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Abstract

Uncertainty analysis of a system response is an important part of engineering probabilistic anal-

ysis. Uncertainty analysis includes: (a) to evaluate moments of the response; (b) to evaluate

reliability analysis of the system; (c) to assess the complete probability distribution of the re-

sponse; (d) to conduct the parametric sensitivity analysis of the output. The actual model of

system response is usually a high-dimensional function of input variables. Although Monte Car-

lo simulation is a quite general approach for this purpose, it may require an inordinate amount of

resources to achieve an acceptable level of accuracy. Development of a computationally efficient

method, hence, is of great importance.

First of all, the study proposed a moment method for uncertainty quantification of structural

systems. However, a key departure is the use of fractional moment of response function, as op-

posed to integer moment used so far in literature. The advantage of using fractional moment

over integer moment was illustrated from the relation of one fractional moment with a couple

of integer moments. With a small number of samples to compute the fractional moments, a

system output distribution was estimated with the principle of maximum entropy (MaxEnt) in

conjunction with the constraints specified in terms of fractional moments. Compared to the clas-

sical MaxEnt, a novel feature of the proposed method is that fractional exponent of the MaxEnt

distribution is determined through the entropy maximization process, instead of assigned by an

analyst in prior.

To further minimize the computational cost of the simulation-based entropy method, a mul-

tiplicative dimensional reduction method (M-DRM) was proposed to compute the fractional (in-

teger) moments of a generic function with multiple input variables. The M-DRM can accurately

approximate a high-dimensional function as the product of a series low-dimensional functions.

Together with the principle of maximum entropy, a novel computational approach was proposed

to assess the complete probability distribution of a system output. Accuracy and efficiency of the

proposed method for structural reliability analysis were verified by crude Monte Carlo simulation

of several examples.

Application of M-DRM was further extended to the variance-based global sensitivity analysis

of a system. Compared to the local sensitivity analysis, the variance-based sensitivity index can

provide significance information about an input random variable. Since each component variance

is defined as a conditional expectation with respect to the system model function, the separable
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nature of the M-DRM approximation can simplify the high-dimension integrations in sensitivity

analysis. Several examples were presented to illustrate the numerical accuracy and efficiency of

the proposed method in comparison to the Monte Carlo simulation method.

The last contribution of the proposed study is the development of a computationally efficient

method for polynomial chaos expansion (PCE) of a system’s response. This PCE model can be

later used uncertainty analysis. However, evaluation of coefficients of a PCE meta-model is com-

putational demanding task due to the involved high-dimensional integrations. With the proposed

M-DRM, the involved computational cost can be remarkably reduced compared to the classical

methods in literature (simulation method or tensor Gauss quadrature method). Accuracy and

efficiency of the proposed method for polynomial chaos expansion were verified by considering

several practical examples.
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Chapter 1

Introduction

1.1 Engineering Background

Infrastructure and large engineering systems, such as road and highway networks, power plants

and electrical grids, are preconditions of a modern industrial society. Reliable and efficient oper-

ation of these systems is crucial to both daily lives of individuals and the prosperity of the whole

society. An important characteristic of these engineering systems is that they comprise a vast

number of sub-structures and components, which are likely to experience various failure modes

during service period of the whole system. Reliability analysis, then, become a significant topic

for the design, operation and maintenance of the engineering systems.

Figure 1.1 depicts the Qinshan nuclear power plant (Phase III) constructed in Qinshan Town,

Haiyan, Zhejiang, the People’s Republic of China. It holds the record for the most nuclear

reactors on one site. Qinshan III is the first CANada Deuterium-Uranium (CANDU) project

in China to use open-top reactor building construction and the first commercial nuclear power

station uses two heavy water reactors. The business contract between China Nuclear Energy

(CNE) and Atomic Energy of Canada Limited (AECL) on the project is in the amount of $2:88

billion, which has been the top one business venture between China and Canada up to now.

Figure 1.2 illustrates the general schematic systems of a CANDU reactor, in which one can

see that a CANDU nuclear power plant comprises a number of subsystems, i.e., the reactor core

system, the heat transfer system, computer control system, the electric generation and transmis-

sion systems, etc. Each subsystem comprises a vast number of mechanical equipments, which

are connected by the vessels, pressure tubes and switches as a complicated physical network.
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Figure 1.1: Qinshan nuclear power plant in Phase III: Unit 1 and Unit 2 (Wikipedia, 2013)

Steam Generator

Feeders

Fuel

Generator

Grid

Figure 1.2: Schematic systems of a CANDU nuclear power plant (Cheng, 2011)

Taken the reactor core system as an example, it contains several hundreds pressure tubes,

called fuel channels, where the nuclear fuel is stored and the fission reaction takes place. Heavy
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water coolant flows over the fuel channels and carries the heat produced by the fission reaction to

the steam generators via feeder pipes. The steam generator consists of a large number (3000 to

4000) of thin-wall tubes, in which the heat in the hot coolant is transferred to the secondary side

to produce pressurized steam. The steam can drive the turbine and then produces the electricity.

Among the many components and subsystems, the fuel channel inside the reactor core, steam

generators, and the feeders are the three key and potentially life-limiting systems. Working in

the high-temperature, radiation and high-pressure environment, the reactor components may ex-

perience different degradation mechanisms, say the delayed hydride cracking and creep (IAEA,

1998). Similarly, the heat exchanger tubes in the steam generators are also susceptible to dif-

ferent types of degradation such as pitting, denting, fretting, stress corrosion cracking, high load

cycle fatigue, and wastage (IAEA, 1997). For the other reactor assemblies (e.g., calandria vessel,

end shield, feeder, etc.), the following potential degradation mechanisms have been identified (I-

AEA, 2005): neutron irradiation embrittlement, stress corrosion cracking, corrosion (i.e., due to

pitting, denting, flow-accelerated, etc.), erosion, fatigue, stress relaxation, creep, and mechanical

wear.

Safety assessment of the failure sensitive subsystems and components are the significant as-

pects in design, operating and maintenance of a nuclear facility. Uncertainty is ubiquitous in any

subsystem and at any stage during the operation of a nuclear power plant. The uncertainty arises

from a vast of sources of variation, such as the usage variation, the manufacturing imprecision,

and the knowledge limitation of analyst, etc. Specific examples of the uncertainty in structural

engineering include the variations in external loading, material property, and geometrical di-

mension of a infrastructure. Quantitatively accommodating and managing the uncertainty on an

output of the engineering system, hence, are rapidly spreading in both of academia and industry.

The success in system development and management depends heavily on how well understand-

ing of the physical mechanisms, how efficiently accounting for the relation mathematically, and

how quantifying the uncertainty propagation accurately. An methodology based on the probabil-

ity theory is sought to conduct the uncertainty quantification in both of component and system

levels.
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1.2 Motivation and Objective

A mathematic model can be explicitly or implicitly defined to describe a general engineering

system. The proposed research is motivated by the following facts:

� Monte Carlo simulation and its variants are expensive to implement in system reliability

analysis, especially in the case of a large-scale computer program is employed to repre-

sent the complex input-output relation. Typically 10kC2 to 10kC3 samples are required to

estimate a failure probability in the order of 10�k . Hence, a method bearing the accura-

cy and simplicity, i.e., the uncertainty quantification is only based on a small number of

deterministic model evaluations, is desired by industry.

� Uncertainty propagation of input random variables through a complex physical system can

be extensively represented by output probability distribution of the system. An effective

algorithm for the output distribution is sought by academic community during the devel-

opment of structural reliability analysis.

� Compared to local sensitivity index in literature, global sensitivity analysis enables en-

gineers to access each input contribution in its entire definition domain. Up to now,

simulation-based method is the dominant approach to conduct the analysis. Its low ef-

ficiency motivates a modern computational technique for the objective.

Objectives of the document can be summarized as follows:

� Develop a method of using fractional moment for parent distribution estimation of a ran-

dom variable.

� Develop an efficient simulation-based method for kinematic reliability analysis of mecha-

nism systems.

� Propose a generic multiplicative dimensional reduction method to approximate a compli-

cated input-output relation.

� Develop an efficient method for statistical (fractional and integer) moments computation

of a structural response function with multiple input variables, and further to estimate

complete output distribution by using the principle of maximum entropy in conjunction

with the constrains specified in terms of fractional moment.
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� Develop an efficient computational technique to conduct the variance-based global sensi-

tivity analysis.

� Propose an efficient method to perform polynomial chaos expansion (PCE) of a physical

model, and further conduct the uncertainty quantification of the system from the aspects

of reliability and global sensitivity analyses.

1.3 Proposed Methodology

1.3.1 Approach

A framework proposed in the study for uncertainty propagation of a general engineering system

is shown in Figure 1.3. In the methodology, three steps are identified:

� Step A consists in defining the mathematic model (analytic or numeric, implicit or explicit)

that will be considered, together with the input and output parameters. One should note

that the model defined in the step is purely a deterministic physical model. In addition,

it is highly possible that a computational expensive package, e.g., a finite element code,

might be employed to express the complicated relation. In summary, the preprocessing

step gathers all ingredients used for the deterministic analysis of an engineering system.

� Step B consists in quantifying the sources of uncertainty in the analysis, i.e., using proba-

bility distributions to model the input parameters that are not well known. It can be realized

by collecting some observations of a parameter at first, and then, employing the available

techniques, e.g., the probability paper plot, method of moment, etc., to properly select a

distribution or distribution parameters to describe the input variable (Sahoo and Pandey,

2010). The end product of the step is an input random vector with the known probability

measures. In some cases, describing the variability of a random variable with respect to

time or spatial requires the introduction of random process or random field.

� In Step C, uncertainty propagation of input random variables through a physical model

needs to be quantified. This is the kernel step in probabilistic mechanics computation.

Postprocessing of the proposed framework needs to evaluate structural reliability at both

of component and system levels. In addition, analysts are also interested in the respective

impact of input random variables with respect to a system output, which is referred to as
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Figure 1.3: Global framework for uncertainty quantification of a system (Sudret, 2007)

the global sensitivity analysis in the study. Therefore, end products of the step include mo-

ments, complete probability distribution, result of significant analysis, failure probability

and risk, etc., with respect to an output of the system.

The proposed research activities in the document are designed to account for the propagation

of input uncertainty through a physical model from the following aspects:

� Estimate probability distribution of a structural response and conduct the associated relia-

bility analysis;

� Estimate extreme event distribution about an array of system responses and conduct the

corresponding system reliability analysis;

� Conduct the variance-based global sensitivity analysis to quantify the importance of input

random variables with respect to a system output; and

� Conduct the polynomial chaos expansion of a physical model, and further explore the

corresponding approach for uncertainty quantification of the system.

The proposed study is built on the theory of high-dimensional model representation. A gen-

eral multiplicative dimensional reduction method is developed in the thesis to approximate a
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generic input-output relation. The model approximation method is further employed to explore

the computationally efficient approaches for moment, probability distribution, and global sensi-

tivity analysis of a system output.

1.3.2 Significance

The proposed methodology is significant as it proposes:

� An accurate method of using fractional moments to estimate the parent distribution of a

positive random variable;

� An efficient simulation-based method for system reliability analysis of robotic mechanism-

s;

� A generic multiplicative dimensional reduction method to approximate a complicated input-

output relation;

� An efficient method to calculate fractional (integer) moments of a structural response func-

tion;

� An efficient method to derive the probability distribution of a model response, or the ex-

treme event of structural responses;

� An efficient computation method to conduct the variance-based global sensitivity analysis

of a system;

� An efficient computational method for polynomial chaos expansion of a system, and the

corresponding method for uncertainty quantification of the system.

The proposed framework is a non-intrusive method in nature to conduct the uncertainty anal-

ysis of an engineering system, which implies it reserves the simplicity of Monte Carlo simulation

that the probabilistic computation is only based on a number of deterministic model responses.

Compared to the methods in literature, it does not need the response gradients, or set up an ex-

tended version of governing equations. The involved deterministic analyses are evaluated at a

small number of properly selected “samples” (i.e., integration grids with respect to input vari-

ables). From this perspective, the proposed method is easy to be integrated with an available

deterministic mechanistic package (e.g., ANSYS©, MSC Nastran©, etc.) to further conduct the
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probabilistic analysis. Therefore, it sets the foundation for a computer-based, virtual program

that an analyst can perform reliability and global sensitivity analyses of a system.

1.4 Outline of the Dissertation

Literature reviews about methods on moment computation and reliability analysis are provided

in Chapter 2, in which the research activities are categorized as statistical moment calculation,

structural reliability analysis and the method on global sensitivity analysis.

Chapter 3 is devoted to develop an entropy-based method for parent distribution estimation

of a positive random variable. The advantage of using fractional moment over integer moment

is illustrated from the relation of one fractional moment with a couple of integer moments. The

principle of maximum entropy is employed to construct the distribution from a finite number of

fractional moments.

Chapter 4 presents an efficient method for computing kinematic reliability of mechanisms.

This problem is equivalent to a series system reliability analysis that can be solved using the

extreme value distribution of the positional errors. The principle of maximum entropy is applied

to derive this maximal distribution. The fractional moments are obtained from a small, simulated

sample of output positional error.

Chapter 5 presents a generic method to derive the probability distribution of a multivariate

function of random variables representing the response of a structure. A new multiplicative

dimensional reduction method (M-DRM) is proposed to approximate the original input-output

relation. An efficient numerical method for fractional (integer) moment calculation is proposed.

Chapter 6 proposes a computationally efficient method for global sensitivity analysis of a

system. The development is based on the fact that M-DRM can approximate a general high-

dimensional function as the product of a series low-dimensional function. The separative prop-

erty is employed in the Chapter to simplify the high-dimensional integrations involved in the

Sobol’ sensitivity index computation.

Chapter 7 presents an efficient method for polynomial chaos expansion (PCE) of a physical

model, since that the determined surrogate model can be repeatedly evaluated for uncertainty

analysis of the system. However, evaluation of coefficients of a PCE meta-model is computa-

tional demanding task due to the involved high-dimensional integrations. The Chapter proposes

the use of M-DRM to conduct the polynomial chaos expansion and the associated uncertainty

8



quantification of the system.

Chapter 8 presents the conclusions and recommendations for future research.
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Chapter 2

Literature Review

2.1 Introduction

Uncertainty quantification of a system is a process of determining the effect of input uncertain-

ties on the response metrics of interest. These input uncertainties may be characterized as either

aleatory uncertainties, which are irreducible variabilities inherent in nature, or epistemic uncer-

tainties, which are reducible uncertainties resulting from a lack of knowledge. Since sufficient

data is generally available for aleatory uncertainties, probabilistic methods are commonly used

for computing response distribution based on input probability specifications. Conversely, for

epistemic uncertainties, data is generally sparse, making the use of probability distribution as-

sertions questionable and typically leading to non-probabilistic methods based on interval spec-

ifications. The proposed study is designed to account for the analysis of aleatory uncertainties

using the probabilistic method.

Suppose response of a system is modelled by a generic function, y D �.x/, that can be

analytically or numerically, explicitly or implicitly. Here, y is the output vector of the physical

model. For sake of simplicity, we can use a scalar y instead of the vector to denote the model

response. In some cases, we also have to consider some/all not well-known input parameters as

random variables. Then, with the assigned probability distribution to each input random variable,

the probabilistic model response can be expressed as

Y D �.X/ (2.1)

where X D ŒX1; X2; � � � ; Xn�
T is an assembly of input random variables.
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The full probabilistic contents of a system response are contained in its probability density

function (PDF), fY .y/, which depends on the input random vector, X, and the mechanistic mod-

el, �.�/. Generally speaking, the distribution is difficult to be analytically determined due to the

complexity of �.�/ and the high-dimensionality of X.

Well-established methods in literature for statistical moment, probability distribution and

global sensitivity index are reviewed as shown in Figure 2.1. The approaches for each topic can

be classified into sampling and analytical categories. The term “sampling” is designed to indicate

a research related to a simulation-based method. In addition, the research activities using non-

simulation methods (e.g., the gradient-based method, the orthogonal decomposition method and

the weighted integration method, etc.) enter to the “analytical” category.

Therefore, the research activities can be identified from the following aspects:

� When the moments, i.e., mean-value and standard deviation, of a model response are of in-

method
Response surface

Moment method

Uncertainty Quantification

Moment Calculation Reliability Analysis Global Sensitivity Analysis

Simulation
method

Taylor Series
truncation

Point
 estimation

Orthogonal
 polynomial

Gaussian
 quadrature
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 theory
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Figure 2.1: Research activities for uncertainty quantification of a system
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terest, methods in literature include the truncated Taylor series method, numerical weight-

ed integration, and Monte Carlo simulation. The determined moments can provide the first

snapshot on the probabilistic characteristics of a model response.

� When the tail of an output distribution is of interest, the problem can be recast as that

of computing the reliability or failure probability of the system. The “failure”, here, is

defined in a broad sense as a model output “Y is exceeding a prescribed threshold y0”.

Methods on structural reliability analysis, such as the first-order second moment (FOSM)

method, the first- or second-order reliability method (FORM/SORM), can be used based

on the failure criteria (or limit state function). Of course, as summarized in Figure 2.1,

the simulation-based method, e.g., crude Monte Carlo simulation and its variants, can be

employed to conduct the system reliability analysis.

� When the complete output distribution, instead of a point on the tail, is of interest, crude

Monte Carlo simulation is a generic approach to solve the problem. Note that the analysis

indirectly encompasses the first-two kinds of problems, since the knowledge of probability

density function can be post-processed to obtain moments and a quantile of the distribution.

� Global sensitivity analysis aims to quantify the significance of input variables singly or

their combinations within the entire range of variation. The general analysis of variance

provides the definition of global sensitivity index, which is related to the conditional vari-

ance of model output given an arbitrary group of input random variables. To evaluate

the involved high-dimensional integrations, the methods of simulation and tensor Gauss

quadrature are mostly employed so far in literature. Therefore, an efficient computational

technique to conduct the global sensitivity analysis is sought.

The proposed activities organized in the document are developed to conduct the uncertainty

quantification of a complicated physical system from the aspects of: (a) statistical moment calcu-

lation; (b) estimation of output probability distribution; and (c) conducting the global sensitivity

analysis. Brutal Monte Carlo simulation with 106 samples is assumed to provide the benchmark

results in verification. Following Sections of the Chapter will briefly review the activities related

to each topic in literature.
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2.2 Calculation of Moment

In this Section, computational methods for mean-value and standard deviation of a model output,

Y D �.X/, are addressed. Monte Carlo simulation is first presented. Confidence interval on the

simulation method is provided. Then the methods of the truncated Taylor series expansion and

Gauss quadrature are followed.

2.2.1 Monte Carlo Simulation

Assume that random numbers with respect to input vector, X, with size N have been gener-

ated, i.e.,
˚
x.1/; x.2/; � � � ; x.N /

	
. The estimates of mean-value and standard deviation of model

response, respectively, are given as8̂̂̂̂
<̂̂
ˆ̂̂̂:

y�Y D
1

N

NX
iD1

�
�
x.i/
�

y�2
Y D

1

N � 1

NX
iD1

�
�
�
x.i/
�

� y�Y

�2 (2.2)

The estimates of moment are also random variables. It is common to run a single MCS with a

large sample size (e.g., N D 105). However, a rigourous way in using of the simulation method

requires to provide the corresponding confidence intervals of the estimates.

Suppose that sample size N is fixed by an analyst. The estimators in Eq.(2.2) are asymptot-

ically Gauss random variables due to central limit theorem. Thus the confidence interval on �Y

can be determined as

y�Y � u˛=2

y�Y
p
N � 1

6 �Y 6 y�Y C u˛=2

y�Y
p
N � 1

(2.3)

where u˛=2 D ˆ�1.1 � ˛=2/ is a Normal quantile with the two-tailed ˛ significance level.

Alternatively, a similar confidence interval can be derived for the estimate of output variance.

Monte Carlo simulation can also be employed to estimate high-order moments. Figure 2.2

depicts the corresponding efficiency of MCS through a simple regression function:

�.X/ D a0 C a1X1 C a2X2 C a3X1X2 (2.4)

where the coefficients a0 D 2:5 and a1 D a2 D a3 D 1:5. X1 and X2 are the independent

Lognormal variables with �1 D �2 D 2:0. Coefficients of variation (COVs) are 0:2. MCS
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with 106 samples is assumed to provide benchmarks of the first-four output moments. Then, the

efficiency of Monte Carlo simulation can be assessed as follows.

In each round of simulation, 1000 samples are used to estimate the output moments, i.e.,

M k
Y .k D 1; � � � ; 4/, and each estimator, yM k

Y , is separately stored. The simulation is repeated

1000 times, and thus random samples of moments are obtained. Histograms on the normalized

moment, i.e., yM k
Y =M

k
Y , are depicted as shown in Figure 2.2. It is clearly to see that the variations

of moment estimate are increasing with the order of moment. And accordingly, it has revealed
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Figure 2.2: Efficiency of crude Monte Carlo simulation in moment estimation
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the low efficiency of simulation method for a high-order moment (k > 3) computation.

2.2.2 Method of Taylor Series Expansion

In addition to simulation method, the truncated Taylor series method for moment computation

can be traced back to early 1970’s. The method needs the expansion of �.x/ at the mean-values

� D Œ�1; �2; � � � ; �n�
T of input vector:

�.X/ D �.�/C

nX
iD1

@�.x/
@xi

ˇ̌̌̌
xD�

.Xi � �i/C

1

2

nX
iD1

nX
j D1

@2�.x/
@xi@xj

ˇ̌̌̌
xD�

.Xi � �i/.Xj � �j /C o
�
kx � �k

2
� (2.5)

Taken expectation of the equation, one can derive that:

EŒY � � �.�/C

nX
iD1

@�.x/
@xi

ˇ̌̌̌
xD�

EŒXi ��i �C
1

2

nX
iD1

nX
j D1

@2�.x/
@xi@xj

ˇ̌̌̌
xD�

E
�
.Xi ��i/.Xj ��j /

�
(2.6)

Since that EŒXi � �i � D 0, mean-value of Y D �.X/, then, can be approximated as

EŒY � � �.�/C
1

2

nX
iD1

nX
j D1

@2�.x/
@xi@xj

ˇ̌̌̌
xD�

E
�
.Xi � �i/.Xj � �j /

�
(2.7)

where E
�
.Xi � �i/.Xj � �j /

�
is a generic term in the covariance matrix of X.

A particular case of independent input variables implies the covariance matrix is diagonal

and contains the variance of each input variable. Then, the mean-value can be reduced as

EŒY � � �.�/C
1

2

nX
iD1

�
@2�.x/
@x2

i

ˇ̌̌̌
xD�

�2
i

�
(2.8)

Assumed that EŒY � � �.�/, the variance can be further approximated as

VarŒY � � E

�� nX
iD1

@�.x/
@xi

ˇ̌̌̌
xD�

.Xi � �i/

�2�
(2.9)

Thus the first-order approximation of output variance is:

VarŒY � �

nX
iD1

nX
j D1

�
@�.x/
@xi

ˇ̌̌̌
xD�

��
@�.x/
@xj

ˇ̌̌̌
xD�

�
E
�
.Xi � �i/.Xj � �j /

�
(2.10)

With the independent input variables, the approximation results in:

VarŒY � �

nX
iD1

�
@�.x/
@xi

ˇ̌̌̌
xD�

�2

�2
i (2.11)
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2.2.3 Method of Gaussian Quadrature

The rule of Gauss quadrature is usually stated as a weighted summation of an integrand evaluated

at an array of specific points. It is sufficient to recall a one-dimensional integration can be

approximated as

I D

Z
x

h.x/W.x/dx �

NX
iD1

wih.xi/ (2.12)

where the weighting function,W.x/, determines the rule of Gauss quadrature. Table 2.1 summa-

rized various rules of Gauss quadrature with different of weigh functions (Davis and Rabinowitz,

1975). And one should note that a rule of Gauss quadrature with N points is constructed to yield

the exact integration for a polynomial, h.x/, of degree 2N � 1 or less.

Table 2.1: Rules of Gauss quadrature and weight function of orthogonal polynomial
Weight Function W.x/ Support Domain Orthogonal Polynomial Gauss Quadrature Rule

1 Œ�1; 1� Legendre Gauss-Legendre

exp.�x/ Œ0;1/ Laguerre Gauss-Laguerre

exp.�x2=2/ .�1;1/ Hermite Gauss-Hermite

1=
p
1 � x2 .�1; 1/ Chebyshev (First kind) Chebyshev-Gaussp

1 � x2 Œ�1; 1� Chebyshev (Second kind) Chebyshev-Gauss

.1 � x/a.1C x/b .�1; 1/ Jacobi Gauss-Jacobi

A kth order moment of a response function, Y D �.X/, needs to evaluate a multi-dimensional

integration:

M k
Y D E

n�
�.x/

�ko
D

Z
X

�
�.x/

�k
fX.x/dx (2.13)

With the rules of Gauss quadrature listed in Table 2.1, and supposed that input random vari-

ables are independent to each other, a procedure of moment computation with Gauss quadrature

can be summarized as follows:

� Given PDF of Xi , one needs to determine the standard Gauss point and weight of the input

variable;

� The standard Gauss quadrature needs to be further recast using the distribution parameters

of Xi . The tensor product of the Gauss points of each variable determines the global input

matrix.
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� Evaluate the model responses specified at the global integration grid. Output moment,

then, can be numerically evaluated by using the weighted summation of the responses.

Implementation of the tensor Gauss quadrature finally determines a kth moment of Y D �.X/
with the form of

M k
Y D

Z
X
Œ�.x/�kfX.x/dx �

N1X
i1D1

N2X
i2D1

� � �

NnX
inD1

wi1
wi2

� � �win
Œ�.xi1

; xi2
; � � � xin

/�k (2.14)

where wil
and xil

are the Gauss weight and point for an l th random variable, respectively. Nk is

the order of Gauss quadrature. It usually is selected as a constant for all random variables, which

is referred to as the homogeneous Gauss quadrature method. If input random variables con-

tains the dependent components, an isoprobabilistic transform (Der Kiureghian and Liu, 1986;

Rosenblatt, 1952) should be applied.

Main drawback of the Gauss quadrature is the curse of dimensionality. Suppose indeed an

N order scheme is retained for each random variable. Then, the nested summation in Eq.(2.14)

needs N n functional evaluations of the mechanistic model y D �.x/, which is exponentially

increasing with respect to the dimensionality of input random vector.

2.3 Methods for Reliability Analysis

Structural reliability analysis aims at computing the failure probability of an engineering system

with respect to a prescribed failure criteria by accounting for uncertainties arising in the model

description (e.g., geometric dimension, material property, etc.) or the environment (e.g., external

load, temperature, humidity, etc.). It is a general theory whose development started in the early

of 1950’s. The research in this field is still quite active. The reader is referred to textbooks for

a comprehensive presentation of the topic (Ditlevsen and Madsen, 1996; Ghanem and Spanos,

1991; Madsen et al., 2006). This Section summarizes some well-established methods to solve

the problem.

A system is supposed to fail when some requirements of safety or serviceability are not

fulfilled. For each failure mode, a failure mechanism is set up by using a limit state function

g.X/. One should note that the expression of g.X/ is usually defined as a function of system

output, Y D �.X/, and its allowable threshold, y0. Then, the limit state function is formulated in

such a way that:
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� DS WD
˚
X W g.X/ > 0

	
is the safe domain in the space of input variables;

� DF WD
˚
X W g.X/ < 0

	
is the failure domain; and

� D0 WD
˚
X W g.X/ D 0

	
is the corresponding limit state surface.

Given the joint PDF of input variables, X, the corresponding probability of failure associated

with the limit state function is an integral of

PF D

Z
g.X/60

fX.x/dx (2.15)

In all but academic cases, this integral cannot be analytically computed due to the high di-

mensionality of X and the complexity of the boundary condition: � D
˚
g.X/ 6 0

	
. Indeed,

the failure domain depends on structural response quantities (e.g., displacement, strain, stress,

etc.), which are usually computed by means of a computer code (e.g., a finite element pack-

age). Hence, the limit state function is implicitly defined and thus a numerical method has to be

considered.

2.3.1 Monte Carlo Simulation

Monte Carlo simulation is a universal method for evaluating integrals in Eq.(2.15). Denoting by

an indicator function of failure domain, 1fg.x/60g (i.e., it takes the value 0 in the safe domain and

1 otherwise), Eq.(2.15), then, can be rewritten as

PF D

Z
X

1fg.X/60gfX.x/dx D E
�
1fg.X/60g

�
(2.16)

where EŒ�� is the expectation operator. Practically, the above equation can be evaluated by sim-

ulating N samples of X, e.g.,
˚
x.1/; x.2/; � � � ; x.N /

	
. For each sample, one can evaluate the limit

state function, g
�
x.i/
�
, through a deterministic code of y D �.x/. An estimate of PF , then, can

be given as the empirical mean of

PF;MCS D
1

N

NX
iD1

1fg.x.i//60g D
Nfail

N
(2.17)

where Nfail is the number of samples that are located in the failure domain. According to the

large-number law and central limit theorem, it is known that yPF converges toPF with probability
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of one and is asymptotically normally distributed as N goes to infinity. Therefore, the estimate

is unbiased
�
i.e., E

�
PF;MCS

�
D PF

�
. And the variance of PF;MCS can be assessed by

Var
�
PF;MCS

�
D
PF .1 � PF /

N
(2.18)

Hence, efficiency of the Monte Carlo simulation can be measured by

COV D

p
VarŒPF;MCS�

EŒPF;MCS�
D

s
1 � PF;MCS

N PF;MCS
(2.19)

Practically, the value of failure probability is very small, i.e., PF � 1. Therefore, the

corresponding number of functional evaluations is:

COV �
1p

N PF;MCS

H) N �
1

COV2 PF;MCS
(2.20)

Suppose that the value of PF is in the order of 10�k and the required COV is 5%. Using the

above equation, one can calculate that the number of required samples is N > 4� 10kC2, which

is a big number when a small value of failure probability (e.g., PF D 10�4) is sought.

2.3.2 First-Order Reliability Method

The first order reliability method (FORM) was introduced to calculate the structural failure prob-

ability by means of a limited number of functional evaluations compared to the brutal Monte

Carlo simulation.

In FORM, the reliability analysis is recast in the standard Normal space, i.e., one needs to

transform the input random variables, X, as the independent standard Normal variables, U. This

can be achieved by using an isoprobabilstic transform U D T .X/, such as Rosenblatt transform

(Rosenblatt, 1952) or Nataf transform (Der Kiureghian and Liu, 1986). Then, the probability of

failure can be evaluated by

PF D

Z
g.X/60

fX.x/dx D

Z
gŒT �1.U/�60

�U.u/du (2.21)

where �U.u/ is the standard independent multi-Normal PDF:

�U.u/ D
1

.2�/n=2
exp

�
�

uT u
2

�
(2.22)
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Figure 2.3: Principle of the first-order reliability method (FORM)

Once the transformation to the standard U-space has been conducted, the joint multi-Normal

PDF is rotationally symmetrical about the origin, and with the maximum density at the origin.

Given the U-space as shown in Figure 2.3, the point on the transformed limit state surface

that is closest to the origin, hence, has the highest probability density in the failure domain. This

is why the point is referred to as the most probable failure point (MPP). The Euclidean distance

between the origin and MPP is denoted as the reliability index. And the position of u� can be

found via a constrained optimization problem:

u�
D arg min

u

np
uT u W g

�
T �1.u/

�
D 0

o
(2.23)

Once the design point u� in standard Normal space has been identified, it is possible to

calculate the reliability index as

ˇ D sign
�
g
�
T �1.0/

��
� ku�

k (2.24)

which is counted as positive if the origin is in the safe domain, and negative otherwise.

FORM makes the assumption that the failure surface can be fitted exactly with a tangent

hyperplan through the design point, u�, in the standard Normal space as shown in Figure 2.3.

Expression of the hyperplane is given as

ˇ � ˛T u D 0 (2.25)
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where the vector ˛ is the unit outward normal vector at the design point:

˛k D �
rg
�
T �1.u�

k
/
�rg

�
T �1.u�

k
/
� .k D 1; 2; � � � ; n/ (2.26)

Using the first-order hypeplane to approximate the original limit state surface, the corre-

sponding failure probability can be approximated as

PF D

Z
gŒT �1.U/�60

�U.u/du �

Z
ˇ�˛T U60

�U.u/du (2.27)

As shown in forgoing section, the standard uncorrelated Normal joint PDF is rotationally

symmetric. One can rotate the linearized failure surface to any convenient position without

changing the probability content on either side of the hyperplane. The most convenient position

is such that it is perpendicular to any single axis, since then, the probability calculation becomes

an one-dimensional integration. Therefore, the failure probability provided by the first-order

approximation can be determined as

PF � PF;FORM D ˆ.�ˇ/ (2.28)

where ˆ.�/ is the standard Normal cumulative distribution function (CDF).

One should note that the FORM approaches may provide erroneous results if the optimization

problem in Eq.(2.23) is non-convex. Indeed, the following two problems might be happened:

� The adopted optimization scheme might converge to a local minima instead of the global

minima of the problem, and then miss the failure region contributed to the structural failure;

and

� Even if the global design point is determined, there could be significant contributions to

the failure form the vicinity of the local design points in the standard U-Space.

To deal with the problems, one can refer to the literature (Der Kiureghian and Dakessian,

1998) for details, in which a method based on the series system reliability analysis was developed

to tackle with the problems featuring multiple design points. In addition, by using a higher-

order hyperplane to approximate the limit state function can improve the accuracy of FORM in

reliability analysis (Dubourg, 2011).
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2.3.3 Method of Importance Sampling

FORM allows an analyst to compute a probability of failure with the low computational cost

compared to Monte Carlo simulation. However, FORM might reveal its deficiency in the case of

a complicated limit state function (e.g., with multiple design points). To bypass the difficulty, a

method that integrates FORM and simulation can be employed, namely the importance sampling

method (Harbitz, 1983; Shinozuka, 1983).

Consider that the design point x� has been identified by FORM. Let us define an auxiliary

PDF, denoted it as the importance density:

hX.x/ D fX.x/
ˇ̌
�Dx� (2.29)

which implies the expression of hX.x/ is identical with the original joint PDF fX.x/, only by

changing the mean values of input random variable as the design point x�. The probability of

failure, then, can be recast as(Breitung, 1984; Der Kiureghian et al., 1987)

PF D

Z
g.X/60

fX.x/
hX.x/

hX.x/dx D E

�
1fg.X/60g.X/

fX.x/
hX.x/

�
(2.30)

An estimate of PF by the importance sampling is determined by an empirical mean-value of

PF;IS D
1

N

NX
iD1

1fg.X/60g

�
x.i/
�fX

�
x.i/
�

hX
�
x.i/
� (2.31)

where x.i/ is an i th sample of random vector X simulated according to hX.x/.
In the standard U-space, importance sampling can be conducted as

PF;IS D
1

N

NX
iD1

1fgŒT �1.U/�60g

�
u.i/

��U
�
u.i/

�
zhU
�
u.i/

� (2.32)

where u.i/ is now randomly generated from the auxiliary PDF, zhU.u/:

zhU.u/ D �U.u � u�/ (2.33)

In the case, estimation of the failure probability can be reduced as

PF;IS D
exp.ˇ2=2/

N

NX
iD1

1fgŒT �1.U/�60g

�
u.i/

�
exp

�
� u.i/

� u�
�

(2.34)

where ˇ is the reliability index determined by FORM.
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To compare the efficiency of importance sampling with crude Monte Carlo simulation, an

experiment is designed as follows. At first, 5000 samples of input random vector X are generated

to estimate the failure probability by using importance sampling and Monte Carlo simulation,

respectively. The estimates of PF;MCS and PF;IS are separately stored. Repeat the procedure

1000 times. One can use the estimates to calculate the corresponding COVs of the methods.

Normalizing the estimates by the benchmark of PF provided by 106 simulations, histograms of

the normalized failure probabilities, i.e., PF;IS=PF and PF;MCS=PF , are depicted as shown in

Figure 2.4, respectively.

According to the histograms of the normalized estimates, it is clear to see that importance

sampling is much more efficient than crude Monte carlo simulation (i.e., 2:11% COV by im-

portance sampling versus 12:72% COV by crude MCS). Note that if FORM does not converge,

the sequence of points computed by the optimization algorithm may help select a relevant sam-

pling density. Furthermore, various improvements of importance sampling method have been

proposed, such as adaptive importance sampling (Au and Beck, 1999; Bucher, 1988), radial

importance sampling (Melchers, 1990) and others (Neal, 2001).
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Figure 2.4: Histogram of the normalized failure probability ( yPF =PF ) estimated by Monte Carlo

simulation and importance sampling method: g.X/ D 30�
�
X2

1 CX3
2

�
, whereX1 andX2 follow

the independent Normal distribution N.2:0; 0:4/.
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2.3.4 Method of Line Sampling

Line sampling method was developed by Schuëller et al. (2004) to tackle with the reliability

analysis with extremely high-dimensional input random variables (e.g., the dimensionality of

X > 1000), in which the lines are employed instead of points to probe the failure domain of

interest. The method was applied in literatures (Koutsourelakis et al., 2004; Pradlwarter et al.,

2007; Schuëller and Pradlwarter, 2007) to conduct the reliability analysis of liner and non-linear

random vibration system excited by a random process. Recently, combined with the artificial

neural network, Zio and Pedroni (2009) employed the line sampling method to estimate the

functional failure of a passive decay heat removal system in a gas-cooled fast nuclear reactor.

Failure Domain
Safe Domain

Design Point x∗

True Limit 
State Surface

First-Order Approximation of
Limit State Surface

α

Figure 2.5: Important direction ˛ in line sampling method

Figure 2.5 has illustrated the importance direction in the line sampling method. The direction

can be determined from the origin to the design point x�, since that the way along the direction

(˛) is the shortest one among all possible routes reaching the failure domain. In addition, each

element of ˛ measures the relative importance of a particular random variable with respect to

the failure probability in the vicinity the design point. Given a specified step along the direction,

limit state function should change the most. Therefore, the samples collected along the direction

would be more efficient than other manners to obtain the successful “failure shots”. The idea

is very similar to the axis orthogonal sampling method (Hohenbichler and Rackwitz, 1988) and

directional sampling method (Bjerager, 1988).
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Figure 2.6: Schematic sketch of line sampling procedure

Conceptually, the line sampling is implemented as a sample x.i/ randomly varies parallel to

the importance direction ˛ as shown in Figure 2.6. To conduct the simulation, one can generate a

sample in the space of x? at first, which is orthogonal to the selected importance direction. Then,

the required sample, x.i/, can be defined as the summation of vector ˛ and x?. Therefore, use a

standardized vector e D ˛=k˛k, the sample x.i/ can be expressed as

x.i/
D ci e C x? (2.35)

where,

x?
D x.i/

�
˝
e; x.i/

˛
e (2.36)

where, h�; �i is the product operator of a vector.

Since the sample x.i/ is on the limit state surface, i.e., it should satisfy g
�
x.i/
�

D 0. The

distance ci , hence, can be determined by solving the following one-dimensional equation:

g
�
x.i/
�

D g
�
ci e C x?

�
D 0 (2.37)

in which, one can see that Eq.(2.37) is a non-linear function in terms of ci . Numerical Newton-

based iteration method is efficient to solve the problem. However, in order to reduce the number

of functional evaluations, the interpolation scheme is usually employed to estimate the value of

ci .
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In summarize, the line sampling method can be implemented as follows: (a) Generate an

i th sample of input variables, x.i/; (b) Calculate the corresponding perpendicular vector x? with

respect to the importance direction, e; (c) Estimate the distance ci by solving Eq.(2.37). An

estimate of failure probability, then, can be calculated by P .i/
F D ˆ.�ci/.

Given N samples in line sampling, the estimate of PF can be determined by mean-value of

P
.i/
F (i D 1; 2; � � � ; N ):

PF;LS D
1

N

NX
iD1

ˆ.�ci/ (2.38)

Line sampling method can be further employed to deal with the system reliability analysis

with multiple failure modes. Assumed that a system contains m failure modes, one can use the

notations gŒi�.X/, eŒi� and DŒi� WD
˚
X W gŒi�.X/ 6 0

	
to denote the corresponding limit state

function, importance direction and failure domain of each failure mode, respectively.

In case of the failure domains are independent (has non-overlapped region), the system failure

probability can be directly determined by the summation of each failure probability, P Œi�
F .i D

1; 2; � � � ; m/

PF;LS D

mX
iD1

P
Œi�
F D

1

N

mX
iD1

NX
j D1

ˆ
�

� c
Œi�
j

�
(2.39)

However, considering the overlapped failure domains, a modification is required to eliminate

the interaction effect of failure modes. For the sake of configuration, two failure modes with the

overlapped failure domains are demonstrated in Figure 2.7.

Assume that DŒi� WD
˚
X W gŒi�.X/ 6 0

	
and DŒj � WD

˚
X W gŒj �.X/ 6 0

	
are two failure

domains. Bisector of the angle shaped by ˛Œi� and ˛Œj � can separate the whole failure domain

into two independent parts, i.e., DŒi� and DŒj �, respectively.

Considering a random sample x.p/ simulated for the modified limit state function gŒi�.X/, it

falls into DŒi� as shown in Figure 2.7. The corresponding distance cŒi�
p can be determined as the

usual case of single failure mode in previous section.

However, as shown in Figure 2.8, the vector x.k/ is simulated for DŒj �. The distances of x.k/

to importance directions ˛Œi� and ˛Œj � are determined as d Œi�

k
and d Œj �

k
, respectively, which can be

numerically calculated as

d
Œl�

k
D
x.k/

�
˝
eŒl�; x.k/

˛
eŒl�

 .l D i; j / (2.40)

If d Œj �

k
6 d

Œi�

k
, it implies x.k/ 2 DŒj �. And the failure probability is:

P
Œj �

F k
D ˆ

�
� c

Œj �

k

�
(2.41)
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Figure 2.7: Line sampling method in system reliability analysis
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However, in Figure 2.8, one can see that d Œj �

k
> d

Œi�

k
. It implies the sample x.k/, actually, falls

into the failure domain of DŒi�. The corresponding distance, cŒj �

k
, can be determined as (Kout-
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sourelakis et al., 2004; Schuëller and Pradlwarter, 2007):

c
Œj �

k
D c

Œj �

k
C sign

�
c

Œj �

k

� d
Œj �

k
� d

Œi�

kq
1 �

˝
eŒi�; eŒj �

˛2 (2.42)

In summary, as the system failure is represented by more than two failure modes, the impor-

tance directions ˛Œi� (for i D 1; 2; � � � ; m/ need be determined at first. Then, utilize the bisectors

of importance directions to tailor the overlapped failure domain as m independent regions. Giv-

en a random sample simulated for an i th failure domain, DŒi�, compute the distance of x.k/ to all

importance directions. Employe the following criteria to determine whether or not the sample

belong to DŒi�:

x.k/
2 DŒi� ” d

Œi�

k
D min

n
d

Œ1�

k
; d

Œ2�

k
; � � � ; d

Œm�

k

o
(2.43)

If not, use Eq.(2.42) to determine the modified coefficient cŒi�

k
.

Finally, the system failure probability can be estimated as

PF;LS D

mX
iD1

P
Œi�
F D

1

N

mX
iD1

NX
kD1

ˆ
�

� c
Œi�

k

�
(2.44)

A structure with six failure modes is considered to illustrate the line sampling method for

system reliability analysis. Limit state function of each failure mode is given as (Bennett and

Ang, 1983)8̂̂<̂
:̂
g1.X/ D M1 C 3M2 C 2M3 � 15S1 � 10S2I g2.X/ D 2M1 C 2M2 � 15S1

g3.X/ D M1 CM2 C 4M3 � 15S1 � 10S2I g4.X/ D 2M1 CM2 CM3 � 15S1

g5.X/ D M1 CM2 C 2M3 � 15S1I g6.X/ D M1 C 2M2 CM3 � 15S1

(2.45)

Since failure of system can be triggered by the fail of any mode, the system failure event,

hence, is recast to as a series system:

ESystem WD
˚
E1 [E2 [E3 [E4 [E5 [E6

	
(2.46)

where an i th component failure event Ei WD fgi.X/ 6 0g .i D 1; � � � ; 6/. And the random

variables X are defined in Table 2.2.

Assume that random variables are following the distributions of Normal and Lognormal,

respectively. System failure probabilities are estimated using the line sampling method. Given
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Table 2.2: Random variables of the serial structure
Random Variable S1 S2 M1 M2 M3

Mean Value 50 100 500 500 667

Standard Deviation 10 10 75 75 100

Table 2.3: Example of system reliability analysis using the line sampling method
Distribution Normal Lognormal

Method Line Sampling MCS Line Sampling MCS

Number of samples 1500 106 1500 106

Failure Probability 6:69 � 10�5 7:78 � 10�5 5:93 � 10�4 6:10 � 10�4

COV of PF;LS 3:17% �� 2:43% ��

the benchmarks provided by brutal Monte Carlo simulation, the comparisons are summarized in

Table 2.3.

Given the results in Table 2.3, one can see that the line sampling method can determine

the system failure probability with a fairly small number of function evaluations. In addition,

the values of COV estimated by 100 rounds Monte Carlo experiment are very small. Therefore,

compared to brutal Monte Carlo simulation, the line sample method reserves the both of accuracy

and efficiency in system reliability analysis.

2.4 Methods for Global Sensitivity Analysis

As stated by Grierson (1983), “The essential objective of sensitivity analysis of any system is to

establish a measure of the way of response quantity varies with the change of input parameters

that define the system.” Therefore, the sensitivity analysis is very useful to (Castillo et al., 2008):

� a designer, who can know which input parameter is most influential to a structural output;

� a builder, who can know how changes in component prices influence the total cost of the

project being undertaken; and

� a code maker, who can know safety implications associated with changes in a design for-

mat.
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In uncertainty quantification, sensitivity analysis is the study of how the uncertainty of an

output can be apportioned to different sources of uncertainties in input variables. Methods for

the probabilistic sensitivity analysis are usually classified into the following two categories:

� Local sensitivity analysis concentrates on the sensitivity of distribution parameters of an

input random variable on a model output. It employs the gradient of response with respect

to each parameter around a nominal value. Moment sensitivity factor and the reliability-

based sensitivity factor are of two popular indices of the local sensitivity analysis.

� Global sensitivity analysis focuses on the output uncertainty over the whole definition do-

main of input variables. It takes into account the entire variation of input variables and

aims to apportion the output uncertainty to each input factor. Therefore, global sensitiv-

ity analysis helps analyst identify the key parameters whose uncertainty affect the most

of model output, which in turn can be used to establish experimental research priorities,

eventually leading to a better definition of the model function (Saltelli, 2002; Saltelli and

Sobol’, 1995; Sudret, 2008b).

In local sensitive analysis, the contribution of each parameter (e.g., mean value, standard

deviation, etc.) of a random variable with respect to output moment or failure probability is

of interest. With the local sensitivity index, critical parameters can be identified. Therefore, it

provides the gradient information needed by an optimization procedure to update the distribution

parameter in a risk-based design framework (Frangopol, 1985).

However, the local sensitivity index is only validated in the vicinity of a nominal value of

distribution parameter. The first-order derivative, hence, is only useful to assess the sensitivity

information near a predefined reference point, instead of the entire definition domain of input

variable. Due to the limitation, the study is primary focused on the method of global sensitivity

analysis.

A good state-of-the-art of the methods for global sensitivity analysis is available in literature

(Saltelli et al., 2000, 2008), which gathers the methodology into two groups:

� Regression-based method: the standardized regression coefficients are determined based

on a linear regression of the output on the input vector. The input-output correlation coef-

ficients measure the effect of each input variable by the correlation it has with the model

output. The partial correlation coefficients are based on results of regressions of the model

on all input variables except one. These coefficients are useful to measure the effect of
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the input variables if the model is linear, i.e., if the coefficient of determination, R2, of

the regression is close to one. In case of nonlinearity, they fail to represent properly the

response sensitivities (Saltelli and Sobol’, 1995), which also can be found in the method

of design of experiment.

� Variance-based method: The method aims at decomposing the output variance as a summa-

tion of variance contributions of each input variable, and the combinations. The method

of “General ANalysis Of VArance” (G-ANOVA) enters the category. Each conditional

variance is described as a multi-dimensional integration. The simulation methods, such as

Monte Carlo simulation and Latin Hypercube sampling, are the dominant approaches for

global sensitivity analysis (Sobol’, 2001).

2.4.1 Taylor Series Expansion

Method of the truncated Taylor series for moment calculation was reviewed in Section 2.2.2. An

approximated expression of output variance was derived as

VarŒY � D �2
Y �

nX
iD1

�
@�.x/
@xi

ˇ̌̌̌
xD�

� �i

�2

(2.47)

From this expression, it is clear to see that the response variance is a summation of vari-

ances related to each input variable. By normalizing each component, one can define a relative

importance factor as

Si D
@�.x/
@xi

ˇ̌̌̌
xD�

�
�i

�Y

(2.48)

in which, the summation of Si is up to one. The so-called decomposition of variance is carried

out in a linearized context since the variance calculation is based on the first-order Taylor series

expansion.

2.4.2 FORM Analysis

The first-order reliability method (FORM) was reviewed in Section 2.3.2. As shown in Eq.(2.25),

an approximation on g.X/ can be represented as a hyperplane through the design point in the

standard U-space:

g
�
T �1.U/

�
� ˇ � ˛T U (2.49)
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where ˇ is the FORM reliability index; ˛ is the direction from origin to design point u�, and

T .�/ is an isoprobabilistic transformation (Der Kiureghian and Liu, 1986; Rosenblatt, 1952).

Through the approximation, the variance of g.X/, then, can be evaluated as

Var
�
g
�
T �1.U/

��
�

nX
iD1

˛2
i D 1 (2.50)

This results is due to the elements of U are the independent standard Normal variables and ˛ is

a unit vector:

˛i D �
rg
�
T �1.u�

i /
�rg

�
T �1.u�

i /
� .i D 1; 2; � � � ; n/ (2.51)

in which, the coefficient ˛2
i .i D 1; 2; � � � ; n/ is known as FORM importance factor correspond

to the portion of the variance of the linearized limit state function (Ditlevsen and Madsen, 1996).

Thus, ˛2
i is interpreted as the importance factor of the i th input variable.

Approximation of g.X/ using the FORM-based hyperplane is only exact at the design point

x�. The approximated variance of g.X/, hence, is only decomposed exactly at the referenced

point. The corresponding important factor ˛2
i .i D 1; 2; � � � ; n/ reveals its characteristic as a local

sensitivity index. A similar conclusion can be made for the moment-based sensitivity factors as

shown in last Section, in which one can see that the reference points are the mean values of input

variable.

2.4.3 Global Sensitivity Index

A general decomposition of the input-output function, Y D �.X/, can be derived as a summand

of a series of component functions with an increasing dimensionality (Cox, 1982; Efron and

Stein, 1981):

�.X/ D �0 C

nX
iD1

�i.Xi/C
X

16i<j 6n

�ij .Xi ; Xj /C � � � C �12���n.X/ (2.52)

in which, one can see that the total terms in the decomposition is 2n. And each component

function is defined as follows.

First of all, the constant �0 is given as

�0 D

Z
X
�.x/fX.x/dx (2.53)
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The univariate component functions are

�i.Xi/ D

Z
X�i

�.x/fX.x/dx�i � �0 .1 6 i 6 n/ (2.54)

where the notation X�i means the integration over all variables except Xi . Furthermore, the

bivariate component functions are defined as

�ij .Xij / D

Z
X�ij

�.x/fX.x/dx�ij � �i.Xi/ � �j .Xj / � �0 .1 6 i < j 6 n/ (2.55)

Here again, X�ij is the integration over all variables except Xi and Xj .

More generally, we use the symbol “X�f�g” denotes “the complementary vector of f�g” in

the study. Following this construction, any member function �i1i2���is
.Xi1

; Xi2
; � � � ; Xis

/ can be

expressed by using a serial summation of s-dimensional integrations and lower.

It is interesting to see that an integration over the member function is zero:Z
Xs

�i1i2���is
.xi1

; xi2
; � � � ; xis

/fXs
.xs/dxs D 0 (2.56)

where Xs D ŒXi1
; Xi2

; � � � ; Xis
�T. This is:

EŒ�i1i2���is
.Xi1

; Xi2
; � � � ; Xis

/� D 0 fi1; i2; � � � ; isg � f1; 2; � � � ; ng (2.57)

Total variance of model output, Y D �.X/, is defined as

VTol D

Z
X
Œ�.x/�2fX.x/dx � �2

0 (2.58)

A generic expression of the variance component due to the joint effect of s variables is given as

Vi1i2���is
D

Z
Xi1i2���is

Œ�i1i2���is
.xi1

; xi2
; � � � ; xis

/�2fXs
.xs/dxs (2.59)

By numerical methods to evaluate the integration, it is possible to decompose the total output

variance as a series component variances:

VTol D

nX
iD1

Vi C
X

16i<j 6n

Vij C � � � C V12���n (2.60)

The decomposition is referred to as the general ANOVA in global sensitivity analysis, s-

ince the model function, Y D �.X/, is no long limited to a linear model as in the methods of

regression or design of experiment.
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Based on the general ANOVA, the Sobol’ sensitivity index for global sensitivity analysis can

be defined as

Si1i2���is
D Vi1i2���is

=VTol (2.61)

And from Eq.(2.60), one can see that:

nX
iD1

Si C

X
16i<j 6n

Sij C � � � C S12���n D 1 (2.62)

Therefore, each index Si1i2���is
is a sensitivity measure describing the amount of the to-

tal variance that is contributed by the uncertainties contained in a subset of input variables

fi1; i2; � � � ; isg. The first order index Si give the influence of each variable taken along, whereas

the higher orders indices account for possible mixed influence of various parameters.

2.4.4 Monte Carlo Simulation

Since the variance-based global sensitivity index reviewed in the last section are given as an n-

dimensional integration, the method of Monte Carlo simulation is usually employed to estimate

the Sobol’ index.

To estimate the component variance, one can use the following two-layer simulation method

(Ishigami and Homma, 1990; Saltelli and Sobol’, 1995). Taken the variance computation of a u-

nivariate member function, �k.Xk/, as an example, the Monte Carlo simulation can be conducted

as

yVk D
1

N

NX
iD1

�
�
�
x.i/
�

� �
�
x.i/

�k

��
� y�2

0 (2.63)

where x.i/

�k
implies all the samples of X is re-simulated except random variable Xk. Therefore,

in an i th round simulation, all random variables are sampled to evaluate �
�
x.i/
�

at first, and then,

re-sample X except Xk to calculate �
�
x.i/

�k

�
.

The variances of higher orders of member functions can be estimated in a similar manner.

Through the methodology, one additional set of sample (with size of N ) is needed to compute

each Si1i2���is
(or Vi1i2���is

) in Eq.(2.62). Given that 2n�1member functions contained in Eq.(2.52),

one should note that it needs N.2n � 1/ model evaluations to compute the variance components

in global sensitivity analysis.

The Sobol’ index is known to be a good description of the importance of a model output with

respect to input variables, since it does not suppose any kind of linearity or monotonicity in the
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mechanistic model as compared to the regression method and design of experiment. However,

full description of the sensitivity index requires to evaluate 2n �1 n-dimensional integrals, which

are not practically feasible unless the dimensionality of X is low (say n 6 5). Therefore, an

efficient method for Sobol’ sensitivity index computation will be of greatly important.

35



Chapter 3

Fractional Moment and MaxEnt
Distribution

3.1 Introduction

Probability distribution provides the full information contained in a random variable. Given the

distribution, e.g., in terms of PDF or CDF, it is easy to calculate the moment, the reliability (i.e.,

a probability of the random variable exceeding a predefined limit) represented by the random

variable. Therefore, method for probability distribution estimation plays the center role in risk

analysis of engineering systems. Recently, special attention has been paid on the method of

a design quantile estimation corresponding to a small probability of exceedance (POE) (Deng

and Pandey, 2008, 2009; Pandey, 2000; Pandey et al., 2001). Such quantile represents a design

threshold of load or material property specified in a design code. It is desirable that the estimate

be unbiased, i.e., its expected value is equal to the true mean-value. Furthermore, a method

should ideally be efficient, i.e., variance of the corresponding estimates is as small as possible.

However, the requirements on the accuracy and efficiency are often problematic due to the lack

of adequate data.

The key procedure in distribution estimation is fitting an analytical expression to adequately

represent the sampled observations. To achieve this, a prior distribution is judged empirically

from the available information using the probability paper plot. Then, distribution parameters

can suitably estimated with a statistical technique, such as the maximum likelihood, the method

of least square, and the method of moment, etc. However, the bias and variation of the estimate
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remain sensitive to the assumed prior distribution.

An alternative approach to reconstruct the unknown distribution originates from the modern

information theory, the principle of maximum entropy (MaxEnt), has been developed. Jaynes

(1957) presented MaxEnt as a rational approach to choose the most unbiased probability dis-

tribution amongst all possible candidates. The determined distribution will be consistent with

available data and contains minimum spurious information. When only moment constraints are

specified, Shore and Johnson (1980) proved that the MaxEnt is a uniquely correct method of

probabilistic inference that satisfies all consistency axioms. More information on MaxEnt, one

can refer to literature (Kapur and Kesavan, 1992) for details.

Despite the conceptual elegance, practical difficulties with the MaxEnt approach began to

emerge. The first issue is that a relatively large number of integer moments (order > 4) are

required to achieve a reasonable accuracy in the modeling of the distribution tail. If moments

are analytically calculated, such as in random vibration literature (Pandey and Ariaratnam, 1996;

Sobezyk and Trebicki, 1990), it is not a major issue. However, the entropy maximization al-

gorithm experiences numerical instability as the number of moment constraints become large

(Tagliani, 1994, 1999). Another thorny issue is that the tail of MaxEnt distribution becomes

an oscillatory function due to non-monotonic nature of the polynomial embedded in the density

function. Instead of a calculation procedure, if sample data are used to estimate the higher mo-

ments for MaxEnt analysis, then it poses an additional problem. The sample moment estimates

are known to have large statistical error (i.e., bias and standard error), which would creep into

the MaxEnt procedure as well. Because of these practical limitations, the interest in engineering

application of MaxEnt diminished over time. And the difficulty in obtaining accurate quantile

estimates from small samples has been the main impediment to the application of MaxEnt in risk

analysis.

Recently, interest in MaxEnt has highlighted with the emergence of use of fractional mo-

ments, i.e., real numbers (or fractions) of moment order instead of integers (Inverardi et al.,

2003; Novi Inverardi et al., 2005; Taufer et al., 2009). The reason for the interest is that the

distribution of a positive random variable can be characterized by a finite number of fraction-

al moments (Gzyl and Tagliani, 2010). In addition, a fractional moment embodies information

about a large number of central moments as shown later. An optimal set of the fractions can be

determined via the MaxEnt instead of assigning values a priori. The values of fractions deter-

mined are typically less than 2, which can be reliably estimated from a modest sample of data.
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To sum up, shortcomings of the traditional MaxEnt method, as stated above, can be overcome by

the use of fractional moments as constraints in place of the regular integer order moments.

The Chapter is presented to estimate a probability distribution with the fractional moment

through the principle of maximum entropy (MaxEnt), which is essentially an extension of the

commonly used integer moment-based MaxEnt. Given a small number of observations (e.g.,

N D 100), the proposed MaxEnt optimization with the constraints in terms of fractional mo-

ments (ME-FM) is employed to estimate the distribution function and quantile function corre-

sponding to an array of small failure probabilities. The novelty of use fractional moment in the

distribution estimation is highlighted by its ability to accurately extract the probabilistic infor-

mation from a small number of samples. Therefore, with the fractional moments estimated from

a small number of data of material property, live load or wave height, etc., a reliable estimate

of the unknown parent distribution can be derived with the proposed method of ME-FM. To as-

sess the accuracy and efficiency of the proposed method, Monte Carlo simulation will be used to

calculate the bias and root mean square error (RMSE) of the estimates of quantile function.

The Chapter is organized as follows. Section 3.2 presents the motivations of using fractional

moment in MaxEnt. Section 3.3 develops a general method to derive the MaxEnt distribution

with the constraints specially in terms of fractional moment. A numerical procedure on the

parameters of MaxEnt distribution is proposed. In Sections 3.4 to 3.6, examples of generalized

Pareto, Weibull and Lognormal distributions are employed to illustrate the applications of the

ME-FM in parent distribution estimation of a random variable. Experiment of Monte Carlo

simulation is also conducted in each example to study the accuracy and efficiency of the proposed

method. Section 3.7 summarizes the conclusions.

3.2 Fractional Moment

Statistical moment of a random variable usually refers to the positive integer moment:

EŒXk� D

Z
X

xkfX.x/dx (3.1)

where k is a positively defined integer. Given k D 1 and 2, one can calculate the mean-value of

and variance of X .

Let X be a positive random variable. An ˛th order fractional moment can be defined as

EŒX˛� D

Z
X

x˛fX.x/dx (3.2)
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where ˛ is a real number.

3.2.1 Existence of Fractional Moment

Fractional moment of a positive random variable, EŒX˛�, with negative valued fraction (i.e.,

˛ < 0) is referred to as the inverse moment problem in literature (Chao and Strawderman, 1972;

Cressie et al., 1981; Khuri and Casella, 2002). Piegorsch and Casella (1985) derived the sufficient

condition for the existence of EŒX˛� .�1 6 ˛ 6 1/ only if the continuous density fX.x/ with

the bounded value of fX.0/. This is one of limited references considered the value of ˛ should

not be necessarily as a positive integer. To derive the condition of the existence of a fractional

moments, one can examine the properties of function x˛ at first.

Table 3.1: Property of x˛ with varied definitions of x and ˛
Fraction ˛ Variable x Property of Function x˛

Monotonicity Domain

˛ > 0 x 2 Œ0; 1� monotonic decrease Œ0; 1�

x 2 .1;C1/ monotonic increase .1; C 1/

˛ < 0 x 2 Œ0; 1/ monotonic decrease .1; C 1/

x 2 Œ1;C1/ monotonic increase Œ0; 1�

To study the integral of fractional moment, the characteristic of x˛ is summarized in Table

3.1 with the varied possible combinations of x and ˛. Given the information, one can see that:

(a) x˛ is a positive monotonic function with respect to x; (b) Functions of x˛ for the positively

and negatively valued ˛ are convertible. It is can be seen from the following example. Assumed

that ˛ < 0, by defining a new variable z D 1=x, the negative-valued fractional moment can be

transformed as a positive fractional moment as

zˇ
D

1

xˇ
� x˛ (3.3)

Here ˇ > 0 (i.e., ˇ D �˛/ and zˇ should have the identical characteristics with a positive

fractional moment.

Theorem 3.1. Let fX.x/ be a continuous density function defined on Œ0;C1/ and has the con-

verged integer moments up to kth .k > 1/ order. An ˛th order fractional moment, EŒX˛�, is said

to exist as long as j˛j 6 k.
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Proof. The necessary and sufficient condition for the existence of a kth order integer moments is

the convergence of the following integration:Z 1

0

ˇ̌
xk
ˇ̌
fX.x/dx D

Z 1

0

xkfX.x/dx < C1 (3.4)

This implies Z 1

0

xkfX.x/dx D

Z 1

0

xkfX.x/dx C

Z 1

1

xkfX.x/dx < C1 (3.5)

Define a constant c D c1 C c2, where c1 and c2 are the upper boundaries of

c1 D max
�Z �

0

xkfX.x/dx W 0 < � 6 1

�
and c2 D max

�Z �

1

xkfX.x/dx W 1 < � < C1

�
Given the moment integration in Eq.(3.5), one should note that EŒxk� 2 Œ0; c�, where 0 <

c < C1.

Fractional moment, EŒX˛�, can be expressed as

EŒX˛� D

Z 1

0

x˛fX.x/dx D

Z 1

0

x˛fX.x/dx C

Z 1

1

x˛fX.x/dx (3.6)

Given 0 < ˛ 6 k and the properties of x˛ in Table 3.1, the integrations in the RHS of Eq.(3.6)

with the boundaries of

0 <

Z 1

0

x˛fX.x/dx 6
Z 1

0

x0fX.x/dx 6 1

and

0 <

Z 1

1

x˛fX.x/dx 6
Z 1

1

xkfX.x/dx 6 c

The two inequalities lead to the moment integration in Eq.(3.6) is bounded as 0 < EŒX˛� 6
c C ", where " is a small positive quantity. And thus, the ˛th order fractional moment should

exist.

Considering that if the fractional exponent ˛ < 0, one can use Eq.(3.3) to equivalently e-

valuate the fractional moment with a positivity valued fractional exponent. Therefore, the final

conclusion for the existence of the real valued fractional moment can be summarized as: The

fractional moment integration EŒX˛� D

Z 1

0

x˛fX.x/dx is said to be converged only if it exists

a kth order integer moment and the fractional exponent j˛j 6 k.
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3.2.2 Need of Fractional Moment

Recovering the parent distribution, fX.x/, from a finite number of integer moments has been

documented extensively in literature. For example, Pearson and Johnson system (Johnson, 1949;

Pearson, 1963) or generalized Lambda distribution (Ramberg et al., 1979) have been used. Since

the inverse problem of deriving the distribution of a random variable from an array of moments

has no unique solution, researchers have resorted to heuristics to assume a parametric distribu-

tion as a prior. The assumption of the distribution type is a rather contentious one from both

philosophical and practical points of view. The reasons are that the tail probabilities tend to be

highly sensitive to a parametric form, and assigning a parametric prior implies adding spurious

information to the inference.

The motivation of using fractional moment was inspired by the relationship between fraction-

al moment and integer moment (Gzyl and Tagliani, 2010). The fractional moment of a positively

defined random variable can been expressed as the weighted summation of all integer moments

as shown below.

At first, consider the Taylor series expansion of x˛ around a real constant c:

x˛
D

1X
iD0

 
˛

i

!
c˛�i.x � c/i (3.7)

One should note that the fractional binomial coefficient,
�

˛

i

�
, is defined as shown in literature

(Graham et al., 1988)  
˛

i

!
D
˛.˛ � 1/ � � � .˛ � i C 1/

i.i � 1/ � � � 1
(3.8)

in which, the upper index, ˛, emphasizes the fact that the binomial coefficient makes sense when

any real number appears in this position. For instance, we have
�

�0:5

3

�
D .�0:5/.�1:5/.�2:5/=3Š D

�0:3125.

Properly choose c to guarantee the series convergence absolutely (say c D �X in literature),

and assume that random variable has all orders of integer moment. Taking expectation on both

sides of Eq.(3.7), one can obtain the desired relationship between fractional and the centered

moments as

EŒX˛� D

1X
kD0

 
˛

i

!
c˛�iE

�
.X � c/k

�
(3.9)

where E
�
.X � c/k

�
is a kth centered moment of X with respect to the constant c. Its value can
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be determined with the integer moments as

EŒ.X � c/k� D

kX
j D0

.�1/k�j

 
k

j

!
ck�jE

�
Xj
�
.j D 1; 2; � � � / (3.10)

Given all orders of integer moments of X , and the expansion point c, one can see that an ˛th

order fractional moment can be expressed by using a large number of integer moments. Gzyl

and Tagliani (2010) has shown that the required number of integer moments in Eq.(3.9) should

be 30 or more to guarantee an accurate estimate of a fractional moment. It is fairly difficult

even unpractical to provide so many high-order integer moments of an output represented by a

complicated input-output relation.

3.2.3 Fractional Moment of a Random Variable

As defined in previous section, an ˛th fractional moment of X needs to evaluate the integration:

EŒX˛� D

Z
X

x˛fX.x/dx (3.11)

Given the probability distribution of X , an analytic expression of EŒX˛� can be derived. Taken

the Lognormal distribution as an example, its PDF is given as

fX.x/ D
1

p
2� � x

exp
�

�
.log x � �/2

2�2

�
(3.12)

where � .> 0/ and � .> 0/ are the location and scale parameters, respectively. Substituting the

PDF into Eq.(3.11), one can determine the analytic expression of an ˛th fractional moment as

EŒX˛� D exp
�
˛.2� C ˛�2/=2

�
(3.13)

Therefore, given the distribution of Weibull, Gamma, Chi-Square and Beta random variables, the

corresponding expressions of an ˛th order fractional moments are summarized in Table 3.2.

The low orders of fractional moment (e.g., j˛j 6 2) can be estimated from experimental data,

fx1; x1; :::; xN g:

yM ˛
X D

1

N

NX
iD1

x˛
k (3.14)

which the estimate is unbiased since E
�

yM ˛
X

�
D EŒX˛�. The simulation-based fractional mo-

ments will be employed in numerical sections to study the efficiency of the proposed method in

estimation of a parent distribution.
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Table 3.2: Analytic expressions of fractional moment of various distribution
Distribution Probability density function Parameters Fractional moment

Weibull fX.x/ D
ı
�
.x=�/ı�1 exp

�
� .x=�/ı

�
ı > 0, � > 0 �˛j�.1C ˛=ı/j

Lognormal fX.x/ D
1p
2� x�

exp
h

�
.log x��/2

2�2

i
� > 0, � > 0 exp

�
˛.2� C ˛�2/=2

�
Gamma fX.x/ D

1
�ı�.ı/

xı�1 exp.�x=�/ ı > 0, � > 0 �˛j�.˛ C ı/j=�.ı/

Chi-Square fX.x/ D x�=2�1 exp.�x
2
/=2

�
2 =�.�

2
/ � > 0 2˛j�.˛ C �=2/j=�.�=2/

Beta fX.x/ D
1

B.�;ı/
x��1.1 � x/ı�1 ı > 0, � > 0 �.ı/j�.˛C�/j

B.ı;�/j�.˛C�Cı/j

where �.z/ D

Z 1

0

exp.�t /tz�1dt , and B.a; b/ D

Z 1

0

ta�1.1 � t/b�1dt .

3.3 Entropy-Based Probability Distribution

3.3.1 General

Consider a event, which can take one of the different states,
˚
X1; X2; � � � ; Xk

	
with the respective

probability
˚
p1; p2; � � � ; pk

	
under the constraints of pi > 0 and

Pk
iD1 pi D 1. The self-

information of event Xi is defined as

S.Xi/ D log
�
1

pi

�
D � log.pi/ (3.15)

The use of a logarithmic measure for information is intuitive in following sense: the infor-

mation provided by a deterministic event (i.e., pi D 1) is zero, and the rarer of an event (i.e.,

pi � 1), the more information is conveyed by the realization. Therefore, it is clear from E-

q.(3.15) that the self-information of an event increases as the associated uncertainty grows, i.e.,

the probability of occurrence reduces. In this respect, the quantity S.�/ is regarded as a measure

of uncertainty (Jones, 1979).

Shannon (1949) defined a measure of uncertainty, referred to as entropy, similar to that used

in thermodynamics and statistical mechanics. Considering the definition of self-information

from Eq.(3.15), Shannon’s entropy can be expressed as mathematical expectation of the self-

information:

HŒX� D �

kX
iD1

pi log.pi/ (3.16)

The entropy vanishes for completely certain outcome, and is maximum when all outcomes are

equiv-probable. The axiomatic characterization of entropy and its other mathematical properties
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can be found in literature (Kapur and Kesavan, 1992).

Jaynes (1957) presented the principle of maximum entropy (MaxEnt) as a rational approach

for choosing a consistent probability distribution amongst all possible distributions that contains

minimum spurious information. The principle states that the probability distribution of a random

variate can be obtained by maximizing the entropy subjected to constraints supplied by the avail-

able information, e.g., moments of a random variable. The distribution so obtained is referred to

as the most unbiased, because its derivation involves a systematic maximization of uncertainty

about the unknown information.

3.3.2 MaxEnt with Fractional Moment

Let X denote a continuous positive random variate with the density function fX.x/, its entropy

can be given as

H
�
f
�

D �

Z
X

fX.x/ log
�
fX.x/

�
dx (3.17)

Then, a MaxEnt optimization procedure will apply the constrains in terms of integer moments as

shown in literature (Ramírez and Carta, 2006). This implies some moments (e.g., the first-four or

first-six) should be accurately determined to identify the parent distribution. It is well known that

the estimation error is increasing with the order of moment. To overcome the shortcoming of the

integer moments, a general entropy method with the constrains specially in terms of fractional

moments (ME-FM) has been proposed to estimate the parent distribution.

The Lagrangian function associated with the MaxEnt problem is given as

L
�
�;˛IfX.x/

�
D �

Z
X

fX.x/ log
�
fX.x/

�
dx � .�0 � 1/

� Z
X

fX.x/dx � 1

�
�

mX
iD1

�i

� Z
X

x˛ifX.x/dx �M
˛i

X

� (3.18)

where � D Œ�0; �1; � � � ; �m�
T are the Lagrange multipliers and ˛ D Œ˛1; ˛2; � � � ; ˛m�

T are the

fractional exponents.

A key condition for optimal solution is

@L
�
�;˛IfX.x/

�
@fX.x/

D 0 (3.19)

which leads to the following estimate, yfX.x/, of the true PDF

yfX.x/ D exp
�

�

mX
iD0

�ix
˛i

�
.˛0 D 0/ (3.20)
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Note that

�0 D log
� Z

X

exp
�

�

mX
iD1

�ix
˛i

�
dx
�

(3.21)

It is derived from the normalization condition that the PDF must integrate to one. An interesting

point is that the fractions ˛i .i D 1; � � � ; m/ need not be specified a priori, rather they can be

determined as a part of the entropy maximization process (Inverardi and Tagliani, 2003).

3.3.3 Parameter Estimation Algorithm

To implement this idea of MaxEnt with fractional moment (ME-FM), an alternate formulation is

developed based on the minimization of the Kullback-Leibler (K-L) divergence between the true

PDF, fX.x/, and its estimator, yfX.x/, given as

KŒf; yf � D

Z
X

fX.x/ log
�
fX.x/

ı
yfX.x/

�
dx

D

Z
X

fX.x/ log
�
fX.x/

�
dx �

Z
X

log
�

yfX.x/
�
fX.x/dx

(3.22)

Substituting for yf .y/ from Eq.(3.20), the K-L divergence can be written in a compact form as

KŒf; yf � D �HŒf �C �0 C

mX
iD1

�iM
˛i

X (3.23)

where HŒf � is the entropy of the true PDF fX.x/ that is independent of � and ˛. Therefore,

minimization of the K-L divergence implies minimization of the following function

I.�;˛/ D KŒf; yf �C HŒf � D �0 C

mX
iD1

�iM
˛i

X (3.24)

Therefore, parameters of the MaxEnt distribution can be obtained by8̂̂<̂
:̂

Find: f˛ig
m
iD1 and f�ig

m
iD1

Minimize: I.�;˛/ D log
� Z

X

exp
�

�

mX
iD1

�ix
˛i

�
dx
�

C

mX
iD1

�iM
˛i

X

(3.25)

This optimization is carried out in MATLAB© with the simplex search method (Lagarias

et al., 1998), since it is a direct search method that does not use the gradient information.
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3.4 Generalized Pareto Distribution

The example is developed to examine the accuracy of ME-FM in approximating the generalized

Pareto distribution.

3.4.1 Parent Distribution

A random variable X distributed as the generalized Pareto distribution if its PDF is given as

fX.x/ D
1

�

�
1 �

ı

�
x
�1=ı�1

(3.26)

where � and ı are the scale and shape parameters of the distribution, respectively. The variable

X takes values in the range 0 6 X < C1 for ı < 0 and 0 6 X 6 �=ı for ı > 0. The special

case of ı being zero yields the Exponential distribution. The distribution is a logical choice

for modeling flood magnitude that exceed a fixed threshold when the successive floods follow a

Poisson process and have independent magnitudes (Rao and Hamed, 2000).

An ˛th order fractional moment of the distribution, then, is analytically determined as8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

M ˛
X D

�˛ı�.1C˛/�.1=ı/�.˛ C 1/

�.1=ı C ˛ C 1/
ı > 0

M ˛
X D �˛�.˛ C 1/ ı D 0

M ˛
X D

�˛.�ı/�.1C˛/�.�1=ı � ˛/�.˛ C 1/

�.�1=ı C 1/
ı < 0

(3.27)

as well as the entropy:

HŒf � D 1 � ı C log.�/ (3.28)

If scale parameter � D 1:0, entropy of the Pareto distribution only depends on the shape param-

eter HŒf � D 1 � ı.

3.4.2 MaxEnt Distribution

Since the Pareto distribution is known to have a long and heavy tail, it can not be reconstructed

form a small number of integer moments. To illustrate this, the COV, skewness, kurtosis and

entropy of Pareto distribution are reported in Table 3.4 for various values of shape parameter

ı. In the present case of ı D �0:2 and scale parameter � D 1:0, kurtosis and skewness of the
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Table 3.3: Moments of the Pareto distribution: Scale parameter � D 1:0

Shape Parameter Entropy Moments of the Pareto Distribution

ı HŒf � COV Skewness Kurtosis

0.2 0.8 0.85 1.18 4.20

0.1 0.9 0.91 1.52 5.78

�0:1 1.1 1.12 2.81 17.83

�0:2 1.2 1.29 4.65 73.80
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  ME−IM (m = 5)

  Exact

Figure 3.1: Approximation of the generalized Pareto distribution with ME-IM method. (ME-IM:

Method of MaxEnt with integer moment;m: The number of integer moment used by the MaxEnt

method; Parameters of the Pareto distribution: ı D �0:2, � D 1:0, and its COV D 1:29.)

distribution are 73:80 and 4:65, respectively. The tail heaviness of the distribution is increasing

with the decrease of shape parameter ı.

The semi-log plot of POE determined by using various orders of integer moment is presented

in Figure 3.1. Although the general shape of the Pareto distribution is will approximated, the

attention is focussed on the distribution tail. The MaxEnt distribution obtained with integer

moments is reasonable up to POE of 10�2, and beyond this in the far tail region it underestimates
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the exceeding probabilities (Pandey, 2000, 2001b; Pandey et al., 2001). To overcome the problem

of MaxEnt with integer moment, the proposed method of ME-FM is employed to reconstruct the

parent distribution.

Table 3.4: MaxEnt PDF of the generalized Pareto distribution: Scale parameter � D 1:0

Shape Parameter KŒf; yf � k 0 1 2 3

ı D 0:2 1:03 � 10�6 �k �1:9673 2:0350 0:8252 0:0023

˛k �� 0:0072 1:1992 4:9025

M
˛k

X �� 0:9952 0:8682 11:294

ı D 0:1 4:55 � 10�6 �k 0:0066 0:9572 0:2177 �0:2313

˛k �� 1:0576 2:4380 2:3412

M
˛k

X �� 0:9249 2:1172 1:9573

ı D �0:1 �6:41 � 10�8 �k 0:0025 1:1687 0:1435 �0:2658

˛k �� 1:0299 1:9185 1:8004

M
˛k

X �� 1:1311 2:5215 2:2054

ı D �0:2 �2:95 � 10�8 �k �0:0002 5:1283 1:9088 �5:9398

˛k �� 1:2070 1:4603 1:3437

M
˛k

X �� 1:4967 1:9628 1:7210

Assumed that scale parameter � D 1:0, and various values of shape parameter are considered.

The corresponding MaxEnt parameters, i.e., ˛ and �, are summarized in Table 3.4. Comparisons

of the MaxEnt distribution with the exact parent distribution are depicted in Figure 3.2.

As expected, the determined distribution with the proposed ME-FM are fairly close to the

benchmarks of the Pareto distribution. The tail heaviness, in the present notation, is inversely

proportion to the shape parameter. For instance, a distribution with ı D �0:2 has much heavier

tail than that of ı D 0:2. As shown in Figure 3.2, it is clear to see that the proposed ME-FM

method can accurately model the heavy tail distribution with three-order of fractional moments.

Therefore, this approach is robust to the shape parameter of the Pareto distribution.

3.5 Weibull Distribution

The example examines the performance of ME-FM by considering Weibull distribution. Scale

parameter of the distribution is fixed as � D 6:0. If ı D 1, the Weibull distribution denotes as
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(a) The Generalized Pareto Distribution: ı D 0:2
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(b) The Generalized Pareto Distribution: ı D 0:1
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(c) The Generalized Pareto Distribution: ı D �0:1
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(d) The Generalized Pareto Distribution: ı D �0:2

Figure 3.2: Approximation of the generalized Pareto distribution with ME-FM method (ME-FM:

Method of MaxEnt with fractional moments; Scale parameter of the distribution: � D 1:0.)

the Exponential distribution, and ı D 2, it is corresponding to the Rayleigh distribution.

An ˛th order fractional moment of the Weibull distribution is given as

EŒX˛� D �˛
ˇ̌
�.1C ˛=ı/

ˇ̌
(3.29)

together with its entropy:

HŒf � D 1C .1 � 1=ı/C log.�=ı/ (3.30)
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where  is the Euler-Mascheroni constant.

3.5.1 MaxEnt Distribution

The Weibull distribution with various shape parameters are reconstructed by using the proposed

method of ME-FM. Given one or two orders of fractional moment, parameters of the MaxEnt

approximation, namely, the fractional exponents (˛) and the Lagrange multipliers (�) are sum-

marized in Table 3.5. The curves of probability of exceedance (POE) are depicted in Figures

3.3.

According to POE curves in Figure 3.3, one can see that Weibull distributions determined by

ME-FM are highly accurate as compared to the analytic results. Especially for ı D 1, in which

the case is corresponding to the Exponential distribution, the proposed method of ME-FM with

one order of fractional moment can be believed to reconstruct the parent distribution in the entire

domain. For other values of shape parameter (i.e., ı > 1), the accuracy of ME-FM with one

fractional moment has been deteriorated in terms of tail estimation, i.e., POE 6 10�2. However,

after using two-order of fractional moments (i.e., m D 2) as the constraints in MaxEnt formu-

lation, the close agreement between ME-FM and benchmark result highlights the superiority of

using fractional moment in parent distribution construction. In summary, probabilistic infor-

mation contained in a Weibull variable can be exactly condensed by using two-order fractional

moments.

With the determined fractional exponents of the MaxEnt densities, one should note that a

Weibull distributed random variable can be accurately represented by using one fractional expo-

nent approximately around its scale parameter, i.e., ˛1 � ı, as well as a fraction around zero.

Therefore, letting the scale parameters ı vary from 1 to 4, the optimized values of ˛ contain

1:0, 2:0016, 3:0133 and 4:0072, respectively. The fractional exponent, which is closed to the

corresponding shape parameter, is referred to as the characteristic fraction of the distribution.

Can we represent a Weibull distribution only by using the characteristic fractional exponent?

Or alternatively, what is the role of the small fraction as representing the parent distribution? To

answer the question, one can recall that a general expression of a MaxEnt PDF associated with

two fractional moments is:

yfX.x/ D exp
�

� �0 � �1 x
˛1 � �2 x

˛2
�

Take the Rayleigh distribution (i.e., ı D 2:0) as an example, substituted for the optimized �
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(a) Exponential Distribution: ı D 1:0
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(b) Rayleigh Distribution: ı D 2:0
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(c) Weibull Distribution: ı D 3:0
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(d) Weibull Distribution: ı D 4:0

Figure 3.3: MaxEnt approximation of the Weibull distribution with various shape parameters:

Scale parameter � D 6:0

and ˛, one can realized the MaxEnt density as

yfX.x/ D exp
�
701:91 � 704:80 x�1:4188�10�3

� 0:0276 x2:0016
�

The corresponding limit of x ! 0C (since X is a positive random variable) can determine the

value of fX.0/ as

lim
x!0C

yfX.x/ D 0 (3.31)
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Table 3.5: MaxEnt approximation of Weibull distribution
Distribution No. of FMs KŒf; yf � k 0 1 2

Exponential m D 1 3:7 � 10�10 �k 1:7918 0:1667 ��

(ı D 1:0) ˛k �� 1:0 ��

M
˛k

X �� 6:0 ��

Rayleigh m D 1 7:6 � 10�2 �k 2:2151 8:9671 � 10�5 ��

(ı D 2:0) ˛k �� 4:0291 ��

M
˛k

X �� 2767:8 ��

m D 2 4:4 � 10�9 �k �701:91 704:80 0:0276

˛k �� �1:4188 � 10�3 2:0016

M
˛k

X �� 0:9979 36:114

Weibull m D 1 2:1 � 10�1 �k 2:1649 1:9660 � 10�8 ��

(ı D 3:0) ˛k �� 7:9747 ��

M
˛k

X �� 6:3783 � 106 ��

m D 2 4:2 � 10�7 �k �229:67 233:95 4:4652 � 10�3

˛k �� �8:5894 � 10�3 3:0133

M
˛k

X �� 0:9864 221:64

Weibull m D 1 3:5 � 10�1 �k 2:1083 2:5018 � 10�12 ��

(ı D 4:0) ˛k �� 12:427 ��

M
˛k

X �� 3:2164 � 1010 ��

m D 2 6:9 � 10�8 �k �722:01 727:79 7:5797 � 10�4

˛k �� �4:1369 � 10�3 4:0072

M
˛k

X �� 0:9932 1313:8

which is due primarily to the small negative-valued fractional exponent ˛1 D �1:4188 � 10�3.

Together with other two conditions:

lim
x!C1

yfX.x/ D 0 and
Z

X

yfX.x/dx D 1 (3.32)

the three expressions are the nominal conditions for a valid MaxEnt density. In addition, Piegorsch

and Casella (1985) proved that the bounded value of fX.0/ is the sufficient condition to guarantee

the existence of fractional moment of a positive random variable.

In a summary, the small-valued fractional exponent guarantees a close form of a MaxEnt dis-

tribution at its LHS tial, i.e., fX.0/ D 0. However, a special case can be seen for the Exponential

distribution, which fX.0/ > 0. Therefore, only one order of fractional moment can precisely
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represent the special case of Weibull distribution.

Accuracy of the proposed method on a parent distribution estimation can also be checked by

using the Kullback-Leibler divergence as defined in Eq.(3.22). The small values of K-L diver-

gences (i.e., KŒf; yf � 6 10�7) in Table 3.5 are further validated the proposed ME-FM method in

estimation of a parent distribution.

3.5.2 Experiment on Quantile Estimation

Quantile function (QF) of a random variable can be defined as the inverse function of CDF:

x.POE/ D F �1
X

�
1 � POE

�
(3.33)

where F �1
X .x/ is the inverse CDF of X ; and POE is shorted for the probability of exceedance.

The section is designed to estimate QF of Weibull distribution from a small number of sam-

ples, since that in engineering reality, one can only collect a small number of observations (e.g.,

strength property of concrete) of a quantity to be employed for a qantile estimate corresponding

to a small failure probability (e.g., POE 6 10�3).

In order to quantify that how well an estimate of QF, i.e., yX (POE), can approximate its

exact counterpart, X (POE), the statistical errors of bias and root mean square error (RMSE)

are employed to examine the accuracy and efficiency through a simulation experiment (Pandey,

2001a): 8̂̂̂<̂
ˆ̂:

Normalized Bias D
EŒ yX � x�

x
D

1

N

NX
kD1

�
yxk

x
� 1

�
Normalized RMSE D

1

x

q
EŒ. yX � x/2�

(3.34)

The procedure of the Monte Carlo experiment is briefly described as follows. A set of random

numbers with size N is simulated from a known distribution, e.g., the Weibull distribution, with

preselected parameters. From the sample, fractional moments of order m are estimated and ME-

FM can determine an approximate of the parent distribution. The interested quantile value, then,

can be computed form the MaxEnt and benchmark distributions, respectively. The simulation is

repeated 100 cycles to estimate the corresponding bias and RMSE.

Consider an estimation of quantile with distribution parameters � D 6 and ı D 3. The

sample size (N ) in each round of experiment is varied from 20 to 100. MaxEnt with three-

order fractional moments (ME-FM) is employed to approximate the parent distribution. Design

quantiles corresponding POE D 10�2, 10�3, 10�4, 10�5 and 10�6 are estimated. The determined
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normalized bias versus the sample size .N / are depicted in Figure 3.4, as well as the normalized

RMSE in Figure 3.5. To check the performance of ME-FM, results provided by using integer

moments (ME-IM) are also provided.
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Figure 3.4: Normalized bias of Weibull quantile function for the varied target POEs

Given the normalized bias in Figures 3.4, it is clear to see that ME-FM is far more accurate

than ME-IM corresponding to the target failure probabilities. Taken POE D 10�6 as an example,

the largest bias of the quantile estimates is less than 6% by ME-FM, which is increased to 15%

as employing ME-IM. Therefore, it has illustrated the superiority of using fractional moment to

extract uncertainty information from a small number of samples.

Figures 3.5 reported the corresponding RMSEs provided by using the ME-FM and ME-IM,

respectively. The plot is useful to study the efficiency of each method in the tail estimation.

With plots in Figure 3.5, one can see that method of ME-FM is much more efficient than ME-

IM. Even for a target POE D 10�6, the ME-FM has very small REMS (6 6%), whereas the

REMS of ME-FM is double around 12%. Therefore, the method of ME-FM can be believed to

accurately construct a quantile function in an efficient manner.

3.6 Lognormal Distribution

The section evaluates the accuracy of ME-FM for distribution approximation by considering the

Lognormal example. One should note that Lognormal distribution cannot be totally characterized
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Figure 3.5: Normalized RMSE of Weibull quantile function for the varied target POEs

by using integer moments (Heyde, 1963).

3.6.1 Fractional Moment

Assume that parameters of the Lognormal distribution are � D 0 and � D 1:0, respectively.

Using the analytical formula in Eq.(3.13) and a simulation method (e.g., N D 105 of samples),

an ˛th fractional moment, M ˛
X and its estimate yM ˛

X can be calculated, respectively.

Figure 3.6 depicted the simulated moment of the Lognormal distribution given the fractions

�1 6 ˛ 6 1. Compared with the benchmarks, it is clear to see the negative and positive

fractional moments can be reliably estimated by using the simulation method.

To further study the simulation-based method in calculation of the fractional moments, a

Monte Carlo experiment is conducted to estimate the corresponding bias and RMSE. In 100

cycles of the experiment, samples in size of 20 to 100 are simulated. Figure 3.7 reported the

corresponding normalized bias and RMSE in the fractional moment calculation.

Given the plot of normalized bias in Figure 3.7(a), one can see that the fractional moment

can be reliably estimated by using a small size of samples. The normalized bias is less than 2%

as compared to the benchmarks. Furthermore, the RMSE decreases with the decreasing of the

absolute value of fractional exponent as shown in Figure 3.7(b).
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Figure 3.7: Normalized errors of fractional moment with simulation method
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3.6.2 MaxEnt Distribution

Given parameters � D 0 and � D 1, entropy of the Lognormal distribution is HŒf � D 1=2 C

�C1=2 log.2��2/ D 1:4189. Mean and standard deviation of the random variable are � D 1:65

and � D 2:16, respectively, and thus the COV is 1:31. The distribution is highly skewed with a

heavy tail, which leads to the problem in approximating its upper quantiles (e.g., POE 6 10�3)

with integer moments as shown in literature (Heyde, 1963).

ME-FM with various orders of fractional moment (i.e., m D 1; 2; 3) is employed to approx-

imate the heavy tail distribution. Comparing with the benchmark, results using the method of

MaxEnt with integer moment (ME-IM) are also determined. The optimized parameters of Max-

Ent distribution are summarized in Table 3.6. The curves of POE are depicted in Figure 3.8.

Table 3.6: MaxEnt estimates of the Lognormal distribution with ME-FM and ME-IM
Method # of Moments KŒf; yf � k 0 1 2 3

ME-FM m D 1 7:56 � 10�2 �k 0:3376 0:7963 �� ��

˛k �� 0:8644 �� ��

M
˛k

X �� 1:4529 �� ��

m D 2 6:31 � 10�5 �k �17:596 12:566 5:9560 ��

˛k �� 0:2073 �0:2691 ��

M
˛k

X �� 1:0217 1:0369 ��

m D 3 2:16 � 10�6 �k �17:451 18:142 �7:3668 7:5955

˛k �� 0:3080 0:3893 �0:2265

M
˛k

X �� 1:0486 1:0787 1:0260

ME-IM m D 3 6:10 � 10�2 �0 ��3 0:3623 0:7602 �0:0208 0:0002

M 1
X �M 3

X �� 1:6487 7:3891 90:017

m D 5 6:05 � 10�2 �0 ��3 0:3565 0:7668 �0:0216 0:0002

M 1
X �M 3

X �� 1:6487 7:3891 90:017

�4 ��5 �� �� 1:55 � 10�6 �1:65 � 10�8

M 4
X �M 5

X �� �� 2:98 � 103 2:68 � 105

ME-FM: Method of MaxEnt with fractional moment; ME-IM: Method of MaxEnt with integer moment.

In the method of ME-IM, the fractions are integers, i.e., ˛ D 1; 2; � � � ; m.

According to K-L divergences listed in Table 3.6, it is clear to see that KŒf; yf � decreases

very fast with the increase of the employed number of fractional moments in ME-FM. With
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three order of fractional moments, an accurate approximation of the heave tail distribution can

be obtained in the order of POE > 10�5 (refer to in Figure 3.8 for details). In addition, the value

of fractional exponents (˛) in the process are also decreased. A small value of fraction is helpful

if using a small size of samples to estimate the corresponding fractional moment.
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Figure 3.8: Approximation of Lognormal distribution with MaxEnt method (ME-FM: Method

of MaxEnt with fractional moment; ME-IM: Method of MaxEnt with integer moment).

Compared to the results determined by ME-FM, ME-IM revealed its inaccuracy in the heavy

tail approximation. Given three order of integer moments, ME-IM determines a large KŒf; yf �,

which is nearly identical with ME-FM with only one order of fractional moment, i.e., 6:10�10�2

versus 7:56 � 10�2. In addition, as increase the order of integer moments .m/ from three to five,

K-L divergences have shown a slow rate of convergence.

3.6.3 Experiment on Quantile Estimation

To examine the accuracy and efficiency of fractional moment in modelling the heavy distribu-

tion, the Monte Carlo experiment was also carried out to estimate the upper quantiles with a

small sample size. Considering that the values of POE are varying from 10�2 to 10�6, the corre-

sponding normalized bias and RMSE are reported as shown in Figures 3.9 and 3.10, respectively.
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(b) MaxEnt with Three Integer Moments

Figure 3.9: Normalized bias of the estimates of quantile function with the methods of ME-FM

and ME-IM.

20 30 40 50 60 70 80 90 100
0.04

0.06

0.08

0.10

0.12

0.14

N
o

rm
al

iz
ed

 R
M

S
E

Sample Size

 

 

1E−2 1E−3 1E−4 1E−5 1E−6

(a) MaxEnt with Three Fractional Moments

20 30 40 50 60 70 80 90 100
0 

0.2

0.4

0.6

0.8

1.0

N
o

rm
al

iz
ed

 R
M

S
E

Sample Size

 

 

1E−2 1E−3 1E−4 1E−5 1E−6

(b) MaxEnt with Three Integer Moments

Figure 3.10: Normalized RMSE of the Lognormal quantiles for the varied target POEs

The experiment involved 100 cycles simulation, in which the varied sample size (N ) was

studied. It is interesting to note from Figure 3.9(a) that the quantiles estimated with ME-FM are

within 10% error for the entire range of POEs. In addition, the small values of RMSE obtained

in Figure 3.10 are further highlighted the efficiency of ME-FM in qunatile estimation. Compared

to the results determined by ME-IM method, the use of fractional moment has greatly improved
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the accuracy and efficiency of a quantile estimate.

Nominal value of mechanical design load, e.g., live & dead loads, and material property

correspond to a POE in the orders of 10�3 or less. Therefore, the proposed ME-FM approach

can provide reliable estimates of such nominal values form a very small samples that are belong

to a general distribution.

3.7 Conclusion

The Chapter presents a distribution free method to model a parent distribution of a random vari-

able. The approach is a moment method, but using the fractional moment instead of integer

moment so far in literature. The unknown parent distribution is approximated using the prin-

ciple of maximum entropy (MaxEnt) subject to the constraints specified in terms of fractional

moments of a small observations. Compared to the classical methods based on integer moments,

the small values of fractional exponent guarantees the reliable estimates of fractional moment

from a small samples.

Efficiency of the proposed method was examined by using a series of simulation experiments.

The normalized root mean square error (RMSE) of quantile estimates provided by various sample

sizes, i.e., 20 6 N 6 100, were determined. Compared to the benchmark results, the small

RMSEs of quantile values were verified the efficiency of the proposed method.
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Chapter 4

System Reliability Analysis of Mechanisms

4.1 Introduction

4.1.1 Background

Mechanisms are widely used to improve the production efficiency and accuracy of repetitive

processes in industries, such as automobile and aerospace manufacturing, various types of as-

sembling plants and computer-aided medical surgery.

A mechanism consists of several links and joints to transmit the motion or force from one

link to another. The links and the connections at the joints are not perfectly accurate due to the

manufacturing tolerances, material deformation and wearing over the service life of the mech-

anism. The uncertain variations affect the positional and directional control (or kinematics) of

the motion performed by the mechanism. As a result, actual motion output of the mechanism

deviates from the target output required by the design. This deviation between actual and target

performance of the mechanism is referred to as output error in the study.

High precision is often required in mechanism applications (Hirschhorn, 1962). A mech-

anism consists of several rigid links and joints to transmit the motion or force from one point

to another. The connections at the joints are not perfectly accurate due to the manufacturing

tolerances, material deformation and wearing over the service life of the robot. The uncertain

variations in dimensions of links and joint clearances affect the positional and directional control

(or kinematics) of the motion performed by the mechanism.

Randomness in dimensions and clearance in joints will lead to unacceptable performance of

mechanism. As a result, actual motion output of the manipulator deviates from the target output
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required by the design. This deviation between actual and intended positions of the end-effector

is referred to as positional error. Consequently, Dhande and Chakraborty (1973) proposed an

optimization procedure to allocate the random tolerances so that the output error is within a spec-

ified limit (Faik and Erdman, 1991). In the contributions (Dubowsky et al., 1975; Freudenstein,

1954; Lee and Freudenstein, 1976a,b), an identification procedure was developed to identify the

sources of poor mechanism performance due to the random clearance. Choi et al. (1998) em-

ployed the clearance vector model to analyze the effectiveness of tolerance on the performance

of system output.

The reliability of manipulator kinematics is defined as the probability that the manipulator

realizes its required motion path or trajectory within a specified tolerance range (Rao and Bhatti,

2001). The shape and size of specified range (or safety region) depend on the intended use of

the manipulator. The reliability can be defined in two ways. The point reliability means that

reliability is evaluated with reference to a particular point on the trajectory of the output motion,

whereas the system reliability considers the reliability over a range of output motion.

In the point reliability analysis, Kim et al. (2010) applied the first-order reliability method

(FORM) to compute the reliability of an open-loop manipulator with six degrees of freedom.

Here, all geomantic dimensions and joint angles were considered as normally distributed. By

combining the Monte Carlo simulations with Kriging method, Lai and Duan (2011) analyzed

the reliability of a turning machine with a random coefficient of friction. Wu and Rao (2007)

discussed optimal allocation of tolerances to joint angles by modeling them as interval variables.

Huang and Zhang (2010) applied the Taguchi method to determine optimal specifications for a

function generation mechanism under the constraints of positional accuracy and assembly cost.

Mechanism system reliability analysis is computationally demanding, because the failure

region is represented by multiple performance functions. Literature in this area is rather limited.

Zhang et al. (2011a) utilized a stochastic process to describe the positional error along the whole

range of mechanism outputs. Considering a mechanism with Normal variables, the linearized

limit state function also follows the Gauss distribution. The first-order second moment (FOSM)

method, then, can be employed to perform the point reliability analysis. As consider the whole

range of outputs, the Poisson process is further assumed to describe the events of output error

up-crossing and down-crossing of a design limit. The corresponding counted numbers for the

occurrences of failure event in disjoint intervals are independent (Cox and Isham, 1980; Snyder,

1975). Together with the calculated “point” reliability index, calculation of the crossing-rate was
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developed in literature by using a general parallel system (Andrieu-Renaud et al., 2004; Rackwitz

and Flessler, 1978; Sudret, 2008a). This approach was applied to analyze the system reliability

of a four-bar function generator.

4.1.2 Motivation and Approach

Since a mechanism is designed for repetitive work, it may be necessary in most cases that error

is controlled in the entire trajectory, instead of a point. This provides motivation for cumulative

or system reliability analysis of the mechanism. Approximate methods, such as FORM, is not

adequate to analyze a large system reliability problem (Kim et al., 2010). The first-order second

moment (FOSM) method is of limited applicability, as it is based on a spurious assumption of

the normality of the positional error.

The key objective of this study is to develop a computationally efficient and accurate method

for the cumulative (or system) reliability analysis of mechanisms. The developed method should

be able to deal with a large number of implicit and correlated performance functions defining the

system reliability.

In the study, the cumulative reliability analysis is formulated as a series system reliability

problem. The study shows that the series system reliability is equivalent to the probability that

the maximum positional error in the entire trajectory is less than a specified limit.

The distribution of maximum positional error is derived using the maximum entropy (Max-

Ent) principle, widely used in probabilistic analysis. A novel feature of the study is the use of

fractional moments as constraints, instead of integer moments commonly used in the entropy lit-

erature. To compute fractional moments of the positional error, a small sample of positional error

is simulated based on the model of manipulator kinematics. The Chapter shows that proposed

method is highly efficient, and it achieves the same accuracy as that obtained by a large scale

Monte Carlo simulation method.

4.1.3 Organization

The Chapter has been organized as follows. Section 4.2 describes the kinematic model and joint

clearance analysis of a six degrees of freedom elbow manipulator. Section 4.3 summarizes basic

information for the system reliability analysis of a manipulator. A method based on the extreme

event distribution is formulated to evaluate the mechanism reliability by using the maximal po-

63



sitioning error along the entire output trajectory of the end-effector. To estimate the maximal

output error distribution, the principle of maximum entropy (MaxEnt) with fractional moment

(ME-FM) proposed in Chapter 3 is employed. Numerical result on the system reliability analysis

of an elbow manipulator is presented in Section 4.4. Section 4.5 further examines the proposed

method by the examples of slider-crank mechanism and a four-bar linkage. And conclusions are

summarized in the last Section.

4.2 Model of a Mechanism

A space serial manipulator taken from Kim et al. (2010) is illustrated in Figure 4.1. A similar

example was presented by Wu and Rao (2007).
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Figure 4.1: A six degree-of-freedom elbow manipulator
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4.2.1 Kinematic Analysis

Kinematic equations of an open-chain manipulator are described by the Denavit-Hartenberg (D-

H) matrix in terms of position and orientation as (Craig, 2005)

Ti
i�1 D

266664
cos.�k/ � cos.'i/ sin.�k/ sin.'i/ cos.�k/ ai cos.�k/

sin.�k/ cos.'i/ cos.�k/ � sin.'i/ cos.�k/ ai sin.�k/

0 sin.'i/ cos.'i/ di

0 0 0 1

377775
4�4

(4.1)

where, ai , di , 'i and �i are the D-H parameters. The coordinates of the positions of the end-

effector can be written as a product of D-H matrices for all the links:

TEnd D T1
0 � T2

1 � � � � � Tl
l�1 D

"
n s a p
0 0 0 1

#
(4.2)

where a, n and s denote the vectors of a frame attached to the end-effector as follows. a is chosen

in the approach direction to object, s is normal to a in the sliding plane, n is normal to a and s,

vector p provides the positional coordinates.

Table 4.1: Ranges of rotation angles �1 and �5

A!B B!C C!D D!E

�1 0ı Œ0ı W 5ı W 70ı� 70ı Œ70ı W �5ı W 50ı�

�5 Œ0ı W �5ı W �45ı� �45ı Œ�40ı W 5ı W 30ı� 30ı

To illustrate a specific example of the trajectory of the end-effector, the following values of

the D-H parameters are assumed: a1 D a5 D a6 D 0mm, a2 D 475mm, a3 D 500mm,

a4 D 175mm, d1 D d3 D d4 D d5 D 0mm, d2 D 300mm, d6 D 450mm, '1 D 90ı,

'5 D �90ı, '2 D '3 D '4 D '6 D 0ı, and �2 D 90ı, �3 D 0ı, �4 D �135ı and �6 D 0ı.

Driven by motors at the 1st and 5th joints (represented by �1 and �5 ), the end-effector can realize

complicated trajectories of motion.

The position of end effector is changed by varying �1 and �5 as per the rule described in Table

4.1. The resulting trajectory from A to E has 45 discrete positions, as shown in Figure 4.2. For a

specific location, the position of the end-effector can be obtained using data given in Table 4.2.

These are basically the design targets for positions of the end effector.
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Figure 4.2: Target trajectory of the end-effector of the elbow manipulator

Table 4.2: Coordinates of various positions of the end-effector
Locations A B C D E

px (mm) 441:94 573:74 478:14 364:07 384:22

py (mm) �300:00 �300:00 436:54 123:12 �8:8230

pz (mm) 1169:5 851:26 851:26 1285:9 1285:9

4.2.2 Clearance Analysis

The effect of the joint clearance is to introduce variability in the rotation angle. However, the

range of this variation is related to the clearance circles, as shown in Figure 4.3(a) for two ad-

jacent joints. Here consider that angle �k and dimension ak are take the values � 0
k

and a0
k
,

respectively, due to the clearance circles at the kth and .k C 1/th joints. For sake of simplicity,

first consider in Figure 4.3(b) that, a0
k

D ak, i.e., no dimensional variability. Suppose centres

of clearance circles, Ok and OkC1, vary between the bounds Omin
k

, Omax
k

and Omin
kC1

, Omax
kC1

. This

would cause variation in �k between �min
k

and �max
k

, in the following way:8<:�min
k

D �k � sin�1
�
.Rk CRkC1/=ak

�
�max

k
D �k C sin�1

�
.Rk CRkC1/=ak

� (4.3)

66



ak

ak
’

qk
’

qk

kth joint

k+1th joint

Clearance Circle

Clearance Circle

−xk

’

O    k+1

xk+1

O  k

−xkxk+1’ ’

− yk
yk+1

−y
k

y
k+1
’ ’

’O    k+1

O  k

O    k+1
’

(a) Joint clearance

O    k+1

qk

max

min

O    k

max

O  k

k+1th joint

qk

qk
min

kth joint

a
k

O    k+1

l1

l2

R
k

R
k+1

O    k+1
max

O    k

min

qk

(b) Variation of �k

Figure 4.3: Variation in the rotation angle due to joint clearance

It is reasonable to consider that �k is distributed in the interval
�

min;max
˚
�k ˙ sin�1Œ.Rk C

RkC1/=ak�
	�

. A kth rotation angle can be modeled as z�k D �k C "�k
(for k D 1; 5), where �k

is the nominal value and "�k
is the tolerance. Geometrical dimensions are modeled as normally

distributed. All these random variables are summarized in Table 4.3.

Table 4.3: Probability distributions of random variables
Links: Variable Distribution Mean (mm) Std.D (mm)

a2 Normal 475 0.475

d2 Normal 300 0.300

a3 Normal 500 0.500

a4 Normal 175 0.175

d6 Normal 450 0.450

Angular Error: Variable Distribution Lower Bound Upper Bound

"�1
Uniform �0:1ı 0:1ı

"�5
Uniform �0:1ı 0:1ı
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4.3 System Reliability Analysis

4.3.1 Performance Function

Use a general variable �k to represent a kth configuration as shown in Figure 4.2. Then, the target

trajectory is discretized by using 45 configurations in total. Suppose the coordinates of the kth

position of the end-effector are specified in the design as
�
pIdeal

x .�k/; p
Ideal
y .�k/; p

Ideal
z .�k/

�
. Be-

cause of random tolerance in joint and dimensions of links, actual coordinates of the kth position

become random variables, denoted as Œpx.X; �k/; py.X; �k/; pz.X; �k/�. Here, X denotes a vector

of random variables listed in Table 4.3.

The positional error is defined as the difference, r.X; �k/, between the target and actual posi-

tion of the end-effector. Thus,

r.X; �k/ D

q�
px.X; �k/ � pIdeal

x .�k/�
2

C Œpy.X; �k/ � pIdeal
y .�k/�

2
C Œpz.X; �k/ � pIdeal

z .�k/
�2

(4.4)

Manipulator’s performance is considered acceptable, if the positional error is less than a

critical limit r0. With this idea, a performance function in terms of the positional error at a kth

position can be defined as

g.X; �k/ D r0 � r.X; �k/ .k D 1; 2; � � � ; 45/ (4.5)

In this notation, the probability of unacceptable performance or “failure" can be defined as

PF .�k/ D Pr
�
g.X; �k/ 6 0

�
.k D 1; 2; � � � ; 45/ (4.6)

Note that PF .�k/ is referred to as the “point" probability of failure at the kth configuration of the

manipulator.

An example of probability of failure analysis for the point A of the elbow manipulator is

shown in Figure 4.4. A vector of random variables, X, is simulated from the distributions spec-

ified in Table 4.3, corresponding trajectory of the end effector is calculated from the kinematic

model, and positional error at point A, r.X; �1/, is evaluated.

In Figure 4.4, 2000 simulated samples of r.X; �1/ are plotted along with a sphere of radius

equal to the critical limit of position error, r0 D 2:0 mm. Thus, all instances of r.X; �1/ > r0

correspond to the failure of the manipulator to meet a specified degree of accuracy.

The system reliability is defined as the probability that the end-effector position lies within

a specified limit from the desired target for every point along a specified trajectory, such as that
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Figure 4.4: Illustration of failure criteria at point A of the trajectory of end-effector

shown in Figure 4.2. Or conversely, failure means that manipulator fails to meet the specified

accuracy at any point of its required trajectory. Thus, the probability of failure can be defined

similar to that of a series system with b (D 45) components as

P S
F D Pr

� b[
kD1

�
g.X; �k/ 6 0

��
(4.7)

Note that
˚
g.X; �1/; g.X; �2/; � � � ; g.X; �b/

	
are performance functions for b D 45 points defin-

ing the trajectory shown in Figure 4.2.

4.3.2 The Gradient-Based Methods

Considering a kth configuration of positioning output, the performance function can be linearized

at the mean-value of random variables as

g.X; �k/ � g.�; �k/C

nX
iD1

@g.x; �k/

@xi

.Xi � �i/ (4.8)
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When the configuration indicator �k is changing from 1 to b, the mean and standard deviation of

the kth limit state function g.X; �k/ can be approximated as8̂̂̂<̂
ˆ̂:
�g.�k/ � g.�; �k/

�g.�k/ �

p
nX

iD1

�
@g.x; �k/

@xi

ˇ̌̌̌
xD�

�i

�2 (4.9)

Then, the kth point reliability index determined by the FOSM method is given as ˇFOSM.�k/ D

�g.�k/=�g.�k/. And the corresponding point failure probability is:

PF .�k/ � ˆ
�

� ˇFOSM.�k/
�

D ˆ
h

�
�g.�k/

�g.�k/

i
(4.10)

where ˆ.�/ is the standard Normal cumulative distribution function.

Limitations of FOSM in the mechanism reliability analysis are two folds. At first, Eq.(4.8)

utilized the first-order Taylor series approximating g.X; �k/. The approximation overlooked the

distribution properties of random variable. Therefore, one will obtain the same moment values

of g.X; �k/ regardless of the change of distribution type of X. Secondly, failure probability

estimated by Eq.(4.10) with an assumption that g.X; �k/ follows the Normal distribution. The

assumption cannot be guaranteed except g.X; �k/ is a linear function and X are the Normal

variables. However, as shown by later examples, it is too optimistic to model the performance

function, g.X; �k/, using a linear function with respect to the input variables.

In addition FOSM, the first-order reliability method (FORM) is an approximate method of

reliability analysis that is widely used in civil engineering. One can refer to literature (Ditlevsen

and Madsen, 1996) for details. Although this approximation is quite accurate for a small number

of performance functions, its accuracy deteriorates as the number of functions exceeds a mod-

erate number (4 or 5). Therefore, FORM is not suitable for system reliability analysis of the

manipulator example considered in the study.

4.3.3 Monte Carlo Simulation

It is necessary in most cases that mechanical error of positional output is controlled in the entire

trajectory, instead of a few points. Approximate methods, such as FORM, is not adequate to

analyze a large system reliability problem. The FOSM method is of limited applicability, as it is

based on a spurious assumption of the normality of positional error.
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Mont Carlo simulation, however, has been extensively employed in reliability analysis. Im-

plementation of Monte Carlo simulation for mechanism system reliability analysis can be de-

scribed as follows:

� Kinematic analysis: Determine the close-loop function and ideal output of the mechanism.

� Mechanical error analysis: An i th input parameter is realized by the summation of its nom-

inal value zi and the error "i , i.e., zxi D xi C "i . One should note that the uncertainty can

exist in both of zi and "i . The real input parameters allow to calculate the corresponding

actual output trajectory of the mechanism.

� Point reliability analysis: Define an indicator 1fgk.X;�k/60g

�
x.i/
�

D 1 and zero otherwise

for an i th sample of random variables. Point failure probability of the kth configuration,

then, can be estimated by yPF .�k/ D
P

1fgk.X;�k/60g.x/=N .

� System reliability analysis: Indicating function of system failure is 1˚Sb
kD1Œgk.X;�k/60�

	�x.i/
�

D

1 and zero otherwise. The indicator is null only for all limit state functions are greater than

zero. System failure probability, then, is estimated as yP S
F D

P
1Sb

kD1Œgk.X;�k/60�

�
x
�
=N .

The procedure of Monte Carlo simulation will be employed to provide the benchmark results in

the study.

4.3.4 Proposed Method based on Extreme Event Distribution

Suppose a random variable, Y , denotes the maximum positional error in the entire trajectory of

the end effector, i.e.,

Y D max
˚
r.X; �1/; r.X; �2/; � � � ; r.X; �b/

	
(4.11)

The system reliability analysis can be reformulated as

P S
F D Pr

� b[
kD1

�
g.X; �k/ 6 0

��
� PrŒY > r0� D 1 � FY .r0/ (4.12)

where, FY .y/ is the cumulative distribution function (CDF) of Y , which is an extreme event

distribution of the positional error.

The proposed method is inspired by the work of Li et al. (2007), who clearly explained the

idea that system reliability analysis involving multiple performance functions can be recast in
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terms of an equivalent function involving the maximum (or minimum as the case may be) of all

performance functions.

Using a simple system involving only two performance functions, the system probability of

failure can be evaluated as

P S
F D Pr

˚
Œg.X; �i/ 6 0� [ Œg.X; �j / 6 0�

	
D Pr

˚
Œr.X; �i/ > r0� [ Œr.X; �j / > r0�

	 (4.13)

Note that r.X; �i/ and r.X; �j / are correlated as they are the functions of common vector X.

Let fij .ri ; rj / denote the joint density function of r.X; �i/ and r.X; �j /, such that the system

failure probability can be obtained from the following integration:

P S
F D Pr

˚
Œr.X; �i/ > r0� [ Œr.X; �j / > r0�

	
D

Z 1

r0

Z 1

�1

fij .ri ; rj /dridrj C

Z r0

�1

Z 1

r0

fij .ri ; rj /dridrj
(4.14)

See Figure 4.5 for explanation about the integrating domain.

r(X, τ )i

O r0

Failure Region

Safe Region

r(X, τ )j

r0

Figure 4.5: Failure region represented by r.X; �i/ and r.X; �j /

Define rmax.X/ D max
˚
r.X; �i/; r.X; �j /

	
. This is:

rmax.X/ D

8<:r.X; �i/ if r.X; �i/ > r.X; �j /

r.X; �j / if r.X; �i/ < r.X; �j /
(4.15)
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As illustrated in Figure 4.5, the probability of Pr
�
rmax.X/ > r0

�
can be determined as

Pr
�
rmax.X/ > r0

�
D

“
ri >rj ;ri >r0

fij .ri ; rj /dridrj C

“
ri <rj ;rj >r0

fij .ri ; rj /dridrj

D

Z 1

r0

Z ri

�1

fij .ri ; rj /drj dri C

Z 1

r0

Z rj

�1

fij .ri ; rj /dridrj

(4.16)

The first term of the equation can be further rewritten asZ 1

r0

Z ri

�1

fij .ri ; rj /drj dri D

Z r0

�1

Z 1

r0

fij .ri ; rj /dridrj C

Z 1

r0

Z 1

rj

fij .ri ; rj /dridrj (4.17)

as well as the second term of Eq.(4.16):Z 1

r0

Z rj

�1

fij .ri ; rj /dridrj D

Z 1

r0

Z r0

�1

fij .ri ; rj /dridrj C

Z 1

r0

Z rj

r0

fij .ri ; rj /dridrj (4.18)

Then, summation of Eq.(4.18) with the second term of Eq.(4.17), yieldsZ 1

r0

Z r0

�1

fij .ri ; rj /dridrj C

Z 1

r0

Z rj

r0

fij .ri ; rj /dridrj C

Z 1

r0

Z 1

rj

fij .ri ; rj /dridrj

D

Z 1

r0

Z 1

�1

fij .ri ; rj /dridrj

(4.19)

Given the first term of Eq.(4.17), finally, it leads to

Pr
�
rmax.X/ > r0

�
D

Z r0

�1

Z 1

r0

fij .ri ; rj /dridrj C

Z 1

r0

Z 1

�1

fij .ri ; rj /dridrj (4.20)

which is identical to the results in Eq.(4.14). It is therefore shown that the reliability of a series

system can be evaluated in terms of the maximum value distribution.

4.3.5 Implementation Procedure

The Chapter proposes to estimate this extreme event distribution using a small sample of maxi-

mum positional error of the mechanism, obtained from the Monte Carlo simulations. A sample-

based method with the principle of maximum entropy (MaxEnt) is developed. A novel feature of

the study is the use of fractional moments as constraints, instead of integer moments commonly

used in the entropy literature. The method is referred to as ME-FM throughout the thesis. To

compute fractional moments of the positional error, a small sample of positional error is simu-

lated based on the kinematic model of a mechanism. One can refer to Chapter 3 for the details

on the derivation of MaxEnt distribution.
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Figure 4.6: Steps in ME-FM method for the estimation of the distribution of maximum positional

error

The flow chart of the proposed ME-FM method is shown in Figure 4.6, which is used to

derive the distribution of maximum positional error in a complete trajectory of the end-effector.

Firstly an input vector of random variables X describing the joint clearances and link di-

mensions (see Table 4.3) is simulated. Given this input, the trajectory shown in Figure 4.2 is

computed from the kinematic model of the manipulator. The positional error at each of the

45 positions is evaluated, and maximum error is separately stored. The simulation is repeated

N.D 500/ times, and thus a random sample of maximum position error is obtained.

Given this sample, the proposed ME-FM method was applied, and the PDF of maximum

positional error was estimated similar to Eq.(3.20). Typically three fractional moments were

found to be sufficient to achieve convergence in the optimization problem.
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4.4 Example of an Elbow Manipulator

In this section, the method of ME-FM for the system reliability analysis of the elbow manipulator

in Figure 4.1 is presented.

4.4.1 Observations from Simulation

The positional errors in a sample of five simulated trajectories are plotted in Figure 4.7, which

shows that the errors incurred at different points are strongly correlated. Because of this corre-

lation, the cumulative probability of failure at a point can not be calculated as a simple addition

of point failure probabilities of all preceding points. A great advantage of the extreme event

distribution is that it accounts for this correlation accurately and provides a correct estimate of

the failure probability, as shown later in this Section.
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Figure 4.7: A sample of positional errors in five simulated trajectories of the end-effector

Does maximum positional error occur at a fixed point of the trajectory, or could it occur at

different points depending on the values of input random variables? This question is answered

in Figure 4.8, which shows the relative frequency of the occurrence of maximum positional error

at various points along the trajectory of the end-effector. This plot is based on results of 105

simulations.

It is interesting to observe that maximum error is most likely to occur at point B ( 40% times),

followed by point D (about 30% times). Having said this, nearly 30% times, the largest positional

errors can occur at other points on the trajectory. It means that focusing on the point reliability
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at a single point would not ensure achieving the same degree of reliability at other points of the

trajectory. Thus, the need for system reliability analysis is justified.
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Figure 4.8: Relative frequency of occurrence of maximum positional error at different points of

the manipulator trajectory

4.4.2 Results of ME-FM Method

Firstly, the empirical distribution of maximum positional error was obtained from the Monte

Carlo simulation in which a large sample of (105) trajectories was simulated. This MCS solution

is referred to as the benchmark result, which is used to evaluate the accuracy of the proposed

ME-FM method.

Table 4.4: Parameters of the MaxEnt distribution
Entropy k 0 1 2 3

0:5647 �k �36:201 38:990 11:434 �14:152

˛k �0:0717 0:9834 0:6201

Moments M
˛k

Y 0.9926 1.1966 1.1020

The parameters of the MaxEnt PDF, namely, the fractions (˛i ) and the Lagrange multipliers
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(�i ) are given in Table 4.4. These parameters were computed using a sample of N D 500

simulated values of the maximum positional error as per the procedure shown in Figure 4.6.
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Figure 4.9: Distribution of the maximum positional error of the manipulator

The PDF and CDF of the maximum error obtained from ME-FM and MCS methods are

compared in Figure 4.9. A close agreement between ME-FM and MCS results confirms the

validity of the proposed approach.
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Figure 4.10: System failure probability of the elbow manipulator
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The probability of exceedance versus the maximum positional error is shown in Figure 4.10.

This plot is useful to calculate the probability of failure of the manipulator for a given threshold

(r0) of the maximum allowable positional error. For example, if r0 D 3:0 mm, the probability of

exceeding this value can be obtained from Figure 4.10 as 9:1 � 10�4, whereas the MCS method

provides a close estimate of 8:8 � 10�4.

4.4.3 Effect of Sample Size

ME-FM method uses a simulated sample of the positional error. Therefore, it is important to

investigate the effect of the sample size (N ) on the statistical error associated with the probability

of failure estimated by this method. In Figure 4.11, probability of failure versus N is plotted for

r0 = 3.0 mm.
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Figure 4.11: Probability of failure versus sample size used in ME-FM estimation

ME-FM estimates obtained from sample size ranging from 100 to 1000 are in fairly close

agreement with the MCS benchmark solution. Even for a sample as small as N D 100, P S
F is

estimated within the same order of magnitude as the benchmark result.

To understand this matter better, the bias associated with ME-FM result is formally evaluated

as a function of N . The normalized bias associated with an ME-FM estimate is defined as

follows:

Normalized Bias: D
1

Nb

NbX
iD1

0@ yP S
F i

P S
F

� 1

1A (4.21)

78



where, P S
F denotes the MCS benchmark, yP S

F is an ME-FM estimate, and Nb D 500 is the

number of simulations used for the evaluation of bias.

Figures 4.12 shows the variation of the normalized bias with the sample size varying from

N D 100 to 1000. It is rather remarkable that bias associated with ME-FM estimates is within

4% of the benchmark result. Based on this plot, N D 500 is quite reasonable sample to be used

as input to ME-FM method.
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Figure 4.12: Normalized bias associated with ME-FM estimate versus sample size

4.4.4 Number of Fractional Moments

Another important question is that how many fractional moments should be used in the ME-FM

method. This can be answered based on the convergence of the entropy of the estimated PDF

with respect to the number of moments. Figure 4.13 shows typical, rapid convergence of the

entropy as the number (m) of fractional moments exceeds 2. Since the entropy is practically

constant for m > 3, it is sufficient to use three fractional moments in the ME-FM method.

4.4.5 Computational Efficiency

The evaluation of the system reliability by MC simulation method is a time consuming task. For

example, MCS benchmark requires 884:5 seconds of CPU time. In contrast, ME-FM method
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Figure 4.13: Estimated entropy versus the number of fractional moment

with 500 samples takes a very small fraction of CPU time, 5.8 seconds or 0.65%.
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Figure 4.14: Normalized CPU time used by ME-FM Method

CPU time required by ME-FM method as a fraction of benchmark result is plotted in Figure

4.14 for different sample sizes. This plot substantiates extremely high computational efficiency

of the proposed ME-FM method for system reliability computation.

4.5 Example of Planar Mechanisms

The section considers the using the ME-FM for the system reliability analysis of planar mech-

anisms, which are includes a slider-crank mechanism and a four-bar linkage. Objective of the

section is further study the accuracy of ME-FM in reliability analysis of mechanism kinematics
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as comparing with the methods of FOSM and FORM.

4.5.1 A Slider-Crank Mechanism

Background

The example of a slider-crank mechanism in Figure 4.15 is taken from Wang et al. (2011).

L1

L2

L3

D

θ

O

Figure 4.15: Kinematic model of a slider-crank mechanism

Governing equation for the displacement of slider can be defined as:

DIdeal.�/ D L1 cos.�/C

q
L2

2 � ŒL3 � L1 sin.�/�2 (4.22)

To illustrate a specific example of the displacement of the slider, the following dimensional

values are assumed: L1 D 80 mm, L2 D 160 mm and L3 D 50 mm. The rotation angle � was

changed by varying from 0ı to 360ı with the step of 3:6ı. The resulting displacement including

101 discrete points as shown in Figure 4.16.

Given a specific input angle, the displacement of the slider are basically the output targets for

the functional consideration of the mechanism.

As presence of joint clearance, the radii of the bearing and journal are different as shown in

Figure 4.17. Therefore, the actual displacement of slider with crank rotation angle �k will be

D.X; �k/ D P1CP2�P3CL1 cos.�k/C

q
L2

2 � ŒL3 � L1 sin.�k/ �Q1 �Q2 CQ3�
2 (4.23)

Limit state function for reliability analysis in terms of output error can be defined as

g.X; �k/ D r0 � abs
�
D.X; �k/ �DIdeal.X; �k/

�
.k D 1; 2; � � � ; 101/ (4.24)

81



0 45 90 135 180 225 270 315 360
50

100

150

200

250

Input Angle −− θ (deg)

D
is

p
la

ce
m

en
t 

(m
m

)

Figure 4.16: Target output of the slider-crank mechanism
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Figure 4.17: Joint clearance model of the slider-crank mechanism

where the probabilistic properties of random variable, X, are summarized in Table 4.5.

In Table 4.5, random variable "� indicates the uniform random error associated the crank

rotation angle, � , with the range of "� 2 Œ�0:1ı; 0:1ı�. Therefore, the real input of the system

will be z� D � C "� due to the randomness in rotation angle of motor.

Figure 4.18 directs the scatter plot of the system maximum output error versus the corre-

sponding input angle indicating the position of slider. This plot is based on results of 10; 000

simulations. It is interesting to observe that the occurrences of input angle for the system maxi-

mal output error has nearly covered the whole range of Œ0ı; 360ı�, with the modes of � D 0ı (or

360ı) and � D 270ı, respectively. It means that focusing on the point reliability at a single point

would not ensure achieving the same degree of reliability at other points of the trajectory. The

need for system reliability analysis considering the dependency of failure events is justified.
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Table 4.5: Probability distributions of random variables
Description Variable Distribution Mean Std.D COV

Geometrical Dimension: L1 (mm) Normal 80 0.8 0.01

L2 (mm) Normal 160 1.6 0.01

L3 (mm) Normal 50 0.5 0.01

Joint Clearance: P1 (mm) Normal 0.1 0:001 0.01

P2 (mm) Normal 0.1 0:001 0.01

P3 (mm) Normal 0.1 0:001 0.01

Q1 (mm) Normal 0.1 0:001 0.01

Q2 (mm) Normal 0.1 0:001 0.01

Q3 (mm) Normal 0.1 0:001 0.01

Angular Error: "� (deg) Uniform 0 0:058 —

MaxEnt Distribution

Firstly, the empirical distribution of maximum displacement error was obtained from the Monte

Carlo method in which a large sample of (106) displacement errors was simulated. This solution

is referred to as the benchmark result, which is used to evaluate the accuracy of the proposed

ME-FM method.

The parameters of the MaxEnt distribution, namely, the fractional exponents (˛k) and the

Lagrange multipliers (�k) are given in Table 4.6. These parameters were computed using a

sample of N D 500 simulated values of the maximum displacement error as per the procedure
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Figure 4.18: Scatter plot of system maximum error versus the occurrence input angle
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shown in Figure 4.6.

Table 4.6: MaxEnt PDF of the maximum displacement error
Entropy k 0 1 2 3

1:8160 �k 9:9071 �18:498 6:7936 3:3358

˛k �� 0:3552 0:6362 0:4199

Moments yM
˛k

Y �� 1:3744 1:8311 1:4645

Probability distribution of the maximum displacement error obtained from ME-FM and MCS

methods are compared in Figures 4.19. A close agreement between ME-FM and MCS results

confirms the validity of the proposed approach.
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Figure 4.19: Distribution of the maximum displacement error of the slider-crank mechanism

System failure probability of the slider-crank mechanism can be easily estimated from the

distribution of the maximum displacement error. First-order second moment (FOSM) method

and the first-order reliability method (FORM) as used in literature, here, are employed to compare

the accuracy. Together with the benchmark provided from crude Monte Carlo simulation (MCS),

the estimated system failure probabilities of the planar mechanism are depicted in Figure 4.20.

Functional evaluations of each method are listed in Table 4.7.

As depicted in Figure 4.20, it is seen that the distribution of maximum error determined by

ME-FM is closed to the benchmark results of Monte Carlo simulation. Given the error threshold
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Figure 4.20: System failure probability of the slider-crank mechanism

Table 4.7: Number of functional calls of each method
Method FOSM FORM ME-FM Monte Carlo simulation

Number of Functional Calls 10 5719 500 106

r0 D 9:0mm, the probability of output error of the mechanism exceeding the value is determined

as 3:256 � 10�3 by ME-FM, whereas the MCS method provides a close estimate of 3:359 �

10�3. Furthermore, the inaccuracy associated with FOSM and FORM is further confirmed the

limitations of gradient-based methods in system reliability analysis. ME-FM used 500 samples

to calculate the distribution of the system maximum error. Compared with the crude MCS and

other techniques, the proposed approach is reliably to estimate the mechanism system reliability

analysis with the moderated computational cost.

4.5.2 A Four-Bar Linkage Mechanism

Background

The example consider a four-bar linkage as shown in Figure 4.21. Given the lengths of linkage

L D ŒL1; L2; L3; L4�
T and input angle � , the analytical expression of '.�/ can be determined as
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(Myszka, 2012; Sandor and Erdman, 1984) :

'.�/ D

8<:� � �.�/ � .�/ if 0 6 � 6 �

� � �.�/C .�/ if � 6 � 6 2�
(4.25)

where S D

q
L2

1 C L2
2 � 2L1L2 cos.�/, �.�/ D cos�1

�
L2

4CS2�L2
3

2L4S

�
, .�/ D cos�1

�
L2

1CS2�L2
2

2L1S

�
.

In the example, the operating angle � is discretized as � D Œ97ı W 1ı W 217ı�. The system

reliability analysis involves 121 limit state functions. Random variables, X, are given in Table

4.8. The limit state function for the system reliability analysis is

g.X/ D r0 � max
˚
r.X; �1/; r.X; �2/; � � � ; r.X; �b/

	
.b D 121/ (4.26)

where r.X; �k/ D abs
�
'.X; �k/� 'Ideal.�k/

�
. Parameters of the MaxEnt PDF, namely, the frac-

γ
θ ψ

L1

L2

L3

L4

O1

A

B

O4

S

φ

Figure 4.21: Model of a four-bar linkage (Zhang and Du, 2011)

Table 4.8: Statistical distributions of random variable
Description Variable Distribution Mean Std.D

Geometric Dimensions: L1 (mm) Normal 100 0.10

L2 (mm) Normal 55.5 0.0555

L3 (mm) Normal 144 0.144

L4 (mm) Normal 72.5 0.0725

Angular Error: "� (deg) Uniform 0 1=
p
3

tions (˛k) and the Lagrange multipliers (�k) are given in Table 4.9. Distribution for the maximum
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Table 4.9: MaxEnt PDF of maximum output error in the four-bar linkage
Number of FMs Entropy k 0 1 2 3 4

m D 3 0:0572 �k 12:514 0:9191 �12:744 0:3175 ��

˛k �� 5:6594 �0:0457 �0:6800 ��

Moments yM
˛k

Y �� 0:16103 1:0452 2:2395 ��

m D 4 �0:0554 �k �94:797 73:446 �37:297 35:210 24:466

˛k �� �0:0490 2:5373 2:7592 0:2937

Moments yM
˛k

Y �� 1:0486 0:2636 0:2484 0:7732
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(b) Cumulative Distribution Function

Figure 4.22: Distribution of the maximum error for the output angle '.X/

output error obtained from MaxEnt and MCS methods are compared in Figures 4.22. A close

agreement between MaxEnt and MCS results confirms the validity of the proposed approach.

System reliability of the four-bar function generator was depicted in Figure 4.23 by using

the methods of ME-FM, FOSM and FORM, together with the benchmark estimated by crude

simulation with 106 samples. It is clear to see the proposed method of ME-FM with four frac-

tional moments has shown its advantage in the calculation of system failure probability. Linear

scale graph on the estimated probability of exceedance versus the allowable threshold of output

errors is shown in Figure 4.23(a), which has shown the results determined by FOSM and FORM

are strongly deviated from benchmark. Comparatively, the close agreement between ME-FM

and MCS further validates the accuracy of the proposed method in mechanism system reliability
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(b) Semi-log Scale

Figure 4.23: System failure probability of the four-bar mechanism with various methods

analysis. Given the semi-log scale of POEs in Figure 4.23(b), one can easily determine the mech-

anism system reliability. Taken the error threshold r0 D 1:2 deg as an example, the probability

of exceeding this value can be obtained as 3:891 � 10�3 by ME-FM, whereas the MCS method

provides a close estimate of 3:834 � 10�3.

4.6 Conclusion

The Chapter focuses on developing an efficient and accurate computation of system reliability

of robotic manipulators with randomness in joint clearances and dimensions of links. Here,

reliability is defined as the probability that the positional error of the end effector remains less

than a specified design limit in an entire trajectory of interest. In the literature, this problem is

also known as cumulative reliability analysis of the manipulator (or function generator).

The study shows that this problem is analogous to reliability of a series system that can be

conveniently formulated in terms of an extreme event distribution of the positional error. Based

on the principle of maximum entropy (MaxEnt), the Chapter presents an innovative method for

the evaluation of the distribution of maximum positional error. Firstly, input variables, viz, ran-

dom joint clearances and link dimensions, are simulated from their known distributions. For

each set of simulated input, trajectories of the manipulator are computed using an appropriate
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kinematic model. Finally, the maximum positional error of the effector is calculated as maxi-

mum difference between the simulated trajectory and that required by the design (without ran-

domness).This simulated sample of positional error is a starting point of the proposed method,

referred to as ME-FM method.

Realizing limitations of the use of integer order moments with MaxEnt, the study uses frac-

tional moments that are computed from a small, simulated sample of maximum error. A novel

aspect of this method is that the fractions for these moments need not be fixed a priori. Rather,

the fractions as well as the Lagrangian parameters of the MaxEnt distribution are derived by the

minimization of a divergence measure. This approach has proved to be extremely efficient in

extracting information from a small sample of random observations.

The first example studied the system reliability analysis of a space elbow manipulator. A

benchmark estimate of reliability is computed from Monte Carlo simulations with 106 samples.

The reliability estimated from ME-FM method, based on 500 simulated samples and 3 fractional

moments, is almost identical to the benchmark result. In addition to accuracy, the most remark-

able point of ME-FM method is extremely high computational efficiency. The CPU time taken

by this method is less than 1% of that required to calculate the benchmark result. Assessment of

bias also confirms high accuracy of ME-FM method.

Two additional planar mechanisms of slider-crank and four-bar linkage were employed to

confirm the accuracy of the ME-FM as comparing the first-order reliability method (FORM) and

the first-order second moment (FOSM) method. With the benchmark provided by Monte Carlo

simulation, the proposed approach can accurately estimate a system failure probability in the

orders of 10�3 or less. The inaccuracy associated with FOSM and FORM is further confirmed

the limitations of gradient-based methods in system reliability analysis.

In summary, the proposed entropy-based approach is generic and it provides an alternate and

efficient way to analyze a wider class of system reliability problems that are computationally

intensive due to large dimensions and implicit performance functions.
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Chapter 5

Multiplicative Dimensional Reduction
Method

5.1 Introduction

5.1.1 Background

The reliability analysis of an engineering system, structure or component is typically based on

a model that describes system’s response, such as deformation, as a function of applied loads,

operating environment, material properties and geometry or configuration. For sake of simplicity,

the response is denoted by a scaler random variable Y D �.X/, and X denotes a vector of random

variables used to model uncertain variables that influence system’s response. The probability of

failure, PF , is defined as the probability of response being in a domain of unacceptable operation,

such as response (e.g. deformation) exceeding a critical threshold, yc. It is typically defined in

terms of a limit state function,

g.X/ D yc � �.X/ (5.1)

such that PF D Pr
�
g.X/ 6 0

�
. In principle, this problem can be solved if the cumulative

probability distribution of the response, FY .y/, can be evaluated either analytically, empirically

or numerically. Once the distribution is available, PF D 1 � FY .yc/.

Analytical derivation of the distribution of a function of random variables is feasible only

in very simplified cases and it is intractable in a general setting. An empirical approach based

on actual failure data is not possible for highly reliable systems. Numerical approach based on
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the Monte Carlo simulations (MCS) or its optimized versions, such as importance sampling,

provides a viable alternative for reliability computation. It is however a well known fact that

the simulation-based approach becomes tedious if the time and efforts required to compute the

response function is large. For this reason, approximate methods like the First-Order Relia-

bility Method (FORM) are widely used in engineering risk and reliability analysis (Breitung,

1984; Der Kiureghian et al., 1987; Hasofer and Lind, 1974). However, FORM lacks generality

especially when the response is a complex and implicit function of many random variables (K-

outsourelakis et al., 2004; Schuëller, 2001; Schuëller and Pradlwarter, 2007, 2009). In summary,

two key issues in the reliability evaluation are to:

� minimize the number of function evaluations; and

� fit the most appropriate probability distribution to the response function.

The method of moment has been the most popular semi-analytical method to find an approx-

imate solution of this problem. The idea is to calculate the first four moments of the response

Y D �.X/ or the limit state function g.X/, which are mean, variance, skewness and kurtosis.

Given the moments, back calculate the parameters of the distribution that is assumed to represent

the response. For example, Pearson and Johnson system (Hong, 1996; Zhao and Ono, 2001)or

generalized Lambda distribution (Ramberg and Schmeiser, 1974) can be used.

Since the inverse problem of deriving the probability distribution of a random variable from

a finite number of moments has no unique solution (Stuart and Ord, 1994), researchers have

resorted to heuristics to assume a parametric distribution for the response. The assumption of

the distribution type is a rather contentious one from both philosophical and practical points of

view. The reasons are that the tail probabilities tend to be very sensitive to parametric form and

assigning a parametric form implies adding spurious information to the inference.

Moment computation of a function about multiple random variables is not an easy task.

For example, to evaluate an n-dimensional integration with N -point scheme, N n evaluations

of Y D �.X/ are required, which is a prohibitively expensive task for a complex function. Many

researchers focussed on efficient evaluation of moments. The point estimate method (Hong,

1998; Rosenblueth, 1981; Seo and Kwak, 2002; Taguchi, 1978) the Taylor series approximation

and non-classical orthogonal polynomial (Kennedy and Lennox, 2000) are examples of some the

methods.

The most notable and recent effort is the use of high dimensional model representation

(HDMR), in which a function is decomposed in terms of functions increasing dimensions (Li
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et al., 2001; Rabitz and Aliş, 1999). It is generally truncated to the one dimensional functions

and the evaluation is further simplified by using the cut-point HDMR method (Rahman and Xu,

2004). In this formulation, the number of function evaluations are significantly reduced to nN

from N n. Based on these ideas, two steps approach can be formulated, i.e., the HDMR was

used to compute economically the moments at first, and then employed MaxEnt to derive the

distribution and carry out subsequent reliability analysis (Li and Zhang, 2011).

5.1.2 Objective

Objective of the Chapter is to:

� propose an efficient method to compute fractional moments of a generic structural response

function;

� compute probability distribution of a system response for structural reliability analysis.

A natural extension of fractional moments to estimate the distribution of response function

is a key motivation for this study. Recognizing that the computation of fractional moments is

not possible using the conventional HDMR, a new multiplicative form of dimensional reduction

method has been developed.

5.1.3 Organization

Organization of the Chapter is as follows. Section 5.2.1 reviews the development of high-

dimensional model representation with an additive form of a series lower hieratical functions,

which is referred to as the conventional dimensional reduction method (C-MDR). Then, a novel

multiplicative dimensional reduction method (M-DRM) is derived to approximate the original

complex input-output relation. The development of M-DRM is based on the formulation of

the conventional high-dimensional model representation. However, its unique properties on the

definition of cut-component functions is discussed in Section 5.2.3. One of merits of use M-

DRM over C-DRM is in moment calculation. A numerical method is presented in Section 5.3 to

calculate the moment (integer and fraction) of a generic function with multiple input variables.

With the principle of maximum entropy (MaxEnt), output distribution of the system function can

be derived with the fractional moment constraints. To demonstrate the applications of the pro-

posed method for moment calculation, estimation of output distribution, and reliability analysis
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of structural systems, three mathematics examples in Section 5.4, three structural examples in

Section 5.5 are illustrated and verified by Monte Carlo simulation with 106 samples. Section 5.6

summarizes the Conclusions.

5.2 Modeling of System Response Function

The analysis of input uncertainty propagating through a physical system, the dealing with a com-

plex and implicit function of several random variables is always a challenging problem that has

received considerable attention from the research community. Numerical approach based on

Monte Carlo simulations (MCS) or its optimized versions, such as importance sampling (Buch-

er, 1988; Harbitz, 1983; Helton and Davis, 2003; Melchers, 1990), provides a viable alternative

for reliability computation. It is however a well known fact that the simulation-based approach

becomes tedious if the time and efforts required to compute the response function is large. An-

other approach to deal with this problem is to approximate the actual input-output relation by

a simple surrogate model (Montgomery and Myers, 2002). Although there is vast literature in

statistics related to response surface modeling, here the attention is focussed on one recent devel-

opment called the high-dimensional model representation (Li et al., 2001; Rabitz and Aliş, 1999)

or dimensional reduction method (Rahman and Xu, 2004; Xu and Rahman, 2004) in literature.

5.2.1 Conventional Dimensional Reduction Method

The key idea is to express a high-dimensional function as a sum of functions of lower order in

an increasing hierarchy as

�.x/ D �0 C

nX
iD1

�i.xi/C
X

16i<j 6n

�ij .xi ; xj /C � � � (5.2)

Two routines of HDMR were developed according to the definition of lower dimensional

functions, i.e., random sampling HDMR (RS-HDMR) and Cut-HDMR. One can refer to litera-

ture (Li et al., 2001; Rabitz and Aliş, 1999) for details.

In RS-HDMR, the component functions in Eq.(5.2) are defined in general by the following

conditional expectations

�0 D EŒ�.x/�; �i.xi/ D E�i Œ�.x/� � �0; � � � (5.3)
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where the notation E�i means the expectation operation over all the variables except the random

variable Xi , one can refer to Chapter 6 (i.e., on global sensitivity analysis) for details on the

formulations of conditional expectation. It is clear that the evaluation of the univariate (variance)

component functions requires integration over n � 1 dimensions, which can be a fairly involved

task in case of a complex function.

The study develops an approximation of original input-output relation based on the method of

Cut-HDRM. The cut-component functions in Cut-HDRM are evaluated about a specific reference

point, named as the cut-point or anchor point in literature, c D Œc1; c2; � � � ; cn�
T:8̂̂̂̂

ˆ̂<̂
ˆ̂̂̂̂:

�0 D �.c/

�i.xi/ D �.c1; � � � ; ci�1; xi ; ciC1; � � � ; cn/ � �0

�ij .xi ; xj / D �.c1; � � � ; ci�1; xi ; ciC1; � � � ; cj �1; xj ; cj C1; � � � ; cn/ � �i.xi/ � �i.xj / � �0

� � �

(5.4)

One should note that:8̂̂̂<̂
ˆ̂:
�i.xi/ ¤ �.c1; � � � ; ci�1; xi ; ciC1; � � � ; cn/

�ij .xi ; xj / ¤ �.c1; � � � ; ci�1; xi ; ciC1; � � � ; cj �1; xj ; cj C1; � � � ; cn/

� � �

(5.5)

To distinguish the univariate function, �.c1; � � � ; ci�1; xi ; ciC1; � � � ; cn/, from the univariate cut-

component function, �i.xi/, we denote:8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

�.xi ; c�i/ D �.c1; � � � ; ci�1; xi ; ciC1; � � � ; cn/

�.xi ; xj ; c�ij / D �.c1; � � � ; ci�1; xi ; ciC1; � � � ; cj �1; xj ; cj C1; � � � ; cn/

�.xi ; xj ; xk; c�ijk/ D �.c1; � � � ; ci�1; xi ; ciC1; � � � ; cj �1; xj ; cj C1; � � � ; ck�1; xk; ckC1; � � � ; cn/

� � �

(5.6)

The properties of the cut-component function defined in Eq(5.4) can be summarized as fol-

lows:

Property 5.1. A cut-component function of Cut-HDMR vanishes when any of its own variables

takes the value of the corresponding element in cut-point c, i.e.,

�i1i2���is
.xi1

; xi2
; � � � ; xis

/
ˇ̌
xDc

D 0 fi1; i2; � � � ; isg � f1; 2; � � � ; ng (5.7)
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Property 5.2. Orthogonality between the arbitrary two different cut-component functions can

be derived by:

�i1���ip.xi1
; � � � ; xip/�j1���jp

.xj1
; � � � ; xjq

/
ˇ̌
xDc

D 0 fi1; � � � ; ipg ¤ fj1; � � � ; jqg (5.8)

Therefore, the cut-component functions in Eq.(5.4) are an orthogonal basis of Rn, which the

exact decomposition of a physical model, y D �.x/, with the form of Eq.(5.2) can be attained.

According to the principle of sparsity (Montgomery and Myers, 2002), for a sufficiently

smooth function, the influence of higher-order terms in Eq.(5.2) is much smaller than the uni-

variate terms, �i.xi/. This results in a simple representation of response function by retaining

only up to the univariate functions (Rahman and Xu, 2004):

�.x/ �

nX
iD1

�.c1; � � � ; ci�1; xi ; ciC1; cn/ � .n � 1/�.c/ (5.9)

This approach is also referred to as the conventional DRM (C-DRM) in this Chapter. As

the high-order terms make the significant contribution in the response function, y D �.x/, the

bivariate C-DRM, then, can be used:

�.x/ �
X

16i<j 6n

�.xi ; xj ; c�ij / � .n � 2/

nX
iD1

�.xi ; c�i/C
.n � 1/.n � 2/

2
�.c/ (5.10)

In general, approximation about the original input-output relation with an s-variate DRM was

determined as (Xu and Rahman, 2004)

�.x/ �

sX
kD0

.�1/s�k

 
n � k � 1

s � k

! X
16i1<���<ik6n

�.xi1
; xi2

; � � � ; xik
; c�i1i2���ik

/ (5.11)

Regarding the approximation errors of C-DRM, the zeroth-order function, �.c/, is a constant

representing the system response evaluated at the cut-point. The univariate model in Eq.(5.9)

gives the approximation of response function with the residual error of two and higher component

functions. Therefore, the reminding error of a general s-variate model contains the terms of sC1

dimensions and higher. All terms of s- and lower-variate component functions are included in

the approximation, which generally provides a more accurate approximation of y D �.x/ than

the truncated models derived from the first- or second-order Taylor series in literature.

One best advantages of C-DRM is seen in the calculation of integer moments of a response

function, because the high-dimensional moment integration can be accurately approximated by

using the low-dimensional integrals (Xu and Rahman, 2004).
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Taken a kth moment calculation of Y D �.X/ as an example, using the univariate C-DRM,

the moment can be approximated by

E
�
Y k
�

D E
n�
�.X/

�ko
� E

�� nX
iD1

�.Xi ; c�i/ � .n � 1/�.c/

�k�
(5.12)

which has shown that the original n-dimensional tedious multi-dimensional integration can be

efficiently approximated by using n univariate integrals.

5.2.2 Proposed Multiplicative Dimensional Reduction Method (M-DRM)

In C-DRM, the dimensional reduction of a response function is carried out in the original space.

In this section, it is proposed to apply the logarithmic transform of the response function, i.e.,

logŒ�.x/�, which drives a multiplicative form approximate model of the original function.

Univariate M-DRM

Consider a general response function, y D �.x/. By using the logarithmic transformation, one

can obtain:

'.x/ D log.y/ D log
�
�.x/

�
(5.13)

Following the univariate C-DRM in Eq.(5.9), an approximation of '.x/ can be written as

'.x/ �

nX
iD1

'.xi ; c/ � .n � 1/'0 (5.14)

where the functions can be related to those in the original space as follows:8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

'0 D log.�0/

'.xi ; c�i/ D log
�
�.c1; � � � ; ci�1; xi ; ciC1; cn/

�
'.xi ; xj ; c�ij / D log

�
�.c1; � � � ; ci�1; xi ; ciC1; � � � ; cj �1; xj ; cj C1; � � � cn/

�
� � �

(5.15)

By inverting the transformation, the original function can be written as:

exp
�
'.x/

�
� exp

� nX
iD1

'.c1; � � � ; ci�1; xi ; ciC1; cn/ � .n � 1/'0

�

D exp
�
.1 � n/'0

�
� exp

� nX
iD1

'.c1; � � � ; ci�1; xi ; ciC1; cn/

� (5.16)
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Substituting for the expressions from Eq.(5.15) into Eq.(5.16) leads to a multiplicative approxi-

mate of the response function:

�.x/ � Œ.�.c/�1�n

nY
iD1

�.c1; � � � ; ci�1; xi ; ciC1; � � � ; cn/ (5.17)

This approximate model of original input-output relation is referred to as the univariate multi-

plicative dimensional reduction method (M-DRM) in this document.

General M-DRM

As discussed in previous section, the univariate M-DRM, in some cases, might be not enough to

represent the original input-output relation precisely. In this scenario, bivariate M-DRM can be

developed.

Given the procedures in Eqs.(5.13) to (5.17), uses the bivariate C-DRM to approximate �.x/
instead of the univariate model in Eq.(5.14). One can easily derive the approximate model of

bivariate M-DRM:

�.x/ �

�
�.c/

� .n�1/.n�2/
2 �

n�1Y
iD1

nY
j DiC1

�.c1; � � � ; ci�1; xi ; ciC1; � � � ; cj �1; xj ; cj C1; � � � ; cn/

h nY
iD1

�.c1; � � � ; ci�1; xi ; ciC1; � � � ; cn/
in�2

(5.18)

In general, applying the s-variate C-DMR, the corresponding s-variate M-DRM can be ob-

tained as

�.x/ �

j
k1Ds;s�2;s�4;���

� n�k1C1Y
i1D1

� � �

nY
ik1

Dik1�1C1

�.xi1
; xi2

; � � � ; xik1
; c/

�.n�k1�1

s�k1
/

j
k2Ds�1;s�3;s�5;���

� n�k2C1Y
j1D1

� � �

nY
jk2

Djk2�1C1

�.xj1
; xj2

; � � � ; xjk2
; c/

�.n�k2�1

s�k2
/

(5.19)

When s D 1, the method degenerates to the univariate M-DRM in Section 5.2.2. When

s D 2, the method becomes the bivariate M-DRM. Similarly, trivariate, quadrivariate, and other

higher-variate M-DRMs can be derived by appropriately selecting the value of s. In the limit,

when s D n, there is no approximation and the proposed method converges to the exact solution.
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Note that the limit state function in system reliability analysis is not smooth due to the multi-

fold maximum and/or minimize operators. The study proposes that using the bivariate M-DRM

to approximate the nonlinear response function. A general probability distribution using the

fractional moments and MaxEnt is derived to calculate the system failure probability as shown

in later section.

5.2.3 Remarks on Cut-Component Function

M-DRM is proposed in the Chapter to decompose a physical model in the logarithmic space.

Corresponding to the original space, '.x/ D logŒ�.x/� (assume that �.x/ is always positively

defined, or else one should use the absolute operator), now, is considered to be exactly decom-

posed.

To distinguish the cut-component functions of M-DRM with the low-variate functions in

Eq.(5.15), we use h.�/ to expression the cut-component functions:8̂̂̂̂
ˆ̂̂̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂:

h0 D logŒ�.c/�

hi.xi/ D log
�
�.c1; � � � ; ci�1; xi ; ciC1; � � � ; cn/

�.c/

�
hij .xi ; xj / D log

�
�.c/ � �.c1; � � � ; ci�1; xi ; ciC1; � � � ; cj �1; xj ; cj C1; � � � ; cn/

�.c1; � � � ; ci�1; xi ; ciC1; � � � ; cn/ � �.c1; � � � ; cj �1; xj ; cj C1; � � � ; cn/

�
� � �

(5.20)

It is seen that, h0 D '0, hi.xi/ D '.xi ; c/ � h0, hij .xij / D '.xi ; xj ; c/ � '.xi ; c/ �

'j .xj ; c/ � h0, etc. Therefore, except the constant, h0, the cut-component functions do not

directly apply for the logarithmic operator with respect to the counterpart in C-DRM. Take the

univariate cut-component function as an example. In C-DRM, it is shown in Eq.(5.4) as:

�i.xi/ D �.c1; � � � ; ci�1; xi ; ciC1; � � � ; cn/ � �.c/ .i D 1; 2; � � � ; n/ (5.21)

If use the logarithmic transformation, one can obtain:

logŒ�i.xi/� D logŒ�.c1; � � � ; ci�1; xi ; ciC1; � � � ; cn/ � �.c/� (5.22)

The function is undefined with the limited boundaries at the cut-point, xi D ci , since that

�i.xi/
ˇ̌
xi Dci

D 0 H) lim
xi !ci

˚
logŒ�i.xi/�

	
D 1. More importantly, it is easy to prove that the
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orthogonal properties in Eq.(5.7) and Eq.(5.8) are no long satisfied after applying the logarithmic

transformation of the cut-component functions of C-DRM.

The study proposes the cut-component functions of M-DRM as shown in Eq.(5.20). It can

be seen that:

Property 5.3. The cut-component functions of M-DRM are zero-valued at the cut-point c:

h12���s.x1; x2; � � � ; xs/
ˇ̌
xDc

D log.1/ D 0 f1; 2; � � � ; sg � f1; 2; � � � ; ng (5.23)

Property 5.4. Any two different cut-component functions are orthogonal to each other:�
hi1���ip.xi1

; � � � ; xip/�hi1���is
.xj1

; � � � ; xjq
/
�ˇ̌

xDc
D log.1/�log.1/ D 0 fxi1

; � � � ; xipg ¤ fxj1
; � � � ; xjq

g

(5.24)

Therefore, the function '.x/ D logŒ�.x/� can be exactly decomposed by the orthogonal basis

of h1���s.x1; � � � ; xs/ in the form of

'.x/ D h0 C

nX
iD1

hi.xi/C
X

16i<j 6n

hij .xi ; xj /C � � � (5.25)

where the cut-component functions are given in Eq.(5.20). Simplify the expression through the

logarithmic identities:

log.ab/ D log.a/C log.b/; and log.a=b/ D log.a/ � log.b/ (5.26)

One can obtain the s-variate M-DRM approximation of original model, y D �.x/, as shown in

Eq.(5.19).

In summary, definitions of two cut-component functions in C-DRM and M-DRM are dif-

ferent as shown in Eq.(5.4) and Eq.(5.20), respectively, together with the corresponding objec-

tive functions �.x/ and log
˚
absŒ�.x/�

	
. However, one should note that the two s-variate cut-

component functions are commonly defined using the corresponding s-variate function, �.xs/,

and the lower dimensional functions. Therefore, given the s-variate approximation models by

C-DRM and M-DRM, the number of functional calls in later moment calculation is identical.

5.3 Calculation of Fractional Moment

Given a input-output relation, y D �.x/, an ˛th order fractional moment of the response function

can be obtained from a multi-dimensional integration as

M ˛
Y D

Z
X

�
�.x/

�˛
fX.x/dx (5.27)
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where, fX.x/ is the joint PDF of n random variables X.

5.3.1 M-DRM for Computing Fractional Moments

Using the univariate M-DRM model to approximate the original input-output relation, an ˛th

order fractional moment of the response function can be accordingly approximated by

M ˛
Y D

Z
X
Œ�.x/�˛fX.x/dx �

Z
X

n�
�.c/

�1�n
nY

iD1

�.c1; � � � ; ci�1; xi ; ciC1; � � � ; cn/
o˛

fX.x/dx

D
�
�.c/

�˛�˛n
nY

iD1

�Z
Xi

�
�.c1; � � � ; ci�1; xi ; ciC1; � � � ; cn/

�˛
fi.xi/dxi

�
(5.28)

Thus, the original n-dimensional moment integration has been approximated by a product

of n one-dimensional integrations. This is reason of the high efficiency of the M-DRM in the

fractional (integer) moments calculation.

As the univariate M-DRM model is not enough to represent the original input-output relation,

y D �.x/, a bivariate approximation can be used. Then, numerical integration procedure for the

˛th order fractional moment can be given as

M ˛
Y �

�
�.c/

�˛.n�1/.n�2/
2 �

n�1Y
iD1

nY
j DiC1

� Z
Xi

Z
Xj

�.xi ; xj ; c�ij /fi.xi/fj .xi/dxidxj

�˛

nY
iD1

� Z
Xi

�.xi ; c�i/fi.xi/dxi

�˛.n�2/
(5.29)

Following this procedure, the calculation of fractional moments of original response func-

tion can be approximated by using the s-variate M-DRM. One can see that the M-DRM method

for moment calculation entails evaluating at most s-dimensional integrals, which is substantially

simpler and more efficient than performing one n-dimensional integration when s � n. Further-

more, M-DRM does not require calculation of any partial derivatives of response and inversion

of random matrices as compared to other methods in literature. Needless to say that this approach

can also be used to calculate integer moments by setting ˛ D 1; 2; 3, etc.

5.3.2 Remarks on Moment Computation

In this Section, an example is presented to elaborate the fact that the conventional method (C-

DRM) is inadequate to evaluate the fractional moments of the response function.
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Consider a bivariate function Y D �.X1; X2/, where X1 and X2 are mutually independent

random variables. Using C-DRM and M-DRM, the function can be approximated as8<:C-DRM: �.x1; x2/ � �.x1; c2/C �.c1; x2/ � �.c1; c2/

M-DRM: �.x1; x2/ � Œ�.x1; c2/ � �.c1; x2/�=�.c1; c2/
(5.30)

A kth integer moment of Y can be computed using these approximations as8<:C-DRM: EŒY k� � E
n�
�.X1; c2/C �.c1; X2/ � �.c1; c2/

�ko
M-DRM: EŒY k� � E

n�
�.X1; c2/ � �.c1; X2/�=�.c1; c2/

�ko (5.31)

In case of C-DRM approximation, the integer moment can be evaluated using the following

binomial expansion:

E
�
.AC B � C/k

�
D

kX
iD0

 
k

i

!
E
�
Ak�i

�
E
�
.B � C/i

�
(5.32)

where
�

k

i

�
D

kŠ
iŠ.k�i/Š

; and A D �.X1; c2/, B D �.c1; X2/, and C D �.c1; c2/.

However, to compute an ˛th order fractional moment, the following fractional binomial ex-

pansion is required (Gzyl and Tagliani, 2010):

E
�
.AC B � C/˛

�
D

1X
iD0

 
˛

i

!
E
�
A˛�i

�
E
�
.B � C/i

�
(5.33)

Since Eq.(5.33) involves an infinite order moments of univariate functions, it is not practical

to use C-DRM for the computation of fractional moment. One should note that the fractional

binomial coefficient,
�

˛

i

�
, is defined as shown in literature (Graham et al., 1988) 

˛

i

!
D
˛.˛ � 1/ � � � .˛ � i C 1/

i.i � 1/ � � � 1
(5.34)

In contrast, M-DRM leads to a much simpler algebraic structure of the (fractional) moment

equation:

EŒY ˛� �

E
n
Œ�.X1; c2/�

˛
o

�E
n
Œ�.c1; X2/�

˛
o

E
n
Œ�.c1; c2/�˛

o
Even in case of evaluation of integer moments (e.g., ˛ D 1; 2; � � � ), M-DRM does not require

a binomial expansion of Eq.(5.32), which simplifies the overall computational procedure.
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5.3.3 Low Dimensional Integration

Numerical integration of a low dimensional function in M-DRM can be highly optimized by

using the scheme of Gauss quadrature. For example, in case of Normal variable, Gauss-Hermite

integration scheme provides an excellent result.

Table 5.1 has summarized Gauss-points and Gauss weighs of the five-order rules of Gauss-

Legendre, Gauss-Hermite and Gauss-Laguerre quadratures. More orders of Gauss points and

Table 5.1: Some frequently used Gauss-weight and Gauss-point (Order N D 5)
Gaussian Rule k 1 2 3 4 5

Gauss-Legendre wk 0:2369 0:47863 0:5689 0:4786 0:2369

xk �0:9062 �0:5385 0 0:5385 0:9062

Gauss-Hermite wk 1:13 � 10�2 0:2221 0:5333 0:2221 1:13 � 10�2

xk �2:8570 �1:3556 0 1:3556 2:8570

Gauss-Laguerre wk 0:5218 0:39867 7:59 � 10�2 3:61 � 10�3 2:34 � 10�5

xk 0:2636 1:4134 3:5964 7:0858 12:641

weights according to other orthogonal polynomials can be found in the textbook (Davis and

Rabinowitz, 1975). Once the standard integration points are available, the procedure summarized

as shown in literature (Zhang et al., 2011b) can be applied to generate the general integration

grids for the low dimensional integration.

5.3.4 Computational Effort

The Gauss quadrature can be used directly to compute the moments of a response function. If

each random variable uses N Gauss point, the required number of functional evaluations by

direct numerical integration is NDNI D N n. This implies that the total number of functional calls

is exponentially increasing with the dimensionality of X.

When adopts the general s-variate M-DRM (or C-DRM), the number of functional evalua-

tions is

NDRM D

sX
iD0

 
n

s � i

!
N s�i

D 1C nN C
n.n � 1/

2
N 2

C � � � (5.35)

Therefore, if using the univariate M-DRM to approximate the original input-output relation, the
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number of functional evaluations in the moment calculation is rather small:

NDRM D 1C

kX
iD1

�
Ni � 1

�
C

nX
iDkC1

Ni (5.36)

where k .6 n/ denotes the number of variables with the symmetric distribution (say the Normal

variate), and Ni is the adopted number of Gauss nodes for random variable Xi .

Consider an example of n D 6 and Ni D 5, in which the ratio of NDRM
NDNI

6 31=56 � 0:2%.

This illustrates the high computational efficiency of M-DRM in the fractional (integer) moments

calculation of the response function.

5.4 Examples of Genz’s Function

Object of the section is using three mathematic testing functions to calculate the moment and

probability distribution of the output quantity, Y D �.X/. The proposed methodology (M-DRM

and ME-FM) for the object can be summarized as follows:

(i) Considering a general input-output relation, y D �.x/, employs the proposed M-DRM to

approximate the function as the multiplicative form of low-dimensional functions.

(ii) Use the M-DRM model and the rules of Gauss quadrature to calculate fractional (integer)

moment.

(iii) With the fractional moments as the constraints, run the MaxEnt optimization procedure de-

scribe as shown in Chapter 3 and record the determined Lagrange multipliers and fractional

exponents.

(iv) Obtain the MaxEnt distribution of the system output. One should note that the fractional

moments used during the iteration process are calculated only based on the integration grid

determined in step 2.

Genz’s functions (Genz, 1987) are defined as8̂̂̂̂
ˆ̂̂̂̂<̂
ˆ̂̂̂̂̂̂
:̂

Corner Peak Function: �.X/ D

�
1C

nX
iD1

aiXi

��.nC1/

Product Peak Function: �.X/ D

nY
iD1

�
a2

i C .Xi � bi/
2
��1

Gaussian Function: �.X/ D exp
�

�

nX
iD1

a2
i .Xi � bi/

2

� (5.37)

103



where Xi (i D 1; 2; � � � ; n) are i.i.d standard Uniform random variables. The constant, ai and bi ,

are assumed as shown in Table 5.2.

Table 5.2: The dimensionality and constant of test functions
Corner Peak Function Product Peak Function Gaussian Function

n ai n ai bi n ai bi

10 0:01 10 0:9 0:1 10 0:9 0:1

5.4.1 Integer Moment

The first-four moments of Y D �.X/ are calculated by M-DRM method using the five-order

.N D 5/ Gaussian-Legendre quadrature. Therefore, the number of functional evaluations of M-

DRM is 51 D .10�5C1/. The method of C-DRM is also used. Compared with the benchmarks

provided by Monte Carlo simulation with 106 samples, the results are reported in Table 5.3.

It is clear to see that the M-DRM provides very close moment estimates compared to the

benchmarks of crude Monte Carlo simulation. All relative errors determined by M-DRM are

less than 1:0% for three Genz’s functions. In the context of employing C-DRM in the moments

computation, moment errors associated with test examples have revealed its inaccuracy in mo-

ment computation of Genz’s functions.

5.4.2 Output Distribution

Distributions of the test function, Y D �.X/, are determined using ME-FM method. Empirical

distributions of the Genz’s functions are estimated by Monte Carlo simulation with 106 samples.

Parameters of MaxEnt distributions are determined as shown in Table 5.4, together with the

plots of PDF and CDF in Figures 5.1 to 5.3. According to the MaxEnt distribution of the Genz’s

examples, it is clearly to see that the proposed method of ME-FM can obtain reliably estimates

of an output distribution. Using M-DRM method and five-order Gauss-Legendre quadrature to

calculate the fractional moments, the full distribution can be exactly determined with only 51

functional evaluations. Compared with the benchmarks provided by Monte Carlo simulation, the

method of ME-FM is highlighted its efficiency and accuracy in the calculation of moment and

probability distribution.
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Table 5.4: MaxEnt distribution of the ten-dimensional Genz’s functions
Function Entropy k 0 1 2 3

Corner Peak Function �1:4649 �k �8:2353 �0:6902 0:9806 27:581

˛k �� �3:4598 �3:7504 3:9183

M
˛k

Y �� 6:7536 7:9682 0:1312

Product Peak Function 0:7745 �k 102:71 �526:76 �142:78 567:42

˛k �� 0:1198 0:1530 0:1523

M
˛k

Y �� 0:9712 0:9645 0:9647

Gauss Function �1:0329 �k 50:608 1388:5 802:47 �2234:9

˛k �� 0:1979 0:2195 0:1980

M
˛k

Y �� 0:6822 0:6548 0:6820
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Figure 5.1: MaxEnt Distribution of the Corner Peak function

5.5 Structural Reliability Analysis

In this section, three structural reliability examples are analyzed using the proposed method. The

first-four integer moments of response function is computed using the additive (or conventional)

DRM method (C-DRM) and the proposed multiplicative DRM method (M-DRM), respectively.
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Figure 5.2: MaxEnt Distribution of the Product Peak function
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Figure 5.3: MaxEnt Distribution of the Gauss function

MaxEnt with three orders of fractional moments is subsequently employed to determine the

distribution of response function. Monte Carlo simulation with 106 samples is used to determine

the benchmarks of statistical moment and probability distribution of a structural output, which

allows the verify the accuracy of the proposed methods of M-DRM and ME-FM.
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5.5.1 Reliability of a Reinforced Concrete Beam

The ultimate bending moment of resistance or capacity of a reinforced concrete beam is given

by an explicit function (Breitung and Faravelli, 1994; Zhou and Nowak, 1988):

MU .X/ D X1X2X3 �X4

X2
1X

2
2

X5X6

(5.38)

Distributions of random variables are listed in Table 5.5.

Table 5.5: Random variables in the reinforced concrete beam example
Variable Description Distribution Units Mean Std.D COV

X1 Area of reinforcement Lognormal mm2 1260 252 0:20

X2 Yield stress of reinforcement Lognormal N/mm2 300 60 0:20

X3 Effective depth of reinforcement Lognormal mm2 770 154 0:20

X4 Stress-strain factor of concrete Lognormal — 0:35 0:035 0:10

X5 Compressive strength of concrete Weibull N/mm2 25 5:0 0:20

X6 Width of beam Normal mm 200 40 0:20

MB Applied bending moment Lognormal kN�m 100 30 0:30

Moments and Distribution of the Structural Capacity

Firstly, four integer product moments of the moment resistance are computed using C-DRM and

the proposed M-DRM methods. Numerical integration grid to compute the moment integrations

in both versions of DRM method is given in Table 5.6. One can notice that the moment cal-

culations are based on 30 function evaluations. This grid is provided to assist the reader in the

verification of numerical results.

Numerical accuracy is compared against the benchmark results obtained from simulation.

Results summarized in Table 5.7 show that M-DRM estimates have less than 1% error for all the

four moments, whereas C-DRM results in about 9% error in the estimate of the fourth moment.

The next task is to determine the distribution of the response function.
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Table 5.6: Numerical integration grid of the RC beam example
Numerical Integration Grid Output

Variable No. X1 X2 X3 X4 X5 X6 MU .X/
X1 1 1235.5 300.0 770.0 0.35 25.0 200.0 275.79

2 701.66 300.0 770.0 0.35 25.0 200.0 158.98
3 2175.6 300.0 770.0 0.35 25.0 200.0 472.74
4 944.62 300.0 770.0 0.35 25.0 200.0 212.59
5 1616.0 300.0 770.0 0.35 25.0 200.0 356.85

X2 6 1260.0 294.17 770.0 0.35 25.0 200.0 275.79
7 1260.0 167.06 770.0 0.35 25.0 200.0 158.98
8 1260.0 518.00 770.0 0.35 25.0 200.0 472.74
9 1260.0 224.91 770.0 0.35 25.0 200.0 212.59
10 1260.0 384.77 770.0 0.35 25.0 200.0 356.85

X3 11 1260.0 300.0 755.05 0.35 25.0 200.0 275.41
12 1260.0 300.0 428.80 0.35 25.0 200.0 152.08
13 1260.0 300.0 1329.5 0.35 25.0 200.0 492.56
14 1260.0 300.0 577.27 0.35 25.0 200.0 208.21
15 1260.0 300.0 987.57 0.35 25.0 200.0 363.30

X4 16 1260.0 300.0 770.0 0.34826 25.0 200.0 281.11
17 1260.0 300.0 770.0 0.26190 25.0 200.0 283.58
18 1260.0 300.0 770.0 0.46310 25.0 200.0 277.83
19 1260.0 300.0 770.0 0.30421 25.0 200.0 282.37
20 1260.0 300.0 770.0 0.39869 25.0 200.0 279.67

X5 21 1260.0 300.0 770.0 0.35 41.822 200.0 285.08
22 1260.0 300.0 770.0 0.35 37.848 200.0 284.45
23 1260.0 300.0 770.0 0.35 33.669 200.0 283.63
24 1260.0 300.0 770.0 0.35 28.660 200.0 282.34
25 1260.0 300.0 770.0 0.35 21.452 200.0 279.40

X6 26 1260.0 300.0 770.0 0.35 25.0 85.721 267.72
27 1260.0 300.0 770.0 0.35 25.0 314.28 284.70
28 1260.0 300.0 770.0 0.35 25.0 145.77 277.34
29 1260.0 300.0 770.0 0.35 25.0 254.23 283.19

Cut-Point 30 1260.0 300.0 770.0 0.35 25.0 200.0 281.06
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Table 5.7: Integer moments estimated using C-DRM and M-DRM
Moments 1st 2nd 3rd 4th

C-DRM 279:65 8:7428 � 104 2:9904 � 107 1:1046 � 1010

Relative Error (%) 0:17 0:012 �2:6 �8:9

M-DRM 279:65 8:7715 � 104 3:0842 � 107 1:2150 � 1010

Relative Error (%) 0:17 0:34 0:43 0:22

Simulation 279:17 8:7418 � 104 3:0689 � 107 1:2177 � 1010

C-DRM: Conventional dimensional reduction method;

M-DRM: The proposed multiplicative dimensional reduction method;

MCS: Crude Monte Carlo simulation with 106 samples.

As shown in Figure 5.4, PDF of the bending moment capacity obtained from the proposed

method is in close agreement with that obtained from the simulation method.
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Figure 5.4: Probability distribution of the bending moment capacity (ME-FM: Principle of max-

imum entropy (MaxEnt) with fractional moment; MCS: Crude Monte Carlo simulation with 106

samples.)
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Reliability Analysis

The limit state function for the reliability analysis is defined as

g.X/ D MU .X/ �MB (5.39)

Since the use of fractional moment works with a positive random quantity only, the above limit

state function is revised as

yg.X/ D
MU .X/
MB

D
X1X2X3

MB

�
X4X

2
1X

2
2

MBX5X6

(5.40)

such that the probability of failure is defined as PF D PrŒyg.X/ 6 1:0� D F yG
.1:0/.
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Figure 5.5: Cumulative distribution function of the modified limit state function (ME-FM: Prin-

ciple of maximum entropy (MaxEnt) with fractional moments; ME-IM: Principle of maximum

entropy (MaxEnt) with integer moments; MCS: Crude Monte Carlo simulation with 106 sam-

ples.)

Parameters of the MaxEnt distribution of yg.X/ are reported in Table 5.8 and a comparison of

its CDF obtained from the three methods is illustrated in Figure 5.5. It is clear that the proposed

M-DRM method provides highly accurate approximation in the entire range of the response

distribution. The probability of failure calculated from the proposed method, 1:20 � 10�2, is

fairly close to that obtained from simulation .1:18 � 10�2/. The conventional DRM method

estimates it as 5:01 � 10�2.
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Table 5.8: MaxEnt distribution of the modified limit state function
Entropy k 0 1 2 3

1:6294 �k 708:37 79:136 622:59 �1407:4

˛k 0:0686 �0:1109 �0:0422

M
˛k

Y 1:0725 0:8948 0:9583

5.5.2 Reliability Analysis of a Truss Structure

A ten-bar truss structure shown in Figure 5.6 is taken from a pervious study (Doltsinis and Kang,

2004).
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Figure 5.6: A ten-bar planar truss structure

Table 5.9: Random variables in the truss example
Variable Description Distribution Units Mean Std.D COV

E Young’s Modulus Normal GPa 210 21 0:1

A Cross-sectional Area Lognormal mm2 100 10 0:1

F3Y External Load Lognormal N 1000 100 0:1

F5X External Load Lognormal N 1000 100 0:1

F5Y External Load Lognormal N 1000 100 0:1

Random variables associated with this problem are listed in Table 5.9. Linear structural
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analysis was performed to calculate the maximum joint displacement of the truss, defined as

�.X/ D max
36i66

nq
U 2

Xi
C U 2

Yi

o
where Uxi and Uyi are the horizontal and vertical components of displacement at an i th node.

Integer Moments

The first-four integer moments of the maximum truss displacement are presented in Table 5.10.

It is interesting that both DRM methods provide highly accurate estimates with absolute error

less than 1%.

Table 5.10: Integer moments of the maximum displacement of the truss structure
Moments 1st 2nd 3rd 4th

C-DRM 1:3342 1:8238 2:5523 3:6543

Relative Error (%) �0:01 �0:096 �0:36 �0:91

M-DRM 1:3344 1:8256 2:5618 3:6887

Relative Error (%) �8:6 � 10�5 8:2 � 10�4 6:1 � 10�3 0:02

Simulation 1:3344 1:8256 2:5616 3:6880

C-DRM: Conventional dimensional reduction method;

M-DRM: The proposed multiplicative dimensional reduction method;

MCS: Crude Monte Carlo simulation with 106 samples.

In this example, five Gauss points were used for the integration of each component function.

The entire numerical integration grid is given in Table 5.11.

Reliability Analysis

The estimated MaxEnt PDF of the maximum displacement is compared with the simulation result

in Figures 5.7. Parameters of the MaxEnt distribution are determined as shown in Table 5.12.

Figure 5.8 shows that the probability of exceedance (POE) curve obtained from M-DRM

method is in fairly close agreement with the simulation result. For the sake of comparison, POE

curve obtained from C-DRM using integer moment is also plotted in the figure. The POE curve

for C-DRM has thinner tail and it underestimates the exceedance probability, i.e., it leads to

non-conservative results.
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Table 5.11: Numerical integration grid for the Truss example
Variable No. Numerical Integration Grid Output

E (GPa) A (mm2) F3Y (N) F5X (N) F5Y (N) �.X/ (mm)

E 1 150.00 100:00 1000:0 1000:0 1000:0 1.8306

2 270.00 100:00 1000:0 1000:0 1000:0 1.0170

3 181.53 100:00 1000:0 1000:0 1000:0 1.5127

4 238.47 100:00 1000:0 1000:0 1000:0 1.1515

A 5 210 99.504 1000:0 1000:0 1000:0 1.3141

6 210 74.829 1000:0 1000:0 1000:0 1.7475

7 210 132.31 1000:0 1000:0 1000:0 0.9883

8 210 86.918 1000:0 1000:0 1000:0 1.5044

9 210 113.91 1000:0 1000:0 1000:0 1.1479

F3Y 10 210 100:00 995.04 1000:0 1000:0 1.3064

11 210 100:00 748.29 1000:0 1000:0 1.2475

12 210 100:00 1323.1 1000:0 1000:0 1.3855

13 210 100:00 869.18 1000:0 1000:0 1.2763

14 210 100:00 1139.1 1000:0 1000:0 1.3411

F5X 15 210 100:00 1000:0 995.04 1000:0 1.3037

16 210 100:00 1000:0 748.29 1000:0 1.1092

17 210 100:00 1000:0 1323.1 1000:0 1.5626

18 210 100:00 1000:0 869.18 1000:0 1.2045

19 210 100:00 1000:0 1139.1 1000:0 1.4174

F5Y 20 210 100:00 1000:0 1000:0 995.04 1.3062

21 210 100:00 1000:0 1000:0 748.29 1.2374

22 210 100:00 1000:0 1000:0 1323.1 1.3978

23 210 100:00 1000:0 1000:0 869.18 1.2711

24 210 100:00 1000:0 1000:0 1139.1 1.3464

Mean-Value 25 210 100:00 1000:0 1000:0 1000:0 1.3076

For example, if maximum allowable displacement is 2.5 mm, the associated POE or proba-

bility of failure can be obtained from Figure 5.8 as 5:67�10�5 from the M-DRM and 5:87�10�5

from simulation curve. The C-DRM estimates the failure probability as 4:79� 10�6, which is an
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Figure 5.7: Distribution of the maximum displacement of the ten-bar truss (ME-FM: Principle

of maximum entropy (MaxEnt) with fractional moments; MCS: Crude Monte Carlo simulation

with 106 samples.)

Table 5.12: MaxEnt PDF of the structural maximal displacement
Entropy k 0 1 2 3

�0:1581 �k �165:21 50:014 54:412 61:404

˛k �0:8786 0:2748 0:2948

M
˛k

Y 0:7921 1:0798 1:0860

order of magnitude smaller than the simulation-based estimate.

5.5.3 Reliability of a Steel Frame Structure

The linear elastic analysis of a three-bay four-storey steel frame, shown in Figure 5.9, was carried

out to compute the interstory drift or relative displacement at each of the 16 unsupported joints

of the structure. This example is taken from a reference (Liu, 2007).

External loads include dead loads due to the gravity of members and slabs, short and long

term live loads, snow load on the roof, and the lateral wind load. The distributed loads applied

to each member are described in Table 5.13. Random variables and their distribution parameters
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Figure 5.8: Probability of exceedance versus the maximum truss displacement (ME-FM: Prin-

ciple of maximum entropy (MaxEnt) with fractional moments; ME-IM: Principle of maximum

entropy (MaxEnt) with integer moments; MCS: Crude Monte Carlo simulation with 106 sam-

ples.)

Table 5.13: Description of load applied to each member
Member Load Load Combination

Q17, Q19, Q20, Q22, Q23, Q25 DL C S1 C L1

Q18, Q21, Q24 DL C S2 C L2

Q26, Q27, Q28 DL C SL

are listed in Table 5.14. Note that the structural members, denoted as IPE and HEB sections, are

the European standard wide flange H-beams.

The probability failure of the structure is defined as the probability of the interstorey drift at

any joint, Dij .X/, exceeding a code specified limit, yc, which is analogous to a series system

problem:

PF D Pr
� 4[

iD1

4[
j D1

�
Dij .X/ > yc

��
D 1 � FY .yc/ (5.41)

where

�.X/ D max
16i;j 64

˚
Dij .X/
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Figure 5.9: A three-bay four-storey steel frame structure

Table 5.14: Random variables in the steel frame example
Variable Description Distribution Mean-Value Std.D COV

DL Dead load Lognormal 20 kN 6:0 kN 0:30

S1 Short term live load 1 Lognormal 10 kN 3:0 kN 0:30

S2 Short term live load 2 Lognormal 5:0 kN 1:5 kN 0:30

L1 Long term live load 1 Lognormal 10 kN 3:0 kN 0:30

L2 Long term live load 2 Lognormal 5:0 kN 1:5 kN 0:30

SL Snow load Lognormal 5:0 kN 1:5 kN 0:30

WL Wind load Lognormal 8:0 kN 2:4 kN 0:30

E Young’s modulus Lognormal 210 GPa 10:5 GPa 0:05

is the maximum interstory drift of the structure. Thus the probability of failure can be estimated

from the extreme event distribution, FY .y/, about the structural interstory drifts.
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Integer Moments

The first four integer moments calculated from both versions of DRM provide highly accurate

estimates with error less than 1%. The parameters of the MaxEnt PDF and fractional moments

are given in Table 5.15. These parameters were computed using 41 evaluations of maximum

interstory drift of the frame.

Table 5.15: Moments of the maximum interstorey drift of the steel frame
Moments 1st 2nd 3rd 4th

C-DRM 5:0225 27:511 164:21 1067:3

Relative Error (%) �1:7 � 10�3 �6:6 � 10�2 �0:29 �0:74

M-DRM 5:0225 27:528 164:68 1075:3

Relative Error (%) �1:7 � 10�3 �5:0 � 10�3 �5:0 � 10�3 �5:8 � 10�4

Simulation 5:0226 27:529 164:69 1075:3

C-DRM: Conventional dimensional reduction method;

M-DRM: The proposed multiplicative dimensional reduction method;

MCS: Crude Monte Carlo simulation with 106 samples.

Table 5.16: MaxEnt distribution of the system maximum interstory drift
Entropy k 0 1 2 3

1:7693 �k �291:46 82:684 139:70 83:212

˛k �0:0095 �0:2506 0:2171

M
˛k

Y 0:9852 0:6765 1:4092

Reliability Analysis

Parameters on the MaxEnt distribution of maximum interstory drift are summarized in Table

5.16. Its PDF obtained from M-DRM compares well with the simulation results as shown in

Figures 5.10. The POE versus maximum interstory drift is plotted in Figure 5.11. A close

agreement between M-DRM and simulation results in the entire range of the distribution confirms

the validity of the proposed approach. In contrast, C-DRM method has a fairly short tail, which

underestimates the failure probability for POE 6 10�2.
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Figure 5.10: Distribution of the maximum interstory drift of the steel frame structure(ME-FM:

Principle of maximum entropy (MaxEnt) with fractional moments; MCS: Crude Monte Carlo

simulation with 106 samples.)

Table 5.17: System failure probability of the steel frame structure
Drift (mm) 5:83 (h=600) 7:00 (h=500) 8:75 (h=400) 11:67 (h=300) 17:50 (h=200)

ME-IM 2:5184 � 10�1 9:8176 � 10�2 2:2403 � 10�2 1:1099 � 10�3 7:7851 � 10�15

ME-FM 2:5624 � 10�1 1:0185 � 10�1 2:1456 � 10�2 1:3675 � 10�3 6:2773 � 10�6

Simulation 2:5639 � 10�1 1:0187 � 10�1 2:1442 � 10�2 1:3507 � 10�3 5:0 � 10�6

The storey height h D 3500mm in the example;

ME-IM: Principle of maximum entropy (MaxEnt) with integer moments;

ME-FM: Principle of maximum entropy (MaxEnt) with fractional moments;

MCS: Crude Monte Carlo simulation with 106 samples.

AISC steel design code (AISC, 2005) states that, “typical drift limits in common usage vary

from h=200 to h=600 for interstory drift, depending on building type and the type of cladding

or partition materials used”. Based on this consideration, failure probabilities of the steel frame

were estimated from the threes methods (see Table 5.17). It is again clear that for higher drift val-

ues, such as 17.5 mm, ME-IM method underestimates the failure probability quite significantly.

Results of ME-FM method are always in close agreement with the simulation results.
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Figure 5.11: System failure probability of the steel frame structure (ME-FM: Principle of maxi-

mum entropy (MaxEnt) with fractional moments; ME-IM: Principle of maximum entropy (Max-

Ent) with integer moments; MCS: Crude Monte Carlo simulation with 106 samples.)

5.6 Conclusion

The Chapter presents a general method for deriving the probability distribution of a function

with multiple random variables representing the response of a structural system. The derivation

is based on the principle of maximum entropy (MaxEnt) in which constraints are specified in

terms of fractional moments (ME-FM). It is a further extension of ME-FM developed in Chapter

3 to compute the output distribution of an input-output relation instead of a random variable.

A multiplicative dimensional reduction method (M-DRM) was proposed to approximate a

general high-dimensional function representing mechanistic model of a system. The primary

advantage of M-DRM is to simplify a high-dimensional moment integration as the product of

a series low-dimensional integrals. Together with the rules of Gauss quadrature, an efficient

method for fractional moment computation was proposed.

Application of the method has been illustrated by several examples, i.e., math examples of

Genz’s function, examples on structural reliability analyses. Monte Carlo simulations were car-

ried out to assess the accuracy of the proposed method. It is observed that moment computation

of M-DRM has very small relative error (6 1%). Final product of the proposed method is the
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complete output distribution of a model function, which provides all information needed in prob-

abilistic analysis.
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Chapter 6

Global Sensitivity Analysis with M-DRM

6.1 Introduction

6.1.1 Literature Review

Sensitivity analysis has been widely used in engineering design to understand a complex model

behavior and help designers make informed decisions regarding where to spend the effort (Grier-

son, 1983). In deterministic scenario, sensitivity analysis is conducted to find the rate of change

in the model output by varying one input parameter at a time near a given reference point, which

involves partial derivatives and thus is referred to as the local sensitivity analysis (Saltelli, 2002).

For design under uncertainty, the probabilistic sensitivity analysis is a study to quantify the im-

pact of uncertainty in input variables on the uncertainty in the model output (Liu et al., 2004).

Among existing probabilistic sensitivity analysis methods, a popular category is the so-called

variance-based method for global sensitivity analysis (Saltelli et al., 2000; Sobol’, 2001). It is

to study how variance in system output can be apportioned to different sources of uncertainty in

model inputs (Saltelli, 2002). Application of variance to quantify the uncertainty and the associ-

ated sensitivity is based on the fact that the output variance is a unified summary of uncertainty

regardless of the involved system model. Therefore, the global sensitivity analysis is on studying

the impact of variations over the entire range of model inputs, as opposed to the local sensitivity

on the variation near a reference point (Saltelli et al., 2000).

Method for variance-based sensitivity analysis is related to the concept of analysis of variance

(ANOVA) in linear regression analysis, which is developed as a statistical tool to test the signif-

icance of each representative factor. The corresponding regression coefficient, hence, can be
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employed to measure the sensitivity of model behavior with respect to the input variable. How-

ever, the standard (or classical) ANOVA is only limited to provide the effects of linear and/or

second-order interaction of input variables, but it is seldom used to evaluate the highly nonlinear

effects, such as the total linear effect, nonlinear main effect, and an arbitrary interaction effec-

t, etc., that are critical for ranking the importance of input variables in a product development

(Chen et al., 2005).

To extend the standard ANOVA for global sensitivity analysis, a number of variance-based

methods have been developed, including the Fourier amplitude sensitivity test (McRae et al.,

1982; Saltelli and Bolado, 1998), various importance measures (Homma and Saltelli, 1996),

and the Sobol’ total effect index (Saltelli and Sobol’, 1995; Sobol’, 2003), etc. Reviews on the

methods of variance-based global sensitivity analysis can be found in literature (Saltelli et al.,

2000, 2008). Similar to the concept in standard ANOVA, many of these methods decompose the

total output variance to the items contributed by variations of input variables, and then derive the

global sensitivity index as the ratio of a partial variance contributed by an effect of interest over

the total output variance. The Chapter is proposed to conduct a the global sensitivity analysis

by computing the Sobol’ index, since it has been widely used in various areas of industry, such

as nuclear engineering (Tarantola et al., 2006) and mechanical engineering design (Chen et al.,

2005; Liu et al., 2006), etc.

Obviously, the variance-based sensitivity analysis can be applied directly to improve the qual-

ity of a product by reducing the output variance through controlling the variances of sensitive in-

put random variables. Furthermore, the measurement is capable to capture the influential effect

of each input variable and the interactions among a subset of inputs. In brief, the variance-based

sensitivity analysis can be used in a prior-design stage to screen out variables that are proba-

bilistically insignificant and to understand the interactions between design and noise variables,

or applied in a post-design stage to determine where the effort should be made to reduce the

variability so that the quality of a design can be improved (Chen et al., 2005).

To compute the Sobol’ index for global sensitivity analysis, Ishigami and Homma (1990) pre-

sented the Monte Carlo simulation method. A mechanistic model with n input random variables,

anN samples simulation needsN.2n�1/model evaluations for Sobol’ index estimation (Saltelli

and Sobol’, 1995). To reduce computational cost of the crude Monte Carlo simulation, Tarantola

et al. (2006) proposed random balance design (RBD) to conduct the global sensitivity analysis

of a nuclear waste disposal system. Polynomial chaos expansion (PCE) developed in literature
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(Ghanem and Spanos, 1991; Wiener, 1938) is another choice to compute the Sobol’ index. The

method decomposes an original input-output relation as a summation form of a serial orthogonal

polynomial chaos, in which the associated coefficient of each polynomial chaos was estimated

by using Monte Carlo simulation (Li and Ghanem, 1998) or the rules of Gauss quadrature (Blat-

man and Sudret, 2010a). Sudret (2008b) reviewed the PCE meta-model construction, in which

the computation of Sobol’ index was directly related to the coefficients of the PCE meta-model.

Nevertheless, most of methods for the variance-based global sensitivity analysis are without

consideration that acquiring samples of model outputs is resource, i.e., demanding computation-

ally cost involved in mechanistic model evaluations. The large number of functional calls related

to the crude Monte Carlo simulation (Sobol’, 2003) and the direct tensor Gauss quadrature (Blat-

man and Sudret, 2010b) is the motivation of developing an efficient computational technique for

the variance-based global sensitivity analysis in this Chapter.

Rahman (2011) combined the functional polynomial decomposition with the dimensional re-

duction method (DRM) for the objective. The primary benefit of using DRM is that a series

low-dimensional function (based on univariate DRM or bivariate DRM) are employed to ap-

proximate an original input-output relation, which reduces the high-dimensional integration as

the summation of series of one- or two-dimensional integrals. Combined with the rules of Gaus-

sian quadrature, the using of DRM can be trusted to remarkably reduce the number of mechanic

model evaluations from N.2n � 1/ (the crude Monte Carlo simulation) or N n (the direct tensor

Gaussian quadrature) to the magnitude of nN by using the univariate DRM or nN 2 by bivariate

DRM, respectively.

6.1.2 Objective

The proposed study is a development of computational method for the Sobol’ index computa-

tion by using the dimensional reduction method (DRM) in literature (Li et al., 2006; Rahman

and Xu, 2004). The conventional DRM (C-DRM) was derived as a summation of a series low-

dimensional function with increasing dimensionality. A novel dimensional reduction method

given as a multiplicative form of low-dimensional functions is proposed to approximate a gen-

eral input-output relation. The primary benefit of M-DRM entails a high-dimensional moment

integration as the product of a series of one-dimensional integrals. The separative property of

M-DRM will be employed to handle with the involved high-dimensional integrations infolded in

the variance-based global sensitivity analysis.
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6.1.3 Organization

Organization of the Chapter is as follows. Section 6.2 provides background on the variance-based

global sensitivity analysis, which consists of mathematical definitions on output variance de-

composition and Sobol’ sensitivity index. Section 6.3 illustrates crucial challenge on the Sobol’

index computation, i.e., one has to evaluate a series of high-dimensional integrals in terms of

the second-order moment of the conditional expectation. To overcome the involved intensive

computational cost, a multiplicative dimensional reduction method (M-DRM) is proposed to ap-

proximate the original high-dimensional integration as the product of a series of one-dimensional

integrations. Six examples from literature are employed in Sections 6.4 to examine the accuracy

and efficiency of M-DRM on the Sobol index computation. Section 6.5 summarizes the conclu-

sions, and computational details are given in Appendices.

6.2 Background

6.2.1 The Variance Decomposition

We write X D ŒX1; X2; � � � ; Xn�
T as the input parameters of a general model Y D �.X/, and

refer to Xi as an i th element of X or an i th model input. We shall denote the sub-vector ŒXi ; Xj �
T

by Xij , and in general if p is a set of indices then Xp is the sub-vector of X whose elements have

those indices. Finally, X�p is the sub-vector of X containing all elements except Xp.

Variance decomposition can be seen to express the general input-output relation as a series of

component functions with increase dimensionality (Cox, 1982; Efron and Stein, 1981; Li et al.,

2006; Rabitz and Aliş, 1999):

�.X/ D EŒY �C

nX
kD1

�i.Xi/C
X
i<j

�ij .xij /C
X

i<j <k

�ijk.Xijk/C � � � C �12���n.X/ (6.1)

in which the total terms in the decomposition is 2n. Generally, each component function in the
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equation can be defined by using conditional exsection as8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

�i.Xi/ D EŒY jXi � �EŒY �

�ij .Xij / D EŒY jXij � � �i.Xi/ � �j .Xj / �EŒY �

�ijk.Xijk/ D EŒY jXijk� � �ij .Xij / � �ik.Xik/ � �jk.Xjk/ � �i.Xi/ � �j .Xj / � �k.Xk/ �EŒY �

� � �

(6.2)

in which, the function EŒY jXi � would be an one-dimensional function only with respect to input

variable Xi , and in general, EŒY jXp� will be an s-dimensional function with respect to input

variables Xp with sub-index vector p D fi1; i2; � � � ; isg.

More importantly, it has been shown that all terms in Eq.(6.1) have following properties,

when input random variables are independent (Rabitz and Aliş, 1999; Rahman, 2011)

Property 6.1. Mean-value of each variance component function is zero, i.e.,

E
�
�p.Xp/

�
D

Z
Xp

�p
�
xp
�
fXp

�
xp
�
dxp D 0 8p D fi1; i2; � � � ; isg; and p � f1; 2; � � � ; ng (6.3)

Property 6.2. Each two variance component functions are orthogonal to each other:˝
�p1
.Xp1

/; �p2
.Xp2

/
˛
D

Z
Xp

�p1
.xp1

/�p2
.xp2

/fXp.xp/dxp D 0 (6.4)

for at least one index differing in p1 D fi1; i2; � � � ; isg and p2 D fj1; j2; � � � ; jqg; and p D

p1[ p2.

Due to the two properties, the total output variance, VarŒY �, can be decomposed into terms

relating to the main effect of each input random and various interactions of an arbitrary sub-

group input variables. A general decomposition like the analysis of variance, therefore, has been

formulated in literature (Li et al., 2006; Oakley and O’Hagan, 2004; Saltelli, 2002) as

VarŒY � D

nX
kD1

Vi C
X
i<j

Vij C
X

i<j <k

Vijk C � � � C V12���n (6.5)

where Vp D E
�
�2

p.Xp/
�

is the interaction effect of variables with sub-index p D fi1; i2; � � � ; isg.

In the decomposition of output variance, Vi is the main effect on the reduction in VarŒY �

that is obtained by learning the true value of Xi . Vij is the component of VarŒY � due solely

to uncertainty about the interaction between inputs Xi and Xj . Following the concept, if only
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tow input variables are considered in the input-output relation, i.e., Y D �.X1; X2/, one has

VarŒY � D V1 C V2 C V12, where V12 is an extra amount of variance removed when we learn

both X1 and X2 over the main effect variances V1 and V2. Hence, the variance decomposition

procedure gives us a partition of the output variance into the variances of each random variable

(i.e., the main effects) and the variances of a sub-group of random variables (i.e., the interaction

effects).

6.2.2 Global Sensitivity Coefficients

A measure on the influence of input random Xi with respect to model output can be evaluated by

the conditional variance, Var
˚
EŒY jXi �

	
, as shown in literature (Castillo et al., 2008; Oakley and

O’Hagan, 2004; Saltelli and Sobol’, 1995)

Si D
Var

˚
EŒY jXi �

	
VarŒY �

D
E
�
�2

i .Xi/
�

VarŒY �
(6.6)

which is referred to as the main effect index of model input Xi , and has been scaled in Œ0; 1�.

Following this notation, a general expression on an arbitrary interaction effect can be defined

as

Sp D
Var

˚
EŒY jXp�

	
�
P

q�p Vq

VarŒY �
D
E
�
�2

p.Xp/
�

VarŒY �
(6.7)

Each index Sp is an importance measure describing the corresponding percentage of output vari-

ance contributed by joint-group input variables with sub-index p D fi1; i2; � � � ; isg. And summa-

tion of the normalized sensitivity indices are one:

nX
kD1

Si C

X
i<j

Sij C

X
i<j <k

Sijk C � � � C S12���n D 1 (6.8)

in which, the first order index Si give the influence of each variable taken along, whereas the

higher orders indices account for possible mixed influence of various input random variables.
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6.3 Computation of Sensitivity Coefficients

6.3.1 Problem Formulation

Computation of the Sobol’ sensitivity index needs to calculate a series of n-dimensional integrals.

Taken the main effect of Xi as an example, its variance contribution is defined as

Vi D E
�
�2

i .Xi/
�

D

Z
Xi

�
 i.xi/ �E.Y /

�2
fi.xi/dxi (6.9)

where  i.Xi/ is the conditional expectation:

 i.Xi/ D E
�
Y jXi

�
D

Z
X�i

�.x/fX�i
.x�i/dx�i (6.10)

Substituting for the equation, the variance, Vi , on main effect can be rewritten as

Vi D

Z
Xi

�
 i.xi/ �E.Y /

�2
fi.xi/dxi

D

Z
Xi

� Z
X�i

�.x/fX�i
.x�i/dx�i

�2

fi.xi/dxi �
�
E.Y /

�2 (6.11)

which can be expressed as a compact form by using the conditional expectation as

Si D
Var

˚
EŒY jXi �

	
VarŒY �

D
E
�
 2

i .Xi/
�

�
�
E.Y /

�2
VarŒY �

(6.12)

in which one can see that computation of Si requires the second-order moment of the univariate

conditional expectation  i.Xi/ D EŒY jXi �.

To compute the joint variance of Xi and Xj (i < j ), one needs the bivariate variance com-

ponent function:

�ij .Xij / D  ij .Xij / � �i.Xi/ � �j .Xj / �EŒY � (6.13)

in which, the bivariate conditional expectation function,  ij .Xi ; Xj /, is defined as

 ij .Xij / D E
�
Y jXij

�
D

Z
X�ij

�.x/fX�ij
.x�ij /dx�ij (6.14)

Given the zero mean-value, the joint variance contribution Vij will be

Vij D E
�
�2

ij .Xi ; Xj /
�

D E
n�
 ij .Xij / � �i.Xi/ � �j .Xj / �E.Y /

�2o
D

Z
Xij

� Z
X�ij

�.x/fX�ij
.x�ij /dx�ij

�2

fXij
.xij /dxij � Vi � Vj �

�
E.Y /

�2 (6.15)
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The corresponding Sobol’ sensitivity index to measure the joint effect ofXi andXj is determined

as

Sij D
Var

˚
EŒY jXij �

	
� Vi � Vj

VarŒY �
D
E
�
 2

ij .Xij /
�

� Vi � Vj �
�
E.Y /

�2
VarŒY �

(6.16)

Generally, one can derive an arbitrary multi-variate sensitivity index, Sp, to calibrate the joint

effect of input random variables Xp acted together (Saltelli and Sobol’, 1995; Sobol’, 2003).

Also, one will notice that the general Sobol’ index, Sp, is also defined as the second moment

of the s-variate conditional expectation, i.e.,  p.Xp/ D EŒY jXp�, as well as all lower variance

components. Therefore, a general expression on an s-variate Sobol’ index can be derived as

Sp D
Var

˚
EŒY jXp�

	
�
P

q�p Vq

VarŒY �
D
E
�
 2

p .Xp/
�

�
P

q�p Vq � ŒE.Y /�2

VarŒY �
(6.17)

where the subscript index vectors p D fi1; i2; � � � ; isg and q D fj1; j2; � � � ; jkg. The expression

implies that, to computation of an s-variate sensitivity index, one has to evaluate 2s � 1 n-

dimensional integrals:

E
n�
E.Y jXq/

2
�o

D

Z
Xq

� Z
X�q

�.x/fX�q.x�q/dx�q

�2

fXq.xq/dxq where q � p (6.18)

The high-dimensional integrals are difficult to be evaluated analytically, and thus, the sample-

based method, say crude Monte Carlo simulation and its variants are recommended in literature

(Ishigami and Homma, 1990; Sobol’, 2001). The simulation methods are easy to be implement-

ed, the variance reduction of the estimates, however, is very expensive due to the intensive com-

putational cost. This motivates the development of M-DRM for the Sobol’ index computation in

the study.

6.3.2 Proposed Computational Method

On the development of multiplicative dimensional reduction method (M-DMR), one can refer to

Section 5.2.2 in Chapter 5 for details. Here is the primary result on the univariate M-DRM.

Considering a general input-output relation, y D �.x/, through M-DRM, the multi-variate

model can be approximated as an multiplicative form of n one-dimensional functions:

�.x/ �
�
�.c/

�1�n
nY

kD1

�.c1; � � � ; ck�1; xk; ckC1; � � � ; cn/ (6.19)
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where c D Œc1; c2; � � � ; cn�
T is referred to as the cut-point of the approximation. In the univariate

M-DRM approximation, one should note that the function �.c1; � � � ; ck�1; xk; ckC1; � � � ; cn/ is

an one-dimensional function only with respect to xk by fixing other input variables with the

corresponding cut points. The Chapter is proposed to develop an efficient computational method

to conduct global sensitivity analysis by using the M-DRM method.

To demonstrate the proposed M-DRM for Sobol’ index computation, we first consider the

main effect of an i th random variable, Xi . Through the formulation in Section 6.3.1, one needs to

calculate the second-order moment of the univariate conditional expectation  i.Xi/ D EŒY jXi �:

E
�
 2

i .Xi/
�

D E
n�
E.Y jXi/

�2o
D

Z
Xi

� Z
X�i

�.x/fX�i
.x�i/dx�i

�2

fi.xi/dxi (6.20)

Substituting for the M-DRM approximation of �.x/, the integral can be rewritten as

E
�
 2

i .Xi/
�

�

Z
Xi

�Z
X�i

�
�.c/ �

nY
kD1

�.xk; c�k/

�.c/

�
fX�i

.x�i/dx�i

�2

fi.xi/dxi (6.21)

in which, each one-dimensional function has be rewritten in a compact form:

�.xk; c�k/ D �.c1; � � � ; ck�1; xk; ckC1; � � � ; cn/

Therefore, given mutually independent input random variables, the original n-dimensional

integration in terms of E
�
 2

i .Xi/
�

has been further simplified as a series of one-dimensional

integrations:

E
�
 2

i .Xi/
�

� Œ�.c/�2�2n
�

nY
kD1;k¤i

� Z
Xk

�.xk; c�k/fk.xk/dxk

�2

�

Z
Xi

Œ�.xi ; c�k/�
2fi.xi/dxi

(6.22)

in which, �.c/ is a constant as model Y D �.X/ deterministically evaluated at the cut-point

c�k; the second term is the product of n � 1 squared mean-values of one-dimensional function

�.Xk; c�k/ as k D 1; � � � ; i � 1; i C 1; � � � ; n; and the third term is the second-order moment of

�.Xk; c�k/.

In general, to compute an s-variate Sobol’ index, Sp, the corresponding second-order moment

of the conditional expectation function EŒY jXp� has been defined as follows:

E
n�
E
�
Y jXp

��2o
D E

�
 2

p .Xp/
�

D

Z
Xp

� Z
X�p

�.x/fX�p.x�p/dx�p

�2

fXp.xp/dxp (6.23)

where the s-variate multiple index vector is defined as p D fi1; i2; � � � ; isg.

130



Substituting for the M-DRM approximation in Eq.(6.19), one can simplify the high-dimensional

integration as

E
�
 2

p .Xp/
�

�
�
�.c/

�2�2n
�

nY
kD1

k¤i1���is

n
E
�
�.Xk; c�k/

�o2

�
Y

kDi1���is

E
n�
�.Xk; c�k/

�2o (6.24)

in which, one can make a general conclusion that the proposed M-DRM can approximate the

second-order moment integration with respect to an s-variate conditional expectation as the prod-

uct of n � s mean-values and s second-order moments of �.Xk; c�k/:8̂̂<̂
:̂
E
�
�.Xk; c�k/

�
D

Z
Xk

�.c1; � � � ; ck�1; xk; ckC1; � � � ; cn/fk.xk/dxk

E
˚
Œ�.Xk; c�k/�

2
	

D

Z
Xk

Œ�.c1; � � � ; ck�1; xk; ckC1; � � � ; cn/�
2fk.xk/dxk

(6.25)

The proposed M-DRM can also be employed to compute statistical moments of model output.

In the variance-based global sensitivity analysis, for instance, the overall mean-value and second

order moment of output are approximated as8̂̂̂̂
<̂
ˆ̂̂:
E
�
�.X/

�
�
�
�.c�k/

�1�n
�

nY
kD1

� Z
Xk

�.c1; � � � ; ck�1; xk; ckC1; � � � ; cn/fk.xk/dxk

�
E
n�
�.X/

�2o
�
�
�.c�k/

�2�2n
nY

kD1

�Z
Xk

�
�.c1; � � � ; ck�1; xk; ckC1; � � � ; cn/

�2
fk.xk/dxk

�
(6.26)

as well as the estimate of total output variance: VarŒY � D EŒY 2� � ŒE.Y /�2.

The one-dimensional integrals derived by M-DRM can be efficiently calculated by using the

rules of Gaussian quadrature as shown in Chapter 5:8̂̂̂̂
<̂
ˆ̂̂:

Z
Xk

�.xk; c�k/fk.xk/dxk �

NX
lD1

wkl�.c1; � � � ; ck�1; xkl ; ckC1; � � � ; cn/Z
Xk

�
�.xk; c�k/

�2
fk.xk/dxk �

NX
lD1

wkl

�
�.c1; � � � ; ck�1; xkl ; ckC1; � � � ; cn/

�2 (6.27)

in which, an l th Gaussian point, xkl , and weight, wkl , can be determined according to the proba-

bility measure of random variable Xk .
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6.3.3 Efficiency Analysis

With an N th order Gauss-type integration scheme, computational cost associated with M-DRM

for Sobol’ index computation can be assessed by

Total Number of Functional Evaluations: D 1C nN (6.28)

which is believed to reduce the number of functional evaluation fromN n by employing the direct

tensor Gauss quadrature method.

The primary superiority of use the proposed M-DRM on Sobol’ index computation is due

to that one can approximate a high-dimensional integration as the product of a series of one-

dimensional integrals, which would be trusted to dramatically reduce the total number of func-

tional evaluations as compared to available methods in literature.

6.4 Numerical Examples

6.4.1 General

Six examples in literature are employed in the section to illustrate the applications of M-DRM for

Sobol’ sensitivity index computation. A flow chart on numerical implementation of the proposed

method is summarized as shown in Figure 6.1. Benchmarks determined by analytic integration

(for low dimensional example, i.e., n 6 3) or crude Monte Carlo simulation with 106 samples

(for high dimensional example, i.e., n > 4) are also provided to examine the accuracy and

efficiency of M-DRM on Sobol’ index computation.

6.4.2 Polynomial Function

The first example considers a polynomial function:

�.X/ D
1

2n

nY
kD1

�
3X2

k C 1
�

(6.29)

which is proposed by Sobol’ (2003), and later studied by Sudret (2008b) to examine the polyno-

mial chaos expansion (PCE) method on global sensitivity analysis.

In the polynomial function, each input variableXi is independently and identically distributed

(i.i.d.) as a Uniform random variable over Œ0; 1�. Exact mean-value and variance are determined
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Use M-DRM to approximate an original

input-output relation as the product of  

a series one-dimensional functions

Determine the integration grids given

 distribution of input random varible

Start

Calculate mean-value and second-order 

moment of each component function

Caluate second-order moments of each 

conditional expectation function

Obtain the estimate of each Sobol’ Index

Figure 6.1: Steps of M-DRM for Sobol’ sensitivity index computation

as

EŒ�.X/� D 1I VarŒY � D .6=5/n � 1

And the analytic expressions of Sobol’ sensitivity index are:

Si1i2���is
D

5�s

.6=5/n � 1
.1 6 i1 < � � � < is 6 n/

Table 6.1 reported the results on global sensitivity analysis by using the methods of polyno-

mial chaos expansion (PCE), polynomial dimensional decomposition (PDD) and the proposed

multiplicative dimensional reduction method (M-DRM), respectively.

Assumed that n D 3, the polynomial function in Eq.(6.29) is defined as the tensor product of

three quadratic functions. The proposed M-DRM with three-order Gauss-Legendre quadrature

(N D 3) is able to provide exact result of each Sobol’ sensitivity index.

Sudret (2008b) approximated the polynomial function with three- and six-order truncated

PCE meta-model, i.e., p D 3 and p D 6, respectively, which needs 29 and 116 function e-
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Table 6.1: Global sensitivity analysis of polynomial function with various methods
Sensitivity Index M-DRM PCE PDD Exact

N D 2 N D 3 p D 3 p D 6 m D 1 m D 2

S1 0:2780 0:2747 0:2879 0:2747 0:2780 0:2747 0:2747

S2 0:2780 0:2747 0:2773 0:2747 0:2780 0:2747 0:2747

S3 0:2780 0:2747 0:2773 0:2747 0:2780 0:2747 0:2747

S12 0:0521 0:0549 0:0506 0:0549 0:0521 0:0549 0:0549

S13 0:0521 0:0549 0:0506 0:0549 0:0521 0:0549 0:0549

S23 0:0521 0:0549 0:0481 0:0549 0:0521 0:0549 0:0549

S123 0:0098 0:0110 0:0081 0:0110 0:0098 0:0110 0:0110

Number of FEs 7 10 29 116 8 27 ��

PCE: Polynomial chaos expansion (Sudret, 2008b); PDD: Polynomial dimensional

decomposition (Rahman, 2011); M-DRM: The proposed multiplicative dimensional

reduction method.

valuations, respectively, to compute the corresponding Sobol’ sensitivity index. Rahman (2011)

integrated the additive (or conventional) dimensional reduction method in PCE to simplify the

high-dimensional integration with respect to the expansion coefficients. The method reduced

the number of functional evaluations as 8 and 27, respectively, by using the univariate C-DRM

(m D 1) and bivariate C-DRM (m D 2), respectively. Compared to the methods in literature, the

proposed M-DRM is more efficient and accurate, since it needs only 10 .D 3� 3C 1/ functional

evaluations to obtain the estimates as exact as analytic integration.

6.4.3 Ishigami Function

The example considers a triangle function proposed by Ishigami and Homma (1990):

�.X/ D sin.X1/C aŒsin.X2/�
2

C b sin.X1/X
2
3 (6.30)

where Xi are i.d.d. Uniform random variables over Œ��; ��.

The total output variance is analytically determined as

VarŒY � D
1

2
C
a2

8
C
b�4

5
C
b2�8

18
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as well as the corresponding Sobol’ sensitivity indices:

S1 D
b2�8 C 10b�4=5C 25

50VarŒY �
I S2 D

a2=8

VarŒY �
I S13 D

8b2�8=225

VarŒY �
(6.31)

which implying other indices are almost zero.

We assume that a D 0:1 and b D 0:7, respectively. The various orders of Gauss-Legnedre

quadrature are employed to estimate of the Sobol’ indices as summarized in Table 6.2.

Table 6.2: Global sensitivity analysis of the Ishigami function
Sensitivity M-DRM Exact

N D 3 N D 4 N D 5 N D 6

S1 0:5912 0:4147 0:3942 0:3942 0:3932

RE (%) 50 5:5 0:26 0:26 ��

S13 0:4088 0:5853 0:6058 0:6058 0:5992

RE (%) �33 �3:5 �0:17 �0:17 ��

VarŒY � 732:41 293:44 269:62 274:56 272:25

RE (%) 69 7:7 �1:04 0:78 ��

No. FEs 7 10 13 16 ��

M-DRM: The proposed multiplicative dimensional reduction method;

RE: Relative Error: = (M-DRM � Exact)/Exact�100%.

The example examines the proposed M-DRM on global sensitivity analysis with varied orders

(N ) of Gauss quadrature. Compared to benchmarks, one can see that the corresponding relative

errors (REs) by M-DRM decrease with the increase of order of Gauss quadrature. Using three-

point (N D 3) Gauss-Legendre quadrature, the estimates of Sobol’ index have a large relative

error (� 50%), whereas M-DRM can remarkably improve the accuracy of the estimates with

five-order (N D 5) Gauss quadrature. The small REs (0:26% and 0:17% ) associated with

S1 and S13 highlight the accuracy of M-DRM for Sobol’ index computation. In addition, it is

interesting to see that M-DRM was companied a rather small increase in terms of the total number

of mechanistic model evaluations, i.e., 16 .D 5 � 3C 1/ by five-order Gauss quadrature versus

7 .D 2 � 3C 1/ by three-order Gauss quadrature, which has further confirmed the efficiency of

M-DRM for Sobol’ index computation.
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6.4.4 Non-Smooth Function

The third example examines of the performance of M-DRM on Sobol’ index computation by

considering a non-smooth function (Sobol’, 2001):

�.X/ D

nY
kD1

j4Xk � 2C akj

ak C 1
(6.32)

in which, n-dimensional input random variables Xk .k D 1; � � � ; n/ are uniformly distributed

over Œ0; 1�. Analytic results of output variance and sensitivity indices are given as8̂̂̂̂
<̂
ˆ̂̂:

Output Variance W VarŒY � D �1C

nY
kD1

h 1

3.ak C 1/2
C 1

i
Sobol’ Index W Si1���is

D
1

VarŒY �

sY
kD1

1

3.aik
C 1/2

.1 6 i1 < � � � is 6 n/

Assume that the dimensionality parameter n D 8, and the constants a1 D 0:001, a2 D 1,

a3 D 4:5, a4 D 9 and a5 D � � � D a8 D 99, respectively (Sobol’, 2003). Main effects of

input variables determined by M-DRM are summarized in Table 6.3, together with the results

in literature provided by methods trivariate polynomial dimensional decomposition (T-PDD),

random balance design (RBD) and state-dependent parameter modelling (SDP), respectively.

According to the results in Table 6.3, one can see that the primary contribution (71:62%)

of output variance comes from X1 due to a1 D 0:001, and variables X5�9 almost make the

null contributions due to large values of a5 � a8. Compared to the benchmarks, M-DRM

associated with ten order (i.e., N D 10) Gauss-Legendre quadrature obtains fairly accurate

estimates of Sk (k D 1; � � � ; 8). Together with the smaller numbers of functional evaluations,

i.e., 81 .D 1C 8 � 10/, compared to other methods in literature, one can conclude that M-DRM

can achieve accurate estimates of Sobol’ index with small number of functional evaluations.

Since the function is defined as a product form in terms of each random variable, the trivariate

PDD needs 30529 functional evaluations, as well as a similar number of mechanistic model

evaluations d by using large size RBD and SDP methods.
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6.4.5 Corner Peak Function

The example examines the performance of M-DRM by considering the corner peak function

(Genz, 1987):

�.X/ D

�
1C

nX
kD1

akXk

��.nC1/

(6.33)

in which, the independent input variables Xi are uniformly distributed over Œ0; 1�.

Two cases in terms of various dimensionality of input vector X are considered. The first

case assumed that n D 3, and two combinations (uniform and non-uniform) of constants a are

considered. Benchmarks of main effects are determined through analytical integration as shown

in Table 6.4. M-DRM with three-order (N D 3) Gauss quadrature can obtain very accurate

estimates of Sobol’ index compared to the benchmarks.

Table 6.4: Main effect of Sobol’ index of the corner peak function (n D 3)
Sensitivity a1 D a2 D a3 D 0:01 a1 D 0:02; a2 D 0:05; a3 D 0:08

M-DRM Exact M-DRM Exact

S1 0:3333 0:3333 0:0430 0:0429

S2 0:3333 0:3333 0:2685 0:2681

S3 0:3333 0:3333 0:6860 0:6851

No. FEs 10 �� 10 ��

M-DRM: The proposed multiplicative dimensional reduction method;

Benchmark: Result determined by analytic integration.

The second case assumes that n D 10 (i.e., ten input random variables), and the weighting

constants are equally spaced as a1 D 0:01; a2 D 0:02; � � � ; a10 D 0:1. Since the analytic

integrations on the Sobol’ index are impossible due to the high dimensionality of X, Monte

Carlo simulation is conducted to estimate each main effect and and the associated variation.

After 10 rounds simulation with 105 samples in each, 95th confidence intervals (CIs) of each

main effect are determined as shown in Figure 6.2. The close estimates provided by M-DRM

has verified the accuracy of proposed method on Sobol’ sensitivity index computation. In addi-

tion, the small number of functional evaluations (31 D 3 � 10 C 1) has further highlighted its

superiority on handling with the involved high-dimensional integrations.
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Figure 6.2: Estimates of Sobol’ sensitivity index for the example of corner-peak function (M-

DRM: The proposed multiplicative dimensional reduction method; MCS: Ten rounds of Monte

Carlo simulation with 105 samples in each).

6.4.6 Thermal Stress Intensity Factor

A crack has been observed in a metal membrane due to the variation of temperature in a heating

system. During functioning, the system is heated with a permanent uniform temperature field,

T0. During maintenance, the system is stopped, and consequently the temperature is reduced to

ambient temperature, T . The heat drop implies tension and the crack opening according to mode

I. Mathematic model of the corresponding stress intensity factor (SIF) is given as (Tada et al.,

2000)

KIC.X/ D �˛E.T � T0/

r
�a

cos.�a=4B/

�
1 � 0:025

� a
2B

�2

C 0:06
� a
2B

�4
�

(6.34)

where the properties of input random variables, X, are listed in Table 6.5.

With the proposed method of M-DRM, main effect of each random variable is estimated by

two (N D 2) and four (N D 4) orders of Gauss quadrature, respectively. Together with bench-

marks provided by Monte Carlo simulation (10 rounds simulation and 105 samples in each), the
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Table 6.5: Random variables in the example of thermal stress intensity factor
Variable Description Distribution Mean Std.D COV

T0 Initial Temperature Lognormal 100 ıC 20:0 ıC 0.20

T Amphibian Temperature Lognormal 20 ıC 4:0 ıC 0.20

a Crack Size Lognormal 10 mm 2.0 mm 0.20

B Width of Plate Lognormal 200 mm 40 mm 0.20

E Young’s Module Lognormal 210 GPa 42 GPa 0.20

˛ Expansion Cof. Deterministic 12:5 � 10�6 ıC�1 — —

Table 6.6: Global sensitivity analysis of the thermal stress intensity factor
Variable M-DRM Monte Carlo Simulation

N D 2 N D 4 Mean-Value 95th CI

T0 0:5256 0:5265 0:5263 Œ0:5236; 0:5291�

T 0:0210 0:0211 0:0212 Œ0:0195; 0:0228�

a 0:0860 0:0833 0:0836 Œ0:0811; 0:0860�

B 2:2 � 10�7 2:5 � 10�7 2:0 � 10�4 Œ�0:0016; 0:0021�

E 0:3364 0:3369 0:3388 Œ0:3363; 0:3413�

Mean 37:05 37:06 37:05 Œ37:03; 37:08�

Variance 155:9 163:0 162:9 Œ162:3; 163:6�

No. FEs 11 21 105 � 10 � 6

M-DRM: The proposed multiplicative dimensional reduction method.

determined Sobol’ indices are summarized and verified as shown in Table 6.6. According to the

estimates, one can see that the M-DRM with four-order Gauss-Hermite quadrature (due to the

lognormally distributed input random variables) is believed to provide accurate results on the

global sensitivity analysis of the probabilistic thermal SIF example.

6.4.7 Eigenvalue Analysis of a Spring-Mass System

The last example examine the accuracy of M-DRM for global sensitivity analysis by considering

eigenvalue analysis of a linear spring-mass system (Rahman, 2006). The eigenvalue problem can

be formulated as

Kˆ D �Mˆ (6.35)
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where M and K are the mass matrix and stiffness matrix; and �k is a kth order eigenvalues

of the system.

In deterministic scenario, each eigenvalue can be determined via the system characteristic

equation:

detŒK � �M� D 0 (6.36)

Structural mass matrix is:

M D

2664
M1 0 0

0 M2 0

0 0 M3

3775
as well as the stiffness matrix:

K D

2664
K1 CK4 CK6 �K4 �K6

�K4 K2 CK4 CK5 �K5

�K6 �K5 K3 CK5 CK6

3775
Mean-values of mass and stiffness are assumed as �Mi

D 1kg (i D 1; 2; 3), �Ki
D 1N/m

(i D 1; � � � ; 5), and �K6
D 3N/m. All input random variables are Lognormally distributed with

COV D 15%.

With five-order Gauss-Hermite quadrature, the sensitivity indices are computed for each

eigenvalue. According to in Table 6.7, it is clear to see that the proposed method is fairly ef-

ficient, i.e., the number of functional evaluations is only 46 .D 5 � 9 C 1/. Compared to the

confidence intervals provided by Monte Carlo simulation (10 rounds of simulation with 105

samples in each), it is verified the accuracy of the prosed method.

6.5 Conclusion

Objective of the Chapter is designed to propose a computationally efficient method for variance-

based global sensitivity analysis. Through the concept of general analysis of variance (ANOVA),

the variance of a system output was decomposed as the summation of a series second-order

moments of the conditional expectation. The ANOVA is an extension of the classical ANOVA

developed in linear regression or design of experiment.

Applications of the M-DRM for global sensitivity analysis were examined by six examples

selected from literature, which includes four mathematic problems and two engineering applica-
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tions. Compared to benchmarks, the results indicate that the proposed M-DRM method provides

fairly accurate estimates about the global sensitivity coefficients.
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Chapter 7

Polynomial Chaos Expansion with M-DRM

7.1 Introduction

7.1.1 Literature Review

The term polynomial chaos was coined by Norbert Wiener in 1938 in his work studying the

decomposition of Gaussian stochastic process (Wiener, 1938). This was long before the phe-

nomenon of chaos in dynamic systems was known. In Wiener’s work, Hermite polynomials

serve as an orthogonal base, and the validity of the approach was proved by Cameron and Martin

(1947).

The original polynomial chaos work was started by Ghanem and Spanos (1991) for the prob-

abilistic mechanics computation. Inspired by the theory of Wiener-Hermite polynomial chaos,

Ghanem employed Hermite polynomials as an complete base to represent a random process and

applied the technique to many practical engineering problems with success.

The use of Hermite polynomials, albeit mathematically sound, presents difficulties in some

applications, particularly in terms of convergence and probability approximation for non-Gauss

problems (Orszag and Bissonnette, 1967). Consequently, the generalized polynomial chaos was

proposed in literature (Xiu and Karniadakis, 2002b, 2003) to alleviate the difficulty. In gener-

alized polynomial chaos, it depends on the probability distribution of an input variable to select

the representative orthogonal polynomial. Optimal convergence can be achieved by choosing

a proper basis, and strength of use the generalized polynomial chaos was demonstrated for a

variety of partial differential equations (Xiu and Karniadakis, 2002a).

The work on generalized polynomial chaos expansion was further extended by not requiring
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the basis polynomials to be globally smooth. In fact, in principle any set of complete bases can

be a viable choice. Such generalization includes the piecewise polynomial basis, the wavelet

basis (Maîter et al., 2004), and multi-element polynomial chaos (Doostan et al., 2007).

Upon choosing a proper basis, a numerical technique is needed to conduct the polynomial

chaos expansion. The early works were mostly based on the Galerkin method, which minimizes

the error of a finite-order expansion by an orthogonal projection (Ghanem and Spanos, 1991).

This is the stochastic Galerkin approach (Li and Ghanem, 1998). The Galerkin procedure usually

results in a set of coupled deterministic equations and requires additional effort to evaluate. Also,

derivation of the extended set of equations is also a challenging task when the mechanistic model

takes a complicated form.

Another approach for the objective can be realized by repetitively executing an established

deterministic code on a prescribed node in the random space. Upon completing the simulations,

a postprocessing procedure is followed to obtain the desired output properties. This is the s-

tochastic collocation method (Babuška et al., 2007). The idea, primarily based on the classical

simulation method, the crude Monte Carlo simulation. Other works in the field mostly employ

the method of tensor Gasss quadrature. Although the tensor product construction makes mathe-

matical analysis more accessible, the total number of functional evaluations grows exponentially

fast with respect to the number of input variables, which is known as the curse of dimension-

ality. Since each node requires a fully scale deterministic model evaluation, the tensor product

approach is practically only for a problem with the low dimensionality input variables.

To alleviate the computational burden due to a large number of input variables, the adaptive

sparse grid collocation method was developed in literature (Blatman and Sudret, 2010a,b). Even

though the number of functional evaluations can be reduced to some extents, the involved com-

putational cost needs to explore an efficient method for PCE meta-model construction (Blatman,

2009).

7.1.2 Objective

The Chapter is designed to propose a computationally efficient method on a meta-model con-

struction with polynomial chaos expansion. Since coefficients of the surrogate model are defined

as a series high-dimensional integrations, compared to the methods in literature, the proposed

method is ideally sought to be:

� easy to implement. The method is desired to reserve the simplicity of Monte Carlo simula-
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tion, i.e., uncertainty quantification is only based on a couple of “predefined” deterministic

model evaluations. This is a stochastic collocation method in nature; and

� not only efficient, i.e., the required number of mechanistic model analyses is very small,

but also accurate, i.e., it is capable to precisely determine the complete output distribution

and a small failure probability associated with a predefined failure threshold.

The method is developed by using the multiplication dimensional reduction method (M-

DRM) as proposed in Chapter 5. First of all, M-DRM is employed to approximate a general

response function with multiple input variables as the product of a series low-dimensional func-

tions. It helps to reduce the computational effort involved in the high-dimensional integrations.

Together with the optimized Gauss grid, an efficient method for polynomial chaos expansion is

proposed. The associated uncertainty quantification of a system will be implemented from the

following aspects: (a) Moment computation; (b) The variance-based global sensitivity analysis;

and (c) The complete output distribution estimation.

7.1.3 Organization

The Chapter is organized as follows. Section 7.2 collects the basic elements of polynomial chaos

expansion (PCE), which include the orthogonality of the polynomial chaos, the construction of

multi-dimensional polynomial chaos, the general expression of a PCE meta-model, and a brief

review on the related computational methods in literature. Section 7.3 proposes the using of

multiplicative dimensional reduction method for polynomial chaos expansion of a system. With

the determined PCE meta-model, Section 7.4 summarizes a generic postprocessing procedure

on uncertainty quantification. In numerical sections, examples form literature are employed to

illustrate the proposed method for system uncertainty quantification. Section 7.8 summarizes the

conclusion.

7.2 Polynomial Chaos Expansion (PCE)

7.2.1 Background

Polynomial chaos expansions have been introduced on stochastic mechanics in the early 90’s by

Ghanem and Spanos (1991). In the original setting, a boundary valued problem is considered in
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which some parameters are modelled as random fields. The quantities of interest are the resulting

stochastic displacement and stress fields. Thus the use of polynomial chaos expansion has been

intimately associated with spatial variability and considered as a separate topic with respect to

structural reliability for a while.

In the present study, the spectral expansion of an output quantity onto a bases made of or-

thogonal polynomials, commonly referred to as the polynomial chaos expansion are of interest.

In this setup, characterizing a model response is equivalent to computing the corresponding co-

efficients of the PCE surrogate model. To achieve this, the stochastic collocation method allows

to compute the multi-dimensional integration with respect to expansion coefficient with deter-

ministic model evaluations. However, the methods in literature need demanding computational

resources. Therefore, the study is proposed to reduce the computational burden in PCE by using

the multiplicative dimensional reduction method (M-DRM). Together with the rules of Gauss

quadrature, a non-intrusive method for system uncertainty propagation is proposed to construct

the PCE meta-model based on a small number of “well chosen” deterministic analyses.

7.2.2 Polynomial Chaos Basis

One simple fashion of constructing an n-dimensional polynomial chaos is to follow the partial

tensorization of one-dimensional polynomials. Thus, we first focus on the polynomials of a

single standard Normal variable, X , with the probability density function of

fX.x/ D
1

p
2�

exp.�x2=2/ (7.1)

By  k.X/, we denote a kth order polynomial. And following the same convention, the zeroth

degree polynomial is defined as  0.X/ D 1. Recall that the polynomial basis are orthogonal to

each other, which can be expressed as

E
�
 i.X/ j .X/

�
D
˝
 i.X/;  j .X/

˛
D

Z
X

 i.x/ j .x/fX.x/dx D ıijE
�
 2

i .X/
� (7.2)

where ıij is the Kronecker symbol, and it is equal to 1 if i D j and 0 otherwise.

The one-dimensional polynomials thus defined, which are mutually orthogonal with respect

to the standard Normal distribution, constitute a well-known family, the Hermite orthogonal
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polynomials. In addition, the normalized polynomials can be determined as

y k.X/ D
 k.X/p

h k.X/;  k.X/i
D

1
p
kŠ
 k.X/ .k D 0; 1; � � � / (7.3)

The normalized (Hermite) orthogonal polynomials have the following properties:8̂<̂
:
E
�

y k.X/
�

D E
�

y 0.X/ � y k.X/
�

D 0 .k D 1; 2; � � � /

E
n�

y k.X/
�2o

D

Z
X

�
y k.x/

�2
fX.x/dx D 1 .k D 0; 1; � � � /

(7.4)

in which, one can see that the normalized orthogonal polynomials have the mean-value of zero

only except E
�

y 0.X/
�

D 1:0, and the unit variance only except Var
�

y 0.X/
�

D 0.

An n-dimensional polynomial chaos can be set up by tensorizing one-dimensional polynomi-

als as follows. We will denote the multi-dimensional input variables as X D ŒX1; X2; � � � ; Xn�
T.

Since these random variables are independent, the joint probability density of X, then, can be

defined using each marginal PDF:

fX.x/ D

nY
kD1

fk.xk/ (7.5)

The chaos polynomial was originally formulated with standard Normal variables and Hermite

polynomials as the finite-dimensional Wiener polynomial chaos (Wiener, 1938). It was later

extended to other classical random variables from the Askey-scheme of polynomials (Xiu and

Karniadakis, 2002b). The scheme classifies the hypergeometric orthogonal polynomials that

satisfy some type of differential equations and indicates that the limit relations between them.

Hermite polynomials are a subset of the Askey-scheme. And each subset of the orthogonal

polynomials has different weighting function as defining the orthogonality relationship. It has

been realized that some of these weighting functions are identical (or similar) to the probability

density functions of certain random variables as shown in Table 7.1.

If the involved random variable does not listed in Table 7.1, it is possible to employ a nonlin-

ear mapping such that the generalized polynomial chaos expansion can be applied to represent

the new variable (Der Kiureghian and Liu, 1986; Rosenblatt, 1952). For instance, a Lognormal

variable can be recast as a function of a standard Normal variable, which will be used in con-

junction with the Hermit polynomial. As an alternative, ad hoc orthogonal polynomial can be

generated for a random variable with an arbitrary probability measure (Wan and Karniadakis,

2006).
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Table 7.1: Relation between orthogonal polynomial and random variable distribution
Polynomial Weight Function Support Orthogonality Distribution

Hermite exp.�x2=2/ .�1;C1/ h i ;  j i D
p
2�iŠıij Normal

Legendre 1 Œ�1; 1� h i ;  j i D
1

2iC1
ıij Uniform

Jacobi .1 � x/a.1C x/b Œ�1; 1� h i ;  j i D CJacobiıij Beta

Laguerre exp.�x/ Œ0;C1/ h i ;  j i D
�.iC1/

iŠ
ıij Exponential

General Laguerre �.x; aC 1; 1/ Œ0;C1/ h i ;  j i D
�

iCa

i

�
ıij Gamma

where the normalization constant of Jacobi polynomial is CJacobi D
2aCbC1

2iCaCbC1

�.iCaC1/�.iCbC1/

�.iCaCbC1/iŠ
.

Let � denote the multiple-index of an n-dimensional polynomial, � D f�1; �2; � � � ; �ng, and

let L.p/ denote the following set of multi-indices:

L.p/ D arg
�

� W

nX
kD1

�k D p

�
(7.6)

which implies the summation (or the length) of the index vector � is p.

Following the definition, one can construct the pth order polynomial chaos with the form of

�
‰p.X/

�
D

8<: [
�2L.p/

� nY
kD1

 �k
.xk/

�9=; (7.7)

The definition on chaos polynomial is illustrated by approximating a two dimensional func-

tion Y D �.X1; X2/ as follows. We assume that X are the standard Normal variables. A meta-

model with the corresponding Hermit polynomial chaos can be conducted as

�.X1; X2/ D a00 0.X1/ 0.X2/C a10 1.X1/ 0.X2/C a01 0.X1/ 1.X2/C

a20 2.X1/ 0.X2/C a11 1.X1/ 1.X2/C a02 0.X1/ 2.X2/C

a30 3.X1/ 0.X2/C a21 2.X1/ 1.X2/C a12 1.X1/ 2.X2/C

a03 0.X1/ 3.X2/C a40 4.X1/ 0.X2/C � � �

(7.8)

in which one can see a multiple superscript is employed to represent the corresponding one-

dimensional polynomials associated with an expansion coefficient. For the sake of simplicity in

notation, the expression can be recast as the following compact form:

�.X1; X2/ D

1X
kD0

ak‰k.X1; X2/ (7.9)
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where the two-dimensional polynomial chaos ‰k.X1; X2/ can be determined as

‰0.X1; X2/ D 1 ‰1.X1; X2/ D X1 ‰2.X1; X2/ D X2

‰3.X1; X2/ D X2
1 � 1 ‰4.X1; X2/ D X1X2 ‰5.X1; X2/ D X2

2 � 1

‰6.X1; X2/ D 3X2
1 � 3X1 ‰7.X1; X2/ D .X2

1 � 1/X2 � � �

(7.10)

In view of the expression of the two-dimensional polynomial chaos, it becomes clear that

except for a different indexing convention, the meta-model in Eq.(7.8) and Eq.(7.9) are identical.

For example, the term a21 2.X1/ 1.X2/ in Eq.(7.8) is identified as the term a7‰7.X1; X2/ in

Eq.(7.9).

In the following discussion, we will employ the condensed notation of a polynomial chaos

expansion:

�.X/ D

1X
kD0

ak‰k.X1; X2; � � � ; Xn/ (7.11)

In addition, as mentioned earlier, it is necessary to truncate the expansion up to order p, so

that the expansion will be finite and result in a truncation error. The total number of terms (d )

retained in the expansion can be determined with the dimensionality (n) of input variables, X,

and the truncation order (p) of the expansion:

d D
.nC p/Š

nŠ pŠ
(7.12)

The dependence of d on n and p is illustrated in Table 7.2, which provides the total number

of expansion terms, d , for 1 6 p; n 6 6.

Table 7.2: The number of terms (d ) with n input variables and p truncation order
p�n 1 2 3 4 5 6 p�n 1 2 3 4 5 6

1 2 3 4 5 6 7 4 5 15 35 70 126 210

2 3 6 10 15 21 28 5 6 21 56 126 252 462

3 4 10 20 35 56 84 6 7 28 84 210 462 924

Therefore, an expression for the truncated PCE meta-model can be generally expressed as

�.X/ D

d�1X
kD0

ak‰k.X/C �.n; p/ (7.13)
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in which one can see that the truncation error depends on both of n and p. This error is itself

a random variable. The truncated meta-model converges to the original input-output relation in

the mean square sense as n and p to go to infinity (Ghanem and Spanos, 1991):

lim
n;p!1

E
n�
�.n; p/

�2o
D 0 (7.14)

7.2.3 Coefficient Computation of a PCE Meta-Model

With polynomial chaos expansion, one can approximate an input-output relation with a surrogate

model contains d terms of multi-dimensional orthogonal polynomials:

�.X/ �

d�1X
kD0

ak‰k.X1; X2; � � � ; Xn/ (7.15)

As reviewed in forging section, the primary task in PCE is to calculate the corresponding

expansion coefficients, which are generally defined as

ak D
˝
‰k.x/; �.x/

˛
D

Z
X
‰k.x/ � �.x/ � fX.x/dx .k D 0; 1; � � � ; d � 1/ (7.16)

Therefore, one should note that calculation of ak needs to evaluate an n-dimensional integration.

In practice, it is necessary to estimate the high-dimensional integration by using the methods of

Monte Carlo simulation and Gauss quadrature as suggested in literature.

The concept of Monte Carlo simulation relies upon a large number of functional evaluations

(e.g., N D 106) to compute the integration. Given N samples of input variables, an estimate on

the coefficient can be obtained as

ak � yak D
1

N

NX
iD1

�
�
�
x.i/
�

�‰k

�
x.i/
��

(7.17)

Mean-value and variance of the estimate can be assessed by (Blatman and Sudret, 2010a)8̂<̂
:
EŒyak� D ak

VarŒyak� D
�2

N
; where �2 D Var

�
�.X/‰k.X/

� (7.18)

in which one can see that standard variance (i.e.,
p

VarŒyak�) of the estimate is decreasing with

N�1=2. This induces a particularly low convergence rate, which is the well-known drawback of

simulation-based method for high-dimensional integration (Dubourg, 2011).
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An alternative to the simulation method is the scheme of tensor Gauss quadrature, in which

the multi-dimensional integration defining each expansion coefficient can be approximated as

ak �

NX
i1D1

� � �

NX
inD1

�� nY
j D1

wij

�
�‰k

�
xi1
; � � � ; xin

�
� �
�
xi1
; � � � ; xin

��
(7.19)

where wil
and xil

are an l th Gauss weight and point of variable Xi , respectively. One should

note that the total number of terms in the n-fold summation is N n. The curse of dimensionality

causes the total number of mechanistic model evaluations exponentially increases with respect

to the dimensionality of X. This leads to intractable computational cost for the PCE surrogate

model construction.

7.3 Proposed Approximation Method

7.3.1 PCE Model with Univariate M-DRM

Considering an input-output relation, y D �.x/, the univariate M-DRM can approximated the

mechanistic model as

�.x/ �
�
.�.c/

�1�n
�

nY
iD1

�.c1; � � � ; ci�1; xi ; ciC1; � � � ; cn/ (7.20)

where c D Œc1; c2; � � � ; cn�
T is the cut-point, and �.xi ; c�i/ D �.c1; � � � ; ci�1; xi ; ciC1; � � � ; cn/

is a univariate function only with respect to xi . One can refer to Chapter 5 for the detailed

derivations of the proposed multiplicative dimensional reduction method.

Substituting the univariate M-DRM approximation for the integration with respect to the

expansion coefficient ak, Eq.(7.16) can can be approximated as

ak �

Z
X

��
�.c/

�1�n
nY

iD1

�.xi ; c�i/

�
�‰k.x/ � fX.x/dx

D �.c/ �

Z
X

� nY
iD1

�.xi ; c�i/

�.c/

�
�‰k.x/ � fX.x/dx

(7.21)

Recall that a kth order polynomial chaos,‰k.X/, is defined as a tensor product of each margin

polynomial, i.e.,‰k.X/ D
Qn

iD1 �i
.Xi/. Therefore, the above equation can be further rewritten

as

ak � �.c/1�n
�

nY
iD1

�Z
Xi

�.xi ; c�i/ �i
.xi/fi.xi/dxi

�
(7.22)
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In the context of calculating another coefficient (e.g., aq for example), one only needs to

update the responses of ‰k.X/ as ‰q.X/ with respect to the integration grids. This implies that

the proposed univariate M-DRM can reduce the total number of mechanistic model evaluations

as 1C nN .

7.3.2 PCE Model with Bivariate M-DRM

As discussed in forgoing section, in the context of a univariate M-DRM approximation, in some

cases, might be not enough to mimic the original input-output relation, the corresponding pro-

cedure by considering the bivariate M-DRM can be developed to improve the computational

accuracy.

Given an input-output relation, y D �.x/, recall that the model can be approximated by the

bivariate M-DRM as

�.x/ �

�
�.c/

� .n�1/.n�2/
2 �

n�1Y
iD1

nY
j DiC1

�.c1; � � � ; ci�1; xi ; ciC1; � � � ; cj �1; xj ; cj C1; � � � ; cn/

� nY
iD1

�.c1; � � � ; ci�1; xi ; ciC1; � � � cn/

�n�2

(7.23)

Substituting for the bivariate approximation, the corresponding integration with respect to PCE

coefficients in Eq.(7.16) can be realized as

ak �
�
�.c/

� .n�1/.n�2/
2 �

l
X

�Qn�1
iD1

Qn
j DiC1 �.xi ; xj ; c�ij /Qn

iD1

�
�.xi ; c�i/

�n�2

�
�

� nY
iD1

 �i
.xi/

�
� fX.x/ dx

D
�
�.c/

� .n�1/.n�2/
2 �

n�1Y
iD1

nY
j DiC1

Z
Xi

Z
Xj

�.xi ; xj ; c�ij /fi.xi/fj .xj / dxidxj

nY
iD1

Z
Xi

n�
�.xi ; c�i/

�n�2ı
 �i

.xi/
o
fi.xi/dxi

(7.24)

One should note that the dimensionality of the integrand has reduced from n to 2, which

guarantees the computational efficiency of the proposed M-DRM method. The corresponding

number of functional evaluations is:

Number of FEs by Bivariate M-DRM: D
n.n � 1/

2
�N 2

C n �N C 1 (7.25)
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in which, n is the total number of input variables; and N is the order of Gauss quadrature.

In the context of bivariate M-DRM is still not enough to determine the coefficients of a PCE

meta-model precisely, one can refer to Chapter 5 for a general s-variate M-DRM approximation.

However, numerical examples will show that the bivariate M-DRM method is able to provide

fairly accurate results on a surrogate model construction.

7.4 Postprocessing of a PCE Meta-Model

After determined the coefficients of a PCE meta-model, uncertainty propagation of the original

input-output relation can be extensively conducted based on the polynomial chaos expansion.

The section is designed to illustrate the corresponding postprocessing procedures for moment

computation, global sensitivity analysis and output probability distribution estimation based on

the PCE meta-model.

7.4.1 Moment and Global Sensitivity Coefficient

We start the discussion by using a two-variate model, Y D �.X1; X2/, in which X D ŒX1; X2�
T

are assumed to follow the standard Normal distribution. Therefore, a general expression of the

corresponding PCE meta-model can be given as

�.X1; X2/ D

1X
kD0

ak‰k.X1; X2/ (7.26)

Truncation of the PCE meta-model with p D 4, one can determine the corresponding surro-

gate model as

�.X1; X2/ �

d�1X
kD0

ak‰k.X1; X2/ (7.27)

where d D
.4C2/Š

4Š2Š
D 15; and the involved two-dimensional Hermite polynomials (normalized),

‰k.X1; X2/, are listed in Table 7.3.

Therefore, with the two-dimensional joint standard Normal PDF, fX.x/, as the weighting

function, one can test the zero mean-value of the polynomials:

E
�
‰i.X/

�
D

Z
X
‰i.x/fX.x/dx D

8<:1 if i D 0

0 if i > 1
(7.28)
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Table 7.3: Two-dimensional Hermite polynomials with truncation order p D 4

k Multiple Indices p D
P2

iD1 �i Chaos Polynomials – ‰k.X/
0 � D f0; 0g 0 ‰0.X/ D  0.X1/ 0.X2/ D 1

1 � D f0; 1g 1 ‰1.X/ D  0.X1/ 1.X2/ D X2

2 � D f1; 0g 1 ‰2.X/ D  1.X1/ 0.X2/ D X1

3 � D f0; 2g 2 ‰3.X/ D  0.X1/ 2.X2/ D
1p
2
.X2

2 � 1/

4 � D f1; 1g 2 ‰4.X/ D  1.X1/ 1.X2/ D X1X2

5 � D f2; 0g 2 ‰5.X/ D  2.X1/ 0.X2/ D
1p
2
.X2

1 � 1/

6 � D f0; 3g 3 ‰6.X/ D  0.X1/ 3.X2/ D
1p
3Š
.X3

2 � 3X2/

7 � D f1; 2g 3 ‰7.X/ D  1.X1/ 2.X2/ D
1p
2
X1.X

2
2 � 1/

8 � D f2; 1g 3 ‰8.X/ D  2.X1/ 1.X2/ D
1p
2
X2.X

2
1 � 1/

9 � D f3; 0g 3 ‰9.X/ D  3.X1/ 0.X2/ D
1p
3Š
.X3

1 � 3X1/

10 � D f0; 4g 4 ‰10.X/ D  0.X1/ 4.X2/ D
1p
4Š
.X4

2 � 6X2
2 C 3/

11 � D f1; 3g 4 ‰11.X/ D  1.X1/ 3.X2/ D
1p
3Š
X1.X

3
2 � 3X2/

12 � D f2; 2g 4 ‰12.X/ D  2.X1/ 2.X2/ D
1
2
.X2

1 � 1/.X2
2 � 1/

13 � D f3; 1g 4 ‰13.X/ D  3.X1/ 1.X2/ D
1p
3Š
X2.X

3
1 � 3X1/

14 � D f4; 0g 4 ‰14.X/ D  4.X1/ 0.X2/ D
1p
4Š
.X4

1 � 6X2
1 C 3/

and the unit variance (order > 1):˝
‰i ; ‰j

˛
D E

�
‰i.X/‰j .X/

�
D ıij .for i; j > 1/ (7.29)

which implies VarŒ‰i.X/� D 1 as i > 1 and 0 otherwise.

Given the 15 orders two-dimensional Hermite polynomials, the PCE meta-model with respect

to Y D �.X1; X2/ can be realized as

�.X1; X2/ � a0 C a1‰1.X/C a2‰2.X/C � � � C a14‰14.X/ (7.30)

in which one should note that the zeroth order polynomial chaos ‰0.X/ D 1.

To estimate moments of model output, one can perform the operators of mean-value and

variance on both sides of the equation. It is interesting to note that the determined mean-value
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and variance are directly related to the coefficients of PCE meta-model due to the orthogonality

of the polynomial chaos:8̂̂<̂
:̂
EŒY � � E

�
a0 C a1‰1.X/C � � � C a14‰14.X/

�
D a0

VarŒY � � Var
�
a0 C a1‰1.X/C � � � C a14‰14.X/

�
D

14X
kD1

a2
kVar

�
‰k.X/

� (7.31)

in which one should note that Var
�
‰k.X/

�
D 1 as derived in Eq.(7.29).

Therefore, for a mechanistic model Y D �.X/ with n-dimensional input variables, mean-

value and output variance can be calculated from the expansion coefficients as

EŒY � D a0I VarŒY � D

d�1X
kD1

a2
k (7.32)

To conduct the variance-based global sensitivity analysis, one needs to decompose the total

output variance into three components:

VTol D V1 C V2 C V12 (7.33)

in which V1 and V2 denote the output variance purely relate to X1 and X2, respectively, and V12

is the joint variance of due to X1 and X2 taking effect together.

Given an arbitrary polynomial chaos,‰k.X/, in Table 7.3, one should note that Var
�
‰k.X/

�
D

1 (8k > 1). Then, the output variance contributed by a term ak‰k.X/ in the PCE meta-model

is directly determined by a2
k
. Therefore, if ‰k.X/ is a pure function with respect to Xi , the

corresponding variance, a2
k
, would be one of sources of component variance Vi . However, if

the expression of ‰k.X/ contains both X1 and X2, the associated a2
k

will contribute to the joint

variance V12. Follow this convention, the variance component associated with ak‰k.X/ can be

directly identified from its corresponding multiple-index � of the kth order polynomial chaos.

The multiple-index, �, of each polynomial chaos associated with the two-variate function

Y D �.X/ is summarized as shown in Table 7.3. And Table 7.4 has been developed to summarize

the component variance related to the index of each orthogonal polynomial.

As summarized in Table 7.4, the total output variance can be directly partitioned to each PCE

coefficient as

V1 � a2
2 C a2

5 C a2
9 C a2

14I V2 � a2
1 C a2

3 C a2
6 C a2

10

V12 � a2
4 C a2

7 C a2
8 C a2

11 C a2
12 C a2

13

(7.34)
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Table 7.4: Variance decomposition with polynomial chaos expansion
Source of Variance Multiple-Index: f�g Orthogonal Polynomial: ‰k.X/
V1 f1; 0gI f2; 0gI f3; 0gI f4; 0g k D f2; 5; 9; 14g

V2 f0; 1gI f0; 2gI f0; 3gI f0; 4g k D f1; 3; 6; 10g

V12 f1; 1gI f1; 2gI f2; 1gI f1; 2gI f2; 2gI f3; 1g k D f4; 7; 8; 11; 12; 13g

And the corresponding estimates of Sobol’ index are

S1 �
a2

2 C a2
5 C a2

9 C a2
14/P14

kD1 a
2
k

I S2 �
a2

1 C a2
3 C a2

6 C a2
10P14

kD1 a
2
k

S12 �
a2

4 C a2
7 C a2

8 C a2
11 C a2

12 C a2
13P14

kD1 a
2
k

(7.35)

Therefore, with the multiple-indies � D f�1�2 � � ��ng of a general PCE meta-model, one

can define an indicator for the variance sources of Vi1
as

1i1
.�/ D arg

n
� W Œ�i1

¤ 0� [ Œ�ik
D 0�d�1

kD2

o
.i1 D 1; 2; � � � ; n/ (7.36)

And the corresponding main effect of the input random variable is:

Si1
D

P
k21i1

.�/ a
2
kPd�1

kD1 a
2
k

.i1 D 1; 2; � � � ; n/ (7.37)

In addition, a general indicator to evaluate a s-variate joint variance is defined as

1i1i2���is
.�/ D arg

n
� WD

�
�i1
; �i2

; � � � ; �is
¤ 0

�
[
�
�ik

D 0
�d�1

kDsC1

o
(7.38)

which determines the s-variate Sobol’ index as

Si1i2���is
D

P
k21i1i2���is .�/ a

2
kPd�1

kD1 a
2
k

.1 6 i1; � � � ; is 6 n/ (7.39)

7.4.2 Output Distribution

A key problem in system uncertainty quantification is to determine the complete probability

distribution of a model output. With the proposed method of polynomial chaos expansion, the

surrogate model allows to use the crude Monte Carlo simulation to estimate the probability dis-

tribution of the model response.
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7.4.3 Implementation Procedure

Figure 7.1 describes a general frame work on polynomial chaos expansion, in which one can

note that the method for uncertainty quantification includes two sections, i.e., construction of

a PCE meta-model to mimic the original input-output relation, and a postprocessing procedure

based on the PCE meta-model for system uncertainty quantification. Details of the method can

be summarized as follows:

(i) Determine the truncation order .p/ of a PCE meta-model. Given the distributions of input

variables, generate the corresponding polynomial chaos basis of the expansion.

(ii) Since that the expansion coefficients are defined as a series high-dimensional integrations,

a numerical method employed in the step features a procedure of polynomial chaos ex-

pansion, such as the simulation-based method uses Monte Carlo simulation or its variance

(e.g., Latin hypercube sampling) to calculate the integration, whereas a quadrature-based

method employs the tensor Gauss quadrature or its sparsity version for the objective.

(iii) With the determined expansion coefficients, the postprocessing schemes for moment and

Sobol’ index derived in Section 7.4.1 can be employed to conduct uncertainty analysis of

the problem.

In the study, the M-DRM method proposed in Chapter 5 is employed to approximate the

high-dimensional integrations involved in PCE. Flow chart of the proposed method is developed

as shown in Figure 7.2.

Compared to the classical methods in Figure 7.1, the second block in Figure 7.2 is proposed

to handle with the demanding integrations. Therefore, the first and third blocks of the proposed

flow chart are designed as identical with the classical procedure. On the development of M-DRM,

one can refer to Chapter 5 for details, as well as the computational issue for the low dimensional

(one or two) integrations.

7.4.4 Error Analysis

Regarding potential errors of the method, one can conduct the error analysis from the following

three aspects:

Total Error ."Tol/ WD "Trun C "M-DRM C "GQ (7.40)
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Generate multi-Index of polynomial chaos

Give expression of each polynomial chaos

Calculate the coefficients in PCE meta-model

Construction of PCE Meta−Model:

Calcuate statistical moments

Global sensivity analysis (Sobol’ index)

Probability distribution of response

Post-Processing of PCE Meta−Model:

Method of Polynomial Chaos Expansion

Select marginal orthogonal polynomials

Figure 7.1: Overview of polynomial chaos expansion for uncertainty analysis

in which one can see that the total error "Tol can be expressed as the errors contributed by "Trun,

which arises from a low truncation order (p) in the PCE model development, "M-DRM, which is

due to the use of M-DRM to approximate the mechanistic function, and "GQ, which is due to the

errors associated with a numerical Gauss quadrature for the low dimensional integrations.

On the first error term, "Trun, one can reduce the error by considering a high expansion order

(i.e., a larger value of p). It is important to note that the proposed method for PCE model

development does not need additional functional evaluations with respect to the increase of p.

The second error, "M-DRM, arises from a poor approximation of the mechanistic function by using

a low-variate M-DRM. A higher variate M-DRM is an alternative to reduce the error. The third

term, "GQ, is the result of using a low number of Gauss points to evaluate the involved low-

dimensional integrations. Therefore, a higher order Gauss quadrature will help to reduce the

error term.
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Initialization:

Physical Model:  y = η (x);

 PCE Truncation Order: p;  

Distributions of Variable X;

Order of Gauss Points: N; 

Univariate or bivariate M-DRM model;

Gauss-type input integration grid;

Model responses at the integration grids.

M-DRM Approximation:

PCE Meta-Model with M-DRM:

Generate multi-index: π={π ,π ,...,π };

Setup k    order chaos polynomial: Ψ (x);  

1 2

k

Calcuate the expansion coefficient: a  k
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Evaluate Ψ (x) at input integration grids;  k

R
ep

ea
t till k

 =
 d
−

1

Start cycle: k = 0, d = (p + n) ! (p ! n !)

n

Figure 7.2: The proposed flow chart for polynomial chaos expansion with M-DRM

7.4.5 Verification Procedure

To verify the proposed method for uncertainty quantification of a system, the following three

proceduress are employed to check the associated accuracy and efficiency:

� Regression Test: First of all, N0 samples of input variables are randomly generated (N0 D

500). Based on the mechanistic model and PCE meta-model, the corresponding responses

are simulated, respectively. If the meta-model can exactly mimic the original input-output

relation (i.e., mechanistic model), a plot on the predicted outputs versus the simulated

counterparts would fall on a straight line. However, due to the inadequateness of a surro-
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gate model, a general coefficient of determination, R2, can be employed to calibrate the

corresponding model fitness.

� Moment and Sobol’ sensitivity index: At first, accuracy of the proposed PCE meta-model

is checked by comparing the output moment to its benchmark. Secondly, Chapter 6 derived

that the output variance can be completely decomposed as a series component variances

due to the uncertain input variables. The corresponding Sobol’ sensitivity index will be

further employed check the accuracy of the proposed method.

� Output probability distribution: Based on the PCE meta-model, output distribution can

be economically estimated based on a large number samples of input vector. Also, by

substituting for the mechanistic model, a comparison to the empirical distribution will be

employed to examine the accuracy of the proposed method for output distribution estima-

tion.

A generic relative error to check the fitness of PCE surrogate model is defined as

L2 Error WD

PN0

iD1

�
�.x.i// � y�.x.i//

�2PN0

iD1

�
�.x.i// � y

�2 where N0 D 500 (7.41)

GivenN0 samples of input variables, yy D y�.x/ denotes the predicted response using the PCE

meta-model. And y D �.x/ is the simulated counterpart. The population mean-value, y, can be

estimated by

y D
1

N0

N0X
iD1

�
�
x.i/
�

(7.42)

Therefore, numerator of the relative error is the total residual error due to unfitness of the PCE

meta-model. The denominator is the total variance of model responses. According to the theory

of regression analysis (Montgomery and Myers, 2002), the total output variance (denominator)

can be decomposed independently as the total residual error (numerator) and the output variance

estimated by the PCE meta-model (the explained error). Therefore, if the residual error is a fairly

small quantity, the predicted output variance based on the PCE meta-model should be very close

to the total output variance. With the idea, one can define a general coefficient of determination

using the L2 Error as

R2
D 1 � L2 Error D 1 �

PN0

iD1

�
�.x.i// � y�.x.i//

�2PN0

iD1

�
�.x.i// � y

�2 (7.43)
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in which, a value of R2 closed to 1:0 (i.e., L2 Error � 0) indicates the good fitness of the PCE

meta-model in modelling the original input-output relation.

7.5 Math Examples

In the section, two examples from literature are employed to examine the proposed multiplicative

dimensional reduction method for PCE meta-model construction of a math function.

7.5.1 Ishigami Function

The example considers the Ishigami function (Ishigami and Homma, 1990) as given in Section

6.4.3. In the study, assume that constants are a D 0:1 and b D 0:7, respectively. To construct

the PCE meta-model, let the truncation order p D 10. One can determined that total terms of the

PCE meta-model is:

d D
.nC p/Š

nŠpŠ
D
.3C 10/Š

3Š10Š
D 286

According to the flow chart depicted in Figure 7.2, the univariate M-DRM and bivariate M-

DRM are employed to approximate the Ishigami function at first. Then, 286 coefficients of the

corresponding surrogate models are determined with integration schemes in Eq.(??) and Eq.(??),

respectively.

Given N0.D 500/ samples of input random variables, the simulated model outputs and the

predicted counterparts by using PCE meta-models are plotted as shown in Figure 7.3. Since

the corresponding R2s are very close to 1:0, the L2 Errors are used in the study to check the

goodness of fit. Together with the number of functional evaluations, one can refer to Table 7.5

for details.

Table 7.5: L2 Error and computational cost for the Ishigami example
PCE Meta-Model L2 Error (1 �R2) Number of Functional Evaluations

Univariate M-DRM 2:60 � 10�5 31 D 1C 3 � 10

Bivariate M-DRM 2:09 � 10�6 331 D 1C 3 � 10C 3 � .3 � 1/=2 � 102

Figure 7.3 depicts the simulated and the predicted responses based on the mechanistic model

and PCE meta-model, respectively. If a PCE meta-model could represent the Ishigami function

very well, all the points of simulated versus predicted would fall on a straight line. The small
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Figure 7.3: Simulated versus predicted model responses of Ishigami example (Mechanistic Mod-

el: Simulated responses based on the original Ishigami function with 500 samples; PCE Meta-

model: Predicted responses based on the PCE meta-model with M-DRM; M-DRM: The pro-

posed multiplicative dimensional reduction method.)

values of L2 Error in Table 7.5 have indicated the accuracy of the proposed method for PCE

meta-model construction. Given the number of functional evaluations as listed in Table 7.5, one

can further confirm the efficiency and accuracy of the proposed method for polynomial chaos

expansion the Ishigami function.

Statistical moment and Sobol’ sensitivity index of the Ishigami function are calculated with

the coefficients of PCE meta-model as shown in Table 7.6. Compared to the analytic results, it

is clear to confirm that the estimates on moment and Sobol’ sensitivity index are very accurate (

the relative error 6 2%).

Once determined the expansion coefficients of the PCE meta-model, the crude Monte Carlo

simulation can be followed based the surrogate model for the complete output distribution. Based

on the mechanistic function, an empirical distribution can be determined as the benchmark re-

sult. Figure 7.4 compared the PCE estimate with the benchmark distribution of the Ishigami

function. It is clear to see that the function with an extremely abnormal distribution compared to

the frequently ones encountered in probabilistic analysis. The proposed method can accurately

determine output distribution at its entire definition domain. Only differences between univari-
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Table 7.6: Moment and global sensitivity index of the Ishigami example
Method Mean-Value Variance Sobol’ Index – S1 Sobol’ Index – S13

Exact 5:00 � 10�2 272:25 0:3932 0:5992

Univariate M-DRM 4:494 � 10�2 273:84 0:3906 0:6093

Relative Error (%) �10:37 0:583 �0:639 1:685

Bivariate M-DRM 5:001 � 10�2 272:27 0:3936 0:6064

Relative Error (%) 2:03 � 10�2 8:35 � 10�3 0:104 1:199

Relative Error: = (PCE Meta-Model � Exact)/Exact �100%.

M-DRM: The univariate or bivariate multiplicative dimensional reduction method.

ate M-DRM and bivariate M-DRM can been identified for the peak regions of the two PDFs.

Together with a very small number of mechanistic model evaluations (31 by univariate M-DRM

versus 331 by bivariate M-DRM), the proposed method is believed to accurately and efficiently

set up a PCE meta-model.

7.5.2 Corner Peak Function

The example examines the proposed method by considering the corner peak function as shown

in Section 6.4.5. With a truncation order p D 4, the corresponding PCE meta-model will contain

210 D .4 C 6/Š=.4Š6Š/ terms. Four-order Gauss-Legendre quadrature is employed to calculate

the low-dimensional integrations. Compared to the classical tensor product quadrature method,

the proposed univariate and bivariate M-DRMs can reduce the number of functional evaluations

from 46.D 4096/ to 25 and 265, respectively.

Given 500 samples of input variables, the accuracy of PCE meta-model is examined by using

the quality plot as shown in Figure 7.5, together with the relative error and computational effort

by using M-DRM as shown in Table 7.7. One can see that the univariate M-DRM approximation

determines relative error of the corresponding PCE meta-model as 3:24 � 10�3. It implies that

the coefficient of determination is R2 D 1 � L2 Error D 0:9968.

Figure 7.5(a) describes the plot of simulated and the predicted responses. It is clear to see that

PCE meta-model determined by the univariate M-DRM underestimates of the upper quantiles of

the corner peak function. Figure 7.5(b) has shown a good agreement of the PCE meta-model

with the bivariate M-DRM for the entire range of responses, which is confirmed by the fairly

small relative error of L2 Error 6 1 � 10�6.
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Figure 7.4: Probability distribution of the Ishigami function estimated by PCE with univariate

and bivariate M-DRM (PCE: Polynomial chaos expansion; M-DRM: The univariate or bivariate

multiplicative dimensional reduction method; MCS: Crude Monte Carlo simulation with 106

samples.)

Global sensitivity analysis of the corner peak function needs to evaluate a series six-dimensional

integrations, which are impossible to be analytically evaluated. Crude Monte Carlo simulation

with 106 samples, hence, is assume to provide benchmark results for the corresponding Sobol’

sensitivity indices. PCE meta-model allows one to compute the output moment and sensitivi-
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Figure 7.5: Simulated versus predicted model responses of the corner peak function (Mechanistic

Model: Simulated responses based on the original physical model; PCE: Predicted responses by

the PCE meta-model; M-DRM: The univariate or bivariate multiplicative dimensional reduction

method.)

Table 7.7: L2 Error and computational cost for the corner peak function
PCE Meta-Model L2 Error Number of Functional Evaluations

Univariate M-DRM 3:24 � 10�3 25 D 1C 4 � 6

Bivariate M-DRM 9:20 � 10�7 265 D 1C 4 � 6C 6 � .6 � 1/=2 � 42

ty index directly by using the expansion coefficients. Compared to the benchmarks, Table 7.8

indicates that the proposed method can be believed to provide accurate results on the global

sensitivity analysis.

Output distribution of the corner peak function is also estimated as shown in Figure 7.6. Ac-

cording to the result provided by the univariate M-DRM, one can see that it underestimates the

upper quantiles given the predefined probabilities of exceedance (e.g., POEs 6 10�2). Compar-

atively, the bivariate M-DRM model can be believed to describe the complete output distribution

exactly. Therefore, in the context of an output distribution (instead of the moment and Sobol’

sensitivity index) is of interest, the bivariate M-DRM can be employed to compute the corre-

sponding PCE meta-model.
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Table 7.8: Moment and global sensitivity index of the corner peak function
Method S1 S2 S3 S4 S5 S6

P
i Si

MCS 1:091 � 10�2 4:365 � 10�2 9:734 � 10�2 0:1733 0:2712 0:3892 0:9857

U-M-DRM 1:072 � 10�2 4:303 � 10�2 9:719 � 10�2 0:1734 0:2721 0:3933 0:9897

RE (%) �1:82 �1:43 �0:151 0:058 0:30 1:06 0:412

B-M-DRM 1:085 � 10�2 4:340 � 10�2 9:762 � 10�2 0:1734 0:2708 0:3895 0:9856

RE (%) �0:574 �0:579 0:288 0:054 �0:172 0:087 �0:007

U-M-DRM: PCE Meta-Model constructed by using the univariate M-DRM.

B-M-DRM: PCE Meta-Model constructed by using the bivariate M-DRM.

Relative Error: = (PCE Meta-Model � MCS)/Exact �100%.

7.6 Structural Examples

In the section, three examples for probabilistic structural analysis are employed to examine the

accuracy and efficiency of the proposed method on polynomial chaos expansion.

7.6.1 Burst Margin of a Rotation Disk

The first example studies the burst margin of a rotation disk (Wei and Rahman, 2007). Consider

an annular disk with the outer radiusRo, inner radiusRi , and a constant thickness t � Ri (plane

stress). The disk subjects to an angular velocity ! about the axis perpendicular to its plane at the

center. Therefore, the maximum angular velocity, !max.X/, can be calculated by

!max.X/ D

s
3˛mSu.Ro �Ri/

�.R3
o �R3

i /
(7.44)

where � is the mass density of the material; Su is the material ultimate strength and ˛m is the

material utilization factor.

According to the design provision, the satisfactory performance of the disk can be defined by

using its burst margin, Mb.X/:

Mb.X/ D
!max.X/
!

D

s
3˛mSu.Ro �Ri/

�!2.R3
o �R3

i /
(7.45)

in which, the random variables of the problem are listed in Table 7.9.

167



0.2 0.35 0.5 0.65 0.8 0.95
0

0.9

1.8

2.7

3.6

4.5

Genz’s Corner Peak Function

P
ro

b
ab

il
it

y
 D

en
st

it
y
 F

u
n
ct

io
n

 

 

  MCS

  PCE−Univariate

(a) PDF with Univariate M-DRM

0.2 0.35 0.5 0.65 0.8 0.95
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

P
ro
b
ab
il
it
y
 o
f 
 E
x
ce
ed
an
ce

Genz’s Corner Peak Function

 

 

  MCS

  PCE−Univariate

(b) Distribution Tails with Univariate M-DRM

0.2 0.35 0.5 0.65 0.8 0.95
0

0.9

1.8

2.7

3.6

4.5

Genz’s Corner Peak Function

P
ro

b
ab

il
it

y
 D

en
st

it
y
 F

u
n
ct

io
n

 

 

  MCS

  PCE−Bivariate

(c) PDF with Bivariate M-DRM

0.2 0.35 0.5 0.65 0.8 0.95
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

P
ro
b
ab
il
it
y
 o
f 
 E
x
ce
ed
an
ce

Genz’s Corner Peak Function

 

 

  MCS
  PCE−Bivariate

(d) Distribution Tails with Bivariate M-DRM

Figure 7.6: Output distribution of the corner peak function estimated by PCE meta-models with

univariate and bivariate M-DRM (PCE: Polynomial chaos expansion; M-DRM: The proposed

multiplicative dimensional reduction method; MCS: Crude Monte Carlo simulation with 106

samples.)

Use the univariate M-DRM to approximate the physical model, Mb.X/, whereas the corre-

sponding number of functional evaluations are summarized in Table 7.10.

Two expansion orders, i.e., p D 3 and p D 6, are considered to study the corresponding

truncation errors in a PCE meta-model development. The increase of value p (i.e., a higher
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Table 7.9: Properties of input random variable of the rotation disk example
Variable Description Unit Distribution Mean Std.D

Su Material strength ksi Lognormal 240 5

! Angular velocity rmp Lognormal 22000 500

� Material density lbs2=in4 Uniform 0:29=g0 0:0058=g0

Ro Outer radius inch Normal 24 0:5

Ri Inner radius inch Normal 8:0 0:3

˛m Material factor �� Lognormal 0:95 0:05

g0 D 385:82in=s2 and � is uniformly distributed over Œ0:28; 0:30� lbs2=in4.

Table 7.10: L2 Error and computational cost of the disk example
Univariate M-DRM L2 Error Number of Functional Evaluations

p D 3; N D 3 5:30 � 10�3 19 D 1C 3 � 6

p D 6; N D 8 3:74 � 10�6 49 D 1C 8 � 6

truncation order) implies the increase of nonlinearity involved in coefficient integration due to

the involved high-order polynomials. This is the motivation of increasing the order of Gauss

quadrature from N D 3 to N D 8 for the two cases. With the dimensionality n D 6 (i.e., six

input variables), the total terms of PCE mete-models are 84 and 924, respectively, given p D 3

and p D 6.

Figure 7.7 depicts the quality plots on the simulated and predicted values of the burst margin.

It is clear to see that the PCE meta-model associated with three expansion orders (p D 3) has

underestimated the upper quantiles of the burst margin. However, after increasing the trunca-

tion order p to 6, a good agreement between the simulated and predicted outputs has verified

the accuracy the proposed method in a model representation. The small numbers of functional

evaluations (49 as p D 6) also indicates the high efficiency of the proposed method.

The global sensitivity analysis of the burst rotation margin are determined as shown in Table

7.11, which are verified with the benchmarks provided by crude Monte Carlo simulation. It is

clear to see that the Sobol’ indices estimated with three truncation orders (p D 3) are fairly

close to the benchmarks. Given the values of the sensitivity analysis, the material density, �, is

the most influential parameter and followed by the angular rotation speed, !, which are the two

primary sources of output variance compared to the other input variables.
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Figure 7.7: Simulated versus predicted burst margins of the rotation disk example (Univariate

M-DRM: The univariate multiplicative dimensional reduction method.)

Table 7.11: Global sensitivity analysis of the rotation disk example
Variable Su ! � Ro Ri ˛m

P
i Si

MCS 4:676 � 10�3 0:1652 0:8024 2:629 � 10�3 �3:40 � 10�4 7:959 � 10�3 0:9825

M-DRMa 5:983 � 10�3 0:1746 0:7937 3:928 � 10�3 7:315 � 10�4 9:536 � 10�3 0:9885

M-DRMb 5:704 � 10�3 0:1665 0:8026 3:745 � 10�3 6:973 � 10�4 9:091 � 10�3 0:9884

M-DRMa: The univariate M-DRM with truncation order p D 3 and Gauss points N D 3.

M-DRMb: The univariate M-DRM with truncation order p D 6 and Gauss points N D 8.

Output distribution of the burst margin, Mb.X/, based on the two PCE meta-models are gen-

erated as shown in Figure 7.8. Compared with the empirical distribution, one can see that the

three order (p D 3) PCE meta-model has underestimated the upper quantile of the output dis-

tribution, which results in the dangerous estimates on the estimates of failure probability. In

the context of using the six-order truncation, the corresponding PCE meta-model can precisely

describe the complete probability distribution of Mb.X/. Therefore, with 49 functional evalua-

tions of the mechanistic model, the proposed method can be believed to determine the reliable

estimates on output moment, Sobol’ sensitivity index and output distribution of the burst margin.
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Figure 7.8: Output distribution of burst margin of a rotating disk estimated by PCE meta-

model(PCE: Polynomial chaos expansion; M-DRM: The proposed multiplicative dimensional

reduction method; MCS: Crude Monte Carlo simulation with 106 samples.)

7.6.2 A Ten-Bar Truss Structure

The example has been employed in Chapter 5 to examine the performance of ME-FM (the prin-

ciple of maximum entropy with fractional moment) in estimating the probability distribution of

a maximal structural response. In the section, the proposed method for polynomial chaos expan-
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Figure 7.9: Simulated versus predicted maximum displacement of the ten-bar truss example

(Univariate M-DRM: The univariate multiplicative dimensional reduction method; Truncation

order p D 4; Order of Gauss quadrature N D 4; The number of orthogonal polynomials in the

PCE meta-model is d D 126.)

Truncation order of the PCE meta-model is assumed to p D 4. With 500 samples of input

variables, Figure 7.9 depicts the simulated and the predicted maximal displacements of the truss

structure. The regression test obtained a fairly small relative error (L2 ErrorD 1:11 � 10�4) for

the PCE meta-model.

With four-order Gauss-Hermite quadratures, the total number of functional evaluations is

26 D .1C 5 � 5/, which implies the high efficiency of the proposed method. Global sensitivity

analysis of the problem has been conducted, and Figure 7.10 describes the corresponding results.

The variable of A (area of each truss member) and the material Young’s module E are the most

two sensitive variables for the uncertainty of structural maximal displacement, both of which are

almost identical to 41%.

Compared to the benchmark distribution provided by the mechanistic model, probability dis-

tribution of the structural maximum displacement is estimated by using the PCE meta-model as

shown in Figure 7.11, in which one can see the exact estimates lower quantiles can be guaranteed

by the proposed polynomial chaos expansion method.
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Figure 7.10: Sobol’ global sensitivity index of the ten-bar truss example
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Figure 7.11: Probability distribution of the maximum structural displacement (PCE: Polyno-

mial chaos expansion; Univariate M-DRM: The univariate multiplicative dimensional reduction

method; MCS: Crude Monte Carlo simulation with 106 samples.)

7.7 Kinematic Analysis of Mechanisms

This section evaluates accuracy and efficiency of the proposed method by considering the ex-

amples of mechanism kinematic analysis. Since the mechanism kinematic analysis needs to

evaluates the positioning errors incurred at a large number of points on the whole output trajec-

tory of a mechanism (Pandey and Zhang, 2012; Zhang and Pandey, 2013), the study is proposed
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to approximate the extreme-value distribution by using the multiplicative dimensional reduction

method.

7.7.1 A Planar Four-Bar Linkage

Figure 7.12 describes a four-bar linkage, in which the model parameters are defined as z D
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Figure 7.12: A four-bar linkage mechanism (Huang and Zhang, 2010): Model parameters of

the four-bar linkage are L1 D 500mm; L2 D 150mm; L3 D 400mm; L4 D 450mm; L5 D

150mm, �5 D �=9 rad, and operating angle �2 D 2�=3 rad.

ŒL1; L2; L3; L4; L5; �2; �5�
T. The output angles of links L3 and L4 can be expressed as8<:�3.z/ D  .z/ � ˇ.z/; �4.z/ D � � �.z/ � ˇ.z/I if 0 6 �2 6 �

�3.z/ D  .z/C ˇ.z/; �4.z/ D � � �.z/C ˇ.z/I if � 6 �2 6 2�
(7.46)

whereL0 D

q
L2

1 C L2
2 � 2L1L2 cos.�2/; .z/ D cos�1

�
L2

3CL2
0�L2

4

2L3L0

�
; ˇ.z/ D cos�1

�
L2

1CL2
0�L2

2

2L1L0

�
,

and �.z/ D cos�1
�

L2
4CL2

0�L2
3

2L4L0

�
. Therefore, a closed function governing the coordinates of output

position P can be determined as8<:px.�2/ D L2 cos.�2/C L5 cos.�3 C �5/

py.�2/ D L2 sin.�2/C L5 sin.�3 C �5/
(7.47)

174



Using a general variable � to represent the operating angle of a mechanism, the whole range

of � 2 Œ�L; �H �, then, can be equally discretized as a number of “time” instants by an increment

of �� . The corresponding number of output positions will be b D .�H � �L/=�� C 1, whereas

a kth instant operating anlage is �k D �L C .k � 1/�� .

Define the maximal output error in the entire trajectory of the mechanism:

�.X/ D max
n�
r.X; �k/

�b
kD1

o
(7.48)

The study employs the method of M-DRM to develop a PCE surrogate model to mimic the

maximal error function. And the corresponding results on the moment, sensitivity analysis and

the complete probability distribution of the extreme-valued positional error will be determined

based on the PCE meta-model.

In the example of four-bar linkage, operating angle �2 is discreted as �2 D Œ0 W �=50 W

2�� rad, which implies the system reliability analysis contains 101 limit state functions (i.e.,

b D 101). Random variables about errors " D Œ"L1
; "L2

; "L3
; "L3

; "L4
; "L5

; "�1
; "�2

�T of model

parameters z are listed in Table 7.12.

Table 7.12: Random variables of the four-bar linkage example
Variable Description Distribution Units Mean COV

"L1
Error in length L1 Lognormal mm 1:0 0:2

"L2
Error in length L2 Lognormal mm 1:0 0:2

"L3
Error in length L3 Lognormal mm 1:0 0:2

"L4
Error in length L4 Lognormal mm 1:0 0:2

"L5
Error in length L5 Lognormal mm 1:0 0:2

"�2
Error in angle �2 Lognormal deg 1:8=� 0:2

"�5
Error in angle �5 Lognormal deg 1:8=� 0:2

PCE Meta-Model

PCE meta-model of the maximal positioning error of the four-bar linkage was determined with

the methods of univariate and bivariate M-DRM. Given the truncation order p D 4, each PCE

meta-model contains 330
�

D
.7C4/Š

7Š4Š

�
terms in total. With N0 D 500 random numbers of input

variables, plots on the responses determined by mechanistic model and PCE meta-model are
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depicted in Figure 7.13, The four-point Gauss quadrature is employed. The corresponding L2

Error and computational cost are summarized in Table 7.13.
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Figure 7.13: Simulated versus predicted maximum output error of the four-bar mechanism

(Mechanistic Model: Simulated responses based on the original physical model; PCE: Predict-

ed response based on the PCE meta-model; M-DRM: The univariate or bivariate multiplicative

dimensional reduction method.)

Table 7.13: L2 Error and computational cost for the four-bar linkage example
Method L2 Error Number of Functional Evaluations

Univariate M-DRM 1:01 � 10�2 29 D 1C 4 � 7

Bivariate M-DRM 2:76 � 10�5 365 D 1C 4 � 7C 42 � 7 � .7 � 1/=2

Based on the quality test of the PCE meta-models, one can see that the univariate M-DRM

underestimated the true output distribution at the tail region. The bivariate M-DRM can precisely

determine the output distribution (see Figure 7.14) with a fairly small regression error .L2 Error

D 2:76 � 10�5/.
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Figure 7.14: Distribution of the system maximum positioning error estimated by PCE (PCE:

Polynomial chaos expansion; M-DRM: The proposed multiplicative dimensional reduction

method; MCS: Crude Monte Carlo simulation with 106 samples.)

Sensitivity Analysis

Global sensitivity analysis of the maximal positioning error with respect to input variables X are

conducted as shown in Table 7.14, which was verified by the crude Monte Carlo simulation with

106 samples.

177



Table 7.14: Global sensitivity analysis of the four-bar linkage mechanism
Variable "L1

"L2
"L3

"L4
"L5

"�2
"�5

MCS 7:43 � 10�3 2:91 � 10�2 2:95 � 10�3 3:54 � 10�2 8:89 � 10�6 0:4035 0:5257

U-M-DRM 6:46 � 10�3 2:86 � 10�2 2:03 � 10�3 3:52 � 10�2 0 0:3955 0:5251

B-M-DRM 6:29 � 10�3 2:76 � 10�2 1:95 � 10�3 3:45 � 10�2 0 0:4035 0:5254

U-M-DRM: The meta-model of polynomial chaos expansion with univariate M-DRM;

B-M-DRM: The meta-model of polynomial chaos expansion with bivariate M-DRM;

MCS: Crude Monte Carlo simulation with 106 samples.

The importance analysis revealed that the input errors associated with angles �2 and �5 were

the primary sources of output variability due to the large Sobol’ sensitivity indices (i.e., 40:35%

and 52:54%, respectively). However, the errors of links have a very small contributions (less than

8%). Especially for the link 5, it almost makes a null contribution for the total output variance.

In addition, compared to benchmarks provided by Monte Carlo simulation, both univariate and

bivariate M-DRM can provide accurate estimates on the Sobol’ sensitivity index for the global

sensitivity analysis.

7.7.2 A Six-DOF Elbow Manipulator

The last example to further examine the proposed method on system uncertainty propagation by

considering a space elbow robotic manipulator. Detailed descriptions of the example please refer

to Chapter 4 for system reliability analysis of the mechanism. Random variables of errors in the

manipulator’s parameters are listed in Table 7.15.

The proposed method of M-DRM will be employed to conduct the polynomial chaos expan-

sion of the extreme-valued positioning error.

Verification of PCE Meta-Model

With PCE meta-models of the system maximum error function have been constructed by using

the univariate M-DRM the bivariate M-DRM, respectively, in which the truncation order p D 4,

and four-order Gauss quadrature has been employed to compute the model coefficients. With

500 samples of input random variables,

Table 7.16 summarized the corresponding relative errors and the involved computational cost
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related to the meta-models by using the univariate and bivariate methods, respectively. The

small L2 Error determined by the bivariate M-DRM was confirmed its accuracy in modeling the

maximal positioning error of the elbow manipulator.

Global sensitivity analysis has conducted as a byproduct of the PCE meta-model. The corre-

sponding Sobol’ sensitivity indices are summarized in Table 7.17, which were verified very well

by crude Monte Carlo simulation.

Probability distribution of the system maximal positioning error was estimated based on the

PCE meta-models. Compared to the empirical distribution provided by the mechanistic mod-

Table 7.15: Random variables in the six-DOF elbow robotic manipulator
Variable Description Distribution Units Mean-Value COV

"L1
Error in Length L1 Lognormal mm 1:0 0:1

"L2
Error in Length L2 Lognormal mm 1:0 0:1

"L3
Error in Length L3 Lognormal mm 1:0 0:1

"L4
Error in Length L4 Lognormal mm 1:0 0:1

"L5
Error in Length L5 Lognormal mm 1:0 0:1

"�2
Error in angle �2 Lognormal deg 1:8=� 0:1

"�5
Error in angle �5 Lognormal deg 1:8=� 0:1

Table 7.16: L2 Error and computational cost of the robotic manipulator
Method L2 Error Number of Functional Evaluations

Univariate M-DRM 3:44 � 10�3 29 D 1C 4 � 7

Bivariate M-DRM 6:46 � 10�6 365 D 1C 4 � 7C 42 � 7 � .7 � 1/=2

Table 7.17: Global sensitivity analysis of the six-DOF elbow robotic manipulator
Variable "L1

"L2
"L3

"L4
"L5

"�2
"�5

MCS 1:375 � 10�2 1:638 � 10�2 1:202 � 10�3 8:934 � 10�3 9:190 � 10�3 0:6835 0:2688

U-M-DRM 1:343 � 10�2 1:343 � 10�2 2:289 � 10�4 8:825 � 10�3 9:089 � 10�3 0:6839 0:2701

B-M-DRM 1:336 � 10�2 1:336 � 10�2 2:290 � 10�4 8:872 � 10�3 9:038 � 10�3 0:6839 0:2704

U-M-DRM: The meta-model of PCE computed by the univariate M-DRM;

B-M-DRM: The meta-model of PCE computed by the bivariate M-DRM;

Truncation order of meta-model p D 4, and the order of Gauss quadrature N D 4;
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Figure 7.15: Simulated versus predicted maximum output errors of the robotic manipulator

(Mechanistic Model: Simulated responses based on the physical model; PCE: Predicted respons-

es based on PCE meta-model.)

el as listed in Figure 7.16, one can see that univariate M-DRM has underestimated the quntial

functions the maximal distribution as POE 6 10�2, which implies the conservative estimates on

failure probabilities associated with an upper threshold. The bivariate M-DRM can provide pre-

cisely estimation on the output probability distribution at its entire definition domain. Together

with the example of planar four-bar linkage, the proposed method has illustrate its superiority

for system kinematic analysis of robotic manipulators.

7.8 Conclusion

The Chapter presents a computationally efficient method for polynomial chaos expansion of a

complicated function. Classical methods in literature (simulation-based and Gauss quadrature-

based) lead to intractable computational cost due to the involved high-dimension integrations

with respect to expansion coefficients. The study proposes the use of multiplicative dimensional

reduction method (M-DRM) for the objective.

Seven examples are employed in the Chapter to examine the accuracy and efficiency of the
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Figure 7.16: Distribution of the maximum positioning error of the robotic manipulator estimated

by PCE meta-model with univariate and bivariate M-DRM (PCE: Polynomial chaos expansion;

M-DRM: The proposed multiplicative dimensional reduction method; MCS: Crude Monte Carlo

simulation with 106 samples.)

proposed method on a PCE surrogate model construction. A generic coefficient of determination

(i.e., the relative L2 Error) is employed to evaluate the good-of-fitness of the proposed PCE

model. All the examples have shown that the relative errors of PCE meta-model are fairly small

(i.e., L2 Error 6 10�5). The determined moment, Sobol’ sensitivity index, and output distribution
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are verified very well by the benchmarks of Monte Carlo simulation.

Compared to the direct tensor quadrature method in literature, the proposed univariate and

bivariate M-DRMs can reduce the number of functional evaluations from N n to 1 C nN and

1 C nN C n.n � 1/N 2=2, respectively. In addition, the proposed method is a non-intrusive

method in nature, since that the corresponding PCE meta-model construction is only based on a

small number of deterministic model responses.
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Chapter 8

Conclusions and Recommendations

The purpose of the work is to develop computationally efficient methods for reliability and global

sensitivity analyses. The governing function related to the framword is an implicit or explicit

physical function with multiple input variables. Several contributions for this purpose have been

made in this study as summarized in the following.

8.1 Summary

Chapter 3 developed an innovative method for parent distribution estimation of a positive random

variable. The principle of maximum entropy is applied to derive this distribution. A novel feature

of the analysis is the use of fractional moments, instead of integer moments commonly used

in the entropy literature. Compared to the benchmark results, examples of several heavy tail

distributions have illustrated the accuracy and efficiency of the proposed method for quantile

function estimation.

Chapter 4 was further extended the simulation-based distribution estimation method for sys-

tem reliability analysis of mechanism, which needs to evaluate extreme event distribution of

output positional errors along an entire trajectory. Fractional moments of the maximal posi-

tioning error were computed by Monte Carlo simulation (with 1000 to 5000 samples). Three

examples were employed to show that this entropy-based approach can accurately estimated the

probability of failures in the order of PF 6 10�4.

Chapter 5 further optimized the entropy-based method for estimation of an output probabili-

ty distribution by minimizing the computation effort associated with the fractional moments. A
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novel multiplicative dimensional reduction method (M-DRM) was proposed to approximate a

general model function. Combined with Gauss quadratures, it proposes a computationally effi-

cient method for (fractional and integer) moment calculation. Several examples illustrated that

the numerical accuracy and efficiency of the proposed method in comparison to the Monte Carlo

simulation method.

Chapter 6 presented a computationally efficient method for global sensitivity analysis with

M-DRM. The M-DRM approximates a high-dimensional function as the product of a series one-

dimensional functions. The separative feature was employed to simplify the involved computa-

tional intensive integrations in global sensitivity analysis. Compared to the benchmarks provided

by Monte Carlo simulation, the determined global sensitivity coefficients of several examples in

literature confirmed the accuracy and efficiency of the proposed method

Chapter 7 presented an efficient method for polynomial chaos expansion (PCE) with M-

DRM. The M-DRM was further employed to compute the expansion coefficients of a PCE meta-

model.

8.2 Conclusions

This study has developed an effective tool for conducting uncertainty propagation of a system for

moment computation, global sensitivity analysis and reliability analysis. A number of specific

conclusions can be drawn from the investigation described in this thesis:

� The proposed multiplicative dimensional reduction method effectively models a high-

dimensional complex input-output relation;

� The proposed use of fractional (integer) moment with the principle maximum entropy can

accurately estimate probability distribution of the structural response.

� The multiplicative dimensional reduction method can provide reliable estimate of system

global sensitivity coefficient efficiently; and

� The proposed M-DRM method for polynomial chaos expansion can produce accurate es-

timates of moment, global sensitivity coefficients and complete output distribution of a

structural response.
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8.3 Recommendations for Future Research

The thesis primary focuses on the uncertainty propagation with the multiplicative dimension-

al reduction method. Two approaches have been developed. One technique uses M-DRM to

compute fractional moments and further estimate response distribution through the principle of

maximum entropy (MaxEnt). Another routine is employing M-DRM to conduct the polynomial

chaos expansion (PCE). With the corresponding PCE meta-model in hand, the fast evaluations

of the surrogate model allows to perform the uncertainty quantification by using Monte Carlo

simulations.

To better focus on the main objectives, some simplifications are made in the discussion. All

the uncertainties related to model input random variables are characterized by the corresponding

probability distribution function. However, the determination of these distribution models may

vary with the knowledge of analyst. This variation due to the professional knowledge is known

as the epistemic uncertainty. The methods discussed in the thesis do not consider the influence

of epistemic uncertainty on model output uncertainty analysis. In addition, all input random

variables are assumed mutually independent due to the simplicity, which may not be realistic in

some cases. Generalization of the methods to account for epistemic uncertainties and the colored

input probability measures should be investigated in future.

185



Bibliography

AISC, 2005. Specification for Structural Steel Buildings (ANSI/AISC 360–05). American Insti-

tute of Steel Construction Inc., Chicago.

Andrieu-Renaud, C., Sudret, B., Lemaire, M., 2004. The PHI2 method: A way to compute time-

variant reliability. Reliability Engineering & System Safety 84 (1), 75 – 86.

Au, S., Beck, J., 1999. A new adaptive importance sampling scheme for reliability calculations.

Structural Safety 21 (2), 135 – 158.

Babuška, I., Nobile, F., Tempone, R., 2007. A stochastic collocation method for elliptic partial

differential equations with random input data. SIAM Journal on Numerical Analysis 45 (3),

1005 – 1034.

Bennett, R., Ang, A., 1983. Investigation of methods for structural system reliability. Tech. rep.,

University of Illinois at Urbana-Champaign.

Bjerager, P., 1988. Probability integration by directional simulation. ASCE Journal of Engineer-

ing Mechanics 114 (8), 1285 – 1302.

Blatman, G., 2009. Adaptive sparse polynomial chaos expansions for uncertainty propagation

and sensitivity analysis. Ph.D. thesis, Universit Blaise Pascal, Clermont-Ferrand.

Blatman, G., Sudret, B., 2010a. An adaptive algorithm to build up sparse polynomial chaos

expansions for stochastic finite element analysis. Probabilistic Engineering Mechanics 25 (2),

183 – 197.

Blatman, G., Sudret, B., 2010b. Efficient computation of global sensitivity indices using sparse

polynomial chaos expansions. Reliability Engineering & System Safety 95 (11), 1216 – 1229.

186



Breitung, K., 1984. Asymptotic approximations for multinormal integrals. ASCE Journal of En-

gineering Mechanics 110 (3), 357 – 366.

Breitung, K., Faravelli, L., 1994. Log-likelihood maximization and response surface in reliability

assessment. Nonlinear Dynamics 5 (3), 273 – 285.
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