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Abstract

The Tor network is designed to provide users with low-latency anonymous communication.
Tor clients build circuits with publicly listed relays to anonymously reach their destinations.
Low-latency anonymous communication is also an essential property required by censorship
circumvention tools and thus Tor has been widely used as a censorship resistance tool.
However, since the Tor relays are publicly listed, they can be easily blocked by censoring
adversaries. Consequently, the Tor project envisioned the possibility of unlisted entry
points to the Tor network, commonly known as bridges.

In recent years, there have been attempts to achieve fast and real-time methods to
discover Tor, and specifically bridge, connections. In this thesis we address the issue of
preventing censors from detecting a certain type of traffic, for instance Tor connections,
by observing the communications between a remote node and nodes in their network.

We propose a generic model in which the client obfuscates its messages to the bridge
in a widely used protocol over the Internet. We investigate using Skype video calls as our
target protocol and our goal is to make it difficult for the censoring adversary to distin-
guish between the obfuscated bridge connections and actual Skype calls using statistical
comparisons.

Although our method is generic and can be used by any censorship resistance ap-
plication, we present it for Tor, which has well-studied anonymity properties. We have
implemented our model as a proof-of-concept proxy that can be extended to a pluggable
transport for Tor, and it is available under an open-source licence. Using this implementa-
tion we observed the obfuscated bridge communications and showed their characteristics
match those of Skype calls. We also compared two methods for traffic shaping and con-
cluded that they perform almost equally in terms of overhead; however, the simpler method
makes fewer assumptions about the characteristics of the censorship resistance application’s
network traffic, and so this is the one we recommend.
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Chapter 1

Introduction

1.1 Tor Network and Bridges

Tor [DMS04] is a low-latency anonymous communication overlay network. In order to
use Tor, clients contact publicly known directory servers, a fraction of the Tor network
responsible for tracking the topology of the network and node states. Directory servers
allow clients to obtain a list of volunteer-operated relay nodes, also known as onion routers
(ORs). The client then chooses some of these relays using the Tor software and establishes
a circuit through these nodes to its desired destination. Clients’ traffic is then routed
through the Tor network over their circuits, hiding users’ identities and activities.

The Tor network not only provides anonymity, but also censorship resistance. To access
a website censored in a user’s home country, the user simply connects to the Tor network
and requests the blocked content to be delivered to him. However, since a list of Tor relays
can be retrieved from publicly known directory servers, blocking all Tor connections can
be simply done by blocking access to all Tor relays based on their IP addresses. There
have been many attempts to block access to Tor by regional and state-level ISPs. For
instance, Figure 1.1 shows the blocking of the whole Tor network by the Great Firewall of
China as of 2010. This weakness indicated that relying on static information should not
be considered an effective anti-censorship solution.

In order to counteract this problem, the Tor project proposed using bridges — unlisted
relays used as entry points to the Tor network. Since bridges are not publicly listed, the
censoring authority cannot easily discover their IP addresses. Although bridges are more re-
silient to censorship, they still suffer from some weaknesses; McLachlan and Hopper [MH09]
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Figure 1.1: This graph from metrics.torproject.org shows the number of users directly
connecting to the Tor network from China, from mid-2009 to the present. It shows that,
after 2010, the Tor network has been almost completely blocked from clients in China who
do not use bridges. [Tor12]
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showed that it is still possible to identify them, as they accept incoming connections un-
conditionally. To solve this problem, BridgeSPA [SJP+11] places some restrictions on how
bridges should accept incoming connections.

Another seemingly difficult challenge is how to stop censors from masquerading as
several legitimate users and obtaining a list of all or a great portion of available Tor
bridges and thus getting around the rate limiting mechanism currently in place for bridge
discovery [Din11a]. Recent evaluations show that a possible solution is to employ a vast
quantity of short-lived volunteer-operated proxies that makes the task of finding all entry
points to the network almost impossible for the censor [FHE+12]. Our work though,
emphasizes on another and rather orthogonal aspect of the bridge access problem, namely
protocol identification and blocking, which we will discuss next.

1.2 Protocol Obfuscation and Pluggable Transports

As censorship techniques improve, more and more sophisticated methods are being de-
ployed to discover and block bridges. There have been reports of probes performed by
hosts located in China, aimed quite directly at locating Tor bridges [Wil12, WL12]. The
investigation revealed that after a Tor client within China connected to a US-based bridge,
the same bridge received a series of Tor connection initiation messages from different hosts
within China and after a while the client’s connection to the bridge was lost. We have
recently witnessed state-level SSL blocking and blocking of Tor connections based on the
expiry time of the SSL certificate generated by the Tor software [Din11b].

As the censorship arms race shifted toward the characteristics of connections, Ap-
pelbaum and Mathewson proposed a framework for developing protocol-level obfuscation
plugins for Tor called pluggable transports [AM10]. These transports appear to the Tor
client to be SOCKS proxies; any data that the Tor client would ordinarily send to a bridge
is sent to the pluggable transport SOCKS proxy instead, which delivers it to the bridge
in an obfuscated way. Developers can use this framework and build their own transports,
hiding Tor traffic in other protocols. As shown in Figure 1.2, on one side, the transport
obfuscates Tor messages in a different form of traffic, e.g., HTTP, and on the other side
it translates the HTTP traffic back into Tor traffic. Pluggable transports provide an easy
way to resist client-to-bridge censorship. The ultimate goal is that censoring ISPs that are
inspecting packets based on their characteristics will be unable to discover the Tor traffic
obfuscated by a transport.

At the time of writing this thesis, there are only a few available pluggable transports,
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Figure 1.2: Pluggable transport overview: Messages are reformated or embedded in a cover
protocol to bypass detection tools.

including “obfsproxy” [KM11], which passes all traffic through a stream cipher, though it
does not disguise the sizes and timings of packets.

Recently though, we have witnessed more sophisticated methods of traffic camouflaging
including StegoTorus [WWY+12], a tool designed for the purpose of hiding Tor traffic
in widely used cover channels, such as HTML, Flash SWF files and PDF files. Similar
to StegoTorus, we extend previous works to address their limitations of not outputting
innocuous-looking traffic; compared to StegoTorus, our method greatly reduces the chances
of obfuscated bridge connections being detected by powerful censors, while providing much
larger bandwidth to Tor users.

For the purpose of our experiment we chose the Skype [Skyc] protocol as our target
communication for several reasons. First, Skype enables users to make free, unlimited and
encrypted voice and video calls over the Internet, which has led to its huge popularity [Skyb]
and therefore the amount of Skype traffic in today’s Internet is relatively high. Second,
Skype video calls transfer a reasonable amount of data in a short period of time, making
it a desirable form of target traffic since it will not introduce too much of a bottleneck to
the Tor connection. Third, Skype communications are all encrypted [Skya], so it provides
an encrypted channel in which to hide Tor traffic.

We also note that simply adding the target protocol headers to packets would not
be successful when facing deep packet inspection (DPI) methods [LCPW12]. Dusi et
al. [DCGS09] also suggested that obfuscating inside an encrypted tunnel might not be
enough to withstand statistical classifiers since some features of encrypted tunnels such as
packet sizes and inter-arrival times of packets can still be distinguished.
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1.3 Our Contributions

We explore methods for Tor protocol obfuscation and introduce SkypeMorph, a system
designed to encapsulate Tor traffic into a connection that resembles Skype video traffic. Our
method, to the best of our knowledge, is the first of its kind, designed for high-bandwidth
and low-latency obfuscation of Tor traffic. We provide the following contributions:

• Tor traffic obfuscation: SkypeMorph disguises communication between the bridge
and the client as a Skype video call, which is our target protocol. Protocol obfuscation
is greatly needed when facing large-scale censorship mechanisms, such as deep packet
inspection.

• Innocuous-looking traffic: A client who wishes to access a SkypeMorph bridge
runs our software alongside his usual Tor client and instructs his Tor client to use
the SkypeMorph software as a proxy. Upon startup, SkypeMorph first attempts a
Skype login process and then establishes a Skype call to the intended destination;
i.e., the bridge. Once the bridge receives the call, the client innocuously drops the
call and uses the channel to send the obfuscated Tor messages. We give comparisons
between the output of SkypeMorph and actual video calls of Skype and we conclude
that for the censoring adversary it would be difficult to differentiate between the
two. Consequently, a censor would be required to block a great portion of legitimate
connections in order to prevent access to the obfuscated Tor messages.

• UDP-based implementation: Our experiments showed that Skype uses UDP
whenever a direct UDP connection is possible between participants in a call. Conse-
quently in our tool we also chose UDP as our transport protocol. The choice of UDP
as the transport protocol will also be useful when Tor datagram designs [Mur11] are
rolled out. In addition, UDP is much more flexible than TCP for traffic shaping
techniques, as explained in Section 5.2. This is mainly because UDP has no reliable
delivery and congestion control built into it at the kernel level, allowing customized
reliable transmission mechanisms to be implemented at the user level, which has the
level of flexibility required for introducing the traffic shaping, discussed next.

• Improved traffic shaping: Traffic Morphing as proposed by Wright et al. [WCM09]
is based on the premise of efficiently morphing one class of traffic into another.
However, the authors neglected one key element of encrypted channels, namely the
inter-packet delay between consecutive packets, from their design scope. SkypeMorph
extends the previous work to fully reproduce the characteristics of Skype calls.
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• Comparison between traffic shaping methods: We compare different modes
of implementing traffic shaping and describe how each of them performs in terms
of network overhead. In particular, we explore two methods, namely näıve traffic
shaping and our enhanced version of Traffic Morphing, and compare them.

• Proof-of-concept implementation: We have made our open-source proof-of-concept
SkypeMorph implementation available online at:

http://crysp.uwaterloo.ca/software/

The software can be used on Linux operating systems or on home routers that can
run the OpenWrt software distribution.

The outline of the remainder of the thesis is as follows. In Chapter 2 we discuss related
work and in Chapter 3 we formalize our threat model and design goals. Chapter 4 covers
some background and we present our architecture and implementation in Chapters 5 and
6. We present our results in Chapter 7, and discuss possible future work and conclude in
Chapter 8.

6
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Chapter 2

Related Work

2.1 Protocol Obfuscation and Anti-censorship Solu-

tions

The idea of protocol obfuscation as a method of censorship resistance has been around for
at least the past couple of years. Dust [Wil11b] is an early example of an obfuscation tool,
where each connection is wrapped inside a layer of encryption to fully hide every textual
aspect of the encapsulated protocol, including handshakes and protocol signatures. This
ensures that no additional information is leaked from the patterns transmitted and traffic
flows protected by Dust look random in the eyes of a censor inspecting byte patterns.
Similarly, with the new pluggable transport framework of Tor, the idea is to support a
wide range of transport or camouflaging techniques. The first officially released transport
is obfsproxy [KM11]. Acting similarly to Dust, obfsproxy adds encryption to Tor’s hand-
shake and connetions. However, obfsproxy’s modularity makes it possible to extend it to
other custom-built transports, and therefore makes pluggable transport design and imple-
mentation much easier as new transports need only implement a subset of functionalities,
such as the encryption mechanism.

Unlike the above-mentioned examples, where the traffic is modified to look like no other
traffic, some systems choose to mimic other innocuous looking protocols. Infranet [FBH+02]
is a censorship resistance system that leverages HTTP protocol messages to hide requests
for censored materials and a combination of HTTP messages and arrays of uncensored
images for downstream data. StegoTorus [WWY+12] has a smilar approach, hiding in-
tended requests and responses in a range of target media such as PDF and Javascript
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code. Additionally, the authors of StegoTorus introduce a modular construction for easy
modification and replacement of different parts of the implementation. Overall, new meth-
ods are pushing the arms race to the limits of censors, engaging more attack surfaces [EG12]
and consequently requiring many more technical capabilities and resources to beat, and
eventually making the collateral damage harder to evade. However, high efficiency and
bandwidth is still an unmet requirement for modern protocol obfuscation tools. Moreover,
systems such as Infranet and StegoTorus do not provide the level of deniability required
for anticensorship, since a censor spending enough time and computation can detect mal-
formed web traffic; we will try to address these issues in this thesis.

In addition to the protocol obfuscation methods mentioned above, recent proposals have
suggested systems specifically built for censorship resistance such as Telex [WWGH11], Cir-
ripede [HNCB11] and Decoy Routing [KEJ+11]. While these systems can be effective, our
method has the advantage that it does not require any cooperation from other interme-
diary points on the Internet, whereas those other anti-censorship systems have to rely on
various ISPs deploying their software (and currently there is no clear market incentive for
such tools to be deployed at a large scale).

2.2 Information Hiding and Steganography

Hiding information within subliminal channels has been studied extensively in the last three
decades. Simmons [Sim84] stated the problem for the first time and proposed a solution
based on digital signatures. Currently the topic is studied under the term steganography
or the art of concealed writing, and it has attracted a lot of attention in digital communi-
cations [PAK99].

Employing a steganographic technique, one needs to consider two major factors: the
security and efficiency of the method. Hopper et al. [HvAL09] proposed a provably secure
framework for evaluating steganographic protocols and a construction, proven to be secure
under their model and applicable to a broad range of channels. The OneBlock stegosystem
described in their work, however, requires having access to target protocol distribution and
needs an expected number of samples from the channel that is exponential in the number
of bits transmitted.
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2.3 Image Steganography

Hiding information within pictures is a classic form of steganography. Least Significant
Bit (LSB) based image steganographic techniques [JDJ00] — using a small fraction of
the information in each pixel in a cover image to send the actual data — is a common
method and Chandramouli et al. [CM01] showed the upper bounds for the capacity of such
channels.

Hiding information inside images might seem a straightforward task at first glance,
however, there are numerous statistical analysis methods [WP00] capable of detecting
anomalies in pictures and images. There are various image stegosystems resistant to such
statistical attacks including OutGuess [Pro01]. In OutGuess, message embedding happens
in two phases. For each image, first a subset of redundant bits of the image is detected,
where redundant bits are those bits that changing them does not degrade image quality.
Next, a fraction of these redundant bits are selected using a pseudo random number gen-
erator (PRNG) and encrypted messages are embedded into these bits. Steghide [HM05] is
another tool that preserves first-order statistics by applying a graph-theoretic exchange of
bit patterns; it is available as open-source software.

Recently, Collage [BFV10] was introduced as a system that uses user-generated content
on social-networking and image-sharing websites such as Facebook and Flickr to embed
hidden messages into cover traffic, making it difficult for a censor to block the contents.
Collage has a layered architecture: a “message vector layer” for hiding content in cover
traffic (using Outguess internally as their steganographic tool) and a “rendezvous mecha-
nism” for signalling. The authors claim the overhead imposed by Collage is reasonable for
sending small messages, such as Web browsing and sending email.

All the image steganographic tools discussed in the literature suffer from low efficiency
and also one major drawback of these systems is that they require a large image database
that either has to be generated as the system is being used or should be gathered before-
hand. Moreover, unless the transferred cover images are user generated, simply forwarding
images taken from the Internet might arouse suspicion, if plausible deniability is required.

2.4 Voice over IP and Video Streaming

Wright et al. [WBMM07] studied the effectiveness of security mechanisms currently applied
to VoIP systems. They were able to identify the spoken language in encrypted VoIP calls
encoded using bandwidth-saving Variable Bit Rate (VBR) coders. They did so by building
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a classifier that could achieve a high accuracy in detecting the spoken language when a
length-preserving encryption scheme was used and they concluded that the lengths of mes-
sages leak a lot of information. Further experiments showed that it is possible to uncover
frequently used phrases [WBC+08] or unmask parts of the conversation [WMSM11], when
the same length-preserving encryption method is employed for confidentiality.

However, the statistical properties these attacks exploit seem to be less prevalent in
streaming video data, rather than the audio data they consider; therefore, we have not
witnessed any method capable of distinguishing our Tor traffic disguised as Skype video
traffic from real Skype video traffic so far. Nonetheless, we consider the question of match-
ing SkypeMorph traffic to the higher-order statistics of Skype video traffic to fully resemble
Skype communication to a censor.

Previous work has shown some success in determining whether a target video is being
watched, using information leakage of electromagnetic interference (EMI) signatures in
electronic devices [EGKP11], or revealing which videos in a database are being viewed
in a household by throughput analysis [SLH+07]. However, those methods require the
purported video to be selected from a set known in advance. SkypeMorph, on the other
hand, attempts to disguise its traffic as a real-time video chat, which would not be in such
as set.

VoIP services have also been used for message hiding. For example, Traffic Morph-
ing [WCM09] exploits the packet size distribution of VoIP conversations to transmit hidden
messages (we will return to this method in Chapter 4). Another example of steganographic
communications over voice channels is TranSteg [MSS11], in which the authors try to re-
encode the voice stream in a call with a different codec, resulting in smaller payload size.
Therefore, the remaining free space can be used for sending the hidden messages. The
shortcoming of this method is that most of the bandwidth is allocated to the actual voice
conversation, leaving only a limited space for steganograms.

2.5 Steganography over Encrypted Channels

Although steganographic models similar to those mentioned above are powerful, they im-
pose relatively large overheads on our channel. Therefore, we use a combination of meth-
ods suggested for encrypted communications [DCGS09, WCM09]. We argue that on an
encrypted communication channel such as that used by Skype calls, every message appears
to be random (since we expect the encryption scheme to output a randomly distributed
bit string); thus, exploiting the channel history is not required for cover traffic and we
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can perform significantly better than the OneBlock stegosystem, Collage, or TranSteg.
The only important characteristics of encrypted channels, as suggested by previous works,
are packet sizes and inter-arrival times of consecutive packets [BLJL06, LL06, DCGS09].
Hence, a protocol obfuscation layer only needs to reproduce these features for an encrypted
channel.
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Chapter 3

Threat Model and Design Goals

In this section we discuss our threat model and assumptions. In our model, we assume that
the user is trying to access the Internet through Tor, while his activities are being monitored
by a local or a state-level ISP or authority, namely “the censor”, who can capture, block or
alter the user’s communications based on pre-defined rules and heuristics. Therefore, we
consider adversarial models similar to anti-censorship solutions such as Telex [WWGH11],
Cirripede [HNCB11] and Decoy Routing [KEJ+11]. In our threat model, as depicted in
Figure 3.1, the censor has complete authority over the network structure in its jurisdiction,
including routers, wireless access points, cables, etc. In particular, the censor is able to
block access to Tor’s publicly listed relays, and to detect certain patterns in Tor’s traffic
and hence block them. This is also true for other services or protocols for which the
censoring authority is able to obtain the specification. Examples include protocols in the
public domain, e.g., HTTP, and services whose provider can be forced or willing to reveal
their implementation details.

However, we assume that the censoring authority is not willing to block the Internet
entirely, nor a large fraction of Internet traffic. The censoring authority is also unwilling to
completely block popular services, such as VoIP protocols. Thus, the filtering is based on
a “black list” of restricted domains and IP addresses, accompanied by a list of behavioural
heuristics that may suggest a user’s attempt to circumvent censorship; for example, a TCP
SYN packet following a UDP packet to the same host may indicate a special type of proxy
using port knocking [Krz03]. Bissias et al. showed how such heuristics can be employed to
detect certain traffic patterns in an encrypted channel [BLJL06].

The assumption that censorship is done based on “black lists” is a realistic one since
usually the cost of over-blocking is not negligible. If the censor used a small “white list”

12
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Figure 3.1: In our model, the censor has complete view and access to its internal network,
but cannot influence nodes outside its jurisdiction.

of allowed content and hosts, then every new website or host on the Internet would need
to sign up with the censor in order to be accessible by nodes within its control. This is a
quite cumbersome task and seems unreasonable.

Also, we assume that encrypted communications, including Skype calls over UDP, are
not blocked unless the censor has evidence that the user is trying to evade the censorship.
Although there have been instances where Skype or other VoIP services were banned in
some countries [Nan12], to the best of our knowledge these instances are very rare and
in most of such cases the protocol and the network are not blocked, but either the Skype
website is filtered or users are threatened with legal actions [Lar12]. For instance, China has
a different approach toward Skype and has partnered with it to be able to filter unwanted
messages through a modified version of Skype, called TOM-Skype [Skye]; we strongly
discourage SkypeMorph users from using this version with our software for anonymity
purposes, however. Although some regimes may choose to block Skype, or more subtly,
bandwidth-limit Skype so heavily that Skype video is unusable, but Skype audio persists,
the diversity of methods of censoring Internet content suggests that our approach will
remain pertinent.

Moreover, currently we are relying on Skype to maintain the confidentiality and in-
tegrity of text messages, but our extremely small size messages allow for other crypto-
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graphic and steganographic tools to be used efficiently to add the desired level of security
and privacy needed. In addition to this, another possible denial of service attack is to
frequently drop Skype calls taking longer than a few minutes (or a certain threshold) to
interrupt SkypeMorph users. This attack can be simply mitigated by hopping through
SkypeMorph bridges periodically.

We further assume that the censor does not have access to information about particular
bridges (thus it does not make sense to apply our method to Tor’s public ORs since blocking
public ORs based on their IP address is a trivial task), including their IP addresses and
Skype IDs; otherwise it can readily block the bridge based on this information. (We will
discuss in Section 8 how a bridge using SkypeMorph can easily change its IP address if it
is detected by the censor.) SkypeMorph users, however, can obtain this information from
out-of-band channels, including email, word-of-mouth, or social networking websites. We
also note that it is possible to have multiple Skype calls use a single IP address but with
different ports, to allow users behind NAT to make simultaneous calls using a shared IP
address. Although there are other approaches for enumerating normal bridges [Din11a],
they are outside the scope of this thesis; our work aims at defeating firewall and DPI tools
that look for Tor flows.

In our model, we are trying to facilitate connections to bridges outside the jurisdiction
of the censor where it has no control over the network nodes. Although the censors can set
up their own SkypeMorph bridges and distribute their information, they can only obtain
a list of users connecting to their SkypeMorph bridge and not much more, as anonymity
is preserved by using Tor. Thus, by having a large number of SkypeMorph bridges serving
users, we can reduce the chances of connecting to a SkypeMorph bridge run by the censor.

Moreover, our approach assumes that DPI boxes can investigate suspicious traffic flows
with high granularity; therefore every aspect of a Skype video call needs to be reproduced
by our tool, in order to evade such DPI tools.

In general, SkypeMorph aims to build a layer of protocol obfuscation for Tor bridges
with the following goals:

• Hard to identify: SkypeMorph outputs encrypted traffic that resembles Skype
video calls. The details of how we try to minimize the chances of being detected by
the censor are discussed in Chapters 5 and 6.

• Hard to block: Since the outputs of SkypeMorph greatly resemble Skype video
calls, in order to block SkypeMorph, the censor would need to block Skype calls
altogether, which we assume it is unwilling to do.
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• Plausible deniability: Unless a user connects to a SkypeMorph bridge operated by
the censor, the only way to prove that a node is actually using SkypeMorph software is
to break into a user’s machine or to coerce him to divulge his information. Otherwise,
communicating through SkypeMorph should look like a normal Skype video chat.
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Chapter 4

Background

4.1 Skype

Skype [Skyc] is a proprietary “voice over IP” (VoIP) service that provides voice and video
communications, file transfer, and chat services. With millions of users and billions of
minutes of voice and video conversations, Skype is undoubtedly one of the most popular
VoIP services available [Skyb].

Protection mechanisms and code obfuscation techniques used in the Skype software
have made it difficult to learn about its internals, so there is no open-source variant of the
Skype application. However, there have been attempts to reverse engineer and analyze the
application [BS06, BD06]. The findings from these attempts and our own experiments,
alongside some insights from the Skype developers and results of independent studies of
the Skype source code and network [Ber05] have established the following facts:

• Skype encrypts messages using the AES cipher and uses RSA-based certificates for
authentication [Skya, BD06]. Users’ identities are verified and signed by Skype cer-
tificate authorities [Ber05]. During registration, each user sends its username along
with a hash of its password and an RSA public key. The Skype central server issues
a certificate containing the public key and the username. Before each communica-
tion over Skype, the user’s application performs a session-establishment protocol and
generates session keys. However, the details of these steps are unknown. Also our
experiments showed that Skype utilizes some form of message authentication and
would not accept altered messages. Thus an eavesdropper is neither able to access
the content of a packet nor can he alter them in a manner that is not detectable.
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All that is possible to such an attacker is selective packet dropping or denial of ser-
vice. Moreover, although previous research suggests that there are some distinctive
patterns in Skype packets [BMM+07], we could not verify these patterns in our ex-
periments. In any case, if patterns are discovered later, they can be easily reproduced
by our tool.

• There are three types of nodes in the Skype network: server nodes, which han-
dle users’ authentication when they sign in, normal nodes, which can be seen as
peers in the P2P network, and supernodes, which are those peers with higher band-
width; supernodes can facilitate indirect communication of peers behind firewalls or
NAT [BD06, BMMdT08, SFKT06].

• Skype calls are operated in a peer-to-peer architecture and users connect directly
to each other during a call, unless some of the participants cannot establish direct
connections. This is where supernodes come into the picture to facilitate the call.

• In our experiments with Skype we noticed that when a Skype call takes place there
are some TCP connections that are mainly used for signalling. These TCP connec-
tions remained open even after the call is dropped. The Skype client listens to a
customizable UDP port for incoming data, but when UDP communication is not
possible, it falls back to TCP [BS06, BD06].

• Skype has a variety of voice and video codecs and selects among them according to
bandwidth, network speed and several other factors [BMMdT08, BMM+07].

The facts that Skype traffic is encrypted and very popular makes it a good candidate
for the underlying target traffic for our purpose. We will explore this more in Chapter 5.

The choice of Skype video, as opposed to voice, calls as the target protocol in Skype-
Morph is motivated by the fact that in voice calls, usually at any time only one party
is speaking and thus we would need to consider this “half-duplex” effect in our output
stream. However, this is not the case in video calls since both parties send continuous
streams of data at any given time during a video conversation, making the implementation
of SkypeMorph easier, and not requiring the client or bridge to withhold data until it is
its turn to “speak”.

4.1.1 Bandwidth Control

Network congestion control and bandwidth throttling are major concerns in online appli-
cations. In order to be able to accommodate for changes in the network status, a traffic
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control mechanism is essential and Skype uses a congestion detection mechanism to back
off whenever it is no longer possible to communicate at the current rate. Skype voice calls
were shown to have a small number of possible bitrates [BMM+07]; however, as shown in
Figure 4.1, Skype video calls seem to enjoy much more flexibility in terms of bandwidth
usage.1

We ran a video call from a node running Linux to another remote node running Win-
dows. Using the traffic control tool tc under Linux, we first gradually decreased the
bandwidth limit on one side and observed the traffic on the other side. We then increased
the bandwidth gradually to observe the effect. Results are shown in Figure 4.1a; they sug-
gest that by limiting the available bandwidth, Skype’s bandwidth usage drops significantly
at each step to a level far below the available rate (this phenomenon is more noticeable in
higher rates) and then it builds up again to achieve the maximum rate possible. Also Skype
is able to detect whether it is possible to send at a higher rate, as depicted in Figure 4.1b.
Therefore, by a similar rate limiting technique, SkypeMorph is able to transfer data at a
reasonable rate that complies with the bandwidth specified by the bridge operator.

4.2 Näıve Traffic Shaping

To achieve a similar statistical distribution of packet sizes in the output of our system to
that of a target process, a basic approach would be to simply draw samples from the packet
size distribution of the target process and send the resulting size on the wire. This method
can be easily applied to the inter-packet arrival time distribution as well. Thus, if there is
not enough data available from Tor to fill a packet, we need to add padding to the packet
that can be as large as the whole payload size; i.e., we might have to send dummy packets.

An alternate approach is to consider the incoming packet sizes from the source distri-
bution, which is how Traffic Morphing deals with the problem and is described next.

4.3 Traffic Morphing

We briefly mention how the original Traffic Morphing [WCM09] method works. Traffic
Morphing attempts to counter an adversary who is trying to distinguish between traffic
produced by a source process from that of a target process, through statistical means. As

1The degree of flexibility in bandwidth usage of Skype video calls is due to the availability of different
frame rates and video codecs.
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Figure 4.1: Bandwidth usage by Skype under different network situations. Figure 4.1a
shows the drops in the Skype transfer rate while decreasing the network bandwidth and
Figure 4.1b shows the increase in the rate.
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previously discussed, the only statistical traces that the attacker might be able to collect
from encrypted traffic are packet sizes and timing attributes. Traffic Morphing aims at
obfuscating the packet size distribution by assuming that probability distributions of the
source and destination processes are available.

Let the vectors S = [s1, . . . , sn]T and S
′

= [s
′
1, . . . , s

′
n]T represent different packet

sizes (in increasing order) in the source and target communication, respectively. Let the
probability distribution of the source process be denoted by X = [x1, . . . , xn]T , where xi is
the probability of the si; similarly let Y = [y1, . . . , yn]T denote the target process probability
distribution. Traffic Morphing finds the matrix A for which we have Y = AX such that the
number of additional bytes needed to be transmitted is minimal. More formally, A is the
stochastic morphing matrix that satisfies the following optimization problem [WCM09]:

minimize
∑
i,j

xjaij|s′i − sj|

subject to Y = AX
n∑

i=1

aij = 1

aij ≥ 0

Thus, a packet with length sj in the source will be morphed to a packet with length
s
′
i in the target with the probability aij, resulting in a probability distribution in every

column of A. For each packet in the source process with size sj we form the cumulative
probability of jth column of A and generate a random number r ∈ (0, 1) and calculate the
corresponding s

′
j. Using this technique requires some considerations, for example dealing

with larger sample spaces or overspecified constraints that are discussed in the original
paper.

Even though the underlying premise of Traffic Morphing is that if the source process
generates a sufficiently large number of packets, the output of the morphing will converge
in distribution to that of the target, it only considers packet sizes in the encrypted traffic.
We extend this technique by introducing inter-packet timing to it as well. Once Traffic
Morphing is combined with the timing techniques, it, like näıve traffic shaping, has to
send dummy packets when no source data is available at the time a packet must be sent.
Unfortunately, as we will see in Chapter 7, these dummy packets cause the reduction in
overhead, as compared to näıve traffic shaping, to become negligible.
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4.4 Higher-Order Statistics

Although reproducing Skype packet size and inter-packet delay distributions is a step to-
wards defeating censoring firewalls, DPI tools can take advantage of higher-order statistics
in our encrypted channel to distinguish it from a Skype video call. We ran a test on the
same testbed discussed in Section 4.1.1 but with no bandwidth limit and observed that
there are second and third order statistics, discussed below, in the Skype traces.

• Second-order Statistics: We explored the space of second-order statistics in Skype
calls by measuring ordered pairs (si, ti) where si is the size of a packet sent on the wire
and ti is the delay until the next packet. For all possible packet sizes the empirical
CDF of delays following that packet size is shown in Figure 4.2a. In this figure, each
line represents the CDF of delays following a given packet size.2

The same method was applied to all (ti, si) pairs with ti being the delay and si the
packet size sent on the wire after ti milliseconds. In Figure 4.2b, the relationship
between the inter-packet delays and the next packet size is shown and there is a
negative correlation between the two. Consequently, these relationships should be
considered when packets are shaped, which we will talk more about in Section 6.2.

• Third-order Statistics: For third-order statistics we considered tuples (si, ti, s
′
i),

where si and s′i are consecutive packet sizes and ti is the delay between the two
packets. Thus, for all possible (si, ti) we formed the distribution P [s′i|(si, ti)] and
compared them. Figure 4.3a shows this distribution for a fixed ti, demonstrating
that there are third-order statistics not explained by the second-order statistics.

Similarly, we also considered tuples of the form (ti, si, t
′
i). Figure 4.3b shows the dis-

tribution of P [t′i|(ti, si)] for a fixed si, again revealing nontrivial third-order statistics.

• Higher-order Statistics: Extending this method to higher orders is a straightfor-
ward task and depending on the precision needed, we can find these statistics up to
the desired order. This allows us to fully mimic the traffic characteristics of a Skype
call.

We ensure that SkypeMorph respects those higher-order statistics in the packets and
timings it outputs. An alternative for preserving all the characteristics of the Skype video
call is to use the output of the audio and video encoder shipped with the Skype software

2As the space of all possible tuples was huge, we binned the packet sizes and delays to make the figure
easier to read.
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Figure 4.2: Second-order statistics of a Skype video call.
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Figure 4.3: Third-order statistics of a Skype video call for a fixed value of delay (1000
microseconds) are shown in Figure 4.3a and for a fixed packet size (60 bytes) are shown in
Figure 4.3b.
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to generate the statistics. However it is still unclear whether the encoder can be easily
controlled via APIs. Thus, this is left as future work.
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Chapter 5

SkypeMorph Architecture

Skype, like any other instant messaging or voice and video calling/conferencing applica-
tion, performs an authentication step before it allows a user to join the network. A user
needs to sign up with the Skype website and obtain a username and password for authen-
tication. The user then inputs these credentials to the Skype software to use them in the
authentication process. After the user authenticates himself to the network, he is able
to make calls or send messages. Due to the proprietary nature of the Skype protocol, it
is unclear how the login process is initiated and proceeds. The same is true for the call
setup phase. To look like Skype as much as possible, SkypeMorph uses the actual Skype
application to perform these actions.

In order to be able to use the Skype network, we used Skype APIs, which enable
programmers to log in to the Skype network and have almost the same functionality as
the Skype application, including making voice and video calls and sending files and text
messages. Skype APIs come in two flavours, namely the SkypeKit [Skyd] API that has
a separate runtime executable (which can be purchased online from Skype for less than
US$10) and can operate as a command-line application, and the Skype Public API, which
can speak to any running instance of the usual Skype application through message passing
systems such as DBus. These APIs allow us to perform the login and call initiation
processes. Our implementation supports both methods of communicating with Skype.
The basic setup is discussed next and details of our implementation will appear in Chapter
6.
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5.1 Setup

• Step 1: The bridge, which we denote by S, selects a UDP port number PS at
random and uses the Skype APIs to log in to the Skype network with a predefined
set of credentials.1 After successfully logging in to Skype, the bridge will listen for
incoming calls. The bridge makes its Skype ID available to clients in much the same
way that bridges today make their IP addresses and port numbers available — using
Tor’s BridgeDB [Tor] service, for example.

• Step 2: The client, denoted by C, picks a UDP port number, PC and uses the same
method to log in to the Skype network, using its own credentials.

• Step 3: The client generates a public key PKC . After that, it checks to see whether
the bridge is online in Skype and sends a Skype text message of the form PKC :
IPC : PC , to the bridge, where IPC is the IP address of the client.

• Step 4: Upon receiving the message from the client, the bridge generates a public
key PKS and sends the following text message PKS : IPS : PS back to the client.

• Step 5: The bridge and client each compute a shared secret using the public keys
they obtained and the client sends a hash of the resulting key to the bridge.

• Step 6: The bridge then checks the received hash and if it matches the hash of its
own secret key, it sends a message containing “OKAY”.

• Step 7: If step 6 is successful and the client receives OKAY, it initiates a Skype video
call to the bridge. Otherwise, it falls back to step 3 after a timeout.

• Step 8: The client keeps ringing for some random amount of time, then drops the
call.

• Step 9: When the bridge notices the call is dropped it listens for incoming Skype-
Morph messages on port PS.

• Step 10: Afterwards, the client uses the shared key and the UDP port obtained in
previous steps to send data. The bridge listens for other incoming connections.

1Skype allows multiple logins, so it might seem reasonable to share the same username and password
for every bridge. However, in that case all the messages sent to a certain Skype ID will be received by
all the bridges currently logged in with that ID, which is an undesirable setting. We therefore require
that every bridge has its own exclusive credentials, which are made available to the SkypeMorph bridge
software on startup.
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Figure 5.1: High-level overview of the SkypeMorph Architecture. The histograms show
the distribution of packet sizes in Tor (at the bottom) and Skype video (at the top).

Note that having the bridge switch to a different UDP port for the next client connection
should not arouse suspicion since, as discussed in Chapter 3, this is how normal Skype calls
to multiple users behind NAT would appear to the censor. However, we will describe in
Chapter 6 how we can make our technique more stealth by changing firewall rules, which
allows us to avoid the port switching described above on the server side.

5.2 Traffic Shaping

Tor sends all of its traffic over TLS. We do not change this; rather, we just treat the TLS
data as opaque, and send the TLS data over our own encrypted channel, masquerading it
as Skype video. This means that the data is encrypted by Tor (multiple times), by TLS,
and also by SkypeMorph.

After the above connection setup, we can send the re-encrypted TLS messages through
the established channel. As discussed in previous sections, in order to maximize the resem-
blance to real Skype traffic, we modify the output of our application to closely match that
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of Skype. The modification is done on the packet sizes and inter-arrival times of consec-
utive packets. For the packet sizes, two scenarios are considered: In the first scenario, we
obtain our resulting packet sizes using the näıve traffic shaping method discussed in Sec-
tion 4.2. We use the higher-order statistics mentioned above to produce joint probability
distributions for the next inter-packet delay and packet size, given the values outputted
previously. We sample from this conditional distribution to produce the delay and size of
the next packet.

For the second scenario, the Traffic Morphing method of Section 4.3 is used; although
this method only supports first-order statistics, and only of packet sizes, not inter-arrival
times, we extend it to incorporate timing (first-order arrival times) as well.

The overview of the SkypeMorph architecture is shown in Figure 5.1. The red arrows
represent the Tor traffic. On one side the Tor traffic is passed to SkypeMorph, where the
traffic shaping mechanisms morph the traffic to resemble a Skype call on the wire. On the
other side the Tor traffic is reconstructed.
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Chapter 6

Implementation

In this chapter we describe our prototype implementation of SkypeMorph on Linux, which
is implemented in C and C++ with the boost libraries [Riv07]. The prototype is built
into two executable files called smclient and smserver, which realize the client C and the
bridge S of the previous chapter, respectively. We describe in the following the two phases
in the execution of our prototype, namely, the setup and the traffic-shaping phases.

6.1 Setup Phase

As in the previous chapter, both the client and the bridge log into Skype using the Skype
API, exchange public keys, and then start their Skype video conversation. To use the Skype
network, as already mentioned, one can either purchase a SkypeKit SDK and runtime, or
use a running instance of the Skype application.

The SkypeKit runtime acts as a TCP server, which responds to proper requests (sent
as binary streams), and conducts the operations requested, including logging in, sending
messages, making calls, etc. The fact that the runtime can run as a command-line ap-
plication and can be accessed over TCP makes it a suitable solution for the bridge side,
where a single SkypeKit package, purchased for a very low price, can serve several users.
On the other hand, the Skype Public API allows communicating with any running Skype
application. On Linux, DBus is used to deliver text-formatted commands to the Skype
application and on Windows this is done through the Window Messaging system. This
makes it extremely easy for clients to use their normal Skype application to log in and
make calls.
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As we mentioned in Section 4.1, there are various TCP connections accompanying
the Skype video conversation, which stay active even after the conversation is finished.
In order to retain these TCP connections, our prototype implementation performs the
following tricks:

• A TCP transparent proxy component is built into our prototype, which transpar-
ently relays all TCP connections the Skype runtime outputs and receives. We take
advantage of the TPROXY extension in iptables, available in the Linux kernel since
version 2.6.28. iptables rules for redirecting traffic are added prior to the execution
of our traffic shaping module.

Transparent proxying allows us to keep the TCP connection between the bridge and
the client alive after the call is dropped. As shown in Figure 6.1, the TPROXY
module listens on an arbitrary TCP port PT and all the traffic to Skype TCP port
P ′
T is redirected to PT . However, before and while a call is being placed, packets are

relayed to P ′
T by our software. As soon as the call is interrupted, our software starts

producing TCP packets as though a Skype video call is in progress; i.e., we match
the patterns produced by a call in our TCP output.

• As a consequence of the need for retaining the Skype connections to the Skype
network for indistinguishablity, the Skype runtime has to stay active during the
SkypeMorph session. Hence the UDP port PC or PS, described in Section 5.1, will
still be assigned to the Skype runtime when SkypeMorph starts to tunnel Tor traffic;
therefore, similar to TCP connections to the bridge described above, SkypeMorph
has to operate on another UDP port. However, we do not need TPROXY, as UDP
is connectionless and can be redirected more easily.

For UDP we use the following procedure to redirect packets after the call is dropped:
the Skype runtime on the client operates on UDP port PC . When smclient starts to
tunnel Tor traffic, it binds to a port P ′

C . Then, an iptables rule RC is created with
an SNAT target to alter the source port of all Skype UDP packets from P ′

C to PC .
On the bridge side, the Skype runtime operates on UDP port PS, and smserver runs
on another UDP port P ′

S. When smserver starts to communicate with smclient,
it first creates an iptables rule RS that redirects traffic towards UDP port PS to
P ′
S; it then runs on P ′

S. Note that SkypeMorph starts its tunneling task only when
the Skype video call is finished; thus the iptables rules RC and RS affect only
the SkypeMorph application. This prevents the censor from noticing port changes
between the genuine Skype video call traffic and the SkypeMorph traffic, as all the
packets sent (either before or after the call is dropped) on the wire have PS and PC

as their UDP ports (Figure 6.2 has a schematic view of this process).
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Figure 6.1: The TPROXY module starts by forwarding traffic to the Skype TCP port
before and during the call initiation process (a); after the call is dropped, it reproduces
the TCP packet patterns (b).
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Figure 6.2: UDP packets arrive at the Skype UDP port before and during the call initiation
process (a); after the call is dropped, UDP packets are produced by SkypeMorph and UDP
flows are redirected to its port (b).
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It is worth mentioning that on recent Linux kernels, the conntrack tool, a part of
the Linux stateful firewall system, assigns a connection (which is basically defined as
a four-tuple of source/destination IP addresses and ports) to each UDP packet. The
firewall adds an entry to the list of active UDP connections once a packet is received
and considers that connection as “established” once a response is seen. Each entry
in the table has a timeout period during which the connection is considered active.
conntrack rules override iptables rules for existing connections and would not allow
redirection of previously seen tuples. Therefore, before applying iptables rules one
needs to make sure to remove its corresponding conntrack rules.

For the cryptographic features, we use the curve25519-donna [Lan08] library to gener-
ate elliptic-curve Diffie-Hellman keys shared between smclient and smserver. Curve25519
is chosen because of its short secret keys and its high performance [Ber06]. Our current
prototype implementation sends public keys in plaintext over Skype and relies on Skype for
confidentiality and authenticity. However the small sizes of messages in this phase make it
possible to use any standard cryptographic or steganographic methods efficiently, in case
other properties are needed. After this point, each SkypeMorph instance derives four keys:
two for outgoing and incoming message encryption, and another two keys for outgoing and
incoming message authentication purposes.

6.2 Traffic-shaping Phase

In the traffic-shaping phase, an smclient and smserver pair can be viewed together as
a SOCKS proxy that relays streams between a Tor client and a Tor bridge. Between
smclient and smserver, bytes in Tor streams are exchanged in segments by a simple reli-
able transmission mechanism over encrypted UDP communication, and they are identified
by sequence numbers. Reliable transmission is supported by acknowledgments over se-
quence numbers. The cryptography functions are provided by CyaSSL [Cya], a lightweight
SSL library also used in SkypeKit. We give more details below.

SkypeMorph UDP Packet Layout

First, we present the layout of the SkypeMorph UDP packets transmitted between
smclient and smserver. We set the maximum size of a single packet to be 1460 bytes
to avoid packet fragmentation, because 1500 bytes, including the IP header, is a common
MTU over the Internet. Thus, besides a fixed 8-byte UDP header, each packet contains up
to 1452 bytes of SkypeMorph data. The first 8 bytes are an HMAC-SHA256-64 message
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authentication code for the remaining bytes in the packet. We use the 256-bit AES counter
mode stream cipher algorithm to encrypt the rest of the packet, which, prior to encryption,
is formatted into five fields:

• type: This 1-byte field denotes the purpose of the packet. Currently there are two
types: regular data and a termination message; the latter is used to inform the packet
receiver to terminate the communication session.

• len: This is a 16-bit unsigned integer denoting the size of the contained Tor stream
segment. This allows the packet receiver to discard the padding data.

• seq: This field contains the sequence number, a 32-bit unsigned integer, of the first
byte of the contained Tor stream segment.

• ack: This field contains the ack number, a 32-bit unsigned integer used to identify
those bytes that have been properly received.

• msg: This field is of length up to 1425 bytes and contains a Tor stream segment (of
length len, above) and the padding data (taking up the rest of the packet).

We output the MAC, followed by the random AES initial counter, and then the en-
crypted payload, as seen in Figure 6.3.

Figure 6.3: SkypeMorph UDP packet body layout, where the size (in bytes) is under the
name for each field. The shaded parts are encrypted using 256-bit AES counter mode. All
bytes after the mac field are included in the HMAC-SHA256-64 computation.

Traffic Shaping Oracle

We next discuss the traffic shaping oracle component, which controls the sizes and
timings of each successive UDP packet to be sent. The oracle is the component that has
access to the packet size and inter-packet delay distributions and its task is to sample from
these distributions and output the result to our packetizer (described later in this section),
to guarantee that the SkypeMorph traffic matches these distributions. We implement both

34



the näıve and the Traffic Morphing methods in the oracle to compare them. The goal of
the oracle is to provide traffic shaping parameters.

When using the näıve method, the oracle first reads the nth-order distributions of the
packet sizes and inter-packet delays of Skype traffic, as noted in Section 4.4.

We currently have gathered data for up to n = 3 for a fixed bandwidth (see Section 7.1
for details on how this data is gathered), but nothing in principle prevents us from gathering
more. For each query, the oracle remembers the last n answers x1, . . . , xn, where xn is the
last packet size output, and the xi alternate between packet sizes and inter-packet delay
times. It then selects the nth-order distribution X of inter-packet delays, conditioned on
the values of x1, . . . , xn, and randomly draws an inter-packet delay te from X. Next the
size of the packet se is outputted similarly from the distribution X ′ of sizes, where X ′

depends on x2, . . . , xn, se. The oracle responds to the query with the pair (se, te).

For the Traffic Morphing method, the probability distribution of packet sizes for both
the source and the target traffic is gathered; for instance if the source is web browsing
over Tor, we can get an empirical distribution from the previous web surfing instances.
Having these distributions, we compute the morphing matrix. Next, the oracle first reads
distributions of the packet sizes of the Tor traffic, the inter-packet delays of the Skype
traffic, and the pre-computed morphing matrix. We use the morpher library from the
Morpher Project [Kad11] to compute the expected packet size se. The Traffic Morphing
morpher library does not take timings into account. It expects to receive a packet input
to it, and to send out that packet immediately, possibly padded to a new size to emulate
the target distribution. As such, the packet timing distribution of the output of Traffic
Morphing is identical to its input distribution, which is not what we want. We need
to decouple the arriving packets from the sent packets, so arriving data is placed into a
buffer, and we adopt the technique of the näıve method to sample from the packet timing
distribution to yield te.

1 The oracle randomly selects a packet size so from the Tor traffic
packet size distribution, and calls the morpher library to compute the output packet size
se. The pair (se, te) is then the answer to the query.

Packetizer

The communication between smclient and smserver is handled by a packetizer, whose
structure is shown in Figure 6.4. The purpose of the packetizer is to relay Tor streams with
UDP packets such that the traffic exposed to the censor is indistinguishable from that of
Skype video calls.

1Note that this might cause the Traffic Morphing method to produce dummy packets.
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Figure 6.4: Structure of the packetizer.

The data stream received from Tor over the pluggable transport SOCKS connection
is first buffered in a sending buffer, and then retrieved in segments corresponding to the
sizes produced by the traffic shaping oracle. On the other end, the received Tor stream
segments are rearranged in order in a receiving buffer according to their sequence numbers,
and then form the incoming Tor stream.

The packetizer creates two threads, t_send and t_recv, such that:

• Thread t_send first queries the oracle for the expected packet size se and delay te. It
then checks the sending buffer to determine if any re-transmission is needed, and it
locates and reads up to se bytes from the sending buffer. Currently re-transmission
is triggered when three duplicated ack numbers are received, which is an approach
found in most TCP implementations. Then an encrypted UDP packet of size se is
created with any necessary random padding bytes. Note that we might have to send
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dummy packets — those that are entirely padding. Next, t_send sleeps for time te
and then sends the packet out.

• Thread t_recv is blocked until a new UDP packet is received. It decrypts the packet
to get a Tor stream segment, which is then pushed into the receiving buffer. The
receiving buffer returns the sequence number seqr of the last byte that is ready to be
committed to the TCP stream. Similar to TCP, seqr + 1 is used as the ack number
to be sent in the next outgoing UDP packet. Any in-order segments that have been
received are delivered to Tor over the pluggable transport SOCKS connection and
are removed from the receiving buffer.

As we observed from Skype video call traffic, when the network bandwidth is limited,
the distributions of packet sizes and inter-packet delays change accordingly. To mimic this
behaviour, our prototype first determines bandwidth changes by measuring the number r
of re-transmissions occurring per second. Based on r, the oracle selects the most relevant
distributions and computes the traffic shaping parameters. The dependence on r can be
tuned through experiments to match the most relevant distributions.

As outlined above, our current implementation uses a simple TCP-like acknowledge-
ment and retransmission scheme to ensure the in-order delivery of the underlying Tor data.
An attacker may attempt to disrupt this scheme by dropping some fraction of all Skype
video traffic. This will cause a modest decrease in the quality of actual Skype video conver-
sations, but may cause a disproportionate decrease in SkypeMorph’s effective throughput
due to repeated retransmissions. We anticipate that a more advanced reliable transport
algorithm, such as one using selective acknowledgements, may help to ameliorate this issue.

6.3 OpenWrt Implementation and other Operating

Systems

Changing iptables rules as described in Chapter 6.1 requires root privileges on both the
client and the bridge. Although it is possible to decouple the portion of the code running
iptables as a separate runnable with elevated access, for security purposes and ease of
use, running as a normal user is more desirable. To provide this, we chose to implement
a separate piece of software, for home routers running the Linux operating system, that
preforms iptables manipulation in a way that is transparent to SkypeMorph users.

For the purpose of testing we used the OpenWrt [Ope] software. OpenWrt is an open-
source Linux distribution with package management for embedded systems designed specif-
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ically to allow customizable firmwares for router devices. The OpenWrt distribution comes
with a list of pre-configured packages including iptables and conntrack. It also contains
an SDK for cross-compiling to routers with different architectures.

Our OpenWrt implementation comes in two pieces: iptbl_server, which runs as a dae-
mon on the router and acts as a server, responding to requests to add or remove iptables

rules by nodes in the internal network and iptbl_client, which sends an iptables rule
request to the router. During a SkypeMorph initial step, once the call is being dropped,
a request is sent from the client to the server, containing information regarding the port
redirection and the destination. The server receives this information, adds (or deletes de-
pending on whether a new connection is being established or a connection is being torn
down) the corresponding iptables rules and removes all the previous connections from
the client to the destination on the same port in the conntrack tables. After all this is
done, it notifies the client that it can start sending UDP packets. This way, the client does
not need to have root privileges and need only create a TCP connection to iptbl_server

module on the router, which can be done as a normal user.
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Chapter 7

Experiments

7.1 Linux Experiments

We performed our experiment in two parts. First we captured network traces of the Skype
application to form a better understanding of how it operates. Our experimental testbed for
this part consisted of several hosts running different operating systems, including Microsoft
Windows, Linux and mobile devices. In particular, we have presented in this section our
results for a call from a Linux station to a remote host connected to a wireless network for
a duration of six minutes and resulting average bandwidth of around 45 KB/s. Using these
traces we were able to obtain an empirical distribution of packet sizes and inter-packet
arrival times for Skype video calls, which were used as input to the SkypeMorph traffic-
shaping oracle for drawing samples and generating the morphing matrix. The Morpher
Project [Kad11] comes with a packet size distribution for a typical web browsing over Tor,
which was used as the source distribution to produce the morphing matrix. Next, we used
the distributions we gathered in the previous step to set up a SkypeMorph bridge on the
same local network as the Tor client. We used this bridge as a proxy for browsing various
webpages and downloading different files for five minutes.

Figure 7.1 shows the cumulative distributions of packet sizes and inter-arrival delays be-
tween consecutive packets both for SkypeMorph (both with the näıve and enhanced Traffic
Morphing traffic shapers) and for the original Tor distribution and the Skype video call
distribution we obtained in the first part of the experiment. The graphs depict how closely
the SkypeMorph output follows that of the Skype video calls, both in packet sizes and
inter-packet delays; indeed, all three lines overlap almost perfectly. Also, the Kolmogorov-
Smirnov test [NIS03] for both the packet sizes and inter-packet delays shows no statistically
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Figure 7.1: Experimental cumulative distributions for Skype video, SkypeMorph, and Tor.
We show packet size and inter-packet delay distributions in (a) and (b) respectively.
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Table 7.1: Download speed (goodput), network bandwidth used, and overhead imposed by
(a) Normal Tor-over-TCP, (b) SkypeMorph-over-UDP with näıve traffic shaping, and (c)
SkypeMorph-over-UDP with our enhanced Traffic Morphing.

Normal SkypeMorph SkypeMorph
bridge (Näıve Shaping) (Traffic Morphing)

Goodput 200± 100 KB/s 33.9± 0.8 KB/s 34± 1 KB/s
Network
bandwidth
used

200± 100 KB/s 43.4± 0.8 KB/s 43.2± 0.8 KB/s

Overhead 12%± 1% 28%± 2% 28%± 3%

significant difference between the Skype video and SkypeMorph distributions, using either
the näıve traffic-shaping or the enhanced Traffic Morphing methods and the same should
apply to higher-order statistics. This is of course expected, as the traffic shaping oracle
is designed to match the Skype distribution. In addition, using the näıve traffic-shaping
method, we also match the higher-order Skype traffic distributions. The distribution of
regular Tor traffic, however, is considerably different, and this shows the utility of our
method. The original Traffic Morphing [WCM09] technique does not take into account
timings, so its distributions would match Skype video for the packet sizes, but regular Tor
traffic for the inter-packet timings.

In order to evaluate the performance of SkypeMorph, we tried downloading the g++

Debian package from a mirror located in South America1 by connecting to the same bridge
described above and running with the same setup. Using this bridge, we downloaded
the file over SkypeMorph, using each of the näıve traffic shaping and enhanced Traffic
Morphing methods, and compared the average download speed, network bandwidth used,
and overhead percentage. We repeated the experiment 25 times for each method. The
results are given in Table 7.1.

The overhead given is the percentage that the total network bandwidth (including
TCP/IP or UDP/IP headers, retransmissions, padding, TLS, etc.) exceeds the size of the
file downloaded. Although the very high variance makes it hard to see just by comparing
the summary statistics in the table, the raw data shows that normal bridge traffic con-
sistently incurs a 12% overhead, due to overheads incurred by Tor, TLS, and TCP/IP.
The overhead of SkypeMorph is a little more than twice that; we incur the extra cost of

1http://ftp.br.debian.org/debian/pool/main/g/gcc-4.4/g++-4.4_4.4.5-8_i386.deb
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sending padding when not enough data is available to fill the packet size informed by the
traffic shaping oracle. We see that the näıve traffic shaping method and the enhanced
Traffic Morphing method perform very similarly; therefore, combining Traffic Morphing
with timing techniques does not have any significant effect in reducing the overhead.

The Traffic Morphing method requires the source distribution to remain static or else
the morphing matrix needs to be recalculated (which takes more than 5 minutes on a
commodity computer) in order to output the correct matrix, and also extending the mor-
phing matrix to include higher order statistics does not seem to be feasible at this point.
Therefore, we conclude that using the näıve method is more efficient and effective.

We also ran a Kolmogorov-Smirnov test on the output of both shaping methods and it
reported that there is no statistically significant difference between the results of those two
methods (p > 0.5). Do note, however, that this overhead includes no silent periods, i.e.,
times for which we have no Tor traffic in our buffer, and so everything sent on the wire is
padding. Taking these silent periods into account, the overhead is increased by the current
bandwidth usage (in this experiment, about 43 KB/s). This is the same behaviour as an
ordinary Skype video call; data is transmitted at an approximately constant rate, whether
or not the participants are actually communicating.

7.2 OpenWrt Experiment

In this section we describe the method and the results of our experiment on our OpenWrt
implementation. The test setting is shown in Figure 7.2 and is as follows: A laptop
running the SkypeMorph client is connected to a SkypeMorph bridge (located at a remote
location on different network) over a wireless network to a Buffalo WZR-HP-G300NH2
access point/router. The router runs an OpenWrt Linux system with kernel 3.3.8 and is
connected to the Internet through a hub. It is also running the iptbl_server module
described in Section 6.3. The hub is used to forward the packets while allowing the output
of the router to be dumped to another terminal, connected to the same hub. Using this
terminal, we gathered packets destined to SkypeMorph bridge and analyzed them. The
experiment was repeated 10 times and Figure 7.3 shows the result of the experiments.
The packet size distributions output by SkypeMorph and Skype (shown in Figure 7.3a)
are almost identical; similarly, the packet timing distributions output by SkypeMorph and
Skype (shown in Figure 7.3b) also match very closely.
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OpenWrt Access Point

SkypeMorph Client

Measurement Terminal

Network Hub

Figure 7.2: Our network setup for experimental run of SkypeMorph on OpenWrt. A node
is connected through wireless to the OpenWrt router and a hub is used to intercept the
outgoing packets to create a trace.
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Figure 7.3: Packet size and inter-packet delay distributions as produced by a home router
running our SkypeMorph software on OpenWrt.
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Chapter 8

Discussion and Future Work

Overhead. As seen in the previous section, we found that when inter-packet timing is
introduced to the Traffic Morphing technique, the traffic becomes less distinguishable from
Skype traffic (the target distribution), but it also becomes less effective in reducing the
overhead. The overhead in SkypeMorph is highly dependent on how much Tor traffic is
available to the proxy. SkypeMorph will always send the same amount of data as a real
Skype video connection would; if there is not that much useful Tor traffic to send, the rest
is padding. Hence, if we experience many silent periods—when the proxy’s sending buffer
is empty—the overhead grows due to the padding sent by the proxy.

Mobile Bridges. A side advantage of SkypeMorph is that bridges can easily change
their IP addresses and ports, without having to re-distribute contact information to clients
or the BridgeDB. With SkypeMorph, all a client needs to know to contact a bridge is its
Skype ID. This makes it harder for censors to block bridges, even once they are found.

Skype Protocol. SkypeKit allows peers to exchange streaming data through the
Skype network. However, the data sent to the Skype network might be relayed by other
nodes in the network and this can impose an overhead on the Skype network, which is not
desired. Therefore, we deliberately chose not to use this feature of SkypeKit. SkypeMorph
data is sent directly from the client to the bridge; it is disguised as Skype data, but it is
not sent over the Skype network.

Attacks on SkypeMorph. In order to be able to block a SkypeMorph bridge, the
censor either needs to totally ban Skype communications, or it has to verify the existence
of SkypeMorph on a remote Skype node. This is only possible if the censor already knows
the IP address or Skype ID of the bridge, which we have already excluded from our threat
model in Chapter 3. Also note that although we are not trying to prevent threats that may
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arise if the content of a SkypeMorph handshake is disclosed by Skype, it is still possible to
use steganographic methods to hide the handshake in innocuous-looking messages.

The censoring authority can as well run its own SkypeMorph bridges and distribute its
descriptor to users. Even though this is possible, users’ privacy is not threatened because
of this, as they are still selecting their own relays and connecting to the Tor network.
Therefore, the censor can only detect that a user is connected to its own instance of
SkypeMorph. Also as discussed in our threat model, by having far more SkypeMorph
bridges than those run by the censor, we can ameliorate the results of such an attack.

SkypeMorph and Other Protocols. Our current implementation of SkypeMorph
is able to imitate arbitrary encrypted protocols over UDP. The target protocol, Skype in
our case, can be replaced by any encrypted protocol that uses UDP as long as distributions
of packet sizes and inter-arrival times are available. The source protocol, Tor, can also be
replaced by an arbitrary TCP protocol. Note that if Traffic Morphing is going to be used,
the morphing matrix needs to be recalculated for every pair of source and target protocols
based on their distributions. Moreover, the current formulation of Traffic Morphing is not
amenable to higher-order statistics. However, if näıve traffic shaping is used, the system is
actually completely independent of the source protocol and it is possible to mimic higher-
order statistics.

More specifically, to replace Skype with a target protocol T , the following steps are
required. First the session keys need to be exchanged either through an out-of-band mech-
anism or the target protocol itself similar to setup phase described in Section 5.1. Second,
if näıve shaping is used, the Skype distribution for packet sizes and delays (or their joint
distributions up to the desired order statistic), should be replaced by those of T . Other-
wise, as stated above, the recalculated morphing matrix for T should be fed into the traffic
shaping oracle as discussed in Section 6.2.

Higher-order Statistics and Skype Call Traces.

As discussed in Section 4.4, an interesting avenue for future work would be to exper-
iment with using the audio and video encoders shipped with the Skype in order to more
easily match Skype’s packet size and timing patterns perfectly.

There is also another viable direction for outputting different distributions, while match-
ing Skype video calls characteristics. The approach is to gradually construct a database
of packet size and timings produced by Skype calls each time a user makes a call over
Skype. A tool can gather this information and sort them by their bandwidth rate, and
once a SkypeMorph connection is required, we can iterate through this database and use
the portion that matches our desired rate.
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SkypeMorph and Traffic Classification. A major task for protocol obfuscation is
to be able to withstand different detection mechanisms. In our case, statistical analysis,
including machine learning algorithms, seem proper avenues to explore. For instance,
Wiley [Wil11a] discusses how one can employ Bayesian classification on features such as
packet sizes and direction of a flow to predict the type of an obfuscated flow. Thus, testing
our method against similar analysis can reveal valuable information about the ways we can
improve our techniques.

8.1 Conclusions

We have presented SkypeMorph, a pluggable transport for Tor that disguises client-to-
bridge connections as Skype video traffic. We present two methods to morph Tor streams
into traffic with indistinguishable packet sizes and timings to Skype video; the first method
uses näıve traffic shaping to emulate the target distribution, independent of the source
distribution. The second method takes the source distribution into account, enhancing
Wright et al.’s Traffic Morphing [WCM09] to also account for packet timings. The two
methods have statistically similar performance, but the näıve traffic shaping method is
much easier to implement, is unaffected by a changing source distribution, and can match
the higher-order patterns in Skype traffic. While our methods are effective at matching the
desired distributions, they come at some cost in extra bandwidth used between the client
and the bridge—but no more so than if an actual Skype video call were in progress. Our
software is freely available, and is easily adaptable to other encrypted UDP-based target
protocols.
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