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Abstract

In the current era of digital world, the amount of sensitive data produced by many organi-

zations is outpacing their storage ability. The management of such huge amount of data is

quite expensive due to the requirements of high storage capacity and qualified personnel.

Storage-as-a-Service (SaaS) offered by cloud service providers (CSPs) is a paid facility that

enables organizations to outsource their data to be stored on remote servers. Thus, SaaS

reduces the maintenance cost and mitigates the burden of large local data storage at the

organization’s end.

For an increased level of scalability, availability and durability, some customers may

want their data to be replicated on multiple servers across multiple data centers. The

more copies the CSP is asked to store, the more fees the customers are charged. Therefore,

customers need to have a strong guarantee that the CSP is storing all data copies that are

agreed upon in the service contract, and these copies remain intact.

In this thesis we address the problem of creating multiple copies of a data file and

verifying those copies stored on untrusted cloud servers. We propose a pairing-based

provable multi-copy data possession (PB-PMDP) scheme, which provides an evidence that

all outsourced copies are actually stored and remain intact. Moreover, it allows authorized

users (i.e., those who have the right to access the owner’s file) to seamlessly access the file

copies stored by the CSP, and supports public verifiability.

We then direct our study to the dynamic behavior of outsourced data, where the data

owner is capable of not only archiving and accessing the data copies stored by the CSP,

but also updating and scaling (using block operations: modification, insertion, deletion,

and append) these copies on the remote servers. We propose a new map-based provable

multi-copy dynamic data possession (MB-PMDDP) scheme that verifies the intactness and

consistency of outsourced dynamic multiple data copies. To the best of our knowledge, the

proposed scheme is the first to verify the integrity of multiple copies of dynamic data over

untrusted cloud servers.

As a complementary line of research, we consider protecting the CSP from a dishonest

owner, who attempts to get illegal compensations by falsely claiming data corruption over
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cloud servers. We propose a new cloud-based storage scheme that allows the data owner

to benefit from the facilities offered by the CSP and enables mutual trust between them.

In addition, the proposed scheme ensures that authorized users receive the latest version

of the outsourced data, and enables the owner to grant or revoke access to the data stored

by cloud servers.
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Chapter 1

Introduction

This chapter briefly describes the cloud computing paradigm, which is an emerging com-

puting model over a shared pool of resources (Section 1.1). It presents a number of key

advantages offered by cloud computing compared with traditional means of local computing

(Section 1.2). It also summarizes the major challenges facing cloud computing from being

widely deployed and used (Section 1.3). In addition, this chapter describes our motivation

and research problem (Section 1.4). At the conclusion, it outlines our main contributions

(Section 1.5) and thesis organization (Section 1.6).

1.1 Overview of Cloud Computing

Cloud computing is a distributed computational model over a large pool of shared-virtualized

computing resources (e.g., storage, processing power, memory, applications, services, and

network bandwidth), where customers are provisioned and de-provisioned recourses as

they need. Cloud computing represents a vision of providing computing services as public

utilities like water and electricity. The architecture of cloud computing can be split in

two: front-end and back-end. The front-end represents cloud customers, organizations, or

applications (e.g., web browsers) that use the cloud services. The back-end is a huge net-

work of data centers with many different applications, system programs, and data storage

1



1.1. OVERVIEW OF CLOUD COMPUTING

systems. It is metaphorically believed that, cloud service providers (CSPs) have almost

infinite computation power and storage capacity. A conceptual framework of cloud com-

puting architecture is illustrated in Figure 1.1 with its two main parts.

Figure 1.1: Conceptual framework for Cloud Computing architecture.

Cloud computing services can be categorized into [64]:

• Application-as-a-Service (AaaS).

• Platform-as-a-Service (PaaS).

• Infrastructure-as-a-Service (IaaS).

The widely used model of cloud computing services is the AaaS model, in which the

customers have access to the applications running on the cloud provider’s infrastructure.

Google Docs, Google Calendar, and Zoho Writer are known examples of this model. In the

PaaS model, the customers can deploy their applications on the provider’s infrastructure
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1.2. CLOUD COMPUTING CHARACTERISTICS

under condition that these applications are created using tools supported by the provider.

The cloud service provider (CSP) hosts a set of software and development tools on its

servers to be used by the developers to create their own applications. Google Apps is

one of the best known PaaS models. IaaS model enables customers to rent and use the

provider’s resources (storage, processing, and network). Hence, the customers can deploy

any applications including operating systems.

The cloud computing architecture can be deployed under different models [64]:

• Public cloud. The infrastructure of the CSP is publicly accessible by general cus-

tomers and organizations in exchange for pre-specified fees according to the usage of

the CSP’s services.

• Private cloud. The cloud infrastructure is dedicated to an organization which may

manage the infrastructure or leave this management to a third party.

• Hybrid cloud. The cloud infrastructure is composed of two or more clouds (private or

public). The organizations provide and handle some internal and external resources.

For example, an organization can use a public cloud service as Amazon Elastic Com-

pute Cloud (Amazon EC2) [5] to perform the general computation, while the data

files are stored within the organization’s local data center in a private cloud.

1.2 Cloud Computing Characteristics

The considerable attention of cloud computing paradigm is due to a number of key ad-

vantages, which make it an interesting research area in both academia and industry. The

following are some of the essential characteristics of cloud computing paradigm:

• Supplies cost-effective means of doing business over a shared pool of resources, where

users can avoid capital expenditure on hardware, software, and services as they pay

only for what they use [64].
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1.3. CLOUD COMPUTING CHALLENGES

• Provides low management overhead and immediate access to a wide range of appli-

cations.

• Reduces maintenance cost as a third party is responsible for everything from running

the cloud to storing data.

• Supports flexibility to scale up and down information technology (IT) capacity over

time to business needs.

• Offers more mobility where customers can access information wherever they are,

rather than having to remain at their desks.

• Allows organizations to store more data on remote servers than on private computer

systems. Organizations will no longer be worried about constant server updates and

other computing issues [88].

There are a variety of areas where cloud computing has a significant role: virtual

worlds which require excessive amount of computing powers, e-bushiness where scalability

can be achieved by assigning new servers as needed, social network, and searching. Figure

1.2 represents a survey made by International Data Corporation (IDC) [55] to indicate

why customers value cloud computing paradigm as a new approach of doing business.

Cost effectiveness and easiness of deployment are among the main benefits that customers

believe they can gain from moving to cloud computing as a new attitude of IT architecture.

1.3 Cloud Computing Challenges

Cloud computing has received considerable attention from research communities in academia

as well as industry; however, there are many challenges facing cloud computing to be widely

deployed and used. The major challenge is security, which is related to infrastructure and

data. A recently conducted survey about the challenges of cloud computing has indicated

that security represents 87.5% of users’ cloud fears [55]. Among the other challenges that

may hinder the broad use of cloud computing are [33]:
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Figure 1.2: Benefits commonly ascribed to Cloud Computing [55].

• Availability. Cloud computing model encourages single points of failure where

cloud services are subject to more attacks. Among the well-publicized incidents of

cloud outages are Gmail (one-day outage) [43] and Amazon Simple Storage Service

(Amazon S3), which was down for over 7 hours [51]. Therefore, it is of significant

importance to develop new methods and techniques for sustained availability and

speedy recovery from attacks.

• Computational Integrity. Outsourcing computation is a growing trend for resource-

constrained clients to benefit from powerful cloud servers. The ability to verify out-

sourced computations and validate the returned results is a key requirement of cloud

customers. Another imperative point is that the amount of work performed by the

clients to verify the outsourced computations must be substantially cheaper than

performing the actual computations on the client side.

• Authentication. The development of cloud computing encourages the use of resource-

constrained devices (e.g., PDA and cell phones) on the client side. Rather than data

storage and software installation on local devices, users will authenticate in order to

be able to access the data and use cloud applications. This computing model makes
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software piracy more difficult and enables centralized monitoring. Although cloud

computing architecture stimulates mobility of users, it increases the need of secure

authentication. User authentication based on passwords in not an efficient approach

for sensitive data/applications on the cloud. The use of passwords is a major point

of vulnerability in computer security, as passwords are often easy to guess by auto-

mated programs running dictionary attacks [32]. Moreover, users cannot remember

very long passwords, and usually they use some meaningful passwords making them

subject to dictionary attacks.

• Auditing. The internal operations of the CSP are opaque, and thus the auditing

process is a major challenge. Customers with constrained computing resources and

capabilities resort to external audit party to check the integrity of their outsourced

data. They need to assure that there is no information leakage even by this third

party. Third party auditing process should bring in no new vulnerabilities towards

the privacy of client’s data

Figure 1.3 represents the results of a survey made to indicate the challenges ascribed

to cloud computing model, and the different percentages of users’ cloud fears [55].

1.4 Motivation and Research Problem

1.4.1 Research Motivation

In our current digital world, various organizations produce a large amount of sensitive data

including personal information, electronic health records, and financial data. The amount

of digital data is increasing at a staggering rate; doubling almost every year and a half

[85], and outpacing the storage ability of many organizations. This data often needs to

be stored at multiple locations for a long time due to operational purposes and regulatory

compliance. The local management of such huge amount of data is problematic and costly
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Figure 1.3: Challenges commonly ascribed to Cloud Computing [55].

due to the requirements of high storage capacity and qualified personnel. While there is a

steady drop in the cost of storage hardware, the management of storage has become more

complex and represents approximately 75% of the total ownership cost [85]. Storage-as-

a-Service (sort of IaaS) offered by CSPs is an emerging solution to mitigate the burden

of large local data storage and reduce the maintenance cost by means of outsourcing data

storage.

Through outsourcing data storage scenario, organizations delegate the storage and man-

agement of their data to a CSP in exchange for pre-specified fees metered in GB/month.

Such outsourcing of data storage enables organizations to store more data on remote servers

than on private computer systems. In addition, some organizations may create large data

files that must be archived for many years but are rarely accessed, and thus there is no

need to store such files on the local storage of the organizations. More importantly, the

CSP often provides better disaster recovery by replicating the data on multiple servers

across multiple data centers achieving a higher level of availability. Therefore, many au-

thorized users are allowed to access the remotely stored data from different geographic

locations making it more convenient for them. A relatively recent survey indicates that IT
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outsourcing has grown by a staggering 79% as organizations seek to focus more on their

core competencies and reduce costs [89].

However, the fact that data owners no longer physically possess their sensitive data

raises new challenges to the tasks of data confidentiality and integrity in cloud comput-

ing systems. Unauthorized access and misuse of customers’ confidential data are serious

concerns regarding data outsourcing; hence, it is of significant importance to be aware

of data administrators (CSPs) and their extend of data access right. In some practical

applications, data confidentiality is not only a privacy concern, but also a juristic issue.

For example, in e-Health applications inside the USA the usage and exposure of protected

health information should meet the policies admitted by Health Insurance Portability and

Accountability Act (HIPAA) [2], and thus keeping the data private on the remote storage

servers is not just an option, but a demand. The confidentiality feature can be guaranteed

by the owner via encrypting the data before outsourcing to remote servers. As such, it is

a crucial demand of customers to have a strong evidence that the cloud servers still pos-

sess their data and it is not being tampered with or partially deleted over time, especially

because the internal operation details of the CSP may not be known to cloud customers.

The completeness and correctness of customers’ data in the cloud may be at risk due

to the following reasons. First, the CSP – whose goal is to make a profit and maintain

a reputation – has an incentive to hide data loss (due to hardware failure, management

errors, various attacks) or reclaim storage by discarding data that has not been or is rarely

accessed. Second, a dishonest CSP might delete some of the data or might not store all

data in a high performance storage required by the contract with certain customers, i.e.,

place it on low cost (and hence slow) media. Third, the cloud infrastructures are subject

to a wide range of internal and external security threats. Incidences of security breaches

of cloud services surface from time to time [51, 58]. In short, although outsourcing data to

the cloud is attractive from the view point of cost and complexity of long-term large-scale

data storage, it does not offer sufficient guarantee on data integrity. This problem, if not

properly handled, may hinder the successful deployment and wide acceptance of the cloud

paradigm.

Once customers’ data has been outsourced to remote servers, efficient verification of

8
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the completeness and correctness of the outsourced data becomes a formidable challenge.

Traditional cryptographic primitives for data integrity and availability based on hashing

and signature schemes are not applicable to outsourced data without having a local copy.

It is impractical for the owners to download all stored data to validate its integrity; this

would require an expensive I/O operations and immense communication overheads across

the network. Therefore, efficient techniques are needed to verify the integrity of outsourced

data with reduced communication, computation, and storage overheads. Consequently,

many researchers have focused on the problem of provable data possession (PDP), and

proposed different schemes to audit the data on remote storage sites (PDP will be discussed

in more details in Chapter 2).

The main focus of the most work done in the PDP area is to verify the integrity of a

single outsourced data copy. A small number of researchers have addressed the integrity

verification of multiple data copies stored over remote servers. In addition, protecting

the CSP from a dishonest owner – who attempts to get illegal compensations by falsely

claiming data corruption over cloud servers – is an imperative concern to be addressed.

This concern, if not properly handled, can cause the CSP to go out of business [73].

1.4.2 Research Problem

For an increased level of scalability, availability and durability, some customers may want

their data to be replicated on multiple servers across multiple data centers. Data replication

varies according to the nature of data; more copies are needed for critical data that cannot

easily be reproduced, while non-critical, reproducible data are stored at reduced levels of

redundancy. The more copies the CSP is asked to store, the more fees the customers are

charged. For example, Amazon S3 maintains more copies of customers’ data than that of

Amazon Reduced Redundancy Storage (Amazon RRS), which enables customers to reduce

their costs. The pricing for Amazon S3 is approximately 40% higher than that of Amazon

RRS [6] (see Table 1.1). Therefore, customers need to have a strong guarantee that the

CSP is storing all data copies that are agreed upon in the service contract and all these

copies remain intact.

9
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One of the core design principles of outsourcing data is to provide dynamic scalability

of data for various applications. This means that the remotely stored data can be not only

accessed by authorized users (i.e., those who have the right to access the owner’s file),

but also updated and scaled by the data owner. Thus, there must be a guarantee that all

outsourced copies are consistent with the most recent modifications issued by the owner.

Another important issue is that the CSP needs to be safeguarded from any false ac-

cusation that may be claimed by a data owner to get illegal compensations. Moreover,

authorized users have to receive the latest version of the outsourced dynamic data, and

there must be a mechanism to grant or revoke access to the outsourced data.

In this thesis, we study the problem of creating multiple copies of a data file and

verifying those copies stored on untrusted cloud servers. In addition, we address the

integrity verification for multiple copies of dynamic data, where the data owner issues

block-level dynamic requests to update the data on the CSP side. To complement our

research, we consider achieving mutual trust between the data owner and the CSP, where

the owner is enabled to utilize the facilities offered by the CSP, and release concerns

regarding confidentiality, integrity, and access control of the outsourced data. Meanwhile,

a dishonest owner is not able to falsely accuse the CSP and claim data corruption over

cloud servers to get illegal compensations.

Table 1.1: Amazon storage pricing [6]

Standard Storage Reduced Redundancy Storage

Tier Pricing Pricing
First 1 TB/month $0.125/GB $0.093/GB
Next 49 TB/month $0.110/GB $0.083/GB
Next 450 TB/month $0.095/GB $0.073/GB
Next 500 TB/month $0.090/GB $0.063/GB
Next 4000 TB/month $0.080/GB $0.053/GB
Over 5000 TB/month $0.055/GB $0.037/GB
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1.5 Thesis Contributions

In this section we present a summary of our major contributions. The work done in

this thesis has contributions in three main directions related to outsourcing data storage

to remote cloud servers: multiple static data copies, multiple dynamic data copies, and

mutual trust for cloud-based storage systems.

1.5.1 Multiple Static Data Copies

• We propose a pairing-based provable multi-copy data possession (PB-PMDP) scheme.

This scheme provides an adequate guarantee that the CSP stores all copies that are

agreed upon in the service contract, and these copies are intact. The authorized users

can seamlessly access the copies received from the CSP. The PB-PMDP scheme sup-

ports public verifiability, i.e., anyone who knows the owner’s public key can challenge

the remote server and verify that the server is still possessing the owner’s files.

• We justify the performance of the proposed PB-PMDP scheme through theoretical

analysis, experimental results on a commercial cloud platform, and comparison with

the multiple-replica provable data possession (MR-PDP) scheme due to Curtmola et

al. [37].

• We show the security of the PB-PMDP scheme against colluding servers. In addition,

we discuss a slight modification of the proposed scheme to identify corrupted copies.

1.5.2 Multiple Dynamic Data Copies

• We propose a map-based provable multi-copy dynamic data possession (MB-PMDDP)

scheme. The MB-PMDDP scheme supports outsourcing of dynamic data, i.e., it

supports block-level operations such as block modification, insertion, deletion, and

append. Moreover, it ensures that all outsourced copies are consistent with the most

recent modifications issued by the data owner. To the best of our knowledge, the

11
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MB-PMDDP scheme is the first to address the integrity verification of multiple copies

of dynamic data over untrusted cloud servers.

• We give a thorough comparison of MB-PMDDP with a reference scheme, which one

can obtain by extending existing PDP models for dynamic single-copy data. We also

report our implementation and experiments using Amazon cloud platform.

• We prove the security of the MB-PMDDP scheme against colluding servers depend-

ing on the security of the computational Diffie-Hellman and the discrete logarithm

problems.

1.5.3 Mutual Trust for Cloud-Based Storage Systems

• We design and implement a cloud-based storage scheme that has the following fea-

tures:

– Allows a data owner to outsource the data to a remote CSP, and perform full

dynamic operations at the block-level (block modification, insertion, deletion,

and append)

– Ensures the newness property, i.e., the authorized users receive the most recent

version of the outsourced data

– Establishes indirect mutual trust between the data owner and the CSP since

each party resides in a different trust domain

– Enforces the access control for the outsourced data

• We discuss the security features of the proposed scheme. Besides, we justify its

performance through theoretical analysis and a prototype implementation on Amazon

cloud platform to evaluate storage, communication, and computation overheads.
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1.6 Thesis Outline

The remainder of this thesis is organized as follows. Chapter 2 contains a literature survey

for different PDP schemes, the rationale behind these schemes, their features and limita-

tions. We start with PDP schemes for static data, then we direct our survey to models that

deal with dynamic data. We also highlight the concept of proof of retrievability, which is

a complementary approach to PDP.

In Chapter 3, we consider the integrity verification for multiple data copies, for which

we start with a basic provable multi-copy data possession scheme followed by a review

of the MR-PDP scheme due to Curtmola et al. [37]. This chapter also describes our

proposed PB-PMDP scheme, gives the system model and assumptions, and presents the

security analysis and the performance evaluation for the PB-PMDP scheme. In addition,

a slight modification of the proposed PB-PMDP scheme is discussed to identify the indices

of corrupted copies.

Our proposed MB-PMDDP scheme to verify the integrity verification of multiple copies

of dynamic data is elaborated in Chapter 4. Moreover, we present an extension to dynamic

single-copy PDP models to work in the setting of dynamic multiple data copies. This exten-

sion servers as a reference model for comparison with the proposed MB-PMDDP scheme.

The performance analysis of the MB-PMDDP scheme – validated through experimental

results – and the security proof against colluding servers are also presented.

Chapter 5 describes our proposed cloud-based storage scheme to achieve mutual trust

between a data owner and a CSP. We present related work and review some techniques

pertaining to the construction of our proposed scheme. We detail the performance analysis

and the prototype implementation on Amazon EC2 and Amazon S3. In addition, we

investigate the security of the proposed scheme by analyzing its fulfillment of the assigned

security requirements, namely, confidentiality, integrity, newness, access control, and CSPs

defence.

Finally, Chapter 6 summarizes our conclusions and gives a number of directions for

future work.
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Chapter 2

Review of Provable Data Possession

In this chapter we explain the concept of provable data possession (PDP) (Section 2.1).

We present a review for different PDP schemes for static data (Section 2.2). We then direct

our survey to PDP models that deal with dynamic data (Section 2.3). We also highlight

the concept of proof of retrievability, which is a complementary approach to PDP (Section

2.4). We finally present a short summary of this chapter (Section 2.5).

2.1 Introduction

Provable data possession (PDP) is a technique that allows an entity to prove that the data

is in its possession for validating data integrity over remote servers. In a typical PDP model,

the data owner generates some metadata/information for a data file to be used later for

verification purposes through a challenge-response protocol with the remote/cloud server.

The owner sends the file to be stored on a remote server which may be untrusted, and

deletes the local copy of the file. As a proof that the server is still possessing the data

file in its original form, it needs to correctly compute a response to a challenge vector

sent from a verifier – who can be the original data owner or a trusted entity that shares

some information with the owner. Shortly, PDP schemes allow a verifier to efficiently,

periodically, and securely validate that a remote server – which supposedly stores the

owner’s potentially very large amount of data – is actually storing the data intact.
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The problem of data integrity over remote servers has been addressed for many years

and there is a simple solution to tackle this problem as follows. The data owner computes

a message authentication code (MAC) of the whole file before outsourcing to a remote

server. The owner keeps only the computed MAC on his local storage, sends the file to

the remote server, and deletes the local copy of the file. Later, whenever a verifier needs

to check the data integrity, he sends a request to retrieve the file from the archive service

provider, re-computes the MAC of the whole file, and compares the re-computed MAC with

the previously stored value. Alternatively, instead of computing and storing the MAC of

the whole file, the data owner divides the file F into blocks {b1, b2, . . . , bm}, computes a

MAC σj for each block bj: σj = MACsk(j||bj)1≤j≤m, sends both the data file F and the

MACs {σj}1≤j≤m to the remote/cloud server, deletes the local copy of the file, and stores

only the secret key sk. During the verification process, the verifier requests for a set of

randomly selected blocks and their corresponding MACs, re-computes the MAC of each

retrieved block using sk, and compares the re-computed MACs with the received values

from the remote server [92]. The rationale behind the second approach is that checking

part of the file is much easier than the whole of it. However both approaches suffer from a

severe drawback; the communication complexity is linear with the queried data size which

is impractical especially when the available bandwidth is limited.

2.2 Provable Static Data Possession

In this section, we review different PDP schemes for static data. We provide the rationale

behind these schemes, their features and limitations. We then give a comparison between

the presented schemes from different perspectives.

2.2.1 PDP Schemes of Deswarte et al.

MAC-based approaches for remote data integrity are associated with high communication

overhead. Deswarte et al. [39] thought of a technique to reduce the communication cost by

using two functions f and H ′, where H ′ is a one-way function and f is another function.
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The relation between H ′ and f is that f(C,H ′(File)) = h(C||File), where h is any secure

hash function and C is a random challenge number sent from the verifier to the remote

server. Thus, the data owner has to compute H ′(File) and store it on his local storage. To

audit the file, the verifier generates a random challenge C, computes V = f(C,H ′(File)),

and sends C to the remote server. Upon receiving the challenge C, the server computes

S = h(C||File) and sends the response S to the verifier. To validate the file integrity, the

verifier checks V
?
= S. At least one of the two functions f and H ′ must be kept secret

because if both were public, it would be easy for a malicious server to compute and store

only H ′(File) that is not the entire file, and then dynamically responds with a valid value

f(C,H ′(File)) that is not the expected one h(C||File).

Unfortunately, Deswarte et al. [39] have not found such functions f , H ′, and h satisfying

the desired verification rule. To workaround this problem, a finite number Ñ of random

challenges are generated offline for the file to be checked, and the corresponding responses

h(Ci||File)1≤i≤Ñ are pre-computed and stored on the verifier local storage. To audit the

file, one of the Ñ challenges is sent to the remote server and the received response is

compared with the pre-computed one (previously stored on the verifier side). However,

this solution limits the number of times a particular data file can be checked by the number

of random challenges Ñ . Once all random challenges {Ci}1≤i≤Ñ are consumed, the verifier

has to retrieve the data file from the storage server to compute new responses, but this is

unworkable.

Deswarte et al. [39] provided another protocol to overcome the problem of limited

number of audits per file. In this protocol the data file is represented as an integer d.

Figure 2.1 illustrates the scheme presented in [39].

The main limitation in the protocol of Deswarte et al. [39] is the computation overhead

on the server side. In each verification, the remote server has to do the exponentiation

over the entire file. Thus, if we are dealing with huge files, e.g., in order of Terabytes (as

most practical applications require) this exponentiation will be heavy. The data owner can

reduce the exponent part in the computation M = ad mod N by utilizing the Fermat-Euler

theorem [59], where ad ≡ admodφ(N) mod N and φ(N) = (p−1)(q−1) is the Euler’s totient

function. The remote server cannot use this trick because φ(N) is not known in public.
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Data owner:

− Represents the data file as an integer d

− Generates RSA modulus N = pq (p & q are prime numbers)

− Pre-computes and stores M = ad mod N (a ∈R ZN)

− Sends the file value d to the remote server

Challenge Response

Verifier Remote Server

1. Picks r ∈R ZN
2. Computes a challenge A = ar mod N

A−−−−−−−−−−−−−→
3. Computes a response S = Ad mod N

a
B←−−−−−−−−−−−−−−

4. Computes V = M r mod N

5. Checks V
?
= S

Figure 2.1: The PDP protocol by Deswarte et al. [39].

2.2.2 More RSA-Based PDP Schemes

Filho et al. [48] proposed a scheme to verify data integrity using the RSA-based homo-

morphic hash function. A function Ĥ is homomorphic if, given two operations + and × ,

we have Ĥ(d+ d′) = Ĥ(d)× Ĥ(d′). The protocol in [48] is illustrated in Figure 2.2.

The server’s response S = Ĥ(d) is a homomorphic function; Ĥ(d+d′) ≡ rd+d′ ≡ rdrd
′ ≡

Ĥ(d)Ĥ(d′) mod N . To find a collision for this hash function, one has to find two messages

d, d′ such that rd ≡ rd
′
, i.e., rd−d

′ ≡ 1 mod N . Thus, d − d′ must be multiple of φ(N).

Finding such two messages d, d′ is believed to be difficult since the factorization of N is

unknown. The limitation of the protocol presented in [48] is similar to that of the protocol

in [39]: the archive service provider has to exponentiate the entire data file, which is a

heavy computation overhead especially for large files.
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Data owner:

− Generates RSA modulus N = pq (p & q are prime numbers)

− Computes φ(N) = (p− 1)(q − 1)

− Pre-computes and stores h̄(d) = d mod φ(N) (d is the data file)

− Sends the data file d to the remote server

Challenge Response

Verifier Remote Server

1. Picks r ∈R ZN
r−−−−−−−−−→

2. Computes a response S = Ĥ(d) = rd mod N

a
R←−−−−−−−−−

3. Computes V = rh̄(d) mod N

4. Checks V
?
= S

Figure 2.2: The PDP protocol by Filho et al. [48].

To circumvent the problem of exponentiating the entire file, Sebé et al. [80] presented

a scheme to remotely verify data integrity by first fragmenting the file into blocks, finger-

printing each file block, and then using an RSA-based hash function on the blocks. Thus,

the data file F is divided into a set of m blocks: F = {b1, b2, . . . , bm}, where m fingerprints

{Mj}1≤j≤m are generated for the file and stored on the verifier local storage. Their scheme

does not require the exponentiation of the entire file. Figure 2.3 demonstrates the protocol

of Sebé et al. [80].

Although the protocol presented by Sebé et al. [80] does not require exponentiation

of the entire file, a local copy of the fingerprints – whose size is linear in the number of

file blocks – must be stored on the verifier side. The verifier has to store the fingerprints

{Mj}1≤j≤m, each of size |N | bits consuming m|N | bits from the verifier local storage, which

may impede the verification process when using small devices like PDAs or cell phones.
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Moreover, this protocol supports only private verifiability, i.e., only the data owner can

challenge the remote server and validate the data possession. If there is a dispute regarding

data integrity, we cannot resort to a trusted third party auditor to resolve such a dispute.

Data owner:

− Generates RSA modulus N = pq (p & q are prime numbers)

− Computes φ(N) = (p− 1)(q − 1)

− Divides the data file F into m blocks: F = {b1, b2, . . . , bm}

− Pre-computes and stores Mj = bj mod φ(N) (1 ≤ j ≤ m)

− Sends the data file F to the remote server

Challenge Response

.......Verifier Remote Server

1. Picks r ∈R ZN
2. Generates l(≤ m) random values {cj}1≤j≤l

a
r,{cj}1≤j≤l−−−−−−−−−−−−−−−−−−−−−−−→

a 3. Computes a =
l∑

j=1

cj · bj

a 4. Computes S = ra mod N

a
R←−−−−−−−−−−−−−−−−−−−−−−−−

5. Computes a′ =
l∑

j=1

cj ·Mj mod φ(N)

6. Computes V = ra
′
mod N

7. Checks V
?
= S

Figure 2.3: The PDP protocol by Sebé et al. [80].
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2.2.3 Data Storage Commitment Schemes

Golle et al. [52] provided a scheme to verify data storage commitment, a concept that is

weaker than integrity. They investigated ”storage-enforcing commitment scheme”. Through

their scheme a storage server demonstrates that it is making use of storage space as large as

the client’s data, but not necessarily the same exact data. The storage server does not di-

rectly prove that it is storing a file F , but proves that it has committed sufficient resources

to do so. Their scheme is based on n-Power Computational Diffie-Hellman (n-PCDH)

assumption: for a group Zp (p is a prime number) with a generator g, there is no known

probabilistic polynomial time algorithm A that can compute gx
n

given gx, gx
2
, . . . , gx

n−1

with non-negligible probability. Figure 2.4 illustrates the scheme of Golle et al. [52].

Each file block bj ∈ Zp can be represented by dlog2 pe bits, and thus the total number

of bits to store the file F = mdlog2 pe bits. For the storage server to cheat by storing all

the possible values of fk (i.e., m+ 1 values), it needs (m+ 1)dlog2 pe bits which is slightly

larger than the size of the original file.

The guarantee provided by the protocol in [52] is weaker than data integrity since it

only ensures that the server is storing something at least as large as the original data file

but not necessarily the file itself. In addition, the verifier’s public key is about twice as

large as the data file.

2.2.4 Privacy-Preserving PDP Schemes

Shah et al. [82, 83] presented privacy-preserving PDP protocols. Using their schemes,

an external third party auditor (TPA) can verify the integrity of files stored by a remote

server without knowing any of the file contents. The data owner first encrypts the file,

then sends both the encrypted file along with the encryption key to the remote server.

Moreover, the data owner sends the encrypted file along with a key-commitment that fixes

a value for the key without revealing the key to the TPA. The primary purposes of the

schemes presented in [82, 83] are to ensure that the remote server is correctly possessing

the client’s data along with the encryption key, and to prevent any information leakage
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Setup

− File F = {b1, b2, . . . , bm}, bj ∈ Zp

− Let n = 2m+ 1

− Secret key sk = x ∈R Zp

− Public key pk = (gx, gx
2
, . . . , gx

n
) = (g1, g2, . . . , gn)

− Data owner computes and stores f0 =
m∏
j=1

g
bj
j mod p

Challenge Response

Verifier Remote Server

1. Picks a random k ∈ [0,m]

a
k−−−−−−−−−→

a 2. Computes fk =
m∏
j=1

g
bj
j+k

a
fk←−−−−−−−−−−

3. Checks fx
k

0
?
= fk

Figure 2.4: The PDP protocol by Golle et al. [52].

to the TPA which is responsible for the auditing task. Thus, clients – especially with

constrained computing resources and capabilities – can resort to external audit party to

check the integrity of outsourced data, and this third party auditing process should bring

in no new vulnerabilities towards the privacy of client’s data. In addition to the auditing

task of the TPA, it has another primary task which is extraction of digital contents. For

the auditing task, the TPA interacts with the remote server to check that the stored data

is intact. For the extraction task, the TPA interacts with both the remote server and the

data owner to first check that the data is intact then delivers it to the owner. The protocols

presented by Shah et al. [82, 83] are illustrated in Figure 2.5.

21
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Setup

− Data owner sends a key K and the encrypted file EK(F ) to the remote server

− Data owner sends a key-commitment value gK and the encrypted file EK(F )
to the TPA (g is a generator for Zp)

− The TPA generates a list L of random values and HMACs: L = {(Ri, H̃i)}1≤i≤Ñ ,

H̃i = HMAC(Ri, EK(F )), and Ri is a random number.

− TPA keeps {L, h(EK(F )), gK} and can discard EK(F ) (h is a secure hash function)

TPA Remote Server
Checking Data Integrity
1. Picks any (Ri, H̃i) from L and updates L = L\{(Ri, H̃i)}
a

Ri−−−−−−−−−−−−−−−−−−→
a 2. Computes H̃s=HMAC(Ri, EK(F ))

a
H̃s←−−−−−−−−−−−−−−−−−−

3. Checks H̃i
?
= H̃s

Checking Key Integrit
1. Generates β ∈R Zp
a

gβ−−−−−−−−−−−−−−−−−−→
a 2. Computes Ws = (gβ)K

a
Ws←−−−−−−−−−−−−−−−−−−−

3. Checks (gK)β
?
= (Ws)

Data Extraction

a
Ds=EK(F )←−−−−−−−−−−−−−−−−−−−

• Checks the hash of its local cached copy:

.. h(EK(F ))
?
= h(Ds). If valid, sends EK(F ) to the owner

Key Extraction
• Assume that the owner and the server agree on a shared random secret X

a
K+X, gX←−−−−−−−−−−−−−−−−−−−

• Checks gK+X ?
= gK · gX . If valid, sends K +X to the owner

• Owner gets K = (K +X)−X

Figure 2.5: The PDP protocols by Shah et al. [82, 83].
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The protocols presented in [82, 83] achieve privacy-preserving towards third party au-

diting process and extract digital contents from remote servers, but have some limitations:

• Limited number of verifications for a particular data item (must be fixed beforehand).

• Storage overhead on the TPA; it has to store Ñ hash values for each file to be audited.

• Lack of support for stateless verification; the TPA has to update its state (the list L)

between audits to prevent using the same random number or the same HMAC twice.

• High communication complexity to retrieve EK(F ) if the TPA wants to regenerate a

new list of hash values to achieve unlimited number of audits.

2.2.5 PDP in Database Context

In the database outsourcing scenario, the database owner stores data at a storage service

provider and the database users send queries to the service provider to retrieve some

tuples/records that match the issued query. Data integrity is an imperative concern in

the database outsourcing paradigm; when a user receives a query result from the service

provider, it is crucial to verify that the received tuples are not being tampered with by

a malicious service provider. Mykletun et al. [69] investigated the notion of signature

aggregation to validate the integrity of the query result. Signature aggregation enables

bandwidth- and computation-efficient integrity verification of query replies. In the scheme

presented in [69], each database record is signed before outsourcing the database to a

remote service provider.

Mykletun et al. [69] provided two aggregation mechanisms: one is based on RSA [76]

and the other is based on BLS signature [27]. For the scheme based on the RSA signature,

each record in the database is signed as: σj = h(bj)
d mod N , where h is a one-way hash

function, bj is the data record, d is the RSA private key, and N is the RSA modulus.

A user issues a query to be executed over the outsourced database, the server processes

the query and computes an aggregated signature σ =
∑t

j=1 σj mod N , where t is the

number of records in the query result. The server sends the query result along with the
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aggregated signature to the user. To verify the integrity of the received records, the user

checks σe
?
=
∏t

j=1 σj mod N , where e is the RSA public key.

The second scheme presented by Mykletun et al. [69], which is based on the BLS

signature [27] is similar to the first scheme but the record signature σj = h(bj)
x, where

x ∈R Zp is a secret key. To verify the integrity of the received records, the user checks

ê(σ, g)
?
= ê(

∏t
j=1 h(bj), y), where g is a generator of the group Zp, y = gx(public key), and

ê is a computable bilinear map (will be explained later in the thesis).

Correctness and Completeness are imperative concerns in the database outsourcing

paradigm. Completeness means that the service provider should send all records that

satisfy the query criteria not just subset of them. The completeness requirement was not

considered by the schemes presented in [69], and it has been addressed by other researchers

(see for example [89, 60]).

The schemes provided in [69] depend on the retrieved records of the query result to verify

the integrity of the outsourced database. On the other hand, efficient PDP schemes require

blockless verification, i.e., the verifier has to have the ability to validate data integrity even

though he neither possesses nor retrieves any of the file blocks. Blockless verification is a

main concern to minimize the required communication cost over the network.

2.2.6 PDP Schemes Based on Homomorphic Verifiable Tags

Ateniese et al. [8] presented a model to overcome some of the limitations of other PDP

protocols: limited number of audits per file determined by fixed challenges that must be

specified in advance, expensive server computation by doing the exponentiation over the

entire file, storage overhead on the verifier side by keeping some metadata to be used later

in the auditing task, high communication complexity, and lack of support for blockless

verification. Ateniese et al. [8] provided a PDP model in which the data owner fragments

the file F into blocks {b1, b2, . . . , bm} and generates metadata (a tag) for each block to be

used for verification. The file is then sent to be stored on a remote/cloud server, which

may be untrusted and the data owner may delete the local copy of the file. The remote
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server provides a proof that the data has not been tampered with or partially deleted

by responding to challenges sent from the verifier. The scheme presented in [8] provides

probabilistic guarantee of data possession, where the verifier checks a random subset of

stored file blocks with each challenge (spot checking).

Homomorphic verifiable tags (HVTs)/homomorphic linear authenticators (HLAs) are

the basic building blocks of the PDP scheme presented in [8]. Briefly, the HVTs/HLAs

are unforgeable verification metadata constructed from the file blocks in such a way that

the verifier can be convinced that a linear combination of the file blocks is accurately

computed by verifying only the aggregated tag/authenticator. In the work of [8], the

authors differentiate between the concept of public verifiability and private verifiability. In

public verifiability anyone – not necessarily the data owner – who knows the owner’s public

key can challenge the remote server and verify that the server is still possessing the owner’s

files. On the other side, private verifiability allows only the original owner to perform the

auditing task. Two main PDP schemes are presented in [8]: sampling PDP (S-PDP) and

efficient PDP (E-PDP) schemes. In fact, there is a slight difference between these two

models, but the E-PDP scheme provides a weaker guarantee of data possession. The E-

PDP protocol guarantees only the possession of the sum of file blocks and not necessarily

the possession of each one of the blocks being challenged. Both protocols presented in [8]

are illustrated in Figure 2.6.

The schemes of Ateniese et al. [8] have resolved many constraints of other PDP pro-

tocols. However, their schemes are based on RSA, which make the HVTs relatively long;

each file block has an HVT in order of |N | bits. Thus, to achieve 80-bit security level, the

generated tag should be of size 1024 bits. Shacham and Waters [81] presented an attack

against the E-PDP scheme, which enables a malicious server to cheat with non-negligible

probability requiring no more storage than an honest server to store the file.

Ateniese et al. [10] showed that the HLAs can be constructed from homomorphic

identification protocols. They provided a ”compiler-like” transformation to build HLAs

from homomorphic identification protocols and showed how to turn the HLA into a PDP

scheme. As a concrete example, they applied their transformation to a variant of an

identification protocol proposed by Shoup [84] yielding a factoring-based PDP scheme.
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I. S-PDP scheme
a
Setup

− N = pq is the RSA modulus (p & q are prime numbers)

− g is a generator of QRN (QRN is the set of quadratic residues modulo N)

− Public key pk = (N, g, e), secret key sk = (d, v), v ∈R ZN , and
ed ≡ 1 mod (p− 1)(q − 1)

− π is a pseudo-random permutation, f is a pseudo-random function, H is a hash-and-
encode function (H : {0, 1}∗ → QRN), and h is a cryptographic hash function.

− File F = {b1, b2, . . . , bm}

− Data owner generates a tag Tj for each block bj: Tj = (H(v||j) · gbj)d mod N

− Data owner sends F = {bj}1≤j≤m and {Tj}1≤j≤m to the remote server

Challenge Response
Verifier Remote Server

1. Picks two keys k1(key for π), k2(key for f),
aac(# of blocks to be challenged), and gs = gs mod N(s ∈R ZN)

a
c, k1, k2, gs−−−−−−−−−−−−−−−→

a 2. Computes challenged block indices:
a {ji} = πk1(i)1≤i≤c
a 3. Computes random values:
a {ai} = fk2(i)1≤i≤c

a 4. Computes T =
c∏
i=1

T aiji mod N

a 5. Computes ρ = h(g
∑c
i=1 bji ·ai

s mod N)

a
T, ρ←−−−−−−−−−−−−−−−

6. Computes {ji} = πk1(i)1≤i≤c and {ai} = fk2(i)1≤i≤c
7. Computes τ = T e

c∏
i=1

H(v||ji)ai

8. Checks h(τ s mod N)
?
= ρ

a =⇒ continue

26
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II. E-PDP scheme
a
The only difference between the E-PDP and the S-PDP is that : {ai}1≤i≤c = 1, and thus

− Step 4 : T =
c∏
i=1

Tji mod N

− Step 5 : ρ = H(g
∑c
i=1 bji

s mod N)

− Step 7 : τ = T e
c∏
i=1

H(v||ji)

Figure 2.6: The S-PDP and E-PDP protocols by Ateniese et al. [8].

2.2.7 Comparison

Table 2.1 provides a comparison between the PDP schemes presented in this section. This

comparison is based on the following:

• Owner pre-computation: the operations performed by the data owner to process the

file before being outsourced to a remote server.

• Verifier storage overhead: the extra storage required to store some metadata on the

verifier side to be used later during the verification process.

• Server storage overhead: the extra storage on the server side required to store some

metadata – not including the original file – sent from the owner.

• Server computation: the operations performed by the server to provide the data

possession guarantee.

• Verifier computation: the operations performed by the verifier to validate the server’s

response.

• Communication cost: bandwidth required during the challenge response phase.
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• Unbounded challenges: whether the scheme allows unlimited number of auditing the

data file, or a fixed number of challenges.

• Fragmentation: whether the file is treated as one chunk, or divided into smaller

blocks.

• Type of guarantee: whether the guarantee provided from the remote server is deter-

ministic guarantee, which requires to access all file blocks, or probabilistic guarantee

that depends on spot checking.

• Prove data possession: whether the scheme proves the possession of the file itself, or

proves that the server is storing something at least as large as the original file.

We use the notations EXF to indicate the EXponentiation of the entire File, DET to indi-

cate deterministic guarantee, and PRO to indicate probabilistic guarantee. For simplicity,

the security parameter is not included as a factor for the relevant costs.

Table 2.1: Comparison of PDP schemes for a file containing m blocks, c is the number of
blocks to be challenged, and Ñ is a finite number of random challenges.

Scheme [39] [48] [80] [52] [82, 83] [8]

Owner pre-computation aEXFa aO(1) a aO(m) a aO(m) a aO(1) a aO(m)a

Verifier storage overhead O(1) O(1) O(m) O(1) O(Ñ) -
Server storage overhead - - - - - O(m)

Server computation EXF EXF O(c) O(m) O(1) O(c)
Verifier computation O(1) O(1) O(c) O(1) O(1)† O(c)
Communication cost O(1) O(1) O(1) O(1) O(1) O(1)

Unbounded challenges X X X X × X
Fragmentation × × X X × X

Type of guarantee DET DET DET/ PRO DET DET PRO‡

Prove data possession X X X × X X

† Verifier pre-computation is O(Ñ) to generate a list L of HMACs.
‡ The scheme in [8] can be easily modified to support deterministic guarantee.
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2.3 Provable Dynamic Data Possession

One of the core design principles of outsourcing data is to provide dynamic scalability of

data for various applications. In this section we review different provable dynamic data

possession (PDDP) schemes, where the data owner can issue requests to update and scale

the outsourced data.

2.3.1 Hash-Based PDDP Schemes

Ateniese et al. [11] proposed a dynamic version of the PDP scheme based on cryptographic

hash function and symmetric key encryption. Their scheme is efficient but allows only a

fixed number of challenges due to the fact that through the scheme setup they come up

with all future challenges and store pre-computed responses as tokens. These tokens can be

stored either at the verifier side in a plain form or at the server side in an encrypted form.

Block insertion in [11] cannot explicitly be supported (append operation is supported).

Figure 2.7 summarizes the scheme presented in [11].

2.3.2 PDDP Schemes Based on Authenticated Data Structures

Rank-Based Authenticated Skip Lists

A skip list is a hierarchical structure of linked lists [74], and is used to store a sorted set of

items. Each node v in a normal skip list stores two pointers (right and down) denoted by

rgt(v) and dwn(v) to be used during the searching procedure for a specific target in the leaf

nodes (nodes at the base/bottom level). On the other hand, each node v in an authenticated

skip list stores rgt(v), dwn(v), and a label f(v) computed by recursively applying a hash

function to f(rgt(v)) and f(dwn(v)). The authenticated skip list can provide a proof to

indicate whether a specific element belongs to the set represented by the list or not. In

addition to rgt(v), dwn(v) and f(v), each node v in a rank-based authenticated skip list

stores the number of nodes at the bottom level that can be reached from v. This number

is called the rank of v: r(v).
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Setup

− Data file F is a set of blocks {b1, b2, . . . , bm}

− g is a pseudo-random permutation, f is a pseudo-random function, and h is a cryp-
tographic hash function. f is used to generate keys for g and to generate random
numbers.

− EK and E−1
K are encryption and decryption algorithms under a key K

− Two master keys W and Z

− Data owner generates t random challenges and their corresponding responses/tokens
{νi}1≤i≤t as follows.
- for i = 1 to t do
—- 1. Generate ki = fW (i) and ci = fZ(i)
—- 2. νi = h(ci, 1, bgki (1))⊕ · · · ⊕ h(ci, r, bgki (r)) /* r is # of blocks per token */
—- 3. ν ′i = Ek(ctr, i, νi) /* ctr is an integer counter */

− Owner sends the file F = {bj}1≤j≤m and {ν ′i}1≤i≤t to the remote server.

Challenge Response

Data owner Remote Server
Begin challenge i

—1. Generates ki = fW (i) and ci = fZ(i)

-
ki,ci−−−−−−−−−−−−−−−→

- 2. z = h(ci, 1, bgki (1))⊕ · · · ⊕ h(ci, r, bgki (r))

-
z,ν′i←−−−−−−−−−−−−−−−

—3. Computes ν = E−1
K (ν ′i)

—4. Checks ν
?
= (ctr, i, z)

End challenge i
− =⇒ continue
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Dynamic Operations

Modify
/* Assume that block bj is to be updated to b′j */

Data owner Remote Server

-
1. {ν′i}1≤i≤t←−−−−−−−−−−−−−−−−−−−

-2. ctr = ctr + 1
-3. for i = 1 to t do

— 3.1 z′i = E−1
K (ν ′i)

——-/* if decryption fails, exit*/
——-/* if z′i is not prefixed by (ctr-1) and i, exit */

— 3.2 extracts νi from z′i
— 3.3 computes ki = fW (i) and ci = fZ(i)

—/* update all tokens even if they do not include the block to be updated */

— 3.4 for l = 1 to r do
———–if (gki(l) == j) then
—————νi = νi ⊕ h(ci, l, bj)⊕ h(ci, l, b

′
j)

— 3.5 ν ′i = Ek(ctr, i, νi)

-
j, b′j , {ν′i}1≤i≤t−−−−−−−−−−−−−−−−−→

Delete
/* Assume that block bj is to be deleted */

The logic of Delete is similar to Modify operation but replaces the block to be modified
with a special block ”DBlock”. So, the inner for loop (step 3.4) will be:

3.4 for l = 1 to r do
—if (gki(l) == j) then
—–νi = νi ⊕ h(ci, l, bj)⊕ h(ci, l,DBlock)

Insert
Physical insert is not supported. Append operation is allowed by viewing the data file
as a two dimensional structure (matrix), and appending the new block in a round robin
fashion.

Figure 2.7: The PDDP protocol by Ateniese et al. [11].
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Figure 2.8 [42] shows an example of rank-based skip list, where the number inside the

node represents its rank. The top leftmost node (w7) of the skip list is considered to be

the start node. To access any node at the bottom level, searching should begin from the

start node.
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Figure 2.8: Example of rank-based skip list [42].

PDDP Schemes of Erway et al.

Erway et al. [42] constructed a PDDP scheme based on the PDP model of [8] to support

provable updates of stored data files using rank-based authenticated skip lists. Their pro-

tocol supports block insertion by eliminating the index information in the tag computation

of [8]. The purpose of using the rank-based authenticated skip list in [42] is to authenticate

the tag information of the blocks to be updated or challenged.

In the PDDP scheme of [42], the File F is fragmented into m blocks {b1, b2, . . . , bm}.
A representation/tag T (bj) of block bj is computed as T (bj) = gbj mod N (N is the RSA

modulus and g is an element of high order in Z∗N). The block representation T (bj) is

stored at the jth bottom-level node of the authenticated skip list and the block itself is

stored elsewhere by the server. The tags protect the integrity of file blocks, while the

authenticated list ensures the security and integrity of tags.
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During the challenge phase, the client requests the server to prove the integrity of

randomly selected c blocks {bji}1≤j1,...,jc≤m. The server sends the tags {T (bji)}1≤j1,...,jc≤m

along with their search/verification paths. The server also sends a combined block M =∑c
i=1 ai.bji , where {ai}1≤i≤c are random values sent by the client as part of the challenge.

The owner verifies the search/verification paths of the block tags using metadata Mc,

which is the label of the start node. Besides, the owner computes T =
∏c

i=1 T (bji)
ai mod

N . Data integrity is valid only if the search paths are verified and T = gM mod N .

The authenticated skip list is used to modify, insert, and delete the block tags achieving

the dynamic behavior of the data file. Nodes of skip list along the search/verification path

– from the start node to the node associated with the block to be updated – are only

affected by the dynamic operations of file blocks.

The scheme presented in [42] can be summarized by the following procedures:

• Key-generation. This procedure is run by the data owner (the client) and outputs a

secret key sk and public key pk. The secret key is kept by the client and the public

key is sent to the remote server.

• Update-preparation. This procedure is run by the client to prepare a part of the file

for storage on a remote server, which may not be trustworthy. The input parameters

to this procedure are sk, pk, a part of the file F , updates to be performed (e.g., full

re-write, modify block, delete block, or insert block), and the previous metadataMc.

The output is an encoded version of that part of the file e(F ), encoded information

e(info) about the update, and the new metadata e(M). The output of this procedure

is sent to the remote server.

• Update-execution. Upon receiving an update request from the data owner, the server

runs this procedure in response to the owner’s request. The input parameters to this

procedure are pk, the previous version of the file denoted as Fi−1, the metadataMi−1,

and the values produced by the client during the Update-preparation algorithm. The

outputs of this procedure are the new version of the file denoted as Fi , metadata

Mi , and metadata M′
c to be sent to the owner along with its proof PM′c .
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• Update-verification. This procedure is run by the client to verify the server’s behavior

during the updates. The input parameters to this procedure are all inputs of Update-

preparation algorithm, the metadataM′
c, and the proof PM′c (M′

c and PM′c are sent

from the server as outputs of the Update-execution algorithm). The output of the

Update-verification algorithm is either acceptance or rejection signal.

• Challenge. This procedure is run by the client to challenge the server and verify the

integrity of the remotely stored data file. It takes as input sk, pk, and the latest

client metadata Mc. The output is a challenge c that is sent from the client to the

server.

• Proof-computation. Upon receiving the challenge c from the client, the server runs

the Proof-computation algorithm in response to the owner’s challenge. The input

parameters to this procedure are pk, the latest version of the file, the metadata, and

the challenge c. It outputs a proof P that is sent to the client.

• Proof-verification. This procedure is run by the client to validate the proof P received

from the server. The input parameters to this procedure are sk, pk, the client

metadata Mc, the challenge c, and the proof P sent by the server. The output

of this procedure is ”accept” to indicate that the server still possesses the file intact

or ”reject” otherwise.

In their work, Erway et al. [42] presented a variant of the PDDP scheme using RSA

trees instead of rank-based authenticated lists. Wang et al. [87] used Merkle hash trees

[67] (instead of skip lists) and homomorphic authenticators built from BLS signatures [27]

to construct a PDDP scheme.

2.3.3 RSA-Based PDDP Schemes

Hao et al. [54] adapted the protocol presented in [80] to support both data dynamic and

public verifiability. The latter allows that anyone who knows the owner’s public key can

challenge the remote server and verify that the server is still possessing the owner’s files.
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If a dispute regarding data integrity occurs between the owner and the CSP, a third party

auditor can determine whether the data integrity is maintained or not. This third party

auditing process should bring in no new vulnerabilities towards the privacy of owner’s

data. The protocol presented in [54] ensures that the data is kept private during the third

party verification, where no private information contained in the data is leaked. Figure 2.9

summarizes the protocol presented in [54].

Setup

− N = pq is the RSA modulus (p and q are prime numbers)

− g is a generator of QRN (QRN is the set of quadratic residues modulo N)

− Public key pk = (N, g) and secret key sk = (p, q).

− f is a pesudo-random function

− File F = {b1, b2, . . . , bm}.

− Data owner generates a tag Dj for each block bj, where Dj = gbj mod N

− The tags are stored on the owner side and the file is sent to the remote server.

Challenge Response

Verifier Remote Server
1. Generates a random key r
2. Computes gs = gs mod N (s ∈R ZN)

-
r,gs−−−−−−−−−−−−−−−→

- 3. Generates random coefficients {aj = fr(j)}1≤j≤m
- 4. Computes P = (gs)

∑m
j=1 aj .bj mod N

-
R←−−−−−−−−−−−−−

5. Generates a set of random coefficients {aj = fr(j)}1≤j≤m

6. Computes Ṕ =
∏m

j=1(D
aj
j mod N) mod N

7. Computes V = Ṕ s mod N

8. Checks V
?
= P

− =⇒ continue
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Dynamic Operations

Modify
/* Assume that block bj is to be updated to b′j */

− Server updates bj to b′j

− Owner computes a new block tag D′j = gb
′
j mod N .

So, the new block tags are {D1, D2, . . . , D
′
j, . . . , Dm}

Insert
/* Assume a new block b̂ is to be inserted after position j or appended at the end */

− The server updates its file to be
{b1, b2, . . . , bj, b̂, . . . , bm+1} (insert: bj+1 = b̂) or {b1, b2, . . . , bm, b̂} (append).

− The owner computes a new block tag D̂ = gb̂ mod N , and changes the block tags to
{D1, D2, . . . , Dj, D̂, . . . , Dm+1} (insert: Dj+1 = D̂) or {D1, D2, . . . , Dm, D̂} (append)

Delete
/* Assume a block at position j is to be deleted*/

− Server deletes the block bj

− Owner deletes the corresponding tag Dj

Figure 2.9: The PDDP protocol by Hao et al. [54].

2.3.4 Cooperative PDP Schemes

Zhu et al. [93] addressed the construction of cooperative PDP scheme on hybrid clouds to

support scalability of service and data migration. A hybrid cloud is a deployment model

in which an organization provides and handles some internal and external resources. For

example, an organization can use a public cloud service like Amazon EC2 [5] to perform

the general computation, while the data files are stored within the organization’s local

data center in a private cloud. In their work, Zhu et al. [93] consider the existence of

multiple CSPs that cooperatively store customers’ data. The data owners are allowed to

dynamically access and update their data for various applications, and the verification

process is performed for the owners in hybrid clouds.
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Remark. Generally speaking, PDP and PDDP schemes are considered to be secure if (i) a

polynomial-time algorithm that can cheat the verifier and pass the auditing procedure with

non-negligible probability does not exist; and (ii) there exists a polynomial-time extractor

that can repeatedly execute the challenge response protocol until it extracts the original

data file.

2.4 Proof of Retrievability

Proof of retrievability (POR) is a complementary approach to PDP, and is stronger than

PDP in the sense that the verifier can reconstruct the entire data file from the responses

that are reliably transmitted from the server. This is due to encoding of the data file, for

example using erasure codes, before outsourcing to allow more error-resiliency. Thus, if it

is a crucial demand to detect any modification or deletion of tiny parts of the data file,

then encoding could be applied before outsourcing data to remote servers.

Schwartz and Miller [79] have proposed the use of algebraic signatures to verify data

integrity across multiple servers. Through keyed algebraic encoding and stream cipher

encryption, they are able to detect file corruptions. The communication complexity in the

model of [79] is an issue for it is linear with respect to the queried data size. Moreover,

the security of their proposal is not proven and remains in question [92].

The work done by Juels and Kaliski [56] is one of the first efforts to consider formal

models for POR schemes. In their model, the data is first encrypted then disguised blocks

(called sentinels) are embedded into the ciphertext. The sentinels are hidden among the

regular file blocks in order to detect data modification by the server. In the auditing phase,

the verifier requests for randomly picked sentinels and checks whether they are corrupted

or not. If the server corrupts or deletes parts of the data, then sentinels would also be

influenced with a certain probability. The scheme in [56] allows only for a limited number

of challenges on the data files, which is specified by the number of sentinels embedded into

the data file. This limited number of challenges is due to the fact that sentinels and their

position within the file must be revealed to the server at each challenge and the verifier
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cannot reuse the revealed sentinels.

Shacham and Waters [81] proposed a compact proof of retrievability model that enables

the verifier to unboundedly challenge the server addressing the limitation of [56]. Among

the main contributions of [81] is the construction of HLAs that enable the server to aggre-

gate the tags of individual file blocks and to generate a single short tag as a response to

the verifier’s challenge. Shacham and Waters [81] proposed two HLAs: one is based on the

pseudo-random function, and the other is based on the BLS signature [27].

Bowers et al. [29] presented a distributed cryptographic system known as HAIL (High-

Availability and Integrity Layer), which improves upon POR deployed on individual servers.

Their system allows a set of servers to prove to a data owner that the outsourced data is

intact and retrievable. Various POR schemes can be found in the literature, e.g., [36, 30, 41]

2.5 Summary

In this chapter, we have described the concept of PDP as a technique to verify the integrity

of data stored on remote sites. We have reviewed different PDP schemes designed for static

data. To efficiently validate the integrity of outsourced data, a number of challenges have to

be addressed: (i) the computation overhead on the server side to prove data possession, (ii)

the verifier’s computations complexity to check server responses, (iii) the storage overhead

on both the verifier and server sides, (iv) the communication cost to send a challenge vector

and receive a response; and (v) the permission for unlimited number of data audits.

Moreover, in this chapter we have presented some PDDP models that deal with dynamic

data. Through these models the data owner is able to send requests to the remote server for

updating/scaling the stored data. The verifier is enabled to make sure that the outsourced

data is consistent with the most recent modifications issued by the owner. We have also

highlighted the concept of POR as a complementary approach to PDP. The main idea

of POR schemes is to apply encoding to data files before outsourcing, which allows to

reconstruct the entire data file utilizing the responses that are reliably transmitted from

the server.
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Finally, the PDP, PDDP, and POR schemes presented in this chapter focus on a single

copy of the file and provide no proof that the CSP stores multiple copies of the owner’s

file. The problem of creating multiple copies of a data file and auditing those copies to

verify their completeness and correctness was outside the scope of the schemes presented in

this chapter. There are some previous work on maintaining file copies through distributed

systems to achieve availability and durability (e.g., [34, 61]), but it does not focus on

guaranteeing that multiple copies of the data file are actually stored.
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Chapter 3

Integrity Verification for Multiple
Data Copies

In this chapter, we consider the problem of verifying the integrity of multiple data copies

stored on cloud/remote servers, and describe the scheme we proposed in [20, 15, 18]. Section

3.1 highlights the motivation of this work. Section 3.2 presents a basic provable multi-copy

data possession scheme, and a review of the multiple-replica provable data possession (MR-

PDP) scheme due to Curtmola et al. [37]. Our system model and assumptions are presented

in Section 3.3. Our proposed scheme for verifying the integrity of multiple data copies is

elaborated in Section 3.5. Section 3.6 contains the security analysis of the proposed scheme.

The performance analysis is shown in Section 3.7. Section 3.8 presents the implementation

and experimental results. How to identify the corrupted copies is discussed in Section 3.9.

A summary is given in Section 3.10.

3.1 Introduction

Storage-as-a-Service offered by cloud service providers (CSPs) enables customers to store

and retrieve almost unlimited amount of data by paying fees metered in GB/month. For

an increased level of scalability, availability and durability, some customers may want their

data to be replicated on multiple servers across multiple data centers. The more copies
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the CSP is asked to store, the more fees are charged. Therefore, customers need to have a

strong guarantee that the CSP is storing all data copies that are agreed upon in the service

contract.

In this chapter, we propose a pairing-based provable multi-copy data possession (PB-

PMDP) scheme, which provides an evidence that all outsourced copies are actually stored

and remain intact. Moreover, it allows authorized users (i.e., those who have the right to

access the owner’s file) to seamlessly access the file copies stored by the CSP, and supports

public verifiability. The proposed scheme is proved to be secure against colluding servers.

We illustrate the performance of the PB-PMDP scheme through theoretical analysis, which

is then validated by experimental results. The verification time of the proposed scheme

is practically independent of the number of file copies. Additionally, we discuss how to

identify corrupted copies by slightly modifying the proposed PB-PMDP scheme.

3.2 Provable Multi-Copy Data Possession Schemes

In this section, we consider the case of provable possession for multiple data copies, for

which we start with a basic provable multi-copy data possession scheme followed by a

review of the scheme due to Curtmola et al. [37].

3.2.1 Basic Provable Multi-Copy Data Possession Scheme

Suppose that a CSP offers to store n copies of an owner’s file on different servers for pre-

specified fees according to the used storage space. Thus, the data owner needs a strong

evidence to ensure that the CSP is actually storing no less than n copies, all these copies

are complete and correct, and the owner is not paying for a service that he does not get. A

straightforward solution to this problem is to use a single-copy PDP scheme to separately

challenge and verify the integrity of each copy on each server. This is not a workable

solution, since the CSP can convince the data owner that n copies of the file are stored,

while there is only one copy. Whenever a request for a PDP scheme execution is made to
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one of the n severs, it is forwarded to the server which actually possesses the stored copy.

The core of this cheating is that the n copies are identical making it trivial for the CSP to

deceive the owner. Therefore, a step towards the solution is to leave the control of the file

copying operation in the owner’s hand to create unique differentiable copies.

In the basic provable multi-copy data possession scheme, the data owner creates n

distinct copies by encrypting the file under n different keys. Hence, the CSP cannot use

one copy to answer the challenges for another. This natural solution enables the verifier to

separately challenge each copy on the remote servers, and ensure that the CSP is possessing

not less than n copies.

Although the above basic scheme is a workable solution, it is impractical and has the

following drawbacks:

• Data access and key management are serious problems with the basic scheme. Since

the file is encrypted under n different keys, the owner has to keep these keys secret

from the CSP, and share the n keys with each authorized user for each data file.

Moreover, when an authorized user interacts with the CSP to retrieve the data file, it

is not necessarily to receive the same copy each time. According to the load balancing

mechanism used by the CSP to organize the work of the servers, the authorized user’s

request is directed to the server with the lowest congestion. Consequently, each copy

should contain some indicator about its encryption key to enable the authorized user

to properly decrypt and access the received copy.

• The computation and communication complexities of the verification task are linear

with the number of copies.

3.2.2 Multiple-Replica Provable Data Possession Scheme

Curtmola et al. [37] were the first to present a multiple-replica provable data possession

(MR-PDP) scheme that creates multiple copies of an owner’s file and audit them. The

MR-PDP scheme increases data availability; a corrupted data copy can be reconstructed
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using duplicated copies on other servers. The interaction between authorized users (those

who have the right to access the owner’s file) and the CSP was not considered in [37].

The MR-PDP scheme supports only private verifiability, i.e., only the data owner can

check data possession. Public verifiability is a key feature in remote data checking schemes

to avoid disputes that may arise between the data owner and the CSP. Delegating the

auditing process (without revealing secret keys) to a trusted third party for verifying the

data integrity can resolve such disputes.

The MR-PDP scheme of [37] is based on the single-copy PDP model of [8]. In [37] dis-

tinct copies of a data files are created by first encrypting the file using one key, then masking

the encrypted version (n times) with different randomness generated from a pseudo-random

function.

Initially, a file F is fragmented into blocks {bj}1≤j≤m. The owner encrypts F using

a key K to obtain an encrypted version F̃ = {b̃j}1≤j≤m, where b̃j = EK(bj). The owner

generates n distinct copies {F̂i}1≤i≤n, where F̂i = {b̂ij}1≤j≤m, b̂ij = b̃j + rij (added as large

integers in Z), and rij = fx(i||j). fx is a pseudo-random function keyed with a secret key

x. Figure 3.1 gives a summary of the MR-PDP scheme.

In the MR-PDP scheme, if an authorized user interacts with the CSP to access an

owner’s file, the CSP retrieves one of the available copies. Upon receiving this copy, the

authorized user has to know the copy index to properly unmask it before decryption. Due to

the opaqueness of the internal operations of the CSP, the authorized users cannot recognize

which copy has been received. If i (the copy index) is attached with each copy forming

the structure (i||F̂i), corrupting or swapping copy indices hinder the correct unmasking

process. Thus, the authorized users are unable to access the data file.

For verification purposes, portion of the set {rij} is needed to be generated (rchal =∑
j∈A rzj in Figure 3.1). These random values cannot be publicly known, otherwise the

CSP can derive the encrypted version F̃ , and store only one copy. Hence, only private

verifiability is supported.
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Setup

− File F = {bj}1≤j≤m.

− N = ṕq́ is the RSA modulus (ṕ & q́ are prime numbers).

− ǵ is a generator of QRN (QRN is the set of quadratic residues modulo N).

− Public key pk = (N, ǵ, e), secret key sk = (d, v, x), v, x ∈R ZN , and
ed ≡ 1 mod (ṕ− 1)(q́ − 1).

− πk is a pseudo-random permutation keyed with a key k.

− fx is a pseudo-random function keyed with the secret key x.

− H is a hash function (H : {0, 1}∗ → QRN).

− EK is an encryption algorithm under a key K.

Data Owner

− Encrypts the data file F under the key K to obtain an encrypted version
F̃ = {b̃j}1≤j≤m, where b̃j = EK(bj)

− Uses the encrypted version F̃ to create a set of tags {Tj}1≤j≤m for all copies:

Tj = (H(v||j) · ǵb̃j)d mod N

− Generates n distinct copies {F̂i}1≤i≤n, F̂i = {b̂ij}1≤j≤m utilizing random masking:
aaafor i = 1 to n do
aaaaafor j = 1 to m do
aaaaaaa1. Computes a random value rij = fx(i||j)
aaaaaaa2. Computes the replica’s block b̂ij = b̃j + rij (added as large integers in Z)

− Sends the copy F̂i to a server Si, i : 1→ n
a =⇒ continue
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Checking possession of a replica F̂z

....Owner Remote Server Sz

1. Picks a key k for the function π,
aac (# of blocks to be challenged),
aaand ǵs = ǵs mod N (s ∈R ZN)

a
c, k, ǵs−−−−−−−−−−−−→

a 2. Computes a set A of random indices:
a A = {j} = πk(l)1≤l≤c

a 3. Computes T =
∏
j∈A

Tj mod N

a 4. Computes ρ = ǵ
∑
j∈A b̂zj

s mod N

a
T, ρ←−−−−−−−−−−−−−−−

5. Computes A = {j} = πk(l)1≤l≤c

6. Checks ( T e∏
j∈A

H(v||j)
· ǵrchal)s ?

= ρ, where rchal =
∑
j∈A

rzj

Figure 3.1: The MR-PDP scheme by Curtmola et al. [37].

3.3 Our System and Assumptions

System components. The cloud computing storage model considered in this work con-

sists of three main components as illustrated in Figure 3.2: (i) a data owner that can be an

individual or an organization originally possessing sensitive data to be stored in the cloud;

(ii) a CSP who manages cloud servers and provides paid storage space on its infrastructure

to store the owner’s files; and (iii) authorized users – a set of owner’s clients who have the

right to access the remote data.

The storage model used in this work can be adopted by many practical applications.

For example, e-Health applications can be envisioned by this model where the patients’

database that contains large and sensitive information can be stored on cloud servers.

In these types of applications, the e-Health organization can be considered as the data

owner, and the physicians as the authorized users who have the right to access the patients’
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Figure 3.2: Cloud computing data storage system model.

medical history. Many other practical applications like financial, scientific, and educational

applications can be viewed in similar settings.

In this work, we focus on sensitive archived and warehoused data, which is essential in

many applications such as digital libraries and astronomical/medical/scientific/legal repos-

itories. Such data are subject to infrequent change, so we treat them as static.

Data Redundancy. Data redundancy can be achieved using replication or coding schemes,

where the former is the simplest way that can be adopted by many storage systems. For a

data file with size |F | bits, the storage cost for n copies over cloud servers is n|F | bits. In

erasure codes, the file is divided into m blocks and encoded into ` blocks, where ` > m [3].

The encoded blocks are stored at ` different servers (one code block per server to prevent

simultaneous failure of all blocks), and thus the storage cost is |F |
m
` bits. The original file

can be reconstructed from any m out of the ` servers.

In the context of this work, we are considering economically-motivated CSPs that may

attempt to use less storage than required by the service contract through deletion of a

few copies of the file. The CSPs have almost no financial benefit by deleting only a

small portion of a copy of the file. Redundancy using erasure codes has less storage cost;

however, duplicating data file across multiple servers achieves scalability in the sense that if
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the number of users grows, then with more copies of data the user access time can be kept

below a certain threshold. Such scalability is a fundamental customer requirement in cloud

computing systems. A file that is duplicated and stored strategically on multiple servers –

located at various geographic locations – can help reduce access time and communication

cost for users. On the other hand, in responding to a data access request for coding-based

systems, the CSP has to access at least m servers to reconstruct the original data file,

and thus increased time overhead (network latency and computation time to decode data

blocks) occurs at the CSP side.

More importantly, in case of data corruption, erasure codes require the precise iden-

tification of failed/corrupted blocks. Without the ability to identify which blocks have

been corrupted, there is potentially a factorial combination of blocks to try to reconstruct

the original data file; that is
(
n
`

)
. For replication-based systems, a server’s copy can be

reconstructed even from a complete damage using duplicated copies on other servers. As

a result of the aforementioned reasons, in our work we do not apply erasure codes to the

data file before outsourcing.

Outsourcing and accessing. The data owner has a file F consisting of m blocks and

the CSP offers to store n copies {F̃1, F̃2, . . . , F̃n} of the owner’s file on different servers –

to prevent simultaneous failure of all copies – in exchange for pre-specified fees metered

in GB/month. The number of copies depends on the nature of data; more copies are

needed for critical data that cannot easily be reproduced, and to achieve a higher level of

scalability. This critical data should be replicated on multiple servers across multiple data

centers. On the other hand, non-critical, reproducible data are stored at reduced levels of

redundancy. The CSP pricing model is related to the number of data copies.

For data confidentiality, the owner encrypts his data before outsourcing to the CSP.

An authorized user of the outsourced data sends a data-access request to the CSP and

receives a file copy in an encrypted form that can be decrypted using a secret key shared

with the owner. According to the load balancing mechanism used by the CSP to organize

the work of the servers, the data-access request is directed to the server with the lowest

congestion, and thus the authorized user is not aware of which copy has been received.
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We assume that the interaction between the owner and the authorized users to authen-

ticate their identities and share the secret key has already been completed, and it is not

considered in this work. Throughout this chapter, the terms cloud server and cloud service

provider are used interchangeably.

Threat model. The completeness and correctness of customers’ data in the cloud may be

at risk due to the following reasons. First, the CSP – whose goal is likely to make a profit

and maintain a reputation – has an incentive to hide data loss (due to hardware failure,

management errors, various attacks) or reclaim storage by discarding data that has not

been or is rarely accessed. Second, a dishonest CSP may store fewer copies than what has

been agreed upon in the service contact with the data owner, and try to convince the owner

that all copies are correctly stored intact. Third, the cloud infrastructures are subject to

a wide range of internal and external security threats. Incidences of security breaches of

cloud services surface from time to time [51, 58].

In short, although outsourcing data to the cloud is attractive from the view point of

cost and complexity of long-term large-scale data storage, it does not offer sufficient guar-

antee on data integrity. This problem, if not properly handled, may hinder the successful

deployment and wide acceptance of the cloud paradigm. The goal of the proposed scheme

is to detect (with high probability) the CSP misbehavior by validating the number and

integrity of file copies.

Underlying algorithms. The proposed scheme consists of five polynomial time algo-

rithms: KeyGen, CopyGen, TagGen, Prove, and Verify.

− (pk, sk) ← KeyGen(1κ). This algorithm is run by the data owner. It takes as input

a security parameter 1κ, and returns a public key pk (publicly known) and a private

key sk (kept secret by the owner).

− F̃ ← CopyGen(CNi, F )1≤i≤n. This algorithm is run by the data owner. It takes as

input a copy number CNi and a file F , and generates n copies F̃ = {F̃i}1≤i≤n. The

owner sends the copies F̃ to the CSP to be stored on cloud servers.
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− Φ← TagGen(sk, F̃). This algorithm is run by the data owner. It takes as input the

private key sk and the file copies F̃, and outputs tags/authenticators set Φ, which is

an ordered collection of tags for the data blocks. The owner sends Φ to the CSP to

be stored along with the copies F̃.

− P ← Prove(F̃,Φ, chal). This algorithm is run by the CSP. It takes as input the file

copies F̃, the tags set Φ, and a challenge chal (sent from a verifier). It returns a proof

P, which guarantees that the CSP is actually storing n copies and all these copies

are intact.

− {1, 0} ← Verify(pk,P). This algorithm is run by a verifier (original owner or any

other trusted auditor). It takes as input the public key pk, and the proof P returned

from the CSP. The output is 1 if the integrity of all file copies is correctly verified or

0 otherwise.

3.4 Security Model

Following [81], we would like the remote data checking scheme to be correct and sound.

These two requirements are defined as follows:

• Correctness requires that the verifier accepts valid server responses.

• Soundness requires that any cheating server that passes the verification process is

actually storing the owner’s data intact.

The security of the proposed scheme can be stated using a ”game” that captures the

data possession property [8, 42, 81]. The data possession game between an adversary A
(acts as a malicious CSP) and a challenger C (acts as a verifier) consists of the following:

• Setup. C runs the KeyGen algorithm to generate a key pair (pk, sk), and sends pk

to A.
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• Interact. A interacts with C to get the file copies and the verification tags set Φ.

A adaptively selects a file F and sends it to C. C runs the two algorithms CopyGen

and TagGen to create n distinct copies F̃ along with the tags set Φ, and returns both

F̃ and Φ to A.

Moreover, A can request challenges {chali}1≤i≤L for some parameter L ≥ 1 of his

choice, and return proofs {Pi}1≤i≤L to C. C runs the Verify algorithm and provides

the verification results to A. The Interact step between A and C can be repeated

polynomially-many times.

• Challenge. A decides on a file F previously used during the Interact step,

requests a challenge chal from C, and generates a proof P ← Prove(F̃′,Φ, chal),
where F̃′ is F̃ except that at least one of its file copies (or a portion of it) is missing

or tampered with. Upon receiving the proof P, C runs the Verify algorithm and if

Verify(pk,P) returns 1, then A has won the game. The Challenge step can be

repeated polynomially-many times for the purpose of data extraction.

The proposed scheme is secure if the probability that any polynomial-time adversary A
wins the game is negligible. In other words, if a polynomial-time adversary A can win the

game with non-negligible probability, then there exists a polynomial-time extractor that

can repeatedly execute the Challenge step until it extracts the blocks of data copies.

File swapping attack. In this type of attacks, the remote server tries to prove the

possession of the data using blocks from different files. A remote data checking scheme

must be secure against such an attack.

3.5 Proposed PB-PMDP Scheme

3.5.1 Overview and Rationale

Generating unique differentiable copies of the data file is the core to design a provable

multi-copy data possession scheme. Identical data copies enable the CSP to simply deceive
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the owner by storing only one copy and pretending that it stores multiple copies. Using

a simple yet efficient way, the proposed scheme generates distinct copies utilizing the

diffusion property of any secure encryption scheme. The diffusion property ensures that

the output bits of the ciphertext depend on the input bits of the plaintext in a very complex

way, i.e., there will be an unpredictable complete change in the ciphertext, if there is a

single bit change in the plaintext [35]. The interaction between the authorized users and

the CSP is considered through this methodology of generating distinct copies, where the

former can decrypt and access a file copy received from the CSP. In the proposed scheme,

the authorized users need only to keep a single secret key – shared with the data owner

– to decrypt the file copy, and it is not necessarily to recognize the index of the received

copy.

3.5.2 Notations

− F is a data file to be outsourced, and is composed of a sequence of m blocks, i.e.,

F = {b1, b2, . . . , bm}.

− πkey(·) is a pseudo-random permutation (PRP): key × {0, 1}log2(m) → {0, 1}log2(m).

− ψkey(·) is a pseudo-random function (PRF): key×{0, 1}∗ → Zp (p is a prime number).

− Bilinear Map/Pairing. Let G1, G2, and GT be cyclic groups of prime order p.

Let ḡ and g be generators of G1 and G2, respectively. A bilinear pairing is a map

ê : G1 ×G2 → GT with the following properties [65, 25]:

1. Bilinear : ê(ua, vb) = ê(u, v)ab ∀ u ∈ G1, v ∈ G2, and a, b ∈ Zp

2. Non-degenerate: ê(ḡ, g) 6= 1

3. Computable: there exists an efficient algorithm for computing ê.

− H(·) is a map-to-point hash function : {0, 1}∗ → G1.

− EK is an encryption algorithm with strong diffusion property and a key K, e.g., AES

(Advanced Encryption Standard) [38].
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Remark 1. Homomorphic linear authenticators (HLAs) [81, 41, 10] are basic building

blocks in the proposed scheme. Informally, the HLA is a fingerprint/tag computed by

the owner for each file block bj that enables a verifier to validate the data possession on

remote servers by sending a challenge vector chal of c elements: chal = {r1, r2, . . . , rc}.
As a response, the servers can homomorphically construct a tag authenticating the value∑c

j=1 rj · bj. The response is validated by a verifier, and accepted only if the servers

honestly compute the response using the owner’s file blocks. The proposed scheme in this

work utilizes the BLS (Boneh-Lynn-Shacham) HLAs [81].

3.5.3 PB-PMDP Procedural Steps

� Key Generation. As earlier, ê : G1 × G2 → GT is a bilinear map and g is a

generator of G2. The data owner runs the KeyGen algorithm to generate a private

key x ∈ Zp and a public key y = gx ∈ G2 along with s elements (u1, u2, . . . , us) ∈R
G1.

� Generation of Distinct Copies. The data owner runs the CopyGen algorithm to

create n differentiable copies F̃ = {F̃i}1≤i≤n. The copy F̃i is generated by concatenat-

ing a copy number i with the file F , then encrypting using EK , i.e., F̃i = EK(i||F ).

F̃i is divided into blocks {b̃ij}1≤j≤m, and the block b̃ij is further fragmented into s sec-

tors {b̃ij1, b̃ij2, . . . , b̃ijs}, i.e., the copy F̃i = {b̃ijk}1≤j≤m
1≤k≤s

, where each sector b̃ijk ∈ Zp
for some large prime p.

The authorized users need to keep only a single secret key K. Later, when an autho-

rized user receives a file copy from the CSP, he decrypts the copy and removes the

index from the copy header to reconstruct the plain form of the received file copy.

� Generation of Tags. Given the distinct file copies F̃ = {F̃i}, where F̃i = {b̃ijk},
the data owner runs the TagGen algorithm to generate a tag σij for each block b̃ij

as σij = (H(IDF ||j).
s∏

k=1

u
b̃ijk
k )x ∈ G1 (i : 1 → n, j : 1 → m, k : 1 → s). In the tag

52



3.5. PROPOSED PB-PMDP SCHEME

computation, IDF = Filename||n||m||u1|| . . . ||us is a unique fingerprint for each file

F comprising the file name, the number of copies for this file, the number of blocks

per copy, and the random values {uk}1≤k≤s. Embedding the IDF into the block tag

σij prevents the CSP from cheating by using blocks from different files (file swapping

attack).

In order to reduce storage overhead on cloud servers and lower communication cost,

the data owner generates an aggregated tag σj for the blocks at the same indices in

each copy F̃i as σj =
∏n

i=1 σij ∈ G1. Hence, instead of storing mn tags, the proposed

PB-PMDP scheme requires the CSP to store only m tags for the files copies F̃. Let

us denote the set of aggregated tags as Φ = {σj}1≤j≤m. The data owner sends

{F̃,Φ, IDF} to the CSP, and deletes the copies and the tags from its local storage.

� Challenge. For challenging the CSP and validating the integrity of all copies, the

verifier sends c (# of blocks to be challenged) and two fresh keys at each challenge:

a PRP(π) key k1 and a PRF(ψ) key k2. Both the verifier and the CSP use π keyed

with k1 and the ψ keyed with k2 to generate a set Q = {(j, rj)} of c pairs of random

indices and random values, where {j} = πk1(l)1≤l≤c and {rj} = ψk2(l)1≤l≤c.

� Response. The CSP runs the Prove algorithm to generate a set Q = {(j, rj)} of

random indices and values, and provide an evidence that the CSP is still correctly

possessing the n copies. The CSP responds with a proof P = {σ, µ}, where

σ =
∏

(j,rj)∈Q

σ
rj
j ∈ G1, µ = {µik}1≤i≤n

1≤k≤s
, and µik =

∑
(j,rj)∈Q

rj · b̃ijk ∈ Zp.

� Verify Response. Upon receiving the proof P = {σ, µ} from the CSP, the verifier

runs the Verify algorithm to check the following verification equation:

ê(σ, g)
?
= ê([

∏
(j,rj)∈Q

H(IDF ||j)rj ]n ·
s∏

k=1

u
∑n
i=1 µik

k , y). (3.1)
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In equation (3.1), the term
∑n

i=1 µik is linear in n, while the term [·]n costs one

more exponentiation for any value of n. If the verification equation passes, the Verify

algorithm returns 1, otherwise 0. The correctness of verification equation (3.1) can

be shown as follows:

ê(σ, g) = ê(
∏

(j,rj)∈Q

σ
rj
j , g)

= ê(
∏

(j,rj)∈Q

[
n∏
i=1

σij]
rj , g)

= ê(
∏

(j,rj)∈Q

[
n∏
i=1

(H(IDF ||j) ·
s∏

k=1

u
b̃ijk
k )x]rj , g)

= ê(
∏

(j,rj)∈Q

[
n∏
i=1

H(IDF ||j) ·
n∏
i=1

s∏
k=1

u
b̃ijk
k ]rj , y)

= ê(
∏

(j,rj)∈Q

n∏
i=1

H(IDF ||j)rj ·
∏

(j,rj)∈Q

n∏
i=1

s∏
k=1

u
rj ·b̃ijk
k , y)

= ê([
∏

(j,rj)∈Q

H(IDF ||j)rj ]n ·
s∏

k=1

u

∑n
i=1

∑
(j,rj)∈Q rj ·b̃ijk

k , y)

= ê([
∏

(j,rj)∈Q

H(IDF ||j)rj ]n ·
s∏

k=1

u
∑n
i=1 µik

k , y).

Remark 2. The proposed PB-PMDP scheme supports public verifiability where anyone,

who knows the owner’s public key but is not necessarily the data owner, can send a challenge

vector to the CSP and verify the response. Public verifiability can resolve disputes that

may arise between the data owner and the CSP regarding data integrity. If such a dispute

occurs, a trusted third party auditor (TPA) can determine whether the data integrity is

maintained or not. Since the owner’s public key is only needed to perform the verification

step, the owner is not required to reveal his secret key to the TPA. The PB-PMDP scheme

is presented in Figure 3.3.
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Setup

− File F = {b1, b2, . . . , bm}.

− ê : G1 ×G2 → GT is a bilinear map, g is a generator for G2.

− x ∈ Zp is a private key.

− y = gx ∈ G2 along with (u1, u2, . . . , us) ∈R G1 form a public key.

Data Owner

− Creates distinct file copies F̃ = {F̃i}1≤i≤n , where F̃i = EK(i||F )1≤i≤n.

Each copy F̃i is an ordered collection of blocks fragmented into sectors,
i.e., F̃i = {b̃ijk}1≤j≤m

1≤k≤s
, where b̃ijk ∈ Zp.

− Calculates the block tag σij = (H(IDF ||j).
s∏

k=1

u
b̃ijk
k )x ∈ G1.

− Computes a set of aggregated tags Φ = {σj}1≤j≤m for the blocks

at the same indices in each copy F̃i, where σj =
n∏
i=1

σij ∈ G1.

− Sends {F̃,Φ, IDF} to the CSP and deletes the copies and the tags
from its local storage.

Challenge Response

. Verifier CSP

1. Picks c (# of blocks to be challenged)
and two fresh keys k1 and k2

2. Generates a set Q = {(j, rj)},
{j} = πk1(l)1≤l≤c and {rj} = ψk2(l)1≤l≤c

a =⇒ continue
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Verifier CSP

.
c, k1, k2−−−−−−−−−−−−−−−→

a 3. Generates a set Q as the verifier did

a 4. Computes σ =
∏

(j,rj)∈Q

σ
rj
j ∈ G1

a 5. Computes µ = {µik}1≤i≤n
1≤k≤s

,

a µik =
∑

(j,rj)∈Q

rj · b̃ijk ∈ Zp

a

σ, µ={µik}1≤i≤n
1≤k≤s←−−−−−−−−−−−−−−−−−−−

6. Checks ê(σ, g)
?
= ê([

∏
(j,rj)∈Q

H(IDF ||j)rj ]n ·
s∏

k=1

u
∑n
i=1 µik

k , y)

Figure 3.3: The proposed PB-PMDP scheme.

3.5.4 Reducing the Communication Cost

One can attempt to change the PB-PMDP scheme to reduce the communication cost

by a factor of n by permitting the CSP to compute and send µ = {µ̂k}1≤k≤s, where

µ̂k =
∑n

i=1 µik. However, this modification enables the CSP to simply cheat the verifier as

follows:

µ̂k =
n∑
i=1

µik =
n∑
i=1

∑
(j,rj)∈Q

rj · b̃ijk =
∑

(j,rj)∈Q

rj ·
n∑
i=1

b̃ijk.

Thus, the CSP can just keep the sectors summation
∑n

i=1 b̃ijk not the sectors themselves.

Moreover, the CSP can corrupt the block sectors and the summation is still valid. There-

fore, the proposed scheme requires the CSP to send µ = {µik}1≤i≤n
1≤k≤s

, and the summation∑n
i=1µik is done on the verifier side.

A slightly modified version of the PB-PMDP scheme can reduce the communication

cost by a factor of s during the response phase by allowing the CSP to compute and send

µ = {µi}1≤i≤n instead of µ = {µik}1≤i≤n
1≤k≤s

. In this version, a file copy F̃i is divided into
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blocks, but the blocks are not fragmented into sectors, i.e., a copy F̃i = {b̃ij}1≤j≤m, where

b̃ij ∈ Zp . A tag σij is generated for each block b̃ij: σij = (H(IDF ||j).ub̃ij)x ∈ G1, where u

is a generator for G1. Tags are aggregated into a set Φ = {σj}1≤j≤m, where σj =
∏n

i=1 σij.

In this scenario, the CSP responds with σ =
∏

(j,rj)∈Q σ
rj
j ∈ G1 and µ = {µi}1≤i≤n,

where µi =
∑

(j,rj)∈Q rj · b̃ij ∈ Zp. The verification equation (3.1) will be modified to

ê(σ, g)
?
= ê([

∏
(j,rj)∈QH(IDF ||j)rj ]n · u

∑n
i=1 µi , y).

This reduced communication cost will be at the expense of increased storage overhead

on the CSP side, where each block b̃ij ∈ Zp will be accompanied with a tag σij ∈ G1 of

equal length. If the block size is greater than |p| (the bit length of the prime p), the CSP

can simply cheat by storing b̃ij mod p instead of the whole block b̃ij. Therefore, with this

slightly modified version, to store n copies each of size |F | bits, the total storage over the

CSP will be (n+1)|F | bits (using tag aggregation approach). The storage overhead equals

the size of a complete file copy. The more storage space is used over the CSP side, the

more fees the customers are charged (pay-as-you-go pricing model).

3.6 Security Analysis

Here we present the security analysis for the PB-PMDP scheme. First, in the proposed

scheme, we utilize PRP (π) and PRF (ψ) to compress the challenge, and thus reducing the

communication cost. Instead of sending the set Q of c pairs of random indices and values

to the CSP, the verifier sends only two keys k1 and k2 (over secure communication). Using

π and ψ in this manner is proved to be secure [10].

For the correctness security requirement, we have previously shown the correctness of

equation (3.1). For the soundness security requirement, we will show that if a polynomial-

time adversary A can win the data possession game (with non-negligible probability) with

a challenger C, then A is actually storing the n data copies F̃ in an uncorrupted state. For

an adversary A to cheat the verifier, he has to respond with a malicious proof P′ 6= P and

Verify(pk,P′) returns 1.

The soundness of the PB-PMDP scheme is based on the unforgeability of the used
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HLAs, which depends on the security of the computational Diffie-Hellman (CDH) and the

discrete logarithm (DL) problems.

Definitions.

1. CDH problem: given g, gx, h ∈ G for some group G and x ∈ Zp , compute hx

2. DL problem: given g, h ∈ G for some group G, find x such that h = gx .

The following theorem proves the unforgeability of the HLAs used in the proposed PB-

PMDP scheme. Our approach to prove the theorem is by investigating all possible com-

binations of malicious CSP responses 〈{σ′, µ′}, {σ, µ′}, {σ′, µ}〉, and checking whether any

of these combinations can pass the verification equation (3.1).

Theorem 1. Assuming the hardness of both the CDH and the DL problems in bilinear

groups, the verifier of the proposed PB-PMDP scheme accepts a response to a challenge

vector only if a correctly computed proof P = {σ, µ}, where µ = {µik}1≤i≤n
1≤k≤s

is sent from

the CSP.

Proof. We prove the theorem by contradiction. The goal of an adversaryA (malicious CSP)

is to generate a response that is not correctly computed and pass the verification process

done by a challenger C (verifier). Let P′ = {σ′, µ′} be A’s response, where µ′ = {µ′ik}1≤i≤n
1≤k≤s

.

Let P = {σ, µ} be the expected response from an honest CSP, where σ =
∏

(j,rj)∈Q σ
rj
j ,

µ = {µik}1≤i≤n
1≤k≤s

, and µik =
∑

(j,rj)∈Q rj · b̃ijk.

According to the correctness of PB-PMDP scheme, the expected proof P = {σ, µ}
satisfies the verification equation, i.e.,

ê(σ, g) = ê([
∏

(j,rj)∈Q

H(IDF ||j)rj ]n ·
s∏

k=1

u
∑n
i=1 µik

k , y).

Assume that σ′ 6= σ, and σ′ passes the verification equation, then we have

ê(σ′, g) = ê([
∏

(j,rj)∈Q

H(IDF ||j)rj ]n ·
s∏

k=1

u
∑n
i=1 µ

′
ik

k , y).
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Obviously, if µ′ik = µik ∀(i, k), it follows from the above verification equations that σ′ = σ,

which contradicts our assumption. Let us define ∆µik = µ′ik − µik (1 ≤ i ≤ n, 1 ≤ k ≤ s).

It must be the case that at least one of {∆µik}1≤i≤n
1≤k≤s

is nonzero. Dividing the verification

equation for the malicious response by the verification equation for the expected response,

we obtain

ê(σ′ · σ−1, g) = ê(
s∏

k=1

u
∑n
i=1 ∆µik

k , y)

ê(σ′ · σ−1, g) = ê(
s∏

k=1

u
x·
∑n
i=1 ∆µik

k , g)

σ′ · σ−1 =
s∏

k=1

u
x·
∑n
i=1 ∆µik

k .

We set uk = gαkhβk for αk, βk ∈ Zp, and thus

σ′ · σ−1 =
s∏

k=1

(gαkhβk)x·
∑n
i=1 ∆µik

σ′ · σ−1 =
s∏

k=1

(yαkhx.βk)
∑n
i=1 ∆µik

σ′ · σ−1 = y
∑s
k=1 αk·

∑n
i=1 ∆µik · hx·

∑s
k=1 βk·

∑n
i=1 ∆µik

hx = (σ′ · σ−1 · y−
∑s
k=1 αk·

∑n
i=1 ∆µik)

1∑s
k=1

βk·
∑n
i=1

∆µik .

Hence, we have found a solution to the CDH problem unless evaluating the exponent

causes a division by zero. However, we noted that not all of {∆µik}1≤i≤n
1≤k≤s

can be zero and

the probability that βk = 0 is 1
p
, which is negligible. Therefore, if σ′ 6= σ, we can use the

adversary A to break the CDH problem, and thus we guarantee that σ′ must be equal to

σ.

It is only the values µ′ = {µ′ik}1≤i≤n
1≤k≤s

and µ = {µik}1≤i≤n
1≤k≤s

that can differ. Assume that

the adversary A responds with σ′ = σ and µ′ 6= µ. Now we have
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ê(σ, g) = ê([
∏

(j,rj)∈Q

H(IDF ||j)rj ]n ·
s∏

k=1

u
∑n
i=1 µik

k , y) = ê(σ′, g) =

ê([
∏

(j,rj)∈Q

H(IDF ||j)rj ]n ·
s∏

k=1

u
∑n
i=1 µ

′
ik

k , y),

from which we conclude that

ê([
∏

(j,rj)∈Q

H(IDF ||j)rj ]n ·
s∏

k=1

u
∑n
i=1 µik

k , y) = ê([
∏

(j,rj)∈Q

H(IDF ||j)rj ]n ·
s∏

k=1

u
∑n
i=1 µ

′
ik

k , y).

Thus,

1 = ê(
s∏

k=1

u
∑n
i=1 ∆µik

k , y)

1 =
s∏

k=1

(gαkhβk)
∑n
i=1 ∆µik

1 = g
∑s
k=1 αk.

∑n
i=1 ∆µik · h

∑s
k=1 βk.

∑n
i=1 ∆µik

h = g
−

∑s
k=1 αk·

∑n
i=1 ∆µik∑s

k=1
βk·

∑n
i=1

∆µik .

Now, we have found a solution to the DL problem unless evaluating the exponent

causes a division by zero. However, the probability that βk = 0 is 1
p
, which is negligible.

Therefore, if there is at least one difference between {µ′ik}1≤i≤n
1≤k≤s

and {µik}1≤i≤n
1≤k≤s

, we can use

the adversary A to break the DL problem. As a result, we guarantee that {µ′ik} must be

equal to {µik} ∀(i, k). �

Data Extraction. We have shown that if a polynomial-time adversary A can win the

data possession game (with non-negligible probability) with a challenger C, then A is

actually storing the data in an uncorrupted state. For the purpose of data extraction, the

challenger C interacts with A to extract data blocks. Suppose that C challenges c blocks,

namely the blocks with indices {j1, j2, . . . , jc}, thenA responds with a proof P that contains

σ = σ
rj1
j1
·σrj2j2 . . . σ

rjc
jc

and µ = {µik}1≤i≤n
1≤k≤s

, where µik = rj1 ·b̃ij1k+rj2 ·b̃ij2k+· · ·+rjc ·b̃ijck. The
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challenger C can extract the actual data blocks {b̃ijk} in polynomially-many interactions

with A. If the challenge-response phase has been repeated c times (each time we challenge

c blocks), then there will be c proofs {P1,P2, . . . ,Pc}. Thus, a system of linear equations

can be constructed as follows.

µ1
11 = r1

j1
· b̃1j11 + r1

j2
· b̃1j21 + · · ·+ r1

jc · b̃1jc1

...

µc11 = rcj1 · b̃1j11 + rcj2 · b̃1j21 + · · ·+ rcjc · b̃1jc1

...

µcns = rcj1 · b̃nj1s + rcj2 · b̃nj2s + · · ·+ rcjc · b̃njcs

Solving this system of linear equations yields the data blocks {b̃ijk}.

Finally, the PB-PMDP scheme is secure against file swapping attack. The file identifier

IDF is embedded into the block tag, and thus the CSP cannot use blocks from different

files and pass the auditing procedures even if the owner uses the same secret key x with

all his files.

3.7 Performance Analysis

In this section, we evaluate the performance of the presented schemes: MR-PDP and PB-

PMDP. The file F used in our performance analysis is of size 64MB divided in blocks of

4KB. Without loss of generality, we assume that the desired security level is 80-bit. Thus,

we utilize an elliptic curve defined over Galois field GF (p) with |p| = 160 bits (a point on

this curve can be represented by 161 bits using compressed representation [14]), and the

size of the RSA modulus N is 1024 bits.

Similar to [80, 11, 54], the computation cost for the MR-PDP and PB-PMDP is es-

61



3.7. PERFORMANCE ANALYSIS

timated in terms of used cryptographic operations, which are notated in Table 3.1. G
indicates a group of points over a suitable elliptic curve in the bilinear pairing, and QRN

is a set of quadratic residues modulo N .

Table 3.1: Notation of cryptographic operations.

Notation Description Notation Description

HG Hashing to G HQRN Hashing to QRN

EG Exponentiation in G EZN Exponentiation in ZN
MG Multiplication in G MZ Multiplication in Z
MZp Multiplication in Zp DZ Division in Z
AZp Addition in Zp AZ Addition in Z
P Bilinear pairing EK Encryption using K
R Random-number generation

To perform a fair comparison between the PB-PMDP and the MR-PDP [37], we as-

sume two small modifications to the model presented in [37]. First, we assume that the

indices of the blocks being challenged are the same across all copies (this assumption is an

optimization for the verification computations of the MR-PDP). Second, for the CSP to

prove the possession of the blocks (not just only their sum), each block being challenged

is multiplied by a random value. The second modification makes the S-PDP version of [8]

to be the base of the MR-PDP scheme.

Let n, m, and s denote the number of copies, the number of blocks per copy, and

the number of sectors per block, respectively. Let c denote the number of blocks to be

challenged, and |F | denote the size of the file copy. Let the keys used with π and ψ be of size

128 bits. Table 3.2 presents a theoretical analysis for the setup, storage, communication,

and computation costs of the two schemes.

3.7.1 Comments

Sytem Setup. As it can be seen in Table 3.2, the cost of generating data copies in the

proposed PB-PMDP scheme is much less than that of the MR-PDP scheme. On the other
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Table 3.2: Storage, communication, and computation costs for MR-PDP and PB-PMDP
schemes.

Costs MR-PDP[37] PB-MPDP

System Setup

Copies EK + nmR nEK
Generation + nmAZ

Tags 2m EZN +mMZ (s+ 1)nm EG +nmHG
Generation + mHQRN + (ns+n - 1)mMG

Storage
File Copies n|F | n|F |

CSP Overhead 1024m bits 161m bits

Communication
Challenge 1280 + log2(c) bits 256 + log2(c) bits
Response 1024(n+ 1) bits † 161 + 160ns bits

Computation
Proof

(c+n) EZN + (cn+ c - 1)MZ c EG + (c - 1)MG + csnMZp
+ (c - 1)nAZ + (c - 1)snAZp

Verification
(2n+ c+ 1) EZN+ cHQRN + DZ 2P + (c+ s+ 1) EG + cHG

+ (cn+ c+n - 1)MZ + (c - 1)nAZ + (c+ s - 1)MG + (n - 1)sAZp

† There is an optimization for this response to be 1024 + 160n bits using hashing.

hand, Curtmola et al. [37] efficiently reduce the computation cost of generating the block

tags. This is due to the fact that the tags are generated from the encrypted version of

the file before masking with some unique randomness to generate the differentiable copies.

In general, the impact of setup computations on the overall system performance may be

insignificant; setup is done only once during the life time of the data storage system, which

may be for tens of years.

Storage overhead. Storage overhead is the additional space used to store necessary

information other than the outsourced file copies F̃. Both schemes require n|F | bits to

store F̃, while the storage overhead for the PB-PMDP scheme is much less than that of the

MR-PDP model. The overheads on the CSP are 2MB and 0.31MB for the MR-PDP and

PB-PMDP schemes, respectively (about 84% reduction). Reducing the storage overhead

on the CSP side is economically a key feature to lower the fees paid by the customers.

Communication cost. The communication cost of the MR-PDP scheme is less than

that of PB-PMDP. For 20 copies of F , the communication costs for the MR-PDP and

PB-PMDP schemes are about 2.8KB and 80KB, respectively. However, for small s (� n),
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the PB-PMDP will have less communication cost.

Computation cost. As observed from Table 3.2, the cost expression of the proof for the

MR-PDP scheme has three terms linear in the number of copies n, while the PB-PMDP

scheme has two terms linear in n. Moreover, there are three terms linear in n in the

verification cost expression for the MR-PDP scheme, while the PB-PMDP scheme contains

only one term linear in n in the corresponding expression. These terms affect the total

computation time when dealing with a large number of copies in practical applications.

We note that since the cost of an addition is negligibly smaller than those of pairing and

exponentiation, the verification time in the proposed PB-PMDP scheme is practically not

affected by the value of n.

3.8 Implementation and Experimental Evaluation

3.8.1 Implementation

We have implemented the MR-PDP and PB-PMDP schemes on top of Amazon Elastic

Compute Cloud (Amazon EC2) [5] and Amazon Simple Storage Service (Amazon S3) [6]

cloud platforms. Amazon EC2 is a web service that enables customers to lunch and manage

Linux/Unix and Windows server instances (virtual servers) in Amazon’s data centers.

Customers can automatically scale up and down the number of EC2 instances according to

their demands. Moreover, customers can upgrade and downgrade a specific EC2 instance

to fit current requirements. Amazon S3 is storage for the internet. It provides a simple

web services interface that can be used to store and retrieve almost unlimited amount of

data. Customers are allowed to choose the geographic locations where Amazon S3 will

store the data.

Our implementation of the presented schemes consists of three modules: OModule

(owner module), CModule (CSP module), and VModule (verifier module). OModule, which

runs on the owner side, is a library that includes KeyGen, CopyGen, and TagGen algorithms.

CModule is a library that runs on Amazon EC2 and includes Prove algorithm. VModule is
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a library to be run at the verifier side and includes the Verify algorithm.

In the experiments, we do not consider the system pre-processing time to prepare the

different file copies and generate the tags set. Moreover, the time to access the file blocks is

not considered in the implementation, as the state-of-the-art hard drive technology allows

as much as 1MB to be read in just few nanoseconds [80]. Hence, the total access time is

unlikely to have substantial impact on the overall system performance.

Implementation settings. In our implementation we use a ”large” Amazon EC2 instance

to run CModule. This instance type provides total memory of size 7.5GB and 4 EC2

Compute Units (2 virtual cores with 2 EC2 Compute Units each). One EC2 Compute

Unit provides the equivalent CPU capacity of a 1.0 - 1.2GHz 2007 Opteron or 2007 Xeon

processor [4]. The OModule and VModule are executed on a desktop computer with Intel(R)

Xeon(R) 2GHz processor and 3GB RAM running Windows XP. We outsource copies of a

data file of size 64MB to Amazon S3. Algorithms (encryption, pairing, hashing, etc.) are

implemented using MIRACL library version 5.4.2. In the experiments, we utilize the MNT

curve [68] defined over prime field GF (p) with |p| = 160 bits and embedding degree = 6

(the MNT curve with these parameters is provided by the MIRACL library).

3.8.2 Experimental Evaluation

Timing measurements. The proposed PB-PMDP scheme is based on pairing and elliptic

curve cryptography, while the MR-PDP scheme is based on RSA. To estimate the timing

measurements for the cryptographic operations used in the implementations, we run the

MIRACL library on the the used desktop computer. Table 3.3 presents the measured times

(in milliseconds), where each reported measurement is an average of thousands of runs.

Table 3.3 shows three measurements for EZN : 68.92 ms, 2.15 ms, and 0.32 ms. The

reason is that the exponent part differs during the implementation of the MR-PDP scheme.

For example, the data owner performs ǵEXP mod N , where EXP is the exponent part of size

4KB (32768 bits). The owner does this operation during the tag generations and the

verification phase. Utilizing the Fermat-Euler theorem [59], the owner can reduce the
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Table 3.3: Timing measurements for the cryptographic operations

Operation Time (ms) Operation Time (ms)

HG 0.22 HQRN 0.34
EG 0.27 EZN 68.92/2.15/0.32
MG 0.01 MZ 0.02/0.004/0.0009
MZp 0.00025 DZ 0.00022
AZp 0.00017 AZ 0.009/0.00029
P 4.6

exponent part, where ǵEXP ≡ ǵEXPmodφ(N) mod N and φ(N) = (ṕ− 1)(q́ − 1) is the Euler’s

totient function. On the other hand, the CSP cannot use this trick because φ(N) is not

known in public. Therefore, EZN needs 68.92 ms and 2.15 ms at the CSP and the owner,

respectively. Besides, a random value of size 160 bits is used in our slight modification to

the MR-PDP scheme to prove the possession of the data blocks not only their sum. Thus,

EZN needs 0.32 ms when the exponent part is 160 bits. Similar scenarios arise for MZ

and AZ operations. MZ needs 0.02 ms for 32768-bits × 160-bits, 0.004 ms for 1024-bits

× 1024-bits, and 0.0009 ms for 1024-bits × 160-bits. AZ needs 0.009 ms for 32768-bits +

32768-bits, and 0.00029 ms for 1024-bits + 1024-bits.

Experimental results. We compare the presented MR-PDP and PB-PMDP schemes in

terms of both the proof computation times and the verification times. It has been reported

in [8] that if the remote server is missing a fraction of the data, then the number of blocks

that needs to be checked in order to detect server misbehavior with high probability is

constant independent of the total number of file blocks. For example, if the server deletes

1% of the data file, the verifier needs only to check for c = 460-randomly chosen blocks of

the file so as to detect this misbehavior with probability larger than 99%. Therefore, in

our experiments, we use c = 460 to achieve a high probability of assurance.

For different number of copies, Figure 3.4a presents the proof computation times (in

seconds). The timing curve of the proposed PB-PMDP scheme is less than that of the

MR-PDP scheme. For 20 copies, the proof computation times for the MR-PDP and the

PB-PMDP schemes are 1.68 and 0.86 seconds, respectively (about 49% reduction).
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Figure 3.4: Computation costs of the MR-PDP and PB-PMDP.

Figure 3.4b presents the verification times (in seconds). For 20 copies, the verification

times for the MR-PDP and the PB-PMDP schemes are 0.40 and 0.29 seconds, respectively

(about 27% reduction).

More importantly, the verification timing curve of the PB-PMDP scheme is almost

unchanged for the range of number of copies considered in our experiments. This is due

to the fact that although the term (n − 1)sAZp in the verification cost of the PB-PMDP

scheme is linear in n (Table 3.2), in our experiments its numerical value is quite small

compared to those of the other terms in the cost expression. This feature makes the PB-

PMDP scheme computationally cost-effective and more efficient when verifying a large

number of file copies.

3.9 Identifying Corrupted Copies

Here we show how the proposed PB-PMDP scheme can be slightly modified to identify

the indices of corrupted copies. The proof P = {σ, µ} generated by the CSP will be valid

and will pass the verification equation (3.1) only if all copies are intact and consistent.

Thus, when there is one or more corrupted copies, the whole auditing procedure fails. To
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handle this situation and identify the corrupted copies, a slightly modified version of the

PB-PMDP scheme can be used. In this version, the data owner generates a tag σij for each

block b̃ij, but does not aggregate the tags for the blocks at the same indices in different

copies, i.e., Φ = {σij} 1≤i≤n
1≤j≤m

. During the response phase, the CSP computes µ = {µik}1≤i≤n
1≤k≤s

as before, but σ =
∏

(j,rj)∈Q

[
n∏
i=1

σij]
rj ∈ G1. Upon receiving the proof P = {σ, µ}, the verifier

first validates P using equation (3.1). If the verification fails, the verifier asks the CSP

to send σ = {σi}1≤i≤n, where σi =
∏

(j,rj)∈Q σ
rj
ij . Thus, the verifier has two lists σList =

{σi}1≤i≤n and µList = {µik}1≤i≤n
1≤k≤s

(µList is a two dimensional list).

Utilizing a recursive divide-and-conquer approach (binary search) [46], the verifier can

identify the indices of corrupted copies. Specifically, σList and µList are divided into

halves: σList→ (σLeft:σRight), and µList→ (µLeft:µRight). The verification equation (3.1)

is applied recursively on σLeft with µLeft and σRight with µRight. Note that the individual

tags in σLeft or σRight are aggregated via multiplication to generate one σ that is used

during the recursive application of equation (3.1). The procedural steps of identifying the

indices of corrupted copies are indicated in Algorithm 1.

The binary search algorithm takes four parameters: σList, µList, start that indicates the

start index of the currently working lists, and end to indicate the last index of the working

lists. The initial call to the search algorithm takes (σList, µList, 1, n). The invalid indices

are stored in invalidList, which is a global data structure.

This slight modification to identify the corrupted copies will be associated with some

extra storage overhead on the cloud servers, where the CSP has to store mn tags for the

file copies F̃ (m tags in the original version). Moreover, the challenge-response phase may

be done in two rounds if the initial round to verify all copies fails.

We have performed experiments to show the effect of identifying the corrupted copies

on the verification time. We generate 100 copies (using same file/parameters from Section

3.8), which are verified in 0.3 seconds when all copies are accurate. A percentage – ranging

from 1% to 20% – of the file copies is randomly corrupt. Figure 3.5 shows the verification

time (in seconds) with different corrupted percentages. The verification time is about 3.87
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Algorithm 1: BS(σList, µList, start, end)

begin
len←− (end−start)+1 /* List length */
if len = 1 then

σ ←− σList[start]
{µk}1≤k≤s ←− µList[start][k]

ê(σ, g)
?
= ê(

∏
(j,rj)∈QH(IDF ||j)rj ·

∏s
k=1 u

µk
k , y)

if NOT verified then
invalidList.Add(start)

end

else

σ ←−
∏len

i=1 σList[start+i− 1]
{µik}1≤i≤len

1≤k≤s
←− µList[start+i− 1][k]

ê(σ, g)
?
= ê([

∏
(j,rj)∈QH(IDF ||j)rj ]len ·

∏s
k=1 u

∑len
i=1 µik

k , y)

if NOT verified then
/* work with the left and right halves of σList and µList */

mid←− b(start+end)/2c /* List middle */
BS(σList, µList, start, mid) /* Left part */
BS(σList, µList, mid+1, end) /* Right part */

end

end

end

seconds when 1% of the copies are invalid. As observed from Figure 3.5, when the percent-

ages of corrupted copies are up to 15% of the total copies, the performance of using the

binary search algorithm in the verification is more efficient than individual verification for

each copy. It takes about 0.29 seconds to verify one copy, and thus individual verifications

of 100 copies requires 100×0.29 = 29 seconds.

In short, the proposed PB-PMDP scheme can be slightly modified to support the feature

of identifying the corrupted copies at the cost of some extra storage, communication,

and computation overheads. For the CSP to remain in business and maintain a good

69



3.10. SUMMARY

�

�

��

��

��

��

��

��

�� ��

V
e
ri
fi
c
a
ti
o
n
 T
im
e
s
 (
S
e
c
)

Corrup

��� ��� ���

pted Percentages

��	
�������������	���

�
�	�	��������	�	���	�


Figure 3.5: Verification times with different percentages of corrupted copies.

reputation, invalid responses to verifier’s challenges are sent in very rare situations, and

thus the original version of the proposed scheme is used in most of the time.

3.10 Summary

In this chapter, we have studied the problem of creating multiple copies of a data file and

verifying those copies stored on cloud servers. We have proposed a pairing-based provable

multi-copy data possession (PB-PMDP) scheme, which supports outsourcing of multiple

data copies to untrusted CSP. The interaction between the authorized users and the CSP

is considered in our scheme, where the authorized users can seamlessly access a data copy

received from the CSP using a single secret key shared with the data owner. Moreover, the

BP-PMDP scheme supports public verifiability, allows unlimited number of auditing, and

provides possession-free verification where the verifier has the ability to verify the data

integrity even though he neither possesses nor retrieves the file blocks from the server.

Our security analysis has shown that the proposed PB-PMDP scheme is provably se-
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cure against colluding servers. Through theoretical analysis, experimental results, and

comparison with the MR-PDP scheme, we have explained the improved performance of

the proposed scheme. The verification time of PB-PMDP is practically independent of the

number of file copies, which makes the scheme computationally cost-effective and more

efficient when verifying a large number of file copies.

A slight modification can be done on the proposed scheme to support the feature of

identifying the indices of corrupted copies of data. The corrupted copy can be reconstructed

even from a complete damage using duplicated copies on other servers.

71



Chapter 4

Provable Multi-Copy Dynamic Data
Possession

In this chapter, we direct our study to the the dynamic behavior of multiple data copies

outsourced to cloud servers, and describe the scheme we proposed in [16, 19]. Section 4.1

highlights the motivation of this work. Our system model and assumptions are presented

in Section 4.2. The proposed scheme to verify the integrity of multiple dynamic data copies

stored by cloud servers is elaborated in Section 4.4. Section 4.5 presents an extension to

provable possession models for single-copy dynamic data to work in the setting of multiple

copies of dynamic data. Section 4.6 contains the security analysis of the proposed scheme.

The performance analysis is shown in Section 4.7. Section 4.8 presents the implementation

and experimental results. Section 4.9 discusses how to identify the corrupted copy among

the outsourced data copies. The chapter is summarized in Section 4.10.

4.1 Introduction

Increasingly more and more organizations are opting for outsourcing data to remote cloud

service providers (CSPs). This is primarily to reduce the maintenance cost and the burden

of large local data storage. Customers can rent the CSP’s storage infrastructure to store

and retrieve almost unlimited amount of data by paying fees metered in GB/month.
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Replicating data on multiple servers across multiple data centers achieves a higher level

of scalability, availability, and durability. The more copies the CSP is asked to store, the

more fees the customers are charged. Moreover, the remotely stored data can be not only

accessed by authorized users (i.e., those who have the right to access the owner’s file), but

also updated and scaled by the data owner. Therefore, customers need to have a strong

guarantee that the CSP is storing all data copies that are agreed upon in the service

contract, and all these copies are consistent with the most recent modifications issued by

the customers.

In this chapter, we propose a map-based provable multi-copy dynamic data possession

(MB-PMDDP) scheme that achieves three main goals: (i) it provides an evidence to the

customers that the CSP is not cheating by storing fewer copies, (ii) it supports outsourcing

of dynamic data, i.e., it supports block-level operations such as block modification, inser-

tion, deletion, and append, and (iii) it allows authorized users to seamlessly access the file

copies stored by the CSP. We show the security of the proposed scheme against colluding

servers. We also give a comparative analysis of the proposed MB-PMDDP scheme with a

reference model obtained by extending existing provable possession of dynamic single-copy

schemes. The theoretical analysis is validated through experimental results. Additionally,

we utilize similar ideas to that applied in the previous chapter to identify corrupted copies

by slightly modifying the proposed MB-PMDDP scheme. To the best of our knowledge,

there was no provable data possession (PDP) scheme for multiple copies of dynamic data

in the open literature.

4.2 Our System and Assumptions

System components. The cloud computing storage model considered in this chapter is

similar to that of Figure 3.2 (Chapter 3). It consists of three main components: a data

owner, a CSP, and authorized users.

Outsourcing, updating, and accessing. The data owner has a file F divided into m

blocks, and requests the CSP to store n copies {F̃1, F̃2, . . . , F̃n} of F on different servers
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– to prevent simultaneous failure of all copies. Replication strategy depends on the im-

portance of outsourced data; more copies are needed for critical data that cannot easily

be reproduced, and to achieve a higher level of scalability. For this critical data, multiple

copies are distributed on multiple servers, while needless reproducible data are stored at

reduced levels of redundancy. The data owner has to pay according to the used storage

space on the CSP side, where the pricing model is related to the number of data copies.

For data confidentiality, the owner encrypts his data before outsourcing to the CSP.

After outsourcing all n copies of the file, the owner may interact with the CSP to perform

block-level operations on all copies. These operations includes modify, insert, append, and

delete specific blocks of the outsourced data copies.

An authorized user of the outsourced data sends a data-access request to the CSP and

receives a file copy in an encrypted form that can be decrypted using a secret key shared

with the owner. According to the load balancing mechanism used by the CSP to organize

the work of the servers, the data-access request is directed to the server with the lowest

congestion, and thus the authorized user is not aware of which copy has been received.

We assume that the interaction between the owner and the authorized users to authen-

ticate their identities and share the secret key has already been completed, and it is not

considered in this work. Throughout this chapter, the terms cloud server and cloud service

provider are used interchangeably.

Threat model. The integrity of customers’ data in the cloud may be at risk due to the

following reasons. First, the CSP – whose goal is likely to make a profit and maintain

a reputation – has an incentive to hide data loss (due to hardware failure, management

errors, various attacks) or reclaim storage by discarding data that has not been or is rarely

accessed. Second, to save the computational resources, the CSP may totally ignore the

data-update requests issued by the owner, or not execute them on all copies leading to

inconsistency between the file copies. Third, a dishonest CSP may store fewer copies than

what has been agreed upon in the service contact with the data owner, and try to convince

the owner that all copies are correctly stored intact. The goal of the proposed scheme is to

detect (with high probability) the CSP misbehavior by validating the number and integrity
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of file copies.

Underlying algorithms. The proposed scheme consists of seven polynomial time algo-

rithms: KeyGen, CopyGen, TagGen, PrepareUpdate, ExecUpdate, Prove, and Verify.

− (pk, sk) ← KeyGen(). This algorithm is run by the data owner to generate a public

key pk and a private key sk. The private key sk is kept secret by the owner, while

pk is publicly known.

− F̃ ← CopyGen(CNi, F )1≤i≤n. This algorithm is run by the data owner. It takes as

input a copy number CNi and a file F , and generates n copies F̃ = {F̃i}1≤i≤n. The

owner sends the copies F̃ to the CSP to be stored on cloud servers.

− Φ← TagGen(sk, F̃). This algorithm is run by the data owner. It takes as input the

private key sk and the file copies F̃, and outputs tags/authenticators set Φ, which is

an ordered collection of tags for the data blocks. The owner sends Φ to the CSP to

be stored along with the copies F̃.

− (D′, UpdateReq) ← PrepareUpdate(D, UpdateInfo). This algorithm is run by the

data owner to update the outsourced file copies stored by the remote CSP. The

input parameters are a previous metadata D stored on the owner side, and some

information UpdateInfo about the dynamic operation to be performed on a specific

block. The outputs of this algorithm are a modified metadata D′ and an update

request UpdateReq. This request may contain a modified version of a previously

stored block, a new block to be inserted, or a delete command to delete a specific

block from the file copies. UpdateReq also contains updated (or new) tags for modified

(or inserted/appended) blocks, and it is sent from the data owner to the CSP in order

to perform the requested update.

− (F̃′, Φ′) ← ExecUpdate(F̃, Φ, UpdateReq). This algorithm is run by the CSP, where

the input parameters are the file copies F̃, the tags set Φ, and the request UpdateReq.

It outputs an updated version of the file copies F̃′ along with an updated tags set Φ′.
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− P ← Prove(F̃,Φ, chal). This algorithm is run by the CSP. It takes as input the file

copies F̃, the tags set Φ, and a challenge chal (sent from a verifier). It returns a proof

P which guarantees that the CSP is actually storing n copies and all these copies are

intact, updated, and consistent.

− {1, 0} ← Verify(pk,P,D). This algorithm is run by a verifier (original owner or any

other trusted auditor). It takes as input the public key pk, the proof P returned from

the CSP, and the most recent metadata D. The output is 1 if the integrity of all file

copies is correctly verified or 0 otherwise.

4.3 Security Model

As we have indicated in Chapter 3, two security requirements can be defined [81]: correct-

ness and soundness. The former means that the verifier accepts valid server responses, and

the latter indicates that any cheating server that passes the verification process is actually

storing the owner’s data intact.

The security of the proposed scheme can be stated using a ”game” that captures the

data possession property [8, 42, 81]. The data possession game between an adversary A
(acts as a malicious CSP) and a challenger C (acts as a verifier) consists of the following:

• Setup. C runs the KeyGen algorithm to generate a key pair (pk, sk), and sends pk

to A.

• Interact. A interacts with C to get the file copies and the verification tags set Φ.

A adaptively selects a file F and sends it to C. C divides the file into m blocks, runs

the two algorithms CopyGen and TagGen to create n distinct copies F̃ along with the

tags set Φ, and returns both F̃ and Φ to A.

Moreover, A can interact with C to perform dynamic operations on F̃. A specifies

a block to be updated, inserted, or deleted, and sends the block to C. C runs the

PrepareUpdate algorithm, sends the UpdateReq to A, and updates the local metadata
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D. A can further request challenges {chali}1≤i≤L for some parameter L ≥ 1 of A’s

choice, and return proofs {Pi}1≤i≤L to C. C runs the Verify algorithm and provides

the verification results to A. The Interact step between A and C can be repeated

polynomially-many times.

• Challenge. A decides on a file F previously used during the Interact step,

requests a challenge chal from C, and generates a proof P← Prove(F̃′,Φ, chal), where

F̃′ is F̃ except that at least one of its file copies (or a portion of it) is missing or

tampered with. Upon receiving the proof P, C runs the Verify algorithm and if

Verify(pk,P,D) returns 1, then A has won the game. Note that D is the latest

metadata held by C corresponding to the file F . The Challenge step can be

repeated polynomially-many times for the purpose of data extraction.

The proposed scheme is secure if the probability that any polynomial-time adversary A
wins the game is negligible. In other words, if a polynomial-time adversary A can win the

game with non-negligible probability, then there exists a polynomial time extractor that

can repeatedly execute the Challenge step until it extracts the blocks of data copies.

In addition, a remote checking scheme for dynamic data must be secure against the fol-

lowing types of attacks.

• File swapping attack. In this type of attacks, the remote server tries to prove the

possession of the data using blocks from different files.

• Replay attack. The remote server does not perform the data modification requests

issued by the owner, and sends stale date as a response to a challenge vector.

4.4 Proposed MB-PMDDP Scheme

4.4.1 Overview and Rationale

As mentioned in Chapter 3, generating unique differentiable copies of the data file is the

core to design a multi-copy provable data possession scheme. Identical data copies enable
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the CSP to simply deceive the owner by storing only one copy and pretending that it

stores multiple copies. Utilizing the diffusion feature of any secure encryption model, the

proposed scheme can generate distinct copies. The diffusion property ensures that there

will be an unpredictable complete change in the ciphertext, if there is a single bit change

in the plaintext [35]. Generating the distinct copies based on the diffusion feature enables

authorized users to seamlessly decrypt and access a file copy received from the CSP. The

received copy is decrypted using a single secret key (shared with the data owner), and it

is not necessarily to recognize which copy has been received.

In this chapter, we propose a MB-PMDDP scheme allowing the data owner to update

and scale the blocks of the file copies outsourced to cloud servers which may be untrusted.

Validating such dynamic data copies requires the knowledge of the block versions to ensure

that the data blocks in all copies are consistent with the most recent modifications issued

by the owner. Moreover, the verifier should be aware of the block indices to guarantee

that the CSP has inserted or added the new blocks at the requested positions in all copies.

To this end, the proposed MB-PMDDP scheme is based on using a small data structure

(metadata), which we call a map-version table.

4.4.2 Map-Version Table

The map-version table (MVT) is a small dynamic data structure stored on the verifier side

to validate the integrity and consistency of all file copies outsourced to the CSP. The MVT

consists of three columns: serial number (SN ), block number (BN ), and block version

(BV). The SN is an indexing to the file blocks. It indicates the physical position of a

block in a data file. The BN is a counter used to make a logical numbering/indexing

to the file blocks. Thus, the relation between BN and SN can be viewed as a mapping

between the logical number BN and the physical position SN . The BV indicates the

current version of file blocks. When a data file is initially created the BV of each block is

1. If a specific block is being updated, its BV is incremented by 1.

Remark 1. It is important to note that the verifier keeps only one table for unlimited

number of file copies, i.e., the storage requirement on the verifier side does not depend on
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the number of file copies on cloud servers. For n copies of a data file of size |F |, the storage

requirement on the CSP side is O(n|F |), while the verifier’s overhead is O(m) for all file

copies (m is the number of file blocks).

Remark 2. The MVT is implemented as a linked list to simplify the insertion and deletion

of table entries. For actual implementation, the SN is not needed to be stored in the

table; SN is considered to be the entry/table index, i.e., each table entry contains just

two integers BN and BV (8 bytes). Thus, the total table size is 8m bytes for all file

copies. We further note that although the table size is linear to the file size, in practice

the former would be smaller by several orders of magnitude. For example, outsourcing

unlimited number of file copies of a 1GB-file with 16KB block size requires a verifier to

keep MVT of only 512KB (less than 0.05% of the file size). More details on the MVT and

how it works will be explained later.

4.4.3 Notations

− F is a data file to be outsourced, and is composed of a sequence of m blocks, i.e.,

F = {b1, b2, . . . , bm}.

− πkey(·) is a pseudo-random permutation (PRP): key × {0, 1}log2(m) → {0, 1}log2(m). 1

− ψkey(·) is a pseudo-random function (PRF): key × {0, 1}∗ → Zp.

− Bilinear Map/Pairing. Let G1, G2, and GT be cyclic groups of prime order p.

Let ḡ and g be generators of G1 and G2, respectively. A bilinear pairing is a map

ê : G1 × G2 → GT with the following properties indicated in sub-section 3.5.2 of

Chapter 3: Bilinear, Non-degenerate, and Computable.

− H(·) is a map-to-point hash function : {0, 1}∗ → G1.

− h is a cryptographic hash function, e.g., SHA-2.

1The number of file blocks (m) will be changed due to dynamic operations on the file. We use HMAC-
SHA-1 with 160-bit output to allow up to 2160 blocks in the file.
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− EK is an encryption algorithm with strong diffusion property, e.g., AES (Advanced

Encryption Standard) [38].

4.4.4 MB-PMDDP Procedural Steps

� Key Generation. Let ê : G1 × G2 → GT be a bilinear map and g is a generator

of G2. The data owner runs the KeyGen algorithm to generate a private key x ∈ Zp
and a public key y = gx ∈ G2 along with (u1, u2, . . . , us) ∈R G1.

� Generation of Distinct Copies. For a file F = {bj}1≤j≤m, the owner runs the

CopyGen algorithm to create n differentiable copies F̃ = {F̃i}1≤i≤n, where a copy

F̃i = {b̃ij}1≤j≤m. The block b̃ij is generated by concatenating a copy number i with

the block bj, then encrypting using an encryption scheme EK , i.e., b̃ij = EK(i||bj).
The encrypted block b̃ij is fragmented into s sectors {b̃ij1, b̃ij2, . . . , b̃ijs}, i.e., the copy

F̃i = {b̃ijk}1≤j≤m
1≤k≤s

, where each sector b̃ijk ∈ Zp for some large prime p.

The authorized users need only to keep a single secret key K. Later, when an au-

thorized user receives a file copy from the CSP, he decrypts the copy blocks, removes

the copy index from the blocks header, and then recombines the decrypted blocks to

reconstruct the plain form of the received file copy.

� Generation of Tags. Given the distinct file copies F̃ = {F̃i}, where F̃i = {b̃ijk},
the data owner runs the TagGen algorithm to generate a tag σij for each block b̃ij as

σij = (H(IDF ||BN j||BVj) ·
∏s

k=1 u
b̃ijk
k )x ∈ G1 (i : 1 → n, j : 1 → m, k : 1 → s).

In the tag computation, BN j is the logical number of the block at physical position

j, BVj is the current version of that block, and IDF = Filename||n||u1|| . . . ||us is

a unique fingerprint for each file F comprising the file name, the number of copies

for this file, and the random values {uk}1≤k≤s. We assume that IDF is signed with

some owner’s signing secret key (different than x), and the CSP verifies this signature

during different scheme operations to validate the owner’s identity. Embedding the

IDF into the block tag σij prevents the CSP from cheating by using blocks from
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different files (file swapping attack).

In order to reduce storage overhead on cloud servers and lower communication cost,

the data owner generates an aggregated tag σj for the blocks at the same indices in

each copy F̃i as σj =
∏n

i=1 σij ∈ G1. Hence, instead of storing mn tags, the proposed

MB-PMDDP scheme requires the CSP to store only m tags for the files copies F̃.

Let us denote the set of aggregated tags as Φ = {σj}1≤j≤m. The data owner sends

{F̃,Φ, IDF} to the CSP, and deletes the copies and the tags from its local storage.

The MVT is stored on the local storage of the owner (or any trusted verifier).

� Dynamic Operations on the Data Copies. The dynamic operations in the

proposed MB-PMDDP scheme are performed at the block level via a request in

the general form 〈IDF ,BlockOp, j, {b∗i }1≤i≤n, σ
∗
j 〉, where IDF is the file identifier and

BlockOp corresponds to block modification (denoted by BM), block insertion (denoted

by BI), or block deletion (denoted by BD). The parameter j indicates the index of

the block to be updated, {b∗i }1≤i≤n are the new block values for all copies, and σ∗j is

the new aggregated tag for the new blocks.

� Modification. For a file F = {b1, b2, . . . , bm}, suppose the owner wants to

modify a block bj with a block b′j for all file copies F̃. The owner runs the

PrepareUpdate algorithm to do the following:

1. Updates BVj = BVj + 1 in the MVT

2. Creates n distinct blocks {b̃′ij}1≤i≤n, where b̃′ij = EK(i||b′j) is fragmented

into s sectors {b̃′ij1, b̃′ij2, . . . , b̃′ijs}
3. Creates a new tag σ′ij for each block b̃′ij as σ′ij = (H(IDF ||BN j||BVj) ·∏s

k=1 u
b̃′ijk
k )x ∈ G1, then generates an aggregated tag σ′j =

∏n
i=1 σ

′
ij ∈ G1

4. Sends a modify request 〈IDF ,BM, j, {b̃′ij}1≤i≤n, σ
′
j〉 to the CSP

Upon receiving the modify request, the CSP runs the ExecUpdate algorithm to

do the following:

1. Replaces the block b̃ij with b̃′ij∀i, and constructs updated file copies

F̃′ = {F̃ ′i}1≤i≤n
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2. Replaces σj with σ′j in the set Φ, and outputs Φ′ = {σ1, σ2, . . . , σ
′
j, . . . , σm}

� Insertion. In the block insertion operation, the owner wants to insert a new

block b̂ after position j in a file F = {b1, b2, . . . , bm}, i.e., the newly constructed

file is F ′ = {b1, b2, . . . , bj, b̂, . . . , bm+1}, where bj+1 = b̂. In the proposed MB-

PMDDP scheme, the physical block index SN is not included in the block tag.

Thus, the insertion operation can be performed without recomputing the tags

of all blocks that have been shifted after inserting the new block. Embedding

the physical index in the tag results in unacceptable computation overhead,

especially for large data files. To perform the insertion of a new block b̂ after

position j in all file copies F̃, the owner runs the PrepareUpdate algorithm to do

the following:

1. Constructs a new table entry 〈SN ,BN ,BV〉= 〈j+1, (Max{BN j}1≤j≤m)+1,

1〉, and inserts this entry in the MVT after position j

2. Creates n distinct blocks {b̂i}1≤i≤n, where b̂i = EK(i||b̂) is fragmented into

s sectors {b̂i1, b̂i2, . . . , b̂is}
3. Creates a new tag σ̂i for each block b̂i as σ̂i = (H(IDF ||BN j+1||BVj+1) ·∏s

k=1 u
b̂ik
k )x ∈ G1, then generates an aggregated tag σ̂ =

∏n
i=1 σ̂i ∈ G1. Note

that BN j+1 is the logical number of the new block with current version

BVj+1 = 1

4. Sends an insert request 〈IDF ,BI, j, {b̂i}1≤i≤n, σ̂〉 to the CSP

Upon receiving the insert request, the CSP runs the ExecUpdate algorithm to

do the following:

1. Inserts the block b̂i after position j in the file copy F̃i ∀i, and constructs a

new version of the file copies F̃′ = {F̃ ′i}1≤i≤n

2. Inserts σ̂ after position j in the set Φ, and outputs Φ′ = {σ1, . . . , σj, σ̂, . . . , σm+1},
i.e., σj+1 = σ̂

Remark 3. To prevent the CSP from cheating and using less storage, the

modified or inserted blocks for the outsourced copies cannot be identical. To this

end, the proposed scheme in this work leaves the control of creating such distinct
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blocks in the owner hand. This illustrates the linear relation between the work

done by the owner during dynamic operations and the number of copies. The

proposed scheme assumes that the CSP stores the outsourced copies on different

servers to avoid simultaneous failure and achieve a higher level of availability.

Therefore, even if the CSP is honest to perform part of the owner work, this is

unlikely to significantly reduce the communication overhead since the distinct

blocks are sent to different servers for updating the copies. The experimental

results show that the computation overhead on the owner side due to dynamic

block operations is practical.

� Append. Block append operation means adding a new block at the end of the

outsourced data. It can simply be implemented via insert operation after the

last block of the data file.

� Deletion. Block deletion operation is the opposite of the insertion opera-

tion. When one block is deleted all subsequent blocks are moved one step

forward. To delete a specific data block at position j from all copies, the

owner deletes the entry at position j from the MVT and sends a delete re-

quest 〈IDF ,BD, j, null, null〉 to the CSP. Upon receiving this request, the CSP

runs the ExecUpdate algorithm to do the following:

1. Deletes the blocks {b̃ij}1≤i≤n, and outputs a new version of the file copies

F̃′ = {F̃ ′i}1≤i≤n

2. Deletes σj from Φ and outputs Φ′ = {σ1, σ2, . . . , σj−1, σj+1, . . . , σm−1}

Figure 4.1 shows the changes in the MVT due to dynamic operations on the copies

F̃ of a file F = {bj}1≤j≤8. When the copies are initially created (Figure 4.1a),

SN j = BN j and BVj = 1: 1 ≤ j ≤ 8. Figure 4.1b shows that BV5 is incremented

by 1 for updating the block at position 5 for all copies. To insert a new block after

position 3 in F̃, Figure 4.1c shows that a new entry 〈4, 9, 1〉 is inserted in the MVT

after SN 3, where 4 is the physical position of the newly inserted block, 9 is the new

logical block number computed by incrementing the maximum of all previous logical

block numbers, and 1 is the version of the new block. Deleting a block at position 2
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from all copies requires deleting the table entry at SN 2 and shifting all subsequent

entries one position up (Figure 4.1d). Note that during all dynamic operations, the

SN indicates the actual physical positions of the data blocks in the file copies F̃.

Figure 4.1: Changes in the MVT due to different dynamic operations on copies of a file
F = {bj}1≤j≤8.

� Challenge. For challenging the CSP and validating the integrity and consistency of

all copies, the verifier sends c (# of blocks to be challenged) and two fresh keys at each

challenge: a PRP(π) key k1 and a PRF(ψ) key k2. Both the verifier and the CSP use

π keyed with k1 and the ψ keyed with k2 to generate a set Q = {(j, rj)} of c pairs of

random indices and random values, where {j} = πk1(l)1≤l≤c and {rj} = ψk2(l)1≤l≤c.

The set of random indices {j} is the physical positions (serial numbers SN ) of the

blocks to be challenged.

� Response. The CSP runs the Prove algorithm to generate a set Q = {(j, rj)} of

random indices and values, and provide an evidence that the CSP is still correctly

possessing the n copies in an updated and consistent state. The CSP responds with

a proof P = {σ, µ}, where

σ =
∏

(j,rj)∈Q

σ
rj
j ∈ G1, µik =

∑
(j,rj)∈Q

rj · b̃ijk ∈ Zp, and µ = {µik}1≤i≤n
1≤k≤s

.
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� Verify Response. Upon receiving the proof P = {σ, µ} from the CSP, the verifier

runs the Verify algorithm to check the following verification equation:

ê(σ, g)
?
= ê([

∏
(j,rj)∈Q

H(IDF ||BN j||BVj)rj ]n ·
s∏

k=1

u
∑n
i=1 µik

k , y) (4.1)

The verifier utilizes the set of random indices {j} (generated from π) and the MVT to

get the logical block number BN j and the block version BVj of each block being chal-

lenged. If the verification equation passes, the Verify algorithm returns 1, otherwise

0. The correctness of the verification equation (4.1) can be shown as follows:

ê(σ, g) = ê(
∏

(j,rj)∈Q

σ
rj
j , g) = ê(

∏
(j,rj)∈Q

[
n∏
i=1

σij]
rj , g)

= ê(
∏

(j,rj)∈Q

[
n∏
i=1

(H(IDF ||BN j||BVj) ·
s∏

k=1

u
b̃ijk
k )x]rj , g)

= ê(
∏

(j,rj)∈Q

[
n∏
i=1

(H(IDF ||BN j||BVj) ·
s∏

k=1

u
b̃ijk
k )]rj , y)

= ê(
∏

(j,rj)∈Q

n∏
i=1

H(IDF ||BN j||BVj)rj ·
∏

(j,rj)∈Q

n∏
i=1

s∏
k=1

u
rj ·b̃ijk
k , y)

= ê([
∏

(j,rj)∈Q

H(IDF ||BN j||BVj)rj ]n ·
s∏

k=1

u

∑n
i=1

∑
(j,rj)∈Q rj ·b̃ijk

k , y)

= ê([
∏

(j,rj)∈Q

H(IDF ||BN j||BVj)rj ]n ·
s∏

k=1

u
∑n
i=1 µik

k , y)

One can attempt to slightly modify the MB-PMDDP scheme to reduce the com-

munication overhead by a factor of n via allowing the CSP to compute and send

µ = {µ̂k}1≤k≤s, where µ̂k =
∑n

i=1 µik. However, this modification enables the CSP

to simply cheat the verifier as follows:
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µ̂k =
n∑
i=1

µik =
n∑
i=1

∑
(j,rj)∈Q

rj · b̃ijk =
∑

(j,rj)∈Q

rj ·
n∑
i=1

b̃ijk

Thus, the CSP can just keep the sectors summation
∑n

i=1 b̃ijk not the sectors them-

selves. Moreover, the CSP can corrupt the block sectors and the summation is still

valid. Therefore, we require the CSP send µ = {µik}1≤i≤n
1≤k≤s

, and the summation∑n
i=1µik is done on the verifier side. The challenge response protocol in the MB-

PMDDP scheme is summarized in Figure 4.2.

Verifier CSP
1. Generates a PRP key k1 and a PRF key k2.
2. Determines c (# of blocks in the challenge vector)
3. Generates a set Q = {(j, rj)},
– {j} = πk1(l)1≤l≤c,
– and {rj} = ψk2(l)1≤l≤c

-
c, k1, k2−−−−−−−−−−−−−−−→

- 4. Uses k1 and k2 to generate the set Q
- 5. Computes σ =

∏
(j,rj)∈Q σ

rj
j ∈ G1

- 6. Computes µ = {µik}1≤i≤n
1≤k≤s

, µik =
∑

(j,rj)∈Q

rj · b̃ijk ∈ Zp

-

σ, µ={µik}1≤i≤n
1≤k≤s←−−−−−−−−−−−−−−−−−−−

7. Checks ê(σ, g)
?
= ê([

∏
(j,rj)∈Q

H(IDF ||BN j||BVj)rj ]n ·
s∏

k=1

u
∑n
i=1 µik

k , y)

Figure 4.2: Challenge response protocol in the MB-PMDDP scheme.

Remark 4. The proposed MB-PMDDP scheme supports public verifiability where anyone,

who knows the owner’s public key but is not necessarily the data owner, can send a challenge

vector to the CSP and verify the response. Public verifiability can resolve disputes that

may occur between the data owner and the CSP regarding data integrity. If such a dispute

occurs, a trusted third party auditor (TPA) can determine whether the data integrity is
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maintained or not. Since the owner’s public key is only needed to perform the verification

step, the owner is not required to reveal his secret key to the TPA.

4.5 Extending Dynamic Single-Copy PDP schemes

It is possible to obtain a provable multi-copy dynamic data possession scheme by extend-

ing existing PDP models for single-copy dynamic data. Such PDP schemes selected for

extension must meet the following conditions: (i) support of full dynamic operations (mod-

ify, insert, append, and delete), (ii) support of public verifiability, (iii) based on pairing

cryptography in creating block tags (homomorphic authenticators); and (iv) block tags are

outsourced along with data blocks to the CSP (i.e., tags are not stored on the local storage

of the data owner). Meeting these conditions allows us to construct a PDP reference model

that has similar features to the proposed MB-PMDDP scheme. Therefore, we can establish

a fair comparison between the two schemes and evaluate the performance of our proposed

approach.

Below we drive a scheme by extending PDP models, which are based on authenticated

data structures, e.g., [42] and [87]. Using Merkle hash trees (MHTs) [67], we construct a

scheme labelled as TB-PMDDP (tree-based provable multi-copy dynamic data possession),

but it can also be designed using authenticated skip lists [42] or other authenticated data

structures. The TB-PMDDP is used as a reference model for comparing the proposed

MB-PMDDP scheme.

4.5.1 Merkle Hash Tree

An MHT [67] is a binary tree structure used to efficiently verify the integrity of the data.

The MHT is a tree of hashes where the leaves of the tree are the hashes of the data

blocks. Figure 4.3 shows an example of an MHT used for verifying the integrity of a file F

consisting of 8 blocks (h denotes a cryptographic hash function, e.g., SHA-2).
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hE hF 

hR 

hA hB hC hD 

h1 h2 h3 h4 h5 h6 h7 h8 

b1 b2 b3 b4 b5 b6 b7 b8 

Figure 4.3: Merkle hash tree.

The hash hj = h(bj) (1 ≤ j ≤ 8). At upper levels, hA = h(h1||h2), hB = h(h3||h4), and

so on. Finally, hR = h(hE||hF ) is the hash of the root node that is used to authenticate

the integrity of all data blocks. The data blocks {b1, b2, . . . , b8} are stored on a remote

server, and only the authentic value hR is stored locally on the verifier side. For example,

if the verifier requests to check the integrity of the blocks b2 and b6, the server will send

these two blocks along with the authentication paths A2 = {h1, hB} and A6 = {h5, hD}
that are used to reconstruct the root of the MHT. Aj – the authentication path of bj – is

a set of node siblings (grey-shaded circles) on the path from hj to the root of the MHT.

The verifier uses the received blocks and the authentication paths to recompute the root

in the following manner. The verifier constructs h2 = h(b2), h6 = h(b6), hA = h(h1||h2),

hC = h(h5||h6), hE = h(hA||hB), hF = h(hC ||hD), and hR = h(hE||hF ). After computing

hR, it is compared with the authentic value stored locally on the verifier side.

The MHT is commonly used to authenticate the values of the data blocks. In the

dynamic behavior of outsourced data, we need to authenticate both the values and the

positions of the data blocks, i.e., we need an assurance that a specific value is stored at

a specific leaf node. For example, if a data owner requires to insert a new block after

position j, the verifier needs to make sure that the server has inserted the new block at

the requested position. To validate the positions of the blocks, the leaf nodes of the MHT

are treated in a specific sequence, e.g., left-to-right sequence [62]. So, the hash of any
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internal node = h(left child || right child), e.g., hA = h(h1||h2) 6= h(h2||h1). Besides, the

authentication path Aj is viewed as an ordered set, and thus any leaf node is uniquely

specified by following the used sequence of constructing the root of the MHT.

4.5.2 Directory MHT for File Copies

In the TB-PMDDP scheme an MHT is constructed for each file copy, and then the roots

of the individual trees are used to build a hash tree which we call a directory MHT. The

key idea is to make the root node of each copy’s MHT as a leaf node in a directory MHT

used to authenticate the integrity of all file copies in a hierarchical manner. The directory

tree is depicted in Figure 4.4. The verifier can keep only one hash value (metadata)

M = h(IDF ||hDR), where IDF is a unique file identifier for a file F , and hDR is the

authenticated directory root value that can be used to periodically check the integrity of

all file copies.

��

��

hDR Directory root 

h2R hnR h1R 

MHT for copy #1 MHT for copy #2 MHT for copy #n 

h11 h12 h1m 
�� h21 h22 h2m 

�� hn1 hn2 hnm 
��

Figure 4.4: Directory tree.
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4.5.3 TB-PMDDP Procedural Steps

� Key Generation. The same as in the MB-PMDDP scheme.

� Generation of Distinct Copies. The same as in the MB-PMDDP scheme.

� Generation of Tags and Trees. Given the distinct file copies F̃ = {F̃i}, where

F̃i = {b̃ijk}, the data owner runs the TagGen algorithm to create a tag σij for each

block b̃ij as σij = (H(b̃ij) ·
∏s

k=1 u
b̃ijk
k )x ∈ G1 (i : 1→ n, j : 1→ m, k : 1→ s).

Similar to the MB-PMDDP scheme, the data owner reduces the storage overhead on

the CSP side by generating an aggregated tag σj for the blocks at the same indices

in each copy F̃i as σj =
∏n

i=1 σij ∈ G1. Let us denote the set of aggregated tags as

Φ = {σj}1≤j≤m.

The data owner then generates an MHT for each file copy F̃i. The leaf nodes of

each tree are the ordered set {h(H(b̃ij))}, i.e., the leaf nodes of the MHT are the

cryptographic hashes of H(b̃ij), and the root of the tree is denoted as hiR. Using

the roots {hiR}1≤i≤n, the data owner generates a directory MHT in which the leaf

nodes are {hiR}1≤i≤n, and the directory root is denoted as hDR. Note that the MHTs

are constructed using a specific sequence, e.g., left-to-right sequence to authenticate

both the value and the position of H(b̃ij). The owner computes a metadata M =

h(IDF ||hDR), where IDF = Filename||n||u1|| . . . ||us is a unique identifier for each

owner’s file F . The data owner sends 〈F̃,Φ, IDF , {MHTi}1≤i≤n〉 to the CSP and

deletes the copies, the tags, and the trees from its local storage. The metadata M
is stored on the local storage of the owner (or any trusted verifier).

� Dynamic Operations on the Data Copies. The dynamic operations in the TB-

PMDDP scheme are performed at the block level – as in the MB-PMDDP scheme

– via a request in the general form 〈IDF ,BlockOp, j, {b∗i }1≤i≤n, σ
∗
j 〉. IDF is the file

identifier, BlockOp is BM for modification, BI for insertion, or BD for deletion, j

indicates the index of the block to be updated, {b∗i }1≤i≤n are the new block values

for all copies, and σ∗j is the new aggregated tag for the new blocks.
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� Modification. For a file F = {b1, b2, . . . , bm}, suppose the owner wants to

modify a block bj with a block b′j for all file copies F̃. The owner runs the

PrepareUpdate algorithm to do the following:

1. Creates n distinct blocks {b̃′ij}1≤i≤n, where b̃′ij = EK(i||b′j) is fragmented

into s sectors {b̃′ij1, b̃′ij2, . . . , b̃′ijs}

2. Creates a new tag σ′ij for each block b̃′ij as σ′ij = (H(b̃′ij) ·
∏s

k=1 u
b̃′ijk
k )x ∈ G1,

then generates an aggregated tag σ′j =
∏n

i=1 σ
′
ij ∈ G1

3. Sends a modify request 〈IDF ,BM, j, {b̃′ij}1≤i≤n, σ
′
j〉 to the CSP

Upon receiving the modify request, the CSP runs the ExecUpdate algorithm to

do the following:

1. Replaces the block b̃ij with b̃′ij∀i, and constructs updated file copies F̃′ =

{F̃ ′i}1≤i≤n

2. Replaces h(H(b̃ij)) with h(H(b̃′ij)) in the leaf nodes of each copy’s MHT,

and accordingly updates the MHTs

3. Calculates the authentication paths 〈Aij〉1≤i≤n of the updated blocks at

position j in all copies. Aij is an ordered set of node siblings on the path

from the leaf node h(H(b̃′ij)) to the root of the MHT of copy i

4. Replaces σj with σ′j in the aggregated tags set Φ, and outputs

Φ′ = {σ1, σ2, . . . , σ
′
j, . . . , σm}

5. Sends 〈Aij〉1≤i≤n to the owner

Upon receiving 〈Aij〉1≤i≤n from the CSP, the owner uses these authentication

paths and {b̃′ij}1≤i≤n to generate a new directory root h′DR and update the

metadata M′ = h(IDF ||h′DR).

� Insertion. Inserting a new block b̂ after position j in a file F = {b1, b2, . . . , bm}
constructs a new file F ′ = {b1, b2, . . . , bj, b̂, . . . , bm+1}, where bj+1 = b̂. The

physical block index is not included in the block tag, and thus a new block can

be inserted without recomputing the tags of all blocks that have been shifted

after the insertion operation. MHTs are used to validate the positions of file

blocks.
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To perform the insertion of a new block b̂ after position j in all file copies, the

owner runs the PrepareUpdate algorithm to do the following:

1. Creates n distinct blocks {b̂i}1≤i≤n, where b̂i = EK(i||b̂) is fragmented into

s sectors {b̂i1, b̂i2, . . . , b̂is}

2. Creates a new tag σ̂i for each block b̂i as σ̂i = (H(b̂i) ·
∏s

k=1 u
b̂ik
k )x ∈ G1,

then generates an aggregated tag σ̂ =
∏n

i=1 σ̂i ∈ G1

3. Sends an insert request 〈IDF ,BI, j, {b̂i}1≤i≤n, σ̂〉 to the CSP

Upon receiving the insert request, the CSP runs the ExecUpdate algorithm to

do the following:

1. Inserts the block b̂i after position j in the file copy F̃i ∀i, and then adds a

leaf node h(H(b̂i)) after the leaf node h(H(b̃ij)) for each copy’s MHT. This

leads to constructing a new version of the file copies F̃′ = {F̃ ′i}1≤i≤n, and a

new version of the MHTs

2. Calculates the authentication paths 〈Âi〉1≤i≤n of the newly inserted blocks

{b̂i}1≤i≤n in all copies. Âi is an ordered set of node siblings on the path

from the leaf node h(H(b̂i)) to the root of the MHT of copy i

3. Inserts σ̂ after position j in the set Φ, and outputs Φ′ = {σ1, . . . , σj, σ̂, . . . , σm+1},
i.e., σj+1 = σ̂

4. Sends 〈Âi〉1≤i≤n to the owner

Upon receiving 〈Âi〉1≤i≤n from the CSP, the owner uses these authentication

paths and {b̂i}1≤i≤n to generate a new directory root h′DR and update the meta-

data M′ = h(IDF ||h′DR).

� Append. It can simply be implemented via insert operation after the last block

of the data file.

� Deletion. To delete a specific data block at position j from all copies, the owner

sends a delete request 〈IDF ,BD, j, null, null〉 to the CSP. Upon receiving this

request, the CSP runs the ExecUpdate algorithm to do the following:
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1. Calculates the authentication paths 〈Aij〉1≤i≤n of the blocks at position j

(blocks to be deleted) in all copies. Aij is an ordered set of node siblings on

the path from the leaf node h(H(b̃ij)) to the root of the MHT of copy i

2. Deletes the existing blocks {b̃ij}1≤i≤n and the leaf nodes {h(H(b̃ij))}1≤i≤n,

and outputs new file copies F̃′ along with a new version of the MHTs

3. Deletes σj from Φ, and outputs Φ′ = {σ1, σ2 . . . , σj−1, σj+1 . . . , σm−1}
4. Sends 〈Aij〉1≤i≤n to the owner

The owner uses the authentication information received from the CSP to gen-

erate a new directory root h′DR and update the metadata M′ = h(IDF ||h′DR).

Remark 5. Appendix A contains examples that demonstrate how the dy-

namic operations performed on the outsourced file copies affect the MHTs on

the CSP side. Moreover, these examples show how the owner uses the informa-

tion received from the CSP to generate the new directory root and update the

metadata M.

� Challenge. The same as in the MB-PMDDP scheme.

� Response. The CSP runs the Prove algorithm to generate a set Q = {(j, rj)} of

random indices and values, and provide an evidence that the CSP is still correctly

possessing the n copies in an updated and consistent state. The CSP responds with

a proof P = 〈σ, µ, {H(b̃ij)} 1≤i≤n
(j,∗)∈Q

, 〈Aij〉 1≤i≤n
(j,∗)∈Q

〉, where

σ =
∏

(j,rj)∈Q

σ
rj
j ∈ G1 , µik =

∑
(j,rj)∈Q

rj · b̃ijk ∈ Zp, and µ = {µik}1≤i≤n
1≤k≤s

.

〈Aij〉 1≤i≤n
(j,∗)∈Q

are the authentication paths of {H(b̃ij)} 1≤i≤n
(j,∗)∈Q

.

� Verify Response. Upon receiving the proof P = 〈σ, µ, {H(b̃ij)} 1≤i≤n
(j,∗)∈Q

, 〈Aij〉 1≤i≤n
(j,∗)∈Q

〉

from the CSP, the verifier runs the Verify algorithm to do the following:

1. Constructs the directory root hDR using {H(b̃ij)} 1≤i≤n
(j,∗)∈Q

and 〈Aij〉 1≤i≤n
(j,∗)∈Q
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2. Generates a value V = h(IDF ||hDR), and checks V ?
= M, where M is the

authenticated-most-recent metadata stored on the verifier side. If the checking

fails, returns 0, otherwise the Verify algorithm checks the following verification

equation:

ê(σ, g)
?
= ê(

n∏
i=1

∏
(j,rj)∈Q

H(b̃ij)
rj ·

s∏
k=1

u
∑n
i=1 µik

k , y) (4.2)

If the verification equation passes, the verifier accepts the response, otherwise rejects.

The correctness of equation (4.2) can be illustrated as follows:

ê(σ, g) = ê(
∏

(j,rj)∈Q

σ
rj
j , g) = ê(

∏
(j,rj)∈Q

[
n∏
i=1

σij]
rj , g)

= ê(
∏

(j,rj)∈Q

[
n∏
i=1

(H(b̃ij) ·
s∏

k=1

u
b̃ijk
k )x]rj , g)

= ê(
∏

(j,rj)∈Q

[
n∏
i=1

(H(b̃ij) ·
s∏

k=1

u
b̃ijk
k )]rj , y)

= ê(
∏

(j,rj)∈Q

n∏
i=1

H(b̃ij)
rj ·

∏
(j,rj)∈Q

n∏
i=1

s∏
k=1

u
rj ·b̃ijk
k , y)

= ê(
n∏
i=1

∏
(j,rj)∈Q

H(b̃ij)
rj ·

s∏
k=1

u

∑n
i=1

∑
(j,rj)∈Q rj ·b̃ijk

k , y)

= ê(
n∏
i=1

∏
(j,rj)∈Q

H(b̃ij)
rj ·

s∏
k=1

u
∑n
i=1 µik

k , y)

For the verification purpose of the TB-PMDDP scheme, it is not sufficient to check

only V ?
= M. The directory root hDR is reconstructed using hash values sent from

the CSP. Thus, if the scheme counts only on verifying V ?
=M, the CSP can simply

cheat by storing the hashes of the outsourced data blocks not the blocks themselves.

The scheme needs to verify equation (4.2) that guarantees the storage of the actual

data. The challenge response protocol is summarized in Figure 4.5.
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Verifier CSP
1. Picks c (# of blocks to be challenged),
... and two fresh keys k1 and k2

2. Generates a set Q = {(j, rj)} :
... {j} = πk1(l)1≤l≤c and {rj} = ψk2(l)1≤l≤c

-
c, k1, k2−−−−−−−−−−−−−−−→

- 3. Generates a set Q as the verifier did

- 4. Computes σ =
∏

(j,rj)∈Q σ
rj
j ∈ G1

- 5. Computes µ = {µik}1≤i≤n
1≤k≤s

, µik =
∑

(j,rj)∈Q

rj · b̃ijk ∈ Zp

- 6. Calculates {H(b̃ij)} 1≤i≤n
(j,∗)∈Q

and 〈Aij〉 1≤i≤n
(j,∗)∈Q

-

〈σ,µ,{H(b̃ij)} 1≤i≤n
(j,∗)∈Q

,〈Aij〉 1≤i≤n
(j,∗)∈Q

〉

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−
7. Constructs hDR using {H(b̃ij)} 1≤i≤n

(j,∗)∈Q
and 〈Aij〉 1≤i≤n

(j,∗)∈Q

8. Computes V = h(IDF ||hDR), and checks V ?
=M (if fails returns 0).

9. Checks ê(σ, g)
?
= ê(

n∏
i=1

∏
(j,rj)∈Q

H(b̃ij)
rj ·

s∏
k=1

u
∑n
i=1 µik

k , y)

Figure 4.5: The challenge response protocol in the TB-PMDDP scheme.

4.6 Security Analysis

In this section, we present the security analysis for the MB-PMDDP scheme. The security

proof for the TB-PMDDP is quite similar and is not presented here. For the TB-PMDDP

scheme, we should however note that the verification step of the metadataM will fail unless

the CSP sends the correct information {H(b̃ij)} 1≤i≤n
(j,∗)∈Q

along with the accurate authentica-

tion paths 〈Aij〉 1≤i≤n
(j,∗)∈Q

for the blocks being challenged. This is due to the collision resistance

property of the cryptographic hash function h and the used sequence to reconstruct the

directory root hDR.
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The MB-PMDDP scheme utilizes PRP (π) and PRF (ψ) to compress the challenge,

and thus reducing the communication cost. Instead of sending the set Q of c pairs of

random indices and values to the CSP, the verifier sends only two keys k1 and k2 (over

secure communication). Using π and ψ in this manner is proved to be secure [10].

For the correctness security requirement, we have previously shown the correctness of

equation (4.1). For the soundness security requirement, we will show that if a polynomial-

time adversary A can win the data possession game (with non-negligible probability) with

a challenger C, then A is actually storing the n data copies F̃ in an updated and consistent

state. For an adversary A to cheat the verifier, he has to respond with a malicious proof

P′ 6= P and Verify(pk,P′) returns 1.

The soundness of the MB-PMDDP scheme is based on the unforgeability of the used

HLAs (homomorphic linear authenticators), which depends on the security of the compu-

tational Diffie-Hellman (CDH) and the discrete logarithm (DL) problems (refer to Section

3.6 for the definitions of CDH and DL problems).

The following theorem proves the unforgeability of the HLAs used in the proposed

MB-PMDDP scheme. Our approach to prove the theorem is by investigating all possible

combinations of malicious CSP responses 〈{σ′, µ′}, {σ, µ′}, {σ′, µ}〉, and checking whether

any of these combinations can pass the verification equation (3.1).

Theorem 1. Assuming the hardness of both the CDH and the DL problems in bilinear

groups, the verifier of the proposed MB-PMDDP scheme accepts a response to a challenge

vector only if a correctly computed proof P = {σ, µ}, where µ = {µik}1≤i≤n
1≤k≤s

is sent from

the CSP.

Proof. We prove the theorem by contradiction. The goal of an adversaryA (malicious CSP)

is to generate a response that is not correctly computed and pass the verification process

done by a challenger C. Let P′ = {σ′, µ′} be the A’s response, where µ′ = {µ′ik}1≤i≤n
1≤k≤s

.

Let P = {σ, µ} be the expected response from an honest CSP, where σ =
∏

(j,rj)∈Q σ
rj
j ,

µ = {µik}1≤i≤n
1≤k≤s

, and µik =
∑

(j,rj)∈Q rj · b̃ijk.

According to the correctness of MB-PMDDP scheme, the expected proof P = {σ, µ}
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satisfies the verification equation, i.e.,

- ê(σ, g) = ê([
∏

(j,rj)∈Q

H(IDF ||BN j||BVj)rj ]n ·
s∏

k=1

u
∑n
i=1 µik

k , y)

Assume that σ′ 6= σ, and σ′ passes the verification equation, then we have

- ê(σ′, g) = ê([
∏

(j,rj)∈Q

H(IDF ||BN j||BVj)rj ]n ·
s∏

k=1

u
∑n
i=1 µ

′
ik

k , y)

Obviously, if µ′ik = µik ∀(i, k), it follows from the above verification equations that σ′ = σ

which contradicts our assumption. Let us define ∆µik = µ′ik − µik (1 ≤ i ≤ n, 1 ≤ k ≤ s).

It must be the case that at least one of {∆µik}1≤i≤n
1≤k≤s

is nonzero. Dividing the verification

equation for the malicious response by the verification equation for the expected response,

we obtain

ê(σ′ · σ−1, g) = ê(
s∏

k=1

u
∑n
i=1 ∆µik

k , y)

ê(σ′ · σ−1, g) = ê(
s∏

k=1

u
x·
∑n
i=1 ∆µik

k , g)

σ′ · σ−1 =
s∏

k=1

u
x·
∑n
i=1 ∆µik

k .

We set uk = gαkhβk for αk, βk ∈ Zp, and thus

σ′ · σ−1 =
s∏

k=1

(gαkhβk)x·
∑n
i=1 ∆µik

σ′ · σ−1 =
s∏

k=1

(yαkhx.βk)
∑n
i=1 ∆µik

σ′ · σ−1 = y
∑s
k=1 αk·

∑n
i=1 ∆µik · hx·

∑s
k=1 βk·

∑n
i=1 ∆µik

hx = (σ′ · σ−1 · y−
∑s
k=1 αk·

∑n
i=1 ∆µik)

1∑s
k=1

βk·
∑n
i=1

∆µik .

Hence, we have found a solution to the CDH problem unless evaluating the exponent

causes a division by zero. However, we noted that not all of {∆µik}1≤i≤n
1≤k≤s

can be zero and

the probability that βk = 0 is 1
p
, which is negligible. Therefore, if σ′ 6= σ, we can use the
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adversary A to break the CDH problem, and thus we guarantee that σ′ must be equal to

σ.

It is only the values µ′ = {µ′ik}1≤i≤n
1≤k≤s

and µ = {µik}1≤i≤n
1≤k≤s

that can differ. Assume that

the adversary A responds with σ′ = σ and µ′ 6= µ. Now we have

ê(σ, g) = ê([
∏

(j,rj)∈Q

H(IDF ||BN j||BVj)rj ]n ·
s∏

k=1

u
∑n
i=1 µik

k , y) = ê(σ′, g) =

ê([
∏

(j,rj)∈Q

H(IDF ||BN j||BVj)rj ]n ·
s∏

k=1

u
∑n
i=1 µ

′
ik

k , y)

from which we conclude that

ê([
∏

(j,rj)∈Q

H(IDF ||BN j||BVj)rj ]n ·
s∏

k=1

u
∑n
i=1 µik

k , y) =

ê([
∏

(j,rj)∈Q

H(IDF ||BN j||BVj)rj ]n ·
s∏

k=1

u
∑n
i=1 µ

′
ik

k , y).

Thus,

1 = ê(
s∏

k=1

u
∑n
i=1 ∆µik

k , y)

1 =
s∏

k=1

(gαkhβk)
∑n
i=1 ∆µik

1 = g
∑s
k=1 αk.

∑n
i=1 ∆µik · h

∑s
k=1 βk.

∑n
i=1 ∆µik

h = g
−

∑s
k=1 αk·

∑n
i=1 ∆µik∑s

k=1
βk·

∑n
i=1

∆µik .

Now, we have found a solution to the DL problem unless evaluating the exponent

causes a division by zero. However, the probability that βk = 0 is 1
p
, which is negligible.

Therefore, if there is at least one difference between {µ′ik}1≤i≤n
1≤k≤s

and {µik}1≤i≤n
1≤k≤s

, we can use

the adversary A to break the DL problem. As a result, we guarantee that {µ′ik} must be
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equal to {µik} ∀(i, k). �

Data Extraction. We have shown that if a polynomial-time adversary A can win the

data possession game (with non-negligible probability) with a challenger C, then A is

actually storing the data in an uncorrupted state. For the purpose of data extraction, the

challenger C interacts with A to extract data blocks. Suppose that C challenges c blocks,

namely the blocks with indices {j1, j2, . . . , jc}, thenA responds with a proof P that contains

σ = σ
rj1
j1
·σrj2j2 . . . σ

rjc
jc

and µ = {µik}1≤i≤n
1≤k≤s

, where µik = rj1 ·b̃ij1k+rj2 ·b̃ij2k+· · ·+rjc ·b̃ijck. The

challenger C can extract the actual data blocks {b̃ijk} in polynomially-many interactions

with A. If the challenge-response phase has been repeated c times (each time we challenge

c blocks), then there will be c proofs {P1,P2, . . . ,Pc}. Thus, a system of linear equations

can be constructed as follows.

µ1
11 = r1

j1
· b̃1j11 + r1

j2
· b̃1j21 + · · ·+ r1

jc · b̃1jc1

...

µc11 = rcj1 · b̃1j11 + rcj2 · b̃1j21 + · · ·+ rcjc · b̃1jc1

...

µcns = rcj1 · b̃nj1s + rcj2 · b̃nj2s + · · ·+ rcjc · b̃njcs

Solving this system of linear equations yields the data blocks {b̃ijk}.

Finally, the MB-PMDDP scheme is secure against the following two attacks:

• File swapping attack. The file identifier IDF is embedded into the block tag, and

thus the CSP cannot use blocks from different files and pass the auditing procedures

even if the owner uses the same secret key x with all his files.

• Replay attack. If the CSP does not honestly perform the data modification requests

99



4.7. PERFORMANCE ANALYSIS

issued by the owner, and sends old blocks and old tags during the challenge-response

protocol, it will be detected. The block version BVj – incremented in the MVT with

each modify request – is embedded into the block tag as a countermeasure against

such replay attacks.

4.7 Performance Analysis

Here we evaluate the performance of the presented schemes: MB-PMDDP and TB-PMDDP.

The file F used in our performance analysis is of size 64MB with 4KB block size. Without

loss of generality, we assume that the desired security level is 128-bit. Thus, we utilize an

elliptic curve defined over Galois field GF (p) with |p| = 256 bits (a point on this curve

can be represented by 257 bits using compressed representation [14]), and a cryptographic

hash of size 256 bits (e.g., SHA-256).

The computation cost for the two schemes is estimated in terms of the used crypto-

graphic operations, which are notated in Table 4.1. G indicates a group of points over a

suitable elliptic curve in the bilinear pairing.

Table 4.1: Notation of cryptographic operations

Notation Description Notation Description

hSHA Cryptographic hashing MZp Multiplication in Zp
HG Hashing to G AZp Addition in Zp
EG Exponentiation in G P Bilinear pairing
MG Multiplication in G EK Encryption under a key K

Let n, m, and s denote the number of copies, the number of blocks per copy, and

the number of sectors per block, respectively. Let c denotes the number of blocks to be

challenged, and |F | denotes the size of the file copy. Let the keys used with the PRP

and the PRF be of size 128 bits. Table 4.2 presents a theoretical analysis for the setup,

storage, communication, computation, and dynamic operations costs of the two schemes:

MB-PMDDP and TB-PMDDP.
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4.7.1 Comments

Sytem Setup. Table 4.2 shows that the setup cost of the MB-PMDDP scheme is less than

that of the TB-PMDDP scheme. The TB-PMDDP scheme takes some extra cryptographic

hash operations to prepare the MHTs for the file copies to generate the metadata M.

Storage overhead. It is the additional space used to store some information other than

the outsourced file copies F̃ (n|F | bits are used to store F̃). The storage overhead on the

CSP for the MB-PMDDP scheme is much less than that of the TB-PMDDP model. Both

schemes need some additional space to store the aggregated block tags Φ = {σj}1≤j≤m,

where σj is a group element that can be represented by 257 bits. Besides Φ, the TB-

PMDDP scheme needs to store an MHT for each file copy which costs additional storage

space on the cloud servers. The MHTs can be computed on the fly during the operations

of the TB-PMDDP scheme. This slight modification can reduce the storage overhead on

the remote servers, but it will negatively affect the overall system performance. The MHTs

are needed through each dynamic operation of the file blocks and through the verification

phase of the system. Thus, being not explicitly stored on the CSP can influence the system

performance. For different number of copies of the file F , Figure 4.6a presents the CSP

storage overhead (in MB) of the two schemes. An important feature of the MB-PMDDP

scheme is that the CSP storage overhead is independent of the number of copies n, while

it is linear in n for the TB-PMDDP scheme. As shown in Figure 4.6a, for 20 copies of

the file F the overheads on the CSP are 0.50MB and 20.50MB for the MB-PMDDP and

TB-PMDDP schemes, respectively (about 97% reduction). Reducing the storage overhead

is economically a key feature to reduce the fees paid by the customers.

Regarding the verifier storage overhead, the MB-PMDDP scheme keeps an MVT on

the verifier side compared with M (one hash value) for the TB-PMDDP. It is important

to note there is only one table for all file copies, which mitigates the storage overhead

on the verifier side. An entry of the MVT is of size 8 bytes (two integers), and the total

number of entries equals to the number of file blocks. During implementation the SN is

not needed to be stored in the table; SN is considered to be the entry/table index (the

MVT is implemented as a linked list). The size of the MVT for the file F is only 128KB
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Figure 4.6: CSP storage overhead and communication cost of the MB-PMDDP and TB-
PMDDP schemes.

for unlimited number of copies.

Communication cost. From Table 4.2, the communication cost of the MB-PMDDP

scheme is much less than that of the TB-PMDDP scheme. During the response phase, the

map-based scheme sends one element σ (257 bits) and µ = {µik}1≤i≤n
1≤k≤s

, where µik is repre-

sented by 256 bits. On the other hand, the tree-based approach sends 〈σ, µ, {H(b̃ij)} 1≤i≤n
(j,∗)∈Q

,

〈Aij〉 1≤i≤n
(j,∗)∈Q

〉, where eachH(b̃ij) is represented by 257 bits, and Aij is an authentication path

of length O(log2m). Each node along Aij is a cryptographic hash of size 256 bits. For dif-

ferent number of copies of the file F , the communication cost (in MB) during the response

phase of the two schemes is depicted in Figure 4.6b. The response of the MB-PMDDP

scheme for 20 copies of F is 0.078MB, while it is 4.29MB for the TB-PMDDP scheme

(about 98% reduction). The challenge for both schemes is about 34 bytes.

Computation cost. The computation cost of the two schemes is estimated in terms of

the cryptographic operations (see Table 4.1) needed to generate the proof P and check the

verification equation that validates P. As observed from Table 4.2, the cost expression of

the proof for the MB-PMDDP scheme has two terms linear in the number of copies n,
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while the TB-PMDDP scheme has three terms linear in n. Moreover, the MB-PMDDP

scheme contains only one term linear in n in the verification cost expression, while there

are three terms linear in n in the verification cost expression for the TB-PMDDP scheme.

These terms affect the total computation time when dealing with a large number of copies

in practical applications.

Dynamic operations cost. Table 4.2 also presents the cost of dynamic operations for

both schemes. The communication cost of the MB-PMDDP scheme due to dynamic

operations is less than that of the TB-PMDDP scheme for the owner sends a request

〈IDF ,BlockOp, j, {b∗i }1≤i≤n, σ
∗
j 〉 to the CSP and receives no information back. During the

dynamic operations of the TB-PMDDP scheme, the owner sends a request to the CSP

and receives the authentication paths which are of order O(n log2(m)). The authentication

paths for updating 20 copies of F ≈ 8.75KB.

The owner in both schemes uses nEK operations to create the distinct blocks {b∗i }1≤i≤n,

and (s+ 1)n EG + nHG+ (sn+n - 1)MG to generate the aggregated tag σ∗j (the delete

operation does not require this computations). For the MB-PMDDP scheme, the owner

updates the state (the map-version table) without usage of cryptographic operations (add,

remove, or modify a table entry). On the other hand, updating the state (MHTs on the

CSP andM on the owner) of the TB-PMDDP scheme costs nHG + (2n log2(m) + 3n)hSHA

to update the MHTs of the file copies according to the required dynamic operations, and

regenerate the new directory root that constructs a new M. The experimental results

show that updating the state of the TB-PMDDP scheme has insignificant effect on the

total computation time of the dynamic operations.

4.8 Implementation and Experimental Evaluation

4.8.1 Implementation

We have implemented the proposed MB-PMDDP scheme and the TB-PMDDP reference

model on top of Amazon Elastic Compute Cloud (Amazon EC2) [5] and Amazon Simple
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Storage Service (Amazon S3) [6] cloud platforms. Through Amazon EC2 customers can

lunch and manage Linux/Unix/Windows server instances (virtual servers) in Amazon’s

infrastructure. The number of EC2 instances can be automatically scaled up and down

according to customers’ needs. Amazon S3 is a web storage service to store and retrieve

almost unlimited amount of data. Moreover, it enables customers to specify geographic

locations for storing their data.

Our implementation of the presented schemes consists of three modules: OModule

(owner module), CModule (CSP module), and VModule (verifier module). OModule, which

runs on the owner side, is a library that includes KeyGen, CopyGen, TagGen, and PrepareUp-

date algorithms. CModule is a library that runs on Amazon EC2 and includes ExecuteUpdate

and Prove algorithms. VModule is a library to be run at the verifier side and includes the

Verify algorithm.

In the experiments, we do not consider the system pre-processing time to prepare the

different file copies and generate the tags set. This pre-processing is done only once during

the life time of the system which may be for tens of years. Moreover, in the implementation

we do not consider the time to access the file blocks, as the state-of-the-art hard drive

technology allows as much as 1MB to be read in just few nanoseconds [80]. Hence, the

total access time is unlikely to have substantial impact on the overall system performance.

Implementation settings. A ”large” Amazon EC2 instance is used to run CModule.

Through this instance, a customers gets total memory of size 7.5GB and 4 EC2 Compute

Units (2 virtual cores with 2 EC2 Compute Units each). One EC2 Compute Unit provides

the equivalent CPU capacity of a 1.0 - 1.2GHz 2007 Opteron or 2007 Xeon processor [4].

The OModule and VModule are executed on a desktop computer with Intel(R) Xeon(R)

2GHz processor and 3GB RAM running Windows XP. We outsource copies of a data

file of size 64MB to Amazon S3. Algorithms (encryption, pairing, hashing, etc.) are

implemented using MIRACL library version 5.4.2. For 128-bit security level, the elliptic

curve group we work on has a 256-bit group order. In the experiments, we utilize the

Barreto-Naehrig(BN)[13] curve defined over prime field GF (p) with |p| = 256 bits and

embedding degree = 12 (the BN curve with these parameters is provided by the MIRACL

library).
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4.8.2 Experimental Evaluation

We compare the presented two schemes from various perspectives: proof computation

times, verification times, and cost of dynamic operations. It has been reported in [8] that

if the remote server is missing a fraction of the data, then the number of blocks that

needs to be checked in order to detect server misbehavior with high probability is constant

independent of the total number of file blocks. For example, if the server deletes 1% of

the data file, the verifier only needs to check for c = 460-randomly chosen blocks of the

file so as to detect this misbehavior with probability larger than 99%. Therefore, in our

experiments, we use c = 460 to achieve a high probability of assurance.

Proof computation time. For different number of copies, Figure 4.7a presents the proof

computation times (in seconds) to provide an evidence that the file copies are actually

stored on the cloud servers in an updated, uncorrupted, and consistent state. The timing

curve of the MB-PMDDP scheme is much less than that of the TB-PMDDP scheme. For

20 copies, the proof computation times for the MB-PMDDP and the TB-PMDDP schemes

are 1.51 and 5.58 seconds, respectively (about 73% reduction in the computation time).

As observed from Figure 4.7a, the timing curve of the TB-PMDDP scheme grows with

increasing number of copies at a rate higher than that of the MB-PMDDP scheme. That

is because the proof cost expression of the TB-PMDDP scheme contains more terms which

are linear in the number of copies n (Table 4.2).

Verification time. Figure 4.7b presents the verification times (in seconds) to check

the responses/proofs received from the CSP. The MB-PMDDP scheme has verification

times less than that of the TB-PMDDP scheme. For 20 copies, the verification times for

the MB-PMDDP and the TB-PMDDP schemes are 1.58 and 3.13 seconds, respectively

(about 49% reduction in the verification time). The verification timing curve of the MB-

PMDDP scheme is almost constant. There is a very small increase in the verification

time with increasing number of copies. This is due to the fact that although the term

s(n− 1)AZp in the verification cost of the MB-PMDDP scheme is linear in n (Table 4.2),

in our experiments its numerical value is quite small compared to those of the other terms

in the cost expression. This feature makes the the MB-PMDDP scheme computationally
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Figure 4.7: Computation costs of the MB-PMDDP and TB-PMDDP schemes.

cost-effective and more efficient when verifying a large number of file copies.

Dynamic operations cost. For different number of copies, Table 4.3 presents the compu-

tation times (in seconds) on the owner side of the two schemes due to dynamic operations

on a single block. The owner computation times for both schemes are approximately equal.

The slight increase of the TB-PMDDP scheme is due to some additional hash operations

required to regenerate a new directory root that constructs a new M (Table 4.2). As

noted, the computation overhead on the owner side is practical. It takes about 5 seconds

to modify/insert/append a block of size 4KB on 20 copies (< 1 minute for 200 copies). In

the experiments, we use only one desktop computer to accomplish the organization (data

owner) work. In practice during updating the outsourced copies, the owner may choose

to split the work among a few devices inside the organization or use a single device with

a multi-core processor which is becoming prevalent these days, and thus the computation

time on the owner side is significantly reduced in many applications.
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Table 4.3: Owner computation times (sec) due to dynamic operations on a single block.

# of Copies 1 5 10 15 20

MB-PMDDP 0.261 1.304 2.608 3.913 5.217
TB-PMDDP 0.261 1.305 2.610 3.916 5.221

4.9 Identifying Corrupted Copies

Here, we utilize similar ideas to that applied in the previous chapter to identify which

copies have been corrupted by slightly modifying the proposed MB-PMDDP scheme. Only

if all copies stored by the CSP are intact and consistent, the generated proof P = {σ, µ}
will be valid and will pass the verification equation (4.1). Thus, the overall system integrity

check fails when there is one or more corrupted copies. To address this issue and recognize

the corrupted copies, a slight modification can be applied to the MB-PMDDP scheme.

Through this modification, block tags are not aggregated, i.e., Φ = {σij} 1≤i≤n
1≤j≤m

. As a

response to a challenge sent from the verifier, the CSP computes µ = {µik}1≤i≤n
1≤k≤s

as before,

but σ =
∏

(j,rj)∈Q[
∏n

i=1 σij]
rj ∈ G1. Upon receiving the proof P = {σ, µ}, the verifier first

validates P using equation (4.1). In case of checking failure, the CSP sends σ = {σi}1≤i≤n,

where σi =
∏

(j,rj)∈Q σ
rj
ij . Thus, the verifier has two lists σList = {σi}1≤i≤n and µList =

{µik}1≤i≤n
1≤k≤s

(µList is a two dimensional list).

The verifier can utilize a recursive divide-and-conquer approach (binary search) [46]

to identify the indices of corrupted copies. The two lists σList and µList are divided into

halves: σList→ (σLeft:σRight), and µList→ (µLeft:µRight). The verifier applies equation

(4.1) recursively on σLeft with µLeft and σRight with µRight. To generate one σ that is used

during the recursive application of equation (4.1), individual tags in σLeft or σRight are

aggregated via multiplication. The procedural steps of identifying the indices of corrupted

copies are indicated in Algorithm 2.

The input parameters of the BS (binary search) algorithm are σList, µList, start (indi-

cates the start index of the currently working lists), and end (indicates the last index of

the currently working lists). Initially, the BS algorithm is called with (σList, µList, 1, n).
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Algorithm 2: BS(σList, µList, start, end)

begin
len←− (end−start)+1 /* The list length */
if len = 1 then

σ ←− σList[start] {µk}1≤k≤s ←− µList[start][k]

ê(σ, g)
?
= ê(

∏
(j,rj)∈QH(IDF ||BN j||BVj)rj ·

∏s
k=1 u

µk
k , y)

if NOT verified then
invalidList.Add(start)

end

else

σ ←−
∏len

i=1 σList[start+i− 1]
{µik}1≤i≤len

1≤k≤s
←− µList[start+i− 1][k]

ê(σ, g)
?
= ê([

∏
(j,rj)∈QH(IDF ||BN j||BVj)rj ]len ·

∏s
k=1 u

∑len
i=1 µik

k , y)

if NOT verified then
/* work with the left and right halves of σList and µList */

mid←− b(start+end)/2c /* List middle */
BS(σList, µList, start, mid) /* Left part */
BS(σList, µList, mid+1, end) /* Right part */

end

end

end

A global data structure invalidList is used to store the indices of corrupted copies.

This slight modification to the proposed MB-PMDDP scheme will be associated with

some extra storage overhead on the cloud servers. The CSP has to store mn tags for the

file copies F̃ (m tags in the original version). Moreover, the challenge-response phase may

be done in two rounds if the initial round to verify all copies fails.

We design experiments (using same file/parameters from Section 4.8) to show the effect

of identifying the corrupted copies on the verification time. We generate 100 copies, which

are verified in 1.584 seconds when all copies are accurate. A percentage – ranging from 1%

to 20% – of the file copies is randomly corrupt. Figure 4.8 shows the verification time (in
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seconds) with different corrupted percentages. The verification time is about 20.58 seconds

when 1% of the copies are invalid.
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Figure 4.8: Verification times with different percentages of corrupted copies.

As observed from Figure 4.8, when the percentages of corrupted copies are up to 15%

of the total copies, the performance of using the BS algorithm in the verification is more

efficient than individual verification for each copy. It takes about 1.58 seconds to verify

one copy, and thus individual verifications of 100 copies requires 100×1.58 = 158 seconds.

Shortly, a slight modification can be applied to the proposed scheme to support the fea-

ture of identifying the corrupted copies at the cost of some extra storage, communication,

and computation overheads. It is crucial for the CSP – to remain in business and maintain

a good reputation – to send valid responses to verifier’s challenges. Invalid responses are

sent in very rare situations, and thus the original version of the proposed scheme is used

in most of the time.

Remark 6. To validate the integrity of outsourced data, the MB-PMDDP scheme relies

on checking the relationship between the data blocks and their authentication tags. For

the TB-PMDDP scheme, it relies on that relationship and the hash trees structure. There-

fore, the divide-and-conquer approach used to identify corrupted copies cannot be directly
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applied to the TB-PMDDP scheme. Instead, a more complex method should be used to

efficiently locate the corruption under a two-level hash tree.

4.10 Summary

Outsourcing data to remote servers has become a growing trend for many organizations

to alleviate the burden of local data storage and maintenance. In this chapter, we have

studied the problem of creating multiple copies of dynamic data file and verifying those

copies stored on untrusted cloud servers.

We have proposed a new PDP scheme (referred to as MB-PMDDP), which supports

outsourcing of multi-copy dynamic data, where the data owner is capable of not only

archiving and accessing the data copies stored by the CSP, but also updating and scaling

these copies on the remote servers. To the best of our knowledge, the proposed scheme is the

first to address multiple copies of dynamic data. The interaction between the authorized

users and the CSP is considered in our scheme, where the authorized users can seamlessly

access a data copy received from the CSP using a single secret key shared with the data

owner. Moreover, the proposed scheme supports public verifiability, enables arbitrary

number of auditing, and allows possession-free verification where the verifier has the ability

to verify the data integrity even though he neither possesses nor retrieves the file blocks

from the server.

The MB-PMDDP scheme is proved to be secure against colluding servers, where only

valid responses can be accepted from the CSP. Through performance analysis and experi-

mental results, we have demonstrated that the proposed MB-PMDDP scheme outperforms

the TB-PMDDP approach derived from a class of dynamic single-copy PDP models. The

TB-PMDDP leads to high storage overhead on the remote servers and high computations

on both the CSP and the verifier sides. The MB-PMDDP scheme significantly reduces the

computation time during the challenge-response phase, which makes it more practical for

applications where a large number of verifiers are connected to the CSP causing a huge

computation overhead on the servers. Besides, it has lower storage overhead on the CSP,
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and thus reduces the fees paid by the cloud customers. The CSP’s response and dynamic

block operations of the map-based approach are done with less communication cost than

that of the tree-based approach.

A slight modification can be done on the proposed scheme to support the feature of

identifying the indices of corrupted copies. The corrupted data copy can be reconstructed

even from a complete damage using duplicated copies on other servers.
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Chapter 5

Dynamic Data and Mutual Trust

To complement our research, in this chapter we consider achieving mutual trust between

data owners and cloud service providers (CSPs). We propose a cloud-based storage scheme

[21, 17] that enables the data owner to utilize facilities offered by the CSP, and release con-

cerns regarding confidentiality, integrity, and access control of the outsourced data. Mean-

while, a dishonest owner is not able to falsely accuse the CSP and claim data corruption

over cloud servers to get illegal compensations. Section 5.1 highlights the motivation of

this work. Section 5.2 contains some related concepts. Our system and assumptions are

presented in Section 5.3. Some techniques pertaining to the design of our proposed scheme

are reviewed in Section 5.4. The proposed scheme is elaborated in Section 5.5. Section 5.6

contains the security analysis of the proposed scheme. The performance analysis is shown

in Section 5.7. Section 5.8 presents the implementation and experimental results. Section

5.9 discusses a slight modification to the proposed scheme to optimize the communication

cost. The chapter is summarized in Section 5.10.

5.1 Introduction

Storage-as-a-Service (SaaS) offered by cloud service providers (CSPs) is a paid facility

that enables organizations to outsource their sensitive data to be stored on remote servers.
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Thus, SaaS reduces the maintenance cost and mitigates the burden of large local data

storage at the organization’s end. A data owner pays for a desired level of security and

must get some compensation in case of any misbehavior committed by the CSP. On the

other hand, the CSP needs a protection from any false accusation that may be claimed by

the owner to get illegal compensations. This concern, if not properly handled, can cause

the CSP to go out of business [73].

The material of this chapter addresses some important issues related to outsourcing

the storage of data, namely dynamic data, newness, mutual trust, and access control. Dy-

namic scalability of data is one of the core design principles of data outsourcing for various

applications. This means that the remotely stored data can be not only accessed by au-

thorized users, but also updated and scaled by the owner. After updating, the authorized

users should receive the latest version of the data (newness property), i.e., a technique is

required to detect whether the received data is stale. This issue is crucial for applications

in which critical decisions are taken based on the received data. For example, in e-Health

applications a physician may write a prescription based on a patient’s medical history

received from remote servers. If such medical data is not up-to-date, the given prescrip-

tion may conflict with the patient’s current circumstances causing severe health problems.

Mutual trust between the data owner and the CSP is another imperative issue, which is

addressed in this chapter. A mechanism is needed to determine the dishonest party, i.e.,

misbehavior from any side should be detected and the responsible party is identified. Last

but not least, the access control is considered, which allows the data owner to grant or

revoke access rights to the outsourced data.

In this work, we propose a cloud-based storage scheme that allows the data owner to

benefit from the facilities offered by the CSP and enables indirect mutual trust between

them. The proposed scheme has four important features: (i) it allows the owner to out-

source sensitive data to a CSP, and perform full block-level dynamic operations on the

outsourced data, i.e., block modification, insertion, deletion, and append, (ii) it ensures

that authorized users (i.e., those who have the right to access the owner’s file) receive the

latest version of the outsourced data, (iii) it enables indirect mutual trust between the

owner and the CSP, and (iv) it allows the owner to grant or revoke access to the out-
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sourced data. We discuss the security issues of the proposed scheme. Besides, we justify

its performance through theoretical analysis and a prototype implementation on Amazon

cloud platform to evaluate storage, communication, and computation overheads.

5.2 Related Concepts

Existing research close to our work can be found in the areas of integrity verification

of outsourced data, cryptographic file systems in distributed networks, access control of

outsourced data, and and non-repudiation protocols. The reader can refer to Chapter 2

for more details about verifying the integrity of data stored on remote servers using PDP

(provable data possession) and POR (proof of retrievability) techniques.

5.2.1 Cryptographic File Systems

Kallahalla et al. [57] designed a cryptography-based file system called Plutus for secure

sharing of data on untrusted servers. Some authorized users of the data have the privilege

to read and write, while others can only read the data. In Plutus, a file-group represents a

set of files with similar attributes, and each file-group is associated with a symmetric key

called file-lockbox key. A data file is fragmented into blocks, where each block is encrypted

with a unique symmetric key called a file-block key. The file-block key is further encrypted

with the file-lockbox key of the file-group to which the data file belongs. If the data owner

wants to share a file-group with a set of users, the file-lockbox key is just distributed to

them. Plutus supports two operations on the file blocks: read and write/modify. Delete

operation can be supported by overwriting an existing block with null.

Goh et al. [50] have presented SiRiUS, which is designed to be layered over existing

file systems such as NFS (network file system) to provide end-to-end security. To enforce

access control in SiRiUS, each data file (d-file) is attached with a metadata file (md-file)

that contains an encrypted key block for each authorized user with some access rights (read

or write). More specifically, the md-file represents the d-file’s access control list (ACL). The
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d-file is encrypted using a file encryption key (FEK), and each entry in the ACL contains an

encrypted version of the FEK under the public key of one authorized user. For large-scale

sharing, the authors in [50] presented SiRiUS-NNL that uses NNL (Naor-Naor-Lotspiech)

broadcast encryption algorithm [70] to encrypt the FEK of each file instead of encrypting

using each authorized user’s public key. SiRiUS supports two operations on the file blocks:

read and write/modify. Other cryptographic file systems can be found in the literature,

e.g., [23, 31, 63]

5.2.2 Access Control for Outsourced Data

Commonly, traditional access control techniques assume the existence of the data owner

and the storage servers in the same trust domain. This assumption, however, no longer

holds when the data is outsourced to a remote CSP, which takes the full charge of the

outsourced data management, and resides outside the trust domain of the data owner. A

feasible solution can be presented to enable the owner to enforce access control of the data

stored on a remote untrusted CSP. Through this solution, the data is encrypted under

a certain key, which is shared only with the authorized users. The unauthorized users,

including the CSP, are unable to access the data since they do not have the decryption

key. This general solution has been widely incorporated into existing schemes [57, 50, 9, 40],

which aim at providing data storage security on untrusted remote servers. Another class of

solutions utilizes attribute-based encryption (ABE) to achieve fine-grained access control.

ABE [53]1 is a public key cryptosystem for one-to-many communications that enables

fine-grained sharing of encrypted data. The ABE associates the ciphertext with a set

of attributes, and the private key with an access structure (policy). The ciphertext is

decrypted if and only if the associated attributes satisfy the access structure of the private

key. Access revocation in ABE-based systems is an issue since each attribute is conceivably

shared by many users. Examples of ABE-based systems for achieving access control of

remotely stored data are [90, 91, 71].

1The construction presented in [53] is called key-policy ABE (KP-ABE), which contrasts with an-
other construction called ciphertext-policy ABE (CP-ABE) [22]. In the CP-ABE, an access structure is
associated with the ciphertext, and a set of attributes is associated with the private key.

116



5.2. RELATED CONCEPTS

Based on proxy re-encryption [24], Ateniese et al. [9] have introduced a secure dis-

tributed storage protocol. In their protocol, a data owner encrypts the blocks with sym-

metric data keys, which are encrypted using a master public key. The owner keeps a master

private key to decrypt the symmetric data keys. Using the master private key and the au-

thorized user’s public key, the owner generates proxy re-encryption keys. A semi-trusted

server then uses the proxy re-encryption keys to translate a ciphertext into a form that

can be decrypted only by granted users, and thus enforces access control for the data.

Vimercati et al. [40] have constructed a scheme for securing data on semi-trusted

storage servers based on key derivation methods of [7]. In their scheme, a secret key is

assigned to each authorized user, and data blocks are grouped based on users that can

access these blocks. One key is used to encrypt all blocks in the same group. Moreover,

the data owner generates public tokens to be used along with the user’s secret key to derive

decryption keys of specific blocks. The blocks and the tokens are sent to remote servers,

which are not able to drive the decryption key of any block using just the public tokens.

The approach in [40] allows the servers to conduct a second level of encryption (over-

encryption) to enforce access control of the data. Repeated access grant and revocation

may lead to a complicated hierarchy structure for key management [88].

The concept of over-encryption to enforce access control has also been used by Wang

et al. [88]. In their scheme, the owner encrypts the data block-by-block, and constructs a

binary tree of the block keys. The binary tree enables the owner to reduce the number of

keys given to each user, where different keys in the tree can be generated from one common

parent node. The remote storage server performs over-encryption to prevent revoked users

from getting access to updated data blocks.

Popa et al. [73] have introduced a cryptographic cloud storage system called CloudProof

that provides read and write data sharing and enforce access control. CloudProof has

been designed to offer security guarantees in the service level agreements of cloud storage

systems. It divides the security properties in four categories: confidentiality, integrity,

read freshness, and write-serializability. CloudProof can provide these security properties

using attestations (signed messages) and chain hash. Besides, it can detect and prove to

a third party that any of these properties have been violated. Read freshness and write-
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serializability in CloudProof are guaranteed by periodic auditing in a centralized manner.

The time is divided into epochs, which are time periods at the end of each the data owner

performs the auditing process. The authorized users send the attestations – they receive

from the CSP during the epoch – to the owner for auditing. CloudProof supports two

operations on the file blocks: read and write/modify.

5.2.3 Non-Repudiation

Feng et al. [44] analyzed several existing cloud storage platforms, e.g., Amazon S3, Mi-

crosoft Azure storage service, and Google secure data connector. They identified the

problem of repudiation and presented a non-repudiation protocol for cloud data storage

platforms to identify which party is dishonest: a data owner or a service provider. Their

protocol is based on using evidence (extra information transmitted with the data to resolve

repudiation when occurs) and trusted third party. The literature contains other work done

on non-repudiation protocols; for example, see [45, 72, 78].

5.2.4 Discussion

Some aspects related to outsourcing data storage are beyond the setting of both PDP and

POR, e.g., enforcing access control, and ensuring the newness of data delivered to autho-

rized users. Even in the case of dynamic PDP, a verifier can validate the correctness of

data, but the server is still able to cheat and return stale data to authorized users after the

auditing process is done. The schemes presented in [57, 50, 9, 40] have focused on access

control and secure sharing of data on untrusted servers. The issues of full block-level dy-

namic operations (modify, insert, delete, and append), and achieving mutual trust between

the data owners and the remote servers were outside the scope of those schemes. Although

the authors of [88] have presented an efficient access control technique and handled full

dynamic operations for the data over remote servers, data integrity, newness property,

and mutual trust are not addressed. Authorized users in CloudProof [73] do not perform

immediate checking for freshness of received data; the attestations are sent at the end of
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each epoch to the owner for completing the auditing task. Instantaneous validation of data

freshness is crucial before taking any decisions based on the received data from the cloud.

CloudProof guarantees write-serializability, which is outside the scope of our current work

as we are focusing on owner-write-users-read applications. Performing dynamic operations

at the block-level and enforcing access control for remote data were not considered in the

non-repudiation protocol of [44].

5.3 Our System and Assumptions

System components and relations. The cloud computing storage model considered in

this work consists of four main components as illustrated in Figure 5.1: (i) a data owner

that can be an organization generating sensitive data to be stored in the cloud and made

available for controlled external use; (ii) a CSP who manages cloud servers and provides

paid storage space on its infrastructure to store the owner’s files and make them available

for authorized users; (iii) authorized users – a set of owner’s clients who have the right

to access the remote data; and (iv) a trusted third party (TTP), an entity who is trusted

by all other system components, and has expertise and capabilities to detect and specify

dishonest parties.

In Figure 5.1, the relations between different system components are represented by

double-sided arrows, where solid and dashed arrows represent trust and distrust relations,

respectively. For example, the data owner, the authorized users, and the CSP trust the

TTP. On the other hand, the data owner and the authorized users have mutual distrust

relations with the CSP. Thus, the TTP is used to enable indirect mutual trust between

these three components. There is a direct trust relation between the data owner and the

authorized users.

The storage model used in this work can be adopted by many practical applications.

For example, e-Health applications can be envisioned by this model, where the patients’

database that contains large and sensitive information can be stored on cloud servers. In

these types of applications, a medical center can be considered as the data owner, physicians

119



5.3. OUR SYSTEM AND ASSUMPTIONS

�

����

F �����

�	
���

������������

����������

�����������������

��������������

Figure 5.1: Cloud computing data storage system model.

as the authorized users who have the right to access the patients’ medical history, and

an independent-trusted organization as the TTP. Many other practical applications like

financial, scientific, and educational applications can be viewed in similar settings.

Remark 1. The idea of using a third party auditor has been used before in outsourcing

data storage systems, especially for customers with constrained computing resources and

capabilities, e.g., [82, 83, 54, 86]. The main focus of a third party auditor is to verify

the data stored on remote servers, and give incentives to providers for improving their

services. The proposed scheme in this work uses the TTP in a slightly different fashion.

The auditing process of the data received from the CSP is done by the authorized users,

and we resort to the TTP only to resolve disputes that may arise regarding data integrity

or newness. Reducing the storage overhead on the CSP side is economically a key feature

to lower the fees paid by the customers. Moreover, decreasing the overall computation cost

in the system is another crucial aspect. To achieve these goals, a small part of the owner’s

work is delegated to the TTP.

Outsourcing, updating, and accessing. The data owner has a file F consisting of m
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blocks to be outsourced to a CSP, where storage fees are pre-specified according to the

used storage space. For confidentiality, the owner encrypts the data before sending to

cloud servers. After data outsourcing, the owner can interact with the CSP to perform

block-level operations on the file. These operations includes modify, insert, append, and

delete specific blocks. In addition, the owner enforces access control by granting or revoking

access rights to the outsourced data.

An authorized user sends a data-access request to the CSP, and receives the data file

in an encrypted form that can be decrypted using a secret key generated by the autho-

rized user (more details will be explained later). We assume that the interaction between

the owner and the authorized users to authenticate their identities has already been com-

pleted, and it is not considered in this work. Moreover, all authorized users have the same

privileges, i.e., access hierarchy is outside the current scope.

The TTP is an independent entity, and thus has no incentive to collude with any party

in the system. However, any possible leakage of data towards the TTP must be prevented

to keep the outsourced data private. The TTP and the CSP are always online, while the

owner is intermittently online. The authorized users are able to access the data file from

the CSP even when the owner is offline. Throughout this chapter, the terms cloud server

and cloud service provider are used interchangeably.

Threat model. The CSP is untrusted, and thus the confidentiality and integrity of data

in the cloud may be at risk. For economic incentives and maintaining a reputation, the

CSP may hide data loss (due to hardware failure, management errors, various attacks), or

reclaim storage by discarding data that has not been or is rarely accessed. To save the

computational resources, the CSP may totally ignore the data-update requests issued by

the owner, or execute just a few of them. Hence, the CSP may return damaged or stale

data for any access request from the authorized users. Furthermore, the CSP may not

honor the access rights created by the owner, and permit unauthorized access for misuse

of confidential data.

On the other hand, a data owner and authorized users may collude and falsely accuse

the CSP to get a certain amount of reimbursement. They may dishonestly claim that data
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integrity over cloud servers has been violated, or the CSP has returned a stale file that

does not match the most recent modifications issued by the owner.

Security requirements. Confidentiality : outsourced data must be protected from the

TTP, the CSP, and users that are not granted access. Integrity : outsourced data is required

to remain intact on cloud servers. The data owner and authorized users must be enabled

to recognize data corruption over the CSP side. Newness : receiving the most recent

version of the outsourced data file is an imperative requirement of cloud-based storage

systems. There must be a detection mechanism if the CSP ignores any data-update requests

issued by the owner. Access control : only authorized users are allowed to access the

outsourced data. Revoked users can read unmodified data, however, they must not be able

to read updated/new blocks. CSP’s defence: the CSP must be safeguarded against false

accusations that may be claimed by dishonest owner/users, and such a malicious behavior

is required to be revealed.

Combining the confidentiality, integrity, newness, access control, and CSP’s defence

properties in the proposed scheme enables the mutual trust between the data owner and

the CSP. Thus, the owner can benefit from the wide range of facilities offered by the CSP,

and at the same time, the CSP can mitigate the concern of cheating customers.

5.4 System Preliminaries

5.4.1 Lazy Revocation

The proposed scheme in this work allows the data owner to revoke the right of some users

for accessing the outsourced data. In lazy revocation, it is acceptable for revoked users

to read (decrypt) unmodified data blocks. However, updated or new blocks must not be

accessed by such revoked users. The notation of lazy revocation was first introduced in [49].

The idea is that allowing revoked users to read unchanged data blocks is not a significant

loss in security. This is equivalent to accessing the blocks from cashed copies. Updated or

new blocks following a revocation are encrypted under new keys. Lazy revocation trades re-
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encryption and data access cost for a degree of security. However, it causes fragmentation

of encryption keys, i.e., data blocks could have more than one key. Lazy revocation has

been incorporated into many cryptographic systems [73, 88, 12, 75].

5.4.2 Key Rotation

Key rotation [57] is a technique in which a sequence of keys can be generated from an

initial key and a master secret key. The sequence of keys has two main properties: (i)

only the owner of the master secret key is able to generate the next key in the sequence

from the current key, and (ii) any authorized user knowing a key in the sequence is able

to generate all previous versions of that key. In other words, given the i-th key Ki in the

sequence, it is computationally infeasible to compute keys {Kl} for l > i without having

the master secret key, but it is easy to compute keys {Kj} for j < i.

The first property enables the data owner to revoke access to the data by producing new

keys in the sequence, which are used to encrypt updated/new blocks following a revocation

(lazy revocation). It is intended to prevent a user revoked during the i-th time from getting

access to data blocks encrypted during the l-th time for l > i.

The second property allows authorized users to maintain access to blocks that are

encrypted under older versions of the current key. It enables the data owner to transfer only

a single key Ki to authorized users for accessing all data blocks that are encrypted under

keys {Kj}j≤i (rather than transferring a potentially large set of keys {K1, K2, . . . , Ki}).
Thus, the second property reduces the communication overhead on the owner side.

The proposed scheme in this work utilizes the key rotation technique [57]. Let N = pq

denote the RSA modulus (p& q are prime numbers), a public key = (N, e), and a master

secret key d. The key d is known only to the data owner, and ed ≡ 1 mod (p− 1)(q − 1).

Whenever a user’s access is revoked, the data owner generates a new key in the sequence

(rotating forward). Let ctr indicate the index/version number of the current key in the keys

sequence. The owner generates the next key by exponentiating Kctr with the master secret

key d: Kctr+1 = Kd
ctr mod N . Authorized users can recursively generate older versions of
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the current key by exponentiating with the public key component e: Kctr−1 = Ke
ctr mod N

(rotating backward). The RSA encryption is used as a pseudorandom number generator;

it is unlikely that repeated encryption results in cycling, for otherwise, it can be used to

factor the RSA modulus N [66].

5.4.3 Broadcast Encryption

Broadcast encryption (bENC) [26, 47] allows a broadcaster to encrypt a message for an

arbitrary subset of a group of users. The users in the subset are only allowed to decrypt

the message. However, even if all users outside the subset collude they cannot access the

encrypted message. Such systems have the collusion resistance property, and are used

in many practical applications including TV subscription services and DVD content pro-

tection. The proposed scheme in this work uses bENC [26] to enforce access control in

outsourced data. The bENC [26] is composed of three algorithms: Setup, Encrypt, and

Decrypt.

Setup. This algorithm takes as input the number of system users n. It defines a

bilinear group G of prime order p with a generator g, a cyclic multiplicative group GT , and

a bilinear map ê : G×G→ GT , which has the properties of bilinearity, computability, and

non-degeneracy [65]. The algorithm picks a random α ∈ Zp, computes gi = g(αi) ∈ G for

i = 1, 2, . . . , n, n + 2, . . . , 2n, and sets v = gγ ∈ G for γ ∈R Zp. The outputs are a public

key PK = (g, g1, . . . , gn, gn+2, . . . , g2n, v) ∈ G2n+1, and n private keys {di}1≤i≤n, where

di = gγi ∈ G.

Encrypt. This algorithm takes as input a subset S ⊆ {1, 2, . . . , n}, and a public key

PK. It outputs a pair (Hdr, K), where Hdr is called the header (broadcast ciphertext),

and K is a message encryption key. Hdr = (C0, C1) ∈ G2, where for t ∈R Zp, C0 = gt and

C1 = (v ·
∏
j∈S

gn+1−j)
t. The key K = ê(gn+1, g)t is used to encrypt a message M (symmetric

encryption) to be broadcast to the subset S.

Decrypt. This algorithm takes as input a subset S ⊆ {1, 2, . . . , n}, a user-ID i ∈
{1, 2, . . . , n}, the private key di for user i, the header Hdr = (C0, C1), and the public key
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PK. If i ∈ S, the algorithm outputs the key K = ê(gi, C1)/ê(di ·
∏
j∈S
j 6=i

gn+1−j+i, C0), which

can be used to decrypt the encrypted version of M .

In the above construction of the bENC [26], a private key contains only one element of

G, and the broadcast ciphertext (Hdr) consists of two elements of G. On the other hand,

the public key PK is comprised of 2n+ 1 elements of G. A second construction, which is a

generalization of the first one was presented in [26] to trade the PK size for the Hdr size.

The main idea is to run multiple parallel instances of the first construction, where each

instance can broadcast to at most B users. Setting B = b
√
nc results in a system with

O(
√
n) elements of G for each of PK and Hdr. The private key is still just one element.

In this work, we utilize the second construction to achieve a balance between the sizes

of PK and Hdr. For an organization (data owner) with 105 users, each of PK and Hdr

contains only 317 elements of G.

5.5 Proposed Cloud-Based Storage Scheme

5.5.1 Warmup Discussion

Before presenting our main scheme, we discuss a straightforward solution. Once the data

has been outsourced to a remote CSP, which may not be trustworthy, the owner loses the

direct control over the sensitive data. This lack of control raises the data owner’s concerns

about the integrity of data stored in the cloud. Conversely, a dishonest owner may falsely

claim that the data stored in the cloud is corrupted to get some compensation. This mutual

distrust between the data owner and the CSP, if not properly handled, may hinder the

successful deployment of cloud architecture.

A straightforward solution to detect cheating from any side is through using authenti-

cation tags (digital signatures). For a file F = {bj}1≤j≤m, the owner attaches a tag OWNσj

with each block before outsourcing. The tags are generated per block not per file to enable

dynamic operations at the block level without retrieving the whole outsourced file. The
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owner sends {bj, OWNσj}1≤j≤m to the CSP, where the tags {OWNσj}1≤j≤m are first verified.

In case of failed verification, the CSP rejects to store the data blocks and asks the owner

to re-send the correct tags. If the tags are valid, both the blocks and the tags are stored

on the cloud servers. The tags {OWNσj}1≤j≤m achieve non-repudiation from the owner side.

When an authorized user (or the owner) requests to retrieve the data file, the CSP sends

{bj, OWNσj, CSPσj}1≤j≤m, where CSPσj is the CSP’s signature/tag on bj||OWNσj. The autho-

rized user first verifies the tags {CSPσj}1≤j≤m. In case of failed verification, the user asks

the CSP to re-perform the transmission process. If {CSPσj}1≤j≤m are valid tags, the user

then verifies the owner’s tag OWNσj on the block bj ∀ j. If any tag OWNσj is not verified,

this indicates the corruption of data over the cloud servers. The CSP cannot repudiate

such corruption for the owner’s tags {OWNσj}1≤j≤m are previously verified and stored by the

CSP along with the data blocks. Since the CSP’s signatures {CSPσj}1≤j≤m are attached

with the received data, a dishonest owner cannot falsely accuse the CSP regarding data

integrity.

Although the previous straightforward solution can detect cheating from either side, it

cannot guarantee the newness property of the outsourced data; the CSP can replace the

new blocks and tags with old versions without being detected (replay attack). The above

solution increases the storage overhead – especially for large files in order of gigabytes – on

the cloud servers as each outsourced block is attached with a tag. Moreover, there is an

increased computation overhead on different system components; the data owner generates

a signature for each block, the CSP performs a signature verification for each outsourced

block, and the authorized user (or the owner) verifies two signatures for each received

block from the cloud servers. Thus, for a file F containing m blocks, the straightforward

solution requires 2m signature generations and 3m signature verifications, which may be

computationally a challenging task for large data files. For example, if the outsourced

file is of size 1GB with 4KB block size, the straightforward solution requires 219 signature

generations and 3× 218 signature verifications.

If the CSP receives the data blocks from a trusted entity (other than the owner), the

block tags and the signature operations are not needed since the trusted entity has no

incentive for repudiation or collusion. Therefore, delegating a small part of the owner’s
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work to the TTP reduces both the storage and computation overheads. However, the

outsourced data must be kept private and any possible leakage of data towards the TTP

must be prevented.

5.5.2 Overview and Rationale

The proposed scheme in this work addresses important issues related to outsourcing data

storage: dynamic data, newness, mutual trust, and access control. The owner is allowed to

update and scale the outsourced data file. Validating such dynamic data and its newness

property requires the knowledge of some metadata that reflects the most recent modifica-

tions issued by the owner. Moreover, it requires the awareness of block indices to guarantee

that the CSP has inserted, added, or deleted the blocks at the requested positions. To this

end, the proposed scheme is based on using combined hash values and a small data struc-

ture, which we call block status table (BST). The TTP establishes the mutual trust among

different system components in an indirect way.

For enforcing access control of the outsourced data, the proposed scheme utilizes and

combines three cryptographic techniques: bENC, lazy revocation, and key rotation. The

bENC enables a data owner to encrypt some secret information to only authorized users

allowing them to access the outsourced data file. Through lazy revocation, revoked users

can read unmodified data blocks, while updated/new blocks are encrypted under new

keys generated from the secret information broadcast to the authorized users. Using key

rotation, the authorized users are able to access both updated/new blocks and unmodified

ones that are encrypted under older versions of the current key.

5.5.3 Notations

− F is a data file to be outsourced, and is composed of a sequence of m blocks, i.e.,

F = {b1, b2, . . . , bm}.

− h is a cryptographic hash function.
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− DEK is a data encryption key.

− EDEK is a symmetric encryption algorithm under DEK, e.g., AES (advanced en-

cryption standard) [38, 1].

− E−1
DEK is a symmetric decryption algorithm under DEK.

− F̃ is an encrypted version of the file blocks.

− FHTTP is a combined hash value for F̃ , and is computed and stored by the TTP.

− THTTP is a combined hash value for the BST, and is computed and stored by the

TTP.

− ctr is a counter kept by the data owner to indicate the version of the most recent

key.

− Rot = 〈ctr, bENC(Kctr)〉 is a rotator, where bENC(Kctr) is a broadcast encryption of

the key Kctr.

− ⊕ is an XOR operator.

5.5.4 Block Status Table

The block status table (BST) is a small dynamic data structure used to reconstruct and

access file blocks outsourced to the CSP. The BST consists of three columns: serial number

(SN ), block number (BN ), and key version (KV). SN is an indexing to the file blocks.

It indicates the physical position of each block in the data file. BN is a counter used to

make a logical numbering/indexing to the file blocks. Thus, the relation between BN and

SN can be viewed as a mapping between the logical number BN and the physical position

SN . KV indicates the version of the key that is used to encrypt each block in the file.

The BST is implemented as a linked list to simplify the insertion and deletion of table

entries. During implementation, SN is not needed to be stored in the table; SN is

considered to be the entry/table index. Thus, each table entry contains just two integers

BN and KV (8 bytes), i.e., the total table size is 8m bytes, where m is the number of file

blocks.
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When a data file is initially created, the owner initializes both ctr and KV of each

block to 1. If block modification or insertion operations are to be performed following a

revocation, ctr is incremented by 1 and KV of that modified/new block is set to be equal

to ctr.

Figure 5.2 shows some examples demonstrating the changes in the BST due to dynamic

operations on a data file F = {bj}1≤j≤8. When the file blocks are initially created (Figure

5.2a), ctr is initialized to 1, SN j = BN j = j, and KVj = 1: 1 ≤ j ≤ 8. Figure 5.2b shows

no change for updating the block at position 5 since no revocation is performed. To insert

a new block after position 3 in the file F , Figure 5.2c shows that a new entry 〈4, 9, 1〉 is

inserted in the BST after SN 3, where 4 is the physical position of the newly inserted block,

9 is the new logical block number computed by incrementing the maximum of all previous

logical block numbers, and 1 is the version of the key used for encryption.

A first revocation in the system increments ctr by 1 (ctr = 2). Modifying the block

at position 5 following a revocation (Figure 5.2d) results in setting KV5 = ctr. Thus, the

table entry at position 5 becomes 〈5, 4, 2〉. Figure 5.2e shows that a new block is to be

inserted after position 6 following a second revocation, which increments ctr to be 3. In

Figure 5.2e, a new table entry 〈7, 10, 3〉 is inserted after SN 6, where KV7 is set to be

equal to ctr (the most recent key version). Deleting a block at position 2 from the data file

requires deleting the table entry at SN 2 and shifting all subsequent entries one position up

(Figure 5.2f). Note that during all dynamic operations, SN indicates the actual physical

positions of the data blocks in F .

5.5.5 Procedural Steps of the Proposed Scheme

� Setup and File Preparation. The setup is done only once during the life time of

the data storage system, which may be for tens of years. The system setup has two

parts: one is done on the owner side, and the other is done on the TTP side.

� Owner Role. The data owner initializes ctr to 1, and generates an initial se-

cret key Kctr/K1. Kctr can be rotated forward following user revocations, and
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Figure 5.2: Changes in the BST due to different dynamic operations on a file F = {bj}1≤j≤8.
SN is the serial number, BN is the block number, and KV is the key version.
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rotated backward to enable authorized users to access blocks that are encrypted

under older versions of Kctr.

For a file F = {bj}1≤j≤m, the owner generates a BST with SN j = BN j = j

and KVj = ctr. To achieve privacy-preserving, the owner creates an encrypted

file version F̃ = {b̃j}1≤j≤m, where b̃j = EDEK(BN j||bj) and DEK = h(Kctr).
2

Moreover, the owner creates a rotator Rot = 〈ctr, bENC(Kctr)〉, where bENC

enables only authorized users to decrypt Kctr and access the outsourced file.

The owner sends {F̃ ,BST, Rot} to the TTP, and deletes the data file from its

local storage.

Embedding BN j with the block bj during the encryption process helps in recon-

structing the file blocks in the correct order. If the encrypted blocks {b̃j}1≤j≤m

are not corrupted over cloud servers, but randomly delivered to an authorized

user, the latter can utilize the embedded BN j and the BST to orderly recon-

struct the data file F . More details will be explained later.

� TTP Role. As previously explained, a small part of the owner’s work is dele-

gated to the TTP to reduce the storage overhead and lower the overall system

computation. For the TTP to resolve disputes that may arise regarding data

integrity/newness, it computes and locally stores combined hash values for the

encrypted file F̃ and the BST. The TTP computes FHTTP = ⊕mj=1 h(b̃j) and

THTTP = ⊕mj=1 h(BN j||KVj), then sends {F̃ ,BST} to the CSP (it is possi-

ble for the owner to use the technique of one-sender-multiple-receiver (OSMR)

transmission to send {F̃ ,BST} to both the TTP and the CSP). The TTP keeps

only FHTTP and THTTP on its local storage.

Remark 2. The BST is used by the authorized users to reconstruct and access the

outsourced data file. The proposed scheme in this work assumes that the data owner

is intermittently online and the authorized users are enabled to access the data file

even when the owner is offline. To this end, the CSP stores a copy of the BST along

2 Hash in needed to compress the size of Kctr
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with the outsourced data file. When an authorized user requests to access the data,

the CSP responds by sending both the BST and the encrypted file F̃ .

...Moreover, the BST is used during each dynamic operation on the outsourced data

file, where one table entry is modified/inserted/deleted with each dynamic change

on the block level. If the BST is stored only on the CSP side, it needs to be re-

trieved and validated each time the data owner wants to issue a dynamic request on

the outsourced file. To avoid such communication and computation overheads, the

owner keeps a local copy of the BST, and thus there are two copies of the BST: one

is stored on the owner side referred to as BSTO, and the other is stored on the CSP

side referred to as BSTC . Recall that the BST is a small dynamic data structure

with a table entry size = 8 bytes. For 1GB file with 4KB block size, the BST size

is only 2MB (0.2% of the file size). Table 5.1 summarizes the data stored by each

component in the proposed scheme.

Table 5.1: Data stored by each component in the proposed scheme.

Owner TTP CSP

ctr, Kctr, BSTO Rot, FHTTP , THTTP F̃ , BSTC

� Dynamic Operations on the Outsourced Data. The dynamic operations in the

proposed scheme are performed at the block level via a request in the general form

〈BlockOp, TEntryBlockOp, j, KVj, h(b̃j), RevFlag, b
∗〉, where BlockOp corresponds

to block modification (denoted by BM), block insertion (denoted by BI), or block

deletion (denoted by BD). TEntryBlockOp indicates an entry in BSTO corresponding

to the issued dynamic request. The parameter j indicates the block index on which

the dynamic operation is to be performed, KVj is the value of the key version at index

j of BSTO before running a modification operation, and h(b̃j) is the hash value of

the block at index j before modification/deletion. RevFlag is a 1-bit flag (true/false
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and is initialized to false) to indicate whether a revocation has been performed, and

b∗ is the new block value.

� Modification. Data modification is one of the most frequently used dynamic

operations in the outsourced data. For a file F = {b1, b2, . . . , bm}, suppose

the owner wants to modify a block bj with b′j. Figure 5.3 describes the steps

performed by each system component (owner, CSP, and TTP) during block

modification. The owner uses the technique of OSMR transmission to send the

modify request to both the CSP and the TTP.

The TTP updates the combined hash value FHTTP for F̃ through the step

FHTTP = FHTTP ⊕ h(b̃j) ⊕ h(b̃′j), which simultaneously replaces the hash of

the old block h(b̃j) with the new one h(b̃′j). This is possible due to the basic

properties of the ⊕ operator. The same idea is used when RevFlag = true to

update the combined hash value THTTP on the TTP side by replacing the hash

of the old table entry at index j with the hash of the new value.

� Insertion. In a block insertion operation, the owner wants to insert a new

block b̄ after index j in a file F = {b1, b2, . . . , bm}, i.e., the newly constructed

file F ′ = {b1, b2, . . . , bj, b̄, . . . , bm+1}, where bj+1 = b̄. The block insertion opera-

tion changes the logical structure of the file, while block modification does not.

Figure 5.4 describes the steps performed by each system component (owner,

CSP, and TTP) during block insertion.

� Append. Block append operation means adding a new block at the end of the

outsourced data. It can simply be implemented via insert operation after the

last block of the data file.

� Deletion. Block deletion operation is the opposite of the insertion operation.

When one block is deleted all subsequent blocks are moved one step forward.

Figure 5.5 describes the steps performed by each system component (owner,

CSP, and TTP) during block deletion. The step FHTTP = FHTTP ⊕ h(b̃j) is

used to delete the hash value of the block b̃j from the combined hash FHTTP

(properties of ⊕ operator). The same idea is used with the THTTP value.
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/* Modification of a block bj with b′j for the outsourced file */
/* RevFlag is initialized to false */
Data Owner

1. If the access of one or more users has been revoked then

(a) Rolls Kctr forward (using key rotation)

(b) Increments ctr = ctr + 1, and sets RevFlag = true

(c) Copies KVj from BSTO to KVj (i.e., KVj = KVj)
(d) Sets KVj = ctr in BSTO, and generates Rot = 〈ctr, bENC(Kctr)〉
(e) Sends Rot to the TTP

2. Creates an encrypted block b̃′j = EDEK(BN j||b′j), where DEK = h(Kctr)

3. Forms a block-modify table entry TEntryBM = {BN j,KVj}

4. Sends a modify request 〈BM, TEntryBM, j, KVj, h(b̃j), RevFlag, b̃
′
j〉 to both the

CSP and the TTP (OSMR transmission), where h(b̃j) is the hash of the outsourced
block to be modified. The KVj is not sent in the modify request if RevFlag = false

5. The CSP accepts the modify request only if {BN j,KVj} sent from the owner matches
{BN j,KVj} in BSTC , and h(b̃j) is equal to the hash of the block b̃j on the cloud
server (to guarantee that correct values are sent to the TTP)

CSP /* upon accepting the modify request from the owner */

1. Replaces the block bj with b′j in the outsourced file F̃

2. If RevFlag = true then
Updates the table entry at index j of BSTC using TEntryBM components

TTP

1. Updates FHTTP = FHTTP ⊕ h(b̃j)⊕ h(b̃′j)

2. If RevFlag = true then

(a) Updates the previously stored Rot with the newly received value

(b) Updates THTTP = THTTP ⊕ h(BN j||KVj)⊕ h(BN j||KVj)

Figure 5.3: Block modification procedure in the proposed scheme.
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/* Insertion of a block b̄ after index j in the outsourced file */
/* RevFlag is initialized to false */

Data Owner

1. If the access of one or more users has been revoked then

(a) Rolls Kctr forward (using key rotation)

(b) Increments ctr = ctr + 1, and sets RevFlag = true

(c) Generates Rot = 〈ctr, bENC(Kctr)〉
(d) Sends Rot to the TTP

2. Constructs a new block-insert table entry TEntryBI = {BN j+1,KVj+1} = {1 +
Max{BN j}1≤j≤m, ctr}, and inserts this entry in BSTO after index j

3. Creates an encrypted block ˜̄b = EDEK(BN j||b̄), where DEK = h(Kctr)

4. Sends an insert request 〈BI, TEntryBI, j, null, null, RevFlag,
˜̄b〉 to both the CSP

and the TTP (OSMR transmission)

CSP /* upon receiving the insert request from the owner */

1. Inserts the block ˜̄b after index j in the outsourced file F̃

2. Inserts the table entry TEntryBI after index j in the BSTC

TTP

1. Updates FHTTP = FHTTP ⊕ h(˜̄b)

2. Updates THTTP = THTTP ⊕ h(BN j+1||KVj+1)

3. If RevFlag = true then
Replaces the previously stored Rot with the newly received value

Figure 5.4: Block insertion procedure in the proposed scheme.

135



5.5. PROPOSED CLOUD-BASED STORAGE SCHEME

/* Deletion of a block bj from the outsourced file */

Data Owner

1. Copies the entry at index j from BSTO to a block-delete table entry TEntryBD =
{BN j,KVj}

2. Deletes the entry at index j from BSTO

3. Sends a delete request 〈BD, TEntryBD, j, null, h(b̃j), false, null〉 to both the CSP
and the TTP (OSMR transmission), where h(b̃j) is the hash of the outsourced block
to be deleted

4. The CSP accepts the delete request only if TEntryBD sent from the owner matches
{BN j,KVj} in BSTC and h(b̃j) is equal to the hash of the block b̃j on the cloud
server (to guarantee that correct values are sent to the TTP).

CSP /* upon receiving the delete request from the owner */

1. Deletes the block at index j (block b̃j) from the outsourced file F̃

2. Deletes the entry at index j from the BSTC

TTP

1. Updates FHTTP = FHTTP ⊕ h(b̃j)

2. Updates THTTP = THTTP ⊕ h(BN j||KVj)

Figure 5.5: Block deletion procedure in the proposed scheme.
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� Data Access and Cheating Detection. Figure 5.6 shows the verifications per-

formed for the data received from the CSP, and presents how authorized users get

access to the outsourced file.

An authorized user sends a data-access request to both the CSP and the TTP to

access the outsourced file. For achieving non-repudiation, the CSP generates two

signatures σF and σT for F̃ and BSTC , respectively. The authorized user receives

{F̃ , BSTC σF , σT} from the CSP, and {FHTTP , THTTP , Rot} from the TTP. The

authorized user verifies the signatures, and proceeds with the data access procedure

only if both signatures are valid.

The authorized user verifies the contents of BSTC entries by computing a combined

hash value THU = ⊕mj=1 h(BN j||KVj), and comparing it with the authentic value

THTTP received from the TTP. If the user claims that THU 6= THTTP , a report is

issued to the owner and the TTP is invoked to determine the dishonest party.

In case of THU = THTTP , the authorized user continues to verify the contents of the

file F̃ . A combined hash value FHU = ⊕mj=1 h(b̃j) is computed and compared with

FHTTP . If there is a dispute that FHU 6= FHTTP , the owner is informed and we

resort to the TTP to resolve such a conflict.

For the authorized user to access the encrypted file F̃ = {b̃j}1≤j≤m, BSTC and Rot

are used to generate the key DEK that decrypts the block b̃j. The component

bENC(Kctr) of Rot is decrypted to get the most recent key Kctr. Using the key ro-

tation technique, the authorized user rotates Kctr backward with each block until it

reaches the version that is used to decrypt the block b̃j. Both ctr and the key version

KVj can determine how many rotation steps for Kctr with each block b̃j. Decrypting

the block b̃j returns (BN j||bj). Both BN j and BSTC are utilized to get the phys-

ical block position SN j into which the block bj is inserted, and thus the file F is

reconstructed in plain form.
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1. An authorized user sends a data-access request to both the CSP and the TTP

2. The CSP responds by sending the outsourced file F̃ = {b̃j}1≤j≤m associated with a
signature σF (CSP’s signature on the entire file), and sending BSTC associated with
a signature σT (CSP’s signature on the entire table) to the authorized user

3. The authorized user verifies σF and σT , and accepts the data only if σF and σT
are valid signatures

4. The TTP sends FHTTP , THTTP , and Rot = 〈ctr, bENC(Kctr)〉 to
the authorized user

5. Verification of the BSTC entries

(a) The authorized user computes THU = ⊕mj=1 h(BN j||KVj)
(b) If the authorized user claims that THU 6= THTTP then report ”integrity

violation” to the owner and invoke cheating detection procedure (Figure 5.7)

6. Verification of the data file F̃

(a) The authorized user computes FHU = ⊕mj=1 h(b̃j)

(b) If the authorized user claims that FHU 6= FHTTP then report ”integrity
violation” to the owner and invoke cheating detection procedure (Figure 5.7)

7. Data access

(a) The authorized user gets Kctr by decrypting bENC(Kctr) part in Rot

(b) for j = 1 to m do
/* rotate backward the current Kctr to the version that is used to decrypt b̃j */

– Set Kj = Kctr

– for i = 1 to ctr - KVj do
. Kj = (Kj)

e mod N /* N is RSA modulus and (N, e) is the public key */
end for

– (BN j||bj) = E−1
DEK(b̃j), where DEK = h(Kj)

– Get the physical position SN j of bj using BN j and BSTC

– The authorized user places bj in the correct order of the decrypted file F

end for

Figure 5.6: Data access procedure in the proposed scheme.
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Optimization. In Figure 5.6, the backward key rotation done in the inner for loop

of step 7.b can be highly optimized by computing a set of keys Q = {Ki} from Kctr.

Each key Ki in Q is the result of rotating Kctr backward ctr− i times. For example,

if ctr = 20, a set Q = {K1, K5, K10, K15} can be computed from Kctr. To decrypt

a block b̃j, the authorized user chooses one key Ki from Q, which has the minimum

positive distance i−KVj. The key Ki is then rotated backward to get the actual key

that is used to decrypt the block b̃j. A relatively large portion of the outsourced data

is kept unchanged on the CSP, and thus K1 from Q can be used to decrypt many

blocks without any further key rotation. The size of the set Q is negligible compared

with the size of the received data file.

Figure 5.7 shows how the TTP determines the dishonest party in the system. The

TTP verifies the signatures σT and σF , which are previously verified and accepted by

the authorized user. If any signature is invalid, this indicates that the owner/user is

dishonest for corrupting either the data or the signatures. In case of valid signatures,

the TTP computes temporary combined hash values THtemp = ⊕mj=1 h(BN j||KVj)
and FHtemp = ⊕mj=1 h(b̃j). If THtemp 6= THTTP or FHtemp 6= FHTTP , this indicates

that the CSP is dishonest for sending corrupted data to the authorized user, otherwise

the owner/user is dishonest for falsely claiming integrity violation of received data.

5.6 Security Analysis

In this section, we investigate the security of the proposed scheme by analyzing its fulfill-

ment of the security requirements described in Section 5.3, namely, confidentiality, integrity,

newness, access control, and CSP’s defence.

Data confidentiality. For this requirement, we need to prove that the CSP, the TTP,

and unauthorized users cannot access the outsourced data.

Theorem 1. The proposed scheme preserves the confidentiality of the outsourced data

against the CSP, the TTP, and unauthorized users.
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Cheating Detection Procedure: determination of the dishonest party.
The TTP is invoked to determine which component is misbehaving as follows.

1. The TTP verifies σT and σF

2. If any signature verification fails then
. TTP reports ”dishonest owner/user” and exits

3. The TTP computes THtemp = ⊕mj=1 h(BN j||KVj) and FHtemp = ⊕mj=1 h(b̃j)

4. If THtemp 6= THTTP or FHtemp 6= FHTTP then
. TTP reports ”dishonest CSP” and exits /* data is corrupted */
else
. TTP reports ”dishonest owner/user” and exits /* data is NOT corrupted */

Figure 5.7: Cheating detection procedure in the proposed scheme.

Proof (Sketch). Before outsourcing a data file F = {bj}1≤j≤m, the owner generates an

encrypted version F̃ = {b̃j}1≤j≤m, where b̃j = EDEK(BN j||bj), and DEK = h(Kctr). The

encrypted data file F̃ is sent to the TTP for computing FHTTP and to the CSP for storage.

Based on the security of the underlying symmetric encryption algorithm EDEK , the

confidentiality of the outsourced file F̃ is preserved on the CSP side (e.g., our proposed

scheme utilizes AES – a standardized encryption algorithm by NIST [1] – with 128-bit

security level to achieve a robust security requirement).

The data confidentiality on the TTP side is based on the security of the underlying

broadcast encryption algorithm bENC. To decrypt F̃ , the key Kctr is needed to generate

DEK. The TTP stores Rot = 〈ctr, bENC(Kctr)〉. Thus, for the TTP to get Kctr, bENC

must be broken (the proposed scheme utilizes bENC [26], which is proved to be semantically

secure).

bENC also prevents unauthorized users from getting Kctr to access the data file F̃ .

Moreover, based on the hardness of the RSA problem [28], revoked users who possess Kl

(l < ctr) are not able to generate Kctr. Hence, such revoked users can access only stale

data blocks, while updated or new blocks encrypted using Kctr are kept secret. �

140



5.6. SECURITY ANALYSIS

Detection of data integrity violation. We want the assurance that any corruption to

the outsourced data file F̃ or the table BSTC on cloud servers can be detected. We prove

this feature for F̃ and the same ideas are applied to BSTC . The proof depends on the

preimage and second-preimage resistance properties of the cryptographic hash function h.

Definitions.

1. Preimage resistance: given a hash value y, it is computationally infeasible to find

any input x such that h(x) = y [77]. Input x is called a preimage of y.

2. Second-preimage: given an input x, it is computationally infeasible to find a second

input x′ 6= x such that h(x) = h(x′) [77].

Theorem 2. Given a cryptographic hash function h with preimage and second-preimage

resistance properties along with the non-collusion incentive of the TTP, any attempt to

violate the integrity of outsourced data file on cloud servers will be detected.

Proof. We prove the theorem by contradiction. The goal of a dishonest CSP is to send a

corrupted or stale data file to authorized users without being detected. Let D̃ = {d̃j}1≤j≤m

be the data file received by an authorized user from the CSP during the data access phase

of the proposed scheme, where {d̃j}1≤j≤m denotes the file blocks. Let F̃ = {b̃j}1≤j≤m be

the actual outsourced data file. The authorized user receives the authentic FHTTP from

the TTP, computes FHU = ⊕mj=1 h(d̃j), and checks FHU
?
= FHTTP . If FHU 6= FHTTP ,

then D̃ 6= F̃ (data has been corrupted on cloud servers).

For violating data integrity without being detected there are two possible scenarios.

First, the CSP has to generate values {h∗j}1≤j≤m such that FHTTP = ⊕mj=1 h
∗
j , and at least

one h∗j 6= h(b̃j). If the CSP could create D̃ = {d̃j}1≤j≤m such that h∗j = h(d̃j) ∀j, the

cheating is possible. Due to the preimage-resistance property of h (one-way function), the

CSP cannot generate such data file D̃, i.e., d̃j must be equal to b̃j ∀j.

Second, the received data D̃ has at least one block d̃j 6= b̃j, but h(d̃j) = h(b̃j) ∀j to

guarantee that FHU = FHTTP . Due to the second-preimage resistance property of h,

there is no such data file D̃, i.e., d̃j must be equal to b̃j ∀j. �
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Remark 3. The encrypted block b̃j = EDEK(BN j||bj). Block number BN j is embedded

with the block bj to be used along with BSTC to orderly reconstruct the plain file F if the

blocks {bj}1≤j≤m are randomly received. Using a proof similar to that of Theorem 2, we

can show that BSTC cannot be corrupted without being detected. Swapping the entries

of BSTC without changing their contents can cause the file F to be reconstructed in an

incorrect order. Although the CSP has no incentive and no financial benefit of doing such

swapping, one can defend this weird behavior by storing the BN column of BSTO on the

TTP side. The authorized user can retrieve and use this column during the data access

phase. This countermeasure adds little extra storage on the TTP (4m bytes).

Assurance of newness property. Assurance of newness property is identical to de-

tection of data integrity violation. With each dynamic operation (modification, insertion,

deletion, append), the TTP updates the values FHTTP and THTTP to reflect the most

recent state of the outsourced data. Thus, the CSP cannot respond to an access request

by sending stale data without being detected.

Enforcement of access control. The proposed scheme combines the techniques of broad-

cast encryption, key rotation, and lazy revocation to enforce access control of outsourced

data.

Theorem 3. The data owner can grant or revoke access to users for outsourced data.

Proof (Sketch). The owner creates Rot = 〈ctr, bENC(Kctr)〉 and encrypts the outsourced

data using DEK = h(Kctr). Broadcast encryption bENC allows the data owner to en-

crypt the key Kctr for an arbitrary subset of a group of users. According to the security

strength of bENC [26], the users in the subset are only allowed to decrypt Kctr and access

the outsourced data.

It is acceptable for revoked users to access unmodified data blocks. However, up-

dated/new blocks must be inaccessible by such revoked users. In case of data modifica-

tion/insertion following a revocation, the data owner rolls Kctr forward: Kctr+1 = Kd
ctr mod

N , and then increments ctr by 1 (preparing for next rotation). Since factoring the RSA

modulus N is assumed to be intractable [28], revoked users who possess Kl (l < ctr) are
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not able to generate Kctr. Thus, combining broadcast encryption, key rotation, and lazy

revocation achieves access control in the proposed scheme.

Detection of dishonest owner/user. The CSP signs both the file F̃ and the table

BSTC . The generated signatures σF and σT are sent along with F̃ and BSTC to an autho-

rized user during the data access phase. If the signature scheme is existentially unforgeable,

the owner/user cannot falsely accuse the CSP regarding data integrity; the TTP performs

signature verifications if there is a claim of data corruption. Recall that the signatures σF

and σT are accepted by the authorized user as valid signatures in the beginning of the data

access phase (step 3 in Figure 5.6).

5.7 Performance Analysis

5.7.1 Settings and Overheads

The data file F used in our performance analysis is of size 1GB with 4KB block size.

Without loss of generality, we assume that the desired security level is 128-bit. Thus, we

utilize a cryptographic hash h of size 256 bits (e.g., SHA-256), an elliptic curve defined over

Galois field GF (p) with |p| = 256 bits (used for bENC), and BLS (Boneh-Lynn-Shacham)

signature [27] of size 256 bits (used to compute σF and σT ).

Here we evaluate the performance of the proposed scheme by analyzing the storage,

communication, and computation overheads. We investigate overheads that the proposed

scheme brings to a cloud storage system for static data with only confidentiality require-

ment. This investigation demonstrates whether the features of our scheme come at a rea-

sonable cost. The computation overhead is estimated in terms of the used cryptographic

functions, which are notated in Table 5.2.
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Table 5.2: Notation of cryptographic functions

Notation Description

h Cryptographic hashing
FR Forward key rotation
BR Backward key rotation
Sσ Signature genration
Vσ Signature verification

EDEK Symmetric encryption using the key DEK

bENC−1 Decryption of bENC

Let m and n denote the number of file blocks and the total number of system users,

respectively. Table 5.3 presents a theoretical analysis for the storage, communication, and

computation overheads of the proposed scheme. Table 5.4 summarizes the storage and

communication overheads for our data file F (1GB with 4KB block size) and 100,000

authorized users.

5.7.2 Comments

Storage overhead. It is the additional storage space used to store necessary information

other than the outsourced file F̃ . The overhead on the owner side is due to storing BSTO.

An entry of BSTO is of size 8 bytes (2 integers), and the total number of entries equals the

number of file blocks m. During implementation SN is not needed to be stored in BSTO;

SN is considered to be the entry/table index (BSTO is implemented as a linked list). The

size of BSTO for the file F is only 2MB (0.2% of F ). BSTO size can be further reduced if

the file F is divided into larger blocks (e.g., 16KB). Like the owner, the storage overhead

on the CSP side comes from the storage of BSTC . To resolve disputes that may arise

regarding data integrity or newness property, the TTP stores FHTTP and THTTP , each of

size 256 bits. Besides, the TTP stores Rot = 〈ctr, bENC(Kctr)〉 that enables the data owner

to enforce access control for the outsourced data. ctr is 4 bytes, and bENC has storage

complexity O(
√
n), which is practical for an organization (data owner) with n = 100,000
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Table 5.3: Overhead analysis of the proposed scheme. The overheads shown in square
brackets are not always present and are incurred when revocation(s) actually occur.

Overheads Operations Owner User CSP TTP

Storage
(in bytes)

8m — 8m 68+32
√
n

Communication
......(in bytes)

Dynamic
Operations

45 + [8 + 32
√
n] — — —

Data Access — — 64 + 8m 68 + 32
√
n

Computation

Dynamic
Operations

h + EDEK +
[FR+ bENC]

— — 2h + [2h] ‡

Data Access —
2Vσ + 3mh +

2Sσ —
bENC−1 + [BR] ‡

Cheating
Detection

2Vσ + [2mh] ‡

‡ The cost of ⊕ is usually negligible and is omitted in the overhead expressions.

Table 5.4: Storage and communication overheads for the data file F (1GB with 4KB block
size) and 100,000 authorized users. The values shown in square brackets are not always
present and are incurred when revocation(s) actually occur.

Overheads Operations Owner User CSP TTP

Storage 2MB — 2MB ≈ 10KB †

Communication
Dynamic

Operations
45 bytes + [≈ 10KB] — — —

Data Access — — ≈ 2MB ≈ 10KB

† Storage overhead is independent of F .
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users. A point on the elliptic curve used to implement bENC can be represented by 257

bits (≈ 32 bytes) using compressed representation [14]. Therefore, the storage overhead on

the TTP side is close to 10KB, which is independent of the outsourced file size. Overall,

the storage overhead of the proposed scheme for the file F is less than 4.01MB (≈ 0.4% of

F ).

Communication overhead. It is the additional information sent along with the out-

sourced data blocks. During dynamic operations, the communication overhead on the

owner side comes from the transmission of a block operation BlockOP (can be represented

by 1 byte), a table entry TEntryBlockOP (8 bytes), and a block index j (4 bytes). If a block is

to be modified following a revocation process, KVj (4 bytes) is sent to the TTP. Moreover,

in case of a block modification/deletion, the owner sends a hash (32 bytes) of the block to

be modified/deleted to the TTP for updating FHTTP . Recall that the owner also sends

Rot (4 + 32
√
n bytes) to the TTP if block modifications/insertions are to be performed

following user revocations. Therefore, in the worst case scenario (i.e., block modifications

following revocations), the owner’s overhead is less than 10KB. The Rot represents the ma-

jor factor in the communication overhead, and thus the overhead is only 45 bytes if block

modification/deletion operations are to be preformed without revocations (only 13 bytes

for insertion operations). In practical applications, the frequency of dynamic requests to

the outsourced data is higher than that of user revocations. Hence, the communication

overhead due to dynamic changes on the data is about 1% of the block size (the block is

4KB in our analysis).

As a response to access the outsourced data, the CSP sends the file along with σF (32

bytes), σT (32 bytes), and BSTC (8m bytes). Moreover, the TTP sends FHTTP (32 bytes),

THTTP (32 bytes), and Rot. Thus, the communication overhead due to data access is 64

+ 8m bytes on the CSP side, and 68 + 32
√
n bytes on the TTP side. Overall, to access

the file F , the proposed scheme has communication overhead close to 2.01MB (≈ 0.2% of

F ).

Computation overhead. A cloud storage system for static data with only confidentiality

requirement has computation cost for encrypting the data before outsourcing and decrypt-
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ing the data after being received from the cloud servers. For the proposed scheme, the com-

putation overhead on the owner side due to dynamic operations (modification/insertion)

comes from computing DEK = h(Kctr) and encrypting the updated/inserted block, i.e.,

the overhead is one hash and one encryption operations. If a block modification/insertion

operation is to be performed following a revocation of one or more users, the owner performs

FR to roll Kctr forward, and bENC to generate the Rot. Hence, the computation overhead

on the owner side for the dynamic operations is h + EDEK + FR + bEnc (worst case

scenario). Updating BSTO and BSTC is done without usage of cryptographic operations

(add, remove, or modify a table entry).

To reflect the most recent version of the outsourced data, the TTP updates the values

FHTTP and THTTP . If no revocation has been performed before sending a modify request,

only FHTTP is updated on the TTP side. Therefore, the maximum computation overhead

on the TTP side for updating both FHTTP and THTTP is 4h.

Before accessing the data received from the CSP, the authorized user verifies two sig-

natures (generated by the CSP), BSTC entries, and the data file. These verifications cost

2Vσ + 2mh. Moreover, the authorized user decrypts bENC(Kctr) part in the Rot to get

Kctr. For each received block, Kctr is rotated backward to obtain the actual key that is

used to decrypt the data block. The optimized way of key rotation (using the set Q) highly

affects the performance of data access; many blocks need a few or no rotations. Moreover,

one hash operation is performed per block to compute DEK. Overall, the computation

overhead due to data access is 2Vσ + 3mh + bENC−1 + [BR] on the owner side, and 2Sσ
on the CSP side.

For determining a dishonest party, the TTP verifies σT and σF . In case of valid signa-

tures, the TTP proceeds to compute THtemp and FHtemp. The values THtemp and FHtemp

are compared with THTTP and FHTTP , respectively. Hence, the maximum computation

overhead on the TTP side due to cheating detection is 2Vσ + 2mh.
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5.8 Implementation and Experimental Evaluation

5.8.1 Implementation

We have implemented the proposed scheme on top of Amazon Elastic Compute Cloud

(Amazon EC2) [5] and Amazon Simple Storage Service (Amazon S3) [6] cloud platforms.

Virtual servers (Linux/Unix/Windows) can be launched and managed on Amazon’s data

centers through Amazon EC2 web service. Amazon S3 is a web service that can be used

to store and retrieve almost unlimited amount of data, where customers are enabled to

specify geographic locations for their outsourced data.

Our implementation of the proposed scheme consists of four modules: OModule (owner

module), CModule (CSP module), UModule (user module), and TModule (TTP module).

OModule, which runs on the owner side, is a library to be used by the owner to perform

the owner role in the setup and file preparation phase. Moreover, this library is used by

the owner during the dynamic operations on the outsourced data. CModule is a library

that runs on Amazon EC2 and is used by the CSP to store, update, and retrieve data

from Amazon S3. UModule is a library to be run at the authorized users’ side, and include

functionalities that allow users to interact with the TTP and the CSP to retrieve and

access the outsourced data. TModule is a library used by the TTP to perform the TTP

role in the setup and file preparation phase. Moreover, the TTP uses this library during

the dynamic operations and to determine the cheating party in the system.

Implementation settings. In our implementation we use a ”large” Amazon EC2 instance

to run CModule. This instance type provides total memory of size 7.5GB and 4 EC2

Compute Units (2 virtual cores with 2 EC2 Compute Units each). One EC2 Compute

Unit provides the equivalent CPU capacity of a 1.0 - 1.2GHz 2007 Opteron or 2007 Xeon

processor [4]. A separate server in the lab is used to run TModule. This server has Intel(R)

Xeon(TM) 3.6GHz processor, 2.75GB RAM, and Windows XP operating system. The

OModule is executed on a desktop computer with Intel(R) Xeon(R) 2GHz processor and

3GB RAM running Windows XP. A laptop with Intel(R) Core(TM) 2.2GHz processor and

4GB RAM running Windows 7 is used to execute the UModule. We outsource a data file
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of size 1GB to Amazon S3. Algorithms (hashing, broadcast encryption, digital signatures,

etc.) are implemented using MIRACL library version 5.5.4. For a 128-bit security level,

bENC uses an elliptic curve with a 256-bit group order. In the experiments, we utilize

SHA-256, 256-bit BLS signature, and Barreto-Naehrig (BN) [13] curve defined over prime

field GF (p) with |p| = 256 bits and embedding degree = 12 (the BN curve with these

parameters is provided by the MIRACL library).

5.8.2 Experimental Evaluation

In this section we describe the experimental evaluation of the computation overhead the

proposed scheme brings to a cloud storage system that has been dealing with static data

with only confidentiality requirement.

Owner computation overhead. To experimentally evaluate the computation overhead

on the owner side due to the dynamic operations, we have performed 100 different block

operations with number of authorized users ranging from 20,000 to 100,000. We have run

our experiment three times, each time with a different revocation percentage. In the first

time, 5% of 100 dynamic operations are executed following revocations. We increased the

revocation percentage to 10% for the second time and 20% for the third time. Figure 5.8

shows the owner’s average computation overhead per operation. For a large organization

(data owner) with 100,000 users, performing dynamic operations and enforcing access

control with 5% revocations add about 63 milliseconds of overhead. With 10% and 20%

revocation percentages, which are high percentages than an average value in practical

applications, the owner overhead is 0.12 and 0.25 seconds, respectively.

Scalability (i.e., how the system performs when more users are added) is an important

feature of cloud storage systems. The access control of the proposed scheme depends on

the square root of the total number of system users. Figure 5.8 shows that for a large or-

ganization with 100,000 users, performing dynamic operations and enforcing access control

for outsourced data remains practical.
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Figure 5.8: Owner’s average computation overhead due to dynamic operations.

Table 5.5 shows the computation overheads of the proposed scheme on the TTP, the

CSP, and the authorized users sides.

Table 5.5: Experimental results of the computation overheads

Component TTP Authorized Users CSP
Computation Overhead 0.04 ms / 3.59 s 0.55 s 6.04 s

TTP computation overhead. In the worst case, the TTP executes only 4 hashes per

dynamic request to reflect the change on the outsourced data. Thus, the maximum com-

putation overhead on the TTP side is about 0.04 milliseconds, i.e., the proposed scheme

brings light overhead on the TTP during the normal system operations.

To identify the dishonest party in the system in case of disputes, the TTP verifies

two signatures (σF and σT ), computes combined hashes for the data (file and table), and

compare the computes hashes with the authentic values (THTTP and FHTTP ). Thus, the

computation overhead on the TTP side is about 3.59 seconds. Through our experiments,

we use only one desktop computer to simulate the TTP and accomplish its work. The TTP
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may choose to split the work among a few devices or use a single device with a multi-core

processor which is becoming prevalent these days, and thus the computation time on the

TTP side is significantly reduced in many applications.

User computation overhead. The computation overhead on the user side due to data

access comes from five aspects divided into two groups. The first group involves signatures

verification and hash operations to verify the received data (file and table). The second

group involves broadcast decryption, backward key rotations, and hash operations to com-

pute the DEK. The first group costs about 5.87 seconds, which can be easily hidden in

the receiving time of the data (1GB file and 2MB table).

To investigate the time of the second group, we access the file after running 100 different

block operations (with 5% and 10% revocation percentages). Moreover, we implement the

backward key rotations in the optimized way. The second group costs about 0.55 seconds,

which can be considered as the user’s computation overhead due to data access.

CSP computation overhead. As a response to the data access request, the CSP com-

putes two signatures: σF and σT . Thus, the computation overhead on the CSP side due

to data access is about 6.04 seconds and can be easily hidden in the transmission time of

the data (1GB file and 2MB table).

5.9 Reducing the Communication Cost

In this section, we discuss a slight modification to the proposed cloud-based storage scheme

to reduce the communication cost on the owner and the TTP sides. This slight modifi-

cation will be applied during the system setup phase and the dynamic operations on the

outsourced data. After preparing the BST and the encrypted version F̃ of the data to be

outsourced, the owner sends {F̃ ,BST} to the CSP, and {Rot, FHO, THO} to the TTP. The

values FHO = ⊕mj=1 h(b̃j) and THO = ⊕mj=1 h(BN j||KVj) are combined hashes computed

by the owner for F̃ and BST, respectively.

Upon receiving the data from the owner, the CSP computes FHC = ⊕mj=1 h(b̃j) and
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THC = ⊕mj=1 h(BN j||KVj), and sends {FHC , THC} to the TTP. The TTP checks FHO
?
=

FHC and THO
?
= THC . If they match, the TTP sets FHTTP = FHO (or FHC) and

THTTP = THO (or THC). In case of mismatch, the TTP asks the owner to follow the

procedures of the original scheme.

Similar ideas can be applied during the dynamic operations. For example, to modify a

data block bj with b′j, the owner sends 〈BM, TEntryBM, j, KVj, h(b̃j), b̃
′
j〉 to the CSP, and

〈BM, TEntryBM, KVj, RevFlag, hO, h′O〉 to the TTP, where hO = h(b̃j) and h′O = h(b̃′j).

If the CSP accepts the modify request (based on conditions of step 5 in Figure 5.3), it

sends h′C (a hash value computed by the CSP for b̃′j, i.e., h′C = h(b̃′j)) to the TTP. The

latter checks h′O
?
= h′C and if they match, it updates FHTTP = FHTTP ⊕ hO ⊕ h′O. The

values THTTP and Rot will also be updated as in Figure 5.3. If h′O 6= h′C , the owner sends

the original modify request (step 4 in Figure 5.3) to both the TTP and the CSP.

The slight modification presented here allows the owner to send the outsourced data

(or modified blocks) directly to the CSP and hash values along with some metadata to the

TTP, which reduces the communication cost on both the owner and the TTP sides. To

guarantee the consistency of data between the owner and the CSP, the TTP checks hash

values sent from both parties. Only if there is a mismatch, both the TTP and the CSP

will receive the data blocks from the owner (the original proposed scheme). The existence

of the TTP motivates the owner and the CSP to behave honestly, and thus most of the

time they should send equal hash values.

Nevertheless, the discussed modification will cause some extra computation overhead

on both the owner and the CSP sides to compute the hash values. Moreover, a slight

communication overhead will be imposed on the CSP during the system setup phase and

with each dynamic operation to send the computed hash to the TTP.

5.10 Summary

Outsourcing data to remote servers has become a growing trend for many organizations to

alleviate the burden of local data storage and maintenance. In this chapter, we have studied
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different aspects of outsourcing data storage: block-level dynamic operations, newness,

mutual trust, and access control.

We have proposed a cloud-based storage scheme which supports outsourcing of dynamic

data, where the owner is capable of not only archiving and accessing the data stored by the

CSP, but also updating and scaling this data on the remote servers. The proposed scheme

enables the authorized users to ensure that they are receiving the most recent version of

the outsourced data. Moreover, in case of dispute regarding data integrity/newness, a

TTP is able to determine the dishonest party. The data owner enforces access control for

the outsourced data by combining three cryptographic techniques: broadcast encryption,

lazy revocation, and key rotation. We have studied the security features of the proposed

scheme.

In this work, we have investigated the overheads added by the proposed scheme when

incorporated into a cloud storage model for static data with only confidentiality require-

ment. The storage overhead is ≈ 0.4% of the outsourced data size, the communication

overhead due to block-level dynamic changes on the data is ≈ 1% of the block size, and the

communication overhead due to retrieving the data is ≈ 0.2% of the outsourced data size.

For a large organization (data owner) with 100,000 users, performing dynamic operations

and enforcing access control add about 63 milliseconds of overhead. Therefore, impor-

tant features of outsourcing data storage can be supported without excessive overheads in

storage, communication, and computation.
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Chapter 6

Conclusions and Future Work

In this chapter, we conclude our dissertation and present future research directions.

6.1 Conclusions

The research area of cloud computing is not merely academic, but has also received con-

siderable attention from industry due to a number of key advantages it offers: cost ef-

fectiveness, low management overhead, immediate access to a wide range of applications,

flexibility to scale up and down information technology capacity, and mobility where cus-

tomers can access information wherever they are, rather than having to remain at their

desks.

Currently, we are living in a digital world, where a large amount of sensitive data (e.g.,

personal information, electronic health records, and financial data) is generated by various

organizations. Managing such huge amount of data locally at the organization’s end is

problematic and costly due to the requirements of high storage capacity and qualified

personnel. Therefore, cloud service providers (CSPs) offer Storage-as-a-Service as a paid

facility to reduce the maintenance cost and mitigates the burden of large local data storage.

Through this facility, data owners are enabled to outsource their data to be stored over

cloud servers.
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For data owners, being not the direct controller over the data raises serious concerns

regarding confidentiality, integrity, and access control of the data in cloud computing sys-

tems. Provable data possession (PDP) has been introduced as a technique that allows a

verifier to efficiently, periodically, and securely validate that a remote server – which sup-

posedly stores the owner’s potentially very large amount of data – is actually storing the

data in its original form. In this dissertation, we have taken some steps towards mitigating

the concerns of outsourcing data storage. These steps can be summarized as follows.

• In Chapter 3, we have addressed the problem of guaranteeing the storage of multiple

data copies over untrusted cloud servers. To tackle this problem, we have proposed

a pairing-based provable multi-copy data possession (PB-PMDP) scheme that re-

motely verifies the integrity of multiple data copies stored by the CSP. The proposed

scheme considers three main parties: a data owner, a CSP, and authorized users. To

seamlessly access any data copy received from the CSP, authorized users decrypt the

received copy using a single key shared with the data owner. In that sense, it is not

necessarily to recognize which copy has been received. The PB-PMDP scheme has

important features including public verifiability, unlimited number of auditing, and

possession-free verification where the verifier is enabled to verify data integrity even

though he neither possesses nor retrieves the file blocks from the server.

We have performed security analysis and showed that the proposed PB-PMDP scheme

is provably secure against colluding servers. In our analysis we have investigated all

possible combinations of malicious CSP responses {(σ′, µ′), (σ, µ′), (σ′, µ)}. For the

case (σ′, µ′), if it is accepted as a valid response, then the CDH (computational Diffie-

Hellman) problem can be solved. The response (σ, µ′) is rejected, otherwise there is

an adversary that can break the DL (discrete logarithm) problem. According to the

correctness of verification equation 3.1, (σ′, µ) is not accepted unless σ′ = σ.

We have illustrated the performance of the PB-PMDP scheme through theoretical

analysis, which is then validated by experimental results. Moreover, a comparative

study has been held between the proposed PB-PMDP scheme and the MR-PDP

(multiple-replica provable data possession) model. Experimental results have shown
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that the verification time of PB-PMDP is practically independent of the number of

file copies, which makes the scheme computationally cost-effective and more efficient

when verifying a large number of file copies.

To recognize which copy has been corrupted in case of failed verification, a slight

modification can be applied to the PB-PMDP scheme. This modification utilizes a

recursive divide-and-conquer (binary search) approach, where the verifier can identify

the indices of corrupted copies. To show the effect of identifying the corrupted copies

on the verification time, we have designed some experiments by generating data copies

and randomly corrupting different percentages of these copies. Interestingly, when

the percentage of corrupted copies is up to 15% of the total copies, the performance of

using the binary search algorithm in the verification is more efficient than individual

verification for each copy.

• In Chapter 4, we have studied creating multiple copies of dynamic data file and ver-

ifying those copies stored on untrusted cloud servers. We have proposed a new PDP

scheme referred to as MB-PMDDP (map-based provable multi-copy dynamic data

possession), which supports outsourcing of dynamic data, i.e., it supports block-level

operations such as block modification, insertion, deletion, and append. The proposed

MB-PMDDP scheme provides a guarantee that the CSP is storing all data copies that

are agreed upon in the service contract, and all these copies are consistent with the

most recent modifications issued by the owner. To the best of our knowledge, MB-

PMDDP is the first to address the integrity verification of multiple copies of dynamic

data. The MB-PMDDP scheme enables unlimited number of auditing, considers the

interaction between authorized users and the CSP (i.e., users can seamlessly access

a data copy received from the CSP using a single secret key shared with the data

owner), supports public verifiability, and allows possession-free verification.

To verify dynamic data, a verifier needs to be aware of block versions and indices.

Therefore, the proposed MB-PMDDP scheme is based on using a small data struc-

ture, which we call a map-version table (MVT). The MVT stores the version of each

block, and updates this version with each block modification operation. In addition,
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it keeps a mapping between logical block numbers and their physical positions in the

data file. It is important to note that the verifier retains only one table for unlimited

number of file copies, which mitigates the storage overhead on the verifier side.

Homomorphic linear authenticators are basic building blocks of the MB-PMDDP

scheme, and their unforgeability is the base to prove the security of the proposed

scheme. In our security analysis, we have shown that only correctly computed proof

P = {σ, µ} is accepted as a valid response to a challenge vector sent from a verifier,

and thus the MB-PMDDP scheme is provably secure against colluding servers.

To illustrate the performance of the proposed MB-PMDDP scheme, we have pre-

sented an extension – labelled as TB-PMDDP (tree-based provable multi-copy dy-

namic data possession) – to provable possession models for single-copy dynamic data

to work in the setting of multiple copies of dynamic data. We have performed a com-

parative study between the MB-PMDDP and the TB-PMDDP schemes. Theoreti-

cal analysis, implementation, and experimental results have demonstrated that the

proposed MB-PMDDP scheme outperforms the TB-PMDDP approach from many

perspectives: storage overhead on the CSP side, computation cost on both the CSP

and the verifer sides, and communication cost for the CSP’s response and dynamic

block operations.

As we have done with the PB-PMDP scheme for static data, the proposed MB-

PMDDP scheme can be slightly modified to support the feature of identifying the

indices of corrupted copies. We have also designed experiments to show the effect of

identifying the corrupted copies on the verification time. The experiments have indi-

cated that up to 15% corruption percentage, applying divide-and-conquer approach

during verification is more efficient than individual verification for each copy.

• In Chapter 5, we have complemented our research by proposing a new cloud-based

storage scheme that allows the data owner to benefit from facilities offered by the

CSP and enables indirect mutual trust between them. The proposed scheme have

considered important aspects of outsourcing data storage: block-level dynamic oper-
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ations, newness, mutual trust, and access control. It enables data owners to release

their concerns regarding confidentiality, integrity, and access control of the outsourced

data. Moreover, the CSP is protected from any false accusation that may be claimed

by a dishonest owner to get some sort of compensation.

The proposed scheme allows authorized users to make sure that they are receiving

the most recent version of the outsourced data. To resolve disputes that may oc-

cur regarding data integrity/newness, a trusted third party is invoked to determine

the dishonest side (owner/users or CSP). In addition, our scheme combines three

cryptographic techniques: broadcast encryption, lazy revocation, and key rotation to

enforce access control for outsourced data.

We have studied the security features of the proposed scheme, and showed that the

scheme satisfies: (i) data confidentiality based on the security of underlying encryp-

tion algorithm, (ii) detection of data integrity violation based on the preimage and

second-preimage resistance properties of the utilized cryptographic hash function,

(iii) assurance of newness property, which is identical to detection of data integrity

violation, (iv) enforcement of access control based on combining broadcast encryp-

tion, lazy revocation, and key rotation; and (v) detection of dishonest owner/user

based on unforgeable signatures.

The performance of the proposed scheme has been justified through theoretical anal-

ysis and a prototype implementation on Amazon cloud platform to evaluate storage,

communication, and computation overheads. We have showed that important fea-

tures of outsourcing data storage can be supported without excessive overheads.

6.2 Future Research Directions

The area of cloud computing has attracted many researchers from diverse fields; however,

much effort remains to achieve the wide acceptance and usage of cloud computing tech-

nology. A number of future research directions stem from our current research. Below, we
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summarize some problems to address during our future research.

Ensuring data replication across diverse geographic location. In this disserta-

tion work, we have proposed schemes to verify that the CSP is actually storing all data

copies that are agreed upon in the service contact. Replicating data in different geographic

locations is crucial to prevent simultaneous failure caused by natural disasters or power

outages. Moreover, it is effective in reducing access time and communication cost for users

in different parts in the world.

It will be interesting to study the problem of verifying that the data is actually repli-

cated in diverse geolocations. This will require collaboration between researchers from

both industry (to build data center components, services, and software) and academia (to

provide mathematical models and theoretical frameworks for the verification process).

Self-organized data replication over cloud servers. Current data centers are sub-

ject to failure of any type, and high access to the data stored can be one reason for such

failure. As the number of access requests to outsourced data increases, its availability be-

comes more complex. For example, the University of Waterloo has an online course system

(LEARN) based on cloud computing technology. During exam days, almost all students

access course materials on LEARN, which might affect data availability.

One possible future direction is to address the problem of designing self-managed stor-

age systems that can dynamically adapt to varying query load by allocating/deallocating

storage space for data copies on cloud servers. An optimization model is needed to specify

the optimal number of copies and their storage locations across the servers. Through this

model one can minimize the response time for data access requests, and optimize the use

of CSP’s storage capacity.

User authentication for cloud computing systems. The development of cloud com-

puting encourages the use of resource-constrained devices (PDA/cell phones) on the client

side. Thus, rather than local data storage and software installation, users will be authen-

ticated to access data and use applications from the cloud. Such computing model makes

software piracy more difficult and enables centralized monitoring. Although cloud comput-
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ing architecture stimulates mobility of users, it increases the need of secure authentication.

Relying on passwords for user authentication in not an efficient approach for sensitive

data/applications on the cloud. Passwords is a major point of vulnerability in computer

security; they are often easy to guess by automated programs running dictionary attacks,

users cannot remember very long passwords, and the common use of meaningful passwords

makes them subject to dictionary attacks.

Implicit authentication is another interesting area of research to address user authenti-

cation problem. One can use learning algorithms to construct a model for the user based

on previous behavior patterns, and then compare the recent behavior with the user model

to authorize legitimate users. This may require collaboration with researchers from com-

puter science to develop efficient learning algorithms using artificial intelligence, machine

learning, and neural networks tools.

Outsourcing computation to untrusted cloud servers. Outsourcing computation

is a growing desire for resource-constrained clients to benefit from powerful cloud servers.

Such clients prefer to outsource computationally-intensive operations (e.g., image process-

ing) to the cloud and yet obtaining a strong assurance that the computations are correctly

performed. To save the computational resources, a dishonest CSP may totally ignore the

computations, or execute just a portion of them. Sometimes the computations outsourced

to the cloud are so critical that it is essential to preclude accidental errors during the

processing.

The ability to verify computations and validate the returned results is a key requirement

of cloud customers. Another imperative point is that the amount of work performed

by the clients to verify the outsourced computations must be substantially cheaper than

performing the actual computations on the client side. One direction of future research is

to investigate the area of verifiable computations and outsourcing computational tasks to

untrusted cloud servers. It is also interesting to address mutual trust feature, so a client

who receives incorrect results from cloud servers can detect and prove this misbehavior.

Moreover, a dishonest client must not be able to falsely accuse a CSP and claim that the

outsourced computations are malformed.
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Appendix A

Examples of the TB-PMDDP scheme

This appendix contains some examples of the TB-PMDDP scheme that demonstrate the

effect of dynamic operations on the MHTs over the CSP side. Moreover, these examples

show how the owner uses the information received from the CSP to generate the new

directory root and update the metadata. We assume that the data owner has a file of 4

blocks and the CSP stores n copies of this file. Also we assume that during the system

setup, the owner and the CSP have agreed to use left-to-right sequence to generate the

Merkle trees.

� Modification. Figure A.1 shows that the second block is to be modified in all

copies outsourced to the CSP. On the CSP side, the dashed nodes indicate the tree

nodes that are updated due to the modification of the second block. The dashed

leaf nodes {h12, h22, . . . , hn2} are updated as hi2 = h(H(b̃′i2)), where b̃′i2 – created and

sent from the owner – is the modified second block dedicated for copy i: 1 ≤ i ≤ n.

The dashed non-leaf nodes are updated by h(left child || right child). The grey

nodes indicate the authentication paths of the modified blocks, e.g., {h11, h1B} is the

authentication path of the modified block b̃′12. On the owner side, the owner uses the

authentication paths 〈{h11, h1B}, {h21, h2B}, . . . , {hn1, hnB}〉 sent from the CSP and

the modified blocks {b̃′12, b̃
′
22, . . . , b̃

′
n2} to generate the new directory root h′DR and

update the metadata M′ = h(IDF ||h′DR). The dashed nodes indicate the generated

cryptographic hashes using the authentication paths (grey circles) sent from the CSP
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and the modified blocks {b̃′i2}1≤i≤n. Thus, h12 = h(H(b̃′12)), h1A = h(h11||h12), and

h1R = h(h1A||h1B). The computation of {hiR}2≤i≤n is done the same way. The owner

uses the computed {hiR}1≤i≤n to generate the updated directory root h′DR, and finally

computes the updated metadata M′ = h(IDF ||h′DR).
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Figure A.1: Effect of block modification operation on the MHTs and the directory root.

� Insertion. Figure A.2 shows that a new block is to be inserted after position 2 in

all copies outsourced to the CSP. On the CSP side, the cross-dashed nodes indicate

the newly added leaf nodes, i.e., ĥi2 = h(H(b̂i)), where b̂i – created and sent from

the owner – is the new block to be inserted in copy i: 1 ≤ i ≤ n. The dashed

nodes indicate the tree nodes that are updated due to the insertion of the new block.

The updated hash values of these nodes are computed as h(left child||right child).
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The nodes {ĥiC}1≤i≤n are generated to re-arrange the structure of the MHTs ac-

cording to the newly added leaf nodes. The grey nodes indicate the authentication

paths of the newly inserted blocks, e.g., {h12, h11, h1B} is the authentication path

of the new block b̂1. On the owner side, the owner uses the authentication paths

〈{h12, h11, h1B}, {h22, h21, h2B}, . . . , {hn2, hn1, hnB}〉 sent from the CSP and the new

blocks {b̂1, b̂2, . . . , b̂n} to generate the new directory root h′DR and update the meta-

data M′ = h(IDF ||h′DR). The dashed nodes indicate the generated cryptographic

hashes using the authentication paths (grey circles) sent from the CSP and the new

blocks {b̂i}1≤i≤n. Thus, ĥ1 = h(H(b̂1)), ĥ1C = h(h12||ĥ1), h1A = h(h11||ĥ1C), and

h1R = h(h1A||h1B). The computation of {hiR}2≤i≤n is done the same way. The owner

uses the computed {hiR}1≤i≤n to generate the updated directory root h′DR, and finally

computes the updated metadata M′ = h(IDF ||h′DR).

� Deletion. Figure A.3 shows that the second block is to be deleted from all copies

outsourced to the CSP. On the CSP side, the leaf nodes with crosses indicate the

nodes to be deleted. The fragmented curved arrows indicate that after deleting

the specified leaf nodes, the nodes {hi1}1≤i≤n replace the nodes {hiA}1≤i≤n, and

thus the MHTs are re-arranged. The dashed nodes indicate the tree nodes that

are updated due to the deletion of the second block. The updated hash values

of these nodes are computed as h(left child||right child). The grey nodes indicate

the authentication paths of the deleted blocks, e.g., {h11, h1B} is the authentication

path of the deleted block b̃12. On the owner side, the owner uses the authentication

paths 〈{h11, h1B}, {h21, h2B}, . . . , {hn1, hnB}〉 sent from the CSP to generate the new

directory root h′DR and update the metadataM′ = h(IDF ||h′DR). The dashed nodes

indicate the generated cryptographic hashes using the authentication paths (grey

circles) sent from the CSP. Thus, hiR = h(hi1||hiB) : 1 ≤ i ≤ n. The owner uses

the computed {hiR}1≤i≤n to generate the updated directory root h′DR, and finally

computes the updated metadata M′ = h(IDF ||h′DR).
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Figure A.2: Effect of block insertion operation on the MHTs and the directory root.
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Figure A.3: Effect of block deletion operation on the MHTs and the directory root.
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