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Abstract

In recent years, significant advances have been achieved in communication networks

and electric power systems. Communication networks are developed to provide services

within not only well-connected network environments such as wireless local area networks,

but also challenged network environments where continuous end-to-end connections can

hardly be established between information sources and destinations. Delay tolerant net-

work (DTN) is proposed to achieve this objective by utilizing a store-carry-and-forward

routing scheme. However, as the network connections in DTNs are intermittent in na-

ture, the management of network resources such as communication bandwidth and buffer

storage becomes a challenging issue. On the other hand, the smart grid is to explore in-

formation and communication technologies in electric power grids to achieve electricity

delivery in a more efficient and reliable way. A high penetration level of electric vehicles

and renewable power generation is expected in the future smart grid. However, the ran-

domness of electric vehicle mobility and the intermittency of renewable power generation

bring new challenges to the resources management in the smart grid, such as electric

power, energy storage, and communication bandwidth management.

This thesis consists of two parts. In part I, we focus on the resource management

in DTNs. Specifically, we investigate data dissemination and on-demand data delivery

which are two of the major data services in DTNs. Two kinds of mobile nodes are con-

sidered for the two types of services which correspond to the pedestrians and high-speed

train passengers, respectively. For pedestrian nodes, the roadside wireless local area net-

works are used as an auxiliary communication infrastructure for data service delivery.

We consider a cooperative data dissemination approach with a packet pre-downloading

mechanism and propose a double-loop receiver-initiated medium access control scheme

to resolve the channel contention among multiple direct/relay links and exploit the pre-

dictable traffic characteristics as a result of packet pre-downloading. For high-speed train
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nodes, we investigate on-demand data service delivery via a cellular/infostation integrat-

ed network. The optimal resource allocation problem is formulated by taking account

of the intermittent network connectivity and multi-service demands. In order to achieve

efficient resource allocation with low computational complexity, the original problem is

transformed into a single-machine preemptive scheduling problem and an online resource

allocation algorithm is proposed. If the link from the backbone network to an infostation

is a bottleneck, a service pre-downloading algorithm is also proposed to facilitate the

resource allocation.

In part II, we focus on resource management in the smart grid. We first investigate the

optimal energy delivery for plug-in hybrid electric vehicles via vehicle-to-grid systems. A

dynamic programming formulation is established by considering the bidirectional energy

flow, non-stationary energy demand, battery characteristics, and time-of-use electricity

price. We prove the optimality of a state-dependent double-threshold policy based on

the stochastic inventory theory. A modified backward iteration algorithm is devised for

practical applications, where an exponentially weighted moving average algorithm is used

to estimate the statistics of vehicle mobility and energy demand. Then, we propose a

decentralized economic dispatch approach for microgrids such that the optimal decision

on power generation is made by each distributed generation unit locally via multiagent

coordination. To avoid a slow convergence speed of multiagent coordination, we propose a

heterogeneous wireless network architecture for microgrids. Two multiagent coordination

schemes are proposed for the single-stage and hierarchical operation modes, respectively.

The optimal number of activated cellular communication devices is obtained based on

the tradeoff between communication and generation costs.
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Chapter 1

Introduction

1.1 Background

As named by the National Academy of Engineering (NAE), the Internet and electrifi-

cation are two of the greatest engineering achievements of the 20th century. Although

they have significantly improved human life, both of them are facing new challenges as

we enter the 21th century.

1.1.1 DTN and Data Service Provisioning

The TCP/IP based Internet service model is capable of supporting various applications

(e.g., web browsing, online chatting, and content sharing) based on several key assump-

tions on the underlying communication links: an end-to-end connection exists between

the information source and destination, the round-trip delay between the source and

destination is not excessive, and the end-to-end message dropping probability is consid-

erably small. However, some challenged communication environments may violate one

or more of these assumptions, and thus the TCP/IP based Internet service model cannot
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perform well. In order to establish efficient and reliable information exchange in these

environments, a delay tolerant network (DTN) architecture with store-carry-and-forward

routing is proposed [1].

The DTN is a network architecture much different from the existing Internet which

operates on a principle of providing end-to-end communications. In a DTN, continu-

ous end-to-end connections can hardly be established between the information sources

and destinations. The DTN architecture is originally proposed to combat an extremely

long round-trip delay in interplanetary communications [2]. But it is soon recognized

that this architecture can be directly extended to terrestrial communication environ-

ments. As defined by the Internet research task force (IRTF) delay-tolerant networking

research group (DTNRG), the main concern of DTN research is “how to address the

architectural and protocol design principles arising from the need to provide interopera-

ble communications with and among extreme and performance-challenged environments

where continuous end-to-end connectivity cannot be assumed”, or in other words, “inter-

connecting highly heterogeneous networks together even if end-to-end connectivity may

never be available” [3]. Some typical application scenarios of DTNs include: a mobile

ad hoc network (MANET) with human-carried short-range communication devices [4], a

vehicular ad hoc network (VANET) with low vehicle density or low market penetration

rate of communication devices [5], and a wireless sensor network (WSN) where sensors

are scheduled to be on/off periodically for power saving [6]. Since continuous end-to-end

connections may not exist between information sources and destinations in a DTN, most

ad hoc routing algorithms such as dynamic source routing (DSR) [7] and ad hoc on-

demand distance vector (AODV) routing [8] cannot be applied. For efficient and reliable

message delivery, the store-carry-and-forward based DTN routing can be implemented,

where messages can be stored and carried by a relay node for a considerably long period

of time until a communication opportunity arises [9].
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The DTN is mainly designed to provide data services which are delay tolerant in

nature. The data dissemination services and on-demand data services are two of the

most important ones. Nowadays, data dissemination services are becoming more and

more important as numerous telematic applications require the distribution of a certain

amount of information in the network. Data packets are generated from a remote server in

the Internet and destined to mobile users such as pedestrians. Typical applications of data

dissemination services include traffic information downloading, entertainment content

distribution, and commercial advertising. On the other hand, the mass transportation

in terms of high-speed rail is fast developing all over the world [10]. Besides significantly

shortened journey times as compared with the traditional trains, the passenger comforts

can be largely improved by providing high-speed Internet services over the high-speed

rail [11]. On demand data services such as audio/video clip downloading and bulk data

retrieval can be provided for the passengers on the way via the APs deployed in close

vicinity to the rail lines.

1.1.2 Smart Grid and Electricity Delivery

Most of the world’s existing electricity grids are decades-old. Their monitoring and con-

trol facilities gradually become out-of-date and may cause low energy efficiency/reliability

as more and more uncertainties are introduced in the power systems. The uncertainties

are mainly caused by the integration of electric vehicles (EVs) with highly dynamic vehi-

cle mobility, as well as the adoption of renewable energy sources (such as wind and solar)

with intermittent and climate-dependent power generation. The next generation power

grid, also known as the smart grid, aims at combining the existing power systems with the

state-of-art information and communication technology to address the uncertainties and

achieve electricity delivery in a more efficient, reliable, economic, and sustainable way.

Despite the high mobility of EVs, the battery storage can be better utilized to po-
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tentially improve the efficient and reliable of electricity delivery. As nearly 90% of power

outages and disturbances are related to the distribution network, distributed energy s-

torage has become one of the key technologies to improve the efficiency and reliability

of a smart grid [12]. At the same time, with the fast developing plug-in electric vehi-

cles, the vehicle-to-grid (V2G) system is emerging as an auxiliary distributed storage,

which exploits the capacity of vehicle batteries [13]. A key feature of the V2G system

is a bidirectional energy delivery mechanism which enables the electric vehicle to either

draw energy from or feed energy back to the grid. Aided by communication technologies,

the energy delivery can be controlled in a smart way to reduce the transport cost while

improving the grid stability. Two major applications of a V2G system are load shaving

and frequency regulation [14]. Load shaving aims at using the energy stored in electric

vehicles to compensate for the peak load of the grid. From the vehicle owners’ point of

view, since electricity price is determined by demand, the transport cost can be relatively

reduced by drawing “cheap” energy from the grid, and vice versa. Frequency regulation

is an ancillary mechanism to fine-tune the frequency of the grid in a small time scale,

e.g., a few minutes. Frequency regulation may not necessarily involve energy delivery but

simply the use of the capacity of vehicle batteries. Therefore, a small number of vehicles

can saturate the demand of frequency regulation [13].

To better utilize the renewable energy sources, the concept of microgrid is pro-

posed [15]. Operating at a distribution voltage level, the microgrids are small-scale

power systems designed to utilize the distributed generation (DG) units to supply the

electrical loads in local areas such as a residential community, a university, and an indus-

trial site. Low-cost short-range wireless communication devices such as WiFi and ZigBee

devices are typically used to establish the network infrastructure in microgrids mainly

because the power distribution system is cost-sensitive in nature [12]. In addition to the

environmental benefit in terms of using more renewable energy sources, the microgrids
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can reduce the transmission and distribution losses based on the physical proximity of

DG units and loads. Since various types of DG units such as wind turbines, photovoltaic

(PV) panels, and fuel cells may coexist, one pivotal problem in microgrid management

is the economic dispatch which balances the power generation and loads at a minimum

monetary cost. Different from traditional power systems with thermal energy power gen-

erators, the economic dispatch in microgrids is challenging because of the intermittent

and climate-dependent nature of renewable energy sources. As the accuracy of estimating

the generation of DG units and loads is limited, the economic dispatch is performed in

a relatively small time scale, e.g., every five minutes for California Independent System

Operator (CAISO) with wind/solar integration [16], and a communications/control delay

within 2-10 seconds [17].

1.1.3 Resource Management

The communications in a DTN can only be established with a proper management of

network resources. The primary resource to be managed is the communication bandwidth

resource shared by nodes in the network coverage area. However, in a DTN scenario where

nodes operate cooperatively with each other for data buffering, the buffer storage of each

node can also be viewed as shared resources. Therefore, the resource management in a

DTN should incorporate the functionalities of buffer management. Different from the

network-layer store-carry-and-forward based DTN routing which aims at providing end-

to-end message delivery, the focus of resource management is on how to distribute various

resources at the link layer to different nodes when they meet each other. Note that in

a DTN scenario where the network is likely partitioned, the resource management and

DTN routing are closely related to each other since the meetings of nodes are expected

to be very brief. For instance, the times for a pedestrian and a high-speed train to pass

through the coverage area of an AP are only a few minutes and a few seconds, respectively.
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The electric load demand in the smart grid can only be satisfied by consuming a

certain amount of electric power generated by power generators and transmitted through

power transmission lines. In order to coordinate the power generators such that all load

demand can be satisfied at a minimum cost, communication links should be established

among the power generators and/or loads which further requires the management of

communication bandwidth resources. For instance, in a microgrids where low-cost short-

range communication devices (such as WiFi and ZigBee devices) are typically used, the

communication bandwidth management and electric power delivery are tightly coupled

with each other. The main reason is that the balance between power generation and

demand depends on the accuracy of the information collected from the communication

network, while the efficiency of communication bandwidth management can be poten-

tially improve by taking into account the characteristics of power generation and demand

information. Further, the battery storage resource management such as the management

of EV batteries can be facilitated by utilizing the information provided by communication

networks. However, the information is likely to be stochastic since the vehicle mobility

is highly dynamic, which further complicates the battery management.

Although DTN and smart grid are proposed for different purposes (i.e., data service

provisioning and electricity delivery, respectively), they share some common character-

istics in terms of resource management. Specifically, the packet store-carry-and-forward

concept in a DTN is analogous to the energy store-carry-and-deliver mechanism in a

V2G system. The techniques used for buffer management in DTNs can shed a light on

the battery management in V2G systems, given the unique characteristics of batteries

such as energy losses in recharging/discharging are well addressed. On the other hand,

as low-cost short-range wireless communication devices are widely used in DTNs and

microgrids, the communication bandwidth management at the link layer is pivotal for

both systems. Some critical problems such as wireless channel contentions should be ad-
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dressed by taking account the uniqueness of the node mobility in DTNs and microgrids,

i.e., mobile and stationary, respectively. Cellular networks can potentially be used to

improve the resource management of both systems, at an extra monetary cost.

1.2 Motivation and Research Contributions

In this thesis, we study the resource management issues in DTNs and smart grid. For the

resource management in DTNs, we have investigated the cooperative data dissemination

via roadside WLANs and on-demand data service delivery to high-speed trains. Although

packet pre-downloading (or pre-fetching) has been investigated in literature [18, 19, 20],

the packet pre-downloading mechanism poses new technical challenges/opportunities in

medium access control (MAC). Specifically, a packet may have multiple copies at different

storage local nodes and can be cooperatively relayed by multiple non-storage local nodes.

In order to transmit a packet, high wireless channel contention should be resolved among

multiple direct/relay links. On the other hand, the MAC scheme can take advantage of

the packet pre-downloading mechanism. The traffic characteristics at the storage local

nodes can be predicted (i.e., saturated) as the packets are already pre-downloaded before

the visit of a nomadic node. The efficiency of MAC can be potentially improved by re-

ducing the signalling overhead. The MAC schemes [21, 22, 23] are transmitter-initiated

for communications among multiple pairs of traffic sources and destinations, and the

exchange of RTS/CTS messages is required for the channel estimation and reservation

before data transmission which results in extra MAC overhead. The receiver initiated

MAC scheme [24, 25] can potentially reduce MAC overhead. However, when directly

applied to RS-WLANs with pre-downloaded packets, these schemes do not exploit the

potential diversity gain among multiple direct/relay links. On the other hand, in order to

delivery on-demand data services to a high-speed train with a large number of passengers
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onboard, the resource contention among multiple services should be resolved. Moreover,

the coverage provided by the infostations may not be seamless for a low deployment cost.

As a high-speed train travels along a rail line, the wireless link from an infostation to

a vehicle station is highly dynamic and subject to periodic disconnections, which makes

the resource management challenging. The on-demand broadcast scheduling approach-

es [26, 27] based on a constant rate broadcast link are not applicable to data delivery via

infostations. The existing resource management schemes [18, 20, 28, 29] deal with single

service for each vehicle or offline resource allocation based on service popularity, which

cannot be directly applied to on-demand data delivery to mass transportation vehicles

such as high-speed trains.

The objective of our research on resource management in DTNs is to address the above

limitations and develop effective and efficient link layer resource allocation schemes for

cooperative data dissemination via roadside WLANs and on-demand data service delivery

to high-speed trains, respectively. Firstly, a double-loop receiver-initiated MAC (DRMA-

C) scheme is proposed for cooperative data dissemination via roadside WLANs [30, 31].

The MAC scheme can achieve spatial and temporal diversity via the outer-loop and

inner-loop MAC, respectively. A receiver initiated mechanism is used to reduce the sig-

nalling overhead, where the ACK message is used as an invitation of channel contention.

Secondly, the optimal resource allocation problem for on-demand data service delivery

to high-speed trains via cellular/infostation integrated networks is formulated by tak-

ing account of the intermittent network connectivity and multi-service demands [32, 33].

The original problem is transformed into a single-machine preemptive scheduling prob-

lem based on a time-capacity mapping. As the service demands are not known a priori,

an online resource allocation algorithm based on Smith ratio and exponential capacity

is proposed. If the link from the backbone network to an infostation is a bottleneck, a

service pre-downloading algorithm is also proposed to facilitate the resource allocation.

8



Chapter 1. Introduction

2 4 6 8 10 12 14 16 18 20 22 24
0.5

1

1.5

2

2.5

Time

E
ne

rg
y 

de
m

an
d 

(k
W

h) Mon.
Tue.
Wed.
Thur.
Fri.

Figure 1.1: Hourly energy demand of a household in Waterloo during a week of June.

Figure 1.2: Ontario electricity time-of-use (TOU) price.

For resource management in the smart grid, we have studied the optimal energy de-

livery via V2G systems and decentralized economic dispatch in microgrids. For a V2G

system with bidirectional energy delivery, the peak period with high electricity price

should be considered. As shown in Fig. 1.1, the household demand mainly occurs dur-

ing the off-peak and mid-peak hours (see Fig. 1.2) because of appliance usage such as

heating/cooling, cooking, and washing1. Optimal energy delivery can hardly be achieved

if the on-peak hours (see Fig. 1.2), during which the vehicles are likely to be parked

at the work places, are ignored. Therefore, the traditional energy store-and-deliver ap-

proach [13, 35, 36, 37, 38] should be transformed into an energy store-carry-and-deliver

mechanism to facilitate V2G applications. On the other hand, the existing works on

1The data is collected from the smart meter readings of a household subscribed to Waterloo North

Hydro [34], to be discussed in Section 4.6.
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economic dispatch [39, 40, 41, 42] are established based on the assumption that an effi-

cient communication network can be used to obtain the power generation and demand

information in a timely manner. However, this assumption can hardly hold true in a

microgrid with low-cost short-range communication devices such as WiFi and ZigBee

devices.

The objective of our research on resource management in the smart grid is to ad-

dress the above limitations and develop an optimal energy delivery scheme for the V2G

system and an efficient decentralized economic dispatch scheme for microgrids. Firstly,

we have formulated the optimal energy store-carry-and-deliver problem for PHEVs via

the V2G system and prove the optimality of a state-dependent double-threshold policy

based on the stochastic inventory theory [43]. A modified backward iteration algorithm

is devised for practical applications, where an exponentially weighted moving average

(EWMA) algorithm is used to estimate the statistics of PHEV mobility and energy de-

mand. Secondly, we have proposed a heterogeneous wireless network architecture to

achieve decentralized economic dispatch in microgrids [44]. Two multiagent coordination

schemes are proposed for the single-stage and hierarchical operation modes, respectively.

The optimal number of activated cellular communication devices is obtained based on

the tradeoff between communication and generation costs.

1.3 Outline of the Thesis

This thesis consists of two parts. In Part I, we present the resource management in

DTNs. Chapter 2 proposes a DRMAC scheme for cooperative data dissemination via

roadside WLANs. An analytical model is derived for the proposed MAC scheme and the

analytical results are verified by simulations. Chapter 3 investigates the on-demand data

service delivery problem for high-speed trains in cellular/infostation integrated networks.

An online resource allocation algorithm based on Smith ratio and exponential capacity
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is proposed and evaluated by simulations based on real high-speed train schedule. In

Part II, we present the resource management in the smart grid. Chapter 4 investigates

the optimal energy store-carry-and-deliver problem for PHEVs via V2G systems. We

prove the optimality of a state-dependent double-threshold policy and devise an approxi-

mation algorithm for practical applications. The performance of the proposed algorithm

is evaluated by simulations based on survey and real data collected from Canadian house-

holds. Chapter 5 presents a heterogeneous wireless network architecture for microgrids.

Two multiagent coordination schemes are proposed for the single-stage and hierarchical

operation modes, respectively. The efficiency of the proposed schemes is evaluated by

analysis and simulations based on real power generation and load data collected from

the Waterloo Region in Canada. Finally, Chapter 6 concludes this research and outlines

some further research topics.
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Chapter 2

MAC for Cooperative Data

Dissemination via Roadside WLANs

As discussed in Chapter 1, MAC design is critical for efficient cooperative data dissem-

ination via RS-WLANs. In this chapter, we present a DRMAC scheme for pedestrian

nomadic nodes such as the FON subscribers [45]. The main resource under consideration

is communication bandwidth. The key features of the proposed MAC scheme include:

• Two MAC loops are devised. The outer-loop MAC and inner-loop MAC are per-

formed at relatively low and high frequencies to achieve spatial and temporal di-

versity, respectively.

• In order to reduce the signalling overhead, a receiver-initiated MAC strategy is

adopted to suppress the RTS/CTS message exchange by using the ACK message

as an invitation of channel contention. The ACK message also carries the rate infor-

mation of the previous transmission to reduce channel contentions among multiple

storage and non-storage local nodes.
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• A novel analytical model is established using a finite-state Markov chain based

channel model to characterize the time correlation between two consecutive trans-

missions. The analytical results are verified by extensive simulations for various

visiting trajectories and speeds of a nomadic node. Compared with the IEEE

802.11 MAC, transmitter-initiated cooperative MAC, and receiver-initiated MAC,

our proposed scheme can significantly improve the packet delivery rate from an

RS-WLAN to a nomadic node.

2.1 Literature Review

The data dissemination services can be supported by the traditional cellular networks

such as general packet radio service (GPRS) and 3G. However, as cellular networks aim

at offering ubiquitous network coverage, providing the data dissemination services by

cellular networks can suffer from low transmission rate and high cost [18]. Extensive

research has been carried out to exploit the roadside WiFi access points (APs) for data

delivery. For instance, the Drive-thru Internet architecture addresses the short-term

network access problem when a mobile user walks, drives, or passes (by other means)

through the coverage area of an AP [46]. To improve the availability of the roadside APs,

the notion of wireless metropolitan area sharing network (WMSN) is introduced, where

publicly and/or privately owned wireless local area networks (WLANs) are shared [47].

Following the same concept as WMSN, FON has successfully established a business model

to stimulate the sharing of the WLANs [45]. Based on two kinds of incentives, i.e.,

direct payment and cooperative sharing among FON subscribers, the nomadic nodes can

obtain permission to access the privately owned roadside WLANs (RS-WLANs) which

are typically deployed at the roadside restaurants, cafes, and residential houses. However,

in a rural area and/or an urban area with a low market penetration rate, the densities
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of the shared RS-WLANs as well as the nomadic nodes are low such that an end-to-end

path from an AP to a nomadic node can hardly be established. Moreover, the data rate

of the wireline connection between an AP and the content server may be limited1, which

further restricts the packet delivery rate from an RS-WLAN to a nomadic node.

To achieve efficient data dissemination in such a DTN (or sparse network in gener-

al [49]), a cooperative approach (also referred to as DTCoop [19]) can be used, in which

not only the AP within each RS-WLAN is shared, but also the local nodes connected to

the AP can provide packet caching and relaying capabilities. Information packets are first

pre-downloaded to (or cached at) a group of storage local nodes within an RS-WLAN.

Upon the arrival of a nomadic node in the RS-WLAN, both direct links from storage

local nodes and relay links via non-storage local nodes can be used for packet delivery.

Several MAC schemes have been proposed in literature to achieve spatial/temporal

diversity in the context of cooperative communications. At the link layer, spatial diver-

sity can be achieved by scheduling the local node with the highest average transmission

rate to transmit, based on the geographic locations of local nodes [21]. On the oth-

er hand, temporal (or user) diversity corresponds to a time-varying channel condition

caused by the mobility of the nomadic node, and typically requires a time-dependent

scheduling based on the instantaneous transmission rates from the local nodes to the

nomadic node [22, 23, 50]. The CoopMAC can achieve spatial diversity based on the his-

toric transmission observations [21]. Each low data rate node in the network maintains a

table (i.e., the CoopTable) of potential relay nodes based on the overheard transmissions

from other nodes. During packet transmission, each node of a low data rate select-

s either direct transmission mode or relay transmission mode (through a relay node)

1For instance, the rate can be limited to a few Mbps for some residential Internet service subscribers,

which is much lower than the maximum rate of the wireless connection (e.g., 54 Mbps for IEEE 802.11a

based RS-WLANs) [18, 48].
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based on the information provided by the CoopTable. In this way, the packet transmis-

sion time can be reduced. Without predetermined network configuration, an adaptive

distributed cooperative MAC (ADC-MAC) is proposed for spatial diversity in dynamic

vehicular networks [22]. A heartbeat mechanism is devised so that the ADC-MAC can

self-learn the geographic location information of the relay nodes and dynamically update

the CoopTable. Since the source node adaptively selects the most suitable transmission

mode and/or relay node based on the latest information in the CoopTable (which may

not be up-to-date in comparison with the instantaneous information), temporal diversi-

ty can be potentially achieved. The distributed cooperative MAC achieves both spatial

and temporal diversity [23]. The relay selection is completed in a distributed manner and

the instantaneous channel quality is estimated during the request-to-send(RTS)/clear-to-

send(CTS) message exchange. As demonstrated in [24, 25], the receiver-initiated MAC

schemes can reduce the signalling overhead for predictable traffic source. The RTS part

of the RTS/CTS message exchange is suppressed, while the CTS part is used as an

invitation by the receiver node for the transmitter node.

2.2 System Model

In this section, we first introduce the network topology. Then, the cooperative data

dissemination approach is described, followed by a local information exchange mechanism

to facilitate the cooperative data dissemination.
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2.2.1 Network Topology

Consider a service area where a number of RS-WLANs are deployed. Local nodes reside

in the coverage area of an RS-WLAN, while the nomadic nodes are roaming in the

entire network region. We consider pedestrian nomadic nodes which can be disconnected

for hours and walk through the coverage area of an RS-WLAN within several minutes.

The densities of the RS-WLANs and nomadic nodes are low, which results in a DTN

scenario [49]. Focusing on MAC, we consider a single RS-WLAN (e.g., in a residential

house) with a group, L, of local nodes (including the AP), as shown in Fig. 2.1.

The RS-WLAN provides services to both local and nomadic nodes. For the resource

sharing, we consider a superframe structure as shown in Fig. 2.2 [51]. Time is partitioned

into superframes with constant duration TSU . Each superframe begins with a beacon

period with duration TC . Following the beacon period, a dedicated phase with duration

TE (TE < TSU − TC) is reserved for the data dissemination service upon the arrival of a

nomadic node. The remaining period in the superframe is used to serve the local nodes.

For the resource allocation among multiple nomadic nodes which are simultaneously

present in an RS-WLAN, a time sharing mechanism is used, in which each dedicated phase

is assigned to a nomadic node. The AP notifies the local nodes about the assignment

during the beacon period. At the beginning of each dedicated phase, a dedicated phase

assignment message is broadcasted by one of the local nodes to notify the nomadic node.

Suppose a data dissemination service (e.g., to distribute a flyer of a supermarket or

a video clip of a commercial advertisement) is initiated and destined to a group of no-

madic nodes2. The data file for dissemination is segmented to B0 packets with equal size.

Without loss of generality, we consider an IEEE 802.11 based RS-WLAN with M trans-

mission rates at the physical layer [48]. The mth rate is selected for wireless transmission

2If there are multiple data dissemination services, they are served according to a first-in-first-out

(FIFO) policy.
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Figure 2.1: Network topology and the cooperative data dissemination approach.
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Figure 2.2: The superframe structure.

if the instantaneous received signal-to-noise ratio (SNR) is within [γthm , γ
th
m+1), where γthm

(m = 1, 2, · · · ,MR) is the SNR threshold of the mth rate such that the wireless trans-

mission can be considered as error free [52]. The MRth rate is selected when the SNR

is above γthM (i.e., γthM+1 = ∞), while no wireless transmission is established when the

SNR is below γth1 . The RS-WLAN under consideration is fully connected. In order to

efficiently utilize the radio resources, we assume that a neighbor discovery mechanism is

in place, which admits a nomadic node to the RS-WLAN when a non-zero transmission

rate can be supported with a high probability.
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2.2.2 The Cooperative Data Dissemination Scheme

The cooperative data dissemination scheme consists of two phases, i.e., packet pre-

downloading and packet scheduling. Because of the buffer space limitation, the packets

of the data dissemination service is pre-downloaded to a group LS of storage local nodes,

while another group LN (LN ∩ LS = ∅) of non-storage local nodes can provide relaying

capabilities. Assuming that the packet pre-downloading procedure is completed based

on an existing approach3, we focus on the scheduling of packet transmission to a visiting

nomadic node. The buffer space of the AP is sufficiently large, so that the AP can also

serve as a storage local node, i.e., {AP} ⊂ LS. In order to achieve a high packet trans-

mission rate, an opportunistic scheduling scheme is applied by considering both direct

links from the storage local nodes and the relay links from the non-storage local nodes.

Among these links, the one with the highest transmission rate is selected.

2.2.3 Local Information Exchange

Each non-storage local node is paired with a storage local node for the highest link

transmission rate. The storage local node is the first-hop traffic source for the non-

storage local node. As shown in Fig. 2.1, the two non-storage local nodes select one of

the storage local nodes and the AP as their first-hop traffic sources, respectively. For a

non-storage local node i (i ∈ LN), denote the rate index of the first-hop transmission from

the traffic source as m1
i . The local information, in terms of the IDs of the storage/non-

storage local nodes (in LS/LN) and the source selection results of the non-storage local

3For instance, on-demand packet pre-downloading exploits the instantaneous mobility information

(which is delivered via a cellular network) to pre-download data packets to the RS-WLANs on the

movement trajectory of a nomadic node [18], while stochastic packet pre-downloading uses the historic

mobility information to pre-download data packets to the RS-WLANs to be visited by a nomadic node

with a high probability [20].
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nodes (with respect to m1
i , i ∈ LN), is stored at all local nodes and is transmitted to

a visiting nomadic node during its neighbor discovery procedure. With low mobility of

local nodes (e.g., laptops or normal users of the RS-WLANs), we assume that the local

information does not change during the visiting period of a nomadic node.

When a nomadic node comes into the RS-WLAN, let m denote the index of the direct

transmission rate if the source node is a storage local node or the second-hop transmission

rate otherwise. Then the packet transmission rate from local node i (including the

transmission of the ACK message and cooperative relaying overhead) to the visiting

nomadic node is a function of m, denoted by ζi(m) (in packet/s) and given by [21]

ζi(m) =


1

TP (m)+TACK+2TSIFS
, if i ∈ LS

1
THR+TP (m1

i )+TP (m)+TACK+4TSIFS
, if i ∈ LN

(2.1)

where TP (m) is the packet transmission time at the mth transmission rate, while TSIFS,

THR, and TACK are the time durations of short interframe space (SIFS), helping request

message, and ACK message, respectively. The helping request message is sent by a

non-storage local node to request a packet from the selected first-hop traffic source. All

signalling messages (other than the data packet) are transmitted at the basic rate to

ensure the transmission accuracy. Without loss of generality, we denote the case that

the wireless transmission cannot be established by m = 0 with ζi(0) = 0. Since TP (m)

is monotonic with respective to m according to the transmission rate definition, ζi(m) is

a bijective function. Therefore, if the packet transmission rate of local node i is denoted

by R, we can obtain its rate index m as m = ζ−1
i (R) based on the local information LS,

LN , and m1
i for i ∈ LN . For notation clarity, we use the symbols in {i, j, n} and {m, l, h}

to denote the local nodes and the rate indices, respectively, in the following sections.
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2.3 The Double-Loop Receiver-Initiated MAC Scheme

To provide high quality data dissemination services, our main objective is to minimize

the service delivery delay which is mainly caused by the intermittent network connectiv-

ity. For instance, the flyer of a supermarket should be delivered to a pedestrian walking

towards the supermarket as soon as possible. From the link layer point of view, this

objective can be achieved by increasing the number of data packets (or data volume [46])

delivered to the nomadic node upon its visit to each RS-WLAN, or equivalently, improv-

ing the packet transmission rate from the local nodes to the nomadic node during the

dedicated phase of each superframe. Towards the goal, a DRMAC scheme is proposed.

In this section, we first give an overview of the proposed MAC scheme, and then present

the details of its operation.

2.3.1 Overview of the MAC Scheme

A function diagram of the DRMAC scheme is shown in Fig. 2.3, where the contention

group (CG) is defined as a group of local nodes which can participate in the wireless

channel contention for packet transmission to the nomadic node. The DRMAC scheme

consists of two MAC loops. The outer-loop MAC is performed at a low frequency to

determine the CG membership for spatial diversity based on the average transmission

rate, while the inner-loop MAC is performed at a high frequency to select the transmitter

for temporal diversity based on the instantaneous transmission rate.

Several new messages are introduced for our proposed MAC scheme. The dedicated

phase assignment message is defined in Subsection 2.2.1. Correspondingly, a receiving

request message is introduced as a response to the dedicated assignment message by a

nomadic node. Similar to the existing cooperative MAC schemes [21, 22, 23], we introduce

a helping request message which is used by a non-storage local node (or equivalently, a
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Figure 2.3: A function diagram of the DRMAC scheme.

relay node) to request a packet from the first-hop traffic source. Since the first-hop traffic

source is already determined based on local information exchange, only the non-storage

local node address is included in the helping request message. The storage local nodes

which are selected as the first-hop traffic sources are required to decode all helping request

messages for potential first-hop transmissions. By definition, the formats of dedicated

phase assignment message, receiving request message, and helping request message are

the same as that of the CTS message, with their RA fields being given by the addresses of

the nomadic node, the local node sending the dedicated phase assignment message, and

the non-storage local node requesting the packet, respectively. The ACK message sent by

the nomadic node piggybacks the instantaneous transmission rate index, mTx, estimated

based on the previous transmission and the packet sequence number [48]. Note that the

sequence number is used to identify the packet for the next transmission, taking into

account that identical packets may be stored at multiple storage local nodes in packet

pre-downloading. Similar message format is used by a rate notification message for a

local node to indicate its instantaneous transmission rate.

Taking account of the superframe structure as shown in Fig. 2.2, the critical operation

steps of the proposed MAC scheme can be briefly summaries as follows. Here, we consider

a single nomadic node which is admitted by the RS-WLAN.

1. A standard beacon mechanism [48] is used with an additional information being
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broadcasted by the AP to notify the local nodes about the CG membership (which

is determined based on the outer-loop MAC for spatial diversity, to be discussed in

Subsection 2.3.2);

2. At the beginning of a dedicated phase, a CG attachment procedure is performed

to initiate the inner-loop MAC. The procedure begins with one of the CG member

sending a dedicated phase assignment message to notify the nomadic node. After

the CG attachment, a CG member with the highest instantaneous transmission rate

to the nomadic node is identified as the transmitter node for temporal diversity;

3. A contention-by-invitation procedure is performed for the remaining period of the

dedicated phase after the CG attachment. The side information provided by the

ACK message is used to reduce the MAC overhead while achieving temporal diver-

sity.

Step 2 and Step 3 constitute the inner-loop MAC, to be discussed in Subsection 2.3.3.

2.3.2 The Outer-Loop MAC

Each local node, i ∈ L, estimates its instantaneous transmission rate (Re
i ) to the nomadic

node based on the SNR of each ACK message it received. From the received SNR, if the

corresponding rate index is me
i , we have Re

i = ζi(m
e
i ). The average transmission rate R

e

i

can be calculated based on the previous estimates of Re
i .

From the periodic reports of R
e

i by all local nodes, the AP selects a group LC of

local nodes with the highest average transmission rates as the CG members, and then

broadcasts a CG notification message (during the beacon period) to inform all local nodes

about the IDs of the CG members in a descending order of the average transmission rate.

When two or more local nodes have the same average transmission rate to the nomadic
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node, the ordering among them is in accordance with their IDs. For a clear presentation,

we define a bijective function f : LC → {1, 2, · · · , Nc}, which maps each CG member

ID to its rank in the CG notification message, where NC = |LC | is the number of CG

members. Obviously, for i, j ∈ LC , if f(i) < f(j), we have R
e

i ≥ R
e

j . For a larger

NC , more local nodes can participate in the channel contention for a higher temporal

diversity gain.

2.3.3 The Inner-Loop MAC

The two components of the inner-loop MAC are presented as follows.

Contention-by-Invitation

If a CG member i (i ∈ LC) can correctly decode the ACK message from the previous

transmission, the value of mTx can be obtained. Then the rate of the previous trans-

mission can be calculated as RTx = ζiTx(mTx) based on the receiver address field of the

ACK message (corresponding to the ID of the previous transmitter node iTx [48]). If

Re
i > RTx, node i is invited and will join the channel contention.

To select a transmitter node, a contention-based procedure is used based on the side

information provided by the ACK message, as shown in Fig. 2.4. Each invited CG

member sends a short burst, as a contention request, TSIFS after the reception of the

ACK message. The previous transmitter node (iTx) overhears the contention request

burst and defers its transmission. Since a CG member cannot obtain the instantaneous

transmission rate information of other CG members, we denote LCP as the group of all

potential (invited) CG members, which is a subgroup of LC and is given by

LCP = {j| max
1≤l≤MR

{ζj(l)} > RTx, j ∈ LC \ iTx}. (2.2)
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Figure 2.4: Signalling in the contention-by-invitation.

Note that a CG member is potentially invited only when it can support a transmission

rate higher than RTx. Then, a deterministic backoff (with the kth potential CG member

backoffs for (k − 1) slots before its transmission) is established by sorting all potential

CG members according to the descending order of the one-step higher transmission rate,

which is defined as

R′i,RTx = min
l
{ζi(l)|ζi(l) > RTx}, i ∈ LCP . (2.3)

The slot duration in the deterministic backoff is TS [48]. The rationale behind the one-

step higher transmission rate based deterministic backoff is to utilize the time correlation

of a wireless channel to reduce contentions. For pedestrian mobility, the value of mTx

given in the ACK message is up-to-date with a high probability and a transmission

rate change to a non-adjacent index during a round of packet transmission and ACK

is unlikely. Since all nodes in LCP have a lower transmission rate than RTx during the

previous transmission, if node i (i ∈ LCP ) is invited to join the channel contention, its

current transmission rate equals the one-step higher transmission rate (R′i,RTx) with a

high probability. As a result, by ordering the potential CG members based on R′i,RTx ,
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the CG member with the highest instantaneous transmission rate can be selected as the

transmitter node with a high probability.

When two or more nodes have the same one-step higher transmission rates, the order-

ing among them is according to the one indicated in the CG notification message (with

respect to the average transmission rate). For illustration clarity, we define a bijective

function g : LCP → {1, 2, · · · , |LCP |} which maps each CG member ID in LCP to a

positive integer representing its rank in the deterministic backoff. Obviously, two cases

should be taken into account for any i, j ∈ LCP : 1) If R′i,RTx > R′j,RTx , then g(i) < g(j);

2) If R′i,RTx = R′j,RTx , then g(i) < g(j) if and only if f(i) < f(j). Therefore, g(i) is

given by

g(i) = 1 +
∑
j∈LCP
j 6=i

[
I
(
R′i,RTx < R′j,RTx

)
+ I

(
R′i,RTx = R′j,RTx

)
I (f(i) > f(j))

]
, i ∈ LCP

(2.4)

where I(A) is an indication function which equals 1 if A is true and 0 otherwise, while

the constant 1 corresponds to each potential CG member itself.

As the parameters LC , iTx, and RTx are known by all the CG members which have

correctly decoded the ACK message, the set LCP can be accurately determined. More-

over, for each contending CG member i, the value of R′j,RTx for j ∈ LCP \ i can also be

obtained accurately since the local information is available for all local nodes within the

RS-WLAN. Therefore, contention collision is avoided in the deterministic backoff.

After the backoff is finished, the invited storage local node sends a data packet while

the invited non-storage local node sends a helping request message. If any transmission is

detected during the backoff procedure, an invited CG member defers its transmission since

there exists another node with a higher packet transmission rate. If no contention request

burst is detected, the previous transmitter node starts a new transmission immediately.
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In the example shown in Fig. 2.4, the kth and k′th potential CG members participate

in the channel contention. Since k < k′, the kth potential CG member is the first node

to finish the backoff. Data transmission starts given the kth potential CG member is a

storage local node, while the transmission of the k′th potential CG member is deferred.

CG Attachment

At the beginning of a new dedicated phase, the value of mTx indicated in the ACK

message becomes out-of-date because of the transmission of local traffic in between the

dedicated phases. Therefore, a CG attachment mechanism is needed for the first trans-

mission in the new dedicated phase to identify a CG member with the highest instanta-

neous transmission rate to the nomadic node, as shown in Fig. 2.5. Each dedicated phase

begins with a dedicated phase assignment message broadcasted by the CG member with

the highest average transmission rate. Upon the reception, the nomadic node replies a

receiving request message to the CG member. If there is no reply from the nomadic

node, the dedicated phase assignment message is retransmitted. Here, we consider the

retransmission continues until the end of the dedicated phase. However, a retransmission

limit may be set for better utilization of the resources within an RS-WLAN.

Upon the reception of the request message, a deterministic backoff (with the kth CG

member backoffs for (k−1) slots before its transmission) is established. The CG members

are ordered according to the CG notification message. The first CG member sends out

a rate notification message to notify the other CG members about its instantaneous

transmission rate which is estimated based on the receiving request message. When

the backoff is finished, another CG member (except the NCth CG member) sends a

rate notification message only if it has a higher instantaneous transmission rate than

the previously indicated ones. The kth CG member starts data (or receiving request

message) transmission only if no other transmission is received in the (NC − k) slots
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Figure 2.5: Signalling in the CG attachment.

after its rate notification. In the example shown in Fig. 2.5, the kth CG member is a

non-storage local node and is the only CG member which has a higher instantaneous

transmission rate than that of the first CG member. The CG attachment procedure also

identifies a new transmitter node when wireless transmission cannot be established from

any of the CG members, possibly caused by (temporary) deep fading or interference.

By using the receiver-initiated mechanism, no RTS/CTS message exchange is nec-

essary before each packet transmission. Moreover, by exploiting the transmission rate

indicated in the ACK message as side information, the transmitter selection (by deter-

ministic backoff) does not need to be performed after each ACK message, which further

reduces the signalling overhead.

2.4 Performance Analysis

In this section, the performance of the DRMAC scheme is analyzed. The performance

metric under consideration is the number of data packets that can be delivered from an

RS-WLAN to a nomadic node following a certain movement trajectory at a given speed.

The existing analytical model [22, 54] can evaluate the performance of the transmitter-
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initiated MAC schemes under a saturated traffic condition, similar to the cooperative data

dissemination approach considered here where data packets are already pre-downloaded

to the storage local nodes. However, it cannot be applied to model the receiver-initiated

mechanism and the time correlation of a wireless channel utilized in the DRMAC scheme.

In the following, we present a novel analytical model by using a finite-state Markov chain

based channel model to characterize the wireless channel condition [55, 56].

Path loss and Rayleigh fading are considered for a typical WLAN scenario [21]. The

cumulative density function (CDF) of the instantaneous SNR, Γ(d), for a distance d

between the transmitter and receiver is given by FΓ(d)(γ) = 1 − e−γ/Γ(d) (0 ≤ γ < ∞),

where Γ(d) is the average SNR at d depending on the path loss effect [57]. Denote

pti,m,m′(τ) as the transition probability of the wireless transmission rate index of local

node i from m to m′ during τ . Based on the finite-state Markov chain channel model,

we have

pti,m,m+1(τ) =
τNm+1

Pi,m
, m = 0, · · · ,MR − 1 (2.5)

pti,m,m−1(τ) =
τNm

Pi,m
, m = 1, · · · ,MR (2.6)

where Nm = fmax exp
(
− γthm

Γ(di)

)√
2π γthm

Γ(di)
is the cross-rate of rate index m, and fmax is

the maximum Doppler frequency which depends on the movement speed of the nomadic

node. For the analysis of DRMAC scheme, τ corresponds to the duration of one packet

transmission. Therefore, we have

pti,m,m(τ) = 1− pti,m,m+1(τ)− pti,m,m−1(τ). (2.7)

The probability of any other state transition equals zero. For analytical tractability, the

following assumptions are made:

1. The RS-WLAN covers a circular region with radius r and a neighbor discovery

mechanism is in place which admits a nomadic node when it comes within a distance
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rV from the AP. The value of rV can be greater than the transmission range the

AP because of the extended coverage by the local nodes;

2. The nomadic node visits the RS-WLAN along a straight line (e.g., a sidewalk as

shown in Fig. 2.1). The local nodes are stationary during the visiting period, while

the speed v of the visiting nomadic node is constant. The movement speed of

the nomadic node (e.g., a pedestrian) is relatively low such that pti,m,m+1(τ) and

pti,m,m−1(τ) are much smaller than pti,m,m(τ);

3. The wireless channels among different local nodes are independent;

4. The average transmission rate (R
e

i ) can be accurately estimated by the outer-loop

MAC, while the CG member with the highest instantaneous transmission rate can

always be selected as the transmitter node by the inner-loop MAC.

The performance analysis consists of four parts. In Subsection 2.4.1, we derive an

explicit expression for the average number of delivered packets over the visiting trajectory

of a nomadic node, while the components in the expression are evaluated in the following

subsections. In Subsection 2.4.2, the average packet transmission rate is calculated for

a specific location of a nomadic node. In Subsection 2.4.3 and Subsection 2.4.4, the sig-

nalling overhead in terms of the durations of contention-by-invitation and CG attachment

is evaluated, respectively.

2.4.1 Average Number of Delivered Packets over Visiting Tra-

jectory

Suppose the AP is located at the pole, and the position of local node i (i ∈ L) is (ρi, θi).

In order to represent the movement of a nomadic node along the roadside (a straight
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Figure 2.6: The visiting trajectory of a nomadic node to an RS-WLAN.

line), we define the visiting trajectory based on two parameters, i.e., δ and β, which are

the angles related to the slope of the visiting trajectory and the shortest distance between

the AP and the visiting trajectory, respectively. An illustration of the visiting trajectory

is shown in Fig. 2.6 for the network topology in Fig. 2.1. If the nomadic node enters the

neighbor discovery range of the RS-WLAN at time 0, then at time t, the positions of the

nomadic node for the two opposite moving directions are given by4

ρ(t) =
√
v2t2 + r2

V − 2vtrV cos β (2.8)

θ(t) = ± arccos
rV − vt cos β

ρ(t)
+ δ ∓ (

π

2
− β). (2.9)

Based on the DRMAC scheme, the overhead of CG attachment should be calculated

at the beginning of each dedicated phase, while the overhead of contention-by-invitation

should be evaluated before each packet transmission. For analytical tractability, we

consider both overhead at the beginning of each superframe since the average channel

4An extension of our analytical model to an arbitrary visiting trajectory is straightforward by using

a different set of functions ρ(t) and θ(t).

31



Performance Analysis

condition does not change significantly within a superframe for pedestrian nomadic nodes.

With the kth superframe (k ≥ 1) starting at time tk (tk = (k − 1)TSU), we denote

the durations of contention-by-invitation and CG attachment as TCI(tk) and TAT (tk),

respectively. Then the average number of packets delivered to the nomadic node during

superframe k is given by

Bs
k =

TE − TAT (tk)[
1/RV (tk)

]
+ TCI(tk)

(2.10)

where RV (tk) is the average packet transmission rate without signalling overhead, given

location (ρ(tk), θ(tk)) of the nomadic node. For a sufficiently large B0 value such that the

data dissemination service cannot be completely delivered within a single RS-WLAN,

the average number of delivered packets over the visiting trajectory is given by BV =∑NF
k=1B

s
k, where NF =

⌊
2rV cosβ
vTSU

⌋
is the number of superframes during the visiting period

of the nomadic node. Note that the same average number of delivered packets is obtained

for the two opposite moving directions as given in (2.9).

In order to obtain BV , the values of RV (tk), TCI(tk), and TAT (tk) should be calculated

for all k ∈ {1, 2, · · · , NF}, to be discussed in the following subsections. Without loss of

generality, consider the beginning time of a tagged superframe with the position of the

nomadic node given by (ρ, θ).

2.4.2 Average Packet Transmission Rate

We first derive the average packet transmission rate of each local node. The probability

that the mth (0 ≤ m ≤ M) rate is chosen by the (one-hop) wireless transmission from
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local node i to the nomadic node is given by

Pi,m =


FΓ(di)(γ

th
1 ), if m = 0

1− FΓ(di)(γ
th
MR

), if m = MR

FΓ(di)(γ
th
m+1)− FΓ(di)(γ

th
m ), otherwise

(2.11)

where di =
√
ρ2 + ρ2

i − 2ρρi cos(θ − θi) is the distance between the nomadic node and

local node i. Denoting the instantaneous transmission rate from local node i to the

nomadic node as Ri, the average transmission rate can be calculated as

Ri =

MR∑
m=0

ζi(m)P (Ri = ζi(m)) =

MR∑
m=0

ζi(m)Pi,m. (2.12)

Based on the estimated average transmission rate (R
e

i = Ri), the CG memberships

(LC) can be determined for spatial diversity. According to assumption 4), we have

RV = maxj∈LC {Rj} with its CDF given by

FRV (a) = P

(
max
j∈LC
{Rj} ≤ a

)
=
∏
j∈LC

P (Rj ≤ a) =
∏
j∈LC

[
MR∑
m=1

Pj,mI (ζj(m) ≤ a)

]
(2.13)

where the second equality holds as the channels are independent. From (2.11) and (2.13),

the probability mass function (PMF) of RV and the average packet transmission rate RV

can be obtained numerically.

2.4.3 Duration of Contention-by-Invitation

In addition to a constant TCR, the duration of contention-by-invitation mainly consists

of the duration of deterministic backoff, which depends on the the current transmitter

node and the group of CG members in the channel contention. The probability that CG
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member n is the transmitter node and the transmission rate index is m (m ≥ 1) can be

derived as

P s
n,m = Pn,m

∏
j∈LC\n

MR∑
l=0

[Pj,lI (ζj(l) < ζn(m)) + Pj,lI (ζj(l) = ζn(m)) I (f(j) > f(n))]

(2.14)

where j denotes a CG member other than n and l the transmission rate index. The first

and second terms in the summation of (2.14) are based on the temporal diversity and

correspond to the two cases in the definition of g(·) in (2.4), respectively.

Given that the current transmitter node n is transmitting at the rate indexed m, the

(conditional) probability for the rate index of a potential CG member i to be l is given by

Pi,l|n,m =
Pi,l∑ζ−1

i (R′
i,ζn(m)

)−1

l=0 Pi,l

, i ∈ LCP , l ∈ {0, 1, · · · , ζ−1
i (R′i,ζn(m))− 1} (2.15)

where LCP can be calculated based on (2.2) by replacing iTx and RTx with n and ζn(m),

respectively. In (2.15), we have 0 ≤ l ≤ ζ−1
i (R′i,ζn(m))− 1 since the rate of CG member i

cannot exceed that of the current transmitter node. Given the current transmitter node

n and its rate index m, the probability for a potential CG member i ∈ LCP to participate

in the channel contention is given by

P c
i|n,m =

ζ−1
i (R′

i,ζn(m)
)−1∑

l=0

MR∑
h=ζ−1

i (R′
i,ζn(m)

)

[Pi,l|n,m · pti,l,h (1/ζn(m))]

= Pi,[ζ−1
i (R′

i,ζn(m)
)−1]|n,m · p

t
i,[ζ−1

i (R′
i,ζn(m)

)−1],ζ−1
i (R′

i,ζn(m)
)
(1/ζn(m)) (2.16)

where 1/ζn(m) corresponds to the duration of one packet transmission from the current

transmitter node. Based on assumption 2), the probability for two or more CG members

to change their transmission rate (and join the channel contention) during the time of

a packet transmission is negligible. Therefore, given the current transmitter node n and
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its rate index m, the probability for CG member i to be the next transmitter is

P x
i|n,m = P c

i|n,m

∏
j∈LCP
j 6=i

(1− P c
j|n,m). (2.17)

Then, the duration (in s) of contention-by-invitation before each packet transmission can

be calculated as

TCI = TCR +
∑
n∈LC

MR∑
m=1

P s
n,m ·

∑
i∈LCP

[(g(i)− 1)TS]P x
i|n,m (2.18)

where g(i) is given by (2.4), and the second term of the product represents the conditional

expectation of the deterministic backoff duration, given the current transmitter node n

and its rate index m.

2.4.4 Duration of CG Attachment

Since retransmission mechanism is considered in CG attachment, its duration can be

calculated iteratively based on the success/failure of transmitting each dedicated phase

assignment message. At the beginning of a dedicated phase, denote ~m = {m1, · · · ,mNc}

as a vector of the rate indices of all CG members, where mi is a random variable repre-

senting the rate index of the ith CG member according to the CG notification message.

Conditioned on the success/failure of the first transmission of the dedicated phase as-

signment message, the average duration of CG attachment is given by

TAT = T
at

~m|m1 6=0P (m1 6= 0) + T
at

~m|m1=0P (m1 = 0)

= T
at

~m|m1 6=0

M∑
m=1

Pf−1(1),m + T
at

~m|m1=0Pf−1(1),0 (2.19)

where the inverse function f−1(·) is used to map the rank in CG attachment to the

ID of each CG member. In (2.19), T at~m|m1 6=0 and T at~m|m1=0 are the average durations of
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CG attachment given the first transmission of the dedicated phase assignment message

is successful and fails, respectively. The expressions of T at~m|m1 6=0 and T at~m|m1=0 are given

in Appendix A. When no wireless transmission can be established from any of the CG

members, the CG attachment procedure is also performed, which happens with a low

probability (according to the neighbor discovery mechanism) and is neglected in (2.19).

2.5 Numerical Results

Our proposed MAC scheme can be applied to different WLAN standards. Here, the

IEEE 802.11a standard with M = 8 is considered as an example [48]. By definition,

the sizes of the dedicated phase assignment message, receiving request message, and

helping request message are equal to the size of the CTS message, while the size of

the rate notification message is equal to the size of the ACK message which piggybacks

the instantaneous transmission rate index (4 bits) and the packet sequence number (12

bits) [48]. For the wireless channel condition, the pathloss exponent is 3 for a typical

WLAN environment [21], and the Rayleigh fading is simulated based on the widely used

Jake’s model to reflect the time correlation [58]. The SNR threshold of each transmission

rate (γthm , m = 1, · · · ,M) is given in [52]. The RS-WLAN is fully connected with radius

r = 25 m and neighbor discovery range rV = 50 m. We consider a data dissemination

service with a sufficiently large K value and let the size of each packet be 1000 bytes.

The durations of the superframe and dedicated phase are T = 150 ms and TE = 50

ms, respectively. Using a first-order autoregressive moving average (ARMA) model, the

estimated average transmission rate from local node i to the nomadic node is updated

by R
e∗
i = (1 − ξ)R

e

i + ξRe
i , where R

e

i and R
e∗
i are the estimated average transmission

rate before and after the update, respectively, and ξ is an aging factor to keep a partial

memory of the historic estimations and is set to ξ = 0.1. To simplify simulations with

respect to the stationary local nodes, we investigate a ring topology [53] which achieves
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approximately uniformly distributed node locations for different numbers of local nodes

(|L|). The local nodes are evenly distributed on two circles with radius r
2

and 3r
4

, respec-

tively. The two circles include the same number of nodes, and half of them can provide

packet caching capabilities. Consider two visiting trajectories of the nomadic node with

parameter sets (π
8
, 0) and ( π

16
, 3π

4
), and corresponding shortest distances between the AP

and the nomadic node 19.13 m and 9.75 m, respectively. To incorporate the visiting

trajectories of the nomadic node and the physical layer channel model (i.e., the Jake’s

model) into the MAC simulation, we develop our own event-driven simulator based on

MATLAB. A similar simulator is used in previous research [23] without taking account

of the trajectories and the time correlation of a wireless channel.

For performance comparison, we consider five MAC schemes, i.e., IEEE 802.11 MAC

[48], direct transmission, transmitter-initiated cooperative MAC [23], receiver-initiated

MAC [25], and the proposed DRMAC. For the IEEE 802.11 MAC scheme, all storage

local nodes participate in the channel contention to deliver packets to the visiting nomadic

node. The direct transmission scheme can be considered as a special case of the IEEE

802.11 MAC scheme, where a data packet is transmitted from the AP to the nomadic

node after the RTS/CTS exchange. For fair comparison, we modify the transmitter-

initiated cooperative MAC scheme by limiting the number of contending local nodes after

the RTS/CTS exchange to NC and ordering them based on the inner-loop MAC of the

proposed scheme. In this manner, the channel contention can be reduced among multiple

direct/relay links but still exists during the RTS message transmissions. Although the

receiver-initiated MAC scheme (without multiple storage local nodes as traffic sources)

is not applicable for RS-WLANs with pre-downloaded packets, we modify the scheme

by always inviting the storage local node with the highest average transmission rate.

Finally, for the newly proposed DRMAC scheme, the value of NC is chosen from the

set {1, 2, 3, 4}.
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2.5.1 Performance Evaluation of the DRMAC Scheme

The effect of NC on the performance of the proposed MAC scheme is shown in Fig. 2.7,

without the signalling overhead. The nomadic node has a visiting trajectory with param-

eter set (π
8
, 0) at a speed of 1.5 m/s. We can see that the analytical results match well

with the simulation results. As NC increases, the average number of delivered packets

increases, with a higher temporal diversity gain. However, the increment dwindles with a

further increase of NC because the temporal diversity gain becomes saturated. Moreover,

for a given NC , the average number of delivered packets increases with the number of

local nodes, which offers more spatial diversity.

Taking account of the signalling overhead, the effect of NC on the performance of

the proposed MAC scheme is shown in Fig. 2.8, with accurate estimation of the average

transmission rate. Although the signalling overhead slightly reduces the average number

of delivered packets, the basic trends of the curves are the same as those in Fig. 2.7,

thanks to both spatial and temporal diversity gains. With pedestrian nomadic nodes

and the IEEE 802.11a based physical layer, the channel coherent time is in the order

of tens of milliseconds, while the transmission duration of an ACK message is in the

order of tens of microseconds. Therefore, the instantaneous transmission rate given in

the ACK message is up-to-date with a high probability [56]. This observation confirms

the utilization of the ACK message as a receiver-initiated contention invitation, which

reduces the signalling overhead. Moreover, the analytical and simulation results agree

with each other well, with a slight difference caused by the Markov chain based channel

model and the one-step higher transmission rate based approximation.
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Figure 2.7: The average number of delivered packets using the proposed MAC scheme,

without signalling overhead.
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Figure 2.8: The average number of delivered packets using the proposed MAC scheme,

taking account of the signalling overhead.
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2.5.2 Performance Comparison among Different MAC Schemes

A performance comparison among all the five MAC schemes is shown in Fig. 2.9, using

the first-order ARMA model based estimation of the average transmission rate. For the

DRMAC scheme, we present the results for NC = 1 and NC = 3, respectively. The

performance of the proposed MAC scheme slightly degrades as compared with that in

Fig. 2.8, because of the estimation error of the average transmission rate, which results

in an occasionally inaccurate selection of CG members. The performance of the direct

transmission scheme is low in the absence of spatial and temporal diversity. The IEEE

802.11 MAC scheme performs poorly with packet pre-downloading, since the inherent

random backoff before the RTS transmission is not based on the wireless channel condition

of the storage local nodes. As the local nodes are scattered within the coverage area of

the RS-WLAN, the storage local node with a poor channel condition may be selected as

a transmitter, which degrades the packet delivery performance. Moreover, the number of

packets delivered by the IEEE 802.11 MAC scheme decreases as the number of local nodes

increases, because of a more intensive channel contention among the storage local nodes.

By exploiting the diversity gain, the transmitter-initiated cooperative MAC scheme (with

NC = 4) can increase the average number of delivered packets. However, the performance

improvement is not significant because of the RTS/CTS message exchange, and random

backoff which does not adapt to the wireless channel condition. The average number

of delivered packets first increases and then decreases with the number of local nodes,

demonstrating a tradeoff between the spatial/temporal diversity gain and the intensity of

the channel contention among multiple storage local nodes. The receiver-initiated MAC

scheme can significantly increase the average number of delivered packets without RTS

messages. When the number of local nodes increases, the average number of delivered

packets increases with a higher spatial diversity gain. However, the performance of

the receiver-initiated MAC scheme is inferior to the DRMAC scheme with NC = 1
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Figure 2.9: A comparison among different MAC schemes.

due to the overhead of CTS (or ready-to-receive (RTR) [25]) message transmission. By

exploiting both spatial and temporal diversity gain and reducing the signalling overhead,

the DRMAC scheme achieves the best performance among all the MAC schemes.

To study the effect of the movement speed and trajectory parameters of the visiting

nomadic node, Figs. 2.10-2.11 show the average number of delivered packets versus move-

ment speed for the different numbers of local nodes and visiting trajectory parameters.

As the movement speed increases, the average number of delivered packets decreases with

a shorter visiting period. However, the decrement is not linear since the movement speed

also affects the channel fading statistics in terms of the maximum Doppler frequency.

The relative performance among different schemes is the same as that in Fig. 2.9. More

packets can be delivered by all the MAC schemes in Fig. 2.11, which has a longer visiting

duration with the visiting trajectory closer to the AP. The transmitter-initiated cooper-
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Figure 2.10: The effect of movement speed on different MAC schemes, 12 local nodes,

(β, δ) = (π
8
, 0).
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ative MAC scheme delivers slightly less packets to the nomadic node as compared with

the direct transmission scheme since the channel contention is higher for an RS-WLAN

with 20 local nodes and a visiting trajectory closer to the AP. In both Fig. 2.10 and

Fig. 2.11, the analytical results of the DRMAC scheme match well with the simulation

results with accurate average transmission rate information, and slightly better than the

simulation results based on the first-order ARMA model for channel rate estimation.

2.6 Summary

In this chapter, a DRMAC scheme is proposed for cooperative data dissemination to

improve the packet delivery rate from an RS-WLAN to a pedestrian nomadic node. The

proposed MAC scheme exploits both spatial and temporal diversity gain while reducing

the signalling overhead. An analytical model is derived for the proposed MAC scheme

by using a finite-state Markov chain to characterize the time correlation of a wireless

channel. Analytical and simulation results indicate that our proposed MAC scheme can

achieve the best performance, in terms of the average number of delivered packets from

an RS-WLAN to a nomadic node, as compared with the existing IEEE 802.11 MAC,

transmitter-initiated cooperative MAC, and receiver-initiated MAC schemes.
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Chapter 3

Efficient On-Demand Data Service

Delivery to High-Speed Trains

In Chapter 2, the communication bandwidth management problem is addressed given the

packet pre-downloading process is completed before the arrival of a nomadic node. In

this chapter, we propose solutions for both communication bandwidth and buffer storage

management problems for on-demand data service delivery to high-speed trains, taking

into account intermittent network connectivity and multi-service demands. Specifically,

the contribution is three-fold:

• The optimal resource allocation problem is formulated based on the trajectory of

a train, data service demands, and network resources. In order to achieve effi-

cient resource allocation with low computational complexity, the original frame-

based formulation is transformed into a capacity-based formulation, which is a

single-machine preemptive scheduling problem with integer request times, process-

ing times, and deadlines. The transformation is based on a time-capacity mapping

which exploits the predetermined high-speed train schedule.
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• An online resource allocation algorithm is proposed to address the uncertainties in

service demands, and the performance bound is characterized based on the theory

of sequencing and scheduling. Given the link from the backbone network to an

infostation is a bottleneck, we analyze the pre-downloading capacity and propose

a service pre-downloading algorithm to facilitate the resource allocation.

• The performance of our proposed algorithms is evaluated based on a real high-speed

train schedule.

3.1 Literature Review

The cellular network deployed near the rail lines can provide seamless coverage. However,

the data transmission rate is limited for trains moving at extremely high speeds because

of the Doppler effect [59]. With hundreds of passengers onboard and an ever-growing

data-intensive service demand, high information traffic congestion in the cellular network

is inevitable. An alternative or complementary solution is proposed in [28, 59, 60, 61],

where trackside infostations (or repeaters) are deployed in close vicinity to the rail lines

and connected to content servers in the Internet. Powerful antennas are installed on

each train to communicate with the infostations. The antennas are further connected

to a vehicle station which can be accessed by the passenger devices based on WLAN

technologies. Various MAC protocols are studied for the communications between the

infostations and vehicle stations. For instance, the IEEE 802.11p MAC can be used for

video broadcasting in metro passenger information systems [61], while the MAC frame

structure proposed in [59] can support data delivery to a high-speed train with a speed up

to 360 km/h. Further, a cellular/infostation integrated network architecture is proposed

in [18, 62] to better utilize the resources of both network infrastructures. A cellular

network with seamless coverage is considered to support control channels for service
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requests and acknowledgements to minimize their delay and avoid congestion, while data

traffic is delivered via trackside infostations to achieve a high data transmission rate.

The optimal on-demand broadcast scheduling is investigated for satellite and cellular

networks [26, 27]. The proposed algorithms can resolve the resource contention among

multiple services. On the other hand, the data delivery in a vehicular network with

intermittent links is studied based on the mobility patterns of vehicles [18, 29]. Service

pre-downloading approaches are proposed to reduce the data fetching delay when the

link from the backbone network to an infostation is a bottleneck [20, 28]. A service

scheduling problem is discussed in [32] under the assumption that the bandwidth from

the backbone network to an infostation is sufficiently large without addressing the service

pre-downloading.

3.2 System Model

The network topology is shown in Fig. 3.1. Several trackside infostations are deployed

along the rail line, whereas a cellular network provides a seamless coverage over the

region. The base stations of the cellular network and the infostations are connected

to the content servers in the Internet via wireline links1. When a passenger requests

an on-demand data service, the service request is sent from the vehicle station to the

corresponding content server via the cellular network. The data traffic of the requested

service is delivered from the content server to the vehicle station via the infostations.

After the service is delivered, an acknowledgement is made by the vehicle station via the

cellular network. For simplicity, we assume that the probability of traffic congestion in the

cellular and backbone networks is low, so that the service requests and acknowledgements

can be delivered with a negligible delay. Moreover, the data transmission rate from a

1Note that a wireless link is possible for an infostation with two sets of wireless transceivers [60].
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Figure 3.1: System model and time-capacity mapping.

vehicle station to a passenger device is sufficiently large. A data block can be successfully

delivered to a passenger device if it is delivered to the vehicle station.

For the communications between the infostations and the vehicle station, we consider

the MAC frame structure proposed in [59] which is specifically designed for high-speed

trains with a speed up to 360 km/h. Time is partitioned into frames with equal duration

TF . At the beginning of each frame, one of the powerful antennas which are installed on
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the train is selected as the master antenna to broadcast a beacon signal to the infostations

in the vicinity. The infostations which can detect the beacon signal transmit their unique

identification signals as acknowledgments. Each of the antennas on the train uses the

acknowledgements for channel estimation and tunes to the infostation with the highest

link gain. Then all the infostations which have detected the beacon signal start to

broadcast data blocks. This scheme is referred to as the blind information raining. If

a group of infostations are deployed in close vicinity with overlapped coverage area, an

additional zone controller [59] should be deployed to control the group of infostations

and schedule the broadcasting to reduce interference and improve data throughput. In

this research, we mainly focus on a network with isolated infostations and intermittent

link connectivity. However, the analytical model can be directly extended to a network

with some densely deployed infostations, by replacing each infostation in the current

model with a zone controller to take charge of scheduling the group of infostations in

close vicinity.

A central controller is deployed and can communicate with the cellular network, info-

stations, and content servers. The central controller allocates the network radio resources

based on the train trajectory and data service demands. The train trajectory defines the

location of a train at a specific time, while the radio resources depend on the wireless

channel condition from an infostation to a vehicle station. Since each train moves on

a predetermined rail line and the schedule of a high-speed train is highly stable2, the

information of train trajectory and network resources can be obtained by the central

controller in advance with high accuracy. However, the demand of a data service is not

known a priori until the service request is received by the content server and delivered to

the central controller.

2According to a recent report, the accuracy of train departure times of Huhang high-speed railway

(also know as the Shanghai-Hangzhou high-speed railway) is about 99.5% [63, 64].
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3.2.1 Train Trajectory

Consider a single trip of a train from an origin station to a destination terminal within the

time duration [TI , TO]. A total number of H trackside infostations are deployed along the

rail line. For instance, we have H = 3 in Fig. 3.1. Each infostation covers a segment of

the rail line based on its wireless transmission range. Denote T ih and T oh as time instants

for the train to come into and go out of the transmission range of the hth (h ∈ [1, · · · , H])

infostation, respectively. For isolated infostations, we have T oh ≤ T ih+1 for 1 ≤ h ≤ H−1.

Taking into account the duration of a trip, we have TI ≤ T i1 and T oH ≤ TO. In Fig. 3.1,

the transmission period and idle period are the time durations when the train is in and

out of the coverage area of an infostation, respectively.

3.2.2 Data Service Demands

A set S of on-demand data services are supported over the trip. The request of service

s (s ∈ S) is received by the content server at time Gs. If service s is delivered to the

vehicle station before its deadline Ds, a reward ωs can be obtained by the service provider.

We consider Gs ≥ TI and Ds ≤ TO, assuming that all other services can be delivered

to the passengers when they are off-board. Erasure coding based service delivery is

considered [59, 20]. The information data of service s is encoded and segmented into

a large number Q̃s of blocks, each having an equal size of B bits. Service s can be

decoded when at least Qs (Qs < Q̃s) distinct blocks are received. The advantage of using

erasure coding is that no recovery scheme is required for the transmission error or loss of

a specific block. The infostations only need to keep transmitting (or “raining” according

to [59]) the encoded blocks until the service can be decoded at the vehicle station, which

significantly simplifies the protocol design for high-speed train applications subject to a

highly dynamic wireless channel condition.
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3.2.3 Network Resources

The duration that the train is within the coverage of the hth infostation corresponds

to a number of frames, given by Kh = b(T oh − T ih)/TF c. Note that the small difference

between T ih and the beginning time of the first frame is omitted. The kth frame begins

and ends at times T ih + (k − 1)TF and T ih + kTF , respectively. We define the capacity

(Ah,k) of the kth frame as the maximum number of blocks that can be delivered from the

hth infostation to the vehicle station within this frame. The value of Ah,k is determined

by the wireless channel condition according to (3) in [59]. If the wireless channel is in

deep fading such that no block can be delivered to the vehicle station, we have Ah,k = 0.

A round-robin scheduler3 is applied when multiple trains are present in the coverage area

of an infostation. If the kth frame within the hth infostation coverage is not allocated

to the vehicle station under consideration, we have Ah,k = 0. Since the MAC is frame

based, service request time (or deadline) is rounded to the beginning time of a frame.

Full-duplex infostations are considered such that data fetching from the content server

and data delivery to the vehicle station can be achieved simultaneously. Two cases are

considered for the link from the backbone network to an infostation: 1) The bandwidth of

the link (e.g., a high data-rate wireline link [59]) is sufficiently large so that the capacity of

each frame can be fully utilized; 2) The link (e.g., a T1 based wireline link at 1.5Mbps [65]

or an IEEE 802.16j based wireless link [60]) is a bottleneck with limited bandwidth Wh

to the hth infostation. For the second case, data services can be pre-downloaded at the

infostations to achieve high radio resource utilization [18]. We consider an unlimited

buffer space at the infostations.

3A scheduler with prioritization can potentially improve the performance of resource allocation when

multiple trains are simultaneously within the coverage of an infostation. However, as the time for two

high-speed trains to meet is extremely short according to the real train schedule (e.g., the one considered

in Section 3.6), the performance improvement can be very limited.
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3.3 Problem Formulation and Transformation

In this section, we first formulate the optimal resource allocation problem. Then we

introduce a time-capacity mapping to transform the original problem formulation into a

capacity-based problem formulation.

3.3.1 Problem Formulation

The objective in service provisioning is to maximize the total reward of delivered services

over a trip of the train. Define xh,k,s as the number of blocks delivered to the vehicle sta-

tion during the kth frame within the hth infostation coverage for service s. The resource

allocation variable over the trip of the train is given by X = {xh,k,s|h ∈ {1, 2, · · · , H}, k ∈

{1, 2, · · · , Kh}, s ∈ S}. For a specific X, define ψX,s as a delivery indicator of ser-

vice s, which equals 1 if service s is delivered before its deadline and 0 otherwise.

Based on erasure coding, we have ψX,s = 1 if
∑H

h=1

∑Kh
k=1 xh,k,s = Qs, and ψX,s = 0

if
∑H

h=1

∑Kh
k=1 xh,k,s < Qs. Note that we do not consider the case

∑H
h=1

∑Kh
k=1 xh,k,s > Qs

because, for erasure coding based service delivery, the resources are underutilized by de-

livering more than Qs blocks for service s. The optimal resource allocation problem is

formulated as

(P1) max
X

∑
s∈S

ωsψX,s (3.1)

subject to xh,k,s ∈ Z+, h ∈ {1, 2, · · · , H}, s ∈ S, k ∈ {1, 2, · · · , Kh} (3.2)
H∑
h=1

Kh∑
k=1

xh,k,s ≤ Qs, s ∈ S (3.3)

xh,k,s = 0, if Gs ≥ T ih + kTF or Ds ≤ T ih + (k − 1)TF ,

h ∈ {1, 2, · · · , H}, s ∈ S, k ∈ {1, 2, · · · , Kh} (3.4)∑
s∈S

xh,k,s ≤ Ah,k, h ∈ {1, 2, · · · , H}, k ∈ {1, 2, · · · , Kh}. (3.5)
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Constraint (3.2) implies that negative resource allocation is not allowed, where Z+ =

N∪{0} represents the set of nonnegative integers. Constraint (3.4) states that the blocks

of a service can only be delivered after the request time and before the deadline. With

(3.5), the number of blocks that can be delivered to the vehicle station during the kth

frame within the hth infostation coverage is limited by the capacity Ah,k of the frame.

Problem P1 is a mixed integer programming (MIP) problem which cannot be solved

efficiently [66]. The main difficulty of analyzing problem P1 comes from the integer nature

of constraint (3.2). However, based on further investigation, we observe that problem P1

can be potentially considered as a problem of sequencing and scheduling [67] because of

the constant request time, deadline, size (in terms of the number of blocks), and reward of

each service. However, the existing theory of sequencing and scheduling cannot be directly

applied to analyze problem P1 since the services are not schedulable continuously over

time because of the intermittent link connectivity. Moreover, the data transmission rate

(in terms of Ah,k) from infostations to a vehicle station is not a constant. Therefore, the

duration to complete each service is dependent on the time when the service is requested

and scheduled.

In order to better characterize problem P1 and develop efficient algorithms to solve

it, we consider a problem transformation in the rest of this section such that the time

indices are virtually mapped to cumulative capacity values, as shown in Fig. 3.1. Here we

define the cumulative capacity at time t (t ∈ [TI , TO]) as the summation of the capacities

of all frames within [TI , t]. The problem transformation consists of two steps, i.e., time-

capacity mapping and capacity-based problem formulation as presented in the following.

Here problem P1 is referred to as the frame-based problem formulation. The proofs of

lemmas and Theorem 1 are given in Appendix B.
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3.3.2 Time-Capacity Mapping

For a specific trip of the train, the maximum number of blocks that can be delivered to the

vehicle station is limited by
∑H

h=1

∑Kh
k=1Ah,k. Define a time-capacity mapping function

f(t) : [TI , TO] →
[
0, 1, · · · ,

∑H
h=1

∑Kh
k=1Ah,k

]
which maps time t to the corresponding

cumulative capacity. Based on the information of train trajectory and network radio

resources, we have the following lemma.

Lemma 1. The value of f(t) is given by

f(t) =


∑b(t−T iht )/TFc

j=1 Aht,j +
∑ht−1

l=1

∑Kl
j=1Al,j, if ht ≥ 1 and t ≤ T oht∑ht

l=1

∑Kl
j=1Al,j, otherwise

(3.6)

where ht = arg maxh {T ih ≤ t} if t ≥ T i1, and ht = 0 otherwise. Without loss of generality,

we consider the summation
∑b

l=a(·) equals zero if b < a.

Intuitively, more blocks can be potentially delivered to the vehicle station as time t

increases. This property is inherent for f(t) and stated by the following lemma.

Lemma 2. The mapping f(t) is a non-decreasing function with respect to t (t ∈ [TI , TO]).

In problem P1, only constraint (3.4) is directly related to the time indices. Therefore,

we can apply the time-capacity mapping function f(t) on constraint (3.4) to transform

it into a capacity-based constraint. Based on Lemma 1 and Lemma 2, the following

theorem holds.

Theorem 1. For problem P1, (3.4) is equivalent to a capacity-based constraint given by

xh,k,s = 0, if Gc
s ≥

k∑
j=1

Ah,j +
h−1∑
l=1

Kl∑
j=1

Al,j or Dc
s ≤

k−1∑
j=1

Ah,j +
h−1∑
l=1

Kl∑
j=1

Al,j,

s ∈ S, h ∈ {1, 2, · · · , H}, k ∈ {1, 2, · · · , Kh} (3.7)

where Gc
s = f (Gs) and Dc

s = f (Ds).
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In (3.7), Gc
s and Dc

s can be considered as the virtual request time and deadline of service

s, respectively, which are defined based on the cumulative capacity.

3.3.3 Capacity-Based Problem Formulation

By replacing (3.4) in problem P1 with (3.7), we can obtain problem P2. Since all con-

straints of problem P2 are defined based on the number of blocks, we can simplify problem

P2 by introducing a capacity-based formulation.

By definition, we have f(TI) = 0 and f(TO) =
∑H

h=1

∑Kh
k=1Ah,k. Then the set

{TI , TO, Gs, Ds|s ∈ S} of time indices can be represented by a set C of unique cumulative

capacity, given by

C = ∪s∈S {f (Gs) , f (Ds)} ∪ {f (TI) , f (TO)}

= ∪s∈S {Gc
s, D

c
s} ∪

{
0,

H∑
h=1

Kh∑
k=1

Ah,k

}
. (3.8)

Let |C| = N+1 (N ≥ 1) and cn (1 ≤ n ≤ N+1) be the cardinality and elements of set C,

respectively. Without loss of generality, we consider an ascending order of the elements

in C, i.e., c1 < c2 < · · · < cN+1. An example is shown in Fig. 3.1, where two services are

considered with request times G1 and G2, and deadlines D1 and D2, respectively. Then

we have N = 4 and cn (1 ≤ n ≤ 5) given by

c1 = 0, c2 = Gc
1, c3 = Gc

2, c4 = Dc
1 = Dc

2, c5 =
H∑
h=1

Kh∑
k=1

Ah,k (3.9)

where D1 and D2 are mapped to the same cumulative capacity c4 since no block can be

delivered during an idle period. Note that if Gc
2 < Dc

1 6= Dc
2 <

∑H
h=1

∑Kh
k=1Ah,k, we have

N = 5, while each element in C (other than c1 and c6) corresponds to the request time

or deadline of a service.

54



Chapter 3. Efficient On-Demand Data Service Delivery to High-Speed Trains

We partition the trip of the train into N non-overlapped virtual periods accord-

ing to the cumulative capacity values in C. Within the nth virtual period (defined by

[cn + 1, cn+1]), no new service is requested and no existing service expires since all service

request times and deadlines are considered in the calculation of set C. Therefore, for a

feasible resource allocation, changing the sequence of service scheduling within a virtual

period does not affect the service delivery performance. This property is formally stated

by the following lemma.

Lemma 3. Consider a feasible resource allocation variable X with four elements xh1,k1,s1,

xh1,k1,s2, xh2,k2,s1, xh2,k2,s2. Suppose xh1,k1,s1 , xh2,k2,s2 ≥ 1, xh1,k1,s2 , xh2,k2,s1 ≥ 0. All blocks

of the two frames (i.e., the k1th frame within the h1th infostation coverage and the k2th

frame within the h2th infostation coverage) belong to the same virtual period, while the

two frames are not identical. Construct another resource allocation variable X ′ by re-

placing the elements xh1,k1,s1 , xh1,k1,s2 , xh2,k2,s1 , xh2,k2,s2 in X with xh1,k1,s1−1, xh1,k1,s2 +

1, xh2,k2,s1 + 1, xh2,k2,s2 − 1 and keeping all other elements unchanged. Then we have the

same feasibilities and objective function values for X and X ′.

Based on Lemma 3, the optimal resource allocation can be achieved by considering

the total number of blocks delivered for each service within each virtual period. Define

ỹn,s as the number of blocks delivered to the vehicle station for service s within the nth

virtual period. Then the resource allocation variable over the trip of the train is given

by Ỹ = {ỹn,s|n ∈ {1, 2, · · · , N}, s ∈ S}. Define the delivery indicator of service s as ηỸ ,s.

We have ηỸ ,s = 1 if
∑N

n=1 ỹn,s = Qs, and ηỸ ,s = 0 if
∑N

n=1 ỹn,s < Qs. Then problem P2

can be transformed into a capacity-based formulation as follows

(P3) max
Ỹ

∑
s∈S

ωsηỸ ,s (3.10)

subject to ỹn,s ∈ Z+, n ∈ {1, 2, · · · , N}, s ∈ S (3.11)
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N∑
n=1

ỹn,s ≤ Qs, s ∈ S (3.12)

ỹn,s = 0, if Gc
s ≥ cn+1 + 1 or Dc

s ≤ cn, n ∈ {1, 2, · · · , N} (3.13)∑
s∈S

ỹn,s ≤ cn+1 − cn, n ∈ {1, 2, · · · , N} (3.14)

where (3.14) states that the number of blocks which can be delivered to the vehicle station

during the nth virtual period is limited to cn+1 − cn.

3.4 Resource Allocation

Based on the problem transformation, time indices are virtually transformed to the cumu-

lative capacity values, over which the services are continuously schedulable. According to

the theory of sequencing and scheduling, problem P3 defines a single-machine preemptive

scheduling problem with integer request (or release) times (Gc
s), processing times (Qs),

and deadlines (Dc
s) (formal notation: 1|Gc

s, preemption|
∑
ωsηY,s), which can be solved by

a dynamic programming algorithm at complexity O(|S|L2
GL

2
ω), where LG is the number

of distinct request times, and Lω represents the sum of the integer reward [67, 68, 69, 70].

The complexity is known as pseudo-polynomial [70] since the representation of all rewards

ωs (s ∈ S) by integers may result in a large Lω and a high computational complexity

accordingly. Moreover, for on-demand data services, the service demands are not known

a priori. In order to achieve efficient resource allocation for on-demand data service de-

livery to high-speed trains, we devise an online algorithm in this section. As the online

algorithm is devised based on problem P3, its performance bound can be characterized

based on the theoretical results of the single-machine preemptive scheduling problem, to

be discussed in the following.

As the train moves from the origin station to the destination terminal, the online

algorithm allocates the network resources to multiple services frame-by-frame. Consider
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the kth frame within the hth infostation coverage, with xh,k,s blocks delivered for service

s (s ∈ Sgh,k), where Sgh,k = {s|s ∈ S,Gs ≤ T ih + (k − 1)TF} represents the set of requested

services. The resource allocation algorithm is detailed in Algorithm 1, where Qr
h,k,s and

Q̃r
h,k,s are the numbers of remaining blocks of service s before and after the kth frame,

respectively. The algorithm needs to be performed only when Sgh,k 6= ∅. For a newly

requested service s, i.e.,

s ∈


Sgh,k, if h = 1, k = 1

Sgh,k \ S
g
h−1,Kh−1

, if h 6= 1, k = 1

Sgh,k \ S
g
h,k−1, otherwise

(3.15)

we have Qr
h,k,s = Qs; Otherwise, we have

Qr
h,k,s =

Q̃
r
h−1,Kh−1,s

, if k = 1

Q̃r
h,k−1,s, if k > 1.

(3.16)

In (3.15) and (3.16), k = 1 corresponds to the first frame within an infostation coverage.

In (3.16), if k = 1, we have h 6= 1 since the service is considered to be new in one of the

previous frames.

Algorithm 1 iteratively allocates the capacity of a frame (Ah,k) to the on-demand

data services in descending order of their utilities, until the capacity of the frame is fully

utilized. In step 3, SA represents the set of active services which can possibly be delivered

before their deadlines, given by

SA =

{
s|s ∈ Sgh,k, Q̃

r
h,k,s > 0, Dc

s ≥ Q̃r
h,k,s +

k∑
j=1

Ah,j +
h−1∑
l=1

Kl∑
j=1

Al,j −m

}
. (3.17)

In step 7, Us represents the utility of service s. We consider two kinds of utilities, i.e.,

Smith ratio and exponential capacity [69]. For Smith ratio based algorithm, Us = ωs/Qs.

Intuitively, a service with a higher reward or smaller size can obtain a higher utility. For
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Algorithm 1 Resource Allocation Algorithm

Input: k, h, Gc
s, D

c
s, ωs, Qs, Q

r
h,k,s (s ∈ Sgh,k)

Output: xh,k,s, Q̃
r
h,k,s (s ∈ Sgh,k)

1: Initialize xh,k,s = 0, Q̃r
h,k,s = Qr

h,k,s for s ∈ Sgh,k, m = Ah,k;
2: while m 6= 0 do
3: SA calculation;
4: if SA = ∅ then
5: break;
6: end if
7: Us calculation, for s ∈ SA;
8: s∗ = arg maxs∈SA {Us};
9: Update xh,k,s∗ ← xh,k,s∗ + 1, Q̃r

h,k,s∗ ← Q̃r
h,k,s∗ − 1, m← m− 1;

10: end while

the exponential capacity based algorithm, the utility function incorporates the number

of remaining blocks (Q̃r
h,k,s) which corresponds to the current condition of each service,

and is given by

Us = ωs

1−
ln
(

maxs∈Sgh,k Qs

)
maxs∈Sgh,k Qs

Q̃rh,k,s−1

. (3.18)

The complexity of Algorithm 1 is O (maxh,k{Ah,k}|S|).

Define the competitive ratio of Algorithm 1 as the maximal ratio (corresponds to

the worst-case performance of Algorithm 1 with respect to the randomness in service

requests) of the total reward of delivered services based on the optimal solution of prob-

lem P3 to that of the delivered services based on Algorithm 1. The competitive ratio of

the Smith ratio and exponential capacity based algorithm is given by 2 maxs∈S{Qs} and

maxs∈S{Qs}/ ln(maxs∈S{Qs}), respectively [69]. Since we have 1/ ln(maxs∈S{Qs}) < 2

for typical on-demand data services which consist of a large number of blocks, the expo-

nential capacity based algorithm can improve the performance of resource allocation in

worst-case scenarios, at the cost of higher computational complexity in step 7. However,

the computational complexity can be potentially reduced. For instance, a straightforward
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approach is to maintain a queue of all active services and sort the services in descending

order of their utilities. In this way, the head-of-line (HOL) service always represents

the service with the highest utility to be scheduled. For the resource allocation in each

frame, the order is updated only for the newly requested services or the services with

some blocks being delivered. As a result, step 7 and step 8 do not need to be recalculated

for each active service during each iteration with respect to m.

3.5 Service Pre-Downloading

When the link from the backbone network to an infostation is the bottleneck of service

delivery, the capacity Ah,k of a frame is underutilized if less than Ah,k blocks are fetched

from the content server within the frame. In order to address this problem, a service

pre-downloading mechanism can be implemented [18, 20, 28]. In the cellular/infostation

integrated network, after a service request is received by the content server, the data

blocks of the service can be pre-downloaded to the infostations to be visited by the ve-

hicle station, and then delivered to the vehicle station upon its arrival. A simple service

pre-downloading approach is to buffer all data blocks of the available services at each

infostation. However, this approach is not only infeasible (because of the limited band-

width of the bottleneck link) but also inefficient (as some pre-downloaded blocks cannot

be transmitted to the vehicle station during its short visit to each of the infostations).

In the following, we propose a service pre-downloading approach to facilitate the

resource allocation of Algorithm 1. Let Sgŝ = {s|s ∈ S,Gs ≤ Gŝ} denote the set of re-

quested services at time Gŝ. We want to determine the number of blocks (Mh,s) to be

pre-downloaded at the hth (h ∈ [1, · · · , H]) infostation for service s ∈ Sgŝ . Next, we

first analyze the pre-downloading capacity to determine the maximum number of blocks

to be pre-downloaded at each infostation, and then present a service pre-downloading

algorithm to calculate Mh,s.
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3.5.1 Pre-Downloading Capacity and Redundant Factor

Taking account of the limited capacity of each frame, the number of blocks to be pre-

downloaded at the hth infostation (
∑

s∈SMh,s) should be limited by the sum capacity of

all frames within the infostation coverage (
∑

k∈Kh Ah,k). On the other hand, for a given

time t (t < T oh), the duration of service pre-downloading to the hth infostation is given

by T oh − t. Note that the transmission period with duration T oh −T ih is taken into account

since full-duplex infostations are considered. With the bandwidth Wh of the bottleneck

link, the maximum number of blocks that can be fetched from the content server during

T oh − t is b(T oh − t)Wh/Bc. Then the pre-downloading capacity of the hth infostation at

time t is

Qc
h,t = min

{∑
k∈Kh

Ah,k, b(T oh − t)Wh/Bc

}
. (3.19)

As discussed in Section 5.2, service s can be successfully decoded if Qs blocks are

received by the vehicle station before Ds. However, because of the resource contention

among multiple services, the number of pre-downloaded blocks of service s is dependent

on other service demands. Therefore, we introduce a redundant factor β (β ≥ 0) for

service pre-downloading. Specifically, for each service, the number of pre-downloaded

blocks at the infostations to be visited is β times the number of remaining blocks to be

delivered. The larger the β, the more blocks can be pre-downloaded for each service and

the less number of services can be pre-downloaded. Note that β can be larger than one

since some pre-downloaded blocks of a service may not be delivered to the vehicle station

when new services with high priorities arrive.
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3.5.2 Service Pre-Downloading Algorithm

Based on the pre-downloading capacity and redundant factor, a service pre-downloading

algorithm is devised. When the request of a service ŝ is received at time Gŝ, the service

pre-downloading variables (Mh,s) are calculated according to Algorithm 2, where Qr
ŝ,s

represents the number of remaining blocks of service s at time Gŝ. In step 5, only the

set of active services which can possibly be delivered before their deadlines is considered.

The minimum operation in step 9 is performed over two terms corresponding to the pre-

downloading capacity and redundant factor, respectively. For the first term, a summation∑j−1
i=1 Mh,si is subtracted since the corresponding capacity is used to pre-download ser-

vices with higher priorities, while for the second term, a summation
∑h−1

l=hGŝ+1 Ml,sj is

subtracted since this amount of blocks is to be pre-downloaded to the infostations before

infostation h. The utility (Us) of service s is given by the resource allocation Algorithm 1.

The complexity of Algorithm 2 is O (H|S|).

Let Md
h,s denote the number of blocks already pre-downloaded at infostation h for

service s. Because of the arrival of services with higher priorities, we may have Mh,s <

Md
h,s. Therefore, the number of blocks to be pre-downloaded for service s at infostation

h is given by max{0,Mh,s −Md
h,s}. For each infostation, the data blocks of the services

are fetched from the content server in descending order of their utilities. When multiple

trains are traveling on parallel high-speed rails between the origin station and destination

terminal [63], Algorithm 2 is applied by letting Sgŝ represent the set of services requested

by all the trains.

When a train comes into the transmission range of an infostation, the pre-downloaded

blocks are scheduled for transmission according to Algorithm 1. After all pre-downloaded

blocks are delivered, the remaining blocks of available services are directly fetched from

the content servers.
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Algorithm 2 Service Pre-Downloading Algorithm

Input: Gs, Ds, G
c
s, D

c
s, ωs, Qs, Q

r
ŝ,s (s ∈ Sgŝ )

Output: Mh,s (h ∈ {1, · · · , H}, s ∈ Sgŝ )
1: Initialize Mh,s = 0 for h ∈ {1, · · · , H}, s ∈ Sgŝ ;
2: Us calculation, for s ∈ Sgŝ ;
3: Sort services in Sgŝ in descending order of their utilities and obtain the ordered set
{s1, s2, · · · , s|Sgŝ |};

4: for j = 1 to |Sgŝ | do
5: if Qr

ŝ,sj
= 0 or Dc

sj
< Gc

ŝ +Qr
ŝ,sj

then
6: Continue;
7: end if
8: for h = hGŝ + 1 to H do

9: Mh,sj = min
{
Qc
h,Gŝ
−
∑j−1

i=1 Mh,si , βQ
r
ŝ,sj
−
∑h−1

l=hGŝ+1Ml,sj

}
;

10: end for
11: end for

3.6 Numerical Results

In order to evaluate performance of the proposed resource allocation algorithms, we

consider a real train schedule based on the Huhang high-speed railway [71]. The railway

is specially designed for high-speed trains with a maximum speed of 350 km/h. There

are ten stations on the railway and the location of each station (in terms of the distance

from the Shanghai station) is given in Table 3.1.

Since no mobility trace is available, we consider a synthetic train mobility model

proposed in [72]. Each train moves at a constant speed when it travels from one station to

another. When a train leaves (arrives at) a station, it accelerates (decelerates) according

to a constant acceleration (deceleration). For simplicity, we consider the deceleration

equals to the negative value of the acceleration (α). A typical value for the acceleration

α of a high-speed train is given by 0.4 m/s2 [73]. Five sample trajectories of the high-

speed trains are shown in Fig. 3.2, for two trains from Hangzhou (G7403 and G7302)

and three trains from Shanghai (G7401, G7301, and G7362). The starting time of train
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Table 3.1: Locations of stations on the railway.

Station Shanghai Hongqiao Songjiang Jinshan Jiashan

Distance (km) 0 33 64 81 100

Station Jiaxing Tongxiang Haining Yuhang Hangzhou

Distance (km) 117 145 166 177 202
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Figure 3.2: Trajectory of the high-speed trains.

G7403 (06:05 am) based on the February 2011 schedule is chosen to be time 0. Note that

the trains G7301 and G7302 need less time to travel between Hongqiao and Hangzhou

since they do not stop at two intermediate stations, Jiaxing and Yuhang.

For the wireless channel condition, we use a typical setting for a high-speed train [59],

with TF = 53µs, B = 240 bits, and H = 40. The wireless communication between an

infostation and the vehicle station is established based on a carrier frequency of 2.4GHz

and an approximate data rate of 50Mbps. On each train operating on Huhang high-
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speed railway, 13 antennas can be deployed with a separation distance of 15 m between

adjacent antennas. The distance between each infostation and the rail line is 3 m. The

transmission range of each infostation is approximately 500 m. The service requests

arrive at a train according to a Poisson process with average rate λ. The number of

blocks of each service (Qs) is uniformly distributed within [Qmin = 50000, Qmax = 500000]

(corresponding to a service size within [1.5, 15] Mbytes). The lifetime (Ds −Gs) of each

service is exponentially distributed with average value 2 minutes. The reward of each

service (ωs) is uniformly distributed within [1, 10]4.

In addition to the proposed resource allocation algorithms, we consider three existing

algorithms for comparison, i.e., first-in-first-out (FIFO), earliest due date (EDD), and

RAPID [29]. For the FIFO and EDD algorithms, the services are scheduled according to

an ascending order of their request times and deadlines, respectively. RAPID is a typical

single-service resource allocation algorithm for a network with intermittent links. Since

the RAPID algorithm is originally proposed for randomized node mobility, we have mod-

ified the algorithm to incorporate the pre-determined train schedule for fair comparison.

To calculate the utility function, we modify the algorithm by replacing the time indices

with cumulative capacity values based on the time-capacity mapping. Moreover, the

transfer opportunity [29] (which determines the maximum number of blocks that can be

delivered from an infostation to the vehicle station) is changed from a constant defined

by the original work to the sum of the capacity of all frames within each infostation,

which is a variable with respect to different infostations according to the train schedule.

4In reality, the reward of each service may depend on many factors such as the service size, urgency

(delivery deadline), and priority. How to map these factors to the reward for practical high-speed train

applications is still an open issue and left for our future work.
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3.6.1 Performance of Resource Allocation Algorithms

The performance of our proposed resource allocation algorithm is evaluated by extensive

simulations under different system parameters, such as service arrival rate, train schedule,

service size, and service lifetime. The total reward of delivered services versus average

service arrival rate (λ) is shown in Fig. 3.3 for train G7302. The standard deviations are

illustrated for reference. The total reward is low for the FIFO and EDF algorithms since

they do not incorporate the train trajectory and data service demands. Although the

EDF algorithm performs well when most services can be delivered before their deadlines,

its performance degrades as λ increases [74]. For a large λ, the total rewards achieved by

the RAPID algorithm and our proposed algorithm improve since more services can be

potentially scheduled. However, the increment dwindles since the network throughput

becomes saturated. The RAPID algorithm performs better than the FIFO and EDF

algorithms since the mobility information of the train is taken into account. By further

incorporating the demands of multiple services, our proposed resource allocation algo-

rithm achieves the best performance. In comparison with the existing algorithms, the

performance gain achieved by our proposed algorithm improves as the service arrival rate

increases, which is a desirable property for high-speed trains with hundreds of passengers

onboard and an ever-growing service demand. Although the competitive factor of the

exponential capacity based algorithm is higher than that of the Smith ratio based algo-

rithm, the performance of resource allocation is comparable since a worst case scenario

for the algorithm (i.e., there is a large service with high reward which consumes most

of the network resources [69]) happens with a low probability for the high-speed train

applications.

Fig. 3.4 shows the total reward of delivered services versus λ for train G7401. For the

same λ value, train G7401 has a higher total reward than train G7302, because the former

has a longer trip duration, as shown in Fig. 3.2, resulting in more delivered services.
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Figure 3.3: Impact of service arrival rate (G7302).
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Figure 3.4: Impact of service arrival rate (G7401).
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Figure 3.5: Impact of service size.
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Figure 3.6: Impact of service lifetime.
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Fig. 3.5 shows how the total reward of delivered services changes with the average

service size, with Qmin = 50000 and Qmax varying according to the average. We can

see that the total reward decreases as the average downloading file size increases. For a

larger average service size, more resources are needed to deliver each service. As a result,

a less number of services can be delivered under the limited resources.

The total reward of delivered services increases with the average service lifetime (τ),

as shown in Fig. 3.6. For a larger τ , more infostations can be visited by an vehicle s-

tation before a service expires, which increases the probability of delivering the service.

However, the increment dwindles when τ is large since the network throughput becomes

saturated. From Figs. 3.4-3.6, we can see that our proposed resource allocation algo-

rithms outperform the existing algorithms under different system parameters. As similar

performance is observed for Smith ratio and exponential capacity utilities, in the following

performance evaluation, we consider the Smith ratio based algorithm as an example.

3.6.2 Performance of Service Pre-Downloading Algorithm

The effect of the bottleneck link bandwidth (Wh) in service pre-downloading is shown

in Fig. 3.7 for train G7403, where all infostations have the same bandwidth Wh =

W (h ∈ [1, · · · , H]). The total reward is significantly improved by the service pre-

downloading. As the bandwidth increases, the total reward improves slowly without

service pre-downloading since all data blocks need to be fetched directly from the con-

tent servers upon the arrival of a vehicle station, which underutilizes the capacity of the

wireless channel (in frames). On the other hand, with service pre-downloading, a higher

reward can be achieved even for a small Wh since the disconnected period of a vehicle

station is effectively exploited by the infostations to pre-download data blocks.

Fig. 3.8 and Fig. 3.9 show that the redundant factor (β) has a critical impact on
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Figure 3.7: The total reward with and without service pre-downloading (λ = 0.02 ser-

vice/s).

the resource allocation performance. As demonstrated in Fig. 3.8, the number of pre-

downloaded blocks increases as β increases. However, the increment decreases for a large

β because of a saturated throughput of the bottleneck link. Also, the number of pre-

downloaded blocks increases with λ. From Fig. 3.9, we can see that, as β increases, the

total reward first increases and then decreases. When β is small, more services can be

pre-downloaded at each infostation while the number of blocks pre-downloaded for each

service is small. The highest total reward is achieved at β = 0.6 and β = 1.4 for α = 0.05

service/s and α = 0.01 service/s, respectively. This observation indicates that, for a

lower service arrival rate, more blocks should be pre-downloaded for each service, and

vice versa. However, further investigation is needed to determine the optimal value of β

and to strike a balance between the overhead of service pre-downloading and the total

reward of delivered services.
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Figure 3.8: Number of pre-downloaded blocks versus redundant factor (W = 104 bit/s).
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Figure 3.9: Total reward of delivered services versus redundant factor (W = 104 bit/s).
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3.7 Summary

In this chapter, we present an optimal resource allocation problem for on-demand data

delivery to high-speed trains in a cellular/infostation integrated network. The problem

is transformed into a single-machine preemptive scheduling problem with integer request

times, processing times, and deadlines. An online resource allocation algorithm with the

Smith ratio and exponential capacity based utility functions is proposed. The perfor-

mance bound of the online algorithm is characterized based on the theory of sequencing

and scheduling with respect to the single-machine preemptive scheduling problem. Fur-

ther, a service pre-downloading algorithm is presented to achieve efficient resource allo-

cation when the link from the backbone network to an infostation is a bottleneck. It is

demonstrated that the proposed resource allocation algorithm can improve the total re-

ward of delivered services over the existing approaches such as FIFO, EDF, and RAPID,

and that the service pre-downloading algorithm can significantly improve the efficiency of

resource allocation when the bandwidth of the link to the infostation is a limiting factor.

By tuning the redundant factor, different tradeoff can be achieved between the overhead

of service pre-downloading (in terms of the number of pre-downloaded blocks) and total

reward of delivered services.
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Chapter 4

Optimal Energy Delivery via V2G

Systems

As discussed in Chapter 1, although the energy store-carry-and-deliver mechanism in

a V2G system is analogous to the packet store-carry-and-forward routing concept in a

DTN which can exploit node mobility statistics, the unidirectional energy delivery and

simplified battery model in a DTN energy management [75, 76, 77] are not suitable for the

battery storage management in a V2G system. In this chapter, we develop an optimal

energy delivery scheme for PHEV in V2G system by jointly considering bi-directional

energy flow, vehicle mobility pattern, realistic battery model, and TOU electricity price.

4.1 Literature Review

Daily energy cost minimization of vehicle owners under TOU electricity pricing is one

of the main thrusts of the load shaving applications in V2G systems [13]. TOU is one

category of time-based electricity pricing where the price is predetermined (typically on
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a half-yearly basis) and can be utilized by the customers. An example is shown Fig. 1.2

for the Ontario electricity TOU price established since May 2011 [78]. Smart meters

are installed to automatically record energy demand on an hourly basis to implement

the TOU pricing. Currently, the TOU based recharging controller is already adopted

by plug-in hybrid electric vehicles (PHEVs) such as Chevrolet Volt [79]. For developing

V2G systems, the electricity pricing and energy demand information is automatically

transmitted to a vehicle controller via wireline/wireless communications to facilitate the

decision on bi-directional energy delivery [80].

The energy cost minimization problems of V2G systems are addressed in [35, 36].

The proposed schemes are tailored for frequency regulation applications with station-

ary vehicles. Taking account of stochastic energy demand information, the energy cost

minimization problem is investigated for data centers with uninterrupted power supply

(UPS) units [37]. In order to reduce the computational complexity for large-scale data

center applications, a Lyapunov optimization technique is used by assuming i.i.d. de-

mand to provide an average performance guarantee. Similarly, an online algorithm can

be designed based on the i.i.d. demand assumption with worst-case performance guar-

antee [38]. However, for a V2G system where the vehicle mobility in daily commute is

highly non-stationary, the i.i.d. assumption on demand statistics is no longer valid. The

economic issues of using PHEV battery packs for grid storage are discussed in [13] which

targets at household energy saving when the vehicle is parked at home, without taking

account of daily commute.

4.2 System Model

An illustration of the system model is given in Fig. 4.1. The PHEV controller manages

battery recharging/discharging when the PHEV is connected to the power grid, and
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Figure 4.1: An illustration of the system model.

operates the electric motor and combustion engine when the PHEV is commuting. The

battery status and commute energy demand can be directly monitored by the PHEV

controller. Based on the communication functionality of the V2G system, the information

of electricity price, PHEV mobility status, and household energy demand is acquired by

the PHEV controller via wireline/wireless links. We consider a time slotted system. Time

is partitioned into periods with equal duration TP . Within each period, the mobility

status of the PHEV stays unchange and the price of electricity remains constant.

4.2.1 PHEV Mobility and Energy Demand

The PHEV mobility is modeled as a Markov chain [81]. Without loss of generality, we

consider three states of the PHEV mobility, i.e., home (H), work (W), and commute (C).

An extension is straightforward to include more locations by increasing the state space.

Taking account of the non-stationary PHEV mobility, the state transition probabilities
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are time-dependent. Given period n (n = 0, 1, 2, · · · ) and the current state sn, the

probability for the state to be sn+1 in period n+ 1 is Pn(sn+1|sn) (sn, sn+1 ∈ {H,W , C}),

where period 0 corresponds to the first period of a day.

Fig. 4.1 shows the grid connections of the PHEV for the three states. The PHEV

battery can be used by household appliances and the V2G system [13]. When sn =

H orW , energy can be either drawn from or fed back to the grid. However, the household

appliances can use the energy in the battery only when sn = H. Let random variable

ξn denote the household energy demand in period n based on the smart meter readings.

When sn = C, the energy in the battery is used to drive the electric motor. Let random

variable ζn denote the transport demand in period n given sn = C.

4.2.2 Electricity Pricing

TOU electricity pricing is considered for the V2G system [13]. In period n, the cost of

drawing z units of energy from the grid is given by cgn(z) = rnz, where rn is the TOU

price. The net metering arrangement is considered for the pricing of energy feedback to

the grid. Rather than paying cash, the net meter spins backward as the excess energy

is fed into the grid [82]. As a result, the same TOU price can be achieved for buying

and selling energy1, while selling energy can be considered the same as reducing the

energy drawn from the grid by the neighborhood (when sn = H) or workplace appliances

(when sn = W) [13]. We do not consider the spatial difference in electricity price since

most daily commute is over a relatively short distance. For instance, 75% of Americans

commute 65 km or less round-trip [79]. However, an extension is straightforward by

considering the specific locations of home and work.

1Specifically, in September 2009, the Delaware governor has signed a bill for V2G system which

requires electric utilities to compensate for the energy feedback to the grid at the same price as it is

drawn from the grid [80].
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If battery is depleted when sn = C, gasoline is used to drive the combustion engine

and thus the PHEV2. The average cost of using gasoline to satisfy z units of energy

demand in period n is cmn (z) = r′nz. Since the gasoline price fluctuates at a much slower

rate than the electricity price, constant approximation is typically used, i.e., r′n = r′ [79].

4.2.3 Battery Model

Consider a realistic battery model which includes energy and value loss in recharg-

ing/discharging, limited battery capacity, limited recharging/discharging rate, and self-

discharge effect [13, 37, 38, 83]. For each recharge and discharge of the battery, a certain

amount of energy is lost because of the battery conversion loss. Therefore, we use a

virtual capacity of the battery such that all stored energy can be used. Specifically, when

z units of energy is used to recharge the battery, the energy that can be fed back to the

grid or used by the household appliances is ηz (0 < η < 1), where η is the round-trip

efficiency which merges the energy loss in both recharging and discharging [38]. More-

over, the lifetime of a battery is shortened for each recharging/discharging cycle since the

capacity of the battery slowly deteriorates following the depth-of-discharge (DoD). As

the deterioration is almost imperceptible on a daily basis [83], the capacity of the bat-

tery (denoted by xmax) is approximately unchanged for the time frame that we consider.

However, the loss of the battery value is modeled as a cost which is proportional to the

recharged (or discharged) energy with a factor r̃ [13]. As a result, the cost to increase

the energy level of the battery by z (z > 0) in period n (n = 0, 1, 2, · · · ) is given by

crcn (z) = cgn

(
z

η

)
+ r̃z =

(
rn
η

+ r̃

)
z. (4.1)

2For instance, either a series hybrid or a series-parallel hybrid operation mode can be used by Chevro-

let Volt based on the vehicle speed [79].
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In order to prolong the battery lifetime, the energy level of the battery should not drop

below xmin according to certain state-of-charge (SOC) [35]. Since virtual capacity is used

in this work, we consider xmin = 0 for simplicity. We assume r′ ≥
(
rn
η

+ r̃
)

for the

PHEVs. That is, the cost of using combustion engine is higher than using the electric

motor, taking account of all cost in the recharging/discharging process, which is one of

the key features of PHEVs [79].

Within each period, the battery can be either recharged or discharged, but not

both [37]. Because of a limited recharging/discharging rate, the maximum energy that

can be recharged into and discharged from the battery in a period is given by urcmax and

udcmax, respectively. Because of the self-discharge effect, the energy stored in the battery

decreases by a percentage, β (0 < β < 1), for each period. Specifically, suppose the

remaining energy in the battery at the end of a period is x, the maximum amount of

energy that can be used in the next period is βx.

4.3 Problem Formulation

Consider a daily energy cost minimization problem. Each day consists of N + 1 periods,

i.e., n ∈ {0, 1, · · · , N}. The duration of period n ∈ {0, 1, · · · , N − 1} is T . Since

the PHEV mobility is negligible during the midnight off-peak period, we define period

N as an aggregate period to reduce the computational complexity. For instance, if

{0, 1, · · · , N−1} corresponds to the periods between 6:00am and 10:00pm, then period N

aggregates all night periods between 10:00pm and next 6:00am. The analytical method

of stochastic inventory theory [84, 85, 86] is used. For a V2G system considered in

this work, we extend the theory by incorporating the bi-directional energy flow, PHEV

mobility pattern, and realistic battery model.

Denote the energy level of the battery at the beginning of period n (n ∈ {0, 1, · · · , N})
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as xn, where x0 is the initial energy level. The decision variable is given by U =

(u0, u1, · · · , uN−1), where un denotes the energy level of the battery at the end of pe-

riod n. The decision of un is made at the beginning of period n given that the PHEV

is connected to the grid, i.e., sn = H or W . Since recharge and discharge cannot be

performed simultaneously, we have un > xn and un < xn if the battery is recharged and

discharged, respectively, while un = xn if the battery is not used (or idle) in period n.

Taking account of the limited battery capacity and recharging/discharging rate, we have

un ∈
[
max{0, xn − udcmax},min{xmax, xn + urcmax}

]
. (4.2)

Denote the energy cost in period k (k ∈ {0, 1, · · · , N − 1}) as Csk
k (xk, uk) which

depends on the system states (sk and xk) and the decision variable uk. When sk = H,

we have

CHk (xk, uk) = (cgk(ξk) + crck (uk − xk)) Iuk>xk + cgk(ξk)Iuk=xk − c
g
k(xk − uk − ξk)Iuk<xk

= rkξk +Hk(xk, uk) (4.3)

where IA is an indication function which equals 1 if A is true and 0 otherwise, while

Hk(x, u) is defined as

Hk(x, u) =

(
rk
η

+ r̃

)
(u− x)Iu>x + rk(u− x)Iu≤x. (4.4)

Note that for a recharging or idle period with uk ≥ xk, all household demand resorts to

drawing energy from the grid at a cost cgk(ξk) since the battery cannot be discharged at

the same time. For a discharging period with uk < xk, if xk − uk < ξk, the unsatisfied

demand resorts to drawing energy from the grid, while if xk−uk > ξk, the energy unused

by the demand is fed back to the grid with a negative cost representing the revenue.

Since the same price is used for buying and selling energy, the benefit of selling energy

back to the grid is the same as compensating for the household demand. Therefore, the
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cost of household demand (rkξk) can be considered as irrelevant to the decision uk, as

shown in (4.3). When sk =W , we have

CWk (xk, uk) = crck (uk − xk)Iuk>xk − c
g
k(xk − uk)Iuk≤xk = Hk(xk, uk) (4.5)

where the only difference from (4.3) is that the household demand is not considered since

the PHEV is away from the home. When sk = C, we have

CCk (xk, uk) = cmk
(
(ζk − xk)+

)
= r′(ζk − xk)+ (4.6)

where (x)+ equals x if x > 0 and 0 otherwise, while (ζk − xk)
+ represents the energy

deficit in commute which needs to be compensated by using gasoline. In (4.6), there is

no decision on buying or selling of energy since the PHEV is not connected to the grid.

For period N , we consider that the PHEV battery should be fully recharged during

the off-peak hours overnight [13], based on the assumption that all the energy can be

used or sold during the daytime. Otherwise, a battery with a smaller capacity and lower

cost should be equipped by the PHEV. Therefore, the end-of-day cost function (CN(x))

is proportional to the energy to be recharged according to the off-peak price rN , and is

given by CN(x) =
(
rN
η

+ r̃
)

(xmax−x). For simplicity, we neglect the cost to compensate

for the self-discharge effect during period N for the off-peak hours.

The daily energy cost minimization problem is defined as

(P1) min
U∈U

C0,s0,x0(U) (4.7)

where U represents the class of all admissible decisions satisfying (4.2), while Cn,sn,xn(U)

is the expected energy cost during periods {n, n+ 1, · · · , N}, and is given by

Cn,sn,xn(U) = E

[
N−1∑
k=n

Csk
k (xk, uk)

]
+ CN(xN). (4.8)
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In (4.8), the expectation is taken with respect to the random variables ξk and ζk in (4.3)

and (4.6), respectively. Taking account of the self-discharge effect, the energy level of

period k (k ∈ {0, 1, · · · , N − 1}) evolves as

xk+1 =

βuk, if sk = H or W

β(xk − ζk)+, otherwise

(4.9)

where (xk−ζk)+ denotes the remaining energy in the battery after the commute in period

k. It is worth mentioning that problem P1 can be directly extended for weekly, monthly,

and seasonal energy cost minimization based on the time frame that the PHEV mobility

and energy demand statistics are investigated.

4.4 The Optimal Energy Delivery Policy

In this section, we first transform the original problem formulation P1 into a dynamic

programming formulation and show the existence of an optimal Markov policy. In order

to reduce the computational complexity, we further investigate the problem and prove

the optimality of a state-dependent (S, S ′) policy, where S and S ′ are independent of the

current energy amount x in the battery.

4.4.1 Existence of Optimal Markov Policy

Suppose sn = s and xn = x, we define the value function within periods {n, n+1, · · · , N}

as Vn(s, x) = minU∈U Cn,s,x(U). For n ∈ {0, 1, · · · , N − 1}, the dynamic programming

equation of the value function is given by
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Vn(s, x) =


rnξ̄n + minu{Hn(x, u) + E[Vn+1(sn+1, βu)|sn = H]}, if s = H

minu{Hn(x, u) + E[Vn+1(sn+1, βu)|sn =W ]}, if s =W

E[Vn+1(sn+1, β(x− ζn)+)|sn = C] + r′E[(ζn − x)+], otherwise

(4.10)

where the values of u are taken from a set as defined in (4.2), while ξ̄k represents the

expectation of ξk. For n = N , we have

VN(s, x) = CN(x). (4.11)

A policy is a Markov policy if it depends only on the current state (n, sn, xn) and not

on the past states (k, sk, xk) (k ∈ {0, 1, · · · , n − 1}). The following theorem shows the

existence of an optimal Markov policy for problem P1. The proof is omitted here since

it is similar to the inventory control problem [84].

Theorem 2. There exists a function u∗n(s, x) : I×I×R→ R, which provides the minimum

of (4.10) for any x and s = H or W. Moreover, the decision U∗ = (u∗0, u
∗
1, · · · , u∗N−1) is

optimal for the problem P1, where u∗n = u∗n(sn, x
∗
n) and x∗n+1 evolves according to (4.9)

with respect to u∗n and x∗n.

4.4.2 Optimality of State-Dependent (S, S ′) Policy

Based on Theorem 2, the optimal Markov policy exists. However, the computational

complexity for the optimal policy is prohibitive even for a small N since the function

u∗n(s, x) should be optimized for each combination of s and x [87]. Therefore, we further

investigate the properties of the value functions in this subsection, and show that a state-

dependent (S, S ′) policy is optimal. The proofs of lemmas, theorems, and propositions

are given in Appendix B.
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Definition 1. Given S ≤ S ′ and the current energy level x, an (S, S ′) policy is defined as

u∗(x) =



x+ urcmax, if x < S − urcmax

S, if S − urcmax ≤ x < S

x, if S ≤ x ≤ S ′

S ′, if S ′ < x < S ′ + udcmax

x− udcmax, otherwise.

(4.12)

Note that the (S, S ′) policy is essentially a double-threshold policy by incorporating the

limited recharging/discharging rate. That is, when the energy level is below S (above S ′),

the battery is recharged (discharged) as much as possible up to S (down to S ′). When

the energy level is between S and S ′, the battery is kept in an idle state.

The optimality of the state-dependent (S, S ′) policy can be established based on the

convexity of the value function. We first investigate Hn(x, u) and have the following

lemma.

Lemma 4. Function Hn(x, u) is convex with respect to u ∈ [0, xmax] for any x.

Consider a convex function q(u) (u ∈ [0, xmax]) with minimum value q∗ = minu∈[0,xmax]{q(u)}.

Since arg minu∈[0,xmax]{q(u)} is a convex set, we define its boundary points as

S = min{u ∈ [0, xmax]|q(u) = q∗} (4.13)

S ′ = max{u ∈ [0, xmax]|q(u) = q∗}. (4.14)

Then we have the following lemma:

Lemma 5. If q(u) is convex with respect to u ∈ [0, xmax], then the minimum of q(u)

for any x ∈ [0, xmax] and u ∈
[
max{0, x− udcmax},min{xmax, x+ urcmax}

]
is achieved by

choosing u according to the (S, S ′) policy, where S and S ′ are given by (4.13) and (4.14),

respectively.
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Lemma 5 indicates that, with limited recharging/discharging rate, the optimal value

of a convex function is achieved by the (S, S ′) policy. After applying (S, S ′) policy to a

convex function, we have the following lemma:

Lemma 6. For a convex function q(u) (u ∈ [0, xmax]), define Q(x) (x ∈ [0, xmax]) as

Q(x) = q(u∗(x)) =


q(x+ urcmax), if x < S − urcmax

q∗, if S − urcmax ≤ x < S ′ + udcmax

q(x− udcmax), otherwise

(4.15)

where u∗(x) is given by (4.12), while S and S ′ are given by (4.13) and (4.14), respectively.

Then Q(x) is convex.

Lemma 6 indicates that, by applying the (S, S ′) policy to a convex function q(u) for

any x ∈ [0, xmax] and u ∈
[
max{0, x− udcmax},min{xmax, x+ urcmax}

]
, the resulting function

is still convex with respect to x.

Then we investigate the properties of the value functions and have the following

lemma:

Lemma 7. For any ε > 0, and x, x+ ε ∈ [0, xmax], we have Vn(s, x+ ε) ≥ Vn(s, x)− r′ε

for n ∈ {0, 1, · · · , N} and s ∈ {H,W , C}.

Based on Lemmas 4-7, we have the following Theorem, which is the main result for

the optimality of a state-dependant (S, S ′) policy. For presentation clarity, we first denote

the state-dependent S and S ′ as functions of x by Sn(s, x) and S ′n(s, x), respectively. In

the following subsection, we will show that Sn(s, x) and S ′n(s, x) are independent of x.

Theorem 3. Given state s (s = H or W) in period n, a state-dependant (S, S ′) policy is

optimal. In other words, the optimal policy u∗n(s, x) is given by (4.12) with Sn(s, x) and
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S ′n(s, x) given by (4.13) and (4.14), respectively, based on the following convex function

with respect to u:

qn(s, x, u) = Hn(x, u) + E [Vn+1(sn+1, βu)|sn = s] . (4.16)

4.4.3 Characterizing S and S ′

Note that for the (S, S ′) policy defined by Theorem 3, the S and S ′ values depend on the

energy level x, which makes the calculation complicated. In this subsection, we analyze

qn(s, x, u) and show that S and S ′ are constant with respect to x. Based on (4.16),

qn(s, x, u) can be rewritten as

qn(s, x, u) =

[
Hr
n(s, u)−

(
rn
η

+ r̃

)
x

]
Iu>x +

[
Hd
n(s, u)− rnx

]
Iu≤x (4.17)

where

Hr
n(s, u) =

(
rn
η

+ r̃

)
u+ E [Vn+1(sn+1, βu)|sn = s] (4.18)

Hd
n(s, u) = rnu+ E [Vn+1(sn+1, βu)|sn = s] . (4.19)

Obviously, Hr
n(s, u) and Hd

n(s, u) are convex with respect to u. Denote the minimum of

Hr
n(s, u) with respect to u as

Hr∗
n (s) = min

u∈[0,xmax]
{Hr

n(s, u)} . (4.20)

Since arg minu∈[0,xmax]{Hr
n(s, u)} is a convex set, we define the minimum and maximum

values of u to achieve Hr∗
n (s) as

ur1n (s) = min{u ∈ [0, xmax]|Hr
n(s, u) = Hr∗

n (s)} (4.21)

ur2n (s) = max{u ∈ [0, xmax]|Hr
n(s, u) = Hr∗

n (s)}. (4.22)

Similarly, we can define ud1
n (s) and ud2

n (s) for Hd
n(s, u). Then we have the following

proposition:
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Proposition 1. For sets [ur1n (s), ur2n (s)] and [ud1
n (s), ud2

n (s)], we have ur2n (s) ≤ ud1
n (s).

Proposition 1 implies that the overlapping between the two sets [ur1n (s), ur2n (s)] and

[ud1
n (s), ud2

n (s)] is at most one point. Since qn(s, x, u) is convex with respect to u, any

local minimum of qn(s, x, u) is also global minimum [89]. By definition (4.17), Hr
n(s, u)

takes value on u > x while Hd
n(s, u) takes value on u ≤ x. Therefore, the minimum of

qn(s, x, u) can only be achieved at the minimum points ofHr
n(s, u) (within [ur1n (s), ur2n (s)]),

the minimum points of Hd
n(s, u) (within [ud1

n (s), ud2
n (s)]), or the boundary point x. Based

on the value of x, (Sn(s, x), S ′n(s, x)) is given by

(Sn(s, x), S ′n(s, x)) =



(ur1n (s), ur2n (s)), if x < ur1n (s)

(x, ur2n (s)), if ur1n (s) ≤ x < ur2n (s)

(x, x), if ur2n (s) ≤ x ≤ ud1
n (s)

(ud1
n (s), x), if ud1

n (s) < x ≤ ud2
n (s)

(ud1
n (s), ud2

n (s)), otherwise.

(4.23)

By jointly considering (4.12) and (4.23), we have

u∗n(s, x) =



x+ urcmax, if x < ur1n (s)− urcmax

ur1n (s), if ur1n (s)− urcmax ≤ x < ur1n (s)

x, if ur1n (s) ≤ x ≤ ud2
n (s)

ud2
n (s), if ud2

n (s) < x < ud2
n (s) + udcmax

x− udcmax, otherwise.

(4.24)

Therefore, the optimal policy can be simply denoted as an (Sn(s), S ′n(s)) policy, where

Sn(s) = ur1n (s) and S ′n(s) = ud2
n (s). As a result, we need to calculate only two parameters

for the optimal policy with respect to each state and each period (instate of a function

u∗n(s, x) with respect to x), which significantly reduces the computational complexity for

practical applications.
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4.5 Approximation Algorithm

The calculation of the optimal policy requires the daily statistics of the PHEV mo-

bility (Pn(j|s)), average household energy demand (ξ̄n), and probability density func-

tion (PDF) of transport energy demand (fζn(y), y ≥ 0), for n ∈ {0, 1, · · · , N − 1} and

s, j ∈ {H,W , C}. However, since the statistics are not known a priori, we have to use the

historic information to estimate the statistics. The rationale behind the approximation

is that both commute pattern and electricity demand are periodic in nature on a daily

basis. We consider an exponentially weighted moving average (EWMA) algorithm which

is typically used for load estimation in smart grid [88]. The EWMA algorithm utilizes

the historic observations over previous days and captures the long-term statistic change

(e.g., from summer to winter) by a weighted average. To apply the EWMA algorithm,

we quantize ζn into discrete values and estimate the probability mass function (PMF).

Denote P̂n(j|s), ˆ̄ξn, and f̂ζn(y) as the estimates of Pn(j|s), ξ̄n, and fζn(y), respectively.

Then we devise a modified backward iteration algorithm to calculate the parameters of

the optimal policy [84]. Based on the analysis in Section 4.4, we summarize the steps of

the backward iteration in Algorithm 3. Note that step 5 involves two convex optimization

problems which are readily solved by sophisticated algorithms [89].

4.6 Numerical Results

The performance of our proposed scheme is evaluated by simulations. The simulation is

based on the ONE simulator [90] version 1.4.1 with an additional implementation of the

V2G components. The simulator uses sample parameters and data from a real scenario.

Hourly household energy demand data during the month of June, 2011, obtained from

volunteers of two different households (John and Terry) subscribed to the Waterloo North
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Algorithm 3 Modified Backward Iteration Algorithm

Input: rn (n ∈ {0, 1, · · · , N}), r̃, r′, η, β, urcmax, udcmax, xmax, P̂n(j|s), ˆ̄ξn, and f̂ζn(y)
(n ∈ {0, 1, · · · , N − 1}, s, j ∈ {H,W , C}, and y ≥ 0);

Output: Sn(s) and S ′n(s) (n ∈ {0, 1, · · · , N − 1}, s ∈ {H,W});
1: Initialize: VN(s, x) based on (4.11);
2: for n = N − 1 to 0 do
3: for s = H or W or C do
4: if s = H or W then
5: Calculate: Hr∗

n (s) and Hd∗
n (s) according to (4.20);

6: Calculate: ur1n (s), ur2n (s), ud1
n (s), and ud2

n (s) according to (4.21) and (4.22);
7: end if
8: Update: Vn(s, x) according to (4.10);
9: end for

10: end for
11: return Sn(s) = ur1n (s) and S ′n(s) = ud2

n (s) (n ∈ {0, 1, · · · , N − 1}, s ∈ {H,W})

Hydro, is used [34]. Fig. 1.1 shows the hourly electricity usage of John’s household during

June 20 (Monday) and June 24 (Friday). The TOU pricing of Waterloo North Hydro

is in accordance with the Ontario electricity TOU price under the summer schedule, as

shown in Fig. 1.2. Traces of vehicle mobility patterns of these individuals are generated

using the ONE simulator based on the survey information which includes the locations of

their homes, work places, points of interests, and commute patterns. For example, John

usually leaves from home to work between 9:55am and 10:05am, works until 5:00pm.

About 3 times a week, he goes to a grocery or a mall after work, and spends 30 to 60

minutes. Finally, he returns home and stays at home until the next morning. The trace

is generated considering a map based mobility model where the vehicle follows main

roads of the Waterloo Region as shown in Fig. 4.2. The energy cost during weekdays is

considered since the TOU price is constant during weekends.

The default battery parameters are given in Table 4.1, which is based on a lithium-ion

battery [91]. The round-trip efficiency of lithium-ion battery is typically between 80%

and 90% [92]. A medium value 85% is used as the default parameter of our simulations.
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Figure 4.2: The topology of the main roads in Waterlo Region and the locations of homes,

work places, and points of interests of John and Terry.

Table 4.1: Default battery parameters.

Parameter Value

Round-trip efficiency (η) 85%
Self-discharging percentage (β) 99.993%
Battery value loss in recharging (r̃) 1.1 c / kWh
Equivalent gasoline cost (r′) 67 c / kWh
Battery capacity (xmax) 8 kWh

High efficiency (97%) of lithium-ion battery is also reported in literature [93]. We only

use the value for comparison purpose since experimental data for PHEV applications

is not available. The equivalent gasoline cost is based on the average gasoline price in

Waterloo Region in June 2011 (130.0 c/L) and the eletricity/gasoline efficiency reported

by Chevrolet Volt (0.125 kWh/km in all-electric mode and 6.4 L/100 km in gasoline-only

mode) [79]. The battery value loss in recharging is calculated based on the statistics of
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Chevrolet Volt with a 8000-dollar battery pack (rated at 16 kWh and about 10 kWh

available for use) and a 10% capacity loss after 10 years of use with two full recharg-

ing/discharging cycles for daily commute. The recharging/discharging rate of individual

PHEV is in accordance with level 2 (3.3 kW) infrastructures [94]. For performance opti-

mization, we consider 16 hours of a day from 6:00am to 10:00pm with a period duration

TP = 10 minutes. The transport energy demand ζi,n is quantized by a 0.5 kWh interval.

4.6.1 Recharging/Discharging Pattern

In order to demonstrate how a PHEV battery is managed according to the optimal policy,

we consider a specific day of Terry and John, and assume that the PHEV mobility and

energy demand information is known a priori. Suppose John leaves home and work at

10:00am and 5:00pm, respectively, with a single-trip commute time 20 minutes and ener-

gy consumption 2 kWh. Terry leaves home and work at 8:00am and 5:00pm, respectively,

with a single-trip commute time 10 minutes and energy consumption 1 kWh. For com-

parison purpose, we assume that the PHEV of Terry has a lower recharging/discharging

rate (1.2 kW in accordance with level 1 infrastructures [94]) and a higher round-trip

energy efficiency (97%).

The results are presented in Fig. 4.3 and Fig. 4.4 for John and Terry, respectively,

where the lower bound of discharging region and the upper bound of idle region corre-

spond to S ′, while the lower bound of idle region and the upper bound of recharging

region correspond to S. The midnight off-peak periods (which only include a recharging

region) are not shown. We can see that, the round-trip energy efficiency has a critical

impact on the optimal policy. For Terry, since the round-trip energy efficiency is high

(97% as compared with 85% of John’s PHEV), energy is bought as much as possible dur-

ing the mid-peak periods, and sold during the on-peak periods. On the contrary, John

buys energy during the mid-peak periods only for commute use since no benefit can be
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Figure 4.3: The values of S and S ′ at different times of a day (John).
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Figure 4.4: The values of S and S ′ at different times of a day (Terry).
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gained by selling the “mid-peak energy” during the on-peak periods, taking account of

the energy loss in recharging and discharging. For instance, Terry buys energy at 9:30am

(which is a mid-peak hour) as much as possible by setting a large S, while John buys

energy at the same time only for commute use with a small S. Moreover, due to the

self-discharge effect, energy for selling or commute is bought as late as possible with the

maximum recharging rate.

4.6.2 Performance Comparison

We evaluate the performance of the proposed scheme in comparison with three other

schemes: i) W/O V2G – Without a V2G system, the energy drawn from the grid can

only be used for daily commute, and the battery is fully recharged during the off-peak

periods [80]; ii) SD – The energy store-and-deliver scheme utilizes commute statistics [13].

The PHEV battery is fully recharged during off-peak periods and a certain amount of

energy is reserved for average daily commute demand. The remaining energy is used to

compensate for the household demand during the on-peak and mid-peak periods when

the PHEV is at home. The benefit of the SD scheme is the same as feeding energy back

to the grid, but the amount of energy is bounded by the household demand; iii) OPT

– As our proposed scheme uses estimated statistics, we also show the performance of a

scheme with a priori knowledge of the PHEV mobility and energy demand information,

which provides the best performance but cannot be realized in practical applications.

A comparison among different schemes is shown in Fig. 4.5 for daily energy cost over

20 days. Note that the first day is removed since no historic information is available.

The trace of John is used as an example. With a constant cost of household demand

every day, we only consider the cost of recharging PHEV battery and using combustion

engine, and the benefit of feeding energy back to the grid (or equivalently, compensating

for household demand). We can see that, the cost without V2G is the highest since the
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energy in the PHEV battery cannot be used by the household demand or fed back to the

grid. By compensating for the household demand during on-peak and mid-peak periods,

the SD scheme can reduce the energy cost. But the reduction is inferior to that with

our proposed scheme, since most on-peak periods are not considered for energy feedback

when the PHEV is at work place. Our proposed scheme using estimated statistics achieves

slightly higher cost than the scheme with a priori knowledge.

The average energy cost per day versus battery capacity is shown in Fig. 4.6. We can

see that, the cost without a V2G scheme increases as the battery capacity increases since

the self-discharge effect gradually decreases the level of the unused energy in battery.

The cost achieved by the SD scheme decreases as the battery capacity increases since

more battery energy can be used by household appliances. However, the decrement is

saturated from 20 kWh because of the limited household demand. By further enlarging

the battery capacity, the cost again increases because of the self-discharge effect, similar

to that without a V2G system. For all battery capacities, the cost achieved by our

proposed scheme is close to that of the scheme with a priori knowledge. As compared

with the SD scheme, the cost reduction of our proposed scheme is more evident for a

larger battery capacity.

94



Chapter 4. Optimal Energy Delivery via V2G Systems

4.7 Summary

In this chapter, the energy cost minimization problem under TOU electricity pricing is

investigated for a PHEV with a realistic battery model. A state-dependent (S, S ′) policy

is proved to be optimal. For practical applications, we proposed a modified backward

iteration algorithm with an EWMA estimation of the statistics of PHEV mobility and

energy demand. The performance of our proposed scheme is evaluated based on realistic

commute and energy demand data and is compared with the existing schemes.

95



Chapter 5

Decentralized Economic Dispatch in

Microgrids

In this chapter, we address the electric power and communication bandwidth management

issues for decentralized economic dispatch in microgrids. We propose a heterogeneous

wireless network architecture for microgrids. Each node is equipped with a short-range

(e.g., WiFi or ZigBee) wireless communication device for information exchange in an

ad hoc mode. Several nodes are further equipped with cellular communication devices

and are referred to as dual-mode nodes for connectivity improvement. By activating the

cellular communication devices, information exchange beyond the one-hop neighbors in

the ad hoc network can be enabled such that the performance of decentralized economic

dispatch can be improved. However, the monetary cost of using cellular communica-

tion devices is comparable to the incremental generation cost incurred by the error in

multiagent coordination. For economic dispatch in microgrids which addresses the cost

minimization issues, a tradeoff between the communication and power generation costs

is obtained.
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5.1 Literature Review

Both centralized and decentralized approaches can be used to achieve economic dispatch.

Most existing centralized approaches assume that the estimates or statistics of power

generation and loads acquired by a central controller are accurate [39, 40, 41]. Although

the centralized economic dispatch has the advantage of high efficiency, it suffers from

the problem of a single point of failure and high deployment cost in terms of a powerful

central controller and a communication infrastructure (such as a fiber-optic network [15]

to connect each DG unit or load to the central controller). On the other hand, the decen-

tralized economic dispatch can avoid a single point of failure and fits the plug-and-play

nature of DG units and loads in microgrids [95]. Since information exchange only needs

to be established among neighboring nodes (corresponding to the DG units or loads),

low-cost short-range wireless communication devices such as WiFi and ZigBee devices

can be implemented to establish the network infrastructure [12]. In order to achieve

the same efficiency in cost minimization as the centralized counterpart, the DG units

should acquire the accurate power generation and load information in a decentralized

manner [42].

Multiagent coordination is a promising solution for decentralized information acquisi-

tion and load restoration [96] in microgrids since the accuracy of information discovery is

guaranteed based on the average consensus theory. Several MAC schemes are proposed

to facilitate multiagent coordination in microgrids via wireless networks [97]. However,

as the convergence speed decreases significantly as the network size increases, how to

implement multiagent coordination to achieve economic dispatch in a small time scale is

still an open issue. Although better network connectivity can improve the convergence

speed of multiagent coordination according to the small-world phenomenon [98], simply

increasing the transmission power of wireless devices is not helpful since the connectivity

benefit is reduced by increased wireless transmission interference [99].

97



System Model

5.2 System Model

As shown in Fig. 5.1, we consider a microgrid built for a small residential community.

Electric power is delivered from the DG units (e.g., the wind turbines and PV panels)

to the loads (e.g., the residential houses) via the power grid infrastructure. The power

generation and loads are balanced via economic dispatch every TD (hour), where TD < 1

for typical renewable energy source integration [16]. The information exchange for the

economic dispatch is based on a heterogeneous wireless network infrastructure1 and is

completed at the beginning of each economic dispatch period with a short duration T

(T < TD) [17], as shown in Fig. 5.2(a). In the following, we consider one economic

dispatch period as an example. Each DG unit or load is represented by a node in the

microgrid. The set of all nodes in the microgrid is denoted as V and is indexed by

1, 2, · · · , |V|.

5.2.1 Microgrid and Electricity Pricing

The microgrid is connected to the main grid (i.e., the utility grid) via a point of common

coupling (PCC) [15]. The microgrid can operate either in a grid-connected mode or an

islanded mode, by closing or opening the circuit breaker (CB) between the PCC and

microgrid bus, respectively. Without loss of generality, we consider an islanded mode

in this research with an opened CB. An example of the microgrid is shown in Fig. 5.1.

There are three feeders in the microgrid. On feeder 1, there are two DG units (DG1 and

DG2). On feeder 2, there are two loads (L1 and L2) and two DG units (DG3 and DG4).

On feeder 3, there are two loads (L3 and L4) and three DG units (DG5, DG6, and DG7).

Suppose there are G types of DG units in the microgrid. For each node v (v ∈ V),

1The power supply of the network infrastructure is considered to be independent of the microgrid

since the supervisory control should be uninterruptible even when fault occurs in the power grid [96].
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Figure 5.1: An illustration of the microgrid configuration with a heterogeneous wireless

network infrastructure.

its type g (g ∈ {1, 2, · · · , G}) power generation (in kW) is given by xgv. Specifically,

we have xgv > 0 if node v is a DG unit and belongs to type g, and xgv = 0 otherwise.

Take wind turbine as an example, the value of xgv is equal to the maximum output of

the wind turbine given the wind speed during the economic dispatch period2. Similarly,

let yv denote the power demand (in kW) of each node with yv > 0 if node v represents

2For simplicity, we consider all the DG units to be dispatchable based on an accurate generation

forecast and/or certain energy storage devices. An extension is straightforward by considering the non-

dispatchable DG units as negative loads.
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Figure 5.2: Economic dispatch and multiagent coordination: (a) Period definition. (b)

Single-stage multiagent coordination. (c) Hierarchical multiagent coordination.

a load and yv = 0 otherwise. Note that we use the generalized definitions of xgv and yv

for all nodes in V for notation clarity. Denote x = {xgv|g ∈ {1, 2, · · · , G}, v ∈ V} and

y = {yv|v ∈ V} as the sets of power generation and loads, respectively. The values of

x and y are assumed to be constant within each economic dispatch period3 and vary

randomly among different periods.

In this work, we consider a linear generation cost/pricing model, similar to the one

used by the feed-in tariff (FIT) program of Ontario Power Authority [100]. The cost of

unit power generation of type g DG unit is denoted as cg (in dollar/kWh). Without loss of

generality, we consider ordered costs, i.e., 0 < c1 ≤ c2 ≤ · · · ≤ cG. For instance, the solar

energy is more expensive than wind or hydro energy according to the FIT program. The

economic dispatch in a microgrid aims at balancing the power generation and loads at a

minimum cost. In this research, we neglect the line flow limit and power losses. Potential

3According to experimental results, there is typically a 3%-5% relative error for wind farm power

estimation in a 10-minute interval [101].
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extensions will be discussed in Chapter 6. However, because of the uncertainty in DG

output and/or the error in information discovery, the power generation and loads may

not be balanced perfectly. Specifically, if the power generation of DG units is not enough

to supply the loads, the undelivered power should be purchased from alternative sources

such as traditional thermal energy power generators at a cost of cA (in dollar/kWh). On

the other hand, the extra power in the microgrid is compensated by negative spinning

reserves4 at a cost of cE (in dollar/kWh). The energy waste can be reduced based on

distributed energy storage systems [15] and V2G systems [43], which is left for our future

research. Generally, we have cA > cG and cE ≥ 0. The set of all possible costs in

economic dispatch is denoted as c = {cg|g ∈ {1, 2, · · · , G}} ∪ {cA, cE} and is assumed to

be constant for the time frame under consideration.

5.2.2 Heterogeneous Wireless Networks

Each node in V is equipped with a short-range wireless communication device, such as

the access point (AP) of a WiFi or ZigBee based device. An extension to power line

communications (PLC) is straightforward since the PLC channel is interference limited

and the transmission range of PLC devices is limited in general [96][102]. Multi-channel

wireless communication is supported. For instance, we have 23 wireless channels for IEEE

802.11a based WiFi devises and 16 wireless channels for IEEE 802.15.4 based ZigBee de-

vices. Because of a limited wireless transmission range, each node can only communicate

with (or cause interference to) its one-hop neighbors operating on the same channel. For

instance, in Fig. 5.1, the node corresponding to DG5 can communicate with the nodes

corresponding to L1, L4, DG4, and DG7, given that they operate on the same channel.

Concurrent transmissions over the non-overlapping channels are considered interference

4If the service is purchased before real-time operation, an estimation of the maximum extra power

is required.
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free. We denote the network based on the short-range wireless communication devices

as an ad hoc network and the set of neighbors of node v (v ∈ V) as Nv (Nv ⊆ V \ {v}).

The wireless devices have a constant transmission rate and a transmission range equal to

the interference range. Specifically, a transmission of node v can interfere with another

transmission to node n only if n ∈ Nv, which results in an unsuccessful reception at node

n. For the ad hoc network, there exists a (multi-hop) communication path between any

pair of two nodes. In other words, the ad hoc network is strongly connected.

A subset B (B ⊆ V) of nodes are further equipped with cellular communication

devices, such as the user equipments (UEs) in a universal mobile telecommunications

system (UMTS) [103]. Since the base stations (BSs) of the cellular network are connected

by the base station controllers (BSCs) and are further connected to a backbone network,

the B nodes can communicate with each other even if they are not one-hop neighbors in

the ad hoc network. For instance, in Fig. 5.1, DG1, DG7, L1, and L3 can communicate

with each other. For simplicity, we neglect the delay of information exchange via a

cellular network which can support services with stringent delay requirements [104]. The

cost of sending a message from one node to another via the cellular network is cM , which

depends on the size of the data message.

5.3 Decentralized Economic Dispatch based on Mul-

tiagent Coordination

In this section, we first analyze the economic dispatch problem and show that solving the

economic dispatch problem is equivalent to achieving average consensus in the microgrid.

Then, we propose a decentralized economic dispatch approach where each node makes a

local decision on power generation based on the average values of the cumulative gener-
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ation of each type of DG units and the aggregated loads. The information required for

decision making is discovered by each node via multiagent coordination with guaranteed

convergence.

5.3.1 Economic Dispatch

The economic dispatch in a microgrid schedules the power generation (or output) of

DG units optimally such that the electric loads are served at a minimum cost. Denote

the actual power generation of a type g DG unit v as ugv, where 0 ≤ ugv ≤ xgv since

the generation of a DG unit can be curtailed based on economic dispatch. The total

generation cost (in dollar/h) equals the cost of purchasing power from the DG units and

alternative energy sources plus the cost of purchasing negative spinning reserves, given by

CP (x,y, c,u) =
∑

g∈{1,2,··· ,G}

∑
v∈V

cgugv + cAzA + cEzE (5.1)

where zA and zE denote the undelivered power which should be purchased from the alter-

native sources and the extra power, respectively. Denote u = {ugv|g ∈ {1, 2, · · · , G}, v ∈

V} as a specific policy of economic dispatch. Based on the power balance (or demand-

supply balance) equation [39], we have zA =
(∑

v∈V yv −
∑

g∈{1,2,··· ,G}
∑

v∈V ugv

)+

and

zE =
(∑

g∈{1,2,··· ,G}
∑

v∈V ugv −
∑

v∈V yv

)+

. Then, the optimal economic dispatch policy

u∗ is determined by problem P1 as

(P1) min
u

CP (x,y, c,u) (5.2)

subject to 0 ≤ ugv ≤ xgv, g ∈ {1, 2, · · · , G}, v ∈ V . (5.3)

Accordingly, we denote the minimum generation cost based on u∗ as C∗P (x,y, c) =

CP (x,y, c,u∗). It is worth mentioning that zA and zE are included in the generation

cost definition (5.1) to facilitate the analysis of the impact of information discovery error

in the following sections.
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5.3.2 Optimal Economic Dispatch and Average Consensus

In general, problem P1 is a linear programming (LP) problem which can be solved by

existing methods. However, in order to solve problem P1 in a decentralized manner, the

values of all elements in x and y should be obtained by each node, which results in a high

communication overhead. In this subsection, we derive a closed-form expression of the

optimal economic dispatch policy based on the ordered generation costs. The information

required by each node for decentralized decision making is reduced to the average values

of the cumulative generation of each type of DG units and the aggregated loads.

We first have the following two lemmas with respect to the extra and undelivered pow-

er in a microgrid. The proofs of both lemmas are straightforward based on contradiction

and are omitted here.

Lemma 8. For an optimal economic dispatch policy u∗ = {u∗gv|g ∈ {1, 2, · · · , G}, v ∈ V}

based on problem P1, there is no extra power in the microgrid, i.e., z∗E = 0.

Lemma 9. If
∑

g∈{1,2,··· ,G}
∑

v∈V xgv >
∑

v∈V yv, there is no undelivered power, i.e.,

z∗A = 0. Taking account of Lemma 8, we have
∑

g∈{1,2,··· ,G}
∑

v∈V u
∗
gv =

∑
v∈V yv, i.e., the

optimal aggregated power generation of the G types of DG units and the aggregated loads

are balanced in a microgrid.

Denote the cumulative generation of the DG units and the aggregated loads as X =

{Xg|g ∈ {1, 2, · · · , G}} and Y =
∑

v∈V yv, respectively, where Xg =
∑

v∈V xgv represents

the cumulative generation of type g DG units. Define an economic dispatch policy as

follows:

ugv(X̄, Ȳ , c) =


xgv, if Ȳ ≥

∑
k∈{1,2,··· ,g} X̄k

0, if Ȳ ≤
∑

k∈{1,2,··· ,g−1} X̄k

xgv
X̄g

[
Ȳ −

∑
k∈{1,2,··· ,g−1} X̄k

]
, elsewhere

(5.4)
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where X̄ = {X̄g|g ∈ {1, 2, · · · , G}}, X̄g = Xg/|V| and Ȳ = Y/|V| are the average values

of cumulative generation and aggregated loads, respectively. For the third case in (5.4),

the power generation of the DG units is proportional to their generation, also known

as the proportional fairness. Then, we have the following theorem which is proved in

Appendix B.

Theorem 4. Given the average values of the cumulative generation X̄ and aggregated

loads Ȳ , the decentralized economic dispatch policy in (5.4) is optimal for problem P1.

Based on Theorem 4, the problem of decentralized economic dispatch is transformed

into the discovery (by each node) of the the average values of the cumulative generation

(X̄g) of each type of DG units and aggregated loads (Ȳ ). Intuitively, the results follow

the power balance equation which is based on the summation of power generation and/or

loads. In this work, we consider a multiagent coordination scheme since the convergence

of information discovery can be guaranteed based on the average consensus theory.

5.3.3 Multiagent Coordination via Ad Hoc Network

In this subsection, we investigate the multiagent coordination via the ad hoc network

and show the convergence of the information discovery process. Take the discovery of the

average cumulative generation of type g DG units (X̄g) as an example. The information

update takes place in a discrete-time manner, where each round of update is referred to

as an iteration. Suppose the iterations are completed at time steps tk (k ∈ {0, 1, 2, · · · })

with t0 = 0 < t1 < t2 < · · · ≤ T . Denote the state value kept by node v (v ∈ V) at time

tk as X̄g(v, tk). For the initial value, we have X̄g(v, t0) = xgv. For the kth iteration, node

v (v ∈ V) acquires the state values X̄g(n, tk−1) (n ∈ Nv) kept by its neighboring nodes

via ad hoc communication links. Then, the state value kept by node v is updated based
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on a weighted average of the acquired values, given by

X̄g(v, tk) =
∑
n∈V

ωaV(v, n)X̄g(n, tk−1) (5.5)

where ωaV(v, n) ≥ 0 is the weight used by node v with respect to node n. Here, we study

a symmetric version of the natural random walk [99] which is analytically tractable. The

weight values are given by

ωaV(v, n) =


1

2 max{|Nv |,|Nn|} , if n ∈ Nv

1−
∑

j∈Nv
1

2 max{|Nv |,|Nj |} , if n = v

0, elsewhere.

(5.6)

Based on (5.6), we have ωaV(v, n) > 0 if n ∈ Nv ∪ {v} and ωaV(v, n) = 0 otherwise. The

update in (5.5) is fully decentralized such that each node only needs the information from

its direct neighbors. Denote the weight matrix of each iteration as W a
V = [ωaV(v, n)]|V|×|V|,

we have

X̄g,V(tk) = W a
VX̄g,V(tk−1) (5.7)

where X̄g,V(tk) = (X̄g(1, tk), · · · , X̄g(|V|, tk))>. The wireless links for each iteration may

be scheduled sequentially to avoid interference since we may have Nv ∩Nj 6= ∅ for some

v, j ∈ V .

Define a directed graph associated with W a
V such that the vertex set is V and there is

an edge from vertex i to vertex j (i, j ∈ V) if and only if ωaV(i, j) > 0. Since W a
V is doubly

stochastic and the directed graph associated with W a
V is strongly connected (based on

the assumption that the ad hoc network is strongly connected), the state value of each

node converges to a constant [105][106], given by

lim
t→∞

X̄g(v, t) = X̄g, v ∈ V . (5.8)

106



Chapter 5. Decentralized Economic Dispatch in Microgrids

In other words, all nodes in the network can eventually obtain the same state value

on the average cumulative generation of type g DG units. Similarly, we can show the

convergence of the state values with respect to the average aggregated loads Ȳ which is

updated as

ȲV(tk) = W a
V ȲV(tk−1) (5.9)

where ȲV(tk) = (Ȳ (1, tk), · · · , Ȳ (|V|, tk))>.

The convergence of the multiagent coordination ensures that an accurate decentralized

decision can be made by each node if T is sufficiently large. However, for the economic

dispatch in a small time scale, the convergence should be reached in a short time. The

error of multiagent coordination at time T is bounded by

||Φg,V(T )||2 ≤ |λ2(W a
V )|b

T
TI (V)

c||Φg,V(0)||2 (5.10)

where λk(·) represents the kth largest eigenvalue (in module), and Φg,V(t) is the disagree-

ment vector [106], given by

Φg,V(t) =
(
X̄g(1, t)− X̄g, X̄g(2, t)− X̄g, · · · , X̄g(|V|, t)− X̄g

)>
. (5.11)

In (5.10), TI(V) is the duration of each iteration via the ad hoc network with respect to

nodes in V , which depends on the wireless link scheduling.

As the network size increases, the convergence speed of multiagent coordination in

the ad hoc network decreases significantly [96] [99]. We propose to utilize the cellular

communication links to improve network connectivity and thus the convergence speed

according to the small-world phenomenon [98]. Denote M (M ⊆ B) as the set of dual-

mode nodes for which the cellular communication devices are activated, where M = |M|

(M ≥ 2) represents the number of activated cellular communication devices. In the next

two sections, we present two multiagent coordination schemes to utilize both the ad hoc

and cellular communication links.
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5.4 Single-Stage Multiagent Coordination

The single-stage multiagent coordination utilizes the cellular network to deliver infor-

mation among the nodes in M after each iteration in the ad hoc network, as shown in

Fig. 5.2(b). The single-stage multiagent coordination is fully decentralized such that the

network topology information is not required. Given the value of M , the nodes in M

are randomly selected. All nodes in V operate on the same frequency channel to ensure

successful information exchanges via the ad hoc network.

5.4.1 Update-and-Continue based Random Access

For the information exchange via the ad hoc network, the wireless link access is random

without requiring network topology information. Since multiagent coordination operates

in a synchronous manner according to (5.5), after each update, node v should wait until

the next iteration begins (i.e., all other nodes finish their current update) to guarantee

the convergence. However, the time of each iteration (i.e., TI(V) in (5.10)) becomes a

random variable because of the random access scheme. In order to avoid that each node

waits for the worst-case iteration time (refereed to as the update-and-wait based random

access scheme [96]), we consider an update-and-continue based random access scheme [97]

such that each node starts to transmit the updated state values to its neighbors following

the completion of its own update. The neighboring nodes store the received state values

and use them for the next iteration following the completion of the current update. In

order to implement the update-and-continue based random access, an index number is

assigned to each iteration.

108



Chapter 5. Decentralized Economic Dispatch in Microgrids

5.4.2 Iteration via Cellular Network

Since all cellular BSs are connected to a backbone network, we consider all nodes in M

as direct neighbors of each other during the iteration via cellular network. An iteration

via the cellular network includes the information exchange among each pair of nodes in

M. A uniform weight matrix [107] without the need of network topology information is

used for the update of the state values, given by W c
M = [ωcM(v, n)]|V|×|V|, where ωcM(v, n)

is given by

ωcM(v, n) =


1/M, if v, n ∈M

1, if v, n ∈ V \M and v = n

0, elsewhere

(5.12)

where the second case corresponds to the ad hoc nodes or the dual-mode nodes with

inactivated cellular communication devices. For an iteration via both the ad hoc and

cellular networks, the weight matrix is given by W c
MW

a
V , i.e.,

X̄g,V(tk) = W c
MW

a
VX̄g,V(tk−1) (5.13)

ȲV(tk) = W c
MW

a
V ȲV(tk−1). (5.14)

Since W c
M is doubly stochastic, W c

MW
a
V is doubly stochastic. In the next section, we show

that the graph associated with W c
MW

a
V is strongly connected. Therefore, the convergence

of the single-stage multiagent coordination is guaranteed.

5.4.3 Performance Analysis

In this subsection, we analyze the benefit of using the cellular communication links to

improve the convergence speed of multiagent coordination. According to (5.10), we

focus on the second largest eigenvalue of the weight matrix. Consider a finite-state
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Markov chain with state space V and state transition matrix (or stochastic matrix)

W = [w(i, j)]|V|×|V|
5. Define the closed subset and irreducible closed subset as follows.

Definition 2. A setM of states is a closed subset of a Markov chain with state transition

matrix W if and only if w(i, j) = 0 for any i ∈ M and j ∈ V \M. A set M′ of states

is an irreducible closed subset if and only if M′ is a closed subset, and no proper subset

of M′ is a closed subset.

Then, the following lemma holds with respect to eigenvalues of the state transition matrix

of a Markov chain [108].

Lemma 10. The state transition matrix W has an eigenvalue 1, and the multiplicity of

the eigenvalue 1 is equal to the number of irreducible closed subsets of the Markov chain.

Based on Lemma 10, we have the following properties with respect to the weight matri-

ces W c
M and W a

V .

Lemma 11. Both W c
M and W a

V are symmetric and positive semidefinite.

The proof of Lemma 11 is given in Appendix B.

By comparing the second largest eigenvalue of W c
MW

a
V with that of W a

V , we have

the following theorem with respect to the benefit of using cellular communication links,

which is proved in in Appendix B.

Theorem 5. Given M ⊆ V, M ≥ 2, and the weight matrices W a
V and W c

M, we have

λ2(W c
MW

a
V ) ≤ λ2(W a

V ).

Theorem 5 indicates that the convergence speed of multiagent coordination can be

improved by using the cellular communication links. On the other hand, since both W c
M

5Obviously, the doubly stochastic matrices W a
V , W c

M, and W c
MW a

V can be considered as the transition

matrices of Markov chains with a common state space V.
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and W a
V are symmetric and positive semidefinite, the lower bound of

∑k
i=1 λi(W

c
MW

a
V )

for any k ∈ {1, 2, · · · , |V|} is given by

k∑
i=1

λi(W
c
MW

a
V ) ≥ max

m1,··· ,mk

k∑
i=1

λ|V|−mi+1(W a
V )λmi(W

c
M) (5.15)

where 1 ≤ m1 < m2 < · · · < mk ≤ |V| are ordered integers [122]. Denote the lower

and upper bounds of λ2(W c
MW

a
V ) with respect to M as θ(M) and ϕ(M), respectively.

Letting k = 2 in (5.15) and taking into account (6.38), we have

θ(M) = max
1≤m1<m2≤|V|

{λ|V|−m1+1(W a
V )λm1(W

c
M) + λ|V|−m2+1(W a

V )λm2(W
c
M)} − 1 (5.16)

ϕ(M) = λ2(W a
V )λ2(W c

M). (5.17)

Based on M, we consider another set M′ with more activated cellular communication

devices such that M′ ⊆ B and M ⊆ M′. Obviously, we have M ≤ |M′|. For the

potential benefit of activating more cellular communication devices, we have the following

proposition, which is proved in Appendix B.

Proposition 2. Given M ≥ 2 and M ⊆ M′, we have θ(M′) ≤ θ(M) and ϕ(M′) ≤

ϕ(M).

5.5 Hierarchical Multiagent Coordination

Hierarchical multiagent coordination utilizes the network topology information for wire-

less link scheduling and clustering. Each of the dual-mode nodes in M is considered as

a cluster head. As shown in Fig. 5.2(c), the hierarchical multiagent coordination consists

of two levels. The first and second levels are performed via the ad hoc network and cel-

lular network, respectively. Then, the dual-mode nodes inM broadcast (BC) the results

based on the second level of multiagent coordination to the nodes within each cluster via
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the ad hoc network. Since network topology information is available, the wireless links

can be scheduled efficiently. Moreover, given the value of M , the selection of nodes in

M and the node clustering can be optimized. Frequency reuse is considered such that

the communication links within different clusters are interference free.

5.5.1 Deterministic Ad Hoc Communication Link Scheduling

Compared with the random access, deterministic scheduling improves the efficiency of

information exchange by increasing the number of concurrent transmissions [97]. Denote

the node set in the cluster corresponding to node m (m ∈M) as Qm. For each iteration,

each node in Qm broadcasts its own state values once. Suppose each broadcast corre-

sponds to one time slot with duration TB. Denote the deterministic scheduling scheme

for the nodes in Qm as DQm = {DsQm|s ∈ {1, 2, · · · , SQm}}, where DsQm represents the

set of nodes scheduled to broadcast during time slot s, and SQm is the number of time

slots required to complete an iteration. The objective of the deterministic scheduling is

to construct a broadcast sequence DQm which uses the minimum number of time slots

to complete the broadcasts of all nodes in Qm, given by

(P2) min
DQm

SQm (5.18)

subject to (Nv1 ∪ {v1}) ∩ (Nv2 ∪ {v2}) = ∅, v1, v2 ∈ DsQm , s ∈ {1, 2, · · · , SQm} (5.19)

∪s∈{1,2,··· ,SQm}D
s
Qm = Qm (5.20)∑

s∈{1,2,··· ,SQm}

∑
n∈Qm

In∈DsQm = 1. (5.21)

Constraint (5.19) indicates that there is no collision for the concurrent broadcasts during

each time slot, while constraints (5.20) and (5.21) guarantee that each node broadcasts

exactly once for each iteration. Problem P2 defines an integer programming problem

which cannot be solved efficiently [66, 109]. In order to reduce the computational com-

plexity, we consider a greedy algorithm, Algorithm 4. For each time slot, the algorithm
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Algorithm 4 Deterministic Scheduling Algorithm

Input: Qm, Ni (i ∈ Qm);
Output: DQm , SQm ;

1: Initialize: S = 1, Q′m = Qm, and D1
Qm = ∅;

2: while ∪s∈{1,2,··· ,S}DsQm 6= Qm do
3: Calculate the maximum independent set of GQ′m and denote the vertex set as DSh ;
4: Q′m = Qm − ∪s∈{1,2,··· ,S}DsQm ;
5: Update S ← S + 1;
6: end while
7: return DQm = {DsQm|s ∈ {1, 2, · · · , SQm}}, SQm = S

maximizes the number of concurrent (collision-free) broadcasts. Note that in step 1, Q′m
represents the set of nodes which have not completed the broadcast. In step 3, GQ′m
denotes a directed graph corresponding to the nodes in Q′m based on the ad hoc network,

i.e., there is an edge from node i to node j (i, j ∈ Q′m) if and only if j ∈ Ni, and vice

versa. The maximum independent set can be calculated based on existing methods or

heuristic algorithms [110].

5.5.2 Iteration via Cellular Network

Similar to the single-stage multiagent coordination scheme, all nodes in M are involved

in the iteration via the cellular network. Denote the weight matrix with respect to the

iteration via the cellular network as W h
M(v, n) = [ωhM(v, n)]M×M . Since each node m ∈M

is the cluster head of a set Qm of nodes, the weight values should account for the cluster

size, given by ωhM(v, n) = |Qn|/|V| for all v, n ∈ M. Consider the information discovery

of the average value of the aggregated generation of type g DG units. Given a sufficiently

large duration for the iterations via the ad hoc network (TA), we have

lim
TA→∞

X̄g(i, TA) =
1

|Qm|
∑
v∈Qm

xgv, i ∈ Qm. (5.22)
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After the iteration via the cellular network, the state value broadcasted by each node in

M to the cluster members is given by

∑
m∈M

|Qm|
|V|
· 1

|Qm|
∑
v∈Qm

xgv =
1

|V|
∑
m∈M

∑
v∈Qm

xgv =
1

|V|
∑
v∈V

xgv = X̄g. (5.23)

Therefore, the convergence of the hierarchical multiagent coordination is guaranteed.

5.5.3 Performance Analysis and Node Clustering

Since the cluster sizes (|Qm|) corresponding to the nodes m ∈M are different, the perfor-

mance of the hierarchical multiagent coordination is related to the clustering algorithm.

The error of the hierarchical multiagent coordination at time T is given by

||Φg,V(T )||2 =

√√√√|V|[(∑
m∈M

|Qm|
|V|

X̄g(m,TA)

)
− X̄g

]2

=

√√√√ 1

|V|

[∑
m∈M

|Qm|
(
X̄g(m,TA)− X̄g

)]2

≤
√∑

m∈M

|Qm|
(
X̄g(m,TA)− X̄g

)2

≤
√∑

m∈M

|Qm| · ||Φg,Qm(TA)||22

≤
√∑

m∈M

|Qm|[λ2(W a
Qm)]

b 2TA
SQmTB

c||Φg,Qm(0)||22

≤ ||Φg,V(0)||∞

√∑
m∈M

|Qm|2[λ2(W a
Qm)]

b 2TA
SQmTB

c
(5.24)

where the second equality holds since
∑

m∈M |Qm| = |V|, and ||Φg,V(0)||∞ equals the

largest element of the initial disagreement vector. Compared with the multiagent coor-

dination via the ad hoc network, the benefit of the hierarchical multiagent coordination
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scheme is based on the potentially smaller SQm and λ2(W a
Qm) for smaller graphs, i.e.,

Qm ⊂ V . Similar observation can be obtained by decomposing an ad hoc network with

long-range links [111].

According to (5.24), for a given number of activated cellular communication devices

M , the convergence speed of the hierarchical multiagent coordination is determined by∑
m∈M |Qm|2[λ2(W a

Qm)]
b 2TA
SQmTB

c
, which needs to be minimized for all possible combina-

tions of M nodes in B and all nodes in V . However, the computational complexity is

O(|B|M |V|M), which is prohibitive as the network size increases. Note that the error of

the hierarchical multiagent coordination scheme is dominated by the largest cluster (by a

factor of maxm∈M |Qm|2). Therefore, we consider a heuristic clustering algorithm which

constructs the clusters by splitting [112] the largest cluster which includes at least two

dual-mode nodes. The details are given in Algorithm 5, where the function f(·) is used

to calculate an optimal split of a cluster with respect to a set V ′ of ad hoc nodes and a

subset B′ (B′ ⊆ V ′) of dual-mode nodes, given by

f(V ′,B′) = arg min
{m1,m2}∈B′×B′,m1 6=m2

Qm1∪Qm2=V ′

{
∑
k=1,2

|Qmk |2[λ2(W a
Qmk

)]
b 2TA
SQmk

TB
c
}. (5.25)

Note that if there is only one element in a cluster Qm (i.e., |Qm| = 1), we denote

λ2(W a
Qm) = 0 since each node has accurate power generation and load information of

itself. For computational simplicity, the cluster members in terms of Qm1 and Qm2 are

determined by the shortest-distance criteria, i.e., a Voronoi diagram with two points.

In a case that Qm′ cannot be split into two clusters without isolated nodes, step 3 is

recalculated with respect to the second largest cluster, and so on. Since each step of

the cluster splitting only takes into account all possible pairs of dual-mode nodes in one

cluster, the complexity of the algorithm is O(M |B|2).
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Algorithm 5 Clustering Algorithm

Input: V , B, Nv (v ∈ V), M ;
Output: M, Qm, m ∈M;

1: Initialize: M = {m} for any m ∈ B, Qm = V ;
2: for i = 2 to M do
3: m′ = arg maxm∈M {|Qm| | |Qm ∩ B| ≥ 2};
4: V ′ = Qm′ , B′ = Qm′ ∩ B;
5: Update M← (M\m′) ∪ f(V ′,B′);
6: Update Qm for m ∈ f(V ′,B′);
7: end for
8: return M, Qm, m ∈M

5.6 Communication Cost versus Energy Cost

Based on the discussions in Section 5.4 and Section 5.5, the error of multiagent coordi-

nation can be (potentially) reduced by activating more cellular communication devices.

With more accurate information, each DG unit can make better decision on power gen-

eration for generation cost minimization. However, the communication cost increases as

the number of activated cellular communication devices increases. In this section, we

investigate a tradeoff between the communication and generation costs.

5.6.1 Cost Model

Consider one economic dispatch period as an example. The communication cost is de-

fined based on the usage of network resources (such as communication bandwidth, buffer

storage, and battery storage) to achieve economic dispatch. Specifically, we consider the

usage of bandwidth resource which is the main concern of this chapter. Given the num-

ber of activated cellular communication devices (M), a total of [M(M − 1)] packets are

transmitted via the cellular network for each iteration of multiagent coordination. The

reason is that each activated cellular communication device needs to inform the other
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(M − 1) devices about its own state values. As all data packets have the same size and

transmitting each packet consumes a certain amount of bandwidth resource, the cost of

using cellular network can be modeled as a function of M , given by CS
C(M) and CH

C (M)

for the single-stage and hierarchical multiagent coordination schemes, respectively. In

this research, we consider the monetary cost (in dollars) for simplicity since it is consis-

tent with the definition of power generation cost in (5.1). In order to transmit a data

packet via cellular network, a cost cM (in dollars) is incurred. The value of cM varies for

different systems and depends on many factors such as the size of data packet, quality

of service, power consumption in cellular communications, and billing system of the net-

work operator. In the next section, we will present the numerical results based on a real

data plan of a Canadian cellular network operator as an example. The ad hoc network

(e.g., WiFi or ZigBee network) is used for both single-stage and hierarchical multiagent

coordination. However, the ad hoc network is considered to be a less monetarily costly

option, since it uses unlicensed radio frequency bands as opposed to licensed bands in

cellular network. Therefore, the communication costs (in dollars) of the single-stage and

hierarchical multiagent coordination schemes are, respectively, given by

CS
C(M) = cMM(M − 1)E [T/TI(V)] (5.26)

CH
C (M) = cMM(M − 1) (5.27)

where E [T/TI(V)] is the average number of iterations of multiagent coordination via the

ad hoc network. Note that the cost of single-stage multiagent coordination is enlarged

by a factor of E [T/TI(V)] since an iteration via the cellular network is performed after

each iteration via the ad hoc network.

The power generation cost is defined in (5.1). After the multiagent coordination,

denote the state values of cumulative generation and aggregated loads obtained by node

v as X̄v = {X̄1(v, T ), X̄2(v, T ), · · · , X̄G(v, T )} and Ȳv = Ȳ (v, T ), respectively. Based on

(5.4), the decentralized decision on the economic dispatch is given by ugv(X̄v, Ȳv, c), where
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X̄ and Ȳ are replaced by X̄v and Ȳv, respectively. Given the minimum cost C∗P (x,y, c)

based on problem P1 which is a constant within TD, we consider the increment in the

generation cost by using inaccurate information, which is a function of M and is given by

CI
P (M) = E

cA(Y −
∑

g∈{1,2,··· ,G}

∑
v∈V

ugv(X̄v, Ȳv, c))+

+ cE(
∑

g∈{1,2,··· ,G}

∑
v∈V

ugv(X̄v, Ȳv, c)− Y )+

+
∑

g∈{1,2,··· ,G}

cg
∑
v∈V

ugv(X̄v, Ȳv, c)

− E [C∗P (x,y, c)] (5.28)

where the first expectation is taken with respect to the random variables x and y, and the

set of randomly activated cellular communication devices (M) for the single-stage mul-

tiagent coordination scheme. Denote the incremental generation cost of the single-stage

and hierarchical multiagent coordination schemes as CIS
P (M) and CIH

P (M), respectively.

5.6.2 Cost Tradeoff

The objective is to minimize the combined communication and incremental generation

costs by properly selecting the number of activated cellular communication devices M .

The desired value of M for the single-stage multiagent coordination is given by problem

P3 as follows:

(P3) min
M∈{1,2,··· ,|B|}

CS
C(M) + CIS

P (M)TD (5.29)

where the second term has a factor of TD since we investigate the cost (in dollars) for

one economic dispatch period. In other words, TD is used to convert the unit of power

generation cost from dollar/h to dollar/period. Similarly, we can calculate the desired

value of M for the hierarchical multiagent coordination scheme. Problem P3 is an integer
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programming problem which is NP-hard in general. Although an exhaustive search can

be used to find the solution, the computational complexity can be prohibitive because of

the expectation operation in (5.28). Moreover, the statistics of x and y (and the network

topology information with respect to the single-stage multiagent coordination scheme)

may not be available for a microgrid. Therefore, an approximation of the incremental

generation cost CIS
P (M) is indispensable for practical applications.

For a self-sustained microgrid, the power generation by the G types of DG units

and loads should be balanced for most of the time. Therefore, we can approximate the

incremental generation cost based on the undelivered and extra power as

C̃IS
P (M) = (cA − c1)z̃A + (cG + cE)z̃E (5.30)

where z̃A and z̃E are the average values of zA and zE observed over a certain period of time

(e.g., one day) by the alternative energy sources and negative spinning reserve service

providers, respectively. Note that (5.30) provides an upper bound of CIS
P (M) since the

price of purchasing power from the DG units is no less than c1 and no greater than cG.

Based on the estimate C̃IS
P (M), an approximation of the desired tradeoff between the

communication and generation costs can be achieved without resorting to the statistics

of x and y, which simplifies the network optimization of microgrids. Similarly, we can

use the estimate C̃IH
P (M) for hierarchical multiagent coordination.

5.7 Numerical Results

The network topology used for simulations is shown in Fig. 5.3. We consider the Lau-

relwood neighborhood located in North-West Waterloo as a microgrid topology for the

deployment of DG units and wireless devices. We plot the wind turbines, PV panel-

s, and loads at adequate geographic locations on the map. For the generation data of
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Wind Turbine 
(DG Unit)

PV Panel 
(DG Unit)

Load Dual-Mode200 m

Figure 5.3: The network topology for simulations.

wind turbines, a probability distribution of the wind speed for Waterloo is obtained from

Canadian Wind Energy Atlas [113] considering the 50 kW wind turbines located at 30 m

height [114]. The power curve (which is the output power as a function of instantaneous

wind speed) of the actual wind turbine is used to translate wind speeds to the amount of

power generations. The probability distribution follows the Weibull distribution with a

shape parameter 1.94 and scale parameter 4.48 m/s. The startup, cutout, and rated wind

speeds are 2 m/s, 18 m/s, and 11 m/s, respectively. For the generation data of PV pan-

els, hourly PV performance data of Toronto (100 km away from Waterloo) is obtained

from NREL (National Renewable Energy Laboratory) PVWattsTM site specific calcu-

lator [115] which determines the power production of PV panels for a given geographic

location. The AC rating of the PV panels is 3.08 kW. For the demand of loads, an hourly

demand is obtained from the smart meters of two residences in the Laurelwood neighbor-

hood subscribed to Waterloo North Hydro [34]. The demand data is approximated by a

normal distribution [116]. For instance, the mean and standard deviation in kWh during

the on-peak hours (i.e., 9 am and 6 pm) and off-peak hours (i.e., 1 am to 7 am and 1
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pm to 4 pm) are, respectively, given by (1.5, 0.43) and (0.70, 0.04). For consistency, all

power generation and load data are taken during the month of June in Waterloo. The

costs are 0.135, 0.802, 2.080, and 0.000 (CAD) dollar/kWh for wind turbine, PV pan-

el [100], diesel generator, and negative spinning reserves (i.e. the cost is neglected) [39],

respectively. For the heterogeneous wireless network infrastructure, the transmission

range of ad hoc communication devices is 150 m with a link layer data rate 2 Mbps and

a PHY header according to the IEEE 802.11 standard [117]. For the update-and-wait

and update-and-continue based random access schemes, we consider each ad hoc node

accesses the wireless medium with probability 0.1 [54] and a retransmission mechanism is

in place to guarantee the successful broadcast. We randomly select 44 dual-mode nodes

with the cellular capability as shown in Fig. 5.3 and consider a basic data plan of Rogers

Canada with 40 dollars for 100 MB data6. Since the power generation and demand state

information can be represented by 16 bits [96], we have cM = 2.4 × 10−6 dollars, which

can be considered as a lower bound of communication cost since packetization overhead is

not included. The durations of the economic dispatch and information exchange periods

are TD = 300 s (i.e., 1
12

h) and T (= TA) = 2 s, respectively [16, 17]. The generation of DG

units and the loads are randomly generated for each economic dispatch period during the

simulations. For a fair comparison, we focus on the average costs since random selection

of dual-mode nodes is used by our proposed single-stage multiagent coordination scheme

and random cluster splitting is studied in the following performance evaluation. Each

simulation run lasts for one day from which the communication and generation costs are

calculated, and the results are averaged over 30 days.

Fig. 5.4 shows the incremental generation cost (CI
P (M)) on a daily basis versus the

fraction of activated cellular communication devices (M/|B|). As we can see, the gener-

6It is worth mentioning that this is a service plan for cell phone users. How to customize the plan

for microgrid operation is still an open issue and left for our future work.
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Figure 5.4: Incremental generation cost (per day) versus the fraction of activated cellular

communication devices.

ation costs of both schemes decrease as the fraction of activated cellular communication

devices increases since more cellular communication links can (potentially) improve the

network connectivity and thus reduce the error in multiagent coordination. The update-

and-continue based random access scheme which is used by our proposed single-stage

multiagent coordination scheme can reduce the generation cost as compared with the

update-and-wait scheme by reducing the duration of each iteration via the ad hoc net-

work. The proposed hierarchical multiagent coordination scheme achieves the lowest

generation cost based on deterministic scheduling and efficient clustering. For compari-

son, if random cluster splitting (without information of the cluster size and eigenvalues

of weight matrices) is used, the generation cost decreases slowly with the fraction of ac-

tivated cellular communication devices. Moreover, if update-and-continue based random

access is also used (without network topology information for wireless link scheduling),
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the generation cost further increases because of an increased iteration duration within

each cluster. The generation cost is even higher than the single-stage counterpart since

the error of the hierarchical multiagent coordination scheme is dominated by the poten-

tial large clusters as a result of random cluster splitting, according to our analysis in

Subsection 5.5.3.

Taking account of the cost of using cellular communication links, a tradeoff between

the communication and incremental generation costs is shown in Fig. 5.5. For presen-

tation clarity, we normalize the combined communication and generation costs of both

schemes by their maximum actual costs, given by 166.5 and 57.2 dollars, respectively. We

can see that, the communication and generation costs are comparable with each other.

As the fraction of activated cellular communication devices increases, the normalized cost

first decreases since the generation cost decreases. Then, the normalized cost increases

as the communication cost increases and exceeds the decrement in the generation cost.

Therefore, there is a desired tradeoff point between the communication and generation

costs for both single-stage and hierarchical multiagent coordination schemes, which pro-

vides the minimum normalized cost. Since the network topology information is used by

the hierarchical multiagent coordination scheme, the desired tradeoff is achieved by acti-

vating less cellular communication devices. The normalized cost achieved at the tradeoff

point based on the approximation of incremental generation cost is close to that of the

desired tradeoff point, which implies a good estimate for the desired value of M . The

normalized cost based on the existing schemes without using cellular communication

devices [96] or with all cellular communication devices (or equivalently, all long-range

links [111]) being activated is also shown. We can see that, the existing schemes can

only achieve the boundary points of the cost tradeoff curves and may not be efficient in

minimizing the combined communication and generation costs.
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Figure 5.5: Tradeoff between the communication and generation costs.

5.8 Summary

In this chapter, we propose a decentralized economic dispatch approach for microgrids

such that each DG unit makes local decisions on power generation based on a multiagent

coordination with guaranteed convergence. A heterogeneous wireless network architec-

ture is established. Each node uses an ad hoc communication device for basic information

exchange, while some dual-mode nodes are equipped with optional cellular communica-

tion devices which can be activated to improve the convergence speed of multiagent

coordination. Two multiagent coordination schemes are proposed to utilize the cellular

communication links based on the single-stage and hierarchical operation modes, respec-

tively. Numerical results indicate that our propose schemes can better utilized the cellular

communication links and achieve more efficient tradeoff between the communication and

generation costs in comparison with the existing schemes.
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Chapter 6

Conclusions and Further Work

In this chapter, we summarize the major research contributions and discuss further re-

search work.

6.1 Major Research Contributions

This research aims at developing efficient resource management schemes for DTNs and

smart grid. Four research topics have been studied, namely medium access control for co-

operative data dissemination via RS-WLANs, efficient on-demand data service delivery to

high-speed trains, optimal energy delivery via V2G systems, and decentralized economic

dispatch in microgrids. The proposed resource management schemes are able to address

the intermittency of network connections in DTNs and the randomness of distributed

generation and PHEV mobility in the smart grid. Specifically, the main contributions of

this research are summarized as follows.

• We propose a DRMAC scheme for efficiency cooperative data dissemination via RS-

WLANs. The proposed MAC scheme achieves the cooperative diversity gain based
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on a receiver-initiated mechanism and utilizes the time correlation of a wireless

channel to reduce the signalling overhead. A novel analytical model is established

to evaluate the performance of the proposed MAC scheme by using a finitestate

Markov chain based channel model to characterize the time correlation between two

consecutive transmissions. From the users’ point of view, the proposed MAC scheme

improves quality of data dissemination services provided by RS-WLANs. From

the service providers’ point of view, the resources within each RS-WLAN can be

better utilized, which in turn stimulates the sharing of the roadside communication

infrastructures in terms of the WiFi based WLANs.

• We formulate an optimal resource allocation problem for on-demand data delivery

to high-speed trains in a cellular/infostation integrated network. The problem is

transformed into a single-machine preemptive scheduling problem and an online re-

source allocation algorithm is proposed for practical applications. The performance

bound of the online algorithm is characterized based on the theory of sequencing

and scheduling. Further, a service pre-downloading algorithm is used to achieve

efficient resource allocation when the link from the backbone network to an in-

fostation is a bottleneck. Compared with the existing approaches such as FIFO,

EDF, and RAPID, our proposed algorithms can significantly improve the quality

of on-demand data service provisioning over the trip of a train, which significantly

improves the comfort of onboard passengers.

• We extend the traditional energy store-and-deliver mechanism for stationary bat-

tery management to an energy store-carry-and-deliver mechanism for PHEV bat-

tery management in V2G system. The energy cost minimization problem under

TOU electricity pricing is mathematically formulated and a state-dependent (S, S ′)

policy is proved to be optimal. Further, we proposed a modified backward itera-

tion algorithm with an EWMA estimation of the statistics of PHEV mobility and
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energy demand to facilitate practical applications. Compared with the existing ap-

proaches, the proposed scheme can achieve energy cost reduction, which increases

with the battery capacity. The result obtained in this research can provide a good

reference for PHEV operation cost reduction and utilities for better grid operation.

Beyond PHEV applications, the optimal policy can also shed light on other energy

management problems in DTNs and power systems which are (partially) featured

by realistic battery model, non-stationary energy demand, and bi-directional energy

flow.

• We propose a decentralized economic dispatch approach such that the optimal

decision on power generation is made by each DG unit locally without a central

controller. The prerequisite power generation and load information for decision

making is discovered by each DG unit via a multiagent coordination with guaran-

teed convergence. To avoid a slow convergence speed which potentially increases

the generation cost because of the time-varying nature of DG output, we present

a heterogeneous wireless network architecture for microgrids along with two mul-

tiagent coordination schemes to utilize the cellular communication capabilities of

dual-mode devices. The optimal number of activated cellular communication de-

vices is obtained based on the tradeoff between communication and generation

costs. From the utilities’ point of view, the economic dispatch in microgrids can be

achieved based on wireless communication devices at a low deployment cost and

the minimum operation cost. From the environmental point of view, the use of

traditional thermal energy power generators can be reduced via a better utilization

of the renewable energy sources. At the same time, the customers can enjoy the

monetary benefit in terms of reduced electricity bills which, in turn, promotes the

use of the renewable energy sources.
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6.2 Further Work

Resource management in DTNs and smart grid is a broad research area. Although several

critical issues have been addressed in this thesis, there are still many open research issues

to be investigated:

• This research focuses on pedestrian nomadic nodes. An extension to vehicular no-

madic nodes is very interesting but challenging, in which the wireless channel is

highly dynamic such that it is difficult to obtain the transmission rate informa-

tion for temporal diversity and use the time correlation of a wireless channel for

signalling overhead reduction. Moreover, joint design for packet pre-downloading

to the storage local nodes and medium access control based on mobility statistics

[18, 20] needs further investigation.

• This research investigates on-demand data service delivery to high-speed trains. For

practical high-speed train applications (including safety-related applications), how

to map the quality of service (QoS) parameters such as the service data size, relative

deadline, and importance/priority to the reward of each service is an interesting

topic and needs further studies.

• The optimal energy delivery problem is studied for a single PHEV in the V2G

system. How to devise an efficient multi-vehicle aggregator management algorithm

for grid stability enhancement should be investigated [35, 36]. In this case, the

decision variable of multi-vehicle management becomes multidimensional and the

solution may not be obtained in real-time. Moreover, vehicle owners always strive

to minimize their own expense and may not want to be intervened by a third party.

Therefore, decentralize algorithms based on certain incentives such as real-time

electricity prices can be a potential solution. Further, the integration of sustainable
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generation should be investigated [116], which may add a new dimension to the

optimal energy store-carry-and-deliver problem.

• In this research, the proposed decentralized economic dispatch scheme requires re-

liable two-way communications. Further work includes an application of broadcast

gossip which does not require two-way information exchange [118] and is less sen-

sitive to packet losses. In addition, an optimization of the decentralized economic

dispatch approach by taking account of the prediction error of power generation

and load information [101] and the security/privacy issues in wireless network-

s [119, 120, 121] is interesting and needs further investigation. After all, knowing

the dispatch point is only the first step of microgrid operation. How to utilize the

information to facilitate microgrid control is an important and interesting topic,

which needs further study.
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Appendices

Appendix A: Derivation of T
at
~m|m1 6=0 and T

at
~m|m1=0

We first derive the duration of CG attachment with respect to a deterministic set

{m1, · · · ,mNc} of rate indices, given m1 6= 0. Define an indication function A{m1,··· ,mNc},k

which equals to 1 if the kth CG member has a higher transmission rate than all other

CG members with lower ranks and 0 otherwise, given by

A{m1,··· ,mNc},k = I(ζf−1(k)(mk) > ζf−1(h)(mh),∀ 1 ≤ h < k), 2 ≤ k ≤ Nc. (6.1)

In the DRMAC scheme, the kth CG member (2 ≤ k ≤ Nc − 1) sends a rate notification

message (with duration TRN) only when A{m1,··· ,mNc},k = 1; Otherwise, it waits for an

idle slot with duration TS. Therefore, the duration of CG attachment with respect to the

deterministic set of rate indices is given by

T at{m1,··· ,mNc}|m1 6=0 = TDA + TRR + TRN + 3TSIFS +
Nc−1∑
k=2

[(TRN + TSIFS)A{m1,··· ,mNc},k

+ TS
(
1− A{m1,··· ,mNc},k

)
] + TS

(
1− A{m1,··· ,mNc},Nc

)
. (6.2)

Taking account of the randomness in transmission rates and independent channels,
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the value of T
at

~m|m1 6=0 is given by

T
at

~m|m1 6=0 =
∑

1≤m1≤MR
0≤m2,··· ,mNc≤MR

[T at{m1,··· ,mNc}|m1 6=0 · P ( ~m = {m1, · · · ,mNc}|m1 6= 0)]

=

MR∑
m1=1

MR∑
m2=0

· · ·
MR∑

mNc=0

[T at{m1,··· ,mNc}|m1 6=0 ·
Nc∏
n=1

P (mn = mn|m1 6= 0)]

=

MR∑
m1=1

MR∑
m2=0

· · ·
MR∑

mNc=0

[T at{m1,··· ,mNc}|m1 6=0 · P (m1 = m1|m1 6= 0)
Nc∏
n=2

P (mn = mn)]

=

MR∑
m1=1

MR∑
m2=0

· · ·
MR∑

mNc=0

[T at{m1,··· ,mNc}|m1 6=0 ·
Pf−1(1),m1∑M
m=1 Pf−1(1),m

Nc∏
n=2

Pf−1(n),mn ]. (6.3)

Define ~m′ =
{
m′1, · · · ,m′Nc

}
as the rate indices of CG members during the second

transmission of the dedicated phase assignment message. Then, T
at

~m|m1=0 is given by

T
at

~m|m1=0 = TDA + TSIFS + T
at

~m′|m1=0,m′1 6=0 · ptf−1(1),0,1 (TDA + TSIFS)

+ T
at

~m′|m1=0,m′1=0 · ptf−1(1),0,0 (TDA + TSIFS) (6.4)

where T
at

~m′|m1=0,m′1 6=0 is the average duration of CG attachment after the first attempt

(with duration TDA+TSIFS), given that the first and second transmissions of the dedicated

phase assignment messages fail and are successful, respectively. Similar to (6.3), we have

T
at

~m′|m1=0,m′1 6=0 =

MR∑
m′1=1

MR∑
m′2=0

· · ·
MR∑

m′Nc=0

[T at{m′1,··· ,m′Nc}|m
′
1 6=0 ·

Pf−1(1),m′1|m1=0∑MR

m=1 Pf−1(1),m|m1=0

Nc∏
n=2

Pf−1(n),m′n ]

(6.5)

where the value of T at{m′1,··· ,m′Nc}|m
′
1 6=0 is given by (6.2) with {m1, · · · ,mNc} and m1 6= 0

being replaced by {m′1, · · · ,m′Nc} and m′1 6= 0, respectively. In (6.5), Pf−1(1),m|m1=0 is

the conditional PMF of the rate index of the second transmission of the dedicated phase

assignment message, given that the first transmission fails. By considering the transition

probabilities of the transmission rate indices in the finite-state Markov chain, we have

Pf−1(1),m|m1=0 =

p
t
f−1(1),0,m (TDA + TSIFS) , if m = 0 or m = 1

0, otherwise

(6.6)
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where the values of ptf−1(1),0,0 (·) and ptf−1(1),0,1 (·) are given by (2.5) and (2.7), respectively.

Then, (6.5) can be simplified to

T
at

~m′|m1=0,m′1 6=0 =

MR∑
m′2=0

MR∑
m′3=0

· · ·
MR∑

m′Nc=0

[T at{1,m′2,··· ,m′Nc}|m
′
1 6=0 ·

Nc∏
n=2

Pf−1(n),m′n ]. (6.7)

In (6.4), T
at

~m′|m1=0,m′1=0 is the average duration of CG attachment after the first attempt

(with duration TDA + TSIFS), given that both first and second transmissions of the dedi-

cated phase assignment messages fail. Define ~m′′ =
{
m′′1, · · · ,m′′Nc

}
as the rate indices of

CG members during the third transmission of the dedicated phase assignment message.

We have

T
at

~m′|m1=0,m′1=0 = TDA + TSIFS + [T
at

~m′′|m1=0,m′1=0,m′′1 6=0 · ptf−1(1),0,1 (TDA + TSIFS)]

+ [T
at

~m′′|m1=0,m′1=0,m′′1=0 · ptf−1(1),0,0 (TDA + TSIFS)]

= TDA + TSIFS + [T
at

~m′|m1=0,m′1 6=0 · ptf−1(1),0,1 (TDA + TSIFS)]

+ [T
at

~m′|m1=0,m′1=0 · ptf−1(1),0,0 (TDA + TSIFS)] (6.8)

where the second equality of (6.8) is due to the one-step memory of finite-state Markov

chain. By rearranging (6.8), we have

T
at

~m′|m1=0,m′1=0 =
TDA + TSIFS

ptf−1(1),0,1 (TDA + TSIFS)
+ T

at

~m′|m1=0,m′1 6=0. (6.9)

Substituting (6.9) into (6.4), we get

T
at

~m|m1=0 = TDA + TSIFS + T
at

~m′|m1=0,m′1 6=0 · ptf−1(1),0,1 (TDA + TSIFS)

+ [
TDA + TSIFS

ptf−1(1),0,1 (TDA + TSIFS)
+ T

at

~m′|m1=0,m′1 6=0] · ptf−1(1),0,0 (TDA + TSIFS)

=
TDA + TSIFS

ptf−1(1),0,1 (TDA + TSIFS)
+ T

at

~m′|m1=0,m′1 6=0 (6.10)

where T
at

~m′|m1=0,m′1 6=0 is given by (6.5).
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Appendix B: Proofs of Lemmas, Theorems, and Propo-

sitions

Proof of Lemma 1: Two cases are considered for a given t. Case 1: t is in a transmission

period (i.e., ∃h, T ih ≤ t ≤ T oh); Case 2: t is in an idle period (i.e., @h, T ih ≤ t ≤ T oh).

Case 1: At time t, the infostation with which the vehicle station can communicate

is ht = arg maxh {T ih ≤ t}. The number of frames within the htth infostation cover-

age before time t is
⌊
(t− T iht)/TF

⌋
, and the sum capacity of these frames is given by∑b(t−T iht )/TFc

j=1 Aht,j. On the other hand, if ht > 1, the sum capacity of the frames within

the coverage of infostations [1, · · · , ht − 1] is given by
∑ht−1

l=1

∑Kl
j=1 Al,j.

Case 2: The infostation most recently visited by the train is ht = arg maxh {T ih ≤ t}.

Since no block can be delivered during an idle period, the cumulative capacity is given

by the sum capacity of all frames in infostations [1, · · · , ht], i.e.,
∑ht

l=1

∑Kl
j=1Al,j.

Proof of Lemma 2: Consider two time instants t1 and t2, such that TI ≤ t1 < t2 ≤

TO. There are four cases. Case 1: Both t1 and t2 are in a transmission period; Case 2:

Both t1 and t2 are in an idle period; Case 3: t1 is in a transmission period while t2 is in

an idle period; Case 4: t1 is in an idle period while t2 is in a transmission period. Since

the proof is similar for the different cases, we show the proof of Case 1 in the following.

If both t1 and t2 are in the same transmission period, i.e., ht1 = ht2 , we have

f (t1) ≤

⌊
(t2−T iht1

)/TF

⌋∑
j=1

Aht1 ,j +

ht1−1∑
l=1

Kl∑
j=1

Al,j

=

⌊
(t2−T iht2

)/TF

⌋∑
j=1

Aht2 ,j +

ht2−1∑
l=1

Kl∑
j=1

Al,j = f (t2) . (6.11)

The inequality in (6.11) is due to
⌊
(t− T iht1 )/TF

⌋
being a non-decreasing function of t,

and Ah,j being non-negative.
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If t1 and t2 are in different transmission periods, i.e., ht1 + 1 ≤ ht2 , we have

f (t1) ≤

⌊
(T oht1

−T iht1
)/TF

⌋∑
j=1

Aht1 ,j +

ht1−1∑
l=1

Kl∑
j=1

Al,j =

ht1∑
l=1

Kl∑
j=1

Al,j ≤
ht2−1∑
l=1

Kl∑
j=1

Al,j

≤

⌊
(t2−T iht2

)/TF

⌋∑
j=1

Aht2 ,j +

ht2−1∑
l=1

Kl∑
j=1

Al,j = f (t2) . (6.12)

The first inequality in (6.12) holds as T iht1 ≤ t1 ≤ T oht1 .

Proof of Theorem 1: For sufficiency, we first consider the condition Gs ≥ T ih+kTF .

Since f(t) is a non-decreasing function with respect to t according to Lemma 2, we have

Gc
s = f (Gs) ≥ f

(
T ih + kTF

)
=

b(T ih+kTF−T ih)/TFc∑
j=1

Ah,j +
h−1∑
l=1

Kl∑
j=1

Al,j

=
k∑
j=1

Ah,j +
h−1∑
l=1

Kl∑
j=1

Al,j. (6.13)

Similarly, we can obtain Dc
s ≤

∑k−1
j=1 Ah,j +

∑h−1
l=1

∑Kl
j=1 Al,j for Ds ≤ T ih + (k − 1)TF .

For necessity, we cannot derive (3.4) directly from (3.7) since f(t) is not a bijective

function and thus is not reversible. Instead, we resort to (3.2) and (3.5) of problem P1.

We first prove the inequality part based on contradiction. Consider Gc
s >

∑k
j=1Ah,j +∑h−1

l=1

∑Kl
j=1Al,j in (3.7). Suppose Gs < T ih + kTF , since f(t) is a non-decreasing function

of t, we have

Gc
s = f(Gs) ≤ f

(
T ih + kTF

)
=

k∑
j=1

Ah,j +
h−1∑
l=1

Kl∑
j=1

Al,j. (6.14)

As (6.14) contradicts with Gc
s >

∑k
j=1Ah,j +

∑h−1
l=1

∑Kl
j=1Al,j, we have Gs ≥ T ih + kTF .

Next, consider Gc
s =

∑k
j=1Ah,j +

∑h−1
l=1

∑Kl
j=1 Al,j in (3.7). Suppose Gs < T ih + kTF .

Since the service request time is rounded to the beginning time of a frame, we have
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Gs ≤ T ih + (k− 1)TF . By applying function f(t) on both sides of the inequality, we have

Gc
s = f(GS) ≤ f

(
T ih + (k − 1)TF

)
=

k−1∑
j=1

Ah,j +
h−1∑
l=1

Kl∑
j=1

Al,j ≤
k∑
j=1

Ah,j +
h−1∑
l=1

Kl∑
j=1

Al,j.

(6.15)

With Gc
s =

∑k
j=1Ah,j +

∑h−1
l=1

∑Kl
j=1Al,j, the first and second inequalities in (6.15)

should take equal signs. Based on the second equality
∑k−1

j=1 Ah,j +
∑h−1

l=1

∑Kl
j=1Al,j =∑k

j=1Ah,j +
∑h−1

l=1

∑Kl
j=1Al,j, we have Ah,k = 0. According to (3.5), the summation of

the resource allocation variables for the kth frame within the hth infostation coverage is

upper-bounded by Ah,k, i.e.,
∑

s∈S xh,k,s ≤ Ah,k. Moreover, since xh,k,s can take only non-

negative values as stated by (3.2), we have xh,k,s = 0, s ∈ S. This result indicates that for

Gc
s =

∑k
j=1Ah,j+

∑h−1
l=1

∑Kl
j=1 Al,j in (3.7), we already have xh,k,s = 0 for Gs < T ih+kTF in

problem P1. The discussion on Dc
s ≤

∑k−1
j=1 Ah,j +

∑h−1
l=1

∑Kl
j=1 Al,j is similar and omitted

here. Since both sufficiency and necessity are satisfied, (3.4) is equivalent to (3.7) for

problem P1.

Proof of Lemma 3: Define cph,k =
∑k−1

j=1 Ah,j +
∑h−1

l=1

∑K
j=1Al,j as the cumulative

capacity of all frames prior to the kth frame within the hth infostation coverage. Since

xh1,k1,s1 , xh2,k2,s2 ≥ 1, the two frames under consideration should have non-zero capacity,

i.e., Ah1,k1 , Ah2,k2 > 0. Without loss of generality, we consider all blocks of the two frames

belong to the nth virtual period, i.e.,

{
cph1,k1 + 1, cph1,k1 + 2, · · · , cph1,k1 + Ah1,k1

}
⊆ [cn + 1, cn+1] (6.16){

cph2,k2 + 1, cph2,k2 + 2, · · · , cph2,k2 + Ah2,k2
}
⊆ [cn + 1, cn+1] . (6.17)

The value of the objective function (3.1) is the same for X and X ′ since the the

total numbers of blocks delivered for services s1 and s2 respectively are the same. For

feasibility, (3.2) and (3.3) hold for X ′ straightforwardly. Constraint (3.5) holds for X ′
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since we have

xh1,k1,s1 + xh1,k1,s2 = (xh1,k1,s1 − 1) + (xh1,k1,s2 + 1) (6.18)

xh2,k2,s1 + xh2,k2,s2 = (xh2,k2,s1 + 1) + (xh2,k2,s2 − 1) . (6.19)

Based on (3.7), for a feasible resource allocation variable X and xh1,k1,s1 6= 0, we have

Gc
s1
<

k1∑
j=1

Ah1,j +

h1−1∑
l=1

K∑
j=1

Al,j = cph1,k1+1. (6.20)

Inequality (6.20) is equivalent to Gc
s1
≤ cph1,k1 since the service request time is rounded

to the beginning time of a frame. Similarly, Dc
s1
≥ cph1,k1 + Ah1,k1 , G

c
s2
≤ cph2,k2 , and

Dc
s2
≥ cph2,k2 + Ah2,k2 . By (6.16) and (6.17), we have

Gc
s2
≤ max

{
Gc
s1
, Gc

s2

}
≤ cn ≤ cph1,k1 < cph1,k1 + Ah1,k1 ≤ cn+1 ≤ min

{
Dc
s1
, Dc

s2

}
≤ Dc

s2

(6.21)

Gc
s1
≤ max

{
Gc
s1
, Gc

s2

}
≤ cn ≤ cph2,k2 < cph2,k2 + Ah2,k2 ≤ cn+1 ≤ min

{
Dc
s1
, Dc

s2

}
≤ Dc

s1
.

(6.22)

The second and sixth inequalities in (6.21) (and (6.22)) hold since no further partition

(by Gc
s or Dc

s) exists within each virtual period according to definition (3.8). As a result,

(3.7) holds for X ′.

Proof of Lemma 4: The convexity follows since Hn(x, u) is continuous and piecewise

linear with respect to u, and the slope of the linear function for u > x is greater than

that for u ≤ x. The convexity is preserved by restricting Hn(x, u) to a convex set

u ∈ [0, xmax] [89].

Proof of Lemma 5: Based on the convexity of q(u), it is straightforward to show

q(u) = q∗ for all u ∈ [S, S ′]. Moreover, q(u) is non-increasing and non-decreasing

on intervals [0, S] and [S ′, xmax], respectively. By considering all five cases of x ac-

cording to (4.12), we can easily verify q(u) ≥ q(u∗) for all x ∈ [0, xmax] and u ∈[
max{0, x− udcmax},min{xmax, x+ urcmax}

]
.
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Proof of Lemma 6: As shown in [85], function Q(x) is convex with respect to x if

GQ(x, a, b) ≥ 0 for any a, b > 0, where

GQ(x, a, b) = Q(x+ a)−Q(x)− aQ(x)−Q(x− b)
b

. (6.23)

We study the following ten cases: Case 1: x−b < x < x+a < S−urcmax < S ′+udcmax; Case 2:

S−urcmax < S ′+udcmax ≤ x−b < x < x+a; Case 3: x−b < x < S−urcmax ≤ x+a < S ′+udcmax;

Case 4: x−b < S−urcmax ≤ x < x+a < S ′+udcmax; Case 5: S−urcmax ≤ x−b < x < x+a <

S ′+udcmax; Case 6: x− b < x < S−urcmax < S ′+udcmax ≤ x+a; Case 7: x− b < S−urcmax ≤

x < S ′ + udcmax ≤ x + a; Case 8: S − urcmax ≤ x − b < x < S ′ + udcmax ≤ x + a; Case 9:

x−b < S−urcmax < S ′+udcmax < x < x+a; Case 10: S−urcmax ≤ x−b < S ′+udcmax < x < x+a.

The convexity of Case 1 and Case 2 follows since q(x) is convex, while x + urcmax and

x − udcmax are affine mappings with respect to x [89]. The proofs of Case 4, Case 5, and

Cases 7-10 are straightforward. For Case 3, we have

GQ(x, a, b) ≥ q∗ − q∗ − aq
∗ − q(x− b+ urcmax)

b
= a

q(x− b+ urcmax)− q∗

b
≥ 0 (6.24)

where the first and second inequalities hold since q(x+urcmax) ≥ q∗ and q(x−b+urcmax) ≥ q∗,

respectively. Similarly, we can prove GQ(x, a, b) ≥ 0 for Case 6.

Proof of Lemma 7: The proof is completed by induction. For n = N , we

have VN(s, x + ε) ≥ VN(s, x) − r′ε since r′ ≥
(
rn
η

+ r̃
)

. Suppose Lemma 7 holds

for Vn+1(s, x). For Vn(s, x), we first investigate the case s = W . Note that for any

u ∈
[
max{0, x+ ε− udcmax},min{xmax, x+ ε+ urcmax}

]
, there exists a u′ = max{0, u − ε},

such that u′ ∈
[
max{0, x− udcmax},min{xmax, x+ urcmax}

]
. Letting ε′ = u− u′ (ε′ ∈ [0, ε]),

we can easily verify Hn(x + ε, u) ≥ Hn(x, u′) − r′(ε − ε′) based on the inequality r′ ≥(
rn
η

+ r̃
)
> rn. By applying Lemma 7 to Vn+1(s, x) with respect to βu − βu′ ≥ 0, we
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have Vn+1(sn+1, βu) ≥ Vn+1(sn+1, βu
′)− γ′βε′ > Vn+1(sn+1, βu

′)− γ′ε′. Then we have

Vn(W , x+ ε) = min
u
{Hn(x+ ε, u) + E[Vn+1(sn+1, βu)|sn =W ]}

≥ min
u′
{Hn(x, u′) + E[Vn+1(sn+1, βu

′)|sn =W ]} − r′ε

≥ Vn(W , x)− r′ε (6.25)

where the first inequality holds by comparing the value of the objective function for

any u with that for the corresponding u′, while the second inequality holds since the

values of u′ always lie in a subset of
[
max{0, x− udcmax},min{xmax, x+ urcmax}

]
. Similarly,

Vn(s, x + ε) ≥ Vn(s, x) − r′ε holds for s = H. Then we consider s = C and study the

following function:

Vn+1(sn+1, β(x+ ε− ζn)+) + r′(ζn − x− ε)+

≥ Vn+1(sn+1, β(x− ζn)+)− r′[β(x+ ε− ζn)+ − β(x− ζn)+]

+ r′(ζn − x)+ + r′(ζn − x− ε)+ − r′(ζn − x)+

= Vn+1(sn+1, β(x− ζn)+) + r′(ζn − x)+ +


−r′ε, if x+ ε < ζn

(1− β)r′(x− ζn)− βr′ε, if x < ζn ≤ x+ ε

−βr′ε, if ζn ≤ x

≥ Vn+1(sn+1, β(x− ζn)+) + r′n(ζn − x)+ − r′ε (6.26)

where the first inequality holds by applying Lemma 7 to Vn+1(s, x) with respect to β(x+

ε− ζn)+− β(x− ζn)+ ≥ 0, while the second inequality holds since for x < ζn ≤ x+ ε and

β < 1, we have (1− β)r′(x− ζn)− βr′ε ≥ (1− β)r′(x− x− ε)− βr′ε = −r′ε. By takeing

expectation on both sides of (6.26), we have Vn(s, x+ ε) ≥ Vn(s, x)− r′ε holds for s = C.

This completes the induction.
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Proof of Theorem 3: The proof is completed by induction. For n = N − 1 and

s = H or W , we have

qN−1(s, x, u) = HN−1(x, u) + E [VN(sN , βu)|sN−1 = s]

= HN−1(x, u) +
∑

j∈{H,W,C}

E [VN(j, βu)]PN−1(j|s). (6.27)

By definition, VN(j, βu) is linear and thus convex with respect to u. Since the expec-

tation can be considered as a nonnegative weighted sum, E [VN(j, βu)] is also convex

[89]. Based on the convexity of HN−1(x, u) according to Lemma 4, qN−1(s, x, u) is also

convex with respect to u. According to Lemma 5, the value of u to achieve the minimum

of qN−1(s, x, u) is given by an (SN−1(s, x), S ′N−1(s, x)) policy. Moreover, the minimum

achieved by the (SN−1(s, x), S ′N−1(s, x)) policy is convex with respect to x according to

Lemma 6. Therefore, VN−1(s, x) is convex with respect to x for s = H or W .

For s = C, we first investigate the convexity of function VN(sN , β(x)+)+r′(−x)+ with

respect to x. For the first term VN(sN , β(x)+), we have

dVN(sN , β(x)+)

dx

∣∣∣∣
x=0+

= lim
ε→0+

VN(sN , β(x+ ε))− VN(sN , βx)

x+ ε− x

∣∣∣∣
x=0

≥ lim
ε→0+

−βr′ε
ε

= −βr′ (6.28)

where the last inequality holds according to Lemma 7. For the second term r′(−x)+, we

have dr′(−x)+

dx

∣∣∣
x=0−

= −r′. Based on Proposition 3.1 of [86], since both VN(sN , βx) and

r′(−x) are convex and dVN (dN ,sN ,β(x)+)
dx

∣∣∣
x=0+

> dr′(−x)+

dx

∣∣∣
x=0−

, we have VN(dN , sN , β(x)+)+

r′(−x)+ is convex with respect to x. Based on Proposition 4.1 of [85], since the convexity

of a function is preserved by taking expectation with respect to (x − ζN−1), we can

conclude that VN−1(s, x) is also convex with respect to x for s = C.

Suppose the theorem holds for Vn+1(s, x), follow the same steps we can prove the

optimality of the (Sn(s, x), S ′n(s, x)) policy and the convexity of Vn(s, x). This completes

the induction.
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Proof of Proposition 1: The proof is completed by contradiction. Suppose ur2n (s) >

ud1
n (s), we consider a small positive number δ > 0 such that ud1

n (s) + δ < ur2n (s). Then

we have

Hr
n(s, ud1

n (s) + δ)−Hr
n(s, ud1

n (s))

=

(
rn
η

+ r̃

)
δ + E

[
Vn+1(sn+1, β(ud1

n (s) + δ))|sn = s
]
− E

[
Vn+1(sn+1, βu

d1
n (s))|sn = s

]
> rnδ + E

[
Vn+1(sn+1, β(ud1

n (s) + δ))|sn = s
]
− E

[
Vn+1(sn+1, βu

d1
n (s))|sn = s

]
= Hd

n(s, ud1
n (s) + δ)−Hd

n(s, ud1
n (s)). (6.29)

In other words, the minimum of Hr
n(s, u) and Hd

n(s, u) cannot be achieved simultaneously

at ud1
n (s) + δ and ud1

n (s), which contradicts with the definition of the sets [ur1n (s), ur2n (s)]

and [ud1
n (s), ud2

n (s)].

Proof of Theorem 4: Denote the economic dispatch policy given by (5.4) as u∗ =

{u∗gv|g ∈ {1, 2, · · · , G}, v ∈ V}. We consider two cases with respect to the relation

between the cumulative generation and aggregated loads: Case 1): The aggregated loads

cannot be satisfied based on the power generation of DG units, i.e.,
∑

g∈{1,2,··· ,G} X̄g < Ȳ

(or equivalently,
∑

g∈{1,2,··· ,G}Xg < Y ); Case 2): The aggregated loads can be satisfied

based on the power generation of DG units, i.e.,
∑

g∈{1,2,··· ,G} X̄g ≥ Ȳ (or equivalently,∑
g∈{1,2,··· ,G}Xg ≥ Y ). The proofs of both cases are completed by contradiction.

Case 1): According to the first case of policy (5.4), all DG units should operate

at the maximum output, i.e., u∗gv = xgv. Suppose another policy u′ 6= u∗ is optimal.

Then, there exists at least one pair (i, j) such that u′ij < xij. Consider another policy

u′′ = {u′′ij, u′gv|g ∈ {1, 2, · · · , G}, v ∈ V , (g, v) 6= (i, j)} with u′′ij ∈ (u′ij, xij]. Then, the

generation cost based on policy u′′ is given by

CP (x,y, c,u′′) = cA(Y −
∑

g∈{1,2,··· ,G}

∑
v∈V

(g,v)6=(i,j)

u′gv − u′′ij) +
∑

g∈{1,2,··· ,G}

∑
v∈V

(g,v)6=(i,j)

cgu
′
gv + ciu

′′
ij

= CP (x,y, c,u′) + (ci − cA)(u′′ij − u′ij). (6.30)
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Since ci < cA and u′′ij > u′ij, we have CP (x,y, c,u′′) < CP (x,y, c,u′), which contradicts

with the assumption that u′ is optimal.

Case 2): Based on Lemma 9, the aggregated power generation of the DG units

and the aggregated loads should be balanced. In other words, a policy different from

u∗ should have at least two different elements with respect to the decisions on power

generation. We consider a policy u′ with exactly two different elements from u∗, i.e.,

u′ = {u′ij, u′mn, u∗gv|g ∈ {1, 2, · · · , G}, v ∈ V , (g, v) /∈ {(i, j), (m,n)}} with u′ij 6= u∗ij

and u′mn 6= u∗mn. An extension of the proof for a policy with more different elements is s-

traightforward. Note that the two elements correspond to two different types of DG units

with different generation costs. Otherwise, the total generation cost is the same based

on the power balance equation. Suppose 1 ≤ i < m ≤ G and the policy u′ is optimal.

Since
∑

g∈{1,2,··· ,G}Xg ≥ Y , we can define g∗ = arg maxg∈{1,2,··· ,G}

{∑
i∈{1,2,··· ,g}Xi ≤ Y

}
.

Then, we calculate the generation costs with respect to two different relations between i

and g∗, i.e., i ≤ g∗ and i > g∗, respectively. If i ≤ g∗, we have u′ij < u∗ij since u∗ij = xij

according to (5.4). Moreover, we have m > g∗ and u′mn = u∗ij + u∗mn − u′ij to balance the

power generation and loads. Then, the generation cost based on the economic dispatch

policy u′ is given by

CP (x,y, c,u′) =
∑

g∈{1,2,··· ,G}

cg
∑
v∈V

u∗gvI(g,v)/∈{(i,j),(m,n)} + ciu
′
ij + cm(u∗ij + u∗mn − u′ij)

= CP (x,y, c,u∗) + (ci − cm)(u′ij − u∗ij)

> CP (x,y, c,u∗) (6.31)

where IA is an indication function which equals 1 if A is true and 0 otherwise, while the

inequality holds since ci < cm and u′ij < u∗ij. The result in (6.31) contradicts with the

assumption that u′ is optimal. On the other hand, if i > g∗, we have m > i > g∗ and the

proof follows similar steps. For other combinations of i and m, the generation and loads

cannot be balanced. This completes the proof.

155



Proof of Lemma 11: According to the definitions of W c
M and W a

V , we can easily

verify that both matrices are symmetric. For the matrix W c
M, the states of the associated

Markov chain can be partitioned into |V| −M + 1 irreducible closed subsets, i.e., |V| −

M subsets correspond to the nodes with only short-range communication devices and

the dual-mode nodes with inactivated cellular communication devices, and one subset

corresponds toM. According to Lemma 10, the eigenvalues of W c
M include |V| −M + 1

ones. On the other hand, we can easily verify the rank of W c
M is |V| −M + 1 since the

weights used by all nodes inM are the same. Therefore, the other M − 1 eigenvalues of

W c
M are equal to zero, which indicates that W c

M is positive semidefinite.

For the matrix W a
V , the Laplacian of the associated graph is given by

LaV = I −W a
V . (6.32)

Since the Laplacian of the strongly connected graph is positive semidefinite [106], we

have λk(L
a
V) ≥ 0 for all k ∈ {1, 2, · · · , |V|}. Moreover, we have

∑
j∈Ni

ωaV(i, j) =
∑
j∈Ni

1

2 max{|Ni|, |Nj|}
≤ |Ni|

2|Ni|
=

1

2
(6.33)

where the inequality holds since max{|Ni|, |Nj|} ≥ |Ni|. Therefore, the spectral radius

of LaV is bounded as

ρ(LaV) ≤ max
i∈V
{| −

∑
j∈Ni

ωaV(i, j)|+
∑
j∈Ni

|ωaV(i, j)|} = 2 max
i∈V

∑
j∈Ni

ωaV(i, j) ≤ 1. (6.34)

That is, all eigenvalues of LaV are within [0, 1]. According to (6.32), LaV and W a
V have the

same eigenvectors, and thus the kth largest eigenvalue of W a
V is given by

λk(W
a
V ) = 1− λ|V|−k(LaV). (6.35)

Therefore, all eigenvalues of W a
V are bounded by [0, 1], which implies that W a

V is also

positive semidefinite.
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Proof of Theorem 5: Since both W c
M and W a

V are symmetric and positive semidef-

inite, we have∑k
i=1 λi(W

c
MW

a
V ) ≤

∑k
i=1 λi(W

a
V )λi(W

c
M) for any k ∈ {1, 2, · · · , |V|} [122]. Letting k = 2,

we have

λ2(W c
MW

a
V ) ≤

∑
i=1,2

λi(W
a
V )λi(W

c
M)− λ1(W c

MW
a
V ). (6.36)

According to the Perron-Frobenius theory [123], since the graph associated with matrix

W a
V is strongly connected, the Markov chain associated with W a

V is irreducible. Based

on Lemma 10, the multiplicity is 1 for eigenvalue 1 with respect to W a
V , i.e., λ1(W a

V ) = 1

and λk(W
a
V ) < 1 for 1 < k ≤ |V|. Suppose W c

MW
a
V = [ωcaMV(i, j)]|V|×|V|, and consider an

arbitrary element ωcaMV(i, j) such that the corresponding element in W a
V satisfies ωaV(i, j) >

0. Then, we have

ωacAR(i, j) =
∑
m∈V

ωcM(i,m)ωaV(m, j) ≥ ωcM(i, i)ωaV(i, j) > 0 (6.37)

where the first inequality holds since all elements in W c
M and W a

V are non-negative, and

the second inequality holds since ωcM(i, i) > 0 for all i ∈ V according to (5.12). Therefore,

we can conclude that the Markov chain associated with W c
MW

a
V is irreducible, given that

the Markov chain associated with W a
V is irreducible. Based on Lemma 10, we have

λ1(W c
MW

a
V ) = 1 while λk(W

c
MW

a
V ) < 1 for 1 < k ≤ |V|. Taking into account (6.36), we

have

λ2(W c
MW

a
V ) ≤ λ2(W a

V )λ2(W c
M) + λ1(W a

V )λ1(W c
M)− λ1(W c

MW
a
V )

= λ2(W a
V )λ2(W c

M) + 1− 1 = λ2(W a
V )λ2(W c

M) (6.38)

where the first equality holds since the largest eigenvalues of W a
V , W c

M, and W c
MW

a
V are

equal to 1. On the other hand, since all eigenvalues of W c
M are less than or equal to 1,

we have λ2(W c
MW

a
V ) ≤ λ2(W a

V ) based on (6.38).
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Proof of Proposition 2: According to the proof of Lemma 11, the eigenvalues of

W c
M′ include |M′| − 1 zeros and |V| − |M′| + 1 ones. Therefore, we have λk(W

c
M′) ≤

λk(W
c
M) for any 1 ≤ k ≤ |V|. Substituting this result in (5.16) and (5.17), we can easily

verify θ(M′) ≤ θ(M) and ϕ(M′) ≤ ϕ(M).
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