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Abstract 

The increased interest in reducing greenhouse gas emissions has motivated renewed interest 

in electric vehicles technology as an alternative to current fossil-fuel based transportation 

equipment. Electric vehicles (EVs) are envisioned as a promising viable technology because 

of their friendly impact on the environment and higher efficiency over conventional vehicles 

that rely on fossil fuel. However, the EVs’ limited battery capacity, resulting in limited 

cruising range and long recharging time, hinders the widespread adoption of EVs. An 

essential requirement of EV motors is the ability to operate with minimum energy 

consumption in order to provide at least the same driving range as their Internal Combustion 

Engine (ICE) counterparts. Energy-optimal routing, which aims to find the least energy 

consuming routes, under battery constraints has been recognized as a viable approach to 

prolonging the cruising range of the EV battery. 

 

This thesis addresses the problem of optimal routing for EVs and proposes a solution to 

overcome the difficulties of optimal energy/time routing under battery constraints. A multi-

criteria path-finding technique *A  is proposed. The proposed technique functions in two 

modes and solves the problem of optimal energy/time routing in EVs with worst time 

complexity of 2( )O n . First, an energy mode to solve the problem of energy-optimal routing 

under battery constraints is introduced. This mode computes the most energy-efficient route 

from a source to a destination, thus extending the limited cruising range of a battery. Second, 

a time mode to solve the problem of optimal travel time routing under battery constraints, by 
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computing the most efficient travel-time route from a source to a destination, is proposed. An 

EV can operate under these two modes to strike a balance between power consumption and 

travel time so as to satisfy user constraints and needs.  

 

In addition, a technique to reduce the effects of range anxiety on the vehicle operator is 

proposed. This technique computes a robust estimate of driving range. Furthermore, the 

technique analyzes an EV’s battery capacity required by the vehicle in order to reach a 

charging station. The thesis reports experimental work conducted to test and validate the 

proposed techniques under various driving conditions. 
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Chapter 1: Introduction  

 

 

The negative effects of climate change are becoming increasingly obvious. The 

Intergovernmental Panel on Climate Change (IPCC) [50] has reported that in some 100 

physical and 450 biological processes, scientists and researchers have addressed climate- 

induced changes. Over the years, global climate changes have become more extreme and 

severe, with increases in floods, storms, and heat waves [28].  A major contributor to global 

warming is fossil-fuel-powered vehicles. EVs could reduce the impacts of global warming 

and thereby provide a transportation system that is friendlier to the environment.  

 

The increasing public desire for an alternative to fossil-fuel transportation systems is 

motivating renewed interest in EVs as means for reducing greenhouse gas emissions. To 

address this increased interest, most automobile manufacturers are planning to produce EVs 

or Plug-in Hybrid Electric Vehicles (PHEVs). EVs emit no tailpipe pollutants and hence can 

significantly reduce greenhouse gas emissions. The following section provides a brief 

introduction to EVs, illustrating the benefits and the challenges associated with them. 

 

1.1 Electric Vehicles 

Technically, an EV is defined as one that utilizes electricity as its power source and that can 

be charged through an electrical outlet at one’s place of residence or business. The main 

reasons for considering EVs as alternatives to fossil-fuel based vehicles constitute both 
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economical and environmental factors. EVs, often referred to as Battery-Operated Electric 

Vehicles (BOEVs),  emit no pollutants into the air since they are powered by electricity that 

is stored in a battery—charged with electricity generated by the same power plants that 

supply homes and businesses. Consequently, EVs are considered to be a perfect example of 

what is known as Zero-Emission Vehicles (ZEVs), since their motors create no tailpipe 

exhaust, fuel evaporation, fuel refining or any other greenhouse gas producing activity 

harmful to the environment. Moreover, EVs help create a much cleaner environment by 

consuming electricity that is generated partly or entirely by renewable energy sources such as 

solar, wind, tidal or nuclear. EVs operate with much fewer units of energy than conventional 

Internal Combustion Engine Vehicles (ICEVs) for the same mileage; therefore, EVs are 

generally associated with less cost to own and operate [48]. Figure 1.1 shows a modern 

sample of the Tesla Roadster electric car. 

 

 

Figure 1.1: Tesla Roadster Electric Car. 

 

EVs have three main components: an electric motor, a controller, and a battery. Figure 1.2 

illustrates the main components of EVs. The first is an electric motor (EM). The most 
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popular EMs are the 3-Phase AC and Series Wound DC motors, which are usually 

inexpensive and easily found. EMs have high torque at a wide range of speeds, with 

incredibly high efficiencies of up to 90 percent compared to conventional ICEs, which have 

efficiencies of only around 30 percent [48]. Hence, EVs are considered extremely suitable for 

stop-start urban driving. A portion of the EMs’ efficiency comes from their ability to provide 

quieter and smoother operations as well as shorter acceleration/deceleration phases with less 

maintenance than their ICE counterparts. In addition to running extremely smoothly and 

quietly, EMs are more reliable than conventional ICEs that rely on fluids such as engine oil 

and transmission oil that are prone to leak, causing engine failure. EMs do not require the use 

of these fluids [48]. Another important feature of the EM is that there is only one moving 

part, unlike the ICE, which typically has several moving parts.  

 

The second main component of the EVs is the controller. The controller’s job is to deliver 

electric current from the battery to the motor, which is controlled by the accelerator pedal of 

the vehicle. Therefore, the further a driver presses the accelerator pedal down, the greater the 

power delivered to the motor and the greater the kinetic energy the vehicle gains. During 

idling phases, no electrical current is being processed, which means energy is not being used 

during idling phases.  

 

The third main and final component of EVs is the battery. EVs use rechargeable batteries, 

occasionally referred to as Power Storage Systems (PSSs), which are different from the 
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ignition or lighting batteries. An EV’s battery is designed to maintain power for long times. 

There are mainly three types of rechargeable batteries currently in use in EVs: “lithium-ion 

batteries, lead-acid batteries, and nickel-metal-hydride batteries” [35]. Batteries for EVs are 

usually the most expensive part of the vehicle and are classified based on their power-to-

weight ratio and energy density. For these reasons, smaller, lighter, and higher-efficiency 

batteries are desired, given that these battery types reduce the weight of the EV, improving 

its performance. An EV’s battery must be periodically recharged from the power grid, which 

itself is powered by a variety of resources, such as coal, steam, solar, wind, or others, at 

home or using a street or business recharging point. 

 

 

Figure 1.2 (a): Tesla Roadster lithium-ion Battery. 

 

 

Figure 1.2 (b): Series Wound Electric Car DC Motor. 
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Figure 1.2 (c): Soliton Jr Controller 340V/500A. 

 

 

1.2 Challenges and Solutions 

EVs have limited battery capacity, resulting in limited cruising range; long charging time; 

high battery cost, resulting in a high total purchase price. These unique constraints lead to a 

number of challenges that must be addressed and problems that must be resolved before EVs 

can become a practical reality. EVs require special mechanisms to efficiently utilize their 

own limited energy supply (i.e., limited battery capacity). The following section summarizes 

some of these challenges and required solutions.  

 

• The limited cruising range of their battery is a critically significant issue of EVs.  

Cruising range of the battery is defined as the distance that a vehicle can travel over time 

until the battery runs out of energy. Due to the limited energy supply and the difficulty of 

improving rechargeable batteries’ lifetime, EVs have stringent power consumption 

requirements. The electric energy consumed by EVs depends on driving conditions, 

environment conditions, and the use of energy-consuming technology, and it is often 
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higher than the amount expected by manufacturers. EVs can recuperate some of their 

consumed energy, i.e. they can regenerate energy during downhill and deceleration 

phases, thus extending their cruising range by approximately 20 percent in urban areas; 

however, the widespread use of EVs is still limited by a cruising range of only 150 to 

200 kilometres for a single battery charge [3]. Therefore, energy-efficient mechanisms 

for energy-optimized driving and accurate driving-range estimation technique are 

significantly important requirements, strongly needed to, first, save energy thereby 

prolonging the limited cruising range of the batteries, and second, help estimate the 

actual remaining driving range and so  prevent drivers from being stranded. 

 

• Long charging time has been another significant barrier to popularizing the use of EVs. 

The long charging time of batteries creates a real problem: travelers have to plan ahead 

before proceeding en route, to ensure and accommodate enough time to recharge the 

EVs’ batteries. The anticipated mass production of EVs in the near future and demand 

for long-distance travel indicate the strong need for an electric service infrastructure 

capable of providing the considerable amount of power in a time at least similar to that 

of conventional service infrastructure. Charging stations ought to be designed as such, 

with the capability to deal with a huge number of vehicles simultaneously and provide 

all required electrical charging in a short period of time. Other related ideas regarding 

rapid charging time and charging-station positioning have been addressed, including the 
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establishment of battery-charging stations at home, at work, and in and around cities 

[56]. 

 

• Expensive and toxic batteries were one of the main drawbacks resulting in previous EV 

models failure to achieve any significant market share. The increasing production of 

rechargeable batteries could be an indication that the price of the key metals used in 

manufacturing is likely to remain stable or perhaps even increase. The improvements in 

battery technology have indicated the possibility of manufacturing EVs with enhanced 

performance and improved efficiency in comparison to the ICEVs; however, the high 

cost of giant battery packs makes the initial purchase price of EVs much higher. 

Furthermore, the electronic parts used in battery packs may increase in cost; therefore, 

the trade-off of the batteries’ size, efficiency, lifetime, and price should be more 

carefully considered by manufacturers to find a more economical approach that aids in 

reducing the purchase price of EVs. 

 

1.3 Motivation and Objective 

One of the major and essential requirements for EVs is the ability to operate using less 

energy in order to provide at least the same range of driving as ICEVs. The unique 

characteristic of limited battery capacity in EVs demonstrates the necessity for achieving 

energy consumption reductions. Regenerating energy during downhill or deceleration phases 

can somewhat help prolong the cruising range. Energy-optimal routing has been proven to 
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effectively prolong the driving-range by reducing energy consumption [3, 36, and 29]. 

Essentially, an optimal routing technique computes the most energy-efficient route among all 

possible routes from a start point to end point, in any road network. The battery of the EV has 

two main constraints: (1) a route cannot be used by the vehicle if it has an energy cost that is 

greater than the battery charge level and, (2) when the battery is already fully charged, then a 

route cannot be used if it has negative energy cost—gained energy from downhill or 

deceleration phases. Therefore, the energy-optimal routing technique for EVs should not be 

limited only to finding the cheapest route in terms of energy cost but should also take the 

battery constraints into account. The first main objective of this thesis is to propose a routing 

technique that can be employed in EVs to resolve the battery constraints problem and 

compute the most energy-efficient route in any road network. The limited driving-range of 

EVs can then be prolonged. 

 

Travel time for a road trip is an extremely important and integral part of traffic information 

for drivers; hence, it has become important for traffic designers to accurately estimate travel 

time. Drivers need accurate travel time estimation in order to make better choices in their 

traveling and avoid unnecessary delays. When considering delays caused by congested traffic 

conditions, the optimal path in travel time may not be the shortest distance. Going further, the 

optimal path in travel time may perhaps be estimated when the travel time cost includes the 

accident risk instead of just congestion conditions. Obviously, this approach means that a 

shorter route may be more expensive than a longer one under congested, highly risky traffic 
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conditions. For electrically-powered vehicles with battery constraints, it is not efficient for 

drivers to use a route that is less expensive in travel time cost but violates the constraints of 

the battery, because the battery-constraint issue is the crucial factor in reaching the final 

destination. Thus, for all trips, EV battery constraints must be taken into account and not 

violated, even when the driver’s journey is travel-time-cost based and not energy-cost based. 

In fact, this consideration imposes an algorithmic challenge for travel-time-optimal routing in 

EVs. Therefore, the second main objective of this thesis is to propose a routing technique that 

can address the battery constraints issue while finding the most efficient path in terms of 

travel-time cost. 

 

Range anxiety is a major barrier to the widespread use of EVs. This condition is defined as 

the concern of running out of energy and being stranded on the way, caused by the limited 

cruising range of the battery. Drivers need to be aware of how far they can travel, paying 

particular attention to the constraints associated with EV batteries. Because of these 

constraints, an accurate driving-range estimation technique is required in order to help alert 

drivers of their maximum driving range. A variety of additional techniques to reduce the 

effects of range anxiety on drivers to the lowest level are greatly needed. Therefore, the third 

main objective of this thesis is to propose a range-anxiety reduction technique that includes 

an accurate and reliable driving-range estimation to reduce driver concern. 
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1.4 Thesis Organization  

This thesis is organized into seven chapters: Chapter 2 presents a literature review to provide 

the broad background necessary for a general understanding of the development and 

challenges related to EV technology. The particular background and previous work on 

optimal energy/time routing and driving-range estimation are also addressed. Chapter 3 

considers the complexity and computational considerations in resolving the problem of 

optimal energy/time routing for EVs. Chapter 4 describes theoretical information and 

introduces the proposed solution to the problem of optimal energy/time routing for EVs. 

Chapter 5 reports the experimental work performed to validate the proposed algorithmic 

technique, including the simulation environment created and results. Chapter 6 introduces a 

range-anxiety reduction technique, including a robust driving-range estimation approach, as a 

solution to reduce the effects of range anxiety; experimental work conducted to validate the 

technique is also reported. Finally, concluding remarks and future work are presented in 

Chapter 7. 
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Chapter 2: 

Background and Literature Review 

 

This chapter provides background and a literature review on a broad range of EVs’ 

development, challenges and problems. Firstly, it addresses a number of research studies 

conducted with regards to economical and environmental impacts of adopting EVs as an 

alternative to conventional vehicles that depend on fossil fuels. After which, issues and 

challenges associated with the development of EVs are discussed, with special attention 

given to recent research work completed on optimal routing and driving-range estimation, 

both of which improve efficient utilization of EVs on roads as well as support the technology 

behind EV success.  

 

The economical and environmental impact of EV technology has been well researched.  

Recent studies demonstrate that the widespread adoption of EVs has significant economical 

advantages over the use of ICEVs, even though the initial purchase price of an EV is 

currently higher than that of a conventional vehicle. The Sustainable Energy Authority of 

Ireland has revealed in [48] that EVs have greater energy cost savings. EVs require far fewer 

units of energy than their ICEV counterparts; thus, reducing the cost to own and operate one 

through up to 70 percent lower fuel costs. In addition, the EM requires less maintenance 

because it has fewer moving parts, and is less likely to leak, because it has no fluids, such as 
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engine oil. A broader study about the impact of EVs on the domestic economy of the US in 

[37], demonstrates that the total cost of EV ownership is $7,203 less than that of ICEV. 

Moreover, at 39 percent EV adoption, the net oil imports of the US will decline by about $20 

Billion. The numerical results in this study prove that by 2013, EV operators will in total gain 

benefits of $80 Billion from savings due to less maintenance and reduced energy costs. 

 

The technology of EVs promises to reduce the negative environmental effects of the current 

transportation system. Reportedly, the overall fuel emission reductions from the use of EVs 

in Ireland would be about 30 percent; this estimation could reach 100 percent reduction if the 

electricity consumed by EVs was supplied through renewable sources, such as wind, solar, 

tidal, or nuclear [48]. In [53], the WWF Climate Change and Energy Program of Canada 

developed a simulation model that considers different parameters, such as the average 

kilometers travelled and vehicle retirement rate with three scenarios for EV sale growth, in 

order to estimate the greenhouse gas emission reductions. This study proves that the short-

term greenhouse gas reduction benefits from the use of EVs are low, but once EVs become 

widely used, the reduction becomes highly significant. Furthermore, under a scenario in 

which 12,000 EVs are on the roads by the end of 2012, carbon dioxide emissions would be 

reduced by around 1.3 and 6.7 mega tones per year by 2020 and 2025, respectively. 

Moreover, the electricity generation mixes of different provinces have a great effect on 

greenhouse gas reduction levels. For example, emission reduction would be greater in British 

Colombia, where the electricity is mostly generated from renewable resources, than in 



 

13 

 

Alberta, where coal is dominant. The results of this study prove that EVs can be a powerful 

contributor to greenhouse gas reductions over the long term. 

 

In addition to the positive economical and environmental impacts that they offer, EVs 

operate with higher efficiency than ICEVs. Recent investigations [35, 48, and 49] confirm 

that the EM is more efficient than the best ICE. EMs may have efficiency of up to 90 percent, 

while the best conventional ICEs can have efficiency of only 30 percent. In addition, while 

the ICE has a small amount of torque at low rpm, providing a reasonably small amount of 

horsepower, the Tesla Roadster Incorporation [35] demonstrates that the Tesla Roadster EM 

delivers a huge amount of torque at zero rpm, providing almost the same torque up to 6,000 

rpm; this EM is able to deliver a huge amount of power up to 13,500 rpm. Furthermore, the 

ICE requires a huge amount of horsepower in order to speed up hastily, resulting in poor gas 

mileage. Conversely, the high horsepower of an EM results in an efficient, quiet and smooth 

operation with the ability to accelerate and decelerate quickly. EMs also provide high 

reliability since they have lower waste heat output and less vibration. 

 

2.1 Challenges and related issues 

The introduction of EVs presents new challenges for road drivers. This section addresses 

problems that must be resolved before EVs can be widely used on roads. In particular, four 

major challenges hamper the growth of widespread use of EVs:  limited driving range, long 

charging time, charging infrastructure [41], and battery durability concerns [40].  
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Limited battery capacity has restricted EVs’ driving range to that possible on a single battery 

charge. Range anxiety, which is considered a major barrier to the successful use of EVs, is a 

term that captures drivers’ concern about not reaching their destination and being stranded on 

the way. Range anxiety has emerged due to the technical constraints of rechargeable batteries 

used in EVs [10]. Driving style is only one of the factors that may affect the range of a 

battery charge. For instance, aggressive or high speed driving, road conditions, environment 

conditions, and the lifetime of batteries are all important factors that influence cruising range 

[34]. According to several studies [54, 52, and 10], range anxiety is the most important factor 

that hampers the penetration of EVs into the market. A survey conducted recently in the U.S. 

by Deloitte Global Services [15] reported that 90 percent of the people surveyed tend to 

travel around 75 miles a day. The same study reported that 63 percent of respondents expect 

the range to be 300 miles for a battery charge, which is not supported by current EV models. 

Eventually, public and workplace charging infrastructure installation may help reduce 

concerns about range anxiety. However, the public charging infrastructure required does not 

exist yet. The Tokyo Electric Power Company (TEPCO) predicts that EV operators will feel 

relaxed during their traveling once minimal but fast charging infrastructure is in place [2]. 

Some private and public stakeholders are convinced that a complete public and workplace 

charging infrastructure is necessary to reduce the impacts of range anxiety [41]. The energy 

density of their batteries may be the factor that determines the range of EVs. Their range 

might be limited to 160 to 190 miles for a single charge if there are no new advances and 
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developments in battery technology [6]. In the future, lithium-ion batteries will probably use 

advanced technology that increases energy density [17].  

 

In addition to limited driving range, EVs take a long time to recharge their batteries.  

Although a standard Level-1 charger (i.e., a 120-volt electrical outlet) is able to charge the 

battery of an EV, the charging time of around 17 hours is incredibly long for operators [41]. 

The battery may be fully charged overnight when most charging is expected, but many EV 

owners need a shorter charging time; therefore, some owners may need to install a Level-2 

charger (i.e., a 240-volt electric outlet) at their homes. For instance, while the Nissan LEAF 

can use a portable 120-volt charger, most EV owners will likely prefer a 240-volt charger 

that can fully recharge the battery in less than 8 hours [18]. With a 240-charger, the Ford 

Focus Electric, powered by a lithium-ion battery, can fully recharge its battery in as little 

time as 3 to 4 hours [18]. However, 240-volt outlets may not be common in most houses and 

businesses [42]. Moreover, even when utilizing high voltage chargers, the time that EVs take 

to recharge is still longer than that taken by ICEVs to refuel, and therefore, charging can still 

be inconvenient for owners [27]. Swapping batteries at battery switching stations could 

eventually provide a better solution and thus overcome the problem of long recharging time 

[7]. 

 

The integration of EVs with the electrical grid faces the challenge of implementing a 

charging infrastructure, which is proposed to be concentrated in residential areas [12]. 
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Several benefits can be obtained with residential charging infrastructure, such as charging 

during off-peak hours, when power is inexpensive, a timing that could sustain power network 

reliability [41]. Cost, time, and access are other challenges facing home charging stations. 

Consumers might need to use Level-2 charging stations, which may be expensive. Those 

living in multi-unit buildings may suffer more inconvenience, and the process could become 

complicated for them if they do not have reserved parking spots or are not authorized to 

access charging infrastructure [11]. The installation of residential charging infrastructure 

requires collaboration between governments and stakeholders to facilitate the process, reduce 

the cost, and develop solutions for multi-unit buildings. On the other hand, non-residential 

charging infrastructure may be necessary for the popularization of EVs. In addition to being 

beneficial for EV owners who do not utilize residential charging infrastructure, this 

infrastructure can help extend the daily range of driving [11]. EV operators might depend 

primarily on residential charging services, but augment these with a non-residential charging 

service, a joint approach that can be another key factor for further improvement [12]. 

Establishing non-residential charging infrastructure may be associated with several 

challenges, such as the effects on the power network when use grows [11]. To overcome the 

obstacles associated with non-residential charging service, research determining the highest 

charging demand and time of EV use is strongly needed. For example, public and private 

stakeholders could collaborate to integrate charging infrastructure networks and try to 

maximize the coverage they provide and access to them [41]. 

 



 

17 

 

There are two ways of defining the lifetime of a battery: age of the battery in years or the 

point when the battery is no longer able to power the vehicle because of the charge-and 

discharge cycle number [40]. Three factors can be used to estimate the lifetime of a battery: 

temperature, charge rates, and depth of discharge swings [33]. Most manufacturers are now 

designing batteries with larger capacity to meet energy storage needs over the lifetime of an 

EV [41]. The size, weight, and cost of a battery are increased by larger capacity, but on the 

other hand, the efficiency of the battery is reduced [6]. Alternatively, manufacturers could 

install short-lifetime batteries but replace them every 5 to 7 years [41]. A battery leasing 

model, for instance, separates the vehicle lifetime from the battery lifetime and reduces the 

high initial price of purchasing an EV [6]. However, the U.S. Department of Energy 

estimates that manufacturers will have been capable of manufacturing batteries with a 

lifetime of approximately 14 years by the year 2015 [17]. 

 

2.2 Plug-in Hybrid Electric Vehicles (PHEV) 

Plug-in Hybrid Electric Vehicles (PHEVs) differ from EVs in various ways, including 

overall cost, driving range, complexity, and battery pack size. PHEVs are introduced as a 

practical solution to the problem of the constrained PSS of EVs. PHEVs use both an ICE and 

an EM as an energy transformation medium and a battery with sufficient capacity to store the 

extra energy from the engine or regenerative breaking [26]. The battery powers the EM when 

needed, either to allow the engine to be turned off during some phases, such as at low speeds, 

or to provide auxiliary motive power to the engine. PHEVs offer drivers the chance to rely on 
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the electricity sector while maintaining the driving range of ICEVs. Hence, they combine the 

efficiency advantages of hybridization by traveling part-time on electricity provided by the 

power grid. In addition, PHEVs are significantly important technology for reducing 

greenhouse gas emissions since they can operate on electricity for a limited distance, 

depending on their battery capacity. PHEVs have been marketed over the past decade in 

developed countries such as the U.S., and they have market penetration of around three 

percent worldwide, with more than 1.5 million PHEVs in use over the past decade [26]. The 

cost challenge of PHEVs is more complicated than that of EVs because they require an ICE 

with other associated components as well as a battery pack. The battery capacity required by 

PHEVs is less, and therefore, these vehicles have a lower cost battery pack than EVs [26]. 

PHEVs are able to overcome the phenomenon of range anxiety since they can run completely 

on gasoline if the battery runs out of energy [9]. 

 

2.3 Routing  

Routing in general is defined as the process of computing routes in networks. Routing can be 

performed for multiple kinds of networks, including transportation networks, telephone 

networks, and electronic networks, such as the Internet. The optimization routing problem of 

vehicles can be defined as a combinatorial optimization process for finding the route, from a 

source to a destination, with minimal cost in a network. Traditionally, the focus was on 

finding the shortest paths in networks, with positive edge costs that represent distances 

between the start node and end node. In what follows, we address a brief overview of the 
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most common traditional routing techniques, and then we proceed to recent studies that have 

been conducted on optimal routing under battery constraints in EVs. 

 

The traditional shortest path problem has been broadly researched and studied. The best 

known static shortest path algorithm is Dijkstra’s [16]. This algorithm, introduced by the 

Dutch computer scientist, Edsger Dijkastra, is a graph search technique for efficiently 

computing the shortest path between any two nodes in networks, with non-negative edge 

costs. Basically, when a source node is determined, the algorithm computes the most efficient 

route (e.g., the route with the shortest distance) from the source node to each other node in 

the graph. This algorithm may also be applied to compute the most efficient route from a 

known source to a known destination by terminating it when the optimal route to the 

destination is found. The performance of Dijkastra’s algorithm using the array data structure 

achieves a running time of 2( )O n , and the binary heap achieves a running time of 

( log )O m n , where m and n  are the numbers of links and nodes respectively. Label-

correcting algorithms with optimality condition are required if the network has some negative 

edge costs. These algorithms are able to change the labels of edge costs until all edge costs 

satisfy the optimality condition. The performance of such algorithms with a first-in-first-out 

(FIFO) queue achieves a running time of ( )O mn . 
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2.3.1 Optimized Routing in EVs 

EVs, powered by constrained rechargeable batteries, are expected to shape future traffic. 

Designing optimal energy/time routing algorithms has become an essential requirement for 

broader use of EVs. The EV battery constraints of limited battery capacity and regenerating 

energy during downhill and deceleration phases require novel routing techniques. The 

optimal energy/time routing therefore creates novel algorithmic challenges for navigation 

system designers and route planners since their aim is to compute the most energy/time-

efficient routes rather than the fastest or shortest ones. The following paragraphs address 

recent research studies and existing work conducted on optimal EV routing. 

 

Artmeier et al. [3], proposed certain shortest path techniques that tackle energy-optimal 

routing. They formalized efficient energy routing using constrained batteries as an example 

of the constrained shortest path problem (CSP) and also classified the battery constraints into 

hard and soft ones. They presented a shortest path algorithm that takes into account the 

battery constraints and solves the problem in a running time of 3( )O n .They also showed that 

by an unfolding of a weighted routing graph, acceleration and deceleration cost values for road 

edges can be considered. 

 

Jochen et al. [29] showed that the battery constraints of EVs are formed as cost functions on 

road segments satisfying the FIFO property, and thus, a Bellman-Ford algorithm can be used 

to solve the problem. They employed a result by Johnson [30] and some significant 
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observations about Dijkstra [16] under non-constant edge costs to obtain an ( log )O n n m+  

query time after an ( )O nm  pre-processing phase for any road network weighted with energy 

edge costs. They also demonstrated that if the energy recuperation was induced in a very 

natural way, the pre-processing stage could be omitted.  

 

Martin et al. [36] have proposed a solution to the problem of energy-optimal routing taking 

into account the battery constraints using a framework of the *A  search algorithm. They 

modified the *A  algorithm and showed that specific domain knowledge could be exploited 

to give rise to a heuristic to solve the problem in a running time of 2( )O n . To model the 

energy cost function of each road segment, they established two different types of energy: 

potential energy, which can be either consumed or recuperated, and loss of energy. The 

battery constraints were incorporated into the modified algorithm by adjusting them 

dynamically in order to compute the most efficient energy-based path during the search. 

Thus, they proved that the battery constraints could be tackled in the same way as other 

parameters given at query time. 

 

Noticeably, optimal routing of EVs is different from the traditional routing that has no 

constraints associated with it. For EV energy/time-optimal routing, apparently the edge costs 

cannot be assumed to be distance values, so understanding edge costs as energy/time values 

and applying traditional techniques is not feasible. The battery constraints as well as the 

dependence of the graph weights on energy or travel time values have made routing of EVs 
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more complex. Dijkstra’s algorithm can be integrated with other pre-processing techniques 

such as contraction hierarchies [21], highway hierarchies [44], and transit vertex routing [5] 

to form state-of-the-art route planning. In addition to the exclusion of traditional techniques 

and algorithms from EV energy/time-optimal routing, some other techniques based on global 

graph analysis to eliminate negative weights [30] are not applicable because some parameters 

involved in the computations of energy/time cost functions are known only at query time. 

Bellman [8] has introduced a solution for finding the shortest path of weighted edges 

working with graphs with arbitrary weights. This solution, however, does not consider the 

EVs’ battery constraints. While there are extensions of the shortest path problem to consider 

these constraints [31], these extensions are generally known to be NP-complete [20]. The 

recent studies that have been conducted to tackle optimal routing of EVs [3, 36, and 29] are 

still incomplete since all of them have focused on optimal routing that is based only on the 

energy cost aspect and neglected the problem of travel time-optimal routing under battery 

constraints. Thus, optimal routing based on travel time costs of road segments under battery 

constraints has not been addressed yet. In addition, time complexity matters in any solution 

proposed to the problem of EV routing. For example, the solution proposed by Artmeier et al. 

in [3] has a worst case time complexity of 3( )O n , which makes this solution not a preferred 

choice of navigation system designers and route planers. In fact, it is shown in [3] that a 

modified version of Bellman-Ford is able to solve the problem; however, Bellman-Ford can 

only ensure a running time of ( )O mn . While the solution introduced by Martin et al. in [36] 

has a time complexity of 2( )O n , it is still incomplete. First, the energy cost function used to 
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model road segment costs is also not complete. The energy cost function proposed by Martin 

et al. breaks down into potential energy, which can be consumed or recuperated along the 

path, and loss of energy due to aerodynamic and friction resistance. This energy cost function 

does not consider other energy forms that may occur along a certain path, such as the 

energies dissipated and recuperated during acceleration and deceleration phases or the 

dissipation of energy by on-board electric devices, such as air conditioners, radios, etc. 

Moreover, other factors that affect the energy consumption of EVs are not considered, such 

as the driving-style coefficient, which represents different styles of driving for different 

drivers. Second, the solution computed by the *A  algorithm here is not verified in its 

optimality. In other words, it is not proven that the solution obtained is optimal by satisfying 

the optimality conditions of the *A  algorithm. Finally, the solution introduced by Jochen et 

al. in [29] has a time complexity of ( )O mn  and is dependent on a pre-processing phase for 

any road network. Techniques that are based on pre-processing and global graph analysis to 

eliminate negative weights cannot be applied since some parameters involved in the 

computations of energy/time cost functions are only known as real-time information at query 

time. 

 

2.4 Driving Range Estimation in EVs 

Driving-range estimation is becoming important to enhancing the popularization of EVs. To 

reduce drivers’ concerns about range of driving, techniques to accurately estimate how far 

drivers can travel are needed. Only one research study, presented recently by Yuhe et al. 
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[55], tackles the problem of remaining driving range estimation as a solution to reduce the 

effects of range anxiety on drivers. This study proposes a telemetric basic service for EVs 

that is designed to provide an estimate of the remaining driving distance, classifying the 

process into rough range and precise range estimation. The rough range estimation is based 

on the maximum driving distance determined by the EV maker as well as the battery charge 

level and its maximum capacity. The approach starts by performing rough range estimation 

until the battery charge level reaches a preset threshold value that is determined in advance. 

Then, precise range estimation, which is based on computing the energy cost values of road 

segments, is performed and displayed to the user.  

 

However, this approach is still incomplete for many reasons. First, the most important 

problem for EVs, battery constraints, is not addressed. Even when the EV is moving in a 

random manner without having a specific destination, the battery constraints must be taken 

into account. Second, the energy cost function used in the precise range estimation approach 

is not complete. For instance, the energy cost function does not integrate the acceleration and 

deceleration energies at traffic lights. Also, the loss of energy due to rolling resistance is not 

integrated into the energy cost function. Third, the study shows that precise range estimation 

is very expensive in terms of time and computing resources because the estimation process is 

performed through six stages, including a map-matching approach and shortest distance path 

finding approach, which also address inaccuracy in the process. Rough range estimation is 

generally less expensive; however, it is also considered to be inaccurate because it is based 
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on the maximum driving distance specified by the EV maker. Therefore, this approach is 

generally not sufficient to reduce drivers’ anxiety about being stranded. Reducing range 

anxiety may be achieved by some other strategy by which drivers are guaranteed to reach at 

least one charging station during their traveling, especially when they have no specific 

destination. 

 

2.5 Summary  

This chapter presented a broad background on EVs, including their environmental and 

economical impacts as well as the efficiency provided by the use of EVs on roads. It also 

briefly discussed challenges and related issues associated with the growth of EV technology 

and electrifying the transportation infrastructure, such as the limited cruising range of the 

battery, battery durability concerns, long charging time, and charging infrastructure. A brief 

background on PHEVs was presented, showing the difference between PHEVs and EVs. A 

brief background on traditional routing techniques and algorithms such as Dijkastra’s 

algorithm was provided. Then, research work that aimed at optimized routing under battery 

constraints in EVs was reviewed. Finally, a concise background on driving-range estimation 

as a solution to reduce the effects of range anxiety was also presented. 

 

It has been shown that despite the diversity of research in the area of optimal routing in EVs, 

existing work does not fully solve the problem of optimal EV routing; specifically, optimal 

routing of EVs has been limited to energy-optimal routing without representation of a 
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complete energy cost function, while optimal travel time routing under battery constraints 

has not been addressed at all yet. Moreover, the work conducted to date on driving-range 

estimation has not resulted in an approach to fully reduce drivers’ range anxiety. 
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Chapter 3: 

Optimal Energy/Time Routing in EV 

 

3.1 Introduction 

Among the main barriers to widespread adoption of EVs is their driving range limitation 

caused by batteries. The limited cruising range between battery charges has become a 

fundamental obstacle for manufacturers wishing to broaden the adoption of EVs. The 

sensitivity of power consumption in EVs is critically important; hence, early studies in the 

area of optimal routing for EVs [3, 36, and 29] have focused on optimal routing that is 

based only on energy costs. Due to their limited capacity, batteries have two main 

constraints that cannot be violated while finding the optimal energy route. The first 

constraint is that a path cannot be used if it has an energy cost that exceeds the battery 

charge level. For the EV driver, taking such a path results in not reaching the destination 

and being stranded en route. The second constraint is that if the battery is fully charged, 

then any path with a negative energy cost cannot be used. Since the battery has only a 

limited capacity, storing energy from downhill or deceleration phases in the battery is only 

possible if there is sufficient free capacity, which means recuperation is no longer possible 

when the battery is fully charged. These two constraints demonstrate that the optimal 

energy routing problem of EVs is complex and requires an efficient algorithmic solution. 
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On the other hand, optimal travel-time routing under battery constraints in EVs has not 

been studied. Optimal travel-time routing in EVs is also important and is a major concern 

for drivers wishing to manage their trips conveniently. The estimation of travel-time 

should take into account congested conditions and accident risk factors so that drivers can 

avoid unexpected delays and take the most efficient travel-time based routes to their 

destinations. The battery constraints must not be violated in the energy and travel-time 

aspects. Obviously, there is a necessity to resolve the battery constraints problem for 

optimal energy routing as doing so will allow EVs to extend the cruising range of the 

battery. However, the battery constraints problem must also be resolved when the optimal 

routing is travel-time based in order that an EV driver is certain to reach his/her destination 

safely. In other words, to prevent the driver from being stranded during or at any point of 

travel, the battery constraints problem must be resolved while finding the travel-time route. 

 

3.2 Energy-Optimal Path Problem under Battery Constraints  

Assume a directed graph is given, G = (V, E) having |V| =n and |E| =m, to represent a road 

network, where verticesv V∈ represent points, and edges e E∈ represent connections 

between these points corresponding to road segments. Assume for each vertex, an 

elevation 0:u v R+→  is given, and for each edge, a length :l E R+→ and a speed limit 

S:E→ N are given. A path P  can be defined as a sequence of k  vertices 1 2( , ,......., )kv v v , 

and the edge is two vertices 1( , )i iv v E+ ∈  with 1,2,............, 1i k= − . Assume that the 

vehicle is traveling on a route at the average speed of each road segment, and that when it 
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transits from one segment 1( , )i iv v+  to the following one 1 2( , )i iv v+ + , it adapts to the new 

higher or lower speed. Making this setting, consider the graph depicted in Figure 3.1 as a 

simple theoretical example to explain the complexity of resolving the energy-optimal 

routing problem under battery constraints. To do so, we define the following parameters: 

the battery maximum capacity, maxC +∈ℝ , the battery charge level, J +∈ℝ  , where

maxJ C≤ , and the remaining free capacity of the battery, 0U +∈ℝ  , where maxU C J= − .  

 

 

 

Figure 3.1: Simple Example of Energy-optimal Path. 

 

Given the graph depicted in Figure 3.1 above as an energy weighted graph  ( , , )EG V E c , 

two vertices ,s t V∈ , an initial charge level J , and a maximum battery capacity maxC , the 

energy-optimal routing problem is determining a path, P in G , from source s to 

destination t  with minimal energy cost. The energy-optimal routes here correspond to 

paths that are feasible—ones that satisfy the battery constraints—and where the remaining 
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battery charge at the end of the path is maximal, or equivalently, where the remaining free 

capacity of the battery is minimal. Each vertex u  in the graph has an elevation ( )z u  

resulting in a potential energy ( ( )....)PE z u , which is shown next to the label of each vertex. 

For instance, the potential energy of vertex b  is 4 and vertex a  is 2, meaning that the total 

energy cost ( , )Ec a b  of the edge ( , )a b  can be computed as 1 (4 2) 3+ − = . 

 

Considering the two battery constraints of limited energy supply and the ability to 

recuperate energy into the available free capacity, assume a fully charged battery at s with

max 5J C= = . Now if the battery constraints are not considered, then the energy-optimal 

path is ( , , )s c t , with a total energy cost of 4 energy units. However, it is not possible for 

the EV to travel over the road segment ( , )s c  under the effect of battery constraints because 

it would require 6 energy units. Therefore, the energy-optimal path under battery 

constraints is ( , )s t , with energy costs of 5 units. Analogously, assume the EV starts at 

vertex c  with max 5  and  4C J= = . The road segment ( , )c t  offers a negative energy cost  

( , ) 2Ec c t = −  units, but the battery in this case can store only max 5 4 1C J− = − =  units. 

Resolving the battery constraints is extremely important, and necessitates flexibility in the 

search technique required to solve the problem. Hence, the algorithmic solution posed to 

the energy-optimal routing problem must carefully take into account the battery constraints 

while computing the energy-optimal path in any road network. 
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3.3 Travel Time-Optimal Path Problem under Battery Constraints  

The optimal travel-time path problem corresponds to computing a path, P , in a graph, G , 

from source s to destination t  with minimal travel-time cost. Although the optimal routing 

problem here is travel-time based and not energy based, the battery constraints must not be 

violated; otherwise, reaching the driver’s destination is not possible. The optimal travel-

time routes here correspond to paths that are feasible—ones that satisfy the battery 

constraints—and where the time spent travelling from sources to destination t  is minimal. 

In this case, the energy cost along the path is not necessarily minimal since the major 

concern for drivers is the optimality of travel-time cost. Rather, the energy cost of a travel-

time-optimal path is the accumulated energy along the path.  

 

Let us consider the weighted graph depicted in Figure 3.2 as a simple theoretical example 

for studying the travel-time-optimal path problem under battery constraints. Given this 

graph as a travel-time and energy weighted graph  ( , , , )E tG V E c c , two vertices ,s t V∈ , an 

initial charge level J  and a maximum battery capacity maxC , the optimal travel-time 

routing problem corresponds to finding a path, P in G , from source s to destination t  

with minimal travel-time cost. Let us assume that weights in blue represent energy costs, 

while weights in black represent travel-time costs, including congestion conditions and 

accident risk.  
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Figure 3.2: Simple Example of Travel Time-optimal Path. 

 

Taking into account the two battery constraints of limited energy supply and the ability to 

recuperate energy into the available free capacity, assume a fully charged battery at s with 

max 9J C= =  energy units. Even though the path ( , , )s c t  is the most efficient travel-time 

one from source s to destination t , it is not possible for the EV to travel over this path 

because the road segment ( , )s c  requires 10 energy units, which exceeds the battery charge 

level, and such a path must not be selected by the path-finding technique during the search 

process. Therefore, the travel-time-optimal path under battery constraints is ( , , , , )s a b c t , 

with total energy costs of 7 units and total travel-time costs of 14 units. The path ( , )s t  is 

not considered optimal here despite the fact that it has less energy costs, because it has 

higher travel-time costs. Hence, the algorithmic solution required to resolve the travel-

time-optimal path problem must carefully take into account the battery constraints and not 

violate them while computing the optimal path.   
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3.4 Computational Considerations 

The complexity of solving problems by searching and, in particular, finding optimal 

solutions in graph networks is measured using what is known as asymptotic complexity, 

that is, ( )O notation and NP-completeness. A number of criteria can be used to measure 

the performance of any algorithmic solution to the problem of finding optimal routes for 

EVs; The performance of the search technique can be assessed based on four criteria: 

completeness—defined as the assurance of  obtaining a solution if there is one; 

optimality—describing the verification of the search technique in finding the optimal 

solution (one may verify whether the optimality conditions of the search technique are 

satisfied so that the solution found is guaranteed to be optimal); time complexity—defined 

as the time that the search technique takes in finding a solution; and space complexity—

defined as the memory space required to find a solution and finish the search. Because the 

problem of optimal routing under battery constraints in EVs is generally classified to be 

NP-complete [20], the following chapter introduces the solution proposed in this thesis to 

solve the problem. The posed solution relies on a framework for a multi-criteria routing 

technique that uses a heuristic function during its search to solve the problem in 

polynomial time. 

 

3.5 Summary  

This chapter has addressed the problem of optimal energy/time routing under battery 

constraints in EVs. The effect of battery constraints on the optimal routing process with 
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respect to energy and travel-time aspects was discussed. Thus, the chapter stressed that the 

algorithmic solution posed to solve the problem of optimal energy/time routing in EVs 

must carefully take into account the battery constraints and not violate them while 

computing the most efficient routes. To this end, the complexity and computational 

considerations of the problem were briefly discussed. 
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Chapter 4: 

 

Optimal Path Finding: A Multi-criteria Model 

 
4.1 Introduction 

 
This chapter presents the posed solution to the problem of optimal energy/time routing under 

battery constraints in EVs. The recommended solution considers not only energy, but rather 

it provides drivers with more freedom and convenience by including travel time in finding 

optimal routes. The proposed technique is a multi-criteria model within a framework of the 

*A  search technique that relies on a heuristic function during its search, and thus the problem 

is solved with a worst case time complexity of 2( )O n . This model functions in two modes: 

the *A  search algorithm has been modified such that it can be run for both energy and travel-

time modes based on drivers’ needs. To give drivers more freedom to plan their trips, two 

separate algorithms have been created by developing one modified *A  algorithm for each 

mode. The problem of battery constraints is solved by dynamically adjusting the energy cost 

function in the algorithm during the search process. 

 

For the energy mode, the modified algorithm is called Energy Mode *A  Algorithm; it takes 

the battery constraints into account and excludes the optimality of travel time, thus 

computing the most energy-efficient path among all possible paths. For the travel-time mode, 

the modified algorithm is called Time Mode *A  Algorithm; it takes the battery constraints 
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into account and excludes the optimality of energy, computing the most travel-time-efficient 

path among all possible paths. The battery constraints are taken into account by the both 

modified *A  algorithms and not violated in either; consequently, drivers have assurance of 

reaching their destinations if they use the optimal solution. 

 

4.2 A-Star Search Technique 

*A  Search, pronounced “A-star search”, is one of the most commonly known forms of best-

first search. The *A  algorithm has two main significant properties. First, if a route exists, it 

returns the most efficient route from a given source to a given destination. Second, *A  uses a 

heuristic function (i.e., an estimate) to search nodes that are considered more likely to have 

the cheapest cost, which allows one to obtain the optimal route without searching the whole 

network. *A Algorithm generates two node lists: a closed list, which contains all the nodes 

that the algorithm has explored so far, and an open list, which has all the nodes that the 

algorithm is currently working on. In order to evaluate nodes, *A  Algorithm combines ( )g n , 

the real cost value to arrive at node n , and ( )h n , the heuristic (i.e., the estimated cost value) 

from node n  to the destination.  

( ) ( ) ( )                                                                                           (1)f n g n h n= +  

In Equation (1), ( )f n  is the most efficient solution-estimated cost through node n . *A

Algorithm states that if one wants to compute the optimal path cost, then the node having the 

smallest value of ( )f n  is the best choice. This strategy is more than appropriate: it is 
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reported in [47] that if the optimality conditions of *A  are satisfied by ( )h n , then *A

technique is both complete and optimal. 

 

4.2.1 Heuristics 

The performance of *A  search is critically dependent upon selecting an appropriate heuristic.

*A  Search is ideal in its performance when the heuristic ( )h n  equals the actual path cost. If 

( )h n  is chosen to be equal to the actual cost of reaching the destination through node n , then 

*A  follows only the most efficient path and never investigates nodes that are not in the 

solution. The actual cost of the path is generally not known, and obtaining it is the reason for 

running a path-finding technique. If ( )h n  is chosen to be greater than the real cost of the 

path, then *A  can be faster but is less accurate in finding the solution; as a result, it is no 

longer guaranteed that the solution found is optimal. Therefore, ( )h n  must never be greater 

than the actual path cost.  

 
4.2.2 Conditions for Optimality 

*A  Search requires two conditions for optimality. The first is to have ( )h n  be an admissible 

heuristic, one that does not overvalue the true path cost. As defined previously, ( )g n  is the 

real cost to arrive at node n , and we have ( )f n  as stated in Equation (1); therefore, for ( )h n  

to be an admissible heuristic, ( )f n  must not overestimate the true cost of a path to arrive at 

node n . ”Admissible heuristics are by nature optimistic because they think the cost of 
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solving the problem is less than it actually is“ [47]. Since a straight line is always the shortest 

distance between any two nodes, and it can never be overestimated, it is considered a simple 

example of an admissible heuristic. The second condition, which is much stronger and a 

more important condition for optimality, is consistency. If a heuristic ( )h n  satisfies the 

condition stated in Equation (2) below, then it is considered a consistent heuristic. In 

Equation (2), ( )h n  is the heuristic from node n  to arrive at the destination, '( , )c n n  is the 

true cost between node n  and the following node 'n , and '( )h n  is the heuristic of travelling 

from 'n   to arrive at the destination. 

( ) ( , ) ( )                                                                                        (2)h n c n n h n′ ′≤ +  

 

4.2.3 Optimality of *A  

For the solution provided by *A  to be optimal, the following properties have to be satisfied: 

“the tree-search version of *A  is optimal if ( )h n  is admissible, while the graph-search 

version is optimal if ( )h n  is consistent” [47]. This research pays more attention to the second 

of these two properties because, as stated in [47], the consistency of a heuristic ( )h n  implies 

that ( )h n  is admissible. Therefore, the following claim is established: “if ( )h n  is consistent, 

then the values of ( )f n′  along any path are non-decreasing” [47]. This claim has been 

proven in [47]. For the convenience of the reader, the proof is presented as follows: let us 

assume that n′  is a following node of n , then 

( ) ( ) ( , )                                                                                        (3)g n g n c n n′ ′= +  
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( ) ( ) ( ) ( ) ( , ) ( ) ( ) ( ) ( )                   (4)

        

f n g n h n g n c n n h n g n h n f n′ ′ ′ ′ ′= + = + + ≥ + =
 

 

4.3 Energy Mode 

The *A  search algorithm for this mode will compute the most efficient path in terms of 

energy cost among all possible paths. Working on stochastic networks, the algorithm is 

modified to satisfy the battery constraints. The first constraint of the battery is that a path can 

no longer be used if it has an energy cost that is greater than the battery charge level. This 

constraint problem seems to be more significant since ensuring that the driver is not stranded 

en route is extremely important. We propose that this constraint problem be solved by 

turning the path energy cost value into infinity, thus excluding the path from the search 

process.  

 

The second battery constraint, which matters only with edges having negative energy costs, 

is that recuperation, that is, gaining energy from downhill edges and during deceleration 

phases, is not possible if the battery is already fully charged. For this constraint problem, we 

propose dynamically adjusting the energy cost function in the *A  algorithm such that the 

energy gained from downhill edges and during deceleration phases is stored in the available 

free capacity of the battery until the battery is full. The rest of any energy gained is lost. If 

this process is implemented along the path whenever there is recuperated energy, this energy 

can be made use of, extending the cruising range of the battery. 
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Assume a directed graph is given, G = (V, E) having |V| =n and |E| =m, to represent a road 

network, where vertices v V∈  represent points, and edges e E∈  represent connections 

between these points corresponding to road segments. Assume that for each vertex an 

elevation 0:u v R+→  is given, and for each edge a length :l E R+→  and a speed limit S:E→ 

N are given. A path P  is defined as a sequence of k  vertices 1 2( , ,......., )kv v v , and the edge is 

two vertices 1( , )i iv v E+ ∈  with 1,2,............, 1i k= − . When making this setting, we consider 

the amount of energy needed to travel through a path in the network as well as give an idea 

about how the battery constraints can be modeled; therefore, the following parameters are 

defined: maxC  is the maximum capacity of the battery, J  is the charge level of the battery 

where maxJ C≤ , U  is the remaining free capacity of the battery, where maxU C J= − , and k∆  

is the amount of energy consumed or gained along a path. We consider different forms of 

energy costs that can occur from taking a path 1 2( , ,.........., )k
kP v v v=  as follows: 

Potential Consumed Energy 

We define a function ( ( ))pE u a
 
that represents an elevation of a vertex ( )a . When the EV 

travels over an edge ( , )a b , the potential energy ( , ) ( ) ( )pE a b u b u a= −  is consumed or drawn 

from the battery only if the EV is going uphill ( . .,  ( ) ( ))i e u b u a> . Then, the energy cost of an 

edge ( , )a b  induced by the potential consumed energy function is defined to be 

1
( , ) [ ( ( ) ( ))]                                                                             (5)PC

c

C a b mg u b u a
η

= −  
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where, m is the mass of the vehicle, including payload, g  is the gravitational acceleration 

factor, and cη  is the efficiency factor. This potential consumed energy on the road segment 

( , )a b  takes the following values: 

0         1

0         1,           0
( , )

      1,      0

       1,           

k

PC k k

k

if k

if k
C a b

if k J

if k J

=
 > ∆ <= 

∆ > ≤ ∆ ≤
∞ > ∆ >  

 

Potential Gained Energy 

We define a function ( ( ))GE u a  that represents an elevation of a vertex ( )a . When the EV 

travels over an edge ( , )a b , the gained energy ( , ) ( ) ( )GE a b u a u b= −  is regenerated and stored 

in the battery only if the EV is going downhill ( . ,  ( ) ( ))i e u a u b> . During downhill phases, the 

motor can be turned by the wheels acting as a generator to recharge the battery. Then, the 

energy cost of an edge( , )a b  induced by the potential gained energy function is defined to be 

( , ) [ ( ( ) ( ))]                                                                           (6)PG rC a b mg u a u bη= −  

This potential gained energy is stored in the battery and is lost only if the battery is fully 

charged. It takes the following values: 

0           1

0           1,      0
( , )

      1,      0

       1,       0  

k

PG k k

k k

if k

if k J
C a b

if k U

if k U

=
 > ≤ ∆ ≤= 

−∆ > > ∆ ≤
∆ > > ∆ >  
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Note: When the road segment is a flat surface, meaning that the start node and the end node 

of the edge (a, b) have equal elevations, then the potential energy is negligible.  

Loss of Energy 

Due to the aerodynamic and rolling resistances, we define a function ( ( ), ( ))LE l e s e  that 

models loss of energy to the environment. When the EV travels over an edge ( , )a b , the loss 

of energy occurs even if the vehicle is going downhill, which means this energy cost value 

cannot be recuperated. However, the aerodynamic resistance component, which is the right 

hand side of Equation (7), is not dissipated and has a value of zero if and only if two 

conditions are satisfied: first, the wind is in the same direction as the vehicle, and second, the 

wind has a speed that is greater than or equal to the speed of the vehicle. 

21 1
( , ) [ ( , ) ( , ) ( , )]                                                  (7)

2LE r w
c

C a b f mgl a b Ac S a b l a bρ
η

= +
 

where rf  is the friction coefficient, ρ is the air density coefficient, A  is the vehicle’s cross 

sectional area, wc  is the air drag coefficient, S is the average speed on the edge (a, b), and l  

is the length of the edge (a, b). This loss of energy on the road segment ( , )a b  takes the 

following values: 

 

0          1

       1,          0
( , )

       1,          0

        1,          

k k

LE k k

k

if k

if k
C a b

if k

if k J

=
∆ > ∆ >= 

∆ > ∆ <
∞ > ∆ >  
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Acceleration and Deceleration Energy 

We define a function , ,( , ( ))a d a dE P t e  that models energy consumption due to mechanical 

loss, which consists of acceleration energy required to bring the EV back up to the average 

speed, and then deceleration energy used to bring the vehicle to a stop. The energy dissipated 

by the EV during idling is zero. When the accelerator pedal is pressed down, electric current 

flows from the battery to the motor to turn the vehicle’s wheels. This energy cannot be 

recuperated, and it is spent only during acceleration phases. However, when the driver’s foot 

comes off the accelerator pedal, the motor can still be turned by the wheels acting as a 

generator to recharge the battery [55]. If the EV has a tire with diameter r , then the angular 

velocity of each tire is 

                                                                                                         (8)
 r

S
w

r
=  

where S is the linear speed (i.e., average speed on the edge in /m s), r  is the diameter of 

the tire in m, and rw  is the angular velocity of the tire in /rad s. If the EV has a gear ratio 

of rg , then the angular velocity and power of the motor are as follows:  

                                                                                                     (9)

                                                                                    
m r r

m

w w g

P T w

=
=                    (10) 

 

where T  is the torque in .N m, mw  is the angular velocity of the motor in /rad s, and P  is 

the power of the motor in watts. Thus, the energies dissipated and recuperated during 

acceleration and deceleration phases on the road segment ( , )a b  are  
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1
( , )                                                                                         (11)

( , )                                                                                

AE A
c

DE r D

C a b P t

C a b P t

η
η

=

=           (12) 

where At  is the time that the vehicle takes to accelerate back up to the average speed, and Dt  

is the time that the vehicle takes to come to a complete stop. 

Driving Style 

In addition to the four forms of energy represented above, we also consider a driving style 

coefficient to represent different styles of driving. After calculating the four energy forms of 

road segment ( , )a b , the total energy cost function on a road segment ( , )a b  is multiplied by 

the driving style coefficient. For normal driving, the driving style coefficient may take a 

value of 1, and for aggressive driving, the coefficient may take the value 1.2. The driving 

style type may be set by drivers according to their driving behaviors. 

On-Board Electric Devices 

We define an energy form for the energy consumed by EVs’ on-board electric devices, such 

as air-conditioners, windshield wipers, etc. This type of consumed energy is determined by 

the power drawn by the electric device, which is a static value provided by the vehicle maker 

and the time that the electric device is in use. In addition, this type of consumed energy is 

considered to be spent directly from the battery and not part of the energy cost function 

occurring from taking a path. Therefore, the battery charge level must be periodically 

updated. For example, if one of the on-board electric devices is turned on/off, the battery 

charge level is updated. Updating the battery charge level can also be timer specified; for 
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instance, users may want the update to be made every two minutes. This type of energy is 

defined by the following form: 

( ) ( )
1

(  )*                                                                                (13)
n

ED ED i i i
i

C P t Status
=

=∑  

where ( )iStatus  has a value of 0 if the electric device i  is off; otherwise, it has a value of 1;

( )it  is the time that the electric device i  takes in the status on; ( )ED iP  is the power drawn by 

the electric device i , and n  is the EV’s number of on-board electric devices. The battery 

charge level is updated using the following form: 

                                                                                                   (14)updated EDJ J C= −
 

Total Energy Cost 

The complete form of the total energy cost function on the edge ( , )a b  is as follows: 

( , ) [ ( , ) ( , ) ( , ) ( , ) ( , )]*       (15)E AE LE PC PG DE coeffC a b C a b C a b C a b C a b C a b DS= + + + +  

where the total cost of a path 1 2( , ,....., )k
kP v v v=  is  

1

1
1

( ) ( , )                                                                                    (16)
j k

k
E E j j

j

C P C v v
= −

+
=

= ∑  

 

One interesting strategy to solve the problem of energy-optimal routing in EVs is to first 

transform the weight function EC  into a positive reduced weight function CΠ , in which we 

use a potential function Π  assigning to each vertex a potential as described by Mehlhorn and 

Sanders, 2008, in [39]. Assuming no negative cycles exist, it is proven that whenever a 

function Π  satisfies the fact that ( ) ( )  ( , )Eb a C a bΠ − Π ≤  and also CΠ  is determined as 
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( , ) ( , )  ( )  ( )EC a b C a b a bΠ = + Π − Π , then the optimal routes in the weighted graph 

( , , )V E cΠ  are also the optimal in the weighted graph ( , , )EV E c . This idea is used in 

Johnson’s algorithm [30] by applying the Bellman-Ford algorithm as a pre-processing stage. 

Then the problem of the shortest path in the weighted graph ( , , )V E cΠ  is solved by 

Dijkastra’s algorithm. The important observation here, and also stated in [36], is that 

according to the energy cost function defined in Equation (15), the potential function Π  can 

be inherently obtained without performing a pre-processing stage. In other words, the 

potential energy function π —resulting from an elevation of a vertex in the weighted graph 

( , , )EV E c —implies a potential function Π  resulting in a positive reduced weight function

CΠ . 

Lemma 1: π implies a positive reduced weight functionCΠ . 

Proof: 

( , ) ( , )  ( )  ( )

              = ( , ) ( , ) ( , ) ( ) ( ) ( ) ( )

              = ( , ) ( , ) ( , )  0

E

AE LE DE

AE LE DE

C a b C a b a b

C a b C a b C a b b a a b

C a b C a b C a b

Π = + Π − Π
+ + + Π − Π + Π − Π
+ + ≥  

where energies during acceleration and deceleration phases on a road segment ( , )a b  take the 

following values: 

0           1
0          1

      1,      0
       1,          0

( , )               ( , )        1,    
       1,          0

        1,          

k k

k k

k
AE DEk k

k

if k
if k

if k U
if k

C a b C a b if k
if k

if k J

=
=

−∆ > > ∆ ≤∆ > ∆ >= = ∆ >
∆ > ∆ <
∞ > ∆ >

   0  

          1,       0

            1,       0

k U

if k

if k
Π

Π




 > ∆ >
−∆ > ∆ ≥


∆ > ∆ <  
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where Π∆  is the amount of energy consumed or gained on the road segment ( , )a b  in the 

weighted graph ( , , )V E cΠ . Therefore, there is no need to perform the pre-processing stage 

that is performed in Johnson’s algorithm, and the problem can be solved in 2( )O n  by means 

of the *A  algorithm. The *A algorithm for the energy mode is modified such that the energy-

optimal path is determined in the weighted graph ( , , )V E cΠ . The battery constraints for the 

optimal path, however, are dynamically adjusted and resolved based on the energy costs in 

the weighted graph ( , , )EV E c . Figure 4.1 in Section 4.2.2 depicts a slightly modified version 

of the *A  algorithm to resolve the problem of energy-optimal routing.

  

4.3.1Energy Mode Heuristic Function 

For the heuristic function of the energy cost in the weighted graph ( , , )V E cΠ , the air-line 

distance and the minimum speed over all speed limits are used. Let us define two vertices,

 and u v, and a destination, t . Obviously, the air-line distance l ′  is a consistent heuristic for a 

road length. 

( , ) ( , ) ( , )                                                                                     (17)l u t l u v l v t′ ′≤ +  

Therefore, the following heuristics are defined: 

2
min

min

1
( , ) ( , ) ( , )                                                        (18)

2

( , )   g                                                                                   

L r w

A r A

h u t f mgl u t Ac S l u t

S
h u t T t

r

ρ′ ′= +

=

min

    (19)

( , )   g                                                                                       (20)D r D

S
h u t T t

r
=
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where

( , ) ( , ) ( , ) ( , )                                                                   (21)L A Dh u t h u t h u t h u t= + +
 

2 min min
min

Thus, we write

1
( , ) ( , ) ( , ) +   g    g  ( , )

2r w r A r D

S S
h u t f mgl u t Ac S l u t T t T t C u t

r r
ρ Π′ ′= + + ≤  

Lemma 2: The heuristic ( , )h u t  is consistent in the weighted graph ( , , )V E cΠ . 

Proof: Since ( , )h u t  is linearly increasing in l , ( , ) ( , ) ( , )h u t h u v h v t≤ + . As ( , )h u t  is 

monotonic in  and S l , ( , ) ( , )h u v C u v≤  for all  and u v for which ( , )C u v  is defined, and 

therefore,  

( , ) ( , ) ( , )h u t C u v h v t≤ + .  

In addition, the following is defined: 

2

2 min min
min

1 ( , ) ( , )
( , ) ( , ) +   g    g  

2
1

 +   g    g  
2

r w r A r D

r w r A r D

S u v S u v
V u v f mg Ac S u v T t T t

r r
S S

V f mg Ac S T t T t
r r

ρ

ρ

= + +

′ = + +
 

 Since minS  is a lower bound of ( , )u vS , 'V  is also a lower bound of ( , )V u v  and therefore 

consistency follows down from 

    ( , ) ( , ) ( , ) ( , )

 ( , ) ( , ) ( , )

h u t V u v l u v V l v t

h u t C u v h v t

′ ′≤ +

∴ ≤ +
 

which proves that the heuristic ( , )h u t  is consistent in the weighted graph ( , , )V E cΠ .  
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4.3.2 Energy Mode A-Star Algorithm 

The *A  algorithm, depicted in Figure 4.1, is used for the energy mode in order to compute 

the optimal path in terms of energy cost. Working on stochastic networks with weights 

representing energy costs, the algorithm is modified to handle the battery constraints. The 

battery constraints are resolved and verified based on the energy costs in the weighted graph

( , , )EV E c , while the energy-optimal path is determined in the weighted graph ( , , )V E cΠ . The 

algorithm is modified to tackle the first constraint problem by turning the cost value of the 

path into infinity and thus excluding the path from the search process. The solution to this 

constraint problem is stated in line 7 in the algorithm, which says that any possible road 

segment to use in ( , , )EV E c  must have a cost value, ( )g u , that is less than the battery charge 

level J . In addition to this modification in line 7, in every iteration, the algorithm will 

always choose the vertex u  in Q  with minimal ( ) ( )g u h u+ , (i.e., for which the current costs 

plus the estimated cost in ( , , )V E cΠ  are minimal, is removed from Q  and expanded). During 

the expansion, a successor v  of u  is added to Q  if its new path costs given by ( ) ( , )g u C u v+  

are smaller than the so-far known cost value. In order to be able to return the cheapest path 

(i.e., the path having the least energy costs), the choices for building up a shortest path are 

recorded via function p in lines 3 and 16. Then, the optimal path is returned via function p  

in line 11. The energy cost of the source, ( )g s , is initialized with zero in line 4. The second 

constraint problem is solved by dynamically adjusting the energy cost functions that are 

included in the total energy cost function EC  as stated in Section 4.2.  
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Figure 4.1: Energy Mode A-Star Algorithm. 

 

 



 

51 

 

4.4 Time Mode 

As mentioned earlier, in this mode, the *A  algorithm is used to compute the most efficient 

path in terms of travel-time cost among all possible paths. The travel-time cost is based on 

real time information of traffic density, so congestion and accident risk are included in the 

estimation of travel-time cost. During the search for the most efficient travel-time path, the 

battery constraints are taken into account. A path is not feasible if it does not satisfy the 

battery constraints. Even when drivers care only about time in their traveling, any path with 

an energy cost that is greater than the battery charge level is excluded from the search 

process by turning its travel-time cost value into infinity. Each road segment has an average 

speed that is assumed to be a function of the traffic density depending on traffic flow and 

concentration. 

( )                                                                                                          (22)
q

S tr
k

=
 

where q  is the traffic flow in vehicle/hour and k  is the traffic concentration in vehicle/km. 

Jan Rouwendal states in [43] the following observations about Equation (22): 

1) The speed decreases if the traffic concentration increases ( ) 0        S tr as k→ → ∞ , which 

means it becomes more costly in terms of accident risk if the speed increases and more costly 

in terms of time if the speed decreases when the EV takes a path that has high traffic 

concentration. 

2) The free flow speed *S  is finite and is defined as the speed chosen when the traffic density 

approaches zero (e.g., * 50  /S km hour= inside cities). 
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*

0
lim  ( )                                                                                                    (23)
tr

S S tr
→

=  

Then the travel-time cost function can be written as 

Travel cost = time cost + safety cost  

2  ( )                                                                                       (24) 
( )

travel
T

t
C b tr S

S tr
= +  

If the cost of waiting time at traffic lights is included in the time cost component in Equation 

(24), then the travel-time cost function can be written as 

Travel cost = time cost+ waiting time at signals + safety cost  

2 ( )                                                                                         (25)
( )T

t
C b tr S

S tr
= +  

where travel stopst t t= + . According to Jan Rouwendal [43], ( )b tr  must be increased in traffic 

density, and it can be determined as 

3
( )                                                                                                   (26)

2 ( )

t
b tr

S tr
=  

By substituting (26) into (25), the travel-time cost function of a road segment ( , )a b  takes the 

following form: 

3  
( , )                                                                                             (27)

 2 ( )T

t
C a b

S tr
=

 

Equation (27) states that when accident risk is involved in the travelling, the true value of 

travel-time cost is about 50 percent higher than that of time cost [43]. Thus, the travel-time 

cost function of a path 1 2( , ,....., )k
kP v v v=  is  
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1

1
1

( ) ( , )                                                                           (28)
j k

k
T T j j

j

C P C v v
= −

+
=

= ∑  

 

4.4.1 Time Mode Heuristic Function 

For the heuristic function of the travel time cost, the air-line distance and maximum speed 

over all speed limits are used. Let us define two vertices ,u v  and a destination t . As 

mentioned earlier, in Section 4.2.1, the air-line distance l ′  is a consistent heuristic for a road 

length ( , ) ( , ) ( , )l u t l u v l v t′ ′≤ + . Therefore, the travel-time heuristic function is written as 

follows: 

2
max

3 ( , )
( , )                                                                                      (29)

2t

l u t
h u t

S

′
=  

 

Lemma 3: The heuristic ( , )th u t  is consistent in the weighted graph ( , , )tV E c . 

Proof: Since ( , )th u t  is linearly increasing in l , ( , ) ( , ) ( , )t t th u t h u v h v t≤ + . As ( , )th u t  is 

monotonic in l  and S , then 

'

2 2
max

3 ( , ) 3 ( , )
( , ) ( , )

2 2 ( , )t t

l u v l u v
h u v C u v

S S u v
= ≤ =   for all  and u v for which ( , )tC u v  is defined, and 

therefore, ( , ) ( , ) ( , )t t th u t C u v h v t≤ +  

In addition, the following is defined: 

2 2
max

3 3
( , )       and        

2 ( , ) 2
V u v V

S u v S
′= =  

Since maxS  is a higher bound of ( , )S u v , 'V  is a lower bound of ( , )V u v  and therefore, 
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    ( , ) ( , ) ( , ) ( , )

 ( , ) ( , ) ( , )

t

t t t

h u t V u v l u v V l v t

h u t C u v h v t

′ ′≤ +

∴ ≤ +
 

which proves that the heuristic ( , )th u t  is consistent in the weighted graph ( , , )tV E c . 

 

4.4.2 Time Mode A-Star Algorithm 

The *A  algorithm, depicted in Figure 4.2, is used for the time mode in order to compute the 

optimal path in terms of travel-time cost. Working on stochastic networks with weights 

representing travel-time costs, the algorithm is modified to tackle the battery constraints. The 

focus in this algorithm is to compute the optimal path in terms of travel-time cost; however, 

the battery constraints must be satisfied along the path so that the driver is ensured not to be 

stranded. Therefore, a path with less travel-time cost cannot be used if it does not satisfy the 

battery constraints. Any path with an energy cost that is greater than the battery charge level 

is excluded from the search process by turning its travel-time cost into infinity. The solution 

to this constraint problem is stated in line 7 in the algorithm: any possible road segment must 

have an energy cost value, ( )eg u , that is less than the battery charge level J .  

 

In every iteration, the algorithm will choose the vertex u  in Q  with minimal ( ) ( )g u h u+  

(i.e., for which the current travel time costs plus the estimated cost are minimal, is removed 

from Q  and expanded). During the expansion, a successor v  of u  is added to Q  if its new 

path cost given by ( ) ( , )tg u C u v+ , is smaller than the so-far known cost value. The choices 
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for building up a shortest path are recorded via function p  in lines 3 and 17. The optimal 

path (i.e., the path having the cheapest travel time cost), is returned via function p  after 

reaching the destination in line 11.The travel time cost of the source, ( )g s , is initialized with 

zero in line 4. The second battery constraint here is solved in the same way as in the energy 

mode section. The energy cost of the optimal travel time path is accumulated along the path 

from the source to the destination in line 15.  
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Figure 4.2: Time Mode A-Star Algorithm. 
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4.5 Summary 

 This chapter has presented a solution to the problem of optimal energy/time routing under 

battery constraints in EVs. The proposed solution is a multi-criteria model that functions in 

two modes: energy mode and travel-time mode. We first introduced the search technique 

posed to solve the problem and its optimality conditions. Then, we presented in detail the 

energy mode, including the energy cost function that combines different energy forms used 

to represent energy weights on road segments in any road network. We explained how the 

battery constraints can be dynamically resolved and incorporated into the search technique 

during the search process. Finally, a time mode to provide the travel-time-optimal path, 

including the travel-time cost function used to represent travel-time weights on road 

segments in any road network, was presented. 
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Chapter 5: Experimental Work 

 

5.1 Simulation Environment 

This chapter reports experimental work performed to test and validate the proposed multi-

criteria routing technique. Matlab was used to construct the test and validation environment. 

A 40-intersection road network is used to construct working scenarios to analyze the 

performance of the proposed technique (Figure 5.1). The road network is constructed such 

that roads intersect at various elevations. Road segments vary with respect to length, speed 

limits (min/max), and average speed. The road network spans a 30kmx30km area. The 

performance of the technique is tested on various source/destination scenarios. Sources and 

destinations are selected randomly. In Figure 5.1, the source node is marked in red and the 

destination node is marked in blue. The technique can operate in either of two modes, 

namely, time mode, to compute the travel-time-optimal path from source to destination, or 

energy mode, to compute the energy-optimal path from source to destination. 

 

The parameters of the EV and the environment are as follows: mass of the vehicle including 

payload, 1200 m kg= , the efficiency of the EM, 0.8η = , the air drag coefficient, 0.24wc = , 

the cross sectional area of the vehicle, 21.85 A m= , the friction coefficient, 0.9rf = ,the 

gravitational factor, 29.81 /g m s= , the air density coefficient, 31.2 /kg mρ = , the radius of 
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the vehicle’s tires, 0.25 r m= , the maximum torque of the vehicle, 250 .T N m= , the gear 

ratio of the vehicle, 1: 6.572rg = , and the maximum capacity of the battery, max 25 C kwh= .  

 

Figure 5.1: Road Network with 40 Nodes.
 

 

The vehicle is assumed to be able to accelerate up to the speed of 100 /km hour in 4.5 

seconds and decelerate from the same speed to come to a complete stop in 4.2 seconds. The 

total energy cost function, EC , of each road segment in the network is in kwh. The driving 

style is assumed to be normal, with a driving style coefficient 1coeffDS = . The waiting time at 

a traffic light is assumed to be 3 minutes. All the on-board electric devices are assumed to be 

off, and therefore the energy cost function EDC , the energy consumed by the on-board 

electric devices, is negligible. The following sections present the results of the experiments 

conducted under various operation modes, various road conditions, and various 

source/destination scenarios.  
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5.2 Energy Mode Results 

In this mode, the technique excludes the optimality of travel time and thus computes the 

travel path with minimum energy cost. Therefore, the computed optimal path here may be 

longer in travel distance and in travel time, but optimal in energy. In order to make certain 

that the computed paths are optimal, we verify the optimality conditions of the *A  search 

algorithm stated in Sections 4.1.3 and 4.1.4. The results are provided in two tables (Tables 

5.1 and 5.2) in which the admissibility and consistency conditions along the computed 

optimal path are satisfied. 

 

The results also include a number of figures illustrating the constructed road network 

marking the optimal path in green from the source node to the destination node, the battery 

charge level along the optimal path, the energy cost of each road segment, and the total 

energy cost of the optimal path. Figure 5.2 depicts the constructed road network with the 

source node marked in red, the destination node marked in blue, and the energy-optimal path, 

computed by the technique, marked in green. For the path marked in green to be optimal, 

heuristic ( )h n  must be admissible and consistent along the path. For the admissibility of 

( )h n , the function ( )f n , stated in Equation (1), must never overestimate the true energy cost 

of the path.  
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Figure 5.2: Optimal Path Energy-based Network. 

 

Table 5.1, depicted below, illustrates the admissibility condition satisfaction in the weighted 

graph ( , , )V E cΠ . The first column of Table 5.1 is evidence for the node indices of the 

optimal path computed by the technique. The path starts with the source node having the 

index 3 and ends with the destination node having the index 23. In this operation scenario, 

the EV has gone through ten nodes, including the source and destination nodes. Additionally, 

( )g n ,  the real cost to arrive at node n  along the optimal path, is shown in the second 

column. The value of ( )g n  is accumulated along the path until it becomes the total path cost 

when the vehicle reaches the destination. The third column demonstrates that the values of 

( )h n  along the path decrease as the vehicle moves closer to the destination. The fourth 

column shows the values of ( )f n , which is equal to ( ) ( )g n h n+ , along the path. The fifth 

column demonstrates the total path cost, which is greater than the values of ( )f n , proving 
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that heuristic ( )h n  is admissible along the path. Thus, Table 5.1 demonstrates that the 

admissibility condition in the weighted graph ( , , )V E cΠ  is satisfied along the computed path. 

Table 5.1: Admissibility Information of Energy-Optimal Path. 

Path Nodes g(n) h(n) f(n) Path Cost 

3 0 0.13619 0.13619 0.27303 

36 0.026846 0.11949 0.14634 0.27303 

13 0.063123 0.10864 0.17176 0.27303 

32 0.090594 0.10063 0.19122 0.27303 

22 0.11373 0.085166 0.1989 0.27303 

2 0.14115 0.059536 0.20069 0.27303 

37 0.16991 0.035197 0.20511 0.27303 

21 0.1987 0.027231 0.22593 0.27303 

14 0.22886 0.021142 0.25 0.27303 

23 0.27303 -0.0016633 0.27137 0.27303 

 

Table 5.2: Consistency Information of Energy-Optimal Path. 

h(n, t) c(n, v) h(v, t) 

0.13619 0.026846 0.11949 

0.11949 0.036277 0.10864 

0.10864 0.027471 0.10063 

0.10063 0.023141 0.085166 

0.085166 0.027416 0.059536 

0.059536 0.028759 0.035197 

0.035197 0.028788 0.027231 

0.027231 0.030161 0.021142 

0.021142 0.044175 -0.0016633 

-0.0016633 0 0 
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Table 5.2 proves that heuristic ( )h n  satisfies the consistency condition stated in Equation (2). 

In Table 5.2, ( , )h n t  is the estimated energy cost to arrive at the destination from node n , 

( , )c n v  is the real energy cost from node n  to node v , the successor of n , and ( , )h v t  is the 

estimated energy cost to arrive at the destination from the successor node v . Another way of 

proving consistency as stated in Equation (4) is by having the values of ( )f n  be non-

decreasing along the computed path, starting from the source node up to the destination node, 

which is demonstrated in Table 5.1. Thus, heuristic ( )h n  is consistent in the weighted graph 

( , , )V E cΠ  along the computed path. 

 

Figure 5.3, depicted below, illustrates the battery charge level and the effects of negative 

energy costs on the battery charge along the optimal path in the weighted graph ( , , )EV E c . In 

this operation scenario, the EV started along the path with a fully charged battery (that is, 

25 kwh), and it ended reaching the destination  with a charge level of 24.618 kwh. It can be 

seen from the graph that during this run, the first road segment of the travel path has a 

negative energy cost value, and therefore, there is no energy consumed from the battery over 

this road segment. Due to the dynamic adjustment of the travel energy cost, the negative 

energy cost incurred by taking the first road segment was lost since the battery was fully 

charged when the EV first started traveling. All the other negative energy costs incurred by 

taking this path were stored in the battery until the destination was reached. Therefore, 

prolonging of the limited cruising range of the battery is noticeable along the optimal path. 
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Figure 5.3: Battery Charge Level along the Energy-optimal Path. 

We also illustrate the energy cost of each road segment the EV has gone through along the 

optimal path. Figures 5.4 and 5.5 depict the road segment costs in the weighted graphs 

( , , )V E cΠ  and ( , , )EV E c , respectively, recorded at the end of each road segment. As can be 

seen from the graphs, the EV has gone over nine road segments from the source node to the 

destination node, with each road segment having a different energy cost value.   

 

Figure 5.4: Road Segment Costs of the Energy-optimal Path in ( , , )V E cΠ . 
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Figure 5.5: Road Segment Costs of the Energy-optimal Path in ( , , )EV E c . 

The total path energy cost in the weighted graph ( , , )EV E c  is depicted in Figure 5.6 below. 

This graph illustrates the effects of potential energies on the path energy cost. The total path 

energy cost here refers to the total energy that resulted from taking the optimal path and not 

that consumed from the battery.  

 

Figure 5.6: Total Path Energy Cost in ( , , )EV E c . 
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During this run, the negative energy cost value incurred by taking the first road segment was 

lost from the battery due to the dynamic adjustment of battery constraints, and all of the other 

negative energy costs of taking the path were stored in the battery.  

 

5.3 Time Mode Results 

In this mode, the technique excludes the optimality of energy cost and thus computes the path 

with minimum travel-time cost. Therefore, the computed path here may be more energy 

consuming and longer in travel distance but optimal in travel time. Although this mode is 

used by drivers when the concern is travel time and not energy, the battery constraints are 

considered and not violated. We verify the computed path by checking the optimality 

conditions of the *A  search technique stated in Sections 4.1.3 and 4.1.4. The results of this 

operation mode are provided in two tables (Tables 5.3 and 5.4) in which the satisfaction of 

the admissibility and consistency conditions along the computed path is proven. 

  

The results also include a number of graphs illustrating the constructed road network 

marking the computed path from the source node to the destination node in green, the battery 

charge level along the computed path, the travel-time cost of each road segment, the energy 

cost of each road segment, and the total energy cost of the computed path. Figure 5.7, 

depicted below, illustrates the constructed road network with the source node marked in red, 

the destination node marked in blue, and the travel-time-optimal path, computed by the 

technique, marked in green. For the path marked in green in Figure 5.7 to be optimal, 



 

67 

 

heuristic ( )h n  must be admissible and consistent along the path. For the admissibility of 

( )h n , the function ( )f n , stated in Equation (1), must never overestimate the true travel-time 

cost of the path. 

 

Figure 5.7: Optimal Path Travel Time-based Network. 

 

Table 5.3 proves the satisfaction of the admissibility condition along the computed path. The 

first column of Table 5.3 demonstrates the computed path node indices chosen by the 

technique. The path starts with the source node having the index 1 and ends with the 

destination node having the index 36. In this operation scenario, the EV has gone through 

eleven nodes, including the source and destination nodes. Additionally, ( )g n , which is the 

real cost to arrive at node n  along the computed path, is shown in the second column. The 

value of ( )g n  is accumulated along the path until it becomes the total path cost when the 

vehicle reaches its destination. The third column demonstrates that ( )h n  decreases along the 
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computed path as the vehicle moves toward the destination. The fourth column illustrates the 

values of ( )f n  along the path, which are equal to ( ) ( )g n h n+ . The fifth column illustrates 

the true cost value of the entire path, which must be greater than the values of ( )f n  in order 

to prove that heuristic ( )h n  is admissible along the path. As can be seen from Table 5.3, the 

admissibility condition is satisfied along the computed path, marked in green in Figure 5.7.  

Table 5.3: Admissibility Information of Time-Optimal Path. 

Path Nodes g(n) h(n) f(n) Total Path Cost 

1 0 0.015192 0.015192 0.053064 

18 0.0046393 0.013606 0.018245 0.053064 

23 0.010432 0.011436 0.021868 0.053064 

5 0.014457 0.010697 0.025154 0.053064 

40 0.018835 0.0087469 0.027582 0.053064 

9 0.02482 0.006699 0.031519 0.053064 

22 0.028922 0.00556 0.034482 0.053064 

4 0.034193 0.0034037 0.037596 0.053064 

11 0.042056 0.0041382 0.046195 0.053064 

26 0.049379 0.0023342 0.051713 0.053064 

36 0.053064 0 0.053064 0.053064 

 

 

Table 5.4 demonstrates that heuristic ( )h n  satisfies the consistency condition stated in 

Equation (2), and thus heuristic ( )h n  is consistent along the computed path. In Table 5.4, 

( , )h n t  is the estimated travel-time cost to arrive at the destination from node n , ( , )c n v  is 

the real  travel-time cost between node n  and node v , the successor of n , and ( , )h v t  is the 
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estimated travel-time cost to arrive at the destination from the successor node v . Another 

way of proving consistency, as stated in Equation (4), is by having the values of ( )f n  be 

non-decreasing along the path, starting from the source node up to the destination node, as 

demonstrated in Table 5.3. 

Table 5.4: Consistency Information of Time-Optimal Path. 

h(n, t) c(n, v) h(v, t) 

0.015192 0.0046393 0.013606 

0.013606 0.005793 0.011436 

0.011436 0.0040242 0.010697 

0.010697 0.0043786 0.0087469 

0.0087469 0.0059845 0.006699 

0.006699 0.0041021 0.00556 

0.00556 0.005271 0.0034037 

0.0034037 0.0078637 0.0041382 

0.0041382 0.0073229 0.0023342 

0.0023342 0.0036852 0 

0 0 0 

 

Figure 5.8 depicts the battery charge level and the effects of negative energy costs on it along 

the computed path. When the EV started traveling over the path, the battery was fully 

charged—equal to its maximum capacity 25 kwh. The EV reached the destination with the 

battery having a charge level of 24.411 kwh. As can be seen from the graph, the negative 

energy costs incurred by taking this travel-time-optimal path were stored in the battery due to 

the adjustment of battery constraints. The travel-time cost and energy cost values of each 

road segment the EV has gone over along the computed path are also depicted in Figures 5.9 
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and 5.10, respectively. Figure 5.9 illustrates the travel-time costs in 2 /h km recorded at the 

end of each road segment along the computed path, while Figure 5.10 illustrates the energy 

costs in kwh recorded at the end of each road segment along the computed path. As can be 

seen from the graphs, the EV has gone over ten road segments, starting from the source node 

and ending with the destination node. 

 
Figure 5.8: Battery Charge Level along the Travel-Time-optimal Path. 

 

 
Figure 5.9: Road Segment Time Costs of the Time-optimal Path. 



 

71 

 

 

 
Figure 5.10: Road Segment Energy Costs of the Time-optimal Path. 

 

Figure 5.11 illustrates the total energy cost of the travel-time-optimal path. Although this 

path is optimal in travel-time cost, it is not necessarily an optimal path in energy cost. The 

total energy cost here is the total energy incurred by taking the travel-time-optimal path and 

not that consumed from the battery. This path was verified by the technique to be feasible in 

the sense that its total energy cost is less than the battery charge level, so the path can be used 

by the EV.  
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Figure 5.11: Total Energy Cost of the Travel-Time-optimal Path. 

 

 

5.4 Summary 

This chapter has reported the experimental work performed to validate the solution proposed 

for the EV energy/time routing problem. It addressed the simulation environment created to 

construct two complete weighted road networks for the energy mode and travel-time mode. 

Then, it reported the results of running and implementing the suggested multi-criteria 

technique. The results reported in this chapter, which include verification of the proposed 

search technique optimality conditions, prove that the solution posed is feasible.  
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Chapter 6: Range Anxiety 

 

This chapter explores drivers’ fear of and concerns about their EV running out of energy, 

leaving them stranded. A new technique is proposed as a solution to reduce the effects of 

range anxiety on drivers and help drivers travel confidently without much fear of being 

stranded. In addition, the technique includes a robust estimation of the remaining driving 

range on a specific path. 

 

6.1 Introduction 

The unique characteristic of the PSS of EVs, namely, the limited battery capacity resulting in 

limited driving range, has led to what is called range anxiety. Range anxiety is classified as a 

major barrier to the widespread adoption of EVs. While the single battery charge of EVs 

may, depending on conditions, support a driving range that is roughly just less than 200 km, 

the full tank of conventional vehicles can support a driving range of around 600 km or even 

further [55]. For operators, a shorter driving range is translated to a higher range anxiety [57]. 

The need to reduce range anxiety has led researchers to pay special attention to driving-range 

estimation. It is becoming an extremely important strategy because some believe that the 

only means to reduce driver concerns about being stranded is to make them aware of the 

remaining distance that their EVs can be driven. It is inaccurate to estimate remaining 

drivable distance based only on the maximum driving distance provided by the EV maker. 
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Many factors that affect the battery charge must be taken into account in order to make 

accurate estimates, including vehicle features, such as mass, power, torque, etc.; road and 

environment conditions; on-board electric device use; and driving style. All of these factors 

and more must be involved in the process of driving range estimation; otherwise, the 

estimation cannot be accurate. However, this thesis reports that driving-range estimation is 

not the only means to reduce drivers’ range anxiety, proposing a technique that analyzes an 

EV’s battery charge required by the vehicle in order to reach a charging station. A guarantee 

that the EV operators can always reach at least one charging station and recharge their 

drained batteries would be more useful for reducing range anxiety. Therefore, this thesis 

introduces the following contributions to the problem of range anxiety: 

• Taking the battery constraints of EVs into account even when drivers have no specific 

destination, 

• Presenting a new model that reduces range anxiety to its lowest level by analyzing an 

EV’s battery charge required to reach at least one charging station, including an accurate 

estimation for the remaining driving range when a path is specified by the user. 

 

6.2 Range Anxiety Reduction Model 

This section presents a model posed for reducing range anxiety. The model is designed to 

analyze an EV’s battery charge required by the vehicle to reach at least one charging station 

before the battery is completely drained, thus providing a guarantee to the drivers that 

wherever they travel, they will not be stranded en route. To do so, the locations of charging 
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stations within a pre-determined area around an EV’s current location are required. The first 

important point about the model is that it can be used mainly when drivers have no specific 

destination in their traveling (e.g., when drivers move around looking for a restaurant). In 

such cases, one of the important factors to reducing concerns about being stranded is that the 

battery constraints must be taken into account. When drivers have no specific destination, it 

is extremely important that they avoid any road segment with an energy cost that exceeds the 

battery charge level. Therefore, in the posed model, the two battery constraints are resolved 

dynamically in the same way as explained in Chapter 4, Section 4.2. The model performs 

three range-anxiety-reducing steps. 

 

1) In addition to solving the battery constraints, as explained in Chapter 4, Section 4.2, for 

non-specific-destination traveling, locations of charging stations within a circular area around 

a vehicle’s current location are determined. Forming a circle around the vehicle’s current 

location is performed to establish a boundary that helps determine charging stations that may 

be reachable with the current battery charge. The formula in Equation (30) is used to 

determine the radius of the boundary circle, where maxd , the maximum driving distance 

determined by the EV maker (e.g., 200 km for a single battery charge), is the radius of the 

circle, and the division of battery charge level by maximum capacity of the battery represents 

the remaining battery charge. 

max
max

                                                                                              (30)
J

BR d
C

=  



 

76 

 

The formula stated in Equation (30) above is used in rough range estimation and in the first 

step of the precise range estimation approach presented in [55]. This formula is not accurate 

in providing a driving-range estimate because it is based only on maximum driving distance 

maxd  and remaining battery charge. However, this formula is used in the beginning of the 

approach posed in this thesis as an approximation to help limit the number of charging 

stations that may be reachable with the remaining battery charge. 

 

2) In the beginning, charging stations within the circular area are localized, and the path 

energy cost to each charging station is computed. A charging station is designated reachable 

or not based on the travel energy cost and not travel distance. The routing technique 

presented in Chapter 4, Section 4.2.2 is used to compute the most energy-efficient path 

among all possible paths to each charging station. The routing technique here uses the 

vehicle’s current location as the source node and the charging stations as destinations in its 

computations. Therefore, a heuristic function, exactly as defined in Chapter 4, Section 4.2.1, 

is used to provide some knowledge about each charging station. The path energy cost used in 

this model is exactly the same as the path energy cost presented in Chapter 4, Section 4.2: 

Potential Consumed Energy 

1
( , ) [ ( ( ) ( ))]                                                                              (31)PC

c

C a b mg u b u a
η

= −  

Potential Gained Energy 

( , ) [ ( ( ) ( ))]                                                                               (32)PG rC a b mg u a u bη= −  
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Loss of Energy 

21 1
( , ) [ ( , ) ( , ) ( , )]                                               (33)

2LE r w
c

C a b f mgl a b Ac S a b l a bρ
η

= +
 

Acceleration and Deceleration Energy 

1
( , )                                                                                                   (34)

( , )                                                                      
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c

DE r D
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η

=

=                               (35) 

On-Board Electric Devices Energy 

( ) ( )
1

(  )*                                                                                   (36)
n

ED ED i i i
i

C P t Status
=

=∑  

Therefore, the complete form of the total energy cost on the road segment ( , )a b  is 

represented as follows: 

( , ) [ ( , ) ( , ) ( , ) ( , ) ( , )]*       (37)E AE LE PC PG DE coeffC a b C a b C a b C a b C a b C a b DS= + + + +  

where the total cost of a path 1 2( , ,....., )k
kP v v v=  is  

1

1
1

( ) ( , )                                                                                    (38)
j k

k
E E j j

j

C P C v v
= −

+
=

= ∑  

 

3) After computing the energy-optimal paths to all reachable charging stations, the charging 

station that has the minimum path energy cost is compared to the battery charge level. If the 

battery charge level is within a preset threshold value, which is about twice the cost to the 

cheapest charging station, then a warning is displayed alerting drivers that they have 

insufficient energy to travel anywhere and to follow the energy-optimal path to the cheapest 
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charging station. The battery charge level is updated and the process is repeated every time 

the vehicle enters a new road segment. During the process, if a charging station within the 

circular area, determined in the beginning, is not reachable, its path energy cost is turned into 

infinity and thus excluded from the search process. 

 

6.2.1 Remaining Driving Range Estimation of a Specific Path 

Driving range estimation of a specific path cannot be performed based on the maximum 

driving distance determined by the EV maker along with the remaining battery charge, for 

two main reasons: 1) the battery constraints of limited capacity and the ability to recuperate 

energy during downhill and deceleration phases, and 2) the differences in road conditions, 

environmental conditions, and EV features. These two factors must be considered in any 

remaining-driving-range estimation approach in order to accurately provide drivers with the 

exact remaining range on a specific path. Therefore, the estimation here is based on using the 

path energy cost with the remaining battery charge, which together can provide accurate 

driving-range estimation. The path energy cost used in this estimation is exactly the same as 

that represented in Chapter 4, Section 4.2 and in Equation (38). 

 

The graph illustrated in Figure 6.1 provides a simple theoretical example to explain the 

estimation approach. If the battery charge is not sufficient to supply the EV along the whole 

distance of a specified path, then from the vehicle’s current location to the specified 

destination there must be a point on the path at which the battery charge level, J , equals the 
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path energy cost, ( )k
EC P . We term this point the Zero Energy Point (ZEP), meaning that 

traveling beyond this point is no longer possible. The objective of the approach is to use the 

battery charge level and path energy cost to compute the ZEP. The strategy is to use the next 

node (i.e., the node following the vehicle’s starting point) where the edge energy cost for the 

vehicle to travel between its initial location and next node is compared to the battery charge 

level. If the battery charge level is greater than the first edge energy cost on the path, then the 

edge energy cost is subtracted from the battery charge, and the next node is used for the next 

step. This process is repeated along the specified path until a road segment with an energy 

cost exceeding the battery charge level is found. It is then known that the ZEP occurs on this 

road segment.  

 

For example, in Figure 6.1, at the node before (the node marked in yellow) the battery charge 

is greater than the path energy cost. However, at the node after (the node marked in orange) 

the battery charge is less than the path energy cost. Therefore, it is known that the ZEP 

occurs on the road segment connecting those two nodes. The difference between the battery 

charge level and path energy cost at the node before will be used in the path energy cost, 

represented in Equation (37), to compute the maximum distance the EV can reach on this 

road segment. Then, this distance is added to the lengths of previous road segments to 

compute the maximum distance of driving the entire path. Thus, an accurate estimation of the 

remaining driving-range on a specific path can be displayed to the driver as a distance in km. 
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Figure 6.1: Zero Energy Point Determination. 

 

 

6.3 Experimental Work 

This section reports simulation experiments performed to test and validate the proposed 

techniques. Matlab was used to construct the test and validation environment. A 40-

intersection road network is used to construct working scenarios to analyze the performance 

of the posed techniques. The road network is constructed such that roads intersect at various 

elevations. Road segments vary with respect to length, speed limits (min/max), and average 

speed. The road network spans a 30kmx30km area, and four charging stations are selected to 

be equal distances apart. The parameters of the EV and the environment are as follows: mass 

of the vehicle, including payload, 1200 m kg= , the efficiency of the EM, 0.8η = , the air 

drag coefficient, 0.24wc = , the cross sectional area of the vehicle, 21.85 A m= , the friction 
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coefficient, 0.9rf = , the gravitational factor, 29.81 /g m s= , the air density coefficient, 

31.2 /kg mρ = , the radius of the vehicle’s tires, 0.25 r m= , the maximum torque of the 

vehicle, 250 .T N m= , the gear ratio of the vehicle, 1: 6.572rg = , and the battery maximum 

capacity, max 25 C kwh= . The vehicle is assumed to be able to accelerate up to the speed of 

100 /km hourin 4.5 seconds and decelerate from the same speed to come to a complete stop 

in 4.2 seconds. The total energy cost function, EC , of each road segment in the network is in 

kwh. The driving style is assumed to be normal with a driving style coefficient of 1coeffDS =

. The waiting time at traffic lights is assumed to be 3 minutes. Only the air-conditioner is 

assumed to be on, with 650 acP watts= , and all other on-board electric devices are assumed 

to be off. The travel-time path cost represented in Chapter 4, Equation (28), is used to 

represent the time that the air-conditioner is in the status on. The maximum driving distance 

determined by the EV maker, maxd , is assumed to be 250km for a single battery charge. If a 

sequence of nodes representing a path is entered in the model, the model performs driving-

range estimation and returns the result as distance in km. Otherwise, the model will perform 

range anxiety reduction until the battery charge is about twice the energy-optimal path cost to 

the cheapest charging station, and then returns the result to the user. The following section 

presents the results of the experiments conducted to validate the proposed model. 
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6.3.1 Results 

This section reports the results gathered from testing the proposed model. Figure 6.2 depicts 

the constructed road network, including 4 charging stations marked in red and an EV marked 

in blue. The charging stations are assumed to be positioned at intersections. The EV is 

assumed to travel around the road network in a random manner but with the consideration of 

battery constraints. In this operation scenario, the battery charge level was assumed to be 

5 kwh when the EV started travelling. The energy-optimal path to the charging station 

having the cheapest energy cost is marked in green. 

 

 

Figure 6.2: Range Anxiety Reduction Network with Four Charging Stations. 

 

The first important observation in Figure 6.2 is that the nearest charging station to the EV’s 

current location, which is about two road segments in length, was not selected by the routing 

technique. Apparently, this occurred because the optimal path to the charging station is 
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energy cost-based and not distance-based. The second important observation proves the 

inaccuracy of estimating driving range based on the formula represented in Equation (30). 

The distance to the cheapest charging station is about 14 km, while the maximum driving 

distance according to the formula of Equation (30) is 3.226 km, computed as follows: 

0.3226
250  3.226 

25
d km= × =  

This observation also demonstrates how driving range can be extended by recuperated energy 

from downhill and deceleration phases. The message displayed to the user is depicted in 

Figure 6.3 below; it shows the current battery charge, energy-optimal path cost to the 

cheapest charging station, and distance to the cheapest charging station.   

 

 

Figure 6.3: Message Displayed to the Driver. 

 

Table 6.1 provides the total path energy cost to each charging station in the weighted graph 

( , , )EV E c  along with the indices of charging stations. Noticeably, the charging station having 

index 29 has the minimum path energy cost over all charging stations, and hence, it was 

chosen by the search technique as the best charging station. Table 6.2 proves that the path 

marked in green, Figure 6.2, is the optimal path to the charging station in the weighted graph 
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( , , )V E cΠ  by satisfying the admissibility and consistency conditions of the search technique 

stated in Chapter 4, Sections 4.1.3 and 4.1.4. The values of ( )f n , which never overestimate 

the path cost along the optimal path, prove that heuristic ( )h n  is admissible along the path. 

Heuristic ( )h n  is proven to be consistent along the path by having the values of ( )f n  be 

non-decreasing along the path. Thus, Table 6.2 proves that heuristic ( )h n  is both admissible 

and consistent. 

Table 6.1: Total Path Energy Costs to Charging Stations. 

Indices 14 29 11 5 

Path cost in kwh 0.16708 0.16407 0.17306 0.21157 

 

Table 6.2: Satisfaction of Admissibility and Consistency Conditions. 

Path Nodes g(n) h(n) f(n) Path Cost 

24 0 0.051306 0.051306 0.095815 

12 0.033869 0.035744 0.069613 0.095815 

37 0.061435 0.02001 0.081445 0.095815 

29 0.095815 -0.0061339 0.089681 0.095815 

 

 

Finally, Figure 6.4, depicted below, demonstrates the result gathered from testing the model 

for driving-range estimation on a specific path. Simply, a sequence of nodes, chosen 

randomly to represent a path, is used to validate the model. The path starts with the source 

node (marked in red) and ends with the destination node (marked in blue). A low battery 
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charge that is unlikely to supply the vehicle along the entire path is used to verify the success 

of the approach. The model marks the reachable distance on the path in yellow and the ZEP 

in purple as depicted in the graph. The maximum distance that the EV can reach in this 

operation scenario, 25.379 km, is returned by the model. 

 

 

Figure 6.4: Driving Range Estimation on a Specific Path. 
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6.4 Summary 

This chapter has introduced a new model to reduce range anxiety in EV drivers. The model 

analyzes an EV’s battery charge required by the vehicle to reach at least one charging station. 

It keeps computing the energy-optimal path cost to each charging station within a pre-

determined circular area around an EV’s current location and compares that with the battery 

charge level. If the battery charge level is about twice the energy-optimal path cost needed to 

reach the cheapest charging station, then a warning and energy-optimal path to the cheapest 

charging station are displayed to the driver, prompting him/her to recharge the drained 

battery. Additionally, the model includes a robust driving-range estimation approach. The 

approach is used to accurately estimate the maximum driving distance on a specific path 

using the path energy cost and battery charge. The results reported in this chapter 

demonstrate that the proposed model is successful and can help make EVs more efficient on 

roads and reduce drivers’ range anxiety.   
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Chapter 7: Conclusions and Future Work 

 

The environmental and economical advantages as well as the higher efficiency of EVs over 

their ICE counterparts are pushing industry and academia to pay more attention to this 

promising technology. Optimal energy/time-based routing for EVs under constrained 

rechargeable batteries as well as techniques to reduce range anxiety will become significantly 

important in the near future since the global trend now is to introduce the technology of EVs 

as a strategy to help reduce greenhouse gas emissions.  

 

This thesis has formalized the problem of optimal energy/time routing in EVs within a 

framework of a multi-criteria routing technique in a graph context as a solution to finding 

optimal energy/time routes. The routing technique relies on using the *A  search algorithm, 

thus the problem is solved in 2( )O n . The *A  algorithm was modified such that it can be run 

on two modes based on driver needs: an energy mode with a modified algorithm called 

Energy Mode *A  Algorithm or a time mode with a modified algorithm called Time Mode *A  

Algorithm.  

 

For the energy mode, the algorithm computes the optimal path among all possible paths, 

taking into account the battery constraints. The first battery constraint is that a path is not 

useable if it has an energy cost that is greater than the battery charge level. This constraint 
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problem was solved by turning the energy cost value of the path into infinity, so the 

algorithm excludes that path from the search process. The second battery constraint is that 

following a path that has negative energy cost is not feasible if the battery is fully charged. 

For this constraint problem, the energy cost value was dynamically modified such that the 

negative costs are stored in the battery based on the remaining free capacity. When the 

battery is fully charged, the additional negative costs are lost from the battery. For the time 

mode, the *A  algorithm computes the optimal path in travel time among all possible paths. 

The travel-time cost includes traffic congestion, accident risk, and waiting time at traffic 

lights. The *A  algorithm was modified to take into account the battery constraints and not 

violate them, so traveling over the optimal path becomes possible. However, it is not 

necessarily the case that the optimal travel-time path is also optimal in terms of energy cost, 

and the energy cost of the optimal travel-time path is accumulated along the path to ensure 

the path is feasible. The experimental results in this thesis obtained by testing and validating 

the multi-criteria routing technique demonstrate that the solutions provided by the technique 

are optimal. The results prove that the optimality conditions of the search technique are 

satisfied along the computed paths. 

 

In addition, a new model to reduce drivers’ range anxiety has been presented in this thesis. 

The recommended range-anxiety reduction model provides a guarantee to EV drivers that 

they will never be stranded en route. The underlying idea was to compare an EV’s battery 

charge with the energy-optimal path costs that would be incurred driving to charging stations 
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within reach. The routing technique proposed in this thesis computes the energy-optimal path 

to each charging station. If the battery charge level is about twice the path energy cost to the 

charging station having the cheapest energy cost over all charging stations, then a warning as 

well as directions to the cheapest charging station are displayed to the driver. Furthermore, 

the model includes a driving-range estimation approach to provide an accurate estimate of 

how far drivers can travel on a specific path. The driving-range estimation is based on travel 

energy cost and not distance. The experimental results reported in this thesis demonstrate that 

the posed model can help reduce range anxiety and so help remove one barrier to widespread.  

 

Further research should be conducted in the area of optimal energy/time routing for 

designing a combined routing technique that considers the battery constraints and strikes a 

balance between the optimality of energy and travel time in EVs. The future work in this area 

should not compromise the optimality of energy or optimality of travel time but rather should 

concentrate on designing one routing technique for computing one path that is optimal in 

terms of both energy and travel-time costs. In addition, field experiments should be 

performed for further validation of the techniques introduced in this thesis. 
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