
are done at the average rate of nonzero bits, for a total of `p multiplications on average.

Let δ denote the random variable corresponding to this deviation, and let us consider
the probability of a deviation δ = c

√
` , where c is a positive real number:

Pr
{
δ = c

√
`
}
≈ 1√

2π`ζp
e
− ( c

√
` )2

2`ζp

=
1√

2π`ζp
e
− c2

2ζp (4.6)

If we set up a buffer of size c
√
` , then the above probability corresponds to the probability

that the processing ends with the buffer at its full capacity. Thus, the probability of
buffer overflow P

BOF
is given by all deviations above this value:

P
BOF

≈
δ>c
√
`∑ 1√

2π`ζp
e
− δ2

2`ζp

≈
∫ ∞
c
√
`

1√
2π`ζp

e
− δ2

2`ζp dδ

Making the substitution t = δ√
2`ζp

, we obtain:

P
BOF

≈ 1√
π

∫ ∞
c√
2ζp

e−t
2

dt

=
1

2
erfc

(
c√
2ζp

)
(4.7)

where erfc is the complementary error function [1], defined as

erfc (x) =
2√
π

∫ ∞
x

e−t
2

dt

Equation (4.7) considers buffer overflows that occur at the end of the processing of
the exponent bits; buffer overflow could occur earlier in the processing. However, we
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notice that some cases overlap — for example, if the buffer size is exceeded by two units
at the end of the processing, then overflow must have occurred one bit before completing
the processing, and so we should not add the probability corresponding to this “early
overflow”, since it has been already accounted for. There are, however, instances where
overflow occurs early but it is then “corrected” by the time the ` bits are processed (i.e.,
deviation exceeds the buffer size, but the bits that follow make the deviation fall back
within the buffer size). We will refer to these cases as legitimate early overflows. The
probabilities corresponding to these legitimate early overflows should be added to our
estimate of the probability of buffer overflow. To this end, we make use of the following
lemma:

Lemma 4.1 Legitimate early overflows occur with lower probability than non-legitimate
early overflows for p = 1

2
and p = 1

3
.

Proof included in Appendix A.

From Lemma 4.1, it follows that a conservative estimate is obtained if we assume
that these cases of legitimate early overflows occur with the same probability as non-
legitimate early overflows. This means that the estimate of the probability of buffer
overflow within ` bits should be twice the probability of overflow at exactly ` bits, which
is what Equation (4.7) represents.

The above deals with buffer overflow; to consider buffer underflow, we recall that the
distribution (for the deviation δ) is assumed to be symmetric (we are using the normal
distribution as an acceptable approximation for large values of `). This means that buffer
underflow occurs with the same probability as buffer overflow, provided that we set up a
buffer of size 2c

√
` and fill it to half its size before we start removing items to perform

the multiplications. Of course, we have to do this step without leaking information
about exponent bits to the power traces; that is, we process the first p−1c

√
` bits before

starting to remove items — this way, we fill the buffer to half its size on average, and the
procedure is independent of the exponent bits, which ensures that no information about
the exponent is leaked.

Thus, we finally obtain the probability of buffer failure P
BF

(including overflow and
underflow):

P
BF
≈ 2 erfc

(
c√
2ζp

)
(4.8)

From Equation (4.8), we see that with a buffer of size O(
√
` ) we can make the

probability of success (i.e., probability of no buffer failure) arbitrarily close to 1, as a
function of the security parameter c, corresponding to the multiplicative constant in the
O(
√
` ) measure.
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As an example, for ECC with a 256-bit exponent (i.e., ` = 256) in NAF representation
(ζp = 2

27
), setting the buffer size to 4

√
256 = 64, corresponding to c = 2, gives us:

P
BF
≈ 2 erfc

(
2√

2· 2
27

)
≈ 2 erfc

(√
27
)
≈ 4 · 10−13

Table 4.2 shows the resulting probabilities of buffer failure for several additional choices
of c and typical values of exponent lengths (256 bits for ECC and 1024 bits for RSA,
assuming 2048 − bit modulus and CRT optimization) assuming NAF representation of
the exponent. The N/A cases are where the resulting buffer size exceeds one third of
the exponent length, in which case the approximation is no longer valid, as that buffer
size would allow us to buffer all multiplications.

Notice, however, that these are only examples to illustrate the analytic result; in
§4.6 we discuss some practical aspects that can lead to much smaller buffer sizes with
guaranteed execution without buffer failure.

` = 256 ` = 1024

c = 1 32 / 4.77 · 10−4 64 / 4.77 · 10−4

c = 1.5 48 / 7.1 · 10−8 96 / 7.1 · 10−8

c = 2 64 / 4 · 10−13 128 / 4 · 10−13

c = 3 N/A 192 / 5.9 · 10−28

c = 4 N/A 256 / 1.35 · 10−48

Table 4.2: Examples of Buffer Size / Probability of Buffer Failure

Buffer Structure to Prevent Buffer Underflow

As mentioned in the previous section, we need to start by filling the buffer to half its
capacity before starting the multiplications, to prevent buffer underflow. However, doing
this without leaking information about exponent bits requires that we process the first
1
2
p−1|B | bits (where |B | denotes the size of the buffer) so that we fill the buffer to half

its capacity on average, and the procedure is independent of the exponent bits.

This of course means that the algorithm will finish the processing of the exponent
bits with 1

2
p−1|B | elements remaining in the buffer on average, pending processing.

These remaining elements would then be multiplied together before producing the result.
This would also apply, though not as a requirement, to the parallelized implementation
(discussed in §4.4); in this case, since the multiplications are being done in parallel (i.e.,
simultaneously) with the squarings, other adjustments could be made to avoid this issue,
or at least reduce its impact.

Thus, Algorithms 5, 6, and possibly the parallel version, shown in Figure 4.3, in either
binary or NAF versions, would be adjusted as shown in Algorithm 7 — the algorithm
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shown corresponds to algorithm SABM (Algorithm 5); however, the modification is
directly applicable to all other forms of the algorithm. Notice also that Algorithm 7 is
written in its general form, using p to determine the point at which the buffer should be
filled to half its capacity.

Algorithm 7: Buffer Pre-Filling and Post-Processing for SABM.

Input: x; e = (b`−1b`−2 · · · b1b0)2

Returns: xe

begin
S ← x;
R ← 1;
for each bit bi (i from 0 up to `− 1) do

if bi = 1 then
S → BuffS;

end
S ← S2;
if i > |BuffS|/(2p) and i is even then

Tmp ← BuffS;
R ← R× Tmp;

end

end

while BuffS is not empty do
Tmp ← BuffS;
R ← R× Tmp;

end

return R;
end

4.4 Parallelized Version of Algorithm SABM

Our proposed SABM algorithm has the additional benefit of being easily parallelizable
while maintaining resistance to SPA attacks. This comes as a simple extension of the
idea that the right-to-left exponentiation algorithm is naturally parallelizable up to two
threads — as exponent bits are tested and operands for the multiplications are produced,
these multiplications can be done in parallel, simultaneously to the squarings.

Incidentally, a two-thread parallel version of the right-to-left exponentiation algorithm
requires a buffer for the multiplication operands. This is due to the fact that multipli-
cation takes longer than squaring, and thus, if several contiguous nonzero bits are found,
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the new multiplication operands will be ready before the previous multiplications have
completed.

Thus, the parallelized version of our SABM algorithm is similar to a straightforward
parallelized version of the right-to-left exponentiation algorithm — the latter being vul-
nerable to SPA attacks. Thus, the main difference relates to the rate of execution of the
multiplications; the second thread, responsible for the multiplications, should extract
operands from the buffer at a fixed rate, taking advantage of the buffer that accommo-
dates for the difference. The first thread adds elements to the buffer at the times that
they are produced, and the second thread extracts elements from the buffer at the av-
erage rate of nonzero bits (one multiplication every two squarings for standard binary
representation, or one every three squarings for NAF representation). Figure 4.3 shows
the details of the parallel version of the SABM algorithm.

Input: x; e = (b`−1 b`−2 · · · b1 b0)2/NAF

Output: xe

R, BuffS shared between threads

Thread 1 (Squarings)

S ← x

R ← 1

For each bit bi (i from 0 up to `− 1)
{

if (bit bi is 1)

{
S → BuffS

}
S ← S2

if (i > 0 and divisible by 1/p)

{
Signal Thread 2

}
}
return R

Thread 2 (Multiplications)

On Signal from Thread 1:

{
Tmp ← BuffS

R ← R × Tmp

}

Figure 4.3: Two-Thread Parallel version of Algorithm SABM.

The thread synchronization details are omitted in Figure 4.3; roughly speaking, access
to the buffer BuffS should be synchronized, depending on how it is implemented — since
insertion and removal operations are done at opposite ends of the sequence, it might
be possible to implement them in such a way that no common data is accessed. In
that case, simultaneous access to BuffS by both threads may not be a problem. The
result R, however, needs synchronization, since the last operation of thread 1 (to return
the result of the exponentiation) and operations from thread 2 might be subject to a
race condition, since no guarantee should be assumed about relative order of execution
between threads [9]. In particular, an additional shared (and synchronized) flag might be
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needed, so that thread 2 can communicate to thread 1 the fact that the last multiplication
has completed, and thus the result is now available.

4.5 Randomized Execution of Multiplications

Given an SPA-resistant cryptosystem, [48] showed that correlation between power con-
sumption and the data that the device is working with at a particular time can be ex-
ploited through the use of statistical and digital signal processing techniques on multiple
power traces. As countermeasures, several techniques have been suggested that intro-
duce randomization to eliminate this exploitable correlation. For example, [48] suggests
blinding to randomize the data and eliminate any correlation between traces for differ-
ent executions; [15] suggests several randomization techniques, some of them specific to
ECC, as well as [40], which proposes techniques specific to Koblitz curve cryptosystems.
These proposed techniques involve a small performance penalty, since they transform the
data, so that the operations in different traces correspond to different actual data.

An interesting aspect of our proposed method — in both its parallel and non-parallel
forms — is that it introduces the opportunity for randomization in the execution, with
virtually no performance penalty; in particular, two different aspects can be randomized:
timing and order of execution of the multiplications. Indeed, with respect to the timing of
the multiplications, the detail that makes the technique work as countermeasure against
SPA is not that the multiplications be executed at a fixed rate or with some fixed timing
pattern: the important detail is to execute them at times independent or uncorrelated
from the times at which the operands are produced. As much as we can extract elements
from the buffer at a fixed rate corresponding to the average rate of nonzero bits, we
can also extract them at random times, as long as the average rate at which they are
extracted is the same average rate at which they are inserted into the buffer.

We can randomize this timing in several possible ways. For example, we could use
a source of randomness to decide whether or not to execute a multiplication after each
squaring operation: with probability p, we execute the multiplication (p = 1

2
for standard

binary exponent, 1
3

for NAF). We could also do a random permutation of the bits of the
exponent, such that we have the exact same number of nonzero bits as in the exponent,
but at random positions, uncorrelated from the positions of the nonzero bits in the
exponent; thus, we execute the multiplications conditioned on the bit of this permuted
value. In the parallel version of the method, we could introduce randomness simply
by adding small delays (idle waits) of random length after receiving the signal from the
other thread indicating that a multiplication should take place.

We have to be careful with the way that this may affect the requirements on the buffer
size; in particular, if we extract elements from the buffer with a random pattern, the
buffer size has to be increased by a factor of

√
2 . This is the case since now the condition
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for buffer failure is given by deviation from one random value to another random value.
Let δe be the deviation from the mean for the times of extractions from the buffer, and
δ for insertions, as defined in §4.3.4. Since by assumption these two random variables
are uncorrelated, then

Var(δ − δe) = Var(δ) + Var(δe) = 2 Var(δ)

(since both variables have the same distribution).

From equations (4.8) and (4.5), and given that the value of ` does not change, we
conclude that the buffer size has to be increased by a factor of

√
2 to maintain a given

probability of buffer failure.

Notice that this is not the case if we randomly permute the bits of the exponent — on
the contrary, the buffer size could be reduced and still maintain a given probability of
failure. This is the case since with the bits of the exponent permuted, we guarantee
that at the end of the processing — which is where buffer failure occurs with higher
probability — deviation from the mean is zero.

As for randomization in the order of execution, it is clear that the order in which the
multiplications are executed need not be the same as the order in which the operands
are generated, since the final result is simply the product of the set of values; thus, we
can permute the values in the buffer at random, so that they are extracted in a random
order. This, however, provides a limited level of randomization, in that only O(

√
` )

elements are in the buffer at a given time, so only that many at a time can be randomized
in the average case.

Furthermore, we do not even need to multiply the partial result times each value and
reassign the partial result: we can, as long as there are enough values in the buffer, take
any two random elements from the buffer, multiply them together, remove them from
the buffer and insert the result of that multiplication back into the buffer (or remove
one of the values and replace the other one with the result). Clearly, the final result
will be the same. Also, the number of multiplications is necessarily the same, since
each multiplication, whichever way is done, reduces the number of elements in the buffer,
and thus the number of multiplications remaining, by exactly one. We notice that
this compensates for the aspect mentioned in the previous paragraph about the limited
level of randomization; indeed, the number of possible combinations for the sequence of
operations greatly increases if we randomly choose pairs of elements from the buffer.

All of these aspects apply equally to the parallel and non-parallel versions of the
method.
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4.6 Practical Considerations

In §4.3.4, we discussed the storage requirements for our solution to work with probabil-
ity arbitrarily close to 1. Several aspects can contribute to a substantial reduction in
the amount of storage required in practice when implementing our proposed solution.
In terms of asymptotic (big-Oh) notation, the requirement remains the same: we still
require O(

√
` ) storage; the improvements relate to a substantial reduction in the multi-

plicative constant that asymptotic notation hides, but that plays an important role when
it comes to an actual, practical implementation.

4.6.1 Buffer Underflow

The impact of buffer underflows could be entirely avoided; if the multiplications buffer is
empty at the time that a multiplication must take place, a “dummy” multiplication can be
performed, such as a multiplication by 1, or in the case of integer modular multiplications,
by m + 1, where m is the modulus; if a multiplication by 1 is suspected to have an
identifiable power consumption profile, or in cases where multiplication by the identity is
by nature a null procedure, we could multiply by a random value, as long as each of these
dummy multiplications by a random value is matched by another dummy multiplication
by its inverse. This can be done efficiently, since pseudo-random values suffice, and a
stock of these pseudo-random values can be pre-computed. By eliminating the impact
of buffer underflows, we can reduce the storage requirement to half the original amount.
However, we must keep in mind that if we introduce “dummy” operations, execution
time is no longer optimal; still, the fraction of “dummy” operations may be reasonably
low.

4.6.2 Avoiding “Bad” Exponents

Perhaps a more important practical consideration is the fact that we can restrict the
use of exponents to those that do not lead to buffer overflows or underflows for a given
amount of storage, without noticeably sacrificing the security of the system, or any other
aspect of the system’s performance. We recall that for commonly used exponentiation
based cryptosystems such as RSA and Diffie-Hellman/ElGamal, the secret exponent is
randomly chosen when generating the key pair, or randomly chosen for each session.
In both cases, the choice can be constrained to avoid buffer overflows or underflows
for a given amount of storage. We observe that this can be done with a negligible
computational cost, as it only requires scanning the exponent bits and counting, without
any group operations required. Another crucial aspect is the fact that this constraint
can be introduced without causing a noticeable reduction in the entropy of the secret
exponent, as explained below.
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If a buffer overflow or underflow occurs with probability P
F
, then restricting the

random choice of exponent to the subset of values that do not produce overflow or
underflow reduces the entropy He of the secret exponent by ∆He = log2(1 − P

F
).

This can be easily seen, since a value of entropy of N bits is in this case associated to a
uniformly distributed random choice in a space of size 2N [18]; if invalid values occur with
probability P

F
, then the size is reduced to 2N(1 − P

F
), and the random selection is still

uniformly distributed, which means that the entropy is H ′e = log2

(
2N(1− P

F
)
)

= N +
log2(1− P

F
).

As an example to illustrate the validity of this argument; a probability of buffer
overflow or underflow of 0.1 corresponds with a reasonably small buffer size (a value
of c ≈ 0.5 for NAF, as per Equation (4.8)); yet, restricting the choice of exponents
produces a change in the entropy of only log2 0.9 = −0.152 bits — a negligible reduction,
as we usually consider exponents in the order of at least hundreds of bits. Even a more
aggressive setting with a probability of failure close to 0.3 — which at first glance may
seem alarmingly high — corresponds to a reduction in the entropy of only log2 0.7 ≈ −0.5
bits, which could still be considered a negligible reduction, depending on the application.
For these cases, however, it would be important to take into consideration the cost of
generating random values — if the cost is too high, we may rather want to avoid low
buffer sizes that would lead to discarding a high fraction of random bits.

4.6.3 Secure Validation of Exponents

Another crucial aspect to notice is the fact that the above constraint in the choice of ex-
ponents can be implemented without introducing any new vulnerabilities to side-channel
analysis (or any other type of cryptanalysis). The validation of the exponent can be
easily done with a constant execution path procedure, to avoid exposing the exponent
to any side-channels; we notice that we only need to have a constant execution path
until the point where it is determined that the exponent is invalid (that is, the procedure
can use a conditional “early exit” as an optimization). This means that an attacker
could still observe the fact that exponent values are being tested and discarded, but this
constitutes useless information, since an invalid exponent is a random event that is in-
dependent from the next choice. The “early exit” optimization would leak information
about the exponent, but only about exponents being discarded. If the exponent is valid,
then the procedure will exhibit constant execution path, so no information will be leaked
related to the exponents that pass the test.

4.7 Discussion and Concluding Remarks

One important aspect to take into account when considering the use of our proposed
SABM algorithm is the issue of trading storage in exchange for optimal execution time.
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Though computing power in mainstream devices has greatly increased, and thus one
could be inclined to somewhat dismiss the importance of a good execution time, the fact
remains that public-key cryptographic computations — in particular exponentiation with
large exponents — is usually the performance bottleneck in the security-related aspects
of a device. Thus, the impact of improvement in this area on the overall performance is
greater than that of improvement in any other areas. On the other hand, for storage,
the cost and requirements in terms of area have decreased dramatically over the recent
past, and one could reasonably expect them to continue to decrease. Even for embedded
applications, where resistance to power analysis is usually a critical requirement, sufficient
storage to implement our proposed method is easily available. This is certainly the case
for hand-held mobile devices; maybe a little less for smart cards and almost certainly
not the case for RFID devices.

Incidentally, for embedded devices — often relying on battery power — there is an
additional subtle advantage with our proposed method: the savings in computations
translate not only into better execution time, but also into decreased power consumption,
which is often another critical requirement for these types of devices.

For most applications, the use of our technique may not even introduce the need
for additional memory in the device, but simply make use of available memory that is
present anyway for other reasons. Indeed, one could reasonably claim that systems for
which our proposed method is suitable (including hand-held mobile devices) usually are
sophisticated enough that multitasking is certainly an included feature, with other tasks
that will require storage.

For situations where this is not the case, there is certainly the disadvantage that the
use of additional storage introduces manufacturing cost per unit, unlike with techniques
based on algorithmic improvement without extra storage; however, the fact remains
that our proposed technique exhibits better execution performance than any of the ex-
isting techniques so far, possibly making the additional cost justifiable, depending on the
situation.

Another important aspect to consider is the fact that the main idea of our
technique — namely, buffering to execute multiplications at a constant rate — can be
combined with other exponentiation techniques, providing optimal execution time with
respect to the underlying exponentiation technique. This was shown to be the case with
the technique proposed by Sun et al. [79], in which combination with our technique avoids
any unnecessary operations, yielding an even more efficient method than when combining
with basic right-to-left exponentiation. It was noted that the method by Sun et al.
is specific to binary exponent representation, as both the complexity and the fraction
of unnecessary operations increase if their method is adapted to NAF representation.
However, additional work might prove useful in adapting it to NAF in combination with
our technique, further improving execution time. We also emphasize the perhaps subtle
detail that with their method, exponent size is reduced to half, which means that when
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combined with our technique, the amount of buffer storage required decreases by a factor
of
√

2 .

Additional work is also suggested to further investigate the prospect of resistance to
DPA through randomization of timing pattern and order of multiplications. Though
intuition suggests that it may be the case that DPA attacks could be defeated, or at
least slowed down to a point where they are impractical, further research is necessary
to determine whether such technique can be implemented in a way that attacks can not
bypass or compensate for such randomization.
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Chapter 5

Simultaneous Processing of
Half-Exponents

This chapter presents a follow-up work to that presented in Chapter 4. We extended the
work by adapting the half-exponents technique to make use of signed-digits for the rep-
resentation of the exponent, which in turn leads to several new SPA-resistant algorithms
with improved performance with respect to the work presented in Chapter 4, or any other
SPA-resistant techniques. This is only possible when combining that technique with our
SABM method, as the technique, in its original form, is fundamentally incompatible with
signed-digit or NAF representation.

This work appeared as CACR technical report CACR 2011-13 [62]. The text and
contents in this chapter are based on this work.

5.1 Motivation

In Chapter 4, we presented our SPA-resistant technique based on buffering multiplica-
tions to execute them at a constant rate, or in any case, at times unrelated to the positions
of the exponent bits. We also showed that the method can be combined with alterna-
tive algorithms as the underlying binary exponentiation. In particular, this aspect was
demonstrated by combining the SABM technique with that proposed by Sun et al. [79].
However, Sun’s method of simultaneously processing half-exponents, as originally pro-
posed, is fundamentally incompatible with the use of signed-digit representation of the
exponent, in particular the Non-Adjacent Form (NAF), which limits its computational
efficiency.
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5.2 Our Contributions

In this work, we extended our previous results and presented several new SPA-resistant
algorithms that result from modifying the method by Sun et al. to make use of signed-
digit representation of the exponent, which becomes feasible only when combining their
method with our SABM technique. We demonstrate the technique with several repre-
sentations of the exponent, showing further improvements in performance with respect
to the technique in its basic form. Specifically, we first employ NAF for the represen-
tation of the exponent and Joint Sparse Form (JSF) for the representation of the two
exponent halves. Then we adapt the technique to process blocks of multiple digits of
the exponent. We present this kind of processing for two scenarios: i) the digit block
being a signed-digit base-4 representation derived from the NAF representation of the
exponent, and ii) the block being a signed-digit base-8 representation derived from JSF.
Unlike existing multi-digit exponentiation techniques, which focus on performance, these
approaches are suitable to be combined with the SABM technique, providing increased
efficiency while maintaining resistance to SPA.

As an important secondary contribution, we provide an alternative analysis of some
of the properties of NAF, based on an alternative algorithm to convert binary to NAF
representation (to the best of our knowledge, also our own original contribution). We
claim that the analysis is much simpler than existing mathematical models for the prop-
erties of NAF, and also reveals certain properties that, to the best of our knowledge,
have not been studied in the existing literature (or at the very least are extremely hard
to come by).

5.3 Exponent in Signed-Digit Representations

The central idea of simultaneous processing of half exponents is the use of multiple
accumulators, to hold the product of subsets of the set of values that produce the correct
result; these are then multiplied together to obtain the correct result with the product
of the entire set of values. In particular, it uses one accumulator for each combination
of bits (one bit from each half-exponent in corresponding positions) where at least one
of the bits is nonzero. Thus, for the binary case we have R01, R10, and R11. Similarly,
when extending this algorithm to work with signed-digit representations, we still have
one accumulator for each combination of digits from each exponent half; thus, in the
case of signed-digit exponent, we have accumulators R1̄1̄, R10, R11, R01, R01, R11, R10,
and R11.

With this setup, the result of the exponentiation is computed as follows: Let e be
the `-digit exponent, with signed-digit representation e = d`−1d`−2 · · · d2d1d0, 2 | `, let
`′ = `/2, let e

L
= d`′−1d`′−2 · · · d2d1d0 and e

H
= d`−1d`−2 · · · d`′+1d`′ .
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Then, xe is obtained as xe = xeL · (xeH )

(
2`
′)

, with xeL and xeH computed as follows:

xeL = R01 ·R11 ·R11 · (R1̄1̄ ·R01 ·R11)−1 (5.1)

xeH = R10 ·R11 ·R11 · (R1̄1̄ ·R10 ·R11)−1 (5.2)

where

RdHdL
=

`′−1∏
i=0

di=dL

d`′+i=dH

x(2i)

That is, the required product of values is spread across eight different accumulators,
since for each possible value of one digit, the other digit could have three different values
(we recall that the combination 00 does not have a corresponding accumulator). We also
notice that the products of values corresponding to positions where the digit is 1 need
to be inverted. Algorithm Exp-HE shows these details (shown below as Algorithm 8).
Correctness of Algorithm Exp-HE is asserted by Theorem 5.1.

Theorem 5.1 Given inputs x and `-digit exponent e, with e in signed-digit representa-
tion, Algorithm Exp-HE correctly computes the value of xe.

Proof:

Without loss of generality, we assume that 2 | ` (we can pad with a leading zero digit
as needed). Let `′ = `

2
, and consider the two `′-digit exponent halves:

e
H

= d`−1d`−2 · · · d`′+1d`′

e
L

= d`′−1d`′−2 · · · d2d1d0

The required value xe can be obtained in terms of xeH and xeL as follows:

e = e
L

+ e
H
2`
′ ⇒ xe = xeL · xeH2`

′

= xeL · (xeH )

(
2`
′)

(5.3)

Since each of the half exponents are themselves numbers in signed-digit representation,
the values xeL and xeH are given by:

xeL =

 ∏
i∈D+

L

x(2i)

 ·
 ∏
i∈D−L

x(2i)

−1

(5.4)

xeH =

 ∏
i∈D+

H

x(2i)

 ·
 ∏
i∈D−H

x(2i)

−1

(5.5)
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Algorithm 8: Exp-HE – Simultaneous processing of half-exponents

Input: x; e = (d`−1d`−2 · · · d1d0)
S.D.

with ` divisible by 2
Returns: xe

begin
S ← x;
R1̄1̄ ← 1, R10 ← 1, R11 ← 1;
R01 ← 1, R01 ← 1;
R11 ← 1, R10 ← 1, R11 ← 1;
`′ ← `/2;

for each digit pair d`′+idi (i from 0 up to `′ − 1) do
if d`′+idi 6= 00 then

Rd`′+idi
← Rd`′+idi

× S;

end
S ← S2;

end

R01 ← R01 ×R11 ×R11 × (R1̄1̄ ×R01 ×R11)−1;
R10 ← R10 ×R11 ×R11 × (R1̄1̄ ×R10 ×R11)−1;

repeat `′ times:
R10 ← (R10)2;

;

return R01 ×R10;
end
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whereD+
L denotes the set { i : 0 6 i < `′, di = 1 }, D−L the set

{
i : 0 6 i < `′, di = 1

}
,

D+
H the set { i : 0 6 i < `′, di+`′ = 1 }, and D−H the set

{
i : 0 6 i < `′, di+`′ = 1

}
.

Consider now the sets R1̄1̄, R10, R11, R01, R01, R11, R10, and R11, where RdHdL

denotes the set { i : 0 6 i < `′, di = dL, di+`′ = dH }.
Clearly, R11 ⊂ D+

L , R01 ⊂ D+
L , andR11 ⊂ D+

L . Furthermore, R11 ∪R01 ∪R11 = D+
L ,

since 1, 0 and 1 are the only possible values for d
H
. Similarly, we haveR1̄1̄ ∪ R01 ∪ R11 =

D−L .

In Algorithm Exp-HE, S is initialized with the value of x, and at the end of each
iteration it is squared; this means that at the beginning of iteration i, the value in S

is x(2i). This value of S will be included in the product of values stored in one of the
variables RdHdL

, since all of the RdHdL
defined are such that dHdL is not 00; this variable

RdHdL
is precisely the one corresponding to the digit pair dHdL. Thus, the values stored

in each variable RdHdL
are:

RdHdL
=

∏
i∈Rd

H
d
L

x(2i) (5.6)

Therefore, we have

R01 ×R11 ×R11 =
∏

i∈R01 ∪R11 ∪R11

x(2i) (5.7)

But R01 ∪ R11 ∪ R11 = D+
L , and thus

R01 ×R11 ×R11 =
∏
i∈D+

L

x(2i) (5.8)

We also have
R1̄1̄ ×R01 ×R11 =

∏
i∈R1̄1̄ ∪R01 ∪R11

x(2i) (5.9)

With R1̄1̄ ∪ R01 ∪ R11 = D−L , and thus

R1̄1̄ ×R01 ×R11 =
∏
i∈D−L

x(2i) (5.10)

Combining equations (5.8) and (5.10) with Equation (5.4), we see that the final value
assigned to R01 is xeL .

By an identical argument, we have that the value assigned to R10 by the end of the
`′ iterations of the loop is xeH . This value is then repeatedly squared `′ times, meaning

that the final value stored in R01 is (xeH )

(
2`
′)

. Since the output of the algorithm is
the product of R01 and R10, Equation (5.3) shows that the output is xe, completing the
proof. �

We observe that for the same inputs, with e in NAF representation, Theorem 5.1 still
applies, since NAF is a particular case of signed-digit representation.
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5.3.1 Exponent in NAF Representation

The use of NAF for exponent representation exhibits the same advantage as for the case of
straightforward binary exponentiation: with lowest Hamming Weight among all possible
signed-digit representations for a given value, we reduce the number of multiplications for
the straightforward binary exponentiation to one third of the bit length of the exponent
on average.

Proposition 5.2 Given inputs x and `-digit exponent e, with e in NAF representation,
algorithm Exp-HE executes 5

18
` multiplications on average.

Proof:

For each i, 0 6 i < `′, where `′ = `
2

, a multiplication takes place if di+`′di 6= 0

For sufficiently large exponents, we can reasonably assume that Pr {dk = 0} = 2
3

[5].
Under the assumption that digits di and di+`′ are independent, we have that

Pr {di+`′di = 00} =
4

9
⇒ Pr {di+`′di 6= 00} =

5

9

Thus, the average number of multiplications is 5
9
`′ = 5

18
` �

5.3.2 Exponent Halves in Joint Sparse Form Representation

Further improvement is obtained by observing that this technique of simultaneously
processing half exponents is similar to, or at least shares certain aspects with, multi-
exponentiation; Joint Sparse Form (JSF) representation of exponent pairs has been
suggested as a means to optimize the signed-digit representation so that as many digit
pairs (columns) as possible are 00. It has been shown that with JSF, we can obtain
representations for each of the exponents (in our case, each of the exponent halves) with
one half of the columns being 00 on average [77]. This constitutes a non-negligible
improvement over the use of NAF, since the number of multiplications with JSF is half
the bit length of the exponents, compared to five ninths for NAF.

Proposition 5.3 Given inputs x and `-digit exponent e, with exponent halves e
H

and
e

L
jointly represented in JSF, algorithm Exp-HE executes 1

4
` multiplications on average.

Proof:

The statement follows directly from the fact that JSF achieves a representation of the
exponent halves with one half of the digit pairs (columns) being 00 on average. �

Notice that with JSF, the representation for each half exponent remains a legitimate
signed-digit representation. Thus, Theorem 3.1 holds, and algorithm Exp-HE remains
valid when using JSF representation for the exponent halves.
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5.4 Processing Multi-digit Blocks

We now discuss two extensions to the methods presented in the previous sections, where
several columns are combined for simultaneous processing. As we will see, these meth-
ods lead to better asymptotic performance, but with a larger constant factor, making
them suitable for large exponents (approx. above 1000 bits). In light of recent NIST
recommendations, including the use of RSA with exponents of 2048 bits or above [6], it
becomes important to consider techniques that target this range of exponent lengths.

As will become apparent, there are fundamental differences between these and exist-
ing techniques that use multi-digit processing for increased performance, such as those
described in [56]; in our case, the characteristics of the algorithms are constrained by the
fact that they have to be suitable to be combined with the SABM buffering technique.
Also, our proposed methods have an advantage over the method presented in [65] in
that they do not require Look-Up Tables or precomputations, making them equally well
suited for the cases of fixed and non-fixed base.

5.4.1 Two-digit Blocks Derived from NAF Representation

We first present an extension of the use of NAF for the half exponents that allows us to
obtain an even better performance than that obtained through the use of JSF.

If we split the exponent into blocks of two digits (two columns, since we do this for the
two exponent halves), the basic property of NAF guarantees that for each block of each
half-exponent, at least one of the two digits must be 0. Thus, the only possible values
for the digit pair are 01, 00, 01, 10, and 10, corresponding to numeric values −1, 0, 1, 2,
and −2. Thus, if we take two-digit blocks and think of these blocks as digits in base-4
signed-digit representation, we can adapt the algorithm to work with these parameters.

The exponentiation algorithm is easily modified to work with this non-binary repre-
sentation of `2-digit exponent e =

∑`2−1
i=0 di4

i with di ∈ {2, 1, 0, 1, 2}, as shown below:

xe = x

(∑`2−1
i=0 di4

i
)

= x

∑`2−1

i=0
di=1

4i + 2
∑`2−1

i=0
di=2

4i −
∑`2−1

i=0
di=1

4i − 2
∑`2−1

i=0
di=2

4i



=

(∏
di=1

x(4i)

)
×

(∏
di=2

x(4i)

)2

×

∏
di=1

x(4i)

−1

×

∏
di=2

x(4i)

−2

= (P1) (P2)2 (P1)−1 (P2)−2 (5.11)

where PB denotes the product corresponding to di = B.

From Equation (5.11), it is clear that algorithm Exp-HE can be modified by adding
additional accumulators Rxy for the additional digit values 2 and 2. That is, we need
accumulators R2̄2̄, R2̄1̄, R20, R21, R22, R1̄2̄, etc.
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Equation (5.11) can be rearranged for use in the context of ECC: since inversion is
a virtually free operation in ECC, we can group the two squarings (doublings, in the
context of ECC) into a single operation, at the cost of one additional inversion.

We observe that asymptotic performance for this method is better than with the use
of JSF. To show this, we first present the following lemma, addressing adjacent digits in
NAF representations:

Lemma 5.4 Let x be a randomly chosen `-bit non-negative value (that is, with uniform
distribution in the interval [0, 2` − 1]), and let d`d`−1 · · · d1d0 be its NAF representation.
For sufficiently large values of `, the probability of contiguous zeros, Pr {dk+1dk = 00} for
k even approaches 1

3
as k becomes large.

Proof:

We will prove the statement based on a procedure to construct the NAF representation
from the standard binary representation by processing individual bits from right to left
(LSB to MSB) to generate the digits di. Since the procedure is different from the
standard, commonly known algorithm (shown for example as Algorithm 3.30 in [56]), we
include a description in Appendix B.

The procedure works in an “online” manner, processing each input bit to generate
new output digits, with the key detail that each bit in the standard binary representation
is independent of every other bit (even for adjacent bits) and can take values 0 and 1
with equal probability.

This allows us to obtain the following recurrence relations for the possible outputs
of the algorithm at each step (i.e., upon processing each input bit), taking into account
that Pr {bn = 0} = Pr {bn = 1} = 1

2
; P0(k) denotes the probability of producing a digit

0 with no carry at iteration k (that is, Pr {dk = 0,C = 0}), P1(k) = Pr {dk = 1}, and
PC(k) denotes the probability of producing a carry at iteration k:

P0(n) = Pr {bn = 0}P0(n− 1) + Pr {bn = 0}P1(n− 1)

= 1
2
P0(n− 1) + 1

2
P1(n− 1) (5.12)

PC(n) = Pr {bn = 1}P1(n− 1) + Pr {bn = 1}PC(n− 1)

= 1
2
P1(n− 1) + 1

2
PC(n− 1) (5.13)

P1(n) = 1− P0(n)− PC(n) (5.14)

Equation (5.14) corresponds to the fact that these are the only three possibilities at each
iteration, so the corresponding probabilities must add to 1.

Since we are interested in the probability of adjacent zeros, we only need to solve for
P0(n) and PC(n), so we rewrite Equation (5.14) at n− 1 and substitute in the other two
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equations, obtaining

P0(n) = 1
2

(1− PC(n− 1))

PC(n) = 1
2

(1− P0(n− 1))

Rewriting again for the left-hand sides at n− 1 and substituting in each other, we finally
obtain the following recurrence relations:

P0(n) = 1
4

+ 1
4
P0(n− 2)

PC(n) = 1
4

+ 1
4
PC(n− 2)

With initial conditions being P0(0) = P0(1) = 1
2

, PC(0) = 0, and PC(1) = 1
4

(these are
trivially obtained by counting occurrences in the four possible two-bit combinations).

The above recurrence relations are easily solved by repeated substitution, obtaining
identical solutions for both (the difference given by the different initial conditions):

P (n) = 1
3

+
(

1
2

)n
(P (0)− 1

3
) (for n even)

Since we are interested in processing pairs of bits, we want the probability of digits
d2kd2k+1 being 00, and thus, we only need to obtain the above solution for n even.

P0(n) = 1
3

+ 1
6

(
1
2

)n
PC(n) = 1

3

(
1−

(
1
2

)n)
From this, we obtain, for n even:

Pr {dn+1 = 0, dn = 0} = Pr {bn+1 = 0, dn = 0}+ Pr {bn+1 = 1, C = 0}
= Pr {bn+1 = 0} · P0(n) + Pr {bn+1 = 1} · PC(n)

= 1
2

(P0(n) + PC(n))

= 1
3

(
1−

(
1
2

)n+2
)

(5.15)

From Equation (5.15), we clearly observe exponential convergence towards 1
3

.

To complete the proof, we should mention the fact that these probabilities correspond
to the probabilities of 0 at the given positions for the NAF representations of large
numbers. Indeed, the construction procedure (see Appendix) is such that once the
most-significant-digit at some iteration is 0, the next iteration can not make this change
(and as a consequence, the same holds for the two most recent digits being 00), and this
regardless of whether there is a carry or not at that iteration. Conversely, if we have
a 1 at some iteration (the only possible nonzero as the most-significant digit), the next
iteration can only make it change to 1, and not to 0. �
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Proposition 5.5 Given inputs x and `-digit exponent e in NAF representation, algo-
rithm Exp-HE-Base4 executes 2

9
` multiplications on average, and never executes more

than 1
4
` multiplications.

Proof:

The upper-bound of 1
4
` multiplications follows directly from the fact that when pro-

cessing two-digit blocks as a base-4 signed-digit representation, we never have more than
one multiplication per two-digit block, meaning that we guarantee the number of multi-
plications to be half the bit length of the (half-)exponent in the worst case.

For the average case, we have that a fraction of the two-digit blocks have four zeros,
meaning that no multiplication is required for those blocks. From Lemma 5.4, given a
sufficiently large exponent, we have that Pr {di+1di = 00} = 1

3
.1

Under the assumption of independence of the digits from the lower and upper halves
of the exponent, we have that

Pr {di+1di = 00, d`′+i+1d`′+i = 00} =
1

9

where `′ = `
2

. The stated result follows immediately. �

We notice that we only have extra digits 2 and −2, as a consequence of the exponent
being in NAF representation; thus, the additional power requires a single squaring, as
opposed to having powers 3 and −3, requiring one squaring and one multiplication for
the exponentiation corresponding to those accumulators.

An additional advantage of this approach is that when grouping two-bit blocks for
processing, instead of executing two squarings, we can obtain the fourth power directly,
without having to explicitly compute an intermediate result, potentially obtaining better
performance than with two successive squarings. This has been shown to be the case for
ECC, where, under certain conditions, computing 4P directly can be faster than doubling
twice [35].

Algorithm Exp-HE-Base4 is shown below (as Algorithm 9) for the case of inversion
being less expensive than squaring.

5.4.2 Three-digit Blocks Derived from JSF Representation

Algorithm Exp-HE-Base4 takes advantage of the constraints that NAF representation
imposes on adjacent digits, and therefore on any two-digit blocks; following the same

1 The approximation is reasonable, since the probability converges to 1/3 quite rapidly, and the
exponent lengths are always in the order of at least hundreds of bits.
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Algorithm 9: Exp-HE-Base4 – Simultaneous Processing of Half-Exponents, Base-4
Mode

Input: x; e = (d`−1d`−2 · · · d1d0)
NAF

with ` divisible by 4
Returns: xe

begin
Rij ← 1 (∀ i, j ∈ {2, 1, 0, 1, 2}, ij 6= 00);
S ← x;
`′ ← `/2;

for i from 0 up to `′ − 2 in steps of 2 do
DH ← d`′+i + 2 · d`′+i+1; DL ← di + 2 · di+1;
if DHDL 6= 00 then

RDHDL
← RDHDL

× S;
end
S ← S4;

end

R02 ← R02 ×R22 ×R12 ×R12 ×R22 × (R2̄2̄ ×R1̄2̄ ×R02 ×R12 ×R22)−1;
R01 ← R01×R21×R11×R11×R21× (R2̄1̄×R1̄1̄×R01×R11×R21)−1× (R02)2;

R20 ← R20 ×R22 ×R21 ×R21 ×R22 × (R2̄2̄ ×R2̄1̄ ×R20 ×R21 ×R22)−1;
R10 ← R10×R12×R11×R11×R12× (R1̄2̄×R1̄1̄×R10×R11×R12)−1× (R20)2;

repeat `′ Times:
R10 ← (R10)2;

;

return R01 ×R10;
end
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idea, we observe that JSF representation does impose constraints for three-digit blocks,
which allows us to extend the method to a base-8 processing while taking advantage
of the reduced number of base-8 digit combinations due to the constraints present in a
three-digit block.

Following the same idea and using the same notation as for the base-4 case, we have a
representation of an `3-digit exponent e =

∑`3−1
i=0 di8

i, di ∈ {0,±1,±2,±3,±4,±5,±6}.
For this base-8 representation, we obtain:

xe = x

(∑`3−1
i=0 di8

i
)

= (P1) (P2)2 (P3)3 (P4)4 (P5)5 (P6)6

(P1)−1 (P2)−2 (P3)−3 (P4)−4 (P5)−5 (P6)−6 (5.16)

From Equation (5.16), we see that the exponentiation procedure remains essentially
the same, with a higher cost in terms of storage and post-processing (the step where
the various accumulators are combined into the exponentiation results). However, the
JSF representation introduces constraints in triplets of contiguous digits [77], reducing
the number of combinations of values, and thus reducing the number of accumulators.
Specifically, we have the following properties for JSF [77] that affect our method:

• At least one column is zero in any three contiguous columns — this means that a
value 7 can not occur for any of the two digits, and also, combinations such as 5-2
or 1-6 can not occur.

• If e
H i+1eH i 6= 0, then e

L i+1 6= 0 and e
L i = 0, and if e

L i+1eL i 6= 0, then e
H i+1 6= 0 and

e
H i = 0 — this means that combinations such as 6-6, or 6-2 can not occur.

The number of accumulators is reduced from 224 (15 possible values for each digit,
minus the combination 00) to 120 — an important reduction, but still leaving a consid-
erably large number of accumulators, given that they incur both additional storage, and
computational cost due to increased post-processing.

The interesting aspect of this method is its (asymptotic) computational efficiency;
three digits of each half-exponent are processed with a single multiplication, bringing the
average number of multiplications down to one sixth of the length of the exponent. We
need to additionally factor in the fraction of blocks that are all-zeros (i.e., the base-8 digit
pair is 00), such that no multiplication is required for those digit pairs. This fraction is of
course lower than for the previous cases, since we’re dealing with triplets of signed binary
digits, with the constraints given by the JSF. We experimentally obtained this fraction
to be approximately 1

96
, with which we obtain an average number of multiplications of

0.165`.

We omit any additional details or a step-by-step diagram for the algorithm, since the
details follow the same idea as algorithm Exp-HE-Base4.
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5.5 SABM with Simultaneous Processing of Half-

Exponents

In the previous sections, we discussed various algorithms that are the subject of this work,
but we presented them in their SPA-vulnerable version, for the purpose of discussing the
computational efficiency of each of the variants. All of the algorithms presented in the
previous sections can be modified to incorporate the buffering aspect of the SABM tech-
nique, thus adding resistance to SPA while introducing zero computational overhead.
The idea is similar for all the variants of the algorithm — instead of conditionally ex-
ecuting the multiplication, we buffer the term to be multiplied, and then execute the
multiplications at a fixed rate.

When simultaneously processing half-exponents, the algorithm requires a selection of
the accumulator where the multiplication should be performed; thus, in this case, we
need to buffer the combination of the value to be multiplied and the digit pair for the
selection of the accumulator (or equivalently, a direct reference, e.g., in the form of a
pointer, to the selected accumulator could be used).

Algorithm 10 shows the details for the case of exponent in NAF representation. No-
tice the pre-filling of the buffer to half its capacity on average: the probability of insertion
on the buffer is p = 5

9
, so we process p−1|BuffS|/2 exponent digits before starting to ex-

tract elements from the buffer; at the end of the first loop, the buffer will be at half
capacity on average, so we need to process any remaining elements.

The idea is almost identical and directly applicable to the other forms discussed in
the previous section. In particular, for JSF representation of the exponent halves, the
algorithm remains the same (except for a pre-processing stage to convert the exponent
representation to JSF, or the precondition that the input be in this form).

We omit proofs of correctness for these algorithms, since it is straightforward to
observe that the buffering aspect only changes the time at which the operations take
place, without affecting the values being multiplied together.

5.6 Performance Comparison

We now focus on the performance of the various methods proposed in this work, and
present experimental results that confirm our analysis.

5.6.1 Analytic Comparison

Table 5.1 summarizes the differences in performance of the various techniques described in
this section, and compares against existing solutions, showing the right-to-left exponen-
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Algorithm 10: SABM-HE – SABM with Simultaneous Processing of Half-
Exponents, NAF

Input: x; e = (d`−1d`−2 · · · d1d0)
NAF

with ` divisible by 2
Returns: xe

begin
S ← x;
R1̄1̄ ← 1, R10 ← 1, R11 ← 1;
R01 ← 1, R01 ← 1;
R11 ← 1, R10 ← 1, R11 ← 1;
`′ ← `/2;

for each digit pair d`′+idi (i from 0 up to `′ − 1) do
if d`′+idi 6= 00 then

< S, d`′+idi > → BuffS;
end
S ← S2;
if i > 9 · |BuffS|/10 and i mod 9 is even then

< Tmp, dHdL > ← BuffS;
RdHdL

← RdHdL
× Tmp;

end

end

while BuffS is not empty do
< Tmp, dHdL > ← BuffS;
RdHdL

← RdHdL
× Tmp;

end

R01 ← R01 ×R11 ×R11 × (R1̄1̄ ×R01 ×R11)−1;
R10 ← R10 ×R11 ×R11 × (R1̄1̄ ×R10 ×R11)−1;

repeat `′ Times:
R10 ← (R10)2;

;

return R01 ×R10;
end
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tiation performance as a baseline. Values shown are average number of multiplications
required to execute an exponentiation with an `-bit exponent (we recall that all the
methods listed, except for Joye’s method, require exactly ` squarings in addition to the
number of multiplications shown), and average amount of units of time to execute, where
by convention, squaring routines execute in 1 unit of time and multiplication routines
execute in 1.2 units of time (a typical ratio for practical implementations [39]). We
observe that even for different ratios of multiplication to squaring times, the number of
squarings is the same for all the methods; thus, we unconditionally benefit from a reduced
number of multiplications.

Multiplications Execution Time

Binary NAF/S.D. Binary NAF/S.D.

R-T-L 0.5` 0.33` 1.6` 1.4`

S-A-A-M ` ` 2.2` 2.2`

Joye – – – – 1.8` 1.6`

Sun et al. 0.5`+ O(1) – – 1.6`+ O(1) – –

SABM 0.5` 0.33` 1.6` 1.4`

SABM-HE (∗) 0.375`+ O(1) 0.275`+ O(1) 1.45`+ O(1) 1.33`+ O(1)

SABM-HE-JSF (∗) – – 0.25`+ O(1) – – 1.3`+ O(1)

SABM-HE-Base4 (∗) – – 0.22`+ O(1) – – 1.264`+ O(1)

SABM-HE-Base8 (∗) – – 0.165`+ O(1) – – 1.198`+ O(1)

(∗) This work

Table 5.1: Performance Comparison of S.D. Exponentiation Algorithms.

5.6.2 Experimental Results

As part of this study, we implemented several of the methods for the purpose of experi-
mentally verifying their efficiency; in particular, the implementations did not include the
buffering aspect, since in our view, it seems rather clear that this aspect does not affect
the computational performance of the methods. In addition to the fully optimized (and
thus, SPA vulnerable) RTL exponentiation with NAF exponent, used as a baseline for
comparison, we implemented the methods Exp-HE (using NAF exponent), Exp-HE-JSF,
and Exp-HE-Base4. All the implementations are based on the GMP library (version
5.0.2, the latest version at the time of this work) for the underlying arithmetic operations
[24]. We tested the methods with exponent lengths of 256 and 512 bits, in the range of
typical ECC applications,2 and also 1024, 2048 and 4096; 1024 and 2048 are in the typi-
cal range of RSA applications [6], assuming a CRT-based implementation. Even though

2 Though all the implementations use exponentiation based on modular integer arithmetic, perfor-
mance comparisons should still be meaningful when combining with exponent lengths typical for ECC,
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4096 bits is not widely used in practical applications, we include it since it confirms the
asymptotic behaviour expected as exponent lengths become larger.

Table 5.2 shows the results; measurements are actual execution time of the expo-
nentiation routines (excluding startup and initialization time for the library facilities).
Multiple measurements (1000) with randomly chosen exponents were performed, and
Table 5.2 shows the average value. The implementations were compiled and executed
on a low-power Intel Atom processor N270 [17] system running Ubuntu Linux 10.04LTS.
CPU frequency scaling was disabled, as well as the graphical interface, networking, and
all other applications, to avoid any disruption on the measurements.

256 bits 512 bits 1024 bits 2048 bits 4096 bits

R-T-L (SPA vulnerable) 282µs 1.42ms 8.19ms 49ms 314.3ms

Exp-HE (NAF) 301µs 1.43ms 7.93ms 46.8ms 298ms

Exp-HE-JSF 290µs 1.39ms 7.72ms 45.5ms 289.7ms

Exp-HE-Base4 302µs 1.395ms 7.61ms 44.5ms 282.6ms

Table 5.2: Execution time of exponentiation algorithms.

The results are consistent with the expected execution times of the various methods;
the measurements confirm that the Base-4 method is actually at disadvantage for short
keys, such as those typically used in ECC, but it is asymptotically more efficient, as
shown by the results for larger exponent sizes.

5.7 Discussion and Concluding Remarks

Several extensions to our previous results were presented, with various degrees of im-
provement with respect to previous works and various trade-offs. The additional storage
required for the extra accumulators with respect to the method in our previous work
(eight accumulators for signed-digit/NAF exponent vs. three accumulators for standard
binary exponent in our previous work) should be offset by the fact that the variance
for the distribution of nonzeros is smaller when using signed-digit representations, thus
leading to a reduced buffer size requirement for a given probability of buffer failure.

More importantly, the improvement in performance is substantial when using signed-
digit representations for the exponent, presenting an interesting situation where we im-
prove (or perhaps just maintain) the storage requirements and still observe a considerable
improvement in terms of computational cost. We recall that this reduction in compu-
tational cost also leads to a reduction in power consumption, which could be a critical
aspect for systems relying on battery power, such as hand-held mobile devices.

illustrating the usefulness of the various methods for ECC applications.
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In the various methods proposed in this work, performance in terms of asymptotic
computational cost has distinct values and the various methods are clearly ranked by
their efficiency; however, the cost hidden in the O(1) expression (the constant number of
operations in the post-processing) is different for each of the various methods, with the
optimal trade-off — at least for the typical exponent bit lengths used in ECC — possibly
being the method using JSF; the improvement derived from using JSF for the exponent
halves comes at no cost whatsoever, since the algorithm is identical with respect to
the version that uses NAF. However, the method processing two-digit blocks incurs
additional computational cost in terms of post-processing: multiplications, squarings,
and inversions to combine the various accumulators into the required results. Given the
higher number of multiplications in the post-processing stage, for exponents below 1000
bits, the NAF or JSF methods actually require fewer multiplications, and thus this Base-
4 method is not particularly attractive for ECC protocols, where the typical exponent
lengths are in the hundreds of bits. However, the Base-4 exhibits superior asymptotic
performance; with the threshold being around 1000 bits, the method is suitable for
protocols involving RSA with the currently NIST-recommended key sizes [6]. The same
holds for the Base-8 method, where the number of operations in the post-processing stage
makes it unattractive for the typical exponent bit lengths used in ECC, even though its
asymptotic performance is considerably better than any of the other methods.
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Chapter 6

Non-Intrusive Program Tracing
Through Side-Channel Analysis

This chapter presents our contribution merging, or rather combining, the areas of side-
channel analysis, specifically SPA, with the area of embedded systems. Specifically, we
propose a technique that draws upon some of the basic ideas from the field of side-channel
analysis and applies them to the debugging of embedded systems at their deployment or
production stages.

This work has been accepted as a Full Paper in Languages, Compilers and Tools for
Embedded Systems (LCTES-2013) [60]. The text and contents in this chapter are based
on this work.

6.1 Motivation

Debugging is one of the hardest aspects of embedded software development. The task
is especially hard when the faulty behavior is observed at the production or deployment
stage, when the software no longer has any auxiliary components dedicated to assist in
the debugging task [13]. For systems at this stage of the development cycle, non-intrusive
observation of the system’s behavior is likely the only available technique — developers are
no longer allowed to modify the source code, or even re-compile to include or activate the
debugging tools. Furthermore, if we need to restart the device to enable any available
debugging techniques, we may not be able to reproduce the faulty behavior that the
device was exhibiting. Without these debugging tools usually available in earlier phases
of development, developers may be limited to non-intrusive observation, which often
provides insufficient information to infer the cause of the problem and identify and fix
the bug.
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6.2 Our Contributions

In this work, we present a novel approach for non-intrusive debugging of deployed em-
bedded systems. A device can be observed and an output indicating the sequence of
executed code is produced, without having to modify anything in the device or even
restart it. The approach is non-intrusive both from the hardware and software perspec-
tives in that it does not require any modifications or instrumentation to the software or
any hardware modifications or extra connections except for signals external to the device.

The technique is rooted in cryptography, in particular the area of side-channel anal-
ysis, focusing on power consumption (though the underlying techniques are in principle
applicable to EM emissions), where the relationship between the CPU operations and
power consumption is exploited. To determine power consumption, a current sensing
shunt resistor is placed in series with the Power-In signal going to the Microcontroller
Unit (MCU),1 producing a voltage proportional to the current being consumed. The
resistor is selected to produce a voltage in the range of a few millivolts, thus not affecting
the operation of the device. Our technique expands the scope of the cryptographic tech-
niques so that we recover the sequence of operations executed by a processor, as opposed
to simply one piece of data accessed during a particular operation of the device. To
this end, we use digital signal processing techniques (in particular, spectral analysis) to
extract features of the signal (the power trace) that allow us to match sections of the
power trace against fragments of the source code through the use of statistical pattern
recognition techniques [82].

Our approach exhibits some fundamental differences with respect to side-channel at-
tacks, requiring additional, novel approaches to process the power trace — clearly, as we
can see from the descriptions and discussions in the previous chapters, these cryptana-
lytic techniques, as they exist, are not directly applicable to the debugging of embedded
software, since they focus on obtaining specific pieces of secret data embedded in the
device (and inaccessible through “legitimate” means), and they typically require interac-
tion and direct control over what the target device is executing. On the other hand, the
goal when tracing and debugging a deployed embedded system is to analyze an operating
device for which we have observed a faulty behavior, and obtain information allowing us
to identify and fix the bug. It may be essential that we allow the device to continue
its operation without restarting it or in any way exerting control over what the device
is doing; otherwise, we could lead the device to a state where we may not be able to
reproduce the faulty behavior.

As secondary contributions or highlights of this work, we have the following aspects:

• One of the important highlights of this work is the fact that the system works
on a standard personal computer (PC), capturing the power traces through the

1 Though the technique is applicable to both CPUs and MCUs, we use MCU throughout the chapter,
to simplify the text, and also since it is the more likely target for our technique.
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recording input of the sound card, avoiding the need of expensive and bulky pieces
of equipment. A standard, reasonably high-quality sound card (24-bits, 192kHz
sampling rate, nowadays available at prices below $200) suffices to make the system
work on a wide range of microprocessors and microcontroller units. To the best
of our knowledge, this approach has not been presented in the existing literature.
Notice that we are referring to the use of a sound card to capture an electrical
signal, and not to capture sound, like in the case of acoustic cryptanalysis [76].

Among the advantages of using a sound card, perhaps the most obvious is the
practical aspect of using off-the-shelf inexpensive equipment that is widely available
and mainstream. The main disadvantage is the rather low limit for the sampling
frequency, which certainly limits the range of target devices for which our approach
is applicable. A potential secondary disadvantage is the fact that sound cards
typically block DC, which for some cases it could be a valuable feature in terms of
increasing the performance of our proposed technique.

• An actual practical implementation of our tracing system could be used for monitor-
ing as an intrusion detection system (IDS) [7] for embedded systems. In the wake
of threats like Stuxnet [50], the field of embedded systems security gets increased
attention and one should definitely consider adapting tools like IDSs, classically
viewed as applicable to servers and networks, to embedded systems as well. Un-
like a software-based IDS embedded in the device, our approach could lead to a
tamper-proof IDS, given that the monitoring system is physically independent of
the device being monitored and the software running in it; thus, any malware that
tampers with the functionality of the device will not be able to tamper with the
IDS and as a consequence, any anomaly in the device’s behavior will most likely
be detected.

Additionally, this IDS functionality could find interesting applications in areas such
as device fingerprinting for Intellectual Property (IP) protection or other forms of
Digital Rights Management, and many other areas where monitoring of secure co-
processors for tamper detection purposes could be useful (for example, see [83]).

6.3 Our Proposed Technique

As briefly described in the previous section, our proposed technique is centered around
the idea of non-intrusively measuring power consumption as a function of time (i.e., cap-
turing power traces), and use the relationship between what the processor is executing
and the power consumption, combined with statistical processing to determine the se-
quence of instructions that were executed, thus assisting in the debugging process. It is
reasonably likely that this information would be valuable for the purpose of identifying
and fixing the bug when faulty behavior is exhibited by a device. We observe that in
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the context of embedded systems, this relationship between operations being executed
and power consumption has been used for the purpose of estimating or minimizing power
consumption, obtaining power consumption as a function of the executed instructions.
Going in the other direction may be seen as a far bigger challenge, for at least two reasons:
(1) the operation being executed is not uniquely determined as a function of the power
consumption; thus, information about the progression of power consumption through an
interval of time may be needed, combined with statistical processing; and (2) we need
to get around the “polluting” effect of the data the processor is working with (i.e., the
same operation with different data produces a different amount of power consumption)
and the measurement noise.

One of our important assumptions derives from the use of statistical pattern recog-
nition techniques: our goal is to classify a given segment of execution as an instance
of one of the possible fragments of source code according to a database, given noisy ob-
servations that in principle provide enough statistical information to determine the most
likely fragment of code that produced such observation [82]. Since we use this technique
for tracing and debugging, we know that the source code will be accessible, and this
leads us to the assumption that the set of all possible fragments of code being executed
under normal conditions is known with certainty. This assumption is reasonable as part
of our initial phase of this project, where the main goal is to determine whether our
approach is viable. Clearly, for an actual practical implementation of such a system, the
assumption is not reasonable, since it dismisses the aspect of stack corruption, invalid
pointer operations or other situations leading to execution of “random” code. In §6.6,
we briefly discuss possible measures to address this aspect.

An additional assumption in this initial phase of the project is that the target device
does not use hardware interrupts. A more detailed discussion and rationale will be
presented in §6.5.3, but the assumption is also related to the aspect mentioned in the
previous paragraph: the asynchronous and short-lived nature of interrupts do not fit
well within the scheme of pattern classification. We claim that hardware interrupts are
easy to detect through other means, and thus they will be relevant for future phases of
this project, rather than this initial phase where we are evaluating the feasibility of our
proposed approach.

As briefly mentioned earlier, one of the important highlights of our contribution is the
fact that the system works on a standard personal computer (PC), capturing the power
traces through the recording input of the sound card — side-channel analysis techniques
usually rely on digital oscilloscopes or other expensive and bulky pieces of equipment. A
standard, reasonably high-quality sound card (24-bits, 192kHz sampling rate, nowadays
available at prices below $200) suffices to make the system work on a wide range of
MCUs. To be able to measure the power consumption of an MCU, a current sensing
shunt resistor is placed in series with the Power-In line going to the MCU, so that a voltage
proportional to the power consumption is produced. This shunt resistor is selected to
produce a voltage in the order of a few millivolts, thus not disrupting the functionality
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of the MCU. This voltage is then captured through the Line input of a sound card, as
shown in Figure 6.1. Given the typical computing power of today’s mainstream PCs,

Figure 6.1: Simplified Diagram of our System.

with this setup, we claim that on-the-fly processing is within reach for a wide range of
target devices. Of course, the technique is suitable for use with a digital oscilloscope;
indeed, for processors with high clock frequencies, higher sampling rates will be required
for the system to work, most likely without on-the-fly processing, depending on the clock
frequency and architectural aspects of the target device such as pipeline depth, memory
management unit (MMU), and cache memory [41].

The technique is centered around the idea of identifying fragments of code, corre-
sponding to segments of the power trace. These fragments need to be sufficiently long
so that: (1) there is a large enough amount of actions happening at the circuitry level
to create a distinctive profile of power consumption. As an example, assigning a variable
is unlikely to be distinguishable from any other operation involving memory, or even
from a portion of some other action, such as fetching an instruction, or the additional
memory access for instructions with immediate operands; and (2) so that the signal (in
our setup, produced by an MCU running at 1MHz) can be sampled by a sound card at
lower sampling frequency (in our setup, the sampling rate was 96kHz) and be able to
extract meaningful information from it.

In this work, which is the initial phase of a longer project (we discuss future work
in §6.6), we decided to use whole functions as the fragments of code to be considered
(with only one exception, as will be discussed in §6.4 when describing our experimental
setup). We used an Atmel MCU, AVR Atmega2560 [16] as the target device (8-bit MCU
running at 1MHz) and as the source code we included a subset of the MiBench suite [36]
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as a set of tasks representative of typical embedded software (at least typical for certain
applications areas). The use of source code from MiBench offers two advantages: on
one hand, it provides a set of realistic tasks, so that we evaluate the effectiveness of our
technique with tests that are compatible with real functionality of embedded systems;
and on the other hand, we chose to use source code not written by ourselves, to avoid the
possibility (unintended or otherwise) that the technique may work because the source
code was somewhat “custom-written” to make it work.

The pattern recognition system then extracts features from these segments of the
power trace, and uses one of the classification techniques described in §2.7. We tried
all three techniques, observing a much better classification performance when using the
k-NN technique. We believe that the main factor is the fact that a function can do
alternative things depending on the input data — and in general, a given fragment of
code could do different things depending on the data it is working with. This leads
to different execution times for different instances of the same function, and in general,
it may lead to feature vectors that tend to be spread in the feature space, making the
technique based on centroids less effective. For the k-NN rule, we tried values between
3 and 100 for k, obtaining best results for k = 5 for individual classification and k = 21
for continuous classification (we discuss this distinction in §6.4 as part of the description
of our experimental setup).

One of the difficulties in our scenario is that the processing for the classification
needs to be done in a continuous way, and it is the system’s responsibility to achieve
synchronization with the fragments of code to detect. That is, the system is not given
a power trace with the guarantee that this is the power trace for one of the fragments
of code. Instead, the system is given a single power trace that extends indefinitely (in
any case, as long as the system is running), and it has to apply the pattern recognition
technique for variable starting position and length of the sequences to classify. As an
example to illustrate the difficulties arising from this constraint, we can not use the length
of the power trace as one of the features to extract — if we could, then this would provide
a very relevant piece of information that even alone would give a very high probability
of correct classification (since we could always select fragments of code that execute with
distinct durations).

The starting point of the fragment is mainly a problem when the system starts up and
has to synchronize to the execution; after that, once the system has recognized/classified
a given section of the power trace, it has information of where that fragment ends, so
the starting point for the next item to be classified is known, even though adjustments
may be necessary to compensate for “noisy” outcomes from the previous segments (e.g.,
a segment that was in reality L samples long may have been detected as being L′ samples
long). The system has to try various lengths and see which one gives the closest match
with training samples from the database.

When deciding what parameters to use as features to be extracted from the entities
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(in our case, the power traces), there is often a bit of heuristics and intuition involved,
especially when there is no analytic or otherwise simple description of a PDF with “nice”
characteristics. In our case, we decided to use spectral information — logarithmic mag-
nitude and phase — as the feature vector. The intuition on why spectral information
may give useful and robust information to identify the power trace as corresponding to
one of the given fragments of code is based mainly on the following two aspects:

• Getting around issues of alignment — spectral contents are similar even when the
signal or portions of the signal are shifted. Thus, for different instances of the same
function, prominent portions of the code may still be common to all other traces,
but located at different points in the trace (as the result of conditional execution
affected by the input data). This same idea has been exploited in a rather different
context, where some side-channel attacks use correlation in the spectral domain,
precisely to get around issues of alignment between traces (for example, see [53]).

• Variations due to “disrupting” factors in the system (such as noise or artefacts that
occur due to the mechanism of leakage to the side-channel or the measurement) tend
to produce higher deviations in the signal than in its spectrum, making the latter a
more robust tool to identify a given power trace. In any case, the deviations in the
spectrum tend to have simpler patterns, making it easier to extract the identifying
features from spectral information than directly from the signal.

One additional difficulty, for which we resorted to a heuristic approach as our adopted
solution, comes from the fact that we use the DFT of the trace directly as the feature
vector; that is, each of the N elements of the DFT (more precisely, its complex logarithm,
which directly provides logarithmic magnitude and phase) corresponds to one of the
coordinates (or one of the dimensions) in the N -dimensional feature space. However,
since different traces have different lengths, then we do not have a fixed value of N . That
is, computing and comparing Euclidean distances in the feature space poses a challenge.
This was an additional issue that contributed to our decision to use k-NN instead of
the nearest centroid classification technique, for which we had to come up with some
additional tricks that proved to be computationally expensive (in addition to exhibiting
poor performance compared to the k-NN rule, as already mentioned).

Our heuristic includes two aspects: First, when given a trace and a starting point,
we try all of the lengths present in the training database. That is, when looking for the
nearest neighbors among the training samples, for each sample from the database, we
take its length and consider the segment of the trace that matches that length, so that
the distance can be evaluated. This is also consistent with the idea that we need to
try different lengths, since we are only given the starting point, but the system needs to
determine the length of the fragment as part of the task of identifying it.

The second aspect is that, given the detail mentioned above, it is clear that comparing
distances for pairs of traces of one length with distances for pairs of traces of a different
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length becomes an issue. To get around this, we used the notion of a normalized distance,
where we normalize with respect to the number of dimensions. As an example, if we
have two tridimensional vectors, say

u1 = (x1, x2, x3)

u2 = (x1 + δ, x2 + δ, x3 + δ)

then we get 2

|u2 − u1|2 = 3δ2

Our intuition is that for two, say, 5-dimensional vectors

v1 = (y1, y2, y3, y4, y5)

v2 = (y1 + δ, y2 + δ, y3 + δ, y4 + δ, y5 + δ)

the distance, in the context of comparing which of the two pairs are closer, should be
the same, since each of the coordinates, corresponding to one descriptive feature, are
equally apart. However, a direct Euclidean distance computation for this case gives us
|v2 − v1|2 = 5 δ2

Thus, to avoid the nearest neighbors selection to be biased towards the shorter traces,
we need to normalize by computing the square distance per dimension.

Also related to this aspect of traces with different lengths is the following issue: a
longer trace may be at a disadvantage if sub-sections of it provide a sufficiently good
match to other, shorter traces. We observed that this was the case for the set of
MiBench functions that we used. Two different approaches were considered: (1) using
an adjustment factor to favor longer traces when otherwise approximately equally close
matches; and (2) using an adjustment factor to favor matches at the “nominal” position
as determined by the classification at the previous iteration. We tried both approaches,
and observed that (2) had the severe adverse effect of reducing the ability to maintain
synchronization with the trace, especially resynchronizing after a misclassification.

Putting all the pieces together, we define our distance metric as follows: given a trace
x of length N , with DFT X , the associated feature vector is given by

X = {Log X0,Log X1, · · · ,Log XN−1} (6.1)

where Log(·) denotes the complex logarithm function. With this, the distance between
N -dimensional feature vectors X and Y is given by

‖X−Y‖ =
1

N

N−1∑
k=0

|Xk − Yk |2 (6.2)

where Xk and Yk are the entries in the feature vectors, corresponding to the complex log
of the DFT entries.

2 We use square distance since this is the common approach used when implementing NN rules.
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6.3.1 Speeding Up Spectral Analysis Computations

For simplicity, we used libfftw [28] to compute every DFT that we required, as it is, to
the best of our knowledge, a correct and very efficient FFT implementation; however,
for an actual practical application, we could speed up some of the spectral analysis
computations; in particular, those related to determining or refining the starting position
of a segment of a trace, requiring computation of DFTs of segments of the power trace that
are one sample apart; instead of using FFT independently for each computation, taking
O(N logN) time, we can compute them incrementally.3 Let x = {x0, x1, · · · , xN−1

}
and x′ = {x1, x2, · · · , xN} be two signals, and let X = {X0,X1, · · · ,XN−1} and
X ′ = {X ′0,X ′1, · · · ,X ′N−1} be their DFTs, respectively. Then, each X ′k can be obtained
by considering the previous signal shifted one position in the time-domain, removing the
contribution of the first sample (which is not present in the second signal), and adding
the contribution of the last sample (which is not present in the first signal):

X ′k =
N∑
n=1

xn e−j
2πk(n−1)

N

= e j 2πk
N

N∑
n=1

xn e−j 2πkn
N

= e j 2πk
N

(
Xk − x0e−j 2πk·0

N + x
N

e−j 2πkN
N

)
= e j 2πk

N (Xk − x0 + x
N

) (6.3)

It is clear from Equation (6.3) that we get a constant-time (O(1)) procedure to com-
pute each of the elements of the new DFT, obtaining the entire DFT in O(N). Thus,
for any sequence of DFTs of contiguous intervals (one sample apart), we compute the
DFT for the first interval using FFT, and the remaining ones incrementally. Notice
that the values of e j 2πk

N for 0 6 k < N can be pre-computed, to further speed up the
computation. This scheme has been proposed in the DSP literature, although with a
different implementation focused on a hardware implementation using an Infinite Impulse
Response (IIR) digital filter implementation [22].

Our system also requires computation of DFTs of intervals starting at the same sample
but with lengths that differ by one sample. In this case as well, we could compute
the DFTs of the augmented intervals incrementally, provided that we “quantize” the
sizes of the DFTs and use zero-padding for the signals. This is not a problem, since
the DFT corresponds to the same spectrum, computed at higher resolution [70]. Let
x = {x0, x1, · · · , xN−1

} and x′ = {x0, x1, · · · , xN} be two signals, and let X =
{X0,X1, · · · ,XM−1} and X ′ = {X ′0,X ′1, · · · ,X ′M−1}, with M > N + 1, be the DFTs of

3 Assuming no windowing is used.
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the zero-padded versions of the signals, respectively. Then, each X ′k (0 6 k < M) can
be obtained as follows:

X ′k =
N∑
n=0

xn e−j 2πkn
M

= x
N

e−j 2πkN
M +

N−1∑
n=0

xn e−j 2πkn
M

= x
N

e−j 2πkN
M + Xk (6.4)

Showing the constant-time procedure for each term, for a linear-time procedure for the
entire DFT. The value of the quantization steps should be carefully chosen to ensure that
the computation of the sequence of sizes, done at the “rounded up” size in linear-time is
better than each of the signals computed in O(n log n) for the non-rounded-up sizes.

6.4 Experimental Setup

This phase of our work consists of two experiments. In the first experiment we evaluate
the effectiveness of the pattern recognition system by classifying power traces of known
fragments of code and determining the success rate or precision (the fraction of power
traces that were classified correctly). That is, we test detection of the various fragments
of code in isolation, and evaluate the performance of the classification system. To isolate
the trace corresponding to the exact time interval of execution, we use markers which are
actions known to have high power consumption and thus produce a prominent pulse in
the trace. This is one of many possible approaches, and we chose it for our experiments
due to its simplicity. Given our STK600 setup, we used the LEDs for this purpose.
Figure 6.2 illustrates these steps.4

In the second experiment, we execute a sequence of function calls (each function being
one of the fragments of code for the pattern recognition system) and have the system
determine the sequence of functions that was executed, with the power trace as its only
input. Figure 6.3 shows the details. The first experiment tests the building blocks,
the basic operations of the system, while the second experiment aims at modeling the
operation of an eventual practical implementation of our proposed technique.

Both experiments rely on the training phase of the classification system — thus, in this
initial step we execute each of the functions Sc times, where Sc corresponds to the number
of training samples per class (per fragment of code to be detected); we decided to use
Sc = 1000 as a reasonably large number to be used as a starting point (we present a more

4 For some of the functions, the input is a graph or a tree. For these cases, we inserted random
values in the data structure.
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Figure 6.2: Experiment 1 – Classifier Performance.

detailed discussion in the next section). The fragments of code, denoted Fk (1 6 k 6 | C|),
are either functions or fragments of a function, and for each call we supply a randomly
selected value as input argument for the function, as illustrated in Figure 6.4. For
Experiment 2, the training samples were not marked by surrounding them with pulses,
but rather, surrounding them with some other (randomly selected) function, since this is
how they would appear in the classification phase when operating in continuous mode,
and the samples in the training phase have to be consistent with the traces captured
during normal operation. We emphasize the detail that, for both experiments, these
traces used for the training database are different from those being identified/classified,
since “fresh” random values are chosen at every instance — the fragments of code are
part of the same set of possible classes, but each instance of a trace being classified is
different from every trace in the training database.

In a real-life application, this step should consider, if available, the probability dis-
tribution for the arguments to each function. For example, if a given function receives
as input parameter the measured temperature, we will draw values from a normal dis-
tribution with mean 25 ◦C and relatively small variance.5 For our experiments, we used
uniformly distributed random variables in a reasonable range (the ranges were consistent
between the training phase and the classification phase). This does not take into account
the possibility of a function being called with unreasonable parameters due to a defect
in the software; however, one can easily compensate for this aspect by including a small
fraction of training samples using parameter values outside the reasonable range.

The experiments were run on an Ubuntu Linux system, with avr-gcc 4.3.5 and avrdude
5.10. The target device was an Atmel AVR Atmega2560 MCU on an STK600 board [16],
and we assembled a quick prototype card to facilitate the connections — including a snap-
in connector to place the shunt resistor so that different values can be easily tried (in

5 Assuming a system intended to work at room temperature.
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Figure 6.3: Experiment 2 – “Online” operation.

our case, a 10 Ω resistor produced voltage in the correct range). Figure 6.5 shows a
photograph of this simple prototype card. The red/black cable on the right, ending in
a two-pin header connector goes to the VTARGET connector on the STK600 board (so
that current to the MCU passes through), and the green connector on the left is the RCA
audio connector to easily connect to the input of the sound card. The card also includes
pins to connect oscilloscope probes (for verification purposes, or for future experiments
using a digital oscilloscope).

The sound card was an HT Omega Claro+ [43], and we used Audacity [54] to record
the power traces. Figure 6.6 shows a screenshot from one of the power traces in the
training phase, showing the two surrounding pulses.

We used code from MiBench [36] as the source code of the target device for the ex-
periments. That is, the set of fragments C includes fragments of code from MiBench;
in particular, from the telecommunications, network, and security sections of it (we ex-
cluded code that required file access or intensive operations as well as code for which we
required many modifications for it to compile with avr-gcc). We also excluded redundant
items — for example, from the security section, there are several symmetric encryption
algorithms and several hash functions; we used only AES (which is the one generally
recommended for practical use) for a sample of symmetric encryption, and SHA as a
sample of a cryptographic hash function. For simplicity reasons, our work currently
operates at the granularity level of entire functions (that is, the fragments of code to
be matched are entire functions), with the exception of the SHA algorithm. This ex-
ception is due to the fact that SHA executes a large number of rounds repeating the
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Figure 6.4: Training Phase.

Figure 6.5: Prototype Card to Facilitate Connections.

same procedure, thus taking a very long time to execute, making it more reasonable to
choose that procedure as the fragment to consider. The exact set of functions used for
our experiments is the following: ADPCM encode, ADPCM decode, CRC-32, FFT,
SHA (fragment), AES (Rijndael) symmetric encryption, Dijkstra’s shortest path algo-
rithm, Patricia Trie (insertion), and pseudo-random number generation (C’s random()
function).

6.5 Results

We now present and discuss the results for both phases of the experimental setup.

6.5.1 Experiment 1 – Individual Classification

For Experiment 1, we evaluate and report the precision of the classifier. Since the classifier
chooses one of the possible classes (one of the functions being considered), there are no
false negatives; that is, there is always an output from the classifier, and it is either a
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Figure 6.6: Screenshot – Power Trace in Audio Editor.

true positive or a false positive. Thus, the precision fully describes the performance of
the classifier. The precision P is given by

P ,
TP

TP + FP

where TP denotes the number of true positives (i.e., correct classifications) and FP de-
notes the number of false positives (i.e., misclassifications, or incorrect classifications).
For example, consider a scenario with ten candidate functions, F1, F2, · · · , F10, Experi-
ment 1 is run and it executes 100 times function F1. The classifier outputs 90 times F1,
4 times F2, 3 times F5 and 3 times F8. Then, the number of true positives is 90, and the
number of false positives is 4 + 3 + 3 = 10. The resulting precision for this example, Pex,
would be

Pex =
90

90 + 10
= 0.9 (90%)

We first adjusted the system’s parameters to obtain the best performance. For each
of the functions, we initially captured 1000 training samples, but then varied the number
of samples effectively used, to determine the optimal value (optimal within the range 1 to
1000, which is the maximum number of available samples). We first maintained the same
number of samples for every function and varied the value to obtain the optimal. We
then used this as the initial estimate in a simple optimization procedure to determine the
optimal number of training samples for each function. We omit any additional details
or figures, since there is nothing particularly relevant that they would show. The final
sizes after running this optimization process are shown in Table 6.1. For some of the
functions, more than 1000 samples were required for good performance, so we captured
additional traces for those. In particular, functions like Dijkstra’s shortest path required
a larger set, possibly due to the variable nature of the algorithm — depending on the
graph contents (weights, connections, etc.) there may be wide variations in execution
time, requiring larger numbers of training samples to compensate for the spread nature
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Function Training samples

adpcm encode 400

adpcm decode 50

CRC32 12500

FFT 900

SHA (Fragment) 600

AES (Rijndael) 800

Dijkstra’s shortest path 9500

Patricia Trie (insertion) 900

random() 600

Table 6.1: Number of Training Samples for Each Function.

of its PDF. For CRC32, we were obtaining a low precision when using 1000 training
samples, so we increased the number of samples for this one as well.

With these parameters in place, we started measuring the performance for Experi-
ment 1. Table 6.2 shows the results for each of the functions being tested. That is, it
shows the precision obtained for the classifier when executing each different function.

Function Precision

adpcm encode 100%

adpcm decode 97%

CRC32 92%

FFT 99%

SHA (Fragment) 100%

AES (Rijndael) 97%

Dijkstra’s shortest path 98%

Patricia Trie (insertion) 100%

random() 99%

Overall (avg.) 98.0%

Table 6.2: Classifier Precision

The results clearly indicate an excellent performance for the classifier, with only one of
the functions scoring a 92% precision and no other function scoring below 97% precision.
The overall precision is given by the arithmetic mean — every function, being executed
the same number of times, has the same overall weight, thus the arithmetic mean is the
appropriate averaging mechanism. A figure of 98% for the overall precision is also a
solid indication of the excellent performance that our classifier achieves.
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6.5.2 Experiment 2 – Continuous Classification

For Experiment 2, we had to overcome several obstacles. For example, due to the limit
of program size of the MCU, we were unable to simultaneously include all sections of
MiBench and make them execute correctly. In particular, Patricia trie insertion and
Dijkstra’s algorithm fail to run on the target due to insufficient resources. Excluding
these two functions, we can run the experiment.

Description of the Experiment

To evaluate the performance of the classifier in continuous operation, we execute a long
sequence of randomly chosen functions, with the only constraint being that we always call
ADPCM encoding first, to then decode the data. We disregard the distinction between
random and pseudo-random, and will refer to random values through the rest of the
discussion. In that sense, we used the cryptographic-quality pseudo-random generator
/dev/urandom, which is, for most practical purposes, “as close as it gets” to true random
values [81]. Notice, however, that this random selection is done offline and the sequence
is ultimately “hardcoded” in the source code to be compiled and run on the target.
This restriction does not affect the random nature of the experiment, yet it is necessary:
on-the-fly generation of random values by the target device itself between function calls
would introduce artefacts that could skew or possibly even invalidate the results. The
source code for this offline program is included in Appendix C.

We could not include arbitrarily long sequences of functions, since the entire sequence
of function calls had to be hardcoded, and the target device imposes a limit on the size of
the executable — we observe that the randomly generated data for each call to a function
had to be stored in a buffer, for the same reason explained above. The longest sequence
that we could fit in the target was 500 calls long (close to 100 calls per function on
average). Though this number could be considered large enough to claim that the
experiment is valid, we repeated the process ten times and collected statistics over a
total of 5000 function calls.

The offline program that generates this random sequence of calls, as well as the
random data, produces two files to be included in the program to be run on the target.
One file, buffer sizes.h, defines (through #define directives) the sizes of the buffers
that contain the parameter values. Figure 6.7 shows an example of the contents of this
file:

The other file that this offline program generates is the file containing the actual
function calls. Each function call receives input data obtained from one of the elements
of the buffer, and while generating this sequence, the offline program goes over each
element in sequence, hardcoding the value in this output program, as shown in Figure 6.8,
taken from one of the generated files (some of the lines were manually wrapped to fit the
text within the page width).
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#define ADPCM COUNT 50

#define FFT COUNT 97

#define AES COUNT 111

#define CRC COUNT 101

Figure 6.7: Buffer Sizes for Randomly Generated Sequence.

encrypt (plaintext + 0*AESSIZE, ciphertext, &ctx);

adpcm coder(pcmdata + 0*PCMSIZE, adpcmdata, PCMSIZE, &coder 1 state);

rc = crc32buf (crcdata + 0*CRCSIZE, CRCSIZE);

fft float (FFTSIZE, 0, real in + 0*FFTSIZE, imag in + 0*FFTSIZE,

real out, imag out);

rc = crc32buf (crcdata + 1*CRCSIZE, CRCSIZE);

adpcm decoder(adpcmdata, pcmdata 2, PCMSIZE, &decoder state);

nothing = (random() ^ random()) & 0xFFFF;

adpcm coder(pcmdata + 1*PCMSIZE, adpcmdata, PCMSIZE, &coder 1 state);

fft float (FFTSIZE, 0, real in + 1*FFTSIZE, imag in + 1*FFTSIZE,

real out, imag out);

nothing = (random() ^ random()) & 0xFFFF;

Figure 6.8: Fragment of Randomly Generated Sequence.

We can see, for example, for the first two calls to crc32buf, the input data coming
from the first and second elements of buffer crcdata (offsets 0 and 1 hardcoded in the
call). Same for adpcm coder and fft float. These hardcoded offsets continue to
increase with each subsequent call to each function, until the XXX COUNT value. Since we
only show a short fragment of one of the files, the only offsets that we see are 0 and 1.

Figure 6.9 shows the declarations for these buffers (in the program that runs in the
target device).

Performance Evaluation

We used a similar metric to that used for Experiment 1. Since we still have a classi-
fier that always outputs one of the possible candidates, we only have true positives or
false positives, which means that the precision still provides a complete picture of the
classifier’s performance.

However, an important distinction arises from the fact that in continuous classifica-
tion, the sizes of the traces need to be determined and affect the performance of the
process, as they affect the necessary resynchronization process in the cases of misclas-
sifications. In that sense, a more sensible formula for the precision of the classifier in
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#include "buffer sizes.h"

short volatile pcmdata[ADPCM COUNT*PCMSIZE];

char volatile adpcmdata[PCMSIZE/2]; // Encoder output

short volatile pcmdata 2[PCMSIZE]; // Decoder output

volatile char plaintext[AES COUNT*AESSIZE];

volatile char ciphertext[AESSIZE];

volatile float real in[FFT COUNT*FFTSIZE];

volatile float real out[FFTSIZE];

volatile float imag in[FFT COUNT*FFTSIZE];

volatile float imag out[FFTSIZE];

char crcdata[CRC COUNT*CRCSIZE];

Figure 6.9: Buffer Declarations for Functions Calls Sequence.

continuous mode, Pc, is given by the fraction of the time during which the output of the
classifier corresponds to a true positive:

Pc ,

∑
|ITP
|∑

|ITP
|+
∑
|IFP
|

where ITP
denotes intervals during which the output of the classifier is a true positive,

IFP
denotes intervals during which the output is a false positive or a misclassification,

and | · | denotes the length of its argument (the length of the interval).

As an example, consider the scenario with three candidate functions, F1, F2, F3, which
take 10 ms, 20 ms, and 30 ms to execute, respectively. If the sequence F3 – F1 – F2 is
executed and the classifier outputs F3 at time 0 ms, F2 at time 20 ms, and F2 at time
20 ms then, with all units implicitly ms, the intervals with true positive are IT1 = (0, 20)
and IT2 = (40, 60), and the interval IF = (20, 40) is a false positive — the output is F2,
and during the sub-interval (20, 30) the correct class is F3 and during the sub-interval
(30, 40) the correct class is F1. Thus, in this example, the precision Pex2 would be
approximately 67%:

Pex2 =
|IT1|+ |IT2|

|IT1|+ |IT2|+ |IF |
=

2

3

Results

As described in §6.5.2, ten sequences of 500 function calls each were executed, and traces
were captured for each of them. Figure 6.10 shows a screenshot of the audio editor
displaying the first few milliseconds of one of the traces; in particular, this trace fragment
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corresponds to the sequence of ten function calls shown in Figure 6.8. The markers were
manually added to the image for illustration purposes, indicating the boundaries between
functions.

Figure 6.10: Power Trace for Sequence of Function Calls.

The complete traces were fed to the processing program implementing the classifier as
described in the previous sections. The source code for this classifier program is included
in Appendix D. An example of the output of this program is shown below (only a
fragment, since each trace contains 500 function calls). The reported time uses the unit
of audio samples, which is about 10.4µs:

Executed aes at time 18

Executed adpcm-encode at time 428

Executed crc32 at time 810

Executed fft at time 1077

Executed crc32 at time 2127

Executed adpcm-encode at time 2394

Executed random at time 2786

Executed adpcm-encode at time 2942

Executed fft at time 3328

Executed random at time 4407

This example again corresponds to the same sequence of ten function calls shown in
Figure 6.8 and corresponding to the trace fragment shown in Figure 6.10. We observe
that in this particular example, there was one misclassification (the sixth function call is
reported as adpcm encode when the actual function being executed is adpcm decode).

To measure the performance (the precision) of the classifier in Experiment 2, the out-
put for each of the ten traces was fed, along with the C source code corresponding to each
of the ten sequences, to a custom-made program that compares the output and reports
statistics allowing us to determine the precision and provide some additional potentially
insightful information. The source code of this program is included in Appendix E.

An important reason to use a custom-made program was to allow for user intervention
in the process of matching sequences that might be hard to properly identify and match
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algorithmically. Even more importantly, the matching includes timing that may need to
be verified against the traces, for the less obvious cases (though only on two occasions we
needed to resort to the traces in the audio editor to resolve a mismatch). The program
does as much as possible in an automated way to minimize user intervention, and of course
does as much validation as possible for the user input, to minimize the effect of human
errors and oversights. Below is an example of the program finding a misclassification
and prompting the user to resolve it. Again we used the example corresponding to the
code shown in Figure 6.8 and trace shown in Figure 6.10, where we saw that an instance
of ADPCM encoding was mistaken for decoding:

Difference (at src_line 5, classif_line 5):

# Src Code Classifier output

-2 FFT Executed fft at time 1077

-1 CRC32 Executed crc32 at time 2127

0 adpcm-decode Executed adpcm-encode at time 2394

1 random Executed random at time 2786

2 adpcm-encode Executed adpcm-encode at time 2942

3 FFT Executed fft at time 3328

4 random Executed random at time 4407

5 adpcm-decode Executed adpcm-encode at time 4553

6 adpcm-encode Executed adpcm-encode at time 4895

7 random Executed random at time 5290

8 adpcm-decode Executed crc32 at time 5446

9 AES Executed random at time 5703

10 CRC32 Executed aes at time 5803

11 FFT Executed crc32 at time 6217

12 CRC32 Executed fft at time 6487

13 adpcm-encode Executed crc32 at time 7531

14 FFT Executed adpcm-encode at time 7804

15 CRC32 Executed fft at time 8185

Enter number of skip lines (skip src <space> skip classif -- END if at end): _

The program displays both sequences, from two items before the mismatch, and going
for 15 items after. The user is prompted to enter the number of items to be skipped
from the actual source code and the number of items to be skipped from the trace (these
are not necessarily equal in all cases: a fragment of a trace may be misclassified for a
function of different duration) that would bring the two sequences back in sync. In the
above example, we just skip one item on each, since the items immediately following the
mismatch are already in sync. The processing software normally handles cases like this
one; but to ensure proper functionality, the software automatically makes that decision
only when the five following items match. In the case above, the fifth item does not
match, so the program requests user intervention.
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Estimating the Precision

Measuring the exact value of the precision for the continuous classifier requires us to
obtain more information than reasonably feasible given our setup. Computing the exact
value of the precision requires that we determine the intervals where the output is cor-
rect, and this would require us to have exact timing information for the sequence being
executed. However, the actual trace contains calls with random parameter values, so
the duration is unknown, and instrumenting the program for the purpose of obtaining
that information would affect the measurements, at least for the family of devices that
we targeted in our work.

We can, however, obtain a good approximation of the precision if we use the timing
that the classifier outputs. Specifically, the skipped elements from the classifier output
(the right column in the above example of the processing software) are considered to
be false positives and the rest is considered a true positive. As long as the sequences
match, we assume that the timing for the matching items is correct and disregard any
inaccuracies in the exact positions of the boundaries between functions.

Thus, the difference in the time indexes for the items that have to be skipped to
reestablish synchronization reveal the length of the false positive intervals. The estimate
is accurate provided that the misclassifications occur with a deviation that is balanced;
that is, provided that some errors confuse a function with a longer (in duration) function
and some confuse a function with a shorter function, without any imbalance on average.
This is a reasonable assumption, and we did not observe any evidence suggesting that
there would be any imbalance in the errors for the traces that we processed.

Table 6.3 summarizes the important parameters describing the performance of the
classifier when operating in continuous mode. In addition to the precision, we also
determined the average number of items that it took the system to recover from a mis-
classification. This metric provides information about the robustness of the system in
terms of ability to recover from a misclassification and reestablish synchronization with
the trace. It also provides evidence to the quality of the classifier in general, in that
short sequences of missed items are certainly easier to compensate for through auxiliary
methods, such as doing additional validation of timings, validating feasible program se-
quences through static analysis, etc. Though we did not use any of these techniques in
this initial phase of the project, it still makes sense to claim that smaller values for this
parameter correspond to higher quality for the continuous classifier.

For this second experiment we also obtained results indicating a good performance.
This is encouraging, since this is clearly the more important of the two experiments,
since it models the way an actual practical system would operate. The precision is not
as good as that obtained for Experiment 1; this is expected, as this operating mode
involves more parameters, more ambiguities and degrees of freedom, and the additional
functionality of maintaining synchronization — with or without misclassifications. Also,
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Sequence Precision Avg. Recovery

1 88.75% 1.29

2 89.78% 1.30

3 87.65% 1.27

4 88.63% 1.38

5 87.07% 1.34

6 89.03% 1.29

7 89.03% 1.32

8 86.97% 1.48

9 89.59% 1.19

10 87.84% 1.30

Overall (avg.) 88.74% 1.32

Table 6.3: Continuous Classifier Performance

the fact that traces are now in sequence one after another introduces the possibility that
sub-fragments of a trace combined with sub-fragments of another trace could be a good
match for some incorrect function. Experiment 1 does not face any of these difficulties.
Thus, we believe that a figure of close to 90% precision for continuous classification is
a very good result for this initial phase of the project, where the goal is to study the
feasibility of our proposed approach.

Another important aspect revealed by these results is that of the robustness of the
continuous classifier, in that the system never faced a situation where an error threw
it irreversibly out of sync. In all cases, the system reestablished synchronization after
a misclassification, and in most cases the misclassification involved just one function
replaced with another, and then resynchronization immediately after, as suggested by an
average of 1.32 functions skipped before resynchronization.

As suggested before, we can reasonably claim that individual incorrect classifications
are essentially irrelevant, as the tool could be extended to make use of the control-flow
graph (CFG) and consider possible execution sequences (this aspect is discussed more
in detail in the next section on future work). Given this information, a match to an
incorrect function may have been rejected with high probability, because the CFG would
have given indication that it is impossible to reach that particular function within a short
period of time after the preceding sequence.

Additional Insights

As additional observations and insights that we gained from the experimental results in
this initial phase of the project, we could mention the following:
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For some of the functions, long sequences of consecutive calls to the same function
showed a higher likelihood of misclassification. For example, sequences of three con-
secutive calls to CRC32 showed up very often as a prompt for user assistance in the
processing software, and in some cases required three or four skipped items from the
trace to reestablish synchronization.

Also interestingly, we observed several instances where a sequence of three or more
consecutive calls to random() either caused the function immediately following that se-
quence to be misclassified, or was misclassified as a smaller number of consecutive calls.

These two aspects suggest that it may be a good idea to restrict the fragments of
code to sections of the source code with no control structures (conditionals and loops)
such that every instance of a given fragment of code exhibits the same execution time.
This not only has the potential to increase the precision, but also could play a role in
dramatically increasing the computational performance of the system, in that a smaller
training database could work well, and possibly the more efficient nearest centroid tech-
nique (using LDFs) could be applicable, since it was precisely this aspect of variable
execution time within classes what put that approach at a disadvantage with respect to
the k-NN technique.

Another aspect that caught our attention while working with and analyzing the ex-
perimental results was the potential effect of the DC level (or we should probably say,
although more informally, the “short-term” DC level). We observed that the sound card
blocks DC of the signal (although this feature is not clearly documented, it makes sense
to expect such aspect, since DC plays no role on audio or audio quality, and if anything,
it could have the negative role of potentially producing physical damage to the speakers
or other components). This introduced a certain degree of difficulty in handling DC,
for which we decided to disregard that parameter; however, we notice for example the
first fragment in Figure 6.10, corresponding to AES, having a noticeably higher DC level,
which makes us consider the possibility that adding DC could increase the effectiveness of
the system. Simple measurements revealed a first-order high-pass filter at approximately
5 Hz in the traces. We could consider compensating for this by applying a filter with
a 6 dB/octave slope from 5 Hz downwards, perhaps going for two or three octaves (i.e.,
down to 1.25 Hz or 0.6125 Hz) and then levelling. This could, however, introduce other
adverse effects or unwanted artefacts. An additional option that one could consider
would be to obtain relative DC levels from the transitions, since abrupt transitions in
the short-term DC level survive intact the effect of a first-order high-pass filter.

6.5.3 Interrupts and Interrupt Service Routines

The current experiments were oblivious to interrupts and interrupt service routines (ISR)
for two main reasons: (1) the approach to detect them differs due to their asynchronous
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and usually short-lived nature; and (2) from the evidence we collected and observed, we
claim that their detection should be really easy.

We should expect an interrupt request (IRQ) to cause a “power-heavy” reaction by
the processor, in that a lot of hardware components need to react and work on processing
the IRQ correctly [38]. Consequently, we should see a prominent component in the power
trace that would identify the exact moment at which the processor responds to an IRQ.

We collected some experimental evidence supporting this claim; Figure 6.11 shows a
trace of a simple LED animation program that uses timer interrupts, with the IRQ firing
approximately every 6.5 ms. We observe the prominent peaks that IRQs produce in the
trace.

Figure 6.11: Power Trace Showing the Effect of IRQs.

For an actual practical implementation, however, we must consider interrupts for at
least two reasons: (1) any fragment of code that the system is attempting to identify can
be subject to another (small) fragment corresponding to the interrupt processing and
the ISR to be inserted at any arbitrary and unpredictable position of the fragment to
identify; and (2) many bugs arise from improper interactions between an ISR and the
main/background processing, thus triggering the faulty behavior around the time that
an interrupt occurs.

6.6 Discussion and Concluding Remarks

This initial phase of our project presents encouraging results; the effectiveness of the
technique was confirmed by the experimental phase, at least in a preliminary way.

Further research is needed in several areas of the project; we focused on one target
device, the Atmega2560, running at 1MHz. In principle this is not an important lim-
itation, in that we could extrapolate from the field of side-channel attacks, where SPA

104



has been successfully applied on a wide variety of architectures and target devices. The
important aspect for us to consider in this respect is the approach’s ability to work with
simple hardware, in particular with an off-the-shelf inexpensive sound card. With our
Atmega2560 setup, we verified that a standard PC sound card sufficed for the system
to run at the granularity level of function calls, producing traces in the order of 200
to 300 samples in length. However, to address either finer granularity, or higher clock
speeds for the target device, we may need to investigate the relationship between these:
for a given granularity, what is the maximum ratio between the device’s clock speed and
the sampling rate at which we capture the power trace? Equivalently, for a given clock
speed and a given sampling rate, what is the finest granularity at which we can detect
fragments of code?

Ideally, we would like our system to detect every possible code segment with fixed
execution time (i.e., contiguous blocks of code without conditionals or loops). For exam-
ple, instead of detecting execution of a loop (as a whole, with variable execution time),
we would prefer to individually detect the evaluation of the condition and the body (as-
suming no nested loops or conditionals inside the body of the loop). This would be
beneficial not only for the higher level of details in the output of our system, but also
due to the potential increase of precision and processing speed, as discussed earlier.

We would like to emphasize the fact that these limitations in no way negate or com-
promise the validity or the value of the reported results. A large class of embedded
systems run at low clock frequencies, and for those, the presented approach will be per-
fectly fine and valuable when assisting in the debugging task during advanced phases of
the development cycle. Incidentally, this low-frequency aspect may be correlated with low
transistor count MCUs, presumably with simple architectures that may lack any sophis-
ticated debugging tools embedded in the hardware, making our technique particularly
valid for this class of target device.

A positive aspect of the results derives from the fact that all of our tests and functions
are CPU-bound. Practical systems typically use I/O, which makes a more prominent
mark on the power trace and thus helps the classification process. The results of our
experiments show a good level of performance even with this disadvantage.

At the present stage, our approach is applicable to background/foreground program-
ming (superloop structure), multitasking with run-to-completion semantics, and possibly
also to co-operative multitasking, depending on whether we can easily identify the yield

calls. Also worth noting, since our experiments produced good results even when using
an inexpensive off-the-shelf sound card, we conclude that this technology is perfectly
suitable for hobbyists as well as professional developers.

Among the important aspects that we intend to tackle through future research are:

• Introduce the notion of conditional classification, possibly manually in an initial
phase, but with the goal of using a CFG tool when it comes to a practical imple-
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mentation. The idea is that by looking at the source code, we gain information
about the possible fragments of code that could be executed at a particular time,
given the previous fragment executed, or even better, the sequence of past frag-
ments. Thus, the classifier can count on additional information, and thus its efficacy
should improve.

In this sense, the fact that our Experiment 1 used only nine fragments should not
be seen at all as a number too low to produce valid results — in a practical setup
that makes use of the CFG, for most classifications the system may need to consider
no more than two or three possible candidate fragments following the most recent
classified fragments.

• Reliable detection of a crash condition where the processor ends up executing ran-
dom code. Detecting such condition, as well as the precise time at which it started,
is clearly a valuable piece of information when assisting the developers in the de-
bugging task. This may be related to the option of reject in the classifier [82],
and would allow us to eliminate the assumption that the execution is restricted
to a set of possible fragments of code — an assumption that is reasonable in the
sense that the developers always can count on the source code, but less reasonable
from the point of view of considering cases such as stack corruption, invalid pointer
operations or other situations leading to “random” execution.

• Considering different architectures; for example, processors with cache memory,
deep pipeline or other forms of parallelism, etc. These in principle make our task
harder, given that more information is combined together before leaking to the
power trace. However, for some of these aspects, the additional complexity in the
architecture may go hand-in-hand with additional information being leaked to the
power trace, and those could end up making the task easier.

• Considering systems based on discrete components; for example, a system where
the CPU is in one chip, memory, peripheral devices, and possibly things like the
interrupt controller, all in independent chips. Monitoring power consumption for
each of the chips individually should provide much more valuable and more accurate
information, thus increasing the efficacy of the classifier.
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Chapter 7

Discussion, Future Work and
Conclusions

This chapter concludes the thesis by presenting a summary and discussion on the con-
tributions presented as well as future work and concluding remarks.

7.1 Discussion

In this thesis, we have presented several related contributions with the common theme of
side-channel analysis countermeasures and an application to embedded systems debug-
ging. In particular, all of our proposed countermeasures aim at reducing the computa-
tional overhead required to protect cryptographic implementations against this class of
attack, by presenting countermeasures that exhibit lower performance penalty and lower
computational overhead than previously proposed countermeasures.

We claim that these contributions are potentially very relevant, as they relate to the
security of embedded devices, which are in general a suitable target for side-channel at-
tacks. Indeed, given the increase in usage of mobile, hand-held devices that make use
of cryptography as one of the main aspects in the security of the involved systems, it
becomes more and more important to protect cryptographic systems from attackers with
physical access to the device executing cryptographic operations that rely on secret data
embedded in the device. At the same time, with increased interest in more sophisti-
cated functionality while operating with the important constraint of power supplied by
battery, it is equally important to maintain a good level of computational efficiency in
all subsystems of these hand-held devices.

Additional aspects may contribute to enhance this aspect of reducing performance
penalty and computational overhead. For example, our adaptive idle-wait countermea-
sure, in addition to reducing the performance penalty with respect to the standard blind-
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ing countermeasure, has the additional advantage that its performance penalty comes in
terms of idle wait, and thus the processor is available for other tasks to proceed, in cases
of multitasking systems — not an uncommon occurrence given the computing power of
hand-held mobile devices at the present time and for the past several years.

Of course, it is important to ensure that the security of the device is not sacrificed
by excessively focusing on the computational efficiency of the countermeasures. In
that sense, our adaptive idle-wait was also shown to be effective, in that it was verified
that the countermeasure could defeat any possible timing attack — known or yet to be
discovered — with a performance penalty comparable to that of blinding. Furthermore,
it was also shown that the countermeasure defeats a known powerful timing attack with
a performance penalty considerably below that of blinding. Again we emphasize that,
even at comparable performance penalties, idle-wait solutions have the advantage of
allowing concurrent tasks to proceed in the case of multitasking systems, as well as
the advantage from the point of view of reduced power consumption as a consequence of
reduced computations. Our proposed adaptive idle-wait countermeasure compounds that
advantage by further reducing the penalty given by the amount of idle-wait introduced.

For our idle-wait countermeasure, we also considered the issue that for software im-
plementations, standard software platforms do not feature idle-wait or timer facilities
with the required accuracy. However, there is nothing that fundamentally prevents our
method to be implemented in software — it is simply a matter of the required tools not
being currently available in standard software platforms. Timers and idle-wait facilities
with high enough accuracy could become mainstream in software platforms in the near
future.

The theme of reduced computational overhead is also present in our countermeasures
against SPA. The optimality in these methods is defined relative to the underlying
exponentiation algorithm being used: SPA-resistance is added while introducing zero
computational overhead; this is achieved by avoiding any unnecessary operations through
the idea of buffering the conditional multiplications to gain control over the time at which
those operations are executed. Also, operations are executed always in their optimal
form: squarings are always executed as an optimized squaring procedure, as opposed
to implementing them as multiplications where the two operands have the same value,
as in some existing countermeasures where the potential speedup from the more efficient
squaring procedure is unutilized.

In the case of our Square-and-Buffered-Multiplications (SABM) countermeasure and
its variants, though optimal in terms of performance penalty and computational overhead,
the extra security does come at a price in terms of a small amount of storage — O(

√
` ),

where ` is the bit length of the exponent. Storage is a commodity that most systems
today, including embedded systems such as hand-held mobile devices, can afford. We
claim that the reduction on computational overhead plays a more important role than any
overhead in terms of storage required, especially for devices relying on battery power,
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where any reduction in computations translates into prolonged battery life. We also
noted that even for large amounts of storage (which are necessary in some of the variants
or extensions of the method), power consumption is not affected, since the amount of
computations and write operations are the same, spread across a larger number of storage
locations.

The SABM method, in its basic form, is an extension of the right-to-left binary ex-
ponentiation algorithm, with exponent in either binary or NAF representation. We also
demonstrated the aspect of combining our SABM technique with alternative exponenti-
ation algorithms (instead of the basic right-to-left exponentiation), which was shown to
lead to further improvements in execution time. This was done at several levels — as
part of the first study, we showed this to be the case with the exponentiation technique
proposed by Sun et al. [79], a very ingenious method where the exponent is split in two
halves and pairs of bits (one from each exponent half) are combined for simultaneous
processing. However, their method does involve operations where the result is discarded,
which means that the method is necessarily sub-optimal. By combining their method
with our SABM technique, we eliminate the need for any unnecessary operations while
maintaining resistance to SPA, leading to a method that is more efficient than either
their method in its original form or our SABM method in its basic form. In the sec-
ond study related to our SABM technique, we further extend this aspect by adapting
Sun’s algorithm to make use of signed-digit exponent representation, an aspect that is
fundamentally incompatible with their algorithm in its original form, limiting its effi-
ciency. We showed that by doing this, several important opportunities arise that allow
us to further increase the efficiency of the exponentiation while maintaining resistance to
SPA. We emphasize the detail that adapting Sun’s algorithm to the use of signed-digits
exponent representation to increase its efficiency is only possible when combining it with
our buffering technique.

This aspect of SPA resistance with low computational overhead also applies to all
of the extensions of the SABM method resulting from the use of signed-digits exponent
for the representation of half-exponents; namely, the use of NAF for each of the half-
exponents, the use of JSF, and the multi-bit processing, including two-bit blocks derived
from the NAF representation and three-bit blocks derived from the JSF representation.
From these various methods that take advantage of signed-digits exponent representation,
the method using JSF representation for the exponent halves is perhaps the better suited
for typical cryptosystems based on ECC, since the exponents are relatively small (in the
order of hundreds of bits), and the lower post-processing cost of this method means that
the total amount of operations is lower than the amounts required by the other methods,
even if some of these other methods are superior in terms of asymptotic performance.
Furthermore, we argued that the method using JSF possibly represents the optimal trade-
off between simplicity and reduced storage space, and computational performance: the
improvement derived from using JSF for the exponent halves comes at no cost whatsoever,
since the algorithm is identical with respect to the version that uses NAF. The multi-
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bit methods, however, incur additional computational cost in terms of post-processing:
multiplications, squarings, and inversions to combine the various accumulators into the
required results. This aspect possibly makes these multi-digit methods unattractive for
typical exponent lengths in ECC cryptosystems, and instead may be suitable for systems
with exponent lengths in the thousands of bits such as RSA, since their asymptotic
performance is superior by a comfortable margin.

In our most recent contribution, we extended and connected the ideas behind SPA
to propose an application making constructive use of those techniques. We proposed
a novel approach for non-intrusive debugging of embedded systems, especially useful
for debugging faulty behavior observed at advanced phases of the development cycle,
such as during production or even after deployment. The idea is based on exploiting
the relationship between what a processor is executing and its power consumption to
determine the sequence of code executed from observations of power consumption as
a function of time (power traces). At the present stage, our approach is applicable
to background/foreground programming (superloop structure), multitasking with run-
to-completion semantics, and possibly also to co-operative multitasking, depending on
whether we can easily identify the yield calls. We also discussed the possibility of
using such a system for monitoring as an intrusion detection system (IDS) for embedded
devices. In the wake of threats like Stuxnet [50], the area of embedded systems security
gains increased attention, and it seems reasonable to consider adapting systems such as
IDSs, classically viewed as applicable only to servers and networks, to embedded systems
as well.

Our approach and our implementation feature the interesting highlight that the sys-
tem runs on a standard PC, and the power traces are captured through the recording
input of the sound card. Techniques where power traces are required, such as Power
Analysis cryptographic attacks, usually rely on digital oscilloscopes or other expensive
or bulky pieces of equipment. Given the standard quality of today’s sound cards (typi-
cally 24-bit analog-to-digital conversion and 96 or 192kHz sampling rates), we found our
approach to work perfectly well with our setup, which means that the approach should
be suitable for a wide variety of target devices. Also worth noting, since our experi-
ments produced good results even when using an inexpensive off-the-shelf sound card,
we conclude that this technology is perfectly suitable for hobbyists as well as professional
developers.

Experimental results confirmed the validity of our approach, showing very good per-
formance when using part of the code base from the MiBench test suite. Many interesting
insights were gained from the execution of the experiments that we believe can play an
important role in the success of subsequent phases of this project. In that sense, the
work presented in this thesis is only the initial phase of what we believe will be a much
longer project with several opportunities for additional successful studies.
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7.2 Summary of Contributions

We have presented several related contributions with the common theme of side-channel
analysis and two distinct perspectives on this subject: we presented several countermea-
sures and a constructive application where the techniques used in SPA are used as a
starting point to propose a technique applicable to embedded systems debugging.

We categorized these as main and secondary contributions, the former refers to the
main elements or achievements presented in each work representing their claimed value.
The latter are secondary elements; aspects that, though original ideas or results, are
either not the centre or main aspect resulting from the work or not particularly extraor-
dinary or remarkable achievements. Still, we presented and claimed these contributions
with the attribute of “secondary” since they are essential elements supporting the main
aspects of the works being presented.

7.2.1 Main contributions

The four main contributions corresponding to the four studies presented in this thesis
are the following:

• An efficient countermeasure against timing attacks through idle-wait, hiding any
useful patterns or statistical parameters of the timing that attacks could exploit.
The proposed technique reduces the overhead introduced by the countermeasure
with respect to existing solutions, and also, being idle-wait, reduces the computa-
tional cost, even at comparable overheads; this is an important aspect for devices
relying on battery power, where lower computational cost translates into lower
power consumption.

• An efficient exponentiation technique that is resistant to some forms of power anal-
ysis, at the cost of a small amount of storage. The main idea in this technique can
be combined with several underlying exponentiation algorithms, adding resistance
to power analysis while introducing zero computational overhead.

• In a follow-up contribution, we further improved our power analysis countermeasure
by combining it with a modified form of an existing exponentiation algorithm, which
in turn led to several new SPA-resistant algorithms with increased computational
efficiency.

• A novel approach for non-intrusive program tracing of embedded devices through
side-channel analysis; in particular, extending the ideas used in SPA through the
use of pattern recognition techniques, combined with digital signal processing tech-
niques to process the power traces. The intended application for this technique is
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that of assisting embedded systems developers in the task of debugging at advanced
stages or even after deployment.

7.2.2 Secondary Contributions

In addition to the already presented main contributions, the studies included the following
secondary contributions:

• Identifying a subtle vulnerability in all forms of idle-wait countermeasures that
could allow attackers to entirely bypass the idle-wait by requesting concurrent op-
erations and measuring the throughput of decryption operations; we described the
details of an attack that exploits this vulnerability, and described a correct way to
implement idle-wait countermeasures to avoid this vulnerability.

• Presenting an analytical derivation for the mutual information between the data
producing the leakage and the decryption time in the presence of our adaptive idle-
wait countermeasure, relative to the mutual information in the absence of counter-
measures.

• Presenting a two-thread parallel implementation of our SABM algorithm, which we
claim is a nice and suitable implementation for modern processors, which are with
virtually no exception, multi-core with at least two cores.

• Presenting a correct analytical derivation of the buffer space required for a given
probability of buffer failure (including buffer overflow and buffer underflow) in
contexts similar to the buffer usage in our SABM method. To the best of our
knowledge, this derivation has not been done in the literature, and an incorrect
derivation is presented in [83].

• Alternative analysis of some of the properties of NAF, based on an alternative
algorithm to convert from binary to NAF — to the best of our knowledge, this
algorithm is also our own original contribution.

• Operation of the power analysis tracing and debugging system based on a standard
PC, capturing the power traces through the recording input of the sound card,
avoiding the need of expensive and bulky pieces of equipment. To the best of
our knowledge, this approach has not been presented in the existing literature.
Though we applied it to the embedded systems debugging context, the value of this
contribution covers the field of side-channel analysis, as this approach is suitable
for SPA and possibly DPA on a wide range of target devices.

• We propose the idea of using our non-intrusive program tracing technique in the
context of embedded systems security, in that it could be used as a monitoring
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system that would detect anomalies in the execution, thus acting as an intrusion
detection system (IDS) for embedded devices. This approach would have an im-
portant advantage over existing IDSs in that it is external to the system being
monitored, making it a tamper-proof device from the point of view of remote at-
tacks that operate by injecting unwanted code after the system is operating.

We believe that these additional contributions are important in the more general con-
text of the fields where this thesis focuses. Each of the contributions are secondary in
the context of the work where they are presented, but they certainly represent some-
what important contributions to the general areas of cryptology and embedded systems
security.

7.3 Future Work

Several opportunities for future work arise from the results of the studies presented in
this thesis.

For example, it was noted that an interesting highlight of our SABM method with
respect to the theme of reduced computational overhead relates to the possibility that
this method could be implemented in a way that it exhibits some level of resistance
to DPA. Such implementation would be centered around the idea of randomizing both
the order and the timing of executions of multiplications; depending on the source
of randomness or pseudorandomness, this could lead to the possibility of adding DPA
resistance with zero, or in any case very low, computational overhead, as no additional
operations on the group elements would be necessary to randomize the data. It was
noted, however, that further research is necessary to determine whether the method can
indeed be implemented in a way that DPA attacks are completely defeated or at least
slowed down to a point where they are rendered impractical. This aspect is related
to the issue that the randomization is applied to the operations using the data on the
buffer, and the buffer has in principle a small size, limiting the scope of the operations
for which the order of execution can be randomized. We believe that this is a very
important aspect to further investigate, since a positive result from such investigation
would be extremely relevant.

This compounds with the results from our follow-up contribution, where exponent
halves are processed simultaneously, with some of the techniques processing blocks of
several bits. This introduces some level of parallelism that could contribute to “blur”
any leaked signals and further slow down attacks based on statistical processing, in
particular DPA.

It could also be interesting to investigate how well these techniques, applied as SPA
and potentially DPA countermeasures, fit with our timing countermeasure. Do they help

113



slow down or completely defeat timing attacks as part of the effect of the randomization
in the execution? Do they reduce the variance in the timing of the operations, so that
the idle-wait countermeasure would have an even lower overhead? These are aspects
worth investigating as follow-up work to the studies presented in this thesis.

For our most recent contribution, several opportunities for future work were discussed.
Most notably, the use of static analysis techniques to assist in the classification process.
In particular, using the control-flow graph (CFG) to narrow down the set of possible
fragments of code to be identified from the power traces. The CFG indeed constraints
the classification process, in that only feasible sequences are considered.

We also noted that future studies should include the option of a “reject” output in
the classification process, since the study in its current stage assumes that the set of
possible fragments of executed code is known with certainty given that developers have
access to the source code. For a practical application, however, this is not a reasonable
assumption in that it disregards the possibility of random execution of code as the result
of stack corruption, invalid pointer operations, etc. We believe that this is one of the
important aspects to be tackled through future research.

We also believe that it is important to evaluate the technique in a wider range of
target devices; on one hand, we claimed that it is reasonable to extrapolate from the
success of power analysis attacks on a variety of devices. On the other hand, since we
introduced the use of a standard PC sound card for the purpose of capturing the power
traces, it seems important to evaluate the applicability of our approach for a variety of
target devices.

We emphasize again that this project is only the initial phase of a longer project,
where we studied the feasibility of our approach. We believe that these improvements
and opportunities for future work that we discussed will lead to substantial improvements
in the performance and the range of target devices for which our technique is suitable.
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Appendix A

Proof for Lemma 4.1

For convenience, we use the abbreviations O (Overflow), EO (Early Overflow), and pre-
fixes L or NL (Legitimate or Non-Legitimate). The probabilities of legitimate and non-
legitimate early overflow are given by

Pr {LEO} = Pr {Not O | EO} Pr {EO}
Pr {NLEO} = Pr {O | EO} Pr {EO}

Clearly, Pr {Not O | EO}+ Pr {O | EO} = 1, so it suffices to show that the condi-
tional probability of overflow (at ` bits) given that early overflow occurs is greater than
1
2

.

Let m denote the bit at which early overflow occurs (thus, m < `), and let δm denote
the random variable corresponding to deviation from the mean for the remaining `−m
bits (that is, if km is the random variable representing the number of nonzero bits in the
remaining `−m bits, then δm = km − p(`−m)).

We note that overflow occurs at ` bits if and only if δm > 0, so we have:

Pr {O at ` | O at m} = Pr {δm > 0}
= Pr {δm = 0}+ Pr {δm > 0}

If p = 1
2

, then the probability mass function for δm is symmetric; thus:

Pr {δm > 0} = Pr {δm < 0}

but
Pr {δm < 0}+ Pr {δm = 0}+ Pr {δm > 0} = 1

and

Pr {δm = 0}
{
> 0 if `−m is even
= 0 if `−m is odd
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Thus, on average (taken over m),

Pr {δm = 0} > 0 =⇒ Pr {δm > 0} > 1

2

For p = 1
3

, the distribution is, even for small values of ` − m, near-symmetric (we
recall that for reasonably large values of `−m, the distribution is closely approximated
by a Gaussian, which is symmetric). This means that the argument used for the case
p = 1

2
is valid for p = 1

3
as well — at least in the context of deriving an approximation

for the probability of buffer failure. �

The statement does hold in a strict and more rigorous sense, but the details of the
proof get unnecessarily long and involved, given the context in which we make use of the
lemma. A sketch of the necessary steps to complete the proof covering the case where
` −m takes small values is as follows: For p = 1

3
, we have to consider three different

cases; m being congruent to 0, 1, or 2 (mod 3). That is, we consider the cases where m
has the form 3n, 3n+ 1, and 3n+ 2. Since we are interested in the average case (average
taken over m), we work with the terms Pr {k > n; 3n}, Pr

{
k > n+ 1

3
; 3n+ 1

}
, and

Pr
{
k > n+ 2

3
; 3n+ 2

}
(where Pr {k > x; y} denotes the probability that x or more

nonzero bits occur in y bits), to show that their average is greater than 1
2

.

We observe that for the cases 3n + 1 and 3n + 2, since k is integer, equality to the
mean can not occur, and therefore Pr

{
k > n+ 1

3
; 3n+ 1

}
= Pr {k > n+ 1; 3n+ 1}

and Pr
{
k > n+ 2

3
; 3n+ 2

}
= Pr {k > n+ 1; 3n+ 2}

We can either proceed by induction on n, or obtain a recurrence formula for the
average of the above expressions, considering the effect of adding three additional random
bits; the probabilities of adding 0, 1, 2, and 3 nonzero bits are 8

27
, 12

27
, 6

27
, and 1

27
,

respectively. This allows us to express the probabilities for m = 3n + 3, 3n + 4, and
3n + 5 in terms of the above probabilities for 3n, 3n + 1, and 3n + 2, and obtain the
required result.
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Appendix B

Online Computation of the NAF of
a Non-Negative Integer

We describe a simple online procedure to obtain the NAF representation of a non-negative
integer with `-bit binary representation, processing each input bit independently, updat-
ing the output accordingly. Thus, we treat the conversion from standard binary to
NAF as a transformation applied to the output of a random source of independent and
uniformly distributed bits.

After processing bit bn−1, we have output dn−1dn−2 · · · d1d0 with the possibility of a
carry (at the very end, after processing bit b`−1, this carry would correspond to digit d`).
We observe that this output after processing bit bn−1 is the NAF representation of the
n-bit non-negative integer bn−1bn−2 · · · b1b0 that has been processed so far.

Since the values considered are always non-negative, the most-significant digit at the
end of each iteration can not be 1 — if it was, then there would be no carry, since the
output is a valid NAF representation, and NAF does not allow adjacent non-zero digits,
and thus the represented value would be negative. Also, for the same reason, a carry
can only occur if dn−1 = 0.

Thus, after processing bit bn−1, the output digit dn−1 and carry cn−1 can only be

(dn−1, cn−1) =


(0, 0)
(0, 1)
(1, 0)

We now consider the effect of processing bit bn. If bn = 0, then clearly dn = cn−1 (the
carry from the previous iteration), and no carry can result from processing bit bn. If
bn = 1, then, if dn−1 = 0 with no carry, we would have dn = 1 with no carry produced.
If there is a carry from the previous iteration, then we add bn and the carry, obtaining a
value 102 aligned at position n— that is, dn = 0 with a carry produced at this iteration.
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Finally, if dn−1 = 1, then we have to substitute the resulting 112, since NAF precludes it.
This is fixed by substituting 112 by its NAF equivalent, 101 aligned at the same position;
that is, we would replace the value of dn−1 with 1, dn = 0 and a carry is produced at this
iteration.

The procedure is necessarily correct given that: (1) it does output a valid signed-digit
representation of the value represented by b`−1b`−2 · · · b1b0 in standard binary — indeed,
every operation that modifies the output replaces blocks of digits with a different block
representing the same value and aligned at the same position; and (2) by construction,
this output does not have adjacent non-zero digits. Since we know that NAF represen-
tation is unique [5], then the output of this procedure must be the NAF representation
of the input value.
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Appendix C

Source Code for Generation of
Sequence of Random Calls

/******************************************************************

This program is executed "offline" to generate the source code

for experiment 2 on the target device --- it "hardcodes" a

sequence of 500 randomly selected function calls (among the

subset from MiBench being used).

The random selection is done using /dev/urandom as a source of

random data.

*******************************************************************/

#include <iostream>

#include <fstream>

#include <vector>

#include <string>

using namespace std;

enum Function

{

ADPCM = 0,

FFT = 1,

RANDOM = 2,

AES = 3,

CRC32 = 4,

ADPCM_encode = 10,

ADPCM_decode = 11

};

void write_function_call (Function function, int offset, ostream & out);

// Draw a pseudorandom int between 0 and range-1

int random_int (int range, ifstream & dev_urandom);

int main()

{

const int TRACE_SIZE = 500; // Number of function calls

int counter[5] = {0,0,0,0,0};
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ifstream dev_urandom ("/dev/urandom");

if (! dev_urandom)

{

cerr << "Could not open /dev/urandom" << endl;

return 1;

}

// File that contains the sequence of function calls:

ofstream calls ("randomized_function_calls.h");

if (!calls)

{

cerr << "Coult not open randomized_function_calls.h for output" << endl;

return 1;

}

// Depending on how many calls to each function, output

// the #defined sizes to this file:

ofstream defines ("buffer_sizes.h");

if (!defines)

{

cerr << "Coult not open buffer_sizes.h for output" << endl;

return 1;

}

bool called_ADPCM_encode = false;

for (int i = 0; i < TRACE_SIZE; i++)

{

// If ADPCM_encode has not been called, then exclude

// calls to ADPCM_decode (since there would be nothing

// to decode) --- this behaviour cycles, of course

// (to alternate encode/decode calls)

const int rnd = random_int (5, dev_urandom);

if (rnd == ADPCM)

{

if (called_ADPCM_encode)

{

write_function_call (ADPCM_decode, 0, calls);

}

else

{

write_function_call (ADPCM_encode, counter[rnd]++, calls);

}

called_ADPCM_encode = !called_ADPCM_encode;

}

else

{

write_function_call (rnd, counter[rnd]++, calls);

// Call uses an offset for the random input data;

// leave that offset incremented for next call

}

}

defines << "#define ADPCM_COUNT " << counter[ADPCM]

<< "\n#define FFT_COUNT " << counter[FFT]

<< "\n#define AES_COUNT " << counter[AES]

<< "\n#define CRC_COUNT " << counter[CRC32] << ’\n’;

return 0;

}

void write_function_call (Function function, int offset, ostream & out)

{
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switch (function)

{

case ADPCM_encode:

out << "adpcm_coder(pcmdata + " << offset << "*PCMSIZE, adpcmdata, PCMSIZE, "

"&coder_1_state);" << endl;

break;

case ADPCM_decode:

out << "adpcm_decoder(adpcmdata, pcmdata_2, PCMSIZE, &decoder_state);" << endl;

break;

case FFT:

out << "fft_float (FFTSIZE, 0, real_in + " << offset << "*FFTSIZE, imag_in + "

<< offset << "*FFTSIZE, real_out, imag_out);" << endl;

break;

case RANDOM:

out << "nothing = (random() ^ random()) & 0xFFFF;" << endl;

break;

case AES:

out << "encrypt (plaintext + "<< offset << "*AESSIZE, ciphertext, &ctx);" << endl;

break;

case CRC32:

out << "rc = crc32buf (crcdata + " << offset << "*CRCSIZE, CRCSIZE);" << endl;

break;

}

}

int random_int (int range, ifstream & dev_urandom)

{

unsigned int rnd;

dev_urandom.read(reinterpret_cast<char *>(&rnd), sizeof(unsigned int));

return rnd % range;

}
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Appendix D

Source Code for Continuous
Classification Program

/******************************************************************

This program performs "continuous" classification to determine

a sequence of function calls from a single power trace. It

has to perform "segmentation" of the trace, identifying the

position and length of each of the function calls being

identified.

It corresponds to "experiment 2" as described in the text.

*******************************************************************/

#include <iostream>

#include <fstream>

#include <string>

#include <sstream>

#include <vector>

#include <map>

#include <algorithm>

#include <iterator>

#include <numeric>

#include <utility>

#include <cmath>

#include <complex>

#include <inttypes.h>

using namespace std;

#include <fftw3.h>

#include "fft_tools.h"

const double dc_weight = 0; // Feature not enabled for now

struct Training_sample // Notice the different definition for NN rule

{

string name;

int size;

vector< complex<double> > dft;

Training_sample() : size(0) {}
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Training_sample (const string & name, int size,

const vector< complex<double> > & dft)

: name(name), size(size), dft(dft)

{}

};

ostream & operator<< (ostream & out, const Training_sample & s)

{

out << s.name << " with size " << s.size;

return out;

}

vector<Training_sample> read_training_samples (const char * train_samples_filename);

vector<double> read_trace (const char * trace_filename);

template <typename ConstIterator>

double distance (ConstIterator trace_begin, // assumed sufficient space

// starting at this position

const Training_sample & sample,

map< int, vector< complex<double> > > & trace_dfts);

struct Near_neighbor

{

string name;

int start;

int length;

Near_neighbor (const string & name, int start, int len)

: name(name), start(start), length(len)

{}

};

ostream & operator<< (ostream & out, const Near_neighbor & nn)

{

out << nn.name << ", at " << nn.start << ", length = " << nn.length;

return out;

}

// This function returns only the nearest neighbours of the

// winning class --- For example, if k = 5, and the 5 nearest

// neighbours include 3 of class A, 1 of class B, and 1 of

// class C, then the function will only return thr three of

// class A.

//

// NOTE: It returns them SORTED --- the first one is the

// nearest (within the winning class --- not necessarily

// the nearest neighbour among all training samples)

template <typename ConstIterator>

vector<Near_neighbor> kNN (unsigned int k,

ConstIterator trace_begin, ConstIterator trace_end,

const vector<Training_sample> & training_samples,

const string & excluded_from_training_db,

map< int, vector< complex<double> > > & trace_dfts,

bool first_segment); // Just for the function to know whether it has to

// try starting positions before the point given

Near_neighbor closest (const vector<Near_neighbor> & nearest_neighbours);

int main (int argc, const char * arg[])
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{

if (argc < 3)

{

cerr << "Usage: " << arg[0] << " <k (the k in k-NN)> <trace filename> [<start pos>]" << endl;

return 1;

}

const unsigned int k = atoi(arg[1]);

if (k == 1)

{

cout << "Warning -- k = 1, boiling down to simple nearest-neighbour rule" << endl;

}

else if (k < 1)

{

cerr << "ERROR --- parameter k must be a positive integer" << endl;

return 1;

}

const char * const train_samples_filename = "training-samples.txt";

const int start_pos = (argc >= 4) ? atoi(arg[3]) : 0;

const vector<Training_sample> & training_samples

= read_training_samples (train_samples_filename);

cout << "Read " << training_samples.size() << " samples" << endl;

const vector<double> & trace = read_trace(arg[2]);

map< int, vector< complex<double> > > trace_dfts;

// To "memoize" the computation of the FFT for various sizes

// (many samples have repeated size, so no need to re-compute

// the FFT to match the sample size)

string excluded_from_training_db; // Feature not used for now

vector<double>::const_iterator start = trace.begin() + start_pos;

while (start != trace.end())

{

const vector<Near_neighbor> & nearest_neighbours

= kNN (k, start, trace.end(),

training_samples, excluded_from_training_db,

trace_dfts, start == trace.begin());

const Near_neighbor & closest_match = closest (nearest_neighbours);

cout << "Executed " << closest_match.name

<< " at time " << ((start - trace.begin()) + closest_match.start)

<< endl;

// Need to advance one by one (adding could skip over

// trace.end() and produce an invalid iterator for which

// even a less-than comparison could fail)

for (int k = 0; k < (closest_match.length + closest_match.start) && start != trace.end(); ++k)

{

++start;

}

}

return 0;

}

template <typename ConstIterator>

struct Neighbour
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{

double dist;

vector<Training_sample>::const_iterator trn_sample;

int start;

Neighbour()

{}

Neighbour (double dist,

vector<Training_sample>::const_iterator trn_sample,

int start)

: dist(dist), trn_sample(trn_sample), start(start)

{}

};

template <typename ConstIterator>

ostream & operator<< (ostream & out, const Neighbour<ConstIterator> & n)

{

out << "Sample " << *(n.trn_sample) << " at position " << n.start

<< " (distance: " << n.dist << ’)’;

return out;

}

// This function returns only the nearest neighbours of the

// winning class --- For example, if k = 5, and the 5 nearest

// neighbours include 3 of class A, 1 of class B, and 1 of

// class C, then the function will only return thr three of

// class A.

//

// NOTE: It returns them SORTED --- the first one is the

// nearest (within the winning class --- not necessarily

// the nearest neighbour among all training samples)

template <typename ConstIterator>

vector<Near_neighbor> kNN (unsigned int k,

ConstIterator trace_begin, ConstIterator trace_end,

const vector<Training_sample> & training_samples,

const string & excluded_from_training_db,

map< int, vector< complex<double> > > & trace_dfts,

bool first_segment)

{

if (trace_begin == trace_end)

{

throw runtime_error("");

// Temp ... At some point, should check that trace_end

// is not being exceeded

}

// typedef pair<double,vector<Training_sample>::const_iterator> Neighbour;

vector< Neighbour<ConstIterator> > nearest_neighbours;

nearest_neighbours.reserve(k);

nearest_neighbours.push_back (Neighbour<ConstIterator>(distance (trace_begin,

training_samples.front(),

trace_dfts),

training_samples.begin(), 0));

for (ConstIterator start = (first_segment ? trace_begin : trace_begin - 100);

start != trace_begin + 100;

++start)

{

trace_dfts.clear();

for (vector<Training_sample>::const_iterator s = training_samples.begin();
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s != training_samples.end();

++s)

{

if (s->name != excluded_from_training_db)

{

double cur_dist = distance (start, *s, trace_dfts);

if (cur_dist < nearest_neighbours.back().dist ||

nearest_neighbours.size() < k)

{

if (nearest_neighbours.size() < k)

{

nearest_neighbours.push_back (Neighbour<ConstIterator>(cur_dist, s,

start - trace_begin));

}

else

{

nearest_neighbours.back() = Neighbour<ConstIterator>(cur_dist, s,

start - trace_begin);

}

// Send the newly-added item to its position

// (to keep the elements sorted)

for (int i = nearest_neighbours.size() - 1;

i >= 1 && nearest_neighbours[i].dist < nearest_neighbours[i-1].dist;

--i)

{

std::swap (nearest_neighbours[i], nearest_neighbours[i-1]);

}

}

}

}

}

// Now determine majority vote

if (nearest_neighbours.size() != k)

{

throw runtime_error ("ERROR --- nearest_neighbours does not have k elements");

}

map<string,int> votes;

for (unsigned int i = 0; i < k; i++)

{

votes[nearest_neighbours[i].trn_sample->name]++;

}

int max_votes = 0;

string winner;

for (map<string,int>::const_iterator i = votes.begin();

i != votes.end();

++i)

{

if (i->second > max_votes)

{

max_votes = i->second;

winner = i->first;

}

}

vector<Near_neighbor> knn;

for (typename vector< Neighbour<ConstIterator> >::const_iterator
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n = nearest_neighbours.begin();

n != nearest_neighbours.end();

++n)

{

if (n->trn_sample->name == winner)

{

knn.push_back (Near_neighbor(winner, n->start, n->trn_sample->size));

}

}

return knn;

}

template <typename ConstIterator>

double distance (ConstIterator trace_begin,

const Training_sample & sample,

map< int, vector< complex<double> > > & trace_dfts)

{

if (static_cast<unsigned int>(sample.size / 2 + 1) != sample.dft.size())

{

ostringstream error;

error << "Inconsistent FFT size --- sample.size: " << sample.size

<< ", sample.dft.size: " << sample.dft.size() << endl;

throw runtime_error (error.str());

}

const double mean = accumulate(trace_begin, trace_begin + sample.size, 0.0) / sample.size;

if (trace_dfts[sample.size].empty())

{

double * data = static_cast<double *>(fftw_malloc (sample.size * sizeof(double)));

copy (trace_begin, trace_begin + sample.size, data);

// Remove DC and (conditionally) apply Hamming window

// before computing FFT

for (int i = 0; i < sample.size; ++i)

{

data[i] -= mean;

#ifdef WINDOWED_FFT

data[i] *= hamming_window (i, sample.size);

#endif

}

fftw_complex * dft

= static_cast<fftw_complex *>(fftw_malloc ((sample.size / 2 + 1) * sizeof(fftw_complex)));

fftw_plan plan = fftw_plan_dft_r2c_1d (sample.size, data, dft, FFTW_ESTIMATE);

fftw_execute (plan);

vector< complex<double> > & trace_dft = trace_dfts[sample.size];

trace_dft.clear();

trace_dft.push_back (0.0);

for (size_t i = 1; i < (sample.dft.size() / 2); ++i)

{

trace_dft.push_back (log(complex<double>(dft[i][0],dft[i][1])));

}

fftw_destroy_plan (plan);

fftw_free (dft);

fftw_free (data);

}
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double dist = 0;

const vector< complex<double> > & trace_dft = trace_dfts[sample.size];

for (size_t i = 1 /* ignore DC */; i < (sample.dft.size() / 2); ++i)

{

complex<double> diff = trace_dft[i] - sample.dft[i];

dist += square(diff.real()) + square(diff.imag());

// double diff = trace_dft[i].real() - sample.dft[i].real();

// dist += square(diff);

}

// Disregard DC in the FFT, but consider it (treated separately,

// to compare against the measurements from the training data,

// and give it a separate weight of its own)

dist /= (sample.dft.size() / 2 - 1);

// Adjust factor to favor longer traces when approx.

// equally close match otherwise (after having normalized

// to obtain square distance per dimension, etc.

if (sample.dft.size() > 700) dist *= 0.85;

return dist;

}

Near_neighbor closest (const vector<Near_neighbor> & nearest_neighbours)

{

return nearest_neighbours.front();

}

vector<Training_sample> read_training_samples (const char * filename)

{

ifstream file (filename);

if (!file)

{

throw runtime_error (string("Could not open file ") + filename);

}

vector<Training_sample> training_samples;

ostringstream sfn;

string line;

while (getline (file, line))

{

if (line != "" && line[0] != ’#’)

{

istringstream buf(line);

int num_samples;

string name;

if (buf >> name >> num_samples)

{

for (int s = 1; s <= num_samples; ++s)

{

sfn.str("");

sfn << name << "/trace-" << s << ".txt";

const int size = read_fft (sfn.str().c_str()).size();

sfn.str("");

sfn << name << "/trace-" << s << ".txt";

#ifdef WINDOWED_FFT

sfn << ".fft";

#else
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sfn << "-non-windowed.fft";

#endif

const vector< complex<double> > & dft = read_complex_fft (sfn.str().c_str());

if (dft.size() != (size / 2 + 1))

{

cerr << "Inconsistent sizes on training samples FFTs for "

<< sfn.str() << ": Trace size = "

<< size << ", DFT size = " << dft.size() << endl;

}

training_samples.push_back (Training_sample(name, size, dft));

}

}

else

{

ostringstream error;

error << "Invalid format, file " << filename << ", line: ‘" << line << ’\’’;

throw runtime_error (error.str());

}

}

}

return training_samples;

}

vector<double> read_trace (const char * trace_filename)

{

ifstream file (trace_filename);

if (! file)

{

ostringstream error;

error << "Could not open data file " << trace_filename;

throw runtime_error (error.str());

}

vector<double> trace;

trace.reserve (4192);

copy (istream_iterator<double>(file), istream_iterator<double>(),

back_inserter(trace));

return trace;

}
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Appendix E

Source Code for Processing of
Classifier Output

/******************************************************************

This program compares/matches the output from the classifier

against the actual source code, prompting the user for

assistance in the non-easy cases.

*******************************************************************/

#include <iostream>

#include <string>

#include <fstream>

#include <sstream>

#include <vector>

#include <map>

#include <cstdlib>

#include <algorithm>

#include <iterator>

using namespace std;

string abbrev_function (const string & line);

// Transforms an actual line of code calling a function

// to a short single-word name for the function being

// called --- for example, it converts a line

// fft_float (FFTSIZE, 0, real_in .... ) into just "FFT"

struct Misclassification

{

Misclassification (const string & actual,

const string & classif,

size_t at, size_t len,

int num_functions)

: actual_function(actual),

classified_as(classif),

at(at), length(len),

num_functions_covered(num_functions)

{}

string actual_function;

string classified_as;

size_t at;
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size_t length;

int num_functions_covered;

};

ostream & operator<< (ostream & out, const Misclassification & misclass)

{

out << misclass.actual_function << " classified as " << abbrev_function (misclass.classified_as)

<< " at " << misclass.at << " (recovered after " << misclass.length << " trace samples)";

return out;

}

string trivial_answer (const vector<string> & src_lines, size_t line_src,

const vector<string> & classif_lines, size_t line_classif);

void output_stats (const vector<Misclassification> & misclassifications);

int main (int argc, const char * arg[])

{

string actual_sequence_filename, classif_out_filename;

if (argc == 3)

{

actual_sequence_filename = arg[1];

classif_out_filename = arg[2];

}

else

{

cout << "Tip: usage: " << arg[0] << " <actual seq from src (abbreviated)> <classif output>"

"\n\n";

cout << "File with actual execution sequence: " << flush;

getline (cin, actual_sequence_filename);

cout << "File with classifier output (incl. timing): " << flush;

getline (cin, classif_out_filename);

}

ifstream actual_sequence (actual_sequence_filename.c_str()),

classifier_out (classif_out_filename.c_str());

if (!actual_sequence)

{

cerr << "Error: could not open file " << actual_sequence_filename << endl;

return 1;

}

if (!classifier_out)

{

cerr << "Error: could not open file " << classif_out_filename << endl;

return 1;

}

vector<string> src_lines, classif_lines;

string line;

while (getline(actual_sequence, line))

{

src_lines.push_back (line); // it’s already in abbrev. form

}

while (getline(classifier_out, line))

{

classif_lines.push_back (line);

}

size_t line_src = 0, line_classif = 0;

bool reached_end = false;
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vector<Misclassification> misclassifications;

while (!reached_end)

{

while (line_src < src_lines.size()

&& line_classif < classif_lines.size()

&& src_lines[line_src] == abbrev_function(classif_lines[line_classif]))

{

++line_src; ++line_classif;

}

if (line_src == src_lines.size() || line_classif == classif_lines.size())

{

reached_end = true;

}

else

{

system ("clear");

cout << "Difference (at src_line " << line_src

<< ", classif_line " << line_classif << "):\n"

<< "# Src Code Classifier output\n";

size_t s, c;

if (line_src >= 2 && line_classif >= 2)

{

s = line_src - 2, c = line_classif - 2;

}

else

{

s = c = 0;

}

for (int i = -2;

i <= 15 && s < src_lines.size() && c < classif_lines.size();

++i)

{

cout << i << " ";

if (0 <= i && i < 10) cout << ’ ’;

cout << src_lines[s]

<< string(16 - src_lines[s].length(), ’ ’)

<< classif_lines[c] << endl;

++s; ++c;

}

}

bool invalid_input;

do

{

line = trivial_answer (src_lines, line_src,

classif_lines, line_classif);

const bool trivial_case = (line != "");

if (! trivial_case)

{

cout << "\nEnter number of skip lines (skip src <space> skip classif"

" -- END if at end): " << flush;

getline (cin, line);

}
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if (line != "END")

{

istringstream buf (line);

size_t skip_src, skip_classif;

buf >> skip_src >> skip_classif;

string d;

int offset_start, offset_end;

istringstream buf2(classif_lines[line_classif]);

buf2 >> d >> d >> d >> d >> offset_start;

istringstream buf3(classif_lines[line_classif + skip_classif]);

buf3 >> d >> d >> d >> d >> offset_end;

string confirm = "y";

if (! trivial_case)

{

cout << "Resync at " << src_lines[line_src + skip_src]

<< " // " << classif_lines[line_classif + skip_classif]

<< "; misclassif range: " << offset_start << " to " << offset_end

<< " --- correct ([y]/n)? " << flush;

getline (cin, confirm);

}

if (confirm != "n" && confirm != "N")

{

const Misclassification misclass (src_lines[line_src],

classif_lines[line_classif],

offset_start,

offset_end - offset_start,

skip_src);

misclassifications.push_back (misclass);

line_src += skip_src;

line_classif += skip_classif;

invalid_input = false;

}

else

{

invalid_input = true;

}

}

else

{

reached_end = true;

}

}

while (invalid_input);

}

output_stats (misclassifications);

return 0;

}

string abbrev_function (const string & line)

{

if (line.find("crc32") != string::npos)

{

return "CRC32";

}
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else if (line.find("adpcm-encode") != string::npos

|| line.find("adpcm_coder") != string::npos)

{

return "adpcm-encode";

}

else if (line.find("adpcm-decode") != string::npos

|| line.find("adpcm_decoder") != string::npos)

{

return "adpcm-decode";

}

else if (line.find("fft") != string::npos)

{

return "FFT";

}

else if (line.find("encrypt") != string::npos

|| line.find(" aes ") != string::npos)

{

return "AES";

}

else if (line.find("random") != string::npos)

{

return "random";

}

return "";

}

void output_stats (const vector<Misclassification> & misclassifications)

{

cout << "Processing with training-samples.txt:" << endl;

system ("cat training-samples.txt");

cout << endl;

// Output all misclassifications first

copy (misclassifications.begin(), misclassifications.end(),

ostream_iterator<Misclassification>(cout, "\n"));

map<string,int> misclass_count, intrusion_count;

// misclass counts how many times a function was missed

// intrusion counts how many times a function shows up when it shouldn’t

int total_misclass = 0;

size_t total_misclass_len = 0;

for (vector<Misclassification>::const_iterator m = misclassifications.begin();

m != misclassifications.end();

++m)

{

misclass_count[m->actual_function]++;

intrusion_count[abbrev_function (m->classified_as)]++;

total_misclass += m->num_functions_covered;

total_misclass_len += m->length;

}

cout << "Total misclassification length: " << total_misclass_len

<< "\nMisclassifications per function:\n";

for (map<string,int>::const_iterator m = misclass_count.begin();

m != misclass_count.end();

++m)

{

cout << m->first << string(16 - m->first.length(), ’ ’) << m->second << endl;

}
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cout << "\nIntrusions (function showing up when it shouldn’t) per function:\n";

for (map<string,int>::const_iterator m = intrusion_count.begin();

m != intrusion_count.end();

++m)

{

cout << m->first << string(16 - m->first.length(), ’ ’) << m->second << endl;

}

}

string trivial_answer (const vector<string> & src_lines, size_t line_src,

const vector<string> & classif_lines, size_t line_classif)

{

if (line_src < 5 || line_classif < 5

|| line_src > (src_lines.size() - 10)

|| line_classif > (classif_lines.size()))

{

return "";

}

const string & src = src_lines[line_src];

const string & classif = abbrev_function(classif_lines[line_classif]);

if (src == "FFT" || classif == "FFT")

{

return "";

}

bool single_func = true;

// Single-function switch

for (int i = 1; i <= 5; i++)

{

if (src_lines[line_src+i] != abbrev_function(classif_lines[line_classif+i]))

{

if (line_classif == 15 && line_src == 15)

{

cout << "NO SINGLE FUNCTION SWITCH -- i = " << i

<< ", difference:\n"

<< src_lines[line_src+i] << endl

<< classif_lines[line_classif+i] << " -- abbrev: "

<< abbrev_function(classif_lines[line_classif+i]) << endl;

}

single_func = false;

break;

}

}

if (single_func)

{

return "1 1";

}

bool skip_one = true;

// Check if skip due to several consecutive classified random()

if (abbrev_function(classif_lines[line_classif]) == "random"

&& abbrev_function(classif_lines[line_classif-1]) == "random")

{

for (int i = 0; i < 5; i++)

{

if (src_lines[line_src+i] != abbrev_function(classif_lines[line_classif+i+1]))

{

skip_one = false;

break;

}

}

138



if (skip_one)

{

return "0 1";

}

}

return "";

}
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