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Abstract 

The objective of this thesis was to develop a fast-response multifunctional MEMS (Micro Electro 

Mechanical Systems) sensor for the simultaneous measurement of in-cylinder pressure and 

temperature in an internal combustion (IC) engine. In a representative IC engine, the pressure and 

temperature can reach up to about 1.6 MPa and 580 °C, respectively, at the time of injection during 

the compression stroke. At the peak of the combustion process, the pressure and temperature near the 

cylinder wall can go beyond 6 MPa and 1000 °C, respectively. Failure of current membrane-based 

MEMS pressure sensors operating at high temperatures is mainly caused by cross-sensitivity to 

temperature, which affects the pressure readout. In addition, the slow thermal response of temperature 

sensors used for such a dynamic application makes real-time sensing within a combustion engine very 

challenging. While numerous approaches have been taken to address these issues, no MEMS sensor 

has yet been reported that can carry out real-time measurements of in-cylinder pressure and 

temperature. 

The operation of the sensor proposed in this Thesis is based on a new non-planar and flexible 

multifunctional membrane, which responds to both pressure and temperature variations at the same 

time. The new design draws from standard membrane-based pressure and thermostatic-based 

temperature MEMS sensing principles to output two capacitance values. A numerical processing 

scheme uses these values to create a characteristic sensing plot which then serves to decouple the 

effects of pressure and temperature variations. This sensing scheme eliminates the effect of cross-

sensitivity at high temperatures, while providing a short thermal response time. Thermal, mechanical 

and electrical aspects of the sensor performance were modeled. First, a semi-analytical thermo-

mechanical model, based on classic beam theory, was tailored to the shape of the multifunctional 

membrane to determine the sensor’s response to pressure and temperature loading. ANSYS® 

software was used to verify this semi-analytical model against finite element simulations. Then the 

model was then used to calculate the capacitive outputs of the multifunctional MEMS sensor 

subjected to in-cylinder pressure and temperature loading during a complete cycle of operation of a 

typical IC engine as well as to optimize the sensor specifications. 

Several prototypes of the new sensing mechanism fabricated using the PolyMUMPs® foundry 

process were tested to verify its thermal behavior up to 125 °C. The experiments were performed 

using a ceramic heater mounted on a probe station with the device connected to a precision LCR-
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meter for capacitive readouts. Experimental results show good agreement of the temperature response 

of the sensor with the ANSYS® finite element simulations. Further simulations of the pressure and 

temperature response of different configurations of the multifunctional MEMS sensor were carried 

out. The simulations were performed on an array of 4200 multifunctional devices, each featuring a 

0.5 μm thick silicon carbide membrane with an area of 25×25 μm
2
, connected in parallel shows that 

the optimized sensor system can provide an average sensitivity to pressure of up to 1.55 fF/KPa (over 

a pressure range of 0.1-6 MPa) and an average sensitivity to temperature of about 4.62 fF/°C (over a 

temperature range of 160-1000 °C) with a chip area of approximately 4.5 mm
2
. Assuming that the 

accompanying electronics can meaningfully measure a minimum capacitance change of 1 fF, this 

optimized sensor configuration has the potential to sense a minimum pressure change of less than 1 

KPa and a minimum temperature change of less than 0.35 °C over the entire working range of the 

representative IC engine indicated above. 

In summary, the new developed multifunctional MEMS sensor is capable of measuring temperature 

and pressure simultaneously. The unique design of the membrane of the sensor minimizes the effect 

of cross-sensitivity to temperature of current MEMS pressure sensors and promises a short thermal 

response time. When materials such as silicon carbide are used for its fabrication, the new sensor may 

be used for real-time measurement of in-cylinder pressure and temperature in IC engines. 

Furthermore, a systematic optimization process is utilized to arrive at an optimum sensor design 

based on both geometry and properties of the sensor fabrication materials. This optimization process 

can also be used to accommodate other sensor configurations depending on the pressure and 

temperature ranges being targeted. 
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Chapter 1 

Introduction 

Industrial processes, like power generation, can be monitored by measuring their characteristic 

variables such as pressure and temperature. The efficiency of these processes affects their 

consumption of valuable resources and the production of pollutants and waste byproducts. The 

everlasting need for higher efficiencies has led to a huge interest in pushing the working limits of the 

available measurement technologies even further. To achieve this goal, new sensors are required 

which can survive the increasing harsh environment conditions found in such applications. 

Micro-Electro-Mechanical Systems (MEMS) sensors have received a great interest in recent years 

because of their potential to precisely measure physical variables in various applications. This, along 

with their low cost, small foot print, superior reliability, and possibility of integration into an array for 

multiplexed measurements have made the MEMS sensors a good candidate for measurements in 

harsh environment applications. The trend for pushing the working limits of industrial processes has 

created a huge demand for the development of new MEMS sensors which can work appropriately and 

reliably in extremely harsh conditions. A good example is MEMS sensors sought for combustion 

monitoring in internal combustion (IC) engines.  

1.1 Motivation 

The available MEMS technology for pressure and temperature sensing is likely to malfunction in 

harsh environment applications because of the degradation of the sensor’s structural materials and/or 

the failure of its sensing mechanism(s). While the former shortcoming can be addressed by using 

stronger materials, the latter one asks for the development of new MEMS sensing mechanisms that 

can operate in harsh environments with acceptable precision and speed. 

MEMS sensors are usually designed single-tasked to measure one parameter at a time. However, they 

often operate in complex environments at which various parameters change simultaneously. In such 

environments, one of the major obstacles toward achieving an acceptable operational precision is the 

cross-sensitivity of the MEMS sensor to undesired parameters. Cross-sensitivity to temperature in 

MEMS pressure sensor is an example of this problem.  

So far, the main solution to the problem of cross-sensitivity to undesired parameters has been using 

auxiliary sensors for independent measurement of the undesired parameters and then deploying signal 
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processing schemes to cancel out and compensate for their effects. However, increased size, added 

cost and the complexity due to the addition of new sensors have hindered successful implementation 

of this compensation solution in many applications. So, the design of a new MEMS sensor with 

improved compensation scheme arises as the first motivation for this Thesis. 

Additionally, in some harsh environment applications, fast responding sensors are needed to keep up 

with the rate of temperature variation. Measurement of temperature inside the cylinder of an IC 

engine is an example of such applications. To carry out in-cylinder temperature measurement, two 

general approaches have been followed so far: 1) optical based methods and 2) thin film based 

methods. The first approach enables very fast measurement of temperature; however, it requires 

relatively bulky components and is not suitable for consumer use outside the laboratory. The second 

approach has other downsides such as limited life time and relatively moderate response time. This 

example can be extended to other applications for which fast responding temperature sensors are 

required but the need has not been fully answered yet. This need for fast responding temperature 

sensors constitutes the second motivation for this Thesis.  

1.2 Objectives 

A new MEMS sensor for simultaneous measurement of pressure and temperature inside the cylinder 

of IC engines is designed in this Thesis. It is called here a multifunctional MEMS sensor since it 

carries out two measurements. The new sensor addresses the concern of cross-sensitivity to 

temperature during the measurement of in-cylinder pressure. It also provides a short response time in 

catching up with the rate of variation of in-cylinder temperature. The new multifunctional MEMS 

sensor combines membrane-based pressure sensing and bimaterial-based (thermostatic) temperature 

sensing principles and is designed to specifically achieve the following objectives:  

1. Development of a new multifunctional sensing mechanism for simultaneous measurement of 

pressure and temperature at one location.  

2. Improvement of the accuracy of pressure measurement by introducing a new temperature 

compensation scheme.  

3. Improvement of response time for temperature measurement, by taking such measures as 

minimizing the thermal mass of the sensing body.  

4. Small footprint for nonintrusive integration inside the cylinder of IC engine.  



 

 3 

5. Compatibility with different measurement techniques like capacitive (implemented in this Thesis) 

and optical (listed among the future work). 

1.3 Organization of thesis 

The Thesis is divided into six chapters. Chapter 2 presents a literature review on MEMS sensors for 

harsh environment applications. It starts by defining a harsh environment in the context of this Thesis 

and continues by reviewing available harsh environment MEMS materials and available methods for 

pressure and temperature measurement in such environments. A review of failure mechanisms in 

available MEMS sensors for harsh environment applications follows. The chapter concludes with a 

review of current multifunctional MEMS sensing platforms. 

In Chapter 3, the operational requirements for the new multifunctional MEMS sensor for IC engines 

are established and the conceptual design of the sensor is presented. The design evolves around a 

nonplanar multifunctional membrane whose responses to pressure and temperature variations are 

inherently different. This difference lays the foundation for and enables decoupling the effects of 

pressure and temperature variations. The chapter finishes with a section that discusses the integration 

of capacitive interrogation with the multifunctional membrane.  

Chapter 4 presents the modeling and analysis of the sensor’s response to different pressure and/or 

temperature loading cases. It includes both numerical finite element and semi-analytical modeling 

approaches. The chapter starts with the numerical thermal modeling of the effect of different sensor 

materials and geometrical parameters. Based on the results of these simulations, appropriate materials 

and dimensions are selected to achieve the operational requirements set in Chapter 2. Next, based on 

classic beam theory, a semi-analytical model is developed for the mechanical analysis of the 

membrane response to pressure and/or temperature loading. This semi-analytical model, which is 

validated by the finite element simulations, drastically decreases the modeling time. Electrical 

modeling and sensitivity analysis of the sensor provide capacitive outputs of the sensor at different 

loading conditions and dimensions. The last section investigates the effects of fabrication errors and 

deviation from ideal design parameters on the performance of the sensor. 

In Chapter 5, experimental results of two groups of fabricated devides are presented. The first group 

includes test devices designed and fabricated for the determination of the residual stresses of MEMS 

structural materials. The second group includes proof-of-concept MEMS prototypes made to 
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qualitatively and quantitatively verify the thermal response mechanism of the new sensor. The test 

setup used for the experiments is also described in this chapter.  

Finally, Chapter 6 concludes the Thesis by listing the main contributions and proposing potential 

future work trends to continue this research. 
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Chapter 2 

Literature Review 

Throughout the physical sciences, measurement is defined as the process of determining the ratio of a 

physical quantity like pressure to a unit of measurement like Pascal (defined as one newton per square 

metre). It is usually carried out by a sensor which converts the physical phenomenon (measurand, or 

input) into a quantity (output) that can be read by an observer or by an instrument. Sensors are an 

essential part to any industrial application. There are as many sensors as there are different physical 

quantities to be measured.  

In late 1960s, borrowing from the integrated circuit (IC) fabrication technology, the first bulk 

micromachined silicon wafer was used as a pressure sensor. This led the way for a new category of 

very small devices later known as Micro-Electro-Mechanical Systems (MEMS). MEMS sensor 

technology is concerned with highly miniaturized devices (usually less than a few hundreds 

micrometer in size) that convert physical measurands into electrical signals.  

Development of robust MEMS sensors and their utilization in harsh environment applications has 

recently emerged as one of the most sought for trends in industry. Examples of such applications 

include down-hole drilling, space missions, and combustion monitoring in automotive industry, to 

name a few. Various measures have been taken lately to improve the robustness of MEMS sensors, 

including the development of harsh environment MEMS materials and the design of novel sensing 

mechanisms for extreme working conditions. Moreover, since accurate measurements are essential in 

many industries, and considering the fact that all measurements are inherently approximations, a great 

deal of effort has been put into making the MEMS sensors as accurate as possible. As highlighted in 

Chapter 1, the cross interference between the effects of desired and undesired measurands (called 

cross-sensitivity in this Thesis) is a major challenge in many harsh environment applications. To 

address these problems, the development of new MEMS sensors for harsh environments has recently 

attracted a lot of interest among both researchers and industry [1, 2].  

In the following sections, a review of the main works on sensors for pressure and temperature 

measurements in harsh environments is presented. It investigates the ongoing research on both 

MEMS and non-MEMS based competing sensors with a special emphasis on those developed for 

operation in IC engines. Finally, the current status of multifunctional MEMS sensors is reviewed.  
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2.1 MEMS sensors for harsh environment 

2.1.1 Definition of harsh environment in the context of this thesis 

A harsh environment is generally characterized by extreme working conditions such as intense 

vibrations, radiation, electromagnetic interference, chemically aggressive media, high pressure and 

most notably high temperature. In the context of this work, we are specifically concerned with harsh 

environment applicaitons associated with the last two of the aforementioned characteristics. Figure 

2.1 reviews the pressure and temperature ranges associated with a handful of such harsh environment  

 

 
 

Figure 2.1. Pressure and temperature ranges as well as characteristic times of some harsh 

environment applications for which MEMS sensors are being developed.  
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applications. Among the applications represented in Figure 1, those related to IC engine (including 

both gasoline and diesel powered ones) stand out as highly dynamic and intermittent examples at 

which pressure and temperature changes occur over very short periods of time (in the order of 

microsecond  or millisecond). Moreover, these applications are associated with some of the highest 

temperature variations observed among harsh environment applications. On the contrary, for example 

in downhole applications, pressure and temperature change so slowly that the whole application can 

be regarded static.  

In the automotive industry, the development of reliable sensors for real time monitoring of in-cylinder 

process conditions is a high demanding research trust. Such sensors can provide unparalleled 

information to engine control unit in order to minimize fuel consumption and emission level. 

Successful implementation of in-cylinder sensors includes operation during the various strokes of an 

IC engine. As a result, such sensors will be exposed to and should survive such harsh conditions as 

electromagnetic interference (electrical discharge during spark ignition), high pressure and high 

temperature (during compression and working strokes), and chemically aggressive media (by-

products of combustion during the working and exhaust cycles). Additionally, one should notice that 

in applications such as monitoring of in-cylinder conditions, additional difficulties arise from the fact 

that such extreme working conditions usually appear in combination with each other.  

2.1.2 MEMS sensor materials  

The requirement for reliable and robust MEMS sensors for harsh environment applications has 

initially been answered by pushing the existing MEMS sensor technology to its limit. To do so, many 

efforts have been put into improving the environmental resistance of MEMS sensors thorough the 

development and implementation of harsh environment compatible MEMS materials. These materials 

can be categorized in three main groups: 1) semiconductors such as silicon, aluminum nitride, gallium 

nitride, diamond and silicon carbide, 2) dielectrics for passivation such as silicon carbonitride, silicon 

dioxide and silicon nitride, and 3) refractory metals such as titanium, chromium, nickel and tungsten. 

In the following, the most important MEMS materials and their applications at harsh environment 

sensors are reviewed. 

Silicon (Si) 

Silicon is the most commonly used semiconductor in MEMS sensors which can be found in a variety 

of forms including single crystal substrate (SC-Si), amorphous thin film (a-Si), polycrystalline thin 
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film (Poly-Si), and single crystalline thin film. From a mechanical point of view, silicon is known to 

maintain its elastic strength at temperatures up to about 600 °C without showing any noticeable 

plastic deformation [3]. In terms of electrical properties, silicon-based electronics starts to 

malfunction at temperatures above 150 °C mainly because of excessive leakage current [4]. By using 

Silicon on Insulator (SOI) technology, the maximum temperature limit of silicon-based electronics 

can be further pushed up to 350 °C [5]. So, 350 °C and 600 °C are regarded as the ultimate working 

temperatures of silicon-based electronics and MEMS mechanical components, respectively. 

Aluminum nitride (AlN) 

Aluminum nitride is a promising piezoelectric semiconductor for high temperature applications. It 

maintains its piezoelectric characteristic at temperatures up to 1150 °C [6]. AlN thin films have been 

successfully deposited/grown in amorphous [7], polycrystalline [8] and single crystal [9, 10] forms on 

a variety of substrate materials. Recently, single crystal AlN wafers have also been reported [11]. The 

main shortcoming of AlN in harsh environment applications is that it oxidizes above 800 °C in the 

presence of oxygen [12].  

Gallium nitride (GaN) 

Gallium nitride has excellent mechanical and thermal stability as well as inherent piezoelectricity 

[13]. It is a semiconducting piezomaterial and combines the piezoresistive and piezoelectric behaviors 

[14]. The main drawback of GaN in harsh environment applications is that it dissociates to gallium 

oxide and nitrogen at approximately 650 °C in the presence of oxygen [15].  

Diamond 

Diamond is the hardest material found in nature with superior mechanical strength and thermal 

conductivity. Single crystal diamond has a room temperature thermal conductivity of 1000 to 2000 

Wm
-1

K
-1

 [16, 17], which makes it the best thermal conductor of any known solid. Although the 

survival of diamond has been documented at temperatures up to 2200 °C in a hydrogen atmosphere 

[18], it burns in the presence of oxygen at temperatures above 700 °C which hinders its usage in 

many harsh environment applications [19].  

Silicon Carbide (SiC) 

Silicon carbide, the most investigated material for harsh environment applications, is a wide band-gap 

semiconductor which has been successfully used in the fabrication of high temperature electronics 
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[20] and MEMS sensors [1]. SiC has been deposited in single crystalline, polycrystalline, and 

amorphous forms on different substrates [21]. In addition, pure SiC wafers up to four inches in 

diameter are commercially available [22] and six inches wafers are on the horizon [23]. Among SiC 

different polytypes, the cubic 3C-SiC and the hexagonal 4H-SiC and 6H-SiC are extensively used in 

harsh environment MEMS application as structural and high temperature electronic materials, 

respectively [24]. For high temperature harsh environment application, SiC is known to maintain its 

outstanding mechanical strength and chemical stability at temperatures in excess of 1000 °C [25, 26]. 

Silicon carbonitride (SiCN) 

Silicon carbonitride typifies a class of amorphous polymer-derived dielectric materials that maintain 

their mechanical strength and chemical stability at temperatures as high as 1400 °C [27, 28]. SiCN 

MEMS structures are usually fabricated using liquid polymer polysilazane as a precursor. The 

fabrication process is rather cheap and simple because the liquid precursor is inexpensive and it is 

possible to make micro features using only a UV-lithography process [29]. However, realization of 

small and complex features can not be achieved using a liquid precursor.  

Silicon Dioxide (SiO2) 

Silicon Dioxide is commonly used as an intermediate layer to electrically insulate conductive layers 

from each other. It is also used as a sacrificial layer in wet etching processes. Among the different 

methods used to deposit SiO2, wet and dry thermal oxidation have gained a great popularity in MEMS 

industry, mainly due to the high chemical stability of the resultant oxide layer and its strong adhesion 

to underneath substance. 

Silicon Nitride (Si3N4)  

Silicon Nitride is widely used as an electrical insulator between conductive layers. It is usually 

deposition by chemical vapor deposition (CVD) methods. Due to its chemical stability, Si3N4 is also 

used as the masking layer for etching processes. 

Titanium (Ti) 

Titanium, due to its mechanical toughness and corrosion resistance, has emerged as a potential 

structural material for the fabrication of MEMS radio frequency (RF) switches for harsh environment 

applications [30]. In such applications, the native titanium oxide which forms on exposed titanium 

protects the rest of it from the harsh environment. Moreover, due to its strength at high temperatures 
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as well as its ability to form conductive alloys with other materials such as nickel and tungsten, 

titanium is extensively used in the metallization of Ohmic contacts in harsh environment MEMS 

devices [31]. 

Chromium (Cr) 

Chromium is mostly used in MEMS devices as an adhesion layer between otherwise non bonding 

materials. It is also used for contact metallization in harsh environment MEMS. 

Tungsten (W) 

Tungsten is used in the metallization of Ohmic contacts in harsh environment MEMS devices. Thanks 

to it thermal and phase stability at temperatures up to 2700 °C [32], tungsten alloyed with titanium 

along with a gold film, following a short annealing step at 1000 °C, is extensively used as a reliable 

Ohmic contact in SiC MEMS devices for prolonged operation at temperatures up to 300 °C [33, 34]. 

The densities of the MEMS materials reviewed in this section are given in Table 2.1 and are assumed 

to be temperature independent.  

The remainder of this section reviews the most important temperature dependent properties of these 

MEMS materials. Figure 2.2 shows how thermal conductivity   of MEMS materials varies with 

temperature. Among the materials investigated in this figure, diamond possesses the highest thermal 

conductively of all followed by single crystal SiC (SC-SiC). On the other hand, SiO2 and Si3N4 

demonstrate the lowest thermal conductivity which makes them ideal thermal insulators. One general 

trend observed in Figure 2.2 is the drastic reduction in the thermal conductivities of SiC and Si as 

their crystalline structure changes from single crystal to amorphous. This is mainly due to the 

increased phonon scattering on the grain boundaries of the crystalline structures [35].  

 

Table 2.1. Density of some common MEMS materials. 

Material Si AlN GaN Diamond SiC 

Density (Kg/m
3
) 2330 3260 6500 3520 3210 

Material SiCN SiO2 Si3N4 Ti Cr W 

Density (Kg/m
3
) 2600 2200 3200 4500 7190 19250 
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Figure 2.2. Thermal conductivity versus temperature for selected MEMS materials. 

 

Figure 2.3 represents the change in specific heat   of MEMS materials with temperature. Since the 

specific heat of a material mostly depends on its density, no major difference is observed among the 
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specific heats of various crystalline structures of materials like Si and SiC [36]. Figures 2.4 and 2.5 

show how elastic modulus and coefficient of thermal expansion (CTE) of MEMS materials vary with 

temperature. Similar to the case of specific heat, no major dependence between the CTE and the  

 

 
 

Figure 2.3. Specific heat versus temperature for selected MEMS materials.  
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crystalline structure of materials is observed. As an anomaly in Figure 2.5, the CTE of SiO2 is 

reported as negative [37] which is in agreement with some earlier published data [38].  

 

 
 

Figure 2.4. Elastic modulus versus temperature for selected MEMS materials.  
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Figure 2.5. Coefficient of thermal expansion versus temperature for selected MEMS materials.  

 

For each of Figures 2.2 to 2.5, the corresponding references from which the data is collected are given 

in the figure’s legend. Throughout this Thesis, wherever needed, the characteristic curves of MEMS 

material properties reported in this section are extrapolated to cover the temperature range of interest.  
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2.1.3 Pressure sensors  

Pressure sensors are the most extensively investigated MEMS sensors for harsh environment 

applications. They are designed and fabricated around the idea of utilizing a thin flexible membrane 

which is made from a resilient material. The membrane serves as the sensing element of the sensor. 

When there is a pressure difference between its two sides, the membrane deflects. A measurement 

system is integrated into the sensor which is used to measure the deflection of the membrane under 

pressure difference. The ultimate output of a MEMS pressure sensor is typically an electrical signal 

whose amplitude is proportionate to the pressure difference.  

Piezoresistive:  

A piezoresistive MEMS pressure sensor works based on the change of resistance of a material due to 

mechanical loading and/or deformation (piezoresistive effect). The change in resistance comes mostly 

from the physical change of the structure due to deformation [62]. Figure 2.6 schematically shows a  

 

 
 

Figure 2.6. Schematic of a piezoresistive pressure sensor: (a) top view; (b) side view; (c) 

piezoresistive strain gauges connected in a Wheatstone bridge configuration. 
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piezoresistive MEMS pressure sensor and its equivalent electronics circuit. The Wheatstone bridge 

configuration is often used for the interface electronics of Piezoresistive MEMS pressure sensors.  

In 1954, Smith reported the piezoresistive effect of silicon [63]. The evolution of piezoresistive 

MEMS pressure sensors started with metallic membrane sensors with bonded silicon piezoresistors, 

but later crystalline membranes with diffused piezoresistors took over. The first efforts to develop 

MEMS pressure sensors using piezoresistive micromachined single crystal silicon strain gauges dates 

back to 1960s. The work by Tufte et al. [64] is one of the earliest of such efforts which reports a 

MEMS pressure sensor consisting of a single crystal silicon wafer diaphragm having piezoresistive 

regions formed by localized diffusion of impurities (dopants).  

In 1970s, the idea of anisotropically etched silicon membrane was introduced to piezoresistive 

MEMS pressure sensors which allowed for further miniaturization of the sensors. Samaun et al. [65] 

used anisotropic potassium hydroxide (KOH) etching of silicon wafer to achieve a single crystal 

silicon membrane with a thickness of about 5 μm and a diameter of about 500 μm. The sensor 

achieved a sensitivity of 105 μV V
-1

 KPa
-1

. Utilizing a similar fabrication procedure, Clark and Wise 

[66] reported a sensitivity of 510 μV V
-1

 KPa
-1

 for a l mm
2
 square single crystal silicon membrane 

with a thickness of 10 μm. They also investigated an alternative design of the pressure sensor with a 

capacitive measurement system and showed that the sensitivity of the capacitive device is 

approximately an order of magnitude more than that of the piezoresistive one. Furthermore, they 

showed that the capacitive device is less susceptible to undesired thermal drift effect present in the 

piezoresistive sensor. So, they concluded that a MEMS pressure sensor with capacitive measurement 

system is a better candidate for high temperature applications compared to a piezoresistive one.  

In 1980s and 1990s, the idea of using MEMS sensors for harsh environment applications started to 

gain importance in industry. Till this time, the high sensitivity and ease of fabrication of single crystal 

silicon piezoresistive sensors had led to successful implementation of many MEMS pressure sensors. 

However, the problem of leakage at high temperatures had limited their applications to temperatures 

below 150 °C. The leakage occurs at the pn junction that isolates the piezoresistor from the substrate. 

It can be minimized if an isolating material such as SiO2 or Si3N4 is used between the piezoresistor 

and the underneath layer. One of the earliest published works on the development of MEMS pressure 

sensors for high temperature harsh environment applications is that of Petersen et al [67] in which the 

fabrication of a piezoresistive silicon-based MEMS pressure sensor capable of  operation at 

temperatures between -40 and 250 °C is reported. The sensor was fabricated by a silicon fusion 
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bonding process. In this process the single crystal silicon piezoresistor elements from one wafer (used 

as a sacrificial carrier wafer) were bonded to the oxidized surface of a second wafer in which the 

silicon membrane was anisotropically etched. The intermediate oxide layer electrically isolates the 

piezoresistors from each other and from the silicon membrane. This guarantees low leakage currents 

at temperatures as high as 200 °C [68]. The sensor achieved a sensitivity of 145 μV V
-1

 KPa
-1

 and a 

pressure nonlinearity less than 0.2% for the pressure range of 15 psi (0.1 MPa) to 5000 psi (34 MPa).  

To further increase the maximum temperature limit of piezoresistive MEMS pressure sensors, SOI 

wafers are used instead of silicon wafers. In [69], the piezoresistive properties of polycrystalline 

silicon and the applicability of SOI wafers for the production of MEMS pressure sensors operating at 

temperatures up to 200 °C is investigated. Using epitaxial Al2O3 films as the isolating material, 

Chung et al [70] fabricated a high temperature piezoresistive MEMS pressure sensor on hetero-

epitaxially grown Si/Al2O3/Si SOI wafer. Their device featured a sensitivity of 262 μV V
-1

 KPa
-1

 and 

worked in the temperature range of -20 to 350 °C with a pressure nonlinearity of 0.18% and a 

hysteresis of 0.07% for the pressure range of 0 to 93 KPa. Using silicon on sapphire (SOS) substrate, 

Stuchebnikov [71] reported a piezoresistive a MEMS pressure sensor operating at temperatures up to 

350 °C. The sensor measured pressures up to 60 MPa with a pressure nonlinearity less than 0.2% and 

a hysteresis smaller than of 0.05%.  

The problem with using silicon piezoresistors at temperatures above 350 °C is the excessive thermal 

generation of charge carriers at such high temperatures [72]. Recently, Guo et al [73] demonstrated 

that by using smart-cut® SOI wafers (featuring a single crystal silicon film less than 0.5 μm in 

thickness on top of an insulating layer) the maximum operating temperature of a piezoresistive 

MEMS pressure sensor can be pushed to 600 °C with an acceptable accuracy (below 0.5%) and 

hysteresis (below 0.1%).  

Regarding these efforts, silicon based MEMS technology is already at its maximum temperature limit. 

Further progress can only be made by using more resilient materials than silicon. For example, [74] 

reports on the development of a harsh environment MEMS pressure sensor based on piezoresistive 

effect of boron-doped diamond which works at temperatures up to 250 °C. The membrane of the 

sensor consists of 5 μm of undoped diamond CVD deposited over a 45 μm silicon membrane with an 

area of 2×2 mm
2
. Boron-doped diamond piezoresistors are deposited and formed on the membrane. 

The main limitation of diamond piezoresistors at high temperatures is the decrease in their gauge 

factor with increasing temperature. The highest reported operating temperature for diamond-based 
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MEMS pressure sensors is 300 °C [75]. To further push the maximum temperature limit of 

piezoresistive MEMS pressure sensors, SiC has been used extensively. SiC-based piezoresistive 

MEMS pressure sensors can be categorized into two main groups: 1) SiC-on-silicon devices at which 

cubic 3C-SiC is deposited on silicon wafer, and 2) SiC-on-SiC devices at which hexagonal 4H- and 

6H-SiC are deposited over SiC wafer [76].  The first group can be regarded as a modification to the 

SOI-based piezoresistive MEMS pressure sensors in that the doped silicon piezoresistive elements are 

replaced by SiC ones. The membrane and the substrate; however, are still made of single crystal 

silicon. The limitation on the maximum operational temperature of such devices is due to gradual 

degradation of silicon mechanical properties at temperatures above 600 °C.  This inherent problem is 

addressed by using the second group devices, i.e. SiC-on-SiC ones. Such all SiC MEMS sensors are 

investigated for extreme applications such as high-pressure densifiers in jet engines, nuclear power 

plants, materials processing and space applications.  

Piezoresistors are inherently temperature dependent and their output changes with ambient 

temperature. It is therefore necessary to compensate for this undesired cross-sensitivity to temperature 

effect. This is usually done by separately measuring the temperature through a second temperature 

sensor. The two signals are then fed into a signal processing unit which calculates the corrected 

temperature-independent pressure. This method of compensation is applicable up to the critical 

temperature at which the resistance value of the piezoresistors drops (around 600 °C for silicon [73]). 

Substituting piezoresistors with a capacitive measurement system is another method to minimize the 

temperature sensitivity effect in MEMS pressure sensors. This is because the pressure in a capacitive 

MEMS pressure sensor is converted to electrical signal by a vacuum capacitor whose dielectric is 

inherently temperature independent [77]. 

Capacitive 

In a capacitive pressure sensor, a pressure-sensitive membrane is used as the top electrode of a 

variable capacitor whose bottom electrode is usually fixed to the substrate underneath the membrane. 

Pressure difference between the two sides deflects the membrane. As a result of this deflection, the 

gap and the capacitance between the two electrodes change. Figure 2.7 schematically shows a 

capacitive MEMS pressure sensor which is fabricated using both bulk and surface micromachining 

methods. A sealed cavity under the electrodes (realized through wafer bonding) provides the 

reference pressure against which the external pressure is measured. The two electrodes are separated 

by thin insulator layers.  
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Figure 2.7. Schematic of a capacitive MEMS pressure sensor fabricated using surface and bulk 

micromachining methods. The top electrode is shown deflected under pressure difference. 

 

Capacitive pressure sensors are advantageous over the piezoresistive ones because they consume less 

power (the transducer itself consumes no active power), have smaller temperature sensitivity, and are 

tolerant to contact resistance variations due to temperature change. Moreover, capacitive pressure 

sensors can achieve higher sensitivities and are less sensitive to environmental variations [78]. In 

spite of these advantages, excessive signal loss from parasitic capacitances is the major drawback 

which hindered the development of capacitive MEMS pressure sensors for high temperature 

applications until on-chip circuitry could be fabricated [79]. However, this solution has its own 

limitation as the maximum temperature for on-chip signal conditioning circuitry achieved so far is 

around 500-600 °C, reported by researchers at Case Western Reserve University [80, 1] and NASA 

Glenn Research Center [20, 81].  

The work by Moe et al in 2000 is one of the earliest implementations of silicon-based capacitive 

MEMS pressure sensor for harsh environment applications [82]. In their work, a pressure sensor for 

the differential pressure range of 0-100 KPa in oil industry applications was developed. The sensor 

was fabricated using a triple stack of fusion-bonded silicon wafers. Through bulk micromachining, a 

bossed membrane with a diameter of 1.8 mm and a minimum thickness of 21 μm was realized. The 

sensor was successfully tested in temperatures up to 200 °C. To compensate for the ambient 

temperature variations, a reference capacitor insensitive to the differential pressure and with the same 

size as the main capacitive pressure sensor was integrated within the design. Having the sensor 

package filled with oil, the device was reported to achieve a minimum sensitivity of 109 fF KPa
-1

.   
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Kasten et al in 2000 reported the fabrication of an array of capacitive MEMS pressure sensors 

(connected in parallel for bigger capacitive output) based on SOI technology for the measurement of 

pressures up to 12.6 MPa with ambient temperatures up to 340 °C [77]. To compensate for the 

parasitic capacitances and the ambient temperature fluctuations, a reference capacitance sensor was 

added to the design. Distributed over an area of ~ 2 mm
2
, an array of 128 circular membranes (60 μm 

in diameter and 2.5 μm in thickness) achieved a sensitivity of 1.04 fF KPa
-1

 before temperature 

compensation and 0.91 fF KPa
-1

 after temperature compensation. Later on, they modified the linearity 

and temperature sensitivity of the sensor by using an on-chip CMOS readout circuit monolithically 

integrated with the MEMS sensor chip. However, a compromise was made by limiting the new 

maximum operational temperature of the sensor to 250 °C [83]. 

Young et al in 2004 reported on a SC-SiC capacitive MEMS pressure sensor. In their sensor, the 

membrane had a diameter of 400 μm and was realized from a 0.5 μm thick 3C-SiC film epitaxially 

grown on a silicon substrate [78]. The sensor was used to measure pressures up to 96 KPa in non-

contact mode and 332 KPa in contact (touch) mode at temperatures up to 400 °C (limited by the test 

setup). The average sensitivity the sensor had achieved was around 59 fF KPa
-1

. Experiments at 

different temperatures showed that the device had noticeable temperature sensitivity, mostly due to 

the trapped air inside the sealed cavity and the CTE mismatch between the SiC membrane and the 

silicon substrate. This necessitated the use of a separate sensor for temperature compensation. In 

addition, due to the high residual stress in the SiC layer, thicknesses in excess of 0.5 μm could not 

have been achieved. To solve this problem, replacing the single crystal 3C-SiC film with 

polycrystalline 3C-SiC was proposed in a follow up work by the same group. However, the modified 

device still suffered from excessive temperature sensitivity as well as decrease of pressure sensitivity 

at high temperatures.  

In 2008, Chen and Mehregany reported on the successful implementation of an all poly-SiC 

(membrane and substrate) capacitive MEMS pressure sensor for the measurement of pressure inside 

the cylinder of an IC engine [1]. In their sensor, the membrane measured 194 μm in diameter and 3 

μm in thickness and was equipped with high temperature interface electronics capable of operation at 

temperatures up to 600 °C. A total of 130 membranes were connected in parallel, over a chip area of 

~ 20 mm
2
, for amplified capacitive output. Enclosed in a ceramic dual-in-line (DIP) package, the 

sensor was used to measure static pressures up to around 5 MPa with temperatures up to 574 °C and 

dynamic pressures up to 0.56 MPa with temperatures up to 150 °C. The dynamic test was carried out 
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inside a one cylinder test engine running at ω = 750 rpm under partial loads. During the static tests, 

the sensor achieved a sensitivity of around 1.3 fF KPa
-1

 and a temperature coefficient of 0.05% at the 

maximum temperature of 574 °C (limited by test setup). 

Recently, Jin et al reported on the design and fabrication of a SiC capacitive MEMS sensor for the 

measurement of pressures up to 4.83 MPa at temperatures as high as 500 °C [84]. The sensor was 

fabricated in two different configurations: 1) poly-SiC membrane on poly-SiC substrate (SiC-on-SiC, 

or all SiC), and 2) poly-SiC membrane on silicon substrate (SiC-on-Si). The all SiC and SiC-on-Si 

configurations (arrays of 260 membranes connected in parallel, each 94 μm in diameter and about 3 

μm in thickness) achieved sensitivities of around 0.65 and 0.61 fF KPa
-1

 at room temperature, 

respectively. No information on temperature coefficient of the sensors was reported in the paper. 

Moreover, the high temperature experiments reported in this work were carried out in a controlled test 

chamber with minimum temperature fluctuation.  

Optical 

Optical pressure sensors are membrane-based sensors whose transduction mechanism is based on 

optical interferometry. They comprise an optical cavity which is formed between two mirrors: the 

polished end face of an optical fiber and the bottom side of a pressure-sensitive membrane. The cavity 

is sealed at a constant reference pressure (ideally vacuum) and any deflection of the membrane due to 

pressure produces a change in the cavity length which is measured optically. Optical MEMS pressure 

sensors are inherently immune to electromagnetic interference and can work at very high 

temperatures since the signal processing can be carried out remotely in a safe environment. Figure 2.8  

 

 
 

Figure 2.8. Schematic of an optical MEMS pressure sensor based on Fabry-Perot interferometry. 

The depth of the cavity formed between the reflection surfaces changes with pressure difference. 
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schematically shows an optical pressure sensor based on Fabry-Perot interferometry. The works by 

Pulliam et al [85, 86] were among the firsts reporting optical MEMS pressure sensors for harsh 

environment applications. In these works, hybrid systems based on SiC membrane and sapphire 

optical fibers were reported. Due to thermal mismatch between the structural materials, these sensors 

were prone to failure by cracking of the interfaces between their different components [87]. 

Zhu et al in 2006 reported on an optical MEMS pressure sensor entirely made of fused silica with a 

maximum working temperature of 710 °C (limited by fused silica creep and fiber dopant diffusion at 

higher temperatures) and a sensitivity to pressure of 0.22 nm KPa
-1

 [88]. Despite using only one 

structural material and eliminating the thermal mismatch effect, their sensor showed noticeable 

temperature sensitivity mainly due to the pressure change of the residual gas trapped inside the cavity 

with temperature.  

In 2009 Ceyssens et al reported on an optical MEMS pressure sensor for the measurement of 

pressures up to around 0.4 MPa and at temperatures as high as 600 C [89]. The sensor design includes 

silica optical fiber and amorphous SiO2/Molybdenum bilayer membrane. Despite the match between 

the thermal expansions of the sensor’s different components and a vacuum-sealed cavity (no residual 

gas trapped inside), the sensor showed a non-negligible sensitivity to temperature of 0.03% K
-1

.  

Recently, an all-sapphire optical MEMS pressure sensor was reported [90]. The sensor was used for 

pressure measurement between 0.04 and 1.38 MPa, at room temperature, using white-light 

interferometry. While no high temperature experiments for the device were reported in the paper, a 

temperature of 1500 °C was proposed as the maximum functional temperature of the sensor.  

Temperature compensation in MEMS pressure sensors 

Many MEMS pressure sensors exhibit undesired sensitivity to temperature. In extreme harsh 

environment applications which are associated with big temperature changes, such as IC engine, this 

problem is more pronounced. Therefore, some means of temperature compensation are required to be 

incorporated into the pressure sensor design in order to correct the output signal for temperature 

effect.  

In pressure sensors, two major approaches for temperature compensation are commonly followed. 

The first approach aims at minimizing the temperature sensitivity through direct modification of the 

pressure sensor design. Such modifications include for example, fabrication of the sensor from 

materials with similar CTEs (and ideally from one material) [1, 88], modification of the pressure 
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sensitive membrane through introduction of corrugation [91-93], or addition of a new material for 

actively counteracting the temperature effect [94].  

The second temperature compensation approach involves measurement of the ambient temperature 

and cancelling out its effect in the signal processing step. One way of implementing this method was 

mentioned earlier in the review of the capacitive MEMS pressure sensor by Moe et al [82] at which a 

reference capacitor insensitive to the measurand (pressure) was integrated within the sensor design to 

compensate for the ambient temperature variations. The drawbacks of this technique include 1) the 

need for bigger on-chip property for the reference device, and 2) the undesired inherent difference 

between the output of the reference device and that of the main sensor (due to differences between 

their structures). To address these issues, another method is used which involves utilizing a separate 

temperature sensor to provide supplemental information to the signal processing unit. For the 

measurements to be as precise as possible, the temperature sensor needs to be as close to the pressure 

sensor as possible, preferably on the same chip. In IC engine application at which temperature 

changes happen very quickly and large temperature gradients exist, fast measurement of temperature 

at the same point where pressure is measured is critical. This implies that the temperature sensor will 

be exposed to the same harsh environment conditions that the pressure sensor experiences. However, 

such a fast responding harsh environment temperature sensor has not been reported yet.       

2.1.4 Temperature sensors 

Temperature measurement in harsh environment applications can be accomplished with a variety of 

sensors. A brief review of these sensors along with some notes on their applications in harsh 

environments is provided in this section. 

Thermocouple 

Thermocouple (TC) consists essentially of two dissimilar electrical conductors joined at one end 

(called junction). Any change in the temperature of the juncture, with respect to a reference 

temperature, produces a voltage output roughly proportional to the temperature change. 

Thermocouples have one of the widest temperature ranges of all available temperature sensor 

technologies, i.e. -200 to 2300 °C [95]. Ceramic thin film thermocouples have been developed to 

measure surface temperatures up to 1500 °C [96]. Recently a group of thermocouples with ultrathin 

junction tips, called surface junction thermocouples have been used in applications in need of fast 

response time such as heat transfer and surface temperature measurements in IC engine [97, 98]. 
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However, these thermocouples are bulky and their implementation in IC engine requires big holes to 

be drilled in the cylinder wall [97]. Moreover, their junction gets deteriorated over time (this is why 

they are sometimes call erodible junction thermocouples) which requires frequent calibration.   

Thermostat 

A Thermostat is usually formed by bonding strips of two materials with different CTEs together. As a 

result of temperature change, stress fields develop in the two material layers which cause the whole 

structure to deform. The deformation is measured and correlated to the temperature change. The 

maximum working temperature of a thermostat is determined by thermomechanical stability of its 

structural materials as well as the readout system used to measure its deformation.  

Thermistor 

Thermistor performance is based on a ceramic material whose resistance varies with temperature. 

Nagai et al in 1982 demonstrated a thermistor comprising SiC sensing element over alumina substrate 

with gold- platinum electrodes for measuring temperatures in the range of -20 to 350 °C and with a 

thermal time constant of 80 sec [99]. Later on, with some modifications, the same group 

demonstrated a faster SiC thermistor for measuring temperatures as high as 500 °C [100] with a 

thermal time constant of 1.5 sec. When isolated from harsh environment through encapsulation in a 

metallic packages (the trade-off would be increased response time), thermistors can measure 

temperatures as high as 1000 °C, suitable for applications such as automotive exhaust gas temperature 

sensing  [101]. In general, because of their inherent nonlinearity, thermistors are used over narrow 

temperature ranges, but with high sensitivity.  

Resistive temperature detector (RTD) 

It is similar to thermistor in performance, but its sensing element is usually made of a metal. In high 

temperature applications, tungsten and platinum are usually used as the sensing element [102]. RTDs 

offer good accuracy and linearity over a wider range of temperature than thermistors. Recently, 

Miyakawa et al has reported on a platinum thin film RTD, coated by CVD deposited SiO2 and 

annealed at N2 atmosphere, for MEMS-based microthruster aerospace applications [103]. Their 

device has been successfully tested at temperatures up to 1000 °C with good repeatability and small 

temperature drift, but only for a limited life time of 1 hour.  
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The major problem with the application of thin film thermistors and RTDs at high temperatures is 

material degradation in the presence of oxygen [104]. 

Infrared (IR) sensor 

IR sensors (detectors) measure temperature by sensing the thermal radiation emitted by an object. The 

problem with using IR sensors in harsh environments is that their readout can be easily affected by 

the surface finish of the object they are aiming at and the presence of dust and particles in the 

environment. Moreover, these devices are sensitive to the composition of the atmosphere whose 

temperature they measure.  

Other optical temperature sensors 

Some other important techniques used for the optical measurement of in-cylinder temperature in IC 

engines include laser induced fluorescence [105, 106], coherent anti-stokes Raman scattering [107], 

and Rayleigh scattering [108]. A comprehensive review of these temperature measuring techniques 

and their drawbacks for in-cylinder operation can be found at reference [109]. One common problem 

of these techniques is that the optical source is rather bulky and sensitive to temperature. These 

techniques have proved promising inside laboratories, but their implementation in production IC 

engines has not succeeded yet.  

Another optical sensor recently reported for temperature measurement in harsh environment 

applications combines Blackbody radiation and laser interferometry [87, 110]. The sensor performs 

based on the optical signature of a SiC chip in a sintered SiC tube and has been used to measure 

temperatures as high as 1077 °C. Once more, the bulky components of the sensor have hindered its 

outside laboratory implementation. 

The temperature sensors reviewed in this section can be categorized into two main groups: 1) contact 

mode devices whose performance is based on conductive and/or convective heat transfer mechanisms 

and 2) non contact mode devices which work based on thermal radiation. Except for IR sensors, other 

temperature sensors reviewed in this section belong to the first group. As a general rule for contact 

mode devices, the smaller they are in size the faster they respond to temperature change. This is 

because smaller devices have smaller thermal mass as well as larger area-to-volume ratio which 

facilitates heat transfer. This will be effectively used in Chapter 3 in the design of new 

multifunctional MEMS sensor.  
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2.1.5 Failure of available MEMS sensors in harsh environments 

Failure of sensing mechanisms due to cross-sensitivity 

Cross-sensitivity to undesired parameters, as mentioned in Chapter 1, is a major problem in MEMS 

sensors working at extreme conditions. One well known example of this problem is the cross-

sensitivity to temperature in MEMS pressure sensors which originates from thermal mismatch among 

the various components of the sensor. Different methods have been deployed so far to address this 

problem in MEMS pressure sensors, including electronic temperature compensation, selection of 

materials with similar CTEs, and using corrugated membranes. The electronic temperature 

compensation schemes are usually accompanied with inherent error which comes from the fact that 

they are implemented at the pressure sensor's back end where the electronic components are located. 

In dynamic applications such as IC engine where a considerable temperature gradient may develop 

through the sensor body, the front end of the sensor (i.e. the pressure sensing membrane) and its back 

end (where temperature is electronically measured) can experience different temperatures. The 

selection of materials with similar CTEs could solve the problem of cross-sensitivity only in static 

applications where a uniform temperature exists. Moreover, it limits the combinations of MEMS 

materials available for a design. Finally, using corrugated membranes adversely reduces the working 

pressure range of the pressure sensing membrane. In the new multifunctional MEMS sensor 

developed in this Thesis, a new method for addressing the problem of temperature cross-sensitivity is 

proposed. 

Degradation of structural materials 

The other major problem MEMS sensors encounter in harsh environment applications is the 

degradation of their structural materials. From a mechanical point of view, MEMS materials lose their 

elasticity and eventually give way to plastic deformation at high temperatures. Moreover, in a harsh 

environment application like an IC engine, the cyclic nature of loading could lead to degradation of 

MEMS materials due to creep. To address these mechanical issues, stronger materials which can 

survive such harsh environments should be used. In addition to mechanical degradation, the 

deterioration of electrical properties is also a major concern for the MEMS materials exposed to harsh 

conditions; examples include redistribution of dopants or reduction of semiconductors bandgap at 

high temperatures. To solve this problem, wide band gap semiconductor materials or temperature 

control over the electronics part of the sensor are commonly practiced.   
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In addition, the degradation of interconnects can also be a limiting factor for harsh environment 

operation of MEMS sensors, due to diffusion at the material interfaces and changes in the metal/alloy 

compositions that can lead to non-ohmic contact, for example.  

2.2 Multifunctional MEMS sensors 

The performance of MEMS sensors in harsh environments faces difficulties due to limited available 

property area for mounting the sensors, challenging design requirements due to the harsh 

environments, and demanding computational requirements of orchestrating among multiple MEMS 

sensors required to simultaneously measure multiple measurands. The solution to these problems is 

using multifunctional MEMS sensor.  

The first approach to implement a multifunctional sensing platform is combining multiple single-

tasked MEMS sensors on a single chip (common substrate), called hereafter discrete approach. The 

result of this approach is a multifunctional chip sensitive to multiple measurands. The second 

approach, called integrated approach, is based on combining two or more single-tasked MEMS 

devices into one device which is sensitive to several measurands at the same time. The latter approach 

results in more complexity compared to the first one; however, on the positive side it enables smaller 

and more precise MEMS sensors to be realized.  

In the following, a review of some recent efforts on developing multifunctional MEMS sensors for 

harsh environment applications according to the aforementioned categorization is presented. In 

accordance with the objective of this Thesis, this review mostly focuses on MEMS sensors designed 

and/or developed for pressure and temperature measurements.  

2.2.1 Discrete approach 

Berkeley Sensor and Actuator Center (BSAC) at the University of California, Berkeley, in 

collaboration with researchers from Case Western Reserve University, Ohio, and NASA Glenn 

Research Center, Ohio, has one of the most prominent research curriculums on multifunctional 

MEMS sensors for harsh environment applications such as IC engine, geothermal, and power 

generation. The BSAC efforts on harsh environment MEMS sensors include development of single-

tasked MEMS sensors such as SiC resonant strain gauge [111] and SiC resonant tuning fork for 

accelerometers and pressure sensors [112], high temperature electronics [20], and integration of 

multiple single-tasked MEMS sensors, along with SiC high temperature electronics, on a single SiC 

chip for the realization of multifunctional TAPS (Temperature, Acceleration, Pressure and Strain) 
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sensor (schematically shown in Figure 2.9). The TAPS sensor is supposed to work at temperatures up 

to 600 °C, pressures up to ~ 7 MPa, High g-shock and corrosive and oxidizing harsh environments 

[113]; however, no evidence of its completion has been provided yet.  

 
 

Figure 2.9. Schematic of the harsh environment multifunctional MEMS sensor proposed by 

Berkeley Sensor and Actuator Center [113]. 

 

 
 

Figure 2.10. A photo of the harsh environment multifunctional MEMS sensor designed and 

fabricated by researchers at the University of British Columbia. The capacitive pressure sensor 

silicon diaphragm and platinum RTD are labeled on the photo [114] (figure used with permission). 
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 The research group formed around professor Mu Chiao at the University of British Columbia is 

another group investigating multifunctional MEMS sensors, based on the distributed approach, for 

simultaneous measurement of pressure and temperature in harsh environment applications (primarily 

pulp industry). Its sensor includes a capacitive pressure sensor made by bonding silicon and Pyrex 

chips using a high temperature bonding adhesive and a platinum thin-film wire RTD patterned on top 

of the silicon chip [114]. Top view of the sensor is shown in Figure 2.10. To compensate for thermal 

effects in the capacitive pressure sensor, a second reference pressure sensor with immovable 

membrane is added to the silicon chip. For protection in harsh environment applications, the final 

device is embedded into epoxy. The multifunctional sensor has been tested at temperatures up to 170 

°C and pressures up to 2 MPa inside an environment test chamber. The maximum error of the sensor 

was determined as          ± 1.74% full-scale output and the average pressure sensitivity was measured 

as 0.257 fF KPa
-1

. A piezoresistive version of the device has recently been reported by the same 

research group which offers a maximum error of ± 0.72% full-scale output and an average pressure 

sensitivity of             116 μV V
-1

 KPa
-1

 [115]. 

The distributed approach studied in this section, however, faces difficulties in applications where size 

matters and/or the measurements need to be carried out at the same location. Moreover, 

multifunctional sensors designed based on the distributed approach require on-chip electrical 

connections between their multiple sensing components in addition to and on top of the connection 

needed to electronics signal processing unit. To address these concerns, the concentrated approach 

has been pursued through developing new MEMS devices which handle multiple measurements at the 

same time and location and can be integrated with various measurement techniques such as capacitive 

and optical.  

2.2.2 Integrated approach 

The work by Mertens et al [116] was one of the first to investigate the effect of pressure and 

temperature on the resonance frequency of microcantilevers. The experiments in this work were 

carried out in atmospheres of helium and dry nitrogen. Based on the results, the authors proposed that 

in a silicon microcantilever the resonance frequency decreases with temperature increase due to the 

decrease in Young’s modulus as well as an increase in the length of microcantilever. The authors also 

showed that the resonance frequency of microcantilevers varies with pressure, mainly due to varying 

damping effect of ambient atmosphere.  
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Figure 2.11. Multifunctinoal MEMS sensor for pressure and temperature measurement; (a) SEM 

picture of array of microcantilevers, (b) optical measurement system, (c) Contour plot of combined 

outputs showing viscous damping coefficient as a function of ambient pressure and temperature 

[118] (figure used with permission). 

 

Later on, Sandberg et al showed that for the case of microcantilevers made of thermally grown silicon 

oxide, the change of dimensions due to thermal expansion has a negligible effect on the shift of 

resonance frequency of the microcantilevers. They proposed that the temperature dependence of the 

Young’s modulus of silicon oxide is the main reason for the observed frequency shift with 

temperature [117]. They also studied the resonance frequency of microcantilevers vibrating in a 

gaseous environment and showed that the resonance frequency decreases with increasing ambient 

pressure. They suggested that this effect is caused by increase in the effective mass of the 

microcantilever due to the increased amount of gas molecules moved with the cantilever when it 

vibrates at higher pressures.  
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Recently, Nieva et al in 2007 proposed a multifunctional MEMS sensor for the simultaneous 

measurement of pressure and temperature based on an array of micromachined silicon nitride 

microcantilevers anchored to silicon substrate (Figure 2.11.a) [118]. Their test setup included a laser 

source for the characterization of microcantilevers vibration and a piezoelectric actuator for excitation 

(Figure 2.11.b). The effects of varying temperature and pressure on viscous damping coefficient of air 

were used to predict the multifunctional output of the sensor (Figure 2.11.c). Based on experimental 

results, Nieva et al suggested that if two adequately designed microcantilevers are driven at a known 

displacement and frequency, it is possible to measure and decouple the effect of ambient pressure and 

temperature. Despite its inherent simplicity and ease of fabrication, their multifunctional MEMS 

sensor requires a bulky external optical setup as well as a clear optical path for the measurement to be 

carried out. These requirements, however, make its implementation in harsh environment applications 

such as IC engine, where particles and combustion products can block the optical path of laser, 

doubtful. Moreover, since the fragile microcantilever sensing elements are in direct contact with the 

harsh environment, they are prone to damage.  
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Chapter 3 

Sensor Design 

In this chapter, the working conditions inside the cylinder of a typical IC engine are reviewed first. 

Next, the operational requirements for the new multifunctional MEMS sensor are established. 

Conceptual design of the sensor which is based on a multifunctional non-planar membrane and a 

capacitive measurement system is presented next. Finally, a numerical processing scheme for the 

determination of the pressure and temperature loading based on the capacitive outputs of the sensor is 

presented.  

3.1 Working conditions 

3.1.1 Sensor location 

Figure 3.1 illustrates the cross-section view of a typical IC engine cylinder. A total of three locations 

for potential mounting of a MEMS sensor inside the cylinder of an IC engine are identified on this  

 

 
 

Figure 3.1. IC engine cylinder cross-section view, (A)-(C) represent the prospective mounting 

positions for the MEMS sensor and ● marks the characteristic point for temperature measurement. 
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figure, including (A) spark plug [2, 119], (B) head gasket [120], and (C) threaded rod through the 

cylinder wall (with the MEMS sensor attached to its end) [1].  

The sensor mounting locations identified on Figure 3.1 share the presence of a thermal conductive 

host for the MEMS sensor which is in thermal equilibrium with the engine body (cylinder head 

specifically). In a typical IC engine, after warm-up period, the engine body reaches a steady state 

thermal equilibrium with a mean bulk temperature,      , between 100 °C and 200 °C (127-177 °C 

[121], 130-180 °C [122], 110-145 °C [123]). The temperature fluctuation over the cylinder interior 

surface (in contact with combustion products) during the engine combustion stroke is usually smaller 

than 5 °C [122, 123]. So, it is reasonable to assume that       remains constant throughout engine 

work period. As a result, all thermally conductive components which are in contact with the cylinder 

head, such as the spark plug and the threaded rod shown in Figure 3.1, share the same mean 

temperature as the cylinder head, i.e.      . That said, by properly attaching the sensor to the host 

component (e.g. by using high-temperature ceramic adhesives such as Ceramabond® family from 

AREMCO [124] and a similar method as proposed in reference [125]), mean temperature       can 

be provided to the MEMS sensor’s base surface (Figure 3.2). It will be shown in next chapter that 

maintaining a constant reference temperature on the sensor’s base surface is critical to reach a suitable 

thermal performance. The output signal of the sensor is sent to the engine control unit through a 

transmission line which is assumed to not affect the thermal performance of the sensor (no noticeable 

thermal conduction or lost takes place through the transmission line).  

 

 
 

Figure 3.2. MEMS sensor attached to host component with mean bulk temperature      . In the 

case of in-cylinder MEMS sensor, the host component is either engine block or cylinder head. 
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3.1.2 Working environment 

In a typical IC engine, the air (or air/fuel mixture) drawn into cylinder is usually hotter that the 

ambient air (e.g. 76-116 °C [123], 90 °C [126]) due to the mechanical work performed on it (for 

example by a turbocharger) as well as its contact with the hot wall of inlet manifold. To increase the 

efficiency of the combustion process intercoolers are sometimes used to cool the intake air.  

In a naturally aspirated IC engine, the air is drawn into cylinder by the atmospheric pressure acting 

against a partial vacuum inside the cylinder. For higher volumetric efficiency, turbochargers are 

sometimes used to force feed the air into cylinder. In such cases, the pressure of the arriving air is 

slightly higher than the atmospheric pressure. Regardless of such intake pressure variations and 

considering that the intake pressure is in any case much smaller than the maximum pressure occurring 

during combustion stroke, in this Thesis it is assumed that the pressure of the arriving air and 

therefore the pressure inside the cylinder at the start of compression stroke is atmospheric pressure.  

After the cylinder is filled and the inlet valves are closed, compression stroke starts. During the 

compression stroke the average pressure and temperature of cylinder gaseous content increase from 

their initial values to    and    at the time of ignition/injection and further to      and      at the 

peak of the combustion stroke. Depending on engine speed, it will take the crankshaft between 4 ms 

(for a maximum speed of 6500 rpm) to 45 ms (for an idle speed of 600 rpm) to fulfill the compression 

stroke up to the point of ignition/injection.  

Table 3.1 provides more information on the above-mentioned characteristic parameters at several 

example IC engines. For the HCCI engines reviewed in this table, the end of the compression stroke 

is determined by finding the point at which the slope of the pressure curve versus crankshaft angle 

suddenly changes. For the first three cases studied in Table 3.1 (case #1 to #3, shaded rows), the 

reported temperature is      (refer to Figure 3.1) which has been measured with fast responding 

eroding junction thermocouples. These thermocouples enable a short response time; however, the 

erosion of their surface junction element by wear continuously changes their response [127] and 

necessitates frequent calibration. Moreover, the temperature measurements carried out by these 

thermocouples are approximate and can result in noticeable error (for example, look at the middle 

panel of Figure 3.4 at which the thermocouple measurement is compared with theoretical prediction. 

More information can be found in Figure 4.8). For the remaining five IC test engines studied in table 

3.1 (case #4 to #8), the reported temperature corresponds to      (refer to Figure 3.1), which is either 

measured by optical methods or theoretically calculated.  
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During compression stroke, in-cylinder pressure and temperature change gradually due to mechanical 

work performed. The gaseous content of cylinder is fairly homogenous during compression stroke. 

So, at any given time during this process the entire cylinder volume can be characterized by a pair of 

pressure and temperature values. In other words, the pressure and temperature measured by a MEMS 

sensor during compression stroke can characterize, with a good precision, the entire volume of the 

cylinder. On the other hand, at the end of compression stroke when ignition/injection takes place the 

homogeneity inside the cylinder breaks down and a substantial temperature gradient develops [106, 

137, 138]. The main reasons for this temperature gradient are the presence of flame front which 

travels with a speed of 10-20 m/s from its epicenter toward cylinder wall [139] and the formation of 

thermal boundary layer (also known as unburned gas layer [138]) near cylinder wall [133, 140]. The 

thickness of thermal boundary layer varies at different locations [138] and can be up to a few 

millimeters [133, 141].  

During working stroke, the temperature of unburnt gas inside the thermal boundary layer (     in 

 

 
 

Figure 3.3. Variation of burnt gas temoperature      and unburnt gas temoperature       (optically 

measured) with crankshaft angle in an iso-octane powered IC-engine. This figure refers to engine 

case # 4 in Table 3.1. 
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Figure 3.1) is noticeably less than that of the mainstream combustion products (     in Figure 3.1) 

[140, 142, 143]. Figure 3.3 shows how      and      vary with crankshaft angle in an iso-octane 

powered IC engine (the same engine reported in case # 4, table 3.1). The resulting thermal 

inhomogeneity lingers on during exhaust stroke as the initial mixing mechanism, i.e. the swirl of the 

intake air, is disrupted [141]. In other words, following injection/ignition, a single set of pressure and 

temperature values can no longer characterize the complex situation inside the cylinder. 

 

 
 

Figure 3.4. Variation of in-cylinder parameters with crankshaft angle in a diesel IC test engine. 

Directly measured and calculated quantities are shown with ○ and □ symbols, respectively. The 

primary (hatched section) and secondary working ranges of the sensor are shown in the top panel. 
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This limits the meaningful working range of any potential sensor developed for the measurement of 

in-cylinder pressure and temperature, including the multifunctional MEMS sensor developed in this 

Thesis, to the compression stroke up to the point of injection (or when combustion starts). Figure 3.4 

shows how the in-cylinder pressure and temperature vary with crankshaft angle (CA) in an IC engine 

(the same engine reported in cases # 1 and 2 in Table 3.1). In the middle panel of Figure 3.4, the 

temperature values directly measured by an erodible junction thermocouple and calculated using the 

Newton's law of cooling are shown. The calculation of temperature in this figure is based on the 

assumption that the main mechanism responsible for the heat transfer is thermal conduction. 

Regardless of the type of IC engine, this assumption is valid up to the point of injection/ignition when 

the flame initiates and the thermal radiation from the high temperature solid soot particulates emerges 

[121]. In a diesel IC engine, radiation during working stroke accounts for about 10% to 40% of the 

total heat transfer from the cylinder while in a gasoline SI engine its share is only about 5 to 10% 

[121]. The variation of heat flux through the cylinder head with CA is also shown in Figure 3.4 

(bottom panel). During the suction and compression strokes              , the heat flux takes 

negative values which corresponds to reverse heat transfer from hot cylinder head into cooler intake 

air. Generally speaking, the trends observed in Figure 3.4 can be extended to other IC engines. The 

data given in Figure 3.4 is used extensively in this Thesis as the reference pressure and temperature 

loading against which the performance of the designed multifunctional MEMS sensor is 

characterized. Additionally, the heat flux data given in the bottom panel of Figure 3.4 is widely used 

in the numerical simulations (appendix B) as the thermal load applied to the sensor.  

3.2 Operational requirements 

3.2.1 Pressure and temperature working range 

The primary operational range of the multifunctional MEMS sensor during which pressure and 

temperature measurements are carried out covers the compression stroke up to the point of injection 

(            , hatched area in Figure 3.4). During the primary operational range, the in-

cylinder pressure and temperature increase from                 and               to              

and           , respectively. After injection, as explained before, a considerable temperature 

gradient develops inside the cylinder which makes the point-wise measurement of temperature 

irrelevant; however, the in-cylinder pressure still can be meaningfully measured in a point-wise 

manner. The secondary operational range of the sensor is thus associated with pressure measurement 
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over the crankshaft angle range of             . During the secondary operational range, the 

in-cylinder pressure and temperature increase from              and            to             , 

and              , respectively. The secondary range can be further extended to include the 

exhaust stroke if needed.  

3.2.2 Sensitivity and resolution 

As the mechanical part of the new MEMS sensor, the multifunctional membrane responds to pressure 

and temperature variations (the inputs) by adopting a mechanical deformation. The electrical part of 

the sensor includes two capacitors, formed between the multifunctional membrane and the fixed 

electrodes underneath, and the onboard electronics for the measurement of these capacitances. The 

capacitive outputs correlate to the membrane’s shape and thus to pressure and temperature inputs.  

The sensitivity of a sensor is basically defined as the slope of the output-versus-input characteristic 

curve. For example, in a capacitive MEMS pressure sensor, the sensitivity to pressure is usually 

expressed in fF/kPa unit showing how much capacitance change (fF) is observed when a unit pressure 

change (kPa) occurs. If the sensor’s output is not linear with respect to its input, sensitivity should be 

defined as a local parameter at the corresponding input value. The sensitivity of the multifunctional 

MEMS sensor depends on the performance of its mechanical and electrical parts. The onboard 

electronics of the sensor is beyond the scope of this Thesis. So, in order to set and achieve the 

sensitivity requirements for the sensor we would refer to comparable MEMS devices in literature 

(which, as will be shown in Chapter 4, will help us determine the minimum area required by the 

sensor chip). For the case of the multifunctional MEMS sensor, customized definitions for sensitivity 

to pressure and temperature will be provided in Chapter 4.  

The resolution of a sensor refers to the smallest incremental change in the input parameter that can be 

meaningfully detected in the output signal. In a typical IC engine, the advance/retard setting of 

ignition/injection is usually carried out with a resolution equal or better than one degree of rotation of 

crankshaft angle. According to Figure 3.4, around the time of ignition/injection, one degree rotation 

of CA corresponds to about 80 KPa and 9 °C variation of the in-cylinder pressure and temperature. 

So, for the multifunctional MEMS sensor to provide precise information for the adjustment of 

injection/ignition, a pressure resolution better than 80 KPa and a temperature resolution better than 9 

°C are required. In this Thesis, it is assumed that the onboard electronics can measure a minimum 

capacitance change of 1 fF (similar to what the LCR-meter used for the experiments in Chapter 5 

provides). This will be used later in Chapter 4 to meet the requirement set here for sensor’s resolution.   
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3.2.3 Ability to follow the input variation rate  

In a sensor, response time is the amount of time required for the output to change from its initial value 

to a new settled value, within a tolerance band of the correct new value, in response to a change in 

sensor’s input. In other words, the response time shows how fast a sensor reacts in response to a 

variation in its input. A MEMS sensor always includes a mechanical sensing part which transfers the 

input into a measureable parameter (in our case, pressure and temperature variations are transferred to 

deformation of a membrane) and an electrical part which converts the secondary measureable 

parameter into an electrical signal. Each one of these two subsystems requires some time to fulfill its 

task. In this Thesis, the focus is on the mechanical part; so whenever response time is mentioned the 

response time associated with the mechanical part is meant.  

As will be described shortly, the mechanical part of the new MEMS sensor for in-cylinder pressure 

and temperature measurement is a multifunctional membrane whose response time relates to the time 

it needs to undergo a temperature variation (following the in-cylinder temperature variation) and also 

the time it needs to mechanically respond. The temperature variation part is concerned with              

1) convective heat transfer from in-cylinder gaseous content to the membrane, and       2) conductive 

heat transfer to distribute the input energy throughout the membrane. Though different in nature, 

these two heat transfer mechanisms are in action at the same time and can not be separated. In 

Chapter 4, it is shown that thermal conductance in thin films with thicknesses in the order of 

micrometer is very fast and convective heat transfer is the slower one which determines how fast the 

sensor performs. A similar argument can be made between the response time due to convective heat 

transfer to the membrane and that pertained to mechanical deformation. Again, the two processes 

occur at the same time and the slower one will dominate the total response time of the membrane. 

Numerical calculations show that for the proposed multifunctional membrane, the total strain energy 

associated with mechanical deformation is several orders of magnitude smaller than the thermal 

energy required for temperature change. So, it seems reasonable that we take the heat transfer process 

as the slower one which dominates the total response time of the mechanical sensing part.  

To get some idea about how fast the multifunctional MEMS sensor needs to be for in-cylinder 

application, Figure 3.5 shows the rates of pressure and temperature variation with crankshaft angle in 

a typical IC engine (the same engine studied in Figure 3.4). Around the injection time, the rates of 

pressure and temperature variation are about 80 KPa/deg and 9 °C/deg. Assuming that the variation 

rates in Figure 3.5 hold true for different engine speeds, for an engine speed of ω = 2000 rpm, the  
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temperature variation speed at the time of injection (       ) is calculated about 110 °C/ms. This 

means that the multifunctional membrane should show a temperature variation speed of 110 °C/ms to 

potentially catch up with the in-cylinder temperature variation trend at        . In the primary 

working range of the sensor, this corresponds to the highest temperature variation speed the 

membrane needs to demonstrate. With the same engine speed of ω = 2000 rpm, the temperature 

variation speed hits the maximum value of 346 °C/ms at the height of the combustion stroke 

(equivalent to 28.3 °C/deg around         in Figure 3.5).  

3.3 Design of multifunctional membrane 

Combining the ideas of membrane-based pressure sensing and bimaterial-based temperature sensing, 

Figure 3.6 schematically presents a multifunctional membrane composed of two planar halves 

connected through a step feature. The multifunctional membrane is characterized by the lengths  

 
 

Figure 3.5. Rate of variation of in-cylinder (a) pressure and (b) temperature with crankshaft angle 

in a typical IC engine. 
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Figure 3.6. Schematic of multifunctional membrane. The edges of the membrane are fixed. 

 

of its halves    (left) and    (right), width  , thickness   , and the height of the step feature  . The 

membrane is fixed on its edges (rigidly anochored to substrate). Below the multifunctional membrane 

are situated two electrodes, suspended in a vacuum (zero pressure) sealed cavity, which carry out the 

capacitive measurement (will be described in more detail shortly). The membrane is initially assumed 

free of any residual stress due to fabrication; however, later in Chapter 4 when the modeling of the 

membrane is studied this assumption will be partially relaxed and the effect of residual stress will be 

taken into account. The sensor’s response to a temperature increase is based on the assumption that 

the multifunctional membrane experiences a bigger thermal expansion than the substrate to which it is 

anchored. The multifunctional membrane’s response to pressure increase is a uniform deflection 

downward analogous to that of other flexible membranes used in MEMS pressure sensors.   

3.3.1 Pressure response 

When the pressure difference ∆P is applied on the membrane, it deflects downward as depicted in 

Figure 3.7. The step feature in the membrane functions as a local stiffener and limits the membrane’s 

deflection at its center. As a result, the deformed membrane profile takes a saddle-like shape and the 

maximum deflection happens at two off-center positions marked by arrows in Figure 3.7. 
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Figure 3.7. Multifunctional membrane deformation due to pressure change ∆P. 

 

 
 

Figure 3.8. Multifunctional membrane deformation due to temperature change ∆T. The inset 

highlights the rotation of the membrane around a rotation axis that passes through the step feature. 
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3.3.2 Temperature response 

When the membrane’s temperature increases by ∆T, it demonstrates a bigger thermal expansion than 

the substrate on top of which it is deposited. Since the membrane’s edges are fixed to the substrate, 

the bigger thermal expansion causes the membrane to deform as schematically depicted in Figure 3.8. 

The deformation involves both translation and rotation around a rotation axis passing through the step 

feature. Upon temperature increase, the left side of the membrane deflects upward and the right side 

deflects downward, with the step feature serving as the rotation axis in between. Such a deformation 

trend can potentially result in 1) immobility of the center of gravity of the membrane and 2) zero net 

volume of displaced air over the membrane. These characteristics can be practically used to achieve 

faster responding devices. In Chapter 4, thermal response of the membrane and the effect of 

geometrical parameters on it will be investigated in details.   

3.3.3 Temperature and pressure combined response 

When pressure and temperature simultaneously increase (combined loading), the membrane 

deformation is more complex than the cases investigated above at which only one parameter changes  

 

 
 

Figure 3.9. Multifunctional membrane response to combined pressure and temperature loading. 
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at a time. To determine the membrane’s deformation when combined loading occurs, the 

superposition principle can be utilized provided that the deformations are small enough (smaller than 

the membrane thickness). Consequently, the deformation of each half of the membrane can be 

regarded as the summation of the deformations it experiences when pressure and temperature 

loadings are applied separately, as depicted in Figures 3.7 and 3.8. Figure 3.9 schematically shows the 

deformation due to the combined loading of the multifunctional membrane. On the right half of the 

membrane, the downward deformations due to pressure and temperature changes agree and add up 

while on the left half they oppose each other and subtract. In the following section, it will be shown 

how this unique combination of pressure and temperature induced deformations can be utilized to 

decouple the effect of and measure the pressure and temperature changes the membrane experiences. 

3.4 Implementation of capacitance measurement 

The multifunctional sensor design includes two fixed electrodes (referred to as bottom electrodes) 

situated below the multifunctional membrane. The fixed electrodes form two capacitors    and    

with the multifunctional membrane serving as the common electrode (Figure 3.10). The initial gaps 

(vacuum filled) between the fixed electrodes and the membrane are    and   .When pressure and/or 

temperature change, the membrane deforms and thus the gaps  change. This  

 

 
 

Figure 3.10. Schematic of the deformed multifunctional membrane. Two capacitors    and    are 

formed between the multifunctional membrane and the bottom fixed electrodes.    and    are the 

initial gaps (prior to membrane deformation) between the electrodes. 
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Figure 3.11. Characteristic graph of multifunctional MEMS sensor. One set of inputs (     ) can be 

assigned to each pair of outputs          . 

 

results in variations of    and   , in line with the deformation of the membrane. For each set of input 

pressure and temperature values        , a unique set of capacitances         is measured as the 

output of the system. The characteristic plot shown in Figure 3.11 represents the relation between the 

outputs         and the inputs         of the multifunctional sensor. The pressure and temperature 

working ranges of the MEMS sensor are identified on this figure as             and        

     , respectively. The dotted and the solid lines in Figure 3.11 relate to equal capacitance curves 

associated with    and   , respectively. The characteristic plot of Figure 3.11 enables the electronics 

part of the sensor to calculate the pressure and temperature loading according to the capacitive 

outputs. To achieve this, it is only required to find the point         in the characteristic plot of the 

sensor and then determine the corresponding values of   and  . The procedure is shown in Figure 

3.11 where    
    

   is correlated to        .   

3.5 MEMS sensor  

So far, the design of multifunctional membrane and its integration with capacitive measurement have 

been addressed. For these components to function as a MEMS sensor, a carrier substrate and a 
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vacuum sealed cavity under the membrane are also required. Figure 3.12 schematically shows how 

these components are combined and what the final MEMS sensor looks like. The fabrication process 

custom designed for this device is described in details in appendix A. In brief, it includes bulk 

micromachining of silicon substrate to create the cavity (e.g. with DRIE process which creates 

vertical sidewalls), wet etching of the sacrificial layer to release the fixed electrodes under the 

multifunctional membrane, and wafer to wafer bonding of the chips (both SiO2-SiO2 and Si-Si 

bonding interfaces are considered). 

 

 
 

Figure 3.12. Schematic representation of multifunctional MEMS sensor. For better visualization 

of sealed cavity and fixed electrodes, half of sensor is shown in this figure. 
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Chapter 4 

Modeling and Analysis 

In this chapter, different aspects of the modeling and analysis of the multifunctional MEMS sensor 

are investigated using analytical and numerical approaches. The analytical modeling evolves around 

the classic beam theory. Modified by introducing some modification factors, the analytical modeling 

is used in the analysis of the multifunctional membrane. Due to its mixed nature, the analytical 

modeling is referred to in this Thesis as semi-analytical approach with the distinctive advantage of 

reduced processing time. Following verification with numerical simulations, the semi-analytical 

approach is used in the structural and electrical modeling and analysis of the multifunctional MEMS 

sensor. Moreover, it is used for sensitivity analysis of the sensor. The numerical modeling, on the 

other hand, relies on finite element (FE) simulations carried out by the commercial FE software 

ANSYS®. Regarding the type of the modeling, different element types and modules of the software 

are used in this Thesis with details given in corresponding sections. The ANSYS® software is also 

used for the transient thermal analysis of the sensor’s response to in-cylinder conditions (Figure 3.4). 

4.1 Thermal modeling 

In this section, convective and conductive heat transfers involved in the thermal performance of the 

multifunctional MEMS sensor are modeled and analyzed. The results of FE numerical simulations in 

this section provide useful information on the average temperature and temperature variation of 

different components of the sensor during its working cycle (the in-cylinder thermal scenario of 

Figure 3.4 is used in this section as loading). This information is used in the selection of the right 

structural materials and the optimization of the sensor’s dimensions in order to meet the operational 

requirements set in the section 3.2. 

Figure 4.1 provides an insight into the thermal energy trade between the multifunctional MEMS 

sensor and its surrounding medium. The configuration of the multifunctional MEMS sensor 

introduced in Figure 3.12 is used in this section. Throughout the thermal modeling section, the 

presence of the step feature in the multifunctional membrane is ignored and the membrane is simply 

assumed planar. Moreover, the effect of the fixed bottom electrodes (Figure 3.12) on thermal 

response of the sensor is ignored in this section, mainly due to their small thermal mass and isolation 

from the main heat transfer path (Figure 4.1).  



 

 49 

 
 

Figure 4.1. (a) Array of multifunctional sensor cells connected in parallel, (b) enlarged view of a 

single cell, (c) exploded views of the sensor cell showing the thermal transfer between different 

components; Q, t, and T represent energy, thickness, and temperature, respectively. 

 

As a common practice in capacitive MEMS sensors, in order to get a stronger output signal several 

devices are usually connected in parallel [1]. This approach is also used in this Thesis, as shown by 

the array of sensor cells in Figure 4.1.a. Moreover, the sides of the sensor chip are assumed isolated 

from the in-cylinder harsh environment by a specific packaging. That said, only the top surface of the 

sensor surface, which happens to include the multifunctional membrane, is in contact with the in-

cylinder harsh environment. Furthermore, as will be explained shortly the bottom surface of the 

sensor is assumed to maintain a reference temperature throughout the sensor work. Taking all these 

into account, the only path for heat transfer into and from the sensor is through its top and bottom 

surfaces, respectively.  
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As the in-cylinder temperature increases during the compression stroke the MEMS sensor absorbs 

some thermal energy (    in Figure 4.1). In this process, convective heat transfer plays the major role 

in transferring thermal energy from the hot ambient gaseous content (    ) into the sensor cold top 

surface (    ). At the same time that the convective heat transfer works to provide thermal energy 

into the sensor, conductive heat transfer distributes the arriving thermal energy among the different 

components of the sensor. The conductive heat transfer inside the sensor is identified in Figure 4.1.c 

by    and   , representing the heat transfer between the membrane and the insulation layer and 

between the insulation layer and the substrate, respectively. Finally,      represents the conductive 

heat transferred from the sensor bottom surface (base) into the underneath material. The important 

characteristic time-varying temperatures of the different components of the sensor are identified in 

Figure 4.1 as  

     : average temperature of the membrane layer suspended over the cavity, 

     : temperature of the top surface of the membrane layer off the cavity, 

      : temperatures of the top surface of the insulating layers (the same as the temperature of 

the bottom surface of the membrane layer off the cavity), 

         : temperatures of the top surface of silicon substrate (the same as the temperature of the 

bottom surface of the insulating layers), 

        : average temperature of the bonding SiO2-SiO2 interface between the SC-Si chips, 

      : constant reference temperature at sensor’s base (the same as the cylinder head 

temperature after engine warm-up). 

Here it is assumed that the temperatures of the adjacent layers on their common surface are equal. 

Moreover, the membrane is assigned two different temperatures      and      to account for the 

potential internal heat flow between its over-the-cavity and off-the-cavity parts (the latter can 

thermally communicate with the underneath insulating layers).  

Biot (Bi) number is a dimensionless parameter used in transient heat transfer analysis and is defined 

as the ratio of the heat transfer resistance inside a body to the heat transfer resistance on its surface. In 

MEMS devices, owing to small thickness and high thermal conductivity of thin films, the Bi number 

is usually very small (e.g. Bi numbers as low as 0.01 have been reported for SiC-based devices 

[144]). A small Bi number suggests that the temperature gradient through the thickness of the 

corresponding structure is negligible. This allows for assuming that the system behaves like a lumped 
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one. For the case of multifunctional MEMS sensor, a similar discussion holds true for the over-the-

cavity part of the multifunctional membrane. Accordingly, a single temperature value, i.e.     , can 

be used to fully characterize the temperature of that part of the membrane (FE simulation confirms 

that no noticeable temperature gradient through the thickness of that part of the membrane does 

exist).  

Idealizing the multifunctional membrane as a lumped element with uniform temperature   , its 

thermal behavior can be approximated by the Newton's law of cooling: 

    

  
     [     ] (4.1) 

where     is the heat transfer coefficient between the multifunctional membrane and the in-cylinder 

harsh environment and A represents the surface area of the membrane which is in contact with the in-

cylinder harsh environment (based on Figure 4.1 equals     for over-the-cavity and       

          for off-the-cavity part of the membrane). Since    and    vary with time, equation 

(4.1) can be used to characterize the instantaneous thermal behavior of the system. In the ideal case 

scenario where the multifunctional membrane is completely isolated from the substrate, all the input 

energy     will be consumed to heat the membrane up (FE simulation shows that the strain energy 

associated with the deformation of the multifunctional membrane due to thermal loading is several 

orders of magnitude less than the total input energy). That means no portion of     is conducted out 

or              in Figure 4.1. In such a case, the conservation of energy necessitates   

                 (4.2) 

where   and   are the density and the specific heat of the membrane material, respectively, and    

denotes its thickness. The term       on the right hand side of equation (4.2) is called the thermal 

mass of the system.  

Heat flux in a thermal system is defined as the rate of the thermal energy passing through a unit 

surface area on the system boundary. So, for the case of multifunctional membrane, the associated 

heat flux is expressed as 

    
   

   
 (4.3) 

Combining equations (4.2) and (4.3) gives 
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 (4.4) 

Holding to the idealization that all the input thermal energy is used to change the temperature of the 

membrane, equation (4.4) sets an upper limit on the membrane’s maximum achievable temperature 

variation rate, or simply temperature rate. The thermal efficiency of the membrane η is defined as  

    
  

   
   (4.5) 

The thermal efficiency   varies between 0 and 1 and shows how much of the input heat energy is 

used by the membrane to change its temperature. Alternatively,     suggests how much of the input 

energy is conducted out of the membrane. The ideal thermal scenario mentioned above corresponds to  

 

 
 

Figure 4.2. Temperature variation rate of a SiC membrane versus CA rotation, i.e. ΔT/ΔCA in 

(ºC/deg) unit, for different values of    and   (           , ω = 600 rpm). 
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   . Using equations (4.4) and (4.5), Figure 4.2 shows the temperature variation of a SiC 

membrane versus crankshaft angle rotation, i.e. in (ºC/deg) unit, for various values of   and   . The 

temperature variations in Figure 4.2 are calculated for the case with              and the engine 

speed ω = 600 rpm. In order to develop a better understanding of the effect of the thickness of 

membrane, a broader thickness range than targeted in this Thesis, i.e. 0.1-100 μm, is analyzed here. 

According to Figure 4.2, for the ideal case scenario where    , the maximum temperature rate is 

around 4.5 ° C/deg for a SiC membrane with           and around 0.4 °C/deg for        . 

The results shown in Figure 4.2 can be modified to accommodate other     and ω values according to 

  

   
 

    

    
 

 

  
 (4.6) 

Equation (4.6) suggests that a high     allows for the membrane to experience a bigger temperature 

variation   . Moreover, it shows that a higher engine speed adversely affects the thermal 

performance by reducing the time the membrane has to undergo temperature change. Referring to the 

data in Figure 3.4, the temperature variation rate in a typical IC engine cylinder is about 3 °C/deg at 

         and about 9 °C/deg at the time of injection           . The     associated with these 

instances, according to the same figure, are about 25 kW/m
2
 and 500 kW/m

2
, respectively. Using  

              
in equation (4.6), one for example finds that a SiC membrane with           

and        can achieve a maximum temperature variation rate of about 9 °C/deg at the time of 

injection            with an engine speed of ω = 2000 rpm. Equation (4.4) suggests that for a 

given input heat flux, the thermal response time (i.e. the time    needed for the membrane to undergo 

a temperature change of   ) can be reduced by lowering the thermal mass of the multifunctional 

membrane. This can be achieved by 

 selecting a material with lower density, 

 selecting a material with smaller specific heat, 

 reducing the thickness of the membrane.  

Additionally, as mentioned earlier, the membrane is required to possess a small Bi number. Defining 

the thermal diffusivity D as the ratio of thermal conductivity to density multiplied by specific heat, 

i.e.         , the above requirements for minimizing the thermal response time of the 

multifunctional membrane can be combined and summarized into a need for a thin membrane 

fabricated from a high thermal diffusivity material.  
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As highlighted in Chapter 2, the successful application of other MEMS materials than SiC in harsh 

environments is hindered mostly by their chemical instability at high temperatures (diamond burns, 

AlN oxidizes, and GaN dissociates). So, from a stability point of view SiC stands out as the most 

promising material for realizing robust harsh environment MEMS. Calculations show that SC-SiC 

demonstrates the second highest thermal diffusivity after diamond over the temperature range of 300-

1000 K, while it also provides a reasonable chemical stability for harsh environment applications. 

Among the different crystalline variations of SiC, a membrane made in SC-SiC would offer the 

fastest thermal response time. However, deposition of SC-SiC film is a slow process and requires 

very high substrate temperatures [145] which make it a formidable task. Moreover, as will be 

investigated in details shortly, the high thermal conductivity of SC-SiC contributes to two 

contradicting effects: 1) faster thermal diffusion through the thickness of the multifunctional 

membrane, and 2) increased thermal flow from the over-the-cavity part of the multifunctional 

membrane toward its cooler off-the-cavity part which thermally communicates with the underneath 

insulating layer (Figure 4.1). The latter effect negatively affects the thermal performance of the sensor 

by increasing the heat flow to the insulating layer. The possible solution to this complex problem is 

using other crystalline structures of SiC whose deposition process is less demanding and result in 

films with lower thermal conductivity. To shed more light on the issue the effect of such variations in 

the material properties of SiC on the thermal performance of the multifunctional membrane will be 

numerically investigated in the following section.  

As mentioned earlier, the ideal thermal scenario for the multifunctional membrane is that no heat 

transfer occurs between the membrane and the underneath insulation layer and all the input thermal 

energy     is used to increase the temperature of the membrane. But in reality, the heat transfer 

between the membrane and the insulating layer does exist and its associated heat flux can be 

expressed as  

   
   

    
   

  

  
 (4.7) 

where                      is the contact area between the membrane and the insulating 

layer,    is the thermal conductivity of the insulating layer material, and z refers to the vertical 

direction (positive downward). Assuming a linear temperature distribution through the thickness of 

the insulating layer, equation (4.7) can be rewritten as  
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 (4.8) 

where    represents the thickness of the insulating layer. Equation (4.8) suggests that the undesired 

conductive heat transfer from the membrane to the insulating layer can be reduced by minimizing the 

thermal conductivity of the insulating layer and by increasing the thickness of the insulating layer. 

Moreover, decreasing the contact area between the two layers increases the contact resistance and 

thus makes the heat transfer harder. Among the different MEMS materials reviewed in Chapter 2, 

SiO2 stand outs as the ideal insulating candidate due to its ease of deposition, smaller thermal 

conductivity compared to the other candidate Si3N4, and possibility of its application as the bonding 

interface material as well. So, SiO2 is selected in this Thesis for the insulating layer. The effect of the 

SiO2 insulating layer thickness on thermal performance of the sensor will be quantitatively 

investigated in the next section. Moreover, for the sensor substrate material, SC-Si is the default 

choice due to the maturity and availability of the processing technology. So, the standard thickness of 

4- and 6-inch SC-Si wafers, i.e. 525 μm and 700 μm, are used in this Thesis for the substrate chips, 

i.e.    in Figure 4.1.  

4.1.1 Results and optimization 

In the previous section, the ideal combination of layers/materials for a fast-responding multifunctional 

MEMS sensor was determined as: a thin SiC layer for multifunctional membrane (to minimize 

thermal mass while maintaining chemical and physical robustness), a thick insulating SiO2 layer 

between the multifunctional membrane and the substrate (to minimize thermal cross-talk between 

them), and a SC-Si substrate chip.  

In this section, the numerical results of thermal simulations using ANSYS® FE software are 

presented. The thermal models are meshed using SOLID70 which is a 3D thermal element with eight 

nodes and a single degree of freedom, temperature, at each node. The temperature-dependent 

properties reviewed in Chapter 2 are used in FE simulations. For thermal boundary conditions, the top 

surface of the sensor is subjected to the thermal loading (ambient temperature and heat flux) 

introduced in Figure 3.4. Additionally, a reference temperature, equal to that of the engine body, is 

applied to the base of the sensor. The ANSYS APDL codes used for the thermal simulations as well 

as other simulations reported in this Thesis are given in Appendix B.  
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Thickness of SiO2 insulating layers (2           ) 

The effect of the thickness of SiO2 insulating layer, varying in the range of 2-5 μm, on the thermal 

response of the multifunctional membrane is studied in Figure 4.3. The specifications of the 

multifunctional sensor investigated in this figure are        ,            (corresponding to the 

thickness of two bonded 4-inch wafers),                    ,          ,          , 

poly-SiC as membrane material and            . These dimensions and specifications are used in 

other FE simulations reported throughout this section unless otherwise stated. 

As shown in Figure 4.3, around the time of injection (      ) the thickest SiO2 layer provides the 

best thermal response (in terms of      being close to     ). As a general trend in Figure 4.3, during 

the compression stroke (          ) the difference between the results corresponding to 

different thicknesses of SiO2 is relatively small. This suggests that the heating up of the membrane is 

weakly dependent on SiO2 thickness. On the other hand, the difference between the results  

 

 
 

Figure 4.3.  Variation of      with in-cylinder temperature      for             . 
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corresponding to different thicknesses of SiO2 during the working stroke (          ), is very 

noticeable. This is mainly due to the higher thermal resistance and larger heat capacity of the thicker 

insulating layer which slow down the cooling of the membrane during the working stroke. In 

summary, the thicker the insulating layer, the better the thermal response of the membrane would be. 

Thickness of SiC multifunctional membrane                  

A thinner SiC membrane corresponds to a smaller thermal mass in the system. Since the input heat 

flux is constant, a thinner membrane translates to a faster thermal response. Figure 4.4 investigates 

this by providing the results of thermal analyses for different thicknesses of poly-SiC membrane 

between 0.5 μm and 5 μm. This thickness range more or less covers the typical thickness numbers 

reported in literature for SiC films at MEMS applications.  The results in Figure 4.4 confirm that that 

the thinnest membrane in the selected thickness range provides the closest match between the  

 

 
 

Figure 4.4. Variation of      with in-cylinder temperature      for               . 
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membrane response      and the in-cylinder temperature     . This conclusion is in agreement with 

the results presented in Figure 4.2.   

Multifunctional membrane material (poly-SiC or a-SiC) 

Figure 4.5 investigates the effect of the crystalline structure of membrane material on its thermal 

response when subjected to the in-cylinder thermal loading of Figure 3.4. The results show that the a-

SiC membrane does a slightly better job in closely following the in-cylinder temperature variation. 

The main reason for this promising result is the lower thermal conductivity of a-SiC which reduces 

the thermal communication between the over-the-cavity and off-the-cavity parts of the membrane.  

While the thermal conductivity of a-SiC is less than that of Poly-SiC, the small thickness of the a-SiC 

membrane enables it to achieve a big enough Bi number. This avoids a considerable through-the- 

 

 
 

Figure 4.5. Variation of      with in-cylinder temperature      for different membrane materials. 
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thickness temperature gradient develops in the over-the-cavity part of the a-SiC membrane.  

Silicon bonding interface (Si-Si or SiO2-SiO2) 

 The other structural characteristic of the sensor studied in this section is the wafer bonding interface 

featuring Si-Si or SiO2-SiO2 contact (Figure 3.12). Figure 4.6 presents the results of two series of FE 

simulations carried out with and without a 3 μm thick SiO2 interface layer between the SC-Si chips. 

The latter scenario resembles the case with Si-Si bonding interface. Based on the results of FE 

simulations, the difference between the membrane thermal response      predicted for the two 

interface scenarios is negligible around the injection time            as well as at the height of the 

combustion stroke           . On the other hand, during the working stroke the difference between 

more noticeable and the scenario with the SiO2-SiO2 interface results in lower membrane temperature  

 

 
 

Figure 4.6. Variation of      with in-cylinder temperature      for different bonding interfaces. 
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which gives rise to smaller thermal stresses in the system. Moreover, the SiO2-SiO2 wafer bonding is 

easier to implement in terms of required surface smoothness and bonding temperature.  

The width of bonding interface      

Different widths of the SiO2- SiO2 bonding interface (   in Figure 4.1) between 20 μm  and 200 μm  

have been used in FE simulations but no noticeable difference in the thermal response of the 

membrane has been observed. To assure a strong bond between the SC-Si chips, a big bonding 

interface area is desirable. Here, we assume that a bonding interface width of 150 μm is enough for 

that purpose.   

Thickness of SC-Si substrate 

Different thicknesses of the SC-Si substrate chip between 250 μm and 700 μm (inline with typical or 

thinned 4- and 6-inch wafers available through commercial suppliers such as www.svmi.com and 

www.universitywafer.com) have been studied; however, no noticeable difference in the thermal 

response of the membrane has ben observed. So, here we select to continue with 525 μm which is the 

standard thickness of 4-inch SC-Si wafer. Accordingly, due to wafer bonding, the total thickness of 

the sensor chip comes to around 1050 μm).  

Effect of engine speed (ω) 

Engine speed is the important working factor which affects the thermal response of the sensor by 

changing the time the multifunctional membrane has to undergo temperature variation. As mentioned 

earlier, at higher engine speeds, the membrane has less time and thus is expected to undergo a smaller 

temperature change. Figure 4.7 studies this effect by looking at the membrane temperature      

variation with CA for different engine speeds between 700 and 4200 rpm. In this figure, the 

multifunctional membrane is in a-SiC and has a thickness of          .  

Throughout the FE simulations in Figure 4.7, it is conservatively assumed that the in-cylinder heat 

flux and temperature are the same as those given in Figure 3.4 and do not change with ω. 

Nevertheless, in production IC engines higher engine speeds are usually associated with higher 

engine loads which in turn drastically increase the in-cylinder heat flux [97]. The increased heat flux 

would ultimately help the multifunctional membrane demonstrate a better thermal response (closer 

following of in-cylinder temperature variation) as predicted by equation (4.4). 

 

http://www.svmi.com/
http://www.universitywafer.com/
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Figure 4.8 summarizes the findings so far and shows how the temperatures of different parts of the 

optimized multifunctional sensor vary with CA for the typical thermal loading of Figure 3.4. The 

optimized sensor design includes a-SiC membrane (         ), SiO2 insulating (       ) and 

bonding (thickness = 3 μm) layers, and standard thickness SC-Si chips (              ). 

Moreover, the width of the bonding interface is chosen as          . In the FE simulations, the 

reference temperature at the base of the sensor is set as            . Based on the results 

presented in Figure 4.8 some important observations can be made.  

The first observation is about the temperature of the off-the-cavity part of the multifunctional 

membrane      and its variation with CA. The total variation of      for a complete cylinder cycle is 

about 30 °C which is much less than that of      which is about 750 °C. The reason for this 

noticeable temperature difference between the over-the-cavity and off-the-cavity parts of the  

 
 

Figure 4.7. Variation of      with in-cylinder temperature      for different engine speeds. 
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membrane is the weak thermal conductance of a-SiC from which the membrane is fabricated. By 

using this material, the thermal communication and heat transfer between the two parts of the 

membrane is minimized. This allows for the two parts of the membrane to behave almost 

independently. FE simulation shows that at the time of injection the region between the two parts of 

the membrane at which the membrane’s temperature changes from      to      is less than 100 μm 

wide. Beyond this region, the over-the-cavity part of the membrane can be considered thermally 

isolated like an island (the cavity beneath this part is vacuum). Recalling from Figure 4.2 and its 

ensuing discussion, the over-the-cavity part of the membrane absorbs and keeps almost all of the 

input heat flux within its structure.  In other words, thermal efficiency η in the over-the-cavity part of 

the membrane is close to 1. On the contrary, the off-the-cavity part of the membrane is in direct 

 
 

Figure 4.8. Variation of temperature of different parts of sensor with in-cylinder temperature     .  
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contact with the insulating layer. So, a good portion of the input heat flux into this part is transferred 

into the underneath layers and ultimately out of the system through the sensor’s base.  

The second important observation in Figure 4.8 is on the temperature of the SC-Si substrate and its 

variation with CA. The variation of this temperature is less than 12 °C and mostly occurs in the top 

SC-Si substrate. A closer look at the FE simulation results suggests that the total temperature 

variation in the bottom SC-Si substrate is less than 1°C. This is due to: 1) high conductivity of the 

SC-Si material which quickly conducts the input heat flux out from the sensor’s base (     in Figure 

4.1), and 2) relatively small heat flux reaching the bottom chip. Further FE simulations show that the 

temperature variation in the SC-Si substrate drastically decreases as the engine speed increases. The 

multifunctional membrane is actually anchored to the SC-Si substrate. So, it is desirable that the SC-

Si substrate maintains its average temperature with a minimum temperature fluctuation. So, by 

providing the reference temperature       to the sensor’s base and also including it in the processing 

scheme, the sensor would benefit from an almost constant substrate temperature relative to which the 

membrane temperature will be measured. To summarize the section, the optimized dimensions and 

materials for the multifunctional MEMS sensor various components are listed below. Among these 

dimensions, the thickness of substrate (  ), the thickness of the interface layer (      ), and the width 

of the bonding interface (  ) can be varied in accordance to fabrication requirements without 

affecting the thermal performance of the sensor. 

 Multifunctional membrane: amorphous SiC,          , 

 Insulation layer between the membrane and the substrate: SiO2,        , 

 substrate: SC-Si,           (two similar substrates are bonded together), 

 Interface layer between the SC-Si substrates: SiO2, with a thickness of            , 

 Width of bonding interface:       (       )        . 

4.2 Mechanical modeling 

At the core of the multifunctional MEMS sensor is a multifunctional membrane with built-in (fixed) 

boundary conditions. In this section, a semi-analytical model is developed for the analysis of the 

multifunctional membrane response to pressure and/or temperature loading. Since an exact analytical 

solution based on the theory of plates is extremely difficult if not impossible to obtain, we will 

develop an alternative solution originated from Euler–Bernoulli beam theory and extended to the case 

of multifunctional membrane. To lay the foundation of the model, some assumptions need to be made 
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first. Inspired by the analogy between the bending response of a membrane and a clamped-clamped 

beam, it is assumed here that the response of the multifunctional membrane to pressure and/or 

temperature loading is similar to that of a clamped-clamped beam cut from its middle and subjected 

to the same loading. This is schematically shown in  

 

 

 

Figure 4.9. (a) Multifunctional membrane with built-in boundary condition and the characteristic 

clamped-clamped beam selected from its middle part; (b) analogous straight clamped-clamped 

beam attached to extensional and rotational springs at its midspan. 
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Figure 4.9.a where the clamped-clamped beam (light color) is selected from the middle part of the 

membrane (dark color). In line with the previous section, the membrane is represented by its 

dimension: length ( ), width ( ), thickness (  ) and step height ( ). In order to assimilate the effect 

of the step feature, the analogous straight clamped-clamped beam (whose width is equal to 1) is 

assumed to be supported at its midspan by at-the-moment unknown extensional and rotational springs 

   and   , respectively (Figure 4.9.b). When the analogous beam experiences deformation due to 

pressure and/or temperature loading, these springs provide counteracting extensional force and/or 

rotational moment which oppose the beam deformation. 

The other assumption made here is that the deflections of the membrane and the clamped-clamped 

beam are small enough (compared to their thickness) to allow the principle of superposition to be 

used. The deformation of the membrane due to combined pressure and temperature loading can thus 

be expressed as 

                       (4.1) 

where    and    refer to deformations due to pressure and temperature loading, respectively (Figure 

3.9). In line with the analogy mentioned earlier and using separation of variables, the pressure and 

temperature responses on the right hand side of equation (4.1) are assumed to take the forms of 

{

                  ̃    

                  ̃    

 

(4.2) 
 

 

(4.3) 

where    and    are unitless amplitude modification factors,       and       represent the 

deformation of the clamped-clamped beam due to pressure and temperature loading, respectively, and 

 ̃     and  ̃     expand the deformation of the beam to that of the membrane. Moreover, the 

deformation given by equations (4.20 and (4.3) should satisfied the membrane boundary conditions.       

4.2.1 Pressure response 

Figure 4.10 shows the deformation of a clamped-clamped subjected to a pressure change    on its 

top surface and supported by an extensional spring at its midspan. To utilize the symmetry of the 

beam, the origin of the coordinate system is selected at its midspan with the x-axis extending along its 
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length to the right. Using the inherent symmetry with respect to the z-axis, the deformation of the 

right half of the beam         is studied first. Using the principle of superposition, the  

 

 

 

Figure 4.10. Response of the analogous clamped-clamped beam to (a) both pressure difference    

and retaining force   , (b) pressure difference    only, and (c) retaining force    only. 
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deformation of the right half of th ebeam is determined by adding its deformations due to    and 

concentrated retaining force   , i.e. 

                                               (4.4) 

The clamped-clamped beam investigated here features a rectangular cross section with a unit width 

(    as in Figure 4.9). Its bending moment of inertia around the y-axis is thus given by 

   
   

 

  
 

  
 

  
 (4.5) 

So, the deformations of the clamped-clamped beam due to pressure difference    (Figure 4.10.b) and 

concentrated load    (Figure 4.10.c) are approximated, respectively, by [146] 

  

        
  

     
 
         (4.6) 

and 

        
  

     
 
                (4.7) 

where        and           . Combining equations (4.4), (4.6) and (4.7), the total 

deformation of the beam can be expressed as  

      
  

     
 
         

       

     
 
                 (4.8) 

To eliminate       from equation (4.8), x is set equal to zero which results in 

      
    

     
     

 
  (4.9) 

Substituting from equation (4.9) back into (4.8) gives 

      
  

     
 [         

 

       
    

 ⁄
                ] (4.10) 
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Figure 4.11. Response of a clamped-clamped beam rigidly supported at its midspan to pressure 

difference    (corresponding to      in Figure 4.10.a).  

 

If     , equation (4.10) reduces to equation (4.6) of a beam under pressure difference only. On the 

other hand, if     , the problem corresponds to a clamped-clamped beam subjected to a uniform 

pressure    and rigidly supported at its midspan, as shown in Figure 4.11.  

If     , equation (4.10) reduces to 

      
  

     
 
               (4.11) 

which exhibits three extremum points at        ⁄    . Equation (4.10) governs the deflection of 

the right half of the clamped-clamped beam. Due The deformation of the left half of the beam can 

easily be determined as the mirror image of that of the right half with respect to the z-axis. For the 

general case where       , differentiation of       given by equation (4.10) with respect to x 

gives 

      

  
 

  

     
 [          

 

       
    

 ⁄
           ] (4.12) 

Setting the right hand side of equation (4.12) equal to zero, and recalling that 0 ≤ x ≤ a for the right 

half of the beam, the following extremum points in the deflection curve are found  

{
 
 

 
 

                                                        

        
    

       
    

 ⁄
   

                                                     

 

(4.13) 

 
(4.14) 

 
(4.15) 
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These extremum points are labeled on Figure 4.10.a by their corresponding numbers 1 to 3. While     

and     values are constant and trivial (consistent with the boundary condition and the symmetry of 

the clamped-clamped beam),     depends on   . For the extremum point at       to exist, the 

       condition should be satisfied. After some calculations, this results in 

   
     

 

  
 (4.16) 

Equation (4.16) establishes the requirement for the extremum point 2 in Figure 4.10.a to exist. If 

equation (4.16) is not satisfied, only two extremum point at     and      will appear. In so, the 

effect of a nonzero    reduces to a mere broadening of the deflection curve around its extremum at 

   . In order to determine    for a given membrane geometry, the dimensionless parameter    is 

defined here as 

    
           

             
 (4.17) 

Using equations (4.10) and (4.17),    can be determined by (more details on FE code in appendix B) 

        
  

 

  
(

 

    
 

 

  
) (4.18) 

Utilizing the analogy mentioned earlier between the deflection of a multifunctional membrane and the 

bending response of a clamped-clamped beam, equation (4.18) constitutes the procedure for the 

determination of    from the results of numerical FE simulations. To do so,    is first calculated from 

the results of FE simulations on the multifunctional membrane. Next, by substituting the values of t 

and a used in the FE modeling along with the calculated   ,    can be determined from equation 

(4.18). To study the effect of membrane geometry on   , Figure 4.12 shows how    changes with 

length- and width-to-thickness ratios, i.e.      and     , of a a-SiC multifunctional membrane for 

two cases with step height-to-thickness ratio      equal to 0.5 and 1. 
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Figure 4.12. Variation of    with length and width-to-thickness ratios in an a-SiC multifunctional 

membrane with a step height-to-thickness ratio of (a) 0.5 or (b) 1.  
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As a general trend in Figure 4.12, the larger the length- and the width-to-thickness ratios are, the 

smaller the spring constant    will be. In other words,    is inversely proportionate to      and 

    . Moreover, a bigger step height-to-thickness ratio contributes to a larger   . By knowing the 

spring constant   , the deformation of the clamped-clamped beam under pressure loading    can be 

fully understood using equation (4.10).  

In order to expand the clamped-clamped beam deformation given by equation (4.10) to the case of the 

multifunctional membrane,  ̃     in equation (4.2) is introduced as 

 ̃     (
  

  
  )

 

 (4.19) 

Equation (4.20) satisfies the fixed-edge boundary condition of the multifunctional membrane at 

     (Figure 4.9.a). Substituting from equations (4.10) and (4.19) into equation (4.2) gives 

        
    

     
 [         

 

       
    

 ⁄
                ] (

  

  
  )

 

 (4.20) 

The dimensionless amplitude modification factor    appearing in equation (4.20) compensates for the 

effect of simplifications and assumptions made so far by scaling the deflection of the analogous 

clamped-clamped beam for adaptation to the case of multifunctional membrane.    is numerically 

calculated as (more details on FE code in appendix B)  

   
           

     
 (4.21) 

where             is the deflection at the center of the membrane predicted by FE simulation and 

      is that calculated from equation (4.10). Figure 4.13 shows how    changes with      and 

     for the same a-SiC multifunctional membrane case investigated in Figure 4.12. The general 

trend in Figure 4.12 is that    is inversely proportionate to the membrane’s length-to-width aspect 

ratio    . Additionally, except for a small portion of each graph in Figure 4.12 associated with small 

     and large      values, the amplitude modification factor    is always less than one. This 

suggests that the beam theory generally predicts a larger deflection for the analogous clamped-

clamped beam compared to the multifunctional membrane from which it is taken.  
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Figure 4.13. Variation of    with length- and width-to-thickness ratios in an a-SiC multifunctional 

membrane with a step height-to-thickness ratio of (a) 0.5 or (b) 1.  
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Finally, substituting the values of    and    extracted from FE simulations into equation (4.20), the 

three-dimensional deformation profile of the multifunctional membrane subjected to pressure loading 

   can be determined. In the electrical modeling section, the semi-analytical model of equation 

(4.20) will be used for the calculation of the capacitive outputs of the sensor.  

4.2.2 Temperature response 

Figure 4.14 schematically shows the deformation of a clamped-clamped beam (similar to the one 

represented in Figure 4.9) subjected to a uniform temperature increase    and supported by the 

torsional spring    at its midspan. The origin of the coordinate system is again selected at the 

midspan of the beam with the x-axis extending along its length to the right. 

 

 
 

Figure 4.14. (a) Deformation of a clamped-clamped beam due to temperature increase   , (b) The 

reaction forces    applied by the end supports give rise to an internal bending moment     which 

is opposed by the torsional moment    from the rotational spring.  

 

In previous section it was shown that the contribution of the step feature toward the pressure response 

of the membrane is an added stiffness which limits the deflection of the membrane around the step 
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feature. For the case of temperature loading, the contribution of the step feature is more complicated 

as it provides an internal mechanism which gives rise to a thermal bending moment and deforms the 

membrane. At the same time, the step feature contributes to the stiffness of the torsional spring which 

opposes the deformation of the beam.  

When the temperature of the beam increases, it tends to expand to accommodate the added length; 

however, its clamped ends prevent its free expansion by applying an opposing compressive force   , 

as shown in Figure 4.14.b. The compressive force    gives rise to a bending moment at the step 

feature in the middle of the beam whose magnitude is given by 

       (4.22) 

This bending moment tends to rotate the clamped-clamped beam around the step feature as shown in 

Figure 4.14. However, the torsional spring    opposes the deformation of the beam by applying the 

counteracting torsional moment  

           (4.23) 

where       is the rotation angle of the beam at     determined by 

        
     

      

  
|
   

 (4.24) 

The net bending moment applied to the center of the clamed-clamped beam, as shown in Figure 

4.14.b, is thus calculated as 

                
     (4.25) 

The deformation of the right half of the clamped-clamped beam subjected to the bending moment   

at its midspan can be approximated by [146] 

  

      
 

     
        

        
    

     
                               (4.26) 

Solving the equation (4.26), the function governing the deformation of the clamped-clamped beam 

due to thermal compressive force    is determined as 
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        (4.27) 

The thermally deformed clamped-clamped beam demonstrates two extremum points along its length 

at      , marked by corresponding numbers 1 and 2 in Figure 4.14.b. Differentiation of equation 

(4.27) with respect to x gives      ⁄  which on the contrary to equation (4.14) which gave the 

location of the extremum point for pressure loading case is solely dependent on the clamped-clamped 

beam’s geometry and does not relate to thermal loading    or the rotational spring   .  

The compressive thermal force    which deforms the clamped-clamped beam originates from the 

difference between the thermal strains of the beam and the substrate to which the beam is anchored. 

This can be generalized for the multifunctional membrane from which the beam is selected. If    and 

   represent the CTEs of the beam and the substrate materials, respectively,    can be expressed as 

                       (4.28) 

where     and         are the temperature changes that the beam (or membrane) and the substrate 

experience and      is the cross section area of the beam. In an IC engine, as shown in thermal 

modeling section,         is much smaller than     (Figure 4.8). In contrast, in a steady state 

thermal analysis         and     are the same. So, different design guidelines are required for 

transient and steady state thermal conditions.  

To expand the deformation of the beam model to the case of multifunctional membrane, function 

 ̃     is introduced into the thermal response equation.  ̃     is selected similar to  ̃     proposed in 

equation (4.19). Based on equation (4.3), the thermal response of the membrane is given by  

        
                        

         
 

       (
  

  
  )

 

 (4.29) 

Substituting for    from equation (4.5) and recalling that       , equation (4.29) is rewritten as 

          ̅                        (
  

  
  )

 

 (4.30) 

where  
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  ̅  
     

    
       

   ⁄
  (4.31) 

Similar to the method used in the previous section for the calculation of the modification factor   ,   ̅ 

is numerically calculated by   

  ̅  
  

 

         ⁄    

                  
 
 (4.32) 

where          ⁄     corresponds to the displacement predicted by the FE simulation at 

     ⁄      , for a given                   value (more details on FE code in appendix 

B). As a numerical example, Figure 4.15 shows how   ̅ changes with      and      in an a-SiC 

membrane with    ⁄      . The modification factor   ̅ takes its highest value at         . More 

 

 
 

Figure 4.15. Variation of   ̅ with      and      in an a-SiC membrane with    ⁄      . 
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 FE simulations show that this holds true for other dimensions and membrane-substrate materials. 

This suggests that for a given set of membrane dimensions, an optimized      ratio can be found 

which results in the highest thermal deformation of the multifunctional membrane.  

Up to this point, the temperature dependence of the materials used in the fabrication of the MEMS 

sensor has not been taken into account. According to the data presented in Chapter 2, a temperature 

variation of 700 °C (which is comparable to      ) can change the Young’s modulus of SiC by as 

much as 2%. So, taking the Young’s modulus as a temperature-independent material property will not 

bring about a major error to the response analysis of the sensor.  However, the variation of other 

material properties such as CTE with similar temperature changes is far from negligible. To take this 

into account, equation (4.30) is first expressed in the differential form of 

           ̅                        (
  

  
  )

 

 (4.33) 

where          is the differential deformation of the membrane,     is the temperature change the 

membrane experiences (from    to       ) and         is the temperature change of the substrate 

(from         to                ) during the same period of time. If     and         are small 

enough,    and    can be assumed to remain constant during the temperature variation period. On 

the other hand, when the temperature changes are considerable, equation (4.30) is modified to 

          ̅  ̅      ̅                (
  

  
  )

 

 (4.34) 

where  ̅  and  ̅  are CTEs averaged over the corresponding temperature variation ranges, i.e. 

 ̅  
∫     
      
  

   
    ̅  

∫     
              
      

       
   (4.35) 

In a harsh environment application associated with static (or steady state) thermal loading, all the 

components of the sensor have the same temperature. In this case, according to equation (4.34), 

maximizing the difference between the CTEs of the membrane and the substrate materials results in 

the highest achievable thermal deformation        . Among the materials studied in Chapter 2, 

titanium (Ti) stands out as possessing the highest CTE over the temperature range of 300-1000 K. 

Accordingly, the combination of Ti membrane and Si substrate, in short Ti-Si system, would 
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potentially provide the largest thermal response of a MEMS sensor based on thermostatic effect. On 

the other hand, for a dynamic harsh environment application such as IC engine where different 

components of the sensor experience different temperatures (Figure 4.8), short thermal response time 

not the amplitude of the thermal response is the first priority. As argued in the previous section, the 

combination of SiC membrane and Si substrate, shortly SiC-Si system, could provide the shortest 

response time while maintaining an acceptable level of robustness throughout the loading cycle.  

4.2.3 Combined pressure and temperature response 

It was earlier assumed that the principle of superposition holds true and can be used in the analysis of 

the multifunctional membrane when subjected to pressure and temperature loading. So, when 

pressure and temperature loading coexist, the total deformation of the multifunctional membrane is 

expressed as 

{

                                                    

                                                          

     

(4.36) 

 
(4.37) 

where    and    are given by equations (4.20) and (4.34), respectively, and a and b represent the 

half-length and half-width of the multifunctional membrane (Figure 4.9).  

To validate the thermo-mechanical model of equations (4.36) and (4.37), Figure 4.16 compares the 

deformation profiles of two membrane-substrate systems, in their xz- and yz-planes, predicted by the 

thermo-mechanical model and by FE simulations. The first membrane-substrate system is a Ti-Si one 

with dimensions            and          , and the second one is a SiC-Si system with 

dimensions            and           . In both systems, the multifunctional membrane 

is subjected to            and            . The characteristic parameters extracted from the FE 

simulations and used in the semi-analytical model are        ,                 and   ̅  

            
for the Ti-Si system and        ,                 and   ̅               for 

the SiC-Si system. The maximum difference between the displacements predicted by the two models 

is less than 3% which confirms the good agreement between the two approaches and validates the 

semi-analytical thermo- mechanical model. The main advantage of the semi-analytical model, 

however, is the reduced processing time it provides compared to FE simulations by ANSYS®. Such  
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Figure 4.16. Deformation of the multifunctional membrane in (a) xz- plane and (b) yz-plane for 

SiC-Si and Ti-Si membrane-substrate systems predicted by the semi-analytical model (solid line 

with round symbol) and FE simulations (dotted red line). 

 

 an advantage facilitates the electrical modeling of the multifunctional MEMS sensor in the next 

section and also allows for quick optimization of the sensor design which will be discussed shortly.  

As in Figure 3.10, the initial gaps between the multifunctional membrane and the bottom electrodes 

are designated    and   . Since the multifunctional membrane is designed to work in non-contact 

mode of operation (i.e. at the maximum displacement the membrane would not touch the bottom 

electrodes),    and    need to be bigger than the maximum deflection of the membrane      to 

avoid any physical contact and/or pull-in to happen.  
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According to Figure 3.4, in a typical IC engine the maximum in-cylinder pressure and temperature 

occur almost simultaneously at the peak of the working stroke. So, the maximum deflection of a 

multifunctional membrane for IC engine application can easily be determined by putting the 

maximum pressure and temperature values (e.g. from Figure 3.4) in equations (4.36) and (4.37). 

Throughout this Thesis it is assumed that the pressure and temperature loading given in Figure 3.4 

holds true for different engine speeds and loads. Generally speaking, assuming that the absolute 

maximum in cylinder pressure and temperature values are known, equations (4.36) and (4.37) are first 

used to determine     . If        is the minimum clearance distance maintained between the top and 

bottom electrodes (Figure 3.10),    and    are then determined by  

                  (4.38) 

In a flexible membrane with fixed boundary condition which is subjected to pressure difference, the 

maximum deflection of the membrane depends on its length- and width-to-thickness ratios [147]. 

That said, for a constant thickness, bigger in-plane dimensions result in a smaller maximum pressure 

associated with a given deflection. In the mechanical modeling section of this chapter, the linear beam 

theory was used in the derivation of equation (4.20). The application and validity of this theory is 

limited to the cases with small deflections. In this Thesis, small deflection refers to deflections which 

are smaller that the thickness of the deforming body (clamped-clamped beam, for example). 

Additionally, the numerical procedures developed for equations (4.18) and (4.21) have been used for 

small deflection cases. So, in this research, the length- and width-to-thickness ratios of the 

multifunctional membrane are selected in such a way that       is always smaller that   .  

As argued earlier, to achieve the shortest thermal response time the membrane should be as thin as 

possible. Based on the design parameter ranges mentioned before, the ideal membrane thickness has 

been selected as       . Figure 4.17 shows how the maximum deflection of an a-SiC multifunctional 

membrane with           varies with its length and width. The pressure and temperature loading 

used in this figure are those given in Figure 3.4 at the peak of the working stroke. The results suggest 

that different combinations of length and width values (below and to the left of the             

contour line in Figure 4.17) can satisfy the requirement of        . A sensitivity analysis (more 

details in Section 4.4) carried out on three example combinations of (         ), (        

and        ), and (        and        ) showed no noticeable difference between the 

results. So,           is selected for the in-plane dimensions of the membrane. 
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To measure the capacitive outputs of the sensor, a voltage difference between the membrane and the 

bottom electrodes is required. FE simulations show that for           and a hypothetical 

measurement voltage difference of 0.1 V, a minimum clearance of                between the 

membrane and the bottom electrodes is enough to avoid any pull-in (or collapse) due to electrostatic 

attraction. If a bigger voltage difference is needed for the measurements, then a larger        is also 

needed to be advised of in the design of the multifunctional sensor. A summary of the results and 

findings of the mechanical modeling section are given in the following. They supplement the ones 

presented at the end of the thermal modeling section. 

 Multifunctional membrane width:        , 

 Multifunctional membrane length:        , 

 Multifunctional membrane step height:                , 

 Gap between the membrane and the left bottom electrode:           , 

 Gap between the membrane and the right bottom electrode:           . 

 
 

Figure 4.17. Variation of maximum deflection of a 0.5 μm thick a-SiC membrane with length   

and width   when subjected to peak in-cylinder pressure and temperature. The region at which 

the maximum deflection is smaller than the thickness of membrane is contained within dotted line.   
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4.3 Electrical modeling 

In this section, the capacitive output of the multifunctional MEMS sensor for different pressure and 

temperature loading is predicted and analyzed.  According to the results rendered in the thermal 

modeling section (Figure 4.8 in particular), it is reasonable to assume that during the working cycle of 

the IC engine, the temperature of the substrate of the MEMS sensor,       , remains almost constant. 

Substituting           in equation (4.34) and its following equations, the modified model is used 

in this section to first calculate the three-dimensional deformation of the membrane        and then 

determine the capacitive outputs    and    by     

        ∫
     

   |      |
 ∫

     

   |                 |
                

(4.39) 

        ∫
     

   |      |
 ∫

     

   |               |
                      

where    and    are given by equations (4.20) and (4.34), respectively. The optimized dimensions of 

the sensor determined in the thermal and mechanical modeling sections are used in the calculation of 

   and    from equation (4.39). Due to relatively complex shape of the        function, the 

integrations in equations (4.39) are carried out numerically.  

Alternatively,    and    can be directly calculated by the FE simulations using ANSYS®. For that, 

the multiphysics module and ESSOLV solver are used for the analysis of the coupled 

thermomechanical-electrical model. In the multiphysics analysis, the solid model is first created and 

the material properties are defined in the form of temperature-dependent tables. The dielectric 

between the membrane and the bottom electrodes is assumed to be vacuum with the permittivity 

                 . Next, the solid model is meshed with 20-node brick element SOLID122. In 

a coupled multiphysics analysis, a pair of compatible electrical and structural elements is required in 

order to minimize the need for remeshing while switching between the physics. The ideal companion 

to the electrical element SOLID122 is the 20-node structural element SOLID186. For the loading 

cases which involve severe distortion of the dielectric volume elements, the mesh-morphing option is 

turned on to allow the software to remesh the model whenever needed during its iterative runs. The 

remeshing is specifically required when the membrane deflection is at its maximum and the gaps 

between the membrane and the bottom electrodes are at their lowest values. 



 

 83 

4.3.1 Fringing effect 

When two parallel plates form a capacitor, the electric field between the plates does not end abruptly 

at the edge of the plates. There is some electric field extending outside the plates which carries 

electrical energy and should be taken into account when the capacitance is calculated. This effect is 

referred to as fringing effect and causes the real capacitance to be larger than what calculated by the 

analytical model, as for example by equations (4.39) above. Calculation of the capacitance by the FE 

software ANSYS® has the advantage of taking the fringing effect into account. However, this 

inclusion in turn drastically increases the processing time and the complexity of the model since a 

bigger dielectric volume with irregular edges needs to be meshed and analysed. When the voltage 

difference between the capacitor’s two electrodes is small the electric field between them does not 

extend far beyond the electrodes’ boundary. For the the multifunctional MEMS sensor designed in 

this Thesis, ignoring the fringing effect and limiting the analysis to the boundary of the electrodes (as 

implied by equation (4.39) for example) is assumed to not bring about a major error in the results. 

Supports for this assumption are provided in appendix C where the effect of fringing effect on the 

capacitive output of a simple membrane-based pressure sensor is investigated by FE simulations. 

4.3.2 Connecting multiple sensors in parallel 

To get a bigger capacitive output from MEMS sensors, it is a common practice to connect multiple 

sensors in parallel [1]. Figure 4.18 schematically shows an array of     multifunctional MEMS 

sensors connected in parallel. The capacitive outputs    and    in this figure are     times those 

of the single MEMS sensor shown in Figure 3.10. In the connected configuration, the multifunctional 

membrane forms the common top electrode of all the connected units while the bottom individual 

electrodes are connected in series to form two large bottom electrodes. The connecting of multiple 

MEMS sensors in parallel would increase the surface area and the footprint of the sensor accordingly. 

It was assumed earleir that the electronic part of the sensor can meaningfully measure a minimum 

capacitance change of 1 fF. This will be used later in the determination of the number of the sensors 

required to be arrayed.  

As argued in the thermal modeling section, for the multifunctional membrane to exhibit a good 

thermal performance it is critical to minimize its thermal lost into the substrate    (Figure 4.1). To do 

so, the contact area between the membrane and its underneath insulating layer should be minimized. 

This requirement is met with the custom fabrication process flow proposed in appendix A for the 

arrayed multifunctional MEMS sensor.     
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Figure 4.18. Several multifunctional MEMS sensors arrayed in parallel to provide bigger outputs. 

 

4.3.3 Capacitive output 

In this section, equation 4.39 is used for the calculation of the capacitive outputs of the 

multifunctional MEMS sensor. The dimensions and specifications of the multifunctional MEMS 

sensor studied in this section include          ,        ,           ,          , 

             ,          and the number of individual sensor arrayed in parallel      

(yet to be determined in accordance with the assumption of a minimum capacitance change of 1 fF 

detectable by sensor electronics). The temperature dependence of the sensor material properties 

discussed in Chapter 2 is taken into account in this section. Moreover, the fringing effect as discussed 

in Section 4.3.1 is ignored in the numerical calculations. Furthermore, for the in-cylinder pressure and 

temperature loading of the sensor, the data from Figure 3.4 is used. The first results are presented in 

Figure 4.19 where the capacitive outputs    and    predicted by the semi-analytical model and the FE 

simulation (see appendix B for the FE code) are compared. The difference between the results of the 

two approaches, averaged over the entire pressure and temperature ranges, is about 2.3 % for    and 

1.5 % for   . The capacitance units of fF               or pF               deployed in this figure 

are associated with cases involving one single MEMS sensor or one thousand arrayed in parallel.  
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Figure 4.19. (a)    and (b)    predicted by the semi-analytical model (red dotted line) and FE 

simulation (blue solid line) for the SiC-Si MEMS sensor with dimensions:              , 

          ,           ,  and               .  
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Figure 4.20 combines the results of the semi-analytical model for    and    and provides a 

comprehensive characteristic plot for the interpretation of the outputs of the sensor (compare with the 

one shown in Figure 3.11). Similar to Figure 4.19, the capacitance curves in this figure take either fF 

or pF units depending on whether a single MEMS sensor or one thousand of arrayed sensors are 

considered. The 0.2 fF (or 0.2 pF for          devices arrayed) pitch distance between the 

equal capacitance lines in this figure is tentatively selected for better visualization.  

4.3.4 In-cylinder measurement 

Figures 4.21 and 4.22 show the capacitive outputs    and    of the MEMS sensor subjected to the in-

cylinder pressure and temperature loading given in Figure 3.4. Similar to Figures 4.19 and 4.20,    

and    can take fF or pF units depending on the number of sensors connected in parallel (1 or 1000). 

If the electronics part requires even larger output signals, more sensing units can be arrayed in a 

similar manner. The in-cylinder pressure and temperature data are also shown in Figures 4.21 and 

4.22. Following the measurement of    and    by the electronics, the characteristic plot of Figure 

4.20 (calibrated for the subject MEMS device and including the effect of residual stresses) is used for 

the determination of the in-cylinder pressure and temperature values (inputs) which have given rise to 

   and    capacitances (outputs).   

4.4 Sensitivity analysis 

The sensitivity of a sensor is the slope of the output-versus-input characteristic curve. In the case of 

the multifunctional MEMS sensor designed in this Thesis, the outputs of the sensor are two 

capacitances    and    and the inputs are pressure and temperature variations. As shown in Figure 

4.19, the capacitive outputs are not linear functions of the pressure and temperature variations. So, 

here the sensitivity should be looked at as a local parameter varying over the pressure and 

temperature working ranges of the sensor. In this work, the multifunctional MEMS sensor sensitivity 

to pressure and temperature are defined as 

      [
        

  
 

        

  
] 

 

      [
        

  
 

        

  
] 

 

(4.40) 
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Based on equation (4.40), Figures 4.23 presents the results of the sensitivity analysis of a single 

multifunctional MEMS sensor with dimensions              ,           ,           ,  and   

 

 

 

 
 

Figure 4.23. (a)    in aF/KPa, and (b)    in aF/°C for a single multifunctional MEMS sensor.  
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             . At the time of injection,    and    are calculated around 0.24 aF/KPa and 0.73 

aF/°C, respectively (aF is            ). At the height of the working stroke when maximum in-

cylinder pressure and temperature coexist (Figure 3.4),    and    exhibit their maximum values 1.42 

aF/KPa and 4.1 aF/°C, respectively. The average values of    and    over the entire pressure and 

temperature working range of the sensor are calculated as 0.37 aF/KPa and 1.1 aF/°C, respectively.  

Based on the results in Figure 4.23, Figure 4.24 shows the sensitivities to pressure and temperature a 

multifunctional MEMS sensor would demonstrate when subjected to in-cylinder pressure and 

temperature loading of Figure 3.4.  

 

 

 

 
 

Figure 4.24. Sensitivities to (a) pressure and (b) temperature of a SiC-Si multifunctional MEMS 

sensor when subjected to in-cylinder pressure and temperature loading; The dimensions of the 

sensor are:              ,           ,         , and               . 
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Comparison between the minimum detectable capacitance change of 1 fF (assumed for the sensor 

electronics) and the sensitivity values presented in Figure 4.24 reiterates the need for connecting 

several sensors to achieve an acceptable minimum pressure and temperature detecting limit.  

Table 4.1 summarizes the results and shows the effect of arraying multiple MEMS sensors, with the 

number of devices     varying between 1 and 4200. For each     number, the approximate 

sensor area (calculated based on the optimized dimensions and the fabrication process proposed in 

appendix A), the sensitivities to pressure and temperature, and the minimum measurable pressure and 

temperature at the time of injection and at the height of the working stroke are calculated and 

presented. The dimensions of the MEMS sensor studied in Table 4.1 are              , 

          ,           ,               , and             (Figures 3.10 and 4.1).  

 

Table 4.1. Working characteristics of different configurations of multifunctional MEMS sensor. 

Number of MEMS sensors connected       1 1000 2000 4200 

Estimated sensor chip area (mm
2
)  0.1 1.4 2.4 4.5 

   at the time of injection (fF/KPa)  2.4×10
-4

 0.24 0.48 1.01 

   at the height of working stroke (fF/KPa) 1.42×10
-3

 1.42 2.84 5.96 

   average (fF/KPa) 3.7×10
-4

 0.37 0.74 1.55 

   at the time of injection (fF/°C)  7.3×10
-4

 0.73 1.46 3.07 

   at the height of working stroke (fF/°C) 4.1×10
-3

 4.1 8.2 17.22 

   average (fF/°C) 1.1×10
-3

 1.1 2.2 4.62 

      § at the time of injection (KPa)  4167 4.17 2.08 0.99 

      at the height of working stroke (KPa) 704 0.7 0.35 0.17 

      ₪ at the time of injection (°C)  1369 1.37 0.68 0.33 

      at the height of working stroke (°C) 243.9 0.24 0.12 0.06 

§   minimum measurable pressure variation 

₪  minimum measurable temperature variation 
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The average sensitivity to temperature of 1.1 fF/°C calculated for the multifunctional MEMS sensor 

configuration with          (with vacuum dielectric between the electrodes) is comparable to 

the 7 fF/°C reported in literature for a multilayer MEMS temperature sensor with an area of 1 mm
2
 

and a 0.45 μm thick SiO2/Si3N4 dielectric layer (relative permittivity    of SiO2 is 3.9 and that of 

Si3N4 is 7.5) [148]. The reported sensor has been designed and tested for static temperature 

measurement over the temperature range of -70 to 100 °C. Recently, a similar multilayer capacitive 

MEMS temperature sensor with a chip area of 4 mm
2
 and a 1 μm thick SiO2/Si3N4 dielectric layer has 

been reported in [149]. Between room temperature and 600 °C, the reported device has achieved an 

average sensitivity to temperature of 5 fF/°C which (regarding the use of high    dielectric) is 

comparable to what the multifunctional MEMS sensor with          configuration and 1.4 

mm
2
 chip area delivers (Table 4.1).  

For the average sensitivity to pressure, the 1.55 fF/KPa calculated for the multifunctional MEMS 

sensor configuration with          (4.5 mm
2
 chip area) is comparable with some recent harsh 

environment MEMS pressure sensors reported in literature, namely: 0.91 fF/KPa (       , 2 

mm
2
 chip area) [77], 1.3 fF/KPa (SiC membrane and substrate,        , 20 mm

2
 chip area) [1], 

and 0.61 fF/KPa (SiC membrane and Si substrate,        , chip area not reported) [84]. 

In summary, the designed MEMS sensor has the potential to deliver sensitivities to pressure and 

temperature comparable with the recent research MEMS sensor reported in literature. On top of this, 

it promises short thermal response times, which makes it the ideal design for such dynamic harsh 

environment applications as IC engine.  

4.5 Multifunctional sensor design guideline  

Based on the modeling and analysis work presented in this chapter, a design guideline for the 

customization and optimization of the multifunctional sensor for different applications can be 

established. To do so, the first step will be the determination of sensor’s operational requirements 

based on the specific application. Next, the out-of-plane dimensions of the sensor, i.e. the thicknesses 

of its different components, will be optimized to achieve the required thermal response. This is then 

followed by the optimization of the in-plane dimensions of the sensor (mainly lengths and widths of 

the membrane) to achieve the required mechanical response. Finally, the configuration of the sensor 

will optimized (based on the outputs of thermal and mechanical optimization steps) in such a way that 

the required elelctrical specifications are met.  
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Figure 4.25. A step-by-step design guideline for multifunctional MEMS sensor (for information 

on geometrical parameters refer to Figure 4.1). 
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Figure 4.25 presents the design guidline in the form of a flow chart whose inputs are sensor’structural 

smaterials (in accordance with section 2.1.2), dimensions, and operation requiremetns. The output of 

the flow chart is the optimized disegn of the sensor which meets the operation requirements. 

4.6 Effect of fabrication and deviations from design parameters  

4.6.1 Residual stress in thin films 

Microfabrication processes often introduce residual stresses to thin film structures. The residual stress 

originates mostly from the thermal mismatch between the deposited thin film and the substrate over 

which the thin film is deposited. The residual stress in as-deposited thin films is a major issue and can 

cause severe distortion or cracking in the thin film. To alleviate the residual stress in thin films, 

deposition optimization and post fabrication annealing are widely used. Even with such measures, a 

portion of the original residual stress, which still can be in the order of hundreds of mega Pascal, 

remains in the thin film [150, 151].  

In a MEMS sensor, the residual stress manifests itself in the form of an initial curvature. Inspired by 

its thermal origin, the effect of the residual stress in a thin film can be assimilated by applying an 

initial temperature change        to the model. Based on the direction of the residual stress being 

tensile or compressive,        may take negative or positive values, respectively. For the case of the 

multifunctional membrane investigated in this chapter, the effect of the fabrication-induced residual 

stress can similarly be included in the modeling by modifying the temperature variation the sensor 

undergoes to include the effect of       . This can be approximately incorporated into the 

characteristics plot of Figure 4.20, for example, by initially shifting the plots along the temperature-

axis to the left (tensile residual stress) or right (compressive residual stress). According to Figure 

4.23, a shift to the left (corresponding to a tensile residual stress in the multifunctional membrane 

layer) slightly increases the sensitivities of the sensor to pressure and temperature.  

4.6.2 Deviation of dimensions from design parameters 

The modeling sections in this chapter show that the performance of the multifunctional MEMS sensor 

greatly depends on its dimensions and material properties. Considering the uncertainties and common 

errors associated with microfabrication processes, achieving the ideal dimensions determined by the 

theoretical modeling or reproducing the material properties reported in literature is a formidable task, 
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if not impossible. In this section, the effects of deviations from ideal design parameters (both 

dimensions and material properties) on the sensor expected performance are briefly discussed.  

Variation of in-plane dimensions 

Among the dimensions introduced in Figure 4.1, the length   and the width   of the membrane play 

a major role in the mechanical response of the multifunctional membrane to pressure and temperature 

variations. Smaller than designed   and   result in increased extensional spring constant   . 

According to equation (4.20), this brings about a smaller pressure-induced deformation of the 

membrane than expected, which in turn negatively affects the sensor pressure sensitivity. From a 

thermal perspective, a smaller   gives rise to a smaller amplitude modification factor   ̅ (Figure 

4.15) which undesirably reduces the sensor thermal sensitivity. Since the realization of the cavity 

under the multifunctional membrane is by DIRE process (refer to proposed fabrication process in 

appendix A), it is critical to take into account and foresee such side effects as undercut which may 

cause the final in-plane dimensions differ from the ideal design values. For the other important in-

plane dimension, the width of the bonding interface   , it was shown earlier that its variation does not 

noticeably affect the sensor thermal performance. Further FE simulations show that such a variation 

does not affect the sensor mechanical performance as well. 

Variation of out-of-plane dimensions 

The most important out-of-plane dimensions of the sensor are the step height   (Figure 3.6) and the 

thickness of the multifunctional membrane    (Figure 4.1). While the former one only affects the 

sensor’s mechanical response, the latter one influences both thermal and mechanical responses. As 

discussed in Figure 4.12, increasing the step height while keeping the other dimensions of the 

membrane unchanged increases the extensional spring constant   . On the other hand, the effect of an 

increased step height on the sensor’s response to temperature variation is more complex as there is an 

optimum step height-to-thickness ratio which results in the highest   ̅ and thus maximizes the thermal 

sensitivity of the device. As suggested in the fabrication process flow in appendix A, the realization 

of the step feature in the multifunctional membrane is the result of the fabrication step “RIE etching 

of sacrificial SiO2 layer”. The RIE process is relatively slow and easy to control (by controlling such 

working parameters of the RIE equipment as ICP power, plasma power, chamber pressure, etc.).  

The effect of the multifunctional membrane thickness    on the sensor’s thermal performance was 

studied in Section 4.1. As shown in Figure 4.4,    significantly affects how closely the membrane 
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temperature      follows the temperature of the in-cylinder gaseous content     . In general, the 

thinner the membrane, the better the match between      and      would be. On the other hand, a 

thinner membrane layer means a bigger deflection under pressure. This adversely affects the sensor’s 

mechanical performance by requiring a larger number of smaller sensor cells to be arrayed in parallel 

to provide an acceptable capacitive output. The deposition of the a-SiC membrane layer is usually 

carried out by LPCVD or PECVD techniques. These processes are inherently slow and allow 

excellent control, with the possibility of in situ real time monitoring, of the deposition thickness.  

Deviation of the step sidewall angle 

As mentioned above, the step feature in the multifunctional membrane is the result of an RIE etching 

process on SiO2 sacrificial layer. The resulting sidewall angle from an RIE process is usually 

controlled by manipulating its working parameters [152-154].  The ideal outcome of RIE process is 

vertical sidewalls; but, there might be deviations in the form of sidewalls with      (Figure 3.6). 

FE simulations show that such a deviation in sidewall angle increases    and   , thus negatively 

affects the membrane sensitivity. 

Variation of material properties 

In Figure 4.5, the effect of the multifunctional membrane material (a-SiC versus poly-SiC) on its 

thermal performance was investigated. Proper thermal performance of the multifunctional membrane 

relies on minimizing the thermal communication between its over-the-cavity and off-the-cavity parts. 

Moreover, the deformation of the membrane due to in-cylinder conditions greatly depends on its 

elastic properties. A smaller than expected Young’s modulus, for example, brings about a bigger 

displacement of the membrane which may results in the membrane contacting the bottom electrodes 

during the sensor operation. To avoid such issues, it is critical to get material properties as close to 

design parameters as possible. To achieve this, the fabrication process needs to be appropriately 

monitored and calibrated. As will be listed in the future work section in Chapter 6, the calibration and 

tuning of the various fabrication processes required for the fabrication of the multifunctional MEMS 

sensor forms a big portion of the future optimization plan to achieve the desired sensor performance.  
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Chapter 5 

Experiment and Result 

In this chapter, the experimental procedures and their results for some fabricated MEMS devices 

(including test devices and prototypes) are presented. The fabricated devices are categorized into two 

main groups. The first group includes test devices intended for material characterization of MEMS 

structural layers. The second group involves prototypes designed and fabricated for the evaluation 

(both qualitatively and quantitatively) of the thermal response of the proposed multifunctional MEMS 

sensor. The polysilicon multi user foundry process PolyMUMPs® [155] is used for the fabrication of 

all the reported devices. The visual characterizations of the fabricated MEMS devices using optical 

microscope, scanning electron microscope (SEM) and optical profilometer are also reported in this 

chapter. Finally, the high temperature experiments setup and results are presented.  

5.1 PolyMUMPs® microfabrication process 

All the MEMS devices reported in this chapter are fabricated using the PolyMUMPs® foundry 

process, facilitated by the Canadian Microelectronic Corporation (CMC). The PolyMUMPs® foundry 

process begins with a 6-inch silicon wafer on top of which a 0.6 µm thick Si3N4 (the stoichiometric 

ratio may vary) film is deposited as an electrical isolating layer. The first poly-Si layer (design name 

Poly0, thickness 0.5 µm) is then selectively deposited and patterned to form the bottom electrode (if 

needed). This is followed by the deposition and patterning of the first SiO2 layer (design name 

Oxide1, thickness 2 µm), second poly-Si layer (design name Poly1, thickness 2 µm), second SiO2 

layer (design name Oxide2, thickness 0.75 µm), third poly-Si layer (design name Poly2, thickness 1.5 

µm), and finally the gold layer (design name gold, thickness 0.5 µm). For all the mentioned layers but 

gold the patterning and creation of features are implemented by RIE process. For the gold layer, 

however, the patterning is done through liftoff process. After all the deposition and patterning steps 

are done, buffered hydrofluoric acid (BHF) is used to etch the sacrificial SiO2 layers away. This is 

followed by supercritical CO2 drying to avoid stiction of the released MEMS devices to the substrate. 

A comprehensive description of the PolyMUMPs foundry process along with its design manual can 

be found at [155]. A schematic of PolyMUMPs® process flow is provided in appendix A. All the 

fabricated devices have been designed using the CoventorWare® MEMS design software [156]. The 

build-in libraries for material properties and the PolyMUMPs standard process flow have been used 

during the designs. Appendix D shows the layouts of the designed 5×5 mm
2
 PolyMUMPs chips. 
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5.2 Fabricated devices and results 

5.2.1 Test devices for material characterization 

The fabricate devices presented in this section are those used for material characterization, 

specifically for the determination of the fabricated induced residual stresses. They include 1) Vernier 

gauges which are used for the measurement of residual stress of Poly1 and Poly2 polysilicon 

structural layers, and 2) gold-polysilicon bimaterial cantilevers for the measurement of residual stress 

of the gold layer. Figure 5.1 provides the SEM photo of the latter one.  

 

 

 

Figure 5.1. Bimaterial microcantilevers fabricated using the PolyMUMPs® foundry process and 

used in this work for material characterization. 

 

The Vernier gauge device is fabricated based upon the work published by Lin et al. [157]. In the 

design of the device, the fixed markers (anchored to the substrate) and the unfixed ones (attached to 

the end of the indicator beam) are aligned. The fixed markers are spaced 0.25 μm (called offset value) 

further apart from the unfixed markers. Upon releasing with BFH, the residual stress in the structural 

material results in a displacement of the unfixed markers with respect to the fixed ones. Since the 

tooth gap on the unfixed markers is smaller than that on the fixed one, some teeth become closer to 

being aligned due to residual stress in the indicator beam.  If the tip of the indicator beam moves to 

the left, the residual stress is tensile and vice versa.  

By finding the number of the corresponding teeth in alignment, the relative displacement of the 

indicator beam can be calculated by multiplying the aligned tooth number minus one by the offset 

value.  From this displacement the residual strain in the indicator beam is then determined (details of  
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calculation given at [157]). Finally, using the Young’s modulus of the structural layer in which the 

Vernier gauge is realized, the residual stress of the layer can be determined. In line with the published 

data for the PolyMUMPs® structural layers [158], the following Young’s moduli are used here: 165 

GPa for Polyl layer, 165 GPa for Poly2 layer, and 78 GPa for gold layer. Using these values, the 

residual stresses of the poly1 and poly2 layers are measured to be about 7 MPa and 6 MPa, 

respectively. The measured residual stresses are all compressive. 

The above measured residual stress for poly2 layer is now used for the determination of the residual 

stress of the gold layer. For this purpose, the gold-polysilicon bimaterial microcantilever is 

characterised under a WYKO NT1100 optical profiler and its tip deflection (or alternatively its 

curvature) is measured. For example, Figure 5.2 shows the optical profile of one of the tested 

bimaterial microcantilevers. The residual stress of the poly2 base layer, the elastic moduli of the poly2 

and gold layers, and the nominal design dimensions of the microcantilevers (length, width, and 

thicknesses of their constituent layers) are fed into the FE program which predicts the 

microcantilever’s tip deflection for various gold residual stress numbers. By comparing the results of 

FE simulations with the measurements from the optical profiler, the average residual stress of the 

gold layer is measured to be around 19 MPa.  

5.2.2 First prototype 

The first prototypes are clamped-clamped beams which are fabricated in polysilicon only and gold-

polysilicon configurations (Figure 5.3). They are used for qualitative verification of the thermal 

response mechanism of the multifunctional membrane (Figure 3.8). The height of the step feature in 

Figure 5.3, h, measures about 2.75 μm. So, the step height-to-thickness ratio of the beam is about 1.4. 

In this section, the polysilicon beam (the right one in Figure 5.3) is investigated. Due to residual stress 

in poly1 and poly2 layers, the as-fabricated clamped-clamped beam is initially deformed in such a 

way that resembles a negative temperature variation being applied to it (Figure 5.4). Next, the beam is 

heated up by Joule heating. An Agilent triple output DC power supply is used to generate the DC 

signal with a peak-to-peak voltage,    , between 0 and 6 V. The profile of the heated beam at 

          and           are also shown in Figure 5.4. This figure shows the thermal response 

mechanism which was proposed and analyzed in Chapters 3 and 4. 
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Figure 5.3. Clamped-clamped beams fabricated in polysilicon (right) and gold-polysilicon (left) 

configurations. The inset on top provides a closer isometric look at step feature. 
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Figure 5.4. Deformation of a clamped-clamped beam (top) with increased temperature due to 

Joule heating (right); On the bottom left, the deformation patterns are schematically identified. 

 

5.2.3 Second prototype 

The second series of MEMS prototypes are designed and fabricated to quantitatively test the thermal 

response of the multifunctional membrane. One of the fabricated prototypes is shown in Figure 5.5.a. 

Mandated by the PolyMUMPs process flow, arrays of etch holes are added to the membrane for the 

sacrificial layer(s) under the membrane be etched away. These etch holes help in realizing a thin 
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Figure 5.5. Multifunctional membrane (a) before and (b) after the spacers are removed. The 

membrane is connected to two pads (blue). The bottom electrodes are connected to the other two 

pads (red).  Capacitances    and    are formed between the membrane and the bottom electrodes. 
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membrane suspended over bottom electrodes (resembling the multifunctional membrane shown in 

Figure 3.10). On the negative side, these holes remove the pressure responding function of the 

membrane (as no pressure difference between the two sides can build up). In the as-fabricated device 

shown in Figure 5.5.a, the Poly1 layer is used for temporary spacer(s) that provide the additional 

height needed for the realization of the step feature. To prepare the device for high temperature 

experiments, these spacers are broken and removed manually under a Cascade Microtech M-150 

probe station equipped with 2.4 µm tungsten tips. Figure 5.5.b shows the device after the spacers are 

removed (the broken anchors of the spacers left on the chip can be seen in this figure). The device is 

now ready for high temperature experiment.  

Test setup 

Figure 5.6 shows the test setup used for high temperature experiments. The setup is mounted on the 

stage of the probe station and includes an ULTRAMIC® ceramic heater from WATLOW (AlN, 

maximum temperature of 400 °C, integrated with a type K thermocouple) connected to a temperature 

controller. The ceramic heater is sandwiched between two insulating layers. A small 2×2 cm
2
 window  

 

 
 

Figure 5.6. Test setup for capacitive temperature measurements. 
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is cut through the top insulating layer to provide access for the PolyMUMPs chip (measuring 5 by 5 

mm) to be put directly on top of the ceramic heater (inset in Figure 5.6). The prototype devices are 

situated on the PolyMUMPs chip. The measurements are carried out at 25 °C temperature steps 

between 25 °C and a maximum temperature of 125 °C (limited by the occurrence of snap-through 

buckling of the membrane afterwhich the device capacitive performance deviated from the expected 

one). The average fluctuation of the ceramic heater temperature around the set values is about ±0.5 °C 

for 25 °C, ±1.0 °C for 50 °C, and ±3.0 °C for set temperatures up to 125 °C.  

Each device is connected to four gold-covered pads which are used for probing the device (Figure 

5.5). Two of the pads are connected to the bottom electrodes located under the membrane. The other 

two pads are connected to the gold-polysilicon membrane. The two pairs of neighboring pads are 

used to measure the capacitive outputs    and    (Figure 5.5). The same two tungsten probes used for 

removing the spacer parts are used here for probing the device and for the electrical measurements. 

The probes are connected to AGILENT precision LCR-meter which is used for capacitance 

measurement.  

A third probe is also used for grounding the PolyMUMPs chip’s SC-Si substrate. This probe is 

directly connected to the ground port on the LCR-meter. During the experiments, the third probe 

keeps the SC-Si substrate discharged and reduces the corresponding parasitic capacitance. The 

measured capacitances before the substrate is discharged are in the range of a few Pf; however, after 

the third probe is used they drop to a few hundred fF which is comparable with the predictions of FE 

simulations. 

Experimental results and comparison with FE simulation 

Figure 5.7 presents the results of thermal loading tests on the the prototype device shown in Figure 

5.5.b. The dimensions of the device include            (gap between the membrane and the left 

bottom electrode),         (gap between the membrane and the right bottom electrode),   

       ,              (thickness of the left half of the membrane which is in poly1),          

     (total thickness of the right half of the membrane comprising gold over poly2 polysilicon), 

        ,          , and          . The results of FE simulations, using the design 

dimensions and including the initial stresses, are also shown in this figure (the FE code is provided in 

appendix B). In order to separate the effect of parasitic capacitances, the variation of    and    with 

temperature, instead of their absolute value, are presented in Figure 5.7.  
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Figure 5.7. Capacitive outputs    and    of the device in Figure 5.5.b when temperature increases 

from 25 to 125 °C. The results of high temperature experiments as well as the predictions of FE 

simulations are shown. The slight difference between the results can be due to etch holes which 

are not included in the FE model. 

 

As expected,    increases with temperature which is due to a decreasing gap between the membrane 

and the left bottom electrode. On the contrary,    exhibits a decreasing behavior with temperature 

which is due to an increasing gap between the membrane and the right bottom electrode. Figure 5.8 

shows the X profiles of the membrane as its temperature changes from 25 to 125 °C. The thermal 

response of the membrane presented in this figure agrees with what the semi-analytical model in 

Chapter 4 has predicted. The area of the tested device in Figure 5.7 is around 0.23 mm
2
. Yet, it 

delivers an average temperature sensitivity of about 1.4 fF/°C (equation 4.40). As mentioned earlier, 

the maximum temperature of the experiments were limited to 125 °C to avoid severe deformation of 

the membrane. It seems that such a limitation arises from the configuration of the anchors around the 

membrane (Figure 5.5). The configuration of the anchors is designed in such a way to provide access 

for the removal of poly1 spacers. If this could be avoided, a higher maximum temperature might have  
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Figure 5.8. Profile of the tested membrane in Figure 4.7 at room temperature and 125 °C. The 

arrows in the bottom panel show the direction of thermally-induced deformation of the membrane. 

 

been achievable (PolyMUMPs gold layer can tolerate temepratuers as high as 300 °C without 

showing any sign of plastic deformation).  
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Chapter 6 

Concluding Remarks  

6.1 Conclusion  

In this work, a new multifunctional MEMS sensor for simultaneous measurement of pressure and 

temperature at harsh environments was developed. At the heart of the new sensor is a uniquely shaped 

non-planar membrane which is deposited over a stacking of insulating and conducting layers and 

anchored to a silicon substrate. The membrane sits above a sealed cavity and serves as the main 

sensing body whose response to pressure and temperature variation is an out-of-plane deformation. 

The membrane deformation is sensed and quantified into capacitive outputs by a pair of fixed 

electrodes situated under the membrane. The capacitive outputs of the sensor are analyzed using the 

numerical processing scheme proposed in Chapter 4 and the input pressure and temperature values 

are determined. The new sensor design was optimized for the harsh environment found inside the 

cylinder of a typical IC engine. It was shown numerically that the optimized sensor design can 

measure, with acceptable precision, the in-cylinder pressure and temperature variations during the 

compression stroke of the cylinder up to the point of combustion initiation.    

6.2 Contributions of thesis 

6.2.1 Development of a new membrane for simultaneous measurement of pressure 

and temperature at one location and a semi-analytical model for the analysis of its 

response 

The main component of the new MEMS sensor described in Chapter 3 is a unique non-planar 

multifunctional membrane which reacts to pressure and temperature variations simultaneously. The 

membrane sits above a sealed cavity with reference pressure (vacuum) and deflects in response to 

pressure difference between its two sides. The pressure-induced deformation of the membrane 

manifests itself in the form of increases in the two capacitive outputs of the sensor. A semi-analytical 

model governing the pressure response of the membrane was developed in Section 4.2. When 

temperature changes, thermal mismatch between the multifunctional membrane and the substrate to 

which it is anchored induces thermal stresses which deform the multifunctional membrane. The 

thermal response of the membrane includes opposing out-of-plane deflections in its left and right 

halves separated by a step feature which provides an internal rotational mechanism. The temperature-
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induced deformation of the membrane increases one of the capacitive outpus and decreases the other 

one. The thermo-mechanical response of the membrane was investigated in sections 4.2 and 4.3 and 

its governing semi-analytical equations were derived. In a combined loading case when both pressure 

and temperature vary, the membrane’s response is predicted using the principle of superposition. 

Considering the small dimensions of the multifunctional membrane, it is reasonable to assume that 

during operation, the measurements will be carried out over a common small area or literally at one 

location.  

6.2.2 Minimization of the effect of cross-sensitivity to temperature  

The outputs of the developed multifunctional MEMS sensor are two capacitances which are coupled 

functions of pressure and temperature. By using the numerical processing scheme developed in 

Chapters 3 and 4, the effects of pressure and temperature on sensor’s outputs are decoupled and their 

values are extracted. The processing scheme works based on the fact that for each pair of output 

capacitances there is only one corresponding pair of pressure and temperature values. The developed 

processing scheme has the potential of decoupling the effect of pressure and temperature and 

consequently could output temperature-independent pressure values. Analogously, it could deliver 

pressure-independent temperature measurements. As mentioned in Chapters 1 and 2, cross-sensitivity 

to undesired measurands is a ubiquitous problem in MEMS sensors. While some compensation 

techniques have been developed so far to address this concern, none of them provides a complete 

solution which can completely eliminate the undesired effects. This further highlights the importance 

of the proposed processing scheme.   

6.2.3 Improved thermal response time 

A short response time is the key to real-time monitoring of in-cylinder processes in an IC engine. Fast 

measurement provides indispensable information to the engine management unit and helps reduce the 

fuel consumption and emissions of an engine. As discussed in Chapter 3, based on the specifications 

of a typical IC engine, a sensor for in-cylinder operation has between 4 and 45 ms (based on engine 

speed) to undergo a temperature change of about 450 °C (during the compression stroke and up to the 

point of injection). The thermal modeling section in Chapter 4 demonstrated that such a short 

response time can only be realized using a thin film membrane along with optimized boundary 

conditions.  
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During optimization, meaningful dimensional ranges were selected for different components of the 

sensor (in line with available resources and fabrication processes). Following numerical analyses, the 

optimum configuration of the MEMS sensor for IC engine application was determined, which 

includes: 1) multifunctional membrane fabricated in amorphous silicon carbide with a thickness of 

0.5 μm, 2) silicon dioxide insulating layers between the multifunctional membrane and the silicon 

substrate with a total thickness of 5 μm, and 3) single-crystal silicon substrate with a total thickness of 

1.05 mm (corresponding to two bonded silicon substrates, each with the standard thickness of 0.525 

mm). The other important dimensions of the sensor were determined and summarized in Sections 4.1 

to 4.3 of this Thesis.  

6.2.4 Small footprint 

To achieve high sensitivities to pressure and temperature, the idea of using an array of MEMS sensors 

connected in parallel over a common substrate was followed in this Thesis. The optimized sensor 

configuration designed in Chapter 4 includes 4200 MEMS sensor connected in parallel, each 

measuring 25×25 μm
2
 in area, and provides an average sensitivity to pressure of about 1.5 fF/KPa and 

an average sensitivity to temperature of about 4.62 fF/°C. The total surface area of the sensor chip is 

approximately 4.5 mm
2
.   

6.3 Proposed future work 

Some potential extensions to the presented research work are presented in this section. They are 

categorized in three main groups as follows: 

6.3.1 Modeling and Optimization 

 Investigating different shapes and geometries:  

In this research, rectangular multifunctional membranes with a step feature at half-lenght were 

considered. An extension to this can take into account other membrane shapes and geometries. 

 Optimization for new applications: 

The IC-engine considered in this research was one of many industrial applications requiring 

simultaneous measurement of pressure and temperature. The optimization carried out in 

Chapter 4 was geared toward minimizing the sensor’s thermal response time for such 

application. An extension to this can be to use this optimization process for other promising 

applications such as Tire-Pressure-Monitoring-Systems (TPMS). This can be achieved, for 
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example, by extracting dimensionless design parameters that generalize the developed model to 

fit different applications/configurations.      

 Stress analysis: 

Due to the severe nature of the in-cylinder environment, the new sensor will be exposed to high 

cyclic thermal and mechanical stresses. These stresses partially originate from the thermal 

mismatch among the different components of the sensor, pressure loading over the membrane, 

the wafer bonding process used for the fabrication of the device, etc. The operation at high 

temperatures further complexes the situation by weakening the strength of the materials used in 

the sensor. This needs a thorough stress analysis of the sensor to assure its long-term operation. 

One important factor of such an analysis is to know the temperature-dependent mechanical 

properties (such as yield strength) of the various materials used in the fabrication of the sensor. 

For materials such as silicon carbide, this is still an ongoing field of research. 

 Detailed investigation of the effect of initial stresses: 

In Section 4.5, the effect of fabrication-induced initial stresses on the performance of 

multifunctional membrane was touched upon briefly. A more elaborated analysis of these 

stresses and their effect on sensor performance can be an extension to this work. In addition, the 

effect of these stresses on correction factors introduced into the analytical model can be 

investigated in more detail.     

6.3.2 Fabrication and packaging 

 Custom fabrication of the complete sensor with capacitive readout: 

The prototypes tested in this Thesis were fabricated using a multi-user foundry process. They 

were used to verify the thermal response mechanism designed in Chapter 4. The next prototype 

will need to show full functionality and respond to both pressure and temperature loading. A 

customized process flow (appendix A) will be used for its fabrication. The new sensor will be 

essentially similar to the one portrayed in Figure 3.12, including a vacuum sealed cavity under 

the membrane. The performance of the new sensor will need to be characterized accordingly, 

using the new test setup proposed in Section 6.3.3. The characterization may also include real 

time tests in engine condition, reliability and endurance, and hermeticity of the sealed cavity 

over time, to name a few.  
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 Onboard electronics: 

The capacitance measurements reported in this Thesis were performed using a precision LCR-

meter. For commercial applications, customized electronics for signal processing should be 

developed. The electronics need to survive the relatively high temperature of the silicon 

substrate of the new sensor as well as electromagnetic interference common in IC-engines. 

Other aspects such as metallization and wire-bonding to the package will also need to be 

addressed. 

 Fabrication of a generation prototype with optical readout: 

As set among the objectives of this Thesis, the sensor is designed in such a way that its 

measurements can be carried out optically, instead of electronically. Fabry-Perot optical 

interrogation has been successfully implemented in many harsh environment MEMS sensors. 

So, among the future extensions of this research is the fabrication of a new generation of the 

sensor that can be interrogated using an optical readout system.      

 Design of application-specific sensor packaging: 

The thermal loading experiments presented in this Thesis have been carried out on unpackaged 

chips with tungsten tips used for probing. However, for more realistic tests at which both 

pressure and temperature loading coexist, specific packaging is required.    

6.3.3 Experiments and test setups 

 New test setups: 

The thermal loading experiments reported in this Thesis were carried out in ideal laboratory 

conditions and under a probe station. For the next generation devices, specific high pressure 

high temperature (HPHT) chambers would need to be developed for static tests. Dynamic tests 

(resembling the in-cylinder processes of an IC-engine) would likely be performed using test 

engines.  
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Appendix A 

Fabrication process flow 

A1. Custom fabrication process for the fabrication of multifunctional MEMS sensor  

In this section, a custom designed fabrication process flow for the fabrication of the multifunctional 

MEMS sensor is proposed. The process starts from 4-inch SC-Si wafer and includes several 

deposition/patterning steps. The description of each process step is provided below.  

Process Flow 

(a) The process starts from a 4-inch SC-Si wafer on top of which about 5 μm SiO2 is deposited. Next, 

RIE process is used to remove about 0.5 μm of the SiO2 at selected location. This will later gives rise 

to the step feature when the following layers are deposited. 

(b) About 0.5 μm of poly-Si is deposited (PECVD) and RIE patterned to form the bottom electrdes. 

During this step, etch holes are also created using the same RIE process that used to pattern the 

bottom electrodes. 

(c) The second SiO2 layer, with a thickness of 0.55 μm, is deposited (PECVD or LPCVD). This layer 

is later etched awayd using BHF. This would leave behind a gap between the multifunctional 

membrane and the bottom electrdes. 

(d) The multifunctional membrane leyer (a-SiC) is deposited (PECVD or LPCVD) with a thickness of 

0.5 μm. The deposition is supposed to be conformal so that the step feature transfers to the recently 

deposited thin film. 

(e) DRIE process is used to etch a cavity on the bottom side of the chip. The DRIE process goes all 

the way through the SC-Si substrate and ends at the SiO2 layer. 

(f) Wet BHF etching is used to etch away the first SiO2 layer. The process continues by etching the 

second sacrificial SiO2 layer through the etch holes. At the end of this process the bottom electrodes 

are completely released; however, the multifunctional membrane is left connected to and supported 

by small SiO2 posts which, from a mechanical perspective, divide the membrane layer into several 

smaller membranes (each with the optimized dimensions reported in this Thesis). 
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A second SC-Si wafer is used for wafer bonding (SiO2-SiO2 interface) and the bonded wafers are cut 

into smaller chips. Each of these chips can carry hundreds or thousands of sensing cells connected in 

parallel. Finally, an RIE process is carried out over the SiC top surface to open up access ports (on the 

chip corners) to the bottom elelctrodes. In the following, aschematic of the final chip is shown. 
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A2. PolyMUMPs® foundry process begins with a 6-inch silicon wafer on top of which a Si3N4  film 

is deposited as an electrical isolating layer. (a) The first poly-Si layer is then deposited and patterned 

to form the bottom electrode. This is followed by (b) the deposition and patterning of the first SiO2 

layer, and (c) second poly-Si layer and second SiO2 layer. Next, (d) the third poly-Si layer is 

deposited and patterned. (e) The gold layer is next deposited. After all the deposition and patterning 

steps are done, buffered hydrofluoric acid (BHF) is used to etch the sacrificial SiO2 layers away and 

release the device (f). 
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Appendix B 

ANSYS ® APDL codes  

B1. This ANSYS APDL code is used for the thermal modeling of the multifunctional MESM sensor 

presented in Section 4.1 of this Thesis.  

!!!!!!!!!!!! 

! START ! 

!!!!!!!!!!!! 

FINISH 

/CONFIG,NRES,1000000 

/clear 

! Configuration 1 (Si-Si interface) 

! Mounting scenario 1 or 2 

/TITLE, transient thermal analysis 

/FILNAME,TransThermal,0      

/PREP7 

BTOL, 1E-7 

Num_loop = 10                       ! Number of cylinder cycles for the simulations 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Dimensions and specs !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

ts1     = 525e-6  ! Thickness of top Si chip (with cavity) 

ts2     = 525e-6  ! Thickness of bottom Si chip (bonding wafer) 

tox1    = 2.5e-6      ! Thickness of 1st top oxide 

tox2    = 2.5e-6  ! Thickness of 2nd top oxide 

toxbond = 3e-6     ! Thickness of bonding interface oxide(s) 

tfilm   = 0.5e-6  ! Thickness of top film (SiC) (tfilm should be 2-5 um) 

Lcav    = 1000e-6      ! Cavity length 

margin  = 150e-6       ! the same as LE in thesis 

Ls      = Lcav+2*margin       ! Length of Si chip 

ESR = 1        ! Engine Speed Ratio to 700 rpm 

 

ET,1,Solid70                           ! Silicon chip 

ET,2,Solid70                           ! SiOx  

ET,3,Solid70                           ! SiC 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Creating the model !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

RECTNG,0 ,Ls/2   ,0   ,Ls/2                             ! Remove” /2” for full model  

RECTNG,0 ,Lcav/2 ,0 ,Lcav/2                         ! Remove” /2” for full model  

ASBA,1,2 

NUMCMP,ALL 

ASEL, S, LOC, Z, 0 
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VEXT,ALL, , ,0,0,tox1,,,, 

ASEL, S, LOC, Z, 0 

VEXT,ALL, , ,0,0,-tox2,,,, 

ASEL, S, LOC, Z, -tox2 

VEXT,ALL, , ,0,0,-ts1,,,, 

ASEL, S, LOC, Z, -tox2-ts1 

VEXT,ALL, , ,0,0,-toxbond,,,, 

Block,0 ,Ls/2,0,Ls/2,tox1,tox1+tfilm                                                    ! Remove” /2” for full 

Block,0 ,Ls/2,0,Ls/2,-tox2-toxbond-ts1,-tox2-toxbond-ts1-ts2            ! Remove” /2” for full 

/VIEW, 1 , 0.3 , -0.9 , 0.4 

/ANG, 1 , -41  

/REPLO   

ALLSEL,ALL 

vglue,all 

NUMCMP, VOLU 

ALLSEL,ALL 

Vsel,S, VOLU, ,3                                                                              ! Pick volume # 3 for Si 

Vsel,A, VOLU, ,6                                                                              ! Pick volume # 6 for Si 

vatt,1,,1                  

Vsel,S, VOLU, ,1                                                                              ! Pick volume # 1 for SiO2 

Vsel,A, VOLU, ,2                                                                              ! Pick volume # 2 for SiO2 

Vsel,A, VOLU, ,4                                                                              ! Pick volume # 4 for SiO2 

vatt,2,,2                  

Vsel,S, VOLU, ,5                                                                              ! Pick volume # 5 for SiC 

vatt,3,,3                  

ALLSEL,ALL   

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Material properties !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

!!!!!!!!!  material #1 – SC-Si substrate  !!!!!!!!!!! 

MPTEMP,1,300 

MPTEMP,2,400 

MPTEMP,3,500 

MPTEMP,4,600 

MPTEMP,5,700 

MPTEMP,6,800 

MPTEMP,7,900 

MPTEMP,8,1000 

MPDATA,KXX,1,,148                  

MPDATA,KXX,1,,100 

MPDATA,KXX,1,,74 

MPDATA,KXX,1,,58 

MPDATA,KXX,1,,47 

MPDATA,KXX,1,,39 
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MPDATA,KXX,1,,34 

MPDATA,KXX,1,,29 

MPTEMP,1,300 

MPTEMP,2,400 

MPTEMP,3,500 

MPTEMP,4,600 

MPTEMP,5,700 

MPTEMP,6,800 

MPTEMP,7,900 

MPTEMP,8,1000 

MPDATA,C,1,,707   

MPDATA,C,1,,794 

MPDATA,C,1,,841 

MPDATA,C,1,,871 

MPDATA,C,1,,895 

MPDATA,C,1,,912 

MPDATA,C,1,,931 

MPDATA,C,1,,946 

MP,DENS, 1,2900          !  Density 

!!!!!!!!!!!  material #2 - SiO2!!!!!!!!!!!!! 

MPTEMP,,,,,,,,   

MPTEMP,1,0   

MPDATA,DENS,2,,2500  

MPTEMP,,,,,,,,   

MPTEMP,1,300 

MPTEMP,2,400 

MPTEMP,3,500 

MPTEMP,4,600 

MPTEMP,5,700 

MPTEMP,6,800 

MPTEMP,7,900 

MPTEMP,8,1000 

MPDATA,C,2,,744  

MPDATA,C,2,,890 

MPDATA,C,2,,1008 

MPDATA,C,2,,1073 

MPDATA,C,2,,1136 

MPDATA,C,2,,1269 

MPDATA,C,2,,1131 

MPDATA,C,2,,1148 

MPTEMP,,,,,,,,   

MPTEMP,1,300 
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MPTEMP,2,378 

MPTEMP,3,453 

MPTEMP,4,528 

MPTEMP,5,700 

MPTEMP,6,850 

MPTEMP,7,1000 

MPDATA,KXX,2,,0.68   

MPDATA,KXX,2,,0.60 

MPDATA,KXX,2,,0.52 

MPDATA,KXX,2,,0.47 

MPDATA,KXX,2,,0.42 

MPDATA,KXX,2,,0.36 

MPDATA,KXX,2,,0.33 

!!!!!!!!!!!  material #3 - SiC  !!!!!!!!!!!!! 

!!!!!! poly-SiC !!!!!! 

!MPTEMP,,,,,,,,   

!MPTEMP,1,0   

!MPDATA,DENS,3,,3290  

!MPTEMP,,,,,,,,   

!MPTEMP,1,300 

!MPTEMP,2,400 

!MPTEMP,3,500 

!MPTEMP,4,600 

!MPTEMP,5,700 

!MPTEMP,6,800 

!MPTEMP,7,900 

!MPTEMP,8,1000 

!MPDATA,C,3,,680    

!MPDATA,C,3,,825 

!MPDATA,C,3,,955 

!MPDATA,C,3,,1030 

!MPDATA,C,3,,1045 

!MPDATA,C,3,,1130 

!MPDATA,C,3,,1175 

!MPDATA,C,3,,1220  

!MPTEMP,,,,,,,,   

!MPTEMP,1,316 

!MPTEMP,2,500 

!MPTEMP,3,600 

!MPTEMP,4,1000 

!MPDATA,KXX,3,,51   

!MPDATA,KXX,3,,28 
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!MPDATA,KXX,3,,21 

!MPDATA,KXX,3,,12 

!!!!! amorphous-SiC !!!!!! 

MPTEMP,,,,,,,,   

MPTEMP,1,0   

MPDATA,DENS,3,,3290  

MPTEMP,,,,,,,,   

MPTEMP,1,300 

MPTEMP,2,400 

MPTEMP,3,500 

MPTEMP,4,600 

MPTEMP,5,700 

MPTEMP,6,800 

MPTEMP,7,900 

MPTEMP,8,1000 

MPDATA,C,3,,680    

MPDATA,C,3,,825 

MPDATA,C,3,,955 

MPDATA,C,3,,1030 

MPDATA,C,3,,1045 

MPDATA,C,3,,1130 

MPDATA,C,3,,1175 

MPDATA,C,3,,1220  

MPTEMP,,,,,,,,   

MPTEMP,1,316 

MPTEMP,2,500 

MPTEMP,3,600 

MPTEMP,4,1000 

MPDATA,KXX,3,,1   

MPDATA,KXX,3,,1 

MPDATA,KXX,3,,1 

MPDATA,KXX,3,,1 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Mesh the model !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

ESIZE,tox1/2,0,  

MSHAPE,1,3D  

MSHKEY,0 

VSEL, , , , 1  

VMESH,ALL 

ESIZE,tfilm/2,0,  

MSHAPE,1,3D  

MSHKEY,0 

VSEL, , , , 5 
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VMESH,ALL 

ESIZE,tox2/2,0,  

MSHAPE,1,3D  

MSHKEY,0 

VSEL, , , , 2  

VMESH,ALL 

ESIZE,toxbond/2,0,  

MSHAPE,1,3D  

MSHKEY,0 

VSEL, , , , 4  

VMESH,ALL 

ESIZE,ts1/20,0,  

MSHAPE,1,3D  

MSHKEY,0 

VSEL, , , , 3 

VMESH,ALL 

ESIZE,ts2/20,0,  

MSHAPE,1,3D  

MSHKEY,0 

VSEL, , , , 6 

VMESH,ALL 

ALLSEL,ALL 

FINISH 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Analysis type !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

/SOLU 

ANTYPE,TRANS 

TRNOPT,FULL,                        ! Full solution method 

!SOLCONTROL,ON 

KBC,1                         ! STEP "1" or ramp "0" B.C. 

TIME,(0.1714/ESR)*Num_loop+0.0              ! Total teim step = 0.1714 second 

AUTOTS,ON                              ! Use automatic time stepping   

DELTIM,0.002/ESR,0.002/ESR,0.01/ESR          ! Substep size, first substep 0.002 second, the rest 

                                                           ! Between 0.02 and 0.01 seconds. 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Time-dependent loading !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

! Time-dependent Pressure loading in a Table Array 

arraydim = Num_loop*21+1  

*DIM,my_pressure,table,arraydim,1,1,TIME       ! Arraydim rows, One Column, function of time   

*SET,my_pressure(0,1),0/ESR    

*SET,my_pressure(1,0),0/ESR          ! Start time   

*DO,counter,1,Num_loop,1                

temp = 21*(counter-1) 

*SET,my_pressure(2+temp,0),0.0286 /ESR  +(0.1714/ESR)*(counter-1)     
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*SET,my_pressure(3+temp,0),0.0429 /ESR  +(0.1714/ESR)*(counter-1)      

*SET,my_pressure(4+temp,0),0.0571 /ESR  +(0.1714/ESR)*(counter-1)      

*SET,my_pressure(5+temp,0),0.0607 /ESR  +(0.1714/ESR)*(counter-1)     

*SET,my_pressure(6+temp,0),0.0643 /ESR  +(0.1714/ESR)*(counter-1)     

*SET,my_pressure(7+temp,0),0.0678 /ESR  +(0.1714/ESR)*(counter-1)    

*SET,my_pressure(8+temp,0),0.0714 /ESR  +(0.1714/ESR)*(counter-1)    

*SET,my_pressure(9+temp,0),0.0750 /ESR  +(0.1714/ESR)*(counter-1)      

*SET,my_pressure(10+temp,0),0.0786 /ESR +(0.1714/ESR)*(counter-1)     

*SET,my_pressure(11+temp,0),0.0821 /ESR +(0.1714/ESR)*(counter-1)     

*SET,my_pressure(12+temp,0),0.0857 /ESR +(0.1714/ESR)*(counter-1)     

*SET,my_pressure(13+temp,0),0.0869 /ESR +(0.1714/ESR)*(counter-1)     

*SET,my_pressure(14+temp,0),0.0893 /ESR +(0.1714/ESR)*(counter-1)     

*SET,my_pressure(15+temp,0),0.0928 /ESR +(0.1714/ESR)*(counter-1)     

*SET,my_pressure(16+temp,0),0.0964 /ESR +(0.1714/ESR)*(counter-1)     

*SET,my_pressure(17+temp,0),0.1000 /ESR +(0.1714/ESR)*(counter-1)     

*SET,my_pressure(18+temp,0),0.1071 /ESR +(0.1714/ESR)*(counter-1)     

*SET,my_pressure(19+temp,0),0.1143 /ESR +(0.1714/ESR)*(counter-1)     

*SET,my_pressure(20+temp,0),0.1286 /ESR +(0.1714/ESR)*(counter-1)     

*SET,my_pressure(21+temp,0),0.1428 /ESR +(0.1714/ESR)*(counter-1)     

*SET,my_pressure(22+temp,0),0.1714 /ESR +(0.1714/ESR)*(counter-1)     

*ENDDO 

*SET,my_pressure(1,1),0                                   ! In-cylinder pressure at start (N/m^2) 

*DO,counter,1,Num_loop,1                

temp = 21*(counter-1) 

*SET,my_pressure(2+temp,1) ,20000 

*SET,my_pressure(3+temp,1) ,80000    

*SET,my_pressure(4+temp,1) ,100000    

*SET,my_pressure(5+temp,1) ,150000   

*SET,my_pressure(6+temp,1) ,220000   

*SET,my_pressure(7+temp,1) ,300000    

*SET,my_pressure(8+temp,1) ,450000 

*SET,my_pressure(9+temp,1) ,800000 

*SET,my_pressure(10+temp,1),1650000 

*SET,my_pressure(11+temp,1),3350000 

*SET,my_pressure(12+temp,1),5800000 

*SET,my_pressure(13+temp,1),6000000  

*SET,my_pressure(14+temp,1),4900000 

*SET,my_pressure(15+temp,1),2500000 

*SET,my_pressure(16+temp,1),1150000 

*SET,my_pressure(17+temp,1),700000 

*SET,my_pressure(18+temp,1),300000 

*SET,my_pressure(19+temp,1),150000 
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*SET,my_pressure(20+temp,1),70000 

*SET,my_pressure(21+temp,1),0 

*SET,my_pressure(22+temp,1),0 

*ENDDO 

/title, in-cylinder pressure versus time 

*VPLOT,my_pressure(1,0),my_pressure(1,1) 

/ui,copy,save,png,graph,color,norm,portrait,yes 

! Time-dependent Heat flux in a Table Array 

arraydim = Num_loop*25+1  

*DIM,my_hflx,table,arraydim,1,1,TIME              ! Arraydim rows, One Column, function of time   

*SET,my_hflx(0,1),0/ESR    

*SET,my_hflx(1,0),0/ESR                      ! Start time (sec)  

*DO,counter,1,Num_loop,1                

temp = 25*(counter-1) 

*SET,my_hflx(2+temp,0), 0.0071/ESR +(0.1714/ESR)*(counter-1)     

*SET,my_hflx(3+temp,0), 0.0143/ESR +(0.1714/ESR)*(counter-1)      

*SET,my_hflx(4+temp,0), 0.0214/ESR +(0.1714/ESR)*(counter-1)      

*SET,my_hflx(5+temp,0), 0.0286/ESR +(0.1714/ESR)*(counter-1)     

*SET,my_hflx(6+temp,0), 0.0357/ESR +(0.1714/ESR)*(counter-1)     

*SET,my_hflx(7+temp,0), 0.0428/ESR +(0.1714/ESR)*(counter-1)    

*SET,my_hflx(8+temp,0), 0.0500/ESR +(0.1714/ESR)*(counter-1)    

*SET,my_hflx(9+temp,0), 0.0571/ESR +(0.1714/ESR)*(counter-1)      

*SET,my_hflx(10+temp,0),0.0643/ESR +(0.1714/ESR)*(counter-1)     

*SET,my_hflx(11+temp,0),0.0714/ESR +(0.1714/ESR)*(counter-1)     

*SET,my_hflx(12+temp,0),0.0786/ESR +(0.1714/ESR)*(counter-1)     

*SET,my_hflx(13+temp,0),0.0857/ESR +(0.1714/ESR)*(counter-1)     

*SET,my_hflx(14+temp,0),0.0869/ESR +(0.1714/ESR)*(counter-1)     

*SET,my_hflx(15+temp,0),0.0928/ESR +(0.1714/ESR)*(counter-1)     

*SET,my_hflx(16+temp,0),0.1000/ESR +(0.1714/ESR)*(counter-1)     

*SET,my_hflx(17+temp,0),0.1071/ESR +(0.1714/ESR)*(counter-1)     

*SET,my_hflx(18+temp,0),0.1143/ESR +(0.1714/ESR)*(counter-1)     

*SET,my_hflx(19+temp,0),0.1214/ESR +(0.1714/ESR)*(counter-1)     

*SET,my_hflx(20+temp,0),0.1286/ESR +(0.1714/ESR)*(counter-1)     

*SET,my_hflx(21+temp,0),0.1357/ESR +(0.1714/ESR)*(counter-1)     

*SET,my_hflx(22+temp,0),0.1428/ESR +(0.1714/ESR)*(counter-1)     

*SET,my_hflx(23+temp,0),0.1500/ESR +(0.1714/ESR)*(counter-1)     

*SET,my_hflx(24+temp,0),0.1571/ESR +(0.1714/ESR)*(counter-1)     

*SET,my_hflx(25+temp,0),0.1643/ESR +(0.1714/ESR)*(counter-1)     

*SET,my_hflx(26+temp,0),0.1714/ESR +(0.1714/ESR)*(counter-1)     

*ENDDO 

*SET,my_hflx(1,1),25000                             ! Heat flux at start (W/m^2) 

*DO,counter,1,Num_loop,1                
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temp = 25*(counter-1) 

*SET,my_hflx(2+temp,1),0      

*SET,my_hflx(3+temp,1),-50000       

*SET,my_hflx(4+temp,1),-50000  

*SET,my_hflx(5+temp,1),-50000  

*SET,my_hflx(6+temp,1),-50000  

*SET,my_hflx(7+temp,1),-50000  

*SET,my_hflx(8+temp,1),-50000  

*SET,my_hflx(9+temp,1),-25000 

*SET,my_hflx(10+temp,1),25000 

*SET,my_hflx(11+temp,1),50000 

*SET,my_hflx(12+temp,1),500000 

*SET,my_hflx(13+temp,1),2620000 

*SET,my_hflx(14+temp,1),2770000 

*SET,my_hflx(15+temp,1),320000 

*SET,my_hflx(16+temp,1),125000 

*SET,my_hflx(17+temp,1),75000 

*SET,my_hflx(18+temp,1),50000 

*SET,my_hflx(19+temp,1),25000 

*SET,my_hflx(20+temp,1),25000 

*SET,my_hflx(21+temp,1),25000 

*SET,my_hflx(22+temp,1),25000 

*SET,my_hflx(23+temp,1),25000 

*SET,my_hflx(24+temp,1),25000 

*SET,my_hflx(25+temp,1),25000 

*SET,my_hflx(26+temp,1),25000 

*ENDDO 

/title, heat flux versus time 

*VPLOT,my_hflx(1,0),my_hflx(1,1) 

/ui,copy,save,png,graph,color,norm,portrait,yes 

! Time-dependent coefficient of heat transfer (h) in a Table Array 

arraydim = Num_loop*25+1  

*DIM,my_h,table,arraydim,1,1,TIME            ! Arraydim rows, One Column, function of time   

*SET,my_h(0,1),0/ESR    

*SET,my_h(1,0),0/ESR                ! Start time (sec)  

*DO,counter,1,Num_loop,1                

temp = 25*(counter-1) 

*SET,my_h(2+temp,0), 0.0071/ESR +(0.1714/ESR)*(counter-1)     

*SET,my_h(3+temp,0), 0.0143/ESR +(0.1714/ESR)*(counter-1)      

*SET,my_h(4+temp,0), 0.0214/ESR +(0.1714/ESR)*(counter-1)      

*SET,my_h(5+temp,0), 0.0286/ESR +(0.1714/ESR)*(counter-1)     

*SET,my_h(6+temp,0), 0.0357/ESR +(0.1714/ESR)*(counter-1)     
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*SET,my_h(7+temp,0), 0.0428/ESR +(0.1714/ESR)*(counter-1)    

*SET,my_h(8+temp,0), 0.0500/ESR +(0.1714/ESR)*(counter-1)    

*SET,my_h(9+temp,0), 0.0571/ESR +(0.1714/ESR)*(counter-1)      

*SET,my_h(10+temp,0),0.0643/ESR +(0.1714/ESR)*(counter-1)     

*SET,my_h(11+temp,0),0.0714/ESR +(0.1714/ESR)*(counter-1)     

*SET,my_h(12+temp,0),0.0786/ESR +(0.1714/ESR)*(counter-1)     

*SET,my_h(13+temp,0),0.0857/ESR +(0.1714/ESR)*(counter-1)     

*SET,my_h(14+temp,0),0.0869/ESR +(0.1714/ESR)*(counter-1)     

*SET,my_h(15+temp,0),0.0928/ESR +(0.1714/ESR)*(counter-1)     

*SET,my_h(16+temp,0),0.1000/ESR +(0.1714/ESR)*(counter-1)     

*SET,my_h(17+temp,0),0.1071/ESR +(0.1714/ESR)*(counter-1)     

*SET,my_h(18+temp,0),0.1143/ESR +(0.1714/ESR)*(counter-1)     

*SET,my_h(19+temp,0),0.1214/ESR +(0.1714/ESR)*(counter-1)     

*SET,my_h(20+temp,0),0.1286/ESR +(0.1714/ESR)*(counter-1)     

*SET,my_h(21+temp,0),0.1357/ESR +(0.1714/ESR)*(counter-1)     

*SET,my_h(22+temp,0),0.1428/ESR +(0.1714/ESR)*(counter-1)     

*SET,my_h(23+temp,0),0.1500/ESR +(0.1714/ESR)*(counter-1)     

*SET,my_h(24+temp,0),0.1571/ESR +(0.1714/ESR)*(counter-1)     

*SET,my_h(25+temp,0),0.1643/ESR +(0.1714/ESR)*(counter-1)     

*SET,my_h(26+temp,0),0.1714/ESR +(0.1714/ESR)*(counter-1)     

*ENDDO 

*SET,my_h(1,1),205                       ! Coefficient of heat transfer (W/m^2)  

*DO,counter,1,Num_loop,1                

temp = 25*(counter-1) 

*SET,my_h(2+temp,1),210        

*SET,my_h(3+temp,1),220         

*SET,my_h(4+temp,1),230    

*SET,my_h(5+temp,1),240    

*SET,my_h(6+temp,1),250    

*SET,my_h(7+temp,1),260     

*SET,my_h(8+temp,1),270   

*SET,my_h(9+temp,1),330    

*SET,my_h(10+temp,1),430   

*SET,my_h(11+temp,1),690    

*SET,my_h(12+temp,1),1470    

*SET,my_h(13+temp,1),3300    

*SET,my_h(14+temp,1),1730   

*SET,my_h(15+temp,1),790   

*SET,my_h(16+temp,1),480        

*SET,my_h(17+temp,1),380    

*SET,my_h(18+temp,1),300    

*SET,my_h(19+temp,1),203    
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*SET,my_h(20+temp,1),203    

*SET,my_h(21+temp,1),203    

*SET,my_h(22+temp,1),203    

*SET,my_h(23+temp,1),203     

*SET,my_h(24+temp,1),203     

*SET,my_h(25+temp,1),203     

*SET,my_h(26+temp,1),203    

*ENDDO 

/title, coefficient of heat transfer versus time 

*VPLOT,my_h(1,0),my_h(1,1) 

/ui,copy,save,png,graph,color,norm,portrait,yes 

! Time-dependent in-cylinder air temperature (my_bulk) in a Table Array   

arraydim = Num_loop*25+1  

*DIM,my_bulk,table,arraydim,1,1,TIME          ! Arraydim rows, One Column, function of time   

*SET,my_bulk(0,1),0/ESR    

*SET,my_bulk(1,0),0/ESR                    ! Start time   

*DO,counter,1,Num_loop,1                

temp = 25*(counter-1) 

*SET,my_bulk(2+temp,0), 0.0071/ESR +(0.1714/ESR)*(counter-1)     

*SET,my_bulk(3+temp,0), 0.0143/ESR +(0.1714/ESR)*(counter-1)      

*SET,my_bulk(4+temp,0), 0.0214/ESR +(0.1714/ESR)*(counter-1)      

*SET,my_bulk(5+temp,0), 0.0286/ESR +(0.1714/ESR)*(counter-1)     

*SET,my_bulk(6+temp,0), 0.0357/ESR +(0.1714/ESR)*(counter-1)     

*SET,my_bulk(7+temp,0), 0.0428/ESR +(0.1714/ESR)*(counter-1)    

*SET,my_bulk(8+temp,0), 0.0500/ESR +(0.1714/ESR)*(counter-1)    

*SET,my_bulk(9+temp,0), 0.0571/ESR +(0.1714/ESR)*(counter-1)      

*SET,my_bulk(10+temp,0),0.0643/ESR +(0.1714/ESR)*(counter-1)     

*SET,my_bulk(11+temp,0),0.0714/ESR +(0.1714/ESR)*(counter-1)     

*SET,my_bulk(12+temp,0),0.0786/ESR +(0.1714/ESR)*(counter-1)     

*SET,my_bulk(13+temp,0),0.0857/ESR +(0.1714/ESR)*(counter-1)     

*SET,my_bulk(14+temp,0),0.0869/ESR +(0.1714/ESR)*(counter-1)     

*SET,my_bulk(15+temp,0),0.0928/ESR +(0.1714/ESR)*(counter-1)     

*SET,my_bulk(16+temp,0),0.1000/ESR +(0.1714/ESR)*(counter-1)     

*SET,my_bulk(17+temp,0),0.1071/ESR +(0.1714/ESR)*(counter-1)     

*SET,my_bulk(18+temp,0),0.1143/ESR +(0.1714/ESR)*(counter-1)     

*SET,my_bulk(19+temp,0),0.1214/ESR +(0.1714/ESR)*(counter-1)     

*SET,my_bulk(20+temp,0),0.1286/ESR +(0.1714/ESR)*(counter-1)     

*SET,my_bulk(21+temp,0),0.1357/ESR +(0.1714/ESR)*(counter-1)     

*SET,my_bulk(22+temp,0),0.1428/ESR +(0.1714/ESR)*(counter-1)     

*SET,my_bulk(23+temp,0),0.1500/ESR +(0.1714/ESR)*(counter-1)     

*SET,my_bulk(24+temp,0),0.1571/ESR +(0.1714/ESR)*(counter-1)     

*SET,my_bulk(25+temp,0),0.1643/ESR +(0.1714/ESR)*(counter-1)     
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*SET,my_bulk(26+temp,0),0.1714/ESR +(0.1714/ESR)*(counter-1)     

*ENDDO 

*SET,my_bulk(1,1),322                                                ! Bulk temperature at start (C)   

*DO,counter,1,Num_loop,1                

temp = 25*(counter-1) 

*SET,my_bulk(2+temp,1),290       

*SET,my_bulk(3+temp,1),190       

*SET,my_bulk(4+temp,1),123     

*SET,my_bulk(5+temp,1),147       

*SET,my_bulk(6+temp,1),123      

*SET,my_bulk(7+temp,1),147     

*SET,my_bulk(8+temp,1),165     

*SET,my_bulk(9+temp,1),240     

*SET,my_bulk(10+temp,1),332   

*SET,my_bulk(11+temp,1),354    

*SET,my_bulk(12+temp,1),584    

*SET,my_bulk(13+temp,1),879    

*SET,my_bulk(14+temp,1),1019    

*SET,my_bulk(15+temp,1),646    

*SET,my_bulk(16+temp,1),469    

*SET,my_bulk(17+temp,1),415    

*SET,my_bulk(18+temp,1),390    

*SET,my_bulk(19+temp,1),332    

*SET,my_bulk(20+temp,1),332    

*SET,my_bulk(21+temp,1),332    

*SET,my_bulk(22+temp,1),332    

*SET,my_bulk(23+temp,1),332    

*SET,my_bulk(24+temp,1),332    

*SET,my_bulk(25+temp,1),332    

*SET,my_bulk(26+temp,1),332    

*ENDDO 

/title, in-cylinder air temperature versus time 

*VPLOT,my_bulk(1,0),my_bulk(1,1) 

/ui,copy,save,png,graph,color,norm,portrait,yes 

! Important times in a Table Array   

arraydim = Num_loop*8  

*DIM,myTSRES,array,arraydim          ! Dimension a numerical Array, arraydim rows, 1 column  

*DO,counter,1,Num_loop,1                

temp = 8*(counter-1) 

*SET,myTSRES(1+temp), 0.02/ESR +(0.1714/ESR)*(counter-1)         

*SET,myTSRES(2+temp), 0.04/ESR +(0.1714/ESR)*(counter-1)         

*SET,myTSRES(3+temp), 0.06/ESR +(0.1714/ESR)*(counter-1)         
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*SET,myTSRES(4+temp), 0.08/ESR +(0.1714/ESR)*(counter-1)      

*SET,myTSRES(5+temp), 0.10/ESR +(0.1714/ESR)*(counter-1)      

*SET,myTSRES(6+temp), 0.12/ESR +(0.1714/ESR)*(counter-1)      

*SET,myTSRES(7+temp), 0.14/ESR +(0.1714/ESR)*(counter-1)        

*SET,myTSRES(8+temp), 0.16/ESR +(0.1714/ESR)*(counter-1)       

*ENDDO 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! B.C. and solve options !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

TSRES,%myTSRES%          ! Force transient solve to include these times  

OUTRES,ERASE 

OUTRES,ALL,ALL           ! Save all results for all substeps    

EQSLV,SPARSE             ! Choose sparse solver for small example   

Tbulk = 200                     ! Reference temperature               

tunif = 200                      ! Force uniform starting temperature equal to Tbulk 

ASEL, S, LOC, Z, -tox2-toxbond-ts1-ts2         

DA,ALL,TEMP,Tbulk        ! Reference temperature applied to the bottom  

                                                                           ! surface of the SC-Si chip   

ALLSEL,ALL 

ASEL, S, LOC, Z, tox1+tfilm 

 SFA,ALL,1,CONV,%my_h%,%my_bulk% 

!SFA,ALL,1,HFLUX,%my_hflx%,%my_bulk%           

ALLSEL,ALL 

SOLVE    

FINISH   

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Post-processing  !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

ASEL, S, LOC, Z, tox1+tfilm 

NSLA,S,1 

NSEL, R, LOC, X, 0, Lcav/4 

NSEL, R, LOC, Y, 0, Lcav/4 

*GET,SiC_top_on_cav,NODE,,NUM,MAX 

ALLSEL, ALL 

ASEL, S, LOC, Z, tox1+tfilm 

NSLA,S,1 

NSEL, R, LOC, X, Ls/2-margin/2, Ls/2 

NSEL, R, LOC, Y, Ls/2-margin/2, Ls/2 

*GET,SiC_top_off_cav,NODE,,NUM,MAX 

ALLSEL, ALL 

ASEL, S, LOC, Z, tox1 

NSLA,S,1 

NSEL, R, LOC, X, 0, Lcav/4 

NSEL, R, LOC, Y, 0, Lcav/4 

*GET,SiC_bot_on_cav,NODE,,NUM,MAX 

ALLSEL, ALL 
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ASEL, S, LOC, Z, tox1 

NSLA,S,1 

NSEL, R, LOC, X, Ls/2-margin/2, Ls/2 

NSEL, R, LOC, Y, Ls/2-margin/2, Ls/2 

*GET,SiC_bot_off_cav__SiOx,NODE,,NUM,MAX 

ALLSEL, ALL 

ASEL, S, LOC, Z, 0 

NSLA,S,1 

NSEL, R, LOC, X, Ls/2-margin/2, Ls/2 

NSEL, R, LOC, Y, Ls/2-margin/2, Ls/2 

*GET,SiOx__SiOx,NODE,,NUM,MAX 

ALLSEL, ALL 

ASEL, S, LOC, Z, -tox2 

NSLA,S,1 

NSEL, R, LOC, X, Ls/2-margin/2, Ls/2 

NSEL, R, LOC, Y, Ls/2-margin/2, Ls/2 

*GET,SiOx__Si,NODE,,NUM,MAX 

ALLSEL, ALL 

ASEL, S, LOC, Z, -tox2-ts1 

NSLA,S,1 

NSEL, R, LOC, X, Ls/2-margin/2, Ls/2 

NSEL, R, LOC, Y, Ls/2-margin/2, Ls/2 

*GET,mid_ox_top,NODE,,NUM,MAX 

ALLSEL, ALL 

ASEL, S, LOC, Z, -tox2-ts1-toxbond 

NSLA,S,1 

NSEL, R, LOC, X, Ls/2-margin/2, Ls/2 

NSEL, R, LOC, Y, Ls/2-margin/2, Ls/2 

*GET,mid_ox_bot,NODE,,NUM,MAX 

ALLSEL, ALL 

ASEL, S, LOC, Z, -tox2-ts1-toxbond-ts2 

NSLA,S,1 

*GET,Si_bot,NODE,,NUM,MAX 

ALLSEL, ALL 

/POST26     ! Enter time history 

FILE,'TransThermal', ,        

NSOL,2,SiC_top_on_cav                     ,TEMP,,SiC_top_on_cav        

NSOL,3,SiC_bot_on_cav                     ,TEMP,,SiC_bot_on_cav         

NSOL,4,SiC_top_off_cav                    ,TEMP,,SiC_top_off_cav          

NSOL,5,SiC_bot_off_cav__SiOx    ,TEMP,,SiC_bot_off_cav__SiOx           

NSOL,6,SiOx__SiOx     ,TEMP,,SiOx__SiOx                

NSOL,7,SiOx__Si                   ,TEMP,,SiOx__Si             
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NSOL,8,mid_ox_top                            ,TEMP,,mid_ox_top       

NSOL,9,mid_ox_bot                            ,TEMP,,mid_ox_bot       

NSOL,10,Si_bot                                   ,TEMP,,Si_bot             

STORE,MERGE     ! Stores the data 

PRVAR,2,4 

PLVAR,2,4 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Making animation of loading  !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

PLNS,TEMP,   

ANTIME,200,0.1, ,1,0,0,0 

!!!!!!!!! 

! END ! 

!!!!!!!!! 

 

-------------------------------------------------------------------------------------------------------------------------- 

B2. This ANSYS APDL code is used for the extraction of extensional spring constant    and 

amplitude modification factor ξP as discussed in Section 4.2 of this Thesis.  

!!!!!!!!!!!! 

! START ! 

!!!!!!!!!!!! 

FINISH                     

/CLEAR        

/prep7, pressure sensor  

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Dimensions and specs !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

P0   = 6.0                  ! Characterization pressure change in MPa    

!T0 = 700                  ! Characterization temperature change in degree C 

t     = 0.5 

HalfLmin  = 12.5    ! L/2 (half-lenght of membrane) range 

HalflLmax = 25 

HalfLstep  = 0.5 

HalfWmin  = 12.5           ! W/2 (half-width of membrane) range 

HalflWmax = 25 

HalfWstep  = 0.5 

hmax  = 0.5*t                  ! Step heigth  

hmin  = 1.0*t  

hstep  = 0.5*t  

lcountermax  = 1 + (HalflLmax-HalfLmin)/HalfLstep  

wcountermax = 1 + (HalflWmax-HalfWmin)/HalfWstep  

hcountermax  = 1 + (hmax-hmin)/hstep  

*CREATE,ansuitmp 
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*DO,bcounter,1,lcountermax,1                    

*DO,wcounter,1,lcountermax,1                   

*DO,hcounter,1,hcountermax,1                 

b = (bcounter-1)*HalfLstep + HalfLmin 

a = (wcounter-1)*HalfWstep + HalfWmin 

h = (hcounter-1)*hstep + hmin 

L1 = a-t/2 

L2 = a-t/2 

W  = 2*b 

P0   = 6.0                  ! Characterization pressure change in MPa    

!T0 = 700                  ! Characterization temperature change in degree C 

t      = 0.5 

PARSAV 

FINISH 

/CLEAR 

PARRES 

/PREP7 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Creating the model !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

K,1, 0         , 0 , 0 

K,2, L1/2      , 0 , 0 

K,3, L1        , 0 , 0 

K,4, L1        , 0 , -1*h 

K,5, L1+t/2    , 0 , -1*h 

K,6, L1+L2/2+t , 0 , -1*h 

K,7, L1+L2+t   , 0 , -1*h 

K,8, L1+L2+t   , 0 , -1*h+t 

K,9, L1+t      , 0 , -1*h+t 

K,10, L1+t     , 0 , t 

K,11, 0        , 0 , t 

K,12, 0         , 10+1.0*W , 0 

K,13, L1/2      , 10+1.0*W , 0 

K,14, L1+t/2    , 10+1.0*W , 0 

K,15, L1+t+L2/2 , 10+1.0*W , 0 

K,16, L1+t+L2   , 10+1.0*W , 0 

K,17, L1+t+L2   , 10+1.0*W , t 

K,18, 0         , 10+1.0*W , t 

L,1,2 

L,2,3 

L,3,4 

L,4,5 

L,5,6 

L,6,7 
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L,7,8 

L,8,9 

L,9,10 

L,10,11 

L,11,1 

LSEL,S, , ,ALL 

CM,lineset1,LINE 

AL,lineset1 

L,12,13 

L,13,14 

L,14,15 

L,15,16 

L,16,17 

L,17,18 

L,18,12 

LSEL,S, , ,ALL 

LSEL,U, , ,lineset1 

CM,lineset2,LINE 

AL,lineset2 

ALLSEL,ALL 

VEXT,1, , ,0,W/2,0, , , ,    

VEXT,1, , ,0,-W/2,0, , , ,    

VADD,1,2, 

VEXT,2, , ,0,W/2,0, , , ,    

VEXT,2, , ,0,-W/2,0, , , ,    

VADD,1,2, 

NUMCMP,ALL 

/VIEW,1,,-1  

 /ANG,1   

 /REP,FAST    

 /USER,  1    

 /VIEW,  1,  0.406464471114    , -0.797163891073    ,  0.446448613494 

 /ANG,   1,  -41.3059175820   

 /REPLO   

 /AUTO,1  

 /REP,FAST    

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Element type and meshing the model !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

ET,1,186                                        ! Structural-thermal element    

mp,ex,  1,4.10e5                            ! Elastic modulus (SiC)  

mp,nuxy,1,0.22                              ! Poisson’s ratio (SiC)  

mp,ALPX,1,4.4e-6                        ! Temperature-averaged CTE (SiC)  

ESIZE,t                                          ! Sets element size to 5 unit    
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MSHAPE,1,3D  

MSHKEY,0 

VMESH,ALL 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! B.C. and loading !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

ASEL,S, , ,10 

ASEL,A, , ,12 

ASEL,A, , ,22 

ASEL,A, , ,24 

ASEL,A, , ,31 

ASEL,A, , ,39 

SFA,ALL,1,PRES,P0                     ! Pressure loading over the membrane  

ALLSEL, ALL 

ASEL,S, , ,2 

ASEL,A, , ,14 

ASEL,A, , ,9 

ASEL,A, , ,21 

ASEL,A, , ,13 

ASEL,A, , ,25 

ASEL,A, , ,1 

ASEL,A, , ,30 

ASEL,A, , ,33 

ASEL,A, , ,38 

ASEL,A, , ,32  

ASEL,A, , ,40 

DA,ALL,ALL,0    

ALLSEL, ALL 

ALLSEL,ALL                              

FINISH   

!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Solution and Determination of kz and ξP  !!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

/SOL 

ANTYPE,0 

SOLVE    

FINISH   

/POST1   

/DSCALE,ALL,AUTO 

/EFACET,1    

PLNSOL, U,Z, 2,1.0  

NSEL, S, LOC, X, L1/2 

NSEL, R, LOC, Y, 0 

NSEL, R, LOC, Z, 0 

*GET,NAstep,NODE,,NUM,MAX 

*GET,ZAstep,NODE,NAstep,U,Z 
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ALLSEL, ALL 

NSEL, S, LOC, X, L1+t/2     

NSEL, R, LOC, Y, 0 

NSEL, R, LOC, Z, -1*h 

*GET,NBstep,NODE,,NUM,MAX 

*GET,ZBstep,NODE,NBstep,U,Z 

ALLSEL, ALL 

NSEL, S, LOC, X, L1+L2/2+t  

NSEL, R, LOC, Y, 0 

NSEL, R, LOC, Z, -1*h 

*GET,NCstep,NODE,,NUM,MAX 

*GET,ZCstep,NODE,NCstep,U,Z 

ALLSEL, ALL 

etta = (2*ZBstep)/(ZAstep+ZCstep) 

NSEL, S, LOC, X, L1/2 

NSEL, R, LOC, Y, 10+1.0*W  

NSEL, R, LOC, Z, 0 

*GET,NAnonstep,NODE,,NUM,MAX 

*GET,ZAnonstep,NODE,NAnonstep,U,Z 

ALLSEL, ALL 

NSEL, S, LOC, X, L1+t/2     

NSEL, R, LOC, Y, 10+1.0*W  

NSEL, R, LOC, Z, 0 

*GET,NBnonstep,NODE,,NUM,MAX 

*GET,ZBnonstep,NODE,NBnonstep,U,Z 

ALLSEL, ALL 

NSEL, S, LOC, X, L1+t+L2/2  

NSEL, R, LOC, Y, 10+1.0*W  

NSEL, R, LOC, Z, 0 

*GET,NCnonstep,NODE,,NUM,MAX 

*GET,ZCnonstep,NODE,NCnonstep,U,Z 

ALLSEL, ALL 

ettacorrec = (2*ZBnonstep)/(ZAnonstep+ZCnonstep) 

corrfactor = 1.777777777/ettacorrec  

ettanew = etta*corrfactor 

kz = 32*410000*(t*t*t)/(a*a*a)*((1/ettanew)-(9/16)) 

Z_P_Theory = (a*a*a*a)*(P0/(2*410000*(t*t*t)))*(1-1/(1+((2*410000*(t*t*t))/( kz*(a*a*a))))) 

ξP  = -1*ZBstep/Z_P_Theory                                       ! Correction factor for amplitude of deflection 

/OUTPUT,30AUG2012P, , ,APPEND                        ! Saves the results under the given name   

*VWRITE,b,a,h,t,kz, ξP , , , ,                                        ! Writes in order W/2 - L/2 - h - t - kz - ξP   

(F8.3,' ',F8.3,' ',F8.3,' ',F8.3,' ',F15.8,' ',F15.8)   

/OUTPUT 
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*ENDDO 

*ENDDO 

*ENDDO 

*END 

/INPUT,ansuitmp  

!!!!!!!!! 

! END ! 

!!!!!!!!! 

 

 

-------------------------------------------------------------------------------------------------------------------------- 

B3. This ANSYS APDL code is used for the determination of amplitude modification factor   ̅ as 

discussed in Section 4.2 of this Thesis. 

!!!!!!!!!!!! 

! START ! 

!!!!!!!!!!!! 

FINISH                     

/CLEAR        

/prep7, pressure sensor  

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Dimensions and specs !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

!P0   = 6.0                  ! Characterization pressure change in MPa    

T0 = 700                  ! Characterization temperature change in degree C 

t     = 0.5 

HalfLmin  = 12.5    ! L/2 (half-lenght of membrane) range 

HalflLmax = 25 

HalfLstep  = 0.5 

HalfWmin  = 12.5           ! W/2 (half-width of membrane) range 

HalflWmax = 25 

HalfWstep  = 0.5 

hmax  = 0.0*t                  ! Step heigth  

hmin  = 2.0*t  

hstep  = 0.5*t  

lcountermax   = 1 + (HalfLmax-HalfLmin)/HalfLstep  

wcountermax = 1 + (HalfWmax-HalfWmin)/HalfWstep  

hcountermax  = 1 + (hmax-hmin)/hstep  

*CREATE,ansuitmp 

*DO,lcounter,1,lcountermax,1                  

*DO,wcounter,1,wcountermax,1                  
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*DO,hcounter,1,hcountermax,1                  

!P0   = 6.0                  ! Characterization pressure change in MPa    

T0 = 700                  ! Characterization temperature change in degree C 

t = 0.5 

b = (lcounter-1)*HalfLstep + HalfLmin 

a = (wcounter-1)*HalfWstep + HalfWmin 

h = (hcounter-1)*hstep + hmin 

L1 = a-t/2 

L2 = a-t/2 

W  = 2*b 

PARSAV 

FINISH 

/CLEAR 

PARRES 

/PREP7 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Creating the model !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

K,1, 0             , 0 , 0 

K,2, 2*L1/3+t/3    , 0 , 0 

K,3, L1            , 0 , 0 

K,4, L1            , 0 , -1*h 

K,5, L1+t/2        , 0 , -1*h 

K,6, L1+L2/3+2*t/3 , 0 , -1*h 

K,7, L1+L2+t       , 0 , -1*h 

K,8, L1+L2+t       , 0 , -1*h+t 

K,9, L1+t          , 0 , -1*h+t 

K,10, L1+t         , 0 , t 

K,11, 0            , 0 , t 

L,1,2 

L,2,3 

L,3,4 

L,4,5 

L,5,6 

L,6,7 

L,7,8 

L,8,9 

L,9,10 

L,10,11 

L,11,1 

LSEL,S, , ,ALL 

CM,lineset1,LINE 

AL,lineset1 

ALLSEL,ALL 
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VEXT,1, , ,0,W/2,0, , , ,    

VEXT,1, , ,0,-W/2,0, , , ,    

VADD,1,2, 

 /VIEW,1,,-1  

 /ANG,1   

 /REP,FAST    

 /USER,  1    

 /VIEW,  1,  0.406464471114    , -0.797163891073    ,  0.446448613494 

 /ANG,   1,  -41.3059175820   

 /REPLO   

 /AUTO,1  

 /REP,FAST    

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Element type and meshing the model !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

ET,1,186                                        ! Structural-thermal element    

mp,ex,  1,4.10e5                            ! Elastic modulus (SiC)  

mp,nuxy,1,0.22                              ! Poisson’s ratio (SiC)  

mp,ALPX,1,4.4e-6                        ! Temperature-averaged CTE (SiC)  

ESIZE,t                                          ! Sets element size to 5 unit    

MSHAPE,1,3D  

MSHKEY,0 

VMESH,ALL 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! B.C. and loading !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

ASEL,S, , ,2 

ASEL,A, , ,14 

ASEL,A, , ,9 

ASEL,A, , ,21 

ASEL,A, , ,13 

ASEL,A, , ,25 

DA,ALL,ALL,0    

ALLSEL, ALL 

NSEL,S, , ,ALL                              ! Thermal loading for SOLID186 element 

BF,ALL,TEMP,T0                         ! Thermal loading for SOLID186 element 

FINISH   

!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Solution and Determination of   ̅ !!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

/SOL 

ANTYPE,0 

SOLVE    

FINISH   

/POST1   

/DSCALE,ALL,AUTO 

/EFACET,1    

PLNSOL, U,Z, 2,1.0   
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NSEL, S, LOC, X, (L1+t+L2)/3                            ! Get the maximum deflection 

NSEL, R, LOC, Y, 0 

NSEL, R, LOC, Z, 0 

*GET,NAstep,NODE,,NUM,MAX 

*GET,ZAstep,NODE,NAstep,U,Z 

ALLSEL, ALL 

NSEL, S, LOC, X, 2*(L1+t+L2)/3                        ! Get the minimum deflection 

NSEL, R, LOC, Y, 0 

NSEL, R, LOC, Z, -1*h 

*GET,NBstep,NODE,,NUM,MAX 

*GET,ZBstep,NODE,NBstep,U,Z 

ALLSEL, ALL 

ZTFEM = (ZAstep-ZBstep)/2                     ! "-" is used to account for max+abs(min) 

denominator = (4.4e-6)*(700)*((L1+L2+t)*(L1+L2+t)*(L1+L2+t))/54 

  ̅ = ZTFEM/denominator                          ! Correction factor for amplitude of deflection 

/OUTPUT,30AUG2012T, , ,APPEND       ! Saves the results under the given name 

*VWRITE,b,a,h,t,NAstep,ZAstep,NBstep,ZBstep,ZTFEM,   ̅, , , ,    

(F8.4,' ',F8.4,' ',F8.4,' ',F8.4,' ',F10.3,' ',F10.5,' ',F10.3,' ',F10.5,' ',F10.5,' ',F15.8)   

/OUTPUT 

*ENDDO 

*ENDDO 

*ENDDO 

*END 

/INPUT,ansuitmp  

!!!!!!!!! 

! END ! 

!!!!!!!!! 

 

 

-------------------------------------------------------------------------------------------------------------------------- 

B4. This ANSYS APDL code is used for calculation of capacitive outputs    and    reported in 

Sections 4.3. 

!!!!!!!!!!!!  

! START ! 

!!!!!!!!!!!! 

FINISH                     

/CLEAR        

/prep7, pressure sensor  
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!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Dimensions and specs !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

Pmin  = 0.0                                    ! Minimum presure difference (MPa) 

Pmax  = 6.0                                    ! Maximum presure difference (MPa) 

Pstep = 0.5                                    ! Presure difference step    (MPa) 

Tmin  = 000                                   ! Minimum temperature difference in degree C 

Tmax  = 700                                   ! Maximum temperature difference in degree C 

Tstep = 100                         ! Temperature difference step in degree C 

Pcountermax = 1 + (Pmax-Pmin)/Pstep  

Tcountermax = 1 + (Tmax-Tmin)/Tstep  

vltg = 0.1                            ! Readout voltage (v) for capacitance extraction 

a = 12.5                                           ! Half length of membrane 

b = 12.5                                          ! Half width of membrane 

t = 0.5          ! Thickness of membrane 

h = 0.6          ! Step height of membrane 

margin = 1                                      ! Margin for the inclusion of fringing effect 

L1 = a 

L2 = a 

L=L1+L2+t  

W = 2*b 

L_elec_left   = L1-h                       ! Length of the left electrode 

L_elec_right = L2-h                       ! Length of the rigth electrode 

W_elec         = W                            ! Width of the electrodes 

t_elec            = t                              ! Thickness of the electrodes 

G2                = 0.55           ! Gap between the rigth elec and membrane 

G1                = G2                           ! Gap between the left elec and membrane 

*CREATE,ansuitmp 

*DO,Pcounter,1,Pcountermax,1        ! Do for Pcounter from 1 to Pcountermax in steps of 1 

*DO,Tcounter,1,Tcountermax,1        ! Do for Tcounter from 1 to Tcountermax in steps of 1 

P0 = (Pcounter-1)*Pstep + Pmin 

T0 = (Tcounter-1)*Tstep + Tmin 

vltg = 0.1                            ! Readout voltage (v) for capacitance extraction 

a = 12.5                                           ! Half length of membrane 

b = 12.5                                          ! Half width of membrane 

t = 0.5          ! Thickness of membrane 

h = 0.6          ! Step height of membrane 

margin = 1                                      ! Margin for the inclusion of fringing effect 

L1 = a 

L2 = a 

L=L1+L2+t  

W = 2*b 

L_elec_left   = L1-h                       ! Length of the left electrode 

L_elec_right = L2-h                       ! Length of the rigth electrode 
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W_elec         = W                            ! Width of the electrodes 

t_elec            = t                              ! Thickness of the electrodes 

G2                = 0.55           ! Gap between the rigth elec and membrane 

G1                = G2                           ! Gap between the left elec and membrane 

PARSAV 

FINISH 

/CLEAR 

PARRES 

/PREP7 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Element type !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

et,1,122                              ! Element for electrodes 

et,2,122                              ! Elelent for air left 

et,3,122                              ! Element for membrane 

et,4,122                              ! Elelent for air right 

emunit,epzro,8.854e-6          ! Free-space permittivity,uMKSV units 

mp,perx,2,1             ! Relative permittivity for air left 

mp,perx,4,1             ! Relative permittivity for air right 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Creating the model !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

block, 0              , L_elec_left , 0 , W      , 0            , t                      

block, L_elec_left    , L1          , 0 , W      , 0            , t                      

block, L1             , L1+t        , 0 , W      , -h           , t                                  

block, L1+t           , L1+t+h      , 0 , W      , -h           , -h+t                     

block, L1+t+h         , L1+L2+t     , 0 , W      , -h           , -h+t                    

block, 0              , L_elec_left , 0 , W_elec , -G1          , -G1-t_elec             

block, L-L_elec_right , L           , 0 , W_elec , -G2-h        , -G2-h-t_elec           

block, 0              , L_elec_left , 0 , W_elec , -G1-t_elec   , t                      

block, L-L_elec_right , L           , 0 , W_elec , -h-G2-t_elec , -h+t                   

vovlap,all  

VGLUE,1,15,13,11,12 

NUMCMP, VOLU  

/VIEW,1,,-1  

/ANG,1   

/REP,FAST    

/USER,  1    

/VIEW,  1,  0.477569319649    , -0.738322971230    ,  0.476242307113 

/ANG,   1,  -45.9095609383   

/REPLO   

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Volume attributes and components !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

vsel,s, volu, ,2                      ! Pick left electrode 

vsel,a, volu, ,3                      ! Pick right electrode 

Vatt,1,,1                               ! Assign material#1 (Si) to the picked volume(s) 

ALLSEL,ALL    
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vsel,s, volu, ,4                      ! Pick air left 

cm,airleft,volu                     ! Group air volume into component "airleft"  

Vatt,2,,2                               ! Assign material#2 (air) to the picked volume(s) 

ALLSEL,ALL   

Vsel,s,volu,,1                       ! Pick membrane component 

Vsel,A,volu,,5                      

Vsel,A,volu,,6            

Vsel,A,volu,,7                      

Vsel,A,volu,,9                      

vatt,3,,3                                ! Assign material#3 (SiC) to the picked volume(s) 

ALLSEL,ALL  

vsel,s, volu, ,8                      ! Pick air right 

cm,airright,volu                   ! Group air volume into component "airright"  

Vatt,4,,4                               ! Assign material#4 (air) to the picked volume(s) 

ALLSEL,ALL   

VSEL,S, , , 1                        ! Group top surface of membrane for pressure loading 

VSEL,A, , , 5                                                     

VSEL,A, , , 9                                                      

ASLV,S                                                             

ASEL, R, LOC, Z, t                                                 

cm,mmbrn_top_1,AREA                                                

ALLSEL,ALL                                                         

VSEL,S, , , 9                                                      

ASLV,S                                                             

ASEL, R, LOC, X, L1+t                                              

ASEL, R, LOC, Z, t-h/2                                             

cm,mmbrn_top_2,AREA                                                    

ALLSEL,ALL                                                           

VSEL,S, , , 6                                                      

VSEL,A, , , 7                                                         

ASLV,S                                                                

ASEL, R, LOC, Z, t-h                                                  

cm,mmbrn_top_3,AREA                                                        

ALLSEL,ALL                                                         

CMGRP, mmbrn_top, mmbrn_top_1, mmbrn_top_2, mmbrn_top_3            

VSEL,S, , , 1                              ! Group the perimeter of membrane for fixed BC 

VSEL,A, , , 5                                                         

VSEL,A, , , 6                                                         

VSEL,A, , , 7                                                         

VSEL,A, , , 9                                                         

ASLV,S                                                                

ASEL, R, LOC, X, 0                                                    
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cm,perim_1,AREA                                                            

VSEL,S, , , 1                                                         

VSEL,A, , , 5                                                         

VSEL,A, , , 6                                                         

VSEL,A, , , 7                                                         

VSEL,A, , , 9                                                         

ASLV,S                                                                

ASEL, R, LOC, X, L                                                    

cm,perim_2,AREA                                                          

VSEL,S, , , 1                                                     

VSEL,A, , , 5                                                       

VSEL,A, , , 6                                                        

VSEL,A, , , 7                                                        

VSEL,A, , , 9                                                        

ASLV,S                                                            

ASEL, R, LOC, Y, 0                                                

cm,perim_3,AREA                                                       

VSEL,S, , , 1                                                        

VSEL,A, , , 5                                                     

VSEL,A, , , 6                                                     

VSEL,A, , , 7                                                     

VSEL,A, , , 9                                                    

ASLV,S                                                            

ASEL, R, LOC, Y, W                                                

cm,perim_4,AREA                                                    

CMGRP, mmbrn_perim, perim_1, perim_2, perim_3, perim_4            

ALLSEL,ALL 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Line division and meshing !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

ASEL,S, , , 1 

ASEL,A, , , 2 

ASEL,A, , , 31 

ASEL,A, , , 32 

ASEL,A, , , 37 

ASEL,A, , , 38 

ASEL,A, , , 67 

ASEL,A, , , 68 

LSLA,S 

LESIZE,all, , ,50, , , , ,1   

ALLSEL,ALL 

LSEL, R, LOC, X, 0 

LSEL, R, LOC, Y, 0 

LESIZE,all, , ,1, , , , ,1   
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ALLSEL,ALL 

LSEL, R, LOC, X, L_elec_left 

LSEL, R, LOC, Y, 0 

LESIZE,all, , ,1, , , , ,1   

ALLSEL,ALL 

LSEL, R, LOC, X, 0 

LSEL, R, LOC, Y, W 

LESIZE,all, , ,1, , , , ,1   

ALLSEL,ALL 

LSEL, R, LOC, X, L_elec_left 

LSEL, R, LOC, Y, W 

LESIZE,all, , ,1, , , , ,1   

ALLSEL,ALL 

LSEL, R, LOC, X, L-L_elec_right 

LSEL, R, LOC, Y, 0 

LESIZE,all, , ,1, , , , ,1   

ALLSEL,ALL 

LSEL, R, LOC, X, L 

LSEL, R, LOC, Y, 0 

LESIZE,all, , ,1, , , , ,1   

ALLSEL,ALL 

LSEL, R, LOC, X, L-L_elec_right 

LSEL, R, LOC, Y, W 

LESIZE,all, , ,1, , , , ,1   

ALLSEL,ALL 

LSEL, R, LOC, X, L 

LSEL, R, LOC, Y, W 

LESIZE,all, , ,1, , , , ,1   

ALLSEL,ALL 

MSHAPE,0,3D  

MSHKEY,1 

VSEL, , , ,       2  

Vmesh,all 

VSEL, , , ,       3  

Vmesh,all 

VSEL, , , ,       4  

Vmesh,all 

VSEL, , , ,       8  

Vmesh,all 

VSEL, , , ,       1  

Vmesh,all 

VSEL, , , ,       7  
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Vmesh,all 

MSHAPE,1,3D  

MSHKEY,0 

VSEL, , , ,       5  

Vmesh,all 

VSEL, , , ,       6 

Vmesh,all 

VSEL, , , ,       9 

Vmesh,all 

ALLSEL,ALL 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Applying electrical load (voltage) !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

VSEL, , , ,       1                      ! Select membrane 

ASLV,S  

ASEL, R, LOC, Z, 0 

da,all,volt,vltg    ! Apply voltage to the bottom surface of membrane left 

ALLSEL,ALL 

VSEL, , , ,       7                      ! Select membrane 

ASLV,S 

ASEL, R, LOC, Z, -h 

da,all,volt,vltg    ! Apply voltage to the bottom surface of membrane right 

ALLSEL,ALL 

VSEL, , , ,       2                      ! Select left electrode 

ASLV,S 

ASEL, R, LOC, Z, -G1 

da,all,volt,0                 ! Ground the top surface of the left electrode 

ALLSEL,ALL 

VSEL, , , ,       3                               ! Select right electrode 

ASLV,S 

ASEL, R, LOC, Z, -h-G2 

da,all,volt,0                           ! Ground the top surface of the left electrode 

ALLSEL,ALL 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Electrostaic physics !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

et,1,0                           ! Set electrodes to null element type  

et,2,122                               ! Elelent for air left 

et,3,0                                  ! Set membrane to null element type  

et,4,122                                 ! Elelent for air right  

physics,write,ELECTROS              ! Write electrostatic physics file for air 

physics,clear                         ! Clear Physics  

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Structural physics !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

et,1,186              ! Define electrodes element type 

et,2,0               ! Set air left to null element type 

et,3,186              ! Define membrane element type  
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et,4,0               ! Set air right to null element type 

mp,ex,   1, 1.65e5                ! Elastic modulus (Si)  

mp,nuxy, 1, 0.22                              ! Poisson’s ratio (Si)  

mp,ALPX, 1, 0                                ! CTE (Si); Corresponding to           (refer to sention 4.1)  

mp,ex,   3, 4.10e5                            ! Elastic modulus (SiC) 

mp,nuxy, 3, 0.22                              ! Poisson’s ratio (SiC)  

mp,ALPX, 3, 4.4e-6                        ! Temperature-averaged CTE (SiC); averaged over 300-1000 K    

ASEL,S, , , mmbrn_perim,              ! BC: fix the perimeter of the membrane 

DA,ALL,ALL,0                                   

ALLSEL,ALL                                   

VSEL, , , ,       2                               ! BC: fix the bottom of electrodes 

ASLV,S                              

ASEL,R, LOC, Z, -G1-t_elec         

DA,ALL,ALL,0                       

VSEL, , , ,       3                

ASLV,S                             

ASEL,R, LOC, Z, -h-G2-t_elec       

DA,ALL,ALL,0                         

ALLSEL,ALL 

ASEL,S, , , mmbrn_top,                 ! Loading: apply pressure over the membrane 

SFA,ALL,1,PRES,P0                    

ALLSEL,ALL                         

NSEL,S, , ,ALL                              ! Loading: apply uniform temperature  

BF,ALL,TEMP,T0                         ! Loading: apply uniform temperature            

ALLSEL,ALL                        

finish   

physics,write,STRUCTURE               ! Write structural physics file 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Multiphysics solution and post-processing!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

ESSOLV,'ELECTROS','STRUCTURE',3,0,'airright',,,,20              

finish   

physics,read,ELECTROS           ! Read electrostatic physics file 

finish   

ALLSEL,ALL 

VSEL,S, , , 1  

VSEL,A, , , 2  

VSEL,A, , , 4  

ALLSEL,BELOW,VOLU    

/post1   

SET,LAST 

ETABLE,Sene1,SENE,   

SSUM 

*GET, W1 , SSUM  ,       , ITEM , Sene1  
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*SET,C1 , (W1*2)/((vltg-0)**2)                            ! Calculate capacitance in E-12 Farad (pF) 

ALLSEL,ALL 

VSEL,S, , , 3  

VSEL,A, , , 7  

VSEL,A, , , 8  

ALLSEL,BELOW,VOLU    

/post1   

SET,LAST 

ETABLE,Sene2,SENE,   

SSUM 

*GET,W2,SSUM, ,ITEM,Sene2    

*SET,C2 , (W2*2)/((vltg-0)**2)                            ! Calculate capacitance in E-12 Farad (pF) 

/OUTPUT,30AUG2012PTSiCSi, , ,APPEND       ! Saves the results  

*VWRITE,L,W,h,t,G1,G2,P0,T0,C1,C2, , , ,                                         

(F8.2,' ',F8.2,' ',F8.2,' ',F8.2,' ',F8.2,' ',F8.2,'   ',F8.2,'   ',F8.2,'   ',F10.5,'    ',F10.5)   

/OUTPUT 

*ENDDO 

*ENDDO 

*END 

/INPUT,ansuitmp  

physics,read,STRUCTURE                    ! Read structural physics for plotting the results 

FINISH  

/post1 

SET,LAST  

/DSCALE,ALL,1.0  

/EFACET,1    

PLNSOL, U,Z, 0,1.0   

!!!!!!!!! 

! END ! 

!!!!!!!!! 
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Appendix C 

Fringing effect in parallel plate capacitors 

In electrical modeling section in Chapter 4, it was assumed that the fringing effect in the designed 

multifunctional sensor can be ignored without bringing about a major error to the resutsl. This 

appendix sheds more light on the issue and numerically investigating the validity of such an 

assumption. Figure C.1 schematically shows a capacitive MEMS pressure sensor comprising two 

parallel square membranes measuring 100×100 μm
2
 with a 3 μm vacuum gap between them. The 

Edges of the elelctrodes are fixed and a pressure difference    is applied on the top elelctrode. The 

material properties of SiC are used for the top plate and it deflects under the pressure difference   .   

 

 
 

Figure C.1 A capacitive MEMS pressure sensorunder pressure loading   . 

 

 A reduced edition of the FE code given in appendix B, Section B4, is used for the calculation of the 

capacitance between the two plates. The voltage difference between the two plates is set to 0.1 (v). 

The FE results are calculated for two different scenarios, one without including the fringing effect 

(margin = 0 in Figure C.1), and the other one including the fringing effect (margin varying between 0 

and 10 μm). The ratios of the two results are shown in Figure C.2 for different values of “margin” and 

  . These results show that the maximum difference between the results with and without the 

fringing effect is about 8% and it decreases when the gap between the two electrodes decreases by 

pressure loading. Though these results are calculated for a simple capacitive MEMS pressure sensor, 

but they can be easily extended for other similar devices with altered geometries. As a result, it is 

expected that ignoring the fringing effect in the modeling of the multifunctional MEMS sensor (as 

carried out in Chapter 4) would bring about a comparable average error of 5%  in the prediction of the 

sensor capacitive outputs    and   . 
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Figure C.2 The capacitive output of the sensor in Figure C.1 versus different values of “margin” 

and pressure loading   . 
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Appendix D 

Layouts of PolyMUMPs chips 

 

D1. PolyMUMPs chip #1 
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D2. PolyMUMPs chip #2 



 153 

Copyright Permissions 

In the preparation of this Thesis, copyrighted material in the form of two figures have been used. 

These include Figures 2.10 and 2.11. In the following, photos of the letters of copyright permission 

issued for these figures are presented. Also, Figure 2.9 is taken from reference [113] whose 

distribution/availability statement reads Approved for public release; distribution unlimited. 

 Copyright permission for Figure 2.10 (issued by Elsevier): 
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 Copyright permission for Figure 2.11 (issued by SPIE): 

 

 



 

 156 

Bibliography 

[1] CHEN, L. and MEHREGANY, M., 2008. A silicon carbide capacitive pressure sensor for in-

cylinder pressure measurement. Sensors and Actuators A: Physical, 145-146, pp. 2-8. 

[2] http://www.kistler.com/mediaaccess/000-574e-09.08.pdf  

[3] MEHREGANY, M., ZORMAN, C.A., RAJAN, N. and WU, C.H., 1998. Silicon carbide MEMS 

for harsh environments. Proceedings of the IEEE, 86, pp. 1594-1610. 

[4] FAHRNER, W.R., JOB, R. and WEMER, M., 2001. Sensors and smart electronics in harsh 

environment applications. Microsystem Technologies, 7, pp. 138-144. 

[5] KROETZ, G.H., EICKHOFF, M. H. and MOELLER, H., 1999. Silicon compatible materials for 

harsh environment sensors. Sensors and Actuators A: Physical, 74, pp. 182–189. 

[6] TURNER, R.C., FUIERER, P.A., NEWNHAM, R.E. and SHROUT, T.R., 1994. Materials for 

high temperature acoustic and vibration sensors: A review. Applied Acoustic, 41, pp. 299-324. 

[7] KHOSHMANA, J.M. and KORDESCH, M.E., 2005. Optical characterization of sputtered 

amorphous aluminum nitride thin films by spectroscopic ellipsometry. Journal of Non-Crystalline 

Solids, 351, pp. 3334–3340. 

[8] SANCHEZ, G., WUA, A., TRISTANT, P., TIXIER, C., SOULESTIN, B., DESMAISON, J. and 

BOLOGNA ALLES, A., 2008. Polycrystalline AlN films with preferential orientation by plasma 

enhanced chemical vapor deposition. Thin Solid Films, 516, pp. 4868–4875. 

[9] IRIARTE, G.F., 2003. Surface acoustic wave propagation characteristics of aluminum nitride thin 

films grown on polycrystalline diamond. Journal of Applied Physics, 93, pp. 9604-9609. 

[10] MIYANAGA, M., MIZUHARA, N., FUJIWARA, S., SHIMAZU, M., NAKAHATA, H. and 

KAWASE, T., 2006. Single crystal growth of AlN by sublimation method. SEI Technical Review, 63, 

pp. 22-26. 

[11] CHEMEKOVA, T.Y., AVDEEV, O.V., BARASH, I.S., MOKHOV, E.N., NAGALYUK, S.S., 

ROENKOV, A.D., SEGAL, A.S., MAKAROV, Y.N., RAMM, M.G., DAVIS, G., HUMINIC, G. and 

HELAVA, H., 2008. Sublimation growth of 2-inch diameter bulk AlN crystals. Physica Status Solidi 

C, 5, pp. 1612-1614. 

http://www.kistler.com/mediaaccess/000-574e-09.08.pdf


 

 157 

[12] CLELAND, A.N., POPHRISTIC, M. and FERGUSON, I., 2001. Single-crystal aluminum 

nitride nanomechanical resonators. Applied Physics Letters, 79, pp. 2070-2072. 

[13] TILAK, V., BATONI, P., JIANG, J. and KNOBLOCH, A., 2007. Measurement of piezoelectric 

coefficient of gallium nitride using metal-insulator-semiconductor capacitors. Applied Physics 

Letters, 90, p. 043508. 

[14] ZIMMERMANN, T., NEUBURGER, M., BENKART, P., HERNÁNDEZ-GUILLÉN, F.J., 

PIETZKA, C., KUNZE, M., DAUMILLER, I., DADGAR, A., KROST, A. and KOHN, E., 2006. 

Piezoelectric GaN sensor structures. IEEE Electron Device Letters, 27(5), pp. 309 – 312. 

[15] LORENZ, K., WAHL, U., ALVES, E., NOGALES, E., DALMASSO, S., MARTIN R, W., 

O'DONNELL, K.P., WOJDAK, M., BRAUD, A., MONTEIRO, T., WOJTOWICZ, T., RUTERANA, 

P., RUFFENACH, S. and BRIOT, O., 2006. High temperature annealing of rare earth implanted GaN 

films: Structural and optical properties.  Optical Materials, 28, pp. 750-758.  

[16] WEI, L., KUO, P.K., THOMAS, R.L., ANTHONY, T.R. and BANHOLZER, W.F., 1993. 

Thermal conductivity of isotopically modified Single crystal diamond. Physical Review Letters, 70, 

pp. 3764-3767. 

[17] BELAY, K., ETZEL, Z., ONN, D.G. and ANTHONY, T.R., 1996. The thermal conductivity of 

polycrystalline diamond films: Effects of isotope content. Journal of Applied Physics, 79, pp. 8336-

8340. 

[18] KOHN, E., 2007. Harsh environments Materials. In: Y.B. GIANCHANDANI, O. TABATA and 

H. ZAPPE, eds, Comprehensive microsystems. Elsevier. 

[19] JOHN, P., POLWART, N., TROUPE, C.E. and WILSON, J.I.B., 2002. The oxidation of (100) 

textured diamond. Diamond and related materials, 11, pp. 861-866. 

[20] NEUDECK, P.G., GARVERICK, S.L., SPRY, D.J., CHEN, L.Y., BEHEIM, G.M., 

KRASOWSKI, M.J. and MEHREGANY, M., 2009. Extreme temperature 6H-SiC JFET integrated 

circuit technology. Physica Status Solidi A, 206, pp. 2329-2345. 

[21] FU, X.A., DUNNING, J.L., ZORMAN, C.A. and MEHREGANY, M., 2005. Polycrystalline 3C-

SiC thin films deposited by dual precursor LPCVD for MEMS applications. Sensors and actuators A: 

Physical, 119, pp. 169-176. 



 

 158 

[22] ZHE, C.F. and ZHAO, J.H., 2003. Silicon Carbide: Materials, Processing & Devices. CRC 

Press. 

[23] http://www.nsc.co.jp/CGI/news/whatsnew_detail.cgi?section=11&seq=00021103 [October/1, 

2012]. 

[24] MEHREGANY, M. and ZORMAN, C.A., 1999. SiC MEMS: opportunities and challenges for 

applications in harsh environments. Thin Solid Films, 355-356, pp. 518-524. 

[25] FUJITA, S., MAEDA, K. and HYODO, S., 1987. Dislocation glide motion in 6H SiC single 

crystals subjected to high temperature deformation. Philosophical Magazine A, 55, pp. 203-215.  

[26] YONENAGA, I., KOIZUMI, H., OHNO, Y. and TAISHI, T., 2008. High-temperature strength 

and dislocation mobility in the wide band-gap ZnO: Comparison with various semiconductors. 

Journal of Applied Physics, 103, p. 093502. 

[27] LIEW, L.A., SARAVANAN, R.A., BRIGHT, V.M., DUNN, M.L., DAILY, J.W. and RAJ, R., 

2003. Processing and characterization of silicon carbon-nitride ceramics: application of electrical 

properties towards MEMS thermal actuators. Sensors and Actuators A: Physical, 103, pp. 171-181. 

[28] MALLIKARJUNANA, A., JOHNSONA, A.D., MATZA, L., VRTISA, R.N., DERECSKEI-

KOVACSA, A., JIANGA, X. and XIAOB, M., 2012. Silicon precursor development for advanced 

dielectric barriers for VLSI technology. Microelectronic Engineering, 92, pp. 83-85. 

[29] CHUNG, G.S., 2007. Characteristics of SiCN microstructures for harsh environment and high-

power MEMS applications. Microelectronics Journal, 38, pp. 888-893. 

[30] DING, C., HUANG, X., GREGORI, G., PARKER, G.E.R., RAO, M.P., CLARKE, D.R. and 

MACDONALD, N.C., 2005. Development of bulk-titanium-based mems RF switch for harsh 

environment applications. Proceedings of IMECE, Orlando, Florida, November 5-11, 2005. 

[31] LLOYD SPETZ, A, UNÉUS, L., SVENNINGSTORP, H., TOBIAS, P., EKEDAHL, L.G., 

LARSSON, O., GÖRAS, A., SAVAGE, S., HARRIS, C., MÅRTENSSON, P., WIGREN, R., 

SALOMONSSON, P., HÄGGENDAHL, B., LJUNG, P., MATTSSON, M. and LUNDSTRÖM, I., 

2001. SiC based field effect gas sensors for industrial applications. Physica Status Solidi A, 185, pp. 

15-25. 

http://www.nsc.co.jp/CGI/news/whatsnew_detail.cgi?section=11&seq=00021103


 

 159 

[32] KRIZ, J., GOTTFRIED, K., SCHOLZ, T., KAUFMANN, C. and GEBNER, T., 1997. Ohmic 

contacts to n-type polycrystalline SiC for high-temperature micromechanical applications. Materials 

Science and Engineering: B, 46, pp. 180-185. 

[33] NEUDECK, P.G., 2006. Silicon carbide technology, In: W.K. Chen, ed, The VLSI Handbook, 

Second edn. CRC Press. 

[34] CHUNG, G.S. and YOON, K.H., 2008. Ohmic contacts to single-crystalline 3C-SiC films for 

extreme environment MEMS applications. Microelectronics Journal, 39, pp. 1408-1412. 

[35] UMA, S., MCCONNELL, A.D., ASHEGHI, M., KURABAYASHI, K. and GOODSON, K.E., 

2001. Temperature-dependent thermal conductivity of undoped polycrystalline silicon layers. 

International Journal of Thermophysics, 22, pp. 605-616. 

[36] GEISBERGER, A.A., SARKAR, N., ELLIS, M. and SKIDMORE, G.D., 2003. Electrothermal 

properties and modeling of polysilicon microthermal actuators. Journal of Microelectromechanical 

Systems, 12, pp. 513-523. 

[37] TADA, H., KUMPEL, A.E., LATHROP, R.E., SLANINA, J.B., NIEVA, P., ZAVRACKY, P., 

MIAOULIS, I.N. and WONG, P.Y., 2000. Thermal expansion coefficient of polycrystalline silicon 

and silicon dioxide thin films at high temperatures. Journal of Applied Physics, 87, PP. 4189-4193. 

[38] JANSEN, F., MACHONKIN, M.A., PALMIERI, N. and KUHMAN, D., 1987. 

Thermomechanical properties of amorphous silicon and nonstoichiometric silicon oxide films. 

Journal of Applied Physics, 62, pp. 4732-4736. 

[39] QUAY, R., 2008. Gallium Nitride Electronics, First edn. Springer. 

[40] WANG, Z., ALANIZ, J.E., JANG, W., GARAY, J.E. and DAMES, C., 2011. "Thermal 

conductivity of nanocrystalline silicon: importance of grain size and frequency-dependent mean free 

paths. Nano Letters, 11(6), pp 2206-2213. 

[41] PARFEN’EVA, L.S., ORLOVA, T.S., KARTENKO, N.F., SHARENKOVA, N.V., SMIRNOV, 

B.I., SMIRNOV, I.A., MISIOREK, H., JEZOWSKI, A., VARELA-FERIA, F.M., MARTINEZ-

FERNANDEZ, J. and DE ARELLANO-LOPEZ, A.R., 2005. Thermal conductivity of the SiC/Si 

biomorphic composite, a new cellular ecoceramic. Physics of the Solid State, 47(7), pp. 1216-1220. 

[42] JEONG, T., ZHU, J.G., MAO, S., PAN, T. and TANG, Y.J., 2012. Thermal Characterization of 

SiC Amorphous Thin Films. International Journal of Thermophysics, 33, pp. 1000-1012. 



 

 160 

[43] SCHAFFT, H.A., SUEHLE, J.S. and MIREL, P.G.A., 1989. Thermal conductivity 

measurements of thin-film silicon dioxide. Proceedings of IEEE 1989 International Conference on 

Microelectronic Test Structures, 2, pp. 121-125. 

[44] LEE, S.M. and CAHILL, D.G., 1997. Heat transport in thin dielectric films. Journal of Applied 

Physics, 81, pp. 2590-2595. 

[45] MOORE, J.P., WILLIAMS, R.K. and GRAVES, R.S., 1977. Thermal conductivity, electrical 

resistivity, and Seebeck coefficient of high purity chromium from 280 to 1000 K. Journal of Applied 

Physics, 48, pp. 610-617. 

[46] ERMOLAEV, B.I., 1974. Thermal conductivity and electrical conductivity of materials based on 

titanium and its alloys at temperatures from 20-80 to 1000 °K. Metal Science and Heat Treatment, 16, 

pp. 1049-1051. 

[47] HAYNES, W.M., 2012. CRC Handbook of Chemistry and Physics, 92nd edn. CRC Press. 

[48] http://www.ioffe.ru/SVA/NSM/Semicond/  [October/1, 2012] 

[49] JAIN, A. and GOODSON, K.E., 2008. Measurement of the thermal conductivity and heat 

capacity of freestanding shape memory thin films using the 3ω method. Journal of Heat Transfer, 

130, p. 102402. 

[50] ABU EISHAH, S.I., HADDAD, Y., SOLIEMAN, A. and BAJBOUL, A., 2004. A new 

correlation for the specific heat of metals, metal oxides and metal fluorides as a function of 

temperature. Latin American Applied Research, 34, pp. 257-265. 

[51] WATANABE, H., YAMADA, N. and OKAJI, M., 2004. Linear thermal expansion coefficient of 

silicon from 293 to 1000 K. International Journal of Thermophysics, 25, pp. 221-236. 

[52] REEBER, R.R. and WANG, K., 1996. Thermal expansion and lattice parameters of group IV 

semiconductors. Materials Chemistry and Physics, 46, pp. 259-264. 

[53] SHINODA, T., SOGA, N., HANADA, T. and TANABE, S., 1997. Young's modulus of RF-

sputtered amorphous thin films in the Si02-y203 system at high temperature. Thin Solid Films, 293, pp. 

144-148. 

[54] TOMENO, I., 1981. High temperature elastic moduli of Si3N4 ceramics. Japanese Journal of 

Applied Physics, 20, pp. 1751-1752. 

http://www.ioffe.ru/SVA/NSM/Semicond/


 

 161 

[55] HOLZWARTH, U. and STAMM, H., 2002. Mechanical and thermomechanical properties of 

commercially pure chromium and chromium alloys. Journal of Nuclear Materials, 300, pp. 161-177. 

[56] OKAJI, M., 1988. Absolute thermal expansion measurements of single-crystal silicon in the 

range 300-1300 K with an interferometric dilatometer. International Journal of Thermophysics, 9, pp. 

1101-1109; Fisher, E.S. and Renken, C.J., 1964. Single-Crystal Elastic Moduli and the hcp  bcc 

Transformation in Ti, Zr, and Hf. Physical Review, 135, pp. 482-494. 

[57] LI, Z. and BRADT, R.C., 1986. Thermal expansion of the cubic (3C) polytype of SiC. Journal of 

Materials Science, 21, pp. 4366-4368. 

[58] FIGGE, S., KRÖNCKE, H., HOMMEL, D. and EPELBAUM, B.M., 2009. Temperature 

dependence of the thermal expansion of AlN. Applied Physics Letters, 94, p. 101915. 

[59] RODER, C., EINFELDT, S., FIGGE, S. and HOMMEL, D., 2005. Temperature dependence of 

the thermal expansion of GaN. Physical Review B, 72, p. 085218. 

[60] BRULS, R.J., HINTZEN, H.T., DE WITH, G., METSELAAR, R. and VAN MILTENBURG, 

J.C., 2001. The temperature dependence of the Gruneisen parameters of MgSiN2, AlN and β-Si3N4. 

Journal of Physics and Chemistry of Solids, 62, pp. 783-792. 

[61] TOULOUKIAN, Y.S., KIRBY, R.K., TAYLOR, R.E. and DESAI, P.D., 1975. Thermophysical 

properties of matter, thermal expansion, metallic elements and alloys. New York: IFI/Plenum. 

[62] GEYLING, F.T. and FORST, J.J., 1960. Semiconductor strain transducers. Bell System 

Technical Journal, 39, pp. 705-731. 

[63] SMITH, C.S., 1954. Piezoresistance effect in germanium and silicon. Physical Review, 94, pp. 

42-49. 

[64] TUFTE, O.N., CHAPMAN, P.W. and LONG, D., 1962. Silicon diffused-element piezoresistive 

diaphragms. Journal of Applied Physics, 33, pp. 3322-327. 

[65] SAMAUN, S., WISE, K.D. and ANGELL, J.B., 1973. An IC piezoresistive pressure sensor for 

biomedical instrumentation. IEEE Transactions on Biomedical Engineering, 20, pp. 101-109.  

[66] CLARK, S. K. and WISE, K.D., 1979. Pressure sensitivity in anisotropically etched thin-

diaphragm pressure sensors. IEEE Transactions in Electron Devices, 26, pp. 1887-1895. 



 

 162 

[67] PETERSEN, K., BROWN, J., VERMEULEN, T., BARTH, P., MALLON, J. and BRYZEK, J., 

1990. Ultra-stable, high-temperature pressure sensors using silicon fusion boding. Sensors and 

Actuators A: Physical, 22(1-3), pp. 96-101. 

[68] YULONG, Z., LIBO, Z. and ZHUANGDE, J., 2003. A novel high temperature pressure sensor 

on the basis of SOI layers. Sensors and Actuators A: Physical, 108, pp. 108-111. 

[69] SUSKI, J., MOSSER, V. and GOSS, J., 1989. Polysilicon SOI pressure sensor. Sensors and 

Actuators, 17, pp. 405-414. 

[70] CHUNG, G.S., KAWAHITO, S., ISHIDA, M., NAKAMURA, T. and SUZAKI, T., 1991. 

Temperature-independent pressure sensors using epitaxially stacked Si/A12O3/Si structures. Sensors 

and Actuators A: Physical, 29, pp. 107-115. 

[71] STUCHEBNIKOV, V.M., 1991. SOS strain gauge sensors for force and pressure transducers. 

Sensors and Actuators A: Physical, 28, pp. 207-213. 

[72] REGGIANI, S., VALDINOCI, M., COLALONGO, L., RUDAN, M., BACCARANI, G., 

STRICKER, A.D., ILLIEN, F., FELBER, N., FICHTNER, W. and ZULLINO, L., 2002. Electron and 

hole mobility in silicon at large operating temperatures- Part I: Bulk mobility. IEEE Transactions on 

Electron devices, 49, pp. 490-499. 

[73] GUO, S., ERIKSEN, H., CHILDRESS, K., FINK, A. and HOFFMAN, M., 2009. High 

temperature smart-cut SOI pressure sensor. Sensors and Actuators A: Physical, 154, pp. 255-260. 

[74] YAMAMOTO, A., NAWACHI, N., TSUTSUMOTO, T. and TERAYAMA, A., 2005. Pressure 

sensor using p-type polycrystalline diamond piezoresistors. Diamond and Related Materials, 12, pp. 

657-660. 

[75] WERNER, M.R. and FAHRNER, W.R., 2001. Review on materials, microsensors, systems, and 

devices for high-temperature and harsh-environment applications. IEEE Transactions on Industrial 

Electronics, 48, pp. 249-257. 

[76] CIMALLA, V., PEZOLDT, J. and AMBACHER, O., 2007. Group III nitride and SiC based 

MEMS and NEMS: materials properties, technology and applications. Journal of Physics D: Applied 

Physics, 40, pp. 6386-6434. 

[77] KASTEN, K., AMELUNG, J. and MOKWA, W., 2000. CMOS-compatible capacitive high 

temperature pressure sensors. Sensors and Actuators A: Physical, 85, pp. 147-152. 



 

 163 

[78] YOUNG, D.J., DU, J., ZORMAN, C.A. and KO, W.H., 2004. High-temperature single-crystal 

3C-SiC capacitive pressure sensor. IEEE Sensors, 4(4), pp. 464-470. 

[79] EATONY, W.P. and SMITH, J.H., 1997. Micromachined pressure sensors: Review and recent 

developments. Smart Materials & Structures, 6, pp. 530-539. 

[80] PATIL, A., FU, X., ANUPONGONGARCH, C., MEHREGANY, M. and GARVERICK, S., 

2007. Characterization of silicon carbide differential amplifiers at high temperature. Proceedings of 

the IEEE Compound Semiconductor IC Symposium, Portland, OR, October, 2007, pp. 139-142. 

[81] NEUDECK, P.G., BEHEIM, G.M. and SALUPO, C.S., 2000. 600 °C logic gates using silicon 

carbide JFETs. Government Microcircuit Applications Conference Technical Digest, Anahiem, CA, 

pp. 421-424.  

[82] MOE, S.T., SCHJOLBERG-HENRIKSEN, K., WANG, D.T., LUND, E., NYSAETHER, J., 

FURUBERG, L., VISSER, M., FALLET, T. and BERNSTEIN, R.W., 2000. Capacitive differential 

pressure sensor for harsh environments. Sensors and Actuators A: Physical, 83, pp. 30-33. 

[83] KASTEN, K., KORDAS, N., KAPPERT, H. and MOKWA, W., 2002. Capacitive pressure 

sensor with monolithically integrated CMOS readout circuit for high temperature applications. 

Sensors and Actuators A: Physical, 97-98, pp. 83-87. 

[84] JIN, S., RAJGOPAL, S. and MEHREGANY, M., 2011. Silicon carbide pressure sensor for high 

temperature and high pressure applications: influence of substrate material on performance. 

Proceedings of Transducers'11 conference, Beijing, China, pp. 2026-2029. 

[85] PULLIAM, W.J., RUSSLER, P.M., MLCAK, R., MURPHY, K.A. and KOZIKOWSKI, 

C.L., 2000. Micromachined, SiC fiber optic pressure sensors for high-temperature aerospace 

applications.  Proceedings of SPIE, 4202, pp. 21-30. 

[86] PULLIAM, W.J., RUSSLER, P.M. and FIELDER, R.S., 2001. High-temperature high-

bandwidth fiber optic MEMS pressure-sensor technology for turbine-engine component testing. 

Proceedings of SPIE, 4578, pp. 229-238. 

[87] RIZA, N., SHEIKH, M. and PEREZ, F., 2010. Hybrid wireless-wired optical sensor for extreme 

temperature measurement in next generation energy efficient gas turbines. Journal of Engineering for 

Gas Turbines and Power, 132, p. 051601. 



 

 164 

[88] ZHU, Y., COOPER, K.L., PICKRELL, G.R. and WANG, A., 2006. High-temperature fiber-tip 

pressure sensor. IEEE Journal of Lightwave Technology, 24, pp. 861-869. 

[89] CEYSSENS, F., DRIESEN, M. and PUERS, R., 2009. An optical absolute pressure sensor for 

high-temperature applications, fabricated directly on a fiber. Journal of Micromechanics and 

Microengineering, 19, p. 115017. 

[90] YI, J., LALLY, E., WANG, A. and XU, Y., 2011. Demonstration of an all-sapphire Fabry–Pérot 

cavity for pressure sensing. IEEE Photonics Technology Letters, 23, pp. 9-11. 

[91] SPIERING, V.L., BOUWSTRA, S., BURGERT, J.F. and ELWENSPOEK, M., 1993. 

Membranes fabricated with a deep single corrugation for package stress reduction and residual stress 

relief. Journal of Micromechanics and Microengineering, 3, pp. 243-246. 

[92] SCHEEPER, P., OLTHUIS, W. and BERGVELD, P., 1994. The design, fabrication, and testing 

of corrugated silicon nitride diaphragms. Journal of Microelectromechanical Systems, 3, pp. 36-42. 

[93] KRESSMANN, R., KLAIBER, M. and HESS, G., 2002. Silicon condenser microphones with 

corrugated silicon oxide/nitride electret membranes. Sensors and Actuators A: Physical, 100, pp. 301-

309. 

[94] HAO, X.C., JIANG, Y.G., TAKAO, H., MAENAKA, K., FUJITA, T. and HIGUCHI, K., 2011. 

Zero temperature coefficient gas-sealed pressure sensor using mechanical temperature compensation. 

Proceedings of Transducers'11conference, Beijing, China, pp. 116-119. 

[95] WILSON, J.S., 2004. Sensor technology handbook. Elsevier.  

[96] GREGORY, O.J. and YOU, T., 2004. Integrated ceramic temperature sensors for harsh 

environments. Proceedings of IEEE Sensors, 2004, pp. 1165-1168. 

[97] RAKOPOULOS, C.D. and MAVROPOULOS, G.C., 2008. Experimental evaluation of local 

instantaneous heat transfer characteristics in the combustion chamber of air-cooled direct injection 

diesel engine. Energy, 33, pp. 1084-1099.  

[98] TORREGROSA, A.J., BERMUDEZ, V., OLMEDA, P. and FYGUEROA, O., 2012. 

Experimental assessment for instantaneous temperature and heat flux measurements under Diesel 

motored engine conditions. Energy Conversion and Management, 54, pp. 57-66. 

[99] NAGAI, T., YAMAMOTO, K. and KOBAYASHI, I., 1982. SiC thin-film thermistor. Journal of 

Physics E: Scientific Instruments, 15, pp. 520-524. 



 

 165 

[100] NAGAI, T. and ITOH, M., 1990. SiC thin-film thermistors. IEEE Transactions on Industry 

Applications, 26, pp. 1139-1143. 

[101] KATSUKI, N., TAMAL, T., MORIWAKE, H., LEGARE, J. and YOSHIDA, S., 1996. Exhaust 

gas high temperature sensor for LEV/ULEV and OBD systems. SAE Technical Papers, 960336. 

[102] LOURENCO, M.J., SERRA, J.M., NUNES, M.R., VALLERA, A.M. and CASTRO, C.A., 

1998. Thin-film characterization for high-temperature applications. International Journal of 

Thermophysics, 19, pp. 1253-1265. 

[103] MIYAKAWA, N., LEGNER, W., ZIEMANN, T., TELITSCHKIN, D., FECHT, H.J. and 

FRIEDBERGER, A., 2012. MEMS-based microthruster with integrated platinum thin film resistance 

temperature detector (RTD), heater meander and thermal insulation for operation up to 1000 °C. 

Microsystem Technologies, 18(7-8), pp. 1077-1087. 

[104] FIREBAUGH, S.L., JENSEN, K.F. and SCHMIDT, M.A., 1998. Investigation of high-

temperature degradation of platinum thin films with an in situ resistance measurement apparatus. 

Journal of Microelectromechanical Systems, 7, pp. 128-135. 

[105] SCHULZ, C. and SICK, V., 2005. Tracer-LIF diagnostics: quantitative measurement of fuel 

concentration, temperature and fuel/air ratio in practical combustion systems. Progress in Energy and 

Combustion Science, 31, pp. 75-121. 

[106] PETERSON, B., BAUM, E., BÖHM, B., SICK, V. and DREIZLER, A., 2012. High-speed PIV 

and LIF imaging of temperature stratification in an internal combustion engine. Proceedings of the 

Combustion Institute, (In Press). 

[107] EWART, P., WILLIAMS, R.B., LIM, E.P. and STONE, C.R., 2001. Comparison of in-cylinder 

coherent anti-Stokes-Raman scattering temperature measurements with predictions from an engine 

simulation. International Journal of Engine Research, 2, pp. 149-162. 

[108] SCHULZ, C., SICK, V. and WOLFRUM, J., 1996. Quantitative 2D single-shot imaging of no 

concentrations and temperatures in a transparent SI engine. Proceedings of the Combustion Institute, 

26(2), pp. 2597-2604. 

[109] CRUA, C., 2002. Combustion Processes in a Diesel Engine, The University of Brighton.    

[110] RIZA, N.A. and SHEIKH, M., 2010. Silicon carbide-based extreme environment hybrid design 

temperature sensor using optical pyrometry and laser interferometry. IEEE Sensors, 10, pp. 219-224. 



 

 166 

[111] AZEVEDO, R.G., JONES, D.G., JOG, A.V., JAMSHIDI, B., MYERS, D.R., CHEN, L., FU, 

X.A., MEHREGANY, M., WIJESUNDARA, M.B.J. and PISANO, A.P., 2007. A SiC MEMS 

resonant strain sensor for harsh environment applications. IEEE Sensors, 7, pp. 568-576. 

[112] MYERS, D.R., CHENG, K.B., JAMSHIDI, B., AZEVEDO, R.G., SENESKY, D.G., CHEN, 

L., MEHREGANY, M., WIJESUNDARA, M.B.J. and PISANO, A.P., 2009. Silicon carbide resonant 

tuning fork for microsensing applications in high-temperature and high G-shock environments. 

Journal of Micro/Nanolithography, MEMS, and MOEMS, 8, p. 021116. 

[113] PISANO, P.A., 2009. Harsh environment wireless MEMS sensors for energy & power. MTO 

(DARPA Microsystems Technology Office) Symposium, San Jose, CA, 2-5 March, 2009. 

[114] MOHAMMADI, A.R., GRAHAM, T.C.M., BENNINGTON, C.P.J. and CHIAO, M., 2010. 

Development of a compensated capacitive pressure and temperature sensor using adhesive bonding 

and chemical-resistant coating for multiphase chemical reactors. Sensors and Actuators A: Physical, 

163, pp. 471-480. 

[115] MOHAMMADI, A.R., BENNINGTON, C.P.J. and CHIAO, M., 2011. Development of a 

combined piezoresistive pressure and temperature sensor using a chemical protective coating for 

Kraft pulp digester process monitoring. Journal of Micromechanics and Microengineering, 21, p. 

015009. 

[116] MERTENS, J., FINOT, E., THUNDAT ,T., FABRE, A., NADAL, M.H., EYRAUD, V. and 

BOURILLOT, E., 2003. Effects of temperature and pressure on microcantilever resonance response. 

Ultramicroscopy, 97, pp. 119-126. 

[117] SANDBERG, R., SVENDSEN, W., MOLHAVE, K. and BOISEN, A., 2005. Temperature and 

pressure dependence of resonance in multi-layer microcantilevers. Journal of Micromechanics and 

Microengineering, 15, pp. 1454-1458. 

[118] NIEVA, P., ADAMS, G.G. and MCGRUER, N.E., 2007. Design and modeling of a 

multifunctional MEMS Fabry-Perot sensor for the simultaneous measurement of displacement, 

pressure and temperature. Proceedings of SPIE, 6529, p. 65292D. 

[119] WALTHER, D., LIN, L. and PISANO, A., 2007. Micro- and nano-technologies for automotive 

sensor research. SAE Technical Paper, 2007-01-1012.  



 

 167 

[120] TOTH, D., SHAW, T., WLODARCZYK, M. and CUMMINGS, C., 2011. Cylinder head 

gasket with integrated combustion pressure sensors for advanced engine controls. SAE International 

Journal of Engines, 4(1), pp. 1235-1246. 

[121] SANLI, A., OZSEZEN, A.N., KILICASLAN, I. and CANAKCI, M., 2008. The influence of 

engine speed and load on the heat transfer between gases and in-cylinder walls at fired and motored 

conditions of an IDI diesel engine. Applied Thermal Engineering, 28, pp. 1395-1404. 

[122] RAKOPOULOS, C.D., GIAKOUMIS, E.G. and RAKOPOULOS, D.C., 2008. Study of the 

short-term cylinder wall temperature oscillations during transient operation of a turbocharged diesel 

engine with various insulation schemes. International Journal of Engine Research, 9, pp. 177-193. 

[123] CHANG, J., FILIPI, Z., ASSANIS, D., KUO, T-.W., NAJT, P. and RASK, R., 2005. 

Characterizing the thermal sensitivity of a gasoline homogeneous charge compression ignition engine 

with measurements of instantaneous wall temperature and heat flux. International Journal of Engine 

Research, 6, pp. 289-309. 

[124] www.aremco.com/wp-content/uploads/2010/11/A2_091.pdf  [October/1, 2012] 

[125] http://www.grc.nasa.gov/WWW/RT/2007/Inst-Cnt/20-RIS-okojie2.html  [October/1, 2012] 

[126] GURALP, O.A., 2008. The effect of combustion chamber deposits on heat transfer and 

combustion in a homogeneous charge compression ignition engine. The University of Michigan.  

[127] BUTTSWORTH, D.R., STEVENS, R. and STONE, C.R., 2005. Eroding ribbon 

thermocouples: impulse response and transient heat flux analysis. Measurement Science and 

Technology, 16, pp. 1487-1494. 

[128] RAKOPOULOS, C.D. and MAVROPOULOS, G.C., 2000. Experimental instantaneous heat 

fluxes in the cylinder head and exhaust manifold of an air-cooled diesel engine. Energy Conversion & 

Management, 41, pp. 1265-1281. 

[129] RAKOPOULOS, C.D., RAKOPOULOS, D.C., MAVROPOULOS, G.C. and GIAKOUMIS, 

E.G., 2004. Experimental and theoretical study of the short term response temperature transients in 

the cylinder walls of a diesel engine at various operating conditions. Applied Thermal Engineering, 

24, pp. 679-702. 

http://www.aremco.com/wp-content/uploads/2010/11/A2_091.pdf
http://www.grc.nasa.gov/WWW/RT/2007/Inst-Cnt/20-RIS-okojie2.html


 

 168 

[130] RAKOPOULOS, C.D., MAVROPOULOS, G.C. and HOUNTALAS, D.T., 2000. 

Measurements and analysis of load and speed effects on the instantaneous wall heat fluxes in a direct 

injection air-cooled diesel engine. International Journal of Energy Research, 24, pp. 587-604. 

[131] DEMUYNCK, J., PAEPE, M.D., HUISSEUNE, H., SIERENS, R., VANCOILLIE, J. and 

VERHELST, S., 2011. Investigation of the influence of engine settings on the heat flux in a 

hydrogen- and methane-fueled spark ignition engine. Applied Thermal Engineering, 31, pp. 1220-

1228. 

[132] KAMINSKI, C.F., ENGSTROM, J. and ALDEN, M., 1998. Quasi-instantaneous two-

dimensional temperature measurements in a spark ignition engine using 2-line atomic fluorescence. 

Proceedings of the Combustion Institute, 27, pp. 85-93. 

[133] MAIGAARD, P., MAUSS, F. and KRAFT, M., 2003. Homogeneous charge compression 

ignition engine: a simulation study on the effects of inhomogeneities. Journal of Engineering for Gas 

Turbines and Power, 125, pp. 466-471. 

[134] SOYLU, S., 2005. Examination of combustion characteristics and phasing strategies of a 

natural gas HCCI engine. Energy Conversion and Management, 46, pp. 101-119. 

[135] SHEHATA, M.S., 2010. Cylinder pressure, performance parameters, heat release, specific heats 

ratio and duration of combustion for spark ignition engine. Energy, 35, pp. 4710-4725. 

[136] SJOBERG, M. and DEC, J.E., 2005. An investigation into lowest acceptable combustion 

temperatures for hydrocarbon fuels in HCCI engines. Proceedings of the Combustion Institute, 30, pp. 

2719-2726. 

[137] LIU, D.X. and FENG, H.Q., 2006. In-cylinder temperature field measurement with laser 

shearing interferometry for spark ignition engines. Optics and Lasers in Engineering, 44, 1258-1269. 

[138] YAO, M., ZHENG, Z. and LIU, H., 2009. Progress and recent trends in homogeneous charge 

compression ignition (HCCI) engines. Progress in Energy and Combustion Science, 35, pp. 398–437. 

[139] TAYLOR, C.F., 1985. Internal combustion engine in theory and practice: combustion, fuels, 

materials, design. Second edn. The MIT Press. 

[140] ACEVES, S.M., FLOWERS, D.L., MARTINEZ-FRIAS, J., SMITH, J.R., WESTBROOK, 

C.K., PITZ, W.J., DIBBLE, R., WRIGHT, J.F., AKINYEMI, W.C. and HESSEL, R.P., 2001. A 



 

 169 

sequential fluid-mechanic chemical-kinetic model of propane HCCI combustion. SAE Technical 

Paper, 2001-01-1027. 

[141] ALHARBI, A., 2010. High-speed high-resolution vector field measurements and analysis of 

boundary layer flows in an internal combustion engine. The University of Michigan. 

[142] OUDE NIJEWEME, D.J., KOK, J.B.W., STONE,C.R. and WYSZYNSKI, L., 2001. Unsteady 

in-cylinder heat transfer in a spark ignition engine: experiments and modeling. Journal of Automobile 

Engineering, 215, pp. 747-760.  

[143] KILLINGSWORTH, N.J., RAPP, V.H., FLOWERS, D.L., ACEVESA, S.M., CHEN, J-.Y. and 

DIBBLE, R., 2011. Increased efficiency in SI engine with air replaced by oxygen in argon mixture. 

Proceedings of the Combustion Institute, 33(2), pp. 3141-3149. 

[144] NAGASHIMA, T., OKAMOTO, K. and RIBAUD, Y., 2005. Cycles and thermal system 

integration issues of ultra-micro gas turbines. Micro Gas Turbines, Educational Notes RTO-EN-AVT-

131, Neuilly-sur-Seine, France: RTO, pp. 4.1-4.66. 

[145] WANG, S.C., NAYAK, P.K., CHEN, Y.L., SUNG, J.C. and HUANG, J.L., 2012. Growth of 

single crystal silicon carbide by liquid phase epitaxy using samarium/cobalt as unique solvent. 

Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanoengineering and 

Nanosystems, 226, p. 75-79. 

[146] ROARK, R.J., 1965. Roark's Formulas for Stress and Strain. 4th edn. McGraw-Hill. 

[147] SENTURIA, S.D., 2000. Microsystems Design, Norwell, MA: Kluwer Academic Publisher. 

[148] MA, H.Y., HUANG, Q.A., QIN, M. and LU, T., 2010. A micromachined silicon capacitive 

temperature sensor for wide temperature range applications. Journal of Micromechanics and 

Microengineering, 20, p. 055036. 

[149] SCOTT, S., SCUDERI, M. and PEROULIS, D., 2012. A 600°C wireless multimorph-based 

capacitive MEMS temperature sensor for component health monitoring. IEEE 25th Internation 

Conference on MEMS, Paris, France, pp. 496-499. 

[150] CHOI, D., SHINAVSKI, R.J., STEFFIER, W.S. and SPEARING, S.M., 2005. Residual stress 

in thick low-pressure chemical-vapor deposited polycrystalline SiC coatings on Si substrates. Journal 

of Applied Physics, 97, p. 074904. 



 

 170 

[151] CHANG, R.C., CHEN, F.Y., CHUANG, C.T. and TUNG, Y.C., 2010. Residual stresses of 

sputtering titanium thin films at various substrate temperatures. Journal of Nanoscience and 

Nanotechnology, 10, pp. 4562-4567. 

[152] PANI, S.K., WONG, C.C., SUDHARSANAM, K., MHAISALKAR, S.G., LIM, V., 

MOHANRAJ, S. and RAMANA, P.V., 2004. Effect of process parameters on sidewall roughness in 

polymeric optical waveguides. Thin Solid Films, 462-463, pp. 471-476. 

[153] PONOTH, S.S., AGARWAL, N.T., PERSANS, P.D. and PLAWSKY, J.L., 2003. Fabrication 

of controlled sidewall angles in thin films using isotropic etches. Journal of Vacuum Science and 

Technology B, 21, pp. 1240-1247. 

[154] SUN, L. and SARANGAN, A., 2011. Fabrication of sloped sidewalls by inductively coupled 

plasma etching for silicon micro-optic structures. Journal of Micro/Nanolithography, MEMS, and 

MOEMS, 10, p. 023006. 

[155] PolyMUMPs® is the multiuser polysilicon fabrication process offered by the MEMSCAP 

company, more information available at http://www.memscap.com/products/mumps/polymumps. 

Reference materials available http://www.memscap.com/products/mumps/polymumps/reference-

material [October/1, 2012]. 

[156] CoventorWare® is a MEMS design and simulation software offered by the Coventor company, 

more information available at http://www.coventor.com/products/coventorware/ [October/1, 2012]. 

[157] LIN, L., PISANO, A.P. and HOWE, R.T., 1997. A micro strain gauge with mechanical 

amplifier. Journal of Microelectromechanical Systems, 6, pp. 313‐321. 

[158] PAMULA, V.K., JOG, A. and FAIR, R.B., 2001. Mechanical property measurement of thin-

film gold using thermally actuated bimetallic cantilever beams. Proceedings of the 2001 International 

Conference on Modeling and Simulation of Microsystems NANOTECH 2001, pp. 410-413. 

http://www.memscap.com/products/mumps/polymumps
http://www.memscap.com/products/mumps/polymumps/reference-material
http://www.memscap.com/products/mumps/polymumps/reference-material
http://www.coventor.com/products/coventorware/

