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Abstract

In this thesis, we study certain aspects of signal source/target localization by sensory

agents and their biomedical applications. We first focus on a generic distance measurement

based problem: Estimation of the location of a signal source by a sensory agent equiped

with a distance measurement unit or a team of such a sensory agent. This problem was

addressed in some recent studies using a gradient based adaptive algorithm. In this study,

we design a least-squares based adaptive algorithm with forgetting factor for the same

task. Besides its mathematical background, we perform some simulations for both sta-

tionary and drifting target cases. The least-squares based algorithm we propose bears the

same asymptotic stability and convergence properties as the gradient algorithm previously

studied. It is further demonstrated via simulation studies that the proposed least-squares

algorithm converges significantly faster to the resultant location estimates than the gradi-

ent algorithm for high values of the forgetting factor, and significantly reduces the noise

effects for small values of the forgetting factor.

We also focus on the problem of localizing a medical device/implant in human body by

a mobile sensor unit (MSU) using distance measurements. As the particular distance mea-

surement method, time of flight (TOF) based approach involving ultra wide-band signals

is used, noting the important effects of the medium characteristics on this measurement

method. Since human body consists of different organs and tissues, each with a different

signal permittivity coefficient and hence a different signal propagation speed, one cannot

assume a constant signal propagation speed environment for the aforementioned medical

localization problem. Furthermore, the propagation speed is unknown. Considering all

the above factors and utilizing a TOF based distance measurement mechanism, we use

the proposed adaptive least-square algorithm to estimate the 3-D location of a medical

device/implant in the human body. In the design of the adaptive algorithm, we first derive
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a linear parametric model with the unknown 3-D coordinates of the device/implant and

the current signal propagation speed of the medium as its parameters. Then, based on this

parametric model, we design the proposed adaptive algorithm, which uses the measured

3-D position of the MSU and the measured TOF as regressor signals. After providing a

formal analysis of convergence properties of the proposed localization algorithm, we imple-

ment numerical tests to analyze the properties of the localization algorithm, considering

two types of scenarios: (1) A priori information regarding the region, e.g quadrant (among

upper-left, upper-right, lower-left, lower-right of the human body), of the implant location

is available and (2) such a priori information is not available. In (1), assuming knowledge

of fixed average relative permittivity for each region, we established that the proposed

algorithm converges to an estimate with zero estimation error. Moreover, different white

Gaussian noises are added to emulate the TOF measurement disturbances, and it is ob-

served that the proposed algorithm is robust to such noises/disturbances. In (2), although

perfect estimation is not achieved, the estimation error is at a low admissible level. In

addition, for both cases (1) and (2), forgetting factor effects have been investigated and

results show that use of small forgetting factor values reduces noise effects significantly,

while use of high forgetting factor values speeds up convergence of the estimation.
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Chapter 1

Introduction

1.1 Sensory Systems and Wireless Sensor Networks

With the recent advances in wireless communications and electronics, which have allowed

the improvement of low-cost, low-power and multi-functional small size communication

devices, using these devices as sensor nodes, wireless sensor networks (WSN) have been

developed. WSN can be described as a collection of spatially scattered autonomous sensor

nodes organized to cooperatively collect data. In a WSN, hundreds or even thousands of

small self-powered sensor nodes are distributed in an area in order to perform some specific

tasks such as sensing sound, pressure, radiation, temperature or any other environmental

factors. WSNs not only provide real time monitoring, but they also facilitate control of

physical environment from remote location. Each sensor node has its own processing capa-

bility (CPUs or DSP chips, micro-controllers), radio frequency (RF) transceiver (usually

with a single omni-directional antenna), power source, memory, various sensors and actua-

tors. These sensor nodes collect the data and transmit the data to their neighboring sensor
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nodes and then pass to specified destinations where the data are processed. Although the

sensor nodes individually have limited capabilities, their cooperation to execute a specific

task produces an improved view of the physical world [1].

Research in the field of WSN can be divided into three main levels; component level,

system level and application level [2]. The component level research is mainly concerned

with the enhancement of sensing, communication and computation capabilities of an in-

dividual sensor device. Research at the system level focus on WSN network mechanism

and collaboration of sensor nodes in an energy efficient and scalable manner. Research

at the application level deals with processing of the data obtained by sensors based on

the application objective. Sensor networks is useful in a range of application fields, which

require constant monitoring and detection, including environmental, medical, military,

transportation, and homeland defense. Moreover, as implemented in this thesis, various

enabling technologies such as tracking and localization have been developed with WSNs.

More recently, WSNs have been attributed widely to new applications facilitated by

large-scale networks with very small devices, which acquire information from the physical

environment in real time. Development of micro-electro-mechanical system (MEMS) and

recent advance in wireless communication technology have made some visioned applications

in WSN feasible. During the last decade, some universities and research institutions have

developed some prototypes of sensor nodes, for instance Motes [3, 4] at UC Berkeley and

Intel research laboratory, uAMPS [5] at MIT and GNOMES [6] at Rice University, with the

functions of localization, detection, tracking and targeting [7]. WSN is an important and

exciting new technology with a great potential for improving many current applications in

military, environmental, health and home applications [7].

WSNs used in the military field should provide some services such as separation of

friendly and opposition forces, battlefield surveillance, targeting, nuclear, biological and
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chemical attack detection, battle damage assessment with the requirement of instant re-

sponse time, self-organization, fault tolerance security, longevity and stealthiness. Since

most of the basic knowledge of WSNs depend on the defense application at the begin-

ning, for example distributed sensor networks (DSN) and sensor information technology

(SenIT), WSNs are implemented very successfully in the military fields. WSNs have a va-

riety of applications in military, examples include target field imaging, intrusion detection

and security surveillance. WSNs have also been widely used in environmental applications

such as habitat monitoring, fire, earthquakes and floods detection, agriculture research and

traffic control. Since there is no strict constraints to the environmental applications, the

expected consistency in WSNs applied in environmental areas is not that very high as in

military applications. The system of Automated Local Evaluation in Real-Time (ALERT)

improved by the American National Weather Service can be given as an example of real

world application of environmental monitoring [8]. The system ALERT is fitted with me-

teorological and hydrological sensing device so as to measure water level, temperature and

wind. Moreover, the system ALERT has its own automatic warning model in order to

alert central station, when the processed data value is above acceptable rate [8]. Because

web based query is available, weather information can be reached in a real time through

the ALERT environmental monitoring system.

In recent years a significant development of WSNs in health care has emerged with

many exciting applications ranging from real time, continuous patient monitoring, glucose

level determination, even to cancer detection. WSNs for body centric applications consist

of many tiny sensor nodes, which can be carried by their users in a pocket or otherwise

attached to their body [9]. These sensor nodes communicate with an external computer

system via wireless interface. Many body centric sensor nodes are organized to an appli-

cation specific solution to provide remote monitoring of patient and their vital parameters
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or diagnose and treat disease. For instance, wireless vital sign monitoring system (Vi-

talDust) [10] developed by UC Berkeley enables rapid, continuous survey of patient and

in case of emergency situation. VitalDust automatically transfers all vital information to

the closest hospital. Another example is recently developed Lens-less Ultra-wide-field Cell

monitoring Array platform based on shadowing imaging, LUCAS at UCLA [11]. This sys-

tem is integrated into regular wireless cell phone and lead to improved wireless diagnose for

HIV, malaria and other global medical problems, which can be diagnosed from blood sam-

ple. LUCAS provides its users blood test without going any health center, by sending all

information taken from mobile phone to the closest hospital in order to be interpreted [12].

In case of emergency, patient can be worn and asked to come health clinic. Through this

way, LUCAS brings the hospital to the patient.

Along with the applications in many fields, it is not difficult to say that there are many

applications already designed with WSNs to make life easier at home such as ”Smart

Environment: Residential Laboratory” and ”Smart Kindergarten” [13]. When talking

about the concept ”intelligent home”, it can be considered that there are well organized

home appliances or furniture collaborating each other through sensor nodes and computer

interface to detect users desires [13]. To illustrate, there can be air condition at home

adjusts home temperature by itself or the light on the table is automatically on as well.

1.2 Sensors and Sensory Network Localization

Localization has been one of the main problem in many research fields such as, WSN, au-

tonomous robot and vehicle navigation, telecommunication, radar, sonar, as well as body

centric wireless communication. In many military WSN applications, for instance target-

ing unfriendly forces or equipments, detecting nuclear, biological or chemical attacks and
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sources, the measured data are meaningless without a certain information of the position

from where the data are acquired. For this reason, it is almost always must to determine

the location of a specific sensor so that the appropriate actions can be proceed in case of

emergencies. In addition, in the network layer, there are some communication protocols

and algorithms, which are required to determine sensors location in order that propagate

information through multi-hop sensor networks.

For the outdoor localization, GPS (Global Positioning System) units can easily obtain

location information of intended subject. On the other hand, attaching GPS units to every

single sensor is both costly and infeasible, because of the power constrain. For the indoor

localization, GPS does not work well due to lack of clear line of sight to the satellites [14].

Moreover, although there are some applications require stationary sensor node, for the

most WSN applications, the nodes are mobile and entire network is dynamic. Because

of the all reasons mentioned, some methods are needed to estimate sensor location for

stationary and mobile or indoor and outdoor applications without GPS units.

Localization can roughly be divided into two process categories; the first process is to

estimate sensor relations between other sensors with respect to angel, range or distance and

the second process is to use information gathered from the first process by some algorithms

and estimation to determine location of sensor. For the first process of localization, there

are some ranging methods used in literature such as, ultrasonic, sonic and light, but most

of them are all limited from widespread usage. The most used method to estimate relation

(angle, range, distance) between sensors is RF ranging method, since it does not require

additional device as acoustic systems do, overcomes obstacles well when compared to oth-

ers and does not have limited range as ultrasonic and sonic systems have [15]. Usage of the

ranging methods depend on applications that determine requirements on accuracy, latency,

and infrastructure complexity of a ranging system. All ranging methods are prone to be

5



polluted with noise, which restricts ranging accuracy by combining with multi-path channel

effects, clock synchronization and sampling artifacts [1]. When inter-sensor measurement

data is considered, it is possible to classify localization algorithms into two categories;

centralized algorithms and distributed algorithms. In centralized algorithms, all estimated

inter-sensor information are combined in one central processes unit where non-anchor sen-

sor location is estimated. Multidimensional scaling algorithm (MDS), linear programming

algorithm and stochastic optimization algorithm can be given as an example of central-

ized algorithms [1]. On the other hand, in distributed algorithms, each node estimates

its own position by using inter-sensor measurement and its neighbor position. Moreover,

a sensor can find its neighbor location by using its own position information (via GPS)

and inter-sensor measurement with distributed algorithms [16]. DV-hop and DV-distance

algorithms can be given as an example of distributed algorithms [1]. These two kinds of

algorithms can be compared with respect to location estimation accuracy, implementation,

computational complexity and energy consumption. First of all, distributed localization

algorithms are generally more computationally efficient and easier to use in large-scale net-

works than centralized algorithms [17]. Secondly, centralized algorithms give better results

than distributed algorithms in point of accuracy [17]. Moreover, distributed algorithms are

more difficult to design because of the difficulty of combining global and local systems [16].

In terms of energy consumption, performance of the algorithm is based on the application

kind. While for the large-scale networks, centralized algorithms are more efficient than dis-

tributed algorithms, for small-scale networks, distributed algorithms are likely to provide

more energy efficient results [17]. Furthermore, localization algorithms can be divided into

two categories in terms of mathematical relationship between source and measurement;

linear algorithms and non-linear algorithms. Generally, non-linear methodology does not

guarantee global convergence because their optimizations cost functions are multi-modal.
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However, when noise information is not available, non-linear is simpler and is a practical

choice. Non-linear least square algorithm (NLS) and maximum likelihood algorithm (ML)

can be given an example of the non-linear localization algorithms. When considering accu-

racy and complexity, it can be said that ML is more accurate and complex than NLS [18].

Regarding the linear algorithms, the basic idea of the linear localization algorithms is to

convert the non-linear expressions of non-linear algorithms equations and measurement

information. Linear localization algorithms always guarantee global convergence because

their optimization cost functions are unimodal. Linear least square algorithm (LLS) and

weighted linear least square algorithm (WLLS) can be given an example of the linear lo-

calization algorithms. When regarding accuracy and complexity, WLLS is more accurate

and complex than LSS [19]. However, while noise static is not needed for LSS, it is needed

for WLLS [20].

1.3 Contributions and Thesis Outline

In this thesis, firstly, analytical solution of the localization problem is proposed by deriving

a linear parametric model of the unknown sensor-source in three dimensions. Then, based

on this parametric model, new localization algorithm, which is least-square based adaptive

source localization algorithm, is designed. After analytical studies, we perform some simu-

lations so as to evaluate the proposed algorithm performance. With the simulation results,

it is shown that the proposed algorithm outperforms gradient descent localization algo-

rithm studied previous works. It is also shown that the forgetting factor has a considerable

impact on both convergence time and noise compensation.

Secondly, as an application of the adaptive least-squares algorithm, we focus on implant

localization in human body. Simulations are performed for two different scenarios: priori
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information related with implant location is available and such a priori information is not

available. Simulation results show that the proposed algorithm estimates implant location

with almost zero mean estimation error for first scenario even under noisy measurements.

For second scenario, even though the proposed algorithm do not obtain perfect estimation

results, the estimation error is at low acceptable level.

The basic WSN applications and sensor localization concept are described in the first

chapter. The rest of this thesis is divided into four chapters. In Chapter 2, we introduce

theoretical study of the localization methods, measurement techniques and presenting a

state of the art of the different technical solutions and algorithms. Some challenges with

localization algorithms are also discussed in related works part. In Chapter 3, we elaborate

new localization algorithm, least-square based adaptive source localization algorithm, with

its theoretical study and present the performance of the approach in different conditions

and compare its efficiency to Gradient algorithm. Our proposed localization algorithm is

demonstrated to be able to achieve better performance comparing to Gradient method.

We will then study medical implant localization in human body as an application of the

proposed algorithm in Chapter 4. In Chapter 5, we first summarize the studies in the

thesis, then finally, we discuss some directions for future work.
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Chapter 2

Background and Related Works

2.1 Measurement Techniques Used in Wireless Sen-

sory Localization

WSN localization depends on measurements which define inter-sensor relation in network.

There are many factors that affect selection of the measurement techniques, for instance

number of sensor node in WSN, geometric shape of the network area ,distribution of the

sensor, and network architecture [1]. Moreover, type of measurement affects algorithm

type used for specific localization application. When typical WSN is considered, a generic

formula can be written using relation between available measurements and coordinates of

sensor;

Y = h(X) + e

where Y indicates the vector of all measurements, X has true coordinate vectors of local-

ized sensor and e is the vector of measurement error [1]. If we can acquire distribution
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of measurements errors, fe, We can estimate sensor location with maximum likelihood

approach by minimizing an optimization criteria,

X̂ = argmin(logfe(Y − h(X̂)))

As a cost function related to formula above, Fisher Information Matrix,

J(X) = E(∇T
x logfe(Y − h(X))∇xlogfe(Y − h(X)))

Where ∇xlogfe(Y − h(X)) is partial derivative of logfe(Y − h(X) in accordance with X

evaluated at X. Another technique to evaluate the location accuracy is the Cramer-Rao

bound;

Cov(X̂) = E(X − X̂)(X − X̂)T ≥ J−1(X)

Through the formula written above, any unbiased estimate of X can be found. When

right hand side of the above formula is considered, it gives an idea how used sensor node

configuration is appropriate for localization of an unknown object. The lower bound in

the formula also enables sensor placement according to desired accuracy, with the given

sensitivity of the sensors. On the other hand, It should not be forgotten that this lower

bound depends on many assumptions and susceptible any changes in conditions.

Moreover, in order to evaluate sensor node performance, the position root mean square

error (RMSE) can be better criteria, since it contains estimation error sources covariance

and bias error.

RMSE =

√
E[(X0 − X̂)2 + (Y 0 − Ŷ )2] ≥

√
trCov(p̂)

Where p indicates the true position. According to the equation above, when we specify

RMSE conditions, number of sensor node in the network can be increased until equation

shows that the information obtained from sensor nodes is enough.
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All measurement models in WSN are vulnerable to noise and type of measurement,

algorithm and network architecture affects accuracy level. In the following sections, we

will discuss available techniques for measurements.

2.1.1 Received Signal Strength Indication (RSSI)

Received signal strength (RSS) measurement is generally modeled as a function of distance

between receiver and transceiver. Most wireless device have a function to measure the

received signal strength. The relation between received signal strength and distance is

inverse linear, which means that power dissipates exponentially from the source as the

distance increases between emitter and receiver [16] [21]. RSS measures the power of the

signal at the receiver. The power model based on the formula as shown below;

Pr(d)[dBm] = P0(d0)[dBm]− 10nplog10(
d

d0

) +Xσ (2.1.1)

Where

• Pr(d)[dBm] is a reference power in dB milliwatts at a reference distance d0 from the

transceiver

• np is the path loss exponent

• Xσ is a zero mean Gaussian distributed random variable with standard deviation σ

Based on the equation (2.1.1), the propagation loss can be calculated with the trans-

mitted power at the receiver and loss, which decreases with distance, can be translated into

distance estimate. In the equation (2.1.1), Xσ term stands for the random effect caused by

shadowing. Both np and σ are based on environmental conditions [1]. Moreover, Gaussian

model can be used to evaluate accurately lost exponent np and for both cases far field
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region and near field region of the transmitter, lost exponent model need to be considered

differently [1].

Although RSS based measurement seems easy to be used for localization, there are

some obstacles making RSS measurement difficult. If RSS based measurement is to be at-

tempted, a designer must be able to deal with some nonlinearities and imperfect knowledge

originated from propagation and devices used in the process. As an propagation effects, we

can count multi-path fading, shadowing and antenna effects. When indoor localization is

considered, in order to make efficient measurement with RSS, there must be a line of sight

path between emitter and receiver, which provides dominant line of sight link (DLOS).

However, most indoor areas have LOS path shadowed by walls and objects. This shadow

effect decreases RSS effect at the receiver and multi-path power from many different di-

rections suppresses RSS power. Moreover, antennas used for receivers and transceivers

affects RSS measurement. In the medium, there can be some objects, which would block

RF signal and attenuate it. Also, some researches have revealed that antenna orientation

is important issue so as to obtain efficient measurement.

As shown in Figure 2.1, RSS based measurement requires redesign of emitters and

receivers in order to convert transmitted power into location information by estimating path

loss effect. Path loss estimation requires to have transmitter parameter, and transmitter

may need to have feedback to control its transmitter power.

2.1.2 Time of Arrival

Time of arrival (TOA) method estimates the distance based on the signal propagation time

between transceiver and receiver nodes. Once speed of the signal and transceiver location

are known, receiver location can be found using measured time of arrival. As a propagation

12
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Figure 2.1: RSS-based positioning system architecture.

signal, different types of signal can be used such as RF, ultrasound or acoustic. In this

measurement method, it is considered that line of sight signal is available beforehand. The

measured signal is contaminated by noise and multi-path channel effects. In order to obtain

accurate estimation, multi-path channel and noise effect should be modeled well [22] [23].

Equations (2.1.2) and (2.1.3) represents modeled multi-path wireless channel and received

signal in a multi-path channel respectively.

h(t) =
M∑
m=1

αmδ(t− τm) (2.1.2)

Where, M is the number of multi-path components, αm and τm represent complex atten-

uation and propagation delay respectively. Since sensor nodes in WSN can be mobile, αm

and τm are time based random variables.

x(t) =
M∑
m=1

αms(t− τm) + v(t) (2.1.3)

Where s(t) is a known transmitted signal and v(t) represents noise. As seen in the Figure

2.2, for two dimensions at least three base stations (BS) and for three dimensions at

13



least four base stations are needed to measure TOA of the transmission from each mobile

station(MS). The intersection of the circles gives the location of MS. Due to measurement

errors, the circles does not create single intersection point and the intersection is formed

as a region.

Figure 2.2: Graphical demonstration of TOA based positioning system.

2.1.3 Time Difference of Arrival

Time difference of arrival (TDOA) measures the difference in arrival time from the trans-

mitter to the receivers. Time difference is directly proportional with the distance between

transmitter and receiver. In two dimension, if we represent receivers coordinates with Yi

and Yj and transmitter coordinate with Xt, the equation (2.1.4) gives measured TDOA [1].

∆tij = ti − tj =
1

c
(‖Yt − Y i‖ − ‖Yt − Yj‖) (2.1.4)

Where, ti and tj are the arrival times of the signal at receivers i and j respectively and c

represents signal propagation velocity. If we consider receivers locations known beforehand
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and their clocks are well synchronized, equation (2.1.4) gives a part of hyperbole on which

transmitter must be on [1]. The intersection of these part of hyperboles indicates trans-

mitter location. When the system consisting of N receivers is considered, there are N-1

linear TDOA measurements. In order to estimate transmitter’s location, we have to have

at least three receivers for two dimensions or at least four receivers for three dimensions.

Receivers must be placed non-collinearly. Figure 2.3 is the graphical illustration of two

dimensional TDOA measurement.

TDOA measurements accuracy depends on synchronization of clock time at the re-

ceivers and multi-path effects. In wireless environments, since there are many scatterers

such as walls, hills and buildings, multi-path is the major effect of the measurement errors.

In order to improve accuracy with TDOA, the distance between receivers can be increased

so that difference between time of arrival increases.

Rt

R1 R2

R3

A part of hyperbola from the
TDOA measurements 
with R1 and R2

A part of hyperbola from the
TDOA measurements 
with R2 and R3

Figure 2.3: Graphical demonstration of TOA based positioning system.
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2.1.4 Angle of Arrival

Angle of arrival (AOA) measurement provides location information by supporting other

measurement methods discussed before. AOA estimates the direction between neighboring

sensors rather than distance. AOA system estimates the angle at which signals are received

and uses simple geometric relations to measure the relative locations of transmitter and

receiver. In order to use AOA measurement technique, antenna array is required. Figure

2.4 illustrates geometrical architecture of AOA with an antenna array. The neighboring

antennas are distributed by a fixed distance d. Transmitter distance to the kth antenna

can be given by

Rk ∼ R0 − kdcosα (2.1.5)

where α is the direction of the transmitter viewed from the antenna array and R0 represents

the distance between transmitter and 0th antenna [1]. If the wavelength is λ for the

transmitter signal, the phase difference between neighboring antennas can be written as

2π dcosα
λ

[1]. Thus, the measurement of phase difference gives AOA of transmitter according

to antenna array. However, as discussed for other measurement techniques, the accuracy of

AOA measurements is limited by the some effects such as, multi-path, shadowing, and the

directivity of the antenna. Moreover, there are some others disadvantages of using AOA

measurement. First of all, using complex antenna array is expensive and secondly, AOA

measurement technique can not support the systems with a large number of sensor node.
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Figure 2.4: Demonstration of AOA measurement using an antenna array.

2.2 Geometric Methods in Localization

2.2.1 Triangulation

Triangulation is one of geometric technique that benefits from the angle of arrival to obtain

location information of sensors. According to the this technique, for two dimensions,

unknown sensor location as the third sensor can be found by using one known side and two

known angles with the help of the trigonometry laws of sines and cosines. Triangulation

uses radio waves to triangulate unknown sensor location in most applications [24]. Figure

2.5 shows computation of triangulation and the location calculation of A is given by the

equation (2.2.1).

U(s1, s2, A) =
d(s1, A)× d(s2, A)

sin β
(2.2.1)
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Figure 2.5: Estimation the position of the target A by given s1 and s2

2.2.2 Trilateration

Trilateration is another geometric technique that uses distance information between three

known sensors and one unknown sensor to estimate the unknown sensor location in case of

two dimensions. The location of unknown sensor is determined by measurement of distance,

using the geometry of sphere or triangles that are comprised by intersection of three circles.

The best example for practical usage of trilateration is global positioning system (GPS).

Least squares, nonlinear least squares and circle intersection with clustering are common

methods in literature in order to solve trilateration problems [25].

2.2.3 Multilateration

Multilateration works almost same idea with trilateration to estimate more precisely un-

known sensor location based on its distance measurements to multiple known sensor nodes.

The most important difference between trilateration and multilateration is that multilat-

eration uses more known sensors so as to increase localization accuracy.
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2.3 Related Works

There have been a many efforts to investigate sensor-source localization problems by WSN

research community until now. When considering all these studies, they all are employed

to achieve localization accuracy or reduce estimation error by using different distance es-

timation methods or algorithms. Since there is a trade-off between accuracy and cost or

estimation error and system complexity for most applications, algorithms and estimation

methods have been chosen according to the application types. As an example of localiza-

tion algorithm used in literature, [26] proposes maximum likelihood estimation algorithm

to find robot location, and distributed Kalman filter is used to deal with cooperative lo-

calization problem in [27]. Moreover, [28] relies on the statistical algorithm to localize

mobile robot location. Another type of localization algorithms are established with large

number of sensor nodes with known positions, which are called anchor nodes. Even though

this method is effective for monitoring large scale fields, they are expensive to set up and

maintain [29]. [30] proposes sensor localization with anchor nodes. Regarding distance

estimation methods for localization, they are also application oriented. To illustrate, the

received signal strength indicator (RSSI) technique has been commonly used thanks to its

simplicity, although it achieves low accuracy [31]. Moreover, many studies utilize time of

arrival (TOA), time difference of arrival (TDOA) or angle of arrival (AOA) as an distance

estimation method, because they minimize distance estimation error. However, they are

expensive to use, since the sensors used in the network need to have powerful processes

systems or antenna array. TOA, TDOA and AOA techniques are employed in [32], [33]

and [34] respectively. Some geometrical localization techniques such as multilateration

and triangulation are also used with integration of some appropriate algorithms to localize

sensors and sources. Since geometrical localization techniques are environment dependent,
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the algorithm performance with multilateration or trilateration changes with sensor net-

work and terrain structures. [16] uses geometrical localization techniques with iterative

estimation to develop localization accuracy.

After mentioned about general frame of localization studies briefly, since the thesis

content is directly related with least-squares (LS) estimation, we can continue with local-

ization studies with LS approaches in literature. For localization problems, LS estimation

and its variations have been commonly used to obtain unknown sensor-source location.

The basic type of LS algorithm used for localization is linear least-squares localization

approach. Linear LS algorithm is used because of its low complexity, despite the fact that

it is sub-optimal in general. [35] studies linear LS considering its theoretical side and it

shows some simulation results in which localization error is connected with reference base-

station movement. Furthermore, correlation between linear LS and RSSI is investigated

in [36], [37]. When the parameters cannot be fit to linear LS, nonlinear LS estimation

can be used to estimate location of unknown sensor-source. In some studies nonlinear LS

estimation achieves good results compare to linear LS. [38] shows that nonlinear LS estima-

tion outperforms linear LS and distributed LS estimations with respect to energy saving in

WSN. In [39], distributed LS algorithm is introduced with the purpose of reducing energy

consumption. Also, according to the [40], localization error is reduced less than 1% by

separating LS calculation into distributed sub-calculations. As an non-iterative LS algo-

rithm, weighted LS (WLS) algorithm is proposed in [19]. It is shown that WLS has almost

Cramer-Rao lower bound performance when the estimation noise is small. Afterwards,

researchers developed WLS algorithm as an sequential WLS algorithm in [41]. The study

results shows that sequential WSL algorithm is better than WSL for both line-of-sight and

non-line-of-sight environment. As used in this thesis, recursive LS algorithm can be used

to solve localization problems. For instance, in [42], recursive total LS algorithm is used to
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find robot position. The authors states that recursive total LS algorithm gives much faster

convergence time with regard to Kalman and extended Kalman filters estimations in [43].

Moreover, [44] studies LS kernel method in order to obtain locations of mobile nodes.

In [45], the authors propose continuous time linear adaptive localization algorithm

by using gradient descent estimation under the persistent excitation conditions. In the

study, a moving sensory agent estimates unknown signal source/target location with the

information of its instant position, and distance between unknown signal source/target

and itself for both stationary and drifting target cases. The paper evaluates the proposed

adaptive localization algorithm performance with respect to convergence speed. [45] has

been used for this thesis studies as a reference work.
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Chapter 3

Least-Squares Based Adaptive

Source Localization

3.1 Introduction

Location estimation of a signal source or target by a sensory agent or team of such agents

has become an important aspect in many application areas recently. For instance, in

a wireless sensor network, the base station may have to find an unknown sensor node

location in order to adjust the most efficient power level in order to ensure appropriate

network coverage [45].

In this thesis, we focus on distance measurement based localization. There are two

main approaches for measuring the distance between an agent and the target. The first

one is passive measurement. In this case, the signal intensity at the source and the agent

locations are used, together with characteristics of the propagation medium, to estimate

the distance. On the other hand, in active distance measurements an agent transmits
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signals in order to estimates the distance by using the time that is measured for the signal

reflected off the source to come back [45], [46].

Generally , there are two approaches to characterize this research in this area. The

first approach needs clusters of immobile agents that work together to localize a given

source. Localizing the source in two dimensions needs at least three separate non-collinearly

located agents and their distances from the source. Sometimes, a priori information may be

available to resolve that ambiguity. If not, a third agent is required. In three dimensions,

there must be at least four agents that are not arranged in an order on the same two

dimensional plane [45]. In the second approach, a single mobile agent can be used to

estimate the distance between the source and agent by changing the single mobile agent’s

position.

For this study, second approach is going to be used. According to the this approach,

three distance measurements are needed by using only one agent in order to achieve signal

source localization. After taking the first distance measurement, move the agent and

take the second distance measurement, and then move it again take another distance

measurement, but the third measurement must not be collinear considering the first two

measurements. In the case of three dimensions, a fourth measurement is required [45].

Nevertheless, there are two main cases which are complicating the estimation of signal

source localization. First of all, measurements can be contaminated by noise and this

situation can drive system unstable condition. Secondly, the signal source can change its

position while agent is moving its new position. To eliminate the these disadvantages, a

continuous time algorithm is going to be used that estimates the signal source location by

known agent movement in three dimensions [45].

This chapter focuses on the problem of localizing a signal source by a mobile sensory

agent using distance measurements. This problem was tackled in [45] using a gradient based
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adaptive algorithm. In this study, we design a least-squares based adaptive algorithm with

forgetting factor for the same task.

3.2 Problem Definition

In this section, we consider the following localization problem:

Problem 3.2.1 [47] Given a mobile agent A with position y : < → <n as a function

of time t, and a target T located at an unknown position x ∈ <n, n ∈ {2, 3}, devise an

adaptive law to generate the estimate x̂(t) of x such that

lim
t→∞
‖x̂(t)− x‖ = 0, (3.2.1)

using only the distance measurement,

D(t) = ‖y(t)− x‖ (3.2.2)

and the agent’s own position y(t).

A gradient adaptive law has been developed in [45,47] for Problem 3.2.1. Furthermore,

in [47] and [48], this adaptive law is integrated with tracking control laws that are designed

using constructive Lyapunov approaches to develop adaptive control schemes for, respec-

tively, capturing and circumnavigating the target T . Noting that the problem definition in

Problem 3.2.1 is given for the ideal case where the target T is stationary and the distance

measurement in (3.2.2) is noiseless, stability and convergence for moving (drifting) targets

are formally analytically established and the noisy distance measurement cases are studied

via numerical simulations as well in [45].
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In this study, we revisit Problem 3.2.1 using a least-squares (LS) based approach in

place of the gradient approach. The focus of this study is mathematical systems design and

analysis for solving Problem 3.2.1 without considering the details of the real life implemen-

tation and application. From the applications aspect, solving Problem 3.2.1 is observed to

have potential real-life applications in a number of areas including various localization and

optimization tasks for mobile sensor networks [1], localization of emergency calls and rescue

signal sources, localization of biological and chemical threats [1], localization of printers

and other units in pervasive computing [1]. A brief discussion of the implementation and

application aspects can be found in [46].

3.3 Assumptions and Parametrization

In our approach to Problem 1.1, similarly to [45], [47], we assume the following:

Assumption 3.3.1 In problem 3.2.1, y(t), ẏ(t), and ÿ(t) are bounded and differentiable,

satisfying

‖y(t)‖ ≤M1, ‖ẏ(t)‖ ≤M2 ‖ÿ(t)‖ ≤M3

for all t ≥ 0 and some positive M1,M2,M3.

In our localization algorithm design, we use the linear parametric model for the measure-

ment (3.2.2):

z̄(t) = x>φ̄(t) (3.3.1)

where

z̄ =
1

2

d

dt

(
‖y(t)‖2 −D2

)
, φ̄ = ẏ.
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As in [45, 47], the unknown position vector x is assumed to be constant for localization

algorithm design purposes; and the cases where this assumption is violated will be for-

mally analyzed in Section 3.5.2 and will be tested via simulations in Section 3.6. The

implementation of a localization algorithm based on (3.3.1) would require generating the

derivative of D(t), rendering it impractical. Instead, we use the following filtered version

of the parametric model (3.3.1) derived in [45,47]:

z(·) ≡ x>φ(·), (3.3.2)

z(t) = ζ̇1(t) = −αζ1(t) +
1

2

(
y>(t)y(t)−D2(t)

)
,

φ(t) = ζ̇2(t) = −αζ2(t) + y(t),

where the notation f1(·) ≡ f2(·) for two functions f1, f2 indicates that there exist λ,M > 0

such that for all t ≥ 0, ‖f1(t) − f2(t)‖ ≤ Me−λt; α > 0, ζ1(0) is an arbitrary scalar, and

ζ2(0) is an arbitrary vector.

3.4 The Localization Algorithm

The localization algorithm proposed and analyzed in [45, 47], for the problem formulation

in Problem 3.2.1 and parametrization (3.3.2), can be expressed as

˙̂x(t) = γ (z(t)− ẑ(t))φ(t), (3.4.1)

ẑ(t) = x̂>(t)φ(t),

where γ > 0 is the adaptive gain and x̂(0) is the initial estimate. The algorithm (3.4.1)

minimizes the instantaneous cost function [49,50]

J(x̂(t)) =
1

2
(z(t)− ẑ(t))2 =

1

2

(
z(t)− x̂T (t)φ(t)

)2
. (3.4.2)
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In this paper, in place of (3.4.1), we propose a recursive LS algorithm with forgetting factor

to produce the estimate x̂(t) in a way that minimizes the integral cost function

J(x̂(t)) =
1

2

∫ t

0
e−β(t−τ)

(
z(τ)− x̂T (t)φ(τ)

)2
dτ +

1

2
e−βt(x̂− x̂0)

TQ0(x̂− x̂0), (3.4.3)

where Q0 > 0 is the design matrix defining the scale of the penalty on deviation from

the initial estimate and β > 0 is the fixed forgetting factor, another design constant. The

resultant recursive LS algorithm takes the form

˙̂x(t) = P (t) (z(t)− ẑ(t))φ(t), x̂(0) = x̂0 (3.4.4)

Ṗ (t) = βP (t)− P (t)φφTP (t), P (0) = P0 = Q0
−1

3.5 Stability and Convergence Properties

3.5.1 Stationary Target Case

The stability and convergence properties of the proposed algorithm (3.4.4) are analyzed

following a procedure similar to that of [45, 47]. Observing that the same stability and

convergence results have been established for the gradient based parameter estimation

and LS parameter estimation with forgetting factor in [49, 50] for a broad set of linearly

parameterized systems including (3.3.2), the following can be established in parallel to

Lemma 2.1 of [47]:

Lemma 3.5.1 Consider (3.2.2),(3.3.2),(3.4.4). Assume that x is constant and y(t) obeys

Assumption 3.3.1. Define

p(t) = x>φ(t)− z(t) (3.5.1)
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and

x̃(t) = x̂(t)− x. (3.5.2)

Then there holds

ṗ(t) = −αp(t) (3.5.3)

and

˙̃x(t) = −γφ(t)φ>(t)x̃(t)− γφ(t)p(t). (3.5.4)

Furthermore x̃ converges to zero exponentially if φ is persistently exciting ( p.e.), viz., if

there exist positive α1, α2 and T1, such that for all t ≥ 0, there holds

α1I ≤
∫ t+T1

t

φ(τ)φ(τ)Tdτ ≤ α2I. (3.5.5)

3.5.2 Drifting Target Case

In addition to the nominal cases where the source location x is constant, it is of interest

to consider less ideal cases where the target observes a “slow” drift, where the definition

of “slow” for this paper is given in the following assumption.

Assumption 3.5.1 In Problem 3.2.1, the source trajectory x(t) is differentiable and there

exist constants M4 > 0 and 0 < M5 �M4 such that for all t ≥ 0,

‖x(t)‖ ≤M4, ‖ẋ(t)‖ ≤M5.

As in the case of Section 3.5.1, the stability and convergence properties of the proposed

algorithm (3.4.4) can be analyzed following a procedure similar to that of (the proof of

Theorem 3.1 in) [45]. Again observing that the stability and steady-state convergence

characteristics established for the gradient based parameter estimation and LS parameter
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estimation with forgetting factor are the same [49, 50] for a broad set of linearly parame-

terized systems including (3.3.2), the following can be established in parallel to Theorem

3.1 of [45]:

Lemma 3.5.2 Consider (3.2.2),(3.3.2),(3.4.4). Assume that y(t) and x obey Assumptions

3.3.1 and 3.5.1, respectively; and there exist α1, α2, T1 > 0 such that for all t ≥ 0 (3.5.5)

holds. Then, for some constant K > 0 depending on M1, M2, M3, α, T1, α1, and α2, there

holds

lim sup
t→∞
|x̂(t)− x(t)| = KM5.

3.5.3 Persistent Excitation

The practical meaning and feasibility of the p.e. condition (3.5.5) is discussed in details

in [45, 47]. The same discussions apply here since the p.e. conditions are the same for

gradient and LS based parameter identification (and hence localization) algorithms. The

following result from [45] is obviously independent of the identification algorithm type used:

Lemma 3.5.3 [45] Consider (3.2.2),(3.3.2),(3.4.4). Assume that y(t) obeys Assumption

3.3.1. Then there exist α1, T1 > 0 such that, for all t ≥ 0, the lower bound in (3.5.5) holds

if and only if there exist ᾱ1, T̄1 > 0 such that

ᾱ1I ≤
∫ t+T̄1

t

ẏ(τ)ẏ(τ)Tdτ. (3.5.6)

As discussed in [45, 47], the condition (3.5.6) in <2 requires that y persistently avoids

linear trajectories. The same condition in <3 requires that y persistently avoids planar

trajectories. A further study of relaxation of the conditions (3.5.5) and (3.5.6) is presented

in [51].

29



3.6 Simulations

In this section, we provide numerical analysis of the convergence characteristics of the LS

based localization algorithm (3.4.4) based on a variety of comparative simulation tests in

<3. In order to have a fair comparison with the results using the previously proposed

gradient based localization algorithm (3.4.1) of [45, 47], we select the design parameters

as common as possible, and consider the example scenarios considered in [45, 47]. After

obtained all the simulation results with same in previous gradient algorithm based study,

we put only a few of them in this study since they are all available in [45]. As an simulation

environment we used MATLAB/Simulink tools.

3.6.1 Design Parameters

In all the examples, the common design parameters are selected as

α = 1,

γ = 1,

P (0) = P0 = γI,

x̂(0) = φ(0) = [0, 0, 0]T ,

z(0) = 0,

y(t) = [2 + 2 sin t, 2 cos 2t, 2 sin 0.5t]T .

3.6.2 Scenarios

In the simulation studies, we consider the following two scenarios:

Scenario 1: The target is stationary located at x = [2, 3, 2]T (m).
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(a) Gradient based localization
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(b) LS based localization, β = 0.9

Figure 3.1: Gradient and LS based localization algorithms for Scenario 1 without noise.

Scenario 2: The target is drifting with position x(t) = [2 + sin 0.005t, 3 + cos 0.005t, 2]T

(m).

3.6.3 A Comparison for Noiseless Distance Measurement Case

For the case where the distance measurements are noiseless, a set of simulation results

comparing the transient (convergence speed) performance of the LS based localization

algorithm (3.4.4) with the gradient algorithm (3.4.1) of [45, 47] are shown in Figures 3.1.

As observed from these figures the convergence settling time ts for the LS based algorithm

(with β = 0.5) is about half of the gradient algorithm’s settling time. Note that the settling

time ts is different for different values of the forgetting factor β. The effect of β on ts will

be further analyzed in Section 3.6.5.
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(b) Scenario 2

Figure 3.2: LS based localization algorithm for Scenario 1 and 2 with measurement noise

variance 0.05 (m2), β = 0.5.

0 50 100
0

2

4

6

||e
st

(x
)−

x|
|

t(sec), variance=0
0 50 100

0

2

4

6

||e
st

(x
)−

x|
|

t(sec), variance=0.01

0 50 100
0

2

4

6

||e
st

(x
)−

x|
|

t(sec), variance=0.05
0 50 100

0

2

4

6

||e
st

(x
)−

x|
|

t(sec), variance=0.1

(a) Gradient based localization

0 50 100
0

2

4

6

||e
st

(x
)−

x|
|

t(sec), variance=0
0 50 100

0

2

4

6

||e
st

(x
)−

x|
|

t(sec), variance=0.01

0 50 100
0

2

4

6

||e
st

(x
)−

x|
|

t(sec), variance=0.05
0 50 100

0

2

4

6

||e
st

(x
)−

x|
|

t(sec), variance=0.1

(b) LS based localization, β = 0.1

Figure 3.3: Gradient and LS based localization algorithms for Scenario 1 with various

measurement noise variances (m2).
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Figure 3.4: LS based localization for Scenario 1 with various measurement noise variances

(m2) .
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Figure 3.5: Gradient and LS based localization algorithms for Scenario 2 with various

measurement noise variances (m2).
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Figure 3.6: LS based localization for Scenario 2 with various measurement noise variances

(m2) .

3.6.4 Noisy Distance Measurements

For the case where the distance measurements are noisy, two sample trials using the LS

based localization algorithm (3.4.4), one for each of Scenarios 1 and 2, are shown in Figures

3.2. In both of these trials, the noise variance is 0.05 (m2), a typical value for the distance

measurement devices used in localization tasks of type Problem 3.2.1. Comparison of these

results with those of [45] demonstrates effectiveness of (3.4.4) in increasing the convergence

speed and reducing the measurement noise effect.

Next, we present a set of simulation results comparing the transient (convergence speed)

performance of the LS based localization algorithm (3.4.4) with the gradient algorithm

(3.4.1) of [45, 47], for both the stationary and drifting source cases with different levels

of distance measurement noise. The results for the stationary source case Scenario 1 are

shown in Figures 3.3 and 3.4; and those for the drifting target case Scenario 2 are shown
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in Figures 3.5 and 3.6. The results demonstrate that the LS based algorithm (3.4.4) has

two types of advantages, which vary with the selection of β: For lower values of β, the

measurement noise effects on localization are significantly attenuated. For high values of

β, the localization algorithm converges significantly faster than the gradient algorithm.
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Figure 3.7: Settling time ts (sec) and localization accuracy εx (m) for different values of

the forgetting factor β.

3.6.5 Selection of the Forgetting Factor

Localization accuracy εx and settling time ts for different values of the forgetting factor β

are plotted in Figure 3.13, where ts is defined as the first time instant when the localization

error ‖p̂T − pT‖ drops below σ =
√

0.05 and εx is taken as the average of ‖p̂T − pT‖ for

t > ts, considering a noisy measurement case with noise power σ2 = 0.05 m2.

Figure 3.7 illustrates the trade-off between εx and ts, and rules of thumb for selection

of β. For lower εx, one needs to choose β at low values, close to zero; while to obtain lower
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ts, β needs to be chosen larger. Depending on design requirements, an optimal β can be

selected, e.g., β = 0.5 in ours simulations appears to be an “optimal” choice for Scenarios

1 and 2.

3.7 Conclusion

In this chapter, we have studied the problem of localizing a signal source by a mobile

sensory agent using distance measurements, which was addressed in [45] using a gradient

based adaptive algorithm. Particularly, given a mobile sensory agent knowing its location

and the distance between signal source and itself, the algorithm searches the location

of signal source in three dimensions. We have designed a least-squares based adaptive

localization algorithm for the same task. We have established that the least-square based

algorithm we propose bears the same asymptotic stability and convergence properties as

the gradient algorithm. Under the persistent of excitation condition, least-square algorithm

also accomplished tracking the source movement precisely and has ability slow and bounded

for both stationary and mobile cases. It is further demonstrated via simulation studies that

the proposed least-square algorithm converges significantly faster to the resultant location

estimates than the gradient algorithm, and significantly reduces the noise effects for small

values of the forgetting factor. While convergence time changes in direct proportion to the

β values, noise compensation is inversely correlated with β.
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Chapter 4

Least-Squares Based Implant

Localization in Human Body

4.1 Introduction

Recently, wireless communication devices and protocols have been studied in biomedical

field to efficiently administer and deliver a variety of health care services. Advance WSN

systems have been used to observe patients physiological signals not only in medical centers

or hospital, but also in their homes and workplaces [9]. In addition, with the advance of

MEMS technology, wireless sensor networks component sizes reduced and wearable and

implementable devices such as smart sensors and peacemakers have been extensively used

in health care systems.

The WSN system on human body is called wireless body area sensor network (WBAN).

WBAN conveys real world WSN applications to practical use improving quality of life of

human by allowing real time, non-invasive medical assistance at low cost. WBAN can
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monitor the body’s condition and to detect any possible problem occurs in the human body

by transmitting vital data from one device to another implanted device in a network. As

an example of the biomedical implanted devices, wireless capsule endoscopy (WCE) [52]

has attracted lots of attention, since it is easy to use and highly efficient comparing to

exiting endoscopy systems. WCE has a tiny camera on it and exact location of the capsule

(or camera) has to be known by treating physician when each image is taken in order

to be interpreted. Moreover, assigning allowable power rate of the transmitter signal

and bandwidth range are very important, because human body tissues and organs are

vulnerable to be affected by them. In that respect, knowing of each device location in

human body can help to optimize transmission power and identify the position of biological

information acquired from medical device.

In classical WSNs, there are some destructive effects between transmitter and receivers

such as multi-path, shadowing and broadening, arising from medium characteristics. De-

spite having similar generic structures, WBANs and classical WSNs have significant dif-

ferences as well. Since human body consists of different organs and tissues, each with a

different signal permittivity coefficient and hence a different signal propagation speed, the

signal propagation velocity between transmitter and receiver in human body is expressed

as a function of the permittivity. In order to characterize the human body as a channel,

instant geometrical model of the body has to be known, because the power absorption

parameters and path loss exponents change with thickness of the tissue.

With all the considerations mentioned above, in order to use some distance measure-

ment techniques such as received signal strength (RSS) or time of arrival (TOA), there have

to be some prior information about the location of the implant. In some studies, researches

obtain the configuration of the human body beforehand from magnetic resonance imaging

(MRI) or computed tomography (CT) in order to estimate average permittivity [53], [54].
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In this study, we focus on the problem of localizing a medical device/implant in human

body by a mobile sensor unit (MSU) using distance measurements. As the particular

distance measurement method, time of flight (TOF) based approach involving ultra wide-

band signals is used, noting the important effects of the medium characteristics on this

measurement method. Since human body consists of different organs and tissues, each with

a different signal permittivity coefficient and hence a different signal propagation speed as

mentioned above, one cannot assume a constant signal propagation speed environment for

the aforementioned medical localization problem. Furthermore, the propagation speed is

unknown.

Considering all the above factors and utilizing a TOF based distance measurement

mechanism, we propose a least-squares (LS) based adaptive algorithm with forgetting

factor to estimate the 3-D location of a medical device/implant in the human body. In

the design of the adaptive algorithm, we first derive a linear parametric model with the

unknown 3-D coordinates of the device/implant and the current signal propagation speed

of the medium as its parameters. Then, based on this parametric model, we design the

proposed adaptive algorithm, which uses the measured 3-D position of the MSU and the

measured TOF as regressor signals.

After discussing convergence properties of the proposed localization algorithm, we per-

form numerical tests to analyze the properties of the localization algorithm, considering

two types of scenarios: (1) A priori information regarding the region, e.g quadrant (among

upper-left, upper-right, lower-left, lower-right of the human body), of the implant location

is available and (2) such a priori information is not available. In (1), assuming knowledge

of fixed average relative permittivity for each region, we established that the proposed

algorithm converges to an estimate with zero estimation error. Moreover, different white

Gaussian noises are added to emulate the TOF measurement disturbances, and it is ob-
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served that the proposed algorithm is robust to such noises/disturbances. In (2), although

perfect estimation is not achieved, the estimation error is at a low admissible level. In

addition, for both cases (1) and (2), forgetting factor effects have been investigated and

results show that use of small forgetting factor values reduces noise effects significantly,

while use of high forgetting factor values speeds up convergence of the estimation.

4.1.1 Problem Definition

In our study, we propose the adaptive least-square localization algorithm estimating im-

plant position iteratively. According to the model, a moving device takes continuous dis-

tance measurements from implant in its non-collinear trajectory. Also, since signal velocity

is permittivity dependent, in every step of the algorithm, we estimate permittivity of the

body part in which device takes measurement. Distance measurements are calculated with

basic velocity-time multiplying correlation. Through this way, the calculated distance is

updated with regard to combination of the tissue permittivity. Figure 4.1 illustrates pro-

posed system model.

We focus on problem of localizing an implant in human body by a mobile sensor unit

(MSU) using distance measurements. As the particular distance measurement method,

time of flight (TOF) based approach involving ultra wide-band signals is used, noting

the important effects of the medium characteristics on this measurement method. Since

human body consists of different organs and tissues, each with a different signal permittivity

coefficient and hence a different signal propagation speed, one cannot assume a constant

signal propagation speed environment for the aforementioned medical localization problem.

Furthermore, the propagation speed is unknown. Considering all the above factors and

utilizing a TOF based distance measurement mechanism, we propose a least-squares based
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adaptive algorithm with forgetting factor to estimate the 3-D location of an implant in the

human body. In the design of the adaptive algorithm, we first derive a linear parametric

model with the unknown 3-D coordinates of the implant and the current signal propagation

speed of the medium as its parameters. Then, based on this parametric model, we design

the proposed adaptive algorithm, which uses the measured 3-D position of the MSU and

the measured TOF as regressor signals.

After providing a formal analysis of convergence properties of the proposed localization

algorithm, we perform numerical tests to analyze the properties of the localization algo-

rithm, considering two types of scenarios: (1) A priori information regarding the region,

e.g quadrant (among upper-left, upper-right, lower-left, lower-right of the human body), of

the implant location is available and (2) such a priori information is not available. In (1),

assuming knowledge of fixed average relative permittivity for each region, we established

that the proposed algorithm converges to an estimate with zero estimation error. Moreover,

different white Gaussian noises are added to emulate the TOF measurement disturbances,

and it is observed that the proposed algorithm is robust to such noises/disturbances. In

(2), although perfect estimation is not achieved, the estimation error is at a low admissible

level. In addition, for both cases (1) and (2), forgetting factor effects have been investigated

and results show that use of small forgetting factor values reduces noise effects significantly,

while use of high forgetting factor values speeds up convergence of the estimation.
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Figure 4.1: On-body implant localization with moving agent.

4.2 Problem Formulation and System Model

Consider a sensory tool transmitting a signal and estimating the distance between an

implant and itself using the time it takes for the signal to be reflected by the implant

and return to the sensory tool. Next, we elaborate main components of the localization

problem setting using this sensory tool.

4.2.1 Measurement Technique and Mobile Sensory Unit (MSU)

We consider use of a mobile sensory unit (MSU) consisting of two main components; the

first component is an accurate indoor positioning system (IPS) that is used to determine the

MSU’s own location in three dimensions and the second component is a narrow band radio-

frequency distance measurement system (RFDMS) for measuring the distance between

MSU and the implant utilizing TOF technique [55]. The RFDMS component is equipped

with a transceiver, a receiver and a clock with high accuracy. According to the distance
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estimation scenario with RFDMS, RFDMS sends out a signal and starts the clock. The

receiver in RFDMS receives the reflected signal from implant and stops the clock. Dividing

the signal travel time tD by two and obtaining the time it takes to go one way, the distance

between MSU and the implant can be found multiplying tD/2 by the signal velocity, whose

estimation is described in the next subsection. Regarding medical implant communication

services (MICS) standards, RFDMS needs to use frequency band 401-406 MHz with the

maximum signal bandwidth of 300 KHz and maximum transmitted power of 25 µW [56].

4.2.2 Propagation Signal and Its Velocity in the Human Body

In free space, signal velocity is constant. However, since human body comprises differ-

ent organs and tissues with complex structures and each organ and tissue has different

characteristics of the electrical constants, signal velocity can be given by the formula

vave =
c√
εave

(4.2.1)

where vave represents average velocity of the propagation signal through the propagation

path, εave represents the corresponding average relative permitivity of human organs and

tissues, and c is the speed of the light in free space.

An important parameter in distance measurement within a human body is relative

permittivity of the organs and tissues mentioned above. In this study, similar to [53], we

consider the average relative permittivity

εave =
I∑
i=1

(εt(i)pt(i)) (4.2.2)

where εt(i) is relative permittivity of ith organ or tissue and pt(i) is the percentage of the

each organ or tissue on the path of propagation signal, and I is the total number of organs
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Table 4.1: The Average Relative Permittivity of the Human Body Tissues [53].

T issue Muscle Fat Blood Intestine Lung Stomach Bone Tendon

εr 47.83 4.08 51.59 50.67 42.56 56.99 17.09 37.61

and tissues. Table 4.1 shows some of the organ and tissue relative permittivities in human

body. The specific values in Table 4.1 can be obtained from MRI or CT beforehand.

4.2.3 Time of Flight and Distance Measurement

Considering the signal velocity formula (4.2.1), and the signal propagation time between

moving agent and implant, the distance

d(t) = ‖ps(t)− pT‖ (4.2.3)

between moving agent and implant, where ps(t) is the location of moving agent at time t

and pT is the location of implant. Using the TOF measurement tD, the distance d can be

estimated as

d̂(t) =
v̂avetD

2
(4.2.4)

where v̂ave is the estimate of the average propagation velocity vave.

4.2.4 System Parametrization

In the localization algorithm, we lump all the unknown parameters in a vector θ∗ =

[pTT ,
(vave)2

4
]T and express (4.2.3), (4.2.4) in the following static parametric model (SPM) [1]

form:

z = θ?Tφ (4.2.5)
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where z and φ are derived as follows. From (4.2.3), (4.2.4), we have

d(t)2 = (ps − pT )T (ps − pT ) =
(tD)2(vave)

2

4
(4.2.6)

taking both side derivatives,

2ṗTs ps − ṗTs pT =
(vave)

2

4

d

dt
(tD)2. (4.2.7)

Defining Ps = ‖ps‖2 and TD = t2D, we rewrite (4.2.7) as;

Ṗs =
(vave)

2

4
ṪD + pTT ṗs (4.2.8)

Ṗs = [pTT ,
(vave)

2

4
][ṗs, ṪD]T (4.2.9)

Finally filtered version of the equation is given by

s

s+ α
[Ps] = θ∗T [

s

s+ α
ps,

s

s+ α
TD]T , (4.2.10)

i.e., (4.2.5) with z = s
s+α

[Ps] and φ = [ s
s+α

ps,
s

s+α
TD]T .

4.3 The Localization Algorithm

In [57], a recursive LS algorithm with forgetting factor for position estimation using distance

measurements was proposed and analyzed, as an improvement of the algorithms proposed

in [45], [46], [47] based on parametrization and parameter identification techniques in [49],

[50]. Regarding LS algorithm in [57], we rewrite LS algorithm with the parametrization in

Section 4.2.4

˙̂
θ(t) = P (t) (z(t)− ẑ(t))φ(t), θ̂(0) = θ̂0 (4.3.1)

Ṗ (t) = βP (t)− P (t)φφTP (t), P (0) = P0 = Q0
−1
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where P > 0 is the adaptive gain and θ̂(0) is the initial estimate. As noticed from system

parametrization equations, θ∗ is the 4 × 1 vector consisting of implant location in three

dimensions (pT x, pT y, pT z) and estimate of the average propagation velocity (vave).

4.4 Numerical Simulations

4.4.1 Simulation Model

In this section, we provide numerical analysis of the convergence characteristic of the LS

based algorithm as proposed in Chapter 3. The performance of the algorithm is shown

with variety of simulation tests at <3. As a simulation environment, MATLAB/Simulink

is used. In this study, we consider two different cases. In the first case, we have a priori

information about region of implant in human body, however in second case, we have no

any priori information about implant location. Design parameters used in simulations are

given below as;

α = 1, γ = 1, P (0) = P0 = γI, θ̂(0) = [0, 0, 0, 0]T , z(0) = 0,

ps(t) = [50 sin(0.3π(t− 2)) + 20 sin(π(0.5t)) + (40 + 15 sin(π(0.7t)))]

4.4.2 First Scenario

We evaluate the algorithm performance having a priori information about implant loca-

tion. Considering that the average relative permittivity in the vicinity of the implant is

constant, we obtain average signal propagation velocity fixed for that vicinity in human
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Figure 4.2: Implant localization algorithm block diagram

body. Moreover, we take into account both noiseless and noisy cases in the simulations.

Other disturbance effects such as shadowing, multi-path and broadening are not consid-

ered.

In the scenario, the implant assumed to be located at pT = [10, 6, 8]T (cm), where the

coordinates are considered for a certain body coordinate frame.

4.4.3 Second Scenario

In this scenario, holding all design parameters given before, we assume that there is a priori

information regarding the region about implant location. Considering that human body

consists of four different regions (upper-left, upper-right, lower-left, lower-right), we take

four different average relative permittivities for each region. According to the scenario, the

implant can exist in any of these regions. Having no location information about implant,

TOF measurements are highly affected by variable signal velocity. For this scenario, we

47



0 20 40 60 80 100
0

10

20

x

0 20 40 60 80 100
−20

0

20

y

0 20 40 60 80 100
−10

0

10

z

t(sec)

 

 

actual
estimation

(a) β = 0.1

0 20 40 60 80 100
0

10

20

x

0 20 40 60 80 100
−20

0

20

y

0 20 40 60 80 100
−10

0

10

z

t(sec)

 

 

actual
estimation

(b) β = 0.9

Figure 4.3: LS based localization algorithm for first scenario without noise.
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Figure 4.4: LS based localization algorithm for first scenario with noise variance 0.01(cm2.)
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Figure 4.5: LS based localization algorithm for first scenario with noise variance 0.05(cm2).
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Figure 4.6: LS based localization algorithm for first scenario with noise variance 0.1(cm2).
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Figure 4.7: LS based localization algorithm for second scenario without noise.
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Figure 4.8: LS based localization algorithm for second scenario with noise variance

0.01(cm2).
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Figure 4.9: LS based localization algorithm for second scenario with noise variance

0.05(cm2).
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Figure 4.10: LS based localization algorithm for second scenario with noise variance

0.1(cm2).
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also evaluated the performance of the proposed algorithm for various measurement noise

variances.

4.5 Discussion on the Simulation Results

For the case where a priori information regarding the region of the implant location is

available , a set of simulation results are shown in Figures 4.3 to 4.6. As seen from

these figures, the implant location estimation converges to its actual value θ exponentially

fast and with zero estimation error. Figures 4.4 to 4.6 reveal role of forgetting factor β

on algorithm performance for different distance measurement noises. According to the

results, the algorithm significantly reduces the effect of noise for small β values. For lower

convergence time, one needs to choose β at high values, close to one.

For the case where there is no a priori information regarding the region of the implant,

four simulation results for noisy and noiseless measurement cases with different β values are

shown in Figures 4.7 to 4.10. As observed from these figures, although perfect estimation

is not achieved, the estimation error is at a low acceptable level.

4.6 Conclusion

In the study, we examine the performance of the proposed adaptive localization algorithm

on implant localization problem. The algorithm performance is evaluated for two different

cases. For the first case, human body is considered as a static channel model. Thus, we take

fixed average relative permittivity in order to find propagation velocity between moving

sensory agent and implant. For the second case, we consider that there is no any priori
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information about implant location in human body. Therefore, TOF measurements contain

some admissible errors, because of the organ variations and changeable body geometry.

Simulation results show that the proposed algorithm is effective and efficient on implant

localization problem.
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Chapter 5

Conclusion and Future Work

5.0.1 Summary

Wireless sensor networks have been employed widely for many applications with the help

of recently developed micro-electro-mechanical systems (MEMS) and newly proposed ef-

ficient algorithms. As an example of applications performed by wireless sensor network,

tracking, sensing and localizing can be given. Sensor-source localization is fundamental

and significant since all other applications directly or indirectly depends on it. To il-

lustrate, location information is precondition for navigation in which object positioning,

tracking and targeting are main tasks. On the other hand, WSN systems need some ro-

bust and efficient algorithms for localization to facilitate power administration and achieve

self localization. Considering capsule endoscopy system, researchers expect the system to

localize capsule position and govern itself with some algorithms in order to fulfill non-

invasive gastro-intestinal tracking. Regarding all above reasons, localizing and tracking of

the objects are crucial issues to be solved in order to obtain high performance from sensory

systems.
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In this thesis, new localization algorithm, namely: Least-squares based adaptive source

localization algorithm, is proposed and evaluated in a simulation-based experiment. More-

over, as an application study of aforementioned algorithm, new linear parametric model

are derived and some simulations are achieved so as to localize device/implant in human

body. Based on the results presented in the previous chapters, the following conclusion

regarding simulation results are acquired.

The proposed least-squares based adaptive algorithm is compared with gradient based

algorithm performance for both noisy and noiseless cases. According to the simulation

results, the proposed algorithm outperformed gradient based algorithm. Least-squares

based algorithm performance is evaluated for both stationary and mobile target cases.

The algorithm satisfies the persistent of excitation condition for both cases. The proposed

algorithm bears the same asymptotic stability and convergence properties as gradient based

algorithm previously studied. Moreover, it is shown that the proposed algorithm converges

significantly faster to the resultant location estimates than gradient algorithm for high val-

ues of the forgetting factor. Simulation results demonstrated that noise compensation is

directly proportional with forgetting factor values. For small forgetting factor values, the

the proposed algorithm reduces significantly the noise effects. we also focus on problem

of localizing an implant in human body by a mobile sensory unit with proposed least-

squares algorithm. As the particular distance measurement method, TOF based approach

involving ultra wide-band signals is used. According to the simulation results, the algo-

rithm achieves good results with respect to convergence time. Since human body contains

many organs and tissues with different permittivitis, we consider their electrical properties

differently in order to model human body as a signal propagation medium channel. In

simulation studies, different white Gaussian noises are added to emulate the TOF mea-

surement disturbances, and it is observed that the proposed algorithm is robust to such
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noises/disturbances. Simulations are performed for two different scenarios; a)assuming

knowledge of fixed average relative permittivity for each region, we established that the

proposed algorithm converges to an estimate with zero estimation error and b)without any

priori information about implant location, although perfect estimation is not achieved, the

estimation error is at a low admissible level. Same forgetting factor-noise compensation

and convergence time relation is valid for this problem explained for the signal source

localization problem.

5.0.2 Future Work

There are still some open issues to be addressed related with our studies. In this thesis, we

use the proposed least-squares algorithm for two different cases; stationary target case and

drifting target case. However, we envision adaptive estimation method on a parametrized

orbit and algorithm for tracking moving target in a three dimensions as a future direction

of the research.

Since the advantages of the implant localization can be many, some future research

directions can be addressed in order to use it in a real life. Firstly, although we demon-

strated human body modeling as a communication channel by using organ and tissues

permittivities, large scaled channel characterization of human body with the consideration

of broadening, refraction and multi-path effects is useful line of future research. Secondly,

because of complex structure of human body and tissues, estimation of the propagation

velocity inside human body without priori information is important research task. We ad-

ditionally consider to design and fabricate mobile sensory unit (MSU) in order to localize

implant in human body in the future.
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