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Abstract

The increased interest in reducing greenhouse m&siens has motivated renewed interest
in electric vehicles technology as an alternatiwectirrent fossil-fuel based transportation
equipment. Electric vehicles (EVs) are envisions@gromising viable technology because
of their friendly impact on the environment andheg efficiency over conventional vehicles
that rely on fossil fuel. However, the EVs’ limitduhttery capacity, resulting in limited
cruising range and long recharging time, hinders wWidespread adoption of EVs. An
essential requirement of EV motors is the ability dperate with minimum energy
consumption in order to provide at least the sarmend range as their Internal Combustion
Engine (ICE) counterparts. Energy-optimal routimgyich aims to find the least energy
consuming routes, under battery constraints has beeognized as a viable approach to

prolonging the cruising range of the EV battery.

This thesis addresses the problem of optimal rgutor EVs and proposes a solution to
overcome the difficulties of optimal energy/timeautiog under battery constraints. A multi-
criteria path-finding techniqueX’ is proposed. The proposed technique functionsvim t

modes and solves the problem of optimal energy/trmging in EVs with worst time
complexity of O(n®). First, an energy mode to solve the problem ofggreptimal routing
under battery constraints is introduced. This moal@putes the most energy-efficient route
from a source to a destination, thus extendindithiged cruising range of a battery. Second,

a time mode to solve the problem of optimal trairak routing under battery constraints, by



computing the most efficient travel-time route fransource to a destination, is proposed. An
EV can operate under these two modes to strikdaamd@ between power consumption and

travel time so as to satisfy user constraints aetis.

In addition, a technique to reduce the effectsasfge anxiety on the vehicle operator is
proposed. This technique computes a robust estimfativing range. Furthermore, the
technique analyzes an EV’s battery capacity redquivg the vehicle in order to reach a
charging station. The thesis reports experimentakveonducted to test and validate the

proposed techniques under various driving condstion
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Chapter 1: Introduction

The negative effects of climate change are becomimgreasingly obvious. The
Intergovernmental Panel on Climate Change (IPCQ@] Has reported that in some 100
physical and 450 biological processes, scientiaty r@searchers have addressed climate-
induced changes. Over the years, global climategds have become more extreme and
severe, with increases in floods, storms, and Weaes [28]. A major contributor to global
warming is fossil-fuel-powered vehicles. EVs couvddluce the impacts of global warming

and thereby provide a transportation system thiaieisdlier to the environment.

The increasing public desire for an alternative fdssil-fuel transportation systems is
motivating renewed interest in EVs as means fouced) greenhouse gas emissions. To
address this increased interest, most automobiteufaeturers are planning to produce EVs
or Plug-in Hybrid Electric Vehicles (PHEVS). EVs igmo tailpipe pollutants and hence can
significantly reduce greenhouse gas emissions. follewing section provides a brief

introduction to EVs, illustrating the benefits athé challenges associated with them.

1.1 Electric Vehicles

Technically, an EV is defined as one that utilizéectricity as its power source and that can
be charged through an electrical outlet at onedselof residence or business. The main

reasons for considering EVs as alternatives toilfasd based vehicles constitute both
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economical and environmental factors. EVs, oftdierred to as Battery-Operated Electric
Vehicles (BOEVs), emit no pollutants into the simce they are powered by electricity that
is stored in a battery—charged with electricity g@ted by the same power plants that
supply homes and businesses. Consequently, EMsoasgdered to be a perfect example of
what is known as Zero-Emission Vehicles (ZEVS),csirtheir motors create no tailpipe
exhaust, fuel evaporation, fuel refining or any estlgreenhouse gas producing activity
harmful to the environment. Moreover, EVs help tgea much cleaner environment by
consuming electricity that is generated partlymtirely by renewable energy sources such as
solar, wind, tidal or nuclear. EVs operate with iméiewer units of energy than conventional
Internal Combustion Engine Vehicles (ICEVS) for tt@me mileage; therefore, EVs are
generally associated with less cost to own andabpdd8]. Figure 1.1 shows a modern

sample of the Tesla Roadster electric car.

Figure 1.1: Tesla Roadster Electric Car.

EVs have three main components: an electric met@ontroller, and a battery. Figure 1.2

illustrates the main components of EVs. The fisstan electric motor (EM). The most
2



popular EMs are the 3-Phase AC and Series Wound nia@ors, which are usually
inexpensive and easily found. EMs have high torguea wide range of speeds, with
incredibly high efficiencies of up to 90 percentgmared to conventional ICEs, which have
efficiencies of only around 30 percent [48]. HerfE¥'s are considered extremely suitable for
stop-start urban driving. A portion of the EMs’ieféncy comes from their ability to provide
quieter and smoother operations as well as shacwzleration/deceleration phases with less
maintenance than their ICE counterparts. In additio running extremely smoothly and
quietly, EMs are more reliable than conventiondt$Ghat rely on fluids such as engine oil
and transmission oil that are prone to leak, causngine failure. EMs do not require the use
of these fluids [48]. Another important featuretbé EM is that there is only one moving

part, unlike the ICE, which typically has severalvimg parts.

The second main component of the EVs is the cdatrolhe controller’'s job is to deliver
electric current from the battery to the motor, ethis controlled by the accelerator pedal of
the vehicle. Therefore, the further a driver predbe accelerator pedal down, the greater the
power delivered to the motor and the greater timetld energy the vehicle gains. During
idling phases, no electrical current is being pssee, which means energy is not being used

during idling phases.

The third main and final component of EVs is thétdyg. EVs use rechargeable batteries,

occasionally referred to as Power Storage Systd?®Sg), which are different from the



ignition or lighting batteries. An EV’s battery éesigned to maintain power for long times.
There are mainly three types of rechargeable begteurrently in use in EVs: “lithium-ion
batteries, lead-acid batteries, and nickel-metalide batteries” [35]. Batteries for EVs are
usually the most expensive part of the vehicle arelclassified based on their power-to-
weight ratio and energy density. For these reassmsiler, lighter, and higher-efficiency
batteries are desired, given that these battemgstypduce the weight of the EV, improving
its performance. An EV’s battery must be periodice¢écharged from the power grid, which
itself is powered by a variety of resources, susic@al, steam, solar, wind, or others, at

home or using a street or business recharging.point

Figure 1.2 (b): Series Wound Electric Car DC Motor.
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Figure 1.2 (c): Soliton Jr Controller 340V/500A.

1.2 Challenges and Solutions

EVs have limited battery capacity, resulting inited cruising range; long charging time;
high battery cost, resulting in a high total pustha@rice. These unique constraints lead to a
number of challenges that must be addressed ateprs that must be resolved before EVs
can become a practical reality. EVs require spediathanisms to efficiently utilize their
own limited energy supply (i.e., limited batterypeaity). The following section summarizes

some of these challenges and required solutions.

* The limited cruising range of their battery is atically significant issue of EVs.
Cruising range of the battery is defined as thtade that a vehicle can travel over time
until the battery runs out of energy. Due to tinitied energy supply and the difficulty of
improving rechargeable batteries’ lifetime, EVs &astringent power consumption
requirements. The electric energy consumed by E¥seids on driving conditions,

environment conditions, and the use of energy-cminsy technology, and it is often



higher than the amount expected by manufacturers. &an recuperate some of their
consumed energy, i.e. they can regenerate energggddownhill and deceleration

phases, thus extending their cruising range bycqpately 20 percent in urban areas;
however, the widespread use of EVs is still limitgda cruising range of only 150 to

200 kilometres for a single battery charge [3]. rEfiere, energy-efficient mechanisms
for energy-optimized driving and accurate driviggige estimation technique are
significantly important requirements, strongly needto, first, save energy thereby
prolonging the limited cruising range of the ba#sy and second, help estimate the

actual remaining driving range and so preventaisdrom being stranded.

Long charging time has been another significantiérato popularizing the use of EVs.
The long charging time of batteries creates a peathlem: travelers have to plan ahead
before proceeding en route, to ensure and accontma@iteugh time to recharge the
EVs’ batteries. The anticipated mass productio\d$ in the near future and demand
for long-distance travel indicate the strong need dn electric service infrastructure
capable of providing the considerable amount of gromv a time at least similar to that
of conventional service infrastructure. Chargingtisns ought to be designed as such,
with the capability to deal with a huge number ehicles simultaneously and provide
all required electrical charging in a short perafdtime. Other related ideas regarding

rapid charging time and charging-station positignrave been addressed, including the



establishment of battery-charging stations at hoabeyork, and in and around cities

[56].

» Expensive and toxic batteries were one of the rdesvbacks resulting in previous EV
models failure to achieve any significant markearsh The increasing production of
rechargeable batteries could be an indication ttmatprice of the key metals used in
manufacturing is likely to remain stable or perhapen increase. The improvements in
battery technology have indicated the possibilitymanufacturing EVs with enhanced
performance and improved efficiency in comparisorthe ICEVs; however, the high
cost of giant battery packs makes the initial paseh price of EVs much higher.
Furthermore, the electronic parts used in batteigkp may increase in cost; therefore,
the trade-off of the batteries’ size, efficiencyfetime, and price should be more
carefully considered by manufacturers to find aeneconomical approach that aids in

reducing the purchase price of EVSs.

1.3 Motivation and Objective

One of the major and essential requirements for EVihe ability to operate using less
energy in order to provide at least the same raofgelriving as ICEVs. The unique

characteristic of limited battery capacity in EVentbnstrates the necessity for achieving
energy consumption reductions. Regenerating erdugyng downhill or deceleration phases

can somewhat help prolong the cruising range. Brepgmal routing has been proven to



effectively prolong the driving-range by reducingeegy consumption [3, 36, and 29].

Essentially, an optimal routing technique comptlesmost energy-efficient route among all
possible routes from a start point to end poingng road network. The battery of the EV has
two main constraints: (1) a route cannot be usethéyehicle if it has an energy cost that is
greater than the battery charge level and, (2) wherbattery is already fully charged, then a
route cannot be used if it has negative energy—egatned energy from downhill or

deceleration phases. Therefore, the energy-optiouding technique for EVs should not be
limited only to finding the cheapest route in terofsenergy cost but should also take the
battery constraints into account. The first maireotive of this thesis is to propose a routing
technique that can be employed in EVs to resolee lhttery constraints problem and
compute the most energy-efficient route in any roativork. The limited driving-range of

EVs can then be prolonged.

Travel time for a road trip is an extremely impottand integral part of traffic information

for drivers; hence, it has become important foffitalesigners to accurately estimate travel
time. Drivers need accurate travel time estimatiomrder to make better choices in their
traveling and avoid unnecessary delays. When cerisgidelays caused by congested traffic
conditions, the optimal path in travel time may hetthe shortest distance. Going further, the
optimal path in travel time may perhaps be estichatben the travel time cost includes the
accident risk instead of just congestion conditid@bviously, this approach means that a

shorter route may be more expensive than a longemuaoader congested, highly risky traffic



conditions. For electrically-powered vehicles withttery constraints, it is not efficient for
drivers to use a route that is less expensiveawvetrtime cost but violates the constraints of
the battery, because the battery-constraint issufe crucial factor in reaching the final
destination. Thus, for all trips, EV battery coastts must be taken into account and not
violated, even when the driver’s journey is tratrele-cost based and not energy-cost based.
In fact, this consideration imposes an algorithafiallenge for travel-time-optimal routing in
EVs. Therefore, the second main objective of thésis is to propose a routing technique that
can address the battery constraints issue whitinfgnthe most efficient path in terms of

travel-time cost.

Range anxiety is a major barrier to the widespnessl of EVs. This condition is defined as
the concern of running out of energy and beingnsiied on the way, caused by the limited
cruising range of the battery. Drivers need to Wwara of how far they can travel, paying
particular attention to the constraints associamgth EV batteries. Because of these
constraints, an accurate driving-range estimat@hrtique is required in order to help alert
drivers of their maximum driving range. A variety additional techniques to reduce the
effects of range anxiety on drivers to the lowestl are greatly needed. Therefore, the third
main objective of this thesis is to propose a raagdety reduction technique that includes

an accurate and reliable driving-range estimatoretuce driver concern.



1.4 Thesis Organization

This thesis is organized into seven chapters: @n&ppresents a literature review to provide
the broad background necessary for a general uaddisg of the development and
challenges related to EV technology. The particddackground and previous work on
optimal energy/time routing and driving-range estilon are also addressed. Chapter 3
considers the complexity and computational conattans in resolving the problem of
optimal energy/time routing for EVs. Chapter 4 dises theoretical information and
introduces the proposed solution to the problenomtimal energy/time routing for EVs.
Chapter 5 reports the experimental work perfornmed/dlidate the proposed algorithmic
technique, including the simulation environmentatee and results. Chapter 6 introduces a
range-anxiety reduction technique, including a stlelriving-range estimation approach, as a
solution to reduce the effects of range anxietygesxnental work conducted to validate the
technique is also reported. Finally, concluding agka and future work are presented in

Chapter 7.
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Chapter 2:

Background and Literature Review

This chapter provides background and a literate@ew on a broad range of EVS’
development, challenges and problems. Firstlyddrasses a number of research studies
conducted with regards to economical and environah@mpacts of adopting EVs as an
alternative to conventional vehicles that dependfassil fuels. After which, issues and
challenges associated with the development of BEMsdéscussed, with special attention
given to recent research work completed on optirating and driving-range estimation,
both of which improve efficient utilization of EMm roads as well as support the technology

behind EV success.

The economical and environmental impact of EV tebthyy has been well researched.
Recent studies demonstrate that the widespreadiadag EVs has significant economical
advantages over the use of ICEVs, even though rthieali purchase price of an EV is
currently higher than that of a conventional vehicThe Sustainable Energy Authority of
Ireland has revealed in [48] that EVs have greamergy cost savings. EVs require far fewer
units of energy than their ICEV counterparts; threglucing the cost to own and operate one
through up to 70 percent lower fuel costs. In addjtthe EM requires less maintenance

because it has fewer moving parts, and is leslylikeleak, because it has no fluids, such as

11



engine oil. A broader study about the impact of Bvisthe domestic economy of the US in
[37], demonstrates that the total cost of EV ownigrds $7,203 less than that of ICEV.
Moreover, at 39 percent EV adoption, the net opams of the US will decline by about $20
Billion. The numerical results in this study prabat by 2013, EV operators will in total gain

benefits of $80 Billion from savings due to lessmenance and reduced energy costs.

The technology of EVs promises to reduce the neganvironmental effects of the current
transportation system. Reportedly, the overall raission reductions from the use of EVs
in Ireland would be about 30 percent; this estioratiould reach 100 percent reduction if the
electricity consumed by EVs was supplied througieveable sources, such as wind, solar,
tidal, or nuclear [48]. In [53], the WWF Climate &ige and Energy Program of Canada
developed a simulation model that considers diffengarameters, such as the average
kilometers travelled and vehicle retirement ratéhwhree scenarios for EV sale growth, in
order to estimate the greenhouse gas emissiontredsicThis study proves that the short-
term greenhouse gas reduction benefits from theoli&d/s are low, but once EVs become
widely used, the reduction becomes highly signific&Furthermore, under a scenario in
which 12,000 EVs are on the roads by the end oR264arbon dioxide emissions would be
reduced by around 1.3 and 6.7 mega tones per yea&0BO and 2025, respectively.
Moreover, the electricity generation mixes of difiet provinces have a great effect on
greenhouse gas reduction levels. For example, emissduction would be greater in British

Colombia, where the electricity is mostly generafemin renewable resources, than in

12



Alberta, where coal is dominant. The results of study prove that EVs can be a powerful

contributor to greenhouse gas reductions overahg ferm.

In addition to the positive economical and enviremtal impacts that they offer, EVs
operate with higher efficiency than ICEVs. Recentesstigations [35, 48, and 49] confirm
that the EM is more efficient than the best ICE.day have efficiency of up to 90 percent,
while the best conventional ICEs can have efficyeatonly 30 percent. In addition, while
the ICE has a small amount of torque at Igm, providing a reasonably small amount of
horsepower, the Tesla Roadster Incorporation [@bja@hstrates that the Tesla Roadster EM
delivers a huge amount of torque at zgym, providing almost the same torque up to 6,000
rpm; this EM is able to deliver a huge amount of powerto 13,500pm. Furthermore, the
ICE requires a huge amount of horsepower in omlepeed up hastily, resulting in poor gas
mileage. Conversely, the high horsepower of an Ellts in an efficient, quiet and smooth
operation with the ability to accelerate and deegée quickly. EMs also provide high

reliability since they have lower waste heat ougmd less vibration.

2.1 Challenges and related issues

The introduction of EVs presents new challengesréad drivers. This section addresses
problems that must be resolved before EVs can delwiused on roads. In particular, four
major challenges hamper the growth of widespreadofi€Vs: limited driving range, long

charging time, charging infrastructure [41], anttéry durability concerns [40].
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Limited battery capacity has restricted EVs’ driyirange to that possible on a single battery
charge. Range anxiety, which is considered a nisgoier to the successful use of EVs, is a
term that captures drivers’ concern about not regctineir destination and being stranded on
the way. Range anxiety has emerged due to theitadlwonstraints of rechargeable batteries
used in EVs [10]. Driving style is only one of tfectors that may affect the range of a
battery charge. For instance, aggressive or higkedpglriving, road conditions, environment
conditions, and the lifetime of batteries are mportant factors that influence cruising range
[34]. According to several studies [54, 52, and, t@hge anxiety is the most important factor
that hampers the penetration of EVs into the mavkesturvey conducted recently in the U.S.
by Deloitte Global Services [15] reported that 9rgent of the people surveyed tend to
travel around 75 miles a day. The same study re@dhat 63 percent of respondents expect
the range to be 300 miles for a battery chargechvis not supported by current EV models.
Eventually, public and workplace charging infrastiwme installation may help reduce
concerns about range anxiety. However, the publazging infrastructure required does not
exist yet. The Tokyo Electric Power Company (TEP@@dicts that EV operators will feel
relaxed during their traveling once minimal buttfakarging infrastructure is in place [2].
Some private and public stakeholders are convirtisatia complete public and workplace
charging infrastructure is necessary to reducentipacts of range anxiety [41]. The energy
density of their batteries may be the factor thetednines the range of EVs. Their range

might be limited to 160 to 190 miles for a singleage if there are no new advances and
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developments in battery technology [6]. In the fatdithium-ion batteries will probably use

advanced technology that increases energy derdsity [

In addition to limited driving range, EVs take angptime to recharge their batteries.
Although a standard Level-1 charger (i.e., a 12@-gkectrical outlet) is able to charge the
battery of an EV, the charging time of around 1drkas incredibly long for operators [41].
The battery may be fully charged overnight when tnobsirging is expected, but many EV
owners need a shorter charging time; therefore esowners may need to install a Level-2
charger (i.e., a 240-volt electric outlet) at theames. For instance, while the Nissan LEAF
can use a portable 120-volt charger, most EV owndidikely prefer a 240-volt charger
that can fully recharge the battery in less thamo8rs [18]. With a 240-charger, the Ford
Focus Electric, powered by a lithium-ion battergndully recharge its battery in as little
time as 3 to 4 hours [18]. However, 240-volt owtletay not be common in most houses and
businesses [42]. Moreover, even when utilizing hightage chargers, the time that EVs take
to recharge is still longer than that taken by IGEW refuel, and therefore, charging can still
be inconvenient for owners [27]. Swapping batte@dsbattery switching stations could

eventually provide a better solution and thus owere the problem of long recharging time

[7].

The integration of EVs with the electrical grid éscthe challenge of implementing a

charging infrastructure, which is proposed to b@cemtrated in residential areas [12].
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Several benefits can be obtained with residentiarging infrastructure, such as charging
during off-peak hours, when power is inexpensivignang that could sustain power network
reliability [41]. Cost, time, and access are otbleallenges facing home charging stations.
Consumers might need to use Level-2 charging sigtizhich may be expensive. Those
living in multi-unit buildings may suffer more inngenience, and the process could become
complicated for them if they do not have reservadking spots or are not authorized to
access charging infrastructure [11]. The instalatof residential charging infrastructure
requires collaboration between governments ancitdllers to facilitate the process, reduce
the cost, and develop solutions for multi-unit dinbs. On the other hand, non-residential
charging infrastructure may be necessary for thmulamization of EVs. In addition to being
beneficial for EV owners who do not utilize resitlah charging infrastructure, this
infrastructure can help extend the daily range rofimy [11]. EV operators might depend
primarily on residential charging services, butmegt these with a non-residential charging
service, a joint approach that can be another lesyof for further improvement [12].
Establishing non-residential charging infrastruetumay be associated with several
challenges, such as the effects on the power nktwben use grows [11]. To overcome the
obstacles associated with non-residential chargergice, research determining the highest
charging demand and time of EV use is strongly edeéfor example, public and private
stakeholders could collaborate to integrate chgrgimfrastructure networks and try to

maximize the coverage they provide and accesstuo {A1].
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There are two ways of defining the lifetime of dtegy: age of the battery in years or the
point when the battery is no longer able to power vehicle because of the charge-and
discharge cycle number [40]. Three factors cands®l uo estimate the lifetime of a battery:
temperature, charge rates, and depth of dischavggs [33]. Most manufacturers are now
designing batteries with larger capacity to meergy storage needs over the lifetime of an
EV [41]. The size, weight, and cost of a battery imcreased by larger capacity, but on the
other hand, the efficiency of the battery is reduf®. Alternatively, manufacturers could
install short-lifetime batteries but replace thewery 5 to 7 years [41]. A battery leasing
model, for instance, separates the vehicle lifetiroen the battery lifetime and reduces the
high initial price of purchasing an EV [6]. Howeydahe U.S. Department of Energy
estimates that manufacturers will have been capablenanufacturing batteries with a

lifetime of approximately 14 years by the year 2(1H.

2.2 Plug-in Hybrid Electric Vehicles (PHEV)

Plug-in Hybrid Electric Vehicles (PHEVs) differ fro EVs in various ways, including
overall cost, driving range, complexity, and battpack size. PHEVs are introduced as a
practical solution to the problem of the constrdi®SS of EVs. PHEVs use both an ICE and
an EM as an energy transformation medium and atyattith sufficient capacity to store the
extra energy from the engine or regenerative bnggld6]. The battery powers the EM when
needed, either to allow the engine to be turnedlofing some phases, such as at low speeds,

or to provide auxiliary motive power to the engiRéEVs offer drivers the chance to rely on
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the electricity sector while maintaining the drigirange of ICEVs. Hence, they combine the
efficiency advantages of hybridization by travelipgrt-time on electricity provided by the

power grid. In addition, PHEVs are significantly portant technology for reducing

greenhouse gas emissions since they can operateeotricity for a limited distance,

depending on their battery capacity. PHEVs haven bearketed over the past decade in
developed countries such as the U.S., and they hear&et penetration of around three
percent worldwide, with more than 1.5 million PHEMsuse over the past decade [26]. The
cost challenge of PHEVs is more complicated tha ¢ EVs because they require an ICE
with other associated components as well as arpaitek. The battery capacity required by
PHEVs is less, and therefore, these vehicles hdeger cost battery pack than EVs [26].
PHEVs are able to overcome the phenomenon of rangjety since they can run completely

on gasoline if the battery runs out of energy [9].

2.3 Routing

Routing in general is defined as the process ofpedimg routes in networks. Routing can be
performed for multiple kinds of networks, includirtgansportation networks, telephone
networks, and electronic networks, such as thereteThe optimization routing problem of
vehicles can be defined as a combinatorial optitiwagprocess for finding the route, from a
source to a destination, with minimal cost in awwek. Traditionally, the focus was on
finding the shortest paths in networks, with pesitedge costs that represent distances

between the start node and end node. In what fel]leve address a brief overview of the
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most common traditional routing techniques, anch tive proceed to recent studies that have

been conducted on optimal routing under battergtramts in EVSs.

The traditional shortest path problem has beendbyosesearched and studied. The best
known static shortest path algorithm is Dijkstrfl®]. This algorithm, introduced by the
Dutch computer scientist, Edsger Dijkastra, is apfr search technique for efficiently
computing the shortest path between any two nodeseiworks, with non-negative edge
costs. Basically, when a source node is determihedalgorithm computes the most efficient
route (e.g., the route with the shortest distaficeh the source node to each other node in
the graph. This algorithm may also be applied tmmate the most efficient route from a
known source to a known destination by terminatingvhen the optimal route to the

destination is found. The performance of Dijkagtralgorithm using the array data structure
achieves a running time oO(n?), and the binary heap achieves a running time of
O(mlog n), wherem and n are the numbers of links and nodes respectivegbel:

correcting algorithms with optimality condition arequired if the network has some negative
edge costs. These algorithms are able to changalibts of edge costs until all edge costs
satisfy the optimality condition. The performandesoch algorithms with a first-in-first-out

(FIFO) queue achieves a running time@fmr) .
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2.3.1 Optimized Routing in EVs

EVs, powered by constrained rechargeable battesiesexpected to shape future traffic.
Designing optimal energy/time routing algorithmss lieecome an essential requirement for
broader use of EVs. The EV battery constraintdroitéd battery capacity and regenerating
energy during downhill and deceleration phases iregnovel routing techniques. The

optimal energy/time routing therefore creates nalgbrithmic challenges for navigation

system designers and route planners since theirisaitn compute the most energy/time-
efficient routes rather than the fastest or shorwegs. The following paragraphs address

recent research studies and existing work condwtezptimal EV routing.

Artmeier et al. [3], proposed certain shortest pethniques that tackle energy-optimal
routing. They formalized efficient energy routinging constrained batteries as an example
of the constrained shortest path problem (CSP)atsulclassified the battery constraints into

hard and soft ones. They presented a shortest ghgthithm that takes into account the
battery constraints and solves the problem in aingntime of O(n®) .They also showed that

by an unfolding of a weighted routing graph, acalen and deceleration cost values for road

edges can be considered.

Jochen et al. [29] showed that the battery comdsaf EVs are formed as cost functions on
road segments satisfying the FIFO property, and,taiBellman-Ford algorithm can be used

to solve the problem. They employed a result byndoh [30] and some significant
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observations about Dijkstra [16] under non-constige costs to obtain aD(nlog n+ m)
query time after ar©(nm) pre-processing phase for any road network weighvidd energy

edge costs. They also demonstrated that if theggrexcuperation was induced in a very

natural way, the pre-processing stage could betednit

Martin et al. [36] have proposed a solution to pineblem of energy-optimal routing taking
into account the battery constraints using a fraatevof the A* search algorithm. They

modified the A* algorithm and showed that specific domain knowéedguld be exploited
to give rise to a heuristic to solve the problemainunning time ofO(n*). To model the

energy cost function of each road segment, thegbbshed two different types of energy:
potential energy, which can be either consumedeouperated, and loss of energy. The
battery constraints were incorporated into the firedli algorithm by adjusting them
dynamically in order to compute the most efficiemergy-based path during the search.
Thus, they proved that the battery constraints ccdod tackled in the same way as other

parameters given at query time.

Noticeably, optimal routing of EVs is different frothe traditional routing that has no
constraints associated with it. For EV energy/tiopgimal routing, apparently the edge costs
cannot be assumed to be distance values, so umuldirsg edge costs as energy/time values
and applying traditional techniques is not feasililae battery constraints as well as the
dependence of the graph weights on energy or ttavel values have made routing of EVs
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more complex. Dijkstra’s algorithm can be integdateéith other pre-processing techniques
such as contraction hierarchies [21], highway mddni@s [44], and transit vertex routing [5]
to form state-of-the-art route planning. In additio the exclusion of traditional techniques
and algorithms from EV energy/time-optimal routisgme other techniques based on global
graph analysis to eliminate negative weights [38]reot applicable because some parameters
involved in the computations of energy/time cosichions are known only at query time.
Bellman [8] has introduced a solution for findiniget shortest path of weighted edges
working with graphs with arbitrary weights. Thisl#gon, however, does not consider the
EVs’ battery constraints. While there are extensiohthe shortest path problem to consider
these constraints [31], these extensions are gené&raown to be NP-complete [20]. The
recent studies that have been conducted to tagkimal routing of EVs [3, 36, and 29] are
still incomplete since all of them have focusedoptimal routing that is based only on the
energy cost aspect and neglected the problem wélttame-optimal routing under battery
constraints. Thus, optimal routing based on tréve¢ costs of road segments under battery
constraints has not been addressed yet. In additroe complexity matters in any solution

proposed to the problem of EV routing. For examitie,solution proposed by Artmeier et al.
in [3] has a worst case time complexity @fn*), which makes this solution not a preferred

choice of navigation system designers and routaepta In fact, it is shown in [3] that a
modified version of Bellman-Ford is able to sole problem; however, Bellman-Ford can

only ensure a running time @(mr) . While the solution introduced by Martin et al.[B6]

has a time complexity o®(n?), it is still incomplete. First, the energy coshétion used to
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model road segment costs is also not complete embggy cost function proposed by Martin
et al. breaks down into potential energy, which banconsumed or recuperated along the
path, and loss of energy due to aerodynamic antioini resistance. This energy cost function
does not consider other energy forms that may oetomg a certain path, such as the
energies dissipated and recuperated during actielerand deceleration phases or the
dissipation of energy by on-board electric devicasch as air conditioners, radios, etc.
Moreover, other factors that affect the energy oomsion of EVs are not considered, such
as the driving-style coefficient, which represedifferent styles of driving for different
drivers. Second, the solution computed by thAe algorithm here is not verified in its
optimality. In other words, it is not proven thhetsolution obtained is optimal by satisfying
the optimality conditions of the\ algorithm. Finally, the solution introduced by Hen et

al. in [29] has a time complexity dd(mn) and is dependent on a pre-processing phase for
any road network. Techniques that are based opnoeessing and global graph analysis to
eliminate negative weights cannot be applied sisoee parameters involved in the
computations of energy/time cost functions are dmigwn as real-time information at query

time.

2.4 Driving Range Estimation in EVs

Driving-range estimation is becoming important tdh@ncing the popularization of EVs. To
reduce drivers’ concerns about range of drivinghméques to accurately estimate how far
drivers can travel are needed. Only one researdly spresented recently by Yuhe et al.
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[55], tackles the problem of remaining driving rangstimation as a solution to reduce the
effects of range anxiety on drivers. This studyposes a telemetric basic service for EVs
that is designed to provide an estimate of the neimg driving distance, classifying the

process into rough range and precise range estimafhe rough range estimation is based
on the maximum driving distance determined by thenkaker as well as the battery charge
level and its maximum capacity. The approach staytperforming rough range estimation

until the battery charge level reaches a preseshuld value that is determined in advance.
Then, precise range estimation, which is basedoompating the energy cost values of road

segments, is performed and displayed to the user.

However, this approach is still incomplete for mamasons. First, the most important
problem for EVs, battery constraints, is not adskeds Even when the EV is moving in a
random manner without having a specific destinattbhe battery constraints must be taken
into account. Second, the energy cost function usélde precise range estimation approach
is not complete. For instance, the energy costtioma@oes not integrate the acceleration and
deceleration energies at traffic lights. Also, ibgs of energy due to rolling resistance is not
integrated into the energy cost function. Thirek siudy shows that precise range estimation
is very expensive in terms of time and computirgpueces because the estimation process is
performed through six stages, including a map-miagchpproach and shortest distance path
finding approach, which also address inaccuracth@énprocess. Rough range estimation is

generally less expensive; however, it is also asred to be inaccurate because it is based
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on the maximum driving distance specified by the Bgker. Therefore, this approach is
generally not sufficient to reduce drivers’ anxietpout being stranded. Reducing range
anxiety may be achieved by some other strategy tighndrivers are guaranteed to reach at
least one charging station during their traveliegpecially when they have no specific

destination.

2.5 Summary

This chapter presented a broad background on BEMduding their environmental and

economical impacts as well as the efficiency predidy the use of EVs on roads. It also
briefly discussed challenges and related issuexcia$sd with the growth of EV technology

and electrifying the transportation infrastructusech as the limited cruising range of the
battery, battery durability concerns, long chardiinge, and charging infrastructure. A brief
background on PHEVs was presented, showing therdiite between PHEVs and EVs. A
brief background on traditional routing techniquasd algorithms such as Dijkastra’s
algorithm was provided. Then, research work thateal at optimized routing under battery
constraints in EVs was reviewed. Finally, a contiaekground on driving-range estimation

as a solution to reduce the effects of range aywes also presented.

It has been shown that despite the diversity cfaesh in the area of optimal routing in EVSs,
existing work does not fully solve the problem @timal EV routing; specifically, optimal
routing of EVs has been limited to energy-optimauting without representation of a
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complete energy cost function, while optimal tratiele routing under battery constraints
has not been addressed at all yet. Moreover, th& eanducted to date on driving-range

estimation has not resulted in an approach to feltijuce drivers’ range anxiety.
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Chapter 3:

Optimal Energy/Time Routing in EV

3.1 Introduction

Among the main barriers to widespread adoption \é$ 5 their driving range limitation
caused by batteries. The limited cruising rangaveenh battery charges has become a
fundamental obstacle for manufacturers wishing tmaden the adoption of EVs. The
sensitivity of power consumption in EVs is critigalmportant; hence, early studies in the
area of optimal routing for EVs [3, 36, and 29] édwocused on optimal routing that is
based only on energy costs. Due to their limitegacdy, batteries have two main
constraints that cannot be violated while findirige toptimal energy route. The first
constraint is that a path cannot be used if it di@senergy cost that exceeds the battery
charge level. For the EV driver, taking such a patults in not reaching the destination
and being stranded en route. The second constsathat if the battery is fully charged,
then any path with a negative energy cost cannaideel. Since the battery has only a
limited capacity, storing energy from downhill cealeration phases in the battery is only
possible if there is sufficient free capacity, whimeans recuperation is no longer possible
when the battery is fully charged. These two ceaiists demonstrate that the optimal

energy routing problem of EVs is complex and reggigin efficient algorithmic solution.
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On the other hand, optimal travel-time routing unbattery constraints in EVs has not
been studied. Optimal travel-time routing in EVslso important and is a major concern
for drivers wishing to manage their trips convetlienThe estimation of travel-time

should take into account congested conditions andlent risk factors so that drivers can
avoid unexpected delays and take the most effidieavel-time based routes to their
destinations. The battery constraints must not ibkated in the energy and travel-time
aspects. Obviously, there is a necessity to restileebattery constraints problem for
optimal energy routing as doing so will allow EMs éxtend the cruising range of the
battery. However, the battery constraints probleustnalso be resolved when the optimal
routing is travel-time based in order that an EWelris certain to reach his/her destination
safely. In other words, to prevent the driver frbeing stranded during or at any point of

travel, the battery constraints problem must belvesl while finding the travel-time route.

3.2 Energy-Optimal Path Problem under Battery Constraints

Assume a directed graph is givéh= (V, E) having|V| =n and|E| =m, to represent a road
network, where verticad]1V represent points, and edge<] Erepresent connections

between these points corresponding to road segméstsume for each vertex, an

elevationu:v — R is given, and for each edge, a lengttE - R"and a speed limit
S:E— N are given. A pathP can be defined as a sequencekofertices (v, \, ,....... M),
and the edge is two verticefs, v, )OO E with i=1,2,........... k- . Assume that the

vehicle is traveling on a route at the average d¢mpéeach road segment, and that when it
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transits from one segmelf;,Vv,,) to the following one(v,,,Vv,,), it adapts to the new

higher or lower speed. Making this setting, consitie graph depicted in Figure 3.1 as a
simple theoretical example to explain the compiexit resolving the energy-optimal

routing problem under battery constraints. To dove® define the following parameters:

the battery maximum capacityG,, OR"*, the battery charge level) OR* , where

J < C,,., and the remaining free capacity of the batteryJ R , whereU =C__, —J.

Figure 3.1: Simple Example of Energy-optimal Path.

Given the graph depicted in Figure 3.1 above asramngy weighted grapls (V, E, ¢ ),
two verticess, tJV, an initial charge level , and a maximum battery capaci®y,,, , the

energy-optimal routing problem is determining ahpaPin G, from sources to
destinationt with minimal energy cost. The energy-optimal reutesre correspond to

paths that are feasible—ones that satisfy the fyattenstraints—and where the remaining
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battery charge at the end of the path is maximraégoivalently, where the remaining free
capacity of the battery is minimal. Each vertaxin the graph has an elevatiar{u)
resulting in a potential enerdy, (z(U)....), which is shown next to the label of each vertex.
For instance, the potential energy of verteis 4 and vertexa is 2, meaning that the total

energy cost.(a b) of the edge(a, b) can be computed ds- (4- 2)= 3.

Considering the two battery constraints of limitedergy supply and the ability to
recuperate energy into the available free capaastyyume a fully charged batterysatvith
J=C,,=5. Now if the battery constraints are not considethdn the energy-optimal
path is (s, ¢, t), with a total energy cost of 4 energy units. Hogrewt is not possible for
the EV to travel over the road segméstc) under the effect of battery constraints because
it would require 6 energy units. Therefore, the rgp@ptimal path under battery
constraints is(s, t), with energy costs of 5 units. Analogously, assuhe EV starts at
vertex ¢ with C =5 andJ= <« The road segmer,t) offers a negative energy cost
c:(c t)=-2 units, but the battery in this case can store d@ly,—J=5-4=1 units.

Resolving the battery constraints is extremely irtgod, and necessitates flexibility in the
search technique required to solve the problemcelethe algorithmic solution posed to
the energy-optimal routing problem must carefudligd into account the battery constraints

while computing the energy-optimal path in any roativork.
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3.3 Travel Time-Optimal Path Problem under Battery Constraints
The optimal travel-time path problem correspondsamputing a pathP  in a graph,G,

from sources to destinationt with minimal travel-time cost. Although the optihmauting
problem here is travel-time based and not energgdyahe battery constraints must not be
violated; otherwise, reaching the driver's desioratis not possible. The optimal travel-
time routes here correspond to paths that arebleasbnes that satisfy the battery
constraints—and where the time spent travellinghfsmurces to destinationt is minimal.

In this case, the energy cost along the path isnecessarily minimal since the major
concern for drivers is the optimality of travel-Bngost. Rather, the energy cost of a travel-

time-optimal path is the accumulated energy altwegoath.

Let us consider the weighted graph depicted inréidu2 as a simple theoretical example
for studying the travel-time-optimal path problemder battery constraints. Given this

graph as a travel-time and energy weighted gi@Gp{v, E, ¢, ¢), two verticess, tOV, an

initial charge levelJ and a maximum battery capaciy, ., the optimal travel-time

ax
routing problem corresponds to finding a pakhin G, from sources to destinationt

with minimal travel-time cost. Let us assume tha&ights in blue represent energy costs,
while weights in black represent travel-time costgluding congestion conditions and

accident risk.
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Figure 3.2: Simple Example of Travel Time-optimatH

Taking into account the two battery constraintdirafted energy supply and the ability to
recuperate energy into the available free capaastyume a fully charged batterysatvith
J=C,, =9 energy units. Even though the pac,t) is the most efficient travel-time
one from sources to destinationt, it is not possible for the EV to travel over tlpiath
because the road segméntc) requires 10 energy units, which exceeds the lyattearge
level, and such a path must not be selected bpattefinding technique during the search
process. Therefore, the travel-time-optimal patdeurbattery constraints igs, a, b, g 1),
with total energy costs of 7 units and total tratumle costs of 14 units. The pa(h, t) is

not considered optimal here despite the fact thhts less energy costs, because it has
higher travel-time costs. Hence, the algorithmituson required to resolve the travel-
time-optimal path problem must carefully take iattcount the battery constraints and not

violate them while computing the optimal path.
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3.4 Computational Considerations

The complexity of solving problems by searching ,amd particular, finding optimal
solutions in graph networks is measured using wha&hown as asymptotic complexity,

that is, O( ) notation and NP-completeness. A number of critesia be used to measure

the performance of any algorithmic solution to greblem of finding optimal routes for
EVs; The performance of the search technique caassessed based on four criteria:
completeness—defined as the assurance of obtaiaingplution if there is one;
optimality—describing the verification of the sdartechnique in finding the optimal
solution (one may verify whether the optimality ddions of the search technique are
satisfied so that the solution found is guarantedoe optimal); time complexity—defined
as the time that the search technique takes innfind solution; and space complexity—
defined as the memory space required to find aisaland finish the search. Because the
problem of optimal routing under battery constraiim EVs is generally classified to be
NP-complete [20], the following chapter introdudks solution proposed in this thesis to
solve the problem. The posed solution relies onaméwork for a multi-criteria routing
technique that uses a heuristic function during search to solve the problem in

polynomial time.

3.5 Summary

This chapter has addressed the problem of optimaftgg/time routing under battery

constraints in EVs. The effect of battery constsaion the optimal routing process with
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respect to energy and travel-time aspects was stisdu Thus, the chapter stressed that the
algorithmic solution posed to solve the problemoptimal energy/time routing in EVs
must carefully take into account the battery caists and not violate them while
computing the most efficient routes. To this enge tomplexity and computational

considerations of the problem were briefly discdsse
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Chapter 4:

Optimal Path Finding: A Multi-criteria Model

4.1 Introduction

This chapter presents the posed solution to thielgmoof optimal energy/time routing under
battery constraints in EVs. The recommended solutmnsiders not only energy, but rather
it provides drivers with more freedom and conveoéby including travel time in finding
optimal routes. The proposed technique is a mulita model within a framework of the

A’ search technique that relies on a heuristic fonatiuring its search, and thus the problem
is solved with a worst case time complexity@¢n’). This model functions in two modes:
the A" search algorithm has been modified such thamnitogarun for both energy and travel-
time modes based on drivers’ needs. To give drivesse freedom to plan their trips, two

separate algorithms have been created by develapiagmodified A algorithm for each
mode. The problem of battery constraints is solwedlynamically adjusting the energy cost

function in the algorithm during the search process

For the energy mode, the modified algorithm isezhEnergy ModeA Algorithm; it takes
the battery constraints into account and excludes dptimality of travel time, thus

computing the most energy-efficient path amongpaéisible paths. For the travel-time mode,
the modified algorithm is calleflime Mode A" Algorithm; it takes the battery constraints
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into account and excludes the optimality of enecgymputing the most travel-time-efficient

path among all possible paths. The battery comésrare taken into account by the both

modified A" algorithms and not violated in either; consequerdtivers have assurance of

reaching their destinations if they use the optiszdilition.

4.2 A-Star Search Technique

A’ Search, pronounced “A-star search”, is one of tbetrmommonly known forms of best-
first search. TheA algorithm has two main significant properties. Eiisa route exists, it

returns the most efficient route from a given seuca given destination. Second, uses a
heuristic function (i.e., an estimate) to searchasothat are considered more likely to have

the cheapest cost, which allows one to obtain itenal route without searching the whole

network.A Algorithm generates two node lists: a closed lgitjch contains all the nodes

that the algorithm has explored so far, and an d@gnwhich has all the nodes that the
algorithm is currently working on. In order to evate nodesA™ Algorithm combinesg(n),

the real cost value to arrive at nodeand h(n) , the heuristic (i.e., the estimated cost value)
from noden to the destination.

f(n)=ga(n+Hn (1

In Equation (1), f(n) is the most efficient solution-estimated cost tlglownoden. A

Algorithm states that if one wants to compute thgnoeal path cost, then the node having the

smallest value off (n) is the best choice. This strategy is more than gpmte: it is
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reported in [47] that if the optimality conditiorsf A are satisfied byh(n), then A

technique is both complete and optimal.

4.2.1 Heuristics

The performance ofA" search is critically dependent upon selecting an@wiate heuristic.
A’ Search is ideal in its performance when the hearigin) equals the actual path cost. If
h(n) is chosen to be equal to the actual cost of regahi& destination through noate then

A follows only the most efficient path and never dstigates nodes that are not in the
solution. The actual cost of the path is genenmatliyknown, and obtaining it is the reason for

running a path-finding technique. H(n) is chosen to be greater than the real cost of the
path, thenA™ can be faster but is less accurate in findingstbletion; as a result, it is no
longer guaranteed that the solution found is odtiflaerefore,h(n) must never be greater

than the actual path cost.

4.2.2 Conditions for Optimality

A’ Search requires two conditions for optimality. Timst is to haveh(n) be an admissible
heuristic, one that does not overvalue the trub past. As defined previoushg(n) is the
real cost to arrive at node, and we havef (n) as stated in Equation (1); therefore, fgn)
to be an admissible heuristi¢,(n) must not overestimate the true cost of a pathrigeaat

node n. "Admissible heuristics are by nature optimistiecause they think the cost of
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solving the problem is less than it actually is7]4Since a straight line is always the shortest
distance between any two nodes, and it can nevevémstimated, it is considered a simple
example of an admissible heuristic. The second itongd which is much stronger and a

more important condition for optimality, is consisty. If a heuristich(n) satisfies the
condition stated in Equation (2) below, then itcsnsidered a consistent heuristic. In
Equation (2),h(n) is the heuristic from nod@ to arrive at the destinatior(n, n) is the
true cost between node and the following noden, and h(n) is the heuristic of travelling

from n' to arrive at the destination.

h(n) < o(n )+ K 1) (2

4.2.3 Optimality of A

For the solution provided by\" to be optimal, the following properties have todagisfied:
“the tree-search version oA’ is optimal if h(n) is admissible, while the graph-search
version is optimal ith(n) is consistent” [47]. This research pays more attartb the second
of these two properties because, as stated in fd&@jconsistency of a heuristign) implies
that h(n) is admissible. Therefore, the following claim isaddished:“if h(n) is consistent,
then the values off (n") along any path are non-decreasin¢7]. This claim has been

proven in [47]. For the convenience of the reatle, proof is presented as follows: let us

assume than' is a following node o, then
g(nM)=9(N+d¢nn) 3
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f(M=g(M+HM)=dn+ ¢nh+ 0Dz G ()= (f)n (

4.3 Energy Mode

The A search algorithm for this mode will compute the tmefficient path in terms of

energy cost among all possible paths. Working acthststic networks, the algorithm is

modified to satisfy the battery constraints. Thietfconstraint of the battery is that a path can
no longer be used if it has an energy cost thatesater than the battery charge level. This
constraint problem seems to be more significardesensuring that the driver is not stranded
en route is extremely important. We propose th&t tonstraint problem be solved by
turning the path energy cost value into infinithu$ excluding the path from the search

process.

The second battery constraint, which matters ontii edges having negative energy costs,
is that recuperation, that is, gaining energy frdawnhill edges and during deceleration
phases, is not possible if the battery is alreadly tharged. For this constraint problem, we
propose dynamically adjusting the energy cost foncin the A" algorithm such that the
energy gained from downhill edges and during deagtn phases is stored in the available
free capacity of the battery until the batteryuf.fThe rest of any energy gained is lost. If
this process is implemented along the path wheri&ege is recuperated energy, this energy

can be made use of, extending the cruising ran¢feedbattery.
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Assume a directed graph is givéh= (V, E) having|V| =n and|E| =m, to represent a road
network, where vertices[1V represent points, and edged] E represent connections

between these points corresponding to road segméswime that for each vertex an
elevationu:v - R is given, and for each edge a lengtlt —~ R* and a speed limiB:E—

N are given. A patlP is defined as a sequencelofvertices(v,, v, ....... V. ), and the edge is
two vertices(v,,v,,)J E with i =1,2,.......... k - . When making this setting, we consider

the amount of energy needed to travel through la ipathe network as well as give an idea

about how the battery constraints can be modeleztetore, the following parameters are

defined: C_,, is the maximum capacity of the battery, is the charge level of the battery

whereJ < C

max ?

U is the remaining free capacity of the battery, ¢ =C__ —J, and A"
is the amount of energy consumed or gained alopgtla. We consider different forms of

energy costs that can occur from taking a [Rith= (v, v, .......... Vv, . as follows:

Potential Consumed Energy

We define a functionE (u(d)) that represents an elevation of a ver{ex. When the EV
travels over an edgg, b), the potential energ¥ (a, b) = u(B - U g is consumed or drawn

from the battery only if the EV is going uphile., u(b)> u(a)). Then, the energy cost of an

edge(a, b) induced by the potential consumed energy funcsatefined to be

Coo(a b):”i[mq 1L 5)
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where, m is the mass of the vehicle, including payloadjs the gravitational acceleration
factor, ands, is the efficiency factor. This potential consunetergy on the road segment
(a,b) takes the following values:

0 if k=1

0 if k>1, A< (
A if k>1, EA*<J
o if k>1, A< >

Coc(ab) =

Potential Gained Energy

We define a functionE; (u(a) that represents an elevation of a vertex. When the EV

travels over an edg@, b), the gained energi;(a, b) = u(g— u B is regenerated and stored
in the battery only if the EV is going downh{ile, u(a)> u(b). During downhill phases, the

motor can be turned by the wheels acting as a gemeto recharge the battery. Then, the

energy cost of an edga, b) induced by the potential gained energy functioteined to be

Cos(a b =n[md ¢ a— ¢ P] (6)
This potential gained energy is stored in the Ipatéad is lost only if the battery is fully

charged. It takes the following values:

0 if k=1

0 if k>1 &A% <J
-N\“ if k>1, OA*<U
A if k>1, GA*>U

Cec(ab) =

41



Note: When the road segment is a flat surface, meahiaigthe start node and the end node
of the edgda, b) have equal elevations, then the potential enexgyegligible.

Loss of Energy

Due to the aerodynamic and rolling resistances,defne a functionE, (I(e),  9) that
models loss of energy to the environment. WherEidravels over an edg&, b), the loss

of energy occurs even if the vehicle is going doMntwhich means this energy cost value
cannot be recuperated. However, the aerodynamitaasse component, which is the right
hand side of Equation (7), is not dissipated angl davalue of zero if and only if two
conditions are satisfied: first, the wind is in g@@me direction as the vehicle, and second, the

wind has a speed that is greater than or equbktspgeed of the vehicle.
1 1 -
Ce(a, b)=,7—[ fmala b+§p Ag 8 ak (Iap (i

where f, is the friction coefficient,pis the air density coefficientA is the vehicle’s cross
sectional areag,, is the air drag coefficientS is the average speed on the e(lgeb) and|
is the length of the edg@, b) This loss of energy on the road segmémtb) takes the

following values:

0 if k=1

A*if k> 1, A*>
A*if k> 1, A* < (
o if k>1, A< >

Ce(ab=
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Acceleration and Deceleration Energy

We define a functionE, (P, t, ,(€) that models energy consumption due to mechanical

loss, which consists of acceleration energy reduicebring the EV back up to the average
speed, and then deceleration energy used to bregehicle to a stop. The energy dissipated
by the EV during idling is zero. When the accelergtedal is pressed down, electric current
flows from the battery to the motor to turn the ieddis wheels. This energy cannot be

recuperated, and it is spent only during accelemgthases. However, when the driver’s foot
comes off the accelerator pedal, the motor cah lstilturned by the wheels acting as a
generator to recharge the battery [55]. If the E&¢ h tire with diameter, then the angular

velocity of each tire is
w == (€

where S is the linear speed (i.e., average speed on the iedm/ s), r is the diameter of

the tire inm, andw, is the angular velocity of the tire irad / s. If the EV has a gear ratio
of g,, then the angular velocity and power of the materas follows:

W, =W, g 9)

P=Tw, (ac

whereT is the torque inN.m, w,, is the angular velocity of the motor irad / s, and P is

the power of the motor irwatts. Thus, the energies dissipated and recuperatedgdur

acceleration and deceleration phases on the rapgwlese (a, b) are
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1 .
CAE(a’ b) =—P tA (11‘
Ce(ab)=nm, Pt 12
wheret, is the time that the vehicle takes to acceleratklup to the average speed, and

is the time that the vehicle takes to come to apieta stop.

Driving Style

In addition to the four forms of energy represerabdve, we also consider a driving style
coefficient to represent different styles of driyirAfter calculating the four energy forms of
road segmenta, b), the total energy cost function on a road segngast) is multiplied by
the driving style coefficient. For normal drivinthe driving style coefficient may take a
value of 1, and for aggressive driving, the co&fit may take the value 1.2. The driving
style type may be set by drivers according to tteuing behaviors.

On-Board Electric Devices

We define an energy form for the energy consumeBWs on-board electric devices, such
as air-conditioners, windshield wipers, etc. Tlyset of consumed energy is determined by
the power drawn by the electric device, which sadic value provided by the vehicle maker
and the time that the electric device is in useaddition, this type of consumed energy is
considered to be spent directly from the battergt ant part of the energy cost function
occurring from taking a path. Therefore, the batteharge level must be periodically
updated. For example, if one of the on-board atectevices is turned on/off, the battery

charge level is updated. Updating the battery ahdegel can also be timer specified; for
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instance, users may want the update to be madg averminutes. This type of energy is

defined by the following form:
Cep = Z(PED(i) t)* Statug, (13)
i=1
where Statusg, has a value of O if the electric devices off; otherwise, it has a value of 1;

t;, is the time that the electric devicetakes in the statusn; P, is the power drawn by

the electric devica, and n is the EV's number of on-board electric devicese Hattery
charge level is updated using the following form:

J J-C, (14

updated —

Total Energy Cost

The complete form of the total energy cost funcborthe edg€a, b) is as follows:
Ce(ab=[Ce(abh+ G(ab+ G(apt G ak G(.ap Dy (15

where the total cost of a paf = (v, \,,.....,\, ) is

j=k-1

Ce(P)= Y. G, V) a6

One interesting strategy to solve the problem argyroptimal routing in EVs is to first
transform the weight functio€; into a positive reduced weight functid@®}, , in which we
use a potential functiofl assigning to each vertex a potential as deschlgddehlhorn and
Sanders, 2008, in [39]. Assuming no negative cyebeist, it is proven that whenever a

function N satisfies the fact thafl(b)-M(a) < C.(a b and alsoC, is determined as
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C,(ab=C(abh +M(g-nN(h, then the optimal routes in the weighted graph
(V,E,g,) are also the optimal in the weighted graph E,c.). This idea is used in
Johnson’s algorithm [30] by applying the Bellmandralgorithm as a pre-processing stage.
Then the problem of the shortest path in the wedhgraph (V,E,g,) is solved by
Dijkastra’s algorithm. The important observationrdjeand also stated in [36], is that
according to the energy cost function defined ini&gpn (15), the potential functiol can
be inherently obtained without performing a pregassing stage. In other words, the
potential energy functiomr—resulting from an elevation of a vertex in the giged graph

(V, E, ¢ )—implies a potential functiorf1 resulting in a positive reduced weight function
C,.
Lemma 1: rrimplies a positive reduced weight functiog.

Proof:

C.(ab=G(abh+M(3d-n(h
C,e @b} CGe @by G @by (byN (apn (a-n (k
L, &b} Ce @by G @b)= 0

where energies during acceleration and decelerphiases on a road segméatb) take the

following values:

0 if k=1

-A* if k>1, ©A*<U
Ge @bEA"  if k> 1, 0>A">U
-A if k>1, A2 0
A if k>1, A< O

0 if k=1
A*if k> 1, A*> 0
A*if k> 1, A< 0
o if k>1, N>

Cy(ab=

46



where A, is the amount of energy consumed or gained ondhd segmenta,b) in the
weighted graph(V, E, ¢,). Therefore, there is no need to perform the poegssing stage
that is performed in Johnson’s algorithm, and treblem can be solved i®(n?) by means

of the A" algorithm. TheA' algorithm for the energy mode is modified such thatenergy-
optimal path is determined in the weighted grg@hE, ¢,). The battery constraints for the
optimal path, however, are dynamically adjusted @sblved based on the energy costs in

the weighted graplfV, E, c.). Figure 4.1 in Section 4.2.2 depicts a slightlydified version

of the A" algorithm to resolve the problem of energy-optimeaiting.

4.3.1Energy Mode Heuristic Function
For the heuristic function of the energy cost ie theighted graphV, E, g, ), the air-line

distance and the minimum speed over all speedsliané used. Let us define two vertices,
u andv, and a destination, Obviously, the air-line distande is a consistent heuristic for a
road length.

I"(u,t) <l u,v)+1"(v,t) a7

Therefore, the following heuristics are defined:

R ()= fmgi(u§+2 0 Ag 8, (u) (18
(=T 3 g g (19)
h(uy=T e g g (20
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where
h(u)=h(u 9+ h(ud+ R(u) 21)

Thus, we write

Y= Emgl(ud+2p Ag §, Cup+ Tn g e T3 g < £(y.

Lemma 2: The heuristich(u, t) is consistent in the weighted graph, E, G, ).
Proof: Since h(u,t) is linearly increasing inl, h(u,t)< h(u Y+ v ). As h(ut) is
monotonic in Sandl, h(u,v)< C(uy V) for all uandv for which C(u,V) is defined, and

therefore,
h(u, )< C(u Y+ Hv ).

In addition, the following is defined:

V(u,v) = f,mg+%p Ag S( b+ TS(;J’V) g At Tw 9 o

V’: frmg+%pA§/ %in + Tﬁ gr At+ Tﬁ g Dt
r r

Since S, is a lower bound ofS,,,, V is also a lower bound o (u,V) and therefore

u,v)?
consistency follows down from

h(u,t)< V(u,V)I(u, V+ V1(v 1

O h(u,t)< C(u, )+ Hv )

which proves that the heuristigu, t) is consistent in the weighted graph, E, ¢, ).

48



4.3.2 Energy Mode A-Star Algorithm

The A" algorithm, depicted in Figure 4.1, is used for émergy mode in order to compute
the optimal path in terms of energy cost. Working siochastic networks with weights
representing energy costs, the algorithm is matlifee handle the battery constraints. The
battery constraints are resolved and verified basethe energy costs in the weighted graph
(V, E, &), while the energy-optimal path is determined & weighted graplfV, E, ¢,). The
algorithm is modified to tackle the first constrtaproblem by turning the cost value of the
path into infinity and thus excluding the path fréhe search process. The solution to this
constraint problem is stated in line 7 in the allipon, which says that any possible road
segment to use iV, E, ¢.) must have a cost valug(u) , that is less than the battery charge
level J. In addition to this modification in line 7, in eny iteration, the algorithm will

always choose the vertexin Q with minimal g(u) + h(u), (i.e., for which the current costs
plus the estimated cost (v, E, ¢,) are minimal, is removed fror® and expanded). During
the expansion, a successoof u is added taQ if its new path costs given by(u) + C(uy, V)

are smaller than the so-far known cost value. tteoto be able to return the cheapest path
(i.e., the path having the least energy costs)ctiwces for building up a shortest path are

recorded via functionpin lines 3 and 16. Then, the optimal path is rezdrmia functionp
in line 11. The energy cost of the sourgés), is initialized with zero in line 4. The second
constraint problem is solved by dynamically adpgtihe energy cost functions that are

included in the total energy cost functi@p as stated in Section 4.2.
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Algorithm 1: Energy mode - 4™ algorithm

Inputs: directed weighted graph with C; and O, the energy cost functions; C___, the maximum
Capacityof the battery; J, the battery charge level; 5 source; and ¢, destination.

Outpui - energy-optimal path from source to destination.

1- Begin

2- Foreach vertex vin [ do

3- |_g['1-',|<— = ; p—null;

4 g5~ 0;

3- 0« {sh

6- While O == do

- Choose u from O with minimal g @ + &2 (@ £ in (7, E ¢ )and
with g () <.JFin (V. E.c.)

3- if all paths in O have g () = J then

g |— break;

10- if u=1¢ then

11- |— return p;

12- 0 « O {u}

13- Foreach successor vof udo

14- g gl + Coluy)

13- if g' < glu) then

16- g g ph)eu

17- 0« gUpt

Figure 4.1: Energy Mode A-Star Algorithm.
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4.4 Time Mode

As mentioned earlier, in this mode, t#é algorithm is used to compute the most efficient
path in terms of travel-time cost among all possiphths. The travel-time cost is based on
real time information of traffic density, so conties and accident risk are included in the
estimation of travel-time cost. During the searahthe most efficient travel-time path, the
battery constraints are taken into account. A psithot feasible if it does not satisfy the
battery constraints. Even when drivers care onbyuélime in their traveling, any path with
an energy cost that is greater than the batterygehkevel is excluded from the search
process by turning its travel-time cost value imfinity. Each road segment has an average
speed that is assumed to be a function of theidrdénsity depending on traffic flow and

concentration.
_qgq .
S(tr) =— 2.
(t) =1 (

where q is the traffic flow invehicle/hourand k is the traffic concentration iaehicle/km
Jan Rouwendal states in [43] the following obseovest about Equation (22):

1) The speed decreases if the traffic concentratioreasesS(tr) - 0 as k- o, which
means it becomes more costly in terms of accidskifrthe speed increases and more costly
in terms of time if the speed decreases when thetdkés a path that has high traffic
concentration.

2) The free flow spee®’ is finite and is defined as the speed chosen whetraffic density

approaches zero (e.d5, =50 km/ houinside cities).
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S =lim qt) (2:
tr-0
Then the travel-time cost function can be written a

Travel cost = time cost + safety cost

_ bravel 2
q_am+ums (24)

If the cost of waiting time at traffic lights isaluded in the time cost component in Equation
(24), then the travel-time cost function can betemn as
Travel cost = time cost+ waiting time at signalsafety cost

t
S(tr)

C, =——+ b(tr) & (25

wheret =t +t According to Jan Rouwendal [43)(tr) must be increased in traffic

travel stops®

density, and it can be determined as

t

b(tr) =m

(2€

By substituting (26) into (25), the travel-time tésction of a road segmexa, b) takes the
following form:

3t
2 S(tr)

C(ab= (27

Equation (27) states that when accident risk i®lved in the travelling, the true value of

travel-time cost is about 50 percent higher that tf time cost [43]. Thus, the travel-time

cost function of a pattP* = (v, v,,.....,\ ) is
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j=k-1

C(P)= Y. CY, V) (28)

4.4.1 Time Mode Heuristic Function

For the heuristic function of the travel time casie air-line distance and maximum speed
over all speed limits are used. Let us define twotizes u,v and a destinatiort. As
mentioned earlier, in Section 4.2.1, the air-limgtahcel’ is a consistent heuristic for a road

length I'(u,t) <l (u,v)+I'(v,t). Therefore, the travel-time heuristic functionwgitten as

follows:
_3l'u,t) .
h(u,t)= 2 s (29,

Lemma 3: The heuristich (u, t) is consistent in the weighted graph, E, G).
Proof: Since h(u,t) is linearly increasing inl, h(ut)<h(u Y+ h(v). As h(uyt) is
monotonic inl and S, then

31 u,v)
2 S

=h(uv< G(u \)zg% for all u andv for which C,(u, V) is defined, and

therefore,h (u, )< G(u Y+ h(v )

In addition, the following is defined:

3 and V = 3

VY= os Y 28..

Since S, is a higher bound o8(y V), V' is a lower bound o¥ (u, v) and therefore,
53



h u,t)<V(uWi(uw+ VI(v 1)

0 h(u)<Guv+ h(v)

which proves that the heuristig(u, t) is consistent in the weighted graph, E, ¢).

4.4.2 Time Mode A-Star Algorithm

The A" algorithm, depicted in Figure 4.2, is used for tinee mode in order to compute the
optimal path in terms of travel-time cost. Working stochastic networks with weights
representing travel-time costs, the algorithm isliined to tackle the battery constraints. The
focus in this algorithm is to compute the optimattpin terms of travel-time cost; however,
the battery constraints must be satisfied alongptith so that the driver is ensured not to be
stranded. Therefore, a path with less travel-tiost cannot be used if it does not satisfy the
battery constraints. Any path with an energy cbat ts greater than the battery charge level
is excluded from the search process by turningratgel-time cost into infinity. The solution
to this constraint problem is stated in line 7he algorithm: any possible road segment must

have an energy cost valug,(u), that is less than the battery charge le¥el

In every iteration, the algorithm will choose thertex u in Q with minimal g(u)+ h(u)

(i.e., for which the current travel time costs pthe estimated cost are minimal, is removed

from Q and expanded). During the expansion, a successiru is added toQ if its new

path cost given byg(u)+ G(u V), is smaller than the so-far known cost value. Theices
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for building up a shortest path are recorded vizcfion p in lines 3 and 17. The optimal
path (i.e., the path having the cheapest travet tomst), is returned via functiop after
reaching the destination in line 11.The travel tiroet of the sourcey(s), is initialized with

zero in line 4. The second battery constraint liesolved in the same way as in the energy
mode section. The energy cost of the optimal tréwe path is accumulated along the path

from the source to the destination in line 15.
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Algorithm 2: Time mode - £ algorithm

Inputs: directed weighted graph with C, | time cost function; C; | energy cost function; C__ |
maximum capacity of the batters; J, battery charge kvel; 5, source; and f, destination.
Odput: travel ime-optimal path from source to destination.

1- Begin

2- Foreach wertex vin " do

3- |—gr_’v)<— = p ol

4 g« 0;

3- Q « {sh

6- While 0 == do

1- Choose u from O with g (1) <J and minimal g () + & fw )
3- if all paths in O have g (u)>J then

g |_ break;

10- if u=1 then

11- |_ return p;

12- 0 « o'W

13- Foreach successor vof udo

14- g & glu) + Cluy)

13- g. « g.(w) + C:(uy)

16- if g « glu) then

17- g eg; g bleg; peu
18- 0eoUm

Figure 4.2: Time Mode A-Star Algorithm.
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4.5 Summary

This chapter has presented a solution to the pnoldf optimal energy/time routing under

battery constraints in EVs. The proposed solutsoa multi-criteria model that functions in

two modes: energy mode and travel-time mode. W& fiitroduced the search technique
posed to solve the problem and its optimality cbods. Then, we presented in detail the
energy mode, including the energy cost function twenbines different energy forms used
to represent energy weights on road segments irr@at network. We explained how the
battery constraints can be dynamically resolved iandrporated into the search technique
during the search process. Finally, a time mod@rtivide the travel-time-optimal path,

including the travel-time cost function used to resgnt travel-time weights on road

segments in any road network, was presented.
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Chapter 5: Experimental Work

5.1 Simulation Environment

This chapter reports experimental work performede&i and validate the proposed multi-
criteria routing technique. Matlab was used to twas the test and validation environment.
A 40-intersection road network is used to constrwerking scenarios to analyze the
performance of the proposed technique (Figure A& road network is constructed such
that roads intersect at various elevations. Rogthsats vary with respect to length, speed
limits (min/max), and average speed. The road nétvepans a 30kmx30km area. The
performance of the technique is tested on variouscg/destination scenarios. Sources and
destinations are selected randomly. In Figure thd ,source node is marked in red and the
destination node is marked in blue. The technigale operate in either of two modes,
namely, time mode, to compute the travel-time-optipath from source to destination, or

energy mode, to compute the energy-optimal patin Bource to destination.

The parameters of the EV and the environment afellasvs: mass of the vehicle including

payload,m=1200kg, the efficiency of the EMg = 0.8, the air drag coefficient;, = 0.24,
the cross sectional area of the vehicke=1.85n7, the friction coefficient, f, =0.9,the

gravitational factor,g =9.81m /<, the air density coefficientp =1.2kg /n?, the radius of
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the vehicle’s tiresy =0.25m, the maximum torque of the vehicl&,=250N m, the gear

ratio of the vehicleg, =1:6.572, and the maximum capacity of the battety,, =25 kwh.

® Regula Node

15 1 1 1 1 ®  Source
-15 -10 -5 0 8 ®  Goal

Road Segrment

Figure 5.1: Road Network with 40 Nodes.

The vehicle is assumed to be able to accelerat® upe speed ofi0OOkm /hour in 4.5
secondsand decelerate from the same speed to come tmplet® stop in 4.3econdsThe

total energy cost functiorC_, of each road segment in the network iskiah. The driving

style is assumed to be normal, with a driving stgefficient DS

coeff

=1. The waiting time at
a traffic light is assumed to bendnutes All the on-board electric devices are assumed to be
off, and therefore the energy cost functi@q,, the energy consumed by the on-board

electric devices, is negligible. The following dent present the results of the experiments
conducted under various operation modes, variouad r@onditions, and various

source/destination scenarios.
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5.2 Energy Mode Results

In this mode, the technique excludes the optimadityravel time and thus computes the
travel path with minimum energy cost. Thereforee tomputed optimal path here may be
longer in travel distance and in travel time, bptimal in energy. In order to make certain
that the computed paths are optimal, we verify dpimality conditions of theA” search

algorithm stated in Sections 4.1.3 and 4.1.4. Eselts are provided in two tables (Tables
5.1 and 5.2) in which the admissibility and coresisly conditions along the computed

optimal path are satisfied.

The results also include a number of figures ithtstg the constructed road network
marking the optimal path in green from the sourcdento the destination node, the battery
charge level along the optimal path, the energy obsach road segment, and the total
energy cost of the optimal path. Figure 5.2 depilets constructed road network with the
source node marked in red, the destination nod&edan blue, and the energy-optimal path,
computed by the technique, marked in green. Fomp#th marked in green to be optimal,

heuristic h(n) must be admissible and consistent along the pgaih.the admissibility of
h(n), the functionf (n), stated in Equation (1), must never overestintaddrue energy cost

of the path.
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-15 -10 5 0 =] 10 18

Figure 5.2: Optimal Path Energy-based Network.

Table 5.1, depicted below, illustrates the admiksilcondition satisfaction in the weighted
graph (V,E, g, ). The first column of Table 5.1 is evidence for thede indices of the
optimal path computed by the technique. The pahsswith the source node having the
index 3 and ends with the destination node havmegindex 23. In this operation scenario,
the EV has gone through ten nodes, including tikeceoand destination nodes. Additionally,

g(n), the real cost to arrive at node along the optimal path, is shown in the second
column. The value ofy(n) is accumulated along the path until it becomedated path cost

when the vehicle reaches the destination. The toidmn demonstrates that the values of

h(n) along the path decrease as the vehicle movesrdosthe destination. The fourth
column shows the values df(n), which is equal tog(n)+ h(n), along the path. The fifth

column demonstrates the total path cost, whichreésitgr than the values df(n), proving
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that heuristich(n) is admissible along the path. Thus, Table 5.1 detnates that the

admissibility condition in the weighted gra¥i, E, ¢,) is satisfied along the computed path.

Table 5.1: Admissibility Information of Energy-Optal Path

Path Node g(n) h(n) f(n) Path Cos
3 0 0.1361¢ 0.1361¢ 0.2730:
36 0.02684! 0.1194¢ 0.1463: 0.2730:
13 0.06312: 0.1086: 0.1717¢ 0.2730:
32 0.09059: 0.1006: 0.1912: 0.2730:
22 0.1137: 0.08516! 0.198¢ 0.2730:
2 0.1411! 0.05953! 0.2006! 0.2730:
37 0.1699: 0.03519 0.2051: 0.2730:
21 0.198" 0.02723. 0.2259: 0.2730:
14 0.2288t 0.02114: 0.2t 0.2730:
23 0.2730: -0.001663 0.2713 0.2730:

Table 5.2: Consistency Information of Energy-Optifath.

h(n, t c(n, v h(v, t
0.1361¢ 0.02684¢ 0.1194¢
0.1194¢ 0.03627 0.1086:
0.1086- 0.02747. 0.1006:
0.1006: 0.02314. 0.08516!
0.08516! 0.027411 0.05953i
0.05953i 0.02875! 0.03519
0.03519 0.02878! 0.02723.
0.02723. 0.03016. 0.02114:
0.02114: 0.04417! -0.001663

-0.001663 0 0
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Table 5.2 proves that heuristin) satisfies the consistency condition stated in Eqng2).

In Table 5.2,h(n,t) is the estimated energy cost to arrive at the wmigstin from noden,

c(n, V) is the real energy cost from nodeto nodev, the successor afi, and h(v, t) is the
estimated energy cost to arrive at the destindtmm the successor node Another way of
proving consistency as stated in Equation (4) ishbying the values off (n) be non-
decreasing along the computed path, starting fiersource node up to the destination node,

which is demonstrated in Table 5.1. Thus, heurik{ig) is consistent in the weighted graph

(V, E, ¢,) along the computed path.

Figure 5.3, depicted below, illustrates the battemgrge level and the effects of negative

energy costs on the battery charge along the opgiath in the weighted grapfv, E, ¢.). In

this operation scenario, the EV started along thh pvith a fully charged battery (that is,
25kwh), and it ended reaching the destination with @& gh level 0of24.618kwh. It can be
seen from the graph that during this run, the ficetd segment of the travel path has a
negative energy cost value, and therefore, theme isnergy consumed from the battery over
this road segment. Due to the dynamic adjustmernheftravel energy cost, the negative
energy cost incurred by taking the first road seginveas lost since the battery was fully
charged when the EV first started traveling. Ak thther negative energy costs incurred by
taking this path were stored in the battery urtig¢ destination was reached. Therefore,

prolonging of the limited cruising range of thetbay is noticeable along the optimal path.
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Battery Charge Level

Figure 5.3: Battery Charge Level along the Energfjroal Path.

We also illustrate the energy cost of each roadnsed) the EV has gone through along the
optimal path. Figures 5.4 and 5.5 depict the roaghrent costs in the weighted graphs
(V,E,¢,) and (V, E, ¢ ), respectively, recorded at the end of each rogtheat. As can be

seen from the graphs, the EV has gone over nire gegments from the source node to the

destination node, with each road segment haviriffexeht energy cost value.

0.045

0.04 -

0.035

003+

0.025 -

: : : : | Road Segment Costs
0.02 1 1 1 i
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Figure 5.4: Road Segment Costs of the Energy-opfatn in(V, E, G, ).
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Figure 5.5: Road Segment Costs of the Energy-opfatn in(V, E, G ).
The total path energy cost in the weighted gr@ghE, ¢.) is depicted in Figure 5.6 below.
This graph illustrates the effects of potentialrgies on the path energy cost. The total path

energy cost here refers to the total energy thatltexd from taking the optimal path and not

that consumed from the battery.

00s | | | | ; Total Path Cost

1 2 3 4 5 53 7 g 9 10

Figure 5.6: Total Path Energy Cost(¥, E, G.).
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During this run, the negative energy cost valueiired by taking the first road segment was
lost from the battery due to the dynamic adjustnedétattery constraints, and all of the other

negative energy costs of taking the path were dtoréhe battery.

5.3 Time Mode Results

In this mode, the technique excludes the optimalitgnergy cost and thus computes the path
with minimum travel-time cost. Therefore, the congulipath here may be more energy
consuming and longer in travel distance but optimaravel time. Although this mode is
used by drivers when the concern is travel time roidenergy, the battery constraints are
considered and not violated. We verify the compupath by checking the optimality
conditions of theA” search technique stated in Sections 4.1.3 and.4Chetresults of this
operation mode are provided in two tables (Tabl8sahd 5.4) in which the satisfaction of

the admissibility and consistency conditions altdmgcomputed path is proven.

The results also include a number of graphs ilstg the constructed road network
marking the computed path from the source nodbdaléstination node in green, the battery
charge level along the computed path, the trawed-ttost of each road segment, the energy
cost of each road segment, and the total energly afothe computed path. Figure 5.7,
depicted below, illustrates the constructed roawaek with the source node marked in red,
the destination node marked in blue, and the trawed-optimal path, computed by the

techniqgue, marked in green. For the path markedréen in Figure 5.7 to be optimal,
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heuristic h(n) must be admissible and consistent along the gaih.the admissibility of
h(n), the function f (n), stated in Equation (1), must never overestintagerue travel-time

cost of the path.

- I I I I
-15 -10 -5 0 g 10 15

Figure 5.7: Optimal Path Travel Time-based Network.

Table 5.3 proves the satisfaction of the admisgitslondition along the computed path. The
first column of Table 5.3 demonstrates the compuytath node indices chosen by the
technique. The path starts with the source nodenpathe index 1 and ends with the
destination node having the index 36. In this of@nascenario, the EV has gone through
eleven nodes, including the source and destinatamtes. Additionally,g(n), which is the
real cost to arrive at node along the computed path, is shown in the secohdroo The

value of g(n) is accumulated along the path until it becomestttt@ path cost when the

vehicle reaches its destination. The third coluramdnstrates that(n) decreases along the
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computed path as the vehicle moves toward therggigth. The fourth column illustrates the

values of f (n) along the path, which are equal ¢gn) + h( . The fifth column illustrates
the true cost value of the entire path, which niesgreater than the values 6{n) in order
to prove that heuristiti(n) is admissible along the path. As can be seen frabie 5.3, the

admissibility condition is satisfied along the cartgd path, marked in green in Figure 5.7.

Table 5.3: Admissibility Information of Time-OptirhBRath.

Path Node g(n) h(n) f(n) Total Path Co:
1 0 0.015192 0.015192 0.053064
18 0.0046393 0.013606 0.018245 0.053064
23 0.010432 0.011436 0.021868 0.053064
5 0.014457 0.010697 0.025154 0.053064
40 0.018835 0.0087469 0.027582 0.053064
9 0.02482 0.006699 0.031519 0.053064
22 0.028922 0.00556 0.034482 0.053064
4 0.034193 0.0034037 0.037596 0.053064
11 0.042056 0.0041382 0.046195 0.053064
26 0.049379 0.0023342 0.051713 0.053064
36 0.053064 0 0.053064 0.053064

Table 5.4 demonstrates that heurishifn) satisfies the consistency condition stated in
Equation (2), and thus heuristln) is consistent along the computed path. In Table 5.4
h(n,t) is the estimated travel-time cost to arrive atdiestination from noden, c(n,V) is

the real travel-time cost between nadeand nodev, the successor af, and h(v, t) is the
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estimated travel-time cost to arrive at the destnafrom the successor node Another

way of proving consistency, as stated in Equatn i€ by having the values of (n) be

non-decreasing along the path, starting from thecgonode up to the destination node, as

demonstrated in Table 5.3.

Table 5.4: Consistency Information of Time-OptirRaith.

h(n, € c(n, v h(v, €
0.015192 0.0046393 0.013606
0.013606 0.005793 0.011436
0.011436 0.0040242 0.010697
0.010697 0.0043786 0.0087469
0.0087469 0.0059845 0.006699
0.006699 0.0041021 0.00556

0.00556 0.005271 0.0034037
0.0034037 0.0078637 0.0041382
0.0041382 0.0073229 0.0023342
0.0023342 0.0036852 0

0 0 0

Figure 5.8 depicts the battery charge level ancetfexts of negative energy costs on it along
the computed path. When the EV started travelingr dhe path, the battery was fully
charged—equal to its maximum capaci$ kwh. The EV reached the destination with the
battery having a charge level @4.411kwh. As can be seen from the graph, the negative
energy costs incurred by taking this travel-timéiopl path were stored in the battery due to
the adjustment of battery constraints. The trawveétcost and energy cost values of each

road segment the EV has gone over along the cochjpatidh are also depicted in Figures 5.9
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and 5.10, respectively. Figure 5.9 illustrates t@el-time costs irh*/ km recorded at the
end of each road segment along the computed pdilte ®igure 5.10 illustrates the energy
costs inkwh recorded at the end of each road segment alongotin@uted path. As can be
seen from the graphs, the EV has gone over tengegahents, starting from the source node

and ending with the destination node.

251 T T T T T
: : : : : Biattery Charge Level

Figure 5.8: Battery Charge Level along the Travietd-optimal Path.

x10°

Road Segment Travel Time Costs

Figure 5.9: Road Segment Time Costs of the TimavagtPath.
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Figure 5.10: Road Segment Energy Costs of the Tiptenal Path.

Figure 5.11 illustrates the total energy cost & thavel-time-optimal path. Although this
path is optimal in travel-time cost, it is not ngsarily an optimal path in energy cost. The
total energy cost here is the total energy inculrgdaking the travel-time-optimal path and
not that consumed from the battery. This path wagigd by the technique to be feasible in
the sense that its total energy cost is less thaubattery charge level, so the path can be used

by the EV.
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Figure 5.11: Total Energy Cost of the Travel-Tinghmal Path.

5.4 Summary

This chapter has reported the experimental worfopeed to validate the solution proposed
for the EV energy/time routing problem. It addresfi®se simulation environment created to
construct two complete weighted road networks lier ¢énergy mode and travel-time mode.
Then, it reported the results of running and immating the suggested multi-criteria
technigque. The results reported in this chapteiichvinclude verification of the proposed

search technique optimality conditions, prove thatsolution posed is feasible.
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Chapter 6: Range Anxiety

This chapter explores drivers’ fear of and conceabsut their EV running out of energy,
leaving them stranded. A new technique is prop@sea solution to reduce the effects of
range anxiety on drivers and help drivers travetifidently without much fear of being

stranded. In addition, the technique includes ausblestimation of the remaining driving

range on a specific path.

6.1 Introduction

The unique characteristic of the PSS of EVs, nanbdylimited battery capacity resulting in
limited driving range, has led to what is calledgea anxiety. Range anxiety is classified as a
major barrier to the widespread adoption of EVs.il&Vthe single battery charge of EVs
may, depending on conditions, support a drivingyeatihat is roughly just less than 200 km,
the full tank of conventional vehicles can supmodriving range of around 600 km or even
further [55]. For operators, a shorter driving rangtranslated to a higher range anxiety [57].
The need to reduce range anxiety has led researtthpay special attention to driving-range
estimation. It is becoming an extremely importaimategy because some believe that the
only means to reduce driver concerns about beirapaed is to make them aware of the
remaining distance that their EVs can be drivenislinaccurate to estimate remaining

drivable distance based only on the maximum drivdigjance provided by the EV maker.
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Many factors that affect the battery charge mustdb@n into account in order to make
accurate estimates, including vehicle featuresh agc mass, power, torque, etc.; road and
environment conditions; on-board electric device;wd driving style. All of these factors
and more must be involved in the process of drivingge estimation; otherwise, the
estimation cannot be accurate. However, this thegierts that driving-range estimation is
not the only means to reduce drivers’ range anx@tgposing a technique that analyzes an
EV’s battery charge required by the vehicle in ordereach a charging station. A guarantee
that the EV operators can always reach at leastcbiaeging station and recharge their
drained batteries would be more useful for reducimgge anxiety. Therefore, this thesis
introduces the following contributions to the prerl of range anxiety:
» Taking the battery constraints of EVs into accoewgn when drivers have no specific
destination,
* Presenting a new model that reduces range anxeitg lowest level by analyzing an
EV’s battery charge required to reach at leastataeging station, including an accurate

estimation for the remaining driving range wherathps specified by the user.

6.2 Range Anxiety Reduction Model

This section presents a model posed for reducingeranxiety. The model is designed to
analyze an EV'’s battery charge required by thecleho reach at least one charging station
before the battery is completely drained, thus jpliog a guarantee to the drivers that

wherever they travel, they will not be stranded@me. To do so, the locations of charging
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stations within a pre-determined area around arsEEMirent location are required. The first
important point about the model is that it can bedumainly when drivers have no specific
destination in their traveling (e.g., when drivensve around looking for a restaurant). In
such cases, one of the important factors to redumamcerns about being stranded is that the
battery constraints must be taken into account. Wirevers have no specific destination, it
is extremely important that they avoid any roadnsexgt with an energy cost that exceeds the
battery charge level. Therefore, in the posed mdteltwo battery constraints are resolved
dynamically in the same way as explained in Chagte8ection 4.2. The model performs

three range-anxiety-reducing steps.

1) In addition to solving the battery constrairds, explained in Chapter 4, Section 4.2, for
non-specific-destination traveling, locations oaaing stations within a circular area around
a vehicle’s current location are determined. Fograncircle around the vehicle’s current
location is performed to establish a boundary tiedpps determine charging stations that may
be reachable with the current battery charge. Tdrendla in Equation (30) is used to

determine the radius of the boundary circle, whdg,, the maximum driving distance

determined by the EV maker (e.g., 200 km for alsirogttery charge), is the radius of the
circle, and the division of battery charge levelrbgximum capacity of the battery represents
the remaining battery charge.

BR= qwci (30

max
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The formula stated in Equation (30) above is usetbugh range estimation and in the first
step of the precise range estimation approach megén [55]. This formula is not accurate
in providing a driving-range estimate because hased only on maximum driving distance

d_ .. and remaining battery charge. However, this foarslused in the beginning of the

approach posed in this thesis as an approximatiohetp limit the number of charging

stations that may be reachable with the remainatteby charge.

2) In the beginning, charging stations within thecudar area are localized, and the path
energy cost to each charging station is computechakging station is designated reachable
or not based on the travel energy cost and notltrdistance. The routing technique

presented in Chapter 4, Section 4.2.2 is used topate the most energy-efficient path

among all possible paths to each charging stafld routing technique here uses the
vehicle’s current location as the source node &edcharging stations as destinations in its
computations. Therefore, a heuristic function, dyaas defined in Chapter 4, Section 4.2.1,
is used to provide some knowledge about each aiggation. The path energy cost used in
this model is exactly the same as the path enaglyresented in Chapter 4, Section 4.2:

Potential Consumed Energy
1 .
Cec(a, b)=,7—[m9( @ b- ¢ 3l 31,

Potential Gained Energy

Coc(ab=n[md ¢ a- € D] (32,
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Loss of Energy

1 1 .
CLE(a,b)=,7—[tmg(ab+§pA&; Sap(ap (3¢
Acceleration and Deceleration Energy

1
Ce(ab=—Pt, (34

Coe(ab) =, Pt 3

On-Board Electric Devices Energy
Cep = Z (Pepy §)* Statug, (36)
i=1

Therefore, the complete form of the total energgtcon the road segmenta,b) is

represented as follows:
Ce(ab)=[Cr(abh+ Ge(ab+ G(apr G ak G(.a)pF DRy (37)

where the total cost of a paff = (v, \,,.....,\ ) is

j=k-1

SHCSEDICATRM (38

3) After computing the energy-optimal paths toralichable charging stations, the charging
station that has the minimum path energy cost ispared to the battery charge level. If the
battery charge level is within a preset thresha@tl®, which is about twice the cost to the
cheapest charging station, then a warning is displaalerting drivers that they have

insufficient energy to travel anywhere and to fallthe energy-optimal path to the cheapest
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charging station. The battery charge level is updland the process is repeated every time
the vehicle enters a new road segment. During tbeegs, if a charging station within the
circular area, determined in the beginning, isreathable, its path energy cost is turned into

infinity and thus excluded from the search process.

6.2.1 Remaining Driving Range Estimation of a Specific Path

Driving range estimation of a specific path canbet performed based on the maximum
driving distance determined by the EV maker alonth whe remaining battery charge, for
two main reasons: 1) the battery constraints oitdéichcapacity and the ability to recuperate
energy during downhill and deceleration phases, nthe differences in road conditions,
environmental conditions, and EV features. These factors must be considered in any
remaining-driving-range estimation approach in ordeaccurately provide drivers with the
exact remaining range on a specific path. Therefbeeestimation here is based on using the
path energy cost with the remaining battery chavgech together can provide accurate
driving-range estimation. The path energy cost usdtis estimation is exactly the same as

that represented in Chapter 4, Section 4.2 andjuaton (38).

The graph illustrated in Figure 6.1 provides a $amiheoretical example to explain the
estimation approach. If the battery charge is nfficgent to supply the EV along the whole
distance of a specified path, then from the velsclurrent location to the specified

destination there must be a point on the path athwife battery charge level,, equals the
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path energy costC,_(P*). We term this point the Zero Energy Point (ZEPgaming that

traveling beyond this point is no longer possifilee objective of the approach is to use the
battery charge level and path energy cost to coeniiiet ZEP. The strategy is to use the next
node (i.e., the node following the vehicle’s stagtpoint) where the edge energy cost for the
vehicle to travel between its initial location ameixt node is compared to the battery charge
level. If the battery charge level is greater tHanfirst edge energy cost on the path, then the
edge energy cost is subtracted from the battersgehand the next node is used for the next
step. This process is repeated along the speqidl until a road segment with an energy

cost exceeding the battery charge level is foung.then known that the ZEP occurs on this

road segment.

For example, in Figure 6.1, at the node before ifbete marked in yellow) the battery charge
is greater than the path energy cost. Howevehehbde after (the node marked in orange)
the battery charge is less than the path energly €bsrefore, it is known that the ZEP

occurs on the road segment connecting those twesndde difference between the battery
charge level and path energy cost at the node da&¥dl be used in the path energy cost,
represented in Equation (37), to compute the maxindistance the EV can reach on this
road segment. Then, this distance is added to éhgtls of previous road segments to
compute the maximum distance of driving the ergath. Thus, an accurate estimation of the

remaining driving-range on a specific path canispldyed to the driver as a distance in km.
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Figure 6.1: Zero Energy Point Determination.

6.3 Experimental Work

This section reports simulation experiments perfanto test and validate the proposed
techniques. Matlab was used to construct the tedt \@alidation environment. A 40-
intersection road network is used to construct wylscenarios to analyze the performance
of the posed techniques. The road network is coctgld such that roads intersect at various
elevations. Road segments vary with respect totthersgpeed limits (min/max), and average
speed. The road network spans a 30kmx30km aredpandharging stations are selected to
be equal distances apart. The parameters of thaen8\the environment are as follows: mass
of the vehicle, including payloadn=1200kg, the efficiency of the EMy =0.8, the air

drag coefficient,c, = 0.24, the cross sectional area of the vehidles 1.85n7, the friction

80



coefficient, f, =0.9, the gravitational factorg=9.81m/¢<, the air density coefficient,

p=1.2kg /n?, the radius of the vehicle’s tires,=0.25m, the maximum torque of the
vehicle, T =250 N m, the gear ratio of the vehiclg, =1:6.572, and the battery maximum

capacity,C__ =25 kwh. The vehicle is assumed to be able to accelerate the speed of

max

100km/hourin 4.5secondsand decelerate from the same speed to come tmplete stop

in 4.2 secondsThe total energy cost functioi;, of each road segment in the network is in
kwh. The driving style is assumed to be normal withriging style coefficient oDS__; =1

. The waiting time at traffic lights is assumedb® 3 minutes.Only the air-conditioner is

assumed to ben, with P,. = 650watts, and all other on-board electric devices are assum

to be off. The travel-time path cost represented in ChapieEquation (28), is used to
represent the time that the air-conditioner ishia $tatu®n. The maximum driving distance

determined by the EV maked, ., is assumed to be 250km for a single battery ehdfg

sequence of nodes representing a path is entertbe imodel, the model performs driving-
range estimation and returns the result as distemkm Otherwise, the model will perform

range anxiety reduction until the battery chargabisut twice the energy-optimal path cost to
the cheapest charging station, and then returnsethdt to the user. The following section

presents the results of the experiments conduotedlidate the proposed model.
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6.3.1 Results

This section reports the results gathered fromnigshe proposed model. Figure 6.2 depicts
the constructed road network, including 4 chargitagions marked in red and an EV marked
in blue. The charging stations are assumed to Is#tigoed at intersections. The EV is
assumed to travel around the road network in aaianehanner but with the consideration of
battery constraints. In this operation scenarie, bbattery charge level was assumed to be
5kwh when the EV started travelling. The energy-optirpath to the charging station

having the cheapest energy cost is marked in green.

#* Charging Station
# E% Current Location
Erergy-Optitmal Path

Figure 6.2: Range Anxiety Reduction Network wittuF€harging Stations.

The first important observation in Figure 6.2 iattkthe nearest charging station to the EV’s
current location, which is about two road segmamntength, was not selected by the routing

technique Apparently, this occurred because the optimal gatlthe charging station is

82



energy cost-based and not distance-based. The csesportant observation proves the
inaccuracy of estimating driving range based onftlimula represented in Equation (30).
The distance to the cheapest charging stationasitab4 km, while the maximum driving
distance according to the formula of Equation (8(®.226 km, computed as follows:

d =250x 0'2§26= 3.226km

This observation also demonstrates how drivingeazem be extended by recuperated energy
from downhill and deceleration phases. The messi#g@ayed to the user is depicted in
Figure 6.3 below; it shows the current battery gharenergy-optimal path cost to the

cheapest charging station, and distance to thepelseaharging station.

You no longer have enough charge

Your battery charge is 0.3226 kwh

The ensrgy cost to the cheapest energy cost charging station is 0.1641 kwh
Discance to the cheapest epnergy cost charging statlon 12 14.0348 lon

3]

Figure 6.3: Message Displayed to the Driver.

Table 6.1 provides the total path energy cost th eharging station in the weighted graph
(V, E, ¢.) along with the indices of charging stations. Nexily, the charging station having
index 29 has the minimum path energy cost oveclairging stations, and hence, it was
chosen by the search technique as the best chastitign. Table 6.2 proves that the path

marked in green, Figure 6.2, is the optimal patthéocharging station in the weighted graph
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(V, E, 6,) by satisfying the admissibility and consistencyditaons of the search technique
stated in Chapter 4, Sections 4.1.3 and 4.1.4.vahess of f (n), which never overestimate
the path cost along the optimal path, prove thatigc h(n) is admissible along the path.
Heuristic h(n) is proven to be consistent along the path by hathegvalues off (n) be
non-decreasing along the path. Thus, Table 6.2gsrthvat heuristih(n) is both admissible
and consistent.

Table 6.1: Total Path Energy Costs to Charging@tat

Indices 14 29 11 5

Path cost in kwh 0.1670¢ 0.1640° 0.1730t 0.2115°

Table 6.2: Satisfaction of Admissibility and Consizcy Conditions.

Path Nodes a(n) h(n) f(n) Path Cost
24 0 0.051301 0.05130! 0.09581!
12 0.03386! 0.03574. 0.06961. 0.09581!
37 0.06143! 0.0200: 0.08144:! 0.09581!
28 0.09581! -0.006133 0.08968. 0.09581!

Finally, Figure 6.4, depicted below, demonstratesresult gathered from testing the model
for driving-range estimation on a specific pathmf@ly, a sequence of nodes, chosen
randomly to represent a path, is used to validaentodel. The path starts with the source

node (marked in red) and ends with the destinatiote (marked in blue). A low battery
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charge that is unlikely to supply the vehicle alding entire path is used to verify the success
of the approach. The model marks the reachablardiston the path in yellow and the ZEP
in purple as depicted in the graph. The maximuntadie that the EV can reach in this

operation scenario, 25.379 km, is returned by thdeh

#  Source

# Goal
Unreachable
Reachahle

# TeroEneroy Point

Figure 6.4: Driving Range Estimation on a Sped#ath.
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6.4 Summary

This chapter has introduced a new model to redacge anxiety in EV drivers. The model
analyzes an EV'’s battery charge required by thécleeto reach at least one charging station.
It keeps computing the energy-optimal path cose&ch charging station within a pre-
determined circular area around an EV’s curreraitioa and compares that with the battery
charge level. If the battery charge level is aliaite the energy-optimal path cost needed to
reach the cheapest charging station, then a waardgenergy-optimal path to the cheapest
charging station are displayed to the driver, prngp him/her to recharge the drained
battery. Additionally, the model includes a robdsiving-range estimation approach. The
approach is used to accurately estimate the maximimng distance on a specific path
using the path energy cost and battery charge. rEselts reported in this chapter
demonstrate that the proposed model is succegsfiutan help make EVs more efficient on

roads and reduce drivers’ range anxiety.
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Chapter 7: Conclusions and Future Work

The environmental and economical advantages asasélhe higher efficiency of EVs over
their ICE counterparts are pushing industry anddecaa to pay more attention to this
promising technology. Optimal energy/time-basedtingu for EVs under constrained
rechargeable batteries as well as techniques tweadnge anxiety will become significantly
important in the near future since the global trapd is to introduce the technology of EVs

as a strategy to help reduce greenhouse gas ensssio

This thesis has formalized the problem of optimaérgy/time routing in EVs within a

framework of a multi-criteria routing technique angraph context as a solution to finding
optimal energy/time routes. The routing technigelees on using theA” search algorithm,
thus the problem is solved i@(n*). The A" algorithm was modified such that it can be run
on two modes based on driver needs: an energy mittiea modified algorithm called

Energy ModeA™ Algorithmor a time mode with a modified algorithm call€igne ModeA

Algorithm

For the energy mode, the algorithm computes thenaptpath among all possible paths,
taking into account the battery constraints. Thst fbattery constraint is that a path is not

useable if it has an energy cost that is greatan the battery charge level. This constraint
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problem was solved by turning the energy cost valtighe path into infinity, so the
algorithm excludes that path from the search pmcébe second battery constraint is that
following a path that has negative energy costoisfeasible if the battery is fully charged.
For this constraint problem, the energy cost valas dynamically modified such that the
negative costs are stored in the battery basedchemrdmaining free capacity. When the
battery is fully charged, the additional negatiwests are lost from the battery. For the time
mode, theA™ algorithm computes the optimal path in travel tiamong all possible paths.
The travel-time cost includes traffic congestiongident risk, and waiting time at traffic
lights. The A" algorithm was modified to take into account thetdsgt constraints and not
violate them, so traveling over the optimal pattcdmes possible. However, it is not
necessarily the case that the optimal travel-tiet 5 also optimal in terms of energy cost,
and the energy cost of the optimal travel-time pathccumulated along the path to ensure
the path is feasible. The experimental resultis thesis obtained by testing and validating
the multi-criteria routing technique demonstratat tthe solutions provided by the technique
are optimal. The results prove that the optimatibnditions of the search technique are

satisfied along the computed paths.

In addition, a new model to reduce drivers’ rangeriety has been presented in this thesis.
The recommended range-anxiety reduction model gesva guarantee to EV drivers that
they will never be stranded en route. The undeglydea was to compare an EV’'s battery

charge with the energy-optimal path costs that @dse incurred driving to charging stations
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within reach. The routing technique proposed is thesis computes the energy-optimal path
to each charging station. If the battery chargellevabout twice the path energy cost to the
charging station having the cheapest energy castal/.charging stations, then a warning as
well as directions to the cheapest charging staiendisplayed to the driver. Furthermore,
the model includes a driving-range estimation apg@hnoto provide an accurate estimate of
how far drivers can travel on a specific path. @hging-range estimation is based on travel
energy cost and not distance. The experimentaltsasgported in this thesis demonstrate that

the posed model can help reduce range anxiety@hdlp remove one barrier to widespread.

Further research should be conducted in the areaptimal energy/time routing for
designing a combined routing technique that comsitlee battery constraints and strikes a
balance between the optimality of energy and tréwed in EVs. The future work in this area
should not compromise the optimality of energy ptiraality of travel time but rather should
concentrate on designing one routing techniquecéonputing one path that is optimal in
terms of both energy and travel-time costs. In t@mdi field experiments should be

performed for further validation of the techniquesoduced in this thesis.
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